
Oracle® Fusion Middleware
Developing and Customizing Applications for
Oracle Identity Governance

14c (14.1.2.1.0)
G20467-01
March 2025



Oracle Fusion Middleware Developing and Customizing Applications for Oracle Identity Governance, 14c (14.1.2.1.0)

G20467-01

Copyright © 2011, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xxxviii

Documentation Accessibility xxxviii

Related Documents xxxviii

Conventions xxxviii

 What's New In This Guide

Part I   Application Provisioning

1   Developing Application Instances

1.1 Overview of Application Instances 1-1

1.2 Managing Resources By Using the Design Console 1-1

1.2.1 Overview of Resource Management 1-2

1.2.2 IT Resources Type Definition Form 1-2

1.2.3 Fields of the IT Resource Type Definition Form 1-3

1.2.4 Defining a Template (a Resource Type) for IT Resources 1-3

1.3 Converting a Disconnected Application Instance to Connected Application Instance 1-4

1.3.1 Assumptions and Broad-Level Steps 1-4

1.3.2 Creating a Disconnected Application Instance in the Production Environment 1-5

1.3.3 Exporting Disconnected Application Instance From Test Environment 1-6

1.3.4 Importing the Disconnected Application Instance in Production Environment 1-6

1.3.5 Modifying the Application Instance from Disconnected to Connected 1-7

1.3.6 Testing the Connected Application Instance 1-9

2   Developing Provisioning Processes

2.1 Process Definition Form 2-1

2.2 Fields of the Process Definition Form 2-2

2.3 Creating a Process Definition 2-3

2.4 Tabs on the Process Definition Form 2-5

iii



2.4.1 The Tasks Tab 2-5

2.4.1.1 About the Tasks Tab 2-5

2.4.1.2 Adding a Process Task 2-6

2.4.1.3 Editing a Process Task 2-7

2.4.1.4 Deleting a Process Task 2-7

2.4.2 The Reconciliation Field Mappings Tab 2-7

2.4.2.1 About the Reconciliation Field Mappings Tab 2-7

2.4.2.2 User Account Status Reconciliation 2-9

2.4.2.3 Mapping a Target Resource Field to Oracle Identity Governance 2-9

2.4.2.4 Mapping a Single Value Field 2-10

2.4.2.5 Mapping a Multi-Value Field (For Target Resources Only) 2-10

2.4.2.6 Deleting a Mapping 2-11

2.5 Modifying Process Tasks 2-12

2.5.1 The General Tab 2-12

2.5.1.1 About the General Tab 2-12

2.5.1.2 Fields of the General Tab 2-12

2.5.1.3 Modifying a Process Task's General Information 2-14

2.5.1.4 Triggering Process Tasks for Events Defined in
Lookup.USR_PROCESS_TRIGGERS Fields 2-16

2.5.2 Integration Tab 2-18

2.5.2.1 About the Integration Tab 2-18

2.5.2.2 Assigning an Adapter or Event Handler to a Process Task 2-19

2.5.2.3 Mapping Adapter Variables 2-20

2.5.2.4 Removing an Adapter or Event Handler from a Process Task 2-21

2.5.3 Task Dependency Tab 2-21

2.5.3.1 About the Dependency Tab 2-21

2.5.3.2 Assigning a Preceding Task to a Process Task 2-22

2.5.3.3 Removing a Preceding Task from a Process Task 2-22

2.5.3.4 Assigning a Dependent Task to a Process Task 2-22

2.5.3.5 Removing a Dependent Task from a Process Task 2-23

2.5.4 Responses Tab 2-23

2.5.4.1 About the Responses Tab 2-23

2.5.4.2 Adding a Response to a Process Task 2-23

2.5.4.3 Removing a Response from a Process Task 2-24

2.5.4.4 Assigning a Generated Task to a Process Task 2-24

2.5.4.5 Removing a Generated Task From a Process Task 2-25

2.5.5 Task to Object Status Mapping Tab 2-25

2.5.5.1 About the Task to Object Status Mapping Tab 2-25

2.5.5.2 Mapping a Process Task Status to a Provisioning Status 2-26

2.5.5.3 Unmapping a Process Task Status From a Provisioning Status 2-26

iv



Part II   Connectors

3   Using the Adapter Factory

3.1 Introduction to Adapters 3-1

3.2 Types of Adapters 3-3

3.2.1 Rule Generator Adapters 3-3

3.2.2 Entity Adapters 3-4

3.2.3 Task Assignment Adapters 3-4

3.2.4 Prepopulate Adapters 3-5

3.2.5 Process Task Adapters 3-6

3.3 Adapter Environment and Tools 3-7

3.3.1 Configuring the Adapter Environment 3-7

3.3.2 The Adapter Factory 3-8

3.3.3 Compiling Adapters 3-8

3.3.3.1 Automatic Compilation of Adapters 3-9

3.3.3.2 Compiling Adapters Manually 3-9

3.4 Defining Adapters 3-10

3.5 Tabs of the Adapter Factory Form 3-12

3.5.1 The Adapter Tasks Tab 3-12

3.5.2 The Resources Tab 3-12

3.5.3 The Variable List Tab 3-12

3.5.4 The Usage Lookup Tab 3-13

3.5.5 The Responses Tab 3-13

3.6 Disabling and Re-enabling Adapters 3-13

3.7 Working With Adapter Variables 3-14

3.7.1 Creating an Adapter Variable 3-14

3.7.2 Items on the Map To Menu 3-16

3.7.3 Modifying an Adapter Variable 3-16

3.7.4 Deleting an Adapter Variable 3-16

3.8 Creating Adapter Tasks 3-17

3.8.1 Types of Adapter Tasks 3-17

3.8.2 Creating a Java Task 3-18

3.8.3 Options in the Object Instance Selection Window 3-21

3.8.4 Regions of the Add an Adapter Factory Task Window 3-22

3.8.5 Reassigning the Value of an Adapter Variable 3-22

3.8.5.1 About Reassigning Adapter Variable 3-23

3.8.5.2 Creating a Set Variable Task 3-23

3.8.5.3 Types of Operands 3-23

3.8.5.4 Creating Additional Set Variable Tasks 3-24

3.9 Modifying Adapter Tasks 3-24

v



3.10 Changing the Order and Nesting of Tasks 3-25

3.11 Deleting Adapter Tasks 3-26

3.12 Working with Responses 3-27

3.12.1 About Responses 3-27

3.12.2 Creating a Response 3-27

3.12.3 Modifying a Response 3-28

3.12.4 Deleting a Response 3-28

3.13 Working with Prepopulate Adapters 3-29

3.13.1 Attaching Prepopulate Adapters to Form Fields 3-29

3.13.2 Fields of the Prepopulate Adapters Dialog Box 3-31

3.13.3 Fields of the Map Adapter Variables Window 3-32

3.13.4 Removing Prepopulate Adapters from Form Fields 3-33

3.14 Working with Process Task Adapters 3-33

3.14.1 Guidelines for Working with a Process Task Adapter 3-33

3.14.2 Attaching Process Task Adapters to Process Tasks 3-34

3.14.3 Fields of the Data Mapping for Variable Window 3-37

3.14.4 Removing Process Task Adapters from Process Tasks 3-38

3.15 Adapter Mapping Information 3-39

3.15.1 About Adapters 3-39

3.15.2 Adapter Task Mapping Information 3-39

3.15.2.1 Adapter Variables 3-39

3.15.2.2 Adapter Task 3-40

3.15.2.3 Literal for an Adapter Task 3-40

3.15.2.4 Adapter References 3-40

3.15.2.5 Process Definition 3-41

3.15.2.6 User Definition 3-41

3.15.3 Adapter Variable Mapping Information 3-42

3.15.3.1 Adapter Type and Location 3-42

3.15.3.2 From the Variable List Tab 3-43

3.15.3.3 Process Task Adapter Variable Mappings 3-44

3.15.3.4 Task Assignment Adapter Variable Mappings 3-45

3.15.3.5 Rule Generator and Entity Adapter Variable Mappings 3-47

3.15.3.6 Prepopulate Adapter Variable Mappings 3-48

3.16 Defining Error Messages 3-49

3.16.1 The Error Message Definition Form 3-49

3.16.2 Fields of the Error Message Definition Form 3-51

3.16.3 Creating an Error Message 3-51

4   Understanding the Identity Connector Framework

4.1 Advantages of ICF 4-1

4.2 Introducing the ICF Architecture 4-2

vi



4.2.1 Identity Connector Framework Deployment 4-2

4.2.2 Compatibility Between the ICF and Connector Bundles 4-3

4.2.3 Deployment Methodology to Support Multiple Versions of Same Target 4-4

4.2.4 Connector Server Remote System Framework 4-4

4.2.5 ICF Framework 4-5

4.3 Using the ICF API 4-6

4.3.1 The ConnectorInfoManagerFactory Class 4-6

4.3.2 The ConnectorInfoManager Interface 4-7

4.3.3 The ConnectorKey Class 4-7

4.3.4 The ConnectorInfo Interface 4-7

4.3.5 The APIConfiguration Interface 4-7

4.3.6 The ConfigurationProperties Interface 4-8

4.3.7 The ConnectorFacadeFactory Class 4-8

4.3.8 The ConnectorFacade Interface 4-8

4.4 Introducing the ICF SPI 4-8

4.4.1 Implementing the Required Interfaces 4-9

4.4.1.1 The org.identityconnectors.framework.spi.Connector Interface 4-9

4.4.1.2 Implementing the Connector Methods 4-10

4.4.1.3 The org.identityconnectors.framework.spi.Configuration Interface 4-12

4.4.1.4 Implementing the Configuration Methods 4-12

4.4.2 Implementing the Feature-based Interfaces 4-13

4.4.2.1 The org.identityconnectors.framework.spi.PoolableConnector Interface 4-14

4.4.2.2 The org.identityconnectors.framework.spi.AttributeNormalizer Interface 4-15

4.4.3 Implementing the Operation Interfaces 4-15

4.4.3.1 About Operation Interfaces 4-16

4.4.3.2 Implementing the SchemaOp Interface 4-16

4.4.3.3 Implementing the CreateOp Interface 4-17

4.4.3.4 Implementing the DeleteOp Interface 4-18

4.4.3.5 Implementing the SearchOp Interface 4-18

4.4.3.6 Implementing the UpdateOp Interface 4-20

4.4.4 Common Classes 4-21

4.5 Extending an Identity Connector Bundle 4-22

4.6 Using an Identity Connector Server 4-24

4.6.1 About the Identity Connector Server 4-24

4.6.2 Using the Java Connector Server 4-26

4.6.2.1 Installing and Configuring a Java Connector Server 4-26

4.6.2.2 Properties in the ConnectorServer.properties File 4-26

4.6.2.3 Running the Java Connector Server on Microsoft Windows 4-27

4.6.2.4 Options Supported by the ConnectorServer.bat Script 4-29

4.6.2.5 Running the Java Connector Server on Solaris and Linux 4-29

4.6.2.6 Options Supported by the connectorserver.sh Script 4-31

4.6.2.7 Installing an Identity Connector in a Java Connector Server 4-31

vii



4.6.2.8 Using SSL to Communicate with a Connector Server 4-31

4.6.3 Using the .NET Connector Server 4-32

4.6.3.1 Installing the .NET Connector Server 4-32

4.6.3.2 Configuring the .NET Connector Server 4-33

4.6.3.3 Upgrading the .NET Connector Server 4-35

4.6.3.4 Configuring Trace Settings 4-36

4.6.3.5 Running the .NET Connector Server 4-37

4.6.3.6 Installing Multiple Connectors on a .NET Connector Server 4-37

5   Developing Identity Connectors Using Java

5.1 Introduction to Flat File Connector Development 5-1

5.2 Developing a Flat File Connector 5-2

5.2.1 Overview of Developing a Flat File Connector 5-2

5.2.2 Implementation of AbstractConfiguration 5-3

5.2.3 Implementation of PoolableConnector 5-5

5.2.4 Implementation of AbstractFilterTranslator 5-9

5.2.5 The MANIFEST.MF File 5-10

5.3 Supporting Classes for File Input and Output Handling 5-10

5.3.1 Implementation of the FlatFileIOFactory Supporting Class 5-10

5.3.2 Implementation of the FlatFileMetaData Supporting Class 5-11

5.3.3 Implementation of the FlatFileParser Supporting Class 5-13

5.3.4 Implementation of the FlatFileWriter Supporting Class 5-16

5.3.5 Implementation of the FlatfileLineIterator Supporting Class 5-19

5.3.6 Implementation of the FlatfileUserAccount Supporting Class 5-21

5.3.7 Implementation of the FlatfileAccountConversionHandler Supporting Class 5-25

5.3.8 Implementation of the Messages.Properties Supporting Class 5-27

5.4 Uploading the Identity Connector Bundle to Oracle Identity Governance Database 5-27

5.4.1 Registering the Connector Bundle with Oracle Identity Governance 5-28

5.4.2 Creating Basic Identity Connector Metadata 5-28

5.4.2.1 Creating the IT Resource Type Definition 5-28

5.4.2.2 Creating the Resource Object 5-29

5.4.2.3 Creating Lookups 5-30

5.4.3 Creating Provisioning Metadata 5-33

5.4.3.1 Creating a Process Form 5-33

5.4.3.2 Creating Adapters 5-36

5.4.3.3 Creating A Process Definition 5-38

5.4.3.4 Creating a Provisioning Attribute Mapping Lookup 5-42

5.4.4 Creating Reconciliation Metadata 5-44

5.4.4.1 Creating a Reconciliation Scheduled Task 5-44

5.4.4.2 Creating a Reconciliation Profile 5-46

5.4.4.3 Setting a Reconciliation Action Rule 5-47

viii



5.4.4.4 Creating Reconciliation Mapping 5-48

5.4.4.5 Field Flags Used in the Reconciliation Attributes Map 5-49

5.4.4.6 Defining a Reconciliation Matching Rule 5-49

5.5 Provisioning a Flat File Account 5-50

5.6 Installing the Java Connector Server 5-51

5.7 Configuring the Java Connector Server with SSL for Oracle Identity Governance 5-52

5.8 Configuring the Java Connector Server without SSL for Oracle Identity Governance 5-55

5.9 Upgrading the Java Connector Server 5-55

6   Developing Identity Connectors Using .NET

6.1 Developing a Flat File .NET Connector 6-1

6.1.1 Overview of Developing a Flat File .NET Connector 6-1

6.1.2 Developing a Flat File .NET Connector 6-2

6.1.3 Implementation of AbstractConfiguration 6-2

6.1.4 Implementation of PoolableConnector 6-4

6.1.5 Implementation of AbstractFilterTranslator 6-10

6.1.6 Sample AssemblyInfo.cs File 6-11

6.2 Deploying the Identity Connector Bundle on .NET Connector Server 6-11

6.2.1 Registering the Connector Bundle with .NET Connector Server 6-12

6.2.2 Creating Basic Identity Connector Metadata 6-12

6.2.2.1 Creating the IT Resource Type Definition 6-12

6.2.2.2 Creating the Resource Object 6-13

6.2.2.3 Creating Lookups 6-14

6.2.3 Creating Provisioning Metadata 6-16

6.2.3.1 Creating a Process Form 6-17

6.2.3.2 Creating Adapters 6-20

6.2.3.3 Creating a Process Definition 6-21

6.2.3.4 Creating a Provisioning Attribute Mapping Lookup 6-26

6.2.4 Creating Reconciliation Metadata 6-28

6.2.4.1 Creating a Reconciliation Scheduled Task 6-29

6.2.4.2 Creating a Reconciliation Profile 6-30

6.2.4.3 Setting a Reconciliation Action Rule 6-31

6.2.4.4 Creating Reconciliation Mapping 6-32

6.2.4.5 Field Flags Used in the Reconciliation Attributes Map 6-33

6.2.4.6 Defining a Reconciliation Matching Rule 6-33

6.3 Provisioning a Flat File Account 6-34

7   Integrating ICF with Oracle Identity Governance

7.1 ICF Common 7-1

7.2 Integration Architecture 7-1

ix



7.3 Global Oracle Identity Governance Lookups 7-2

7.3.1 About Global Lookups 7-2

7.3.2 Main Lookup Configuration 7-4

7.3.3 User Management Configuration 7-4

7.3.4 Recon Transformation Lookup
(Lookup.CONNECTOR_NAME.UM.ReconTransformation) 7-7

7.3.5 Recon Validation Lookup (Lookup.CONNECTOR_NAME.UM.ReconValidation) 7-8

7.3.6 Optional Defaults Lookup 7-8

7.4 About IT Resources for ICF Integration 7-9

7.5 Provisioning Using ICF 7-9

7.5.1 ICF Provisioning Manager 7-10

7.5.1.1 APIs for Provisioning 7-10

7.5.1.2 Account Related Operations 7-10

7.5.1.3 Multivalued Operations 7-11

7.5.1.4 Other operations 7-11

7.5.2 Provisioning Lookup 7-12

7.5.3 Non-User Object Types 7-12

7.5.4 Optional Lookups for Provisioning 7-13

7.5.5 Provisioning Validation Lookup 7-13

7.5.6 Optional Flags in Lookups for Provisioning Attribute Map 7-13

7.5.7 Compound attributes in Provisioning Attribute Map 7-14

7.6 Concepts of Reconciliation in ICF Common 7-14

7.6.1 Types of Reconciliation 7-15

7.6.1.1 About Reconciliation Types 7-15

7.6.1.2 ICF Common Reconciliation Parameters 7-15

7.6.1.3 Target and Trusted Reconciliation 7-15

7.6.1.4 Full, Incremental Reconciliation 7-15

7.6.1.5 Advanced Incremental Reconciliation 7-16

7.6.1.6 Delete Reconciliation 7-16

7.6.1.7 Group Lookup Reconciliation 7-16

7.6.2 List of Reconciliation Artifacts in Oracle Identity Governance 7-16

7.6.2.1 Methods of Control Over Reconciliation 7-17

7.6.2.2 Lookups for Reconciliation 7-17

7.6.2.3 Example of Reconciliation With Child Table 7-17

7.7 Predefined Scheduled Tasks 7-18

7.7.1 LookupReconTask 7-19

7.7.2 SearchReconTask 7-19

7.7.3 SearchReconDeleteTask 7-20

7.7.4 SyncReconTask 7-20

7.8 ICF Filter Syntax 7-20

7.8.1 Filter Examples 7-21

7.8.2 Definition in EBNF Format 7-22

x



7.8.3 Keywords and Syntax for the Filter Attribute 7-23

8   Using Java APIs for ICF Integration

9   Configuring ICF Connectors

9.1 Configuring Connector Load Balancer 9-1

9.1.1 About the Load Balancer Configuration 9-1

9.1.2 Configuring the Load Balancer for a Connector Server 9-2

9.2 Configuring Validation of Data During Reconciliation and Provisioning 9-3

9.2.1 About Validation of Data During Reconciliation and Provisioning 9-3

9.2.2 Configuring Validation of Data 9-3

9.2.3 Sample Validation Class 9-5

9.3 Configuring Transformation of Data During User Reconciliation 9-6

9.3.1 About Transformation of Data During User Reconciliation 9-6

9.3.2 Configuring Transformation of Single-Valued User Data Fetched During
Reconciliation 9-6

9.3.3 Sample Transformation Class 9-7

9.4 Configuring Resource Exclusion Lists 9-8

9.4.1 About Resource Excursion Lists 9-8

9.4.2 Format of Values Stored in the Lookups 9-9

9.4.3 Adding Entries in the Lookup for Exclusion 9-9

9.5 Configuring SSL Communication 9-10

9.5.1 Setting SSL for Connector Server and Oracle Identity Governance 9-10

9.5.2 Troubleshooting SSL 9-12

9.6 Adding Target System Attributes 9-12

9.6.1 Adding Target System Attributes for Provisioning 9-13

9.6.1.1 Adding a New Form Field 9-13

9.6.1.2 Adding the New Field to the Provisioning Mapping Lookup 9-13

9.6.1.3 Changing the Process Task to Handle Updates 9-14

9.6.1.4 Mapping the Adapter Variables 9-15

9.6.2 Adding Target System Attributes for Target Reconciliation 9-15

9.6.3 Adding Target System Attributes for Trusted Reconciliation 9-17

10  
 

Understanding ICF Best Practices and FAQs

10.1 Best Practices for ICF 10-1

10.2 FAQs on ICF 10-1

xi



11  
 

Using Generic Technology Connectors

11.1 Overview of Generic Technology Connectors 11-1

11.2 Using the Generic Connection Pool Framework in Custom Connectors 11-1

11.2.1 Basic Steps to Use Generic Connection Pool in Custom Connector 11-2

11.2.2 Providing concrete implementation for ResourceConnection interface 11-2

11.2.3 Defining Additional ITResource Parameters 11-3

11.2.4 Getting and Releasing Connections from the Pool 11-4

11.2.5 Using a Third-party Pool 11-5

11.2.6 Example: Implementation of ResourceConnection 11-5

11.3 Best Practices 11-7

11.3.1 Working with the Provide Basic Information Page 11-7

11.3.2 Working with the Specify Parameter Values Page 11-8

11.3.3 Working with the Modify Connector Configuration Page 11-9

11.3.3.1 Names of Fields 11-10

11.3.3.2 Password Fields 11-10

11.3.3.3 Password-Like Fields 11-10

11.3.3.4 Mappings 11-11

11.3.3.5 Oracle Identity Governance Data Sets 11-11

11.3.4 Working with Shared Drive Reconciliation Transport Provider 11-12

11.3.5 Working with Custom Providers 11-12

11.3.6 Working with Connector Objects 11-13

11.3.7 Modifying Generic Technology Connectors 11-14

12  
 

Predefined Providers for Generic Technology Connectors

12.1 Shared Drive Reconciliation Transport Provider 12-1

12.1.1 Parameters of the Shared Drive Reconciliation Transport Provider 12-1

12.1.1.1 Staging Directory (Parent Identity Data) 12-2

12.1.1.2 Staging Directory (Multivalued Identity Data) 12-3

12.1.1.3 Archiving Directory 12-5

12.1.1.4 File Prefix 12-5

12.1.1.5 Specified Delimiter 12-6

12.1.1.6 Tab Delimiter 12-6

12.1.1.7 Fixed Column Width 12-6

12.1.1.8 Unique Attribute (Parent Data) 12-6

12.1.1.9 File Encoding 12-7

12.1.2 Permissions to Be Set on the Staging and Archiving Directories 12-7

12.2 CSV Reconciliation Format Provider 12-8

12.3 SPML Provisioning Format Provider 12-8

12.3.1 About the SPML Provisioning Format Provider 12-8

12.3.2 Parameters of the SPML Provisioning Format Provider 12-9

xii



12.3.2.1 Run-Time Parameters 12-10

12.3.2.2 Design Parameters 12-10

12.3.2.3 Nonmandatory Parameters 12-12

12.3.2.4 Parameters with Predetermined Values 12-12

12.4 Web Services Provisioning Transport Provider 12-13

12.4.1 About the Web Services Provisioning Transport Provider 12-13

12.4.2 The Web Service URL Parameter 12-13

12.4.3 Configuring SSL Communication Between Oracle Identity Manager and the
Target System Web Service 12-13

12.5 Transformation Providers 12-16

12.5.1 About Transformation Providers 12-16

12.5.2 Concatenation Transformation Provider 12-17

12.5.3 Adding a Concatenation Transformation Provider 12-17

12.5.4 Translation Transformation Provider 12-18

12.5.5 Using the Translation Transformation Provider 12-18

12.5.6 Configuring Account Status Reconciliation 12-19

12.5.6.1 About Account Status Reconciliation Using Translation Transformation
Provider 12-20

12.5.6.2 High-Level Steps to Configure Account Status Reconciliation 12-20

12.5.6.3 Detailed Steps to Configure Account Status Reconciliation 12-21

12.6 Validation Providers 12-23

Part III   Workflows

13  
 

Developing Workflows

13.1 Introducing Workflows 13-1

13.1.1 Overview of Workflows 13-1

13.1.2 Workflow Concepts 13-2

13.1.3 Workflow Architecture 13-3

13.1.4 Human Task Process Flow 13-4

13.2 Predefined SOA Composites 13-5

13.3 Creating New SOA Composites 13-7

13.3.1 Creating a New SOA Composite 13-7

13.3.1.1 Standards of Using SOA Composites as Approval Process 13-7

13.3.1.2 Creating a Custom SOA Composite Using the Helper Utility 13-8

13.3.2 Deploying a SOA Composite in Oracle SOA Server 13-9

13.3.3 Setting the Prerequisites for Communication to Oracle Identity Governance
Through SSL Mode 13-9

13.4 Developing Workflows: Vision Request Tutorial 13-10

13.4.1 Introducing the Tutorial 13-10

13.4.2 Assumptions 13-11

xiii



13.4.3 Creating the Application Instance 13-11

13.4.3.1 Creating the FinApp Application Instance 13-11

13.4.3.2 Defining Application Instance Attributes and Creating a Form 13-12

13.4.3.3 Publishing the Application Instance to One or More Organizations 13-14

13.4.3.4 Linking Entitlements to the Application Instance 13-14

13.4.3.5 Publishing the Application Instance With Entitlements to the Catalog 13-15

13.4.4 Configuring FinApp in the Catalog 13-15

13.4.5 Creating and Configuring the SOA Composite for Approval 13-16

13.4.5.1 Creating the Approval Workflow 13-16

13.4.5.2 Making Request and Catalog Data Available to the BPEL Process 13-17

13.4.5.3 Configuring Workflow Selection 13-22

13.4.5.4 Configuring Human Tasks 13-31

13.4.5.5 Configuring the Human Task and BPEL Mappings 13-39

13.4.5.6 Deploying the SOA Composite 13-44

13.4.5.7 Creating the Workflow Rules 13-44

13.5 Configuring Default Approval Composites for Single and Bulk Operations 13-45

13.6 Creating and Deploying Custom Task Details Taskflow 13-46

13.6.1 Prerequisites for Developing Custom Task Details Taskflow 13-46

13.6.2 Developing Custom Task Details Taskflow 13-46

13.6.2.1 Building a Custom Taskflow: Broad-Level Steps 13-46

13.6.2.2 Adding Managed Beans for the Task Details Page 13-48

13.6.2.3 Creating the Details Page Structure 13-49

13.6.2.4 Populating the Request Information Tab 13-51

13.6.2.5 Populating the Task Information Tab 13-53

13.6.3 Developing Custom Task Details for Email Notification (Optional) 13-54

13.6.4 Deploying the Task Details Taskflow 13-54

13.6.5 Configuring Human Task and Taskflow Permissions 13-55

13.6.5.1 Adding View Permission for Custom Taskflow 13-55

13.6.5.2 Configuring Human Task to Use the Custom Taskflow 13-56

13.6.6 Testing the Custom Taskflow 13-57

13.7 Extending Request Management Operations 13-57

13.7.1 Running Custom Code Based on Request Status Change 13-57

13.7.2 Validating Request Data 13-58

13.7.2.1 About Validating Request Data 13-58

13.7.2.2 Associating Plug-ins With Data Validators and Prepopulate Adapters 13-59

13.7.2.3 Scenario I: Provisioning Users to a Target System 13-59

13.7.2.4 Scenario II: Provisioning or Modifying Entitlement Request 13-60

13.7.3 Prepopulation of an Attribute Value During Request Creation 13-60

13.7.4 Enabling Request Approval by Account Beneficiary 13-61

13.8 Enabling Auto-Approval for Self Registration Requests 13-62

13.9 Hiding the Skip Current Assignment Option 13-63

13.10 Customizing Certification Oversight 13-63

xiv



13.10.1 Understanding Certification Oversight Customization 13-63

13.10.2 Customizing Certification Oversight 13-64

13.11 Customizing the Identity Audit Composite 13-65

Part IV   Data Synchronization

14  
 

Customizing Reconciliation

14.1 Reconciliation Features 14-1

14.1.1 Performance Enhancement Features 14-2

14.1.1.1 New Metadata Model - Profiles 14-2

14.1.1.2 Parameters to Control Flow and Processing of Events 14-2

14.1.1.3 Grouping of Events by Reconciliation Runs 14-3

14.1.1.4 Grouping of Events by Batches 14-3

14.1.1.5 Implementing Reconciliation Engine Logic in the Database 14-3

14.1.1.6 Improved Java Engine 14-4

14.1.1.7 Improved Database Schema 14-4

14.1.2 Web-Based Event Management Interface 14-4

14.1.3 Other Reconciliation Features 14-4

14.1.3.1 Staging Tables 14-5

14.1.3.2 Handling of Race Conditions 14-6

14.1.3.3 Ad Hoc Linking 14-6

14.2 Reconciliation Architecture 14-7

14.2.1 Reconciliation Process Flow 14-7

14.2.2 Reconciliation Profile 14-9

14.2.2.1 Sample Configuration Profile 14-9

14.2.2.2 Elements and Structures of Reconciliation Profile 14-10

14.2.3 Reconciliation Metadata 14-12

14.2.4 Reconciliation Target 14-13

14.2.5 Reconciliation Run 14-13

14.2.6 Reconciliation APIs 14-13

14.2.7 Reconciliation Schema 14-13

14.2.8 Reconciliation Engine 14-14

14.2.8.1 About the Reconciliation Engine 14-14

14.2.8.2 Matching Module 14-14

14.2.8.3 Action Module 14-16

14.2.9 Connector for Reconciliation 14-18

14.2.10 Archival 14-18

14.2.11 Backward Compatibility 14-19

14.2.12 Reconciliation Event Management 14-19

14.3 Defining Reconciliation Rules 14-20

xv



14.3.1 Understanding Reconciliation Rules 14-21

14.3.2 Defining a Reconciliation Rule 14-22

14.3.3 Adding a Rule Element 14-23

14.3.4 Transformation Properties 14-25

14.3.5 Nesting a Rule Within a Rule 14-25

14.3.6 Deleting a Rule Element or Rule 14-26

14.4 Developing Reconciliation Scheduled Tasks 14-26

14.5 Updating Reconciliation Profiles Manually 14-27

14.5.1 About Creating and Updating Reconciliation Profiles 14-28

14.5.2 Creating and Updating Reconciliation Profiles 14-28

14.5.3 Changing the Profile Mode 14-29

14.6 Understanding Reconciliation APIs 14-29

14.6.1 Overview of Reconciliation APIs 14-30

14.6.2 The ReconOperationsService API 14-30

14.6.2.1 Ignore Event 14-31

14.6.2.2 Create Event 14-31

14.6.2.3 Process Event 14-32

14.6.2.4 Deletion Detection 14-33

14.6.3 Invoking Non-scheduled Task-Based Reconciliation in a Multithreaded
Environment 14-33

14.7 Postprocessing for Trusted Reconciliation 14-35

14.8 Reconciliation FAQs 14-35

14.9 Troubleshooting Reconciliation 14-36

14.9.1 Changing the Logging Level for Reconciliation 14-37

14.9.2 Troubleshooting General Reconciliation Issues 14-37

14.9.3 Troubleshooting Database-Related Reconciliation Issues 14-39

14.9.3.1 Missing Critical Oracle Database 11g Release 1 Interim Patches 14-40

14.9.3.2 Missing Critical Oracle Database 11g Release 2 Interim Patches 14-40

14.9.3.3 Slow Reconciliation and Similar Traces in Error Log 14-40

14.9.3.4 Reconciliation Event Does Not Process With Error 14-41

14.9.4 Troubleshooting Reconciliation Profile Configuration Failures 14-42

14.9.5 Troubleshooting LDAP Reconciliation Issues 14-43

14.9.5.1 LDAP User Create and Update Reconciliation Scheduled Job Fails With
Error 14-43

14.9.5.2 External Changelog Cookie Expiration Issue When Performing
Reconciliation with OUD 14-43

14.9.6 Troubleshooting Reconciliation Issues in the PL/SQL Layer 14-43

14.10 Populating Data in the RECON_EXCEPTIONS Table 14-43

14.10.1 About the RECON_EXCEPTIONS Table 14-44

14.10.2 Populating Data in the RECON_EXCEPTIONS Table 14-44

14.11 Reconciliation Best Practices 14-45

14.11.1 Selecting Additional Indexes for Matching Module 14-45

14.11.1.1 About Additional Indexes for the Matching Module 14-45

xvi



14.11.1.2 Selecting Indexes Based on the Matching Rule Criteria 14-46

14.11.2 Collecting Database Schema Statistics for Reconciliation Performance 14-47

14.12 Monitoring Reconciliation Performance Using DMS 14-48

15  
 

Using the Bulk Load Utility

15.1 Modes of Running the Utility 15-1

15.2 Features of the Bulk Load Utility 15-2

15.3 Prerequisites for Running the Bulk Load Utility 15-3

15.3.1 Installing the Bulk Load Utility 15-3

15.3.2 Understanding Bulk Load Options and Additional Details 15-4

15.3.2.1 Scripts That Constitute the Utility 15-4

15.3.2.2 Temporary Tables Used During a Bulk Load Operation 15-4

15.3.2.3 Options Offered by the Utility 15-5

15.3.3 Preparing Your Database for a Bulk Load Operation 15-6

15.3.3.1 Creating a Tablespace for Temporary Tables 15-7

15.3.3.2 Creating a Datafile in the Oracle Identity Governance Tablespace 15-7

15.4 Running the Utility 15-7

15.5 Performance Best Practices for Bulk Load 15-9

15.6 Loading OIM User Data 15-9

15.6.1 Overview of Loading OIM User Data 15-10

15.6.2 Setting a Default Password for OIM Users Added by the Utility 15-11

15.6.3 Creating the Input Source for the Bulk Load Operation 15-11

15.6.3.1 Using CSV Files As the Input Source 15-12

15.6.3.2 Creating Database Tables As the Input Source 15-14

15.6.3.3 Structure of a Sample Database Table 15-14

15.6.4 Determining Values for the Input Parameters of the Utility 15-15

15.6.5 Monitoring the Progress of the Operation 15-17

15.6.6 Handling Exceptions Recorded During the Operation 15-17

15.6.7 Fixing Exceptions and Reloading Data Records 15-18

15.6.7.1 About Fixing Exceptions 15-19

15.6.7.2 Reloading Rejected Records 15-19

15.6.8 Verifying the Outcome of the Bulk Load Operation 15-20

15.6.9 Generating an Audit Snapshot 15-21

15.6.10 Running the Bulk Load Post Process Scheduled Task 15-21

15.7 Loading Account Data 15-22

15.7.1 Overview of Loading Account Data 15-22

15.7.2 Bulk Load Utility for Loading Accounts in SSL mode 15-23

15.7.3 Requirements and Features of the Bulk Load Operation for Account Data 15-23

15.7.4 Creating the Input Source for the Bulk Load Operation 15-24

15.7.4.1 Using CSV Files As the Input Source 15-25

15.7.4.2 Creating Database Tables As the Input Source 15-26

xvii



15.7.4.3 Sample Parent Table Structure 15-26

15.7.4.4 Sample Child Table Structure 15-26

15.7.5 Determining Values for the Input Parameters of the Utility 15-27

15.7.6 Monitoring the Progress of the Operation 15-29

15.7.7 Handling Exceptions Recorded During the Operation 15-29

15.7.8 Fixing Exceptions and Reloading Data Records 15-30

15.7.8.1 About Fixing Exceptions 15-30

15.7.8.2 Reloading Rejected Records 15-30

15.7.9 Verifying the Outcome of the Bulk Load Operation 15-31

15.8 Loading Role, Role Hierarchy, Role Membership, and Role Category Data 15-32

15.8.1 Overview of Loading Role, Role Hierarchy, Role Membership, and Role
Category Data 15-32

15.8.2 Creating the Input Source for the Bulk Load Operation 15-33

15.8.2.1 Using CSV Files As the Input Source 15-33

15.8.2.2 Creating Database Tables As the Input Source 15-34

15.8.2.3 Structure of a Sample Database Table 15-35

15.8.2.4 Determining the UGP_NAME Generated After Role Load 15-35

15.8.3 Determining Values for the Input Parameters of the Utility 15-35

15.8.4 Monitoring the Progress of the Operation 15-37

15.8.5 Handling Exceptions Recorded During the Operation 15-37

15.8.6 Fixing Exceptions and Reloading Data Records 15-38

15.8.6.1 About Fixing Exceptions 15-38

15.8.6.2 Reloading Rejected Records 15-38

15.8.7 Verifying the Outcome of the Bulk Load Operation 15-39

15.9 Loading Organization Data 15-40

15.9.1 Overview of Loading Organization Data 15-40

15.9.2 Creating the Input Source for the Bulk Load Operation 15-41

15.9.2.1 Using CSV Files as the Input Source 15-41

15.9.2.2 Creating Database Tables as the Input Source 15-42

15.9.3 Determining Values for the Input Parameters of the Utility 15-43

15.9.4 Monitoring the Progress of the Operation 15-44

15.9.5 Handling Exceptions Recorded During the Operation 15-44

15.9.6 Fixing Exceptions and Reloading Data Records 15-45

15.9.6.1 About Fixing Exceptions 15-46

15.9.6.2 Reloading Rejected Records 15-46

15.9.7 Verifying the Outcome of the Bulk Load Operation 15-47

15.10 Data Recorded During the Operation 15-47

15.11 Gathering Diagnostic Data from the Bulk Load Operation 15-49

15.12 Cleaning Up After a Bulk Load Operation 15-50

15.13 Bulk Load High Volume Strategy and Case Studies 15-50

xviii



16  
 

Developing Scheduled Tasks

16.1 Overview of Task Creation 16-1

16.1.1 Steps in Task Creation 16-1

16.1.2 Example of Scheduled Task 16-2

16.2 Defining the Metadata for the Scheduled Task 16-2

16.3 Configuring the Scheduled Task XML File 16-2

16.4 Developing the Scheduled Task Class 16-4

16.5 Configuring the Plug-in XML File 16-4

16.6 Creating the Directory Structure for the Scheduled Task 16-5

16.7 Scheduled Task Configuration File 16-6

16.7.1 Structure of the Scheduler XML File 16-7

16.7.2 The scheduledTasks Element 16-7

16.7.3 The task Element 16-8

16.7.4 The name Element 16-8

16.7.5 The class Element 16-9

16.7.6 The description Element 16-9

16.7.7 The retry Element 16-10

16.7.8 The parameters Element 16-10

16.7.9 The string-param Element 16-10

16.7.10 The number-param Element 16-11

16.7.11 The boolean-param Element 16-12

16.8 Best Practices for Creating Custom Scheduled Tasks 16-12

16.9 Using the isStop() Method 16-13

16.10 Monitoring Scheduled Jobs Performance using DMS 16-13

Part V   Custom Operations

17  
 

Developing Plug-ins

17.1 Plug-ins and Plug-in Points 17-1

17.1.1 About Plug-ins and Plug-in Points 17-1

17.1.2 Plug-ins and Event Handlers 17-2

17.1.3 Plug-in Stores 17-2

17.1.3.1 About Plug-in Stores 17-3

17.1.3.2 The File Store 17-3

17.1.3.3 The Database Store 17-3

17.2 Using Plug-ins in Deployments 17-4

17.3 Plug-in Points 17-4

17.4 Configuring Plug-ins 17-5

17.5 Developing Custom Plug-ins 17-7

17.5.1 Developing Plug-ins 17-7

xix



17.5.2 Declaring Plug-ins 17-8

17.6 Registering Plug-ins 17-8

17.6.1 Registering and Unregistering Plug-ins By Using APIs 17-9

17.6.2 Registering and Unregistering Plug-ins By Using the Plugin Registration Utility 17-9

17.6.2.1 The Plugin Registration Utility 17-10

17.6.2.2 Prerequisites of Using the Plugin Registration Utility 17-10

17.6.2.3 Registering a Plug-in 17-10

17.6.2.4 Unregistering a Plug-in 17-11

17.6.2.5 Re-registering and Activating an Old Plug-in Version 17-11

17.7 Migrating Plug-ins 17-11

18  
 

Developing Event Handlers

18.1 Orchestration Concepts 18-1

18.2 Using Custom Event Handlers 18-4

18.3 Orchestration Operations for Entities 18-5

18.4 Developing Custom Event Handlers 18-6

18.4.1 About Custom Event Handler Development 18-6

18.4.2 Implementing the SPI and Creating a JAR 18-6

18.4.2.1 Development Considerations 18-6

18.4.2.2 Methods and Arguments 18-7

18.4.2.3 Code Samples 18-8

18.4.2.4 Creating a JAR File With Custom Event Handler Code 18-11

18.4.2.5 SPIs to Write Custom Event Handlers 18-12

18.4.2.6 Handling Exceptions 18-12

18.4.2.7 Managing Transactions 18-13

18.4.3 Defining Custom Events Definition XML 18-13

18.4.3.1 Elements in the Event Handler XML Files 18-13

18.4.3.2 Sample Event Definitions 18-15

18.4.4 Creating and Registering a Plug-in ZIP 18-16

18.5 Sequencing the Execution of Event Handlers 18-17

18.6 Writing Custom Validation Event Handlers 18-17

18.7 Best Practices 18-19

18.8 Migrating Event Handlers 18-19

18.9 Troubleshooting Event Handlers 18-20

Part VI   Customization

19  
 

Customizing the Interface

19.1 Managing Sandboxes 19-1

19.1.1 Understanding Sandbox Operations 19-2

xx



19.1.2 Handling Concurrency Conflicts 19-3

19.1.2.1 Understanding Concurrency Conflicts 19-3

19.1.2.2 Guidelines to Avoid Conflicts When Multiple Users Work in a Single
Sandbox 19-4

19.1.2.3 Guidelines to Avoid Conflicts When Multiple Users Work in Multiple
Sandboxes 19-4

19.1.2.4 Troubleshooting Concurrency Issues 19-4

19.1.3 Creating a Sandbox 19-5

19.1.4 Activating a Sandbox 19-6

19.1.5 Deactivating a Sandbox 19-6

19.1.6 Viewing and Modifying Sandbox Details 19-7

19.1.7 Exporting a Sandbox 19-7

19.1.8 Importing a Sandbox 19-8

19.1.9 Publishing a Sandbox 19-8

19.1.10 Publishing Sandboxes in Bulk and Sequence 19-9

19.1.11 Deleting a Sandbox 19-9

19.1.12 Reverting Changes 19-10

19.1.12.1 Reverting Changes to Default Settings 19-10

19.1.12.2 Reverting Changes When Unable to Login to Identity System
Administration 19-10

19.2 Skin Customization in Oracle Identity Governance 19-11

19.2.1 Configuring a New Skin 19-11

19.2.2 Changing Branding and Logo 19-13

19.3 Customizing Pages at Runtime 19-15

19.3.1 Customizable Entity Artifacts 19-16

19.3.2 Using Expression Language in UI Customization 19-16

19.3.2.1 Available EL Expressions in the User Context 19-17

19.3.2.2 Retrieving User Attribute Values From the OIMContext Bean 19-17

19.3.2.3 Available EL Expressions in the RequestFormContext 19-18

19.3.2.4 Internationalization for Resource Strings 19-19

19.3.3 Showing or Hiding UI Components Conditionally 19-20

19.3.4 Showing Request Profiles Conditionally 19-21

19.3.5 Validating Input Data Using ADF Validators 19-21

19.3.6 Marking Input Attribute as Required 19-22

19.3.7 Adding a Link or Button 19-22

19.3.8 Hiding and Deleting an ADF Component 19-24

19.3.8.1 Hiding an ADF Component 19-24

19.3.8.2 Deleting an ADF Component 19-24

19.3.9 Showing and Hiding Attributes 19-24

19.3.10 Customizing Unauthenticated Pages 19-25

19.3.11 Customizing the Toolbar Contents 19-27

19.3.12 Customizing Certification Pages 19-28

19.3.12.1 Customizing the Certification Detail Pane 19-29

xxi



19.3.12.2 Adding Custom Attributes to the Certification Table 19-29

19.3.12.3 Customizing the Certification Table 19-30

19.4 Securing a Task Flow Region Using EL Expressions 19-31

19.5 Customizing Oracle Identity Governance Help 19-31

19.5.1 Adding Custom Help Topics 19-32

19.5.1.1 Creating Custom Help Topics 19-32

19.5.1.2 Referencing the Custom Help Topics 19-32

19.5.1.3 Adding a Custom Help Topic to Identity Self Service 19-32

19.5.1.4 Viewing the Custom Help Topics 19-33

19.5.2 Adding Inline Help 19-33

19.5.2.1 Inline Help Configuration 19-33

19.5.2.2 Adding Inline Help 19-34

19.6 Customizing the Home Page 19-34

19.6.1 Adding a Tile to the Home Page 19-35

19.6.2 Launching a New Page From the Tile Icon 19-37

19.6.3 Launching a New Page From the Tile Menu 19-38

19.6.4 Showing Tiles Conditionally 19-40

19.7 Developing Managed Beans and Task Flows 19-40

19.7.1 Types of Managed Beans 19-40

19.7.2 Prerequisites for Developing Managed Beans and Task Flows 19-40

19.7.3 Setting Up the ViewController Project 19-41

19.7.4 Setting Up a Model Project 19-42

19.7.5 Adding Custom Managed Bean 19-43

19.7.6 Deploying Custom Code to Oracle Identity Governance 19-44

19.7.7 Using Managed Beans 19-44

19.7.7.1 Showing Components Conditionally 19-45

19.7.7.2 Prepopulating Fields Conditionally 19-46

19.7.7.3 Setting a Conditional Mandatory Field 19-48

19.7.7.4 Implementing Custom Field Validation 19-49

19.7.7.5 Implementing Custom Cascading LOVs 19-53

19.7.7.6 Customizing Forms By Using RequestFormContext 19-53

19.7.7.7 Overriding the Submit Button in Request Catalog 19-56

19.7.7.8 Launching Taskflows 19-57

19.7.7.9 Creating an External Link 19-59

19.7.8 Using Managed Beans to Populate Request Attributes 19-59

19.7.8.1 Populating Request Attributes Using Managed Beans 19-59

19.7.8.2 Populating Request Attributes by Using the Prepopulate Plug-in 19-64

19.7.9 Using Public Taskflows 19-65

19.7.9.1 About Public Taskflows 19-65

19.7.9.2 Public Taskflows and Input Parameters 19-66

19.7.10 Customizing Catalog Search 19-74

19.7.10.1 Developing the Custom Taskflow 19-75

xxii



19.7.10.2 Adding the Presentation Logic for the Custom Form 19-76

19.7.10.3 Constructing the SearchCriteria Object 19-77

19.7.10.4 Deploying the Taskflow 19-77

19.7.11 Customizing Task Details Page for Approval Tasks 19-78

19.7.11.1 Prerequisites for Developing Custom Task Details Taskflow 19-78

19.7.11.2 Building a Custom Taskflow for a Human Task 19-78

19.7.11.3 Creating the Task Details Taskflow 19-79

19.7.11.4 Creating the Task Details Page 19-80

19.7.11.5 Populating the Page With Task Information 19-80

19.7.11.6 Taskflows to Show Request-Related Information 19-81

19.7.11.7 Configuring the Human Task to Use the Custom Taskflow 19-82

19.8 Configuring Additional Request Form 19-82

19.8.1 Additional Request Information Concepts 19-83

19.8.1.1 Additional Information for the Request Cart Item 19-83

19.8.1.2 Additional Information for the Request 19-84

19.8.2 Understanding the Guidelines for Developing Custom Taskflow for Additional
Request Information 19-84

19.8.2.1 Implementing Custom Taskflow for Additional Request Information 19-84

19.8.2.2 Taskflow Input Parameters 19-85

19.8.2.3 Saving and Retrieving Additional Information in Managed Bean
Developed for the Project 19-85

19.8.2.4 Understanding the AdditionalRequestInfo Interface 19-86

19.8.2.5 Using RequestFormContext to Achieve the Required Customizations 19-86

19.8.3 Configuring Custom Taskflow for Additional Request Information 19-87

19.8.3.1 Configuring Custom Taskflow for the Cart Item Level 19-87

19.8.3.2 Configuring Additional Request Information at Request Level 19-88

19.8.4 Validating Additional Request Information 19-90

19.9 Migrating UI Customizations 19-90

19.9.1 Scenario I: Incremental T2P 19-90

19.10 UI Customization Best Practices 19-91

19.10.1 Create Sandboxes With Detailed Description 19-92

19.10.2 Create a Backup of MDS Before Publishing a Sandbox 19-92

19.10.3 Migrate All Sandboxes to the Target Environment and Publish in the Same
Order 19-92

19.10.4 Export the Sandbox Before Publishing 19-92

19.10.5 Test the Sandbox Before Publishing 19-92

19.10.6 Do Not Change Default Component IDs 19-92

19.10.7 Use Discretion When Deleting Components From a Page 19-93

19.10.8 Note That Direct Changes to Default EOs/VOs Are Not Supported 19-94

19.10.9 Specify Name Space for JSFF Tags 19-94

19.10.10 Note That Customizations Are Only Allowed in Site/Site Layer 19-94

19.10.11 Note That Each Application Instance or Entitlement Form Has Three Page
Fragments (JSFF) 19-95

xxiii



19.10.12 Use Discretion When Using the Searchable Picklist Option 19-95

19.10.13 Sign-out After Adding/Updating UDF 19-95

19.10.14 Verify the UDF After Adding it to the Page 19-95

19.10.15 Map UDF With Correct LDAP Attribute 19-96

19.10.16 Deploy Custom Managed Beans as Part of the oracle.iam.ui.custom-dev-
starter-pack.war Shared Library 19-96

19.10.17 Consider Replacing the Entire Taskflow 19-96

19.10.18 Do Not Update Oracle Identity Manager WAR/EAR Files 19-97

19.10.19 Consider Conditionally Showing Certain Home Page Tiles 19-97

19.10.20 Do Not Invoke Platform APIs From Custom Managed Bean 19-97

19.10.21 Use Recommended Value of Display Width While Creating Lookup UDFs 19-97

Part VII   Interfaces to Integrate With Other Applications

20  
 

Using APIs

20.1 About Oracle Identity Governance APIs 20-1

20.2 Accessing Oracle Identity Governance Services 20-1

20.2.1 About Oracle Identity Governance Services 20-2

20.2.2 Using OIMClient 20-2

20.2.3 Using OIMClient and tcUtilityFactory in Integrated Deployments 20-2

20.3 Oracle Identity Governance Services 20-3

20.3.1 Services in Oracle Identity Governance 20-4

20.3.2 Legacy Services or Utilities 20-4

20.4 Commonly Used Services 20-5

20.5 Mapping Between Legacy and New Services 20-5

20.6 Working With Legacy Oracle Identity Manager APIs 20-5

20.6.1 Using a Result Set Object 20-6

20.6.2 Example of Using a Result Set 20-6

20.6.3 Handling Oracle Identity Manager Exceptions 20-7

20.6.4 Cleaning Up 20-7

20.7 Code Samples 20-7

20.7.1 Retrieving Oracle Identity Governance Information 20-7

20.7.2 Using Certification APIs 20-11

20.7.2.1 Retrieving Certifications Belonging to a User 20-12

20.7.2.2 Retrieving an Application Instance Certification 20-12

20.7.2.3 Certifying or Denying Certifications 20-12

20.7.2.4 Completing the Certification 20-12

20.7.3 Using OIMService API 20-12

20.7.3.1 RequestData Object Construction 20-13

20.7.3.2 Samples of OIMService API Usage 20-14

xxiv



20.8 Using the Custom API ZIP File 20-15

21  
 

Using SCIM/REST Services

21.1 Overview of SCIM/REST Services 21-1

21.2 Supported Resources and Operations 21-1

21.3 Resource Schema 21-3

21.3.1 Introduction to Resource Schema 21-4

21.3.2 Schema Attributes for the User Resource 21-4

21.3.2.1 User Schema Attributes 21-5

21.3.2.2 Enterprise User Schema Attributes 21-6

21.3.2.3 IDM Common User Schema Extension Attributes 21-6

21.3.2.4 OIG User Schema Extension Attributes 21-7

21.3.3 Schema Attributes for the PasswordResetterWithChallenges Resource 21-9

21.3.4 Schema Attributes for the PasswordValidator Resource 21-9

21.3.5 Schema Attributes for the UserNameValidator Resource 21-10

21.3.6 Schema Attributes for the UserNameGenerator Resource 21-10

21.3.7 Schema Attributes for the UserNameRecoverer Resource 21-10

21.3.8 Schema Attributes for the Group Resource 21-11

21.3.8.1 Group Schema Attributes 21-11

21.3.8.2 IDM Common Group Schema Extension Attributes 21-11

21.3.8.3 OIG Group Schema Extension Attributes 21-12

21.3.9 Schema Attributes for the Organization Resource 21-13

21.3.10 Schema Attributes for the Password Policy Resource 21-14

21.3.11 Schema Attributes for the Notification Template Resource 21-16

21.3.12 Schema Attributes for the System Property Resource 21-16

21.3.13 Schema Attributes for the Service Provider Configuration Schema Resource 21-16

21.3.14 Schema Attributes for the Resource Type Resource 21-17

21.3.15 Schema Attributes for the Schema Resource 21-17

21.3.15.1 SCIM Schema Attributes 21-18

21.3.15.2 OIG Schema Extension Attributes 21-18

21.4 Operation Types 21-18

21.5 HTTP Response Codes 21-19

21.5.1 Error Codes 21-19

21.5.2 Success Codes 21-20

21.6 SCIM-Based API Examples 21-20

21.6.1 User Management 21-20

21.6.1.1 Create User 21-21

21.6.1.2 Modify User (PUT) 21-25

21.6.1.3 Modify User (PATCH) 21-28

21.6.1.4 View Users with Pagination 21-31

21.6.1.5 Delete User 21-32

xxv



21.6.1.6 Lock User 21-33

21.6.1.7 Unlock User 21-33

21.6.1.8 Reset Password by Providing New Password 21-34

21.6.1.9 Reset Password by Auto-Generated Password 21-35

21.6.1.10 View User 21-36

21.6.1.11 Self Registration 21-38

21.6.1.12 Modify Self Profile (PATCH) 21-39

21.6.1.13 Modify Profile (PUT) 21-42

21.6.1.14 PasswordResetterWithChallenges 21-44

21.6.1.15 PasswordValidator 21-45

21.6.1.16 UserNameValidator 21-46

21.6.1.17 UserNameGenerator 21-47

21.6.1.18 UserNameRecoverer 21-48

21.6.2 Role Management 21-48

21.6.2.1 View Role 21-49

21.6.2.2 Create Role 21-49

21.6.2.3 Modify Role (PUT) 21-51

21.6.2.4 Modify Role (PATCH) 21-53

21.6.2.5 Delete Role 21-55

21.6.2.6 Remove Role (PATCH) 21-55

21.6.3 Organization Management 21-57

21.6.3.1 View Organization 21-58

21.6.3.2 Create Organization 21-59

21.6.3.3 Modify Organization (PUT) 21-60

21.6.3.4 Modify Organizations (PATCH) 21-61

21.6.3.5 Delete Organization 21-62

21.6.4 Password Policy Management 21-63

21.6.4.1 View Password Policy 21-63

21.6.4.2 Create Password Policy 21-64

21.6.4.3 Modify Password Policy (PUT) 21-66

21.6.4.4 Modify Password Policy (PATCH) 21-68

21.6.4.5 Delete Password Policy 21-69

21.6.5 Notification Template Management 21-70

21.6.5.1 View Notification Template 21-70

21.6.5.2 Create Notification Template 21-71

21.6.5.3 Modify Notification Template (PUT) 21-73

21.6.5.4 Modify Notification Template (PATCH) 21-74

21.6.5.5 Delete Notification Template 21-76

21.6.6 System Property Management 21-76

21.6.6.1 View System Properties 21-76

21.6.6.2 Modify System Properties (PATCH) 21-77

21.6.7 Service Provider Configuration Management 21-78

xxvi



21.6.7.1 Service Provider Configuration Request 21-78

21.6.7.2 Service Provider Configuration Response 21-78

21.6.8 Resource Types Management 21-79

21.6.8.1 Resource Types Management Request 21-79

21.6.8.2 Resource Types Management Response 21-80

21.6.9 Using POST Search 21-81

21.6.9.1 Using POST Search Request 21-81

21.6.9.2 Using POST Search Response 21-81

21.6.10 Retrieving Schemas 21-82

21.7 Securing SCIM Resources 21-82

21.7.1 Securing SCIM Resources Using OWSM Policy 21-82

21.7.2 Securing SCIM Resources Using Custom Request Headers 21-82

21.7.2.1 About Cross-Site Request Forgery 21-83

21.7.2.2 Applicability of CSRF Protection to Identity REST Services 21-83

21.7.2.3 Protecting SCIM Resources Using Custom Request Headers 21-83

21.7.3 Securing SCIM Resources Using Origin Whitelist 21-84

21.7.3.1 About HTTP Access Control (CORS) 21-84

21.7.3.2 Applicability of CORS to Identity REST Services 21-84

21.7.3.3 Protecting SCIM Service Using Origin Whitelist 21-85

21.8 Oracle Identity Governance REST Service 21-85

22  
 

Using the JSON Web Token Service

22.1 About the JWT Service 22-1

22.2 Authentication Scenarios 22-1

22.3 Acquiring and Applying a JWT 22-2

22.4 JWT-Based OIM Identity Provider for SCIM-REST Authentication 22-4

22.4.1 Overview of SCIM and REST Security 22-5

22.4.2 JSON Web Token (JWT) 22-5

22.4.3 The OIM Identity Provider Endpoint 22-5

22.4.4 Session Timeout and Refresh 22-6

22.4.5 Configuring JWT Timeout Period 22-6

22.5 Endpoints and the Facade Application 22-6

22.5.1 Endpoints 22-7

22.5.1.1 The Token Endpoint ( /iam/governance/token/api/v1/tokens) 22-7

22.5.1.2 The Refresh Token Endpoint (/iam/governance/token/api/v1/tokens) 22-8

22.5.2 The Facade Application 22-9

22.6 CSRF and CORS Protection 22-10

xxvii



23  
 

Understanding Global Policy Attachments

23.1 Predefined Policies 23-1

23.2 Viewing and Editing Global Policy Attachments 23-3

23.3 Enabling SCIM to Run Only on HTTPS 23-3

23.4 Enabling REST to Run Only on HTTPS 23-3

Part VIII   Notification Service

24  
 

Developing Notification Events

24.1 Notification Concepts 24-1

24.2 Developing Custom Notification 24-1

24.2.1 Building the Notification Logic 24-2

24.2.1.1 Defining Event Metadata 24-2

24.2.1.2 Creating the Resolver Class 24-4

24.2.1.3 Creating the plugin.xml File 24-6

24.2.2 Creating Plug-in Pack Containing the Resolver Class 24-6

24.2.3 Building the Invocation Logic 24-7

24.2.4 Configuring the Notification Service 24-7

Part IX   Customization Lifecycle

25  
 

Deploying and Undeploying Customizations

25.1 Migrating User Modifiable Metadata Files 25-1

25.1.1 Exporting Metadata Files to MDS 25-1

25.1.2 Importing Metadata Files from MDS 25-2

25.1.3 Deleting Metadata Files from MDS 25-2

25.1.4 Creating MDS Backup 25-2

25.1.5 Exporting All MDS Data for Oracle Identity Governance 25-3

25.1.6 Sample WLST Script 25-4

25.2 Migrating JARs and Resource Bundle 25-4

25.2.1 Upload JAR Utility 25-7

25.2.2 Download JAR Utility 25-7

25.2.3 Delete JAR Utility 25-8

25.2.4 Upload Resource Bundle Utility 25-8

25.2.5 Download Resource Bundle Utility 25-9

25.2.6 Delete Resource Bundle Utility 25-9

xxviii



Part X   Reports and Audit

26  
 

Configuring Reports

26.1 What are Oracle Identity Governance Reports? 26-1

26.2 What is Oracle Analytics Server? 26-2

26.3 Oracle Analytics Server (7.0) Licensing 26-2

26.4 Installing and Configuring Oracle Analytics Server (7.0) 26-3

26.5 Integrating Standalone Oracle Analytics Server with Oracle Identity Governance 26-3

26.6 Configuring Oracle Identity Governance Reports 26-4

26.7 Configuring Data Sources for Running Oracle Identity Governance Reports 26-5

26.7.1 Configuring Oracle Identity Governance JDBC Connection 26-5

26.7.2 Configuring BPEL-Based JDBC Connection 26-5

26.7.2.1 About Reports With Secondary Data Source 26-6

26.7.2.2 Configuring a Secondary Data Source for BPEL-Based Reports 26-6

26.8 Generating Oracle Identity Governance Reports 26-6

26.8.1 Generating the Reports Against the Sample Data Source 26-7

26.8.2 Generating Reports Against the Oracle Identity Governance JDBC Data Source 26-7

26.8.3 Generating Reports Against the BPEL-Based JDBC Data Source 26-8

26.8.3.1 Reports With Secondary Data Source 26-8

26.8.3.2 Generating the Reports Against the BPEL-Based JDBC Data Source 26-8

26.9 Configuring Certification Reports 26-9

26.9.1 Configuring the Oracle Analytics Server URL 26-9

26.9.2 Enabling Certification Reports 26-10

26.9.3 Enabling the Display of the Reports Tab 26-10

26.9.4 Report Formats 26-10

27  
 

Understanding Auditing

27.1 Overview of Auditing 27-1

27.2 Audit Levels 27-1

27.3 Tables Used for Storing Information About Auditors 27-3

27.4 Issuing Audit Messages 27-3

Part XI   Appendixes

A   The FacesUtils Class

xxix



B   Username Reservation and Common Name Generation

B.1 Username Reservation B-1

B.1.1 Overview of Username Reservation B-1

B.1.2 Enabling and Disabling Username Reservation B-2

B.1.3 Configuring the Username Policy B-3

B.1.3.1 About Username Policies B-3

B.1.3.2 Predefined Username Policies B-4

B.1.3.3 API for Username Generation B-5

B.1.3.4 Constraints in UserNameGenerationUtil B-6

B.1.3.5 Configuring the Default Username Policy B-6

B.1.4 Writing Custom User Name Policy B-7

B.1.4.1 Introduction to Custom Username Policy Development B-8

B.1.4.2 Implementing the Plug-in Interface B-8

B.1.4.3 Creating and Registering the plugin.xml File B-9

B.1.4.4 Guidelines for Writing Custom Username Policies B-9

B.1.4.5 Sample Implementation B-9

B.1.5 Releasing the Username B-11

B.1.6 Configuring Username Generation to Support Microsoft Active Directory B-11

B.2 Common Name Generation B-12

B.2.1 Common Name Generation for Create User Operation B-12

B.2.2 Configuring Common Name Generation B-12

B.2.3 Common Name Generation for Modify User Operation B-13

B.2.4 RDN Modification Scenarios B-13

xxx



List of Figures

1-1 The IT Resources Type Definition Form 1-3

2-1 Process Definition Form 2-2

2-2 Tasks Tab of the Process Definition Form 2-6

2-3 Reconciliation Field Mappings Tab of the Process Definition Form 2-8

2-4 Handler Selection Dialog Box 2-20

3-1 Adapter Factory Form 3-8

3-2 Adapter Manager Form 3-10

3-3 Error Message Definition Form 3-50

4-1 Identity Connector Framework Deployment 4-3

4-2 Compatibility Between the ICF and Connector Bundles 4-3

4-3 Deployment Methodology to Support Multiple Versions of Same Target 4-4

4-4 Connector Server Remote System Framework 4-5

4-5 ICF Framework 4-6

4-6 ICF Connectors and Connector Server 4-25

5-1 IT Resource Type Definition in Design Console 5-29

5-2 Resource Objects in Design Console 5-30

5-3 Lookup Definition in Design Console 5-31

5-4 Second Lookup Definition in Design Console 5-32

5-5 Form Designer in Design Console 5-34

5-6 Properties of Form Designer in Design Console 5-35

5-7 Adapter Factory Variable List in Design Console 5-37

5-8 Adapter Factory in Design Console 5-38

5-9 Process Definition in Design Console 5-39

5-10 Editing Task Screen in Design Console 5-40

5-11 Integration Tab in Design Console 5-40

5-12 Configure Responses in Design Console 5-41

5-13 Task to Object Status Mapping 5-42

5-14 The Scheduled Task Screen 5-46

5-15 Object Reconciliation in Design Console 5-47

5-16 Reconciliation Action Rules in Design Console 5-48

5-17 Reconciliation Field Mapping in Design Console 5-49

5-18 Adding Reconciliation Matching Rule 5-50

6-1 IT Resource Type Definition in Design Console 6-13

6-2 Resource Objects in Design Console 6-14

6-3 Lookup Definition in Design Console 6-15

6-4 Second Lookup Definition in Design Console 6-16

xxxi



6-5 Form Designer in Design Console 6-18

6-6 Properties of Form Designer in Design Console 6-19

6-7 Adapter Factory Variable List in Design Console 6-20

6-8 Adapter Factory in Design Console 6-21

6-9 Process Definition in Design Console 6-22

6-10 Editing Task Screen in Design Console 6-23

6-11 Integration Tab in Design Console 6-24

6-12 Configure Responses in Design Console 6-25

6-13 Task to Object Status Mapping 6-26

6-14 Lookup Code Mapping 6-27

6-15 Scheduled Task Screen in Advanced Console 6-30

6-16 Object Reconciliation in Design Console 6-31

6-17 Reconciliation Action Rules in Design Console 6-32

6-18 Reconciliation Field Mapping in Design Console 6-33

6-19 Adding Reconciliation Matching Rule 6-34

7-1 OIM-ICF Connector Development Architecture 7-2

7-2 Oracle Identity Manager Connector Lookup Hierarchy 7-3

7-3 Graphical Representation of Filter Syntax 7-22

9-1 Connector Server Load Balancer 9-2

12-1 Communication Between the SPML Provisioning Format Provider and the Target System 12-9

13-1 Workflow Architecture 13-4

13-2 Entitlements List 13-14

13-3 Entitlement Availability to Organizations 13-15

13-4 Catalog Item Attributes 13-16

13-5 Partner Link and Operation 13-17

13-6 AssignRequestInput 13-18

13-7 Input Mapping 13-19

13-8 InvokeCatalogOperation 13-19

13-9 InvokeCatalogOperation Configuration 13-20

13-10 AssignCatalogInput 13-20

13-11 InvokeCatalogOperation Input Mapping 13-21

13-12 Adding Business Rule Component 13-22

13-13 catalogData Variable Input Mapping 13-23

13-14 workflowtype Variable Output Mapping 13-23

13-15 AssignRuleInput 13-24

13-16 catalogData Variable Output Mapping 13-25

13-17 The stageType Property 13-26

xxxii



13-18 Approval Rules 13-27

13-19 Switch Activity 13-28

13-20 Switch Case Steps 13-28

13-21 Renamed Conditions 13-29

13-22 Dragging Default Human Task 13-30

13-23 Adding Human Tasks 13-31

13-24 The Task Title 13-32

13-25 Manager and Review Team Stages 13-33

13-26 Manager Participant Rule 13-34

13-27 Review Team Participant Rule 13-34

13-28 Serial Stages 13-36

13-29 Rule for Manager Stage 13-36

13-30 Rule for Review Team Stage 13-37

13-31 Default Approval Task 13-38

13-32 Participant List Rule 13-38

13-33 Human Task Activity 13-39

13-34 Task Parameters and BPEL Variable Mapping 13-40

13-35 Identification Key and Requester ID Mapping 13-41

13-36 Dragging Task to the Top Facet 13-50

13-37 The panelTabbed Layout 13-51

13-38 OIM View Shared Library 13-52

13-39 Task Details DataControl 13-54

14-1 Reconciliation Architecture 14-8

14-2 Reconciliation Event Lifecycle 14-20

14-3 Reconciliation Rules Form 14-22

14-4 The <matchingRule> Tag Element 14-46

17-1 Plug-ins and Event Handlers 17-2

17-2 Exporting Plug-ins 17-12

18-1 Orchestration Stages 18-3

18-2 Exporting Plug-ins 18-20

19-1 The Object Library in WebCenter Composer 19-14

19-2 The Add Content Dialog Box 19-23

19-3 The Child Components Tab 19-25

19-4 The panelGridLayout Component 19-26

19-5 The toolbar, (x)group component 19-27

19-6 The ()group, toolbar component 19-28

19-7 Home Page Panel Grid Layout 19-35

xxxiii



19-8 Panel Grid Layout Component 19-36

19-9 Catalog Taskflow Based on Template 19-75

19-10 JSF Page Fragment Based on Page Template 19-76

19-11 Page Bindings for JSF Page Fragments 19-76

19-12 Enabling Show Libraries 19-79

19-13 Complete Task Without Payload 19-81

19-14 Human Tasks 19-82

19-15 Component ID 19-93

22-1 Token Endpoint Service 22-3

22-2 Token Facade Web App 22-4

26-1 Oracle Identity Manager Reports Architecture 26-2

B-1 The System Property Detail Page B-3

B-2 The Default Username Policy Configuration B-7

xxxiv



List of Tables

1-1 Fields of the IT Resources Type Definition Form 1-3

2-1 Fields of the Process Definition Form 2-2

2-2 Fields of the General Tab 2-13

3-1 Items on the Map To Menu 3-16

3-2 Options in the Object Instance Selection Window 3-21

3-3 Regions of the Add an Adapter Factory Task Window 3-22

3-4 Types of Operands 3-24

3-5 Fields of the Prepopulate Adapters Dialog Box 3-31

3-6 Fields of the Map Adapter Variables WIndow 3-32

3-7 Fields of the Data Mapping for Variable WIndow 3-37

3-8 Fields of the Error Message Definition Form 3-51

4-1 Properties in the ConnectorServer.properties File 4-27

4-2 Options Supported by the ConnectorServer.bat Script 4-29

4-3 Options Supported by the connectorserver.sh Script 4-31

5-1 Form Designer Fields 5-36

6-1 Form Designer Fields 6-19

7-1 Lookup Configuration for Connector 7-4

7-2 User Management Lookup Configuration for Connector 7-5

7-3 Reconciliation Transformation Lookup 7-8

7-4 Reconciliation Validation Lookup 7-8

7-5 Lookup.CONNECTOR_NAME.UM.Recon.Defaults.Trusted Attriburtes 7-9

7-6 IT Resource Parameter 7-9

7-7 Provisioning Lookup Attributes 7-12

7-8 ICF Common Reconciliation Parameters 7-15

7-9 Common Group Lookup Parameters 7-16

7-10 Attribute Mapping for Lookup.CONNECTOR_NAME.UM.ReconAttrMap 7-17

7-11 Identity Connector Lookup Reconciliation Attributes 7-19

7-12 Identity Connector Target Search Reconciliation Attributes 7-19

7-13 Identity Connector Target Search Delete Reconciliation Attributes 7-20

7-14 Identity Connector Target Sync Reconciliation Attributes 7-20

7-15 Keywords and Syntax for the Filter Attribute 7-23

11-1 Methods of ResourceConnection 11-2

11-2 ITResource Parameters 11-3

11-3 Methods of the GenericPool Interface 11-5

12-1 Impact of Directory Permissions 12-7

12-2 Validation Providers 12-23

xxxv



13-1 Predefined Workflow Composites 13-6

13-2 Attributes of the Data Tab for Parallel Human Task 13-35

13-3 Attributes of the Data Tab for Serial Approval Task 13-37

14-1 Reconciliation Status Events 14-15

14-2 Action Rules 14-16

14-3 Transformation Properties 14-25

14-4 Troubleshooting Reconciliation 14-37

14-5 Troubleshooting Reconciliation Profile Configuration Failures 14-42

15-1 Structure of a Sample Database Table 15-15

15-2 Structure of a Sample Database Table 15-26

15-3 Structure of a Sample Child Database Table 15-26

15-4 Structure of a Sample Database Table 15-35

15-5 Structure of the OIM_BLKLD_LOG Table 15-48

16-1 Properties of the scheduledTasks Element 16-7

16-2 Properties of the task Element 16-8

16-3 Properties of the name Element 16-8

16-4 Properties of the class Element 16-9

16-5 Properties of the description Element 16-9

16-6 Properties of the retry Element 16-10

16-7 Properties of the parameters Element 16-10

16-8 Properties of the string-param Element 16-11

16-9 Properties of the number-param Element 16-11

16-10 Properties of the boolean-param Element 16-12

16-11 Variables and Constants for Creating Custom Scheduled Tasks 16-12

17-1 Plug-in Points 17-4

18-1 Orchestration Operations for Entities 18-5

18-2 Methods to Implement Event Handlers 18-7

18-3 SPIs to Write Custom Event Handlers 18-12

18-4 Typical Sub-elements within the eventhandlers Element 18-13

18-5 Typical Attributes of Sub-elements within the eventhandlers Element 18-14

18-6 Troubleshooting Event Handlers 18-21

19-1 Troubleshooting Concurrency Issues 19-5

19-2 Entity Artifacts for Customization 19-16

19-3 EL Expressions in User Context 19-17

19-4 EL Expressions in RequestFormContext 19-18

19-5 ADF Validators 19-21

19-6 Public Taskflows 19-66

xxxvi



7 Task Flows and Direct URLs 1

20-1 Commonly Used Services 20-5

20-2 Mapping Between Legacy and New Services 20-5

20-3 Operation and entityKey 20-14

21-1 SCIM-Based APIs and Supported Operations 21-2

21-2 urn:ietf:params:scim:schemas:core:2.0:User 21-5

21-3 urn:ietf:params:scim:schemas:extension:enterprise:2.0:User 21-6

21-4 urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User 21-7

21-5 urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User 21-7

21-6 urn:ietf:params:scim:schemas:oracle:core:2.0:PasswordResetterWithChallenges 21-9

21-7 urn:ietf:params:scim:schemas:oracle:core:2.0:PasswordValidator 21-9

21-8 urn:ietf:params:scim:schemas:oracle:core:2.0:UserNameValidator 21-10

21-9 urn:ietf:params:scim:schemas:oracle:core:2.0:UserNameGenerator 21-10

21-10 urn:ietf:params:scim:schemas:oracle:core:2.0:UserNameRecoverer 21-10

21-11 urn:ietf:params:scim:schemas:core:2.0:Group 21-11

21-12 urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group 21-11

21-13 urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group 21-12

21-14 urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:Organization 21-13

21-15 urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordPolicy 21-14

21-16 urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:NotificationTemplate 21-16

21-17 urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:SystemProperty 21-16

21-18 urn:ietf:params:scim:schemas:core:2.0:ServiceProviderConfig 21-16

21-19 urn:ietf:params:scim:schemas:core:2.0:ResourceType 21-17

21-20 urn:ietf:params:scim:schemas:core:2.0:Schema 21-18

21-21 urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Schema 21-18

21-22 Error Codes and Meaning 21-19

21-23 Success Codes and Meaning 21-20

22-1 Refresh Token Endpoint Configuration 22-8

22-2 Facade Application Usability 22-9

23-1 RESTful WSM Policy Sets 23-1

23-2 SOAP WSM Policy Sets 23-2

B-1 Predefined Username Policies B-4

B-2 Constants Representing Policy IDs B-6

B-3 RDN Modification Scenarios B-13

xxxvii



Preface

The Oracle Fusion Middleware Developer's Guide for Oracle Identity Manager describes how
to develop and customize various components and features of Oracle Identity Manager.

Audience
This guide is intended for developers who use Oracle Identity Manager development tools to
customize the product according to the requirements of an organization. The customization
involves using APIs, configuring requests and approval workflows, developing connectors by
using Identity Connector Framework, Generic Technology Connector, or Adapter Factory, and
customizing the user interface.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documents
For more information, refer to the following documents:

• Oracle Fusion Middleware Administering Oracle Identity Governance

• Oracle Fusion Middleware Performing Self Service Tasks with Oracle Identity Governance

• Oracle Fusion Middleware Installation Guide for Oracle Identity and Access Management

• Oracle Fusion Middleware High Availability Guide

• Oracle Fusion Middleware Administrator's Guide for Oracle Access Management

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

Preface

xxxviii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxxix



What's New In This Guide

This preface provides a summary of new features and updates to Developing and Customizing
Applications for Oracle Identity Governance 14c (14.2.1.0).

• This revision of Developing and Customizing Applications for Oracle Identity Governance
contains bug fixes and editorial corrections.

• Oracle Identity Governance 14c (14.1.2.1.0) is certified for use with JDK 17 and JDK 21,
which introduces new features, optimizations, and bug fixes enhancing the overall
performance and stability.

• The following sections is updated with the JDK version changes:

– Installing the Java Connector Server

– Configuring the Java Connector Server with SSL for Oracle Identity Governance

– Upgrading the Java Connector Server

What's New In This Guide

xl



Part I
Application Provisioning

Application provisioning consists of developing application instances, which is an abstraction
over resource objects and IT resources, and developing provisioning processes, which is a
mechanism for representing a logical workflow for provisioning.

This part describes how to configure application-specific connectors.

It contains the following chapters:

• Developing Application Instances

• Developing Provisioning Processes



1
Developing Application Instances

Application developers can manage resource objects, which is a component of application
instance, by using the Design Console. A disconnected application instance can be created by
using Identity System Administration and can be converted to a connected application
instance.
For information about creating and managing IT resources, see Managing IT Resources in
Administering Oracle Identity Governance.

This chapter contains the following topics:

• Overview of Application Instances

• Managing Resources By Using the Design Console

• Converting a Disconnected Application Instance to Connected Application Instance

1.1 Overview of Application Instances
An application instance is a provisionable entity, and a combination of IT resource instance
(target connectivity and connector configuration) and resource object (provisioning
mechanism).

Application instances have business-friendly names that are easier to remember. Creating and
managing application instances are performed by using the Application Instance section of
Oracle Identity System Administration.

Application instances can be connected or disconnected. A connected application instance has
a connector defined for the provisioning of entities. A disconnected application instance is used
for the provisioning of a disconnected resource, for which a connector is not defined, and
therefore, the provisioning is performed manually by the administrator.

For information about application instance concepts and how to create and manage application
instances, see Managing Application Instances in the Administering Oracle Identity
Governance.

1.2 Managing Resources By Using the Design Console
Resource objects and IT resources are managed by using the Design Console.

This section describes resource management in the Design Console. It contains the following
topics:

Note:

Only the users belonging to the SYSTEM ADMINISTRATORS group of Oracle
Identity Manager can log in to the Design Console.

• Overview of Resource Management

1-1



• IT Resources Type Definition Form

• Fields of the IT Resource Type Definition Form

• Defining a Template (a Resource Type) for IT Resources

1.2.1 Overview of Resource Management
The Resource Management folder provides you with tools to manage Oracle Identity Manager
resources.

The Resource Management folder contains the following forms:

• IT Resources Type Definition: Use this form to create resource types that are displayed
as lookup values on the IT Resources form.

• Rule Designer: Use this form to create rules that can be applied to password policy
selection, automatic role membership, provisioning process selection, task assignment,
and prepopulating adapters.

• Resource Objects: Use this form to create and manage resource objects. These objects
represent resources that you want to make available to users and organizations.

See Also:

See Using the Adapter Factory for more information about adapters and adapter
tasks

1.2.2 IT Resources Type Definition Form
The IT Resources Type Definition form is used to classify IT resource types.

The IT Resources Type Definition form is in the Resource Management folder. You use the IT
Resources Type Definition form to classify IT resource types, for example, AD, Microsoft
Exchange, and Solaris. Oracle Identity Manager associates resource types with resource
objects that it provisions to users and organizations.

After you define an IT resource type on this form, it is available for selection when you define
an IT resource. The type is displayed in the Create IT Resource and Manage IT Resource
pages of Advanced Administration.

IT resource types are templates for the IT resource definitions that reference them. If an IT
resource definition references an IT resource type, the resource inherits all of the parameters
and values in the IT resource type. The IT resource type is the general IT classification, for
example, Solaris. The resource is an instance of the type, for example, Solaris for Statewide
Investments. You must associate every IT resource definition with an IT resource type.

Figure 1-1 shows the IT Resources Type Definition form.

Chapter 1
Managing Resources By Using the Design Console

1-2



Figure 1-1    The IT Resources Type Definition Form

1.2.3 Fields of the IT Resource Type Definition Form
The IT Resources Type Definition form provides fields for classifying IT resource types.

Table 1-1 describes the fields of the IT Resources Type Definition form.

Table 1-1    Fields of the IT Resources Type Definition Form

Field Name Description

Server Type The name of the IT resource type

Insert Multiple Specifies whether or not this IT resource type can
be referenced by more than one IT resource

1.2.4 Defining a Template (a Resource Type) for IT Resources
The IT resource type that you define is selected when creating IT resources.

To define an IT resource type:

1. Enter the name of the IT resource type in the Server Type field, for example, Solaris.

2. To make the IT resource type available for multiple IT resources, select Insert Multiple.

3. Click Save.

The IT resource type is defined. You can select it when defining IT resources in the Create
IT Resource page of Advanced Administration.

Chapter 1
Managing Resources By Using the Design Console

1-3



1.3 Converting a Disconnected Application Instance to
Connected Application Instance

A disconnected application instance is converted to a connected application instance by
importing the disconnected resource to a test environment, modifying the implementation of
the application instance, such as resource object definition and process definition, and
exporting the new connected resource to the production environment.

For information about disconnected application instance, see Managing Disconnected
Resources in Administering Oracle Identity Governance.

This section describes how to convert a disconnected application instance to a connected
application instance. It contains the following topics:

• Assumptions and Broad-Level Steps

• Creating a Disconnected Application Instance in the Production Environment

• Exporting Disconnected Application Instance From Test Environment

• Importing the Disconnected Application Instance in Production Environment

• Modifying the Application Instance from Disconnected to Connected

• Testing the Connected Application Instance

1.3.1 Assumptions and Broad-Level Steps
The assumption made to show the conversion of disconnected application instance to
connected application instance is that the application instance, process definition, forms, IT
resource type definition, and IT resource retain the same name while converting, which
involves importing the disconnected resource, modifying the application instance
implementation, and exporting it back to the production environment.

To describe the procedure to convert a disconnected application instance to a connected
application instance, the following assumptions have been made:

• A disconnected application instance exists in Oracle Identity Manager deployment, for
example, the production environment. This disconnected application instance will be
exported to another deployment of Oracle Identity Manager, for example, a test
environment, and converted to a connected application instance. After testing the
connected application instance in the test environment, it will be imported in the production
environment again.

Note:

Optionally, the disconnected resource can be converted to a connected resource
in the same environment. See Modifying the Application Instance from
Disconnected to Connectedfor further details.

• The application instance, process definition, forms, IT resource type definition, and IT
resource retain the same name while converting a disconnected application instance to
connected application instance.

The following are the broad-level steps to convert a disconnected application instance to a
connected application instance:

Chapter 1
Converting a Disconnected Application Instance to Connected Application Instance

1-4



• Import the existing disconnected resource from the existing environment to the test
environment.

• Modify the implementation of the application instance, such as resource object definition
and process definition.

• Test the application instance by provisioning it to users and validating the behavior for
enable, disable, revoke, and update tasks.

• Export the new connected resource from the test environment and import it to the
production environment.

Note:

• Only the resource is exported between environments and not the application
instance.

• This section outlines the steps to import/export the resource of the application
instance by using the Deployment Manager. Alternatively, the connector upgrade
utility can also be used for import/export of the resource. See Managing
Connector Lifecycle in the Administering Oracle Identity Governance for
information about using the connector upgrade utility.

1.3.2 Creating a Disconnected Application Instance in the Production
Environment

Select the Disconnected option while creating the application instance.

To create a disconnected application instance in the production environment:

1. Login to Oracle Identity System Administration.

2. Click Sandboxes to access sandbox management, create a sandbox, and activate it. See 
Managing Sandboxes for information about sandboxes and how to create, activate, and
publish sandboxes.

3. Under Configuration, click Application Instances. Click Create on the toolbar to open the
Create Application Instance page.

4. Enter values in the Name and Display Name fields, such as LaptopApplicationInstance.

5. Select the Disconnected option to specify a disconnected application instance. Selecting
the Disconnected option disables the Resource Object and IT Resource Instance fields in
the page.

6. Click Save, and then click OK to confirm creation of the LaptopApplicationInstance
application instance. The artifacts for a disconnected application instance are created.

7. Go to the Manage Sandboxes page, and publish the sandbox.

Upon successful creation of the application instance, organization and entitlements can be
configured if necessary. For testing purpose, create four or five users and provision the newly
created disconnected application instance to the users. Ensure that the users have the
application instance in one of the following status: Provisioned, Enabled, Disabled, and
Revoke. Try modifying one of the users to ensure that the account can be successfully
updated.

Chapter 1
Converting a Disconnected Application Instance to Connected Application Instance

1-5



1.3.3 Exporting Disconnected Application Instance From Test Environment
A disconnected application instance is exported from the test environment by using the Export
section of Identity System Administration.

To export the disconnected application instance from the test environment:

1. Login to Oracle Identity System Administration. In the left pane, under System
Configuration, click Export to open the Export Configuration page.

2. Search for the disconnected application instance. To do so, in the search section, select
Resource Type from the list, enter the name of the disconnected application instance, for
example LaptopApplication*, and click Search. The disconnected application instance is
displayed in the Search Results section.

3. In the Available Entities table, select the checkbox next to LaptopApplicationInstance.
The entity is moved to the Selected Entities table.

4. Click Next, or click Export Options to open the Export Options page.

5. Set Dependency to Yes.

6. Click Next or click Summary to open the Summary page.

7. Make sure that all the required entities are selected, and that they appear in the Selected
Entities panel. Make sure that the dependency information appears in the Export Options
panel, and then click Export to open the Export window.

8. In the Export window, enter a description for the file. This description appears when the file
is imported.

9. Click Export to open the Save As dialog box.

10. Enter a name to the XML file, such as DisconnectedLaptopExp.xml. Click Save.

1.3.4 Importing the Disconnected Application Instance in Production
Environment

A disconnected application instance is imported to the production environment by using the
Export section of Identity System Administration.

To import the disconnected application instance in production environment:

1. In the left pane of the Oracle Identity System Administration, under System Management,
click Import.

2. Click Browse to select the XML file. Navigate to the location of the XML file, select the file,
and click Open.

3. Click Next or click Import Options to open the Import Options page.

4. Select the required import options. For more information see, Importing Deployments in
Administering Oracle Identity Governance.

5. Click Next or click Summary to open the Summary page.

6. Click Import.

7. Verify that the process definition, resource object, and forms have been successfully
imported.

Chapter 1
Converting a Disconnected Application Instance to Connected Application Instance

1-6



1.3.5 Modifying the Application Instance from Disconnected to Connected
A disconnected application instance is converted to a connected application instance by
modifying the implementation of the application instance, such as resource object definition
and process definition.

In the environment where the application instance has been imported, make the following
changes to convert the disconnected application instance to a connected application instance:

1. Login to the Design Console.

2. Expand Resource Management. Click Resource Objects to open the Resource Objects
form.

3. Change the type of the resource object from Disconnected to Application.

4. Define new IT resource parameters in conjunction with the connected resource as required
in the IT Resource Type Definition form.

5. Modify the existing IT resource (assuming that the ITResource is the same) with the new
parameters added in step 4.

6. Expand Process Management, and click Process Definition to open the Process
Definition form.

7. Search the process definition of the disconnected application instance. The following tasks
are displayed:

• ManualProvisioningStart

• ManualProvisioningEnd

• ManualEnableStart

• ManualEnableEnd

• ManualDisableStart

• ManualDisableEnd

• ManualRevokeStart

• ManualRevokeEnd

8. For each task, perform the following:

a. Double-click the Task row to open the task details. See Modifying Process Tasks for
more information about modifying process tasks.

b. Rename the task. For example, change the task name from ManualProvisioningStart
to XXManualProvisioningStart.

c. Make sure the Conditional option is selected. In addition, ensure that the Required
for Completion option is not selected.

d. If the task is an enable/disable/revoke task, then change the task effect to No effect.

e. In the Integration tab, disassociate the adapters attached to the task by clicking on
Remove.

f. Remove task dependency, if any.

g. Remove undo/recovery/generated tasks, if any.

h. Change the object status mapping, if any, to none.

Chapter 1
Converting a Disconnected Application Instance to Connected Application Instance

1-7



Note:

Step 6a through 6g are to ensure that the existing tasks for disconnected
application instance do not start when the application instance is exported as
a connected application instance.

9. There is a task by the name PARENT_FORM_NAME Updated. This task triggers
whenever the parent form is updated. Make sure to disassociate the existing adapters
attached to the task and customize the task as required.

10. If there are any tasks related to the child form, then make sure to remove the triggers for
create/update/delete by clicking Clear. If these tasks are not going to be reused, then
disassociate the adapters attached to these tasks and rename the tasks to ensure that
they do not run. Oracle recommends creating new tasks for each create, update, and
delete trigger.

Note:

• Optionally, the same tasks for the child data can be retained but custom
adapters must be defined for the create/update/delete trigger.

• For a disconnected application instance with child data, the task with the
delete trigger will be associated with the tcCompleteTask adapter. Make sure
to define and attach a custom adapter to this task to enable proper deletion
of entitlement or child data.

11. Define custom adapters for the create, disable, enable, revoke, and update account tasks.
If there are child tables, then make sure to define custom adapters for the same.

12. Create the following tasks in the process definition, and associate the corresponding
adapters to each of those tasks. Map the required undo/recovery tasks and set the object
status mapping.

• Create User: Ensure that in the task properties, the Required for Completion option
is selected and the Conditional option is not selected.

• Disable User: Ensure that the task effect is Disable Processes or Access to
Application.

• Enable User: Ensure that the task effect is Enable Processes or Access to
Application.

• Delete User: Ensure that the task effect is Revoke Processes or Access to
Application.

• ATTRIBUTE_NAME Updated: For each attribute defined in the process form,
corresponding update tasks have to be created. These tasks are triggered on updates
to the process form, for example, Account Name Update, Account ID Updated, and so
on.

13. If there is a child table, then define tasks for each trigger type, such as create, update, and
delete.

Test the connected application instance by provisioning it to a few users in the test
environment. You must define a new application instance with the modified resource object and
IT resource to provision the application instance to users.

Chapter 1
Converting a Disconnected Application Instance to Connected Application Instance

1-8



1.3.6 Testing the Connected Application Instance
Test the connected application instance after converting it from a disconnected application
instance.

After converting the disconnected application instance to a connected application instance, test
the connected application instance in the following way:

1. Export the modified resource from the test environment.

2. Import the modified resource to the production environment.

Chapter 1
Converting a Disconnected Application Instance to Connected Application Instance

1-9



2
Developing Provisioning Processes

A process is the mechanism for representing a logical workflow for provisioning in Oracle
Identity Manager.
Process definitions consist of tasks. Process tasks represent the steps that you must complete
to fulfill the purpose of a process. For example, in a provisioning process, tasks are used to
enable a user or organization to access the target resource.

This chapter describes process management by using the Process Definition form of the
Design Console. It contains the following topics:

• Process Definition Form

• Fields of the Process Definition Form

• Creating a Process Definition

• Tabs on the Process Definition Form

• Modifying Process Tasks

2.1 Process Definition Form
The Process Definition form is used to create and manage the provisioning processes that are
associated with resource objects.

The Process Definition form shown in Figure 2-1 is in the Process Management folder.

2-1



Figure 2-1    Process Definition Form

In Figure 2-1, the Vision Organization provisioning process is created and assigned to the
resource object of the same name.

Note:

Not all the form columns are captured in Figure 2-1; additional field columns extend
on the right of the Tasks table.

2.2 Fields of the Process Definition Form
The fields of the Process Definition form represent the attributes of the provisioning processes
that are associated with resource objects.

Table 2-1 describes the fields of the Process Definition form.

Table 2-1    Fields of the Process Definition Form

Field Name Description

Name The name of the process.

Type The classification type of the process definition.

Chapter 2
Fields of the Process Definition Form

2-2



Table 2-1    (Cont.) Fields of the Process Definition Form

Field Name Description

Object Name The name of the resource object to which the process will be assigned.

Map Descriptive Field Click this button to select a field that will be used as an identifier of the
process definition after an instance is assigned to a resource object.

Render Workflow Click this button to start a Web browser and display the current workflow
definition by using the Workflow Renderer tool.

Default Process This check box determines if the current process is the default provisioning
process for the resource object with which it is associated.

Select the check box to set the process as the default provisioning process for
the resource object to which it is assigned. If you deselect the check box, the
process will not be the default. It will only be invoked if a process selection
rule causes it to be chosen.

Auto Save Form This check box designates whether Oracle Identity Manager suppresses the
display of the custom form associated with this provisioning process or
display it and allow a user to supply it with data each time the process is
instantiated.

Select this check box to automatically save the data in the custom process
form without displaying the form. If you select this check box, you must supply
either system-defined data or ensure that an adapter is configured to populate
the form with the required data because the user will not be able to access
the form. Deselect this check box to display the custom process form and
allow users to enter data into its fields.

Auto Pre-Populate This check box designates whether the fields of a custom form are populated
by Oracle Identity Manager or a user. Two types of forms are affected:

• Forms that are associated with the process
• Forms that contain fields with prepopulated adapters attached to them
If the Auto Pre-Populate check box is selected, when the associated custom
form is displayed, the fields that have prepopulate adapters attached to them
will be populated by Oracle Identity Manager.

When this check box is deselected, a user must populate these fields by
clicking the Pre-Populate button on the toolbar or by manually entering the
data.

Note: This setting does not control the triggering of the prepopulate adapter.
It only determines if the contents resulting from the execution of the adapter
are displayed in the associated form field(s) because of Oracle Identity
Manager or a user.

For more information about prepopulate adapters, see Working with
Prepopulate Adapters.

Note: This check box is only relevant if you have created a process form that
is to be associated with the process and prepopulate adapters are used with
that form.

Table Name The name of the table that represents the form that is associated with the
process definition.

2.3 Creating a Process Definition
Process definitions are created by using the Process Definition from, which is in the Process
Management folder of the Design Console.

To create a process definition:

Chapter 2
Creating a Process Definition

2-3



1. Open the Process Definition form.

2. In the Name field, type the name of the process definition.

3. Double-click the Type lookup field.

From the Lookup dialog box that is displayed, select the classification type (Approval) of
the process definition.

4. Double-click the Object Name lookup field.

From the Lookup dialog box that is displayed, select the resource object that will be
associated with the process definition.

5. Optional. Select the Default Process check box to make this the default provisioning
process for the resource object to which it is assigned.

If you do not want the current process definition to be the default, go to Step 6.

6. Optional. Select the Auto Save Form check box to suppress the display of the
provisioning process' custom form and automatically save the data in it.

This setting is only applicable to provisioning processes.

To display provisioning process' custom form and solicit users for information, deselect this
check box.

Note:

If you select the Auto Save Form check box, ensure that all fields of the
associated "custom" process form have adapters associated with them.
However, a process form can have default data or object to the process data flow
mapping or organization defaults.

For more information about adapters and their relationship with fields of custom
forms, see Using the Adapter Factory .

7. If a custom form is to be associated with the process definition, this form contains fields
that have prepopulate adapters attached to them, and you want these fields to be
populated automatically by Oracle Identity Manager, select the Auto Pre-Populate check
box.

If the fields of this form are to be populated manually (by an user clicking the Pre-Populate
button on the Toolbar), deselect the Auto Pre-Populate check box.

Note:

If the process definition has no custom form associated with it, or this form's
fields have no pre-populate adapters attached to them, deselect the Auto Pre-
Populate check box. For more information about prepopulate adapters, see 
Working with Prepopulate Adapters.

8. Double-click the Table Name lookup field.

From the Lookup window that is displayed, select the table that represents the form
associated with the process definition.

9. Click Save.

Chapter 2
Creating a Process Definition

2-4



The process definition is created and the Map Descriptive Field button is enabled. If you
click this button, the Map Descriptive Field dialog box is displayed.

From this window, you can select the field (for example, the Organization Name field) that
will be used as an identifier of the process definition when an instance of the process is
assigned to a resource object. This field and its value will be displayed in the reconciliation
Manger form.

Note:

If a process has a custom process form attached to it, the fields on that form will
also be displayed in this window and be available for selection.

2.4 Tabs on the Process Definition Form
After you start the Process Definition form and create a process definition, the tabs of this form
become functional, namely the Tasks tab and the Reconciliation Field Mappings tab..

The Process Definition form contains the following tabs:

• The Tasks Tab

• The Reconciliation Field Mappings Tab

2.4.1 The Tasks Tab
The Tasks tab is used to create, modify, and remove process tasks.

The Tasks tab of the Process Definition form is described in the following sections:

• About the Tasks Tab

• Adding a Process Task

• Editing a Process Task

• Deleting a Process Task

2.4.1.1 About the Tasks Tab
You use the Tasks tab to:

• Create and modify the process tasks that comprise the current process definition

• Remove a process task from the process definition (when it is no longer valid)

Figure 2-2 displays the Tasks tab of the Process Definition form.

Chapter 2
Tabs on the Process Definition Form

2-5



Figure 2-2    Tasks Tab of the Process Definition Form

Note:

See Modifying Process Tasks for information about editing process tasks

2.4.1.2 Adding a Process Task
Process tasks represent the steps that you must complete in a process.

To add a process task:

1. Click Add.

The Creating New Task dialog box is displayed.

2. In the Task Name field, enter the name of the process task.

3. From the Toolbar of the Creating New Task window, click Save. Then, click Close.

The process task is added to the process definition.

Chapter 2
Tabs on the Process Definition Form

2-6



2.4.1.3 Editing a Process Task
For instructions about how to edit and set process tasks, see Modifying Process Tasks.

2.4.1.4 Deleting a Process Task
To delete a process task:

1. Select the process task that you want to delete.

2. Click Delete.

The process task is removed from the process definition.

2.4.2 The Reconciliation Field Mappings Tab
The Reconciliation Field Mappings tab is used to define a relationship between data elements
in a target system or trusted source and fields in Oracle Identity Manager.

The Reconciliation Field Mappings tab is described in the following sections:

• About the Reconciliation Field Mappings Tab

• User Account Status Reconciliation

• Mapping a Target Resource Field to Oracle Identity Governance

• Mapping a Single Value Field

• Mapping a Multi-Value Field (For Target Resources Only)

• Deleting a Mapping

2.4.2.1 About the Reconciliation Field Mappings Tab
You use the Reconciliation Field Mappings tab shown in Figure 2-3 to define a relationship
between data elements in a target system or trusted source and fields in Oracle Identity
Manager.

Chapter 2
Tabs on the Process Definition Form

2-7



Figure 2-3    Reconciliation Field Mappings Tab of the Process Definition Form

Only fields that you define in the Reconciliation Fields tab of the associated resource are
available for mapping. Using a reconciliation event, these mappings determine which fields in
Oracle Identity Manager to populate with information from the target system. For target
resources (not trusted sources), you can use this tab to indicate which fields are key fields. Key
fields determine the values that must be same on the process form and the reconciliation event
to generate a match on the Processes Matched Tree tab of the Reconciliation Manager form.

For each mapping, the following information is displayed:

• Name of the field, as defined on the Reconciliation Fields tab of the associated resource,
on the target system or trusted source that is to be reconciled with data in Oracle Identity
Manager.

• Data type associated with the field, as defined on the Reconciliation Fields tab of the
associated resource.

Possible values are Multi-Valued, String, Number, Date, and IT resource.

Note:

The IT Resource must be marked as a key field.

• For trusted sources: For user discovery, mapping of the data in the trusted source field to
the name of a field on the users form, or for organization discovery, mapping of the data in
the trusted source field to the name of a field on the Oracle Identity Manager Organizations
form.

If you are performing user and organization discovery with a trusted source, organization
discovery must be conducted first.

• For target resources: The name of the field on the resource's custom (provisioning)
process form to which the data in the target resources field is to be mapped.

Chapter 2
Tabs on the Process Definition Form

2-8



• For target resources: Indicator designating if the field is a key field in the reconciliation for
this target resource.

For provisioning processes to match a reconciliation event data, the key field values in
their process forms must be the same as those in the reconciliation event.

Note:

Oracle recommends configuring both the entitlement attribute and the key attribute
for the child data in reconciliation field mappings to enable effective duplicate
entitlement or child data validation. See Duplicate Validation for Entitlements or Child
Data in Administering Oracle Identity Governance for information about duplicate
validation for entitlements or child data.

2.4.2.2 User Account Status Reconciliation
To configure user account status reconciliation, you must do the following:

• For trusted sources: You must create a reconciliation field, for example, Status, in the
corresponding trusted resource object, which denotes the status of the user in the target.
The value of this field must be either Active or Disabled. This reconciliation field must be
mapped to the user attribute status in the corresponding process definition.

• For target resources: You must create a reconciliation field, for example, Status, in the
corresponding resource object, which denotes the status of the resource in the target. This
reconciliation field must be mapped to the process attribute OIM_OBJECT_STATUS in the
corresponding process definition. The following statuses are supported for target resource
reconciliation:

– Revoked

– Provisioned

– Ready

– Provide Information

– Enabled

– None

– Waiting

– Provisioning

– Disabled

2.4.2.3 Mapping a Target Resource Field to Oracle Identity Governance
You can map the fields on a target resource or trusted source, as defined on the
Reconciliation Fields tab of the associated resource definition, to applicable fields in Oracle
Identity Manager. These mappings determine the fields that must be updated in Oracle Identity
Manager in a reconciliation event. These mappings occur when you click one of the following
on the Reconciliation Manager form:

• The Create User or Create Organization button

• The Link button on the Matched Users or Matched Organizations tab

• The Establish Link button on the Processes Matched Tree tab

Chapter 2
Tabs on the Process Definition Form

2-9



For user discovery on a trusted source, you define the fields to be mapped from the User
resource to fields in the User provisioning process. The fields (that is, the user attributes) to
which you will map your trusted source fields are derived from the Users form.

For organization discovery on a trusted source, you define fields to be mapped from the Oracle
Identity Manager Organization resource to fields in the Oracle Identity Manager Organization
provisioning process. The fields (that is, the organization attributes) to which you will map your
trusted source fields are derived from the Organizations form.

After you have accessed the provisioning process definition for the associated resource and
selected the Reconciliation Field Mappings tab, use one of the two procedures described in
the following sections.

2.4.2.4 Mapping a Single Value Field
To map a single value field:

1. Click Add Field Map.

The Add Reconciliation Field Mappings dialog box is displayed.

2. Select the field on the target system that you want to map from the menu in the Field
Name field.

Oracle Identity Manager will automatically supply the field type based on what was entered
for this field on the associated Resource Object form.

3. For trusted sources:

Select a value from the User Attribute menu and click OK. Go to Step 4.

For target resources:

Double-click Process Data Field. Select the correct mapping from the Lookup dialog box
and click OK.

4. If you are defining mapping for a trusted source, go to step 5.

Set the Key Field for Reconciliation Matching check box for target resources only. If this
check box is selected, Oracle Identity Manager evaluates if the value of this field on the
provisioning process form matches the value of the field in the reconciliation event. All
matched processes are displayed on the Processes Matched Tree tab of the
Reconciliation Manager form. If this check box is deselected, Oracle Identity Manager does
not require the value of this field to match the process form and reconciliation event for
process matching.

Note:

To set a field as a key field, it must be set as required on the Object
Reconciliation tab of the applicable resource.

5. Click Save.

The mapping for the selected fields is applied the next time a reconciliation event is
received from the target resource or trusted source.

2.4.2.5 Mapping a Multi-Value Field (For Target Resources Only)
To map a multi-value field:

Chapter 2
Tabs on the Process Definition Form

2-10



1. Click Add Table Map.

The Add Reconciliation Table Mappings dialog box is displayed.

2. Select the multi-value field on the target system that you want to map from the menu in the
Field Name field.

Oracle Identity Manager will automatically supply the field type based on what was entered
for this field on the associated Resource Object form.

3. Select the child table you defined on the target resource's process form from the Table
Name menu.

4. Double-click Process Data Field, and select the correct mapping from the Lookup dialog
box, and click OK.

5. Save and close the Add Reconciliation Table Mappings dialog box.

6. Right-click the multi-value field you just mapped, and select Define a property field map
from the menu that is displayed.

7. Select the component (child) field you want to map.

Oracle Identity Manager will automatically supply the field type based on what was entered
for this field on the associated Resource Object form.

8. Double-click the Process Data Field field.

Select the correct mapping from the Lookup dialog box and click OK.

9. Set the Key Field for Reconciliation Matching check box.

If this check box is selected, Oracle Identity Manager compares the field value on the
provisioning process child form with the field value in the reconciliation event. All matching
processes are displayed on the Processes Matched Tree tab of the Reconciliation
Manager form. If you deselect this check box, the value of this field does not have to match
on the process form and reconciliation event for process matching. Ensure that at least
one component (child) field of each multi-valued field is set as a key field. This improves
the quality of the matches generated on the Process Matched Tree tab.

Note:

Key fields must be set as required on the Object Reconciliation tab of the
applicable resource.

10. Repeat Steps 6 through 9 for each component (child) field defined on the multi-value field.

11. Click Save.

The mapping for the selected fields will be applied the next time a reconciliation event is
received from the target resource.

2.4.2.6 Deleting a Mapping
This procedure is used to delete a mapping that has been established between a field in
Oracle Identity Manager and a field on the target system or trusted source as defined on the
Reconciliation Fields tab of the associated resource definition.

To delete a mapping:

1. Go to the provisioning process definition for the associated resource.

2. Select the Reconciliation Field Mappings tab.

Chapter 2
Tabs on the Process Definition Form

2-11



3. Select the field mapping you want to delete.

4. Click Delete Map.

The mapping for the selected field is deleted.

2.5 Modifying Process Tasks
To modify a process task for a process definition, double-click its row heading. The Editing
Task window is displayed, containing additional information about the process task.

The Editing Task window contains the following tabs:

• The General Tab

• Integration Tab

• Task Dependency Tab

• Responses Tab

• Task to Object Status Mapping Tab

Note:

You must not modify the Xellerate Users process definition.

2.5.1 The General Tab
The General tab of the Editing Task window is used to set high-level information for the task
that you modify.

The General tab is described in the following sections:

• About the General Tab

• Fields of the General Tab

• Modifying a Process Task's General Information

• Triggering Process Tasks for Events Defined in Lookup.USR_PROCESS_TRIGGERS
Fields

2.5.1.1 About the General Tab
You use the General tab of the Editing Task window to set high-level information for the task
that you want to modify. For this example, the Create User task is used to create a user in the
Solaris environment.

2.5.1.2 Fields of the General Tab
Table 2-2 describes the fields of the General tab.

Chapter 2
Modifying Process Tasks

2-12



Table 2-2    Fields of the General Tab

Field Name Description

Task Name The name of the process task.

Task Description Explanatory information about the process task.

Duration The expected completion time of the current process task in days, hours, and
minutes.

Conditional This check box determines if a condition is met to add the current process
task to the process.

Select this check box to prevent the process task from being added to the
process unless a condition has been met.

Clear this check box to not require the condition to be met for the process task
to be added to the process.

Required for Completion This check box determines if the current process task must be completed for
the process to be completed.

Select this check box to require the process task to have a status of
Completed before the process can be completed.

Deselect this check box to ensure that the status of the process task does not
affect the completion status of the process.

Constant Duration Not applicable

Task Effect From this box, select the process action you want to associate with the task,
for example, disable or enable. A process can enable or disable a user's
access to a resource. When the disable action is chosen, all tasks associated
with the disable action are inserted.

Note: If you do not want the process task to be associated with a particular
process action, select No Effect from the box.

Disable Manual Insert This check box determines if a user can manually add the current process
task to the process.

Select this check box to prevent the process task from being added to the
process manually.

Deselect this check box to enable a user to add the process task to the
process.

Allow Cancellation while
Pending

This check box determines if the process task can be canceled if its status is
Pending.

Select this check box to allow the process task to be canceled if it has a
Pending status.

Deselecting this check box to prevent the process task from being canceled if
its status is Pending.

Allow Multiple Instances This check box determines if the process task can be inserted into the current
process more than once.

Select this check box to enable multiple instances of the process task to be
added to the process.

Deselect this check box to enable the process task to be added to the current
process only once.

Chapter 2
Modifying Process Tasks

2-13



Table 2-2    (Cont.) Fields of the General Tab

Field Name Description

Retry Period in Minutes If a process task is rejected, this field determines the interval before Oracle
Identity Manager inserts a new instance of that task with the status of
Pending.

When the value of the Retry Period in Minutes field is 30, it means that if the
Create User process task is rejected, then in 30 minutes Oracle Identity
Manager adds a new instance of this task and assigns it a status of Pending.

Note: If you specify a value for this field, then you must ensure the following:

• The Task Timed Retry scheduled job is not disabled. See Predefined
Scheduled Tasks in Administering Oracle Identity Governance for more
information.

• Frequency of the Task Timed Retry scheduled job is less than or equal to
value of this field.

• The Allow Multiple Instances checkbox of the process task that is being
retried must be selected.

Retry Count Determines how many times Oracle Identity Manager retries a rejected task.
When the value of the Retry Count field is 5, it means that if the Create User
process task is rejected, then Oracle Identity Manager adds a new instance of
this task, and assigns it a status of Pending. When this process task is
rejected for the fifth time, Oracle Identity Manager no longer inserts a new
instance of it.

Child Table/ Trigger Type These boxes specify the action that Oracle Identity Manager performs in the
child table of a custom form that is associated with the current process, as
indicated by the Table Name field of the Process Definition form.

From the Child Table box, select the child table of the custom form where
Oracle Identity Manager will perform an action.

From the Trigger Type box, specify the action that Oracle Identity Manager is
to perform in the child table. These actions include:

• Insert. Adds a new value to the designated column of the child table
• Update. Modifies an existing value from the corresponding column of the

child table
• Delete. Removes a value from the designated column of the child table
Note: If the custom process form does not have any child tables associated
with it, the Child Table box will be empty. In addition, the Trigger Type box will
be grayed out.

Off-line This flag is applicable only for user attribute propagation tasks. If the flag is set
for a user attribute propagation task, the task insertion is asynchronous.

2.5.1.3 Modifying a Process Task's General Information
To modify the general information for a process task:

1. Double-click the row heading of the task you want to modify.

The Editing Task dialog box is displayed.

2. Click the General tab.

3. In the Description field, enter explanatory information about the process task.

4. Optional. In the Duration area, enter the expected completion time of the process task (in
days, hours, and minutes).

Chapter 2
Modifying Process Tasks

2-14



5. If you want a condition to be met for the process task to be added to the Process Instance,
select the Conditional check box. Otherwise, go to Step 6.

Note:

If you select the Conditional check box, you must specify the condition to be met
for the task to be added to the process.

6. When you want the completion status of the process to depend on the completion status of
the process task, select the Required for Completion check box.

By doing so, the process cannot be completed if the process task does not have a status
of Completed.

If you do not want the status of the process task to affect the completion status of the
process, go to Step 7.

7. To prevent a user from manually adding the process task into a currently running instance
of the process, select the Disable Manual Insert check box. Otherwise, go to Step 8.

8. To enable a user to cancel the process task if its status is Pending, select the Allow
Cancellation while Pending check box. Otherwise, go to Step 9.

9. To allow this task to be inserted multiple times in a single process instance, select the
Allow Multiple Instances check box. Otherwise, go to Step 10.

10. Click the Task Effect box.

From the custom menu that is displayed, select one of the following:

• Enable Process or Access to Application. If a resource is reactivated by using the
enable function, all tasks with this effect are inserted into the process. If you select this
option, you must also select the Allow Multiple Instances check box.

• Disable Process or Access to Application. If a resource is deactivated by using the
disable function, all tasks with this effect are inserted into the process. If you select this
option, you must also select the Allow Multiple Instances check box.

• Revoke Process or Access to Application. When the resource is revoked, the
revoke workflow is executed without canceling the existing tasks in the provisioning
process.

• No Effect. This is the default process action associated with all tasks. If this option is
selected, the task is only inserted during normal provisioning unless it is conditional.

11. Optional. If the process task is Rejected, you might want Oracle Identity Manager to insert
a new instance of this process task (with a status of Pending).

For this to occur, enter a value in the Retry Period in Minutes field. This designates the
time in minutes that Oracle Identity Manager waits before adding this process task
instance.

In the Retry Count field, enter the number of times Oracle Identity Manager will retry a
rejected task. For example, suppose 3 is displayed in the Retry Count field. If the task is
rejected, Oracle Identity Manager adds a new instance of this task, and assigns it a status
of Pending. After this process task is rejected for the fourth time, Oracle Identity Manager
no longer inserts a new instance of the process task.

Chapter 2
Modifying Process Tasks

2-15



Note:

If either Retry Period or Retry Count is selected, you must specify parameters
for the other option because they are both related.

12. From the Child Table box, select the child table of the custom form where Oracle Identity
Manager will perform an action.

From the Trigger Type box, specify the action that Oracle Identity Manager will perform in
the child table. These actions include the following:

• Insert: Adds a new value to the designated column of the child table

• Update: Modifies an existing value from the corresponding column of the child table

• Delete: Removes a value from the designated column of the child table

Note:

If the custom process form does not have any child tables associated with it, the
Child Table box will be empty. In addition, the Trigger Type box will be grayed
out.

13. Click Save.

The modifications to the process task's top-level information reflects the changes you
made in the General tab.

2.5.1.4 Triggering Process Tasks for Events Defined in
Lookup.USR_PROCESS_TRIGGERS Fields

When a user attribute is defined in Lookup.USR_PROCESS_TRIGGERS, for each
modification of the attribute, the corresponding process task is triggered for each provisioned
resource. This is same for the First Name, Last Name, Display Name (USR_DISPLAY_NAME)
user attributes and custom user attributes. However, for the
Lookup.USR_PROCESS_TRIGGERS fields USR_STATUS, USR_LOCKED,
USR_LOCKED_ON, and USR_MANUALLY_LOCKED, the attached process task is not
triggered.

The following sections describe how to trigger the process tasks for the
Lookup.USR_PROCESS_TRIGGERS fields:

• About the USR_STATUS Attribute

• Triggering for the USR_STATUS Attribute For Transition from Disabled to Enabled Status

• Triggering for the USR_STATUS Attribute For Transition from Enabled to Disabled Status

• Triggering for the USR_STATUS Attribute for Transition From Enabled/Disabled/
Provisioned to Revoked status

• Triggering For the USR_LOCKED, USR_LOCKED_ON, USR_MANUALLY_LOCKED
Attributes

Chapter 2
Modifying Process Tasks

2-16



2.5.1.4.1 About the USR_STATUS Attribute
It is not possible to run a task via Lookup.USR_PROCESS_TRIGGERS for the USR_STATUS
attribute because this attribute is processed separately by Oracle Identity Manager. This
attribute is changed by enabling, disabling, or deleting a user. These operations have a special
effect on the provisioned resources because the corresponding process tasks are started via
the Task Effect setting, as described in Table 2-2. For these three operations, the
Lookup.USR_PROCESS_TRIGGERS is not used. Therefore, when the status changes,
perform the steps in the following sections to run the process task:

• Triggering for the USR_STATUS Attribute For Transition from Disabled to Enabled Status

• Triggering for the USR_STATUS Attribute For Transition from Enabled to Disabled Status

• Triggering for the USR_STATUS Attribute for Transition From Enabled/Disabled/
Provisioned to Revoked status

2.5.1.4.2 Triggering for the USR_STATUS Attribute For Transition from Disabled to Enabled
Status

To run the process task for the USR_STATUS attribute for transition from Disabled to Enabled
status:

1. In the Process Definition form, create a process task named Enable User.

2. Open the Editing Task window, and click the General tab.

3. From the Task Effect list, select Enables Process or Access to Application.

4. Select Conditional and specify the condition to be met for the task to be added to the
process.

2.5.1.4.3 Triggering for the USR_STATUS Attribute For Transition from Enabled to Disabled
Status

To run the process task for the USR_STATUS attribute for transition from Enabled to Disabled
status:

1. In the Process Definition form, create a process task named Disable User.

2. Open the Editing Task window, and click the General tab.

3. From the Task Effect list, select Enables Process or Access to Application.

4. Select Conditional and specify the condition to be met for the task to be added to the
process.

2.5.1.4.4 Triggering for the USR_STATUS Attribute for Transition From Enabled/Disabled/
Provisioned to Revoked status

To run the process task for the USR_STATUS attribute for transition from Enabled/Disabled/
Provisioned to Revoked status:

1. In the Process Definition form, create a process task named Delete User.

2. Then set this task as an Undo task for the Create User task, which is the task that creates
the user and is typically unconditional.

3. Select Conditional and specify the condition to be met for the task to be added to the
process.

Chapter 2
Modifying Process Tasks

2-17



Note:

when the Oracle Identity Manager user is deleted, for each completed task in
each resource, Oracle Identity Manager tries to run the Undo tasks.

2.5.1.4.5 Triggering For the USR_LOCKED, USR_LOCKED_ON, USR_MANUALLY_LOCKED
Attributes

The lock and unlock operations, are handled in Oracle Identity Manager as separate
orchestrations. The orchestration is on:

entity-type="User" operation="LOCK"
Or:

entity-type="User" operation="UNLOCK"
The event handler that does the evaluation for Lookup.USR_PROCESS_TRIGGERS is:

oracle.iam.transUI.impl.handlers.TriggerUserProcesses
This is triggered only in the following user orchestrations:

• MODIFY: For generic fields

• CHANGE_PASSWORD, RESET_PASSWORD: For USR_PASSWORD propagation

• ENABLE, DISABLE, DELETE: For handling the execution of process tasks

For lock/unlock operations, the TriggerUserProcesses event handler is not triggered.
Therefore, for the attributes modified through lock/unlock operations, the
Lookup.USR_PROCESS_TRIGGERS is not checked.

If you want to run custom code for these operations when these fields are changed, then you
can create event handlers and register them on the orchestrations mentioned in this section.

2.5.2 Integration Tab
The Integration tab of the Editing Task window is used to automate process tasks and map
task adapter variables.

The Integration tab is described in the following sections:

• About the Integration Tab

• Assigning an Adapter or Event Handler to a Process Task

• Mapping Adapter Variables

• Removing an Adapter or Event Handler from a Process Task

2.5.2.1 About the Integration Tab
By using the Integration tab, you can:

• Automate a process task by attaching an event handler or task adapter to it.

• Map the variables of the task adapter so that Oracle Identity Manager can pass the
appropriate information when the adapter is triggered. This occurs when the process task's
status is Pending.

Chapter 2
Modifying Process Tasks

2-18



• Break the link between the adapter handler and the process task once the adapter or event
handler is no longer applicable with the process task.

For example, suppose that the adpSOLARISCREATEUSER adapter is attached to the Create
User process task. This adapter has nine adapter variables, all of which are mapped correctly
as indicated by the Y that precedes each variable name.

Note:

• Event handlers are preceded with tc (Thor class), such as tcCheckAppInstalled.
These are event handlers that Oracle provides. Customer-created event handlers
cannot have a tc prefix in their name. Adapters are preceded with adp, for
example, adpSOLARISCREATEUSER.

• From the Design Console, you cannot create or modify DOB event handlers. You
can only view the existing event handlers.

• See Using the Adapter Factory and Developing Event Handlers for more
information about adapters and event handlers

2.5.2.2 Assigning an Adapter or Event Handler to a Process Task
This section describes how to assign an adapter or event handler to a process task.

Note:

If you assign an adapter to the process task, the adapter will not work until you map
the adapter variables correctly. See Mapping Adapter Variables for details.

To assign an adapter or event handler to a process task:

1. Double-click the row heading of the process task to which you want to assign an event
handler or adapter.

The Editing Task window is displayed.

2. Click the Integration tab.

3. Click Add.

The Handler Selection dialog box is displayed, as shown in Figure 2-4.

4. To assign an event handler to the process task, select the System option.

To add an adapter to the process task, select the Adapter option. A list of event handlers
or adapters, which you can assign to the process task, is displayed in the Handler Name
region.

Chapter 2
Modifying Process Tasks

2-19



Figure 2-4    Handler Selection Dialog Box

5. Select the event handler or adapter that you want to assign to the process task.

6. From the Handler Selection window's Toolbar, click Save.

A confirmation dialog box is displayed.

7. Click OK.

The event handler or adapter is assigned to the process task.

2.5.2.3 Mapping Adapter Variables
To map an adapter variable:

Note:

• To trigger a task associated with a change to a parent form field, the name of the
task must be field Updated, where field is the name of the parent form field. If
the task is not named according to this convention, it is not triggered during a
field update.

• See Adapter Mapping Information for more information about the items to select
in this procedure.

Chapter 2
Modifying Process Tasks

2-20



1. Select the adapter variable that you want to map.

2. Click Map.

The Data Mapping for Variable window is displayed.

3. Complete the Map To, Qualifier, IT Asset Type, IT Asset Property, Literal Value, and
Old Value fields.

Note:

IT Asset Type and IT Asset Property are displayed only when It Resources is
selected from the Map To operations. The Literal Value field is displayed only
when Literal is selected from Map To. Old Value check box is enabled only when
Organization Definition or User Definition is selected from Map To.

4. From the Data Mapping for Variable window's Toolbar, click Save.

5. Click Close.

The mapping status for the adapter variable changes from N to Y. This indicates that the
adapter variable has been mapped.

2.5.2.4 Removing an Adapter or Event Handler from a Process Task
To remove an adapter or event handler from a process task:

1. Click Remove.

A confirmation dialog box is displayed.

2. Click OK.

The event handler or adapter is removed from the process task.

2.5.3 Task Dependency Tab
The Task Dependency tab of the Editing Task window is used to determine the logical flow of
process tasks in a process.

The Task Dependency tab is described in the following sections:

• About the Dependency Tab

• Assigning a Preceding Task to a Process Task

• Mapping Adapter Variables

• Removing an Adapter or Event Handler from a Process Task

2.5.3.1 About the Dependency Tab
You use the Task Dependency tab to determine the logical flow of process tasks in a process.
Through this tab, you can:

• Assign preceding tasks to a process task.

These tasks must have a status of Completed before Oracle Identity Manager or a user
can trigger the current process task.

• Assign dependent tasks to a process task.

Chapter 2
Modifying Process Tasks

2-21



Oracle Identity Manager or a user can trigger these tasks only after the current process
task has a status of Completed.

• Break the link between a preceding task and the current task so that the preceding task's
completion status no longer has any effect on the current task being triggered.

• Break the link between the current task and a dependent task so that the current task's
completion status no longer has any bearing on triggering the dependent tasks.

For example, the Create User process task does not have any preceding tasks. Oracle Identity
Manager triggers this task whenever the task is inserted into a process (for example, when an
associated resource is requested). The Create User process task has seven dependent tasks.
Before completion of this process task, each dependent task will have a status of Waiting.
Once this task achieves a status of Completed, each of these process tasks are assigned a
status of Pending, and Oracle Identity Manager can trigger them.

2.5.3.2 Assigning a Preceding Task to a Process Task
To assign a preceding task to a process task:

1. Double-click the row heading of the process task to which you want to assign a preceding
task.

The Editing Task window is displayed.

2. Click the Task Dependency tab.

3. From the Preceding Tasks region, click Assign.

The Assignment window is displayed.

4. From this window, select the preceding task, and assign it to the process task.

5. Click OK.

The preceding task is assigned to the process task.

2.5.3.3 Removing a Preceding Task from a Process Task
To remove a preceding task from a process task:

1. Select the preceding task that you want to delete.

2. From the Preceding Tasks region, click Delete.

The preceding task is removed from the process task.

2.5.3.4 Assigning a Dependent Task to a Process Task
To assign a dependent task to a process task:

1. Double-click the row heading of the process task to which you want to assign a dependent
task.

The Editing Task window is displayed.

2. Click the Task Dependency tab.

3. From the Dependent Tasks region, click Assign.

The Assignment window is displayed.

4. From this window, select the dependent task, and assign it to the process task.

5. Click OK.

Chapter 2
Modifying Process Tasks

2-22



The dependent task is assigned to the process task.

2.5.3.5 Removing a Dependent Task from a Process Task
To remove a dependent task from a process task:

1. Select the dependent task that you want to delete.

2. From the Dependent Tasks region, click Delete.

The dependent task is removed from the process task.

2.5.4 Responses Tab
The Responses tab of the Editing Task window is used to define response codes and
conditional tasks and to remove the responses from a process task.

The Responses tab of the Editing Task window is described in the following sections:

• About the Responses Tab

• Adding a Response to a Process Task

• Removing a Response from a Process Task

• Mapping a Process Task Status to a Provisioning Status

• Unmapping a Process Task Status From a Provisioning Status

2.5.4.1 About the Responses Tab
You use the Responses tab to do the following:

• Define the response codes that can be received in conjunction with the execution of a
particular process tasks. You can use response codes to represent specific conditions on
the target system.

• Define the conditional tasks that are started if a response code is received during
execution of this process task. These tasks are called generated tasks.

• Remove a response from a process task.

• Remove a generated task from a process task.

For example, when a Create User process task is completed, the SUCCESS response is
activated. This response displays a dialog box with the message "The user was created
successfully." In addition, Oracle Identity Manager triggers the Enable User process task.

Note:

By default, the UNKNOWN response is defined for each process task that is rejected.
This way, even when the system administrator does not add any responses to a
process task, if this task is rejected, the user will be notified in the form of an error
message in a dialog box.

2.5.4.2 Adding a Response to a Process Task
To add a response to a process task:

Chapter 2
Modifying Process Tasks

2-23



1. Double-click the row heading of the process task to which you want to add a response.

The Editing Task window is displayed.

2. Click the Responses tab.

3. In the Responses region, click Add.

A blank row is displayed in the Responses region.

4. Enter information in the Response field.

This field contains the response code value. This field is case-sensitive.

5. Enter information in the Description field. This field contains explanatory information about
the response.

If the process task triggers the response, this information is displayed in the task
information dialog box.

6. Double-click the Status lookup field.

From the Lookup window that is displayed, select a task status level. If the response code
is received, it will cause the task to be set to this status.

7. Click Save.

The response you added would now reflect the settings you have entered.

2.5.4.3 Removing a Response from a Process Task
To remove a response from a process task:

1. Select the response that you want to delete.

2. From the Responses region, click Delete.

The response is removed from the process task.

Note:

You will not be able to delete a response from a process task that is invoked for
any provisioning instance, even if the response is existing or is newly added.
However, if the process task is not invoked for any provisioning instance, you will
be able to delete the response.

2.5.4.4 Assigning a Generated Task to a Process Task
To assign a generated task to a process task:

1. Double-click the row heading of the process task to which you want to assign a generated
task.

The Editing Task window is displayed.

2. Click the Responses tab.

3. Select the response code for which you want to assign generated tasks.

4. From the Tasks to Generate region, click Assign.

The Assignment window is displayed.

5. From this window, select the generated task, and assign it to the process task response.

Chapter 2
Modifying Process Tasks

2-24



6. Click OK.

The generated task is assigned to the process task.

2.5.4.5 Removing a Generated Task From a Process Task
To remove a generated task from a process task:

1. Select a response code.

2. Select the generated task that you want to delete.

3. From the Tasks to Generate region, click Delete.

The generated task is removed from the process task.

2.5.5 Task to Object Status Mapping Tab
The Task to Object Status Mapping tab is used to create the link between the status of a
process task and the provisioning status of the resource object to which it is assigned.

The Task to Object Status Mapping Tab is described in the following sections:

• About the Task to Object Status Mapping Tab

• Mapping a Process Task Status to a Provisioning Status

• Unmapping a Process Task Status From a Provisioning Status

2.5.5.1 About the Task to Object Status Mapping Tab
A resource object contains data that is used to provision resources to users and applications.

In addition, a resource object is provided with predefined provisioning statuses, which
represent the various statuses of the resource object throughout its life cycle as it is being
provisioned to the target user or organization.

Note:

Provisioning statuses are defined in the Status Definition tab of the Resource
Objects form.

The provisioning status of a resource object is determined by the status of its associated
provisioning processes, and the tasks that comprise these processes. For this reason, you
must provide a link between the status of a process task and the provisioning status of the
resource object to which it is assigned.

The Task to Object Status Mapping tab is used to create this link. Also, when this connection
is no longer required, or you want to associate a process task status with a different
provisioning status for the resource object, you must break the link that currently exists.

For this example, there are five mappings among process task statuses and provisioning
statuses of a resource object. When the Create User process task achieves a status of
Completed, the associated resource object will be assigned a provisioning status of
Provisioned. However, if this task is canceled, the provisioning status for the resource object
will be Revoked. None indicates that this status has no effect on the provisioning status of the
resource object.

Chapter 2
Modifying Process Tasks

2-25



The following sections describe how to map a process task status to a provisioning status and
unmap a process task status from a provisioning status.

2.5.5.2 Mapping a Process Task Status to a Provisioning Status
To map an process task status to a provisioning status:

1. Double-click the row heading of the process task, which has a status that you want to map
to the provisioning status of a resource object.

The Editing Task window is displayed.

2. Click the Task to Object Status Mapping tab.

3. Select the desired process task status.

4. Double-click the Object Status lookup field.

From the Lookup window that is displayed, select the provisioning status of the resource
object to which you want to map the process task status.

5. Click OK.

The provisioning status you selected is displayed in the Task to Object Status Mapping tab.

6. Click Save.

The process task status is mapped to the provisioning status.

2.5.5.3 Unmapping a Process Task Status From a Provisioning Status
To unmap an process task status from a provisioning status:

1. Select the desired process task status.

2. Double-click the Object Status lookup field.

From the Lookup window that is displayed, select None. None indicates that this status has
no effect on the provisioning status of the resource object.

3. Click OK.

The provisioning status of None is displayed in the Task to Object Status Mapping tab.

4. Click Save.

The process task status is no longer mapped to the provisioning status of the resource
object.

Chapter 2
Modifying Process Tasks

2-26



Part II
Connectors

The tools and features that application developers can use to develop connectors are Identity
Connector Framework, and Adapter Factory.

This part familiarizes you with tools and features for Oracle Identity Manager developers, and
provides some simple examples to illustrate the concepts.

It contains the following chapters:

• Using the Adapter Factory

• Understanding the Identity Connector Framework

• Developing Identity Connectors Using Java

• Developing Identity Connectors Using .NET

• Integrating ICF with Oracle Identity Governance

• Using Java APIs for ICF Integration

• Configuring ICF Connectors

• Understanding ICF Best Practices and FAQs



3
Using the Adapter Factory

Adapters are Java programs that enable you to integrate Oracle Identity Manager with other
software solutions.
This chapter describes how to create adapters using the Adapter Factory form. It contains the
following sections:

• Introduction to Adapters

• Types of Adapters

• Adapter Environment and Tools

• Defining Adapters

• Tabs of the Adapter Factory Form

• Disabling and Re-enabling Adapters

• Working With Adapter Variables

• Creating Adapter Tasks

• Modifying Adapter Tasks

• Changing the Order and Nesting of Tasks

• Deleting Adapter Tasks

• Working with Responses

• Working with Prepopulate Adapters

• Working with Process Task Adapters

• Adapter Mapping Information

• Defining Error Messages

3.1 Introduction to Adapters
Adapters are Java classes that simplify the integration between access rights management
application and other software solutions.

To be effective, it must be possible to integrate an access rights management application, such
as Oracle Identity Manager, with other software solutions. This is necessary not only because
there are many resources, but also because there is no single integration standard for
connecting to these resources.

The traditional way to tackle this challenge is by using the common functionality that is
supported by all the integrations. To do this, you need developers who can write this code. In
addition, every time an existing software resource is modified, or a new one is added, you must
write more code.

The Adapter Factory is a code-generation tool provided by Oracle Identity Manager. It helps
you create Java classes, known as adapters, that simplify the integration challenge.

3-1



Note:

Oracle Identity Manager can connect to external systems such as databases and
directory servers by using Java APIs for JDBC and LDAP. In addition, for all other
APIs, such as C, C++, VB, and COM/DCOM, you can create a Java wrapper so that
Oracle Identity Manager can communicate with the API directly.

A resource has an associated provisioning process, which in turn has various tasks associated
with it. Each task in turn has an adapter associated to it, which in turn can connect to the target
resource to carry out the required operations.

An adapter provides the following benefits:

• It extends the internal logic and functionality of Oracle Identity Manager.

• It interfaces with any software resource, by connecting to that resource by using the API of
the resource.

• It enables the integration between Oracle Identity Manager and an external system.

• It can be generated without manually writing code. However, Oracle Identity Manager does
not restrict you from writing your own code for creating adapters.

• It is lightweight and specific to your needs.

• It can be maintained easily because all of the definitions for the adapter are stored in a
repository. This repository can be edited through a GUI.

• One Oracle Identity Manager user can retain the domain knowledge about the integration,
while another user can maintain the adapter.

• It can be modified and upgraded efficiently.

Adapters can be developed for a range of tasks:

• A process task adapter, which allows Oracle Identity Manager to automate the completion
of a process task.

• A task assignment adapter, which enables Oracle Identity Manager to automate the
assignment of a process task to a user or group.

• A rule generator, which incorporates business rules to the fields of either an Oracle Identity
Manager form or a user-defined form (created by using the Form Designer form), so these
fields can be populated automatically and saved to the Oracle Identity Manager database.

• A pre-populate adapter, which is a specific type of rule generator adapter that can be
attached to a user-created form field. The data generated by this type of adapter can
appear either automatically or manually. In addition, it uses criteria that enable Oracle
Identity Manager to determine which pre-populate adapter will be applied to the designated
form field. It populates the designated form field without saving this information to the
Oracle Identity Manager database.

• An entity adapter, which is attached to an Oracle Identity Manager or user-created form
field. Oracle Identity Manager triggers an entity adapter on preinsert, preupdate, predelete,
postinsert, postupdate, or postdelete. After this occurs, the field to which the adapter is
attached is populated automatically and saved to the Oracle Identity Manager database.

Chapter 3
Introduction to Adapters

3-2



Note:

Oracle Identity Manager also allows you to create postprocessing handlers on
entities, such as user, role, and organization.

3.2 Types of Adapters
The types of adapters include Rule Generator, Entity, Task Assignment, Prepolulate, and
Process Task adapters.

This section provides details about the following adapter types:

• Rule Generator Adapters

• Entity Adapters

• Task Assignment Adapters

• Prepopulate Adapters

• Process Task Adapters

3.2.1 Rule Generator Adapters
A rule generator adapter incorporates business rules to the fields of a form so that the fields
can be populated automatically and saved to the database.

Certain business rules must be applied to perform field validations and enter default values into
the forms which either come packaged with Oracle Identity Manager or are created by Oracle
Identity Manager users. For example, for the Users form, you might want Oracle Identity
Manager to generate the User ID automatically by concatenating the user's first name and last
name.

To do this, you must create a specific type of adapter, which is designed to modify the field
value in a form. This type of adapter, which can generate, modify, or verify the value of a form
field automatically, is called a rule generator. Oracle Identity Manager triggers a rule generator
on preinsert and preupdate.

After you create this adapter and attach it to a form, Oracle Identity Manager automatically
updates the field value for all records of that form, and saves this information to the Oracle
Identity Manager database.

If you create a rule generator that contains adapter variables, you must map these adapter
variables to their proper locations. Otherwise, the adapter will not be functional.

You can also attach this type of adapter to a provisioning process. Once the process is
provisioned to a target user or organization, Oracle Identity Manager will trigger the associated
rule generator.

On occasion, a rule generator which has been assigned to a provisioning process might no
longer be needed to complete the process. If this happens, you can remove the rule generator
from the provisioning process. Similarly, after you attach one rule generator to a form field, you
can connect a different rule generator to that form field. When this occurs, you must first
remove the rule generator currently attached to the form field.

Chapter 3
Types of Adapters

3-3



3.2.2 Entity Adapters
An entity adapter is attached to a form field. Oracle Identity Manager triggers an entity adapter
on preinsert, preupdate, predelete, postinsert, postupdate, or postdelete. After this occurs, the
field to which the adapter is attached is populated automatically and saved to the database.

Similar to rule generator adapters, entity adapters are also responsible for generating,
modifying, or verifying the value of a form field automatically, and saving this information to the
Oracle Identity Manager database.

Note:

In Oracle Identity Governance 12c (12.2.1.3.0), creating new entity adapters and
modifying existing entity adapters are not supported..

Some differences between rule generators and entity adapters are:

• Execution schedule. Entity adapters can be triggered by Oracle Identity Manager on
preinsert, preupdate, predelete, postinsert, postupdate, and postdelete. A rule generator
adapter can be executed only on preinsert and preupdate.

• Manual field value modification. The adapter populates the form field to which an entity
adapter is attached. An Oracle Identity Manager user should not edit this value because
the entity adapter will overwrite this modification. As a result, the modification will not be
saved to the database.

Similarly, the adapter also populates the form field to which a rule generator adapter is
attached. However, an Oracle Identity Manager user can edit this value because this
modification will take precedence over the value that the rule generator adapter generates.
Because of this, the modification will be saved to the database.

• Background color of form field. If a rule generator is attached to a form field, the field will
appear in a particular background color such as pink. This is a visual indicator that the field
has a rule generator attached to it. On the other hand, when an entity adapter is attached
to a form field, the field will not have a distinct background color.

3.2.3 Task Assignment Adapters
A task assignment adapter enables the automation of the assignment of a process task to a
user or group.

For a process task that must be completed manually, you can configure Oracle Identity
Manager to automate the assignment of the task to either a specific user or a user who
belongs to a particular role. This is achieved through the use of a task assignment adapter.
Task assignment adapters are used only for assigning a task to a particular user or role.

When a task that is associated with specific provisioning process is created using the Tasks
tab in the Process Definition form of the Design Console, you can choose the rule that decides
if adapter will be picked up for execution. Note that this rule is defined in the Rule Definition
form of the Design Console. An example of a rule is "Target User's Org name is XYZ. If this
rule is satisfied, then the corresponding task assignment is picked up. However, you can have
multiple rules defined and used while deciding task assignment. For multiple rules, Oracle
Identity Manager associates priority with the task assignment functionality to decide the order

Chapter 3
Types of Adapters

3-4



in which the rule determination must occur. When the rule is determined, corresponding task
assignment is run.

Note:

In other words, the task assignment rule allows Oracle Identity Manager to decide
whether to assign a process task to a user or role. The task assignment adapter
enables Oracle Identity Manager to determine which user or role will be the recipient
of the process task.

For this example, Oracle Identity Manager will trigger the Associate Adapter with User rule first
(because it has the highest priority). If the condition of this rule is TRUE, it is successful. As a
result, Oracle Identity Manager will associate the related task assignment adapter (the Assign
Task to User adapter) with the process task.

On the other hand, when the condition of a rule is FALSE, the rule has failed. Oracle Identity
Manager triggers the rule with the next highest priority. If this rule is successful, then Oracle
Identity Manager assigns the designated adapter to the target process task.

So, in this example, if the Associate Adapter with User rule fails, then Oracle Identity Manager
triggers the Associate Adapter with Role rule. If this rule is successful, then Oracle Identity
Manager associates the related task assignment adapter (the Assign Task to Role adapter) to
the process task.

After assigning a rule to a task assignment adapter, if this type of adapter contains adapter
variables, you must map these variables to their proper locations. Otherwise, the adapter will
not be functional.

Finally, when a task assignment adapter becomes invalid, or is no longer necessary for Oracle
Identity Manager to allocate the process task to a user or group, you must remove the adapter
from the task.

3.2.4 Prepopulate Adapters
A pre-populate adapter is a specific type of rule generator adapter that can be attached to a
user-created form field. The data generated by this type of adapter can appear either
automatically or manually. In addition, it uses criteria that enable Oracle Identity Manager to
determine which pre-populate adapter will be applied to the designated form field. It populates
the designated form field without saving this information to the database.

Sometimes a user-created form contains both fields that can be populated by Oracle Identity
Manager and fields into which an Oracle Identity Manager user must enter data. When the
information that the user types into a field is contingent upon the data that appears in a
system-generated field, Oracle Identity Manager must first populate this field. When the form is
displayed, the user can view the system-generated data to enter information into the
appropriate fields.

This is achieved by creating a type of rule generator known as a prepopulate adapter. By
attaching it to a field designated to be system-generated, you enable Oracle Identity Manager
to automatically populate this field with the appropriate information, without saving this
information to the Oracle Identity Manager database.

The data generated by a prepopulate adapter can appear automatically or it can be manually
entered. Oracle Identity Manager displays this information automatically when the Auto-
prepopulate check box is selected for a provisioning process. When this check box is cleared,

Chapter 3
Types of Adapters

3-5



an Oracle Identity Manager user must manually generate the displaying of the data that is
generated by the prepopulate adapter. To do this, click the prepopulate button on the form
section of the Direct Provisioning wizard in the Web client, while provisioning the form to a
user.

You can use the same prepopulate adapter for different form fields. In addition, you can
designate multiple prepopulate adapters to be associated with a particular field. As a result,
Oracle Identity Manager must know which prepopulate adapter it must select for the form field.
This requires the use of prepopulate rules. These rules enable Oracle Identity Manager to
select one prepopulate adapter, which is associated with a form field, when this prepopulate
adapter is assigned to the field.

Each prepopulate adapter has a prepopulate rule associated with it. In addition every rule has
a priority number which indicates the order in which Oracle Identity Manager triggers it.

For example, Oracle Identity Manager can trigger the Rule for Uppercase User ID rule first
because it has the highest priority. If the condition of this rule is TRUE, it is successful. As a
result, Oracle Identity Manager will attach the related prepopulate adapter (the Display
Uppercase Letters for User ID adapter) to the User ID field.

On the other hand, when the condition of a rule is FALSE, the rule has failed. Oracle Identity
Manager will trigger the rule with the next highest priority. If this rule is successful, Oracle
Identity Manager will attach the associated adapter to the designated field.

So, in this example, if the Rule for Uppercase User ID rule fails, Oracle Identity Manager will
trigger the Rule for Lowercase User ID rule. If this rule is successful, Oracle Identity Manager
will attach the related prepopulate adapter (the Display Lowercase Letters for User ID adapter)
to the User ID field.

After assigning a rule to a prepopulate adapter, if this type of adapter contains adapter
variables, you must map these adapter variables to their proper locations. Otherwise, the
adapter will not be functional.

Finally, when a prepopulate adapter associated with a field is no longer valid, you must remove
the adapter from the field.

3.2.5 Process Task Adapters
A process task adapter enables Oracle Identity Manager to automatically execute process
tasks in provisioning processes.

Each process and process task has a status, which indicates the stage of its completion. The
statuses for a process or process task are listed in the following table in order of importance.

Task Status Description

C Completed: This process/process task has been completed successfully.

MC Manually Completed: This process task has been completed successfully by
an Oracle Identity Manager user (that is, manually).

P Pending: This process/process task is in the process of being completed. All
preceding tasks and processes, respectively, have been completed.

PX Pending Cancellation: This process task will be canceled, but this task has to
be completed first before it can be canceled.

R Rejected: This process/process task has not been completed successfully or
has not been approved. The status of rejected process tasks can only be
changed to Canceled or Unsuccessfully Completed.

S Suspended: This process/process task has been put on hold temporarily.

Chapter 3
Types of Adapters

3-6



Task Status Description

UC Unsuccessfully Completed: This process task has been set to Completed.
However, it had been rejected before.

W Waiting: This process/process task cannot be completed until all preceding
process tasks or processes are completed.

X This process/process task has been stopped. Its status cannot change
anymore

The status level of a process represents the most important status level of its process tasks,
which must be completed for the process to be completed. Suppose a process has three
process tasks, each process task has a different status level (Completed, Waiting, and
Rejected), and all three process tasks must be completed for the process to complete.
Because the highest task status level is Rejected, the status level of the process is also
Rejected.

A process task can be managed in these ways:

• It can be handled manually by using the Object Process Console tab of the Organizations
or Users forms, or the Oracle Identity Manager Web Application.

• An Oracle Identity Manager process can be configured so that one (or more) of its tasks is
triggered automatically once it achieves a status of Pending.

3.3 Adapter Environment and Tools
Adapter environment and tools consist of configuring Oracle Identity Manager to find the
appropriate Java APIs, creating adapters by using the Adapter Factory form in the Design
Console, and compiling adapters.

This section contains these topics:

• Configuring the Adapter Environment

• The Adapter Factory

• Compiling Adapters

3.3.1 Configuring the Adapter Environment
To construct adapter tasks, ensure that Oracle Identity Manager has access to the target API
JAR files and third-party applications to which you want to connect.

When your adapter uses Java tasks, you must configure Oracle Identity Manager to find the
appropriate Java APIs. To do this, you must place the .jar files that contain these APIs into the
Meta Data Store (MDS).

Then, you can access the Java classes associated with these Java APIs and use them in the
Java task you are creating.

To configure Oracle Identity Manager to reference JAR and class files:

1. Open the JavaTasks subdirectory, which can be found within the OIM_HOME/ directory path.
For example, C:\oracle\Xellerate\JavaTasks.

2. Place the JAR file or files into this subdirectory. You can use these files to create Java
tasks within an adapter without restarting the server.

Chapter 3
Adapter Environment and Tools

3-7



Note:

When the Java code is in two different JAR files in the Adapter Factory, and in the
adapter tasks if an object from the first JAR file (which has the common or shared
code) is passed into the constructor of the next adapter task that is located in the
second JAR file, then a compilation error is thrown.

As a workaround for this issue, ensure that the entire Java code is in a single JAR file
only.

3.3.2 The Adapter Factory
The Adapter Factory is a code-generation tool that enables you to create Java classes, known
as adapters.

An adapter is a Java class created by an Oracle Identity Manager user through the Adapter
Factory, which is accessed through the Design Console.

Adapters extend the internal logic and functionality of Oracle Identity Manager. In addition, they
interact with any IT resource by connecting to that resource's API.

The Adapter Factory is a code-generation tool provided by Oracle Identity Manager that
enables a user to create Java classes, known as adapters. Figure 3-1 shows the Adapter
Factory Form in the Design Console.

Figure 3-1    Adapter Factory Form

3.3.3 Compiling Adapters
There are various options for compiling adapters, including individual adapters at a time, a set
of adapters at once, and all adapters that exist in the database with a single click.

This section describes how to compile adapters automatically and manually. It contains the
following topics:

Chapter 3
Adapter Environment and Tools

3-8



• Automatic Compilation of Adapters

• Compiling Adapters Manually

Note:

Verify and ensure that you have the required permissions in the temporary installation
directory if adapter compilation fails with the following error:

DOBJ.EVT_NOT_FOUND: H: Event Handler not found.

3.3.3.1 Automatic Compilation of Adapters
Adapters are compiled automatically when you import connector files by using the Deployment
Manager. The compiled adapter class files are stored in the Oracle Identity Manager database,
as opposed to the file system, from where they are loaded at run time. The following two APIs
are available to compile adapters programmatically:

• public void compileAdapter (String adapterName): This API compiles a single adapter
and stores the compiled classfile in the database. It takes the name of the adapter as a
parameter. If the adapter is not found or if there are any errors, the API throws an
appropriate exception.

• public void compileAll: This API compiles all adapters in a system. If it encounters any
errors during compilation, it throws an exception of the type tcBulkException. This
exception comprises all the individual errors that the API encounters during compilation.

You can modify the adapters manually if you make any changes.

Note:

You must set the path of the JDK directory in the XL.CompilerPath system property.
Otherwise, an error is encountered during the adapter compilation stage when you
import an XML file using the Deployment Manager.

Refer to the Default System Properties in Oracle Identity Governance in
Administering Oracle Identity Governance for information about setting values of
system properties.

3.3.3.2 Compiling Adapters Manually
The Adapter Manager form is located in the Development Tools folder. You use it to compile
multiple adapters simultaneously.

To manually compile multiple adapters, perform these steps:

1. Open the Adapter Manager form.

The Adapter Manager form is in the Development Tools folder. It is used to compile
multiple adapters simultaneously, as shown in Figure 3-2.

Chapter 3
Adapter Environment and Tools

3-9



Figure 3-2    Adapter Manager Form

2. To compile every adapter that resides within the Oracle Identity Manager database, select
the Compile All option.

To compile multiple adapters, select the adapters you want to compile. Then, select the
Compile Selected option.

To compile all adapters that do not have an OK status, select the Compile Previously
Failed option.

3. Click the Start button.

Oracle Identity Manager will compile the adapters that match the criteria you specified in
Step 2.

Tip:

Oracle Identity Manager lets you review the record of any adapter that appears within
the Adapter Manager form to see detailed information about the adapter.

To view an adapter's record, select the desired adapter and either double-click its row
header, or right-click the adapter, and select the Launch Adapter command from the
menu that appears.

3.4 Defining Adapters
Adapters are defined by using the Adapter Factory form in the Development Tools folder of the
Design Console.

To define an adapter:

1. Log in to Oracle Identity Manager Design Console.

2. Open the Adapter Factory form. This form is in the Development Tools folder in the Design
Console.

3. In the Adapter Name field, enter the name of the adapter, for example, Create Solaris
User.

Chapter 3
Defining Adapters

3-10



Note:

• Although the adapter name can contain special characters, Oracle
recommends that you do not use them because there might be run-time
errors.

• While creating custom adapter for disconnected app instance, the name of
the adapter cannot have the word "Manual". This differentiates from the
OOTB adapters which generates manual fulfillment SOA task. The custom
adapters will not generate manual fulfillment SOA task. Do not remove the
word "Manual" from the adapters which generates SOA manual fulfillment
adapter.

4. Double-click the Adapter Type lookup field.

The Lookup window is displayed, displaying the five types of Oracle Identity Manager
adapters. These are:

• Process Task

• Rule Generator

• Pre-populate Rule Generator

• Entity

• Task Assignment

5. To enable the adapter to automate a process task, select Process Task (T).

To incorporate business rules into an Oracle Identity Manager or user-defined form field,
select Rule Generator (R). For example, for the User ID field of a form, you can configure
Oracle Identity Manager to concatenate the initial letter of the user's first name with the
user's last name.

You can attach a type of rule generator adapter to a user-created form field, so that it can:

• Display the data, which is generated by the adapter, automatically or manually.

• Use criteria that enable Oracle Identity Manager to determine which adapter is applied
to the designated form field.

To attach the adapter to an Oracle Identity Manager or user-defined form field, and have
Oracle Identity Manager trigger the adapter on preinsert, preupdate, predelete, postinsert,
postupdate, or postdelete, select Entity (E).

To allow the adapter to automate the allocation of a process task to a user or group, select
Task Assignment (A).

Tip:

If you create an entity adapter, then an error might be generated while compiling
the adapter on computers with less file limits. To avoid this problem, change the
file limits in the /etc/security/limits.conf file to the following:

soft nofile 4096

hard nofile 4096

Then, restart Oracle Identity Manager.

Chapter 3
Defining Adapters

3-11



6. Select the type of adapter you want, for example, Process Task (T). Then, click OK.

7. In the Description field, type a description for the adapter, for example, This adapter is
used to create a new user for the Solaris environment.

8. From the toolbar, click Save.

The adapter is now stored in the Oracle Identity Manager database.

3.5 Tabs of the Adapter Factory Form
The Adapter Factory form consists of tabs that enable you to work with adapter tasks,
resources, variable lists, lookups, and responses.

The Adapter Factory form contains the following tabs:

• The Adapter Tasks Tab

• The Resources Tab

• The Variable List Tab

• The Usage Lookup Tab

• The Responses Tab

3.5.1 The Adapter Tasks Tab
The Adapter Tasks tab is used to create and manage the atomic function calls of an adapter.
These function calls are known as adapter tasks.

The sequence of calls is vital because these calls in turn gets converted into Java statements.
In other words, if you put an Else call before an If call, then the adapter is not compiled. In
addition, you must understand the logical flow of java program while creating adapter.
Analogically, this is like writing an algorithm instead of a program with Java syntax.

3.5.2 The Resources Tab
The Resources tab is used to view the Java APIs being used by the adapter and document a
non-Java API file to the adapter.

From the Resources tab, you can:

• Click the Java APIs subtab to see the Java APIs that are being used by the adapter.

• Click the Other subtab to document a non-Java API file to the adapter, if necessary.

Note:

This Resources tab does not represent resource objects.

3.5.3 The Variable List Tab
The Variable List tab is used to manage adapter variables and map them to literals or adapter
references.

Chapter 3
Tabs of the Adapter Factory Form

3-12



For prepopulation adapters, the data is passed to adapter input variables and are processed
by using adapter logic. The adapter returns output variable, which is then assigned to process
form field.

From the Variable List tab, you can:

• Create, modify, and delete adapter variables.

• Set the data type and provide a description for each variable.

• Map an adapter variable to a literal or an adapter reference. You can also postpone the
mapping until it is attached to a process task or a form field.

You also can resolve the value of the adapter variable at run time, when it is attached to a
process task and the process task is run. As a result, process-specific data is available to map
to this variable.

3.5.4 The Usage Lookup Tab
For a process task or task assignment adapter, the Usage Lookup tab displays the process
task to which the adapter is attached, as well as the process of which this process task is a
member.

For a rule generator or entity adapter, this tab shows the Oracle Identity Manager form and
associated data object to which the adapter is attached. In addition, it displays the execution
schedule of the adapter, along with a sequence number that represents the order in which
Oracle Identity Manager will trigger the adapter.

For a pre-populate adapter, this tab displays the user-defined form and form field to which the
adapter is attached. Also, it shows the pre-populate rule that is associated with the adapter.

3.5.5 The Responses Tab
The Responses tab is used for defining meaningful responses to the process task. These
responses depend on the execution result of the adapter.

The various error messages returned by the external system can be mapped to these
responses in a way that they make sense in the context of the process task. On attaching the
adapter to a process task, the status bucket, which consists of Pending, Completed, and
Rejected, of the process task (and subsequently the Object status) can be set, based on the
adapter response code.

Tip:

Oracle Identity Manager enables the Responses tab only for process task adapters. If
an adapter is a task assignment, rule generator, pre-populate, or entity adapter,
Oracle Identity Manager disables this tab.

3.6 Disabling and Re-enabling Adapters
Use the Disable Adapter option in the Adapter Factory form of the Design Console to disable
or enable adapters.

To disable an adapter so that it cannot be used with a process task or form field, select the
Disable Adapter option, and save the adapter.

Chapter 3
Disabling and Re-enabling Adapters

3-13



To re-enable it, clear the Disable Adapter option, and save the adapter.

3.7 Working With Adapter Variables
Adapter variables are placeholders to map data to the parameters of the adapter tasks at tun
time.

For a newly-created adapter to work, you can map data to the parameters of the adapter tasks.
For this reason, you create placeholders, also known as adapter variables, to map the data at
run time.

Note:

An adapter variable can be reused for all adapter tasks.

Once an adapter variable is not needed for the adapter to run, you can remove it from the
adapter. After you have deleted the adapter variable, ensure to recompile the adapter.

This section contains the following topics:

• Creating an Adapter Variable

• Items on the Map To Menu

• Modifying an Adapter Variable

• Deleting an Adapter Variable

3.7.1 Creating an Adapter Variable
An adapter variable is created from the Variable List tab.

To create an adapter variable:

1. Select the adapter to which you wish to add an adapter variable, for example, the Create
Solaris User adapter.

2. Select the Variable List tab.

3. Click Add.

The Add a Variable window is displayed.

4. When you do not want Oracle Identity Manager to be able to change the adapter variable
value after it is activated, select Final.

5. In the Variable Name field, enter the name of the adapter variable, for example,
SolarisUserID.

Caution:

The adapter variable name cannot contain spaces.

6. From the Type menu, select the classification type of the adapter variable, such as String.
The available items are:

Chapter 3
Working With Adapter Variables

3-14



• Object

• IT Resource

• String

• Boolean

• Character

• Byte

• Date

• Integer

• Float

• Long

• Short

• Double

7. Within the Description text area, you can enter explanatory information about the adapter
variable.

8. From the Map To menu, you can map your adapter variable to one of the items listed in 
Items on the Map To Menu.

Note:

When you select the object type, a Qualifier menu is displayed within the Add a
Variable window. From this menu, you can select either of the following:

• Database Reference. If you select this item, the adapter variable is mapped
to the reference of the database that the Oracle Identity Manager is currently
running against.

• Data Object Reference. If you select this item, the adapter variable is
mapped to an Oracle Identity Manager data object.

Note:

If you select the IT Resource type, a Resource Type menu is displayed within the
Add a Variable window. From this menu, you can select one of the IT resource
types that have been created by using the IT Resource Type Definition form. By
doing so, you can map the adapter variable to a parameter of this IT resource
type.

9. On the toolbar in the Add a Variable window, click Save. The information for your adapter
variable is stored in the Oracle Identity Manager database.

Close the Add a Variable window to activate the main screen. The name, classification
type, mapping selection, and description of the adapter variable you created appear in the
child table of the Variable List tab.

This adapter variable now belongs to the adapter in the Adapter Factory form. It is saved to the
Oracle Identity Manager database, and the adapter variable is ready to use.

Chapter 3
Working With Adapter Variables

3-15



3.7.2 Items on the Map To Menu
You can map the items on the Map To menu to your adapter variable.

Table 3-1 lists the items on the Map To menu to which you can map your adapter variable.

Table 3-1    Items on the Map To Menu

Name Description

Literal This adapter variable is mapped to a constant (or literal).

Resolve at Run time This adapter variable's mapping occurs later, at run time. Selecting this
option increases the reusability of the adapter.

Adapter References This adapter variable gives access to an Oracle Identity Manager
database reference or an Oracle Identity Manager data object
reference.

System Date When this adapter variable is triggered by Oracle Identity Manager, it is
mapped to the current date and time of the Server.

Note: This option appears only when you select the Date type.

3.7.3 Modifying an Adapter Variable
You can modify an adapter variable from the Edit a Variable window that opens from the
Variable List tab.

To modify an adapter variable:

1. Select the adapter that contains the adapter variable you want to edit, for example, the
Create Solaris User adapter.

2. Click the Variable List tab and double-click the row header of the adapter variable you want
to modify. The Edit a Variable window is displayed, showing information about the adapter
variable.

3. Make the necessary edits, for example, changing the adapter variable's data type from
String to Character.

4. On the Edit a Variable toolbar, click Save. The modified information about the adapter
variable is stored in the Oracle Identity Manager database.

5. Close the Edit a Variable window to activate the main screen. The adapter variable you
modified appears within the child table of the Adapter Factory form.

Note:

Ensure that you check your data mappings and recompile the adapter, especially
if you change the adapter variable's data type.

3.7.4 Deleting an Adapter Variable
When an adapter variable is no longer necessary for the adapter to run, you can remove it
from the adapter.

To delete an adapter variable:

Chapter 3
Working With Adapter Variables

3-16



1. Select the adapter that contains an adapter variable you want to remove, for example, the
Create Solaris User adapter.

2. Select the Variable List tab.

3. From the list of this tab, select the adapter variable you want to delete.

4. Click Delete.

5. Recompile the adapter after deleting any variable.

The adapter variable disappears from the child table. The adapter variable has been deleted.

3.8 Creating Adapter Tasks
After you construct the adapter and create its variables, you can create the atomic function
calls of an adapter. These function calls are known as adapter tasks.

This section explains adapter tasks and how to create tasks:

• Types of Adapter Tasks

• Creating a Java Task

• Options in the Object Instance Selection Window

• Regions of the Add an Adapter Factory Task Window

• Reassigning the Value of an Adapter Variable

3.8.1 Types of Adapter Tasks
The types of adapter tasks are Java task, remote task, stored procedure task, utility task, API
task, set variable task, error handler task, and logic task.

Oracle Identity Manager allows you to create the following adapter tasks:

• A Java task, which allows an adapter to communicate with an external source by invoking
Java API.

• A utility task, which enables you to populate an adapter with methods and APIs that come
packaged with Oracle Identity Manager. In addition, this type of task provides you with
access to the Java Standard Library APIs.

• An Oracle Identity Manager API task, which enables access to Oracle Identity Manager
published APIs from adapter tasks. This allows for enhanced portability of adapter code.

• A set variable task, which allows you to set a variable within an adapter.

• An error handler task, which lets you display any errors associated with an adapter that
occur at run time. In addition, you can see the reasons for the errors, along with possible
solutions.

• A logic task, which lets you build a conditional statement within an adapter.

You can create the following types of logic tasks:

• FOR loops

• WHILE loops

• IF statements

• ELSE statements

• ELSE IF statements

Chapter 3
Creating Adapter Tasks

3-17



• BREAK statements

• RETURN statements

• CONTINUE statements

• SET VARIABLE statements

• Handle Error statements

For classification purposes, Oracle Identity Manager represents each type of adapter task by
an icon. The icon, which precedes the task name, is a visual indicator of the type of task it is.
For example, "J" represents a Java task, and "LT" represents a logic task.

To see a list of these icons, select the Adapter Tasks tab, and click Legend. The Legend
window appears, displaying the following list of icons:

• Functional Task

– Java

• Utility Task

– Utility

– Oracle Identity Manager API

• Logical Task

3.8.2 Creating a Java Task
Oracle Identity Manager can handshake with an external source through a Java API. To make
this happen, you must add a task to an adapter which, when triggered by Oracle Identity
Manager, initiates communications with the external source. This type of task is called a Java
task.

To create a Java task:

1. Select the adapter to which you want to add a Java task, for example, the Update Solaris
Password adapter.

2. Select the Adapter Tasks tab.

3. Click Add.

After the Adapter Task Selection window is displayed, select the Functional Task option.

4. From the display area to the right of this option, select the Java item, and click Continue.

The Object Instance Selection window is displayed. See Options in the Object Instance
Selection Window for information about the options in the Object Instance Selection
window.

5. Click an option—for example, New Object Instance—and click Continue. The Add an
Adapter Factory Task window is displayed. See Regions of the Add an Adapter Factory
Task Window for information about the various regions of the Add an Adapter Factory Task
window.

6. In the Task Name field, enter the name of the task you are creating, for example, Update
Password.

7. (Optional.) To make your Java object reusable, select Persistent Instance, type the name
of the instance of this task in the text field located to the right of the check box.

Chapter 3
Creating Adapter Tasks

3-18



Caution:

Ensure that name of the instance contains no spaces.

Note:

To reference a session with the target resource multiple times during the life of
the adapter, and not just once, select Persistent Instance.

Tip:

By setting the Java object to be persistent, the next time you create a Java
object, it appears in the Persistent Instance list of the Object Instance Selection
window. In addition, you do not have to map the constructor to all adapter tasks
of the same Java object.

8. Select the API Source. The JAR files appear, which Oracle Identity Manager references
from the JavaTasks subdirectory of the OIM_HOME/ directory path—for example,
C:\oracle\Xellerate\JavaTasks.

See Also:

Configuring the Adapter Environment for instructions on how to enable Oracle
Identity Manager to use third-party JAR files with a Java task

9. Select the Application API. The class files, which belong to the JAR file you selected in the
API Source, appear.

10. From the Constructors area, select the method to be used to initialize the Java class you
selected.

11. From the Methods area, select the method that will be used with your Java task.

12. From the toolbar, click Save.

The information pertaining to the Java task is stored in the Oracle Identity Manager
database. You can now access the parameters of your Java task's constructors and
methods. These parameters appear in the Application Method Parameters region of the
Add an Adapter Factory Task window.

13. To display the Java class constructors and methods for which you must set mappings, click
the plus icons displayed to the left of the Constructor and Method icons.

14. Select the parameter of the constructor or method for which you must set a mapping.

15. In the Description text area, you can enter a description for this mapping.

16. Click the Map to combo box, and select an item that you can map to the parameter of the
constructor or method, for example, Adapter Variables.

17. Set the appropriate mappings.

Chapter 3
Creating Adapter Tasks

3-19



See Also:

Adapter Mapping Information for more information about which mappings to set

18. Click Set.

The parameter of the selected constructor or method now appears in blue. This signifies
that it has been mapped.

Tip:

To remove a parameter mapping, right-click the appropriate parameter, and
select Un-Map Parameter from the popup menu that appears.

19. Repeat steps 15 through 18 for all parameters of the constructors and methods that
appear in the Application Method Parameters region.

20. On the Add an Adapter Factory Task window toolbar, click Save. The information
pertaining to the Java task is stored in the Oracle Identity Manager database.

21. On the toolbar, click Close. The Add an Adapter Factory Task window disappears, and the
main screen is active once again. The Java task that you created—for example, Update
Password—appears within the Adapter Factory form.

22. (Optional.) To create additional Java tasks for the adapter, repeat steps 21.

Tip:

You can create different types of adapter tasks, and add them to the adapter.

If the adapter is logically complete, and all variables on the adapter tasks are mapped, you
can compile it to use with a process task or form field.

23. To compile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates that
Oracle Identity Manager compiled the adapter and found no errors. You can now attach the
adapter to a process task or form field.

24. (Optional.) To see the code that Oracle Identity Manager generates, from the toolbar, click
Notes.

The Notes window is displayed, containing the code that Oracle Identity Manager
generated.

Chapter 3
Creating Adapter Tasks

3-20



Note:

If, after clicking Build, CODE GEN ERROR appears in the Compile Status field, it
means that Oracle Identity Manager encountered one of two types of errors while
validating and compiling the adapter:

• Validation Error

While Oracle Identity Manager is checking the adapter to verify that it is valid,
an error is found. This error can result from a parameter of an adapter task
not being mapped, a parameter being mapped improperly, or an adapter task
being placed out of order.

Because Oracle Identity Manager generates code for an adapter only after it
is validated, if Oracle Identity Manager encounters a validation error, it does
not create any code.

• Java Compilation Error

Oracle Identity Manager has verified that the adapter is valid. However, while
Oracle Identity Manager is compiling the adapter, an error is found. This error
can result from assigning an incorrect data type to an adapter task
parameter.

Because Oracle Identity Manager has validated the adapter, it generates
code. However, Oracle Identity Manager stops building code at the point of
the compilation where it encounters the error.

Tip:

Once you create a Java task, and add it to an adapter, you can see the following
information by accessing the Resources tab of the Adapter Factory form:

• The JAR and class files used to create the Java task.

• The name, which represents the directory path that contains these JAR and
class files.

3.8.3 Options in the Object Instance Selection Window
The Object Instance Selection window provides options to select new object instance,
persistent instance, or task return value instance.

Table 3-2 explains the options in the Object Instance Selection window.

Table 3-2    Options in the Object Instance Selection Window

Option Description

New Object Instance When you click this option, you are creating a new Java object
instance.

Persistent Instance You can call the method on a persistent object by clicking this option,
clicking the adjacent combo box, and selecting an object instance from
the drop-down menu.

Chapter 3
Creating Adapter Tasks

3-21



Table 3-2    (Cont.) Options in the Object Instance Selection Window

Option Description

Task Return Value Instance You can call this method on an object returned by an adapter task
defined earlier by clicking this option, clicking the combo box, and
selecting an adapter task from the drop down list.

Note:

When the Persistent Instance option is grayed out, it indicates that you have not
defined any persistent objects for your adapter. Similarly, if the Task Return Value
Instance option is grayed out, none of the tasks have Java Object return values
associated with them.

3.8.4 Regions of the Add an Adapter Factory Task Window
The Add an Adapter Factory Task window provides access to the parameters of your Java
task's constructors and methods.

Table 3-3 lists and describes the various regions of the Add an Adapter Factory Task window:

Table 3-3    Regions of the Add an Adapter Factory Task Window

Name Description

Task Name This field displays the name of the Java task.

Persistent Instance If this Java object is to be used again, the check box is selected, and
the name of the task instance is entered in the adjacent field.

API Source This combo box contains a list of all JAR and class files to which you
have access.

Application API This combo box contains a list of all class files to which you have
access, and which belong to the JAR file that has been selected from
the API Source list.

Constructors This text area displays all the constructors, which are available for the
Java object.

Methods This text area shows a list of all the methods, which are available for
the Java object.

Application Method Parameters This area contains the parameters of the selected constructor and
method. These parameters are mapped to the adapter variables and
Oracle Identity Manager components.

3.8.5 Reassigning the Value of an Adapter Variable
You can reassign the value of an adapter variable, a different type of adapter task, or a
constant (or literal).

This section describes how to reassign the value of an adapter variable and then compile the
adapter. It contains the following topics:

• About Reassigning Adapter Variable

Chapter 3
Creating Adapter Tasks

3-22



• Creating a Set Variable Task

• Types of Operands

• Creating Additional Set Variable Tasks

3.8.5.1 About Reassigning Adapter Variable
Sometimes, for an adapter to accomplish its required objective, you must reassign the value of
one adapter variable to another adapter variable, a different type of adapter task, or a constant
(or literal). The task that enables you to reallocate an adapter variable value is known as a set
variable task.

See Also:

Working With Adapter Variables for information about adapter variables

For example, you can create a set variable task to set the adapter variable return value to
equal the output of an adapter task (UserName) if the User ID length is fewer than 11
characters.

3.8.5.2 Creating a Set Variable Task
To create a set variable task:

1. Select the adapter to which you wish to add a set variable task (for example, the Check the
Solaris User ID adapter).

2. Click the Adapter Tasks tab.

3. Click Add. The Adapter Task Selection window is displayed.

4. Select the Logic Task option.

5. From the display area, select SET VARIABLE, and click Continue. The Add Set Variable
Task Parameters window is displayed.

6. From the Variable Name list, select the adapter variable that has a value you want to
reassign—for example, Adapter return value.

7. From the Operand Type list, select the type of operand that will provide the value for the
variable.

Tip:

You can reassign an adapter variable's value to another adapter variable, a
different type of adapter task, or a literal.

For information about the various types of operands, see Types of Operands.

3.8.5.3 Types of Operands
Use Table 3-4 to understand the various types of operands that will provide the value of the
variable.

Chapter 3
Creating Adapter Tasks

3-23



Table 3-4    Types of Operands

Operand Name Description

Variable If you select this operand type, adapter variables appear in the
Operand Qualifier list. From this list, select the specific adapter variable
that will provide the reassigned value.

Note: The only adapter variables that will appear in the Operand
Qualifier combo box will be those variables that have the same data
type as the adapter variable that is displayed within the Variable Name
combo box.

Adapter Task By selecting this operand type, adapter tasks are displayed in the
Operand Qualifier combo box. From this combo box, select the
particular adapter task that will provide the reallocated value.

Note: The only adapter tasks that will appear in the Operand Qualifier
combo box will be those tasks that have the same data type as the
adapter variable that is displayed within the Variable Name combo box.

Literal When you select this operand type, types of literals appear in the
Operand Qualifier combo box. From this combo box, select the type of
literal that will provide the reallocated value. Then, type the specific
literal into the field that appears underneath the combo box.

3.8.5.4 Creating Additional Set Variable Tasks
The following task sets the adapter variable's return value to be equal to the UserName
adapter variable.

1. On the toolbar in the Add Set Variable Task Parameters window, click Save. The set
variable task you created is stored in the Oracle Identity Manager database.

2. On the Add Set Variable Task Parameters window toolbar, click Close. The Add Set
Variable Task Parameters window disappears, and the main screen is active once again.
The set variable task that you created, for example, Set Adapter return value =
UserName, appears in the Adapter Factory form.

3. (Optional.) Repeat Steps 3-9 to create additional set variable tasks for the adapter.

You are now ready to compile the adapter, so it can be used with a process task or form
field.

4. To compile the adapter, click Build. The text in the Compile Status field changes from
Recompile to OK. Oracle Identity Manager compiled the adapter and found no errors. You
can attach the adapter to a process task or form field.

3.9 Modifying Adapter Tasks
Use the Adapter Tasks tab of the Adapter Factory form to modify an adapter task.

The following procedure will show you how to edit an adapter task, in case you must make
changes to it. To modify an adapter task

1. Select the adapter that contains the adapter task you wish to edit (for example, the Update
Solaris User Group adapter).

2. Click the Adapter Tasks tab.

3. Double-click the adapter task that you want to modify.

Chapter 3
Modifying Adapter Tasks

3-24



The Edit Adapter Factory Task Parameters window is displayed, displaying information that
relates to the adapter task you selected. Within this window, make the necessary
modifications.

4. On the Edit Adapter Factory Task Parameters window toolbar, click Save.

The information you modified is stored in the Oracle Identity Manager database.

5. On the toolbar, click Close.

The Edit Adapter Factory Task Parameters window disappears. The main screen is active
again. The modified task appears within the child table of the Adapter Factory form. You
must re-compile the adapter, so it can be used with a process task or form field.

6. To recompile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates that
Oracle Identity Manager compiled the adapter and did not find any errors. You can now
attach the adapter to a process task or form field.

Caution:

You cannot modify the API call inside a Java, Xellerate API, or Utility task. The
adapter task has to be deleted and re-created. In addition, if CODE GEN ERROR
appears in the Compile Status field, Oracle Identity Manager encountered
errors while compiling the adapter. Rectify the errors, if necessary re-do the
adapter task modifications, and compile the adapter again.

3.10 Changing the Order and Nesting of Tasks
If you add multiple tasks to an adapter, you can either change the order in which the tasks are
executed, or place one task inside of another task for the adapter to work.

The following procedure will show you how to change the order and nesting of tasks.

Caution:

You should not change the order and nesting of adapter tasks unless you
understand the mapping dependencies of the adapter tasks.

To change the order and nesting of tasks:

1. Select the adapter that contains tasks of which you want to change the order and/or nest
(for example, the Check the Solaris User ID adapter).

2. Click the Adapter Tasks tab.

The tasks appear, which belong to the current adapter.

In this example, the following changes must occur:

• The error handler task must be nested inside of the IF (Check ID Length > 10) logic
task.

• The set variable task has to be nested inside of the ELSE logic task.

• The IF logic task precedes the ELSE logic task.

Chapter 3
Changing the Order and Nesting of Tasks

3-25



Therefore, you must first reorganize the logic tasks. Then, you must nest the error handler
task and set variable task inside of the IF and ELSE logic tasks, respectively. To
reorganize tasks:

3. Select the task that must run before another task, and click the Up arrow button. The
selected task will switch places with the task that precedes it.

or

Select the task that must be executed after another task, and click the Down arrow button.
The highlighted task is displayed below the task that previously followed it.

To nest tasks/remove task nestings:

4. Select the task that must be placed inside of another task, and click the Right arrow
button. The selected task will be nested inside of the task that appears above it.

or

Select the task that no longer be nested inside of another task, and click the Left arrow
button. The highlighted task will not be nested inside of the task that is displayed above it.

5. On the toolbar, click Save.

The order and nesting of the adapter's tasks is stored in the Oracle Identity Manager
database. If the adapter is logically complete and all variables on the adapter tasks are
mapped, you can compile it to use with a process task or form field.

6. To compile the adapter, click Build.

The text in the Compile Status field changes from Recompile to OK. This indicates that
Oracle Identity Manager compiled the adapter and did not find any errors. You can now
attach the adapter to a process task or form field.

Caution:

If you see CODE GEN ERROR in the Compile Status field, Oracle Identity
Manager found errors while compiling the adapter. Rectify the errors, if
necessary re-do the adapter task modifications, and compile the adapter
again.

3.11 Deleting Adapter Tasks
When an adapter task is no longer necessary for the adapter to run, you must remove it from
the adapter.

To delete an adapter task:

1. Select the adapter that contains the task you wish to remove (for example, the Update
Solaris User Group adapter).

2. Click the Adapter Tasks tab.

3. Select the task that you want to remove (for example, the CONTINUE logic task).

4. Click Delete.

The selected task is deleted and disappears from the child table.

5. On the toolbar, click Save.

6. Recompile the adapter.

Chapter 3
Deleting Adapter Tasks

3-26



Caution:

While deleting adapter tasks, ensure that the logic of the adapter is consistent and
maintained.

3.12 Working with Responses
The Responses tab of the Adapter Factory form lets you can create, modify, and delete
responses, which are outcomes of the adapters based on which adapters can trigger other
process tasks.

This section describes responses and how to create, modify, and delete responses. It contains
the following topics:

• About Responses

• Creating a Response

• Modifying a Response

• Deleting a Response

3.12.1 About Responses
Adapters can have various outcomes, called responses, based on which adapters can trigger
other process tasks.

For example, if the adapter returns a True response, the process task's status can be set
automatically to Completed. However, if the adapter returns a False response, the process
task's status can be set automatically to Rejected, and another process task can be triggered.

These responses can be added, modified, or removed on the Responses tab of the Adapter
Factory form.

Note:

Responses are used only with process task adapters, because these adapters are
attached to process tasks. Rule generators, pre-populate adapters, and entity
adapters are not connected to processes. In addition, task assignment adapters are
not associated with responses. Therefore, if the active adapter is a task assignment
adapter, rule generator, pre-populate adapter, or entity adapter, Oracle Identity
Manager disables the Responses tab.

3.12.2 Creating a Response
You can create a response for an adapter from the Responses tab.

To create a response:

1. Select the adapter to which you want to add responses (for example, the Create Solaris
User adapter).

2. Click the Responses tab.

Chapter 3
Working with Responses

3-27



3. Click Add.

An empty row is inserted into the Responses tab.

4. Click the field that appears within the Code Name column.

5. Enter a code, which represents a response type that can be generated (for example, True).

6. Click the field that appears within the Description column.

7. Enter a description for this response (for example, The user was created successfully.).

8. Double-click the field that appears within the Status column.

9. Click the desired status level (for example, Completed (C)). Then, click OK.

The Lookup window disappears, and the Responses tab is active once again.

10. Create another response, by clicking the Add button, and entering False and The user was
not created successfully. into the Code Name and Description fields, respectively. Then,
access the Lookup window, and assign the Rejected (R) status level to this response.

11. On the toolbar, click Save.

The responses that you created for this adapter have been stored in the Oracle Identity
Manager database. After you attach this adapter to a process task, these responses will
appear in the Responses tab of the Editing Task window of the Process Definition form.

3.12.3 Modifying a Response
You can modify the response of an adapter from the Responses tab.

To edit a response:

1. Select the adapter that contains the response you want to edit (for example, the Create
Solaris User adapter).

2. Click the Responses tab.

3. Double-click the field of the response, which contains information that you want to modify.

a. If the field is a text field, Oracle Identity Manager enables it. You can now edit the
contents within this field.

b. When the field is a lookup field, the Lookup popup window is displayed, containing the
different status levels that you can associate with the response. Click the desired
status level, click OK.

For example, double-click the Status column of the False response, select the Suspended
(S) status level, and click OK.

4. On the toolbar, click Save.

The information that you modified for the response is stored in the Oracle Identity Manager
database.

3.12.4 Deleting a Response
When a response is no longer necessary, you can delete it from the adapter by using the
Responses tab.

To delete a response:

1. Select the adapter, which contains a response that you want to remove.

2. Click the Responses tab.

Chapter 3
Working with Responses

3-28



3. Select the response that you want to delete.

4. Click Delete.

The response disappears. This indicates that Oracle Identity Manager has deleted the
response.

3.13 Working with Prepopulate Adapters
Working with prepopulate adapters include attaching prepopulate adapters to form fields and
removing them.

This section describes how to attach prepopulate adapters to form fields and remove
prepopulate adapters from form fields. It contains the following topics:

• Attaching Prepopulate Adapters to Form Fields

• Fields of the Prepopulate Adapters Dialog Box

• Fields of the Map Adapter Variables Window

• Removing Prepopulate Adapters from Form Fields

3.13.1 Attaching Prepopulate Adapters to Form Fields
Use the Prepopulate tab of the Form Designer form to attach prepopulate adatapers to form
fields.

To attach a prepopulate adapter to a form field, perform the following steps:

1. Select the field to which a prepopulate adapter will be attached.

2. Select the rule that will determine if the adapter will be used to populate the designated
field with information.

3. Select the adapter that will be associated with the designated field.

4. Set the priority number of the selected rule.

5. Map the adapter variables of the prepopulate adapter to their proper locations.

Note:

To attach a prepopulate adapter to a form field, you must ensure the following:

• The form is not in an active state. Otherwise, create a new form version.

• After attaching the adapter, you must activate the form to be able to use it.

6. Open the Form Designer form.

7. Query for the form to which you want to attach a prepopulate adapter (for example,
Solaris).

8. Click the prepopulate tab.

The prepopulate adapters, which have already been attached to the form you queried,
appear within this tab.

Chapter 3
Working with Prepopulate Adapters

3-29



Note:

If no adapters have been attached to a form field, the prepopulate tab will be
empty.

If a process form has two IT resource fields, then the second IT resource must be
populated using programmatic mechanism and prepopulate adapters. Two IT
resources cannot be populated because the UI Form Designer does not support
an IT resource type widget.

9. Click Add.

The prepopulate Adapters dialog box is displayed. For information about the fields of the
Prepopulate Adapters dialog box, see Fields of the Prepopulate Adapters Dialog Box.

10. From the Field Name combo box, select the form field, such as User ID, to which the
prepopulate adapter will be attached.

11. Double-click the Rule lookup field. From the Lookup dialog box that is displayed, select the
rule that will determine if the associated adapter will be used to populate the designated
form field with information (for example, Rule for Lowercase User ID).

12. Double-click the Adapter lookup field. From the Lookup dialog box that is displayed,
choose the adapter that will be associated with the field you selected in Step 10, for
example, Display Lowercase Letters for User ID.

13. In the Order field, enter the priority number of the rule you selected in Step 11, for
example, 2.

14. On the prepopulate Adapters window toolbar, click Save.

15. Mapping Incomplete appears within the Adapter Status field. This signifies that the adapter
you selected contains variables that have not been mapped correctly. These variables can
be mapped to their proper locations. Otherwise, the adapter will not work.

16. Set the mappings for each variable that appears in the Adapter Variables region of the
prepopulate Adapters window. To do so, double-click the row header of the variable you
want to map, for example, UserID.

The Map Adapter Variables window is displayed. For information about the fields of the
Map Adapter Variable window, see Fields of the Map Adapter Variables Window.

17. Complete the Map To, Qualifier, IT Asset Type, IT Asset Property, and Literal Value fields.

See Also:

Adapter Mapping Information for more information about the mappings to select

18. On the Map Adapter Variable window toolbar, click Save. Then, click Close.

The Map Adapter Variables window disappears. The prepopulate Adapters window is
active again.

The text in the Adapter Status field changes from Mapping Incomplete to Ready. In
addition, the mapping statuses for the adapter's variables change from No (N) to Yes (Y).

19. On the prepopulate Adapters window toolbar, click Close.

The prepopulate Adapters window disappears, and the Form Designer form is active
again. The prepopulate adapter, which you attached to the User ID form field (Display

Chapter 3
Working with Prepopulate Adapters

3-30



Lowercase Letters for User ID), appears in the prepopulate tab of the Results of 1Q Sales
2003 form.

After a process, which references this form, is provisioned to a target user or organization,
the form will appear. Oracle Identity Manager will check to see if the prepopulate rule,
which has the highest priority, is valid. If so, Oracle Identity Manager will assign the
associated prepopulate adapter to the designated field (User ID), and execute it. At this
point, one of the following actions occur:

• If the Auto-prepopulate check box is selected for the provisioning process, Oracle
Identity Manager will display the data that is generated by the prepopulate adapter
automatically.

• If the Auto-prepopulate check box is cleared, an Oracle Identity Manager user must
manually trigger the displaying of the data that is generated by the prepopulate
adapter. To do this, the administrator must click the prepopulate button on the form
section of the direct provisioning wizard in the Web client, while provisioning the form
to a user.

Tip:

Once you allocate a prepopulate adapter to a form field, and assign a
prepopulate rule to the adapter, a quick way to see the association among the
adapter, the form field, and the rule is by accessing the Usage Lookup tab of the
Adapter Factory form.

3.13.2 Fields of the Prepopulate Adapters Dialog Box
The Prepopulate Adapters dialog box provides options for attaching prepopulate adapters to
form fields.

Table 3-5 lists and describes the fields of the prepopulate Adapters dialog box.

Table 3-5    Fields of the Prepopulate Adapters Dialog Box

Name Description

Field Name This combo box contains a list of all of the form fields to which a
prepopulate adapter can be attached.

Rule From this lookup field, select the rule that will determine if the associated
adapter will be used to populate the designated form field with information.

Adapter From this lookup field, select the adapter that will be associated with the
designated field.

Order From this field, set the priority number of the selected rule.

Adapter Status This field displays the mapping status of the adapter variables.

See Attaching Process Task Adapters to Process Tasks for information
about the various mapping statuses for an adapter.

Chapter 3
Working with Prepopulate Adapters

3-31



Table 3-5    (Cont.) Fields of the Prepopulate Adapters Dialog Box

Name Description

Adapter Variables This area displays the following:

• Mapped: The mapping statuses of the adapter's variables. "Y" indicates
that an adapter variable has been mapped properly; "N" indicates that
this variable has not been mapped correctly.

• Name: The names of the adapter variables.
• Mapped to: The form fields to which the variables are mapped If an

adapter variable is not yet mapped, the corresponding cell in this
column will be empty.

3.13.3 Fields of the Map Adapter Variables Window
The Map Adapter Variables window provides options for attaching prepopulate adapters to
form fields.

Table 3-6 describes the fields of the Map Adapter Variables window.

Table 3-6    Fields of the Map Adapter Variables WIndow

Field Name Description

Variable Name This field displays the name of the adapter variable for which you are setting
a mapping (for example, UserID).

Data Type This field shows the data type of the adapter variable (for example, String is
the data type for the UserID adapter variable).

Map To This field contains the types of mappings that you can set for the adapter
variable (for example, Process Data).

When you map the adapter variable to a location or a contact, Oracle Identity
Manager enables the adjacent combo box. From this combo box, select the
specific type of location or contact to which you are mapping the adapter
variable.

If you are not mapping the adapter variable to a location or contact, this
combo box is grayed out.

Qualifier This field contains the qualifiers for the mapping you selected in the Map to
combo box (for example, User ID).

IT Asset Type This field enables you to select a specific IT Resource (for example, Solaris)
when you map an adapter variable to an IT Resource, and this variable's
data type is String.

If you are not mapping the adapter variable to an IT Resource, or the
variable's data type is not String, this field does not appear.

IT Asset Property This field enables you to select a specific field that will receive the results of
the mapping (for example, User Name), when you map an adapter variable
to an IT Resource, and this variable's data type is String.

If you are not mapping the adapter variable to an IT Resource, or the
variable's data type is not String, this field does not appear.

Important: The IT Asset Type and IT Asset Property fields are included
within this window for backward compatibility. The preferred way is to create
an adapter variable with a data type of IT Resource, in which case these
fields will not appear.

Chapter 3
Working with Prepopulate Adapters

3-32



Table 3-6    (Cont.) Fields of the Map Adapter Variables WIndow

Field Name Description

Literal Value When you map the adapter variable to a literal, use this field to specify the
specific literal value.

If you are not mapping the adapter variable to a literal, this field does not
appear.

3.13.4 Removing Prepopulate Adapters from Form Fields
If a prepopulate adapter, which has been associated with a form field, is no longer valid, you
must remove the adapter from the field.

To remove a prepopulate adapter from a form field:

Note:

Before removing the prepopulate adapter from a form field, you must create a new
version of the form.

1. Select the prepopulate adapter that you want to remove.

2. Click Delete. The prepopulate adapter is removed from the form field. It cannot be
triggered when the form is launched.

3. After removing the adapter, you must activate the form.

3.14 Working with Process Task Adapters
Working with process task adapters includes attaching them to process tasks and removing
them.

This section describes how to attach process task adapters to process tasks. It contains the
following topics:

• Guidelines for Working with a Process Task Adapter

• Attaching Process Task Adapters to Process Tasks

• Fields of the Data Mapping for Variable Window

• Removing Process Task Adapters from Process Tasks

3.14.1 Guidelines for Working with a Process Task Adapter
After you attach the process task adapter to a dependent process task, understand how
process task adapters are triggered depending on the status of the process task.

After you create a process task adapter, you attach it to the appropriate process task by using
the Integration tab of the Process Definition form. From this tab, you can also map any
variables of the adapter to their proper locations, which were designated as either Resolve at
Run time or as an adapter return variable.For example, the adapter named
adpSOLARISPASSWORDUPDATED is connected to the Password Updated task of the

Chapter 3
Working with Process Task Adapters

3-33



Solaris process.After you attach an adapter to a process task, for the adapter to be functional,
it might need data from fields of other forms. For this example, the
adpSOLARISPASSWORDUPDATED adapter cannot work unless it obtains the following
information:

• The user's Oracle Identity Manager ID and password.

• The user's Solaris ID and password.

• The IP address where Solaris is located.

Therefore, it must get this information from the UserID, Passwd, SolarisUserID,
SolarisUserPasswd, and ServerAddress adapter variables respectively. These five variables
are created by using the Adapter Factory form. The "Y" that precedes each adapter variable
signifies that it has been mapped correctly.The form that enables you to create process-
specific fields, which will be used by a process to obtain the information it needs, is called the
Form Designer. When you create these fields, Oracle Identity Manager stores them into a
table. Then, by associating this table with a process (through the Table Name lookup field of
the Process Definition form), the adapter, which you attach to a task of this process, will use
the table to retrieve the appropriate data.If you want to modify this table, you can do so through
the Form Designer form.The UD_SOLARIS table contains two fields: UD_SOLARIS_USERID
and UD_SOLARIS_PASSWD. By accessing this record of the Form Designer form, you can
edit the fields of the table.

Once you attach the process task adapter to a dependent process task, and the status of this
process task is Pending (the status of the previous process task is Completed), Oracle Identity
Manager will trigger the adapter automatically. When the process task is an independent task,
Oracle Identity Manager will execute the adapter as soon as the process is requested.The
result of the adapter being executed represents the state of the process task. When the
adapter is finished successfully, the process task to which this adapter is attached will have a
status of Completed.On the other hand, if the adapter cannot perform its designated function,
the process task to which this adapter is attached will have a status of Rejected. By
discovering the cause of the error, you can modify the process task and/or adapter so it can
run successfully.

Note:

To determine why a process task might have failed:

Find the process task. When the process task has not yet been provisioned to the
target user or organization, it is located in the To Do List or Pending Approvals. To
find the task:

1. Log in as the user.

2. Select the To Do List link or the Pending Approvals links in the left side of the
window.

3.14.2 Attaching Process Task Adapters to Process Tasks
After you create a process task adapter, you attach it to the appropriate process task by using
the Integration tab of the Process Definition form.

You must attach the process task adapter to a process task to execute that process task
automatically. To connect an adapter to a process task, access the Integration tab (from the
Process Definition form). From this tab, you can also map any adapter variables to their proper

Chapter 3
Working with Process Task Adapters

3-34



locations.The following procedure shows you how to attach a process task adapter to a
process task:

1. Open the Process Definition form, which is located in the Process Management folder.

In the Oracle Identity Manager Workspace, the Process Definition form appears.

2. Select the process, which contains a task to which you want to attach an adapter. The
selected process, along with its tasks, appears in the Process Definition form. For this
example, the Solaris process has been selected.

3. Double-click the row header of the task to which you want to attach an adapter. The Editing
Task window appears, containing information about the task (for example, the Password
Updated process task).

4. Click the Integration tab.

5. Click Add.

The Handler Selection window appears.

6. To access Oracle Identity Manager adapters, click the Adapter option.

The adapters appear, which you can attach to the process task.

7. From this region, select the adapter that you want to attach to the process task, for
example, the adpSOLARISPASSWORDUPDATED adapter.

Tip:

For classification purposes, the first three letters of each adapter's name are adp.
For classification purposes, the first three letters of each adapter's name are adp.

8. From the Handler Selection window's toolbar, click Save.

A dialog box appears, stating that the adapter was successfully added to the process task.

9. Click OK.

The dialog box disappears, and the Integration tab is now active. This tab now displays
the following:

• The name of the adapter that is attached to the process task;

• The status of the adapter; and

• The names, descriptions, and mapping statuses of the adapter's variables.

Note:

An adapter can have one of three mapping statuses:

Ready. This adapter has been successfully compiled, and all of its variables have
been mapped correctly.

Mapping Incomplete. This adapter has been successfully compiled, but at least
one of its variables have not been mapped correctly.

Adapter Unavailable. After this adapter had been compiled successfully, it was
modified, and recompiled.

Chapter 3
Working with Process Task Adapters

3-35



Note:

If an adapter does not have any mappable variables, the Adapter Variables
region is empty. In addition, the Status field will display either Ready or Adapter
Unavailable, depending on whether the adapter has to be recompiled.

Note:

A mappable adapter variable either has been designated as Resolve at Run time
or it is an adapter return variable.

Note:

Once you attach the adapter to the process task, any responses that you defined
for the adapter appear in the Responses tab of the Editing Task window.

10. Set the mappings for each variable that appears in the Adapter Variables region of the
Integration tab. To do so, double-click the row header of the variable you want to map (for
example, SolarisUserID).

The Data Mapping for Variable window is displayed. See Fields of the Data Mapping for
Variable Window for information about the fields of the Data Mapping for Variable window.

11. Complete the Map To, Qualifier, IT Asset Type, IT Asset Property, Literal Value, and Old
Value fields.

See Also:

Adapter Mapping Information for more information about the mappings to select

12. On the toolbar, click Save. Then, click Close.

The Data Mapping for Variable window disappears. The Integration tab is active again.

13. On the Editing Task window toolbar, click Save.

The contents in the Status field change from Mapping Incomplete to Ready. In addition,
the mapping statuses for the adapter's variables change from No (N) to Yes (Y).

14. On the toolbar, click Close.

The Editing Task window disappears, and the main screen is active once again. The
adapter you added to the Password Updated task (adpSOLARISPASSWORDUPDATED)
appears in the Process Definition form.This signifies that the
adpSOLARISPASSWORDUPDATED process task adapter was attached to the Password
Updated process task.

Chapter 3
Working with Process Task Adapters

3-36



Tip:

Once you attach a process task adapter to a process task, a quick way to see the
process and task to which it is connected is by accessing the Usage Lookup tab
of the Adapter Factory form.

3.14.3 Fields of the Data Mapping for Variable Window
The Data Mapping for Variable window provides options for attaching process task adapters to
process tasks.

Table 3-7 describes the fields of the Data Mapping for Variable window.

Table 3-7    Fields of the Data Mapping for Variable WIndow

Field Name Description

Variable Name This field displays the name of the adapter variable for which you are setting
a mapping (for example, SolarisUserID).

Data Type This field shows the data type of the adapter variable (for example, String is
the data type for the SolarisUserID variable).

Map To This field contains the types of mappings that you can set for the adapter
variable (for example, IT Resources).When you map the adapter variable to
a location or a contact, Oracle Identity Manager enables the adjacent combo
box. From this combo box, select the specific type of location or contact to
which you are mapping the adapter variable. In addition, if you map the
adapter variable to a custom process form, and this form contains child
table(s), Oracle Identity Manager enables the adjacent combo box. From this
combo box, select the child table to which you are mapping the adapter
variable. If you are not mapping the adapter variable to a location, contact,
or child table of a custom process form, this combo box is grayed out.

Qualifier This field contains the qualifiers for the mapping you selected in the Map to
combo box (for example, IT Asset).

IT Asset Type This field enables you to select a specific IT Resource (for example, Solaris)
when you map an adapter variable to an IT Resource, and this variable's
data type is String.

If you are not mapping the adapter variable to an IT Resource, or the
variable's data type is not String, this field does not appear.

IT Asset Property This field enables you to select a specific field that will receive the results of
the mapping (for example, User Name), when you map an adapter variable
to an IT Resource, and this variable's data type is String.

If you are not mapping the adapter variable to an IT Resource, or the
variable's data type is not String, this field does not appear.

Important: The IT Asset Type and IT Asset Property fields are included
within this window for backward compatibility. The preferred way is to create
an adapter variable with a data type of IT Resource, in which case these
fields will not appear.

Literal Value When you map the adapter variable to a literal, use this field to specify the
specific literal value.

If you are not mapping the adapter variable to a literal, this field does not
appear.

Chapter 3
Working with Process Task Adapters

3-37



Table 3-7    (Cont.) Fields of the Data Mapping for Variable WIndow

Field Name Description

Old Value By selecting this check box, you map the adapter variable to the value that
was originally in the selected Qualifier field before modification.

Process task adapters associated with process tasks are conditionally
triggered when some field on the process form gets changed. If you click the
Old Value option, and the process task is marked Conditional, the value that
is passed to the adapter is the previous value of the field, before it got
modified. This is useful in cases of fields that accept passwords. For
example, if you want to disallow setting the password to the same value, you
can use the old value for comparison.

If you are not mapping the adapter variable to a field that belongs to a child
table of a custom process form, this check box is grayed out.

3.14.4 Removing Process Task Adapters from Process Tasks
If a process task adapter is no longer necessary for Oracle Identity Manager to complete the
process task automatically, or when you wish to attach a different adapter to a process task,
you must first remove the adapter that is attached to the process task.

To remove a process task adapter from a process task:

1. Open the Process Definition form.

In the Design Console workspace, the Process Definition form appears.

2. Select the process, which contains a task from which you want to remove an adapter (for
example, the Solaris process).

The selected process, along with its tasks, appears in the Process Definition form.

3. Double-click the row header of the process task from which you want to remove the
adapter (for example, the Password Updated task).

The Editing Task window appears, containing information about the process task. Click the
Integration tab.

4. Click the Integration tab.

The Integration tab displays information about the adapter that is attached to the process
task.

5. Click Remove.

A dialog box appears, asking if you want to remove the adapter from the process task.

6. Click OK.

A dialog box appears, signifying that the adapter has been removed from the process task.

7. Click OK.

The contents of the adapter no longer appear in the Integration tab.

8. On the toolbar, click Close.

The Editing Task window disappears, and the main screen is active once again. The
adapter that was once linked to the Password Updated task
(adpSOLARISPASSWORDUPDATED) no longer appears in the child table of the Process
Definition form.

Chapter 3
Working with Process Task Adapters

3-38



This signifies that you have removed the adapter from the process task.

3.15 Adapter Mapping Information
Adapter mapping includes the mappings you can set for the parameters of an adapter task and
adapter variable mapping to map the data at run time.

This section describes adapter task mapping and adapter variable mapping information. It
contains the following topics:

• About Adapters

• Adapter Task Mapping Information

• Adapter Variable Mapping Information

3.15.1 About Adapters
An adapter is a Java class, generated by the Adapter Factory, which enables Oracle Identity
Manager to interact with an external JAR file, a target IT resource (for example, a resource
asset), or a user-defined form.

The Adapter Factory is a code-generation tool provided by Oracle Identity Manager, which
enables a User Administrator to create Java classes.

An adapter extends the internal logic and functionality of Oracle Identity Manager. It automates
process tasks, and defines the rules for the auto-generation and validation of data in fields
within Oracle Identity Manager. There are five types of adapters: task assignment adapters,
task adapters, rule generator adapters, pre-populate adapters, and entity adapters.

3.15.2 Adapter Task Mapping Information
An adapter task is one of the several possible components within an adapter. And this is a
logical step within an adapter, equivalent to calling a programming language method.

The following types of adapter tasks are available: Functional Tasks (Java Task), Utility Tasks
(Utility Task and Oracle Identity Manager API Task), and Logic Tasks (Set Variable Task and
Error Handler Task).

This section lists the mappings that you can set for the parameters of an adapter task, in the
following topics:

• Adapter Variables

• Adapter Task

• Literal for an Adapter Task

• Adapter References

• Process Definition

• User Definition

3.15.2.1 Adapter Variables
The following table lists and describes the items of the Map To list box of the Data Mapping for
Variable window and the Name list box to which you can map the parameters of an adapter
variable for an adapter task.

Chapter 3
Adapter Mapping Information

3-39



Map To Combo Box Name Combo Box Description

Adapter Variables A list of adapter variables
are displayed

You can map the parameter to the adapter
variables that you created for this adapter.

Note: When the adapter variable's classification
type is Object, it cannot be used with process
task adapters.

Note: If the adapter variable's classification type
is IT Resource, then an Attribute combo box is
displayed. From this combo box, select the
attribute of the IT resource to which you wish to
map the parameter.

3.15.2.2 Adapter Task
The following table lists and describes the items of the Map To, Name, and Output combo
boxes of the Adapter Factory form to which you can map the parameters of an adapter task.

Map To Combo Box Name Combo Box Output combo Box Description

Adapter Task A list of adapter tasks
are displayed.

A list of output variables
pertaining to the
selected adapter task is
displayed.

You can map the
parameter to the adapter
tasks that you created
for this adapter.

3.15.2.3 Literal for an Adapter Task
The following table lists and describes the items of the Map To and Type combo boxes, as well
as the Value field of the Adapter Factory form, to which you can map the parameters of a
constant (or literal) for an adapter task.

Map To Combo Box Type Combo Box Value Field Description

Literal String, Boolean,
Character, Byte, Date,
Integer, Float, Long,
Short, Double

Enter the value of the
literal into this field.

You can map the
parameter to a String,
Boolean, Character, Byte,
Date, Integer, Float,
Long, Short, or Double
data type, respectively.

3.15.2.4 Adapter References
The following table lists and describes the items of the Map To and Type combo boxes of the
Adapter Factory form to which you can map the parameters of an adapter reference for an
adapter task.

Map To Combo Box Type Combo Box Description

Adapter References Event Handler Name or
Database Reference

You can map the parameter to the active
adapter.

Chapter 3
Adapter Mapping Information

3-40



3.15.2.5 Process Definition
The following table lists and describes the items of the Map To and Field combo boxes of the
Adapter Factory form to which you can map the parameters of a process definition for an
adapter task.

Map To Combo Box Field Combo Box Description

Process Definition Name You can map the parameter to the Name field of the
Process Definition form.

Process Definition Type You can map the parameter to the Type field of the
Process Definition form.

3.15.2.6 User Definition
The following table lists and describes the items of the Map To and Field combo boxes of the
Adapter Factory form to which you can map the parameters of a user definition for an adapter
task.

Map To Combo Box Field Combo Box Description

User Definition User Key You can map the parameter to a key, representing a
unique record of the Users form.

User Definition First Name You can map the parameter to the First Name field of the
Users form.

User Definition Middle Initial You can map the parameter to the Middle Name field of
the Users form.

User Definition Last Name You can map the parameter to the Last Name field of the
Users form.

User Definition User Login You can map the parameter to the User ID field of the
Users form.

User Definition Password You can map the parameter to user password of the
Users form.

User Definition Type You can map the parameter to the Xellerate Type field of
the Users form.

User Definition User Status You can map the parameter to the Status field of the
Users form.

User Definition Role You can map the parameter to the Role field of the Users
form.

User Definition Identity You can map the parameter to the Identity field of the
Users form.

User Definition Disabled You can map the parameter to the Disable User check
box of the Users form.

User Definition Organization You can map the parameter to the Organization field of
the Users form.

User Definition Manager You can map the parameter to the Manager field of the
Users form.

User Definition Start Date You can map the parameter to the Start Date field of the
Users form.

User Definition End Date You can map the parameter to the End Date field of the
Users form.

Chapter 3
Adapter Mapping Information

3-41



Map To Combo Box Field Combo Box Description

User Definition Email You can map the parameter to the Email field of the
Users form.

User Definition Provisioning Date You can map the parameter to the Provisioning Date
field of the Users form.

User Definition Provisioned Date You can map the parameter to the Provisioned Date field
of the Users form.

User Definition Deprovisioning Date You can map the parameter to the Deprovisioning Date
field of the Users form.

User Definition Deprovisioned Date You can map the parameter to the Deprovisioned Date
field of the Users form.

User Definition Any fields that are
displayed in the User
Defined Fields tab of
the Users form.

You can map the parameter to the selected user-defined
field.

3.15.3 Adapter Variable Mapping Information
For a newly created adapter to work, you can map data to the parameters of the adapter's
tasks. For this reason, you create placeholders, also known as adapter variables, to map the
data at run time.

Once an adapter variable is not needed for the adapter to run, you can remove it from the
adapter. After you have deleted the adapter variable, recompile the adapter.

This section contains the following topics:

• Adapter Type and Location

• From the Variable List Tab

• Process Task Adapter Variable Mappings

• Task Assignment Adapter Variable Mappings

• Rule Generator and Entity Adapter Variable Mappings

• Prepopulate Adapter Variable Mappings

3.15.3.1 Adapter Type and Location
When an adapter variable is not the adapter return variable, or it is not designated as Resolve
at Run time, it should be mapped within the Variable List tab of the Adapter Factory form. On
the other hand, if the adapter variable is classified as an adapter return variable, or the adapter
variable is set to Resolve at Run time, it can be mapped at another location within Oracle
Identity Manager. This location is contingent upon the adapter's type. For example, the
variables of a process task adapter will be mapped at a different place than the variables of a
pre-populate adapter. The following table lists the variables of a particular type of adapter that
can be mapped.

Adapter Type Location

Process Task The Integration tab of the Editing Task window

Task Assignment The Assignment tab of the Editing Task window

Rule Generator The Map Adapters tab of the Data Object Manager form

Chapter 3
Adapter Mapping Information

3-42



Adapter Type Location

Pre-Populate The Pre-Populate tab of the Form Designer form

Entity The Map Adapters tab of the Data Object Manager form

3.15.3.2 From the Variable List Tab
The following table lists the mappings that you can set from the Variable List tab.

Variable Type Map To Qualifier/Resource Type

Object Adapter References Database References

Object Adapter References Data Object References

Object Set at run time (for Task
Assignment adapters only)

Database References

Object Set at run time (for Task
Assignment adapters only)

Data Object References

IT Resource Resolve at Run time The IT Resource types that are displayed in the
Table view of the IT Resources Type Definition
form

String, Character, Byte,
Integer, Float, Long, Short,
Double

Literal If you are mapping the adapter variable to a
literal, a Literal Value field is displayed below
the Resource Type combo box. Within this field,
enter the value of this literal.

String, Character, Byte,
Integer, Float, Long, Short,
Double

Resolve at Run time NA

String, Character, Byte,
Integer, Float, Long, Short,
Double

Adapter References Event Handler Name

Note: If the data type of the adapter variable is
not String, Adapter References cannot be
selected from the Map To combo box.

Boolean Literal Boolean. If you select this resource type, two
Literal Value options are displayed below the
Resource Type combo box: True and False.

Select the option that corresponds to the value
of the adapter variable.

Boolean Resolve at Run time NA

Date Literal If you are mapping the adapter variable to a
literal, a Literal Value lookup field is displayed
below the Resource Type combo box.

Double-click this lookup field. From the Date &
Time window that is displayed, select the date
and time that will be the value of this literal.

Date Resolve at Run time NA

Date System Date NA

Note: This variable's value will reflect Oracle
Identity Manager's date and time. Hence, you
do not map it.

Chapter 3
Adapter Mapping Information

3-43



3.15.3.3 Process Task Adapter Variable Mappings
The following table lists the process task adapter variable mappings.

Variable Type Map To Qualifier/Description

Object (Adapter Return
Variable)

Process Data You can map the parameter to a field of either
the associated custom process form, or a child
table that belongs to this form.

Object (Adapter Return
Variable)

Response Code NA

Object (Adapter Return
Variable)

Task Information Note. You can map the parameter to the Note
tab of the Task List form.

Reason. You can map the parameter to the
Error Details window. To access this window,
double-click a task that is displayed within the
Task List form.

Object (Adapter Return
Variable)

Process Definition Name. You can map the parameter to the
Name field of the Process Definition form.

Type. You can map the parameter to the Type
lookup field of the Process Definition form.

Object (Adapter Return
Variable)

Organization Definition The fields of the Organizations form to which
you can map the adapter variable.

Note: Because the data type of the adapter
variable is Object, you cannot select
Organization ID from the Qualifier combo box.

Object (Adapter Return
Variable)

User Definition The fields of the Users form to which you can
map the adapter variable.

IT Resource IT Resource You can map the parameter to an IT resource.
This IT resource is a member of the IT
resource type that is displayed in parenthesis
from within the Data Type field.

IT Resource Process Data You can map the parameter to a field of the
associated process-specific form.

Note: The only field names that are displayed
in this combo box are ones with a data type of
IT Resource Lookup Field.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Process Data You can map the parameter to a field of either
the associated custom process form, or a child
table that belongs to this form.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Task Information Note. You can map the parameter to the Note
tab of the Task List form.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Task Information Reason. You can map the parameter to the
Error Details window. To access this window,
double-click a task that is displayed within the
Task List form.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Process Definition Name. You can map the parameter to the
Name field of the Process Definition form.

Chapter 3
Adapter Mapping Information

3-44



Variable Type Map To Qualifier/Description

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Process Definition Type. You can map the parameter to the Type
lookup field of the Process Definition form.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Organization Definition The fields of the Organizations form to which
you can map the adapter variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

User Definition The fields of the Users form to which you can
map the adapter variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Literal If you are mapping the adapter variable to a
literal, and the variable's data type is String,
Character, Byte, Integer, Float, Long, Short, or
Double, a Literal Value field is displayed below
the Qualifier combo box. Within the field, enter
the value of this literal.

When you are mapping the adapter variable to
a literal, and the variable's data type is
Boolean, two Literal Value options are
displayed below the Qualifier combo box: True
and False. Select the option that corresponds
to the value of the adapter variable.

If you are mapping the adapter variable to a
literal, and the variable's data type is Date, a
Literal Value lookup field is displayed below the
Qualifier combo box. Double-click this lookup
field. From the Date & Time window that is
displayed, select the date and time that will be
the value of this literal.

String IT Resources If you are mapping the adapter variable to an IT
Resource, three combo boxes are displayed
below the Map To combo box: Qualifier, IT
Asset Type, and IT Asset Property. From these
combo boxes, select the qualifier for the
mapping, the specific name of the IT resource,
and the field of the IT resource that will receive
the results of the mapping.

Note: If the data type of the adapter variable is
not String, IT Resources cannot be selected
from the Map To combo box.

3.15.3.4 Task Assignment Adapter Variable Mappings
The following table lists the task assignment adapter variable mappings.

Variable Type Map To Qualifier/Description

IT Resource Object Data You can map the parameter to an IT resource's
instance key. This IT resource is a member of
the IT resource type that is displayed in
parenthesis from within the Data Type field.

IT Resource IT Resource You can map the parameter to an IT resource.

Chapter 3
Adapter Mapping Information

3-45



Variable Type Map To Qualifier/Description

Object (Adapter Return
Value)

Object Data You can map the parameter to a field of either
the associated custom resource object form, or
a child table that belongs to this form.

Object (Adapter Return
Value)

Response Code NA

Object (Adapter Return
Value)

Task Information The fields of the Task List form to which you
can map the adapter variable.

Object (Adapter Return
Value)

Process Definition The fields of the Process Definition form to
which you can map the adapter variable.

Object (Adapter Return
Value)

Organization Definition The fields of the Organizations form to which
you can map the adapter variable.

Object (Adapter Return
Value)

User Definition The fields of the Users form to which you can
map the adapter variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Object Data You can map the parameter to a resource
object's instance key.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Task Information The fields of the Task List form to which you
can map the adapter variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Process Definition The fields of the Process Definition form to
which you can map the adapter variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Organization Definition The fields of the Organizations form to which
you can map the adapter variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

User Definition The fields of the Users form to which you can
map the adapter variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Request Info Request ID. You can map the parameter to the
Request ID field of the Requests form.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Request Info Request Action. You can map the parameter to
the Request Action field of the Requests form.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Request Info Request Priority. You can map the parameter to
the Request Priority field of the Requests form.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Request Target User The fields of the Users form to which you can
map the adapter variable.

Chapter 3
Adapter Mapping Information

3-46



Variable Type Map To Qualifier/Description

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Request Target
Organization

The fields of the Organizations form to which
you can map the adapter variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Requester Info The fields of the Users form to which you can
map the adapter variable.

String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short,
Double

Literal If you are mapping the adapter variable to a
literal, a Literal Value field is displayed below
the Qualifier combo box. Within the field, enter
the value of this literal.

Note: If the data type of the adapter variable is
Boolean, two options are displayed in place of
the field: True and False. Select the option that
reflects the value of the adapter variable.

Note: If the data type of the adapter variable is
Object, Literal cannot be selected from the Map
To combo box.

String IT Resources Resource Instance. You can map the parameter
to an IT resource's instance key. This IT
resource is a member of the IT resource type
that is displayed in parenthesis from within the
Data Type field.

String IT Resources IT Asset Type. You can map the parameter to
an IT resource type.

String IT Resources IT Asset Property. You can map this parameter
to one of the properties that comprise the
selected IT resource type.

3.15.3.5 Rule Generator and Entity Adapter Variable Mappings
The following table lists the rule generator and entity adapter variable mappings.

Variable Type Map To Qualifier/Description

Object (Adapter Return
Variable), IT Resource,
String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short

Literal If you are mapping the adapter variable to a
literal, a Literal Value field is displayed below the
Qualifier combo box. Within the field, enter the
value of this literal.

Note: If the data type of the adapter variable is
Object, Literal cannot be selected from the Map
To combo box.

Object (Adapter Return
Variable), IT Resource,
String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short

Entity Field You can map the adapter variable to a field of
the associated process form. The name of this
form is displayed in the Form Description field of
the Data Object Manager form.

Chapter 3
Adapter Mapping Information

3-47



Variable Type Map To Qualifier/Description

Object (Adapter Return
Variable), IT Resource,
String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short

Organization Definition The fields of the Organizations form to which
you can map the adapter variable.

Note: If the data type of the adapter variable is
not Object, you cannot select Organization ID
and Organization Parent ID from the Qualifier
combo box.

Object (Adapter Return
Variable), IT Resource,
String, Boolean,
Character, Byte, Date,
Integer, Float, Long, Short

User Definition The fields of the Users form to which you can
map the adapter variable.

3.15.3.6 Prepopulate Adapter Variable Mappings
The following table lists the prepopulate adapter variable mappings.

Variable Type Map To Qualifier/Description

IT Resource IT Resource You can map the parameter to an IT resource.
This IT resource is a member of the IT resource
type that is displayed in parenthesis from within
the Data Type field.

IT Resource Process Data You can map the parameter to a field of the
associated process-specific form.

Note: The only field names that are displayed in
this combo box are ones with a data type of IT
Resource Lookup Field.

Object, String, Boolean,
Character, Byte, Date,
Integer, Float, Long,
Short, Double

Process Data You can map the parameter to a field of the
associated process-specific form.

Object, String, Boolean,
Character, Byte, Date,
Integer, Float, Long,
Short, Double

Organization Definition The fields of the Organizations form to which
you can map the adapter variable.

Object, String, Boolean,
Character, Byte, Date,
Integer, Float, Long,
Short, Double

User Definition The fields of the Users form to which you can
map the adapter variable.

Chapter 3
Adapter Mapping Information

3-48



Variable Type Map To Qualifier/Description

String, Boolean,
Character, Byte, Date,
Integer, Float, Long,
Short, Double

Literal If you are mapping the adapter variable to a
literal, and the variable's data type is String,
Character, Byte, Integer, Float, Long, Short, or
Double, a Literal Value field is displayed below
the Qualifier combo box. Within the field, enter
the value of this literal.

When you are mapping the adapter variable to a
literal, and the variable's data type is Boolean,
two Literal Value options are displayed below
the Qualifier combo box: True and False. Select
the option that corresponds to the value of the
adapter variable.

If you are mapping the adapter variable to a
literal, and the variable's data type is Date, a
Literal Value lookup field is displayed below the
Qualifier combo box. Double-click this lookup
field. From the Date & Time window that is
displayed, select the date and time that will be
the value of this literal.

String IT Resources If you are mapping the adapter variable to an IT
Resource, three combo boxes are displayed
below the Map To combo box: Qualifier, IT Asset
Type, and IT Asset Property. From these combo
boxes, select the qualifier for the mapping, the
specific name of the IT resource, and the field of
the IT resource that will receive the results of
the mapping.

Note: If the data type of the adapter variable is
not String, then IT Resources cannot be
selected from the Map To combo box.

3.16 Defining Error Messages
The Error Message Definition form is used to define error messages that are displayed in the
UI and that application developers can access when creating error handler tasks.

This section contains the following topics:

• The Error Message Definition Form

• Fields of the Error Message Definition Form

• Creating an Error Message

3.16.1 The Error Message Definition Form
The Error Message Definition form is in the Development Tools folder of the Design Console.

The Error Message Definition form is used to:

• Create the error messages that are displayed in dialog boxes when certain problems
occur.

• Define the error messages that users can access when they create error handler tasks by
using the Adapter Factory form.

Chapter 3
Defining Error Messages

3-49



The error messages you create are displayed on the Identity Self Service or Identity
System Administration if they are added to an adapter definition while creating a new
adapter by using an error handler logic task based on a failure condition.

Note:

If an entity adapter is attached to a process form or an object form for validation of
field values, these adapters will run if you edit data in these forms after completing
direct or request provisioning.

This release of Oracle Identity Manager does not support creating new entity
adapters.

Figure 3-3shows the Error Message Definition form.

Figure 3-3    Error Message Definition Form

When you create an error message, Oracle Identity Manager populates the Key field with a
unique identification number. When a condition occurs that causes the error message to be
displayed, the text in the Description field is displayed in a dialog box.

Note:

After you create an error message definition, to reset the count of how many times
the error message is displayed, click the Reset Count button. This resets the count
to zero.

Chapter 3
Defining Error Messages

3-50



3.16.2 Fields of the Error Message Definition Form
The Error Message Definition form provides fields to create error messages to be displayed
when certain problems occur and to define error messages that users can access when they
create error handler tasks.

Table 3-8 describes the data fields of the Error Message Definition form.

Table 3-8    Fields of the Error Message Definition Form

Field Name Description

Key The error message definition's unique, system-generated identification
number.

Code The code that represents the error message definition.

Reset Count When you click this button, Oracle Identity Manager resets the counter to zero.
This counter is the number of times the error message is displayed.

Description A description of the error message.

Remedy A description of how to correct the condition that caused the error message to
be displayed.

Help URL The link to the URL that contains an online Help topic for this error message.

Action A one-letter code, representing the seriousness of the condition that causes
the error message to be displayed.

An error message has three levels of seriousness: Error (E), Rejection (R),
and Fatal Rejection (F).

Severity For classification purposes, you can categorize the seriousness of the
condition that results in the error message being displayed, even further.

An error message has five sub-levels of severity: None (N), Low (L), Medium
(M), High (H), and Crash (C).

Note Explanatory information about the error message.

3.16.3 Creating an Error Message
You can create error messages and add new error codes and advice messages in the
customResources.properties resource bundle to display the localized error codes and advice
messages in the UI.

To create an error message:

1. Open the Error Messaging Definition form.

2. In the Code field, enter the code that represents the error message definition.

3. In the Description field, enter a description for the error message.

4. In the Remedy field, you can enter a description for how to correct the condition that
causes the error message to be displayed.

5. In the Help URL field, you can enter the link to the URL that contains an online Help topic
for this error message.

6. (Optional) Double-click the Action Lookup field.

Chapter 3
Defining Error Messages

3-51



From the Lookup dialog box that is displayed, you can select a code that represents the
seriousness of the condition that causes the error message to be displayed. These codes,
listed by degree of seriousness (from lowest to highest), are:

• Error (E). Oracle Identity Manager stores the error message, and stops any related
operations from being triggered. Instead, the operation rolls back to the previous
operation.

• Reject (R). Oracle Identity Manager stores the rejection message, but it does not
prevent subsequent operations from being executed.

• Fatal Reject (F). Oracle Identity Manager stores the rejection message, and it stops
any subsequent operations from being triggered. However, it stores all operations that
were executed up to the fatal rejection.

7. (Optional) Double-click the Severity Lookup field. From the Lookup dialog box that is
displayed, you can select a code (None (N), Low (L), Medium (M), High (H), or Crash (C)).
This code presents a detailed classification of the code that is displayed in the Action
lookup field.

8. In the Note field, enter explanatory information about the error message.

9. Click Save.

The error message is created.

After creating error messages by using the Error Message Definition form, you must add
new error codes and advice messages in the Oracle Identity Manager
customResources.properties resource bundle. These localized error codes and advice
messages will be displayed in Identity Self Service or Identity System Administration.

Chapter 3
Defining Error Messages

3-52



4
Understanding the Identity Connector
Framework

Identity connectors are components developed to link Oracle Identity Manager with external
stores of applications, directories, and databases.
Oracle Identity Manager provides support for developing and building identity connectors by
using the Identity Connector Framework (ICF). ICF decouples Oracle Identity Manager from
other applications to which it connects. Therefore, you can build and test an identity connector
before integrating it with Oracle Identity Manager.

This chapter contains conceptual information and sample code in the following sections:

• Advantages of ICF

• Introducing the ICF Architecture

• Using the ICF API

• Introducing the ICF SPI

• Extending an Identity Connector Bundle

• Using an Identity Connector Server

Note:

Earlier releases of Oracle Identity Manager have other options for building identity
connectors. These options are still supported, but it is recommended that you build
new identity connectors by using the ICF.

4.1 Advantages of ICF
The advantages of ICF include single platform usage, simple installation, stateless design, and
future reuse.

ICF provides the following benefits:

• Single platform: Identity Connectors are shared between Oracle Identity Manager and
Oracle Waveset (OW), which means they are built on top of the same platform so that a
single connector can be used for both Oracle Identity Manager and OW to communicate
with external identity-aware applications.

• Simple installation: ICF offers simple installation as most of the manual configuration
during installation, such as copying the connector files and the external code files are
automatically taken care by ICF.

• Stateless by design: Identity connectors are stateless by design. An identity connector
stores nothing. The calling application supplies to the connector the values for its
configuration, including the information required to connect to the target application. This is
because, identity connectors are stateless, each bundle implementation are kept as simple

4-1



as possible, and coupling the implementation with that of the calling application is also
prevented.

• ICF Common: ICF provides common connector integration layer for all ICF based
connectors in Oracle Identity Manager and no development effort is required to develop
ICF Common.

• Remote Execution: ICF supports remote execution of connector server using Java or .NET
implementation.

• JVM Isolation: Remote ICF provides JVM isolation, which means running a Java connector
on a different host avoids JVM conflicts.

• Reuse: In future, other products can reuse Identity Connectors.

4.2 Introducing the ICF Architecture
Identity connectors allow Oracle Identity Manager to carry out user provisioning and
reconciliation operations on target systems in the enterprise. ICF decouples any calling
application, such as Oracle Identity Manager, from the implementation of the connector. ICF
also decouples the implementation of the connector from the calling application. The same
connector implementation can work with several different calling applications.

This section describes the ICF architecture. It contains the following topics:

• Identity Connector Framework Deployment

• Compatibility Between the ICF and Connector Bundles

• Deployment Methodology to Support Multiple Versions of Same Target

• Connector Server Remote System Framework

• ICF Framework

4.2.1 Identity Connector Framework Deployment
The ICF API and SPI are situated between Oracle Identity Manager and the target system.

The API implementation always post-processes the results returned by the SPI Search
operation. This double-checks the SPI implementation if the connector bundle does not
implement all Filter types, or does not implement them properly for all attributes. If the
implementation of Search in the SPI returns every object of the specified type, then the API
implementation discards every object that does not match the specified Filter. Post-processing
in the API implementation is expensive in terms of processing-time and network-bandwidth,
and therefore, it is more efficient if each connector-bundle supports every type of filter (search
predicate or logical operator) that the target application can support natively. See the details for
Filter Translator in Common Classes.

Figure 4-1 illustrates that the calling application sees only the ICF API. The ICF API dedicates
a classloader to each connector bundle, so that the calling application is not exposed to the
classes and libraries in the implementation of the connector-bundle (SPI). Bundle classloader
also ensures isolation between the bundles as well as making any bundled library available to
the connector bundle only, thereby avoiding conflicts between dependencies.

Chapter 4
Introducing the ICF Architecture

4-2



Figure 4-1    Identity Connector Framework Deployment

API

SPI

Provisioning 

Engine

Common

Code

Objects &

Utilities

4.2.2 Compatibility Between the ICF and Connector Bundles
Newer versions of the ICF are backward-compatible with existing connector bundle.

Figure 4-2 illustrates the backwards compatibility of the ICF. Newer bundles may be deployed
without affecting existing ones. In addition, newer versions of the ICF are generally backward-
compatible with existing bundles. Therefore, any connector should work with a new version of
framework.

Figure 4-2    Compatibility Between the ICF and Connector Bundles

Part of OIM 

Application

Post Process 

Handler (Bulk)

Identity 

Manager

OIM 

Database

Bulk Update

Reconciliation 

Event

User 

Management API

Request Engine

Validation Plug-

BPEL Approval

Orchestration 

Engine

Validation Handler

Action Handler

Post-process 

Handler

SPML Web 

Service

Chapter 4
Introducing the ICF Architecture

4-3



4.2.3 Deployment Methodology to Support Multiple Versions of Same Target
The ICF deployment methodology supports multiple versions of the same target.

Figure 4-3 illustrates deployment methodology of the ICF. Framework supports LCM to clone
connector to support multiple versions of the same target. In addition, Framework supports
connection pooling.

Figure 4-3    Deployment Methodology to Support Multiple Versions of Same Target

4.2.4 Connector Server Remote System Framework
Connector server remote system framework enables remote execution of connector server
using Java or .NET implementation with targets being local or remote to connector bundles.

Figure 4-4 illustrates Framework installed on remote system. This enables remote execution of
connector server using Java or .NET implementation with targets being local or remote to
connector bundles. This is required when a connector bundle is not directly executed with in an
application and ICF allows the application to communicate with externally deployed bundles. In
addition, the connector artifacts can be same for local or remote system.

Chapter 4
Introducing the ICF Architecture

4-4



Figure 4-4    Connector Server Remote System Framework

4.2.5 ICF Framework
The ICF Framework enables the convergence of Oracle Identity Manager and Oracle Waveset
(OW) connectors to a single connector, best of both.

Figure 4-5 illustrates the ICF Framework.

Chapter 4
Introducing the ICF Architecture

4-5



Figure 4-5    ICF Framework

4.3 Using the ICF API
The org.identityconnectors.framework.api package contains the ICF API. Oracle Identity
Manager uses the API to call Connector implementations. The API provides a consistent view
of any implemented Connector, regardless of the supported operations.

The following sections explain these interfaces and classes.

• The ConnectorInfoManagerFactory Class

• The ConnectorInfoManager Interface

• The ConnectorKey Class

• The ConnectorInfo Interface

• The APIConfiguration Interface

• The ConfigurationProperties Interface

• The ConnectorFacadeFactory Class

• The ConnectorFacade Interface

4.3.1 The ConnectorInfoManagerFactory Class
The ConnectorInfoManagerFactory class allows Oracle Identity Manager to load Connector
classes from a set of bundles.

The static getInstance method returns an object of type ConnectorInfoManagerFactory. This
object can then be used to get a reference to the ConnectorInfoManager. (See The

Chapter 4
Using the ICF API

4-6



ConnectorInfoManager Interface for more information.) The following example illustrates the
ConnectorInfoManagerFactory implementation:

//create ConnectorInfoManagerFactory
ConnectorInfoManagerFactory cInfoManagerFactory =
    ConnectorInfoManagerFactory.getInstance();

4.3.2 The ConnectorInfoManager Interface
The ConnectorInfoManager interface maintains a list of ConnectorInfo instances. Each
instance describes an identity connector.

ConnectorInfoManager can be obtained by calling the getLocalManager method on the
ConnectorInfoManagerFactory, and a list of bundle URLs is passed to it.
ConnectorInfoManager can also by obtained by calling getRemoteManager method on the
ConnectorInfoManagerFactory. The getRemoteManager method accepts an instance of
RemoteFrameworkConnectionInfoand, which is used for getting information about connectors
deployed on Connector Server.

In the following example, cInfoManagerFactory is the instance of the
ConnectorInfoManagerFactory and bundleURL is a list of bundle URLs that may point to
directories consisting of JAR-ed or un-JAR-ed bundles.

//get the ConnectorInfoManager
ConnectorInfoManager cInfoManager =
    cInfoManagerFactory.getLocalManager(bundleURL);

4.3.3 The ConnectorKey Class
A ConnectorKey uniquely identifies a Connector instance within an installation.

The ConnectorKey class takes a bundleName (name of the Connector bundle), a
bundleVersion (version of the Connector bundle) and a connectorName (name of the
Connector bundle) as illustrated in the example in The ConnectorInfo Interface.

//get the ConnectorKey reference
ConnectorKey flatFileConnectorKey =
    new ConnectorKey(bundleName, bundleVersion, connectorName);

4.3.4 The ConnectorInfo Interface
The ConnectorInfo interface contains information about a specific identity connector. It contains
the display name, key and message details regarding the particular identity connector.

The following example illustrates how to implement the ConnectorInfo.

//get the ConnectorInfo
ConnectorInfo info =
    cInfoManager.findConnectorInfo(flatFileConnectorKey);

In the example, cInfoManager is the ConnectorInfoManager and flatFileConnectorKey is the
identity connector key.

4.3.5 The APIConfiguration Interface
The APIConfiguration interface shows the configuration properties from both the SPI and the
API sides.

Chapter 4
Using the ICF API

4-7



The getConfigurationProperties method returns a ConfigurationProperties instance based on
the connector Configuration implementation, initialized to the defaults. Caller can then modify
the properties, as required. The following example illustrates this.

APIConfiguration apiConfig =
    info.createDefaultAPIConfiguration();

4.3.6 The ConfigurationProperties Interface
The ConfigurationProperties interface encapsulates the SPI Configuration and uses reflection
to identify the individual properties that are available for an application to manipulate.

Set all of the identity connector's configuration properties using the setPropertyValue method
as defined in the following example.

public void setPropertyValue
  (java.lang.String name, java.lang.Object value)

The following example illustrates an implementation of the ConfigurationProperties interface.

//get the default APIConfiguration
ConfigurationProperties flatFileConfigProps =
    apiConfig.getConfigurationProperties();

4.3.7 The ConnectorFacadeFactory Class
The ConnectorFacadeFactory class allows an application to get a Connector instance and to
manage a pool of Connector instances.

The following example illustrates the ConnectorFacadeFactory definition.

//get a reference to ConnectorFacadeFactory
ConnectorFacadeFactory facadeFactory =
    ConnectorFacadeFactory.getinstance();

4.3.8 The ConnectorFacade Interface
The ConnectorFacade interface is used by the target system to invoke identity connector
operations by representing a specific identity connector on the API side.

The following example illustrates the ConnectorFacade implementation.

//create a ConnectorFacade (nothing but a reference to Connector on SPI side)
ConnectorFacade connectorFacade = facadeFactory.newInstance(apiConfig)

4.4 Introducing the ICF SPI
Developers implement the ICF SPI to create identity connectors. The ICF SPI is made up of
many interfaces but the developer need only implement those supported by the target system.
SPI can again be classified into required, operation, and feature-based interfaces.

Required interfaces must be implemented irrespective of the operations supported and they
help to create the connector and maintain the connection with the target system, while
operation interfaces help the connector to support various operations. Feature-based
interfaces support certain features supported by the ICF.

The following sections have more information.

• Implementing the Required Interfaces

Chapter 4
Introducing the ICF SPI

4-8



• Implementing the Feature-based Interfaces

• Implementing the Operation Interfaces

• Common Classes

4.4.1 Implementing the Required Interfaces
All identity connectors are required to provide an implementation of the
org.identityconnectors.framework.spi.Connector and
org.identityconnectors.framework.spi.Configuration interfaces.

These two interfaces declare and initialize the identity connector with the target system. The
following sections have more information:

• The org.identityconnectors.framework.spi.Connector Interface

• Implementing the Connector Methods

• The org.identityconnectors.framework.spi.Configuration Interface

• Implementing the Configuration Methods

4.4.1.1 The org.identityconnectors.framework.spi.Connector Interface
This is the main interface to declare an identity connector. Many connectors create the
connection to the target system when the connection is required, removing the connection
when finished with it, and disposing of any resources it has used. The interface provides the
init and dispose life cycle methods for this purpose.

Note:

Connector implementations must be annotated with type
org.identityconnectors.framework.spi.ConnectorClass by providing the
configurationClass and displayNameKey information. The displayNameKey must be
a key defined in the Messages.properties file.

Every connector implementation must be annotated with @ConnectorClass. This is required
because the ICF would scan all top level .class files in the connector bundle looking for classes
that have the @ConnectorClass annotation, therefore, autodiscovering connectors that are
defined in the bundle. This annotation requires the following elements:

• configurationClass: This is the configuration class for this connector. This class has all
the information about the target that can be used by the connector to connect and perform
various provisioning and reconciliation operations. See section The
org.identityconnectors.framework.spi.Configuration Interface for more information on how
to implement the configuration class.

• displayNameKey: Display name key that must be present in the message catalog.

The following is a sample connector implementation.

/**
 * Flat file connector implementation. This connector supports create, 
 * delete, search and update operations.
 */
@ConnectorClass
  (configurationClass=FlatFileConfigurationImpl.class,

Chapter 4
Introducing the ICF SPI

4-9



   displayNameKey="FLAT_FILE_CONNECTOR")
public class FlatFileConnector implements Connector,
   CreateOp, DeleteOp,SearchOp<Map<String, String>>,UpdateOp{

Here:

• CreateOp: Helps the connector to create an entity on the target system

• DeleteOp: Helps the connector to delete an entity on the target system

• SearchOp: Helps the connector to search an entity on the target system

• UpdateOp: Helps the connector to update an existing entity on the target system

See Implementing the Operation Interfaces for more information.

4.4.1.2 Implementing the Connector Methods
The following sections contain information and sample code that illustrates how you might
implement the Connector methods.

• Implementing the init Method

• Implementing the dispose Method

• Implementing the getConfiguration Method

Note:

For complete code regarding a Connector implementation, see Developing a Flat File
Connector.

4.4.1.2.1 Implementing the init Method

The init method initializes the connector. The connector initializes itself with the configuration
instance as provided with the annotation @ConnectorClass. The init method takes a
Configuration object as an argument. The Configuration object has all the information required
by the Connector to connect to the target system.

The following example illustrates how to implement the init method of interfaces in JDK 1.8.

Note:

In this document, all code samples use the methods implementing interfaces in JDK
1.8.

@Override
 public void init(Configuration config) {
     this.flatFileConfig = (FlatFileConfiguration) config;
 
     FlatFileIOFactory flatFileIOFactory = 
       FlatFileIOFactory.getInstance(flatFileConfig);
     this.flatFileMetadata = flatFileIOFactory.getMetadataInstance();
     this.flatFileParser = flatFileIOFactory.getFileParserInstance();
     this.flatFileWriter = flatFileIOFactory.getFileWriterInstance();

Chapter 4
Introducing the ICF SPI

4-10



     log.ok("Initialization done");
 }

Note:

FlatFileIOFactory, FlatFileMetadata, FlatFileParser and FlatFileWriter are supporting
classes and are not part of the ICF. An implementation of these classes is illustrated
in Developing a Flat File Connector.

The init method implementation does the following:

• Stores the configuration information of the target system. This can be used later while
performing an operation.

• Initializes all the supporting classes it uses while performing any provisioning and
reconciliation operations.

4.4.1.2.2 Implementing the dispose Method

The dispose method disposes of any resources held by this Connector instance. Once the
method is called, the Connector instance is discarded and can not be used. The following
example illustrates how to implement the dispose method.

/**
 * Disposes any resource used by the connector.
 */
 @Override
 public void dispose() {
//close any open FileReader or FileWriter instances.

//close connection with the target

//close connection if any with database
 }

4.4.1.2.3 Implementing the getConfiguration Method

The getConfiguration method returns the Configuration instance passed to the Connector
when the init method was used. The following example illustrates how to implement the
getConfiguration method.

/**
 * returns the Configuration of this connector
 */
@Override
public Configuration getConfiguration() {        
    return this.flatFileConfig;
}

Note:

Sometimes, components must be able to access the Configuration instance after
initialization. This is supported by the accessor method getConfiguration().

Chapter 4
Introducing the ICF SPI

4-11



4.4.1.3 The org.identityconnectors.framework.spi.Configuration Interface
The implementation of this interface encapsulates the configuration of a connector.
Configuration implementation includes all the necessary information of the target system,
which is used by the Connector implementation to connect to the target system and perform
various reconciliation and provisioning operations. The implementation should have a default
Constructor with setters and getters defined for its properties. Every property declared may not
be required but if a property is required, then it should be marked required using the annotation
org.identityconnectors.framework.spi.ConfigurationProperty. Configuration implementation is a
Java bean and all the instance variables (mandatory or not) do have default values. For
example, a string userName is used to connect to the target system and this is a mandatory
attribute. This has a default value of null. When userName is a mandatory attribute, ICF
expects a value to be provided by Oracle Identity Manager. In other words, Oracle Identity
Manager cannot miss out this parameter. If missed, then the connector throws
ConfigurationException.

The implementation should check that all required properties are available and validated
before passing itself to the Connector. The interface provides a validate method for this
purpose. For example, there are three mandatory configuration parameters, such as the IP
address of the target, the username to connect to the target, and the password for the user.
The validate method implementation can check for non-NULL values and valid IP address by
using regex.

Note:

ICF also provides a convenient base class
org.identityconnectors.framework.spi.AbstractConfiguration for configuration objects
to extend.

The following is the Configuration implementation:

/**
 * Configuration implementation for the flat file connector. 
 */
public class FlatFileConfigurationImpl extends AbstractConfiguration{

4.4.1.4 Implementing the Configuration Methods
The Configuration implementation must provide implementation for the following methods:

• The validate() Method

• The setConnectorMessages() Method

• The getConnectorMessages() Method

4.4.1.4.1 The validate() Method

The validate method checks that the values of all required properties are set. It also validates
that all values of configuration properties are valid. In other words, it validates that all values of
the configuration properties are in the expected range and have the expected format. If the
configuration is not valid, then the implementations generate the most specific
RuntimeException available. When no specific exception is available, the implementations can

Chapter 4
Introducing the ICF SPI

4-12



throw ConfigurationException. The following example illustrates how to implement the validate
method.

@Override
    public void validate() {        
        // Validate if file exists and is usable
        boolean validFile = (this.storeFile.exists() &&
                this.storeFile.canRead() &&
                this.storeFile.canWrite() &&
                this.storeFile.isFile());        
        if (!validFile)
           throw new ConfigurationException("User store file not valid");
        FlatFileIOFactory.getInstance(this);
    }

Here, if the target flat file provided is valid or not is checked, such as is a file, is writeable, is
readable. If not valid, then an exception is generated.

Implementations of the validate method should NOT connect to the target system to validate
the properties.

Note:

This implementation depends on an instance variable (private File storeFile) and a
supporting class (FlatFileIOFactory). A complete implementation is illustrated in 
Developing a Flat File Connector.

4.4.1.4.2 The setConnectorMessages() Method

The setConnectorMessages method sets the
org.identityconnectors.framework.common.objects.ConnectorMessages message catalog
instance, allowing the Connector to localize messages. The following example illustrates the
setConnectorMessages method definition:

public final void setConnectorMessages(ConnectorMessages messages) {_connectorMessages = 
messages;}

4.4.1.4.3 The getConnectorMessages() Method

The getConnectorMessages method returns the ConnectorMessages set by the
setConnectorMessages method. The following example illustrates the getConnectorMessages
method definition:

public final ConnectorMessages getConnectorMessages() {return _connectorMessages;}

4.4.2 Implementing the Feature-based Interfaces
The PoolableConnector and AttributeNormalizer interfaces are used to enable identity
connector pooling and attribute normalizing respectively.

This section describes the PoolableConnector and AttributeNormalizer interfaces. It contains
the following topics:

• The org.identityconnectors.framework.spi.PoolableConnector Interface

• The org.identityconnectors.framework.spi.AttributeNormalizer Interface

Chapter 4
Introducing the ICF SPI

4-13



4.4.2.1 The org.identityconnectors.framework.spi.PoolableConnector Interface
Connection pooling by ICF is a feature provided by the ICF in which the framework maintains a
pool of connector instances and uses them while performing provisioning and reconciliation
operations. Connectors can make use of pooling by implementing the PoolableConnector
interface instead of plain Connector interface. To make use of this feature, implement the
PoolableConnector interface. If you implement the Connector interface, then ICF creates a
new connector instance for every operation, creates a new connection with the target,
completes the provisioning/reconciliation operation, removes the connection with the target
system, and finally disposes this connector instance. Therefore, the advantages of
implementing PoolableConnector is that a pool of configurable connector instances are
maintained and are reused for many operations.

Some of configurable options are:

• Maximum connector objects in the pool that are idle and active (_maxObjects)

• Maximum connector objects that are idle (_maxIdle)

• Max time to wait if the pool is waiting for a free object to become available before failing
(_maxWait)

• Minimum time to wait before evicting an idle object (_minEvictableIdleTimeMillis)

• Minimum number of idle objects (_minIdle)

These values must be set by connector API developer, and if not provided, then the following
default values are used:

• _maxObjects = 10

• _maxIdle = 10

• _maxWait = 150 * 1000 ms

• _minEvictableIdleTimeMillis = 120 * 1000 ms

• _minIdle = 1

The PoolableConnector interface extends the Connector interface. It is implemented to enable
identity connector pooling that ICF provides. ICF must make sure that the Connector instance
is alive before being used. For this purpose, the interface provides a checkAlive method. The
following is a sample flat file PoolableConnector implementation:

/**
 * Flat file connector implementation. This is a poolable connector
   which supports create, delete, search and update operations.
 */
@ConnectorClass
  (configurationClass=FlatFileConfigurationImpl.class,
   displayNameKey="FLAT_FILE_CONNECTOR")
public class FlatFileConnector implements PoolableConnector,
   CreateOp, DeleteOp,SearchOp<Map<String, String>>,UpdateOp{

To implement the PoolableConnector interface, provide an implementation of the checkAlive
method along with all the methods discussed in The
org.identityconnectors.framework.spi.Connector Interface. The checkAlive method determines
if the Connector instance is alive and can be used for operations on the target system.
checkAlive can be called often thus the developer should make sure the implementation is fast.
The method should throw a specific RuntimeException (if available) when the Connector is no
longer alive. The following example illustrates how to implement the checkAlive method:

Chapter 4
Introducing the ICF SPI

4-14



/**
* Checks if this connector is alive, if not throws a RuntimeException
*/
@Override
public void checkAlive() {
//check if the connector is still connected to target
}

4.4.2.2 The org.identityconnectors.framework.spi.AttributeNormalizer Interface
This interface must be implemented by a Connector that needs to normalize any attributes
passed to it. A normalizer converts values to a standard form for the purpose of display,
consumption, or comparison. For example, a normalizer might convert text values to a specific
case, trim whitespace, or order the elements of a DN in a specific way.

The interface defines a normalizeAttribute method for this purpose. This method takes an
ObjectClass and an Attribute to be normalized as arguments and returns the normalized
Attribute. Attribute normalization is applied during many operations including:

• Filters that are passed to SearchOp

• Results returned from SearchOp

• Results returned from SyncOp

• Attributes passed to UpdateAttributeValuesOp

• Uids returned from UpdateAttributeValuesOp

• Attributes passed to UpdateOp

• Uids returned from UpdateOp

• Attributes passed to CreateOp

• Uids returned from CreateOp

• Uids passed to DeleteOp

The following example illustrates the normalizeAttribute method definition:

public Attribute normalizeAttribute (ObjectClass oClass, Attribute attribute) {
if (attribute instanceof Uid) {
return new Uid(LdapUtil.createUniformUid((String)newValues.get(0), 
configuration.getSuffix()));
}
}

4.4.3 Implementing the Operation Interfaces
Each operation interface, which belongs to the org.identityconnectors.framework.spi.operations
package, defines an action that the connector may perform on a target system.

This section describes the operation interfaces. It contains the following topics:

• About Operation Interfaces

• Implementing the SchemaOp Interface

• Implementing the CreateOp Interface

• Implementing the DeleteOp Interface

• Implementing the SearchOp Interface

• Implementing the UpdateOp Interface

Chapter 4
Introducing the ICF SPI

4-15



4.4.3.1 About Operation Interfaces
Each operation interface defines an action that the Connector may perform on a target system,
if supported by it. The operation interfaces belong to the
org.identityconnectors.framework.spi.operations package. The names of these operation
interfaces are listed below, but subsequent sections elaborate on each interface:

• AuthenticateOp

• CreateOp

• DeleteOp

• ResolveUsernameOp

• SchemaOp

• ScriptOnConnectorOp

• ScriptOnResourceOp

• SearchOp<T>SyncOp

• TestOp

• UpdateAttributeValuesOp

• UpdateOp

4.4.3.2 Implementing the SchemaOp Interface
The SchemaOp interface is implemented to allow the connector to describe the objects it can
handle on the target system. The schema that a connector returns describes the object-
classes that it exposes for management. Each object-class has a name, a description, and a
set of attribute definitions. Each attribute definition has a name, a syntax, and certain flags that
describe its properties, such as multi-valued, single-valued, readable, or writeable.

The schema that a connector returns describes the attributes of each type of object that the
connector exposes. Sometimes, this requires translation from an internal representation to this
Schema format. In other instances, the Schema presents as an attribute; something that is
natively available only via calls to the target API. Irrespective of how the SPI implementation
accomplishes the mapping between the native representation and the corresponding
ConnectorObject, the Schema provides the metadata that describes what a client can expect
to find in a ConnectorObject of each type, which is objectClass.

To implement this interface, provide an implementation for the schema method as defined in
the following example:

public Schema schema

The implementation should return the schema containing the types of objects that this identity
connector supports.

@Override
  public Schema schema() {
      SchemaBuilder flatFileSchemaBldr = new SchemaBuilder(this.getClass());
      Set<AttributeInfo> attrInfos = new HashSet<AttributeInfo>();
      for (String fieldName : flatFileMetadata.getOrderedTextFieldNames()) {
          AttributeInfoBuilder attrBuilder = new AttributeInfoBuilder();
          attrBuilder.setName(fieldName);
          attrBuilder.setCreateable(true);
          attrBuilder.setUpdateable(true);

Chapter 4
Introducing the ICF SPI

4-16



          attrInfos.add(attrBuilder.build());
      }
      
// Supported class and attributes
      flatFileSchemaBldr.defineObjectClass
        (ObjectClass.ACCOUNT.getDisplayNameKey(), attrInfos);
      return flatFileSchemaBldr.build();
  }

Note:

The Uid should not appear in the returned schema.

4.4.3.3 Implementing the CreateOp Interface
The CreateOp interface is implemented to enable creating objects on the target system. To
implement this interface, provide an implementation of the create() method, as shown in the
following example:

public Uid create
  (ObjectClass objectClass, Set<Attribute> attributes, 
   OperationOptions options)

This method takes an ObjectClass (for example, account or group), a set object attributes, and
operation options. The implementation creates an object on the target system by using passed
object attributes and object type defined by ObjectClass. The ObjectClass argument specifies
the class of object to create. The class of object to be created is one of the inputs to the create
operation. ObjectClass is the first argument to the create() method, as shown in the following
example:

@Override
    public Uid create(ObjectClass arg0, Set<Attribute> attrs,
            OperationOptions ops) {
 
        System.out.println("Creating user account " + attrs);
        assertUserObjectClass(arg0);
        try {
            FlatFileUserAccount accountRecord = new FlatFileUserAccount(attrs);
        // Assert uid is there
            assertUidPresence(accountRecord);
 
        // Create the user
            this.flatFileWriter.addAccount(accountRecord);
 
        // Return uid
            String uniqueAttrField = this.flatFileConfig
                    .getUniqueAttributeName();
            String uniqueAttrVal = accountRecord
                    .getAttributeValue(uniqueAttrField);
            System.out.println("User " + uniqueAttrVal + " created");
            
            return new Uid(uniqueAttrVal);
        } catch (Exception ex) {
 
        // If account exists
            if (ex.getMessage().contains("exists"))
                throw new AlreadyExistsException(ex);
 

Chapter 4
Introducing the ICF SPI

4-17



        // For all other causes
            System.out.println("Error in create " + ex.getMessage());
            throw ConnectorException.wrap(ex);
        }
     }

If the operation is successful, Uid instance representing object identifier on the target system is
supposed to be created and returned. The caller can then use the Uid to refer to the created
object.

4.4.3.4 Implementing the DeleteOp Interface
The DeleteOp interface is implemented to enable deleting objects from the target system. To
implement this interface, provide an implementation for the delete method as defined in the
following example:

public void delete
   (ObjectClass objectClass, Uid uid, OperationOptions options)

This method takes an ObjectClass (for example, account or group), the Uid of the object being
deleted from the target system, and operation options. The implementation deletes the object
identified by the provided Uid from the target system. if the object does not exist on the target
system, then an org.identityconnectors.framework.common.exceptions.UnknownUidException
is generated. The following example illustrates how to implement the delete method:

@Override
    public void delete(ObjectClass arg0, Uid arg1, OperationOptions arg2) {
        final String uidVal = arg1.getUidValue();
        this.flatFileWriter.deleteAccount(uidVal);
        log.ok("Account {0} deleted", uidVal);
    }

Note:

If the delete operation fails, then ICF generates subclasses of RuntimeException.
See Java API Reference for Identity Connector Framework for details.

4.4.3.5 Implementing the SearchOp Interface
The SearchOp interface is implemented to enable searching objects on the target system.

This section describes how to implement the SearchOp interface. It contains the following
topics:

• About Implementing the SearchOp Interface

• Implementing the createFilterTranslator Method

• Implementing the executeQuery Method

4.4.3.5.1 About Implementing the SearchOp Interface
The SearchOp interface is implemented to enable searching objects on the target system.

Here, the search operation consists of:

• Creation of a native filter to implement search conditions that are specified generically.

Chapter 4
Introducing the ICF SPI

4-18

https://docs.oracle.com/middleware/12213/oig/OMICF/index.html


• Executing the actual query.

Implementing these methods in the SPI allows the API to support search. The API performs
(by post-processing the result) any filtering that the connector does not perform, for example,
by translating any specified filter conditions into native search conditions.

To implement this interface, provide an implementation for the createFilterTranslator and
executeQuery methods.

4.4.3.5.2 Implementing the createFilterTranslator Method

The createFilterTranslator method returns an instance of implementation of FilterTranslator,
which converts the ICF Filter object passed to it from the API side into a native query.
Following the conversion, ICF passes the query to the executeQuery method. The following
example illustrates the createFilterTranslator method definition:

public FilterTranslator createFilterTranslator
   (ObjectClass oClass, OperationsOptions options)

Note:

The return value should not be null.

The following example illustrates an implementation of the createFilterTranslator method:

@Override
public FilterTranslator<Map<String, String>> createFilterTranslator
  (ObjectClass arg0, OperationOptions arg1) {
   return new ContainsAllValuesImpl() {
 };
}

This example supports only a single type of search predicate, which is ContainsAllValues. See 
Implementation of AbstractFilterTranslator for an example of an implementation of
ContainsAllValuesImpl. The implementation of ContainsAllValues translates into native form a
condition of the form: Attribute A contains all of the values V(1), V(2) ... V(N).

For information on the org.identityconnectors.framework.common.objects.filter.FilterTranslator,
see Common Classes.

4.4.3.5.3 Implementing the executeQuery Method

The executeQuery method is called for every query produced by the FilterTranslator
implementation (as documented in Implementing the createFilterTranslator Method). It takes
an ObjectClass (for example, account or group), the query, an instance of ResultsHandler used
as a callback to handle found objects, and operation options, as illustrated in the following
example:

public void executeQuery
   (ObjectClass oClass, T query, 
    ResultsHandler handler, OperationOptions options)

The implementation of the executeQuery method searches for the target objects by using the
passed query, creates instances of ConnectorObject for each target object found, and uses
ResultsHandler to handle ConnectorObjects. ConnectorObject is ICF representation of target

Chapter 4
Introducing the ICF SPI

4-19



resource object. It contains information such as ObjectClass, Uid, Name, and Set of Attributes.
ConnectorObject is central to search. executeQuery streams ConnectorObjects into the
ResultsHandler, and therefore, to the client. The following example illustrates how to
implement the exectueQuery method:

@Override
    public void executeQuery(ObjectClass objectClass,
            Map<String, String> matchSet, ResultsHandler resultHandler,
            OperationOptions ops) {
 
   
// searches the flat file for accounts which fulfil the condition 'matchSet' created by 
FilterTranslator
     Iterator<FlatFileUserAccount> userAccountIterator = this.flatFileParser
              .getAccountIterator(matchSet);
 
boolean handleMore = true;
     while (userAccountIterator.hasNext() && handleMore) {
          FlatFileUserAccount userAcc = userAccountIterator.next();
          ConnectorObject userAccObject = convertToConnectorObject(userAcc);
          // Let the client handle the result by doing callback
     handleMore = resultHandler.handle(userAccObject);
     }
     while (userAccountIterator.hasNext()) {
          FlatFileUserAccount userAcc = userAccountIterator.next();
          ConnectorObject userAccObject = convertToConnectorObject(userAcc);
            if (!resultHandler.handle(userAccObject)) {
                System.out.println("Not able to handle " + userAcc);
                break;
            }
        }
    }

4.4.3.6 Implementing the UpdateOp Interface
The UpdateOp interface is implemented to enable updating objects on the target system. To
implement this interface, provide an implementation of the update method as defined in the
following example:

public Uid update(ObjectClass oClass, Uid uid, 
   Set<Attribute> attributes, OperationOptions options)

This method takes an ObjectClass (for example, account or group), Uid of the object being
updated, a set of object attributes being updated, and operation options. The implementation
updates the object on the target system identified by the Uid with the new values of attributes.
If the object identified by the Uid does not exist on the target system, then an
UnknowUidException is generated. The following example illustrates how to implement the
update method:

@Override
    public Uid update(ObjectClass arg0, Uid arg1, 
       Set<Attribute> arg2, OperationOptions arg3) {
         String accountIdentifier = arg1.getUidValue();
    // Fetch the account
       FlatFileUserAccount accountToBeUpdated = this.flatFileParser
              .getAccount(accountIdentifier);
 
   // Update
        accountToBeUpdated.updateAttributes(arg2);
        this.flatFileWriter
              .modifyAccount(accountIdentifier, accountToBeUpdated);

Chapter 4
Introducing the ICF SPI

4-20



        log.ok("Account {0} updated", accountIdentifier);
 
   // Return new uid
        String newAccountIdentifier = accountToBeUpdated
              .getAttributeValue
                 (this.flatFileConfig.getUniqueAttributeName());
        return new Uid(newAccountIdentifier);
    }

4.4.4 Common Classes
The most important ICF classes are
org.identityconnectors.framework.common.objects.Attribute,
org.identityconnectors.framework.common.objects.Uid,
org.identityconnectors.framework.common.objects.ObjectClass,
org.identityconnectors.framework.common.objects.ConnectorObject,
org.identityconnectors.common.security.GuardedString,
org.identityconnectors.framework.common.objects.filter.FilterTranslator, and
org.identityconnectors.framework.common.objects.ResultsHandler.

There are many ICF classes mentioned in the previous sections. The most important classes
are:

• org.identityconnectors.framework.common.objects.Attribute

An Attribute is a named collection of values within a target system object. A target system
object may have many attributes and each may have many values. In its simplest form, an
Attribute can be considered a name-value pair of a target system object. Empty and null
values are supported. The developer should use
org.identityconnectors.framework.common.objects.AttributeBuilder to construct Attribute
instances.

Note:

All attributes are syntactically multivalued in this model. A particular attribute
being singlevalued is only a semantic restriction.

• org.identityconnectors.framework.common.objects.Uid

A single-valued Attribute (Uid is a subclass of Attribute) that represents the unique
identifier of an object on the target resource. Ideally, it should be immutable.

Note:

A singlevalued attribute is particularly relevant to UID being a unique identifier.

• org.identityconnectors.framework.common.objects.ObjectClass

An ObjectClass defines the type of the object on the target system. Account, group, or
organization are examples of such types. ICF defines predefined ObjectClasses for
account (ObjectClass.ACCOUNT) and group (ObjectClass.GROUP).

• org.identityconnectors.framework.common.objects.ConnectorObject

A ConnectorObject represents an object (for example, an account or group) on the target
system. The developer must use

Chapter 4
Introducing the ICF SPI

4-21



org.identityconnectors.framework.common.objects.ConnectorObjectBuilder to construct a
ConnectorObject.

• org.identityconnectors.common.security.GuardedString

A guarded string is a secure String implementation which solves the problem of storing
passwords in memory in a plain String format. Passwords are stored as Bytes in an
encrypted format. The encryption key will be randomly generated.

• org.identityconnectors.framework.common.objects.filter.FilterTranslator

A FilterTranslater object is responsible for converting all the filters specified on the API side
of the ICF into native queries during a search operation. ICF Filters support both search
predicates and logical operators:

– Search predicates match objects based on the values of a specified attribute. For
example, an EqualsFilter returns true when at least one value of an attribute is equal to
a specified value.

– Logical operators AND and OR join search predicates to build complex expressions.
For example, an expression of the form "A AND B" is true only if both A and B are true.
An expression of the form "A OR B" is true if at least one of A or B is true.

The ICF provides the AbstractFilterTranslator<T> base class to make search
implementation easier. A FilterTranslator sub class should override the following whenever
possible.

– createAndExpression(T, T)

– createOrExpression(T, T)

– createContainsExpression(ContainsFilter, boolean)

– createEndsWithExpression(EndsWithFilter, boolean)

– createEqualsExpression(EqualsFilter, boolean)

– createGreaterThanExpression(GreaterThanFilter, boolean)

– createGreaterThanOrEqualExpression(GreaterThanOrEqualFilter, boolean)

– createStartsWithExpression(StartsWithFilter, boolean)

– createContainsAllValuesExpression(ContainsAllValuesFilter, boolean)

For more information see Implementing the SearchOp Interface.

• org.identityconnectors.framework.common.objects.ResultsHandler

This is a callback interface for operations returning one or more results. The sub class
should provide an implementation to the handle method whereas the caller can decide
what to do with the results. Currently, this is used only by the SearchOp interface. For
more information, see Implementing the SearchOp Interface.

4.5 Extending an Identity Connector Bundle
An identity connector bundle is the specific implementation for a particular target system.

The bundle is a Java archive (JAR) that contains all the files required by the identity connector
to connect to the target system and perform operations. It also has special attributes (defined
in the MANIFEST file) that are recognized by the ICF. These are:

• ConnectorBundle-FrameworkVersion is the minimum version of the ICF required for this
identity connector bundle to work. Newer ICF versions will be backwards compatible.

Chapter 4
Extending an Identity Connector Bundle

4-22



• ConnectorBundle-Name is the unique name for this identity connector bundle; it is
generally the package name.

• ConnectorBundle-Version is the version of this bundle. Within a given deployment of
Oracle Identity Manager, the ConnectorBundle-Name and ConnectorBundle-Version
combination should be unique.

You extend an identity connector bundle, for example, to reuse common code. The
AbtractDatabaseConnector is a good example, because different types of connectors can
reuse the same basic logic that accesses database tables using JDBC. A connector for
database tables might share this common code with a connector for Oracle Database users, a
connector for IBM DB2 database users, and a connector for MySQL users.

A given Connector can be extended by adding the extended bundle to the /lib directory of a
new bundle and creating a new class that subclasses the target class. This can be illustrated
with the AbstractDatabaseConnector bundle. The common logic would be in a common bundle
as follows:

Note:

You do not extend the original bundle. Instead, you extend the connector by
embedding the original bundle in a new bundle that wraps the original bundle.

• META-INF/MANIFEST.MF

– ConnectorBundle-FrameworkVersion: 1.0

– ConnectorBundle-Name: org.identityconnectors.database.common

– ConnectorBundle-Version: 1.0

• org.identityconnectors/database/common/AbstractDatabaseConnector.class

Note:

This identity connector would not have a @ConnectorClass annotation.

• org/identityconnectors/database/common/* (other common source files)

• lib/

There would be as many database (resource) specific bundles as needed. For example:

• META-INF/MANIFEST.MF

– ConnectorBundle-FrameworkVersion: 1.0

– ConnectorBundle-Name: org.identityconnectors.database.mysql

– ConnectorBundle-Version: 1.0

• org/identityconnectors/database/mysql/MySQLConnector.class (subclass of
AbstractDatabaseConnector)

Chapter 4
Extending an Identity Connector Bundle

4-23



Note:

This identity connector would have a @ConnectorClass annotation.

• org/identityconnectors/database/mysql/* (other MySQL source files)

• lib/org.identityconnectors.database.common-1.0.jar (parent bundle described above)

• lib/* (specific database drivers and libraries as needed)

4.6 Using an Identity Connector Server
Identity connector servers are available for Java™ and Microsoft .NET Framework
applications.

This section describes the identity connector server and how to use the types of identity
connector server. It contains the following topics:

• About the Identity Connector Server

• Using the Java Connector Server

• Using the .NET Connector Server

Tip:

Get the following information (defined during installation) for use during either
Connector Server configuration.

• Host name and IP address

• Connector Server port

• Connector Server key

• SSL enabled

4.6.1 About the Identity Connector Server
An identity connector server is required when an identity connector bundle is not directly
executed within your application. By using one or more identity connector servers, the ICF
architecture permits your application to communicate with externally deployed identity
connector bundles.

Identity connector servers are available for Java™ and Microsoft .NET Framework
applications. A single connector server can support multiple ICF connectors, and these ICF
connectors may be of different connector types. A single ICF connector can be used to
communicate with multiple targets.

Figure 4-6 shows how Oracle Identity Manager connectors integrate with resources via ICF
connectors:

Chapter 4
Using an Identity Connector Server

4-24



Figure 4-6    ICF Connectors and Connector Server

In Figure 4-6:

• Oracle Identity Manager connectors do not directly interact with the target resource.
Instead, the create, read, update, delete, and query (CRUDQ) operations are performed
via the appropriate ICF connector.

• A single ICF Connector can be used to connect to multiple resources of the same resource
type. In Figure 4-6, an ICF Connector for LDAP is used to connect to a local LDAP
resource, as well as being used to connect to a remote LDAP resource.

• The .NET Connector Server is used to deploy .NET ICF Connectors on the target host. An
Active Directory resource is connected in this manner.

• An ICF Connector for Google Apps provides a connection to Google Apps across the
Internet.

• While not shown in the diagram, a Connector Server can support multiple ICF Connectors
of different resource types.

Chapter 4
Using an Identity Connector Server

4-25



4.6.2 Using the Java Connector Server
A Java Connector Server is used when you do not want to execute a Java Connector Bundle
in the same Java Virtual Machine (JVM) as the application.

This deployment may be beneficial in terms of performance as the bundle works faster when
deployed on the same host as the managed target system. In addition, use Java Connector
Server to eliminate possibility of an application JVM crash because of faulty JNI-based
connector.

Using the Java connector server is described in the following sections:

• Installing and Configuring a Java Connector Server

• Properties in the ConnectorServer.properties File

• Running the Java Connector Server on Microsoft Windows

• Options Supported by the ConnectorServer.bat Script

• Running the Java Connector Server on Solaris and Linux

• Options Supported by the connectorserver.sh Script

• Installing an Identity Connector in a Java Connector Server

• Using SSL to Communicate with a Connector Server

4.6.2.1 Installing and Configuring a Java Connector Server
To install and configure the Java Connector Server:

1. Create a new directory on the computer on which you want to install the Java Connector
Server. In this section, CONNECTOR_SERVER_HOME represents this directory.

2. Unzip the Java Connector Server package in your new directory from Step 1. Java
Connector Server is available for download in the Oracle Technology Network Web site at
the following URL:

http://www.oracle.com/technetwork/index.html
3. In the ConnectorServer.properties file in the conf/ directory, set the properties as required

by your deployment. For information about the properties in the
ConnectorServer.properties file, see Properties in the ConnectorServer.properties File.

4. Set the properties in the ConnectorServer.properties file, as follows:

• To set connectorserver.key, run the Java Connector Server with the /setKey option.
See Running the Java Connector Server on Microsoft Windows and Running the Java
Connector Server on Solaris and Linux for more information.

• For all other properties, edit the ConnectorServer.properties file manually.

5. The conf directory also contains the logging.properties file, which you can edit if required
by your deployment.

4.6.2.2 Properties in the ConnectorServer.properties File
Table 4-1 lists the properties in the ConnectorServer.properties file.

Chapter 4
Using an Identity Connector Server

4-26

http://www.oracle.com/technetwork/index.html


Table 4-1    Properties in the ConnectorServer.properties File

Property Description

connectorserver.port This is a common property for denoting both SSL and non-SSL
connector server port. If the connectorserver.usessl property is set to
true, then the connector server listens on a secure channel using the
same port.

The default SSL and non-SSL port number is 8759. To change the
default connector server port (SSL or non-SSL), update the
connectorserver.port property with the new port number in the
ConnectorServer.properties file.

connectorserver.bundleDir Directory where the connector bundles are deployed. The default value
is bundles.

connectorserver.libDir Directory in which to place dependent libraries. The default value is
lib.

connectorserver.usessl If set to true, the Java Connector Server uses SSL for secure
communication. The default value is false.

If you specify true, then use the following options on the command line
when you start the Java Connector Server:

• -Djavax.net.ssl.keyStore
• -Djavax.net.ssl.keyStoreType (optional)

• -Djavax.net.ssl.keyStorePassword
connectorserver.ifaddress Bind address. To set this property, uncomment it in the file, if required.

The bind address can be useful if there are more NICs installed on the
computer.

connectorserver.key Java Connector Server key.

4.6.2.3 Running the Java Connector Server on Microsoft Windows
To run the Java Connector Server on Microsoft Windows, use the ConnectorServer.bat script,
as follows:

1. Make sure that you have set the properties required by your deployment in the
ConnectorServer.properties file, as described in Installing and Configuring a Java
Connector Server.

2. Change to the CONNECTOR_SERVER_HOME\bin directory and find the
ConnectorServer.bat script.

For information about the options supported by the options supported by the
ConnectorServer.bat script, see Options Supported by the ConnectorServer.bat Script.

3. If you need to stop the Java Connector Server, then stop the respective Microsoft Windows
service.

Chapter 4
Using an Identity Connector Server

4-27



Note:

When you run the connectorserver.bat script, you might encounter the following
heap memory issue:

org.identityconnectors.framework.server.impl.ConnectionListener
processOperationRequest

SEVERE: Java heap space

java.lang.OutOfMemoryError: Java heap space

at
java.io.BufferedInputStream.fill(BufferedInputStream.java:233)

at
java.io.BufferedInputStream.read1(BufferedInputStream.java:286)

at
java.io.BufferedInputStream.read(BufferedInputStream.java:345)

at java.io.DataInputStream.read(DataInputStream.java:149)

at sun.misc.IOUtils.readFully(IOUtils.java:65)

at
sun.security.provider.JavaKeyStore.engineLoad(JavaKeyStore.java:753)

at
sun.security.provider.JavaKeyStore$JKS.engineLoad(JavaKeyStore.java:56)

at
sun.security.provider.KeyStoreDelegator.engineLoad(KeyStoreDelegator.java:22
4)

at
sun.security.provider.JavaKeyStore$DualFormatJKS.engineLoad(JavaKeyStore.jav
a:
70)

at java.security.KeyStore.load(KeyStore.java:1445)

at
sun.security.ssl.TrustManagerFactoryImpl.getCacertsKeyStore(TrustManagerFact
or
yImpl.java:226)

at
sun.security.ssl.TrustManagerFactoryImpl.engineInit(TrustManagerFactoryImpl.
ja
va:50)

at
javax.net.ssl.TrustManagerFactory.init(TrustManagerFactory.java:250)

at
sun.security.ssl.SSLContextImpl.engineInit(SSLContextImpl.java:72)

at javax.net.ssl.SSLContext.init(SSLContext.java:282)

Chapter 4
Using an Identity Connector Server

4-28



To workaround this issue, edit the connectorserver.bat script and change the
value 500m to 2048m, as shown:

set JAVA_OPTS=-Xmx2048m
    "-Djava.util.logging.config.file=%CONNECTOR_SERVER_HOME%
\conf\logging.properties"
    "-Djava.io.tmpdir=%CONNECTOR_SERVER_HOME%\temp"

4.6.2.4 Options Supported by the ConnectorServer.bat Script
Table 4-2 lists the options supported by the ConnectorServer.bat script:

Table 4-2    Options Supported by the ConnectorServer.bat Script

Option Description

/install [serviceName] ["-J java-
option"]

Installs the Java Connector Server as a Microsoft Windows service.

Optionally, you can specify a service name and Java options. If you do
not specify a service name, then the default name is
ConnectorServerJava.

/run ["-J java-option"] Runs the Java Connector Server from the console.

Optionally, you can specify Java options. For example, to run the Java
Connector Server with SSL:

ConnectorServer.bat /run
"-J-Djavax.net.ssl.keyStore=mykeystore.jks"
"-J-Djavax.net.ssl.keyStorePassword=password"

/setKey [key] Sets the Java Connector Server key. The ConnectorServer.bat script
stores the hashed value of the key in the connectorserver.key property
in the ConnectorServer.properties file.

/uninstall [serviceName] Uninstalls the Java Connector Server. If you do not specify a service
name, then the script uninstalls the ConnectorServerJava service.

4.6.2.5 Running the Java Connector Server on Solaris and Linux
To run the Java Connector Server on Solaris and Linux, use the connectorserver.sh script, as
follows:

1. Make sure that you have set the properties required by your deployment in the
ConnectorServer.properties file, as described in Installing and Configuring a Java
Connector Server.

2. Change to the CONNECTOR_SERVER_HOME/bin directory.

3. Use the chmod command to set the permissions to make the connectorserver.sh script
executable.

4. Run the connectorserver.sh script. For information about the options supported by the
connectorserver.sh script, see Options Supported by the connectorserver.sh Script.

Chapter 4
Using an Identity Connector Server

4-29



Note:

When you run the connectorserver.sh script, you might encounter the following
heap memory issue:

org.identityconnectors.framework.server.impl.ConnectionListener
processOperationRequest

SEVERE: Java heap space

java.lang.OutOfMemoryError: Java heap space

at
java.io.BufferedInputStream.fill(BufferedInputStream.java:233)

at
java.io.BufferedInputStream.read1(BufferedInputStream.java:286)

at
java.io.BufferedInputStream.read(BufferedInputStream.java:345)

at java.io.DataInputStream.read(DataInputStream.java:149)

at sun.misc.IOUtils.readFully(IOUtils.java:65)

at
sun.security.provider.JavaKeyStore.engineLoad(JavaKeyStore.java:753)

at
sun.security.provider.JavaKeyStore$JKS.engineLoad(JavaKeyStore.java:56)

at
sun.security.provider.KeyStoreDelegator.engineLoad(KeyStoreDelegator.java:22
4)

at
sun.security.provider.JavaKeyStore$DualFormatJKS.engineLoad(JavaKeyStore.jav
a:
70)

at java.security.KeyStore.load(KeyStore.java:1445)

at
sun.security.ssl.TrustManagerFactoryImpl.getCacertsKeyStore(TrustManagerFact
or
yImpl.java:226)

at
sun.security.ssl.TrustManagerFactoryImpl.engineInit(TrustManagerFactoryImpl.
ja
va:50)

at
javax.net.ssl.TrustManagerFactory.init(TrustManagerFactory.java:250)

at
sun.security.ssl.SSLContextImpl.engineInit(SSLContextImpl.java:72)

at javax.net.ssl.SSLContext.init(SSLContext.java:282)

Chapter 4
Using an Identity Connector Server

4-30



To workaround this issue, edit the connectorserver.sh script and change the
value 500m to 2048m, as shown:

exec "$_RUNJAVA" -Xmx2048m
    -D"java.util.logging.config.file=${CONNECTOR_SERVER_HOME}/conf/
logging.propert ies"
    -D"java.io.tmpdir=${CONNECTOR_SERVER_TMPDIR}" $JAVA_OPTS_PARAMS \

4.6.2.6 Options Supported by the connectorserver.sh Script
Table 4-3 lists the options supported by the connectorserver.sh script:

Table 4-3    Options Supported by the connectorserver.sh Script

Option Description

/run [ -Jjava-option ] Runs the Java Connector Server in the console. Optionally, you can
specify one or more Java options. For example, to run the Java
Connector Server with SSL:

./connectorserver.sh /run
-J-Djavax.net.ssl.keyStore=mykeystore.jks
-J-Djavax.net.ssl.keyStorePassword=password

/start [ -Jjava-option ] Runs the Java Connector Server in the background. Optionally, you
can specify one or more Java options.

/stop Stops the Java Connector Server, waiting up to 5 seconds for the
process to end.

/stop n Stops the Java Connector Server, waiting up to n seconds for the
process to end.

/stop -force Stops the Java Connector Server. Waits up to 5 seconds, and then
uses the kill -KILL command if the process is still running.

/stop n -force Stops the Java Connector Server. Waits up to n seconds, and then
uses the kill -KILL command if the process is still running.

/setKey key Sets the Java Connector Server key. The connectorserver.sh script
stores the hashed value of the key in the connectorserver.key property
in the ConnectorServer.properties file.

4.6.2.7 Installing an Identity Connector in a Java Connector Server
This section contains the procedures to deploy a Java Connector Bundle in a Java Connector
Server.

1. Change to the bundles directory in your Java Connector Server directory.

2. Copy the Java Connector Bundle JAR to the bundles directory.

3. Add any applicable third party JAR files required by the identity connector to the lib
directory.

4. Restart the Java Connector Server.

4.6.2.8 Using SSL to Communicate with a Connector Server
Follow these steps to communicate with a Connector Server using Secure Sockets Layer
(SSL).

Chapter 4
Using an Identity Connector Server

4-31



1. Deploy an SSL certificate to the Connector Server's system.

2. Configure your Connector Server to provide SSL sockets.

3. Configure your application to communicate with the Connector Server using SSL.

Refer to the target system's manual for specific notes on configuring connections to
identity connector servers. You will indicate to your application that an SSL connection is
required when establishing a connection for each SSL-enabled connector server.
Additionally, if any of the SSL certificates used by your connector servers are issued by a
non-standard certificate authority, your application must be configured to respect the
additional authorities. Refer to your manual for notes regarding certificate authorities.

Note:

Java applications may solve the issue of non-standard certificate authorities by
expecting the following Java system properties to be passed when launching the
application:

• javax.net.ssl.trustStorePassword

For example:

-Djavax.net.ssl.trustStorePassword=PASSWORD
• javax.net.ssl.trustStore

For example:

-Djavax.net.ssl.trustStore=/usr/myApp_cacerts
Alternately, the non-standard certificate authorities may be imported to the
standard ${JAVA_HOME}/lib/security/cacerts directory.

4.6.3 Using the .NET Connector Server
The use of a .NET Connector Server is useful when an application is written in Java but a
Connector Bundle is written using C#.

Because a Java Platform, Enterprise Edition (JEE™) application cannot load C# classes, you
can deploy the C# bundles under a .NET Connector Server. The Java application can then
communicate with the .NET Connector Server over the network. The .NET Connector Server
serves as a proxy to provide any authenticated application access to the C# bundles. The
following sections contain additional information:

• Installing the .NET Connector Server

• Configuring the .NET Connector Server

• Upgrading the .NET Connector Server

• Configuring Trace Settings

• Running the .NET Connector Server

• Installing Multiple Connectors on a .NET Connector Server

4.6.3.1 Installing the .NET Connector Server

The requirements to run a .NET Connector Server 12.2.1.3.0 are:

Chapter 4
Using an Identity Connector Server

4-32



• Microsoft Windows Server 2003, 2008, 2012, 2016, or 2019

• Microsoft .NET Framework 4.5 or higher

Refer to the particular .NET identity connector documentation to determine if there are
additional requirements.

To install .Net Connector Server 12.2.1.3.0:

1. Download the Connector Server package (Connector_Server_122130_dotnet.zip) from
the Oracle Technology Network site at the following URL:

http://www.oracle.com/technetwork/middleware/id-mgmt/downloads/
connectors-101674.html

2. Extract the contents of the Connector Server package and locate the ServiceInstall-
version.msi file.

Note:

We cannot run all connector operations with a less privileged user. Therefore, we
must use an admin user account (as a minimum privileged user) to run the .NET
Connector Server.

3. Install the Connector Server by running the ServiceInstall-version.msi file and
following the wizard. The wizard takes you through the installation process step-by-step.
After completion, the .NET Connector Server is registered as a Windows service.

4.6.3.2 Configuring the .NET Connector Server
Common configurations include port, trace and SSL settings as well as the Connector Server
key.

To configure the .NET Connector Server:

1. Start the Microsoft Services Console.

If the .NET Connector Server is running, stop it by stopping the Windows service.

2. Go to the directory where the .NET Connector Server is installed. The default directory is,
C:\Program Files(x86)\Idenity Connector\Connector Server.

Run the following command from the command prompt:

ConnectorServer.exe /setkey NEW_KEY
In this command, NEW_KEY is the value for the new key. This key is required by any client
that connects to this .NET Connector Server.

3. Update the settings in the .NET Connector Server configuration file
(ConnectorServer.exe.config). These settings are in the element named appSettings.
For example:

<add key="connectorserver.port" value="8759"/>
<add key="connectorserver.usessl" value="false"/>
<add key="connectorserver.certificatestorename" 
value="ConnectorServerSSLCertificate"/> 
<add key="connectorserver.ifaddress" value="0.0.0.0"/> 
<add key="logging.proxy" value="false"/>

Chapter 4
Using an Identity Connector Server

4-33

http://www.oracle.com/technetwork/middleware/id-mgmt/downloads/connectors-101674.html
http://www.oracle.com/technetwork/middleware/id-mgmt/downloads/connectors-101674.html


<!--Possible protocol values are Tls, Tls11, Tls12 -->
<add key="connectorserver.protocol" value="Tls">

Note:

To run the .NET Connector Server on an IPv6 host computer, add the following
line to the .NET Connector Server configuration file:

<add key="connectorserver.ifaddress" value="::0" />

The most common settings you might want to change are:

• Port Number: The connectorserver.port property is a key for denoting both SSL and
non-SSL connector server port. If the connectorserver.usessl property is set to true,
then the connector server listens on a secure channel using the same port. The default
SSL and non-SSL port number is 8759. To change the default connector server port,
update the connectorserver.port property with the new port number in the
connectorserver.exe.config file.

• SSL Setting: To use SSL, set the value of connectorserver.usessl to true, and set
the value of connectorserver.certifacatestorename to the name of the certificate
store which is having the trust certificate. Run the following command from the
command prompt to create and add the target system trust certificate in certificate
store:

C:\>certutil -f -addstore tlsstore C:\ADSSLCer.cer
Note: refer the connector guide of respective target system to generate 
the trust certificate i.e.  C:\ADSSLCer.cer

Note:

Make sure that the certificate store mentioned in the command does not
already exist. The certificate store mentioned in the
ConnectorServer.exe.Config file must have only one certificate. If there is
more than one certificates, then the .NET Connector Server will not start.

Run the following command to view the number of certificates present in the
certificate store:

C:\>certutil -viewstoreSTORE_NAME

And update the connectorserver.protocol to choose the SSL communication
protocol that is, TLS 1.0, TLS 1.1, or TLS 1.2.

• Listening Socket Bind: To change the listening socket bind, set
connectorserver.ifaddress to an address other than 0.0.0.0.

4. Save the following configuration information from the .NET Connector Server installation.
This information must be specified while configuring the IT resource for the Connector
Server:

• Host name or IP address

• Connector Server port

Chapter 4
Using an Identity Connector Server

4-34



• Connector Server key values

• If SSL should be enabled

5. After completing all the .NET Connector Server configurations, restart the Windows service
or alternately restart the .NET Connector Server by running the following command from
the command line interface. Go to the directory where .NET Connector Server is installed,
run the following command:

ConnectorServer.exe /run

4.6.3.3 Upgrading the .NET Connector Server

In the 12.2.1.3.0 version of the .NET Connector Server pack, you can select the protocol for
SSL communication between Oracle Identity Manager and .NET Connector Server by using
the connectorserver.protocol property. The supported values of this property are Tls, Tls11,
and Tls12. Here, Tls denotes TLS 1.0 protocol, Tls11 denotes TLS 1.1 protocol, and Tls12
denotes TLS 1.2 protocol. The default value of this property is Tls, which denotes TLS 1.0
protocol.

To upgrade the .NET Connector Server:

1. Stop the connector server service.

2. Create a backup of the directory on which Connector server is installed.

3. Download the Connector Server package (Connector_Server_122130_dotnet.zip) from
the Oracle Technology Network site at the following URL:

http://www.oracle.com/technetwork/index.html
4. Extract the contents of the Connector Server package and locate the ServiceInstall-

version.msi file.

Note:

You cannot run all connector operations with a less privileged user. Therefore,
you must use an admin user account (as a minimum privileged user) to run
the .NET Connector Server.

Use ServiceInstall- version.msi file shipped in 12.2.1.3.0 Connector Server pack to
install the 12.2.1.3.0 binaries at existing Connector Server location. That is, directory
C:\Program Files (x86)\Identity Connectors\Connector Server or the location where
the Connector Server is installed.

5. Open ConnectorServer.exe.config file from both installed location and backup location.
Update the following properties of ConnectorServer.exe.config file at installed location
from ConnectorServer.exe.config file at backup location:

<add key="connectorserver.port" value="8759"/>
<add key="connectorserver.usessl" value="false"/>
<add key="connectorserver.certificatestorename" 
value="ConnectorServerSSLCertificate"/> 
<add key="connectorserver.ifaddress" value="0.0.0.0"/> 
<add key="logging.proxy" value="false"/>

Chapter 4
Using an Identity Connector Server

4-35

http://www.oracle.com/technetwork/index.html


6. Set the keys for the newly installed connector server using the existing key value from
command line.

Change to the directory where the .NET Connector Server was installed. The default
directory is:

C:\Program Files (x86)\Identity Connectors\Connector Server
Run the following command:

ConnectorServer.exe /setkey EXISTING_KEY
In this command, EXISTING_KEY is the value for the key. This key is required by any client
that connects to this .NET Connector Server.

7. After completing all the .NET Connector Server configurations, restart the Windows service
or alternately restart the .NET Connector Server by running the following command from
the command line interface. Go to the directory where .NET Connector Server is installed,
run the following command:

ConnectorServer.exe /run

Note:

The customization done previously are not preserved during upgrade of
connector server as it is a manual upgrade. If you have any other customization
in any of the files, then re-do the same from the back-up location.

4.6.3.4 Configuring Trace Settings
The Connector Server uses the standard .NET trace mechanism. Trace settings are defined in
the connectorserver.exe.config configuration file. The following example illustrates how they
are defined:

<system.diagnostics>
  <trace autoflush="true" indentsize="4">
     <listeners>
       <remove name="Default" />
       <add name="myListener" 
            type="System.Diagnostics.TextWriterTraceListener" 
            initializeData="c:\connectorserver2.log"    
            traceOutputOptions="DateTime">
       <filter type="System.Diagnostics.EventTypeFilter" 
               initializeData="Information" />
       </add>
    </listeners>
  </trace>
</system.diagnostics>

The default settings are a good starting point but you may change these settings as follows.

• For less tracing, change the filter type's initializeData setting to Warning or Error.

• For more verbose logging, set the value to Verbose or All.

Chapter 4
Using an Identity Connector Server

4-36



Caution:

The amount of logging performed has a direct effect on the performance of the
Connector Servers.

Any configuration changes require that the Connector Server be stopped and restarted.

Note:

For more information about the tracing options, see Microsoft .NET documentation
for System.Diagnostics.

4.6.3.5 Running the .NET Connector Server
The best way to run the .NET Connector Server is as a Windows Service. During installation,
the Connector Server is installed as a Windows service. If this is not adequate for your
environment, the Connector Server may be installed or uninstalled as a Windows Service by
using the /install or /uninstall arguments at the command prompt.

To run the Connector Server interactively, open the command prompt, go to the directory
where .NET Connector Server is installed, run the following command:

ConnectorServer.exe /run

4.6.3.6 Installing Multiple Connectors on a .NET Connector Server
To install new identity connectors, change to the directory where the Connector Server was
installed, extract the new identity connector ZIP into it, and restart the Connector Server.

Chapter 4
Using an Identity Connector Server

4-37



5
Developing Identity Connectors Using Java

You can develop an identity connector using the Identity Connector Framework (ICF) and
Oracle Identity Manager metadata.
This chapter is a tutorial that walks through the procedures necessary to develop an identity
connector using the Identity Connector Framework (ICF) and the Oracle Identity Manager
metadata. It includes information about important ICF classes and interfaces, the connector
bundle, the connector server, and code samples for implementing a flat file identity connector
and creating Oracle Identity Manager metadata for user provisioning and reconciliation
processes.

This chapter contains the following sections:

• Introduction to Flat File Connector Development

• Developing a Flat File Connector

• Supporting Classes for File Input and Output Handling

• Uploading the Identity Connector Bundle to Oracle Identity Governance Database

• Provisioning a Flat File Account

• Installing the Java Connector Server

• Configuring the Java Connector Server with SSL for Oracle Identity Governance

• Configuring the Java Connector Server without SSL for Oracle Identity Governance

• Upgrading the Java Connector Server

5.1 Introduction to Flat File Connector Development
To develop a flat file connector, you must develop an implementation of the Configuration
interface followed by the implementation of the Connector class.

Before beginning, you must prepare IO representation modules for all flat file connector
operations. This might include all or some of the following:

• Read the column names of the flat file and prepare metadata information.

• Add a record to the flat file with the corresponding column values separated by the
specified delimiter.

• Delete a record to the flat file based on the UID value.

• Search operations on flat file.

This tutorial is focused on identity connector development, and therefore, these preparations
are not discussed in detail.

5-1



Note:

The following supporting classes are used for file input and output handling during
identity connector operations:

• org.identityconnectors.flatfile.io.FlatFileIOFactory

• org.identityconnectors.flatfile.io.FlatFileMetadata

• org.identityconnectors.flatfile.io.FlatFileParser

• org.identityconnectors.flatfile.io.FlatFileWriter

See Supporting Classes for File Input and Output Handling for the implementations of
the input and output handling supporting classes.

5.2 Developing a Flat File Connector
Developing a flat file connector involves implementing the AbstractConfiguration,
PoolableConnector, and AbstractFilterTranslator classes, and creating the connector bundle
JAR file.

This section describes the high-level procedure to develop a flat file connector along with code
samples. It contains the following topics:

• Overview of Developing a Flat File Connector

• Implementation of AbstractConfiguration

• Implementation of PoolableConnector

• Implementation of AbstractFilterTranslator

• The MANIFEST.MF File

5.2.1 Overview of Developing a Flat File Connector
Developing a flat file connector involves implementing the AbstractConfiguration,
PoolableConnector, and AbstractFilterTranslator classes, and creating the connector bundle
JAR file.

To develop a flat file connector:

1. Implement the configuration class for the Flat File Connector by extending the
org.identityconnectors.framework.spi.AbstractConfiguration base class.

See Implementation of AbstractConfiguration for a sample implementation of the
configuration class.

See The org.identityconnectors.framework.spi.Configuration Interface for more information.

2. Create connector class for the Flat File Connector by implementing the
org.identityconnectors.framework.spi.Connector interface.

See Implementation of PoolableConnector for a sample implementation of the
PoolableConnector class.

3. This connector supports only the ContainsAllValuesFilter operation. Implement the
ContainsAllValuesFilter operation. See Implementation of AbstractFilterTranslator for a
sample implementation of the of the AbstractFilterTranslator<T> class.

Chapter 5
Developing a Flat File Connector

5-2



4. Create the connector bundle JAR. The MANIFEST.MF file must contain the following
entries:

• ConnectorBundle-FrameworkVersion

• ConnectorBundle-Name

• ConnectorBundle-Version

See The MANIFEST.MF File for the contents of the MANIFEST.MF file.

5. Update the connector bundle JAR as created in step 4. To do so:

a. Extract the connector bundle JAR into any desired location.

b. Create a lib directory in the directory in which you extracted the JAR.

c. Add the dependent third-party JARs into the lib directory.

d. JAR the entire directory.

Note:

The MANIFEST.MF file must contain the entries listed in step 4.

5.2.2 Implementation of AbstractConfiguration
The AbstractConfiguration base class can be extended to implement the configuration class for
a Flat File Connector.

The following is a sample of the implementation of the AbstratConfiguration class:

package org.identityconnectors.flatfile;
import java.io.File;
import org.identityconnectors.flatfile.io.FlatFileIOFactory;
import org.identityconnectors.framework.common.exceptions.ConfigurationException;
import org.identityconnectors.framework.spi.AbstractConfiguration;
import org.identityconnectors.framework.spi.ConfigurationProperty;
/**
 * Class for storing the flat file configuration 
 */
public class FlatFileConfiguration extends AbstractConfiguration {
/*
 * Storage file name
 */
private File storeFile;
/*
 * Delimeter used
 */
private String textFieldDelimeter;    
/*
 * Unique attribute field name
 */
private String uniqueAttributeName = "";    
/*
 * Change attribute field name. Should be numeric
 */
private String changeLogAttributeName = "";
 
public File getStoreFile() {
return storeFile;

Chapter 5
Developing a Flat File Connector

5-3



}
 
public String getTextFieldDelimeter() {
return textFieldDelimeter;
}
 
     public String getUniqueAttributeName() {
        return uniqueAttributeName;
    }
 
    public String getChangeLogAttributeName() {
        return changeLogAttributeName;
    }
 
    /**
     * Set the store file
     * @param storeFile
     */
    @ConfigurationProperty(order = 1, helpMessageKey = "USER_ACCOUNT_STORE_HELP", 
            displayMessageKey = "USER_ACCOUNT_STORE_DISPLAY")
    public void setStoreFile(File storeFile) {
        this.storeFile = storeFile;
    }
 
    /**
     * Set the text field delimeter
     * @param textFieldDelimeter
     */
    @ConfigurationProperty(order = 2, 
            helpMessageKey = "USER_STORE_TEXT_DELIM_HELP", 
            displayMessageKey = "USER_STORE_TEXT_DELIM_DISPLAY")
    public void setTextFieldDelimeter(String textFieldDelimeter) {
        this.textFieldDelimeter = textFieldDelimeter;
    }
 
    /**
     * Set the field whose values will be considered as unique attributes
     * @param uniqueAttributeName
     */
    @ConfigurationProperty(order = 3, helpMessageKey = "UNIQUE_ATTR_HELP", 
            displayMessageKey = "UNIQUE_ATTR_DISPLAY")
    public void setUniqueAttributeName(String uniqueAttributeName) {
        this.uniqueAttributeName = uniqueAttributeName;
    }
 
    /**
     * Set the field name where change number should be stored
     * @param changeLogAttributeName
     */
    @ConfigurationProperty(order = 3, helpMessageKey = "CHANGELOG_ATTR_HELP", 
            displayMessageKey = "CHANGELOG_ATTR_DISPLAY")
    public void setChangeLogAttributeName(String changeLogAttributeName) {
        this.changeLogAttributeName = changeLogAttributeName;
    }    
    @Override
    public void validate() {
        
        // Validate if file exists and is usable
        boolean validFile = (this.storeFile.exists() &&
                this.storeFile.canRead() &&
                this.storeFile.canWrite() &&
                this.storeFile.isFile());

Chapter 5
Developing a Flat File Connector

5-4



        
        if (!validFile)
            throw new ConfigurationException("User store file not valid");
        
        // Validate if there is a field on name of unique attribute field name        
        // Validate if there is a field on name of change attribute field name
        FlatFileIOFactory.getInstance(this);
        // Initialization does the validation
    }
    
    
}

5.2.3 Implementation of PoolableConnector
The org.identityconnectors.framework.spi.Connector interface is implemented to create the
connector class for a Flat File Connector.

The following code sample implements the CreateOp, DeleteOp, SearchOp and UpdateOp
interfaces and thus supports all four operations. The FlatFileMetadata, FlatFileParser and
FlatFileWriter classes are supporting classes. Their implementation is not shown as they do
not belong to the ICF.

package org.identityconnectors.flatfile;
 
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
 
import org.identityconnectors.flatfile.io.FlatFileIOFactory;
import org.identityconnectors.flatfile.io.FlatFileMetadata;
import org.identityconnectors.flatfile.io.FlatFileParser;
import org.identityconnectors.flatfile.io.FlatFileWriter;
import org.identityconnectors.framework.api.operations.GetApiOp;
import org.identityconnectors.framework.common.exceptions.AlreadyExistsException;
import org.identityconnectors.framework.common.exceptions.ConnectorException;
import org.identityconnectors.framework.common.objects.Attribute;
import org.identityconnectors.framework.common.objects.AttributeInfo;
import org.identityconnectors.framework.common.objects.AttributeInfoBuilder;
import org.identityconnectors.framework.common.objects.ConnectorObject;
import org.identityconnectors.framework.common.objects.ConnectorObjectBuilder;
import org.identityconnectors.framework.common.objects.ObjectClass;
import org.identityconnectors.framework.common.objects.OperationOptions;
import org.identityconnectors.framework.common.objects.ResultsHandler;
import org.identityconnectors.framework.common.objects.Schema;
import org.identityconnectors.framework.common.objects.SchemaBuilder;
import org.identityconnectors.framework.common.objects.Uid;
import org.identityconnectors.framework.common.objects.filter.AbstractFilterTranslator;
import org.identityconnectors.framework.common.objects.filter.FilterTranslator;
import org.identityconnectors.framework.spi.Configuration;
import org.identityconnectors.framework.spi.ConnectorClass;
import org.identityconnectors.framework.spi.PoolableConnector;
import org.identityconnectors.framework.spi.operations.CreateOp;
import org.identityconnectors.framework.spi.operations.DeleteOp;
import org.identityconnectors.framework.spi.operations.SchemaOp;
import org.identityconnectors.framework.spi.operations.SearchOp;
import org.identityconnectors.framework.spi.operations.UpdateOp;
 
/**

Chapter 5
Developing a Flat File Connector

5-5



 * The main connector class
 */
@ConnectorClass(configurationClass = FlatFileConfiguration.class, displayNameKey = 
"FlatFile")
public class FlatFileConnector implements SchemaOp, CreateOp, DeleteOp,
        UpdateOp, SearchOp<Map<String, String>>, GetApiOp, PoolableConnector {
 
    private FlatFileConfiguration flatFileConfig;
    private FlatFileMetadata flatFileMetadata;
    private FlatFileParser flatFileParser;
    private FlatFileWriter flatFileWriter;
    private boolean alive = false;
 
    @Override
    public Configuration getConfiguration() {
        return this.flatFileConfig;
    }
 
    @Override
    public void init(Configuration config) {
        this.flatFileConfig = (FlatFileConfiguration) config;
 
        FlatFileIOFactory flatFileIOFactory = 
             FlatFileIOFactory.getInstance(flatFileConfig);
        this.flatFileMetadata = flatFileIOFactory.getMetadataInstance();
        this.flatFileParser = flatFileIOFactory.getFileParserInstance();
        this.flatFileWriter = flatFileIOFactory.getFileWriterInstance();
        this.alive = true;
        System.out.println("init called: Initialization done");
    }
 
    @Override
    public void dispose() {
        this.alive = false;
    }
 
    @Override
    public Schema schema() {
        SchemaBuilder flatFileSchemaBldr = new SchemaBuilder(this.getClass());
        Set<AttributeInfo> attrInfos = new HashSet<AttributeInfo>();
        for (String fieldName : flatFileMetadata.getOrderedTextFieldNames()) {
            AttributeInfoBuilder attrBuilder = new AttributeInfoBuilder();
            attrBuilder.setName(fieldName);
            attrBuilder.setCreateable(true);
            attrBuilder.setUpdateable(true);
            attrInfos.add(attrBuilder.build());
        }
        
        // Supported class and attributes
        flatFileSchemaBldr.defineObjectClass
          (ObjectClass.ACCOUNT.getDisplayNameKey(),attrInfos);
        System.out.println("schema called: Built the schema properly");
        return flatFileSchemaBldr.build();
    }
 
    @Override
    public Uid create(ObjectClass arg0, Set<Attribute> attrs,
            OperationOptions ops) {
 
        System.out.println("Creating user account " + attrs);
        assertUserObjectClass(arg0);
        try {

Chapter 5
Developing a Flat File Connector

5-6



            FlatFileUserAccount accountRecord = new FlatFileUserAccount(attrs);
            // Assert uid is there
            assertUidPresence(accountRecord);
 
            // Create the user
            this.flatFileWriter.addAccount(accountRecord);
 
            // Return uid
            String uniqueAttrField = this.flatFileConfig
                    .getUniqueAttributeName();
            String uniqueAttrVal = accountRecord
                    .getAttributeValue(uniqueAttrField);
            System.out.println("User " + uniqueAttrVal + " created");
            
            return new Uid(uniqueAttrVal);
        } catch (Exception ex) {
 
            // If account exists
            if (ex.getMessage().contains("exists"))
                throw new AlreadyExistsException(ex);
 
            // For all other causes
            System.out.println("Error in create " + ex.getMessage());
            throw ConnectorException.wrap(ex);
        }
    }
 
    @Override
    public void delete(ObjectClass arg0, Uid arg1, OperationOptions arg2) {
        final String uidVal = arg1.getUidValue();
        this.flatFileWriter.deleteAccount(uidVal);
        System.out.println("Account " + uidVal + " deleted");
    }
 
    @Override
    public Uid update(ObjectClass arg0, Uid arg1, Set<Attribute> arg2,
            OperationOptions arg3) {
        String accountIdentifier = arg1.getUidValue();
        // Fetch the account
        FlatFileUserAccount accountToBeUpdated = this.flatFileParser
                .getAccount(accountIdentifier);
 
        // Update
        accountToBeUpdated.updateAttributes(arg2);
        this.flatFileWriter
                .modifyAccount(accountIdentifier, accountToBeUpdated);
        System.out.println("Account " + accountIdentifier + " updated");
 
        // Return new uid
        String newAccountIdentifier = accountToBeUpdated
                .getAttributeValue(this.flatFileConfig.getUniqueAttributeName());
        return new Uid(newAccountIdentifier);
    }
 
    @Override
    public FilterTranslator<Map<String, String>> createFilterTranslator(
            ObjectClass arg0, OperationOptions arg1) {
        // TODO: Create a fine grained filter translator
 
        // Return a dummy object as its not applicable here.
        // All processing happens in the execute query
        return new AbstractFilterTranslator<Map<String, String>>() {

Chapter 5
Developing a Flat File Connector

5-7



        };
    }
 
    @Override
    public ConnectorObject getObject(ObjectClass arg0, Uid uid,
            OperationOptions arg2) {
        // Return matching record
        String accountIdentifier = uid.getUidValue();
        FlatFileUserAccount userAcc = this.flatFileParser
                .getAccount(accountIdentifier);
        ConnectorObject userAccConnObject = convertToConnectorObject(userAcc);
        return userAccConnObject;
    }
 
    /*
     * (non-Javadoc)
     * This is the search implementation. 
     * The Map passed as the query here, will map to all the records with 
     * matching attributes.
     * 
     * The record will be filtered if any of the matching attributes are not
     * found
     * 
     * @see
     * org.identityconnectors.framework.spi.operations.SearchOp#executeQuery
     * (org.identityconnectors.framework.common.objects.ObjectClass,
     * java.lang.Object,
     * org.identityconnectors.framework.common.objects.ResultsHandler,
     * org.identityconnectors.framework.common.objects.OperationOptions)
     */
    @Override
    public void executeQuery(ObjectClass objectClass,
            Map<String, String> matchSet, ResultsHandler resultHandler,
            OperationOptions ops) {
 
    System.out.println("Inside executeQuery");
    
        // Iterate over the records and handle individually
        Iterator<FlatFileUserAccount> userAccountIterator = this.flatFileParser
                .getAccountIterator(matchSet);
 
        while (userAccountIterator.hasNext()) {
            FlatFileUserAccount userAcc = userAccountIterator.next();
            ConnectorObject userAccObject = convertToConnectorObject(userAcc);
            if (!resultHandler.handle(userAccObject)) {
                System.out.println("Not able to handle " + userAcc);
                break;
            }
        }
    }
 
    private void assertUserObjectClass(ObjectClass arg0) {
        if (!arg0.equals(ObjectClass.ACCOUNT))
            throw new UnsupportedOperationException(
                    "Only user account operations supported.");
 
    }
 
    private void assertUidPresence(FlatFileUserAccount accountRecord) {
        String uniqueAttrField = this.flatFileConfig.getUniqueAttributeName();
        String uniqueAttrVal = accountRecord.getAttributeValue(uniqueAttrField);
 

Chapter 5
Developing a Flat File Connector

5-8



        if (uniqueAttrVal == null) {
            throw new IllegalArgumentException("Unique attribute not passed");
        }
    }
 
    private ConnectorObject convertToConnectorObject(FlatFileUserAccount userAcc) {
        ConnectorObjectBuilder userObjBuilder = new ConnectorObjectBuilder();
        // Add attributes
        List<String> attributeNames = this.flatFileMetadata
                .getOrderedTextFieldNames();
        for (String attributeName : attributeNames) {
            String attributeVal = userAcc.getAttributeValue(attributeName);
            userObjBuilder.addAttribute(attributeName, attributeVal);
 
            if (attributeName.equals(this.flatFileConfig
                    .getUniqueAttributeName())) {
                userObjBuilder.setUid(attributeVal);
                userObjBuilder.setName(attributeVal);
            }
        }
        return userObjBuilder.build();
    }
 
    @Override
    public void checkAlive() {
        if (!alive)
            throw new RuntimeException("Connection not alive");
    }
 
}

5.2.4 Implementation of AbstractFilterTranslator
The org.identityconnectors.framework.common.objects.filter.AbstractFilterTranslator<T> class
is implemented to define the filter operation.

The following is a sample implementation of
org.identityconnectors.framework.common.objects.filter.AbstractFilterTranslator<T> that
defines the filter operation:

package org.identityconnectors.flatfile.filteroperations;
 
import java.util.HashMap;
import java.util.Map;
 
import org.identityconnectors.framework.common.objects.Attribute;
import org.identityconnectors.framework.common.objects.filter.AbstractFilterTranslator;
import org.identityconnectors.framework.common.objects.filter.ContainsAllValuesFilter;
 
public class ContainsAllValuesImpl extends AbstractFilterTranslator<Map<String, String>>{
@Override
protected Map<String, String> createContainsAllValuesExpression(
ContainsAllValuesFilter filter, boolean not) {
Map<String, String> containsAllMap = new HashMap<String, String>();
Attribute attr = filter.getAttribute();
containsAllMap.put(attr.getName(), attr.getValue().get(0).toString());
return containsAllMap;
}
}

Chapter 5
Developing a Flat File Connector

5-9



5.2.5 The MANIFEST.MF File
The MANIFEST.MF file is used to create the connector bundle JAR file.

The following is the contents of the MANIFEST.MF file:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.0
Created-By: 14.1-b02 (Sun Microsystems Inc.)
ConnectorBundle-FrameworkVersion: 1.0
ConnectorBundle-Name: org.identityconnectors.flatfile
ConnectorBundle-Version: 1.0
Build-Number: 609
Subversion-Revision: 4582

5.3 Supporting Classes for File Input and Output Handling
The supporting classes for file input and output handling are FlatFileIOFactory,
FlatFileMetaData, FlatFileParser, FlatFileWriter, FlatfileLineIterator, FlatfileUserAccount,
FlatfileAccountConversionHandler, and Messages.Properties.

This section shows the implementation of the following supporting classes for file input and
output handling:

• Implementation of the FlatFileIOFactory Supporting Class

• Implementation of the FlatFileMetaData Supporting Class

• Implementation of the FlatFileParser Supporting Class

• Implementation of the FlatFileWriter Supporting Class

• Implementation of the FlatfileLineIterator Supporting Class

• Implementation of the FlatfileUserAccount Supporting Class

• Implementation of the FlatfileAccountConversionHandler Supporting Class

• Implementation of the Messages.Properties Supporting Class

5.3.1 Implementation of the FlatFileIOFactory Supporting Class
The following code sample shows the implementation of the FlatFileIOFactory supporting
class:

package org.identityconnectors.flatfile.io;
 
import org.identityconnectors.flatfile.FlatFileConfiguration;
 
public class FlatFileIOFactory {
    
    private FlatFileMetadata flatFileMetadata;
    private FlatFileConfiguration flatFileConfig;
    
    /**
     * Provides instance of the factory
     * @param flatfileConfig Configuration bean for the flat file
     */
    public static FlatFileIOFactory getInstance(FlatFileConfiguration fileConfig) {
        return new FlatFileIOFactory(fileConfig);        
    }

Chapter 5
Supporting Classes for File Input and Output Handling

5-10



    
    /**
     * Making it private to avoid public instantiation. Encouraging use of getInstance
     * @param fileConfig
     */
    private FlatFileIOFactory(FlatFileConfiguration fileConfig) {
        this.flatFileConfig = fileConfig;
        this.flatFileMetadata = new FlatFileMetadata(flatFileConfig);
        System.out.println("Metadata set");
    }
    
    /**
     * Returns the metadata instance
     * @return
     */
    public FlatFileMetadata getMetadataInstance() {
        return this.flatFileMetadata;
    }
    
    /**
     * Returns the FlatFileParser instance
     * @return
     */
    public FlatFileParser getFileParserInstance() {
        return new FlatFileParser(this.flatFileMetadata, this.flatFileConfig);
    }
    
    /**
     * Returns the FlatFileWriter instance
     * @return
     */
    public FlatFileWriter getFileWriterInstance() {
        return new FlatFileWriter(this.flatFileMetadata, this.flatFileConfig);
    }
}

5.3.2 Implementation of the FlatFileMetaData Supporting Class
The following code sample shows the implementation of the FlatFileMetaData supporting
class:

package org.identityconnectors.flatfile.io;
 
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
 
import org.identityconnectors.flatfile.FlatFileConfiguration;
 
/**
 * This class contains all the metadata related information Example: Ordering of
 * columns, Number of columns etc.
 * 
 * @author harsh
 * 
 */
public class FlatFileMetadata {
 

Chapter 5
Supporting Classes for File Input and Output Handling

5-11



    private FlatFileConfiguration fileConfig;
 
    private List<String> orderedTextFieldNames;
 
    private String changeLogFieldName;
    private String uniqueAttributeFiledName;
 
    /**
     * Instantiates the class with the file configuration.
     * Making it package private to encourage instantiation from Factory class
     * @param fileConfig
     */
    FlatFileMetadata(FlatFileConfiguration fileConfig) {
        /*
         * Ideally you should not take connector specific configuration class in
         * flat file resource classes. Change if this has to go to production.
         * Probably make another configuration class for flat file with same
         * signatures.
         */
        this.fileConfig = fileConfig;
 
        initializeMetadata();
        validateConfigProps();
    }
 
    /**
     * Returns the text field names in the order of their storage
     * 
     * @return
     */
    public List<String> getOrderedTextFieldNames() {
        return this.orderedTextFieldNames;
    }
 
    /**
     * Returns the number of columns
     */
    public int getNumberOfFields() {
        int numberOfTextFields = this.orderedTextFieldNames.size();
        return numberOfTextFields;
    }
 
    /**
     * Specifies if number of tokens are matching with the standard length of metadata
     * @param countTokens
     * @return
     */
    public boolean isDifferentFromNumberOfFields(int countTokens) {
        return (getNumberOfFields() != countTokens);
    }
    
    /**
     * Reads the header line and sets the metadata
     */
    private void initializeMetadata() {
        // Read the file.
        File recordsStore = this.fileConfig.getStoreFile();
 
        try {
            BufferedReader storeFileReader = new BufferedReader(new FileReader(
                    recordsStore.getAbsolutePath()));
 

Chapter 5
Supporting Classes for File Input and Output Handling

5-12



            // Read the header line
            String headerString = storeFileReader.readLine();
 
            // Tokenize the headerString
            StringTokenizer tokenizer = new StringTokenizer(headerString,
                    fileConfig.getTextFieldDelimeter());
 
            this.orderedTextFieldNames = new ArrayList<String>();
            while (tokenizer.hasMoreTokens()) {
                String header = tokenizer.nextToken();
                this.orderedTextFieldNames.add(header);
            }
            
            System.out.println("Columns read - " + this.orderedTextFieldNames);
        } catch (IOException e) {
            throw new RuntimeException("How can I read a corrupted file");
        }
 
        // Store the change log and unique attribute field names
        this.changeLogFieldName = fileConfig.getChangeLogAttributeName();
        this.uniqueAttributeFiledName = fileConfig.getUniqueAttributeName();
    }
 
    /**
     * Validate if the attribute names in config props object are present in the
     * column names
     * 
     * @throws RuntimeException
     *             if validation fails
     */
    private void validateConfigProps() {
        // Check if unique attribute col name is present
        if (!this.orderedTextFieldNames.contains(this.changeLogFieldName))
            throw new RuntimeException("Change log field name "
                    + this.changeLogFieldName + " not found in the store file ");
 
        // Check if change col name is present
        if (!this.orderedTextFieldNames.contains(this.uniqueAttributeFiledName))
            throw new RuntimeException("Unique attribute field name "
                    + this.uniqueAttributeFiledName
                    + " not found in the store file");
    }
}

5.3.3 Implementation of the FlatFileParser Supporting Class
The following code sample shows the implementation of the FlatFileParser supporting class:

package org.identityconnectors.flatfile.io;
 
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
 
import org.identityconnectors.flatfile.FlatFileConfiguration;
import org.identityconnectors.flatfile.FlatFileUserAccount;

Chapter 5
Supporting Classes for File Input and Output Handling

5-13



import org.identityconnectors.flatfile.utils.AccountConversionHandler;
 
public class FlatFileParser {
 
    private File recordsStore;
    private FlatFileConfiguration fileConfig;
    private FlatFileMetadata metadata;
    private AccountConversionHandler accountConverter;
 
    /**
     * Instantiates the parser class. Making it package private to encourage
     * instantiation from Factory class
     * 
     * @param metadata
     * @param fileConfig
     */
    FlatFileParser(FlatFileMetadata metadata, FlatFileConfiguration fileConfig) {
        this.fileConfig = fileConfig;
        this.recordsStore = fileConfig.getStoreFile();
        this.accountConverter = new AccountConversionHandler(metadata,
                fileConfig);
        this.metadata = metadata;
    }
 
    /**
     * Returns all accounts in the file
     * 
     * @return
     */
    public List<FlatFileUserAccount> getAllAccounts() {
        try {
            BufferedReader userRecordReader = new BufferedReader(
                    new FileReader(recordsStore.getAbsolutePath()));
            String recordStr;
 
            // Skip headers
            userRecordReader.readLine();
 
            // Loop over records and make list of objects
            List<FlatFileUserAccount> allAccountRecords = new 
ArrayList<FlatFileUserAccount>();
            while ((recordStr = userRecordReader.readLine()) != null) {
                try {
                    FlatFileUserAccount accountRecord = accountConverter
                            .convertStringRecordToAccountObj(recordStr);
                    allAccountRecords.add(accountRecord);
                } catch (RuntimeException e) {
                    System.out.println("Invalid entry " + e.getMessage());
                }
            }
            userRecordReader.close();
 
            return allAccountRecords;
        } catch (IOException e) {
            throw new RuntimeException("How can I read a corrupted file");
        }
    }
 
    /**
     * Gets the account of matching account identifier
     * 
     * @param accountIdentifier

Chapter 5
Supporting Classes for File Input and Output Handling

5-14



     * @return
     */
    public FlatFileUserAccount getAccount(String accountIdentifier) {
 
        /*
         * I know its not right to get all account details. Don't want to focus
         * on efficiency and scalability as this is just a sample.
         */
        // Iterate over all records and check for matching account
        Map<String, String> matchSet = new HashMap<String, String>();
        matchSet.put(fileConfig.getUniqueAttributeName(), accountIdentifier);
        for (FlatFileUserAccount userRecord : getAllAccounts()) {
            if (userRecord.hasMatchingAttributes(matchSet))
                return userRecord;
        }
 
        // Got nothing..
        return null;
    }
 
    /**
     * Returns all records with matching Attributes If more than attributes are
     * passed. it will check all the attributes
     * 
     * @param matchSet
     *            Checks if all provided attributes are matched
     */
    public List<FlatFileUserAccount> getAccountsByMatchedAttrs(
            Map<String, String> matchSet) {
        /*
         * I know its not right to get all account details. Don't want to focus
         * on efficiency and scalability as this is just a sample.
         */
        // Iterate over all records and check for matching account
        List<FlatFileUserAccount> matchingRecords = new ArrayList<FlatFileUserAccount>();
        for (FlatFileUserAccount userRecord : getAllAccounts()) {
            if (userRecord.hasMatchingAttributes(matchSet))
                matchingRecords.add(userRecord);
        }
 
        return matchingRecords;
    }
 
    /**
     * Returns the records that fall after the specified change number This
     * function helps in checking the function of sync
     * 
     * @param changeNumber
     *            the change number for the last search
     */
    public List<FlatFileUserAccount> getUpdatedAccounts(int changeNumber) {
        /*
         * I know its not right to get all account details. Don't want to focus
         * on efficiency and scalability as this is just a sample.
         */
        // Iterate over all records and check for matching account
        List<FlatFileUserAccount> matchingRecords = new ArrayList<FlatFileUserAccount>();
        String changeLogAttrName = fileConfig.getChangeLogAttributeName();
        for (FlatFileUserAccount userRecord : getAllAccounts()) {
            int recordChangeNumber = userRecord
                    .getChangeNumber(changeLogAttrName);
            if (recordChangeNumber >= changeNumber)

Chapter 5
Supporting Classes for File Input and Output Handling

5-15



                matchingRecords.add(userRecord);
        }
        return matchingRecords;
 
    }
 
    /**
     * Returns an iterator that iterates over the records. This is provided for
     * dynamic retrieval of records
     * 
     * @param matchSet
     *            Filters the records by matching the given attributes. Use null
     *            or empty set to avoid filtering
     * @return
     */
    public Iterator<FlatFileUserAccount> getAccountIterator(
            Map<String, String> matchSet) {
        Iterator<FlatFileUserAccount> recordIterator = new FlatFileLineIterator(
                this.metadata, this.fileConfig, matchSet);
 
        return recordIterator;
    }
 
    /**
     * Gives the next change number. Logic is max of existing change numbers + 1
     * @return
     */
    public int getNextChangeNumber() {
        int maximumChangeNumber = 0;
 
        /*
         * I know its not right to get all account details. Don't want to focus
         * on efficiency and scalability as this is just a sample.
         */
        // Iterate over all records and check for matching account
        String changeLogAttrName = fileConfig.getChangeLogAttributeName();
        for (FlatFileUserAccount userRecord : getAllAccounts()) {
            int changeNumber = userRecord.getChangeNumber(changeLogAttrName);
 
            if (changeNumber >= maximumChangeNumber) {
                maximumChangeNumber = changeNumber + 1;
            }
        }
        return maximumChangeNumber;
    }
}

5.3.4 Implementation of the FlatFileWriter Supporting Class
The following code sample shows the implementation of the FlatFileWriter supporting class:

package org.identityconnectors.flatfile.io;
 
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
 
import org.identityconnectors.flatfile.FlatFileConfiguration;
import org.identityconnectors.flatfile.FlatFileUserAccount;

Chapter 5
Supporting Classes for File Input and Output Handling

5-16



import org.identityconnectors.flatfile.utils.AccountConversionHandler;
 
/**
 * Class for searching operations on files
 * 
 * @author Harsh
 */
public class FlatFileWriter {
 
    private File recordsStore;
    private FlatFileParser recordParser;
    private FlatFileConfiguration fileConfig;
    private AccountConversionHandler accountConverter;
 
    /**
     * Initializes the writer with the configuration Making it package private
     * to encourage use of Factory class for global instantiation
     * 
     * @param metadata
     * @param fileConfig
     */
    FlatFileWriter(FlatFileMetadata metadata, FlatFileConfiguration fileConfig) {
        this.fileConfig = fileConfig;
 
        this.recordsStore = fileConfig.getStoreFile();
        recordParser = new FlatFileParser(metadata, fileConfig);
        accountConverter = new AccountConversionHandler(metadata, fileConfig);
    }
 
    /**
     * Appends the user record at the end of
     * 
     * @param accountRecord
     */
    public void addAccount(FlatFileUserAccount accountRecord) {
        try {
            BufferedWriter userRecordWriter = new BufferedWriter(
                    new FileWriter(this.recordsStore.getAbsolutePath(), true));
 
            // Set the latest changelog number
            int latestChangeNumber = recordParser.getNextChangeNumber();
            accountRecord.setChangeNumber(fileConfig
                    .getChangeLogAttributeName(), latestChangeNumber);
 
            // Validate if same account id doesn't exist
            String accountUid = accountRecord.getAttributeValue(fileConfig
                    .getUniqueAttributeName());
            FlatFileUserAccount accountByAccountId = recordParser
                    .getAccount(accountUid);
 
            if (accountByAccountId != null)
                throw new RuntimeException("Account " + accountUid
                        + " already exists");
 
            // Put the user record in formatted way
            String userRecordAsStr = accountConverter
                    .convertAccountObjToStringRecord(accountRecord);
            userRecordWriter.write("\n" + userRecordAsStr);
 
            // Close the output stream
            userRecordWriter.close();
        } catch (IOException e) {// Catch exception if any

Chapter 5
Supporting Classes for File Input and Output Handling

5-17



            throw new RuntimeException("How can I write on a corrupted file");
        }
    }
 
    /**
     * Removes the entry for respective account identifier
     * 
     * @param accountIdentifier
     */
    public void deleteAccount(String accountIdentifier) {
        String blankRecord = "";
        this.modifyAccountInStore(accountIdentifier, blankRecord);
    }
 
    /**
     * Updates the entry with respective account identifier
     * 
     * @param accountIdentifier
     * @param updatedAccountRecord
     * @return new accountIdentifier
     */
    public String modifyAccount(String accountIdentifier,
            FlatFileUserAccount updatedAccountRecord) {
 
        // Frame a record string and update back to file
        int nextChangeNumber = recordParser.getNextChangeNumber();
 
        String changeNumberFieldName = fileConfig.getChangeLogAttributeName();
        updatedAccountRecord.setChangeNumber(changeNumberFieldName,
                nextChangeNumber);
 
        String newRecordAsStr = accountConverter
                .convertAccountObjToStringRecord(updatedAccountRecord);
        // Update to the file
        this.modifyAccountInStore(accountIdentifier, newRecordAsStr);
 
        // Return new UID
        String uniqueAttrFieldName = fileConfig.getUniqueAttributeName();
        String newAccountIdentifier = updatedAccountRecord
                .getAttributeValue(uniqueAttrFieldName);
        return newAccountIdentifier;
    }
 
    /**
     * Returns the complete flat file as string.
     * 
     * @return
     */
    private String getCompleteFlatFileAsStr() {
        try {
            BufferedReader userRecordReader = new BufferedReader(
                    new FileReader(recordsStore.getAbsolutePath()));
            String recordStr;
 
            // Loop over records and make list of objects
            StringBuilder flatFileStr = new StringBuilder();
            while ((recordStr = userRecordReader.readLine()) != null) {
                if (!recordStr.isEmpty())
                    flatFileStr.append(recordStr + "\n");
            }
            userRecordReader.close();
 

Chapter 5
Supporting Classes for File Input and Output Handling

5-18



            return flatFileStr.toString();
        } catch (IOException e) {
            throw new RuntimeException("How can I read a corrupted file");
        }
    }
 
    /**
     * Updates the account with the new record. this can also be used for delete
     * 
     * @param accountIdentifier
     * @param updatedRecord
     */
    private void modifyAccountInStore(String accountIdentifier,
            String updatedRecord) {
        try {
            // Load the complete flat file
            String completeFlatFile = this.getCompleteFlatFileAsStr();
 
            // Construct the string to be removed and replace it with blank
            FlatFileUserAccount accountToBeRemoved = recordParser
                    .getAccount(accountIdentifier);
            String updatableString = accountConverter
                    .convertAccountObjToStringRecord(accountToBeRemoved);
            String updatedFlatFile = completeFlatFile.replaceAll(
                    updatableString, updatedRecord);
 
            // Rewrite the file
            BufferedWriter userRecordWriter = new BufferedWriter(
                    new FileWriter(this.recordsStore.getAbsolutePath(), false));
            userRecordWriter.write(updatedFlatFile);
 
            /*** debug ***/
            System.out.println("Old string " + updatableString);
            System.out.println("New String" + updatedRecord);
            System.out.println("new file - " + updatedFlatFile);
 
            /******/
            // Close the output stream
            userRecordWriter.close();
        } catch (IOException e) {// Catch exception if any
            throw new RuntimeException("How can I write on a corrupted file");
        }
    }
}

5.3.5 Implementation of the FlatfileLineIterator Supporting Class
The following code sample shows the implementation of the FlatfileLineIterator supporting
class:

package org.identityconnectors.flatfile.io;
 .
 import java.io.BufferedReader;
 import java.io.File;
 import java.io.FileReader;
 import java.io.IOException;
 import java.util.Iterator;
 import java.util.Map;
 .
 import org.identityconnectors.flatfile.FlatFileConfiguration;
 import org.identityconnectors.flatfile.FlatFileUserAccount;
 import org.identityconnectors.flatfile.utils.AccountConversionHandler;

Chapter 5
Supporting Classes for File Input and Output Handling

5-19



 .
 /**
  * Iterator class to fetch the records dynamically during search operations
 This
  * is needed to prevent VM overloading when all records are stored in memory
  *
  * @author admin
  *
  */
 public class FlatFileLineIterator implements Iterator<FlatFileUserAccount> {
 .
     private File recordsStore;
     private AccountConversionHandler accountConverter;
     private FlatFileUserAccount nextRecord;
     private BufferedReader userRecordReader;
     private Map<String, String> attrConstraints;
 .
     /**
      * Making it package private to prevent global initialization
      *
      * @param metadata
      * @param fileConfig
      * @param attributeValConstraints
      *            Iterator will apply this constraint and filter the result
      */
     FlatFileLineIterator(FlatFileMetadata metadata,
             FlatFileConfiguration fileConfig,
             Map<String, String> attributeValConstraints) {
         this.recordsStore = fileConfig.getStoreFile();
         this.accountConverter = new AccountConversionHandler(metadata,
                 fileConfig);
         this.attrConstraints = attributeValConstraints;
 .
         initializeReader();
         this.nextRecord = readNextValidRecord();
     }
 .
     private void initializeReader() {
         try {
             userRecordReader = new BufferedReader(new FileReader(recordsStore
                     .getAbsolutePath()));
 .
             // Skip headers
             userRecordReader.readLine();
 .
         } catch (IOException io) {
             throw new IllegalStateException("Unable to read "
                     + recordsStore.getName());
         }
     }
 .
     @Override
     public boolean hasNext() {
         return (nextRecord != null);
     }
 .
     @Override
     public FlatFileUserAccount next() {
         FlatFileUserAccount currentRecord = this.nextRecord;
         this.nextRecord = readNextValidRecord();
         return currentRecord;
     }

Chapter 5
Supporting Classes for File Input and Output Handling

5-20



 .
     @Override
     public void remove() {
         // Nothing to do here
     }
 .
     /**
      * Returns next valid record. This happens after applying
      *
      * @return
      */
     private FlatFileUserAccount readNextValidRecord() {
         try {
             FlatFileUserAccount userAccObj = null;
             String recordStr;
             // Match the constraints or read next line
             do {
                 System.out.println("Before record string");
                 recordStr = getNextLine();
 .
                 // No more records ??
                 if (recordStr == null)
                     return null;
 .
                 userAccObj = accountConverter
                         .convertStringRecordToAccountObj(recordStr);
             } while (!userAccObj.hasMatchingAttributes(attrConstraints));
            
             return userAccObj;
         } catch (Exception e) {
             System.out.println("Error reading record" + e.getMessage());
             e.printStackTrace();
             return null;
         }
     }
.
     private String getNextLine() throws IOException {
         String nextLine = userRecordReader.readLine();
 .
         // No records ??
         if (nextLine == null) {
             this.userRecordReader.close();
             return null;
         }
 .
         if (nextLine.trim().isEmpty()) {
             return getNextLine();
         }
 .
         return nextLine;
     }
 }
 

5.3.6 Implementation of the FlatfileUserAccount Supporting Class
The following code sample shows the implmentation of the FlatfileUserAccount supporting
class:

 package org.identityconnectors.flatfile;
 .
 import java.util.HashMap;

Chapter 5
Supporting Classes for File Input and Output Handling

5-21



 import java.util.HashSet;
 import java.util.Map;
 import java.util.Set;
 .
 import org.identityconnectors.framework.common.objects.Attribute;
 .
 /**
  * Object representing a user entity
  *
  * @author admin
  *
  */
 public class FlatFileUserAccount {
 .
     /*
      * Mandatory attribute names
      */
     private Set<String> mandatoryAttrNames = new HashSet<String>();
 .
     /*
      * Attributes making the account
      */
     private Map<String, String> attributes = new HashMap<String, String>();
 .
     /**
      * Instantiates the attribute value map
      *
      * @param mandatoryAttributeNames
      *            Names of the attributes that are necessary
      * @param attributeValMap
      *            Name value map for the attributes.
      * @throws IllegalStateException
      *             If mandatory attributes are not found in attribute val map
      */
     public FlatFileUserAccount(Set<String> mandatoryAttributeNames,
             Map<String, String> attributeValMap) {
         // Check if mandatory attribute values are passed
         Set<String> attrValuesKeySet = attributeValMap.keySet();
         if (!attrValuesKeySet.containsAll(mandatoryAttributeNames))
             throw new IllegalStateException("Mandatory attributes missing");
 .
         // Initialize
         this.mandatoryAttrNames = mandatoryAttributeNames;
         this.attributes = attributeValMap;
 .
     }
    
     /**
      * Instantiates the attribute value map.
      * Considers all attributes to be mandatory
      * @param attributeValMap
      */
     public FlatFileUserAccount(Map<String, String> attributeValMap) {
         this.mandatoryAttrNames = attributeValMap.keySet();
         this.attributes = attributeValMap;
     }
    
     /**
      * Instantiates the attribute value map
      * @param attrs
      */
     public FlatFileUserAccount(Set<Attribute> attrs) {

Chapter 5
Supporting Classes for File Input and Output Handling

5-22



     for(Attribute attr: attrs) {
     String attrName = attr.getName();
    
     //Consider first value. Multivalued not supported
     String attrVal = (String) attr.getValue().get(0);
     this.attributes.put(attrName, attrVal);
     }
     }
 .
     /**
      * Updates the set of attributes. If new attributes present, they are
 added,
      * If old attributes are present in the parameter set, values are updated
      *
      * @param updatedAttributeValMap
      */
     public void updateAttributes(Map<String, String> updatedAttributeValMap)
 {
         this.attributes.putAll(updatedAttributeValMap);
     }
    
     /**
      * Updates the set of attributes.
      * @param upatedAttributes
      */
     public void updateAttributes(Set<Attribute> upatedAttributes) {
     Map<String, String> updatedAttributeValMap = new HashMap<String,
 String>();
     for(Attribute attr: upatedAttributes) {
     String attrName = attr.getName();
    
     //Consider first value. Multivalued not supported
     String attrVal = (String) attr.getValue().get(0);
     updatedAttributeValMap.put(attrName, attrVal);
     }
     this.attributes.putAll(updatedAttributeValMap);
     }
.
     /**
      * Deletes the attributes with given name.
      *
      * @param attributeKeys
      *            Set of the attribute names that are needed
      * @throws UnsupportedOperationException
      *             if delete for mandatory attributes is attempted
      */
     public void deleteAttributes(Set<String> attributeKeys) {
         // Check if mandatory attributes are not there.
         for (String attrKey : attributeKeys) {
             if (this.mandatoryAttrNames.contains(attrKey))
                 throw new UnsupportedOperationException(
                         "Delete for mandatory attributes not supported. Try
 update");
             // Not deleting here as it might result inconsistent
         }
         // Remove the attributes
         for (String attrKey : attributeKeys) {
             this.attributes.remove(attrKey);
         }
     }
 .
     /**

Chapter 5
Supporting Classes for File Input and Output Handling

5-23



      * Gets the attribute of a given name
      *
      * @param attributeName
      * @return
      * @throws IllegalArgumentException
      *             if attribute is not there for a given name
      */
     public String getAttributeValue(String attributeName) {
         return this.attributes.get(attributeName);
     }
 .
     /**
      * Returns the current set of attributes
      *
      * @return
      */
     public Map<String, String> getAllAttributes() {
         return this.attributes;
     }
 .
     /**
      * Returns true if all passed attributes are matching for this object
      *
      * @param attrValMap
      * @return
      */
     public boolean hasMatchingAttributes(Map<String, String> attrValMap) {
         boolean noFilterSupplied = (attrValMap == null )||
 (attrValMap.isEmpty());
         if (noFilterSupplied)
             // No filter. Everything matches
             return true;
        
         // Iterate to match attributes one by one
         Set<String> keySet = attrValMap.keySet();
         for (String attrName : keySet) {
             String objAttrVal = this.attributes.get(attrName);
             String passedValue = attrValMap.get(attrName);
 .
             if (!objAttrVal.equals(passedValue))
                 // This attribute is not same
                 return false;
         }
 .
         // All attributes are same
         return true;
     }
 .
     /**
      * Returns the change log number
      *
      * @param changeLogAttrName
      *            attribute representing the number
      * @return
      */
     public int getChangeNumber(String changeLogAttrName) {
         String changeNumStr = this.attributes.get(changeLogAttrName);
         int changeNumber = 0;
 .
         try {
             changeNumber = Integer.parseInt(changeNumStr);
         } catch (Exception e) {

Chapter 5
Supporting Classes for File Input and Output Handling

5-24



             System.out.println("Not a valid change log number "
                     + changeLogAttrName + " :" + changeNumStr);
         }
 .
         return changeNumber;
     }
    
     /**
      * Sets the given attribute with a new value
      * @param attrName
      * @param attrVal
      */
     public void setAttribute(String attrName, String attrVal) {
         this.attributes.put(attrName, attrVal);
     }
    
     /**
      * Updates the changelog number
      * @param changeLogAttrName
      * @param newChangeNumber
      */
     public void setChangeNumber(String changeLogAttrName, int
 newChangeNumber) {
         String changeNumberValStr = "" + newChangeNumber;
         this.attributes.put(changeLogAttrName, changeNumberValStr);
     }
 .
     @Override
     public String toString() {
         // Just print the attributes
         return this.attributes.toString();
     }
 .
 }

5.3.7 Implementation of the FlatfileAccountConversionHandler Supporting
Class

This following code sample shows the implementation of the FlatfileAccountConversionHandler
supporting class:

 package org.identityconnectors.flatfile.utils;
 .
 import java.util.HashMap;
 import java.util.List;
 import java.util.Map;
 import java.util.Set;
 import java.util.StringTokenizer;
 .
 import org.identityconnectors.flatfile.FlatFileConfiguration;
 import org.identityconnectors.flatfile.FlatFileUserAccount;
 import org.identityconnectors.flatfile.io.FlatFileMetadata;
 .
 /**
  * Class for the utility functions
  *
  * @author Admin
  *
  */
 public class AccountConversionHandler {
 .

Chapter 5
Supporting Classes for File Input and Output Handling

5-25



     private FlatFileConfiguration fileConfig;
     private FlatFileMetadata metadata;
 .
     /**
      * Instantiates the handler class. But needs the configuration
      *
      * @param metadata
      * @param fileConfig
      */
     public AccountConversionHandler(FlatFileMetadata metadata,
             FlatFileConfiguration fileConfig) {
         this.fileConfig = fileConfig;
         this.metadata = metadata;
     }
 .
     /**
      * Converts strings records to the user account objects.
      *
      * @param accountRecord
      * @return
      * @throws RuntimeException
      *             If string is not formatted as per accepted standards
      */
    public FlatFileUserAccount convertStringRecordToAccountObj(
             String accountRecord) {
 .
         StringTokenizer tokenizer = new StringTokenizer(accountRecord,
                 fileConfig.getTextFieldDelimeter());
 .
         // Assert number of columns matching with number of tokens
         if (metadata.isDifferentFromNumberOfFields(tokenizer.countTokens()))
             throw new RuntimeException(
                     "Number of tokens doesn't match number of columns");
 .
         // Get the attributes
         List<String> attrNames = metadata.getOrderedTextFieldNames();
         Map<String, String> attrValMap = new HashMap<String, String>();
 .
         // Number of tokens are same. Same loop will work
         for (String attrName : attrNames) {
             String attrVal = "";
             if (tokenizer.hasMoreTokens())
                 attrVal = tokenizer.nextToken();
 .
             attrValMap.put(attrName, attrVal);
         }
 .
         // Assumption : All attributes are mandatory for user. Change with
 the
         // change in assumption
         Set<String> mandatoryAttributeNames = attrValMap.keySet();
         FlatFileUserAccount userAccountRecordObj = new FlatFileUserAccount(
                 mandatoryAttributeNames, attrValMap);
         return userAccountRecordObj;
 .
    }
 .
     /**
      * Converts account objects to storable string records
      *
      * @param accountObj
      * @return

Chapter 5
Supporting Classes for File Input and Output Handling

5-26



      */
     public String convertAccountObjToStringRecord(
             FlatFileUserAccount accountObj) {
         StringBuilder strRecord = new StringBuilder();
 .
         // Build the string record from the object
         List<String> attrNames = metadata.getOrderedTextFieldNames();
        
         int index=0;
         for (String attrName: attrNames) {
             String attrVal = accountObj.getAttributeValue(attrName);
             strRecord.append(attrVal);
           
            // Add delimeter
             if (index < attrNames.size()-1) {
                 strRecord.append(fileConfig.getTextFieldDelimeter());
                 index++;
             } else {
                 // Record ended
                 String newLineCharacter = "\n";
                 strRecord.append(newLineCharacter);
                 break;
             }
         }
         return strRecord.toString();
     }
 .
     /**
      * Asserts if given object is not null
      *
      * @param message
      * @param obj
      */
     public void assertNotNull(String message, Object obj) {
         if (obj == null)
             throw new RuntimeException(message);
     }
    
 }

5.3.8 Implementation of the Messages.Properties Supporting Class
The following code sample shows the implementation of the Messages.Properties supporting
class:

USER_ACCOUNT_STORE_HELP=File in which user account will be stored
USER_ACCOUNT_STORE_DISPLAY=User Account File
USER_STORE_TEXT_DELIM_HELP=Text delimeter used for separating the columns
USER_STORE_TEXT_DELIM_DISPLAY=Text Field Delimeter
UNIQUE_ATTR_HELP=The name of the attribute which will act as unique identifier
UNIQUE_ATTR_DISPLAY=Unique Field
CHANGELOG_ATTR_HELP=The name of the attribute which will act as changelog
CHANGELOG_ATTR_DISPLAY=Changelog Field

5.4 Uploading the Identity Connector Bundle to Oracle Identity
Governance Database

The identity connector bundle must be available to ICF in Oracle Identity Governance
database.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-27



Follow the list of sections in order to integrate the ICF identity connector with Oracle Identity
Manager. Some of the procedures include configuration by using the Oracle Identity Manager
Design Console.

• Registering the Connector Bundle with Oracle Identity Governance

• Creating Basic Identity Connector Metadata

• Creating Provisioning Metadata

• Creating Reconciliation Metadata

5.4.1 Registering the Connector Bundle with Oracle Identity Governance
The connector bundle must be available for the Connector Server local to Oracle Identity
Manager.

Following is the procedure to accomplish this:

1. Copy the connector bundle JAR to the machine on which Oracle Identity Manager in
installed.

2. Run the following command to upload the JAR.

$MW_HOME/server/bin/UploadJars.sh

Note:

In this chapter, DW_HOME represents $MW_HOME/Oracle_IDM1.

3. Select ICFBundle as the JAR type.

4. Enter the location of the connector bundle JAR.

5. Press Enter.

5.4.2 Creating Basic Identity Connector Metadata
The connector metadata configuration is needed for both provisioning and reconciliation.

The following set of procedures in this section are completed by using the Oracle Identity
Manager Design Console:

• Creating the IT Resource Type Definition

• Creating the Resource Object

• Creating the Main Configuration Lookup

• Creating Object Type Configuration Lookup

5.4.2.1 Creating the IT Resource Type Definition
An IT resource type definition is the representation of a resource's connection information. The
configuration parameters in the IT resource type definition should be matched with the
configuration parameters of the connector bundle. The values of the parameters in the IT
resource will be set in the bundle configuration.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-28



Note:

You may include parameters the bundle configuration is not using. They produce no
negative effects on the bundle operations.

1. Log in to the Oracle Identity Manager Design Console.

2. Click IT Resource Type Definition under Resource Management.

3. Create a new IT Resource Type Definition with the Server Type defined as Flat File.

4. Add the following parameters as illustrated in Figure 5-1.

• Configuration Lookup is the marker of the main configuration lookup for the
resource. The name of the parameter must be Configuration Lookup. It is a good
practice to add a value to Default Field Value.

• textFieldDelimeter maps to the textFieldDelimeter parameter in the bundle
configuration. The value of this parameter will be passed.

• storeFile maps to the storeFile parameter in the bundle configuration. The value of
this parameter will be passed.

Figure 5-1    IT Resource Type Definition in Design Console

5.4.2.2 Creating the Resource Object
The resource object is the Oracle Identity Manager representation of a resource. The
connector bundle is tied to the resource object.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Resource Objects under Resource Management.

3. Create a new resource object with the name FLATFILERO.

As the resource object is a target resource don't check the Trusted Source box as
illustrated in Figure 5-2.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-29



Figure 5-2    Resource Objects in Design Console

5.4.2.3 Creating Lookups
Separate lookups have to be defined for different objects supported by the connector bundle.
This lookup can contain provisioning and reconciliation related information for those objects.
The Main Configuration Lookup is the root for object specific lookups as it contains the pointers
to those lookups. The following sections contain information on how to create lookups.

• Creating the Main Configuration Lookup

• Creating Object Type Configuration Lookup

5.4.2.3.1 Creating the Main Configuration Lookup
The Configuration Lookup (as defined in Creating the IT Resource Type Definition) holds
connector bundle configurations that are not counted as connection information. If a
configuration parameter is not found in the IT Resource Type Definition, Oracle Identity
Manager will look in the Configuration Lookup. The main Configuration Lookup contains bundle
properties and bundle configurations. Bundle Property parameters are mandatory as they are
needed for identifying the correct bundle. Bundle configurations that are not defined as part of
the IT resource type definition (discussed in Creating the IT Resource Type Definition) can be
declared here.

Note:

The values for Code Key should match exactly as illustrated. The values for Decode
are specific to the connector bundle.

To create the main configuration lookup:

1. Log in to the Oracle Identity Manager Design Console.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-30



2. Click Lookup Definition under Administration.

3. Create a new lookup and add Lookup.FF.Configuration as the value for Code.

4. Add the following Lookup Code Information as illustrated in Figure 5-3.

• Add VERSION as the required Bundle Version.

• Add org.identityconnectors.flatfile as the required Bundle Name.

• Add org.identityconnectors.flatfile.FlatFileConnector as the required Connector
Name.

• Add AccountId as the value of uniqueAttributeName. AccountId is a unique string
identifier that represents the account to be provisioned or reconciled. It is the name of
the column in the flat file. AccountId is unique and is used to represent a user (account
detail) uniquely.

• Add ChangeNumber as the value of changeLogAttributeName. When an account is
created, a number is attached to it indicating the total accounts created. This value is
maintained in the variable called ChangeNumber.

• OBJECT_TYPE_NAME Configuration Lookup is the configuration lookup for the
particular object type. In this example, the object type is User as User Configuration
Lookup is defined.

Figure 5-3    Lookup Definition in Design Console

5.4.2.3.2 Creating Object Type Configuration Lookup
Object type configuration lookup contains the parameters specific to the particular object type.
Object type is an entity over which an identity connector operates. It is mapped to ICF
ObjectClass. In Creating the Main Configuration Lookup, User Configuration Lookup has been
referenced so that User is the object type, in this case mapped to ObjectClass.ACCOUNT.
(Roles and UserJobData are two other object types.) The object type name has to match with
ObjectClass name supported by the identity connector bundle. The User object type is mapped
to predefined ObjectClass.ACCOUNT, the Group object type is mapped to predefined
ObjectClass.GROUP. If the identity connector supports multiple objects, then this step must be
repeated for each.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-31



Note:

Because these use cases cover only the basic functionality, the configuration is kept
to the mandatory attribute.

To create the object type configuration lookup:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Lookup Definition under Administration.

3. Create a new Lookup and add Lookup.FF.UM.Configuration as the Code.

4. Set the following attributes as illustrated in Figure 5-4.

Note:

This tutorial focuses on the minimum configurations needed to run an identity
connector.

• Provisioning Attribute Map takes a value of Lookup.FF.UM.ProvAttrMap. This lookup
contains the mapping between Oracle Identity Manager fields and identity connector
attributes. The mapping is used during provisioning.

• Reconciliation Attribute Map takes a value of Lookup.FF.UM.ReconAttributeMap.
This lookup contains the mapping between Oracle Identity Manager reconciliation
fields and identity connector attributes. The mapping is used during reconciliation.

Figure 5-4    Second Lookup Definition in Design Console

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-32



5.4.3 Creating Provisioning Metadata
To configure Oracle Identity Manager for flat file provisioning, you create the provisioning
metadata, which involves creating a process form, adapters, a process definition, and a
provisioning attribute mapping lookup.

The following sections should be followed in order to configure Oracle Identity Manager for flat
file provisioning.

• Creating a Process Form

• Creating Adapters

• Creating A Process Definition

• Creating a Provisioning Attribute Mapping Lookup

5.4.3.1 Creating a Process Form
A process form is used as the representation of object attributes on Oracle Identity Manager.

This section describes about process forms and how to create a process form. It contains the
following topics:

• About Process Forms

• Creating a Process Form

• Attributes in the Connector Schema

5.4.3.1.1 Creating a Process Form
To create a process form:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Form Designer under Development Tools.

3. Create a new form with the Table Name UD_FLAT_FIL as illustrated in Figure 5-5.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-33



Figure 5-5    Form Designer in Design Console

4. Add the attributes defined in the connector schema, as listed in Attributes in the Connector
Schema.

5. Click the Properties tab.

6. Add the following properties to Server(ITResourceLookupField) as illustrated in Figure 5-6.

• Required = true

• Type = Flat File

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-34



Figure 5-6    Properties of Form Designer in Design Console

7. Save the form.

8. Click Make Version Active.

5.4.3.1.2 About Process Forms
A process form is used as the representation of object attributes on Oracle Identity Manager.
This facilitates user input to set object attributes before passed to the connector bundle for an
operation.

Attributes defined in the process form are not conventions. The form is a way to challenge the
attributes that need to be passed to the identity connector. In general, define an attribute for
each supported attribute in the identity connector.

Note:

It is good practice to have a one to one mapping on the identity connector attributes.

There should be a field for querying the IT resource that should be associated with the
respective IT Resource Type Definition. Variable type of each field should map to the type of
the object attribute.

5.4.3.1.3 Attributes in the Connector Schema
Table 5-1 lists the attributes defined in the connector schema.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-35



Table 5-1    Form Designer Fields

Name Variant Field Label Field Type

UD_FLAT_FIL_FIRSTNAME String First Name TextField

UD_FLAT_FIL_UID String Universal ID TextField

UD_FLAT_FIL_CHANGENO String Change Number TextField

UD_FLAT_FIL_MAILID String Email ID TextField

UD_FLAT_FIL_SERVER long Server ITResource

UD_FLAT_FIL_LASTNAME String Last Name TextField

UD_FLAT_FIL_ACCOUNTID String Account ID TextField

UD_FLAT_FIL_RETURN String Return ID TextField

Note:

The flat file column names are FirstName, ChangeNo, EmailID, Server, LastName,
and AccountID.

5.4.3.2 Creating Adapters
An adapter has to be created for all operations supported by the connector bundle, including
Create, Update, and Delete.

To create the adapter:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Adapter Factory under Development Tools.

3. Create a new adapter and add FFCreateUser as the Adapter Name.

4. Add Process Task as the Adapter Type.

5. Save the adapter.

6. Click the Variable List tab and add the following variables, as shown in Figure 5-7.

• objectType with Type String and Mapped as Resolve at runtime.

• processInstanceKey with Type long and Mapped as Resolve at runtime.

• itResourceFieldName with Type String and Mapped as Resolve at runtime.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-36



Figure 5-7    Adapter Factory Variable List in Design Console

7. Add a Java functional task to the adapter by following this sub procedure, as shown in 
Figure 5-8.

a. Click the Adapter Tasks tab.

b. Select the adapter and click Add.

c. Select Java from the task options.

d. Select icf-oim-intg.jar from the API source.

e. Select oracle.iam.connetors.icfcommon.prov.ICProvisioninManager as the API
Source.

f. Select createObject as the method for the task.

g. Save the configurations.

h. Map the variables (previously added to the Variables List) against the appropriate
method inputs and outputs.

i. Map the configuration parameters against the appropriate method inputs and outputs.

Database Reference maps to Database Reference (Adapter References) and Return
Variable maps to Return Variable (Adapter Variables).

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-37



Figure 5-8    Adapter Factory in Design Console

8. Save and build the adapter.

5.4.3.3 Creating A Process Definition
Process Definition defines the behavior of the connector bundle for a particular operation.
Every operation has a corresponding task associated with it.

The following procedure will configure the process definition and integration of the process task
for the Create operation:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Process Definition under the Process Management tab.

3. Create a new process definition and name it Flat File as illustrated in Figure 5-9.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-38



Figure 5-9    Process Definition in Design Console

4. Select Provisioning as the Type of process.

5. Provide the resource Object Name for the identity connector; in this example,
FLATFILERO.

6. Provide the process form Table Name; in this example, UD_FLAT_FIL.

7. Add a process task and name it Create User.

8. Double click Create User to edit as illustrated in Figure 5-10.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-39



Figure 5-10    Editing Task Screen in Design Console

9. Click the Integration tab.

10. Click Add and select the FFCreateUser adapter from the list as illustrated in Figure 5-11.

The adapter will be available only after it is compiled.

Figure 5-11    Integration Tab in Design Console

11. Map the variables as follows to set the response code returned by the identity connector.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-40



• Adapter Return Variable – Response Code

• Object Type – [Literal:String] User (Name of the object type)

• Process Instance Key – [Process Data] Process Instance

• IT Resource Field Name – [Literal:String] UD_FLAT_FIL_SERVER (Form field name
that contains the IT resource information)

12. Click the Responses tab and configure the responses as illustrated in Figure 5-12.

• UNKNOWN can be described as Unknown response received with a status of R
(Rejected).

• SUCCESS can be described as Operation completed with a status of C (Completed).

• ERROR can be described as Error occurred with a status of R.

Figure 5-12    Configure Responses in Design Console

13. Click the Task to Object Status Mapping tab.

14. Update the Object Status to Provisioned for Status C, as shown in Figure 5-13:

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-41



Figure 5-13    Task to Object Status Mapping

15. Save the process task.

5.4.3.4 Creating a Provisioning Attribute Mapping Lookup
Provisioning Attribute Mapping Lookup contains mappings of Oracle Identity Manager fields to
identity connector bundle attributes.

This section describes the following topics about the Provisioning Attribute Mapping Lookup:

• About Provisioning Attribute Mapping Lookup

• Creating a Provisioning Attribute Mapping Lookup

• Field Flags Used in the Provisioning Attributes Map

5.4.3.4.1 About Provisioning Attribute Mapping Lookup
Provisioning Attribute Mapping Lookup contains mappings of Oracle Identity Manager fields to
identity connector bundle attributes. In the Provisioning Attribute Mapping Lookup:

• Code keys are Field Labels of the process form.

• Decodes are identity connector bundle attributes.

• Child form attributes can be configured as embedded objects in inputs.

• The identity connector's provisioning operation returns the UID in response. This can be
set in a form field by coding it against the identity connector bundle attribute.

5.4.3.4.2 Creating a Provisioning Attribute Mapping Lookup
To create a Provisioning Attribute Mapping Lookup:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Lookup Definition under the Administration tab.

3. Create a new lookup and name it Lookup.FF.UM.ProvAttrMap.

The name of this lookup is referred from the object type configuration lookup. See Creating
Object Type Configuration Lookup.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-42



4. Add the form Field Labels as the code keys and identity connector bundle attributes as the
decode.

• Return ID : __UID__

• Account ID: AccountId

• Change Number: ChangeNumber

• First Name: FirstName

• Last Name: LastName

• Email ID: MailId

5.4.3.4.3 Field Flags Used in the Provisioning Attributes Map
For provisioning attributes mapping, the following field flags can be appended to the code key:

• LOOKUP: This must be specified for all fields whose values are obtained by running a
lookup reconciliation job. The values obtained from lookup reconciliation job have IT
Resource Name/Key appended to it. Specifying this flag helps ICF integration to remove
the appended value just before passing them onto the bundle. For example, the code key
for a field with label Database whose value is obtained by running a lookup reconciliation
job looks similar to Database[LOOKUP].

Note:

The LOOKUP flag can be specified for both Provisioning and Reconciliation
Attribute Map. For provisioning, IT Resource Name/IT Resource Key prefix must
be removed. For reconciliation, IT Resource Name/IT Resource Key prefix must
be added.

• IGNORE: This must be specified for all fields whose values are to be ignored and not sent
to bundle. For example, the code key for a field with label Database whose value need not
be sent to bundle looks similar to Database[IGNORE].

• WRITEBACK: This must be specified for all fields whose values need to be written back
into the process form right after the create or update operation. Adding this flag makes the
ICF integration layer call ICF Get API to get values of attributes marked with the
WRITEBACK flag. For example, the code key for a field with label Database whose value
needs to be written back to the process form right after create/update looks similar to
Database[WRITEBACK]. For this to work, the connector must implement the GetApiOp
interface and provide an implementation for the ConnectorObject getObject(ObjectClass
objClass,Uid uid,OperationOptions options) API. This API searches the target for the
account whose Uid is equal to the passed in Uid, and builds a connector object containing
all the attributes (and their values) that are to be written back to process form.

Note:

If the connector does not implement the GetApiOp interface, then the
WRITEBACK flag does not work and an error is generated.

• DATE: This must be specified for fields whose type need to be considered as Date, without
which the values are considered as normal strings. For example, the code key for a field

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-43



with label Today whose value needs to be displayed in the date format looks similar to
Today[DATE].

• PROVIDEONPSWDCHANGE: This must be specified for all fields that need to be
provided to the bundle(target) when a password update happens. Some targets expect
additional attributes to be specified on every password change. Specifying the
PROVIDEONPSWDCHANGE flag, tells ICF integration to send all the extra fields or
attributes whenever a password change is requested. For example, the code key for a field
with label Extra Attribute Needed for Password Change whose value needs to be provided
to bundle(target) while password update looks similar to Extra Attribute Needed for
Password Change[PROVIDEONPSWDCHANGE].

5.4.4 Creating Reconciliation Metadata
You can configure the reconciliation of records from the flat file. You can use the target
reconciliation as an example; trusted reconciliation can also be configured in a similar fashion.

Perform the procedures in the listed order.

• Creating a Reconciliation Scheduled Task

• Creating a Reconciliation Profile

• Setting a Reconciliation Action Rule

• Creating Reconciliation Mapping

• Field Flags Used in the Reconciliation Attributes Map

• Defining a Reconciliation Matching Rule

5.4.4.1 Creating a Reconciliation Scheduled Task
By default, reconciliation uses a Search operation on the connector bundle. This operation is
invoked with a scheduled task configured using Oracle Identity Manager. This procedure is
comprised of the following subprocedures:

• Defining the Scheduled Task

• Creating a Scheduled Task

5.4.4.1.1 Defining the Scheduled Task
To define the scheduled task:

1. Create a Deployment Manager XML file containing the scheduled task details as shown in
the following example. Make sure to update database value to your database.

<?xml version = '1.0' encoding = 'UTF-8'?>
<xl-ddm-data version="2.0.1.0" user="XELSYSADM" 
database="jdbc:oracle:thin:@localhost:5524/estView.regress.rdbms.dev.mycompany.com" 
exported-date="1307546406635" description="FF">
<scheduledTask repo-type="MDS" name="Flat File Connector User Reconciliation" mds-
path="/db" mds-file="Flat File Connector User Reconciliation.xml">
    <completeXml>
        <scheduledTasks xmlns="http://xmlns.oracle.com/oim/scheduler">
            <task>
            <name>Flat File Connector User Reconciliation</name>
            <class>oracle.iam.connectors.icfcommon.recon.SearchReconTask</class>
            <description>Flat File Connector User Reconciliation</description>
            <retry>0</retry>
            <parameters>

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-44



              <string-param required="false" encrypted="false" 
helpText="Filter">Filter</string-param>
              <string-param required="false" encrypted="false" helpText="Incremental 
Recon Date Attribute">Incremental Recon Date Attribute</string-param>
              <string-param required="false" encrypted="false" helpText="IT Resource 
Name">IT Resource Name</string-param>
              <string-param required="false" encrypted="false" helpText="Object 
Type">Object Type</string-param>
              <string-param required="false" encrypted="false" helpText="Latest 
Token">Latest Token</string-param>
              <string-param required="false" encrypted="false" helpText="Resource 
Object Name">Resource Object Name</string-param>
            </parameters>
          </task>
        </scheduledTasks>
    </completeXml>
</scheduledTask>
</xl-ddm-data>

2. Save the file as Flat File Connector User Reconciliation.xml.

3. Login to Oracle Identity System Administration. Under System Management, click Import.

4. Select the Flat File Connector User Reconciliation.xml file, and click Import.

5. Complete the steps in the wizard.

5.4.4.1.2 Creating a Scheduled Task
This procedure explains how to create a scheduled task.

1. Log in to the Oracle Identity Manager Advanced Administration.

2. Click Scheduler under the System Management tab.

3. Add a schedule task and add Flat File Connector User Reconciliation as the type as
illustrated in Figure 5-14.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-45



Figure 5-14    The Scheduled Task Screen

4. Set the parameters as follows:

• IT Resource Name takes a value of Flat File.

• Resource Object Name takes a value of FLATFILERO.

• Object Type takes a value of User.

5. Click Apply.

5.4.4.2 Creating a Reconciliation Profile
A reconciliation profile defines the structure of the object attributes while reconciliation. The
reconciliation profile should contain all the attributes that have reconciliation support.

To create a reconciliation profile:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Resource Objects under Resource Management.

3. Open the FLATFILERO resource object.

4. Click the Object Reconciliation tab as illustrated in Figure 5-15.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-46



Figure 5-15    Object Reconciliation in Design Console

5. Add following reconciliation fields:

• First Name [String]

• Universal ID [String]

• Email ID [String]

• IT Resource Name [String]

• Last Name [String]

• Account ID [String], Required

6. Save the configuration.

5.4.4.3 Setting a Reconciliation Action Rule
A Reconciliation Action Rule defines the behavior of reconciliation. In this procedure, define the
expected action when a match is found. This procedure assumes you are logged into the
Oracle Identity Manager Design Console.

1. Open the FLATFILERO resource object.

2. Click the Object Reconciliation tab.

3. Click the Reconciliation Action Rules tab in the right frame as illustrated in Figure 5-16.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-47



Figure 5-16    Reconciliation Action Rules in Design Console

4. Add an action rule defined as One Process Match Found (Rule Condition) and Establish
Link (Action).

5. Add an action rule defined as One Entity Match Found (Rule Condition) and Establish Link
(Action).

6. Click Create Reconciliation Profile.

7. Click Save.

5.4.4.4 Creating Reconciliation Mapping
The reconciliation mapping has to be done in the process definition. This is to map the
supported reconciliation fields (from resource object) to the process form fields. This mapping
is needed only for configuring target reconciliation.

To create a reconciliation mapping:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Process Definition under Process Management.

3. Open the Flat File process definition.

4. Click the Reconciliation Field Mappings tab as illustrated in Figure 5-17.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-48



Figure 5-17    Reconciliation Field Mapping in Design Console

5. Add mappings between the reconciliation profile fields and the process form fields.

• First Name[String] = UD_FLAT_FIL_FIRSTNAME

• Email ID[String] = UD_FLAT_FIL_MAILID

• IT Resource Name[String] = UD_FLAT_FIL_SERVER

• Last Name[String] = UD_FLAT_FIL_LASTNAME

• Account ID [String] = UD_FLAT_FIL_ACCOUNTID <KEY>

<KEY> sets Account ID as a key field.

6. Save the configuration.

5.4.4.5 Field Flags Used in the Reconciliation Attributes Map
For reconciliation attributes mapping, the following field flags can be appended to the code
key:

• TRUSTED: This must be specified in the Recon Attribute Map for the field that represents
the status of the account. This flag must be specified only for trusted reconciliation. If this is
specified, then the status of the account is either Active or Disabled. Otherwise, the status
is either Enabled or Disabled. For example, the code key for a field with label Status whose
value needs to be either Active/Disabled must look similar to Status[TRUSTED].

• DATE: In Recon Attribute Map, this must be specified for fields whose type need to be
considered as Date. For example, the code key for a field with label Today whose value
needs to be displayed in the date format must look similar to Today[DATE].

5.4.4.6 Defining a Reconciliation Matching Rule
A reconciliation matching rule defines the equation for calculating the user match.

To define a reconciliation matching rule:

1. Log in to the Oracle Identity Manager Design Console.

Chapter 5
Uploading the Identity Connector Bundle to Oracle Identity Governance Database

5-49



2. Open the Reconciliation Rules form under Development Tools.

3. Click Add Rule.

Figure 5-18    Adding Reconciliation Matching Rule

4. Select resource object FLATFILERO.

5. Save and add the rule element.

User Login from the user profile data equals the Account ID resource attribute.

6. Save the rule.

5.5 Provisioning a Flat File Account
Provisioning a Flat File account involves creating an IT resource of type Flat File with IT
resource and Lookup.FF.Configuration parameters.

The flat file connector is ready to work. Now, the user needs to log in to Oracle Identity
Manager and create an IT resource (target) using the following procedure.

• Create IT resource of type "Flat File".

• Provide the IT resource parameters as appropriate.

• Provide the configuration parameters in Lookup.FF.Configuration as appropriate.

Chapter 5
Provisioning a Flat File Account

5-50



5.6 Installing the Java Connector Server

Note:

JAVA_HOME value should be set with JDK 17 version.

1. Download the Connector Server package (JavaConnectorServer-12.2.1.3.1.zip) from
the Oracle Technology Network site at the following URL:

http://www.oracle.com/technetwork/index.html
2. Extract the contents of the Connector Server package and locate the

connector_server_java-1.6.0.zip file.

3. Create a directory where you want to install Java Connector Server. This will be
CONNECTOR_SERVER_HOME.

4. Extract the contents of the connector_server_java-1.6.0.zip file to
CONNECTOR_SERVER_HOME directory.

5. In the CONNECTOR_SERVER_HOME/conf/ConnectorServer.properties file, set the properties
as required by your deployment.

The following example snippet shows the ConnectorServer.properties shipped with Java
Connector Server:

.
##
## The port we are to run on
##connectorserver.port=8759
##
## The bundle directory in which to find the bundles
##connectorserver.bundleDir=bundles
.
##
## The bundle directory in which to find any libraries needed by bundles at
runtime
##connectorserver.libDir=lib
.
##
## Set to true to use SSL.
## NOTE: Check also the following settings which are related to SSL:
## connectorserver.promptKeyStorePassword
## connectorserver.keyStore
## connectorserver.keyStoreType
## connectorserver.keyStorePasswordconnectorserver.usessl=false
##
## Protocol in use for SSL communication e.g. TLSv1, TLSv1.1, TLSv1.2
##
connectorserver.protocol=TLSv1.2
.
##
## If set to true the user is prompted for key store password at startup.
## If set to false the key store password needs to be set with-setKeyStorePassword 
command first.
##
connectorserver.promptKeyStorePassword=true

Chapter 5
Installing the Java Connector Server

5-51

http://www.oracle.com/technetwork/index.html


.
##
## Full path to key store.
##connectorserver.keyStore=/tmp/KeyStore.jks
.
##
## KeyStore type
##
#connectorserver.keyStoreType=JKS
.
##
## Encrypted password. Set this by using the -setKeyStorePassword flag.
## It is used only if connectorserver.promptKeyStorePassword is set to false.
##connectorserver.keyStorePassword=
.
##
## Optionally specify a specific address to bind to
##
#connectorserver.ifaddress=localhost
.
##
## Secure hash of the gateway key. Set this by using the
## -setKey flag
##connectorserver.key=lmA6bMfENJGlIDbfrVtklXFK32s\=
.
##
## Use standard JDK logging
##
connectorserver.loggerClass=org.identityconnectors.common.logging.impl.JDKLogger

6. The CONNECTOR_SERVER_HOME/conf directory also contains the logging.properties file,
which you can edit if required by your deployment.

Note:

The logging.properties file allows you to enable or disable logging and update
the level information for log files. By default, logging is enabled and level is set to
INFO.

5.7 Configuring the Java Connector Server with SSL for Oracle
Identity Governance

You can configure SSL for Java Connector Server by providing the key store credentials in the
ConnectorServer.properties file.

Note:

JAVA_HOME value should be set with JDK 17 version.

To do so:

1. Create a keystore that will be used for SSL communication between Oracle Identity
Manager and Java connector server. To do so:

Chapter 5
Configuring the Java Connector Server with SSL for Oracle Identity Governance

5-52



a. On the host on which Java connector server is installed, locate the JAVA home
directory.

b. From the JAVA home directory, run the following command to generate a keystore:

$JAVA_HOME/bin/keytool -genkey {-alias ALIAS} {-keyalg KEYALG} {-keysize
KEYSIZE} {-sigalg SIGALG} [-dname DNAME] [-keypass KEYPASS] {-validity
VAL_DAYS} {-storetype STORETYPE} {-keystore KEYSTORE} [-storepass
STOREPASS]
For example:

$JAVA_HOME/bin/keytool -genkey
-aliasjavaconnectorserver
-keyalg RSA
-keysize 2048
-sigalg SHA256withRSA
-dname "CN=localhost, OU=Identity, O=Oracle Corporation,C=US"
-keypass WEBLOGIC_PASSWORD
-keystore javaconnectorserver.jks
-storepass WEBLOGIC_PASSWORD

c. Export the certificate of the newly generated keystore to a file by running the following
keytool command:

$JAVA_HOME/bin/keytool -export {-alias ALIAS} {-file CERT_FILE} {-
storetype STORETYPE} {-keystore KEYSTORE} [-storepass STOREPASS]
For example:

$JAVA_HOME/bin/keytool -export -alias javaconnectorserver
   -file javaconnectorserver.cert
   -keypass WEBLOGIC_PASSWORD
   -keystore javaconnectorserver.jks
   -storepass WEBLOGIC_PASSWORD

d. Copy the certificate of Java connector server keystore on the Oracle Identity Manager
host. Import this certificate of Java connector server keystore into the trust store used
in Oracle Identity Manager by running the following command:

$JAVA_HOME/bin/keytool -import {-alias ALIAS} {-file CERT_FILE} [-keypass
KEYPASS] {-noprompt} {-trustcacerts} {-storetype STORETYPE} {-keystore
KEYSTORE} [-storepass STOREPASS]
If Oracle Identity Manager is using custom identity and custom trust, then import the
following certificate in custom trust and Java standard trust.

$JAVA_HOME/bin/keytool -import -alias javaconnectorservertrust -
trustcacerts -file /scratch/javaconnectorserver.cert -keystore
DOMAIN_HOME/config/fmwconfig/CUSTOM_TRUST_KEYSTORE -storepass
WEBLOGIC_PASSWORD
If Oracle Identity Manager is using custom identity and Java standard trust, then import
this certificate in Java standard trust.

$JAVA_HOME/bin/keytool -import -alias javaconnectorservertrust -
trustcacerts -file /scratch/javaconnectorserver.cert -keystore
JAVA_HOME/lib/security/cacerts -storepass PASSWORD
If Oracle Identity Manager is using Demo Identity and Demo Trust, then import the
following certificate in DOMAIN_HOME/config/fmwconfig/default-keystore.jks file of
Oracle Identity Manager and in Java standard trust.

Chapter 5
Configuring the Java Connector Server with SSL for Oracle Identity Governance

5-53



$JAVA_HOME/bin/keytool -import -alias javaconnectorservertrust -
trustcacerts -file /scratch/javaconnectorserver.cert -keystore
DOMAIN_HOME/config/fmwconfig/default-keystore.jks -storepass
WEBLOGIC_PASSWORD

2. Provide the location of this Java Connector Server keystore in
the $CONNECTOR_SERVER_HOME/conf/ConnectorServer.properties file:

connectorserver.usessl=true
connectorserver.keyStore={full path to your keystore file}
connectorserver.keyStoreType=JKS (optionally you can set key store type, if
not set JSK is used by default)

3. Provide the password of this Java Connector Server keystore in
the $CONNECTOR_SERVER_HOME/conf/ConnectorServer.properties file. You can do
one of the following:

• Set connectorserver.promptKeyStorePassword=false in
ConnectorServer.properties and set the password as:

cd $CONNECTOR_SERVER/bin
For UNIX: connectorserver.sh /setKeyStorePassword thepassword
For Windows: ConnectorServer.bat /setKeyStorePassword thepassword
This command will set the encrypted value to connectorserver.keyStorePassword in
ConnectorServer.properties.

or

• Prompt to enter the keystore password every time you start the connector server by
setting connectorserver.promptKeyStorePassword=true in
ConnectorServer.properties file.

4. You can set the protocol for secure communication by setting the
connectorserver.protocol property in $CONNECTOR_SERVER_HOME/conf/
ConnectorServer.properties file as:

## Protocol in use for SSL communication e.g. TLSv1, TLSv1.1, TLSv1.2
##
connectorserver.protocol=TLSv1.2

Default value for this property is TLSv1.2 for TLS 1.2 protocol.

Chapter 5
Configuring the Java Connector Server with SSL for Oracle Identity Governance

5-54



Note:

You can configure SSL between Java Connector Server and Target System. To
do so:

• Check for the <JAVA_HOME>/lib folder path in the Java Connector Server
machine.

• Import target system certificate in Java standard trust store
(<JAVA_HOME>/jre/lib/security/cacerts) of Java Connector Server machine
using below command:

keytool -import -alias oidstore -keystore JAVA_HOME/lib/
security/cacerts -file /scratch/cert/b64certificate.txt -
storepass PASSWORD

Where, oidstore is the alias, JAVA_HOME is the java home folder in the Java
Connector Server machine, /scratch/cert/b64certificate.txt is the
target system certification file, and PASSWORD is the password.

5.8 Configuring the Java Connector Server without SSL for
Oracle Identity Governance

Note:

JAVA_HOME value should be set with JDK 17 version.

To configure the Java Connector Server without SSL:

1. In the $CONNECTOR_SERVER_HOME/conf/ConnectorServer.properties file, set the
connectorserver.key property by running the Java Connector Server with the /setKey
option.

For Java Connector Server on Windows, go to $CONNECTOR_SERVER_HOME\bin directory
and find the ConnectorServer.bat script. Run the script:

./ ConnectorServer.bat /setKey <KEY>
For Java Connector Server on Solaris and Linux, go to $CONNECTOR_SERVER_HOME\bin
directory and find the ConnectorServer.sh script. Run the script:

./ ConnectorServer.sh /setKey <KEY>
2. For all other properties, edit the ConnectorServer.properties file manually.

See Installing the .NET Connector Server for an example snippet of the
ConnectorServer.properties shipped with Java Connector Server.

5.9 Upgrading the Java Connector Server
In the 12.2.1.3.1 version of the Connector Server pack, you can select the protocol for SSL
communication between Oracle Identity Manager and Java Connector Server by using the

Chapter 5
Configuring the Java Connector Server without SSL for Oracle Identity Governance

5-55



connectorserver.protocol property. The supported values of this property are TLSv1.2, and
TLSv1.3.Here, TLSv1.2 denotes TLS 1.2 protocol, and TLSv1.3 denotes TLS 1.3 protocol. The
default value of this property is TLSv1.2, which denotes TLS 1.2 protocol.

To upgrade the Java Connector Server:

Note:

JAVA_HOME value should be set with JDK 17 version.

1. Stop the connector server service.

2. Create a backup of the directory on which Connector server is installed.

3. Download the Connector Server package (JavaConnectorServer-12.2.1.3.1.zip) from
the Oracle Technology Network site at the following URL:

http://www.oracle.com/technetwork/index.html
4. Extract the contents of the Connector Server package

(JavaConnectorServer-12.2.1.3.1.zip) and locate the
connector_server_java-1.6.0.zip file.

5. Extract the contents of the connector_server_java-1.6.0.zip file in a directory.

6. Copy the files in the connector_server_java-1.6.0/bin/ and
connector_server_java-1.6.0/lib/ directories from the 12.2.1.3.1 Java Connector
Server pack to the installed location of Java Connector Server.

7. Open connector_server_java-1.6.0/conf/ConnectorServer.properties file from
12.2.1.3.1 Java Connector Server pack and open conf/ConnectorServer.properties file
from installed location of Java Connector Server.

8. Add the following section in the conf/ConnectorServer.properties file at installed
location from connector_server_java-1.6.0/conf/ConnectorServer.properties file in
12.2.1.3.1 Java connector server pack:

## Protocol in use for SSL communication e.g. TLSv1.2, TLSv1.3
connectorserver.protocol=TLSv1.2

This property provides an option to select the protocol for SSL communication. By default,
the value is TLS1.2.

Note:

Customizations are preserved during the upgrade of the Connector Server. If you
have any customization in any of the updated files, then redo the same
customizations form the backed up file.

9. If you are using Java Connector Server as Windows Service, then only follow below steps
(a) to (c):

a. Uninstall the existing Java Connector Server Windows Service using below command
in $JAVA_CONNECTOR_SERVER/bin directory. ConnectorServer.bat /uninstall
<service_name>

Chapter 5
Upgrading the Java Connector Server

5-56

http://www.oracle.com/technetwork/index.html


b. Install Java Connector Server Windows Service using below command
in $JAVA_CONNECTOR_SERVER/bin directory. ConnectorServer.bat /install
<service_name>

c. Start Java Connector Server Windows Service.

Note:

Customizations are preserved during the upgrade of the Connector Server. If
you have any customization in any of the updated files, then redo the same
customizations form the backed up file.

10. Start the Connector Server after updating all the required settings.

Chapter 5
Upgrading the Java Connector Server

5-57



6
Developing Identity Connectors Using .NET

You can develop an identity connector in .NET using the Identity Connector Framework (ICF)
and the Oracle Identity Manager metadata.
This chapter is a tutorial that walks through the procedures necessary to develop an identity
connector in .NET using the Identity Connector Framework (ICF) and the Oracle Identity
Manager metadata. It includes information about important ICF classes and interfaces, the
connector bundle, the connector server, and code samples for implementing a flat file .NET
identity connector and creating Oracle Identity Manager metadata for user provisioning and
reconciliation processes.

This chapter contains the following sections:

• Developing a Flat File .NET Connector

• Deploying the Identity Connector Bundle on .NET Connector Server

• Provisioning a Flat File Account

6.1 Developing a Flat File .NET Connector
Developing a Flat File .NET connector involves setting up a project in Microsoft Visual Studio,
implementing the AbstractConfiguration, PoolableConnector, and AbstractFilterTranslator
classes, and building the project.

This section describes the high-level procedure to develop a flat file .NET connector along with
code samples.

It contains the following topics:

• Overview of Developing a Flat File .NET Connector

• Developing a Flat File .NET Connector

• Implementation of AbstractConfiguration

• Implementation of PoolableConnector

• Implementation of AbstractFilterTranslator

• Sample AssemblyInfo.cs File

6.1.1 Overview of Developing a Flat File .NET Connector
The procedure for developing a flat file connector is to develop an implementation of the
Configuration interface followed by the implementation of the Connector class.

This document discusses sample implementation of a flat file connector showing Create,
Delete, Update and Search operations. To keep implementations and documentation simple,
Configuration properties and Schema supported by connector have been kept to a minimum.
This connector implementation should only be used as a sample which would help to create
actual connectors.

6-1



To keep the connector implementation simple, lets assume that flat file has only Name,
Gender, Qualification, Age attributes. You have only two configurations File Location and
Delimiter. Rest configurations would be hardcoded in the sample.

6.1.2 Developing a Flat File .NET Connector
Developing a Flat File .NET connector involves setting up a project in Microsoft Visual Studio,
implementing the AbstractConfiguration, PoolableConnector, and AbstractFilterTranslator
classes, and building the project.

To develop a Flat File .NET connector:

1. Setting up the project in Microsoft Visual Studio and using the connector:

a. Create a new visual studio project of type library.

b. Make sure to add the following dlls as references:

- Common.dll

- Framework.dll

- FrameworkInternal.dll

- System.dll

- System.Core.dll

These dlls should be available with the .NET connector server.

2. Implement the configuration class for the Flat File Connector by extending the
Org.IdentityConnectors.Framework.Spi.AbstractConfiguration base class. See 
Implementation of AbstractConfiguration for the implementation of AbstractConfiguration.

3. Create connector class for the Flat File Connector by implementing different SPI interfaces
Org.IdentityConnectors.Framework.Spi. See Implementation of PoolableConnector for
the implementation of PoolableConnector.

4. This connector supports only the CreateEqualsExpression operation. Implement the
CreateEqualsExpression. See Implementation of AbstractFilterTranslator for the
implementation of
Org.IdentityConnectors.Framework.Common.Objects.Filters.AbstractFilterTranslator<T>.

5. Implement the different classes (as mentioned in steps 2, 3, and 4).

6. Make a note of AssemblyVersion present in the AssemblyInfo.cs of the project. See 
Sample AssemblyInfo.cs File for a sample AssemblyInfo.cs file.

7. Build the project. The project must create the connector DLL.

6.1.3 Implementation of AbstractConfiguration
The Org.IdentityConnectors.Framework.Spi.AbstractConfiguration base class can be extended
to implement the configuration class for the Flat File Connector.

The following code sample shows the implementation of AbstractConfiguration:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Org.IdentityConnectors.Framework.Spi;?
using Org.IdentityConnectors.Framework.Common.Exceptions;?
using System.IO;

Chapter 6
Developing a Flat File .NET Connector

6-2



 
namespace Org.IdentityConnector.FlatFileConnector?
{
    /// <summary>
    /// Configuration class for flat file connector representing target system 
information?
    /// </summary>
    public class FlatFileConfiguration : AbstractConfiguration?
    {
        #region FileName
        /// <summary>
        /// Target file name
        /// </summary>
        /// <value>
        /// File name with complete path. As for executing the .NET Connector bundle we 
need .NET Connector Server, hence the file should reside
        /// on the machine where the connector server is present.
        /// </value>
        [ConfigurationProperty(Required = true, Order = 1)]
        public String FileName { get; set; }
        #endregion
 
        #region Delimiter
        /// <summary>
        /// Delimiter used within the target flat file
        /// </summary>
        /// <value>
        /// Delimter
        /// </value>
        [ConfigurationProperty(Required = true, Order = 2)]
        public String Delimiter { get; set; }
        #endregion
                
        #region
        /// <summary>
        /// Validates if the configuration properties provided are as requiered, if not 
throw ConfigurationException
        /// </summary>
        public override void Validate()
        {
            if (this.FileName == null || this.FileName.Length == 0)
            {
                throw new ConfigurationException("Configuration property FileName cannot 
be null or empty");
            }
            if (!File.Exists(this.FileName))
            {
                throw new ConfigurationException("Target file " + this.FileName + " does 
not exist");
            }
            if (this.Delimiter == null || this.Delimiter.Length == 0)
            {
                throw new ConfigurationException("Configuration property Delimiter 
cannot be null or empty");
            }
        }
        #endregion
    }
}

Chapter 6
Developing a Flat File .NET Connector

6-3



6.1.4 Implementation of PoolableConnector
The Org.IdentityConnectors.Framework.Spi interface can be implemented to create connector
class for the Flat File Connector.

The following code sample implements the
PoolableConnector,CreateOp,SchemaOp,TestOp,DeleteOp,UpdateOp,SearchOp<String>
interfaces and thus supports all CRUD operations:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Org.IdentityConnectors.Framework.Spi;
using System.IO;
using Org.IdentityConnectors.Framework.Common.Exceptions;
using System.Security.AccessControl;
using Org.IdentityConnectors.Framework.Spi.Operations;
using Org.IdentityConnectors.Framework.Common.Objects;
using Org.IdentityConnectors.Common;
 
namespace Org.IdentityConnector.FlatFileConnector
{
    /// <summary>
    /// FlatFileConnector showing implementation of SchemaOp, test, create, delete, 
update and search operations.
    /// </summary>
    [ConnectorClass("FlatFileConnector_DisplayNameKey",typeof(FlatFileConfiguration))]
    public class FlatFileConnector : 
PoolableConnector,CreateOp,SchemaOp,TestOp,DeleteOp,UpdateOp,SearchOp<String>
    {
 
        /// <summary>
        /// Flat file configuration instance. This instance has the target system 
information.
        /// </summary>
        private FlatFileConfiguration config;
 
 
        #region Init
        /// <summary>
        /// Create a connection to target and store it for later use. But here we just 
set attributes of target file
        /// name to Normal
        /// </summary>
        /// <param name="config">Configuration Object</param>
        public void Init(Configuration config)
        {
            this.config = (FlatFileConfiguration)config;
            File.SetAttributes(this.config.FileName, FileAttributes.Normal);
        }
        #endregion
 
 
 
        #region CreateOp Members
        /// <summary>
        /// This creates a new row in the target file with the data as sent in the 
'attrs'
        /// </summary>

Chapter 6
Developing a Flat File .NET Connector

6-4



        /// <param name="objClass">The ObjectClass. Here we support only Account</param>
        /// <param name="attrs">Attributes of this Account that need to be created on 
target</param>
        /// <param name="options">Will always be empty</param>
        /// <returns>Unique id Uid, representing the Account which was just created</
returns>
        public Uid Create(ObjectClass objClass, ICollection<ConnectorAttribute> attrs, 
OperationOptions options)
        {            
            ConnectorAttribute NameAttribute = ConnectorAttributeUtil.Find(Name.NAME, 
attrs);
            ConnectorAttribute AgeAttribute = ConnectorAttributeUtil.Find("Age", attrs);
            ConnectorAttribute QualificationAttribute = 
ConnectorAttributeUtil.Find("Qualification", attrs);
            ConnectorAttribute GenderAttributute = ConnectorAttributeUtil.Find("Gender", 
attrs);
            StreamWriter writer = File.AppendText(this.config.FileName);
            writer.WriteLine("\nName:" + 
ConnectorAttributeUtil.GetAsStringValue(NameAttribute) + this.config.Delimiter + "Age:" 
+ ConnectorAttributeUtil.GetAsStringValue(AgeAttribute) + this.config.Delimiter + 
"Qualification:" + ConnectorAttributeUtil.GetAsStringValue(QualificationAttribute) + 
this.config.Delimiter + "Gender:" + 
ConnectorAttributeUtil.GetAsStringValue(GenderAttributute));
            writer.Flush();            
            writer.Dispose();
            writer.Close();
            return new Uid(ConnectorAttributeUtil.GetAsStringValue(NameAttribute));
        }
        #endregion
 
 
        
        #region DeleteOp Members
        /// <summary>
        /// Deletes an entity from target flat file. We support only ACCOUNT object 
class.
        /// If the Uid (user name) is not found then UnknownUidException is thrown
        /// </summary>
        /// <param name="objClass"></param>
        /// <param name="uid"></param>
        /// <param name="options"></param>
        public void Delete(ObjectClass objClass, Uid uid, OperationOptions options)
        {
            String[] allLines = File.ReadAllLines(this.config.FileName);            
            String[] newLines = new String[allLines.Length];            
            Boolean userExisted = false;            
            for (int i = 0; i < allLines.Length; i++)
            {                
                char[] separator = new char[] { '$' };
                String[] thisLineSplit = allLines[i].Split(separator);                
                
                String name = "";
                foreach (String str in thisLineSplit)
                {
                    if (str.StartsWith("Name"))
                    {
                        name = str;
                        break;
                    }
                }                
                if (!name.Equals("Name" + ":" + uid.GetUidValue()))
                {

Chapter 6
Developing a Flat File .NET Connector

6-5



                    newLines[i] = allLines[i];
                }
                else
                {
                    userExisted = true;
                }
                
            }
            if (userExisted)
            {                
                File.WriteAllText(this.config.FileName, String.Empty);
                File.WriteAllLines(this.config.FileName, newLines);
            }
            else
            {
                throw new UnknownUidException("Uid "+uid.GetUidValue()+" not found");
            }            
        }
        #endregion
                
        #region UpdateOp Members
        /// <summary>
        /// Updates information of an existing user on the target flat file
        /// </summary>
        /// <param name="objclass">The ObjectClass. Here we support only user</param>
        /// <param name="uid">Unique id of the user using which we can find out the user 
on target. This is the returned vaue by CreateOp implementation</param>
        /// <param name="replaceAttributes">Updated attributes of user which should 
replace all existing user information on target</param>
        /// <param name="options">This will always be empty</param>
        /// <returns>Updated uid. It can be the same value which was provided to this 
method.</returns>
        public Uid Update(ObjectClass objclass, Uid uid, ICollection<ConnectorAttribute> 
replaceAttributes, OperationOptions options)
        {
            String uidValue = uid.GetUidValue();
            String[] allLines = File.ReadAllLines(this.config.FileName);
            String[] updatedLines = new String[allLines.Length];
            Boolean userExists = false;
            Uid updatedUid = uid;
            for(int i = 0; i < allLines.Length; i++)
            {
                String[] thisLineSplit = allLines[i].Split(new char[] { '$' });
                String name = "";
                foreach (String str in thisLineSplit)
                {
                    if (str.StartsWith("Name"))
                    {
                        name = str;
                        break;
                    }
                }
                String nameToBeUpdated = "Name:" + uidValue;
                if (!name.Equals(nameToBeUpdated))
                {
                    updatedLines[i] = allLines[i];
                }
                else
                {
                    ConnectorAttribute NameAttribute = 
ConnectorAttributeUtil.Find(Name.NAME, replaceAttributes);
                    ConnectorAttribute AgeAttribute = ConnectorAttributeUtil.Find("Age", 

Chapter 6
Developing a Flat File .NET Connector

6-6



replaceAttributes);
                    ConnectorAttribute QualificationAttribute = 
ConnectorAttributeUtil.Find("Qualification", replaceAttributes);
                    ConnectorAttribute GenderAttribute = 
ConnectorAttributeUtil.Find("Gender", replaceAttributes);
                    updatedLines[i] = "Name:"+NameAttribute.Value.First().ToString()
+this.config.Delimiter+
                                      
AgeAttribute.Name+":"+AgeAttribute.Value.First().ToString()+this.config.Delimiter+
                                      
QualificationAttribute.Name+":"+QualificationAttribute.Value.First().ToString()
+this.config.Delimiter+
                                      
GenderAttribute.Name+":"+GenderAttribute.Value.First().ToString();
                    userExists = true;
                    updatedUid = new Uid(NameAttribute.Value.First().ToString());
                }
 
            }
            File.WriteAllText(this.config.FileName, String.Empty);
            File.WriteAllLines(this.config.FileName, updatedLines);
            if (!userExists)
            {
                throw new UnknownUidException("User "+uid.GetUidValue()+" not found");
            }
            return updatedUid;
        }
 
        #endregion
 
        #region SearchOp<string> Members
 
        /// <summary>
        /// Returns a filter translator used by ExecuteQuery. The functionality of 
filter translator is to translate any filters provided by calling application (OIM/OW/
OPAM) to native queries.
        /// </summary>
        /// <param name="oclass">The ObjectClass. We support only ACCOUNT</param>
        /// <param name="options">Options</param>
        /// <returns>FilterTranslator instance</returns>
 
        public 
Org.IdentityConnectors.Framework.Common.Objects.Filters.FilterTranslator<string> 
CreateFilterTranslator(ObjectClass oclass, OperationOptions options)
        {
            return new FlatFileFilterTranslator();
        }
 
        /// <summary>
        /// Performs search on target based on query. Uses the handler instance to 
return back the searched result.
        /// </summary>
        /// <param name="oclass">The ObjectClass. This tells if we have to search for 
user (ACCOUNT) or group (GROUP). We support only user</param>
        /// <param name="query">Query as returned by FilterTranslator</param>
        /// <param name="handler">handler to return back result to caller</param>
        /// <param name="options">Options containing what attributes of entity to return 
back</param>
        public void ExecuteQuery(ObjectClass oclass, string query, ResultsHandler 
handler, OperationOptions options)
        {

Chapter 6
Developing a Flat File .NET Connector

6-7



            String[] results = GetResults(query);
            foreach (String result in results)
            {
                Console.WriteLine("Result = "+result);
                String result1 = result.Trim();
                if (result1.Length > 0)
                {
                    Console.WriteLine("Submitting result = " + result1);
                    SubmitConnectorObject(result1, handler);
                }
            }
        }
 
        #region SchemaOp Members
        /// <summary>
        /// Defines the schema supported by this connector
        /// </summary>
        /// <returns>Schema</returns>
        public Schema Schema()
        {
            SchemaBuilder schemaBuilder = new 
SchemaBuilder(SafeType<Connector>.Get(this));
            ICollection<ConnectorAttributeInfo> connectorAttributeInfos = new 
List<ConnectorAttributeInfo>();
            connectorAttributeInfos.Add(ConnectorAttributeInfoBuilder.Build("Name"));
            connectorAttributeInfos.Add(ConnectorAttributeInfoBuilder.Build("Age"));
            
connectorAttributeInfos.Add(ConnectorAttributeInfoBuilder.Build("Qualification"));
            connectorAttributeInfos.Add(ConnectorAttributeInfoBuilder.Build("Gender"));
            schemaBuilder.DefineObjectClass(ObjectClass.ACCOUNT_NAME, 
connectorAttributeInfos);
            return schemaBuilder.Build();
        }
 
        #endregion
 
        #region TestOp Members
        /// <summary>
        /// Should ideally test the connecttion with target. But here we just print 
something as we have assumed that target file is on same machine
        /// </summary>
        public void Test()
        {
            Console.Write("Tested connection!");
        }
 
        #endregion
 
 
        #region CheckAlive
        /// <summary>
        /// Check connection to target system is alive or not. But here we just check if 
target file name
        /// provided in the FlatFileConfiguration is available or not.
        /// </summary>
        public void CheckAlive()
        {
            if (!File.Exists(this.config.FileName))
            {
                throw new ConnectorException("Target file " + this.config.FileName + " 
does not exist");
            }

Chapter 6
Developing a Flat File .NET Connector

6-8



        }
        #endregion
 
 
 
        #region Dispose
        /// <summary>
        /// Remove connection from target, dispose any of the resources used. But here 
we just chill.
        /// </summary>
        public void Dispose()
        {
            //chill :)
        }
        #endregion
 
        private void SubmitConnectorObject(String result, ResultsHandler handler)
        {
            ConnectorObjectBuilder cob = new ConnectorObjectBuilder();
            String[] resultSplit = result.Split(new char[]{'$'});
            ICollection<ConnectorAttribute> attrs = new List<ConnectorAttribute>();
            foreach (String str in resultSplit)
            {
                ConnectorAttributeBuilder cab = new ConnectorAttributeBuilder();
                cab.AddValue(str.Split(new char[] { ':' })[1]);
                if (str.StartsWith("Name"))
                {
                    cob.SetName(Name.NAME);
                    cob.SetUid(str.Split(new char[] { ':' })[1]);
                    cab.Name = Name.NAME;                    
                }
                else
                {
                    cab.Name = str.Split(new char[] { ':' })[0];
                }
                attrs.Add(cab.Build());
            }
            cob.AddAttributes(attrs);
            handler(cob.Build());
        }
 
        private String[] GetResults(String query)
        {
            String[] allLines = File.ReadAllLines(this.config.FileName);
            String[] results = allLines;
if (query != null)
            {
                for (int i = 0; i < allLines.Length; i++)
                {
                    String[] thisLineSplit = allLines[i].Split(new char[]{'$'});
                    Boolean foundResult = false;
                    foreach (String str in thisLineSplit)
                    {
                        if (str.StartsWith("Name") && str.Equals(query))
                        {
                            foundResult = true;
                            break;
                        }
                    }
                    if (foundResult)
                    {
                        return new String[] {allLines[i]};

Chapter 6
Developing a Flat File .NET Connector

6-9



                    }
                }
            }
 
            return results;
        }
 
        #endregion
    }
}

6.1.5 Implementation of AbstractFilterTranslator
The Org.IdentityConnectors.Framework.Common.Objects.Filters.AbstractFilterTranslator<T>
interface can be implemented for the CreateEqualsExpression operation.

The following code sample illustrates the sample implementation of
Org.IdentityConnectors.Framework.Common.Objects.Filters.AbstractFilterTranslator<T> that
defines the filter operation.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Org.IdentityConnectors.Framework.Common.Objects.Filters;
using Org.IdentityConnectors.Framework.Common.Objects;
 
namespace Org.IdentityConnector.FlatFileConnector
{
    /// <summary>
    /// FlatFileFilterTranslator. This translator converts the equalsFilter provided by 
the calling application to native query which can be used by the connector while 
searching.
    /// The implementation shown supports only equals filter. i.e it has provided 
implementation for only CreateEqualsExpression, this means that if any other filter is 
provided 
    /// by the calling application, it would not be translated as a native query and 
search implementation gets all users and filtering will be done by ICF with all results.
    /// 
    /// </summary>
    public class FlatFileFilterTranslator : AbstractFilterTranslator<String>
    {
        /// <summary>
        /// Creates a native query for equals filter and returns it only if equals 
filter is constructed for Name attribute and not for any other attributes.
        /// </summary>
        /// <param name="filter">Filter provided by calling application</param>
        /// <param name="not"></param>
        /// <returns></returns>
        protected override string CreateEqualsExpression(EqualsFilter filter, bool not)
        {
            ConnectorAttribute attr = filter.GetAttribute();
            if (attr.Name.Equals(Name.NAME))
            {
                return "Name:" + attr.Value.First().ToString();
            }
            return null;
        }
    }
}

Chapter 6
Developing a Flat File .NET Connector

6-10



6.1.6 Sample AssemblyInfo.cs File
The AssemblyInfo.cs project file contains the AssemblyVersion.

The following is the content of a sample AssemblyInfo.cs file:

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
 
// General Information about an assembly is controlled through the following 
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("FlatFileConnector")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("Oracle Corporation")]
[assembly: AssemblyProduct("FlatFileConnector")]
[assembly: AssemblyCopyright("Copyright © Oracle Corporation 2012")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]
 
// Setting ComVisible to false makes the types in this assembly not visible 
// to COM components.  If you need to access a type in this assembly from 
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(true)]
 
// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("79eec317-62bd-49a5-9512-88d61135684c")]
 
// Version information for an assembly consists of the following four values:
//
//      Major Version
//      Minor Version 
//      Build Number
//      Revision
//
// You can specify all the values or you can default the Build and Revision Numbers 
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

6.2 Deploying the Identity Connector Bundle on .NET Connector
Server

For all the connectors that are implemented in .NET, you need to have .NET Connector Server
for the execution of the connector.

The connector bundle cannot be deployed within Oracle Identity Manager. Therefore, you must
perform the following procedures in order to integrate the ICF .NET Identity Connector with
Oracle Identity Manager:

• Registering the Connector Bundle with .NET Connector Server

• Creating Basic Identity Connector Metadata

• Creating Provisioning Metadata

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-11



• Creating Reconciliation Metadata

6.2.1 Registering the Connector Bundle with .NET Connector Server
The connector bundle is registered on .NET Connector Server by copying the connector DLL in
the CONNECTOR_SERVER_HOME location.

For registering or deploying the connector bundle on .NET Connector Server, perform the
following steps:

1. Install the .NET Connector Server. See Installing the .NET Connector Server for more
information about installing the .NET Connector Server.

2. Stop the Connector Server. Make sure that Connector Server Service is not running.

3. Copy the connector DLL in the CONNECTOR_SERVER_HOME location.
CONNECTOR_SERVER_HOME is the location where ConnectorServer.exe and other
connector server related files are present after .NET Connector Server installation.

4. Start the .NET Connector Server.

6.2.2 Creating Basic Identity Connector Metadata
The basic Identity Connector metadata configuration is needed for both provisioning and
reconciliation. The configuration involves creating IT resource type definition, resource object,
and lookups.

This section describes how to perform the basic Identity Connector metadata configuration by
using the Design Console. It contains the following topics:

• Creating the IT Resource Type Definition

• Creating the Resource Object

• Creating Lookups

6.2.2.1 Creating the IT Resource Type Definition
An IT resource type definition is the representation of a resource's connection information. The
configuration parameters in the IT resource type definition should be matched with the
configuration parameters of the connector bundle. The values of the parameters in the IT
resource will be set in the bundle configuration.

Note:

You may include parameters the bundle configuration is not using. They produce no
negative effects on the bundle operations.

To create the IT resource type definition:

1. Log in to the Oracle Identity Manager Design Console.

2. Click IT Resource Type Definition under Resource Management.

3. Create a new IT Resource Type Definition with the Server Type defined as Flat File.

4. Add the following parameters as illustrated in Figure 6-1.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-12



• Configuration Lookup is the marker of the main configuration lookup for the resource.
The name of the parameter must be Configuration Lookup. It is a good practice to add
a value to Default Field Value.

• Delimiter maps to the Delimiter parameter in the bundle configuration. The value of this
parameter will be passed.

• FileName maps to the FileName parameter in the bundle configuration. The value of
this parameter will be passed.

• Connector Server Name, provide the connector server IT Resource name where .NET
Connector Server is running.

Figure 6-1    IT Resource Type Definition in Design Console

6.2.2.2 Creating the Resource Object
The resource object is the Oracle Identity Manager representation of a resource. The
connector bundle is tied to the resource object.

To create the resource object:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Resource Objects under Resource Management.

3. Create a new resource object with the name Flat File.

As the resource object is a target resource, do not check the Trusted Source box as
illustrated in Figure 6-2.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-13



Figure 6-2    Resource Objects in Design Console

6.2.2.3 Creating Lookups
Separate lookups have to be defined for different objects supported by the connector bundle.
This lookup can contain provisioning and reconciliation related information for those objects.
The Main Configuration Lookup is the root for object specific lookups as it contains the pointers
to those lookups. The following sections contain information on how to create lookups.

• Creating the Main Configuration Lookup

• Creating Object Type Configuration Lookup

6.2.2.3.1 Creating the Main Configuration Lookup
The Configuration Lookup (as defined in Creating the IT Resource Type Definition) holds
connector bundle configurations that are not counted as connection information. If a
configuration parameter is not found in the IT Resource Type Definition, Oracle Identity
Manager will look in the Configuration Lookup. The main Configuration Lookup contains bundle
properties and bundle configurations. Bundle Property parameters are mandatory as they are
needed for identifying the correct bundle. Bundle configurations that are not defined as part of
the IT resource type definition (discussed in Creating the IT Resource Type Definition) can be
declared here.

Note:

The values for Code Key should match exactly as illustrated. The values for Decode
are specific to the connector bundle.

To create the main configuration lookup:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Lookup Definition under Administration.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-14



3. Create a new lookup and add Lookup.FlatFile.Configuration as the value for Code.

4. Add the following Lookup Code Information as illustrated in Figure 6-3.

• Add AssemblyVersion as the required Bundle Version.

• Add FlatFile.Connector as the required Bundle Name. The bundle name can be
identified from the connector dll name. Connector DLL is in BUNDLE_NAME.dll format.

• Add Org.IdentityConnector.FlatFileConnector.FlatFileConnector as the required
Connector Name.

• OBJECT_TYPE_NAME Configuration Lookup is the configuration lookup for the
particular object type. In this example, the object type is User as User Configuration
Lookup is defined.

Figure 6-3    Lookup Definition in Design Console

6.2.2.3.2 Creating Object Type Configuration Lookup
Object type configuration lookup contains the parameters specific to the particular object type.
Object type is an entity over which an identity connector operates. It is mapped to ICF
ObjectClass. In Creating the Main Configuration Lookup, User Configuration Lookup has been
referenced so that User is the object type, in this case mapped to ObjectClass.ACCOUNT.
(Roles and UserJobData are two other object types.) The object type name has to match with
ObjectClass name supported by the identity connector bundle. The User object type is mapped
to predefined ObjectClass.ACCOUNT, the Group object type is mapped to predefined
ObjectClass.GROUP. If the identity connector supports multiple objects, then this step must be
repeated for each.

Note:

Because these use cases cover only the basic functionality, the configuration is kept
to the mandatory attribute.

To create the object type configuration lookup:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Lookup Definition under Administration.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-15



3. Create a new Lookup and add Lookup.FlatFile.UM.Configuration as the Code.

4. Set the following attributes as illustrated in Figure 6-4.

Note:

This tutorial focuses on the minimum configurations needed to run an identity
connector.

• Provisioning Attribute Map takes a value of Lookup.FlatFile.UM.ProvAttrMap. This
lookup contains the mapping between Oracle Identity Manager fields and identity
connector attributes. The mapping is used during provisioning.

• Reconciliation Attribute Map takes a value of
Lookup.FlatFile.UM.ReconAttributeMap. This lookup contains the mapping between
Oracle Identity Manager reconciliation fields and identity connector attributes. The
mapping is used during reconciliation.

Figure 6-4    Second Lookup Definition in Design Console

6.2.3 Creating Provisioning Metadata
To configure Oracle Identity Manager for flat file provisioning, you create the provisioning
metadata, which involves creating a process form, adapters, a process definition, and a
provisioning attribute mapping lookup.

The following sections should be followed in order to configure Oracle Identity Manager for flat
file provisioning.

• Creating a Process Form

• Creating Adapters

• Creating a Process Definition

• Creating a Provisioning Attribute Mapping Lookup

• Field Flags Used in the Provisioning Attributes Map

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-16



6.2.3.1 Creating a Process Form
A process form is used as the representation of object attributes on Oracle Identity Manager.

This section describes process forms and how to create a process form. It contains the
following topics:

• About Process Forms

• Creating a Process Form

• Attributes in the Connector Schema

6.2.3.1.1 About Process Forms
A process form is used as the representation of object attributes on Oracle Identity Manager.
This facilitates user input to set object attributes before passed to the connector bundle for an
operation.

Attributes defined in the process form are not conventions. The form is a way to challenge the
attributes that need to be passed to the identity connector. In general, define an attribute for
each supported attribute in the identity connector.

Note:

It is good practice to have a one to one mapping on the identity connector attributes.

There should be a field for querying the IT resource that should be associated with the
respective IT Resource Type Definition. Variable type of each field should map to the type of
the object attribute.

6.2.3.1.2 Creating a Process Form
To create a process form:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Form Designer under Development Tools.

3. Create a new form with the Table Name UD_FLATFILE as illustrated in Figure 6-5.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-17



Figure 6-5    Form Designer in Design Console

4. Add the attributes defined in the connector schema, as listed in Attributes in the Connector
Schema.

5. Click the Properties tab.

6. Add the following properties to Server(ITResourceLookupField) as illustrated in Figure 6-6.

• Required = true

• Type = Flat File

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-18



Figure 6-6    Properties of Form Designer in Design Console

7. Save the form.

8. Click Make Version Active.

6.2.3.1.3 Attributes in the Connector Schema
Table 6-1 lists the attributes defined in the connector schema.

Table 6-1    Form Designer Fields

Name Variant Field Label Field Type

UD_FLATFILE_NAME String Name TextField

UD_FLATFILE_AGE String Age TextField

UD_FLATFILE_QUALIFICATION String Qualification TextField

UD_FLATFILE_GENDER String Gender LookupField

UD_FLATFILE_RETURNIDQ String Return Id DOField

UD_FLATFILE_ITRESOURCE Long IT Resource ITResourceLookup

Note:

The flat file column names are FirstName, ChangeNo, EmailID, Server, LastName,
and AccountID.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-19



6.2.3.2 Creating Adapters
An adapter has to be created for all operations supported by the connector bundle, including
Create, Update, and Delete.

To create the adapter:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Adapter Factory under Development Tools.

3. Create a new adapter and add Flat File Create User as the Adapter Name.

4. Add Process Task as the Adapter Type.

5. Save the adapter.

6. Click the Variable List tab and add the following variables, as shown in Figure 6-7.

• objectType with Type String and Mapped as Resolve at runtime.

• processInstanceKey with Type long and Mapped as Resolve at runtime.

• itResourceFieldName with Type String and Mapped as Resolve at runtime.

Figure 6-7    Adapter Factory Variable List in Design Console

7. Add a Java functional task to the adapter by following this sub procedure, as shown in 
Figure 6-8.

a. Click the Adapter Tasks tab.

b. Select the adapter and click Add.

c. Select Java from the task options.

d. Select icf-oim-intg.jar from the API source.

e. Select oracle.iam.connetors.icfcommon.prov.ICProvisioninManager as the API
Source.

f. Select createObject as the method for the task.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-20



g. Save the configurations.

h. Map the variables (previously added to the Variables List) against the appropriate
method inputs and outputs.

i. Map the configuration parameters against the appropriate method inputs and outputs.

Database Reference maps to Database Reference (Adapter References) and Return
Variable maps to Return Variable (Adapter Variables).

Figure 6-8    Adapter Factory in Design Console

8. Save and build the adapter.

6.2.3.3 Creating a Process Definition
Process Definition defines the behavior of the connector bundle for a particular operation.
Every operation has a corresponding task associated with it.

The following procedure will configure the process definition and integration of the process task
for the Create operation:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Process Definition under the Process Management tab.

3. Create a new process definition and name it Flat File as illustrated in Figure 6-9.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-21



Figure 6-9    Process Definition in Design Console

4. Select Provisioning as the Type of process.

5. Provide the resource Object Name for the identity connector; in this example, Flat File.

6. Provide the process form Table Name; in this example, UD_FLATFILE.

7. Add a process task and name it Create User.

8. Double click Create User to edit as illustrated in Figure 6-10.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-22



Figure 6-10    Editing Task Screen in Design Console

9. Click the Integration tab.

10. Click Add and select the adpFLATFILECREATEUSER from the list as illustrated in 
Figure 6-11.

The adapter will be available only after it is compiled.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-23



Figure 6-11    Integration Tab in Design Console

11. Map the variables as follows to set the response code returned by the identity connector.

• Adapter Return Variable – Response Code

• Object Type – [Literal:String] User (Name of the object type)

• Process Instance Key – [Process Data] Process Instance

• IT Resource Field Name – [Literal:String] UD_FLATFILE_ITRESOURCE (Form field
name that contains the IT resource information)

12. Click the Responses tab and configure the responses as illustrated in Figure 6-12.

• UNKNOWN can be described as Unknown response received with a status of R
(Rejected).

• SUCCESS can be described as Operation completed with a status of C (Completed).

• ERROR can be described as Error occurred with a status of R.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-24



Figure 6-12    Configure Responses in Design Console

13. Click the Task to Object Status Mapping tab.

14. Update the Object Status to Provisioned for Status C, as shown in Figure 6-13:

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-25



Figure 6-13    Task to Object Status Mapping

15. Save the process task.

6.2.3.4 Creating a Provisioning Attribute Mapping Lookup
Provisioning Attribute Mapping Lookup contains mappings of Oracle Identity Manager fields to
identity connector bundle attributes.

This section describes how to create the Provisioning Attribute Mapping Lookup. It contains the
following topics:

• About Provisioning Attribute Mapping Lookup

• Creating a Provisioning Attribute Mapping Lookup

• Field Flags Used in the Provisioning Attributes Map

6.2.3.4.1 About Provisioning Attribute Mapping Lookup
Provisioning Attribute Mapping Lookup contains mappings of Oracle Identity Manager fields to
identity connector bundle attributes. In the Provisioning Attribute Mapping Lookup:

• Code keys are Field Labels of the process form.

• Decodes are identity connector bundle attributes.

• Child form attributes can be configured as embedded objects in inputs.

• The identity connector's provisioning operation returns the UID in response. This can be
set in a form field by coding it against the identity connector bundle attribute.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-26



6.2.3.4.2 Creating a Provisioning Attribute Mapping Lookup
Following is the procedure to create a Provisioning Attribute Mapping Lookup.

1. Log in to the Oracle Identity Manager Design Console.

2. Click Lookup Definition under the Administration tab.

3. Create a new lookup and name it Lookup.FlatFile.UM.ProvAttrMap.

The name of this lookup is referred from the object type configuration lookup. See Creating
Object Type Configuration Lookup.

4. Add the form Field Labels as the code keys and identity connector bundle attributes as the
decode as shown in Figure 6-14.

• Name : __NAME__

• Gender: Gender

• Return Id: __UID__

• Age: Age

• Qualification: Qualification

Figure 6-14    Lookup Code Mapping

6.2.3.4.3 Field Flags Used in the Provisioning Attributes Map

Note:

These properties are advanced options and can be skipped for the current
implementation of the connector.

For provisioning attributes mapping, the following field flags can be appended to the code key:

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-27



• LOOKUP: This must be specified for all fields whose values are obtained by running a
lookup reconciliation job. The values obtained from lookup reconciliation job have IT
Resource Name/Key appended to it. Specifying this flag helps ICF integration to remove
the appended value just before passing them onto the bundle. For example, the code key
for a field with label Database whose value is obtained by running a lookup reconciliation
job looks similar to Database[LOOKUP].

Note:

The LOOKUP flag can be specified for both Provisioning and Reconciliation
Attribute Map. For provisioning, IT Resource Name/IT Resource Key prefix must
be removed. For reconciliation, IT Resource Name/IT Resource Key prefix must
be added.

• IGNORE: This must be specified for all fields whose values are to be ignored and not sent
to bundle. For example, the code key for a field with label Database whose value need not
be sent to bundle looks similar to Database[IGNORE].

• WRITEBACK: This must be specified for all fields whose values need to be written back
into the process form right after the create or update operation. Adding this flag makes the
ICF integration layer call ICF Get API to get values of attributes marked with the
WRITEBACK flag. For example, the code key for a field with label Database whose value
needs to be written back to the process form right after create/update looks similar to
Database[WRITEBACK]. For this to work, the connector must implement the GetApiOp
interface and provide an implementation for the ConnectorObject getObject(ObjectClass
objClass,Uid uid,OperationOptions options) API. This API searches the target for the
account whose Uid is equal to the passed in Uid, and builds a connector object containing
all the attributes (and their values) that are to be written back to process form.

Note:

If the connector does not implement the GetApiOp interface, then the
WRITEBACK flag does not work and an error is generated.

• DATE: This must be specified for fields whose type need to be considered as Date, without
which the values are considered as normal strings. For example, the code key for a field
with label Today whose value needs to be displayed in the date format looks similar to
Today[DATE].

• PROVIDEONPSWDCHANGE: This must be specified for all fields that need to be
provided to the bundle(target) when a password update happens. Some targets expect
additional attributes to be specified on every password change. Specifying the
PROVIDEONPSWDCHANGE flag, tells ICF integration to send all the extra fields or
attributes whenever a password change is requested. For example, the code key for a field
with label Extra Attribute Needed for Password Change whose value needs to be provided
to bundle(target) while password update looks similar to Extra Attribute Needed for
Password Change[PROVIDEONPSWDCHANGE].

6.2.4 Creating Reconciliation Metadata
You can configure the reconciliation of records from the flat file.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-28



This section contains the procedures to configure the reconciliation of records from the flat file.
You use the target reconciliation as an example; trusted reconciliation can also be configured
in a similar fashion.

Perform the procedures in the listed order.

• Creating a Reconciliation Scheduled Task

• Creating a Reconciliation Profile

• Setting a Reconciliation Action Rule

• Creating Reconciliation Mapping

• Field Flags Used in the Reconciliation Attributes Map

• Defining a Reconciliation Matching Rule

6.2.4.1 Creating a Reconciliation Scheduled Task
By default, reconciliation uses a Search operation on the connector bundle. This operation is
invoked with a schedule task configured using Oracle Identity Manager. This procedure is
comprised of the following subprocedures:

• Defining the Scheduled Task

• Creating a Scheduled Job

6.2.4.1.1 Defining the Scheduled Task
To define the scheduled task:

1. Create a Deployment Manager XML file containing the scheduled task details as shown in
the following example. Make sure to update database value to your database.

<?xml version = '1.0' encoding = 'UTF-8'?>
<xl-ddm-data version="2.0.1.0" user="XELSYSADM" 
database="jdbc:oracle:thin:@localhost:5524/estView.regress.rdbms.dev.mycompany.com" 
exported-date="1307546406635" description="FF">
<scheduledTask repo-type="MDS" name="Flat File Connector User Reconciliation" mds-
path="/db" mds-file="Flat File Connector User Reconciliation.xml">
    <completeXml>
        <scheduledTasks xmlns="http://xmlns.oracle.com/oim/scheduler">
            <task>
            <name>Flat File Connector User Reconciliation</name>
            <class>oracle.iam.connectors.icfcommon.recon.SearchReconTask</class>
            <description>Flat File Connector User Reconciliation</description>
            <retry>0</retry>
            <parameters>
              <string-param required="false" encrypted="false" 
helpText="Filter">Filter</string-param>
              <string-param required="false" encrypted="false" helpText="Incremental 
Recon Date Attribute">Incremental Recon Date Attribute</string-param>
              <string-param required="false" encrypted="false" helpText="IT Resource 
Name">IT Resource Name</string-param>
              <string-param required="false" encrypted="false" helpText="Object 
Type">Object Type</string-param>
              <string-param required="false" encrypted="false" helpText="Latest 
Token">Latest Token</string-param>
              <string-param required="false" encrypted="false" helpText="Resource 
Object Name">Resource Object Name</string-param>
            </parameters>
          </task>

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-29



        </scheduledTasks>
    </completeXml>
</scheduledTask>
</xl-ddm-data>

2. Save the file as Flat File Connector User Reconciliation.xml.

3. Login into the Identity System Administration. Under System Management, click Import.

4. Select the Flat File Connector User Reconciliation.xml file, and click Import.

5. Complete the steps in the wizard.

6.2.4.1.2 Creating a Scheduled Job
This procedure explains how to create a scheduled task.

1. Log in to the Oracle Identity Manager Advanced Administration.

2. Click Scheduler under the System Management tab.

3. Click New for creating a new scheduled job. After that provide the job name as Flat File
and in the Task field, select the value as Flat File Connector User Reconciliation from
the lookup. Once the job is created, provide the values in the job as shown in 
Figure 6-15.Add a scheduled task and add Flat File Connector User Reconciliation as the
type as illustrated in Figure 6-15.

Figure 6-15    Scheduled Task Screen in Advanced Console

4. Set the parameters as follows:

• IT Resource Name takes a value of Flat File.

• Resource Object Name takes a value of FLATFILE.

• Object Type takes a value of User.

5. Click Apply.

6.2.4.2 Creating a Reconciliation Profile
A reconciliation profile defines the structure of the object attributes while reconciliation. The
reconciliation profile should contain all the attributes that have reconciliation support.

To create a reconciliation profile:

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-30



1. Log in to the Oracle Identity Manager Design Console.

2. Click Resource Objects under Resource Management.

3. Open the Flat File resource object.

4. Click the Object Reconciliation tab as illustrated in Figure 6-16.

Figure 6-16    Object Reconciliation in Design Console

5. Add following reconciliation fields:

• Return Id [String] , Required]

• Name [String] , Required

• Gender [String]

• Age [String]

• Gender [String]

• IT Resource Name [IT Resource] , Required

6. Save the configuration.

6.2.4.3 Setting a Reconciliation Action Rule
A Reconciliation Action Rule defines the behavior of reconciliation. In this procedure, define the
expected action when a match is found. This procedure assumes you are logged into the
Oracle Identity Manager Design Console.

1. Open the Flat File resource object.

2. Click the Object Reconciliation tab.

3. Click the Reconciliation Action Rules tab in the right frame as illustrated in Figure 6-17.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-31



Figure 6-17    Reconciliation Action Rules in Design Console

4. Add an action rule defined as One Process Match Found (Rule Condition) and Establish
Link (Action).

5. Add an action rule defined as One Entity Match Found (Rule Condition) and Establish Link
(Action).

6. Click Create Reconciliation Profile.

7. Click Save.

6.2.4.4 Creating Reconciliation Mapping
The reconciliation mapping has to be done in the process definition. This is to map the
supported reconciliation fields (from resource object) to the process form fields. This mapping
is needed only for configuring target reconciliation.

To create the reconciliation mapping:

1. Log in to the Oracle Identity Manager Design Console.

2. Click Process Definition under Process Management.

3. Open the Flat File process definition.

4. Click the Reconciliation Field Mappings tab as illustrated in Figure 6-18.

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-32



Figure 6-18    Reconciliation Field Mapping in Design Console

5. Add mappings between the reconciliation profile fields and the process form fields.

• ReturnId[String] = UD_FLATFILE_RETURNID

• Name[String] = UD_FLATFILE_NAME, <KEY>

• Age[String] = UD_FLATFILE_AGE

• Gender[String] = UD_FLATFILE_GENDER

• Qualification[String] = UD_FLATFILE_QUALIFICATION

• IT Resource Name[IT Resource] = UD_FLATFILE_ITRESOURCE,<KEY>

6. Save the configuration.

6.2.4.5 Field Flags Used in the Reconciliation Attributes Map
For reconciliation attributes mapping, the following field flags can be appended to the code
key:

• TRUSTED: This must be specified in the Recon Attribute Map for the field that represents
the status of the account. This flag must be specified only for trusted reconciliation. If this is
specified, then the status of the account is either Active or Disabled. Otherwise, the status
is either Enabled or Disabled. For example, the code key for a field with label Status whose
value needs to be either Active/Disabled must look similar to Status[TRUSTED].

• DATE: In Recon Attribute Map, this must be specified for fields whose type need to be
considered as Date. For example, the code key for a field with label Today whose value
needs to be displayed in the date format must look similar to Today[DATE].

6.2.4.6 Defining a Reconciliation Matching Rule
A reconciliation matching rule defines the equation for calculating the user match.

To define a reconciliation matching rule:

Chapter 6
Deploying the Identity Connector Bundle on .NET Connector Server

6-33



1. Log in to the Oracle Identity Manager Design Console.

2. Open the Reconciliation Rules form under Development Tools.

3. Click Add Rule.

Figure 6-19    Adding Reconciliation Matching Rule

4. Select resource object Flat File.

5. Once the reconciliation rule element is added, make sure to check Active flag so that the
reconciliation rule is made active.

6. Save and add the rule element.

User Login from the user profile data equals the Name resource attribute.

7. Save the rule.

Note:

You must recreate the reconciliation profile whenever you make any changes to
the reconciliation rule.

6.3 Provisioning a Flat File Account
Provisioning a Flat File account involves creating an IT resource of type Flat File with IT
resource and Lookup.FlatFile.Configuration parameters.

The flat file connector is ready to work. So the user needs to log in to Oracle Identity Manager
and create an IT resource (target) using the following procedure.

Chapter 6
Provisioning a Flat File Account

6-34



• Create IT resource of type "Flat File".

• Provide the IT resource parameters as appropriate.

• Provide the configuration parameters in Lookup.FlatFile.Configuration as appropriate.

Chapter 6
Provisioning a Flat File Account

6-35



7
Integrating ICF with Oracle Identity
Governance

The goal of Oracle Identity Governance is to manage the business logic of Identity
administration, and delegate the execution of provisioning and reconciliation operations to
Identity Connector Framework (ICF). ICF with Oracle Identity Governance unites all the
scheduled tasks and the provisioning tasks for all ICF-based connectors.
This chapter contains conceptual information about integration between Oracle Identity
Governance and ICF. It contains the following topics:

• ICF Common

• Integration Architecture

• Global Oracle Identity Governance Lookups

• About IT Resources for ICF Integration

• Provisioning Using ICF

• Concepts of Reconciliation in ICF Common

• Predefined Scheduled Tasks

• ICF Filter Syntax

7.1 ICF Common
OIM ICF Integration Layer is an implementation of ICF API on one side and invokes OIM APIs
(icf-oim-intg.jar) on the other side.

This reduces the complexity of the connector developer as it provides API abstraction. It also
support provisioning and reconciliation operations. See Provisioning Using ICF and Concepts
of Reconciliation in ICF Common for more information about provisioning and reconciliation
using ICF Common.

7.2 Integration Architecture
OIM-ICF connector development architecture lets you develop connector bundle using ICF SPI
and integrate them with OIM.

Figure 7-1 is the ICF-OIM integration architecture.

7-1



Figure 7-1    OIM-ICF Connector Development Architecture

7.3 Global Oracle Identity Governance Lookups
Lookups are used to store Oracle Identity Manager configuration metadata.

This section describes the global Oracle Identity Manager lookup configuration. It contains the
following topics:

• About Global Lookups

• Main Lookup Configuration

• User Management Configuration

• Recon Transformation Lookup (Lookup.CONNECTOR_NAME.UM.ReconTransformation)

• Recon Validation Lookup (Lookup.CONNECTOR_NAME.UM.ReconValidation)

• Optional Defaults Lookup

7.3.1 About Global Lookups
Lookups is used to store Oracle Identity Manager configuration metadata. IT Resource
parameter Configuration Lookup points to main Configuration Lookup that encapsulates all the
Oracle Identity Manager specific configuration information.

Based on the lookup configuration, you can classify your properties into the following three
classes:

Chapter 7
Global Oracle Identity Governance Lookups

7-2



• IT Resource: connectivity properties: contains all properties that are used for making a
connection to the target system.

• Main Configuration Lookup Configuration Properties: contains non-connectivity properties
that alter the mode of reconciliation or provisioning, and are not required for connection.
There is a thin line of difference between connectivity and configuration properties,
therefore one property can be assigned to both of them.

• Object Type: specific lookups (for example, user management configuration), mapping
lookups for specific object type (for example, User, Group, Organizational Unit).

Note:

LOADFROMURL flag can be used in IT Resource or Main Configuration Lookup
in the code (key) field, for example, sampleProperty[LOADFROMURL]. For
properties marked as this, the value (decode value) is a URL. ICF integration will
read the contents of the file stored in the given URL and use it as the value of
given property at runtime. This is useful for large values that cannot fit directly
into a lookup.

Figure 7-2 illustrates the global Oracle Identity Manager lookups from which most of the
Connectors use the User Management Lookups.

Figure 7-2    Oracle Identity Manager Connector Lookup Hierarchy

Chapter 7
Global Oracle Identity Governance Lookups

7-3



7.3.2 Main Lookup Configuration
IT Resource parameter Configuration Lookup points to Main Configuration Lookup, which
encapsulates all the Oracle Identity Manager specific configuration information.

Configuration lookup, denoted as Lookup.CONNECTOR_NAME.Configuration, is the top level
entry that refers to subordinate lookups for reconciliation and provisioning. The configuration
lookup has the structure shown in Table 7-1:

Table 7-1    Lookup Configuration for Connector

Configuration Key Value Description

Connector Name org.identityconnectors.CONN
ECTOR_NAME.Connector

Identity Connector Main Class. This is the class
that implements SPI operations of ICF
framework.

Bundle Name org.identityconnectors.CONN
ECTOR_NAME

Identity Connector bundle name

Bundle Version 11.1.1.5.x Identity Connector bundle version

User Configuration
Lookup

Note: Other object
types may be defined,
for example, for
Generic LDAP
connector: Group
Configuration Lookup,
OU Configuration
Lookup.

Lookup.CONNECTOR_NAM
E.UM.Configuration

Link to User specific configuration lookup. Note:
User should be the object type. If you need to
support any other object type, you can use
OBJECT_TYPE Configuration Lookup as the
key.

7.3.3 User Management Configuration
User Management Configuration lookups control the mapping for provisioning and
reconciliation. In addition, these lookups might also configure transformation and validation.

This lookup contains the following keys:

• Before Create Action Language: This key if present in the
Lookup.CONNECTOR_NAME.UM.Configuration, which informs ICF that there is a script
whose language is the value of this key. The value of this key (Groovy/cmd ) informs the
language of the script that needs to be executed by ICF before create operation.

• Before Create Action File: This key if present in the
Lookup.CONNECTOR_NAME.UM.Configuration, informs ICF that a script represented by
the value of this key needs to be executed by ICF before create action. This script must be
accessible to Oracle Identity Manager Server.

• Before Create Action Target: This key if present in the
Lookup.CONNECTOR_NAME.UM.Configuration, informs ICF that script as defined by
previous two keys must be executed either on resource or on connector. Depending on this
configuration the ICF API runScriptOnConnector or runScriptOnResource will be executed.

Table 7-2 describes the User Management lookup configuration.

Chapter 7
Global Oracle Identity Governance Lookups

7-4



Table 7-2    User Management Lookup Configuration for Connector

Configuration Key Value Mandatory Field
Type

Description

Provisioning
Attribute Map

Lookup.CONNECTOR_
NAME.UM.ProvAttrMap

Y This lookup contains the mapping
between Oracle Identity Manager
fields and identity connector
attributes. The mapping is used
during provisioning.

Recon Attribute Map Lookup.CONNECTOR_
NAME.UM.ReconAttrMa
p

Y This lookup contains the mapping
between Oracle Identity Manager
reconciliation fields and identity
connector attributes. The mapping
is used during reconciliation.

Recon Attribute
Defaults

Lookup.CONNECTOR_
NAME.UM.ReconDefault
s

N This mapping contains the default
values for Oracle Identity Manager
attributes, that are substituted, if
no value is provided by connector
during reconciliation.

Recon
Transformation
Lookup

Lookup.CONNECTOR_
NAME.UM.ReconTransfo
rmation

N Lookup for Transformation by
doing Reconciliation Task.
Transformation is used in all
Reconciliation Tasks except
LookupReconTask.

Recon Validation
Lookup

Lookup.CONNECTOR_
NAME.UM.ReconValidati
on

N Lookup used for Validation by
running Reconciliation Task.
Validation is used in all
Reconciliation Tasks except
LookupReconTask.

Recon Exclusion
List

Lookup.CONNECTOR_
NAME.UM.ReconExclusi
onList

N Exclusion list is a way to address
un-managed accounts for the
connector. While reconciliation/
provisioning. Any match from the
exclusion list will not be processed
by Oracle Identity Manager.

There are two types of rules
supported by the exclusion list:

• Matching rules

Direct Matching Rule
Code Key: Reconciliation field
name

Decode Key: Excluded field
value

• Pattern Matching Rule
Suffix with [PATTERN] tag to
enable pattern matching

Code Key:
ReconFieldName[PATTERN]

Decode Key: Exclusion pattern

Exclusion patterns should follow
the nomenclature defined in
java.util.regex.Pattern

See the Recon Exclusion List key
in this table.

Chapter 7
Global Oracle Identity Governance Lookups

7-5



Table 7-2    (Cont.) User Management Lookup Configuration for Connector

Configuration Key Value Mandatory Field
Type

Description

Provisioning
Exclusion List

Lookup.CONNECTOR_
NAME.UM.ProvExclusio
nList

N In provisioning, code key is the
Form label name, and decode key
is the excluded value/pattern.

Provisioning
Validation Lookup

Lookup.CONNECTOR_
NAME.UM.ProvValidatio
n

N Lookup for Validation by
Provisioning.

ICF defines the concept of
OperationOption, it is an extra
parameter list, that can be sent to
any operation. It is up to the
connector implementation to
define the use of these operation
options.

Operation Options
Map

Lookup.CONNECTOR_
NAME.UM.OperationOpt
ions

N The code key is a constant
Operation Options Map. The
decode value name of lookup that
will be used as a map of operation
options.

For example, in
Lookup.Domino.UM.OperationOpti
ons the code key is
CACertifier[UPDATE,DELETE] and
the decode value is CACertifier,
which means that this attribute will
be sent to calls of Update and
Delete operations as an extra
operation option.

If you want to configure the action
run, then you need to provide
three parameters for scripting:

• Language
• File
• Target

Scripting Attributes The triggering time of the script is
controlled by these labels in your
lookup key:

• Before
• After
The provisioning operation type
that the script is attached on is
controlled by these labels:

• Create
• Update
• Delete

Chapter 7
Global Oracle Identity Governance Lookups

7-6



Table 7-2    (Cont.) User Management Lookup Configuration for Connector

Configuration Key Value Mandatory Field
Type

Description

Before Create
Action Language

SCRIPTING_LANGUAG
E_NAME

N Language of the Action which will
be executed, for example, Groovy/
cmd. If you want to configure the
action run, then you need to
provide three options, Language/
File/Target You can configure
Before/After actions for the
following provisioning operations:
Create/Update/Delete.

Before Create
Action File

FILE_PATH N File containing script which needs
to be executed. This file needs to
be accessible to Oracle Identity
Manager Server.

Before Create
Action Target

Connector or Resource N Target of the action, can be
Connector or Resource.
Depending on this configuration
the ICF API runScriptOnConnector
or runScriptOnResource will be
used.

7.3.4 Recon Transformation Lookup
(Lookup.CONNECTOR_NAME.UM.ReconTransformation)

Transformation code is in an external Oracle Identity Manager Java Task, used in all
Reconciliation Tasks except LookupReconTask. It is a Java class uploaded (transforming data
coming from Target System during reconciliation) to Oracle Identity Manager repository.

The Java class performing transformation needs to have a method with the signature public
Object transform(HashMap arg0, HashMap arg1, String arg2) implemented. ICF would look for
this method with the exact signature.

Transform java class template is as follows:

public class MyTransformer implements 
oracle.iam.connectors.common.transform.Transformation {
  public Object transform(java.util.HashMap hmUserDetails, java.util.HashMap 
hmEntitlementDetails, String sField) {
    String sFirstName= (String)hmUserDetails.get("First Name");
    String sLastName= (String)hmUserDetails.get("Last Name");
    String sFullName=sFirstName+"."+sLastName;
    return sFullName;
  }
}

The name of lookup storing the Recon Transformation Lookup is defined in Main Configuration
Lookup (Lookup.CONNECTOR_NAME.Configuration) as shown in Table 7-3.

Chapter 7
Global Oracle Identity Governance Lookups

7-7



Table 7-3    Reconciliation Transformation Lookup

Key Value Description

Recon Field Name <transformationClassName>

com.validationexample.MyTransf
orm

Java class which performs transformation for
this recon field.

7.3.5 Recon Validation Lookup
(Lookup.CONNECTOR_NAME.UM.ReconValidation)

Validation code is in an external Oracle Identity Manager Java task, used for validating data
coming from the target system during reconciliation. It is a Java class uploaded (transforming
data coming from the target system during reconciliation) to Oracle Identity Manager
repository.

The Java class performing validation needs to have a method with the signature public
boolean validate (HashMap arg0, HashMap arg1, String arg2) implemented. ICF would look for
this method with the exact signature.

The validation Java class template is as follows:

public class MyValidator implements oracle.iam.connectors.common.validate.Validator { 
  public boolean validate(java.util.HashMap hmUserDetails, java.util.HashMap 
hmEntitlementDetails,String sField) throws 
oracle.iam.connectors.common.ConnectorException {
    boolean isValid = false;
    // validation code goes HERE
    return isValid;
  }
}

The name of lookup storing the Recon Validation Lookup is defined in main configuration
lookup (Lookup.CONNECTOR_NAME.Configuration) as shown in Table 7-4.

Table 7-4    Reconciliation Validation Lookup

Key Value Description

Recon Field Name <transformationClassName>

com.validationexample.MyVali
dator

Java class which performs validation for this
recon field.

7.3.6 Optional Defaults Lookup
Missing values for reconciliation are substituted by default values defined in the following table.
User Type is a required Oracle Identity Manager attribute, that typically is not contained on the
target resource. You can set the default value in here.

For example, trusted reconciliation requires a set of attributes from the connector to have a
non-empty value. However, not all resources can supply all of these attribute types, so you
need to provide some default values. Table 7-5 lists all required attributes for reconciliation,
and possible default values for them.

If connector can supply all attributes needed in reconciliation, then this table becomes optional.

Chapter 7
Global Oracle Identity Governance Lookups

7-8



Table 7-5    Lookup.CONNECTOR_NAME.UM.Recon.Defaults.Trusted Attriburtes

Key Value

Last Name CONNECTOR_DEPENDENT_VALUE

Organization Xellerate users

User Type End-User

Employee Type Full-Time

First Name CONNECTOR_DEPENDENT_VALUE

Note:

These default values are supported only for single valued fields, which means the
multivalued or child table attributes are not supported.

7.4 About IT Resources for ICF Integration
IT Resource contains connectivity parameters for target system. These parameters are
required for all the connectors using ICF integration.

Table 7-6 describes the common IT Resource parameters.

See Also:

The documentation for the connector you are deploying for information about the IT
Resource parameters of the target system and the Connector Server

Table 7-6    IT Resource Parameter

Parameter Description

Connector Server Name IT Resource name of Connector Server. The IT Resource needs to be
of type Connector Server. This field is a mandatory field, but the value
is optional.

Configuration Lookup Name of the main configuration lookup. This field is a mandatory field

7.5 Provisioning Using ICF
Provisioning using ICF is done by using the ICF Provisioning Manager.

The section describes provisioning by using ICF. It contains the following topics:

• ICF Provisioning Manager

• Provisioning Lookup

• Non-User Object Types

• Optional Lookups for Provisioning

Chapter 7
About IT Resources for ICF Integration

7-9



• Provisioning Validation Lookup

• Optional Flags in Lookups for Provisioning Attribute Map

• Compound attributes in Provisioning Attribute Map

7.5.1 ICF Provisioning Manager
ICF Provisioning Manager unites the access to provisioning methods of connectors into one
Java Task that serves all connectors.

The public methods are divided into four groups:

• APIs for Provisioning

• Account Related Operations

• Multivalued Operations

• Other operations

7.5.1.1 APIs for Provisioning
The following are the single-valued CRUD object types.

• createObject:

Creates object of a specified type on the target resource, the values are taken from the
current Form.

Signature: public String createObject(String objectType)l
• deleteObject:

Deletes object of a specified type on the target resource.

Signature: public String deleteObject(String objectType)
• updateAttributeValue:

Updates object on target resource, only the attribute with the provided label is updated.

Signature: public String updateAttributeValue(String objectType, String
attrFieldName)

• updatePassword:

Use this method in Adapter ONLY if you need to provide old password value, currently
there is no way to get the old value using the formAPI. If you don't need old password
value to change the password, use #updateAttributeValue(String, String) method instead.

Signature: public String updatePassword(String objectType, String
pswdFieldLabel, String oldPassword)

7.5.1.2 Account Related Operations
The following are the account related provisioning operations:

• enableUser:

Deprecated, use enableObject() instead.

Signature: public String enableUser()
• disableUser:

Chapter 7
Provisioning Using ICF

7-10



Deprecated, use disableObject() instead.

Signature: public String disableUser()
• enableObject:

Example usage for User: enableObject("User").

Signature: public String enableObject(String objectType)
• disableObject:

Signature: public String disableObject(String objectType)

7.5.1.3 Multivalued Operations
The following are the multivalued operations used in provisioning:

• updateAttributeValues:

Use this method if there is a group update of fields. This will be useful when a set of
attributes have to updated together.

Signature: public String updateAttributeValues(String objectType, String[]
labels) public String updateAttributeValues(String objectType, Map<String,
String> fields) public String updateAttributeValues(String objectType,
Map<String, String> fields, Map<String, String> oldFields)}}}

• addChildTableValue:

Updates the target by adding the newly added row in child table.

Signature: public String addChildTableValue(String objectType, String
childTableName, long childPrimaryKey)

• removeChildTableValue:

Updates the target by removing the row which was just deleted from child table.

Signature: public String removeChildTableValue(String objectType, String
childTableName, Integer taskInstanceKey)

• updateChildTableValue:

Updates the target by removing the deleted row and adding the newly created row.

Signature: public String updateChildTableValue(String objectType, String
childTableName, Integer taskInstanceKey, long childPrimaryKey)

• updateChildTableValue:

Updates values provided in child table on target resource.

Signature: public String updateChildTableValues(String objectType, String
childTableName)

7.5.1.4 Other operations
setEffectiveITResourceName is the other operation used in provisioning.

If the connector needs to use different IT Resource for provisioning operations, it can be set by
this method.

Signature: public void setEffectiveITResourceName(String itResourceName)

Chapter 7
Provisioning Using ICF

7-11



7.5.2 Provisioning Lookup
Lookup.CONNECTOR_NAME.UM.ProvAttrMap contains basic attribute mapping for single-
valued and multivalued attributes.

These are:

• Single valued attributes: simple string key + value pairs.

• Multivalued attributes (Child tables in Oracle Identity Manager): These are further divided
by the depth of hierarchy:

– Simple multivalued attributes: represent records of data stored in child table, see
second row in Table 7-7.

– Complex multivalued attributes: multiple levels of embedded objects, see last row in 
Table 7-7.

Table 7-7    Provisioning Lookup Attributes

Key Value Description

Form Field Label ConnectorAttributeName This is a basic mapping type,
simple Form Label Name to
single value Connector Attribute
Name

Child Form
Name>~<Child Form
Field Label

ConnectorAttributeName This maps child form field to
multivalued
ConnectorAttributeName

Child Form
Name>~<Child Form
Field Label

ConnectorAttributeName>~<Embed
dedObjectClass>~<EmbeddedAttrib
uteName

This maps child form field to
EmbeddedAttribute of the
embedded object, which object
class is EmbeddedObjectClass
and it is included in
ConnectorAttributeName

7.5.3 Non-User Object Types
There are number of additional entities that can be provisioned, for example LDAP
Organizational Unit (also called OU), or LDAP Group or Group.

In this case, you need to fill in the OBJECT_TYPE in the following examples:

• Main Configuration Lookup Lookup.CONNECTOR_NAME.Configuration

Key Value Description

objectType Configuration
Lookup

Lookup.<ConnectorName>.<obj
ectType>.ProvAttrMap

Group Configuration Lookup Lookup.LDAP.Group.ProvAttrMa
p

Example for LDAP Group

• Provisioning Lookup Lookup.CONNECTOR_NAME.OBJECT_TYPE.ProvAttrMap

Chapter 7
Provisioning Using ICF

7-12



Key Value Description

FORM_FIELD_LABEL_ON_TH
E_PROCESS_FORM

Target system attribute name Attribute mapping between
Oracle Identity Manager and the
connector.

7.5.4 Optional Lookups for Provisioning
The optional lookups for provisioning are with keys FORM_FIELD_NAME and myField.

The following table lists the optional lookups for provisioning.

Key Value Description

FORM_FIELD_NAME [Create,
Update, Delete]

ConnectorOperationOptionName This field is used for generic
definition.

For example, where the field is
mapped to operation option for
CreateOp that is sent to
connector named as
myOperationOption.

myField[Create] myOperationOption

7.5.5 Provisioning Validation Lookup
Validation code is in an external OIM Java Task. It is a Java class uploaded to Oracle Identity
Manager repository.

The following is a validation java class template:

public class MyValidator implements oracle.iam.connectors.common.validate.Validator { 
  public boolean validate(java.util.HashMap hmUserDetails, java.util.HashMap 
hmEntitlementDetails,String sField) throws 
oracle.iam.connectors.common.ConnectorException {
    boolean isValid = false;
    // validation code goes HERE
    return isValid;
  }
}

The name of lookup storing the Recon Validation Lookup is defined in Main Configuration
Lookup (Lookup.CONNECTOR_NAME.Configuration).

Key Value Description

Form Field Label validatorClassName

com.validationexample.MyValidat
or

Java class which performs
validation for this recon field.

7.5.6 Optional Flags in Lookups for Provisioning Attribute Map
ICF-OIM Integration offers some advanced flags that modify the way provisioning is done.

The following is the example for formats of flags in the lookup key:

<key value>[<flag>]
<key value>[<flag1, flag2, flag3>]

Chapter 7
Provisioning Using ICF

7-13



Let us assume you have a Group OIM attribute that is mapped to UnixGroup Connector
attribute. This OIM attribute is populated by a UI lookup. The correct row in Provisioning lookup
will be:

nullLookup key: Group[LOOKUP] 
Lookup value: UnixGroup }}}

The following is the list of flags and their effects.

• Provisioning Lookup Flag: TRUSTED

For some attributes (for example trusted reconciliation of __ENABLE__ attribute), you
need to pass on different values for trusted and target mode of operation. For most of the
connectors which support status Reconciliation use code key: Status[Trusted], and decode
value: __ENABLE__.

• Provisioning Lookup Flag: IGNORE

An attribute marked as IGNORE, will be ignored during provisioning.

• Provisioning Lookup Flag: WRITEBACK

If a field has WRITEBACK property, then update of that form field is:

1. update the value on the target system

2. query the value back from the target system (in order to get a normalized value)

3. update this normalized value on the user form.

• Provisioning Lookup Flag: DATE

Use this flag to mark date fields. Oracle Identity Manager will apply the localized date
format to these fields.

• Provisioning Lookup Flag: PROVIDEONPSWDCHANGE

Use this flag to mark additional attributes that are needed for password change operation.
By default only __PASSWORD__ attribute is sent, if no flag is applied.

7.5.7 Compound attributes in Provisioning Attribute Map
ICF Common enables to use Groovy expressions on the right hand side, so that provisioned
attribute can be computed based on multiple fields.

For example, in Active Directory Connector, decode value for the name field is: .

__NAME__=CN=${Common_Name},${Organization_Name}

7.6 Concepts of Reconciliation in ICF Common
ICF Common leverages the definition and types of reconciliation defined by Oracle Identity
Manager server.

IT Resource Name / Resource Object Name and Object Type are mandatory attributes
reconciliation using ICF Common. Any target system attribute can be used as Latest Token
Attribute.

This section contains the following topics:

• Types of Reconciliation

• List of Reconciliation Artifacts in Oracle Identity Governance

Chapter 7
Concepts of Reconciliation in ICF Common

7-14



7.6.1 Types of Reconciliation
Reconciliation involves pulling identities from resource (also referred as target) to destination
(Oracle Identity Manager).

This section describes the ICF common reconciliation parameters and the types of
reconciliation. It contains the following topics:

• About Reconciliation Types

• ICF Common Reconciliation Parameters

• Target and Trusted Reconciliation

• Full, Incremental Reconciliation

• Advanced Incremental Reconciliation

• Delete Reconciliation

• Group Lookup Reconciliation

7.6.1.1 About Reconciliation Types
Reconciliation can be classified based on the following criteria:

• Destination type: trusted source reconciliation, target resouce reconciliation

• Scope: full reconciliation, incremental reconciliation

7.6.1.2 ICF Common Reconciliation Parameters
Table 7-8 illustrates the common reconciliation parameters.

Table 7-8    ICF Common Reconciliation Parameters

Parameter Field Setting Description

Filter Optional Filter to limit the number of reconciled accounts, or
to select specific set of users.

IT Resource Name Mandatory Name of IT Resource instance to reconciliation.

Object Type Constant User object class

Resource Object Name Constant Determines what OIM Resource Object to use for
reconciliation.

7.6.1.3 Target and Trusted Reconciliation
Scheduled task name include keywords such as trusted, target, to determine the type of
destination. By choosing the scheduled task, it is determined whether trusted or target
reconciliation is launched.

7.6.1.4 Full, Incremental Reconciliation
Full reconciliation involves reconciling all existing user records from the target system into
Oracle Identity Manager. During Full Reconciliation, scheduled task is launched for the first
time, it is run in full reconciliation mode and from next runs happen in incremental mode. It is

Chapter 7
Concepts of Reconciliation in ICF Common

7-15



possible to switch manually between full/incremental reconciliation modes by emptying the
Latest Token field on the scheduled task.

If no value is supplied in Incremental Recon Date Attribute and Incremental Recon Attribute,
reconciliation is considered as Target Recon.

The following scheduled tasks offer optional incremental reconciliation:

• Connector Target User Reconciliation

• Connector Trusted User Reconciliation

7.6.1.5 Advanced Incremental Reconciliation
The format of Latest Token is altered by setting the Recon Date Format scheduled task
parameter. The formatting string needs to follow standard pattern used in Java. For more
information about formatting string used in Java, see Java Doc on Oracle Technology Network.

By default the Latest Token is long value that holds Unix/POSIX time.

7.6.1.6 Delete Reconciliation
Some connectors supports both trusted and target reconciliation of deleted accounts. Target
reconciliation evaluate which Oracle Identity Manager users have lost their account on the
resource, and unassign this resource in Oracle Identity Manager. Trusted Delete Reconciliation
goes further, and deletes the Oracle Identity Manager User.

7.6.1.7 Group Lookup Reconciliation
Some connectors may support reconciliation of Groups, or other object classes to Lookups.

Before the first use of provisioning with the connector, it is advised to launch Lookup
reconciliation. This reconciliation populate the Lookup.CONNECTOR_NAME.ObjectType table with
groups available on an IT Resource that is being reconciled. The reconciliation is performed by
the Connector Lookup Reconciliation scheduled task.

You need to set the IT resource parameter name, the rest of the parameters are constant as
shown in Table 7-8.

Table 7-9 illustrates the common reconciliation parameters.

Table 7-9    Common Group Lookup Parameters

Code Key Decode Key Object Type

Form field name Connector attribute Group, or other

For example, the list of names returned by the connector is used to populate the lookup for
provisioning. When a new user is provisioned, the group field can display the list of available
groups.

7.6.2 List of Reconciliation Artifacts in Oracle Identity Governance
The methods of control over reconciliation are lookups for reconciliation and scheduled tasks.

This section contains the following topics:

• Methods of Control Over Reconciliation

Chapter 7
Concepts of Reconciliation in ICF Common

7-16



• Lookups for Reconciliation

• Example of Reconciliation With Child Table

7.6.2.1 Methods of Control Over Reconciliation
In Oracle Identity Manager, there are two methods of control over reconciliation:

• Lookups for Reconciliation: they define mapping, transformation of the attributes.

• Scheduled tasks - they define the way reconciliation is executed on connector side, or
determine account/lookup mode of reconciliation.

7.6.2.2 Lookups for Reconciliation
Reconciliation Attribute Map Lookup is the lookup for reconciliation. The reconciliation attribute
map contains the following pairs:

• Code key: Resource Object reconciliation field name

• Decode: Target system attribute name

Table 7-10 illustrates this mapping (Lookup.CONNECTOR_NAME.UM.ReconAttrMap ) used by
Scheduled tasks that perform reconciliation.

Note:

Resource Objects are different for Trusted and Target mode of reconciliation.

Table 7-10    Attribute Mapping for Lookup.CONNECTOR_NAME.UM.ReconAttrMap

Key Value Description

Recon Field Name ConnectorAttributeName This is a basic mapping type, single value
Connector Attribute Name to simple Recon Field.

Recon Field Name~Child
Recon Field Name

ConnectorAttributeName This maps multivalued ConnectorAttributeName
to child recon field.

Recon Field Name~Child
Recon Field Name

ConnectorAttributeName~
EmbeddedObjectClass~E
mbeddedAttribute

This maps embedded attribute to child recon field

7.6.2.3 Example of Reconciliation With Child Table
This section provides an example of Design Console updates to setup reconciliation with child
table. It contains the following topics:

• Example Showing Design Console Updates to Setup Reconciliation with Child Table

• Setting Up Reconciliation With Child Tables

7.6.2.3.1 Example Showing Design Console Updates to Setup Reconciliation with Child Table
The following is the example showing Design Console updates to setup reconciliation with
child table:

• Child table name: UD_FF_CHILD

Chapter 7
Concepts of Reconciliation in ICF Common

7-17



• Column name: UD_FF_CHILD_ROLE

• Field label: Role

7.6.2.3.2 Setting Up Reconciliation With Child Tables
To set up reconciliation with the child table:

1. Open Resource Object under Resource Management.

2. Create a new Reconciliation Data field under Object Reconciliation tab.

Note:

While creating a new Reconciliation Data field, you must ensure that the field
name be Roles and Field Type be Multi-Valued Attribute. This represents the
child table as a whole UD_FF_CHILD.

3. Right click on the newly created Reconciliation Data Field and define a new property field
as Role. This represents the actual column of the child table UD_FF_CHILD_ROLE.

4. Open Reconciliation Field Mapping under Process Definition.

5. Click on Add Table Map.

6. Select Field Name as Roles.

7. Select Table Name as UD_FF_CHILD.

8. Right click on the newly created field name Roles, click on Define proper field name.

9. Select Role for field name.

10. Select Process data field as UD_FF_CHILD_ROLE.

11. Update Lookup.CONNECTOR_NAME.UM.ReconAttrMap to include new lookup field with
code key = Roles~Role and decode = Role (this should be connector side attribute name).

12. Go back to Resource Object and create reconciliation profile.

13. Clear cache.

7.7 Predefined Scheduled Tasks
The scheduled tasks for OIM-ICF integration are LookupReconTask, SearchReconTask,
SearchReconDeleteTask, and SyncReconTask.

ICF-OIM integration provides the following list of predefined scheduled tasks that a connector
supports:

• LookupReconTask

• SearchReconTask

• SearchReconDeleteTask

• SyncReconTask

Chapter 7
Predefined Scheduled Tasks

7-18



7.7.1 LookupReconTask
LookupReconTask is based on ICF SearchOp-based reconciliation.

Oracle Identity Manager form field of type lookup stores a set of predefined values. These
values originate from the connector's search query. The Code Key Attribute is the form field's
name, and the Decode Attribute is the name of attribute on the target system (also called
Connector).

Internally, this task invokes a search operation on the connector for the given Object Type that
is translated to ICF Object Class eventually.

Table 7-11    Identity Connector Lookup Reconciliation Attributes

Key Value

IT Resource Name Specifies the name of the IT resource for target system installation.

Object Type User

Lookup Name This attribute holds the name of the lookup definition that maps each
lookup definition with the data source from which values must be
fetched.

Decode Attribute Specifies the Decode Key column of the lookup definition.

Code Key Attribute Specifies the Code Key column of the lookup definition.

Filter Allows to create sophisticated filtration expressions in order to speed
up/refine scheduled task execution.

7.7.2 SearchReconTask
SearchReconTask is used for ICF SearchOp-based reconciliation.

Table 7-12    Identity Connector Target Search Reconciliation Attributes

Key Value

IT Resource Name Specifies the name of the IT resource for target system installation.

Resource Object Name Specifies the name of the Resource Object used for reconciliation.

Object Type User

Filter Allows to create sophisticated filtration expressions in order to speed
up/refine scheduled task execution.

Latest Token Used in Filter as one of the criteria in incremental reconciliation. Any
target system attribute can be used as Latest Token Attribute. This
value is calculated as follows:

If a reconciliation has fetched 100 records and Timestamp is chosen as
a Incremental Recon Attribute, then Latest Token = Max Timestamp of
all 100 records. It is not the Schedule task execution end timestamp.

Incremental Recon Date
Attribute (optional, type Date)

Attribute used to update Latest Token.

Note: If no value is supplied in Incremental Recon Date Attribute, then
reconciliation is considered as Target Reconciliation.

Incremental Recon Attribute
(optional, type long)

Attribute used to update Latest Token.

Note: If no value is supplied in Incremental Recon Attribute , then
reconciliation is considered as Target Reconciliation.

Chapter 7
Predefined Scheduled Tasks

7-19



7.7.3 SearchReconDeleteTask
SearchReconDeleteTask is used for ICF SearchOp-based reconciliation.

Table 7-13    Identity Connector Target Search Delete Reconciliation Attributes

Key Value

IT Resource Name Specifies the name of the IT resource for target system installation.

Resource Object Name Specifies the name of the Resource Object used for reconciliation

Object Type User

Filter Allows to create sophisticated filtration expressions in order to speed
up/refine scheduled task execution.

7.7.4 SyncReconTask
SyncReconTask is used for ICF SyncOP-based reconciliation. The Sync Token field persists
the token of last synchronization.

Table 7-14    Identity Connector Target Sync Reconciliation Attributes

Key Value

IT Resource Name Specifies the name of the IT resource for target system installation.

Resource Object Name Specifies the name of the Resource Object used for reconciliation

Object Type User

Filter Allows to create sophisticated filtration expressions in order to speed
up/refine scheduled task execution.

Sync Token Token of last synchronization.

7.8 ICF Filter Syntax
GroovyFilterBuilder allows to create sophisticated filtration expressions in order to speed up/
refine scheduled task execution.

WARNING:

The GroovyFilterBuilder uses the connector attribute name for filtration. See
Connector documentation for the attribute name.

This section contains the following topics:

• Filter Examples

• Definition in EBNF Format

• Keywords and Syntax for the Filter Attribute

Chapter 7
ICF Filter Syntax

7-20



7.8.1 Filter Examples
Filter examples can include limiting or filtering the number of reconciled accounts.

The following example could limit the number of reconciled accounts to only those, where
account name starts with letter "a", this filter is denoted by the following expression:

startsWith('__NAME__', 'a')

Some more advanced search could require to filter only those account names, which end with
"z" letter, therefore the filter is:

startsWith('__NAME__', 'a') & endsWith('__NAME__', 'z')

Figure 7-3 shows the graphical scheme of Filter Syntax.

Chapter 7
ICF Filter Syntax

7-21



Figure 7-3    Graphical Representation of Filter Syntax

It is also possible to use a shortcut for and/or operators.

For example, <filter1> & <filter2> instead of and (<filter1>, <filter2>) , analogically replace or
with |.

7.8.2 Definition in EBNF Format
The following is the Extended Backus–Naur Form (EBNF) description of the expression
language used for Search Filters in reconciliation.

Chapter 7
ICF Filter Syntax

7-22



syntax = expression ( operator expression )* 
operator = 'and' | 'or' 
expression = ( 'not' )? filter 
filter = ('equalTo' | 'contains' | 'containsAllValues' | 'startsWith' | 'endsWith'  | 
'greaterThan' | 'greaterThanOrEqualTo' | 'lessThan' | 'lessThanOrEqualTo' )  '(' 
'attributeName' ',' attributeValue ')' 
attributeValue = singleValue  |  multipleValues
singleValue = 'value'
multipleValues = '[' 'value_1' (',' 'value_n')* ']' 

7.8.3 Keywords and Syntax for the Filter Attribute
Filter syntax can be for String filters, Equality or Inequality filters, and Complex filters.

Table 7-15 lists the filter syntax that you can use and the corresponding description and
sample values.

Note:

Filters with wildcard characters are not supported.

Table 7-15    Keywords and Syntax for the Filter Attribute

Filter Syntax Description

String Filters

startsWith('ATTRIBUTE_NAME','PREFIX') Records whose attribute value starts with the specified prefix are
reconciled.

Example: startsWith('userPrincipalName','John')
In this example, all records whose userPrincipalName begins with 'John'
are reconciled.

endsWith('ATTRIBUTE_NAME','SUFFIX') Records whose attribute value ends with the specified suffix are
reconciled.

Example: endsWith('sn','Doe')
In this example, all records whose last name ends with 'Doe' are
reconciled.

contains('ATTRIBUTE_NAME','STRING') Records where the specified string is contained in the attribute's value are
reconciled.

Example: contains('displayName','Smith')
In this example, all records whose display name contains 'Smith' are
reconciled.

containsAllValues('ATTRIBUTE_NAME',
['STRING1','STRING2', . . . ,'STRINGn'])

Records that contain all the specified strings for a given attribute are
reconciled.

Example: containsAllValues('objectClass',['person','top'])
In this example, all records whose objectClass contains both "top" and
"person" are reconciled.

Equality and Inequality Filters

Chapter 7
ICF Filter Syntax

7-23



Table 7-15    (Cont.) Keywords and Syntax for the Filter Attribute

Filter Syntax Description

equalTo('ATTRIBUTE_NAME','VALUE') Records whose attribute value is equal to the value specified in the syntax
are reconciled.

Example: equalTo('sAMAccountName','Sales Organization')
In this example, all records whose sAMAccountName is Sales
Organization are reconciled.

greaterThan('ATTRIBUTE_NAME','VALUE') Records whose attribute value (string or numeric) is greater than (in
lexicographical or numerical order) the value specified in the syntax are
reconciled.

Example 1: greaterThan('cn','bob')
In this example, all records whose common name is present after the
common name 'bob' in the lexicographical order (or alphabetical order) are
reconciled.

Example 2: greaterThan('employeeNumber','1000')
In this example, all records whose employee number is greater than 1000
are reconciled.

greaterThanOrEqualTo('ATTRIBUTE_NAME','V
ALUE')

Records whose attribute value (string or number) is lexographically or
numerically greater than or equal to the value specified in the syntax are
reconciled.

Example 1: greaterThanOrEqualTo('sAMAccountName','S')
In this example, all records whose sAMAccountName is equal to 'S' or
greater than 'S' in lexicographical order are reconciled.

Example 2: greaterThanOrEqualTo('employeeNumber','1000')
In this example, all records whose employee number is greater than or
equal to 1000 are reconciled.

lessThan('ATTRIBUTE_NAME','VALUE') Records whose attribute value (string or numeric) is less than (in
lexicographical or numerical order) the value specified in the syntax are
reconciled.

Example 1: lessThan('sn','Smith')
In this example, all records whose last name is present after the last name
'Smith' in the lexicographical order (or alphabetical order) are reconciled.

Example 2: lessThan('employeeNumber','1000')
In this example, all records whose employee number is less than 1000 are
reconciled.

lessThanOrEqualTo('ATTRIBUTE_NAME','VAL
UE')

Records whose attribute value (string or numeric) is lexographically or
numerically less than or equal to the value specified in the syntax are
reconciled.

Example 1: lessThanOrEqualTo('sAMAccountName','A')
In this example, all records whose sAMAccountName is equal to 'A' or less
than 'A' in lexicographical order are reconciled.

Example 2: lessThanOrEqualTo('employeeNumber','1000')
In this example, all records whose employee numer is less than or equal to
1000 are reconciled.

Complex Filters

Chapter 7
ICF Filter Syntax

7-24



Table 7-15    (Cont.) Keywords and Syntax for the Filter Attribute

Filter Syntax Description

<FILTER1> & <FILTER2> Records that satisfy conditions in both filter1 and filter2 are reconciled. In
this syntax, the logical operator & (ampersand symbol) is used to combine
both filters.

Example: startsWith('cn', 'John') & endsWith('sn', 'Doe')
In this example, all records whose common name starts with John and last
name ends with Doe are reconciled.

<FILTER1> | <FILTER2> Records that satisfy either the condition in filter1 or filter2 are reconciled.
In this syntax, the logical operator | (vertical bar) is used to combine both
filters.

Example: contains('sAMAccountName', 'Andy') |
contains('sn', 'Brown')
In this example, all records that contain 'Andy' in the sAMAccount Name
attribute or records that contain 'Brown' in the last name are reconciled.

not(<FILTER>) Records that do not satisfy the given filter condition are reconciled.

Example: not(contains('cn', 'Mark'))
In this example, all records that does not contain the common name 'Mark'
are reconciled.

Chapter 7
ICF Filter Syntax

7-25



8
Using Java APIs for ICF Integration

ICF integration uses ICF APIs to access the Identity Connectors.
To build a custom connector, you must first implement the Identity Connector (ICF-based
connector) by implementing the ICF SPI. After this, you need to create Oracle Identity Manager
artifacts to integrate the Identity Connector to Oracle Identity Manager, which can reuse
ICProvisioningManager (part of ICF integration) in their Adapter Tasks to invoke provisioning
operations on Identity Connector, and also can reuse Reconciliation Tasks that are
implemented in ICF integration. Therefore, by using ICF integration, you need not write any
integration code in java, ICF integration uses ICF APIs to access the Identity Connectors.

For information about Java APIs related to ICF integration, see Oracle Fusion Middleware Java
API Reference for Identity Connector Framework.

For information about Java APIs related to Oracle Identity Manager, see Oracle Fusion
Middleware Java API Reference for Oracle Identity Governance.

8-1

https://docs.oracle.com/middleware/12213/oig/OMICF/index.html
https://docs.oracle.com/middleware/12213/oig/OMICF/index.html
https://docs.oracle.com/middleware/12213/oig/OMJAV/index.html
https://docs.oracle.com/middleware/12213/oig/OMJAV/index.html


9
Configuring ICF Connectors

Common customization procedures must be performed for all ICF connectors.
This chapter provides the information about the common customization procedures that needs
to be performed for all ICF connectors.

The following are the topics discussed in this chapter:

• Configuring Connector Load Balancer

• Configuring Validation of Data During Reconciliation and Provisioning

• Configuring Transformation of Data During User Reconciliation

• Configuring Resource Exclusion Lists

• Configuring SSL Communication

• Adding Target System Attributes

9.1 Configuring Connector Load Balancer
A connector server is an application that enables remote execution of an Identity Connector. If
there are multiple connector servers, then you must ensure the high availability of the
connector server for the remote execution of the Identity connector and failover management.
Therefore, you must configure a load balancer for a connector server.

This section contains the following topics:

• About the Load Balancer Configuration

• Configuring the Load Balancer for a Connector Server

9.1.1 About the Load Balancer Configuration
If there are multiple connector servers, then you must ensure the high availability of the
connector server for the remote execution of the Identity connector and failover management.

Figure 9-1 depicts the typical configuration for a cluster of connector servers. The flow in the
figure is based on the assumption that the required connector bundle is deployed across all the
connector servers.

9-1



Figure 9-1    Connector Server Load Balancer

9.1.2 Configuring the Load Balancer for a Connector Server
Configuring the load balancer for a connector server involves pointing a connector server IT
resource to the host deployed with the load balancer.

To configure the load balancer for a connector server:

1. Install connector server on nodes including the connector bundle. This involves copying
and running the server binaries on all nodes.

2. Setup your load balancer so that every request on port 8759 (default for connector server,
which is configurable) is being load balanced across the nodes created in Step 1.

3. Create a connector server IT resource, and point it to your host deployed with load
balancer.

4. Configure your connector IT resource with the following details:

• host: target address

• connector server name: use the name created in Step 3.

Chapter 9
Configuring Connector Load Balancer

9-2



Note:

You must make sure to double-check that the incoming port of load balancer
is same as the one given in connector server IT resource. In addition, you
must check that the ports set up for cluster nodes match the one used for
configuring your load balancer.

9.2 Configuring Validation of Data During Reconciliation and
Provisioning

Configuring validation of data during reconciliation and provisioning is done by implementing
the validation logic in a Java class.

This section contains the following topics:

• About Validation of Data During Reconciliation and Provisioning

• Configuring Validation of Data

• Sample Validation Class

9.2.1 About Validation of Data During Reconciliation and Provisioning
The Lookup.CONNECTOR_NAME.ProvValidations and
Lookup.CONNECTOR_NAME.UM.ReconValidations lookup definitions hold single-valued data
to be validated during provisioning and reconciliation operations, respectively.

For example, you can validate data fetched from the First Name attribute to ensure that it does
not contain the number sign (#). In addition, you can validate data entered in the First Name
field on the process form so that the number sign (#) is not sent to the target system during
provisioning operations.

Note:

The Lookup.CONNECTOR_NAME.UM.ProvValidations and
Lookup.CONNECTOR_NAME.UM.ReconValidations lookup definitions are optional
and do not exist by default.

You must add these lookups as decode values to the
Lookup.CONNECTOR_NAME.UM.Configuration lookup definition to enable
exclusions during provisioning and reconciliation operations. See the respective
connector guide for more information about setting up the lookup definition for user
operations.

9.2.2 Configuring Validation of Data
Configuring validation of data during reconciliation and provisioning involves implementing the
validate method in a validation class, creating lookup definitions for data validation, and
uploading the validation class JAR file to the database.

To configure validation of data:

Chapter 9
Configuring Validation of Data During Reconciliation and Provisioning

9-3



1. Write code that implements the required validation logic in a Java class with a fully
qualified domain name (FQDN), such as
org.identityconnectors.CONNECTOR_NAME.extension.CONNECTOR_NAMEValidator.
This validation class must implement the validate method. See Sample Validation Class for
a sample validation class that checks if the value in the First Name attribute contains the
number sign (#).

2. Log in to the Design Console.

3. Create one of the following new lookup definitions:

• To configure validation of data for reconciliation:

Lookup.CONNECTOR_NAME.UM.ReconValidations
• To configure validation of data for provisioning:

Lookup.CONNECTOR_NAME.UM.ProvValidations
4. In the Code Key column, enter the resource object field name that you want to validate.

For example, Alias.
5. In the Decode column, enter the class name. For example,

org.identityconnectors.CONNECTOR_NAME.extension.CONNECTOR_NAMEValidator.
6. Save the changes to the lookup definition.

7. Search for and open the Lookup.CONNECTOR_NAME.UM.Configuration lookup
definition.

8. In the Code Key column, enter one of the following entries:

• To configure validation of data for reconciliation:

Recon Validation Lookup
• To configure validation of data for provisioning:

Provisioning Validation Lookup
9. In the Decode column, enter one of the following entries:

• To configure validation of data for reconciliation:

Lookup.CONNECTOR_NAME.UM.ReconValidations
• To configure validation of data for provisioning:

Lookup.CONNECTOR_NAME.UM.ProvValidations
10. Save the changes to the lookup definition.

11. Create a JAR with the class and upload it to the Oracle Identity Manager database as
follows:

Run the Oracle Identity Manager Upload JARs utility to post the JAR file to the Oracle
Identity Manager database. This utility is copied into the following location when you install
Oracle Identity Manager:

Note:

Before you use this utility, verify that the WL_HOME environment variable is set to
the directory in which Oracle WebLogic Server is installed.

Chapter 9
Configuring Validation of Data During Reconciliation and Provisioning

9-4



For Microsoft Windows:

OIM_HOME/server/bin/UploadJars.bat

For UNIX:

OIM_HOME/server/bin/UploadJars.sh

When you run the utility, you are prompted to enter the login credentials of the Oracle
Identity Manager administrator, URL of the Oracle Identity Manager host computer, context
factory value, type of JAR file being uploaded, and the location from which the JAR file is
to be uploaded. Select 1 as the value of the JAR type.

See Also:

Migrating JARs and Resource Bundle for detailed information about the Upload
JARs utility

12. Run the PurgeCache utility to clear content related to request datasets from the server
cache.

13. Perform reconciliation or provisioning to verify validation for the field, for example, Alias.

9.2.3 Sample Validation Class
You can implement the validate method in a sample validation class.

The following sample validation class checks if the value in the First Name attribute contains
the number sign (#):

package com.validationexample;

import java.util.HashMap;
 
public class MyValidator {
    public boolean validate(HashMap hmUserDetails, HashMap hmEntitlementDetails, String 
sField) throws ConnectorException {
 
        /* You must write code to validate attributes. Parent
                 * data values can be fetched by using hmUserDetails.get(field)
                 * For child data values, loop through the
                 * ArrayList/Vector fetched by hmEntitlementDetails.get("Child Table")
                 * Depending on the outcome of the validation operation,
                 * the code must return true or false.
                 */
        /*
        * In this sample code, the value "false" is returned if the field
        * contains the number sign (#). Otherwise, the value "true" is
        * returned.
        */
        boolean valid = true;
        String sFirstName = (String) hmUserDetails.get(sField);
        for (int i = 0; i < sFirstName.length(); i++) {
            if (sFirstName.charAt(i) == '#') {
                valid = false;
                break;
            }
        }
        return valid;
 

Chapter 9
Configuring Validation of Data During Reconciliation and Provisioning

9-5



    }
}

9.3 Configuring Transformation of Data During User
Reconciliation

Configuring transformation of data during user reconciliation is done by implementing the
transform method in a transformation class.

This section contains the following topics:

• About Transformation of Data During User Reconciliation

• Configuring Transformation of Single-Valued User Data Fetched During Reconciliation

• Sample Transformation Class

9.3.1 About Transformation of Data During User Reconciliation
The Lookup.CONNECTOR_NAME.UM.ReconTransformations lookup definition holds single-
valued user data to be transformed during reconciliation operations.

For example, you can use First Name and Last Name values to create a value for the Full
Name field in Oracle Identity Manager.

Note:

The Lookup.CONNECTOR_NAME.UM.ReconTransformations lookup definition is
optional and does not exist by default.

You must add this lookup as decode value to the
Lookup.CONNECTOR_NAME.UM.Configuration lookup definition to enable
exclusions during provisioning and reconciliation operations. See the respective
connector guide for more information about setting up the lookup definition for user
operations.

9.3.2 Configuring Transformation of Single-Valued User Data Fetched
During Reconciliation

Configuring transformation of single-valued user data fetched during reconciliation involves
implementing the transform method in a transformation class, creating lookup definitions, and
uploading the transformation class JAR file to the database.

To configure transformation of single-valued user data fetched during reconciliation:

1. Write code that implements the required transformation logic in a Java class with a fully
qualified domain name (FQDN), such as
org.identityconnectors.CONNECTOR_NAME.extension.CONNECTOR_NAMETransformation.
This transformation class must implement the transform method. See Sample
Transformation Class for a sample transformation class that creates a value for the Full
Name attribute by using values fetched from the First Name and Last Name attributes of
the target system.

Chapter 9
Configuring Transformation of Data During User Reconciliation

9-6



2. Log in to the Design Console.

3. Create a new lookup definition,
Lookup.CONNECTOR_NAME.UM.ReconTransformations.

4. In the Code Key column, enter the resource object field name you want to transform. For
example, Alias.

5. In the Decode column, enter the class name. For example,
org.identityconnectors.CONNECTOR_NAME.extension.CONNECTOR_NAMETransformation.

6. Save the changes to the lookup definition.

7. Search for and open the Lookup.CONNECTOR_NAME.UM.Configuration lookup
definition.

8. In the Code Key column, enter Recon Transformation Lookup.
9. In the Decode column, enter Lookup.CONNECTOR_NAME.UM.ReconTransformations.
10. Save the changes to the lookup definition.

11. Create a JAR with the class and upload it to the Oracle Identity Manager database as
follows:

Run the Oracle Identity Manager Upload JARs utility to post the JAR file created in Step 7
to the Oracle Identity Manager database. This utility is copied into the following location
when you install Oracle Identity Manager:

Note:

Before you use this utility, verify that the WL_HOME environment variable is set to
the directory in which Oracle WebLogic Server is installed.

For Microsoft Windows:

OIM_HOME/server/bin/UploadJars.bat

For UNIX:

OIM_HOME/server/bin/UploadJars.sh

When you run the utility, you are prompted to enter the login credentials of the Oracle
Identity Manager administrator, URL of the Oracle Identity Manager host computer, context
factory value, type of JAR file being uploaded, and the location from which the JAR file is
to be uploaded. Select 1 as the value of the JAR type.

See Also:

Migrating JARs and Resource Bundle for detailed information about this utility.

12. Run the PurgeCache utility to clear content related to request datasets from the server
cache.

13. Perform reconciliation to verify transformation of the field, for example, Alias.

9.3.3 Sample Transformation Class
You can implement the transform method in a transformation class.

Chapter 9
Configuring Transformation of Data During User Reconciliation

9-7



The following sample transformation class creates a value for the Full Name attribute by using
values fetched from the First Name and Last Name attributes of the target system:

package com.transformationexample;

import java.util.HashMap;
 
 
public class MyTransformer {
    public Object transform(HashMap hmUserDetails, HashMap hmEntitlementDetails, String 
sField) throws ConnectorException {
        /*
        * You must write code to transform the attributes.
        * Parent data attribute values can be fetched by
        * using hmUserDetails.get("Field Name").
        * To fetch child data values, loop through the
        * ArrayList/Vector fetched by hmEntitlementDetails.get("Child          Table")
        * Return the transformed attribute.
        */
        String sFirstName = (String) hmUserDetails.get("First Name");
        String sLastName = (String) hmUserDetails.get("Last Name");
        return sFirstName + "." + sLastName;
 
    }
}

9.4 Configuring Resource Exclusion Lists
The Lookup.CONNECTOR_NAME.UM.ProvExclusionList and
Lookup.CONNECTOR_NAME.UM.ReconExclusionList lookup definitions hold user IDs of
target system accounts for which you do not want to perform provisioning and reconciliation
operations, respectively.

This section contains the following topics:

• About Resource Excursion Lists

• Format of Values Stored in the Lookups

• Adding Entries in the Lookup for Exclusion

9.4.1 About Resource Excursion Lists
Resource excursion list for provisioning and reconciliation operations is created by adding the
Lookup.CONNECTOR_NAME.UM.ProvExclusionList and
Lookup.CONNECTOR_NAME.UM.ReconExclusionList lookups as decode values to the
Lookup.CONNECTOR_NAME.UM.Configuration lookup definition.

The Lookup.CONNECTOR_NAME.UM.ProvExclusionList and
Lookup.CONNECTOR_NAME.UM.ReconExclusionList lookup definitions hold user IDs of
target system accounts for which you do not want to perform provisioning and reconciliation
operations, respectively.

The Lookup.CONNECTOR_NAME.UM.ProvExclusionList and
Lookup.CONNECTOR_NAME.UM.ReconExclusionList lookup definitions are optional and do
not exist by default.

You must add these lookups as decode values to the
Lookup.CONNECTOR_NAME.UM.Configuration lookup definition to enable exclusions during

Chapter 9
Configuring Resource Exclusion Lists

9-8



provisioning and reconciliation operations. See the respective connector guide for more
information about setting up the lookup definition for user operations.

9.4.2 Format of Values Stored in the Lookups
Enter decode key values as the values stored in the lookups.

The following is the format of the values stored in these lookups:

Code Key Decode Sample Values

User Login Id resource
object field name

User ID of a user Code Key: User Login Id

Decode: User001

User Login Id resource
object field name with
the [PATTERN] suffix

A regular expression
supported by the
representation in the
java.util.regex.Pat
tern class

Code Key: User Login Id[PATTERN]

To exclude users matching any of the user ID 's
User001, User002, User088, then:

Decode: User001|User002|User088

To exclude users whose user ID 's start with
00012, then:

Decode: 00012*

See Also: For information about the supported
patterns, visit:

http://download.oracle.com/javase/6/
docs/api/java/util/regex/Pattern.html

9.4.3 Adding Entries in the Lookup for Exclusion
Entries in the lookup for exclusions during provisioning operations are added from the Lookup
Definition form of the Design Console.

To add entries in the lookup for exclusions during provisioning operations:

1. On the Design Console, expand Administration and then double-click Lookup
Definition.

2. Create a new lookup definition, Lookup.CONNECTOR_NAME.UM.ProvExclusionList.

Note:

To specify user IDs to be excluded during reconciliation operations, create a new
lookup definition called Lookup.CONNECTOR_NAME.UM.ReconExclusionList
and add entries to that lookup.

3. Click Add.

4. In the Code Key and Decode columns, enter the first user ID to exclude.

Note:

The Code Key represents the resource object field name on which the exclusion
list is applied during provisioning operations.

Chapter 9
Configuring Resource Exclusion Lists

9-9

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html


5. Repeat Steps 3 and 4 for the remaining user IDs to exclude.

For example, if you do not want to provision users with user IDs User001, User002, and
User088 then you must populate the lookup definition with the following values:

Code Key Decode

User Login Id User001

User Login Id User002

User Login Id User088

You can also perform pattern matching to exclude user accounts. You can specify regular
expressions supported by the representation in the java.util.regex.Pattern class.

See Also:

For information about the supported patterns, visit http://
download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

For example, if you do not want to provision users matching any of the user IDs User001,
User002, and User088, then you must populate the lookup definition with the following
values:

Code Key Decode

User Login Id[PATTERN] User001|User002|User088

If you do not want to provision users whose user IDs start with 00012, then you must
populate the lookup definition with the following values:

Code Key Decode

User Login Id[PATTERN] 00012*

6. Click Save.

9.5 Configuring SSL Communication
Configure and troubleshoot SSL communication between Connector Server and Oracle
Identity Manager.

This section describes how to configure SSL communication between Connector Server and
Oracle Identity Manager. It contains the following topics:

• Setting SSL for Connector Server and Oracle Identity Governance

• Troubleshooting SSL

9.5.1 Setting SSL for Connector Server and Oracle Identity Governance
An SSL connection is required when establishing a connection for each SSL-enabled
connector server.

To set up the SSL communication between Connector Server and Oracle Identity Manager:

Chapter 9
Configuring SSL Communication

9-10

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html


1. Generate a new SSL key (or you can reuse your existing key):

keytool -genkey -alias keyconnserv -keyalg dsa -keystore <yourKeyStore.jks> -
storepass <yourPassword> -validity 360

2. Export the newly generated public key:

keytool -export -keystore <yourKeyStore.jks> -storepass <yourPassword> -alias 
keyconnserv -file icfkey-public.cer

3. Configure your Connector Server for SSL, and start using the new keystore set in Step 1.

4. Import the public key generated in Step 2 (icfkey-public.cer) to OIM keystore.

5. Configure IT Resource such as host, port, and so on. These parameters will be passed on
to Connector Server (an extra field of IT Resource).

6. Configure Connector Server, using SSL:

a. Deploy an SSL certificate to the Connector Server's system.

b. Configure your Connector Server to provide SSL sockets.

c. Configure your application to communicate with the Connector Server using SSL.

Refer to the target system's manual for specific notes on configuring connections to
identity connector servers. You will indicate to your application that an SSL connection
is required when establishing a connection for each SSL-enabled connector server.
Additionally, if any of the SSL certificates used by your connector servers are issued by
a non-standard certificate authority, your application must be configured to respect the
additional authorities. Refer to your manual for notes regarding certificate authorities.

Note:

Java applications may solve the issue of non-standard certificate authorities
by expecting the following Java system properties to be passed when
launching the application:

• javax.net.ssl.trustStorePassword

For example:

-Djavax.net.ssl.trustStorePassword=PASWORD

• javax.net.ssl.trustStore

For example:

-Djavax.net.ssl.trustStore=/usr/myApp_cacerts

Alternately, the non-standard certificate authorities may be imported to the
standard ${JAVA_HOME}/lib/security/cacerts directory.

7. Import the public key generated in Step 2 to OIM keystore.

If you follow to choose the default Weblogic keystore, perform the following:

keytool -import -trustcacerts -alias icfkey -file icfkey-public.cer -keystore 
<pathToYouKeystore>

For example default Weblogic keystores are: server/lib/DemoTrust.jks and server/lib/
DemoIdentity.jks.

Chapter 9
Configuring SSL Communication

9-11



9.5.2 Troubleshooting SSL
Use the connector server logs and connector server setting in the configuration folder for
troubleshooting issues related to SSL configuration.

The following is an example of exception in connector server logs:

java.net.SocketException: Default SSL context init failed: null

This means that the path to keystore is incorrect. To handle this exception, make sure you
provide the following full/absolute path:

For UNIX

./connectorserver.sh /run "-J-Djavax.net.ssl.keyStore=/path/to/mykeystore.jks" "-J-
Djavax.net.ssl.keyStorePassword=PASSWORD"

For Windows

./connectorserver.sh /run "-J-Djavax.net.ssl.keyStore=C:\path\to\mykeystore.jks" "-J-
Djavax.net.ssl.keyStorePassword=PASSWORD"

You must also ensure the following check points:

• Check your configuration folder for the setting of connector server configuration to use SSL

• Restart your WLS after importing public keys from the connector server, if the public key
present in OIM keystore

9.6 Adding Target System Attributes
Adding target system attributes includes adding attributes for provisioning, target resource
reconciliation, and trusted source reconciliation.

This section contains the following topics:

• Adding Target System Attributes for Provisioning

• Adding Target System Attributes for Target Reconciliation

• Adding Target System Attributes for Trusted Reconciliation

Note:

If you add an attribute with a Date type field, make sure that you add the [Date]
suffix in the Lookup definition code key.

For example, if you add _LAST_PASSWORD_CHANGE_DATE_, when you make
changes in the code key for Lookup.CONNECTOR_NAME.UM.ReconAttrMap or
Lookup.CONNECTOR_NAME.UM.ProvAttrMap, specify the attribute as:

_LAST_PASSWORD_CHANGE_DATE_[Date]

Chapter 9
Adding Target System Attributes

9-12



9.6.1 Adding Target System Attributes for Provisioning
By default, the target system attributes are mapped for provisioning between Oracle Identity
Manager and the target system.

If required, you can map additional attributes for provisioning by performing the steps
described in this section.

Note:

In this section, the term "attribute" refers to the identity data fields that store user
data.

Adding target system attributes for provisioning involves the following:

• Adding a New Form Field

• Adding the New Field to the Provisioning Mapping Lookup

• Changing the Process Task to Handle Updates

• Mapping the Adapter Variables

9.6.1.1 Adding a New Form Field
To add a new form field to the process form:

1. Open the Form Designer form. This form is in the Development Tools folder of the Oracle
Identity Manager Design Console.

2. Query for the UD_CONNECTOR_NAMECON form.

3. Click Create New Version. The Create a New Version dialog box is displayed.

4. In the Label field, enter the name of the version.

5. Click Save and close the dialog box.

6. From the Current Version box, select the version name that you entered in the Label field
in Step 4.

7. On the Additional Columns tab, click Add.

8. Specify the new field name and other values.

9. Click Save.

10. Click Make Version Active to make the new form field visible to the user.

Now, if you go to Oracle Identity Manager and try to provision a new user to Connector,
you should see the new form field. Next, you must add the new form field to the
Provisioning Mapping Lookup.

9.6.1.2 Adding the New Field to the Provisioning Mapping Lookup
After creating a new form field, you must add that field to the Provisioning Mapping Lookup. To
do so:

1. Expand Administration and then double-click Lookup Definition.

Chapter 9
Adding Target System Attributes

9-13



2. In the Lookup Definition window, search for CONNECTOR_NAME.

The Design Console returns Lookup.CONNECTOR_NAME.UM.ProvAttrMap.

3. Select the Lookup Definition Table tab, and select
Lookup.CONNECTOR_NAME.UM.ProvAttrMap.

The Lookup Code Information tab maps the Oracle Identity Manager form field names and
the CONNECTOR_NAME Identity Connector attributes. Where the Code Key column
contains the Oracle Identity Manager field labels and the Decode column contains the
attribute names supported by the CONNECTOR_NAME identity connector.

4. Add a new record for the new form field. Type the new form field name into the Code Key
column and type the CONNECTOR_NAME identity connector attribute name into the
Decode column.

5. Click Save.

Now, when you create a new CONNECTOR_NAME user, the connector will get the new
attribute as part of the create operation.

At this point, the process task only handles creates. Next, you must change the process
task to also handle updates. Instructions are described in the next steps.

9.6.1.3 Changing the Process Task to Handle Updates
To change the process task to handle updates:

1. In the Design Console, expand Process Management and then double-click Process
definition.

2. Search for and select process CONNECTOR_NAME User.

3. In the Task column, look for an update task that is similar to the one you want to add and
select that entry.

4. Click Add.

5. In the Creating New Task dialog, select the General tab and enter a Task Name and a Task
Description.

The Task Name is important because it will be the form name field. Be sure to include the
event you want the task to handle. For example, if you add the Building field for
provisioning, then add the Building Updated task. Now, this update event will be triggered
when the Building field is updated.

6. In the Task Properties section, set the following properties as noted:

-Conditional: Enabled

-Required for Completion: Disabled

-Disable Manual Insert: Disabled

-Allow Cancellation while Pending: Enabled

-Allow Multiple Instances: Enabled

You do not have to change any of the remaining properties.

7. Save your changes.

8. To add an Event Handler, select the Integration tab, and then click Add.

9. When the Handler Select dialog box is displayed, select Adapter as the handler type, and
then perform the steps described in Mapping the Adapter Variables.

10. Save and close the Creating New Task dialog.

Chapter 9
Adding Target System Attributes

9-14



11. Check the Task column on the Process Definition tab to verify that the new process task is
listed. Also verify that the new form field is available and working in Oracle Identity
Manager.

9.6.1.4 Mapping the Adapter Variables
To map the adapter variables:

1. Select adapter adpCONNECTOR_NAMECONNECTORUPDATEATTRIBUTEVALUE and
click Save.

2. Map all of the variables that are configured for the event adapter.

3. In the Adapter Variables section, double-click a variable name to open the Edit Data
Mapping For Variable dialog box. Specify the following values for each variable in turn. Be
sure to save your changes after each mapping.

Variable Name Map To Qualifier Literal Value

itResourceFieldName Literal String UD_CONNECTOR_NAMEC
ON_SERVER

processInstanceKey Process Data Process Instance

Adapter return value Response Code

objectType Literal String User

attrName Literal String Enter your new label

9.6.2 Adding Target System Attributes for Target Reconciliation
By default, the target system attributes are mapped for reconciliation between Oracle Identity
Manager and the target system.

If required, you can map additional attributes for target reconciliation as described in this
section.

Note:

• Perform this procedure only if you want to add new target system attributes for
reconciliation.

• In the following steps, a new attribute called BUILDING will be added, its
connector attribute name is BUILDING, and the form field name is Building.
Names are case-sensitive.

To add a new target system attribute for target reconciliation, follow these steps:

1. In the resource object definition, add a reconciliation field corresponding to the new
attribute, as follows:

a. Open the Resource Objects form. This form is in the Resource Management folder.

b. Click Query for Records.

c. On the Resource Objects Table tab, double-click the CONNECTOR_NAME User
resource object to open it for editing.

Chapter 9
Adding Target System Attributes

9-15



d. On the Object Reconciliation tab, click Add Field to open the Add Reconciliation Field
dialog box.

e. Specify a value for the field name that is the name of the new Attribute on your Form.

For example: Building

f. From the Field Type list, select a data type for the field.

For example: String

g. Save the values that you enter, and then close the dialog box.

h. If required, repeat Steps d through g to map more fields.

i. Click Create Reconciliation Profile. This copies changes made to the resource object
into the MDS.

2. If a corresponding field does not exist in the process form, then add a new column in the
process form, as follows:

a. Open the Form Designer form. This form is in the Development tools folder.

b. Query for the UD_CONNECTOR_NAMECON form.

c. Click Create New Version. The Create a New Version dialog box is displayed.

d. In the Label field, enter the name of the version.

e. Click Save and close the dialog box.

f. From the Current Version box, select the version name that you entered in the Label
field in Step 3.

g. On the Additional Columns tab, click Add.

h. In the Name field, enter the name of the data field and then enter the other details of
the field.

Note: Repeat Steps g and h if you want to add more attributes.

i. Click Save and then click Make Version Active.

3. Modify the process definition to include the mapping between the newly added attribute
and the corresponding reconciliation field:

a. Open the Process Definition form. This form is in the Process Management folder of
the Design Console.

b. Click the Query for Records icon.

c. On the Process Definition Table tab, double-click the CONNECTOR_NAME User
process definition.

d. On the Reconciliation Field Mappings tab, click Add Field Map to open the Add
Reconciliation Field Mapping dialog box.

e. From the Field Name list, select the name of the resource object that you added in
Step 2e.

f. Double-click Process Data Field and select the corresponding process form field from
the Lookup dialog box. Then, click OK.

g. Click Save and close the dialog box.

h. If required, repeat Steps c through g to map more fields.

4. Go to the reconciliation lookup, Lookup.CONNECTOR_NAME.UM.ReconAttrMap, and add
a new record for the new attribute using the following values:

• Code Key - Name of the reconciliation field

Chapter 9
Adding Target System Attributes

9-16



• Decode - Name of the CONNECTOR_NAME attribute

5. In the Design Console, regenerate the reconciliation profile for the Resource Object.

9.6.3 Adding Target System Attributes for Trusted Reconciliation
By default, the attributes for trusted source reconciliation are mapped between Oracle Identity
Manager and the target system.

If required, you can map additional attributes for trusted reconciliation as described in this
section.

Note:

• Perform this procedure only if you want to add new target system attributes for
reconciliation.

• In the following steps, a new attribute called BUILDING will be added, its
connector attribute name is BUILDING, and the form field name is Building.
Names are case-sensitive.

To add a new target system attribute for trusted reconciliation, follow these steps:

1. In the resource object definition, add a reconciliation field corresponding to the new
attribute, as follows:

a. Open the Resource Objects form. This form is in the Resource Management folder.

b. Click Query for Records.

c. On the Resource Objects Table tab, double-click the CONNECTOR_NAME Trusted
User resource object to open it for editing.

d. On the Object Reconciliation tab, click Add Field to open the Add Reconciliation Field
dialog box.

e. Specify a value for the field name that is the name of the new Attribute on your Form.

For example: Building

f. From the Field Type list, select a data type for the field.

For example: String

g. Save the values that you enter, and then close the dialog box.

h. If required, repeat Steps d through g to map more fields.

i. Click Create Reconciliation Profile. This copies changes made to the resource object
into the MDS.

2. If a corresponding field does not exist in the process form, then add a new column in the
process form, as follows:

a. Open the Form Designer form. This form is in the Development tools folder.

b. Query for the UD_CONNECTOR_NAMECON form.

c. Click Create New Version. The Create a New Version dialog box is displayed.

d. In the Label field, enter the name of the version.

e. Click Save and close the dialog box.

Chapter 9
Adding Target System Attributes

9-17



f. From the Current Version box, select the version name that you entered in the Label
field in Step 3.

g. On the Additional Columns tab, click Add.

h. In the Name field, enter the name of the data field and then enter the other details of
the field.

Note: Repeat Steps g and h if you want to add more attributes.

i. Click Save and then click Make Version Active.

3. Modify the process definition to include the mapping between the newly added attribute
and the corresponding reconciliation field:

a. Open the Process Definition form. This form is in the Process Management folder of
the Design Console.

b. Click the Query for Records icon.

c. On the Process Definition Table tab, double-click the CONNECTOR_NAME Trusted
User process definition.

d. On the Reconciliation Field Mappings tab, click Add Field Map to open the Add
Reconciliation Field Mapping dialog box.

e. From the Field Name list, select the name of the resource object that you added in
Step 2e.

f. Double-click Process Data Field and select the corresponding process form field from
the Lookup dialog box. Then, click OK.

g. Click Save and close the dialog box.

h. If required, repeat Steps c through g to map more fields.

4. Go to the reconciliation lookup, Lookup.CONNECTOR_NAME.UM.ReconAttrMap.Trusted,
and add a new record for the new attribute using the following values:

• Code Key - Name of the reconciliation field

• Decode - Name of the CONNECTOR_NAME attribute

Chapter 9
Adding Target System Attributes

9-18



10
Understanding ICF Best Practices and FAQs

Understand the best practices and frequently asked questions about developing and using ICF.
This chapter contains the following topics:

• Best Practices for ICF

• FAQs on ICF

10.1 Best Practices for ICF
Best practices for using ICF are related to using common scheduled tasks and
ICProvisioningManager, IT resource parameters, ICF connector logging, and Connector Load
Balancer.

The following are the best practices that you need to follow while using ICF:

• Use common Scheduled tasks, and ICProvisioningManager.

• Keep IT Resource parameters count to minimum, IT Resource should contain connectivity
related parameters only, the rest needs to be in the Main Connector Configuration Lookup.

• Logging in ICF Connectors:

ICF Integration for Oracle Identity Manager logs all the input/output parameters of all calls
to ICF Connector interfaces. You must ensure that the following points are taken care while
logging:

– If required, you can enhance the logging with detailed logging messages.

– You must not log messages that involves password information or sensitive data.

– In case you encounter ConnectorException error, then you must wrap the target
specific exception, and provide any additional details.

– Turn on Logging for ICF Common by switching on logging for
oracle.iam.connectors.icfcommon.

• Connector Load Balancer

– In order to use SSL-encrypted communication between Oracle Identity Manager and
connector servers, you need to copy the SSL keystore on all connector server nodes,
and maintain its consistency if SSL key changes.

– Connector server uses a proprietary (non-HTTP) protocol, and SSL encryption.

– All connector server nodes under the load balancer should contain the same set of
bundles.

10.2 FAQs on ICF
Frequently asked questions about ICF are related to ICF connector development, usage,
configuration, and troubleshooting.

The following are the FAQs on ICF:

• Why lookup reconciliation data contains tilda (~)?

10-1



Tilda (~) notation in lookup reconciliation is to separate Lookups for different IT Resources.
In the following example, Key will be a programmatic key, whereas Value will be a user-
friendly display name:

Lookup Key: <IT Resource Key>~<Lookup key>

Lookup Value: <IT Resource Name>~<Lookup value>

• What is bulk attribute update and how to set it up?

Bulk attribute update in Oracle Identity Manager means that all the changed attributes will
be sent to the connector in one method call, instead of updating each attribute individually
(default option).

In order to enable your connector for bulk attribute update, make sure:

– all your attributes have their respective process tasks for individual update, typically
named as, ATTRIBUTE_NAME updated.

– you have an extra process task named, UD_FORM_NAME updated. This task will be
used for bulk update.

• Search-based versus sync-based reconciliation: when to use what?

It is based on the capabilities of connector/target resource. Most connectors support
search, some of them (LDAP) support sync operation too. Where available, sync-based
reconciliation is preferred due to higher efficiency.

Sync-based reconciliation is more efficient than search-based reconciliation because, it
can process both additions/removals in one run. With search-based reconciliation, you
need to run search reconciliation first and then run search delete reconciliation, which is
double the effort.

• How to configure Connector Pooling?

See Release 11.1.1.5.0 version of the Connector documentation for information about
Connector Pooling and its configuration.

• How to use Groovy to extend connector functionality?

In order to have an extendable connector, you need to implement ScriptOnConnector or
ScriptOnResource ICF SPIs. Connectors might support various scripting languages, based
on target resource capabilities. By default, ICF supports groovy scripts with
ScriptOnConnector for all java based connectors. You must always refer the connector
documentation to understand the scripting languages for a given connector. See 
Configuring ICF Connectors for more information about how to customize the connector.

• What are the basic requirements (such as memory, disk space, CPU, and so on) for
Connector Server?

The connector server can run in any Java 6 environment and above. The requirements are
same as of those of Java and Oracle Identity Manager.

See Release 11.1.1.5.0 version of the Connector documentation for the supported versions
of JDK and Oracle Identity Manager.

• Does one connector server version support all ICF Connector versions?

Connector Server version equals ICF version. ICF is backward compatible with previously
released connector versions.

• How to troubleshoot connector server related issues?

Set up log level to FINEST in logging configuration file of the Connector Server. If the
default port 8759 is taken, than set a different port number in the Connector Server
configuration.

Chapter 10
FAQs on ICF

10-2



• When to deploy connector on Connector Server and when to deploy connector locally into
Oracle Identity Manager?

Only .NET connectors require Connectors Server, others can be deployed directly into
Oracle Identity Manager.

Chapter 10
FAQs on ICF

10-3



11
Using Generic Technology Connectors

Generic Technology Connector is used to create custom connectors in a simple way.
If you are looking for a simple way to create your custom connector and do not need the
customization features of the Adapter Factory, then you can create the connector by using the
Generic Technology Connector (GTC) feature of Oracle Identity Manager.

This chapter describes how to use and maintain Generic Technology Connectors. It contains
the following sections:

• Overview of Generic Technology Connectors

• Using the Generic Connection Pool Framework in Custom Connectors

• Best Practices

11.1 Overview of Generic Technology Connectors
Generic Technology Connectors can be developed by using providers or the programmatic
options available with adapters.

Providers are the starting point for developing generic technology connectors. Oracle Identity
Manager provides a standard set of providers that you can use as building blocks of your
generic technology connectors. For details about these providers, see Predefined Providers for
Generic Technology Connectors .

If no suitable provider is available, you can develop a provider to fit your requirements.

Finally, if generic technology connectors do not meet your integration requirements, you can
make use of the programmatic options available with adapters. For details, see Using the
Adapter Factory .

See Also:

Managing Generic Connectors in Administering Oracle Identity Governance for
information about creating and managing Generic Technology Connectors

11.2 Using the Generic Connection Pool Framework in Custom
Connectors

Custom connectors can choose to use the Generic Connection Pool framework (sometimes
referred to as the GCP) for any connection pooling needs. Internally, the Generic Connection
Pool framework uses Oracle Universal Connection Pool (UCP) as the default connection
pooling mechanism.

This section contains the following topics:

• Basic Steps to Use Generic Connection Pool in Custom Connector

11-1



• Providing concrete implementation for ResourceConnection interface

• Defining Additional ITResource Parameters

• Getting and Releasing Connections from the Pool

• Using a Third-party Pool

• Example: Implementation of ResourceConnection

11.2.1 Basic Steps to Use Generic Connection Pool in Custom Connector
To use Generic Connection Pool in custom connector, provide an implementation for the
ResourceConnection interface, define the additional fields in the ITResource definition, and
invoke the Generic Connection Pool.

Basic steps to use the Generic Connection Pool in a custom connector include:

1. Provide a concrete implementation for the ResourceConnection interface.

The implementation should also have a default constructor with no parameters.

2. Define the additional fields in the ITResource definition.

3. Invoke the Generic Connection Pool to obtain and release connections from the pool.

11.2.2 Providing concrete implementation for ResourceConnection interface
The connection pool makes use of the concrete implementation of ResourceConnection to
create and close connections, and to validate connections to the target. Therefore, you should
ensure that this concrete implementation class is available as a jar file under the JavaTasks
folder.

Table 11-1 describes key methods of ResourceConnection:

Table 11-1     Methods of ResourceConnection

Method Description

Create Connection This method is called while initializing the pool (to create initial number of
connections) and for pool life-cycle events as needed. A hashmap named
itResourceInfoMap is available as parameter with ITResource values to this
method.

The method returns the ResourceConnection which is the actual physical
connection to the target.

Close Connection The pool invokes this method when it needs to close a connection in the course
of pool life-cycle events.

Heartbeat This method is used to maintain the TCP heartbeat (or TCP keepalive) of the
connection to the target. The method keeps the TCP connection alive, so that the
connection does not time out from the target side.

Validate This method returns true or false to indicate whether the connection is still
valid.

The Generic Connection Pool invokes the method if "validate connection on
borrow" is set to true. It is invoked for connections that have been in the pool for
some time.

If the method returns false, the pool will discard that connection, create a new
connection, and return to the requester.

Chapter 11
Using the Generic Connection Pool Framework in Custom Connectors

11-2



11.2.3 Defining Additional ITResource Parameters
Provide appropriate values for the additional ITResource parameters for using Generic
Connection Pool framework in custom connectors.

Table 11-2 lists other ITResource parameters for which you should provide appropriate values:

Table 11-2    ITResource Parameters

Field Description Sample Value and Notes

Abandoned
connection timeout

Connection timeout for abandoned
connections in seconds. After the timeout
elapses, the connection is reclaimed.

900

Connection wait
timeout

Wait time in seconds for a connection to
establish.

60

Inactive connection
timeout

Connection timeout, in seconds, for
inactive connections in the pool that are
idle. Note: These are not borrowed
connections.

300

Initial pool size Initial number of connections in the pool. 3

Max pool size Maximum number of connections that the
pool can create.

30

Min pool size Minimum number of connections that the
pool must maintain.

2

Validate connection
on borrow

Indicates if connections should be
validated. See Table 11-1 for a detailed
explanation.

true or false

Timeout check
interval

Frequency, in seconds, at which to check
timeout properties.

30

Pool preference Denotes the preferred pooling mechanism.
Default pool implementation is UCP.

"Default" (for UCP). "Native" (for
Native implementation)

Connection pooling
supported

Denotes whether pooling is supported. If
pooling is not supported, returned
connections will not be pooled
connections. Recommended default is
true.

true or false.

Target supports only
one connection

Denotes whether the target system
supports only one connection at a time.
When set to true, irrespective of other
properties, the following pool parameters
are used:

• Min Pool Size = 0
• Initial Pool Size = 0
• Max Pool Size = 1
Recommended default is false

true if target can handle only one
connection, false otherwise.

ResourceConnectio
n class definition

The concrete implementation of the
ResourceConnection class

com.oracle.oim.ad.ADResourceC
onnectionImpl

Native connection
pool class definition

The wrapper to the native pool mechanism
that implements the GenericPool. Set a
value only if the pool preference is set to
Native.

com.oracle.oim.ad.ADNativePoo
l

Chapter 11
Using the Generic Connection Pool Framework in Custom Connectors

11-3



Table 11-2    (Cont.) ITResource Parameters

Field Description Sample Value and Notes

Pool excluded fields Comma-separated list of fields not needed
for creating a connection. When any of the
specified fields are updated, the GCP pool
is not refreshed.

Note: Fields in this list are not available as
part of the HashMap parameter to the
createConnection method.

Recon TimeStamp,ADSync
Enabled

Note:

• Updating the ITResource parameters from the Design Console does not refresh
the pool. Update values through the Identity System Administration or through
the APIs.

• Avoid updating values when the pool is in use.

11.2.4 Getting and Releasing Connections from the Pool
Consumers of the Generic Connection Pool can invoke the ConnectionService to get pooled
connections to the target, and also to return connections back to the pool.

This example code gets a connection from the pool and returns it based on ITResource Name:

import com.oracle.oim.gcp.exceptions.ConnectionServiceException;
import com.oracle.oim.gcp.pool.ConnectionService;
import com.oracle.oim.gcp.resourceconnection.ResourceConnection;
 
public class ConnectionPoolClient {
 
        public void testConnection(String itResName)
        {
               try{
                        //Request for connection from the connection pool
                        ConnectionService service = new ConnectionService();
                        ResourceConnection myConnection =         
                        service.getConnection(itResName);
 
                        //"myConnection" is the connection
                        //use the connection...
    
                        //Release connection back to the connection pool
                                    //Connections should always be returned this way.
            
                                    service.releaseConnection(myConnection);
                }
                catch(ConnectionServiceException e)
                {
                     //handle
                }    
       }

Chapter 11
Using the Generic Connection Pool Framework in Custom Connectors

11-4



You can also request connections to the target using ITResource Key. Here is an example:

ConnectionService service = new ConnectionService();
ResourceConnection myConnection = service.getConnection(itResourceKey);

11.2.5 Using a Third-party Pool
Provide a concrete implementation of the GenericPool interface as a wrapper to the third-party
pool.

As mentioned earlier in the section, you can use any third-party pool for your custom
connector. However, in addition to the steps described earlier, you must provide a concrete
implementation of the GenericPool interface as a wrapper to the third-party pool.

Note:

It If the custom connector does not wish to use the UCP pool, it can choose to use
GCP with the Native option, though there are no significant advantages to this. With
the Native pool preference, the responsibility of maintaining and implementing the
pool rests with the custom connector.

Table 11-3 lists the methods invoked for the GenericPool interface:

Table 11-3     Methods of the GenericPool Interface

Method Purpose

initializePool(PoolConfiguration
poolConfig)

To initialize the pool. The PoolConfiguration data object contains
all pool-related parameters.

borrowConnectionFromPool() To request a connection.

returnConnectionToPool(ResourceCo
nnection resConn)

To return a connection to the pool.

refreshPool(PoolConfiguration
newPoolConfig)

To refresh the pool with updated values.

destroyPool() To remove the pool (for example when ITResource is deleted).

11.2.6 Example: Implementation of ResourceConnection
Implementation for the ResourceConnection interface is required for using the Generic
Connection Pool in a custom connector.

This example demonstrates an implementation of the ResourceConnection interface. Key
methods are highlighted.

/**
* Sample implementation for Socket Connections:
*/
import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.Socket;
import java.net.SocketException;
import java.net.UnknownHostException;
 
import com.oracle.oim.gcp.exceptions.ResourceConnectionCloseException;

Chapter 11
Using the Generic Connection Pool Framework in Custom Connectors

11-5



import com.oracle.oim.gcp.exceptions.ResourceConnectionCreateException;
import com.oracle.oim.gcp.exceptions.ResourceConnectionValidationxception;
import com.oracle.oim.gcp.resourceconnection.ResourceConnection;
 
public class SocketResourceConnectionImpl extends Socket implements ResourceConnection {
 public SocketResourceConnectionImpl() {
             super();
        
       }
       /**
        * Sample: Concrete implementation for closing a socket connection
        */ 
 public void closeConnection() throws ResourceConnectionCloseException{
               if(!this.isClosed()){
                        try {
                            this.close();
                        } catch (IOException e) {
                            throw new 
                            ResourceConnectionCloseException("[Client
                             ResourceConnection implementation] 
                            Failed to close socket connection! ");
                        }
               }
        }
        /**
         * Sample : Concrete implementation for creating a socket connection. 
         * The return value is the actual physical socket connection
         * 
         */
         public ResourceConnection createConnection(HashMap itResInfoMap) 
         throws ResourceConnectionCreateException {
                    ResourceConnection r = null;
                    SocketResourceConnectionImpl i = new
            SocketResourceConnectionImpl();
 
              try {    
//HashMap has all ITResource related information that is needed 
//for connecting to target.
                   String serverAddress= ((String) itResInfoMap.get
                      ("Server Address")).trim();
//utility method getIntValue returns an int for a String
 
                   int port = 
                       getIntValue(((String)itResInfoMap.get("Port")).trim());
 
                   System.out.println("Connecting to Socket with IP Address "
                                       + serverAddress+" at port "+ port);
                   InetSocketAddress inet = new 
                        InetSocketAddress(serverAddress,port);
                        i.connect(inet);
                        if(!i.isConnected()){
                              throw new ResourceConnectionCreateException
                              (" Failed to create socket: connection failure");
            }            
            r = (ResourceConnection)i;
                } catch (UnknownHostException e) {
                                    throw new ResourceConnectionCreateException("
                        [Client ResourceConnection implementation] 
                        Failed to create socket connection!", e);
                } catch (IOException e) {
                                    throw new ResourceConnectionCreateException("
                        [Client ResourceConnection implementation]

Chapter 11
Using the Generic Connection Pool Framework in Custom Connectors

11-6



                        Failed to create socket connection! ",e);
                }
        
                return r;
}
 /**
         * Sample : Concrete implementation for heartbeat of a socket connection
         */
        public void heartbeat() throws ResourceConnectionValidationxception {
               try {
                    this.setKeepAlive(true);
            
               } catch (SocketException e) {
                      throw new 
                      ResourceConnectionValidationxception
                      ("[Client ResourceConnection implementation] 
                         Failed to set heartbeat ");
               }
        
        }
 /**
         * Sample: Concrete implementation for validating connection
         */
        public boolean isValid() {
               if(this.isBound()){
            
                     return true;
            
               }else{
                     return false;
               }
        }
}

11.3 Best Practices
Best practices of using Generic Technology Connectors are related to basic information,
parameter values, modifying connector configuration, shared drive reconciliation transport
provider, custom providers, connector objects, and modifying Generic Technology Connectors.

This section contains the following topics:

• Working with the Provide Basic Information Page

• Working with the Specify Parameter Values Page

• Working with the Modify Connector Configuration Page

• Working with Shared Drive Reconciliation Transport Provider

• Working with Custom Providers

• Working with Connector Objects

• Modifying Generic Technology Connectors

11.3.1 Working with the Provide Basic Information Page
Follow the guidelines of specifying a name of the generic technology connector in the Provide
Basic Information page.

Apply the following guidelines while specifying a name for a generic technology connector:

Chapter 11
Best Practices

11-7



• Summary:

Ensure that the name contains only ASCII characters. You can include the underscore (_)
character, but do not include any other non-ASCII character in the name.

Description:

For most of the connector objects that are automatically created at the end of the
connector creation process, the name of the generic technology connector is part of the
name of the object itself. For example, if the name of the generic technology connector is
WebConn, the name of its scheduled task is WebConn_GTC.

In the Oracle Identity Manager database, there is no provision for storing objects with
names in non-ASCII characters. Therefore, an error message is displayed if you enter non-
ASCII characters while specifying the name of a generic technology connector.

• Ensure that the name is not the same as the name of any connector or connector object on
the Oracle Identity Manager installation.

• If you plan to create the generic technology connector on a staging server and move it to a
production server, ensure that the name of the generic technology connector does not
cause naming conflicts with existing connectors or connector objects on the production
server.

• Before you import a generic technology connector created on a staging server to a
production server, create a backup of the destination Oracle Identity Manager database to
ensure that you are able to revert to a working state in the event that a connector object is
overwritten.

• If you select the shared drive transport provider, you must select the CSV format provider.

• If you select the SPML provisioning format provider, you must select the Web Services
provisioning transport provider.

• If you select the shared drive reconciliation transport provider, ensure that there is data in
the prescribed format on at least the first two lines of the parent and child data files
provided by the target system for reconciliation. The prescribed form of data is discussed
in Shared Drive Reconciliation Transport Provider .

• If you select the shared drive reconciliation transport provider, ensure that the required
permissions are set on the staging and archiving directories before reconciliation begins.
The required permissions are discussed in the "Permissions to Be Set on the Staging and
Archiving Directories" section .

• Do not try to create more than one generic technology connector at a time, even from
different sessions of the Identity System Administration for the same Oracle Identity
Manager installation.

11.3.2 Working with the Specify Parameter Values Page
Follow the best practices of specifying the input in the Specify Parameter Values page.

This section describes the following known issues related to the input that you specify on the
Step 2: Specify Parameter Values page:

• Summary:

If you use the shared drive reconciliation transport provider, :

– Do not specify the same path for the staging and archiving directories. Existing files in
the archiving directory are deleted if you specify the same path for both directories.

Chapter 11
Best Practices

11-8



– Ensure that the names of files in the staging directory are different from the names of
files in the archiving directory. If the file names happen to be the same, existing files in
the archiving directory are overwritten at the end of a reconciliation run.

Description:

When you use the shared drive reconciliation transport provider, after each reconciliation
run, data files are moved from the staging directory to the archiving directory. The files
moved to the archiving directory are not time-stamped or marked in any way. Therefore,
when you use the shared drive transport provider, bear in mind the following guidelines:

– The archiving directory path and name that you specify must not be the same as the
staging directory path and name. If you specify the same path and name, the existing
files in the archiving directory are deleted at the end of the reconciliation run.

– During the current reconciliation run, if data files with the same names as the files used
in the last reconciliation run are placed in the staging directory, the existing files in the
archiving directory are overwritten by the new files from the staging directory. This can
be illustrated by the following example:

Suppose that at the end of the last reconciliation run, the following files were moved
automatically from the staging directory to the archiving directory:

usrdataParentData.csv
usrdataRoleData.csv
usrdataGroupMembershipData.txt

For the current reconciliation run, you place the following files in the staging directory:

usrdataParentData.csv
usrdataRoleData_04Feb07.csv
usrdataGroupMembershipData_04Feb07.txt

At the end of the current reconciliation run, these files are moved to the archiving
directory. When this happens, the old usrdataParentData.csv file is overwritten by the
new one.

Therefore, if you want to ensure that files in the archiving directory are not overwritten
at the end of a reconciliation run, you must ensure that the names of files in the
staging directory are not the same as the names of files in the archiving directory.

• Summary:

Metadata detection does not take place a second time if you go back to the Step 2: Specify
Parameter Values page. Therefore, if required, you must manually make changes in the
fields and field mappings displayed on the Step 3: Modify Connector Configuration page.

Description:

Suppose you want to change a value that you provide on the Step 2: Specify Parameter
Values page. You can return to this page from the Step 4: Verify Connector Form Names or
Step 5: Verify Connector Information page. However, metadata detection would not take
place a second time when you click the Continue button after changing the provider
parameter value. This functionality is aimed at preserving changes that you may have
manually made on the Step 3: Modify Connector Configuration page.

As an extension of this functionality, metadata detection does not take place even when
you modify an existing generic technology connector.

11.3.3 Working with the Modify Connector Configuration Page
Follow the best practices related to various types of fields, mappings, and data sets.

Chapter 11
Best Practices

11-9



This section describes the best practices related to various types of fields, mappings, and data
sets. It contains the following topics:

• Names of Fields

• Password Fields

• Password-Like Fields

• Mappings

• Oracle Identity Governance Data Sets

11.3.3.1 Names of Fields
Note that the following validations are applied when you specify a field name while adding or
editing fields:

• Two fields that belong to the same data set (parent or child) cannot have the same name.

• Two child data sets of the same parent data set cannot have the same name.

• The name of a field in a parent data set cannot be the same as the name of one of its child
data sets.

• Two different child data sets can have fields that have the same name, regardless of
whether or not the child data sets belong to the same parent data set. For example, the
GroupMembership data set and Role data set can each have a field with the name UsrID.

• Two different parent data sets can have fields that have the same name. Similarly, these
data sets can also have child data sets that have the same name.

• The name of a child data set can be the same as that of one of its fields.

11.3.3.2 Password Fields
To ensure the security of passwords, password information must not be reconciled through a
generic technology connector. In other words, you must ensure that the Source and
reconciliation staging data sets do not contain the Password field. In addition, you must not
map any field of the reconciliation staging data sets to the Password field of the OIM - User
data set.

11.3.3.3 Password-Like Fields
A password-like field is a field to which you set the Encrypted and Password Field attributes
(by selecting the Encrypted and Password Field check boxes). You can create a password-like
field by setting these two attributes to a field that you add to the OIM - Account data set.

To secure the contents of password-like fields, bear in mind the following guidelines while
adding or editing these fields:

• You can use the Password Field and Encrypted check boxes to secure the display and
storage of password information in Oracle Identity Manager. However, when you map
password-like fields to fields of the provisioning staging data set, you must take all
necessary precautions to secure the data propagated in these fields. For example, you
must ensure that this data is not stored in a plain-text file on the target system at the end of
a provisioning operation.

Oracle recommends creating only one-to-one mappings between the password field of the
OIM - Account data set and the provisioning staging data set. In other words, this
password field must not be used as an input field for a transformation mapping with a

Chapter 11
Best Practices

11-10



provisioning staging field. The same precaution must be taken for the Password field of the
OIM - User data set.

• As mentioned earlier, the Password field is one of the predefined fields of the OIM - User
data set. The Password Field and Encrypted attributes are set for this field. By using the
Design Console, you can set the Password Field and Encrypted attributes for a UDF that
you create. This would give the newly created UDF the same properties as the existing
Password field. However, the generic technology connector framework treats this field the
same as any other text field (with the String data type) and the contents are not encrypted
in the Identity Self Service, Identity System Administration, or database.

11.3.3.4 Mappings
Apply the following best practices while working with fields of the Oracle Identity Manager data
sets:

• Summary:

If you select the translation transformation provider to create a mapping, specify the name
of a lookup definition in the Lookup Code Name region. If you specify a data set name and
field in the Lookup Code Name region, translation would fail during actual reconciliation or
provisioning operations.

Description:

If you select the translation transformation provider while creating a mapping, the Step 2:
Mapping page displays options for selecting a field from a data set and specifying a literal.
Because you are using the translation transformation provider, you must select the Literal
option and enter the name of the lookup definition that contains the Code Key and Decode
values for the translation. You must not select a data set name and field in the Lookup
Code Name region. Although there is no validation to stop you from selecting a data set
name and field, the translation operation would fail during actual reconciliation or
provisioning operations.

• Create a mapping between the ID field of the OIM - Account data set and the field that
uniquely identifies records of the reconciliation staging data set.

• Along with the ID field, other fields of the OIM - Account data set can be (matching-only)
mapped to corresponding fields of the reconciliation staging data set to create a composite
key field for reconciliation matching.

• Create mappings between all fields in provisioning staging data sets and corresponding
fields in Oracle Identity Manager data sets.

• To create a reconciliation rule, you create matching-only mappings between fields of the
reconciliation staging data set and the OIM - User data set. If there are child data sets,
ensure that the names of fields of the reconciliation staging data set that are input fields for
the matching-only mappings are not used in any of the reconciliation staging child data
sets. If you do not follow this guideline, reconciliation would fail.

This has also been mentioned in the section "Step 3: Modify Connector Configuration
Page".

• A literal field can be used as one of the input fields of a transformation mapping. If you
select the Literal option, you must enter a value in the field. You must not leave the field
blank after selecting it.

11.3.3.5 Oracle Identity Governance Data Sets
Apply the following best practices while working with fields of the Oracle Identity Governance
data sets:

Chapter 11
Best Practices

11-11



• For trusted source reconciliation, the following fields of the OIG – User data set must
always hold values:

– User ID

– First Name

– Last Name

– Organization Name

– Xellerate Type

– Role

In addition, you can select other OIG – User fields that must be populated when a user
account is created through reconciliation. For each of these fields, you must create
mappings with the corresponding fields of the reconciliation staging data sets. During a
reconciliation run, you must ensure that the fields of the target system that serve as the
source for these fields always hold values.

For provisioning, you can select fields of the OIG – User and OIG – Account data sets
whose values must be propagated to the target system. After you identify these fields,
create mappings between them and their corresponding fields in the provisioning staging
data sets. During a provisioning operation, you must enter values for each of these fields.

• If required, add user-defined fields (UDFs) to the list of predefined OIG - User data set
fields.

• Do not modify or delete attributes of OIG - Account data set fields in an existing generic
technology connector.

11.3.4 Working with Shared Drive Reconciliation Transport Provider
Follow the guideline to ensure that the staging directory contains both parent data and child
data files at the beginning of the reconciliation run.

Summary

If parent records and child data records are created and linked in both the target system and
Oracle Identity Manager, you must ensure that the staging directory contains both parent data
and child data files at the start of each reconciliation run.

Description

Suppose there are parent data records with associated child data records in the target system.
To reconcile these records into Oracle Identity Manager, you place the parent and child data
files containing these records in the staging directory. During the reconciliation run, the child
data records are linked to their corresponding parent data records. Before the start of any
subsequent reconciliation run, if you remove the child data files from the staging directory,
reconciliation events are not created for this form of child data record deletion. If you want to
remove child data records for specific parent data records, you must remove the child data
records from the child data file. You must ensure that the child data file is placed in the staging
directory for each reconciliation run, even if there are no child data records (from the third line
onward) in the files.

11.3.5 Working with Custom Providers
Follow the guideline to ensure that the provider returns the unique field value at the end of a
Create User operation.

Apply the following guideline while working with custom providers:

Chapter 11
Best Practices

11-12



When you develop code for a custom provisioning transport provider, ensure that the provider
returns the unique field value at the end of a Create User operation. This functionality is
implemented by the sendData method of the provisioning transport provider.

11.3.6 Working with Connector Objects
Follow the guidelines of using connector objects that are created automatically during GTC
creation.

Apply the following guidelines while working with connector objects created automatically
during generic technology connector creation:

• Summary:

Do not attempt to use for provisioning the resource object created automatically for a
reconciliation-only generic technology connector.

Description:

Suppose you select only the Reconciliation option while creating a generic technology
connector. At the end of the creation process, a resource object is one of the objects
created automatically for this generic technology connector. However, you cannot provision
this resource object to any user because a generic adapter is not created for a
reconciliation-only generic technology connector.

• Summary:

Do not attempt to provision generic technology connector resource objects to organizations
defined in Oracle Identity Manager.

Description:

A resource object is one of the connector objects that get created automatically during
generic technology connector creation. This resource object can be provisioned only to
Oracle Identity Manager Users. You must not attempt to provision it to organizations
defined in Oracle Identity Manager.

This has also been mentioned in the Connector Objects section .

• You can use the Design Console to customize connector objects that are automatically
created during generic technology connector creation. After you customize connector
objects, if you perform a Manage Generic Technology Connector operation, all the
customization done on the connector objects would be overwritten. Therefore, Oracle
recommends that you to apply one of the following guidelines:

– Do not use the Design Console to modify generic technology connector objects.

The exception to this guideline is the IT resource. You can modify the parameters of
the IT resource by using the Design Console. However, if you have enabled the cache
for the GenericConnector and GenericConnectorProviders categories, you must
purge the cache either before or after you modify IT resource parameters.

– If you use the Design Console to modify generic technology connector objects, do not
use the Manage Generic Technology Connector feature to modify the generic
technology connector.

This has also been mentioned in Working with Connector Objects.

• Prepopulate adapters are not part of the set of connector objects that are created
automatically when you create a generic technology connector. However, while creating a
generic technology connector, you can map provisioning input to literals and user data
fields. Although this feature cannot be used to prepopulate the User Defined Form, it can
be used to prepopulate the provisioning data packet.

Chapter 11
Best Practices

11-13



11.3.7 Modifying Generic Technology Connectors
Follow the best practice of not modifying multiple generic technology connectors at a time.

Apply the following best practice while modifying generic technology connectors:

Do not try to modify more than one generic technology connector at a time, even from different
sessions of the Identity System Administration for the same Oracle Identity Manager
installation.

Chapter 11
Best Practices

11-14



12
Predefined Providers for Generic Technology
Connectors

The components that constitute a Generic Technology Connector (GTC) are called providers.
In other words, providers are the building blocks of GTC.
This chapter describes the providers that are available with Oracle Identity Manager. These
providers include the shared drive reconciliation transport provider, CSV reconciliation format
provider, SPML provisioning format provider, Web Services provisioning transport provider,
transformation provider, and validation provider.

Note:

You must determine the values of parameters for providers that you decide to use.
You would need to use these values while creating the generic technology connector
by using Oracle Identity System Administration.

This chapter contains the following topics:

• Shared Drive Reconciliation Transport Provider

• CSV Reconciliation Format Provider

• SPML Provisioning Format Provider

• Web Services Provisioning Transport Provider

• Transformation Providers

• Validation Providers

12.1 Shared Drive Reconciliation Transport Provider
The staging and archiving directories must be shared for access from the Oracle Identity
Manager server.

The shared drive reconciliation transport provider is described in the following sections:

• Parameters of the Shared Drive Reconciliation Transport Provider

• Permissions to Be Set on the Staging and Archiving Directories

12.1.1 Parameters of the Shared Drive Reconciliation Transport Provider
The shared drive reconciliation transport provider reads data from flat files stored in staging
directories and moves the files to an archiving directory.

This section describes the parameters of the shared drive reconciliation transport provider. It
contains the following topics:

• Staging Directory (Parent Identity Data)

12-1



• Staging Directory (Multivalued Identity Data)

• Archiving Directory

• File Prefix

• Specified Delimiter

• Tab Delimiter

• Fixed Column Width

• Unique Attribute (Parent Data)

• File Encoding

12.1.1.1 Staging Directory (Parent Identity Data)
Use this parameter to specify the path of the directory in which files containing parent data are
stored. It is mandatory to specify a value for this parameter. This is a run-time parameter.

In this guide, parent data means the user account information that is stored in the target
system.

Sample value for this parameter:

T:/TargetSystemDirectory/ParentData

Note:

If the staging directory is not on the server on which Oracle Identity Manager is
installed, it must be shared and mapped as a network drive on the Oracle Identity
Manager server.

Data stored in the parent data files must conform to the following conventions:

• First line of the file

The first line of the parent data file must be the file header that describes the contents of
the file.

The file header can be preceded by any number of lines that begin with the hash-mark or
pound-sign (#). These are ignored while the file is read. However, you must ensure that
there are no spaces at the start of the header. If you are using a language other than
English, you must not enter non-ASCII characters on this line.

Note:

There are no checks to stop you from entering non-ASCII characters on the first
line. In addition, the generic technology connector framework can parse such
characters. However, the use of non-ASCII characters would result in problems
at the time when the connector objects are automatically created for the generic
technology connector that you create.

• Second line of the file

The second line of the parent data file must contain the field names (metadata) for the data
in the file.

Chapter 12
Shared Drive Reconciliation Transport Provider

12-2



Note:

In the generic technology connector context, the term metadata refers to the set
of identity fields that constitute the user account information.

If you are using a language other than English, you must not enter non-ASCII characters
on this line. See the Note in the preceding point for more information about this limitation.

• Third line of the file onward

From the third line onward, the parent data file can contain data in the language that you
have selected for Oracle Identity Manager. This language can have an ASCII or non-ASCII
character set.

Even if there is no data from the third line onward, reconciliation will take place and the
files are archived.

The following are contents of a sample parent data file:

##Active Directory user
Name TD,Address TD,User ID TD
John Doe,Park Street,jodoe
Jane Doe,Mark Street,jadoe

See Also:

Permissions to Be Set on the Staging and Archiving Directoriesfor information about
the permissions to be set on the staging and archiving directories

12.1.1.2 Staging Directory (Multivalued Identity Data)
Use this parameter to specify the path of the directory in which files containing multivalued (or
child) account or identity data (for example, role membership data) are stored. It is not
mandatory to specify a value for this parameter. This is a run-time parameter.

Note:

In this guide, the terms multivalued account or identity data and child data have been
used interchangeably.

Sample value for this parameter:

T:/TargetSystemDirectory/ChildData

Chapter 12
Shared Drive Reconciliation Transport Provider

12-3



Note:

• The staging directory for parent data files cannot be the same as the staging
directory for multivalued user data files. In addition, if the staging directory is not
on the same server on which Oracle Identity Manager is installed, it must be
shared and mapped as a network drive on the Oracle Identity Manager server.

• If you select the Trusted Source Reconciliation option on the Step 1: Provide
Basic Information page, you must not specify a value for the Staging Directory
(Multivalued Identity Data) parameter. This is because the reconciliation of
multivalued (child) data is not supported in trusted source reconciliation.

For each type of multivalued account or identity data, there must be a different file in the
shared directory. For example, if the multivalued user data for a particular target system is
group membership data and role data, there must be one file for group membership data and a
different file for role data.

Data stored in the child data files must conform to the conventions (first line, second line, and
remaining lines) that are specified for the parent data files.

In addition, the same unique field must be present in the parent data file and each child data
file. This field is used to uniquely link each record in the child data files with a single record in
the parent data file. This structure is similar to the concept of integrity constraints (primary key-
foreign key) in RDBMSs.

Note:

The unique field must be the first field in the child data files.

The following are contents of a sample child data file holding role information that is linked to
the sample parent data file listed earlier:

###Role
User ID TD,Role Name TD,Role Type TD
jodoe,admin1,admin
jadoe,admin2,admin

The following are contents of a sample child data file holding group membership information
that is linked to the sample parent data file listed earlier:

###Group Membership
User ID TD,Group Name TD,Group Type TD
jodoe,OracleDev1,OracleDev
jadoe,OracleDev2,OracleDev
jadoe,OracleDev3,OracleDev
jadoe,OracleDev4,OracleDev
jadoe,OracleDev5,ConnectorDev

Note that the name of the unique field, User ID TD, is the same in the child data files and the
parent data file.

On the Step 3: Modify Connector Configuration page as described in Step 3: Modify Connector
Configuration Page in Administering Oracle Identity Governance, the name of a child data set
is the same as the header that you provide in the child data file. For these sample child data

Chapter 12
Shared Drive Reconciliation Transport Provider

12-4



files, the child data sets would be labeled Role and Group Membership. In addition, on the Step
4: Verify Connector Form Names page, the default names displayed for forms corresponding to
the child data sets would be Role and Group Membership. As mentioned in Verifying Connector
Form Names in Administering Oracle Identity Governance, you can either accept the default
form names or change them.

See Also:

Permissions to Be Set on the Staging and Archiving Directoriesfor information about
the permissions to be set on the staging and archiving directories

12.1.1.3 Archiving Directory
Use this parameter to specify the path of the directory in which parent and child data files that
have already been reconciled are to be stored. This is a run-time parameter.

It is mandatory to specify a value for this parameter.

At the end of the reconciliation run, the data files are copied into the archiving directory and
deleted from the staging directory.

The files moved to the archiving directory are not time stamped or marked in any way.
Therefore, while specifying the path of the archiving directory, bear in mind the following
guidelines:

• The archiving directory path that you specify must not be the same as the staging directory
path. If you specify the same path, the existing files in the archiving directory are deleted at
the end of the reconciliation run.

• If data files with the same names as the files used in the last reconciliation run are placed
in the staging directory, the existing files in the archiving directory are overwritten by the
new files from the staging directory at the end of the current reconciliation run.

These points are also mentioned in Specifying Parameter Values for the Providers in
Administering Oracle Identity Governance.

See Also:

Permissions to Be Set on the Staging and Archiving Directories for information about
the permissions to be set on the staging and archiving directories

12.1.1.4 File Prefix
Use this parameter to specify the prefix used to filter the names of files in the staging
directories for both parent and child data files. During reconciliation, all files (in the staging
directories) with names that start with the specified prefix are processed, regardless of the file
extension. This is a run-time parameter.

For example:

If you specify usrdata as the value of the File Prefix parameter, data is parsed from the
following files placed in the staging directory for multivalued (child) user data files:

Chapter 12
Shared Drive Reconciliation Transport Provider

12-5



usrdataRoleData.csv
usrdataGroupMembershipData.txt

Data is not extracted from the following files in the same directory, because the file names do
not begin with usrdata:

RoleData.csv
GroupMembershipData.txt

12.1.1.5 Specified Delimiter
Use this parameter to specify the character that is used as the delimiter character in the parent
and child data files. You can specify only a single character as the value of this parameter. This
is a run-time parameter. This parameter overrides the Tab Delimiter parameter.

Note:

You cannot use the space character ( ) as a delimiter.

In addition, you must ensure that the character you specify is used only as the
delimiter in the data files. If this character is also used inside the data itself, the data
row (or record) is not parsed correctly. For example, you must not use the comma (,)
as the delimiter if any data value contains a comma.

12.1.1.6 Tab Delimiter
Use this parameter to specify whether or not the file is delimited by tabs. This is a run-time
parameter. This parameter is ignored if you specify a value for the Specified Delimiter
parameter.

12.1.1.7 Fixed Column Width
If the input file contains fixed-width data, use this parameter to specify the width in characters
of the data columns. This is a run-time parameter.

Note:

In this context, the term "fixed-width" refers to the number of characters in the data
field, not the byte length of the field. This means that, for example, four characters of
single-byte data and four characters of multibyte data are the same in terms of width.

This parameter is ignored if you specify a value for the Specified Delimiter or Tab Delimiter
parameter.

12.1.1.8 Unique Attribute (Parent Data)
For multivalued user data, use this parameter to specify the field that is common to both the
parent data and child data files. In the examples described earlier, the requirement for a unique
attribute is fulfilled by the User ID TD field, which is present in both the parent and child data
files. This is a run-time parameter.

Chapter 12
Shared Drive Reconciliation Transport Provider

12-6



Note:

If you select the Trusted Source Reconciliation option on the Step 1: Provide Basic
Information page, you must not specify a value for the Unique Attribute (Parent Data)
parameter. This is because the reconciliation of multivalued (child) data is not
supported in trusted source reconciliation.

12.1.1.9 File Encoding
Use this parameter to specify the character set encoding used in the parent and data files. This
is a design parameter.

Specify Cp1251 for data files stored on a computer running an operating system with the
English-language setting. This is the canonical name for the java.io API that is supported by
the generic technology connector framework. For any other language that you select from the
list given in the "Multilanguage Support" section, you must specify the canonical name for the
corresponding java.io API.

12.1.2 Permissions to Be Set on the Staging and Archiving Directories
You must ensure that the required permissions are set on the staging and archiving directories.

Table 12-1 describes the effect of the various permissions on the shared directories that are
used to hold staging and archiving data files.

Table 12-1    Impact of Directory Permissions

Storage Entity Access
Permission

Reason for Access Permission Requirement

Staging directory for parent
data files

Read This permission is required for reconciliation to take place. An error
message is logged if this permission is not applied.

Staging directory for parent
data files

Write This permission is required for the deletion of data files from the parent
staging directory at the end of the archive process.

Staging directory for parent
data files

Execute Not applicable

Staging directory for child
data files

Read This permission is required for the reconciliation of child data. An error
message is logged if this permission is not applied.

Staging directory for child
data files

Write This permission is required for the deletion of data files from the child
staging directory at the end of the archive process.

Staging directory for child
data files

Execute Not applicable

Archiving directory Write This permission is required for the copying of parent and child data files
to the archiving directory during the archive process. Even if this
permission is not applied:

• Parent and child data reconciliation takes place.
• Files are deleted from the parent and child staging directories if the

required permissions have been set on those directories.

Archiving directory Execute Not applicable

Parent or child data file in
staging directory

Read This permission is required for the reconciliation of the data in the file. An
error message is logged if this permission is not applied.

Chapter 12
Shared Drive Reconciliation Transport Provider

12-7



Table 12-1    (Cont.) Impact of Directory Permissions

Storage Entity Access
Permission

Reason for Access Permission Requirement

Parent or child data file in
staging directory

Write This permission is required for the deletion of the data file at the end of
the archive process. An error message is logged if this permission is not
applied. However, data in this file is reconciled.

Parent or child data file in
staging directory

Execute Not applicable

Note:

Data files in the staging directory cannot be deleted if they are open in any editor or
are open for writing by any other program.

12.2 CSV Reconciliation Format Provider
The CSV reconciliation format provider converts reconciliation data that is in character-
delimited, tab-delimited, or fixed-length format into a format that is supported by Oracle Identity
Manager.

Although the CSV reconciliation format provider is packaged as a standalone provider, all of its
parameters are bundled with the shared drive transport provider. If you select the shared drive
transport provider on the Step 1: Provide Basic Information page, you must select the CSV
format provider. When you select this provider, its parameters are displayed along with the
shared drive transport provider parameters.

12.3 SPML Provisioning Format Provider
Use the SPML provisioning format provider and its parameters for converting provisioning data
into an SPML request.

This section describes the SPML provisioning format provider. It contains the following topics:

• About the SPML Provisioning Format Provider

• Parameters of the SPML Provisioning Format Provider

12.3.1 About the SPML Provisioning Format Provider
The SPML provisioning format provider converts the provisioning data generated during a
provisioning operation on Oracle Identity Manager into an SPML request that can be
processed by an SPML-compatible target system.

Figure 12-1 shows the setup of the system in which the SPML provisioning format provider
acts as the requesting authority (RA), and the target system provides the provisioning service
provider (PSP) and the provisioning service target (PST).

Chapter 12
CSV Reconciliation Format Provider

12-8



Figure 12-1    Communication Between the SPML Provisioning Format Provider and the
Target System

During actual provisioning, a Velocity template engine is used to create the SOAP-SPML
requests. For the following processes, the provider generates SOAP requests based on the
SPML 2.0 DSML profile:

• Add request

• Modify request for the following Oracle Identity Manager process tasks:

– Field updated

– Add child data

– Modify child data

– Delete child data

• Suspend request (for Disable Oracle Identity Manager process tasks)

• Resume request (for Enable Oracle Identity Manager process tasks)

• Delete request

The Create Organization, Update Organization, and Delete Organization are not supported.
This is because the resource object created for a generic technology connector does not
support provisioning operations for organizations. The Create Group, Update Group, and
Delete Group operations are not supported. This is because Oracle Identity Manager does not
support operations to provision groups.

When you select this provider, the following identity fields are displayed by default on the Step
3: Modify Connector Configuration page as described in Modifying Connector Configuration in
Administering Oracle Identity Governance, along with the ID field:

• objectClass
• containerID
For each provisioning task (for example, Create User and Modify User), the provider generates
a request in a predefined format.

12.3.2 Parameters of the SPML Provisioning Format Provider
Parameters of the SPML provisioning format provider include run time and design time
parameters. Depending on the application server that you use, some of the run-time and
design parameters are mandatory and some have fixed values.

Chapter 12
SPML Provisioning Format Provider

12-9



This section describes the parameters of the SPML provisioning format provider. It contains the
following topics:

• Run-Time Parameters

• Design Parameters

• Nonmandatory Parameters

• Parameters with Predetermined Values

12.3.2.1 Run-Time Parameters
The following are run-time parameters of the SPML provisioning format provider:

• Target ID

This value uniquely identifies the target system for provisioning operations.

• User Name (authentication)

This is the user name of the account required to connect to the target system (PST)
through the Web service interface (PSP).

• User Password (authentication)

This is the password of the user account required to connect to the target system (PST)
through the Web service interface (PSP).

12.3.2.2 Design Parameters
The following are design parameters of the SPML provisioning format provider:

See Also:

For more information about the SOAP elements and attributes mentioned in this
section, visit the following Web site

http://www.w3.org/TR/wsdl20/

• Web Service SOAP Action

In the WSDL file, this is the value of the soapAction attribute of the operation element.

• WSSE Configured for SPML Web Service?

Select this check box if the Web service is configured to authenticate incoming requests by
using WS-Security credentials.

• Custom Authentication Credentials Namespace

Note:

You need not specify a value for this parameter if you select the SPML Web
Service WSSE Configured? check box.

Chapter 12
SPML Provisioning Format Provider

12-10

http://www.w3.org/TR/wsdl20/


This is the name of the credentials namespace that you have defined for the Web service.
In most cases, this namespace is the same as the target namespace.

• Custom Authentication Header Element

Note:

You need not specify a value for this parameter if you select the SPML Web
Service WSSE Configured? check box.

This is the name of the element that will contain the credentials of the user account used to
connect to the target system. In other words, this is the parent element in the custom
authentication section of the SOAP message header.

• Custom Element to Store User Name

Note:

You need not specify a value for this parameter if you select the SPML Web
Service WSSE Configured? check box.

This is the name of the element in the custom authentication section that will contain the
user name you specify as the value of the User Name (authentication) parameter.

• Custom Element to Store Password

Note:

You need not specify a value for this parameter if you select the SPML Web
Service WSSE Configured? check box.

This is the name of the element in the custom authentication section that will contain the
user name you specify as the value of the User Password (authentication) parameter.

• SPML Web Service Binding Style (DOCUMENT or RPC)

In the WSDL file, this is the value of the style attribute of the binding element. You must
enter either DOCUMENT or RPC.

Note:

You must enter the value DOCUMENT or RPC. Do not use lowercase letters in the
value that you specify.

• SPML Web Service Complex Data Type

In the WSDL file, this is the value of the name attribute of the complexType element. This
parameter is applicable only if the binding style is DOCUMENT. You must specify a value for
this parameter if the target Web service is running on Oracle WebLogic Server.

Chapter 12
SPML Provisioning Format Provider

12-11



• SPML Web Service Operation Name

In the WSDL file, this is the value of the name attribute of the operation element. This
parameter is applicable only if the binding style is RPC.

• SPML Web Service Target Namespace

In the WSDL file, this is the value of the targetNamespace attribute of the definition
element.

• SPML Web Service Soap Message Body Prefix

This is the name of the custom prefix element that contains the SOAP message body. If
the target Web service is running on Oracle WebLogic Server, then you need not specify a
value for this parameter. However, if you are using a different application server, you must
enter the name of the custom prefix element. The following is the prefix element if the Web
service is running on Oracle WebLogic Server:

<SPMLv2Document xmlns="http://xmlns.oracle.com/OIM/provisioning">
• ID Attribute for Child Dataset Holding Group Membership Information

This is the name of the unique identifier field for a provisioning staging child data set that
holds group membership information. For provisioning operations on the child data set that
contains this field, the SOAP packet will contain SPML code for group operations. The
following is an SPML code block for this type of group operation:

<modification modificationMode="add">
  <capabilityData capabilityURI="urn:oasis:names:tc:SPML:2:0:reference" 
mustUnderstand="true">
    <reference typeOfReference="memberOf" 
xmlns="urn:oasis:names:tc:SPML:2:0:reference">
    <toPsoID ID="Groups:1" targeted="120"/>
</reference>
  </capabilityData>
</modification>

For provisioning operations on the child data sets that do not contain this field, the SOAP
packet will contain ordinary SPML code. The following is an SPML code block for this type
of group operation:

<modification>
  <dsml:modification name="Group Membership" operation="add">
    <dsml:value>AdminOra, System Admins, USA</dsml:value>
  </dsml:modification>
</modification>

12.3.2.3 Nonmandatory Parameters
For Oracle WebLogic Server, you need not specify values for the following parameters:

• SPML Web Service Complex Data Type

• SPML Web Service Soap Message Body Prefix

• ID Attribute for Child Dataset Holding Group Membership Information

12.3.2.4 Parameters with Predetermined Values
For Oracle WebLogic Server, you can specify predetermined values for the following
parameters:

• Web Service URL: http://IP_address:port_number/spmlws/OIMProvisioning

Chapter 12
SPML Provisioning Format Provider

12-12



• SPML Web Service Binding style (DOCUMENT or RPC): RPC
• SPML Web Service Operation Name: processRequest

12.4 Web Services Provisioning Transport Provider
Use the Web Services provisioning transport provider and the Web Service URL parameter for
sending a provisioning request to the target system.

This section describes the web service parameters and how to configure SSL communication
between Oracle Identity Manager and the target system web service. It contains the following
topics:

• About the Web Services Provisioning Transport Provider

• The Web Service URL Parameter

• Configuring SSL Communication Between Oracle Identity Manager and the Target System
Web Service

12.4.1 About the Web Services Provisioning Transport Provider
The Web Services provisioning transport provider acts as a Web service client and carries
provisioning request data from Oracle Identity Manager to the target system Web service.

The following types of target system Web services are supported:

• RPC-literal

• RPC-encoded

• DOCUMENT-literal

12.4.2 The Web Service URL Parameter
Use the Web Service URL parameter to specify the URL of the Web service that you want to
use for sending a provisioning request to the target system.

This is a run-time parameter. In the WSDL file, the Web service URL is the value of the
location attribute of the wsdlsoap:address element.

If you include the Web Services provisioning transport provider in the generic technology
connector that you create, you may want to configure Secure Sockets Layer (SSL)
communication between the target system and Oracle Identity Manager. The following section
provides information about this procedure.

12.4.3 Configuring SSL Communication Between Oracle Identity Manager
and the Target System Web Service

You can configure the application server on which Oracle Identity Manager is deployed for SSL
communication when you want to include the Web Services provisioning transport provider in
the generic technology connector that you plan to create, and the target Web service is running
on an SSL-enabled application server.

To configure SSL communication between Oracle Identity Manager and the target system Web
service:

Chapter 12
Web Services Provisioning Transport Provider

12-13



Note:

You can perform this procedure prior to creating the generic technology connector.

1. Export the target application server certificate as follows:

• For a target system Web service deployed on JBoss Application Server, Oracle
WebLogic Server, or Oracle WebLogic Server, run the following command:

JAVA_HOME/jre/bin/keytool -export -alias default -file exported-certificate-file 
-keystore app-server-specific-keystore  -storetype jks –storepass keystore-
password –provider sun.security.provider.Sun

In this command:

– Replace JAVA_HOME with the full path to the SUN JDK directory.

– Replace exported-certificate-file with the name of the file in which you want
the exported certificate to be stored.

– Replace app-server-specific-keystore with the path to the keystore on the
application server.

– Replace keystore-password with the password for the keystore.

• For a target system Web service deployed on Oracle WebLogic Server on AIX, run the
following command:

JAVA_HOME/jre/bin/keytool -export -alias default -file exported-certificate-file 
-keystore app-server-specific-keystore -storetype jks –storepass keystore-
password -provider com.ibm.crypto.provider.IBMJCE

In this command:

– Replace JAVA_HOME with the full path to the IBM JDK directory.

– Replace exported-certificate-file with the name of the file in which you want
the exported certificate to be stored.

– Replace app-server-specific-keystore with path to the keystore on the
application server.

– Replace keystore-password with the password for the keystore.

When the command is run, the exported certificate file is stored in the file that you
specify as the value of exported-certificate-file.

2. Import the certificate file exported in the preceding step into the Oracle Identity Manager
truststore as follows:

a. Copy the certificate file exported in the preceding step into a temporary directory on
the Oracle Identity Manager server.

b. Run the following command:

JAVA_HOME/jre/bin/keytool -import -trustcacerts -alias servercert -noprompt -
keystore OIM_HOME\config\.xlkeystore -file certificate_file

In this command:

• Replace JAVA_HOME with full path to the JDK directory. For Oracle Identity Manager
deployed on Oracle WebLogic Server, the path must be that of the SUN JDK
directory.

Chapter 12
Web Services Provisioning Transport Provider

12-14



• Replace OIM_HOME with the full path of the Oracle Identity Manager home directory

• Replace certificate_file with the path of the temporary directory into which you
copy the certificate file.

Note:

If the application server is enabled for one-way SSL communication, you need
not perform the rest of this procedure.

3. Import the Oracle Identity Manager certificate into the target system application server
truststore as follows:

Note:

Perform the following steps only if the application server is enabled for two-way
SSL communication.

a. Export the Oracle Identity Manager certificate file.

For Oracle Identity Manager deployed on Oracle WebLogic Server, run the following
command:

JAVA_HOME/jre/bin/keytool -export -alias xell -file OIM_HOME\config\xell.cert -
keystore OIM_HOME\config\.xlkeystore -storetype jks –provider 
sun.security.provider.Sun

In this command:

- Replace JAVA_HOME with the full path to the SUN JDK directory.

- Replace OIM_HOME with the full path of the Oracle Identity Manager home directory.

b. Import the certificate file that you export in Step 3a into the truststore of the application
server as follows:

Copy the exported Oracle Identity Manager certificate file to a temporary directory on
the target application server.

Next, run the following command on the target application server, which is Oracle
WebLogic Server:

JAVA_HOME/jre/bin/keytool –import –alias alias -trustcacerts  -file OIM-
certificate-file -keystore app-server-specific-truststore  -storetype jks –
storepass truststore-password –provider sun.security.provider.Sun

In this command:

* Replace JAVA_HOME with the full path to the SUN JDK directory.

* Replace alias with an alias for the certificate in the truststore of the target
application server.

* Replace OIM-certificate-file with the name of the exported Oracle Identity
Manager certificate file.

* Replace app-server-specific-truststore with path to the truststore on the target
application server.

Chapter 12
Web Services Provisioning Transport Provider

12-15



* Replace truststore-password with the password for the truststore on the target
application server.

See Also:

SSL configuration documentation for the target application server

12.5 Transformation Providers
A transformation provider is used to transform user data while it is in transit between the
source and destination data sets.

This section describes transformation providers and the types of transformation providers. It
contains the following topics:

• About Transformation Providers

• Concatenation Transformation Provider

• Adding a Concatenation Transformation Provider

• Translation Transformation Provider

• Using the Translation Transformation Provider

• Configuring Account Status Reconciliation

Note:

Use the information provided in this section while performing the instructions given in 
Modifying Connector Configuration in Administering Oracle Identity Governance.

12.5.1 About Transformation Providers
A transformation provider is used to transform user data while it is in transit between the
source and destination data sets when data is transformed before it is used to create
reconciliation events or provisioning requests.

A transformation provider is used to transform user data while it is in transit between the
source and destination data sets listed in the following table.

Source Data Set Destination Data Set Purpose of the Transformation

Source Reconciliation Staging Data is transformed before it is used to create
reconciliation events.

Oracle Identity
Manager

Provisioning Staging Data is transformed before it is used to create the
provisioning request to be sent to the target
system.

The following predefined transformation providers are available in Oracle Identity Manager:

• Concatenation Transformation Provider

• Translation Transformation Provider

Chapter 12
Transformation Providers

12-16



12.5.2 Concatenation Transformation Provider
You use the concatenation transformation provider to concatenate the values of two fields of
data sets to create the input for a single field of another data set.

The following example explains the output format of this provider:

Suppose the input values are the following fields of the source data set:

• First Name: John
• Last Name: Doe
When the concatenation transformation provider is applied to these two fields, the output value
is as follows:

John Doe

Note:

As shown in the preceding example, the concatenation transformation provider adds
a space between the values of the two input fields.

12.5.3 Adding a Concatenation Transformation Provider
Adding a concatenation transformation provider is done in the Mapping page when creating a
generic technology connector.

The following procedure describes how to add a concatenation transformation provider while
creating a generic technology connector:

Note:

This procedure explains in detail the instruction given in Step 5 of Adding or Editing
Fields in Data Sets in Administering Oracle Identity Governance. It is assumed that
you have already selected the Concatenation option from the Mapping Action list
on the Step 1: Field Information page and that you have performed Steps 2 and 3
given in that section.

On the Step 2: Mapping page in the pop-up window, perform the following steps:

1. From the Dataset list in the Input 1 region, select the data set containing the first field that
you want to concatenate. From the Field Name list, select the first field. Alternatively, you
can use the Literal option to specify a literal (or fixed) value as the first concatenation
input.

For the example described earlier, from the Dataset list in the Input 1 region, select the
data set containing the First Name field. Then, from the Field Name list, select First
Name.

2. From the Dataset list in the Input 2 region, select the data set containing the second field
that you want to concatenate. Then, from the Field Name list, select the second field.

Chapter 12
Transformation Providers

12-17



Alternatively, you can use the Literal option to specify a literal (or fixed) value as the
second concatenation input.

For the example described earlier, from the Dataset list in the Input 2 region, select the
data set containing the Last Name field. Then, from the Field Name list, select Last
Name.

12.5.4 Translation Transformation Provider
A translation operation involves accepting a certain (literal) value as input and converting it into
another value.

The following example illustrates a translation operation:

Suppose the Source data set contains the Country field and data values stored in this field can
take one of the following values:

• Austria

• France

• Germany

• India

• Japan

When these values are propagated to the reconciliation staging data set, you want to convert
these values to the following:

• AT

• FR

• DE

• IN

• JP

To automate this translation, you can use the translation transformation provider.

12.5.5 Using the Translation Transformation Provider
Using the translation transformation provider involves creating a lookup definition that stores
the input and decoded values and defining a translation mapping between the input field and
output field for the translation.

To use the translation transformation provider:

1. Use the Design Console to create a lookup definition that stores the input and decoded
values.

Note:

While creating a lookup definition in the Lookup Definition form, you must select
the Lookup Type option, and not the Field Type option.

For the Country field example described earlier, the Code Key and Decode values are as
shown in the following table.

Chapter 12
Transformation Providers

12-18



Code Key Decode

Austria AT

France FR

Germany DE

India IN

Japan JP

2. Define a transformation (translation) mapping between the input field and output field for
the translation. As mentioned earlier, a transformation can be set up between the following
pairs of data sets:

• Source and Reconciliation Staging

• Oracle Identity Manager and Provisioning Staging

Note:

This procedure explains in detail the instruction given in Step 5 of Adding or
Editing Fields in Data Sets in Administering Oracle Identity Governance. It is
assumed that you have already selected the Concatenation option from the
Mapping Action list on the Step 1: Field Information page and that you have
performed Steps 2 and 3 given in that section.

a. On the Step 3: Mapping page, from the Dataset list in the Input region, select the data
set containing the field that will provide the input value for the translation operation.
Then, from the Field Name list, select the field itself.

For the Country field example described earlier, select the data set containing the
Country field and select the Country field.

b. In the Lookup Code Name region, select Literal and enter the name of the lookup
definition that you create in the preceding step.

Note:

You must not specify a data set name and field in the Lookup Code Name
region. Although there is no validation to stop you from selecting a data set
name and field, the translation operation would fail during actual
reconciliation or provisioning operations.

This point is also mentioned in the Mappings section .

For the Country field example described earlier, select Literal and select the lookup
definition you create in Step 1.

12.5.6 Configuring Account Status Reconciliation
User account status information is used to track whether or not the owner of a target system
account is to be allowed to access and use the account. If required, you can use the translation
transformation provider to reconcile account status information.

Chapter 12
Transformation Providers

12-19



Note:

The Design Console offers an alternative method to configure account status
reconciliation. This method does not involve the use of a generic technology
connector. User Account Status Reconciliation describes this method.

This section contains the following topics:

• About Account Status Reconciliation Using Translation Transformation Provider

• High-Level Steps to Configure Account Status Reconciliation

• Detailed Steps to Configure Account Status Reconciliation

12.5.6.1 About Account Status Reconciliation Using Translation Transformation
Provider

You need to use the translation transformation provider only if account status values used in
the target system are not the same as the values used in Oracle Identity Manager. For a target
resource, Oracle Identity Manager uses the following values:

• Enabled state: Enabled
• Disabled state: Disabled
For a trusted source, Oracle Identity Manager uses the following values:

• Enabled state: Active
• Disabled state: Disabled

12.5.6.2 High-Level Steps to Configure Account Status Reconciliation
The procedure to configure account status reconciliation can be summarized as follows:

1. Create a lookup definition that maps the status values used in the target system with the
values used in Oracle Identity Manager.

2. While creating the generic technology connector, use the translation transformation
provider to create a transformation mapping between the fields that hold account status
values in the Source data set and the reconciliation staging data set.

The following example describes the action that you must perform:

Suppose the following fields are used to hold account status values:

• The User Status field of the Source data set holds the values True (for a user in the
Enabled state) and False (for a user in the Disabled state).

• The User Status field of the reconciliation staging data set must hold one of the
following pairs of values:

– For target resource reconciliation, the field must hold Enabled or Disabled.

– For trusted source reconciliation, the field must hold Active or Disabled.

You must create a transformation mapping that converts the True/False values in the User
Status field of the Source data set into corresponding Enabled/Disabled or Active/
Disabled values. During reconciliation, these converted values are sent to the User Status
field of the reconciliation staging data set.

Chapter 12
Transformation Providers

12-20



3. Create a mapping between the field that holds account status values in the reconciliation
staging data set and one of the following fields:

• The OIM Object Status field of the OIM – Account data set, for target resource
reconciliation

• The Status field of the OIM – User data set, for trusted source reconciliation

During reconciliation, this mapping is used to propagate status values from the
reconciliation staging data set to the OIM – Account or OIM – User data set.

12.5.6.3 Detailed Steps to Configure Account Status Reconciliation
Detailed steps to configure account status reconciliation are as follows:

1. Create a lookup definition that maps the status values used in the target system with the
values used in Oracle Identity Manager.

The Code Key values in the lookup definition must be the same as the values used to
represent the account status in the target system. The Code Key and Decode values for
both trusted and target resource reconciliation are as shown in the following table:

Code Key Decode (for Trusted
Source Reconciliation)

Decode (for Target Resource
Reconciliation)

Target system status value for a
user account that is in the
Enabled state

Active Enabled

Target system status value for a
user account that is in the
Disabled state

Disabled Disabled

Examples of Code Key values are True/False, Yes/No, and 1/0. The Decode values must
be set to the exact value, including the case (uppercase and lowercase), shown in the
table.

Note:

While creating the lookup definition in the Lookup Definition form, you must
select the Lookup Type option, and not the Field Type option.

2. The procedure to create the generic technology connector is described in Using Generic
Technology Connectors. While creating the generic technology connector, perform the
following steps on the Step 3: Modify Connector Configuration page:

Note:

These steps are a condensed version of the procedure described in Adding or
Editing Fields in Data Sets in Administering Oracle Identity Governance. Refer to
that section for a description of the terms and GUI elements mentioned in the
following steps.

a. If the target system status field is displayed on the Step 3: Modify Connector
Configuration page, click the Edit icon for the field in the reconciliation staging data set.

Chapter 12
Transformation Providers

12-21



If the field is not displayed, click the Add icon of the reconciliation staging data set.

b. On the Step 1: Field Information page, specify values for the following GUI elements:

• Field Name: If you are adding the field, specify a name for it. The field name that
you specify must contain only ASCII characters, because non-ASCII characters
are not allowed.

• Mapping Action: Select Create Mapping With Translation from this list.

• Matching Only: Ensure that this check box is deselected.

• Create End-to-End Mapping: If you are adding the field, select this check box.

• Multi-Valued Field: Ensure that this check box is deselected.

• Data Type: Select the data type of the field.

• Length: Specify the character length of the field.

• Required: Select this check box if you want to ensure that the field always
contains a value.

• Encrypted: Ensure that this check box is deselected.

• Password Field: Ensure that this check box is deselected.

c. Click Continue.

d. On the Step 3: Provide Mapping Information page, perform the following steps:

In the Input region:

• From the Dataset list, select Source.

• From the Field Name list, select the field that stores status values.

In the Lookup Code Name region, select Literal and enter the name of the lookup
definition that you create in Step 1.

e. If required, select a validation check for the field and click Add. In other words, select
the validation provider that you want to use.

f. Click Continue, and click Close.

3. Create a mapping between the status field of the reconciliation staging data set and either
the OIM Object Status field of the OIM - Account data set or the Status field of the OIM -
User data set as follows:

Note:

These steps are a condensed version of the procedure described in Adding or
Editing Fields in Data Sets in Administering Oracle Identity Governance.

a. For target resource reconciliation, click the edit icon for the OIM Object Status field of
the OIM - Account data set.

For target resource reconciliation, click the edit icon for the Status field of the OIM -
User data set.

Chapter 12
Transformation Providers

12-22



Note:

If a mapping already exists between the status field of the reconciliation
staging data set and the OIM Object Status field or Status field, apply the
instructions given in this step only where required.

b. On the Step 1: Field Information page, specify values for the following GUI elements:

• Mapping Action: Select Create Mapping Without Transformation from this list.

• Matching Only: Ensure that this check box is deselected.

c. Click Continue.

d. In the Input region on the Step 3: Mapping page, select the status field of the
reconciliation staging data set.

e. Click Continue, Continue, and click Close.

f. To add or edit other fields displayed on the Step 3: Modify Connector Configuration
page, continue with the procedure described in Adding or Editing Fields in Data Sets in
Administering Oracle Identity Governance.

12.6 Validation Providers
Predefined validation providers are used to perform various checks and validations on field
values.

Table 12-2 describes the validation providers that are shipped with Oracle Identity Manager.

Note:

Except for the Validate Date Format provider, all the providers in this table are
implementations of methods of the GenericValidator class in the Apache Jakarta
Commons API.

Table 12-2    Validation Providers

Validation Provider Description

IsBlankOrNull Returns true if the field value is null and is not blank

IsInRange Returns true if the field value is within a range specified by a minimum and
maximum value pair

IsByte Checks if the field value can be converted to a byte primitive

IsDouble Checks if the field value can be converted to a double primitive

IsFloat Checks if the field value can be converted to a float primitive

IsInteger Checks if the field value can be converted to an integer primitive

IsLong Checks if the field value can be converted to a long primitive

IsShort Checks if the field value can be converted to a short primitive

Chapter 12
Validation Providers

12-23



Table 12-2    (Cont.) Validation Providers

Validation Provider Description

MatchRegexp Checks if the field value matches the specified regular expression

Note: A regular expression is a string that is used to describe or match a set
of strings according to specific syntax rules.

MaxLength Checks if the length of the field value is less than or equal to the specified
value

MinLength Checks if the length of the field value is greater than or equal to the specified
value

Validate Date Format Validates date values in target system records before these records are
reconciled into Oracle Identity Manager

The value of the Source Date Format parameter is used as the basis for
validation. This validation provider is applied if you specify a value for the
Source Date Format parameter on the Step 2: Specify Parameter Values
page, regardless of whether or not you select this provider on the Step 3:
Modify Connector Configuration page.

Note: Unlike the other providers in this table, the Validate Date Format is not
an implementation of a method of the GenericValidator class in the
Apache Jakarta Commons API.

Chapter 12
Validation Providers

12-24



Part III
Workflows

You develop workflows for customizing requests and approval processes, certification, and
identity audit.

This part contains the following chapter:

• Developing Workflows



13
Developing Workflows

Understand, develop, and deploy workflows to customize request management features, and
certification and identity audit composites.
This chapter describes the concepts, features, and architecture of workflows in Oracle Identity
Manager. It provides use cases for workflow, and instructions for designing, implementing, and
deploying your first workflow. In addition, this chapter describes how to extend the request
management operations by using plug-in points and how to customize the certification and
identity audit composites.

This chapter contains the following topics:

• Introducing Workflows

• Predefined SOA Composites

• Creating New SOA Composites

• Developing Workflows: Vision Request Tutorial

• Configuring Default Approval Composites for Single and Bulk Operations

• Creating and Deploying Custom Task Details Taskflow

• Extending Request Management Operations

• Enabling Auto-Approval for Self Registration Requests

• Hiding the Skip Current Assignment Option

• Customizing Certification Oversight

• Customizing the Identity Audit Composite

13.1 Introducing Workflows
Workflows are used to route requests for approval and route manual provisioning tasks to IT
provisioners or help desk fulfillment.

This section describes the key workflow concepts in the following topics:

• Overview of Workflows

• Workflow Concepts

• Workflow Architecture

• Human Task Process Flow

13.1.1 Overview of Workflows
Managing user access and orchestrating the business process so that users get the correct
access is a key identity governance function.

The process of changing users' access can be initiated by the users through events in HR that
trigger policies, or by administrators. Irrespective of how the change in access is initiated,
organizations require the following:

13-1



• The business process that is initiated must be flexible, and must be able to meet changing
business rules of the organization.

• The business process must be able to decide between granting access immediately versus
introducing manual intervention steps and seeking approval prior to granting access.

• The business process must be able to perform validations, including Segregation of Duties
(SoD) checks on what is being requested, by who, for whom, and in what context.

• If manual intervention is required, then the business process must have the ability to
assign to users or groups of users and escalate, reassign, or expire if no response is
received in a timely manner.

• For manual intervention, the business process must have the ability to gather information
from the approvers, including comments and attachments.

• The business process must be able to interact with external systems, such as ticketing
systems, when automated access grants are not possible, or the organization's rules
require that access is granted manually.

• All decisions and actions must be audited and available in a reportable manner to allow the
organization to measure performance of the process and also for auditors to fulfill
compliance requirements

Oracle Identity Manager provides flexible and powerful access request capabilities that allow
organizations to meet these requirements.

13.1.2 Workflow Concepts
Primary concepts related to workflows are request, approval, approval workflow policy, SOA
composite, partner link, BPEL process, IT provisioner, request web service, request callback,
provisioning callback, request payload, and human task.

The key concept of workflows in Oracle Identity Manager involves the following terminologies:

• Request

In Oracle Identity Manager, a request refers to the business process that is invoked when
an operation on an identity or an account has to be performed. Examples of these
operations include creating a user, provisioning an account, and granting a role to a user. A
request can either be fulfilled immediately (also known as direct operation) or can require
manual intervention in the form of approvals (also known as request-based operation).
When a user tries to perform an operation, Oracle Identity Manager determines whether
the operation would be direct or request-based on the authorization policies of the logged-
in user.

• Approval

A request goes through one level of approval. This is configured in the workflow policy of
the corresponding operation.

A bulk requests goes through one level of approval. This is configured in the workflow
policy of the corresponding Bulk operation. After approval, child requests are generated.
These child requests would follow same approval process as simple request.

• Approval workflow policy

An approval workflow policy consist of a rule configured by the administrator that allows
the request engine to pick a SOA composite to invoke. The rules defined in approval
workflow policies help the request engine determine if the request should be auto-
approved or a SOA composite should be invoked.

• SOA composite

Chapter 13
Introducing Workflows

13-2



A SOA composite is an assembly of services, service components, and references
designed and deployed together in a single application. Wiring between the service,
service component, and reference enables message communication. The composite
processes the information described in the messages.

• Partner Link

A partner link enables you to define the external services with which the BPEL process
service component is to interact. You can define partner links as services or references (for
example, through a JCA adapter) in the SOA Composite Editor or within a BPEL process
service component in Oracle BPEL Designer.

• BPEL process

BPEL processes provide process orchestration and storage of synchronous or
asynchronous processes. You design a business process that integrates a series of
business activities and services into an end-to-end process flow.

• IT provisioner

The IT provisioner, also known as fulfillment user or Help Desk user, is the persona
responsible for fulfilling manual provisioning requests.

• Request web service

The request web service is a web service that is shipped with Oracle Identity Manager. It
allows customers to expose request, user, role, organization, account, entitlement,
application instance, and catalog information so that approval workflows can make data-
driven routing decisions.

• Request callback

The request callback is a web service that is invoked by the SOA composite when an
approval outcome (approve/ reject) has been received. When the request engine invokes a
SOA composite for the purpose of approval, it suspends the request until the composite
invokes the request callback and provides an approve or reject decision. This decision
allows the request engine to proceed with fulfilling the request (if approved) or rejecting the
request (if rejected).

• Provisioning callback

The provisioning callback is a web service that is invoked as part of disconnected
provisioning. When the IT provisioner or fulfillment user fulfills a disconnected provisioning
request and marks the task as completed, the SOA composite invokes the provisioning
callback and sends the provisioning status allowing the provisioning workflow to complete.

• Request payload

The request engine invokes the SOA composite and passes it some basic information
about the request, requester, and target user. This information is called the request
payload.

• Human Task

Human tasks provide workflow modeling that describes the tasks for users or groups to
perform as part of an end-to-end business process flow.

13.1.3 Workflow Architecture
The components involved in workflow architecture are authorization policies, Business Process
Execution Language (BPEL) process, human tasks, and approval or rejection of requests.

Workflows are used in Oracle Identity Manager to:

Chapter 13
Introducing Workflows

13-3



• Route requests to approvers for approval

• Route manual provisioning tasks to IT provisioners or Help Desk for fulfillment

Figure 13-1 provides an overview of workflows in Oracle Identity Manager:

Figure 13-1    Workflow Architecture

For information about the steps involved in completion of the human task, see Human Task
Process Flow.

13.1.4 Human Task Process Flow
Completion of human tasks includes various user-initiated actions, request creation, approval
workflow policies, SOA composites, whether human intervention is required, and approval or
rejection of the request.

The following actions occur for completion of the human task, as shown in Figure 13-1, are the
following:

1. User initiates an operation that results in a request. Examples of such operations include:

• Self-registration

• User profile modification, excluding lock, unlock, and password management
operations

• Role grant operations

• Application instance operations, including disconnected provisioning

• Entitlement operations

• Bulk operations

2. A request is created. After appropriate validation, the request engine evaluates approval
workflow policies and selects a SOA composite to be invoked.

Chapter 13
Introducing Workflows

13-4



3. If approval workflow policies are not configured, then the default SOA composite is
selected for approval.

4. The SOA composite involves the Business Process Execution Language (BPEL) process.

5. The BPEL process invokes a web service to get additional details about the request
including:

Note:

This step is optional. This is required only if additional information related to
various entities is required in BPEL Process.

• Item details from the catalog

• Target user information

• Requester information

6. The BPEL process invokes additional logic to calculate properties such as priority,
approvers, and notification.

7. When manual intervention is required, such as during approval and manual fulfillment, the
process invokes a Human Task.

A Human Task contains the logic to assign, expire, or escalate the approval task to users
or roles. The Human Task can assign the users and roles statically or dynamically. For
static assignments, the approvers can be determined in the BPEL process and passed as
parameters to the Human Task. For dynamic assignments, rules created using Oracle
Business Rules (OBR) are used to dynamically determine the approvers.

Typically, the BPEL process contains one Human Task. In some instances, the BPEL
process might invoke a decision point to pick one of multiple Human Tasks.

8. When the human task completes, a response of approve or reject (for approval) or
complete (for manual fulfillment), is returned via a callback service to Oracle Identity
Manager, which resumes the operation.

13.2 Predefined SOA Composites
Predefined SOA composites can be used as approval processes.

Table 13-1 lists the predefined SOA composites in Oracle Identity Manager that can be used
as approval processes.

Chapter 13
Predefined SOA Composites

13-5



Table 13-1    Predefined Workflow Composites

Workflow Composite Description

DefaultRequestApproval This is the default request-level approval. By default, the request-level
approval goes to the SYSTEM ADMINISTRATORS role, for request-
level approval.

In addition, this composite is invoked by certification use cases. The
task will have one of the following states:

• Assigned to the beneficiary. Later, the task may be assigned to the
beneficiary's manager based on the decision of the beneficiary.

• Auto-approved if the certification requester is beneficiary's
manager.

Note: For information about the certification use cases, see Managing
Identity Certification in Performing Self Service Tasks with Oracle
Identity Governance.

DefaultOperationalApproval This is the default operation-level approval. By default, the approval
task is assigned to the SYSTEM ADMINISTRATORS role for operation-
level approval.

In addition, the composite is invoked by certification use cases, and the
task will be auto-approved.

BeneficiaryManagerApproval This requires approval from the beneficiary's manager. This can be
associated with the following:

• The request models that have a beneficiary. Examples of such
request models are Provision Application Instance and Assign
Roles.

• All user models except Create User and Self-Register User.
This composite must be associated at the operational level of approval
because a request can have multiple beneficiaries at the request level.

DefaultRoleApproval This SOA composite creates a single approval task that is assigned to
the SYSTEM ADMINISTRATORS role for approval.

RequesterManagerApproval This SOA composite creates a single approval task that is assigned to
the requester's manager for approval.

Note: This composite cannot be associated with unauthenticated
request models, such as Self-Register User.

DefaultSODApproval This SOA composite creates an approval task that is assigned to the
System Administrator, starts SoD check, and after the SoD result is
available, it creates another approval task assigned to the SOD
Administrators role. This must be associated with request models to
provision or modify resources at the operational level if SoD check is
required.

DisconnectedProvisioning This SOA composite assigns the task to the System Administrator to
fulfil the disconnected provisioning.

ProvideInformation This SOA composite assigns the task to the requester seeking details
of account/entitlement.

CertificationProcess This is the default Certification composite. This composite takes care of
assigning the certification task to the certifier (user). This composite
also manages the following certification task events:

• Expiry
• Proxy
• Escalation
• Re-assignment

Chapter 13
Predefined SOA Composites

13-6



Table 13-1    (Cont.) Predefined Workflow Composites

Workflow Composite Description

CertificationOverseerProcess This composite assigns a certification task to the certifier (user). In
addition, the composite also handles routing the task to the overseer
after the certifier completes the task. Oracle SOA Business Rules are
used to handle the task routing. This composite handles the following
certification task events:

• Expiry
• Proxy
• Routing (Overseer)
• Escalation
• Re-assignment

13.3 Creating New SOA Composites
You can create and deploy a SOA composite and use it as an approval process.

Creating a new SOA composite that can be used as an approval process involves the following
steps:

• Creating a New SOA Composite

• Deploying a SOA Composite in Oracle SOA Server

• Setting the Prerequisites for Communication to Oracle Identity Governance Through SSL
Mode

13.3.1 Creating a New SOA Composite
You can create a new SOA composite that can be used as an approval process by adhering to
certain standards.

To use a SOA composite as an approval process, it must adhere to certain standards. This
section describes the standards and how to create a new SOA composite. It contains the
following topics:

• Standards of Using SOA Composites as Approval Process

• Creating a Custom SOA Composite Using the Helper Utility

13.3.1.1 Standards of Using SOA Composites as Approval Process
To use a SOA composite as an approval process, it must adhere to certain standards. These
standards ensure that the request service is able to instantiate and manage such composites
correctly. These standards are:

• The following attributes are mandatory for BPEL process:

– RequestID of type String

– RequestModel of type String

– RequestTarget of type String

– URL of type String

– RequesterDetails of XML Element

Chapter 13
Creating New SOA Composites

13-7



– BeneficiaryDetails of XML Element

– ObjectDetails of XML Element

– OtherDetails of XML Element

The RequestID, RequestModel, RequestTarget, and URL attributes are always set with
valid values for all types of requests.

RequesterDetails is an XML element. This element is filled up with valid values for all
requests that requires authentication. Requester details is empty for the requests of type
Self-Register User because the requester is anonymous user.

BeneficiaryDetails is an XML element. This element is filled up with valid values for all
requests that have a beneficiary, for example, Provision Resource and Assign Roles. This
is filled up only if the request is associated with single beneficiary. If the request is
associated with multiple beneficiaries, then BeneficiaryDetails is empty. BeneficiaryDetails
element always has valid value for simple requests and child requests that have a
beneficiary. Therefore, it is recommended to use this XML element in SOA composites that
are used as approval processes at the operational level of approval. This is because at the
operational level of approval, the request is associated with only one beneficiary.

ObjectDetails is an XML element. This element is filled up with valid values for all requests
that are associated with the Resource entity. This is filled up only if the request is
associated with single resource. If the request is associated with multiple resources, then
ObjectDetails is empty. The ObjectDetails element always has valid value for simple and
child requests that are associated with resource. Therefore, it is recommended to use this
XML element in SOA composites that are used as approval processes at the operational
level of approval. This is because at the operational level of approval, the request is
associated with only one resource.

• All the attributes that are mandatory for the BPEL process are referred from
RequestDetails.xsd and ApprovalProcess.xsd. These files are present in the template SOA
composite, which must not de modified or deleted.

13.3.1.2 Creating a Custom SOA Composite Using the Helper Utility
Oracle Identity Manager provides a helper utility for creating custom SOA composites. This
utility creates a template SOA project that adheres to all the necessary standards. This utility is
located in the OIM_HOME/workflows/new-workflow directory.

Note:

• JAVA_HOME environment variable must be set before running this utility.

• This utility requires Apache Ant version 1.9.8 or later.

• JDeveloper is not available with Oracle Identity Manager by default. For SOA
support, install SOA recommended JDeveloper.

To create a custom SOA composite by running the helper utility:

1. Run the following commands:

cd OIM_HOME/workflows/new-workflow
ant -f new_project.xml

2. Enter the JDeveloper application name when the following prompt is displayed:

Chapter 13
Creating New SOA Composites

13-8



Please enter application name
3. Enter the JDeveloper project name when the following prompt is displayed:

Please enter project name
4. Enter the name of the ADF binding service for the composite when the following prompt is

displayed:

Please enter the service name for the composite. This needs to be unique
across applications
The new application is created in the OIM_HOME/workflows/new-workflow/process-
template/ directory. You can open the new application in JDeveloper for modification.

Human task in the template SOA composite is configured to send notifications to the
assignee of the human task. In the custom composite that is created, the notification
message can be modified based on the requirement. All the notifications to be sent to the
approver must be configured in the SOA composite.

Human task in the template SOA composite is configured to be assigned to the SYSTEM
ADMINISTRATORS role.

13.3.2 Deploying a SOA Composite in Oracle SOA Server
After creating a new SOA composite, you must deploy it for using it as an approval process.

For information about deploying the workflow composite in BPEL, see Deploying SOA
Composite Applications in the Developer’s Guide for Oracle SOA Suite.

Note:

The composite should be redeployed with a new version. If a composite is
redeployed with the same version in SOA, then all the pending approvals in Oracle
Identity Manager initiated by the composite becomes stale and are removed from the
user's TaskList. See How to Deploy an Existing SOA Archive in Oracle JDeveloper in
the Developer's Guide for Oracle SOA Suite for information about deploying existing
SOA composites.

If you are redeploying a composite using Oracle Enterprise Manager:

• As already recommended, redeploy with a different version. Otherwise, all the
pending requests will be stale.

• If you still want to redeploy a composite either because there are no pending
requests or you are fine with stale requests, then do not use the redeploy option
on Enterprise Manager. First undeploy the composite, and then deploy.

13.3.3 Setting the Prerequisites for Communication to Oracle Identity
Governance Through SSL Mode

The prerequisite for SSL communication is setting the TRUSTSTORE_LOCATION
environment variable and using t3s protocol.

If the communication to Oracle Identity Manager is through the SSL mode, then you must:

Chapter 13
Creating New SOA Composites

13-9



Note:

For a non-SSL connection, skip this section.

1. Set the TRUSTSTORE_LOCATION environment variable, where
TRUSTSTORE_LOCATION is the trusted key store file location.

2. Use t3s protocol instead of t3. For example, the URL for Oracle Identity Manager is:

t3s://HOST_NAME:PORT

13.4 Developing Workflows: Vision Request Tutorial
Vision Request tutorial includes creating an application and developing the workflow for it, and
configuring the approval and fulfillment for the application.

This section describes how to design your first workflow. It contains the following topics:

• Introducing the Tutorial

• Assumptions

• Creating the Application Instance

• Configuring FinApp in the Catalog

• Creating and Configuring the SOA Composite for Approval

13.4.1 Introducing the Tutorial
The end result of the use case for this tutorial is an application instance and a SOA composite
for approval consisting of a BPEL process and multiple human tasks.

This tutorial is based on the following use case:

• Vision Corp uses FinApp, a mainframe-based application. The application does not have
APIs that can be remotely invoked. Therefore, accounts are managed manually by the
Help Desk.

• Vision Corp employees use the Access Request Catalog to request accounts and
entitlements in the application.

• Approvals are based on the risk level of the access being requested. When the risk level is
Low, approval is required only from the beneficiary's manager. When the risk level is
Medium, approval is required from either the beneficiary's manager or a member of the
Audit Review team. When the risk level is High, approval is required from the beneficiary's
manager and a member of the Audit Review team.

This tutorial describes how to create the application and the workflow, and how to configure the
approval and fulfillment for the application.

The result of the tutorial is:

• An application instance

• A SOA composite for approval consisting of:

– A BPEL process

– Multiple Human Tasks

Chapter 13
Developing Workflows: Vision Request Tutorial

13-10



13.4.2 Assumptions
Certain prerequisites must be met for the tutorial, which includes installation of Oracle SOA
Suite and JDeveloper with SOA Design Time, and creation of couple of roles and an
organization called Vision.

The following assumptions are made for this tutorial:

• Oracle SOA Suite is installed on a host on which the SOA infrastructure is configured.

• JDeveloper 12.2.1.3 is available with SOA Composite Editor 12.2.1.3 and BPEL Designer
12.2.1.3.0.

• Mandatory patches, if any, for SOA Jdeveloper extension have been applied. For
information about the mandatory patches, see Mandatory Patches Required for Installing
Oracle Identity Manager in Oracle Fusion Middleware Release Notes.

• You are familiar with basic BPEL constructs, including BPEL activities and partner links,
and basic XPath functions.

• You are familiar with the SOA Composite Editor and Oracle BPEL Designer, the
environment for designing and deploying BPEL processes. However, for detailed
information about SOA composites, see Getting Started with Developing SOA Composite
Applications in Developing SOA Applications with Oracle SOA Suite.

• Two roles, Audit Review Team and Asset Management Team, have been created and
members have been assigned.

• An organization with name Vision is created.

13.4.3 Creating the Application Instance
As a prerequisite for this tutorial, you must create an application instance, define the
application instance attributes and create a form, publish the application instance to one or
more organizations, link entitlements to the application instance, and publish the application
instance with entitlements to the catalog.

This section describes how to create and publish the application instance, and link entitlements
to it. It contains the following topics:

• Creating the FinApp Application Instance

• Defining Application Instance Attributes and Creating a Form

• Publishing the Application Instance to One or More Organizations

• Linking Entitlements to the Application Instance

• Publishing the Application Instance With Entitlements to the Catalog

13.4.3.1 Creating the FinApp Application Instance
To create the FinApp application instance:

1. Login to Oracle Identity System Administration.

2. Click Sandboxes to access sandbox management, create a sandbox, and activate it.
SeeManaging Sandboxesfor information about sandboxes and how to create, activate, and
publish sandboxes.

3. Under Configuration, click Application Instances. Click Create on the toolbar to open the
Create Application Instance page.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-11



4. Enter Name and Display Name as FinApp.

5. Select the Disconnected option to specify a disconnected application instance.

6. Click Save, and then click OK to confirm creation of the FinApp application instance.

13.4.3.2 Defining Application Instance Attributes and Creating a Form
To define the attributes of the application instance and create a form:

1. Under Configuration, click Form Designer.

2. Search and select the FinApp form. This form is automatically created when the
disconnected application instance is saved.

Note:

You must be in an active sandbox to create and edit a form.

3. Click the Fields tab, and then click the Edit icon on the toolbar.

By default, the following fields are created and are available for use:

Field Description

IT Resource The IT resource instance where the account is being created

Account Login The login for the application

Password The password that is used while logging in to the application

Account ID The unique identifier generated by the application when the account
is created

Service Account A flag that is used during access request only

Note:

Attributes such as Account ID and IT Resource are typically not displayed in the
access request user interface. Depending upon the use case, for example a
mobile phone request, the attributes might not be relevant. To hide these
attributes, you can customize the form. See Configuring Custom Attributes in
Administering Oracle Identity Governance for more information on how to
customize the form.

4. Add additional attributes. In this example, add the following attribute:

Account Description: Data type is Text.

Note:

See Configuring Custom Attributes in Administering Oracle Identity Governance
for more information on creating the custom attributes

5. After adding the attributes, verify that the configuration in the Fields tab is similar to the
following table:

Chapter 13
Developing Workflows: Vision Request Tutorial

13-12



Display Label Name Type

Account Description AccountDescription Text

Account ID UD_FINAPP_ACCOUNTID Text

ITResource UD_FINAPP_IT Number

Account Login UD_FINAPP_LOGIN Text

Password UD_FINAPP_PASSWORD Text

Service Account serviceaccount Checkbox

6. To allow users to request entitlements, you must add a child object and add an attribute
that is tagged as an Entitlement. To do so:

a. Click the Child Objects tab, and then click Add on the toolbar.

b. Enter the child object name, and click OK to create the child object.

c. Click the child object just created.

d. Select Action, Create to create a new attribute. From the popup window, select
Lookup, and click OK. Enter values for the following fields:

Name: Profile Name

Display Name: Profile Name

e. Select Use in Bulk to allow requesters to specify a value when requesting access for
multiple users.

f. Under Lookup Type, click Create a New Lookup Type.

g. Create the new Lookup and specify the values, as shown:

Code: Lookup.FinApp.Profile

Meaning: Lookup.FinApp.Profile

Description: Lookup.FinApp.Profile

h. Create three lookup codes by using the values given in the following table:

Meaning Code

FinApp User FinAppUser

FinApp Administrator FinAppAdministrator

FinApp Operator FinAppOperator

Note:

You can also populate the lookup definition by using a scheduled task and
the lookup APIs.

i. Select the Searchable, Entitlement, and Searchable Picklist options.

7. Click Save and Close.

8. Click Back to Parent Object.

9. Click Regenerate View to re-create the UI form with the new attributes.

10. Close all tabs.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-13



11. Publish the sandbox.

13.4.3.3 Publishing the Application Instance to One or More Organizations
To publish the application instance to one or more organizations:

1. Open the FinApp application instance details page, and click the Organizations tab.

2. Click Assign. In the Select Organizations dialog box, select one or more organizations to
publish the application instance to.

3. Select the Hierarchy option if you want the application instance to be published to the
organization and its child organizations.

4. Click OK.

13.4.3.4 Linking Entitlements to the Application Instance
To link entitlements to the application instance:

1. Under System Management, click Scheduler.

2. Search for the Entitlement List scheduled job, and click Run Now.

3. Under Configuration, click Application Instances, and navigate to the FinApp application
instance.

4. Click the Entitlements tab, and verify that the entitlements are displayed, as shown in 
Figure 13-2:

Figure 13-2    Entitlements List

5. Select an entitlement, and verify that it is published to the same organizations as the
application instance, as shown in Figure 13-3:

Chapter 13
Developing Workflows: Vision Request Tutorial

13-14



Figure 13-3    Entitlement Availability to Organizations

6. Edit one or more entitlements, and enter a business friendly description. If required, modify
the display name as well.

13.4.3.5 Publishing the Application Instance With Entitlements to the Catalog
To publish the application instance and its entitlements to the catalog:

1. Under System Management, click Scheduler.

2. Search for the Catalog Synchronization scheduled job, and click Run Now.

13.4.4 Configuring FinApp in the Catalog
Edit the catalog item details to configure the application instance and its entitlements in the
catalog.

To configure the application instance and its entitlements in the catalog:

1. Login to Oracle Identity Self Service as the Catalog Administrator.

2. Under Requests, click Catalog.

3. In the Catalog page, search for the application instance.

4. Select the application instance, and edit the catalog item details.

5. Provide values for the default attributes. Because this tutorial involves workflow routing
based on risk level and manual fulfillment, you must provide a value for the Risk Level and
Fulfillment Role attributes. However, it is recommended that you provide values for other
attributes, especially User Defined Tags.

Figure 13-4 shows the attributes of the catalog item.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-15



Figure 13-4    Catalog Item Attributes

13.4.5 Creating and Configuring the SOA Composite for Approval
After configuring the application instance and its entitlements in the catalog, you can create
and configure the SOA composite for approval, which includes creating the approval workflow,
making request and catalog data available to the BPEL process, configuring workflow
selection, configuring human tasks, configuring the human task and BPEL mappings,
deploying the SOA composite, and creating the workflow rules.

This section contains the following topics:

• Creating the Approval Workflow

• Making Request and Catalog Data Available to the BPEL Process

• Configuring Workflow Selection

• Configuring Human Tasks

• Configuring the Human Task and BPEL Mappings

• Deploying the SOA Composite

• Creating the Workflow Rules

13.4.5.1 Creating the Approval Workflow
To create a new approval workflow:

1. Set the JAVA_HOME, ANT_HOME, and PATH environment variables by running the
setDomainEnv.sh script in the DOMAIN_HOME/bin/ directory.

2. Navigate to OIM_ORACLE_HOME/server/workflows/new_workflow.

3. Run the following command:

Chapter 13
Developing Workflows: Vision Request Tutorial

13-16



ant -f new_project.xml
4. Provide the Application Name as AddAccessApprovalApplication.

5. Provide the Project Name as AddAccessApproval.

6. Provide the Service Name as AddAccess.

7. Wait for the utility to finish generating the new JDeveloper Workspace containing the
Composite. The workspace is generated in /server/workflows/new-workflow/process-
template.

8. Copy the directory to a location accessible to JDeveloper.

13.4.5.2 Making Request and Catalog Data Available to the BPEL Process
To make request and catalog data available to the BPEL process:

1. Switch to Design view of the BPEL process.

2. Drag the Invoke activity from the Component Palette and drop it below the
AssignRequestWSURL activity. Rename it to InvokeRequestDetailsOperation.

3. Right-click InvokeRequestDetailsOperation, and select Edit.

4. Select partner link from the Partner Link Chooser as RequestWSPartnerLink, and
operation as getRequestDetails, as shown in Figure 13-5.

Figure 13-5    Partner Link and Operation

5. Under the Variables section, click the plus (+) icon for the Input and Output fields to create
the input and output variables. Name the input and output variables as
requestDetails_InputVariable and requestDetails_OutputVariable respectively. Then
click Apply and OK.

6. Drag and drop an assign activity, rename it to AssignRequestInput, and place it above the
InvokeRequestDetailsOperation invoke activity, as shown in Figure 13-6.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-17



Figure 13-6    AssignRequestInput

7. Right-click AssignRequestInput, and select Edit to map the input of the
InvokeRequestDetailsOperation, as shown in Figure 13-7.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-18



Figure 13-7    Input Mapping

8. Add an Invoke activity after the InvokeRequestDetailsOperation, as shown in Figure 13-8.
Name the activity InvokeCatalogOperation.

Figure 13-8    InvokeCatalogOperation

9. Edit the InvokeCatalogOperation, and configure it as shown in Figure 13-9.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-19



Figure 13-9    InvokeCatalogOperation Configuration

10. Add an Assign activity above InvokeCatalogOperation, as shown in Figure 13-10. Name
the activity as AssignCatalogInput.

Figure 13-10    AssignCatalogInput

Chapter 13
Developing Workflows: Vision Request Tutorial

13-20



Note:

The following attributes will be returned as custom attributes through the catalog
detail method of the request web service:

• APPROVER_USER_FIRSTNAME

• APPROVER_USER_LASTNAME

• APPROVER_USER_DISPLAYNAME

• APPROVER_USER_EMAIL

• CERTIFIER_USER_FIRSTNAME

• CERTIFIER_USER_LASTNAME

• CERTIFIER_USER_DISPLAYNAME

• CERTIFIER_USER_EMAIL

• FULFILLMENT_USER_FIRSTNAME

• FULFILLMENT_USER_LASTNAME

• FULFILLMENT_USER_DISPLAYNAME

• FULFILLMENT_USER_EMAIL

11. Right-click and edit the assign activity to map the input to the InvokeCatalogOperation, as
shown in Figure 13-11.

Figure 13-11    InvokeCatalogOperation Input Mapping

Chapter 13
Developing Workflows: Vision Request Tutorial

13-21



13.4.5.3 Configuring Workflow Selection
To define the workflow selection rules:

1. Define a variable called catalogData. To do so:

a. Click the Variables icon, and then click the Create icon on the Variable dialog box.

b. Choose Type as Element, and click the Search icon next to the field.

c. In the dialog box, expand Project Schema Files and then CatalogData.xsd, and
select the CatalogData element. This variable will contain the catalog details returned
as an output of the InvokeCatalogDetails step.

2. Define a variable called workflowtype. To do so:

a. Select type as Element, and click the Search icon next to the field.

b. In the dialog box, expand Project Schema Files and then BusinessRule.xsd, and
select the StageOutput element. This variable will contain the type of workflow to be
invoked.

3. Navigate to the SOA Composite view, and add a Business Rule component, as shown in 
Figure 13-12.

Figure 13-12    Adding Business Rule Component

4. In the Create Business Rules dialog box, specify the name of the Rule Dictionary as
WorkflowSelection.

5. Specify Input as CatalogData from CatalogData.xsd in Project Schema Files and Output as
StageOutput from BusinessRule.xsd in Project Schema Files.

6. Switch to the BPEL process.

7. Expand SOA Components and add a Business Rule component between the
InvokeCatalogOperation and ApprovalTask_1 components.

8. Edit the rule and rename it to WorkflowSelection.

9. In the Rule dialog box, click the Dictionary tab, and select the WorkflowSelection dictionary
that you defined in step 4.

10. Click the Assign Input Facts subtab in the Dictionary tab, and click the plus (+) icon.

11. Map the catalogData variable to the input to the Rule, as shown in Figure 13-13.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-22



Figure 13-13    catalogData Variable Input Mapping

12. Click the Assign Output Facts subtab in the Dictionary tab.

13. Map the workflowtype variable to the output to the Rule, as shown in Figure 13-14.

Figure 13-14    workflowtype Variable Output Mapping

14. Add an Assign activity before the WorkflowSelection rule and rename it as
AssignRuleInput, as shown in Figure 13-15.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-23



Figure 13-15    AssignRuleInput

15. Map the output of the InvokeCatalogOperation to the catalogData variable, as shown in 
Figure 13-16.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-24



Figure 13-16    catalogData Variable Output Mapping

16. Switch to the SOA Composite view.

17. Right-click the Business Rule component, and select Edit.

18. Click Create Rule.

19. Rename the rule from Rule1 to Auto Approval.

20. Edit the rule so that items without Low, Medium, or High risk values are staged as Auto
approval. To do this: , as shown in Figure 13-17.

a. Click the <insert test> action below IF and select simple test. Define this as:

CatalogDataType.itemRisk != 3
b. Select the first test and use the Insert After option to add another simple test:

CatalogDataType.itemRisk != 5
c. Select the previous test and again use the Insert After option to add the final simple

test

CatalogDataType.itemRisk != 7

As a result of these additions, the IF condition shows:

CatalogDataType.itemRisk != 3 and
    CatalogDataType.itemRisk != 5 and
    CatalogDataType.itemRisk != 7

d. Click <insert_action> action below THEN, and select assert new.

e. Click <target> that is added next to assert new, and select Stage.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-25



f. Click <edit properties> and type in the value Auto in the Properties dialog box, as
shown in Figure 13-17.

Figure 13-17    The stageType Property

21. Similarly, create the Manager, Serial, and Parallel approval rules, as shown in 
Figure 13-18.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-26



Figure 13-18    Approval Rules

22. Switch to the BPEL process.

23. Add a switch activity after the WorkflowSelection rule, as shown in Figure 13-19.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-27



Figure 13-19    Switch Activity

24. Select the Switch activity and add two Switch Case steps, as shown in Figure 13-20.

Figure 13-20    Switch Case Steps

25. Rename the conditions as Serial Approval, Parallel Approval, and Manager Approval, as
shown in Figure 13-21.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-28



Figure 13-21    Renamed Conditions

26. Drag the default Human Task into the Manager Switch Case, as shown in Figure 13-22.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-29



Figure 13-22    Dragging Default Human Task

27. Switch to the SOA Composite view.

28. Add two Human Tasks, SerialApproval and ParallelApproval, as shown in Figure 13-23.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-30



Figure 13-23    Adding Human Tasks

29. Switch to the BPEL Process.

30. Edit the Manager Approval Switch case, and add the following expression:

bpws:getVariableData('workflowtype','/ns18:StageOutput/ns18:stageType')='Manager'

You must first configure the newly added Tasks and then wire them to the BPEL Process.

Note:

Oracle recommends using expression builder to add the expression..

13.4.5.4 Configuring Human Tasks
This section describes how to configure the Human Task. It consists of the following topics:

• Configuring the Parallel Human Task

• Properties of the Parallel Approval Task

• Configuring the Serial Approval Task

• Properties of the Serial Approval Task

• Configuring the Default Approval Task

13.4.5.4.1 Configuring the Parallel Human Task

To configure the parallel Human Task:

1. Switch to the SOA Composite view. Edit the Parallel Approval Task.

2. Click the Data tab, and add the attributes listed in Properties of the Parallel Approval Task.

3. Verify the task parameters in the Data tab, and then click the General tab.

4. Set the Task Title to <%/task:task/task:payload/ns2:BeneficiaryDetails/
ns2:DisplayName%> has submitted a request for approval. To do so:

Chapter 13
Developing Workflows: Vision Request Tutorial

13-31



a. Click Edit next to Task Title, and select task:payload, ns2:BeneficiaryDetails,
ns2:DisplayName.

b. Click Insert Into Expression. Task Title is displayed as shown in Figure 13-24:

Figure 13-24    The Task Title

<%/task:task/task:payload/ns2:BeneficiaryDetails/ns2:DisplayName%>

This can be edited to configure meaningful title, such as:

<%/task:task/task:payload/ns2:BeneficiaryDetails/ns2:DisplayName%> has submitted 
a request for approval.

5. Set the Task Owner to Group and SYSTEM ADMINISTRATORS, and set the Category
using the By name option with approvals.

6. Click the Notification tab, and then click Advanced.

7. Select the Make notification actionable option. Deselect the Show worlist/workspace
url in notifications option.

8. Click the Assignment tab.

9. Add a Parallel stage. To do so, drag and drop a Single Participant from the Workflow Editor
to the Stage1 box. Repeat the process adding a second Single Participant just to the right
of the first one.

10. Configure the Voted Outcome details. To do so, select the pencil icon just below the two
stages. In the Properties box:

a. Set Voted Outcomes to APPROVE, leaving Outcome Type as "By Percentage" and
Value as "50".

Chapter 13
Developing Workflows: Vision Request Tutorial

13-32



b. Set the Default Outcome to REJECT.

c. Select the Share attachments and comments and the Immediately trigger voted
outcome when minimum percentage is met options.

11. Edit the Manager stage. To do this, select the Stage1.Participant1 stage. In the Properties
box:

a. Change the Label to Manager, as shown in Figure 13-25.

Figure 13-25    Manager and Review Team Stages

b. From the Build a list of participants drop down box, select Rule-based.

c. In the List Ruleset field, enter Manager, then click the plus icon to the right of the field.

12. From the General Rules box on the Overview tab of the Manager Rule Set, click the Add
icon to create a new rule.

13. Create the participant list rule as shown in Figure 13-26.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-33



Figure 13-26    Manager Participant Rule

14. Edit the ReviewTeam stage. To do this, select the Stage1.Participant2 stage. In the
Properties box:

a. Change the Label to ReviewTeam.

b. From the Build a list of participants drop down box, select Rule-based.

c. In the List Ruleset field, enter ReviewTeam, and then click the plus icon to the right of
the field.

15. From the General Rules box on the Overview tab of the ReviewTeam Rule Set, click the
Add icon to create a new rule. If ReviewTeam does not show under Rule Sets, then use
the Add icon to create it manually.

16. Create the participant list rule as shown in Figure 13-27.

Figure 13-27    Review Team Participant Rule

13.4.5.4.2 Properties of the Parallel Approval Task

Table 13-2 lists the attributes of the Data tab when you configure a parallel approval task.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-34



Table 13-2    Attributes of the Data Tab for Parallel Human Task

Patameter Data Type

RequestID {http://www.w3.org/2001/XMLSchema}string

RequestModel {http://www.w3.org/2001/XMLSchema}string

RequestTarget {http://www.w3.org/2001/XMLSchema}string

RequesterDetails {http://xmlns.oracle.com/request/RequestDetails}RequesterDetails

BeneficiaryDetails {http://xmlns.oracle.com/request/RequestDetails}BeneficiaryDetails

ObjectDetails {http://xmlns.oracle.com/request/RequestDetails}ObjectDetails

OtherDetails {http://xmlns.oracle.com/request/RequestDetails}OtherDetails

url {http://xmlns.oracle.com/request/RequestDetails}url

Catalogdata {http://xmlns.oracle.com/RequestServiceApp/RequestDataService/
CatalogData}CatalogData

RequesterDisplayName {http://www.w3.org/2001/XMLSchema}string

BeneficiaryDisplayName {http://www.w3.org/2001/XMLSchema}string

Requester {http://www.w3.org/2001/XMLSchema}string

13.4.5.4.3 Configuring the Serial Approval Task
To configure the serial approval task:

1. Switch to the SOA Composite view. Edit the Serial Approval Task.

2. Click the Data tab.

3. Add the parameters listed in Properties of the Serial Approval Task.

4. Verify the task parameters in the Data tab, and then click the General tab.

5. Set the Task Title to <%/task:task/task:payload/ns2:BeneficiaryDetails/
ns2:DisplayName%> has submitted a request for approval.

6. Set the Task Owner to Group and SYSTEM ADMINISTRATORS and set the Category
using the By name option with approvals.

7. Click the Notification tab, and then click Advanced.

8. Select the Make notification actionable option. Deselect the Show worlist/workspace
url in notifications option.

9. Click the Assignment tab.

10. Add a Sequential stage. To do so, drag and drop a Single Participant from the Workflow
Editor to the Stage1 box. Repeat the process by adding a second Single Participant just
below the first one, as shown in Figure 13-28.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-35



Figure 13-28    Serial Stages

11. Edit the Manager stage. To do this, select the Stage1.Participant1 stage. In the Properties
box:

a. Change the label to Manager.

b. From the Build a list of participants drop down, select Rule-based.

c. In the List Ruleset field, enter Manager, and then click the plus icon to the right of the
field.

12. From the General Rules box on the Overview tab of the Manager Rule Set, click the Add
icon to create a new rule.

13. Create the participant list rule as shown in Figure 13-29.

Figure 13-29    Rule for Manager Stage

Chapter 13
Developing Workflows: Vision Request Tutorial

13-36



14. Edit the ReviewTeam stage. To do this, select the Stage1.Participant2 stage. In the
Properties box:

a. Change the label to ReviewTeam.

b. From the Build a list of participants drop down, select Rule-based.

c. In the List Ruleset field, enter ReviewTeam, and then click the plus icon to the right of
the field.

15. From the General Rules box on the Overview tab of the ReviewTeam Rule Set, click the
Add icon to create a new rule.

16. Create the participant list rule, as shown in Figure 13-30.

Figure 13-30    Rule for Review Team Stage

13.4.5.4.4 Properties of the Serial Approval Task
Table 13-3 lists the attributes of the Data tab when you configure the serial approval task.

Table 13-3    Attributes of the Data Tab for Serial Approval Task

Parameter Data Type

RequestID {http://www.w3.org/2001/XMLSchema}string

RequestModel {http://www.w3.org/2001/XMLSchema}string

RequestTarget {http://www.w3.org/2001/XMLSchema}string

RequesterDetails {http://xmlns.oracle.com/request/RequestDetails}RequesterDetails

BeneficiaryDetails {http://xmlns.oracle.com/request/RequestDetails}BeneficiaryDetails

ObjectDetails {http://xmlns.oracle.com/request/RequestDetails}ObjectDetails

OtherDetails {http://xmlns.oracle.com/request/RequestDetails}OtherDetails

url {http://xmlns.oracle.com/request/RequestDetails}url

Catalogdata {http://xmlns.oracle.com/RequestServiceApp/RequestDataService/
CatalogData}CatalogData

RequesterDisplayName {http://www.w3.org/2001/XMLSchema}string

BeneficiaryDisplayName {http://www.w3.org/2001/XMLSchema}string

Requester {http://www.w3.org/2001/XMLSchema}string

Chapter 13
Developing Workflows: Vision Request Tutorial

13-37



13.4.5.4.5 Configuring the Default Approval Task
To configure the default approval task:

1. Switch to SOA composite view. Edit the Approval Task.

2. Click the General tab.

3. Set the task title, as shown in Figure 13-31.

Figure 13-31    Default Approval Task

4. Click Assignment.

5. Edit the Manager stage. To do this, select the approvalApp.approvalTask.assignee stage.
In the Properties box:

a. Change the Label to Manager.

b. From the Build a list of participants drop down, select Rule-based.

c. In the List Ruleset field, enter Manager, then click the plus icon to the right of the field.

6. From the General Rules box on the Overview tab of the Manager Rule Set, click the Add
icon to create a new rule.

7. Create the Participant list rule, as shown in Figure 13-32.

Figure 13-32    Participant List Rule

Chapter 13
Developing Workflows: Vision Request Tutorial

13-38



13.4.5.5 Configuring the Human Task and BPEL Mappings
Configuring the Human Task and BPEL mappings involves:

• Configuring the Serial Approval Human Task

• Configuring the Parallel Human Task

• Configuring Auto Approval

13.4.5.5.1 Configuring the Serial Approval Human Task

To configure the serial approval Human Task:

1. Switch to BPEL process. Add the following condition to the Serial Approval switch:

bpws:getVariableData('workflowtype','/ns18:StageOutput/ns18:stageType') = 'Serial'
2. Drag and drop a Human Task activity from the SOA Components into the Serial Approval

switch, as shown in Figure 13-33.

Figure 13-33    Human Task Activity

3. Edit the Human Task, and in the Human Task dialog box, select the Serial Approval Human
Task definition.

4. Map Initiator to requester login, and map the task parameters to the BPEL variable as
shown in Figure 13-34.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-39



Figure 13-34    Task Parameters and BPEL Variable Mapping

5. Click the Advanced tab. Map the Identification Key to the Request ID as shown in 
Figure 13-35.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-40



Figure 13-35    Identification Key and Requester ID Mapping

6. Map Initiator to requester login, and then click Apply and OK.

7. Select the Switch case for Task outcome is REJECT.

8. Replace the existing condition script with the following:

bpws:getVariableData('SerialApproval1_globalVariable','payload','/task:task/
task:systemAttributes/task:outcome') = 'REJECT'

9. Select and edit the Assign activity under Task outcome is REJECT.

10. Delete all the copy rules except one. The copy rule that you retain can be any one so that
you can replace it in the Source view.

11. Save and click the Source tab. Then select the copy activity.

12. Replace the activity with the following:

<sequence>
   <assign>
      <copy>
                <from expression="string('rejected')"/>
                <to variable="outputVariable"
                    part="payload"

Chapter 13
Developing Workflows: Vision Request Tutorial

13-41



                    query="/ns3:processResponse/ns3:result"/>
      </copy>
      <copy>
                <from expression="ora:getConversationId()"/>
                <to variable="Invoke_1_callback_InputVariable_1"
                    part="parameters"
                    query="/ns1:callback/arg0"/>
      </copy>
      <copy>
               <from expression="string('rejected')"/>
               <to variable="Invoke_1_callback_InputVariable_1"
                   part="parameters"
                   query="/ns1:callback/arg1"/>
      </copy>
   </assign>
</sequence>

13. Repeat the steps for the Task outcome is APPROVE. Select the Switch Case and copy the
following in the Condition field:

bpws:getVariableData('SerialApproval1_globalVariable','payload','/task:task/
task:systemAttributes/task:outcome') = 'APPROVE'

14. Select the Assign activity under the Approve outcome, and replace the copy rules with the
following:

<sequence>
          <assign>
            <copy>
                  <from expression="string('approved')"/>
                  <to variable="outputVariable"
                      part="payload"
                      query="/ns3:processResponse/ns3:result"/>
            </copy>
            <copy>
                <from expression="ora:getConversationId()"/>
                <to variable="Invoke_1_callback_InputVariable_1"
                    part="parameters"
                    query="/ns1:callback/arg0"/>
            </copy>
            <copy>
               <from expression="string('approved')"/>
               <to variable="Invoke_1_callback_InputVariable_1"
                   part="parameters"
                   query="/ns1:callback/arg1"/>
            </copy>
          </assign>
</sequence>

15. Select the Assign activity under the Otherwise outcome, and replace the copy rules with
the following:

<sequence>
    <assign>
        <copy>
             <from 
expression="bpws:getVariableData('SerialApproval1_globalVariable','payload','/
task:task/task:systemAttributes/task:state')"/>
             <to variable="outputVariable" part="payload"
                        query="/ns3:processResponse/ns3:result"/>
         </copy>
         <copy>
            <from expression="ora:getConversationId()"/>
            <to variable="Invoke_1_callback_InputVariable_1"

Chapter 13
Developing Workflows: Vision Request Tutorial

13-42



                part="parameters"
                query="/ns1:callback/arg0"/>
         </copy>
         <copy>
            <from 
expression="bpws:getVariableData('SerialApproval1_globalVariable','payload','/
task:task/task:systemAttributes/task:state')"/>
            <to variable="Invoke_1_callback_InputVariable_1"
                part="parameters"
                query="/ns1:callback/arg1"/>
         </copy>
         </assign>
</sequence>

13.4.5.5.2 Configuring the Parallel Human Task

To configure the parallel Human Task:

1. Add the following condition to the Parallel Approval switch activity:

bpws:getVariableData('workflowtype','/ns18:StageOutput/ns18:stageType') = 'Parallel'
2. Drag and drop a Human Task activity from the SOA Components into the Parallel Approval

switch.

3. Select the Parallel Approval Human Task.

4. Map the Human Task parameters in the same way as the Serial Human Task.

5. Map the Assign activity for the APPROVE outcome in the same way as the equivalent in
the Serial Human Task.

6. Map the Assign activity for the REJECT outcome in the same way as the equivalent in the
Serial Human Task.

7. Map the Assign activity for the Otherwise outcome in the same way as the equivalent in
the Serial Human Task.

Note:

You must specify appropriate global variable (ParallelApproval1_globalVariable)
in the copy activity.

13.4.5.5.3 Configuring Auto Approval

To configure auto approval:

1. Drag and drop an Assign activity in the Otherwise switch case.

2. Select the Assign activity, and switch to Source view.

3. In the Assign activity, replace the following:

<assign name="Assign1"/>

With:

<sequence>
          <assign>
            <copy>

Chapter 13
Developing Workflows: Vision Request Tutorial

13-43



                  <from expression="string('approved')"/>
                  <to variable="outputVariable"
                      part="payload"
                      query="/ns3:processResponse/ns3:result"/>
            </copy>
            <copy>
                <from expression="ora:getConversationId()"/>
                <to variable="Invoke_1_callback_InputVariable_1"
                    part="parameters"
                    query="/ns1:callback/arg0"/>
            </copy>
            <copy>
               <from expression="string('approved')"/>
               <to variable="Invoke_1_callback_InputVariable_1"
                   part="parameters"
                   query="/ns1:callback/arg1"/>
          </copy>
       </assign>
</sequence>

13.4.5.6 Deploying the SOA Composite
To deploy the SOA composite:

1. Select File, Save All to save your work.

2. Right-click the project, and select Deploy, COMPOSITE_NAME, Deploy to Application
server. Alternatively, you can deploy to SAR (SOA Archive ), and then deploy it by using
Oracle Enterprise Manager.

Note:

• The default version is 1.0. You can also change the version, if you have
existing composite instances running.

• If you are redeploying the composite and you have added or removed one or
more human tasks, then it is recommended to deploy with a different version.

13.4.5.7 Creating the Workflow Rules
The SOA composite that you have created can be used for the single and bulk operations. To
ensure that the composite is invoked for particular operations, you must create a workflow rule
in Oracle Identity Manager.

To create workflow rules in Oracle Identity Manager:

1. Login to Oracle Identity System Administration.

2. On the left navigation pane, under Workflows, click Approval.

3. Create a workflow rule for the Bulk Provision Application Instance operation, and set it to
auto approve. See Configuring Approval Workflow Rules in Administering Oracle Identity
Governance for information about creating and managing workflow rules.

4. Create a workflow rule for the Provision Application Instance operation, and specify that
the composite you deployed will be invoked.

Chapter 13
Developing Workflows: Vision Request Tutorial

13-44



Note:

While it is possible to create multiple SOA composites for each type of request, it is
recommended that you use a single SOA composite (as demonstrated in this tutorial)
and create multiple Human Tasks. You can use rules created by using Oracle
Business Rules to pick a Human Task (as demonstrated in this tutorial).

Tip:

You can access custom attribute's value of entities, such as catalog, user, role, or
organization, supported by the request web service is SOA composite BPEL process.
The custom attributes or UDFs are part of the CustomAttribute element. An instance
of catalog entity containing UDF is:

<ns12:CustomAttribute Name="ApproverRolePhoneNumber">
    <ns5:Value>1234</ns5:Value>
</ns12:CustomAttribute>
<ns12:CustomAttribute Name="ApproverRoleEmailId">
   <ns5:Value>approver@example.com</ns5:Value>
</ns12:CustomAttribute>

For example, to access the ApproverRolePhoneNumber catalog UDF value in BPEL
process, specify the following:

bpws:getVariableData('catalogDetails','CatalogData','/ns22:CatalogData/
ns22:CustomAttribute[@Name = string("ApproverRolePhoneNumber")]/ns24:Value')

13.5 Configuring Default Approval Composites for Single and
Bulk Operations

The request-level composite is applicable to bulk requests, and the operation-level composite
is applicable to single and child requests.

You can configure the default composites by setting the DefaultRequestLevelComposite and
DefaultOperationLevelComposite properties in the oim-config.xml file. You can edit these
properties by using System MBean Browser in Oracle Enterprise Manager. The default values
for these properties are default/DefaultRequestApproval!6.0 and default/
DefaultOperationalApproval!6.0 respectively.

The values for these properties are in the following format:

NAMESPACE/COMPOSITE_NAME!VERSION

For example:

default/AddAccessApproval!2.0

If you change the default values of the DefaultRequestLevelComposite and
DefaultOperationLevelComposite properties, then you must restart Oracle Identity Manager.

Chapter 13
Configuring Default Approval Composites for Single and Bulk Operations

13-45



13.6 Creating and Deploying Custom Task Details Taskflow
Build your own taskflow, and configure the human task in the DefaultRequestApproval
composite to invoke your custom taskflow.

By default, all tasks are configured to use the default task details page in pending approvals.
This taskflow is not customizable. However, you might want to customize the UI or show some
other information in the task details page. This section describes how to build your own
taskflow, and configure the human task in the DefaultRequestApproval composite to invoke
your custom taskflow.

This section contains the following topics:

• Prerequisites for Developing Custom Task Details Taskflow

• Developing Custom Task Details Taskflow

• Developing Custom Task Details for Email Notification (Optional)

• Deploying the Task Details Taskflow

• Configuring Human Task to Use the Custom Taskflow

• Testing the Custom Taskflow

13.6.1 Prerequisites for Developing Custom Task Details Taskflow
Install Oracle Identity Manager, SOA, and JDeveloper for developing custom task details
taskflow.

Before developing a custom task details taskflow, you must have the following software
installed on your computer:

• Oracle Identity Governance 12c (12.2.1.3.0)

• Oracle SOA 12c (12.2.1.3)

• JDeveloper 12c (12.2.1.3) installed from a SOA Quick Start distribution, as described in 
Installing Oracle SOA Suite Quick Start for Developers in Installing Oracle SOA Suite and
Business Process Management Suite Quick Start for Developers

13.6.2 Developing Custom Task Details Taskflow
You build a custom taskflow for the human task in the DefaultRequestApproval composite.

This section describes how to develop the custom taskflow. It contains the following topics:

• Building a Custom Taskflow: Broad-Level Steps

• Adding Managed Beans for the Task Details Page

• Creating the Details Page Structure

• Populating the Request Information Tab

• Populating the Task Information Tab

13.6.2.1 Building a Custom Taskflow: Broad-Level Steps
To build a custom taskflow for the human task in the DefaultRequestApproval composite:

Chapter 13
Creating and Deploying Custom Task Details Taskflow

13-46



1. Open Jdeveloper and create a new Generic Application. To do so:

a. Enter Application Name as RequestApprovalTaskDetailsApp, and then click Next.

b. Enter Project Name as RequestApprovalTaskDetails. Do not select any project
technologies.

c. Click Finish.

2. Add Oracle Identity Manager shared library. To do so:

a. Right-click RequestApprovalTaskDetails project, and select Project Properties,
Libraries and Classpath.

b. Click Add Library.

c. Click Load Dir.

d. Navigate to the IAM_HOME/server/jdev.lib/ directory, and click Select.

Note:

IAM_HOME is the path to the Oracle Identity Manager home directory, for
example, BEA_HOME/Oracle_IDM1/. Here, BEA_HOME is the path to the
middleware directory in Oracle Identity Manager installation.

e. Select OIM View Shared library, OIM Model Shared library, and then click OK.

f. Click OK.

3. Create task details taskflow. To do so:

a. Navigate to the following directory in shiphome:

IAM_HOME/server/workflows/composites/

b. Unzip the DefaultRequestApproval.zip file.

c. Go back to Jdeveloper, right-click RequestApprovalTaskDetails, and select New.

d. Select Web Tier, JSF, ADF task flow based on human task.

e. In the file browser, navigate to the directory in which you unzipped
DefaultRequestApproval.zip. Select the DefaultRequestApproval/ApprovalTask.task
file

f. In the Create Task flow dialog box, provide the following values:

File Name: request-approval-details-tf.xml

Directory: Make sure that the taskflow is created under the WEB-INF/oracle/iam/ui/
custom/ directory. All taskflows under the WEB-INF/oracle/iam/ui/custom/ directory are
secured with view permission.

Task Flow ID: request-approval-details-tf

g. Click OK.

4. Delete hwtaskflow.xml. To do so, go to Application Sources under
RequestApprovalTaskDetails project, and then delete hwtaskflow.xml.

5. Create the task details page. To do so:

a. Open request-approval-details-tf.xml. Switch to diagram mode.

b. Rename taskdetails1_jspx view activity to request-approval-details.

Chapter 13
Creating and Deploying Custom Task Details Taskflow

13-47



c. Right-click the request-approval-details view activity, and select Create Page.
Provide the following values:

File name: request-approval-details.jspx

Directory: Place the JSPX file under the public_html/oracle/iam/ui/custom/ directory.

Initial Page layout and content: Blank Page

d. Click OK.

6. Add managed bean for the task details page, as described in Adding Managed Beans for
the Task Details Page.

7. Create the details page structure, as described in Creating the Details Page Structure.

8. Populate the Request Information tab, as described in Populating the Request
Information Tab.

9. Populate the Task Information tab, as described in Populating the Task Information Tab.

13.6.2.2 Adding Managed Beans for the Task Details Page
To add managed bean for the task details page:

1. Right-click the RequestApprovalTaskDetails project, and select New, Java Class.
Provide the following values:

Name: RequestApprovalDetailsStateBean

Package: oracle.iam.ui.custom.view.backing

2. Click OK.

3. Add the following code to the managed bean:

package oracle.iam.ui.custom.view.backing;
 
import javax.el.ELContext;
import javax.el.ExpressionFactory;
import javax.el.ValueExpression;
 
import javax.faces.application.Application;
import javax.faces.context.FacesContext;
 
import oracle.iam.ui.platform.model.config.ConstantsDefinition;
 
 
public class RequestApprovalDetailsStateBean implements java.io.Serializable{
    public RequestApprovalDetailsStateBean() {
        super();
    }
    
    private String requestAction = 
ConstantsDefinition.REQUEST_ACTION_APPROVAL_UPDATE;
    private String requestType = ConstantsDefinition.REQUEST_TYPE_VIEW_DETAIL;
    
    public void setRequestAction(String requestAction) {
        this.requestAction = requestAction;
    }
 
    public String getRequestAction() {
        return requestAction;
    }
 
    public void setRequestType(String requestType) {

Chapter 13
Creating and Deploying Custom Task Details Taskflow

13-48



        this.requestType = requestType;
    }
 
    public String getRequestType() {
        return requestType;
    }
    
    public String getUserIds() {
        Object benefDisplayName = 
getValueFromELExpression("#{bindings.DisplayName.inputValue}");
        //benefDisplayName would be "None" if beneficiary does not exist
        if (benefDisplayName != null &&             !
ConstantsDefinition.NONE_BENEF_DISPLAY_NAME.equalsIgnoreCase(benefDisplayName.toStrin
g()))
            return benefDisplayName.toString();
        
        Object requestTarget = 
getValueFromELExpression("#{bindings.RequestTarget.inputValue}");
        if (requestTarget != null)
            return requestTarget.toString();
        
        return "";
    }
    
    private Object getValueFromELExpression(String expression) {
        FacesContext facesContext = FacesContext.getCurrentInstance();
        Application app = facesContext.getApplication();
        ExpressionFactory elFactory = app.getExpressionFactory();
        ELContext elContext = facesContext.getELContext();
        ValueExpression valueExp =
            elFactory.createValueExpression(elContext, expression,
                                            Object.class);
        return valueExp.getValue(elContext);
    }
    
    
}

4. Open request-approval-details-tf.xml in Overview mode. Select Managed Beans sections
and register the managed bean with the following details:

Name: requestApprovalDetailsStateBean

Class: oracle.iam.ui.custom.view.backing.RequestApprovalDetailsStateBean

Scope: pageFlow

13.6.2.3 Creating the Details Page Structure
To create the task details page structure:

1. Open request-approval-details.jspx.

2. From the Component Palette, add a panelStretchLayout to the page. In the Property
Inspector, set TopHeght==auto for panelStretchLayout.

3. Go to Data controls in Application Navigator. Expand
RequestApprovalTaskDetails_ApprovalTask, getTaskDetails, Return. Drag and drop
Task from Data Controls on to the Top Facet of panelStretchLayout, as shown in 
Figure 13-36. From the context menu, select Human Task, Task Action. The Human task
actions are added to the Top Facet.

Chapter 13
Creating and Deploying Custom Task Details Taskflow

13-49



Figure 13-36    Dragging Task to the Top Facet

4. From the Component Palette, add a panelTabbed layout to the Center Facet of
panelStretchLayout.

5. From the Component Palette, add two showdetailItem components to the panelTabbed
layout. From property inspector, set the text name for these components as Request
Information and Task Information.

6. Click the Request Information tab. From the property inspector, set attribute
stretchChildren=first.

7. Add another panelStretchLayout in Request Information tab. Set attribute
topHeight=auto for this panelStretchLayout. Figure 13-37 shows the Request Information
and Task Information tabs.

Chapter 13
Creating and Deploying Custom Task Details Taskflow

13-50



Figure 13-37    The panelTabbed Layout

13.6.2.4 Populating the Request Information Tab
To populate the Request Information tab:

1. Go to Navigator Display Options, and select Show Libraries, shown in Figure 13-38. This
will show OIM View Shared Library in the Application Navigator.

Chapter 13
Creating and Deploying Custom Task Details Taskflow

13-51



Figure 13-38    OIM View Shared Library

2. In the Application Navigator, expand OIM View Shared Library, WEB-INF/oracle/iam/ui/
catalog/tfs. Drag and drop request-summary-information-tf.xml to the Top Facet of
PanelStretchLayout added in step 7g. The Create context menu is displayed. Select
Region.The Edit Task Flow Binding dialog box is displayed. You can provide parameters to
the taskflow later. Therefore, click OK.

3. Similarly, drag and drop catalog-tf.xml to the Center Facet of PanelStretchLayout added
in step 7g. The Create context menu is displayed. Select Region. The Edit Task Flow
Binding dialog box is displayed. Click OK.

4. Click the Bindings tab at the bottom of the page to view the bindings. Click the plus (+)
sign to add a binding in the following way:

Chapter 13
Creating and Deploying Custom Task Details Taskflow

13-52



i) Enter the following and click OK:

Category: Generic Bindings

Item to be created: attributeValues

ii) Click Add Datasource. Select RequestApprovalTaskDetails_ApprovalTask,
getTaskDetails, Return, Task, Payload. Click OK.

iii) Specify Attribute as RequestID, and click OK.

5. Under executables, select taskflow-requestsummaryinformationtf1. In the Property
Inspector, add a taskflow parameter by clicking the plus (+) sign. Edit the value field, and
update it with #{bindings.RequestID.inputValue}, as shown:

ID=requestID, Value= #{bindings.RequestID.inputValue}

6. Click the plus (+) sign to add another binding. This binding will be referenced in
RequestApprovalDetailsStateBean.

i) Enter the following and click OK:

Category: Generic Bindings

Item to be created: attributeValues

ii) Click Add Datasource. Select RequestApprovalTaskDetails_ApprovalTask,
getTaskDetails, Return, Task, Payload, BeneficiaryDetails. Click OK.

iii) Specify Attribute as DisplayName, and click OK.

7. Click the plus (+) sign to add another binding. This binding will be referenced in
RequestApprovalDetailsStateBean.

i) Enter the following and click OK:

Category: Generic Bindings

Item to be created: attributeValues

ii) From the list, select datasource RequestApprovalTaskDetails_ApprovalTask,
getTaskDetails, Return, Task, Payload.

iii) Specifiy Attribute as RequestTarget, and click OK.

8. Select taskflow-catalogtf1 in Executables, click Edit on the top-right corner of
Executables, and edit the values of the following in the Edit Task flow Binding dialog box:

• Id=requestId, Value= #{bindings.RequestID.inputValue}

• Id=requestType,
Value=#{pageFlowScope.requestApprovalDetailsStateBean.requestType}

• Id=requestAction,
Value=#{pageFlowScope.requestApprovalDetailsStateBean.requestAction}

• Id=userIds, Value=#{pageFlowScope.requestApprovalDetailsStateBean.userIds}

13.6.2.5 Populating the Task Information Tab
To populate the Task Information tab:

1. Switch to Design mode. Click the Task Information tab.

2. In the Application Navigator, go to Data Controls. Expand
RequestApprovalTaskDetails_ApprovalTask, getTaskDetails, Return. Drag and drop
Task in the Task Information tab. The Create context menu is displayed. Select Human
Task, Complete Task without Payload, as shown in Figure 13-39.

Chapter 13
Creating and Deploying Custom Task Details Taskflow

13-53



Figure 13-39    Task Details DataControl

3. A panelHeader wrapped inside panelGroupLayout is added to the Task Information tab.
Navigate to the panelHeader and delete the Toolbar Facet of the panelHeader. The task
actions have already been in step 7c). In addition, task details, task history, comments, and
attachments are also added to the Task Information tab.

4. Save your work.

13.6.3 Developing Custom Task Details for Email Notification (Optional)
By default, for sending email notification, if there is no separate page for email, then the same
task details page that is developed is sent in email notification.

Sometimes, limited information needs to be sent in email notification. In such scenarios,
separate page for email notification can be developed. The email page will also be part of the
same task details taskflow.

For more information on building custom taskflow for email, see Creating an Email Notification
in the Developer's Guide for Oracle SOA Suite.

13.6.4 Deploying the Task Details Taskflow
Task details taskflow is deployed by deploying the task details as an ADF library JAR and
packaging the adflibRequestApprovalTaskDetails.jar in custom shared library.

To deploy the task details taskflow:

1. Deploy the Task Details as an ADF library jar. To do so:

a. Right-click RequestApprovalTaskDetails, Project Properties, Deployment.

b. Click New. The Create deployment profile dialog box is displayed.

c. Provide following values, and click OK.

Archive Type: ADF Library Jar File

Chapter 13
Creating and Deploying Custom Task Details Taskflow

13-54



Name: adflibRequestApprovalTaskDetails

d. Right-click RequestApprovalTaskDetails, and select Deploy,
adflibRequestApprovalTaskDetails.

e. In the deployment action popup, click Finish.

2. Package the adflibRequestApprovalTaskDetails.jar in custom shared library. To do so:

a. Navigate to the IAM_HOME/server/apps/ directory.

b. Create following directory structure:

WEB-INF/lib/

c. Copy adflibRequestApprovalTaskDetails.jar to the WEB-INF/lib/ directory.

d. Update IAM_HOME/server/apps/ oracle.iam.ui.custom-dev-starter-pack.war to add
adflibRequestApprovalTaskDetails.jar. For example:

jar uvf oracle.iam.ui.custom-dev-starter-pack.war WEB-INF/*
3. Restart Oracle Identity Manager managed server for the changes to custom shared library

to take effect.

13.6.5 Configuring Human Task and Taskflow Permissions
After deploying the task details taskflow, you can configure the human task and taskflow
permissions.

Configuring the human task and taskflow permissions involves the following:

• Adding View Permission for Custom Taskflow

• Configuring Human Task to Use the Custom Taskflow

13.6.5.1 Adding View Permission for Custom Taskflow
To add view permission for custom taskflow by using Authorization Policy Manager (APM):

1. Login to APM application as WebLogic user.

2. Navigate to Applications, OracleIdentityManager, Resource Types. Click Open.

3. Click New to create a new resource type. Provide following details, and then click Save.

• Display Name: ADF Taskflows

• Name: ADFTaskFlows

• Actions: personalize, customize, grant, view. Click New to add each action.

• Supports Resource Hierarchy: No

• Resource Delimiter: Slash(/)

• Evaluation Logic: Permission Class

• Permission Class: oracle.adf.controller.security.TaskFlowPermission

• Action Name Delimiter: Comma(,)

4. Navigate to Applications, OracleIdentityManager, Default Policy Domain, Resource
Catalog, Resources. Click Open.

5. Click New to create a new resource. Provide the following values, and then click Save.

• Resource Type: Select the resource type created in step 3.

Chapter 13
Creating and Deploying Custom Task Details Taskflow

13-55



• Display Name: Provide a display name for your custom taskflow.

• Name: Provide the name of the custom taskflow in the following format:

TASKFLOW_DOCUMENT#TASKFLOW_ID

For example:

/WEB-INF/request-approval-details-tf.xml#request-approval-details-tf
• Description: Provide a description for the custom taskflow.

Note:

For each custom taskflow, you must create a resource as mentioned in step 1(f).
You can use the same resource type that you created in step 1(c) for all your
custom taskflows.

6. Navigate to Applications, OracleIdentityManager, Default Policy Domain,
Authorization Policies. Click Open.

7. Select Find By Principal, and click Search. If you want to add to a displayed existing
policy, then select it and click Open. Otherwise, click New to create a policy.

8. Add name and principals for the new policy.

9. Click Add Targets (+) sign. The Search Targets dialog box is displayed.

10. Click the Resources tab. Provide the resource type as defined in step 5, and then click
Search.

11. Select the resource created in step 5. Click Add Selected.

12. Click Add Targets. The resource is added to the Targets table.

13. Expand the resource that you added to the table. Select the permissions you want to apply
to the taskflow. When finished, click Apply.

13.6.5.2 Configuring Human Task to Use the Custom Taskflow
To configure the human task to use the custom taskflow:

1. Login to Oracle Enterprise Manager as WebLogic user.

2. Navigate to Farm_IAM_DOMAIN, SOA, soa_infra (SOA_SERVER), default,
DefaultRequestApproval [4.0].

3. Click Component Metrics, Approval Task.

4. Click the Administration tab.

5. Modify the URI in the existing entry to point to the custom taskflow, as shown:

• Application Name: ANY_NAME

• Host Name: OIM_SERVER_HOSTNAME

• HTTP Port: OIM_HTTP_PORT

• HTTPS Port: OIM_HTTPS_PORT (Optional)

• URI: /identity/faces/adf.task-flow?_id=request-approval-details-tf&_document=WEB-
INF/oracle/iam/ui/custom/request-approval-details-tf.xml

Chapter 13
Creating and Deploying Custom Task Details Taskflow

13-56



Note:

The URI is of the following format:

/identity/faces/adf.task-flow?
_id=TASKFLOW_ID&_document=TASKFLOW_DOCUMENT

13.6.6 Testing the Custom Taskflow
Test the custom taskflow by creating a request and verifying the Task Details link in Pending
Approvals.

To test custom taskflow:

1. Login to Oracle Identity Self Service as an end user.

2. Go to My Information, and modify the value of the Telephone attribute. A request is created
and the task is assigned to the System Administrator.

3. Login to Oracle Identity Self Service as System Administrator.

4. Go to Pending Approvals.

5. Click the Task Details link of the corresponding request. The custom task details page is
displayed.

13.7 Extending Request Management Operations
You can customize certain aspects of request management operations to allow greater
flexibility and implement customized logic for additional functionality. To achieve this, you can
use request management plug-ins. There are plug-in points that you can use to implement
customization.

This section discusses the plug-in points in the following topics:

• Running Custom Code Based on Request Status Change

• Validating Request Data

• Prepopulation of an Attribute Value During Request Creation

• Enabling Request Approval by Account Beneficiary

13.7.1 Running Custom Code Based on Request Status Change
A request undergoes change in status at each stage of its lifecycle. The request engine
exposes a plug-in point that allows running of custom code during request status change. A
plug-in with custom code that extends this plug-in point can be implemented and registered for
running the code.

The plug-in point is the oracle.iam.request.plugins.StatusChangeEvent interface with the
public void followUpActions(String reqId) method. This method consists of the request id
parameter, using which the request details can be obtained with the help of request
management APIs.

Chapter 13
Extending Request Management Operations

13-57



See Also:

Developing Plug-ins for detailed information about plug-ins and plug-in points

Any code that is to be run during the status change must be implemented in the
followUpActions() method in a plug-in class that implements the
oracle.iam.request.plugins.StatusChangeEvent interface. You must specify at which request
status change this plug-in is to be run in the plugin.xml file.

For example, when a request in Oracle Identity Manager moves to the Request Failed status,
you want to run a custom code that sends a notification to an administrator. To do so:

1. Create a new plug-in class with name RequestFailedChangeEvent that implements the
oracle.iam.request.plugins.StatusChangeEvent interface. This class must have the logic of
sending a notification to the administrator in the followUpActions(String reqId) method.

2. Define plugin.xml in following standard format, as specified by the plug-in framework:

<oimplugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <plugins pluginpoint="oracle.iam.request.plugins.StatusChangeEvent">
        <plugin pluginclass="com.mycompany.RequestFailedChangeEvent" version="1.0" 
name="RequestFailedChangeEvent">
            <metadata name="status">
                <value>Request Failed</value>
            </metadata>
         </plugin>
</oimplugins>

In this XML definition, the metadata part specifies at which stage the plug-in must be run.
This is done by specifying the metadata value as Request Failed, which means that the
com.mycompany.RequestFailedChangeEvent plug-in will run when a request moves to the
Request Failed status.

3. Register the plug-in with Oracle Identity Manager. See Registering Plug-ins for information
about registering plug-ins in Oracle Identity Manager.

13.7.2 Validating Request Data
You can use the RequestDataValidator plug-in to add custom validation of request data after
submission.

This section describes how to associate plug-ins with data validators and prepopulation
adapters and illustrates a couple of scenarios. It contains the following topics:

• About Validating Request Data

• Associating Plug-ins With Data Validators and Prepopulate Adapters

• Scenario I: Provisioning Users to a Target System

• Scenario II: Provisioning or Modifying Entitlement Request

13.7.2.1 About Validating Request Data
You can use the RequestDataValidator plug-in to add custom validation of request data after
submission. The plug-in point for this is the
oracle.iam.request.plugins.RequestDataValidator interface with public void
validate(RequestData requesterData) method.

Chapter 13
Extending Request Management Operations

13-58



You can define the dataset validators and prepopulation adatpers associated with the given
plug-in. The request datasets associated with the plug-ins can be defined at the time of plug-in
registration. The plugin.xml file is used to define the association between plug-ins and dataset
validator or prepopulation adapters. The <metadata> node attached with the <plugins>
element is used to define the association between data validators and prepopulation adapters.

Note:

DataSetValidator plug-in specified for a dataset cannot be overridden by the plug-in
enhancement of specifying the validators metadata in the plugin.xml itself. For
instance, the predefined dataset 'ModifyUserDataset' shipped with default validator
does not get overridden by the custom implementation class. Therefore, the validator
in dataset will be given precedence, currently there is no option to override it.

13.7.2.2 Associating Plug-ins With Data Validators and Prepopulate Adapters
The following example shows how the plug-ins can be associated with data validators and
prepopulation adapters.

<?xml version="1.0" encoding="UTF-8"?>
<oimplugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <plugins pluginpoint="oracle.iam.request.plugins.RequestDataValidator">
     <plugin pluginclass= "oracle.iam.plugin.appinst.ApplicationInstanceDataValidator" 
version="1.0" name="AppInstDataValidator">
     <metadata name="DataValidator">
      <value>AppInstanceDataSet|ADAppDataSet|EBSDataSet</value>
   </metadata>
      </plugin>
  </plugins>
</oimplugins>

In this example, the following line of code indicates defining metadata xml element to indicate
that the plug-in is associated with request data validator datasets:

<metadata name="DataValidator">

Note that Attribute name="DataValidator" in the metadata element indicates plug-in
associated with request data validators.

Defining the names of the datasets to be associated with the current plug-in is indicated by the
following line:

<value>AppInstanceDataSet|ADAppDataSet|EBSDataSet</value>

Note:

Request dataset names must be delimited by the single pipe character (|).

13.7.2.3 Scenario I: Provisioning Users to a Target System
Suppose Oracle Identity Manager is configured for provisioning users to the AD User APAC
target. A RequestDataValidator specifies ADUserDataValidator is configured for the
corresponding request dataset, as shown:

Chapter 13
Extending Request Management Operations

13-59



<plugin pluginclass= "oracle.iam.plugin.appinst.ADUserDataValidator" version="1.0" 
name="ADUserDataValidator">
<metadata name="DataValidator">
<value>ADUserAPACDataSet</value>
</metadata>
</plugin>

Later, if the System Configurator wants to configure Oracle Identity Manager for provisioning
users to the AD User EMEA target, then the System Configurator would create a new
application instance, and associate a UI form with it. Request dataset would be auto-generated
in the process. If the data-validator is to be re-used for this request dataset, then perform the
following:

1. Edit plugin.xml of the ADUserDataValidator.

2. In the <metadata> <value> subtag, add the name of the new request dataset separated by
a delimiter. For example:

<value>ADUserAPACDataSet|ADUserEMEADataSet</value>
3. Re-register the data-validator plug-in.

13.7.2.4 Scenario II: Provisioning or Modifying Entitlement Request
Entitlement data provided as part of Provision Entitlement and Modify Entitlement request can
be validated by creating a dataset validator plug-in and specifying the following in the plug-in
metadata (plugin.xml):

<metadata name="DataValidator">
      <value>EBSForm.UD_EBS_RESP</value>
</metadata>

Here, EBSForm is the name of the form associated with the application instance on which the
account is provisioned, and UD_EBS_RESP is the name of the child form corresponding to the
entitlement. UD_EBS_RESP identifies the entitlement type.

13.7.3 Prepopulation of an Attribute Value During Request Creation
Prepopulation plug-in is associated with an attribute reference or attribute in request dataset.
This can be used to prepopulate an attribute value by running custom code during request
creation. Requester can modify the value that is prepopulated if required.

The plug-in point for this is oracle.iam.request.plugins.PrePopulationAdapter with public
Serializable prepopulate(RequestData requestData) method. Use this plug-in only for the
following request types:

Provision Resource, Self-Request Resource, Create User, Self-Register User.

Defining metadata element to indicate that the plug-in is mapped to request data set attributes
for filling up prepopulated data is indicated by the following line:

<metadata name="PrePopulationAdapater">

The association is defined by combining dataset name with attribute name in the following
format:

<DATASET_NAME>::<ATTRIBUTE_NAME>

For example:

AppInstanceDataSet::First Name

Chapter 13
Extending Request Management Operations

13-60



Multiple attributes can be associated with the same prepopulation plug-in, where each
association is separated by the single pipe character (|). For example:

<datasetname1>::<attribute1> | <datasetname2>::<attributename2>|
<datasetname3>::<attribute3>

The following is an example of prepopulation plug-in:

<plugins pluginpoint="oracle.iam.request.plugins.PrePopulationAdapter">
  <plugin pluginclass= "oracle.iam.plugin.appinst.ApplicationInstancePrePopulateAdapter" 
version="1.0" name="AppInstPrepopAdapter">
     <metadata name="PrePopulationAdapater">
   <value>
AppInstanceDataSet::First Name|ADAppDataSet::Last Name
  </value>
   </metadata>
   </plugin>
  </plugins>

Note:

In addition to creating request datasets by using the catalog Form Designer, you can
manually upload request datasets to MDS. You can also define DataSetValidator or
PrepopulationAdapter elements within the request dataset. These dataset validators
or prepoulation adapters configured in the dataset have the highest priority over other
configuration.

For example, a plug-in EBSUserDataValidator is registered to associate it with a
request dataset EBSUSerDataSet, but the dataset has not been created or uploaded.
Another plug-in ADUserDataValidator is registered but not associated with any
request dataset. When you later create the request dataset EBSUSerDataSet and
use it for creating requests, the plug-in EBSUserDataValidator is called for validating
the request data. Then, you add the DataSetValidator element to the request dataset
EBSUSerDataSet that you manually created, and specify another plug-in
ADUserDataValidator. When you use EBSUSerDataSet to create requests, the plug-
in ADUserDataValidator is called. This is because ADUserDataValidator is configured
as a part of the request dataset. If the DataSetValidator entry is removed from
EBSUSerDataSet, then the plug-in EBSUserDataValidator is invoked to validate the
request data.

13.7.4 Enabling Request Approval by Account Beneficiary
Approval by account beneficiary can be enabled by creating a callback class that implements
the IRoutingSlipCallback class.

By default, an account beneficiary cannot approve the request in spite of being a member of an
approver group. However, you can enable request approval by an account beneficiary. For
example, a user requests an account for a beneficiary, and the beneficiary is in an approver
group for the application. The beneficiary logs into Oracle Identity Manager and approves the
account.

To enable account beneficiaries to approve their own accounts:

1. Create a callback class which implements
oracle.bpel.services.workflow.task.IRoutingSlipCallback.onTaskAssigned.

Chapter 13
Extending Request Management Operations

13-61



2. In the implementation, re-assign the task to an ID Admin or other user (as per your
requirements) if the current assignee is Test.Beneficiary.

3. Make sure the callback class is in the classpath of the server.

4. In JDeveloper, specify the callback class on the task status by opening the Approval task.

5. Click the Events tab.

6. For the OnAssigned state, in the Java Class column, click the empty field to enter a value.
This value is the complete class name of your Java callback class that implements
oracle.bpel.services.workflow.task.IRoutingSlipCallback.

7. Click OK, and then save your work.

Note:

For information about the usage of the callback class, see section ‘Specifying
Restrictions on Task Assignments’ at the following URL:
http://docs.oracle.com/cd/E29597_01/dev.1111/e10224/
bp_hwfconf_shared.htm#BABBBJAE

13.8 Enabling Auto-Approval for Self Registration Requests
Rules in approval workflow policies can be configured that determine whether a request should
be auto-approved or a SOA composite should be invoked.

For information about configuring approval workflow rules, see Configuring Approval Workflow
Rules in Administering Oracle Identity Governance.

After you configure rules in the approval workflow policies for auto-approval, perform the
following steps to enable auto-approval for self registration requests:

1. To assign the organization automatically, configure a home organization policy. See 
Managing Home Organization Policy in Administering Oracle Identity Governance for
information on how to configure home organization policies.

2. By default, the Role/User Type set for the self registration requests is Part-Time Employee.
If you want to overwrite this value, then change the plug-in configured in the
SelfCreateUserDataset.xml dataset.

3. You can create a new plug-in implementation for the value/logic required and change the
plug-in configured in the dataset to bring the new one in affect. The new plug-in must
implement oracle.iam.request.plugins.PrePopulationAdapter.

4. Register the plug-in that you created by using the Plugin Registration Utility. For details,
see Registering and Unregistering Plug-ins By Using the Plugin Registration Utility.

5. To update the request dataset:

a. Export the /metadata/iam-features-requestactions/model-data/
SelfCreateUserDataset.xml request dataset from the MDS, as described in Exporting
Metadata Files to MDS.

b. Update the name of the plug-in configured for Role attribute, as shown:

<AttributeReference name="Role" attr-ref="Role" available-in-bulk="false" 
type="String" length="255" widget="dropdown" lookup-code="Lookup.Users.Role" 
required="true">
<PrePopulationAdapter

Chapter 13
Enabling Auto-Approval for Self Registration Requests

13-62



classname="oracle.iam.selfservice.uself.uselfmgmt.plugins.RolePrepopulateAdapter"
 
name="RolePrepopulateAdapter"/>
</AttributeReference>

c. Import the updated request dataset to MDS, as described in Importing Metadata Files
from MDS.

Note:

Dynamic Monitoring Service (DMS) can be used to view performance metrics. The
following DMS metrics are present for monitoring the performance of Self
Registration flow:

• Self_Registration: This provides the number of completed and failed self
registration requests.

• oracle.iam.selfservice.uself.uselfmgmt.api.UnauthenticatedSelfService:
This provides details, such as the number of self registration requests and time
taken to submit a self registration request.

13.9 Hiding the Skip Current Assignment Option
The Skip Current Assignment action can be hidden by changing task actions from the SOA
Composer or JDeveloper.

Skipping the current assignment is not a valid action for an approver. If an approver chooses
this action, then the corresponding request fails. Therefore, you can hide this option by
performing any one of the following ways:

• Change the task actions from the SOA composer. For the Skip Current Assignment action,
deselect all the checkboxes and save.

• Change the task action by using JDeveloper. For the Skip Current Assignment action,
deselect all the checkboxes. Then save and redeploy the composite. For information about
specifying actions that task creators or owners have for acting on the task content, see 
Specifying Actions for Acting Upon Tasks in the Developer's Guide for Oracle SOA Suite.

13.10 Customizing Certification Oversight
Certification oversight can be customized to extend the levels of oversight or stop the oversight
process when a certain title is reached.

This section describes how to customize certification oversight. It contains the following topics:

• Understanding Certification Oversight Customization

• Customizing Certification Oversight

13.10.1 Understanding Certification Oversight Customization
Certification oversight can be customized to extend the levels of oversight or stop the oversight
process when a certain title is reached.

Chapter 13
Hiding the Skip Current Assignment Option

13-63



The certification composite contains customizable oversight logic that supports queries to
Oracle Identity Manager to select a sequence of overseers based on any one or all of the
following:

• The primary reviewer

• The current phase of certification

• The management-hierarchy defined in Oracle Identity Manager

By default, only a single level of oversight is supported such that a certification task is assigned
to one reviewer.

As predefined in the composite for certification oversight, whenever the primary reviewer or an
overseer signs off, the primary-review task is automatically routed to the next overseer in the
sequence. After a primary reviewer or an overseer, except the final overseer, has signed off on
the primary review task, that user will no longer be able to view the task in the inbox by
querying for completed tasks.

13.10.2 Customizing Certification Oversight
Certification oversight is customized by editing the certification composite in JDeveloper.

Customizing the certification oversight involves the following steps:

1. Create the composite. To do so:

a. Set the JAVA_HOME, ANT_HOME, and PATH environment variables by running the
setDomainEnv.sh script in the DOMAIN_HOME/bin/ directory.

b. Go to the OIM_HOME/server/workflows/new-workflow/ directory. The process-template
subdirectory contains the ZIP file archives with composite files that are used as the
base files to create the new composite.

c. Run the following command:

ant -f new_project.xml compliance

You are prompted to make the following selection:

1 - Identity Audit Composite

2 - Certification Composite [Default]

d. Choose option 2 for certification composite.

e. When prompted, enter a name for the new composite, and press Enter. The
composite is created, and a package directory with the composite name that you
specified is created in the process-template subdirectory.

2. Open the composite in JDeveloper. To do so:

a. Go to the process-template directory.

b. Go to the directory with the composite name provided in step 1c.

c. Open COMPOSITE_NAME.jpr using JDeveloper.

3. In the Projects pane of the Application Navigator view, expand the project and edit the
CertificationTask.task by double-clicking. Click the Assignment tab. Click
Stage1.Participant object, and select Edit. The Edit Participant Type dialog box is
displayed. By default, the composite defines a single level of certification, and the
certifications will be assigned to a single reviewer. For example, to change the level of
certification to go to the manager of the current task assignee, set the following values:

Chapter 13
Customizing Certification Oversight

13-64



Note:

The customization described in this procedure is a sample. For further
customizations, see the CertificationOverseerProcess default template, and/or
refer to SOA documentation.

• Type: Serial. Only serial certification logic is supported.

• Build a list of participants using: Management Chain

• Specify attributes using: Value-based

• Starting Participant: Select a user from which the certification starts.

• Top Participant: By Title. Specify a title for the reviewer who is the top participant of
the certification review. If you specify VP as the top participant and 5 as the number of
levels, then the certification will go up to VP level even though it is level 3. The other
levels will be skipped.

• Number of Levels: By Number. If you specify 1, then it means that certification will up
to the manager's level. A value of 2 means that the certification will up to the
manager's manager.

• Auto assign task to a single: User

• Assignment Pattern: Least Busy

4. Click OK.

5. Deploy the composite. To do so:

a. Select File, Save All to save your work.

b. Right-click the project, and select Deploy, COMPOSITE_NAME, Deploy to
Application server. Alternatively, you can deploy to SAR (SOA Archive ), and then
deploy it by using Oracle Enterprise Manager.

6. Login to Oracle Identity Self Service, and create a certification definition by selecting the
newly deployed composite in the Configuration page. See Creating Certification Definitions
in Performing Self Service Tasks in Oracle Identity Governance for information about
creating certification definitions.

13.11 Customizing the Identity Audit Composite
You can customize the Identity Audit composite and create a new identity audit scan definition.

To customize the identity audit composite:

1. Create the composite. To do so:

a. Go to the OIM_HOME/server/workflows/new-workflow/ directory. The process-template
subdirectory contains the ZIP file archives with composite files that are used as the
base files to create the new composite.

b. Run the following command:

ant -f new_project.xml compliance

You are prompted to make the following selection:

1 - Identity Audit Composite

Chapter 13
Customizing the Identity Audit Composite

13-65



2 - Certification Composite [Default]

c. Choose option 1 for identity audit composite.

d. When prompted, enter a name for the new composite, and press Enter. The
composite is created, and a package directory with the composite name that you
specified is created in the process-template subdirectory.

2. Open the composite in JDeveloper. To do so:

a. Go to the process-template directory.

b. Go to the directory with the composite name provided in step 1d.

c. Open COMPOSITE_NAME.jpr using JDeveloper.

3. Make all the customizations for the IdentityAuditTask assignment by editing
IdentityAuditRemediationTask.task.

4. Ensure that the required callbacks are configured (Task Completion, Escalation, Expiry,
Routing, ReAssignment, and Proxy). Look into Task Assignment callbacks from the newly
created composite or the callbacks configured in default Identity Audit Remediation
composite for reference.

5. Save the changes.

6. Compile the composite, and deploy the composite JAR file to SOA by referring to SOA
documentation.

7. Login to Oracle Identity Self Service, and create a new identity audit scan definition by
using the newly created composite from the identity audit configuration composite lookup.

Chapter 13
Customizing the Identity Audit Composite

13-66



Part IV
Data Synchronization

Data synchronization includes reconciliation and customizing its features, Bulk Load Utility, and
developing scheduled tasks.

This part contains the following chapters:

• Customizing Reconciliation

• Using the Bulk Load Utility

• Developing Scheduled Tasks



14
Customizing Reconciliation

The reconciliation features can be customized by defining reconciliation rules, developing
reconciliation profiles, and using the reconciliation APIs.
This chapter describes reconciliation features and architecture and the various aspects of
customizing reconciliation operations. It contains the following topics:

• Reconciliation Features

• Reconciliation Architecture

• Defining Reconciliation Rules

• Developing Reconciliation Scheduled Tasks

• Updating Reconciliation Profiles Manually

• Understanding Reconciliation APIs

• Postprocessing for Trusted Reconciliation

• Reconciliation FAQs

• Troubleshooting Reconciliation

• Populating Data in the RECON_EXCEPTIONS Table

• Reconciliation Best Practices

• Monitoring Reconciliation Performance Using DMS

14.1 Reconciliation Features
The reconciliation features can be divided into performance enhancement features, features
related to the event management interface, and other features.

This section describes the reconciliation features. It contains the following topics:

• Performance Enhancement Features

• Web-Based Event Management Interface

• Other Reconciliation Features

Note:

It is recommended not to use the Design Console to manage reconciliation
configurations that are created using Application Onboarding feature. To manage
reconciliation configurations that are created using Application Onboarding use
Manage Jobs option in the Application Onboarding feature in Identity Self Service.
For more information, see Managing Jobs in Performing Self Service Tasks with
Oracle Identity Governance.

14-1



14.1.1 Performance Enhancement Features
Performance enhancement features of reconciliation include reconciliation profiles, parameters
to control flow and processing of events, grouping of events by reconciliation run and by
batches, reconciliation logic in the database, Java engine, and database schema.

The following features help increase performance during reconciliation:

• New Metadata Model - Profiles

• Parameters to Control Flow and Processing of Events

• Grouping of Events by Reconciliation Runs

• Grouping of Events by Batches

• Implementing Reconciliation Engine Logic in the Database

• Improved Java Engine

• Improved Database Schema

14.1.1.1 New Metadata Model - Profiles
If metadata is associated with a reconciliation target, then it limits the ability to run multiple jobs
performing different types of reconciliation against the same target. Therefore, all
configurations in various components of Oracle Identity Manager are stored centrally in an
XML store called MDS.

For backward compatibility, current deployments, except for the deployments configured from
Application Onboarding feature will continue managing their configurations through Oracle
Identity Manager Design Console and the configuration continues to be stored in the Oracle
Identity Manager database. The configuration APIs automatically read the configurations from
the tables in Oracle Identity Manager and convert them into XML profiles, called default
profiles, and associate those profiles with the existing reconciliation runs.

You manage all the metadata by using Oracle Identity Manager Design Console. Using Oracle
Identity Manager Design Console, you can generate the default reconciliation profile. This can
be used to regenerate the profile when reconciliation configurations are changed from Oracle
Identity Manager Design Console. When configurations are imported from the Deployment
Manager, the profile is generated by default.

All nondefault profiles can be completely managed by using any XML editor.

See Also:

Reconciliation Profile for information about reconciliation profiles

14.1.1.2 Parameters to Control Flow and Processing of Events
Flow and processing of events is controlled by the BatchSize parameter and the Retry Count
for recon event system property.

This section consists of the following topics:

• Parameters to Control Event Processing

Chapter 14
Reconciliation Features

14-2



• System Property to Control AutoRetry

14.1.1.2.1 Parameters to Control Event Processing
BatchSize is the parameter to control event processing. This dictates the size of the batch. A
batch size of 1 is equivalent to processing of events one at a time. Batch size is available as a
system property and can be managed from Oracle Identity Manager Design Console. The
property name is OIM.ReconBatchSize. The default value of the system BatchSize parameter
is 500. For information about system properties, see Configuring Oracle Identity Manager in
Administering Oracle Identity Governance.

14.1.1.2.2 System Property to Control AutoRetry
The Retry Count for recon event system property controls auto retry by indicating how many
times an item needs to be retried before the reconciliation engine marks it as an error or sends
it to manual queue. The value 0 for this property means that the auto retry option is not
configured.

See Also:

Handling of Race Conditions for more information about auto retry

14.1.1.3 Grouping of Events by Reconciliation Runs
All the events created in the reconciliation database are grouped by reconciliation runs. All
events in a reconciliation run are grouped with a common reconciliation run ID. Because each
reconciliation run is associated with a profile, all events in a reconciliation run are processed by
using the same profile. This helps in optimizing the performance because the configurations
have to be retrieved only once per reconciliation run.

Each profile can use a different batch size. This enhances system performance for each target
reconciliation by tuning the appropriate batch for it.

14.1.1.4 Grouping of Events by Batches
Batches are introduced to increase system performance during reconciliation. A batch consists
of a number of events. It is a unit of processing in the reconciliation engine. The size of the
batch is configurable. Reconciliation runs are broken into fixed size batches. For example, if a
reconciliation run consists of 9900 events and batch size is 1000, then that reconciliation run is
divided into 10 batches each with size 1000, and last batch with size 900.

Processing a batch as a unit optimizes system performance by eliminating the overhead of
processing one event at a time. This also allows performing bulk operations wherever possible.
Batches can also run in parallel to balance the use of hardware resources.

14.1.1.5 Implementing Reconciliation Engine Logic in the Database
In Oracle Identity Manager, most of the logic to process the events is implemented as stored
procedures. A combination for processing at batch level and the logic being implemented in
PLSQL makes it possible to perform bulk operations at the SQL layer. The following steps are
performed in bulk (one batch at a time):

• Required data check

Chapter 14
Reconciliation Features

14-3



• Applying matching rules

• Applying action rules

14.1.1.6 Improved Java Engine
Processing that cannot be performed in stored procedures and must be performed in Java
layer also provides better performance than earlier releases of the engine for the following
reasons:

• Java engine performs bulk operations by default:

– Submits events in batches to the database

– Submits bulk postprocess orchestration depending on the action

• Performs bulk operations wherever possible.

14.1.1.7 Improved Database Schema
A notable performance enhancement from the new database schema is by using horizontal
tables for storing event details for various targets instead of using a single vertical table for
storing the event details from various targets. A horizontal table is used for each profile.

See Also:

Staging Tables for more information about horizontal tables

14.1.2 Web-Based Event Management Interface
Oracle Identity Manager provides a Web-based event management interface that allows you to
manage the events from the Web.

Authorized users are able to search for events, users, and handle exceptions by linking events
with users and accounts. You can also close events, force failed events to be re-evaluated, and
perform ad-hoc linking.

Ad-hoc linking refers to the ability provided to authorized users of the Event Management
section to link an event to any user in Oracle Identity Manager. Although the reconciliation
engine finds user matches for events, the user through this ad-hoc link feature can ignore
those matches and select a different user. This allows you to handle exceptions resulting from
error matches.

See Also:

Managing Reconciliation in Administering Oracle Identity Governance for information
about the tasks performed to manage reconciliation events

14.1.3 Other Reconciliation Features
Other reconciliation features include staging tables, handling or race conditions, and ad hoc
linking.

Chapter 14
Reconciliation Features

14-4



Other reconciliation features are described in the following sections:

• Staging Tables

• Handling of Race Conditions

• Ad Hoc Linking

14.1.3.1 Staging Tables
Staging tables are described in the following sections:

• About Staging Tables

• Creating and Maintaining Staging Tables

14.1.3.1.1 About Staging Tables
In earlier releases of Oracle Identity Manager, the reconciliation schema has one table to store
all the event details from various targets. The list of attributes and their names and types that
the various reconciliation events contain can vary from target to target. This means that events
from one target can contain a different set of data compared to events from another target. The
only way to store data from such events in a single table is by storing one attribute per row.
Therefore, in earlier releases, each row in the event detail table represents a single attribute of
reconciliation event data. For each attribute, it stores the event to which it belongs, the attribute
name, type, and value. This is also referred to as vertical table in this document. Although
vertical tables are beneficial from the point of view of flexibility and extensibility, it is not an
efficient way to store event records from the performance prospective.

Storage in vertical tables is replaced by separate tables for each target, called horizontal tables
or staging tables. They are called horizontal tables because instead of storing attributes of an
event vertically in the table as rows (as many rows as there are number of attributes), the
attributes of an event are stored as columns. This means that there are as many columns as
there are number of attributes for a target. Each event is stored as a row. Because different
targets can have different sets of attributes, each target has a separate table in the
reconciliation schema to store event details. There can be multiple tables per target because of
requirements to handle multi-valued attributes that are stored as rows in child tables.

Each row of the event detail table for a specific profile stores the list of reconciliation fields for a
single event. For example, for trusted user reconciliation in which firstname, lastname, email
attributes are being reconciled, there is the RA_XELLERATE_USER staging table with the
following columns:

RE_KEY, RECON_FIRSTNAME, RECON_LASTNAME, RECON_EMAI

14.1.3.1.2 Creating and Maintaining Staging Tables
Staging tables can be created only when a target is being deployed against Oracle Identity
Manager. This is because, at the time of target deployment, the reconciliation system knows
the list of attributes and their types for the target, which needs to be reconciled.

Staging tables are updated when configurations are imported from the Deployment Manager or
changes are made by using Oracle Identity Manager Design Console. To generate a staging
table from the Design Console, in the Object Reconciliation form, click Generate
Reconciliation Profile.

For Applications created using Application Onboarding feature, staging tables are updated
automatically on editing the applications.

Chapter 14
Reconciliation Features

14-5



14.1.3.2 Handling of Race Conditions
In earlier releases of Oracle Identity Manager, when an event is being reconciled, the
reconciliation engine may not be able to process it successfully because before this event can
be reconciled, another event needs to be reconciled. For example, before the reconciliation
engine can reconcile an event that is supposed to create an account, the engine needs to
reconcile an event that is supposed to create a user. This is called a race condition.

In the current release of Oracle Identity Manager, the race conditions are handled by setting
the value of the 'Retry Count for recon event' system property. To configure auto retry, specify a
value greater than 0 for this property. If you do not want to configure auto retry, then specify 0
as the value of the Retry Count for recon event system property.

When auto retry is configured, the reconciliation engine checks for the race conditions. If a
race condition is found, then the reconciliation engine puts the reconciliation event in a re-
evaluate queue until the retry count is exhausted.

A Reconciliation Retry Scheduled Task periodically checks if there is any event waiting for retry
and is ready to be re-evaluated and if yes, it queues them up for reconciliation engine
processing. This scheduled task is configured by default.

Note:

If the auto retry count is exhausted, the reconciliation engine does not further process
the event and sets the status per the matching rules. However, you can manually
retry by requesting for re-evaluate from Event Management. For information about re-
evaluating events, see Re-evaluating Events in Administering Oracle Identity
Governance.

Auto retry can handle the following race conditions:

• An account event for creating an account in Oracle Identity Manager is processed before
the user is created for this event because the event for creating user is not processed yet.

• A user event for creating a Xellerate user in Oracle Identity Manager is processed before
the organization is created to which this user belongs.

All auto retry parameters are stored as part of the reconciliation profiles. This means that while
the events belonging to one reconciliation run may have auto retry configured, the events
belonging to another reconciliation run may not have auto retry configured.

In Oracle Identity Manager, there is no UI to manage these parameters within a profile and you
must use an XML editor to manage them by directly editing the XML profile. For information
about editing an XML profile, see Creating and Updating Reconciliation Profiles.

14.1.3.3 Ad Hoc Linking
If the reconciliation engine is not able to determine the owner based on the matching rules,
then you can manually link an account to a user by using Oracle Identity Manager Advanced
Administration. Subsequent modifications to the account is automatically linked to that account.

Ad hoc linking is supported for user and account events. If the reconciliation engine is not able
to determine the owner based on the matching rules, then you can manually link a user or
account event to a user.

Chapter 14
Reconciliation Features

14-6



See Also:

Ad Hoc Linking in Administering Oracle Identity Governance for information about
how to perform ad hoc linking

14.2 Reconciliation Architecture
The components of reconciliation architecture are reconciliation profile, metadata,
reconciliation target, APIs, schema, engine, connector, archival, and event management.

This section describes the reconciliation process flow and components of reconciliation. It
contains the following topics:

• Reconciliation Process Flow

• Reconciliation Profile

• Reconciliation Metadata

• Reconciliation Target

• Reconciliation Run

• Reconciliation APIs

• Reconciliation Schema

• Reconciliation Engine

• Connector for Reconciliation

• Archival

• Backward Compatibility

• Reconciliation Event Management

14.2.1 Reconciliation Process Flow
Reconciliation is the process of pulling entity data from the target system into Oracle Identity
Manager to keep the entity data in a consistent state between the two systems.

The various components of Oracle Identity Manager involved in reconciliation and the
interaction between these components are shown in the Figure 14-1:

Chapter 14
Reconciliation Architecture

14-7



Figure 14-1    Reconciliation Architecture

Reconciliation Connector

Scheduled Task

Reconciliation APIs

Other Oracle Identity Manager ComponentsReconciliation Process

Reconciliation

Event Repository

Oracle Identity

Manager

Repository

PL/SQL Stored

Procedure

Kernel

Reconciliation

Event Manager

Configuration

APIs

Action PL/SQL

Layer

Action JAVA

Layer

Create/

Modify/

Delete

in Bulk

Create/

Modify/

Delete

Action

Rules

Reconciliation

Field

Mappings

Matching

Rules

The reconciliation architecture is described in the following steps:

1. Each connector has scheduled tasks associated with it. The scheduler triggers the
connector scheduled task, which invokes reconciliation APIs to generate events. The event
can be of type Regular, Changelog, or Delete.

For more information about the scheduler, see Managing the Scheduler in Administering
Oracle Identity Governance. For more information about scheduled tasks, see Connector
for Reconciliation.

2. The reconciliation events are stored in the reconciliation event repository, which is Oracle
Identity Manager database.

3. When batch size is met, an asynchronous message is submitted which processes the
batch of events in bulk. At the end of the schedule task another asynchronous message is
submitted for processing the events of the last batch.

Chapter 14
Reconciliation Architecture

14-8



Note:

• In Figure 14-1, the reconciliation engine encapsulates the Action JAVA Layer
as well as parts of the Reconciliation Event Repository, and orchestrates all
the arrows in that diagram.

• In this release, trusted source reconciliation is supported for users only. It is
not supported for roles, role membership, and role hierarchy reconciliation.

• In this release, Oracle Identity Manager supports trusted source
reconciliation and account reconciliation for organizations.

4. The processing involves data validation, matching of the entities and action (create,
update, delete and so on). This is followed by post processing via kernel orchestrations.
For information about the action module, see Action Module. For information about the
reconciliation profile, see New Metadata Model - Profiles.

5. By default the reconciliation event processing happens in bulk, and therefore all the steps
till post processing are performed by PL/SQL stored procedures. Event can be processed
one at a time in the following scenarios (in this case all the steps till matching are done in
PL/SQL and the action is performed in java layer):

• When events are processed from the Event Management UI

• When failed events are retried by the retry scheduled task that runs periodically

For reconciliation single event processing, actions and post processing take place through
the kernel.

6. Reconciliation events are made available to the Event Management UI by another API call
in the reconciliation management service.

14.2.2 Reconciliation Profile
A reconciliation profile is the configuration defined to govern how reconciliation is run for a
particular resource.

A particular resource can have multiple reconciliation profiles, each of which defines matching
rules, action rules, and field mappings, which can differ in each profile corresponding to the
resource. For example, while one reconciliation run can perform reconciliation of new and
modified accounts, another reconciliation run can reconcile deletion of accounts because you
might want to run the deletions only once a day. In this example, you define two reconciliation
runs and two profiles. Each profile is associated with respective reconciliation run and each
profile having its own rules of reconciliation.

This section contains the following topics:

• Sample Configuration Profile

• Elements and Structures of Reconciliation Profile

14.2.2.1 Sample Configuration Profile
The profile is an XML-based configuration file stored in Oracle Identity Manager MetaData
Store (MDS). The following example shows a sample reconciliation profile:

<?xml version='1.0' encoding='UTF-8'?>
<profile xmlns="http://www.oracle.com/oracle/iam/reconciliation/config" ownerType="User" 
changeType="CHANGELOG" auditEnabled="true" batchSize="500" resourceType="Account" name="Modified AD 

Chapter 14
Reconciliation Architecture

14-9



User" configure="true" active="true">
   <matchingRule>((UPPER(USR.usr_udf_obguid)=UPPER(RA_ADUSERE469E5C8.RA_OBJECTGUID)))</matchingRule>
   <form oimTableName="UD_ADUSER" stagingTableName="RA_ADUSERE469E5C8" name="Modified AD User" 
mlsOimTable="mlsOIMTableIfAny" mlsStagingTable="mlsStagingTableIfmlsOIMTable">
      <matchingRule>(UD_ADUSER.UD_ADUSER_OBJECTGUID=RA_ADUSERE469E5C8.RA_OBJECTGUID)</matchingRule>
      <targetAttributes>
         <targetAttribute type="String" name="Status">
            <stagingField type="String" length="256" name="RA_STATUS"/>
         </targetAttribute>
     <targetAttribute type="String" name="copyStatus" ref="Status" mls="true">
            <stagingField type="String" length="256" name="COPY_STATUS"/>
            <oimAttribute type="String" fieldName="OIM_OBJECT_STATUS" fieldType="String" 
name="OIM_OBJECT_STATUS"/>
         </targetAttribute>
         <targetAttribute type="String" name="password" encrypted="true" keyField="false" 
required="false">
            <stagingField type="String" length="256" name="PASSWORD"/>
            <oimAttribute type="String" fieldName="UD_ADUSER_PASSWORD" fieldType="String" name="AD 
Password"/>
         </targetAttribute>         
         <targetAttribute type="Date" name="accountExpires">
            <stagingField type="Date" name="RA_ACCOUNTEXPIRES"/>
            <oimAttribute type="Date" fieldName="UD_ADUSER_DATE" fieldType="Date" name="Account 
Expiration Date"/>
         </targetAttribute>         
         <targetAttribute type="ITResource" name="IT Resource" keyField="false">
            <stagingField type="ITResource" length="19" name="RA_ITRESOURCE15641F83"/>
            <oimAttribute type="Number" fieldName="UD_ADUSER_AD" fieldType="Number" name="AD Server"/>
         </targetAttribute>
     <targetAttribute type="String" keyField="true" name="objectGUID">
            <stagingField type="String" length="32" name="RA_OBJECTGUID"/>
            <oimAttribute type="String" fieldName="UD_ADUSER_OBJECTGUID" fieldType="String" name="Object 
GUID"/>
         </targetAttribute>
      </targetAttributes>
      <form oimTableName="UD_ADUSRC" stagingTableName="RA_ADUSERGROUPDETA902DB909" name="memberOf">
         <matchingRule>(UD_ADUSRC.UD_ADUSRC_GROUPNAME=RA_ADUSERGROUPDETA902DB909.RA_MEMBEROF)</
matchingRule>
         <targetAttributes>
            <targetAttribute type="String" keyField="true" name="memberOf">
               <stagingField type="String" length="256" name="RA_MEMBEROF"/>
               <oimAttribute type="String" fieldName="UD_ADUSRC_GROUPNAME" fieldType="String" 
name="UD_ADUSRC_GROUPNAME"/>
            </targetAttribute>
         </targetAttributes>
      </form>
   </form>
   <actionRules>
      <actionRule condition="One Entity Match Found" action="Establish Link"/>
   </actionRules>
</profile>

14.2.2.2 Elements and Structures of Reconciliation Profile
The elements and structures of the reconciliation profile XML file are:

• <profile>: The root element or object of the reconciliation configuration profile.

– <ownerType>: Populated only for role hierarchy, role membership, and account with
values Role, Role, and User respectively.

Chapter 14
Reconciliation Architecture

14-10



– <changeType>: By default, or if the element is not present, then the value is
CHANGELOG. Otherwise, the value can be REGULAR, CHANGELOG, or DELETE.

– <auditEnabled>: Used with account type profile only. By default or if the element does
not exist, then value is false, and audit for the resource object is stopped.

– <batchSize>: Changes the size or number of reconciliation events per batch. By
default, or if the element is not present, then batch size is 500.

– <resourceType>: Value can be any one of Account, User, Role, RoleRole, RoleUser,
and Organization.

– <name>: This is the resource object name.

– <configure>: By default or if the element is not present, then the value is false. If
reconciliation configuration is to be created or updated on a system, then this must be
marked as true. After all manual corrections of a profile, this attribute must be marked
as true. For test to production, mark this element as true before importing into target
system.

– <active>: By default or if the element is not present, then the value is true. Value is
false for corrupt or invalid profiles and marks profile unusable. Such profiles are never
loaded into the system. After all manual corrections of a profile, this attribute must be
removed or marked as true.

– <matchingRule>: Populated only for role hierarchy, role membership, and account with
owner matching rule. Otherwise, the element is not present.

– <form>: This specifies one parent form per profile.

* <oimTableName>: Oracle Identity Manager table into which data will be reconciled.

* <stagingTableName>: Staging table into which data from the target system is
stored before processing.

* <name>: Same as profile name for the parent form and same as multivalued
attribute name for the child forms.

* <mlsOimTable>: Multilanguage supported (MLS) Oracle Identity Manager table into
which data will be reconciled if resource object is MLA-enabled.

* <mlsStagingTable>: MLS staging table into which data from target system is
stored before processing if resource object is MLS-enabled.

* <matchingRule>: Matching rule for the form (resource object associated with the
profile), and is always required.

* <targetAttributes>: Groups all target attributes.

* <targetAttribute>: One for each attribute from the target system.

* <type>: Data type of the target attribute.

* <keyfield>: By default, the value is false. Used in matching rule for
account resource type.

* <name>: Name of the attribute from the target system provided by the
connector that starts reconciliation.

* <required>: If the attribute is required, then this element must be present.

* <encrypted>: If the value is true, then the attribute value will be encrypted
and stored in staging and Oracle Identity Manager tables.

* <ref>: Name of the target attribute in the same form whose value will be
copied and stored in this attribute.

Chapter 14
Reconciliation Architecture

14-11



* <stagingField>: Specifies the column of the staging table corresponding
to the target attribute. This contains the following elements:

<type>: data type of the staging table column.

<length>: length/size of the staging table column/field.

<name>: name of the staging table column.

* <oimAttribute>: Specifies the mapped Oracle Identity Manager domain
attribute name. The element is present only if the target attribute is
mapped. This contains the following elements:

<name>: Oracle Identity Manager attribute name

<type>: Oracle Identity Manager attribute type

<fieldName>: Column name of the Oracle Identity Manager table
corresponding to the Oracle Identity Manager mapped attribute

<fieldType>: Column type of the Oracle Identity Manager table
corresponding to the Oracle Identity Manager mapped attribute

* <form>: Specifies child form or forms for the parent or root form. It corresponds to
a multivalued attribute.

* <matchingRule>: Matching rule for a child form.

* <targetAttributes>: This is the same element as the parent
<targetAttributes> element. This element can be nested several times, for
example:

<form><targetAttributes><form><targetAttributes>
– <actionRules>: Groups all action rules for the resource object.

* <actionRule>: An actionRule element for each action rule.

* <condition>: The value can be any one of No Matches Found, One Entity
Match Found, Multiple Entity Matches Found, One Process Match Found,
Multiple Process Matches Found.

* <action>: Can be anything based on the profile XSD.

There is always a default profile associated with reconciliation configurations for any resource
object. The default profile can be explicitly generated from Oracle Identity Manager Design
Console in the developer's environment or implicitly generated during import from the
Deployment Manager or Manage Applications from Application Onboarding. For details on how
to create and update profiles, see "Updating Reconciliation Profiles Manually".

14.2.3 Reconciliation Metadata
The reconciliation metadata consists of various configurations used in creating and processing
the reconciliation events.

The reconciliation metadata is stored in a logical container called a profile. For information
about reconciliation profile, see Reconciliation Profile.

Examples of the reconciliation metadata are:

• Mapping rules: Used to map the data received from the target system to the data
managed about that target system in Oracle Identity Manager.

Chapter 14
Reconciliation Architecture

14-12



• Matching rules: Used during the processing of each reconciliation event to correlate the
event data to a particular account, user, or role in Oracle Identity Manager.

• Action Rules: Used to specify the actions taken by Oracle Identity Manager based on the
result of the processing of a reconciliation event.

• List of target attributes: Used to define the data attributes received from the target
system via reconciliation. It is used in the mapping rules, and is configured by using Oracle
Identity Manager Design Console or from Application Onboarding.

The various configurations used in creating and processing the reconciliation events are
managed by using Oracle Identity Manager Design Console, and for backward compatibility, is
stored in the same Oracle Identity Manager tables as in Oracle Identity Manager release 9.1.0.
In addition, the configurations are also stored in the reconciliation profile.

Note:

For reconciliation in Oracle Identity Manager, a metadata model is being used. For
basic concepts of reconciliation, see Managing Reconciliation in Administering Oracle
Identity Governance.

14.2.4 Reconciliation Target
Reconciliation target refers to an instance of an application that acts as a source of changes
for Oracle Identity Manager.

An example of reconciliation target is an HR system, which acts as a source of identities for
Oracle Identity Manager. A reconciliation target can be a source of users or accounts.

14.2.5 Reconciliation Run
Reconciliation run refers to the combination of a reconciliation connector and associated
configurations which when run by the scheduled task, performs the reconciliation based on the
rules defined in the associated configurations.

The scheduler runs reconciliation periodically at fixed intervals. Reconciliation runs are
scheduled within Oracle Identity Manager scheduler to run at a specified frequency. All events
created during a reconciliation run are grouped together by a unique reconciliation run ID.

14.2.6 Reconciliation APIs
Reconciliation APIs are a set of published APIs to provide reconciliation data to Oracle Identity
Manager in the form of reconciliation events.

Connectors can use the APIs to push data to the reconciliation event repository. Scheduled
tasks can be setup to run the APIs when reconciliation is to be run on a scheduled basis. The
existing connectors do not need to be changed because the existing APIs are supported.

14.2.7 Reconciliation Schema
The data that comes from the target system for reconciliation is stored in the reconciliation
schema.

The data contains the changes to be reconciled with Oracle Identity Manager.

Chapter 14
Reconciliation Architecture

14-13



Reconciliation schema refers to the set of schema tables to store the reconciliation data. The
reconciliation schema is redesigned for performance reasons and future extensibility. See 
Improved Database Schema for more information about the reconciliation schema.

14.2.8 Reconciliation Engine
The reconciliation engine consists of the matching module and the action module.

This section describes the reconciliation engine. It contains the following topics:

• About the Reconciliation Engine

• Matching Module

• Action Module

14.2.8.1 About the Reconciliation Engine
The reconciliation engine uses all configurable components and includes the data processor
and rule evaluator that use these components to convert input data into a list of action items. It
also includes the components that determine whether or not the actions can be automated
based on the rule context. When an action is performed, either automatically or manually, the
engine performs the appropriate updates and provisioning actions.

The main task of the reconciliation engine is to perform the comparison, determine the action
to be taken, and apply the action in Oracle Identity Manager. It contains two modules, which
are described in the following sections:

14.2.8.2 Matching Module
The matching rule specified in the profile is used to identify whether the record being searched,
exists in Oracle Identity Manager or not. Matching rules are rules to identify whether the data is
for an identity that Oracle Identity Manager already has a record of, or to identify the owner of
the account in Oracle Identity Manager.

For account entities, when no record is found, an owner match is then performed to identify the
owner of the account.

For role hierarchy events, matching is performed to identify the parent and child role.

Note:

While performing role hierarchy and role membership reconciliation, the matching
criteria must contain both Namespace and Role Name in the matching criteria. The
following is an example of a matching rule:

((UGP.ugp_rolename=x) and (UGP.ugp_namespace=y))

Here, x is the name of the staging table name column that is mapped to Role Name,
and y is the name of the staging column that is mapped to Namespace.

At the end of the evaluation, the match table contains all the possible matches found within
Oracle Identity Manager that meet the criteria for the event, and the state of the event is
updated to one of the statuses listed in Table 14-1:

Chapter 14
Reconciliation Architecture

14-14



Table 14-1    Reconciliation Status Events

Status Events Description

Data Received Event data has been created in the database and is ready for further
processing.

Event Received A reconciliation event has been created and is ready for further
processing. The finishReconciliationEvent API has not yet been called.

Data Validation Failed The reconciliation event record is invalid. For example, a role event with
an invalid role category will fail to validate. This situation could indicate
a race condition.

Data Validation Succeeded The event data was successfully validated and the event can now
safely be processed by the Engine.

Multiple Accounts Match Found Given the current matching rules, multiple matching account records
were found for the data.

No Account Match Found Given the current matching rules, no matching account records were
found for the data.

Single Account Match Found Given the current matching rules, one matching account record was
found for the data.

Multiple Org Matches Found Given the current matching rules, multiple matching organization
records were found for the data.

No Org Match Found Given the current matching rules, no matching organization records
were found for the data.

Single Org Match Found Given the current matching rules, one matching organization record
was found for the data.

Multiple Role Grants Match
Found

Multiple matching records for user membership within a role were
found.

No Role Grant Match Found No matching records for user membership within a role were found.

Single Role Grant Match Found One matching record for user membership within a role was found.

Multiple Roles Match Found Given the current matching rules, multiple matching role records were
found for the data.

No Role Match Found Given the current matching rules, no matching role records were found
for the data.

Single Role Match Found Given the current matching rules, one matching role record was found
for the data.

No Role Members Found The Reconciliation Engine did not find role members matching the
data, given the current matching rules.

No Role Parent Found The Reconciliation Engine did not find a role matching the data, given
the current matching rules.

Multiple Role Relationships
Match Found

Given the current matching rules, reconciliation has found multiple role-
to-role relationships that match data in the event.

No Role Relationship Match
Found

Given the current matching rules, reconciliation did not find any role-to-
role relationships that match data in the event.

Single Role Relationship Match
Found

Given the current matching rules, reconciliation has found one role-to-
role relationship that matches data in the event.

Multiple Users Match Found Given the current matching rules, multiple matching user records were
found for the data.

No User Match Found Given the current matching rules, no matching user records were found
for the data.

Chapter 14
Reconciliation Architecture

14-15



Table 14-1    (Cont.) Reconciliation Status Events

Status Events Description

Single User Match Found Given the current matching rules, one matching user record was found
for the data.

Invalid Event Data Passed The event contains invalid data.

Being Re-evaluated The reconciliation event is being re-evaluated from the reconciliation
event management UI.

Being Re-tried The reconciliation event is being retried automatically. This status event
has been deprecated.

Creation Failed The user/account/role entity was not created successfully.

Creation Succeeded The user/account/role entity was created successfully.

Delete Failed The user/account/role entity was not successfully deleted.

Delete Succeeded The user/account/role entity was deleted successfully.

Event Closed The reconciliation event was closed from the reconciliation event
management UI. The change is complete.

Update Failed The user/account/role entity was not updated successfully.

Update Succeeded The user/account/role entity was updated successfully.

14.2.8.3 Action Module
This module applies the action based on the event state, entity type, and the action rules, as
listed in Table 14-2:

Table 14-2    Action Rules

Event State Entity Type Action Description

No User Match Found User None Does not perform any action

No User Match Found User Create User Creates a user in Oracle Identity Manager

No Account Match
Found

Account None Does not perform any action

User Matched User or Account None Does not perform any action

User Matched User Establish Link Modifies or deletes the matched user based on
the change type

User Matched Account Establish Link Owner identified - creates an account

Users Matched User or Account None Does not perform any action

Account Matched Account None Does not perform an action

Account Matched Account Establish Link Modifies or revokes the account based on the
change type

Accounts Matched Account None Does not perform any action

No Role Match Found Role None Does not perform any action

Single Role Match
Found

Role None Does not perform an action

Single Role Match
Found

Role Establish Link Modify or delete a role

Chapter 14
Reconciliation Architecture

14-16



Table 14-2    (Cont.) Action Rules

Event State Entity Type Action Description

Single Role Match
Found

Role Membership Create role membership Grant a role member to Oracle Identity
Manager

Single Role Match
Found

Role Membership Delete role membership Delete a role member from Oracle Identity
Manager

Single Role Match
Found

Role Membership None Does not perform an action

Single Role Match
Found

Role Hierarchy Create role hierarchy Creates a role hierarchy in Oracle Identity
Manager

Single Role Match
Found

Role Hierarchy Delete role hierarchy Delete a role hierarchy in Oracle Identity
Manager

Single Role Match
Found

Role Hierarchy None Does not perform an action

Multiple Roles
Matched

Role, Role membership
and Role Hierarchy

None Does not perform an action

No Role Grant Match
Found

Role Membership None Does not perform an action

No Role Grant Match
Found

Role Membership Create Role Member Creates a role member in Oracle Identity
Manager

Single Role Grant
Match Found

Role Membership None Does not perform an action

Single Role Grant
Match Found

Role Membership Establish Link Delete role member

Multiple Role Grant
Match Found

Role Membership None Does not perform an action

Note: This state does not occur because the
role grant match is done by looking for the
primary key, which is a combination of the usr
key and the group key.

No Role Parent
Match Found

Role Hierarchy None Does not perform an action

No Role Parent
Match Found

Role Hierarchy Create role parent Create a role parent in Oracle Identity Manager

Single Role Parent
Match Found

Role Hierarchy None Does not perform an action

Single Role Parent
Match Found

Role Hierarchy Establish Link Delete role parent

Multiple Role Parent
Match Found

Role Hierarchy None Does not perform an action

Data Validation Failed Role, Role Hierarchy,
Role Member

Race condition Does not perform an action. The event needs
to be re-evaluated.

Parent role not found Role Hierarchy Race condition Does not perform an action. The event needs
to be re-evaluated.

Role member not
found

Role membership Race condition Does not perform an action. The event needs
to be re-evaluated.

Chapter 14
Reconciliation Architecture

14-17



14.2.9 Connector for Reconciliation
The connector refers to the software that extracts the changes from the target system and
creates events in the reconciliation schema by calling the reconciliation APIs.

If the connector that you want to use is shipped with a predefined reconciliation module, then a
scheduled task definition is available. You use this component to control the frequency at which
the target system is polled for changes to track data and other connector-specific parameters.

The connector for reconciliation is deployed by using the Deployment Manager or during first
application creation from Application Onboarding. When the connector is deployed, the
corresponding reconciliation profile for that connector is created in the metadata store (MDS),
and horizontal tables that store the event data are also created.

Note:

Do not manually update reconciliation profile or update any reconciliation
configurations from the Deployment Manager or Oracle Identity Manager Design
Console when a reconciliation run is still in progress. This is because, if a
reconciliation field is deleted or updated when a reconciliation run is in progress, then
the event data might not be valid any more.

For information about configuring connectors, see Oracle Identity Manager Connector
documentation.

See Also:

• Reconciliation Metadata for information about MDS

• Staging Tables for information about the staging tables

14.2.10 Archival
The Reconciliation Archival utility allows you to move processed events from the active
reconciliation tables to archive tables.

The events to move can be selected based on a time range. Only linked and closed events,
which means successfully processed or closed by an administrator, can be archived.

See Also:

Using the Reconciliation Archival Utility in Administering Oracle Identity Governance
for information about how to use the Reconciliation Archival utility

Chapter 14
Reconciliation Architecture

14-18



14.2.11 Backward Compatibility
You do not need to change the existing reconciliation configurations or scheduled tasks to
leverage the new reconciliation service.

The existing configurations for reconciliation setup in earlier Oracle Identity Manager releases
continues to function after upgrading to 12c Release 2 (12.2.1.2). As part of the upgrade,
corresponding reconciliation event tables are created for each of the existing object types
being reconciled.

14.2.12 Reconciliation Event Management
The reconciliation events are managed by using the Event Management section of Oracle
Identity System Administration.

The Event Management section lets you view and manage reconciliation events generated by
Oracle Identity Manager reconciliation engine. These events are generated through scheduled
reconciliation runs. The Event Management section provides search capabilities on
reconciliation runs as well as events. Users can use the Event Management section to perform
reconciliation manually on generated events.

See Also:

Managing Reconciliation Events in Administering Oracle Identity Governance for
more information about the managing reconciliation events in the Oracle Identity
System Administration

Figure 14-2 shows the various stages in the lifecycle of a reconciliation event.

Chapter 14
Reconciliation Architecture

14-19



Figure 14-2    Reconciliation Event Lifecycle

14.3 Defining Reconciliation Rules
Defining reconciliation rules involves creating a rule definition, adding rule element, setting
transformation properties, and nesting rules within rules.

This section describes reconciliation rules and how to define them. It contains the following
topics:

• Understanding Reconciliation Rules

• Defining a Reconciliation Rule

• Adding a Rule Element

• Transformation Properties

• Nesting a Rule Within a Rule

• Deleting a Rule Element or Rule

Chapter 14
Defining Reconciliation Rules

14-20



14.3.1 Understanding Reconciliation Rules
You can define reconciliation rules that are invoked to determine which entity record is
associated with a change on a trusted source, or which entity record is the owner of an
account discovered on a target resource.

You can define reconciliation rules that are invoked at the following instances:

• When Oracle Identity Manager tries to determine which user or organization record is
associated with a change on a trusted source. These rules are evaluated as soon as all
required fields in the reconciliation event are processed on the Reconciliation Data tab of
the Reconciliation Manager form.

• When Oracle Identity Manager attempts to determine which user or organization record is
the owner of an account discovered on a target resource, for example, as a result of a
change detected on that system. These rules are evaluated only when all required fields in
the reconciliation event are processed on the Reconciliation Data tab of the Reconciliation
Manager form, and no processes were matched to the event on the Processes Matched
Tree tab of the same form.

The Reconciliation Rules form in the Design Console is used to create and manage
reconciliation rules in Oracle Identity Manager. This form is located in the Development Tools
folder. Figure 14-3 shows the Reconciliation Rules form.

Note:

To manage reconciliation configurations that are created using Application
Onboarding use Manage Jobs option in the Application Onboarding feature in Identity
Self Service. For more information on how to add reconciliation rules from Application
Onboarding, see Managing Jobs in Performing Self Service Tasks with Oracle
Identity Governance.

Chapter 14
Defining Reconciliation Rules

14-21



Figure 14-3    Reconciliation Rules Form

As mentioned, rules defined by using this form are used to match either users or organizations
associated with a change on a trusted source or target resource. Rules of these types are
referred to as user-matching or organization-matching rules, respectively. These rules are
similar to the ones you can define by using the Rule Designer form except that the rules
created by using the Reconciliation Rules form are specific to the resource object (because
they relate to a single target resource) and only affect reconciliation-related functions.

14.3.2 Defining a Reconciliation Rule
The Reconciliation Rules form in the Design Console is used to create and manage
reconciliation rules in Oracle Identity Manager. This form is located in the Development Tools
folder.

The following procedure describes how to define a reconciliation rule.

Note:

In the following procedure, you must ensure that the Active check box is selected. If
this check box is not selected, the rule will not be evaluated by Oracle Identity
Manager's reconciliation engine when processing reconciliation events related to the
resource. However, you can only select this check box after Oracle Identity Manager
has selected the Valid system check box. The Valid check box can only be selected
after you have created at least one rule element, and Oracle Identity Manager has
determined that the logic of this rule element is valid.

Chapter 14
Defining Reconciliation Rules

14-22



To define reconciliation rules for user or organization matching:

1. Go to the Reconciliation Rules form.

2. Enter a name for the rule in the Name field.

3. Select the target resource with which this rule is to be associated in the Object field

4. Enter a description for the rule in the Description field.

Select the And or Or operator for the rule. If And is selected, all elements (and rules if they
are nested) of the rule must be satisfied for the rule to be evaluated to true. If Or is
selected, the rule will be evaluated to true if any element (or rule if one has been nested) of
the rule is satisfied.

5. Click Save.

The rule definition will be saved. Rule elements must now be created for the rule.

Note:

It is recommended not to use the Design Console to manage reconciliation
configurations that are created using Application Onboarding feature. To manage
reconciliation configurations that are created using Application Onboarding use
Manage Jobs option in the Application Onboarding feature in Identity Self
Service. For more information, see Managing Jobs in Performing Self Service
Tasks with Oracle Identity Governance.

14.3.3 Adding a Rule Element
Rule elements are added to a reconciliation rule definition by using the Rule Elements tab of
the Reconciliation Rules form.

To define individual elements in a reconciliation rule:

1. Go to the Rule definition to which you want to add elements.

2. Click Add Rule Element on the Rule Elements tab.

The Add Rule Element dialog box is displayed.

3. Click the Rule Element tab.

4. Select a user-related data item from the User Data menu.

This will be the user data element that Oracle Identity Manager examines when evaluating
the rule element. The menu will display all fields on the Oracle Users form (including any
user-defined fields you have created).

Note:

If the rule being defined is for organization matching, both the data available and
the name of the menus will be related to organizations, rather than users.

5. Select an operator from the Operator menu.

This will be the criteria that Oracle Identity Manager applies to the attribute for data item
you selected when evaluating the rule element. The following are valid operators:

Chapter 14
Defining Reconciliation Rules

14-23



• Equals: If you select this option, the user or organization record's data element must
exactly match the attribute you select.

Note:

– If you configure trusted source reconciliation of users, you must ensure
that the User ID field of the Oracle Identity Manager User account is
used in the reconciliation matching rule.

– If you configure trusted source reconciliation of organizations, you must
ensure that the Organization Name field of the Oracle Identity Manager
User account is used in the reconciliation matching rule.

• Contains: If you select this option, the user or organization record's data element must
only contain (not be an exact match with) the attribute you select.

• Start with: If you select this option, the user or organization record's data element
must begin with the attribute you select.

• End with: If you select this option, the user or organization record's data element must
end with the attribute you select.

6. Select a value from the Attribute menu. The values in this menu are the fields that were
defined on the Reconciliation Fields tab for the resource associated with the rule. If the
reconciliation fields have not yet been designated for the resource, no values will be
available.

Note:

When defining a rule element for a target resource (as opposed to a trusted
source), only fields associated with parent tables of the resource's custom
process form are available for selection in the Attribute field.

7. If you want Oracle Identity Manager to perform a particular transformation on the data in
the Attribute field (before applying the operator), select the desired transformation from
the Transform menu.

Note:

If you select a value other than None from this menu, after you click Save, you
must also select the tab and set the appropriate properties so that Oracle Identity
Manager is able to perform the transformation correctly.

The possible transformations are described in Transformation Properties.

8. Select the Case-Sensitive check box.

For the rule element to be met, if this check box is selected, the value selected in the
Attribute field must match the capitalization of the value being evaluated in the
reconciliation event record. If this check box is deselected, the value selected in the
Attribute field is not required to match the capitalization used in the value being evaluated
in the reconciliation event record.

Chapter 14
Defining Reconciliation Rules

14-24



9. Click Save.

10. If you select a value (other than None) in the Transform menu and have not yet set the
properties for the transformation, the Properties Set check box will not be selected.

You must select the Rule Element Properties tab, set the appropriate properties, and click
Save again.

The rule element will be added to the rule.

11. Repeat this entire procedure for each rule element you wish to add to the rule.

Note:

Ensure that the Active check box is selected.

14.3.4 Transformation Properties
If you want Oracle Identity Manager to perform a particular transformation on the data in the
Attribute field (before applying the operator), select the desired transformation from the
Transform menu.

Table 14-3 lists the possible transformations on the data in the Attribute field and the
corresponding properties to be set on the rule element properties tab.

Table 14-3    Transformation Properties

Transformation Properties to Be Set on the Rule Element Properties tab

Substring Start Point, End Point

Endstring Start Point

Tokenize Delimiters, Token Number, Space Delimiter

14.3.5 Nesting a Rule Within a Rule
You can nest an existing rule within a rule. Oracle Identity Manager evaluates the criteria of the
nested rule in the same way as any other element of the rule.

Note:

Only reconciliation-related rules that are associated with the same resource object
are available for selection in the dialog box.

To nest a rule within a rule:

1. Go to the rule to which you want to add another rule.

2. Click Add Rule on the Rule Elements tab.

3. The Rule Choice lookup dialog box is displayed.

Locate and select the desired rule.

4. Click OK.

Chapter 14
Defining Reconciliation Rules

14-25



The selected reconciliation rule is added to rule.

5. Repeat steps 2 through 4 for each rule you want to nest in the rule.

14.3.6 Deleting a Rule Element or Rule
You can delete a rule or rule element when it is no longer required.

To delete a rule element or a rule:

1. Go to the rule from which you want to delete an element.

2. Select the rule element or rule to be deleted on the Rule Elements tab.

3. Click Delete.

14.4 Developing Reconciliation Scheduled Tasks
Develop new scheduled task to retrieve user/account information from the target system,
create APIs for reconciliation events, and create reconciliation events.

Oracle Identity Manager provides connectors for reconciliation of users/accounts from various
target systems, such as Microsoft Active Directory, Sun Java System Directory, Oracle Internet
Directory, and Oracle E-Business Suite. For information about these connectors, see Oracle
Identity Manager Connectors Documentation in the Oracle Technology Network (OTN) Web
site at the following URL:

http://www.oracle.com/technetwork/indexes/documentation/index.html
However, to create a custom connector, you must develop a new scheduled task that performs
the following:

• Retrieve user/account information from the target system.

• Use reconciliation APIs to create reconciliation events to submit event data.

• Create events for creating, modifying, or deleting an entity.

See Also:

Developing Scheduled Tasks for information about developing a scheduled task

To connect to a specific target system, you must:

• Create a new IT resource type

• Define a new IT resource

• Use the IT resource as an input parameter for the scheduled task

See Also:

Java API Reference for Oracle Identity Governance for information about the APIs to
lookup IT resource definition

Chapter 14
Developing Reconciliation Scheduled Tasks

14-26

http://www.oracle.com/technetwork/indexes/documentation/index.html
https://docs.oracle.com/middleware/12213/oig/OMJAV/index.html


In Oracle Identity Manager, a provisioning process and a process instance is associated with
activities related to users or accounts. This provides a hook or point to add customizations
upon various actions.

Changes to the user state or the account state can occur via direct APIs or reconciliation. The
changes can be of many types, such as:

See Also:

Understanding Reconciliation APIs for information about the reconciliation APIs

• Data change in the user or account profile

• Status change, such as enable or disable

• Organization change

• Attribute propagation

• Password propagation

For each of these changes, the process definition provides a facility to add hooks to be run
upon any of these changes. For reconciliation, the process definition provides the hooks in the
form of the following conditional tasks:

• Reconciliation Insert Received: This conditional task is inserted when an account is
created via reconciliation.

• Reconciliation Update Received: This conditional task is inserted when an existing account
linked to a user is updated via reconciliation. Data in the process form or status of the
account are updated.

• Reconciliation Delete Received: This conditional task is inserted when an existing account
is revoked via reconciliation.

These tasks provide starting points for the workflows. You can create custom workflows in the
provisioning process, and create a dependency between the reconciliation trigger tasks and
the workflows. This causes the workflows to be run upon the respective triggers.

Every reconciliation event that is successfully linked to a user or an account inserts a single
trigger from the conditional tasks. All the data in the user profile and the account profile is
available as context-sensitive data for any adapter that is attached to one of these dependant
tasks.

See Also:

Connectors and Workflows for details about creating conditional tasks, adapters, and
dependencies

14.5 Updating Reconciliation Profiles Manually
A reconciliation profile is the configuration defined to govern how reconciliation is run for a
particular resource.

Chapter 14
Updating Reconciliation Profiles Manually

14-27



This section describes updating reconciliation profiles manually. It contains the following
sections:

• About Creating and Updating Reconciliation Profiles

• Creating and Updating Reconciliation Profiles

• Changing the Profile Mode

14.5.1 About Creating and Updating Reconciliation Profiles
You can define reconciliation profiles manually, and associate each profile with respective
reconciliation run, with each profile having its own rules of reconciliation.

For reconciliation based on resource objects, the profile name is the same as that of the
resource object. For example, if resource object name is testresource, then the default profile
name is also testresource. The corresponding reconciliation staging table name is available in
the profile. If the resource has Multi-Language Support (MLS) data, then the MLS staging and
Oracle Identity Manager table names are also available in the profile. See Elements and
Structures of Reconciliation Profile for information about the structure and the elements in the
reconciliation profile.

If the resource object has child forms, then for each child form, the Oracle Identity Manager
table name and staging table name are available in the profile. Each staging table has a
corresponding entity definition XML file, the name is same as staging table name with dot xml
extension (.xml), which is stored in the MDS.

To change anything in a reconciliation profile, for instance attribute batch size, either the profile
can be updated manually or by using the Design Console.

Note:

If a reconciliation profile is changed by using the Design Console, then the
reconciliation profile must be regenerated by clicking the Create Reconciliation
Profile button in the Object Reconciliation tab of the Design Console.

It is recommended not to use the Design Console to manage reconciliation configurations that
are created using Application Onboarding feature. The reconciliation profile is created and
updated automatically on creating or updating the schema of the application from the
Application Onboading feature.

14.5.2 Creating and Updating Reconciliation Profiles
Updating a reconciliation profile involves exporting the profile from MDS, making changes to
the profile XML file, and importing the profile to MDS.

To update a reconciliation profile manually:

1. Export the /db/PROFILE_NAME profile document from MDS.

2. Make changes in the XML file, for example, change the batch size value.

3. Set the value of the configure attribute to true. For information about this attribute, see 
Elements and Structures of Reconcilaition Profile.

4. Import the updated profile into MDS. See Migrating User Modifiable Metadata Files for
information about exporting and importing metadata to and from MDS.

Chapter 14
Updating Reconciliation Profiles Manually

14-28



This automatically updates the staging tables and the corresponding staging table entity
definitions.

14.5.3 Changing the Profile Mode
You can change the profile mode property from CHANGELOG to REGULAR.

You can use one of the following methods to change the profile mode property from
CHANGELOG to REGULAR:

See Also:

Mode of Reconciliation in Administering Oracle Identity Governance for information
about changelog and regular reconciliation modes

• Change the value of the changeType attribute in the profile, for example:

<profile xmlns="http://www.oracle.com/oracle/iam/reconciliation/config" 
changeType="REGULAR" batchSize="500" resourceType="Organization" name="Xellerate 
Organization">

• Change the attribute during event creation:

The event creation API contains three parameters. The first two parameters are same as
those used in previous create event APIs. The third parameter can have attributes such as
dateFormat, changeType, eventFinished, and actionDate. The following is the constructor
for the third parameter:

EventAttributes(boolean eventFinished, java.lang.String dateFormat, ChangeType 
changeType, java.util.Date actionDate)

See Java API Reference for Oracle Identity Governance for more information about the
third parameter.

You can use this API to set the changeType as follows:

public long createReconciliationEvent(String objName, Map<String, Object>inputData, 
EventAttributes eventAttribs);

Note:

Using the API to set the changeType attribute overrides the value of the
changeType attribute set in the profile.

14.6 Understanding Reconciliation APIs
Reconciliation API usage involves the ReconOperationsService API and invoking non-
scheduled task-based reconciliation in a multithreaded environment.

This section describes the reconciliation APIs. It contains the following topics:

• Overview of Reconciliation APIs

• The ReconOperationsService API

Chapter 14
Understanding Reconciliation APIs

14-29



• Invoking Non-scheduled Task-Based Reconciliation in a Multithreaded Environment

14.6.1 Overview of Reconciliation APIs
The reconciliation APIs are a set of published APIs that can be used to create reconciliation
events with single-valued and multi-valued attribute data and other features.

Reconciliation connector developers must use these APIs to push data to the reconciliation
event repository.

See Also:

Using APIs for more information about using APIs in Oracle Identity Manager

Most of these APIs existed in earlier versions of Oracle Identity Management. However, in the
current release, the implementation has changed and is based on the new reconciliation
architecture.

Existing standard connectors also use these APIs; since the earlier APIs continue to be
supported, no changes are necessary to those connectors.

callingEndOfJobAPI is the only new reconciliation API.

Each run of a connector is known as a job. Reconciliation events are submitted to the
reconciliation engine in batches. At the end of a job, the scheduler (which executes the
connector scheduled task) executes a listener, which in turn invokes the callingEndOfJobAPI.
This API submits any open batch for processing to the reconciliation engine.

The API calls are similar for Multilanguage Supported (MLS) and non-MLS data. The
connector passes in data to be reconciled as a HashMap. The difference is that if an attribute
is MLS-enabled, then the key is the attribute name, while the value is another HashMap of
MLS data. The keys of this MLS-specific HashMap are language codes, and the values are the
corresponding locale-specific data obtained from target system. If there is any MLS data that
does not have a locale defined with it in the target system, that data is passed with key "base"
in the MLS input data HashMap.

14.6.2 The ReconOperationsService API
The APIs in oracle.iam.reconciliation.api.ReconOperationsService are required for Ignore
Event, Create Event (single/bulk), Process Event, and Deletion Detection tasks.

The preferred API and the order of invocation of these APIs is as follows:

See Also:

Java API Reference for Oracle Identity Governance for details about the APIs in
oracle.iam.reconciliation.api.ReconOperationsService

• Ignore Event

• Create Event

• Process Event

Chapter 14
Understanding Reconciliation APIs

14-30



• Deletion Detection

14.6.2.1 Ignore Event
This is a way to prevent event creation and processing of target system data that already
exists in Oracle Identity Manager. The API invocation is as follows:

boolean ignoreEvent(String resourceObjectName, Map inputData, String dateFormat) throws 
tcObjectNotFoundException, tcAPIException

This API is used to validate whether or not the reconciliation create event needs to be raised
for the specified object. If this API returns true, then you can skip the event creation, which
saves extra event creation in the database.

Similar to the ignoreEvent API, the ignoreEventAttributeData method can be used to validate
whether or not the reconciliation create event flow needs to be raised for single and
multivalued data coming from the target system. In this release, only the account entity type
has such data. The API is as shown:

boolean ignoreEventAttributeData(String resourceObjectName, Map inputData, String 
multiValueFieldName, Map[] childDataList, String dateFormat) throws tcAPIException, 
tcObjectNotFoundException

Note:

Either ignoreEvent or ignoreEventAttributeData must be invoked; both the APIs are
not required to be invoked.

14.6.2.2 Create Event
This can happen via single event creation or bulk event creation APIs. This flow simply stores
target system data in staging tables. The processing of this data asynchronously takes place
later on.

Create Event (Single): This consists of the following APIs:

• Use the createReconciliationEvent method to provide the data for creating reconciliation
events. If there is child or multivalued data, then set the value of the
eventAttribs.eventFinished flag to false. Otherwise, set this value to true. It returns the
eventId of the created Event.

long createReconciliationEvent(String resourceObjectName, Map<String, Object> 
inputData, EventAttributes eventAttribs)

• The child data is provided using the addMultiAttributeData method. If there is no child data
or the eventAttribs.eventFinished flag is set to true, then this API must not be invoked.

long addMultiAttributeData(long plReconciliationEventKey, java.lang.String 
psFieldName, java.util.Map poData) throws tcAPIException, tcEventNotFoundException, 
tcEventDataReceivedException,tcAttributeNotFoundException

Chapter 14
Understanding Reconciliation APIs

14-31



Note:

For better performance with bulk multivalued attributes or the data for multiple
child records instead of a single child record, use the following API:

void addDirectBulkMultiAttributeData(long reconciliationEventKey, long 
reconciliationAttributeKey, String tableFieldName, List dataList,String 
dateFormat) throws tcAPIException, tcEventNotFoundException, 
tcAttributeNotFoundException, 
tcEventDataReceivedException,tcInvalidAttributeException

• The providingAllMultiAttributeData method specifies whether the multivalued data being
provided is the entire list of data, or only changeset that has been added/updated. By
default, the value of the pbFlag is false. If there is no child data or the
eventAttribs.eventFinished flag is set to true, then this API must not be invoked.

public void providingAllMultiAttributeData(long plReconciliationEventKey, String 
psFieldName, boolean pbFlag) throws tcAPIException;

• The finishReconciliationEvent method is used to mark the end of event creation flow.
Particular event status is updated to Data Received, which means that all the data for the
particular event, including the child data if any, has been provided. If the
eventAttribs.eventFinished flag is set to true, then this API must not be invoked.

void finishReconciliationEvent(long eventId) throws tcAPIException, 
tcEventNotFoundException, tcEventDataReceivedException

• The callingEndOfJobAPI method processes all the reconciliation batches in the job. For a
scheduled job, this API is automatically called when the job ends. This API must be
explicitly called for a nonscheduled job API invocation.

void callingEndOfJobAPI() throws tcAPIException
Create Event (Bulk): This consists of the following API:

ReconciliationResult createReconciliationEvents(BatchAttributes batchAttribs, 
InputData... input)

This is the bulk create API. It creates bulk reconciliation events for the data passed in input
data. It accepts all the data including multivalued attributes, and submits it for processing as
one batch if the size of data is less then or equals to the batch size. Otherwise, it submits the
data in multiple batches. There is no need to call any other API after this.

14.6.2.3 Process Event
This is a way to force the backend processing of an already created event. The
processReconciliationEvent(eventId) API is invoked after create event flow has finished and an
already created event needs to be processed as well. This API processes only a particular
event, it does not update the batch or job status. If batch status needs to be updated as well,
then invoke the callingEndOfJobAPI API after this. Using this API is not recommended
because it is synchronous and processes data one at a time, rather than in batch.

Chapter 14
Understanding Reconciliation APIs

14-32



Note:

If the processReconciliationEvent API is used for processing, then set the
reconciliation batch size (batchSize parameter) to 0 in the reconciliation profile of the
resource object. See Table 14-4 for more information about this step.

14.6.2.4 Deletion Detection
This is a way to delete extra data in Oracle Identity Manager that does not exist in the target
system. This consists of the following APIs:

• The provideDeletionDetectionData method takes the list of all the existing target system
data for a resource object as input, and then returns a list of matching data found in Oracle
Identity Manager.

Set provideDeletionDetectionData(String resourceObjectName, Map[] inputData) throws 
tcAPIException, tcIDNotFoundException, tcMultipleMatchesFoundException

• The getMissingAccounts method takes the list keys of already found data in Oracle Identity
Manager, and returns a list of extra data that is in Oracle Identity Manager but not in the
target system. It retrieves all keys from Oracle Identity Manager and compares them with
the keys present in the set returned by the provideDeletionDetectionData method.

Thor.API.tcResultSet getMissingAccounts(String objectName, Set accountsFound) throws 
tcAPIException, tcIDNotFoundException, tcDataNotProvidedException

• The deleteDetectedAccounts method takes a list of data found only in Oracle Identity
Manager as input, and invokes a delete type create reconciliation event API call, one at a
time. The tcResultSet returned by the getMissingAccounts method is passed as parameter
to this API.

long[] deleteDetectedAccounts(Thor.API.tcResultSet poDetectedAccounts) throws 
tcAPIException, tcAPIException

14.6.3 Invoking Non-scheduled Task-Based Reconciliation in a
Multithreaded Environment

You can invoke non-scheduled task-based reconciliation in a multithreaded environment by
implementing the UserNonSTBasedRecon class.

The following is the sample code to invoke non-scheduled task-based reconciliation in a
multithreaded environment:

public class UserNonSTBasedRecon{
 
     private AtomicInteger threadCount =new AtomicInteger(0);
 
public Long getRandomLong(int maxValue) {
        Random random = new Random();
        long token = random.nextInt(maxValue);
        return token;
    }
     @Test
     public void testCreateUsersUsingNonScheduleTaskConnectorWithThreads() throws 
Exception {
 
         Thread t = new CreateEvent();

Chapter 14
Understanding Reconciliation APIs

14-33



         t.start();
         Thread t2 = new CreateEvent();
         t2.start();
 
     while (true) {
             Thread.currentThread().sleep(5000);
             if (threadCount.get() == 2){
             OIMClient oimClient = null;             ReconOperationsService reconServ = 
oimClient.getService(ReconOperationsService.class);
                 reconServ.callingEndOfJobAPI();
                 break;
             }
         }
     }
 
     public class CreateEvent extends Thread {
 
         @Override
         public void run() {
 
         String ctxFactory = "weblogic.jndi.WLInitialContextFactory";
             OIMProfileReader reader = new OIMProfileReader();
             String appServerType = reader.getString("appserver.type");
             String hostName = reader.getString("weblogic.host");
             String port = reader.getString("weblogic.port");
             String serverURL = "t3://" + hostName + ":" + port;
             System.out.println("Server URL is : " + serverURL);
             System.out.println("Context Factory is : " + ctxFactory);
             Hashtable<String, String> env = new Hashtable<String, String>();
             env.put(OIMClient.JAVA_NAMING_PROVIDER_URL, serverURL);
             env.put(OIMClient.JAVA_NAMING_FACTORY_INITIAL, ctxFactory);
 
             OIMClient client = new OIMClient(env);
             String username = "xelsysadm";
             String password = "PASSWORD";
             try {
                 client.login(username , password.toCharArray());
             } catch (LoginException e1) {
                 throw new SuperRuntimeException(e1.getMessage(), e1);
             }
 
             String uniq2 = getRandomLong(10000).toString();
             long jobId = getRandomLong(10000);
             ContextManager.setValue(Constants.JOB_HISTORY_ID, new 
ContextAwareNumber(jobId));
             ContextManager.setValue(Constants.JOB_NAME_CONTEXT, new 
ContextAwareString(jobId +""));
             ReconOperationsService recon;           
             try {
                 recon = client.getService(ReconOperationsService.class);
                 int count = 50;
                 HashMap<String, String> hm = new HashMap<String, String>();
                 ArrayList<Long> eventKeys = new ArrayList<Long>();
                 for (int i = 0; i < count; i++) {
                     hm.put("UserLogin", uniq2 + "ThreadTest" + i);
                     hm.put("FirstName", uniq2 + "Thread" + i);
                     hm.put("lastname", "Test");
                     hm.put("Type", "End-User");
                     hm.put("OrganizationName", "Xellerate Users");
                     hm.put("EmpType", "Full-Time");
                     hm.put("Middlename", "MID");
                     System.out.println("Creating Recon event i ="+ i);

Chapter 14
Understanding Reconciliation APIs

14-34



                     long rceKey = recon.createReconciliationEvent("Xellerate User", hm, 
true);
                     eventKeys.add(rceKey);
                 }
                 assertEquals(count, eventKeys.size());               
             } catch (Exception e) {
                 throw new SuperRuntimeException(e.getMessage(), e);
             } finally {
                 threadCount.set(threadCount.get()+1);
                 ContextManager.popContext();
             }
         }
     }
 }

14.7 Postprocessing for Trusted Reconciliation
If the user login is not passed for trusted reconciliation, then the login handler generates the
user login. The password is generated in postprocessing event handler. You can configure
Oracle Identity Manager to send notification for the same.

Notification is sent only when the value of the Recon.SEND_NOTIFICATION system property
is set to true. See Default System Properties in Oracle Identity Manager in Administering
Oracle Identity Governance for information about the Recon.SEND_NOTIFICATION system
property.

In SSO disabled environment, for user creation via reconciliation, both the user login and
password are generated in postprocess handlers and a single notification is sent for both user
login and password.

In SSO enabled environment, because the password is not to be generated, if login is
generated in postprocess handler, then notification is sent only for the user login.

14.8 Reconciliation FAQs
Frequently asked questions about reconciliation are related to reconciliation configuration, and
handling event generation, processing failure, and post-processing failure issues.

This section provides the following FAQs about reconciliation:

What should be performed after reconciliation configuration and before reconciliation
run?

After all the reconciliation configuration are done either by importing a connector, or via the
Design Console, or via Application Onboarding before triggering the scheduled job to start the
reconciliation run:

1. Make sure that IT resource details are correct and you are able to connect to the target
system.

2. Validate if all the reconciliation configurations are correct. This can be done by validating
the reconciliation profile using the ProfileValidator mbean available on the Enterprise
Manager. For information about various profile configuration issues, see Troubleshooting
Reconciliation Profile Configuration Failures.

How to handle data issues while event generation?

To handle data issues while event generation (when reconciliation events are not getting
generated):

Chapter 14
Postprocessing for Trusted Reconciliation

14-35



• Enable INFO level logs, as described in Troubleshooting General Reconciliation Issues.

• Check INFO levels logs to see if createReconciliationEvent() is getting invoked, which
confirms the call to reconciliation engine. Look for log: createEvent Input Data. This also
prints the data being passed from the connector to the reconciliation engine.

• Analyze the logs to check if the event is ignored if the same data already exists in Oracle
Identity Manager, thereby not generating the event again, which is expected behavior.

• If no logs are displayed related to createEvent and ignoreEvent, then the issue is most
likely in connector area, even before call is made to the reconciliation engine.

How to handle processing failures?

To handle processing failures:

• Know if the connector being used is a listener-based connector (push-based connector)
such as PSFT or RACF, or is it a pull-based connector. Knowing this is important as push
and pull-based connectors follow different processing paths.

• Check if processing is happening via single event flow, which is end-to-end orchestration,
or is it bulk processing using SPs. Single event processing happens mostly with push-
based connectors, which invokes the processReconciliationEvent() API or when a
failed event is retried/re-evaluated.

• As mentioned in Troubleshooting Reconciliation, check the exception if any in the
RE_NOTE/RB_NOTE. Complete exception details can be further checked in the Oracle
Identity Manager server logs.

• See Troubleshooting Reconciliation for other common failures and resolutions during
processing.

How to handle post-processing failures?

To handle post-processing failures:

• As mentioned in Troubleshooting Reconciliation, get the orchestration IDs from RB_NOTE/
RE_NOTE columns for bulk and single event processing respectively.

• You can also validate the event by using the EventDiagnostic Mbean, which provides all
details related to event processing along with post processing details, such as what is the
orchestration status, which all handlers got executed, and failure details if any.

• If there is some custom event handler not getting executed only in reconciliation flow, then
check if the bulk implementation exists or not. The orchestration-related info is available
only in the logs and cannot be diagnosed by using above steps.

How to do performance-related analysis?

For performance-related analysis for reconciliation, see Monitoring Reconciliation Performance
Using DMS. In addition, refer to the technote "Oracle Identity Manager 11g Reconciliation
Performance Tuning" with Doc ID 1484808.1 at My Oracle Support web site at:

https://support.oracle.com

14.9 Troubleshooting Reconciliation
Issues related to reconciliation and troubleshooting them might include changing logging level,
and troubleshooting general, database-related, profile configuration, and LDAP reconciliation
issues.

This section describes troubleshooting various issues related to reconciliation. It contains the
following topics:

Chapter 14
Troubleshooting Reconciliation

14-36

https://support.oracle.com


• Changing the Logging Level for Reconciliation

• Troubleshooting General Reconciliation Issues

• Troubleshooting Database-Related Reconciliation Issues

• Troubleshooting Reconciliation Profile Configuration Failures

• Troubleshooting LDAP Reconciliation Issues

• Troubleshooting Reconciliation Issues in the PL/SQL Layer

14.9.1 Changing the Logging Level for Reconciliation
Before troubleshooting issues related to reconciliation, change the reconciliation logging level
to INFO.

To change the logging level to INFO, add the following logger by using Oracle Enterprise
Manager:

• Name: oracle.iam.reconciliation

• Oracle Diagnostic Logging Level (Java Level): NOTIFICATION:1(INFO)

For detailed steps of adding a logger, see Configuring Log Services for Oracle Identity
Governance in Administering Oracle Identity Governance.

Note:

To change the logging level, you can also modify the /domains/DOMAIN_NAME/
config/fmwconfig/servers/OIM_SERVER/logging.xml file. To do so:

1. In the logging.xml file, add a new logger, as shown:

<LOGGER NAME="oracle.iam.reconciliation" LEVEL="INFO"/>
2. Change the logging level of the 'console-handler' log_handler to INFO.

3. Restart Oracle Identity Manager.

14.9.2 Troubleshooting General Reconciliation Issues
General reconciliation issues can be failure in event processing or kernel orchestration handler,
errors encountered because of skipped events, and data corruption issues.

Table 14-4 lists the troubleshooting steps that you can perform if you encounter reconciliation
errors:

Table 14-4    Troubleshooting Reconciliation

Problem Solution

Failure in processing events The error details can be obtained from the reconciliation tables, such
as:

• For batch processing, the exception is stored in
RECON_BATCHES.RB_NOTE column

• For single event processing, the exception is stored in
RECON_EVENTS.RE_NOTE column

Chapter 14
Troubleshooting Reconciliation

14-37



Table 14-4    (Cont.) Troubleshooting Reconciliation

Problem Solution

Various data corruption issues
resulting due to duplicate
processing (both single and
bulk processing) in case of
push-based connectors when
they are processing
reconciliation using the
processReconciliationEvent
API

For example, duplicate account
creation, status unexpectedly
getting changed, and so on.

Set the reconciliation batch size (batchSize parameter) to 0 in the
reconciliation profile of the affected resource object.

Failure occurring in kernel
orchestration handler

The orchestration ID can be tracked from the reconciliation table, which
can further be used to check the status of related handlers, such as:

• For batch processing, the postprocess only orchestration ID can
be read from the RECON_BATCHES.RB_NOTE column

• For single event processing, end-to-end orchestration ID can be
read from the RECON_EVENTS.RE_NOTE column

There is no UI that displays LDAP synchronization during
reconciliation. Therefore, you can only track LDAP success or failure by
checking the status of LDAP sync event handlers in orchestration
based on the ID available in RB_NOTE/RE_NOTE columns.

After a job run, a lot of events
are in the Data Received
status.

Check if related batches are in Ready For Processing status by using
the following statement:

select rb_batch_status, rb_note from recon_batches where 
rb_batch_status = 'Ready For Processing' and rj_key = 
JOB_ID_ON_UI

In addition, in the RECON_BATCHES.RB_NOTE, there is some
generic exception, such as Connection issue. Fix the issue, and then
perform any one of the following:

• If there is a lot of data, then rerun the reconciliation job.
• There is a scheduled task provided for manual retry of such failed

batches Retry Reconciliation Batch. This can be used for retrying
specific batches only. Multiple comma-separated batches are
supported.There is no predefined job associated with this
schedule task. A job can be created as required.

Race Condition - Events are in
failed status because some
dependent attribute is still not
reconciled, for example, user's
manager/organization needs to
be reconciled before user.

• If the size of the data is small, then retry reconciliation
automatically handles the race condition, but it is slow.

• If the size of the data is large, then perform the reconciliation two
times. Remove the mapping for the dependent field for the first full
reconciliation, and then add the dependent field mapping and
perform the full reconciliation second time.

The following error is generated
when performing user update
for trusted source
reconciliation:

ORA Error Code 
=>ORA-00001: unique 
constraint (.) violated

For of trusted source reconciliation, if the matching rule is based on
Usr_login, then the matching rule must not be case-sensitive.
Otherwise, updating users work as creating users, and the error might
be generated.

Chapter 14
Troubleshooting Reconciliation

14-38



Table 14-4    (Cont.) Troubleshooting Reconciliation

Problem Solution

Recon events skipped/not
created error is generated with
the following SQLException in
the logs:

<oracle.iam.reconciliation
.dao.event> <BEA-000000> 
<Generic Information: {0} 
java.sql.SQLException: 
ORA-12899: value too 
large for column 
"DEV_OIM"."RA_LDAPUSER9504
ECC4"."RA_BUSINESSPHONE" 
(actual: 26, maximum: 20) 
at 
oracle.jdbc.driver.T4CTTIo
er.processError(T4CTTIoer.
java:462) at 
oracle.jdbc.driver.T4CTTIo
er.processError(T4CTTIoer.
java:405)

This issue is because the data passed for the fields from the target is of
greater size than the column size in the database table. To resolve this
you should either:

• Modify the data in the target for these fields, as per the column
size in the database table, or

• Modify the field length for these columns from the console and
then recreate the recon profile

Note:

The oracle.iam:type=Reconciliation,name=EventDiagnostic MBean with method
'diagnose' can be used to diagnose end-to-end reconciliation event flow. This MBean
can be accessed by using Oracle Enterprise Manager. The diagnose method takes
reconciliation EventID as input, and shows the following information about the event:

• Event, batch, job, and history details. This includes the RE_NOTE and the
RB_NOTE values, and therefore, indicates the reason for failure, if any, or else
the associated orchestration IDs.

• Old state table data, which is relevant for audit.

• Staging table data, which is data coming to reconciliation from the target system.

• Orchestration details, which includes all the event handlers that executed along
with their status and reason for failure, if any.

14.9.3 Troubleshooting Database-Related Reconciliation Issues
Database-related reconciliation issues include missing critical database patches, slow
reconciliation, and errors in event processing.

This section the describes the following database-related issues for reconciliation:

• Missing Critical Oracle Database 11g Release 1 Interim Patches

• Missing Critical Oracle Database 11g Release 2 Interim Patches

• Slow Reconciliation and Similar Traces in Error Log

Chapter 14
Troubleshooting Reconciliation

14-39



• Reconciliation Event Does Not Process With Error

14.9.3.1 Missing Critical Oracle Database 11g Release 1 Interim Patches
When the RDBMS interim patch# 7614692 is missing, the following error is logged:

ORA-02291: INTEGRITY CONSTRAINT (FK_RECON_EVENTS_USR) VIOLATED - PARENT KEY NOT FOUND
[EXEC] ORA-06512: AT "OIM_SP_RECONBLKUSERCRUD"
[EXEC] ORA-06512: AT "OIM_SP_RECONBLKUSRMLSWRAPPER"
[EXEC] ORA-06512:

To resolve this issue, the following patches must be installed on Oracle Database 11g Release
1 (11.1.0.7.0):

• p7614692_111070

• p7000281_111070

• p8327137_111070

• p8617824_111070

Note:

You can download all interim patches from the following URL:

http://support.oracle.com

14.9.3.2 Missing Critical Oracle Database 11g Release 2 Interim Patches
Running some SQL scripts might generate incorrect or inconsistent results on Oracle
Database 11g Release 2 (11.2.0.2.0), which do not cause problems in earlier release of Oracle
Database.

To resolve this issue, patch# 10259620 for Oracle Database 11g Release 2 must be installed.

14.9.3.3 Slow Reconciliation and Similar Traces in Error Log
When the SQL scripts having matching rules involving large volume, the entity tables are slow
probably because of FULL table scans or unoptimized SQL plans in the database.

Reconciliation can be slow when the matching rule columns are not properly indexed or
schema statistics is outdated. The slowness results in error logs similar to the following:

oracle.iam.platform.utils.SuperRuntimeException: java.sql.SQLException:
ORA-01013: user requested cancel of current operation
ORA-06512: at "XL_SP_RECONBLKROLEMATCH"
ORA-06512: at "OIM_SP_RECONBLKROLEMLSWRAPPER"
ORA-06512:
 
at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java)
at weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl.run(SelfTuningWorkMana 
gerImpl.java)
at weblogic.work.ExecuteThread.execute(ExecuteThread.java)
at weblogic.work.ExecuteThread.run(ExecuteThread.java)
Caused by: java.sql.SQLException: ORA-01013: user requested cancel of current operation
ORA-06512: at "XL_SP_RECONBLKROLEMATCH"
ORA-06512: at "OIM_SP_RECONBLKROLEMLSWRAPPER"

Chapter 14
Troubleshooting Reconciliation

14-40

http://support.oracle.com


ORA-06512: 
.
at oracle.jdbc.driver.SQLStateMapping.newSQLException(SQLStateMapping.java)
at oracle.jdbc.driver.DatabaseError.newSQLException(DatabaseError.java)
at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java)
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java)
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java)

To resolve this issue:

1. Verify that all the appropriate indexes are created over matching rule columns.

2. Verify that the database schema statistics are collected according to the guidelines.

See Also:

Reconciliation Best Practices for information about creating indexes for
reconciliation and collecting database statistics

14.9.3.4 Reconciliation Event Does Not Process With Error
The reconciliation event does not process with the following error trace (ORA-31061 error):

java.sql.SQLException: ORA-20001: Error occured in XL_SP_ReconBlkChildMthAcntCRUD while 
processing Batch ID - 48 XL_SP_ReconBlkChildMthAcntCRUD failed 
e_xlSpReconBlkChildMthAcntCRUD - FORMAT_ERROR_BACKTRACE: ORA-06512: at 
"SYS.DBMS_XMLGEN", line 7
ORA-06512: at "SYS.DBMS_XMLGEN", line 147
ORA-06512: at "OGD_OIM.OIM_SP_RECONBLKACCOUNTCHGLOG", line 305
ORA-06512: at "OGD_OIM.XL_SP_RECONBLKCHILDMTHACNTCRUD", line 3528
 
FORMAT_ERROR_STACK: ORA-31061: XDB error: special char to escaped char conversion failed.
 -31061 -ERROR- ORA-31061: XDB error: special char to escaped char conversion failed.
ORA-06512: at "OGD_OIM.XL_SP_RECONBLKCHILDMTHACNTCRUD", line 3617
ORA-06512: at "OGD_OIM.XL_SP_RECONBLKACNTRQDCMTCHCRUD", line 91
ORA-06512: at line 1
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java:462)
.
.
.
.
.
.
at weblogic.jdbc.wrapper.PreparedStatement.execute(PreparedStatement.java:99)
at 
oracle.iam.reconciliation.dao.ReconActionDao$1ReconDBCall$1.process(ReconActionDao.java:1
489)
at 
oracle.iam.reconciliation.dao.ReconActionDao$1ReconDBCall$1.process(ReconActionDao.java:1
472)
at 
oracle.iam.platform.tx.OIMTransactionCallback.doInTransaction(OIMTransactionCallback.java
:13)
at 
oracle.iam.platform.tx.OIMTransactionCallback.doInTransaction(OIMTransactionCallback.java
:6)
at 
org.springframework.transaction.support.TransactionTemplate.execute(TransactionTemplate.j
ava:128)

Chapter 14
Troubleshooting Reconciliation

14-41



This is a database-related issue. For a description of this issue, see technote "XDB reports
ORA-31011 if content contains illegal characters (Doc ID 8246403.8)" at My Oracle Support
web site at:

https://support.oracle.com

The fix for this enhancement is available in Database version 11.2 onwards, but it is disabled
by default. To fix this issue, the enhancement must be enabled.

To workaround this issue, remove the special character in the data.

14.9.4 Troubleshooting Reconciliation Profile Configuration Failures
For any issues related to profile configuration failures, validate the profile by using the
ProfileValidator Mbean available in Oracle Enterprise Manager. If the profile is invalid, then the
profile is displayed along with the cause of the invalid profile.

Table 14-5 lists the troubleshooting steps that you can perform if you encounter reconciliation
errors.

Table 14-5    Troubleshooting Reconciliation Profile Configuration Failures

Problem Solution

The profile is invalid, and it fails to load with
the following exceptions:

oracle.iam.reconciliation.exception.ConfigNot
FoundException OR

oracle.iam.reconciliation.exception.Config
with internal exception
org.xml.sax.SAXParseException

Perform any one of the following:

• The exact problem can be diagnosed and fixed by
checking the schema validation message.

• Validate the reconciliation profile XML by using the
MBean in Oracle Enterprise Manager.

• Validate the reconciliation profile by importing the
profile and the XSD into an XML schema-aware
editor and validate against that schema in that
editor, which can point to the exact cause of the
failure.

Importing a valid reconciliation profile XML
into a system fails to create the necessary
configurations.

Check the profile.configure attribute. The value of this
attribute must be true.

Check the profile.active attribute. The value of this must
be true. Or if the attribute is not present, then it means
that profile.active is true.

The following error is generated:

oracle.iam.reconciliation.exception.Re
conciliationException: Exception 
occurred while inserting data into 
table STAGING_TABLE_NAME due to 
STAGING_TABLE_NAME

This means that a valid reconciliation profile is
loaded, but it has not created any
configuration in Oracle Identity Manager.

Check the profile.configure and profile.active attributes.

Note:

The ProfileValidator Mbean is available for validating the reconciliation profile. This
MBean can be accessed by using Oracle Enterprise Manager.

Chapter 14
Troubleshooting Reconciliation

14-42



14.9.5 Troubleshooting LDAP Reconciliation Issues
LDAP reconciliation issues can include reconciliation scheduled job failure and external
changelog cookie expiration.

This section describes the following issues related to LDAP reconciliation:

• LDAP User Create and Update Reconciliation Scheduled Job Fails With Error

• External Changelog Cookie Expiration Issue When Performing Reconciliation with OUD

14.9.5.1 LDAP User Create and Update Reconciliation Scheduled Job Fails With
Error

In an integrated environment of Oracle Identity Manager with Oracle Unified Directory (OUD)
and libOVD, the LDAP User Create and Update Reconciliation scheduled job fails with the
following error:

"Invalid syntax of the provided cookie"

This error occurs when a numeric change number value, for example 0, is being passed to
libOVD when OUD is used as LDAP, and External Change Log (ECL) is enabled in the libOVD
adapter. In the scheduled job page, the numeric value, for example 0, is set in the Last Change
Number field. This attribute is used to specify the last changelog identifier processed by this
scheduled job.

For OUD, when ECL mode is on, the value of the Last Change Number field must not be a
numeric value but a string value, such as:

"dc=us,dc=oracle,dc=com:00000142b752f5cf473900000ce1;"

The following is an example command to get the expected value:

ldapsearch -h localhost -p 1389 -D "cn=Directory Manager" -w PASSWORD -b "" -s base 
"objectclass=*" lastExternalChangelogCookie
dn: lastExternalChangelogCookie: dc=us,dc=oracle,dc=com:00000142b752f5cf473900000ce1;

14.9.5.2 External Changelog Cookie Expiration Issue When Performing
Reconciliation with OUD

For a description of the issue and troubleshooting information, see Fixing External Changelog
Cookie Expiration Issue When Performing Reconciliation With OUD in the Integration Guide for
Identity Management Suite.

14.9.6 Troubleshooting Reconciliation Issues in the PL/SQL Layer
The PL/SQL Unified Diagnostic Logging and Debugging framework captures diagnostic
information from the PL/SQL layer for reconciliation operations.

For troubleshooting reconciliation issues in the PL/SQL layer, see Using PL/SQL Unified
Diagnostic Logging and Debugging Framework in Administering Oracle Identity Governance.

14.10 Populating Data in the RECON_EXCEPTIONS Table
The data captured in the RECON_EXCEPTIONS table is used for generating reports.

Chapter 14
Populating Data in the RECON_EXCEPTIONS Table

14-43



See Also:

Account Reconciliation in Administering Oracle Identity Governance for information
about account reconciliation

This section contains the following topics:

• About the RECON_EXCEPTIONS Table

• Populating Data in the RECON_EXCEPTIONS Table

14.10.1 About the RECON_EXCEPTIONS Table
The RECON_EXCEPTIONS table in Oracle Identity Manager database is used to capture error
messages generated during account reconciliation. This data is collected for the purpose of
generating reports.

If a reconciliation match is found to a deleted user, then you must insert USER_DELETED in
the REX_EXCEPTION column and the key of the deleted user in the USR_KEY column of the
RECON_EXCEPTIONS table.

If no match is found, then insert USER_NOT_FOUND in the REX_EXCEPTION column.

If account match is found, then check if the account is already deprovisioned. Then insert into
RECON_EXCEPTIONS table with the value RESOURCE_DEPROVISIONED in the
REX_EXCEPTION column for the user who is to be provisioned.

14.10.2 Populating Data in the RECON_EXCEPTIONS Table
The RECON_EXEPTIONS table is populated with exception data that can be used for
generating reports.

To populate the RECON_EXEPTIONS table with exception data:

1. Fetch all the events with the change type != ('Modify' , 'Delete') and event status as ('Single
User Match Found', 'Single Org Match Found').

2. Provision the resource object for the entities by performing the following:

a. Collect the exception data from RECON_EXCEPTION DB table. To do so, perform any
one of the following:

• Check if the value of the XL.EnableExceptionReports property is TRUE. If it is set
to TRUE, then continue to the next step. Otherwise, do not collect the exception
data.

• Select the obj_initial_recon_date in the obj table for the resource object being
provisioned, and check if it is earlier than today's date. If an earlier date is
displayed, then continue to the next step. Otherwise, do not collect the exception
data.

b. While provisioning the resource object to the user, check if the resource object has
already been deprovisioned in Oracle Identity Manager:

• If the resource object is already deprovisioned, then insert into
RECON_EXCEPTIONS table the value RESOURCE_DEPROVISIONED in the
REX_EXCEPTION column for the user who is to be provisioned.

Chapter 14
Populating Data in the RECON_EXCEPTIONS Table

14-44



• If the resource object is not deprovisioned, then insert into RECON_EXCEPTIONS
table the value RESOURCE_NEVER_PROVISIONED in the REX_EXCEPTION column for
the user who is to be provisioned.

14.11 Reconciliation Best Practices
Reconciliation performance can be improved by identifying indexes that are required for
connector tables and reconciliation tables.

This section describes how to improve performance by identifying indexes that are required for
connector tables and reconciliation tables. It contains the following topics:

• Selecting Additional Indexes for Matching Module

• Collecting Database Schema Statistics for Reconciliation Performance

Note:

Oracle recommends configuring both the entitlement attribute and the key attribute
for the child data in reconciliation field mappings to enable effective duplicate
entitlement or child data validation. See Duplicate Validation for Entitlements or Child
Data in Administering Oracle Identity Governance for information about duplicate
validation for entitlements or child data.

14.11.1 Selecting Additional Indexes for Matching Module
Additional indexes might be required because of the dynamic nature of the features in Oracle
Identity Manager.

This section describes how to select additional indexes for the matching module. It contains
the following topics:

• About Additional Indexes for the Matching Module

• Selecting Indexes Based on the Matching Rule Criteria

14.11.1.1 About Additional Indexes for the Matching Module
When Oracle Identity Manager is installed, the necessary indexes are created in the Oracle
Identity Manager database schema. However, there can be additional indexes required
because of dynamic nature of some of the features in Oracle Identity Manager. This is
especially true for reconciliation.

Reconciliation uses matching algorithm to find if the user/account/role/organization for which
the change is requested is already existing in Oracle Identity Manager or not. The matching
algorithm compares the data in set of columns in Oracle Identity Manager with the data in
target horizontal table columns. The columns that contains the matching rules are defined in
the reconciliation profile. To improve the performance of the matching operation quickly, there
must be correct indexes created on the matching rule columns.

Chapter 14
Reconciliation Best Practices

14-45



14.11.1.2 Selecting Indexes Based on the Matching Rule Criteria
To illustrate the recommended method of identifying the appropriate indexes, a sample Active
Directory (ADUser) profile present in the Meta Data Store (MDS) repository is taken as an
example.

To select indexes based on the matching rule criteria:

1. Open the AD profile file in a text editor.

Note:

The AD user profile must be imported from the MDS by using the Oracle
Enterprise Manager, as described in Migrating User Modifiable Metadata Files.

2. Search for all occurrences of <matchingRule> tag element in the AD profile, as shown in 
Figure 14-4:

Figure 14-4    The <matchingRule> Tag Element

3. After identifying the columns constituting each matching rule, create the indexes
accordingly.

Chapter 14
Reconciliation Best Practices

14-46



Note:

• If any key field is defined in Oracle Identity Manager as case-insensitive, then a
function-based index on that key field must be created. For example, if the
connector code internally performs a search for the first name, assuming that
FIRST_NAME is a key, then appropriate indexing must be done.

• If multiple or composite keys are used for looking up a user, then choose
between individual or composite indexes.

• Pointers for required indexes can also be taken by monitoring the real-time
running of reconciliation process from the database side by using a performance-
monitoring tool, such as Oracle Enterprise Manager, or through the Automatic
Workload Repository (AWR) Reports available in Oracle Database 11g.

• To some extent, index creation is automated for profiles created or updated via
the Design Console or Deployment Manager import, or via Application
Onboarding. Validate the automatically created indexes per the rules defined in
this section. You must rectify the indexes manually if there are any issues. For
profiles created or updated manually, the indexes are not automated and must be
created manually. In addition, there is no automation for dropping the indexes if
the matching rule field has changed. Dropping indexes must be done manually.

• The list of existing indexes can be viewed on Oracle Enterprise Manager by
using the ProfileValidator Mbean.

• Index names starting with RDX are reserved for default reconciliation indexes
and must not be used for any custom index creation.

14.11.2 Collecting Database Schema Statistics for Reconciliation
Performance

Because database SQL features are used for reconciliation process, the schema statistics
must be updated before running reconciliation.

Database statistics is essential for the Oracle optimizer to select an optimal plan in running the
SQL queries. Oracle recommends that the statistics are collected regularly for Oracle Identity
Manager schema. Because Oracle Identity Manager uses lot of database SQL features for
reconciliation process, make sure that the schema statistics are updated before running the
reconciliation.

Note:

• Other options with DBMS_STATS.GATHER_SCHEMA_STATS API can be used
as required, such as DEGREE,ESTIMATE_PERCENT based on the
environment, data profile, Oracle DB Edition and underlying hardware
capabilities.

• See Database Performance Monitoring in the Performance and Tuning Guide for
more information about collecting database schema statistics.

Chapter 14
Reconciliation Best Practices

14-47



Because Oracle Identity Manager reconciliation process is a data-intensive process and
quickly brings in large volume of data, database statistics must also be able to represent the
underlying data correctly. To achieve this, refer to the following guidelines:

• Make sure that statistics is collected for reconciliation on a fresh setup or with a low
volume with no or negligible existing data in the Oracle Identity Manager schema.
Maximum row count in relevant Oracle Identity Manager tables must be between 100 and
1000 rows. Examples of tables are USR table for trusted source reconciliation and parent
account table for target resource reconciliation.

• For the statistics to be a proper representative of data distribution after reconciliation has
started and is expected to bring in a large volume of data, such as more than 20000 users
or accounts, collect Oracle Identity Manager schema statistics in the following manner:

1. Plan to gather statistics after the initial collection only after reconciliation has started
successfully and has been running for a while. To verify this, check the counts of a few
key tables from the Oracle Identity Manager schema, such as USR table for trusted
source reconciliation and parent account (UD_*) tables for target resource
reconciliation.

2. After reconciliation has brought in almost 20000 to 25000 rows in the USR table or in
the parent account tables, statistics can be collected.

Note:

– Statistics can be gathered concurrently with reconciliation running.

– The row counts specified in the guidelines are examples and you can
determine any other row count for collecting statistics.

• After the statistics is collected, the performance might not improve immediately. However,
as older SQL Plans are cleared from the shared pool of the Oracle Database, new and
more efficient plans are created and performance improves.

14.12 Monitoring Reconciliation Performance Using DMS
Dynamic Monitoring Service (DMS) commands are used to view performance metrics and
configure event tracing.

The following DMS matrices are relevant for monitoring reconciliation performance:

• OIM_ScheduledJob: The time taken by a particular scheduled job run.

• Reconciliation Service (ReconOperationsService Or tcReconciliationOpIntf): The time
taken by each API on the reconciliation service for creating an event. Connector
throughput can be calculated as 'Total Scheduled Job time – Total time for creating the
events.

• OIM_JMS: ActionTask shows the consolidated time taken for processing both by the
Stored Procedure and the Post Processing done via Orchestration. XLAuditMessage
provides information about actual audit processing.

• OIM_EventHandlers: Time taken by each eventhandler within an orchestration.

• DMS Dump: If unable to resolve performance and functional issues, then DMS dumps
should be provided for analysis. The command is:

${mwhome}/oracle_common/common/bin/wlst>>dms.log
Connect('adminusername','adminpassword');

Chapter 14
Monitoring Reconciliation Performance Using DMS

14-48



dumpMetrics(format='xml');
Exit();

For detailed information about the command, see the dumpMetrics section in DMS Custom
WLST Commands of the WebLogic Scripting Tool Command Reference.

Chapter 14
Monitoring Reconciliation Performance Using DMS

14-49



15
Using the Bulk Load Utility

The Bulk Load utility is used to automate the process of loading a large amount of data into
Oracle Identity Manager to reduce the downtime.
Oracle Identity Manager may be one among many repositories of entity data in your
organization. When you start using Oracle Identity Manager, you might want to load data from
the other repositories into Oracle Identity Manager. The Bulk Load utility offers a solution to this
requirement.

The Bulk Load utility is aimed at automating the process of loading a large amount of data into
Oracle Identity Manager. It helps reduce the downtime involved in loading data. You can use
this utility after you install Oracle Identity Manager or at any time during the production lifetime
of Oracle Identity Manager. The Bulk Load utility can load users, accounts, roles, role
hierarchy, role membership, role category data, and organizations.

This chapter contains the following topics:

• Modes of Running the Utility

• Features of the Bulk Load Utility

• Prerequisites for Running the Bulk Load Utility

• Running the Utility

• Performance Best Practices for Bulk Load

• Loading OIM User Data

• Loading Account Data

• Loading Role, Role Hierarchy, Role Membership, and Role Category Data

• Loading Organization Data

• Data Recorded During the Operation

• Gathering Diagnostic Data from the Bulk Load Operation

• Cleaning Up After a Bulk Load Operation

• Bulk Load High Volume Strategy and Case Studies

15.1 Modes of Running the Utility
The Bulk Load utility can be run in offline mode or online mode.

The Bulk Load utility can be run in one of the following modes:

• Offline mode: This is the traditional or existing mode. To run the utility in offline mode,
Oracle Identity Manager must be running.

• Online mode: In online mode, there is no need to shut down Oracle Identity Manager.
online mode only implies that the utility can be run when Oracle Identity Manager is up and
running. It is still a command-line utility and no other interface is available for online mode.

By default, Bulk Load utility runs in online mode.

To choose between the online or offline mode, consider the following factors:

15-1



• At times, service availability is more important for business reasons. Choose default online
mode in this case.

• If volume of new entities loaded is not huge, cost of service restart and index rebuild after
offline bulkload is higher than slight performance degradation in online mode. Choose
default online mode in this case.

• When load volume is high and existing system data is less in comparison, offline bulk load
might have some advantages.

15.2 Features of the Bulk Load Utility
The Bulk Load utility can load users, accounts, roles, role hierarchy, role membership, and role
category data.

The Bulk Load utility is aimed at automating the process of loading a large amount of data into
Oracle Identity Manager. It helps reduce the downtime involved in loading data. You can use
this utility after you install Oracle Identity Manager or at any time during the production lifetime
of Oracle Identity Manager. The Bulk Load utility can load users, accounts, roles, role
hierarchy, role membership, and role category data.

The following are features of the bulk load utility:

• Data can be loaded into Oracle Identity Manager as OIM Users, accounts allocated
(provisioned) to OIM Users, roles, role hierarchies, role memberships, role categories, or
organizations.

• Data can be loaded from a single or multiple CSV files or a database table. Data imported
into Oracle Identity Manager is automatically converted into OIM Users, accounts
provisioned to OIM Users, roles, role hierarchies, role memberships, role categories, or
organizations.

• Data can be loaded from a single or multiple trusted sources.

• Data can be loaded into either an empty Oracle Identity Manager repository or an Oracle
Identity Manager repository that already contains data about OIM Users and resources. In
other words, user data can be loaded at any time, either immediately after Oracle Identity
Manager installation or when the system is already in production.

• The utility is for creating new entities only. It cannot be used to update or delete existing
entities.

• Exceptions generated during user data loading are handled, and records that fail the
loading process can be retried.

• Audit snapshots can be generated after a bulk load operation for users.

• After bulk loading of OIM User data, password change at first login is enforced because a
dummy password is used during the operation.

Note:

You cannot use the utility to encrypt user attributes. In other words, if a user field
in Oracle Identity Manager is encrypted, then the utility cannot be used to encrypt
data that is loaded into that field.

• The Bulk Load utility can be used in offline or online modes.

Chapter 15
Features of the Bulk Load Utility

15-2



15.3 Prerequisites for Running the Bulk Load Utility
Before running the Bulk Load utility, you must install the utility and prepare your database for
the bulk load operation, and familiarize yourself with the various options of the Bulk Load utility.

Running the Bulk Load utility has the following prerequisites:

• Installing the Bulk Load Utility

• Understanding Bulk Load Options and Additional Details

• Preparing Your Database for a Bulk Load Operation

15.3.1 Installing the Bulk Load Utility
Install the Bulk Load utility by copying the oimbulkload directory from the installation package
and by extracting the contents.

To install the utility complete the steps provided in the following approaches:

Approach 1:

1. Zip and copy the bulk load utility folder from OIM Machine to the DBMachine.

2. Copy the following MW Home related files in the same structure to the DBMachine:

<MW_HOME>/wlserver/server/lib/wlfullclient.jar

<MW_HOME>/oracle_common/modules/javax.management.j2ee.jar

<MW_HOME>/oracle_common/modules/clients/com.oracle.webservices.wls.jaxws-owsm-

client.jar

<MW_HOME>/oracle_common/modules/thirdparty/spring-context-5.1.3.RELEASE.jar

<MW_HOME>/oracle_common/modules/org.apache.commons.logging_1.2.jar

<MW_HOME>/wlserver/modules/com.bea.core.diagnostics.flightrecorder.jar

<MW_HOME>/wlserver/modules/com.oracle.weblogic.rjvm.jar

<MW_HOME>/wlserver/modules/com.oracle.weblogic.security.crypto.utils.jar

<MW_HOME>/wlserver/server/lib/wlthint3client.jar

<MW_HOME>/idm/server/apps/oim.ear/APP-INF/lib/OIMServer.jar

<MW_HOME>/idm/server/apps/oim.ear/APP-INF/lib/iam-platform-utils.jar

<MW_HOME>/idm/server/idmdf/idmdf-common.jar

<MW_HOME>/idm/server/idmdf/event-recording-client.jar

<MW_HOME>/idm/server/client/oimclient.jar

<MW_HOME>/idm/server/config/authwl.conf

3. Set MW_HOME & OIM_HOME as copied in the above step and run the Utility.

Approach 2

Chapter 15
Prerequisites for Running the Bulk Load Utility

15-3



1. Install the Oracle Instant Client, either using yum.

yum install oracle-instantclient-release-el
yum install oracle-instantclient-basic
yum install oracle-instantclient-sqlplus
Yum install oracle-instantclient-tools.x86_64

• OR

• Use the same zip files given in the OTN.

2. Create the following folders in the ORACLE_HOME:

$ORACLE_HOME mkdir rdbms: This is a blank folder

mkdir -p jdbc/lib: Copy the file

ojdbc8.jar filecp $ORACLE_HOME/lib/ojdbc8.jar jdbc/lib
3. Set the following environment variables for the Client:

export ORACLE_HOME=/usr/lib/oracle/21/client64
export LD_LIBRARY_PATH=$CLIENT_HOME/lib
export PATH=$PATH:$CLIENT_HOME/bin

4. Run the Utility.

15.3.2 Understanding Bulk Load Options and Additional Details
Additional information about the Bulk Load utility consists of utility scripts, temporary database
tables used for bulk load operations, and bulk load options for loading various entity data.

The following sections provide additional information about the utility and bulk load operations:

• Scripts That Constitute the Utility

• Temporary Tables Used During a Bulk Load Operation

• Options Offered by the Utility

15.3.2.1 Scripts That Constitute the Utility
The following are the main scripts that constitute the utility:

• oim_blkld.bat and oim_blkld.sh

This script contains the code to perform bulk load operations. When it is run, this script
calls other scripts and stored procedures.

• oim_blkld_setup.sql

This script is used to add a datafile in the Oracle Identity Manager tablespace and provide
additional grants to the Oracle Identity Manager database user to perform required
operations during Bulk Load. See Creating a Datafile in the Oracle Identity Governance
Tablespace for more information about creating a datafile in the Oracle Identity Manager
tablespace.

15.3.2.2 Temporary Tables Used During a Bulk Load Operation
The following temporary tables are used during a bulk load operation:

• OIM_BLKLD_TMP_SUFFIX

Chapter 15
Prerequisites for Running the Bulk Load Utility

15-4



If you are using a CSV file as the input source, then the utility automatically creates the
OIM_BLKLD_TMP_SUFFIX table and first loads data from the CSV file into this table. The
suffix for the table name is determined as follows:

– The first 6 characters of the file name are taken into account.

– Special characters in the file name and the file extension (.csv) are ignored while
determining the first 6 characters.

– A unique number is appended to the first 6 characters.

– For example, if the name of the file is acc_Data.csv, then the table that is created
during the bulk load operation is named oim_blkld_tmp_accDat1.

If there are multiple CSV files, then one table is created for each file. Because the first six
characters of each CSV file name are appended to the table name, you must ensure that
the first six characters of each file's name are unique. This guideline is explained later in
this document.

Note:

if you are using a database table as the input source, then you can specify any
name for the table. You provide the name of this table as one of the input
parameters of the utility.

• OIM_BLKLD_EX_SUFFIX

The OIM_BLKLD_EX_SUFFIX table is used to hold data records that fail (are not loaded
into Oracle Identity Manager) during a bulk load operation. One OIM_BLKLD_EX_SUFFIX
table is created for each OIM_BLKLD_TMP_SUFFIX table. The EXCEPTION_MSG
column of the table stores the reason for failure of each record in the table.

If you are using CSV files as the input source, then the first six characters of the CSV file
name are added as a suffix to the table name. For example, if the name of the CSV file is
usrdt120508.csv, then the name of the table is OIM_BLKLD_EX_ usrdt1. If there are
multiple CSV files, then one temporary table is created for each CSV file.

Note:

If there are multiple CSV files, then you must ensure that the first six characters
of each CSV file name are unique.

• OIM_BLKLD_LOG

During a bulk load operation, the utility inserts progress and error messages in the
OIM_BLKLD_LOG table. You can query this table to monitor the progress of a bulk load
operation. This procedure is described in detail later in this document.

15.3.2.3 Options Offered by the Utility
When you run the bulk load utility, it prompts you to select one of the following options:

Chapter 15
Prerequisites for Running the Bulk Load Utility

15-5



Note:

The utility prompts for more input depending on the option you select.

• Load User Data

You select this option if you want the utility to load OIM User data. In other words, data is
imported into the USR table of Oracle Identity Manager. You can select the input source,
CSV files or database tables, for the data that you want to load.

• Load Account Data

You select this option if you want the utility to load account data. In other words, data is
imported into the relevant UD_ tables of Oracle Identity Manager. You can select the input
source, CSV files or database tables, for the data that you want to load.

• Load Role Data

You select this option if you want the utility to load role data. In other words, data is
imported into the UGP table of Oracle Identity Manager. You can select the input source,
CSV files, or database tables, for the data that you want to load.

• Load Role Membership

You select this option if you want the utility to load role membership data. In other words,
data is imported into the USG table of Oracle Identity Manager. You can select the input
source, CSV files or database tables, for the data that you want to load.

• Load Role Hierarchy

You select this option if you want the utility to load role hierarchy data. In other words, data
is imported into the GPG table of Oracle Identity Manager. You can select the input source,
CSV files, or database tables, for the data that you want to load.

• Load Organizations

You select this option if you want the utility to load organizations. In other words, data is
imported into the ACT table of Oracle Identity Manager. You can select the input source,
CSV files, or database tables, for the data that you want to load.

• Load Role Category

You select this option if you want the utility to load role data. In other words, data is
imported into the ROLE_CATEGORY tables of Oracle Identity Manager. You can select the
input source, CSV files, or database tables, for the data that you want to load.

• Generate Audit Snapshot

You select this option if you want the utility to generate an audit snapshot of users that you
have loaded.

15.3.3 Preparing Your Database for a Bulk Load Operation
Prepare the database for bulk load operation by creating a tablespace for temporary tables and
by creating a datafile in the tablespace.

Preparing your database for a bulk load operation involves the following:

• Creating a Tablespace for Temporary Tables

• Creating a Datafile in the Oracle Identity Governance Tablespace

Chapter 15
Prerequisites for Running the Bulk Load Utility

15-6



15.3.3.1 Creating a Tablespace for Temporary Tables
As mentioned in Temporary Tables Used During a Bulk Load Operation, temporary database
tables are used during the bulk load operation. It is recommended that you create a tablespace
to accommodate these temporary tables instead of using the default tablespace of the Oracle
Identity Manager database.

Follow the instructions in the database documentation to create a tablespace.

15.3.3.2 Creating a Datafile in the Oracle Identity Governance Tablespace
The default size of the datafile in the Oracle Identity Manager tablespace created during Oracle
Identity Manager installation is 500 MB. You may need to add space to this datafile to
accommodate the data that you are going to load. The alternative is to create a datafile.

To create a datafile in the Oracle Identity Manager tablespace:

1. Start a SQL*Plus session.

2. Connect to the Oracle Identity Manager database as SYSDBA.

3. Run the oim_blkld_setup.sql script. The script will prompt for the following:

• Name of the Oracle Identity Manager tablespace

• Full path and name for the datafile to be added in the Oracle Identity Manager
tablespace

• Oracle Identity Manager database user name

After providing input to prompted Oracle Identity Manager database user name, appropriate
grants to perform required operations during Bulk Load are provided to the database user.

15.4 Running the Utility
Running the Bulk Load utility involves running the bulk load scripts, selecting options for bulk
load, selecting input source, and monitoring the progress of the operation.

To run the utility:

Chapter 15
Running the Utility

15-7



Note:

• If there are name conflicts with existing tables, then the utility overwrites existing
temporary tables at the start of each run. If required, rename temporary database
tables created during an earlier run of the utility.

• If the underlying database version is 12c (12.x), then before starting with the
utility execution steps described in this section, perform any one of the following
steps:

– Copy the ojdbc5.jar file from RDBMS 11g binaries directory
location $ORACLE_HOME/jdbc/lib/ to RDBMS 12c binaries directory
location $OIM_HOME/server/db/oracle/Utilities/oimbulkload/lib/.

– Download the ojdbc5.jar file from the Oracle web site (Oracle Database
11g Release 2 JDBC Drivers) at the following URL:

http://www.oracle.com/technetwork/apps-tech/jdbc-112010-090769.html

Copy the ojdbc5.jar file to RDBMS 12c binaries directory
location $OIM_HOME/server/db/oracle/Utilities/oimbulkload/lib/.

1. Stop Oracle Identity Manager.

2. Run one of the following scripts:

Note:

To load CSV file with non-ASCII data, before running the oim_blkld.sh or
oim_blkld.bat script, set the NLS_LANG environment parameter to the UTF8
characterset, in the following format:

NLS_LANG = LANGUAGE_TERRITORY.UTF8

For example:

NLS_LANG = American_America.UTF8

• On UNIX computers:

– To run in online mode, run:

OIMBulkload/scripts/oim_blkld.sh

OR:

OIMBulkload/scripts/oim_blkld.sh —online

– To run in offline mode, run:

OIMBulkload/scripts/oim_blkld.sh

• On Microsoft Windows computers:

– To run in online mode, run:

OIMBulkload\scripts\oim_blkld.bat

– To run in offline mode, run:

OIMBulkload\script\oim_blkld.bat -offline

Chapter 15
Running the Utility

15-8

http://www.oracle.com/technetwork/apps-tech/jdbc-112010-090769.html


Note:

OIMBlukload is the directory in which the scripts/sqls/csv_files/lib/sample_data
directories are present.

3. From the main menu, select one of the options depending on the data you want to load,
such as user, account, or role-related data, as described in Options Offered by the Utility.

4. From the second menu:

• Select CSV File if you are using CSV files as the input source.

• Select DB Table if you are using a database table as the input source.

5. When prompted, provide values for the input parameters described in Determining Values
for the Input Parameters of the Utility.

Note:

See Determining Values for the Input Parameters of the Utility for information
about the input parameters required for loading OIM User data. See
corresponding sections for information about the input parameters required to
load account, role, role hierarchy, role membership, and role category data.

6. Monitor the performance of the operation by following the steps given in Monitoring the
Progress of the Operation.

15.5 Performance Best Practices for Bulk Load
Follow best practices for loading large volume of data during the bulk load operation.

To enhance the performance of the Account Bulk Load operation:

1. Split the data load in phases for a high-volume entity data load for Users/Accounts/Role
Membership, for example, when data load is greater than 1 million for Users and greater
than 250 thousand for Accounts.

2. The phase-wise load can be in the initial size of 500 thousand, and thereafter, in the size of
2 to 3 million Entity data.

3. Perform Stats gathering operation essentially after the first and second batch of data load.

For information about Stats gathering operation, see Monitoring Oracle Identity Manager
Performance in the Performance and Tuning Guide.

4. For Account data load, when the source is database table, then make sure that relevant
indexes are present on the columns as per the reconciliation matching rules. For more
information, see Selecting Additional Indexes for Matching Module.

5. Oracle recommends loading organization data in online mode.

15.6 Loading OIM User Data
When you load OIM User data by using the Bulk Load utility, data is imported into the USR
table of the database.

Chapter 15
Performance Best Practices for Bulk Load

15-9



This section provides detailed information about the steps involved in loading OIM User data. It
contains the following topics:

• Overview of Loading OIM User Data

• Setting a Default Password for OIM Users Added by the Utility

• Creating the Input Source for the Bulk Load Operation

• Determining Values for the Input Parameters of the Utility

• Monitoring the Progress of the Operation

• Handling Exceptions Recorded During the Operation

• Fixing Exceptions and Reloading Data Records

• Verifying the Outcome of the Bulk Load Operation

• Generating an Audit Snapshot

• Running the Bulk Load Post Process Scheduled Task

15.6.1 Overview of Loading OIM User Data
Loading OIM User data involves creating the input source for the bulk load operation, running
the Bulk Load utility, and handling exceptions, if any.

The following is a summary of the steps involved in loading OIM User data:

1. Prepare your database for bulk load if not done already. See Preparing Your Database for
a Bulk Load Operation for details.

2. Create the OIM User whose password will be used as the default password for all OIM
Users created during the bulk load operation.

3. Create the input source for the bulk load operation.

If you want to use a database table as the input source, then create the table and copy
user data into the table.

If you want to use CSV files as the input source, then create the CSV files and copy user
data into the files. In addition, create a master.txt file containing the names of the files in
the sequence in which you want to load data from them.

4. Determine values for the input parameters of the utility.

5. Stop Oracle Identity Manager.

6. Run the oim_blkld.sh or oim_blkld.bat script. See Running the Utility for information about
running the oim_blkld.sh or oim_blkld.bat scripts.

7. Monitor the progress of the bulk load operation.

8. Determine the outcome of the bulk load operation.

9. If required, reload data that was not loaded during the first run.

10. Restart Oracle Identity Manager.

11. Verify the outcome of the bulk load operation.

12. Gather diagnostic data from the operation.

13. Remove temporary tables and files created during the operation.

14. Generate an audit snapshot.

Chapter 15
Loading OIM User Data

15-10



15.6.2 Setting a Default Password for OIM Users Added by the Utility
The Bulk Load utility assigns the password of an existing OIM User to all OIM Users that are
created during the operation.

The utility does not encrypt passwords that it assigns to OIM Users created during the bulk
load operation. Instead, it assigns the password of an existing OIM User to all OIM Users that
are created during the operation.

Note:

Each OIM User is required to change the password at first login.

When you run the utility, it prompts for the login name of the existing OIM User whose
password you want to use as the default password for the new OIM Users. Before you run the
utility, create this OIM User as follows:

Note:

You can create a user in Oracle Identity Manager dedicated for the bulk load
operation, and later delete the user if it not required any more. Otherwise, any
existing OIM User can be used to perform bulk load operations.

1. Log in to the Oracle Identity Self Service as a user with Create User privileges.

2. On the left navigation pane, under Administration, click Users. The Search Users page is
displayed.

3. From the Actions menu, select Create. The Create User page is displayed with input fields
for user profile attributes.

4. Specify values for the following fields:

• User Login

• First Name (optional)

• Last Name

• Organization: Select Xellerate Users.

• Password

• Confirm Password

5. Click Submit.

15.6.3 Creating the Input Source for the Bulk Load Operation
Depending on the input source that you want to use, you must apply the guidelines for using
CSV files or creating database tables as the input source.

This section contains the following topics:

• Using CSV Files As the Input Source

Chapter 15
Loading OIM User Data

15-11



• Creating Database Tables As the Input Source

• Structure of a Sample Database Table

15.6.3.1 Using CSV Files As the Input Source
If you want to use CSV files as the input source for the bulk load operation, then apply the
following guidelines while creating the CSV files:

• The CSV files must be placed in the oimbulkload/csv_files directory.

• The first line in the CSV file is called the control line. This line must contain a comma-
separated list of column names of the USR table in the Oracle Identity Manager database.

Note:

Ensure that the Password column or any other encrypted column is not included
in the list of columns. As mentioned earlier in this document, the utility assigns
the password of an existing OIM User that you specify to all OIM Users that it
loads into Oracle Identity Manager.

• From the second line onward, the file must contain values for the columns in the control
line. The order of columns in the first line and the values in the rest of the lines must be the
same.

The following are sample contents of a CSV file:

USR_LOGIN,USR_FIRST_NAME,USR_LAST_NAME,UD_ADUSER_OBJECTGUID
john_doe, John, Doe, jdoe
jane_doe, Jane, Doe, janedoe
richard_roe, Richard, Roe, rroe

• If the value in any column contains a comma, then that value must be enclosed in double
quotation marks (").

• The CSV file must contain values for all columns that are designated as mandatory in the
USR table. The following table lists the mandatory columns required to load the USR table:

Mandatory Column Description

USR_FIRST_NAME The first name of the user

USR_LAST_NAME The last name of the user

Note:

– USR_LOGIN is not a mandatory column.

– There are some key mandatory columns that you can ignore. For example,
the ACT_KEY column in the USR table, which is populated by ORG_NAME.

• Each row in the CSV file must have a unique value for the USR_LOGIN column in the USR
table. If there are multiple files, you must ensure that USR_LOGIN values are unique
across the CSV files. This check for uniqueness of USR_LOGIN values must also cover
existing OIM Users in Oracle Identity Manager.

Chapter 15
Loading OIM User Data

15-12



Ensuring that USR_LOGIN values are unique can be a time-consuming exercise. As an
alternative, you can first perform the bulk load operation, fix USR_LOGIN values that are
not unique, and then retry the loading operation for the modified user records. This is
possible because the utility checks for uniqueness of USR_LOGIN values at run time and
copies records that fail this check into the OIM_BLKLD_EX table. Later in this document,
there are instructions on retrying the bulk load operation for records that are not loaded
during the first run.

• If you want to include an organization name in each user record, then add ORG_NAME in
the control line and enter the organization name for each user from the second line
onward. If ORG_NAME is not included, then the users must be assigned to the Xellerate
Users organization.

Note:

All organization names listed under the ORG_NAME column in the CSV file must
exist in Oracle Identity Manager.

• If you want to include a manager name in each user record, then add MANAGER_NAME
in the control line and enter the USR_LOGIN value of the manager for each user from the
second line onward.

The utility looks up the USR_LOGIN values for managers after all user data, from all CSV
files, is loaded into Oracle Identity Manager. If a USR_LOGIN value given in the
MANAGER_NAME column does not exist in Oracle Identity Manager, then the lookup for
that user record fails and the record is copied into the exception table, OIM_BLKLD_EX. At
the end of the bulk load operation, you can perform the procedure described in Fixing
Exceptions and Reloading Data Records to reload user records that fail the first run.

• Note that the following default values are inserted into Oracle Identity Manager if the CSV
file does not contain values for these columns:

ORG_NAME: Xellerate Users
USR_TYPE: End-User
USR_STATUS: Active
USR_EMP_TYPE: Full-Time

• Create a master TXT file containing the names of the CSV files containing user data to be
loaded. You can specify any name for the file, for example, master.txt. Save the master file
in the oimbulkload/csv_files directory.

If you want to load multiple CSV files, then enter the name of each data CSV file on a
separate line in the master file. Order the list of CSV file names in the sequence in which
you want the utility to load data from the files. For example, suppose you have created
three data CSV files, London_Users.csv, NewYork_Users.csv, and Tokyo_Users.csv. In the
master file, you enter the names of the data CSV files in the following order:

Tokyo_Users.csv
London_Users.csv
NewYork_Users.csv

When you run the utility, data is loaded in this order. This is because the user data in
London and New York may have a dependency on the Tokyo users. This is to ensure the
manager-user hierarchy.

• If the CSV file is generated on Microsoft Windows and is to be loaded on Linux
environment, then remove the special characters, such as '\n\r', to avoid run-time errors.

Chapter 15
Loading OIM User Data

15-13



Note:

While copying a CSV file from Windows to UNIX, Solaris, or Linux systems,
some special characters, such as ^M, are appended to the file. This is because,
the file from Windows is in DOS (ASCII) format and must be converted to ISO
format.

Solaris preinstalls the dos2unix utility into the system to do this job. But for UNIX/
Linux systems, the CSV file must be converted from DOS format to UNIX format
to ensure sanity of the input file before being used in the Bulk Load operation. To
do this, the syntax is:

# dos2unix CSV_FILE_NAME

If the dos2unix utility does not exist in the UNIX/Linux systems, then the
administrator can install the utility for the respective UNIX/Linux versions by
using the relevant documentation.

15.6.3.2 Creating Database Tables As the Input Source
If you want to use a database table as the input source for loading OIM User data, then apply
the following guidelines while creating the database table:

• Create the table in the Oracle Identity Manager database.

• The table must contain the following primary key column:

OIM_BLKLD_USRSEQ NUMBER(19)

The utility uses this column as the primary key. If required, you can use a database
sequence to populate this column.

• The rest of the columns must be the same as the ones in the USR table that you want to
use. In other words, ignore optional USR_ columns that you do not want to include in the
table that you create.

• Note that the following default values are inserted into Oracle Identity Manager if the table
does not contain values for these columns:

ORG_NAME: Xellerate Users
USR_TYPE: End-User
USR_STATUS: Active
USR_EMP_TYPE: Full-Time

• If you want to include an organization name in each user record, then add ORG_NAME in
the control line and enter the organization name for each user from the second line
onward. If ORG_NAME is not included, then the users must be assigned to the Xellerate
Users organization.

• If you want to include a manager name in each user record, then add MANAGER_NAME
in the control line and enter the USR_LOGIN value of the manager for each user from the
second line onward.

15.6.3.3 Structure of a Sample Database Table
Table 15-1 shows the structure of a sample database table.

Chapter 15
Loading OIM User Data

15-14



Table 15-1    Structure of a Sample Database Table

Name Null? Type

USR_LOGIN NOT NULL VARCHAR2(256)

USR_FIRST_NAME VARCHAR2(150)

USR_LAST_NAME NOT NULL VARCHAR2(150)

. . . . . . . . .

OIM_BLKLD_USRSEQ NOT NULL NUMBER(19)

15.6.4 Determining Values for the Input Parameters of the Utility
You must set correct values for the input parameters of the Bulk Load utility for the type of data
being loaded.

The following are input parameters of the utility:

• Oracle Home

Value of the ORACLE_HOME environment variable on the host computer for the Oracle
Identity Manager database

• Database Connection String

Connection string to connect to the database that must be entered in the following format:

//HOST_IP_ADDRESS:PORT_NUMBER/SERVICE_NAME

• OIM DB User

Database login ID of the Oracle Identity Manager database user

• OIM DB Pwd

Password of the Oracle Identity Manager database user

The database user password is to be entered twice when prompted.

• Master file name

Name of the file containing names of the CSV data files to be loaded

This parameter is used only if the input source is a single or multiple CSV files. You place
the master file and CSV data files in the oimbulkload/csv_files directory. See Using CSV
Files As the Input Source for more information.

• Tmp table name

Name of the temporary table to be used as the input source

This parameter is used only if the input source for the bulk load operation is a database
table. See Creating Database Tables As the Input Source for more information.

• Control Line

Comma-separated list of names of columns to be loaded from the database table into
Oracle Identity Manager

This parameter is used only if the input source for the bulk load operation is a database
table.

• Tablespace Name

Chapter 15
Loading OIM User Data

15-15



Name of the tablespace in which temporary tables are to be created during the bulk load
operation. If the user does not provide the tablespace name, then it will pick the default
tablespace.

See Preparing Your Database for a Bulk Load Operation for more information.

• Date format

Date format used by date columns in the CSV files

This parameter is used only if the input source is a single or multiple CSV files.

The date format must match the following:

– Oracle supported date formats, such as dd-mm-yyyy or MM-DD-YYYY

– The date format specified in the CSV file

• Batch Size

Number of user records that must be processed by the utility as a single transaction

The batch size can influence the performance of the bulk load operation. The default value
of this parameter is 10000.

• Debug Flag

You can specify Y or N as the value of this parameter. If this parameter is set to Y, then the
utility records detailed information about events that occur during the bulk load operation.
See Data Recorded During the Operation for more information.

• User ID for default password

Login name of the OIM User that you create by performing the procedure described in 
Setting a Default Password for OIM Users Added by the Utility.

Note:

While using the ATPS database, if you use the Bulk Load utility then follow the steps
provided below. This is available after applying the Oracle Identity Governance
Bundle Patch 12.2.1.4.2204XX.

Complete the following steps while using the ATPS database:

1. Install the DB version 18c or 19c and configure only the DB without instance on the
machine while running the OIM Bulk Load utility and provide the installed location that is,
base location as ORACLE_HOME such as, export ORACLE_HOME=/home/opc/db19c.

2. Copy the wallet files (cwallet.sso, ewallet.p12 and ojdbc.properties) to a different
folder, say 'wallet1', and use it while running the oimBulkload utility.

3. Update the ojdbc.properties value in the wallet as follows:

# Connection property while using Oracle wallets.
#oracle.net.wallet_location=(SOURCE=(METHOD=FILE)(METHOD_DATA=(DIRECTORY=$
{TNS
_ADMIN})))
SSL_SERVER_DN_MATCH=yes
# FOLLOW THESE STEPS FOR USING JKS
# (1) Uncomment the following properties to use JKS.
# (2) Comment out the oracle.net.wallet_location property above
# (3) Set the correct password for both trustStorePassword and

Chapter 15
Loading OIM User Data

15-16



keyStorePassword.
# It's the password you specified when downloading the wallet from OCI
Console or the Service Console.
javax.net.ssl.trustStoreType=JKS
javax.net.ssl.trustStore=/home/opc/idm/truststore.jks
javax.net.ssl.trustStorePassword=<truststorepwd>
javax.net.ssl.keyStoreType=JKS
javax.net.ssl.keyStore=/home/opc/idm/keystore.jks
javax.net.ssl.keyStorePassword=<keystorepwd>

4. Set TNS_ADMIN in the CMD prompt to the above wallet export as TNS_ADMIN=/
home/opc/idm/wallet1.

5. During execution of bulk load utility, for the option ATP-S setup, provide 'y' as input.

6. For connection string, instead of "//HostIPAddress:Port/ServiceName", provide the
tnsname only. This is visible in thetnsnames.ora file.
Sample Value:

###### Get the database connect string ######## Enter the OIM database
hostname/ip from walletfmwatps2_tp

15.6.5 Monitoring the Progress of the Operation
During the bulk load operation, you can query the OIM_BLKLD_LOG table for information
about the progress of the operation.

For example, you can run the following query to see progress messages generated during the
bulk load operation to load OIM User data:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'USER' AND LOG_LEVEL = 'PROGRESS_MSG'
ORDER BY MSG_SEQ_NO;

Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table. The following is an example of the query to retrieve error messages:

SELECT MSG FROM OIM_BLKLD_LOG 
WHERE MODULE = 'USER' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

15.6.6 Handling Exceptions Recorded During the Operation
At the end of a bulk load operation, the utility records statistics related to the operation.

The statistics are recorded in the following file:

oimbulkload/logs_YYYYMMDD_hhmm/oim_blkld_user_load_summary.log

To determine if there were exceptions during the operation, open this log file and look for the
number against the Number of Records Rejected label. If the number of rejected records is
greater than zero, then exceptions were thrown during the operation. User records that are
rejected by the utility are recorded in the exception table (OIM_BLKLD_EX_SUFFIX). For each
rejected record, the EXCEPTION_MSG column in the OIM_BLKLD_EX_SUFFIX table stores
information about the reason the record could not be loaded.

The following example shows sample statistics recorded in the log file at the end of a bulk load
operation to store OIM User data.

Chapter 15
Loading OIM User Data

15-17



****************************************************************
Processing File: u10.csv
================================================================
U S E R    L O A D    S T A T I S T I C S    F O R   F I L E : u10.csv
================================================================
Start Time:   08-AUG-08 11.44.12.228000 AM
End Time:     08-AUG-08 11.44.13.368000 AM
Number of Records Processed:  10
Number of Records Loaded:     8
Number of Records Rejected:   2
================================================================
The name of the TMP table used during the load:
OIM_BLKLD_TMP_U101

The name of the Exception table used during the load:
OIM_BLKLD_EX_U101

****************************************************************
Processing File: u10b.csv

================================================================
U S E R    L O A D    S T A T I S T I C S    F O R   F I L E : u10b.csv
================================================================
Start Time:   08-AUG-08 11.44.15.368000 AM
End Time:     08-AUG-08 11.44.15.540000 AM
Number of Records Processed:  16
Number of Records Loaded:     15
Number of Records Rejected:   1
================================================================
The name of the TMP table used during the load:
OIM_BLKLD_TMP_U10B2

The name of the Exception table used during the load:
OIM_BLKLD_EX_U10B2
================================================================

================================================================
Time taken in re-building indexes and enabling FK constraints
================================================================
Start time:      08-AUG-08 11.44.15.556000 AM
End Time:        08-AUG-08 11.46.50.586000 AM
================================================================

In this sample, the number of rejected records is 2. If the log file shows that any records were
rejected by the utility, then see Fixing Exceptions and Reloading Data Records for information
about retrying the load operation for these records.

Note:

At the end of each bulk load operation, it is recommended that you create a backup
of the exception tables.

15.6.7 Fixing Exceptions and Reloading Data Records
Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table.

Chapter 15
Loading OIM User Data

15-18



This section describes exception handling for the bulk load operation and how to reload
rejected records. It contains the following topics:

• About Fixing Exceptions

• Reloading Rejected Records

15.6.7.1 About Fixing Exceptions
As mentioned earlier, errors encountered during the bulk load operation can be viewed by
querying the OIM_BLKLD_LOG table. The following is an example of the query to retrieve
error messages:

SELECT MSG FROM OIM_BLKLD_LOG 
WHERE MODULE = 'USER' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

An exception table OIM_BLKLD_EX_SUFFIX is created for each data table used as the input
source during the bulk load operation. Records that do not meet the criteria for the operation
are copied into this exception table. The suffix appended to the name of each exception table
is the same as suffix appended to the name of the corresponding data table.

15.6.7.2 Reloading Rejected Records
To reload rejected records:

1. Create a backup of the exception table in which rejected records are stored.

Note:

Although this is an optional step, it is recommended that you create a backup.

2. Review each record in the exception table, and fix errors in the data based on the
message recorded in the EXCEPTION_MSG column.

3. After you fix errors in all the rejected records in an exception table, rename the table to
OIM_BLKLD_TMP_SUFFIX and then use it as the input source.

4. Load records from the OIM_BLKLD_TMP_SUFFIX table by running the utility. See 
Running the Utility for more information.

5. Repeat Steps 1 through 4 until the Number of Records Rejected label in the
oim_blkld_user_load_summary.log file shows the value 0.

6. Restart Oracle Identity Manager if loading was done in offline mode.

Chapter 15
Loading OIM User Data

15-19



Note:

Being a database-intensive operation by design, Bulk Load disables the constraints
and indexes on the relevant Oracle Identity Manager entity tables during the start of
the operation. Bulk Load operation failure towards the end of the load might at times
render the indexes and constraints in disabled state. To identify and fix this issue,
manually restore the indexes and constraints as follows:

1. Identify the unusable indexes and disabled constraints. To do so, the following
SQL queries or similar mechanism can be used:

SELECT TABLE_NAME, CONSTRAINT_NAME FROM user_constraints WHERE status = 
'DISABLED';
SELECT index_name FROM user_indexes WHERE status = 'UNUSABLE';

2. Enable the constraints and rebuild the indexes manually, as shown:

ALTER TABLE TABLE_NAME ENABLE CONSTRAINT CONSTRAINT_NAME;
ALTER INDEX INDEX_NAME REBUILD;

15.6.8 Verifying the Outcome of the Bulk Load Operation
Verify the outcome of the Bulk Load operation for one of the OIM Users added by the utility by
provisioning a resource for the user and by modifying the account of the user.

To verify the outcome of the bulk load operation, check if you are able to perform the following
steps for one of the OIM Users added by the utility:

Note:

• These steps leave footprints in the system, and therefore, the bulk load
verification must be performed by using a test user. If you do not want to leave
the footprints in the system, then revert the changes. For example, if you have
provisioned a resource to a OIM User, then deprovision the resource after testing
the outcome of the bulk load operation.

• If Oracle Identity Manager is synchronized with LDAP, then after running the user
data upload, run the Bulk Load Post Process scheduled job with the LdapSync
option set to Yes. If you want to generate the random password and send an
email to the user, then you must configure the email notification and set the
Generate Password and Notification parameters to Yes in the Scheduler. See 
Predefined Scheduled Tasks in Administering Oracle Identity Governance for
information about the Bulk Load Post Process scheduled job.

1. Log in as the OIM User. The system should prompt you to change the password.

2. Provision a resource for the OIM User.

3. Add the OIM User to a role.

4. Modify the account profile of the OIM User.

5. Revoked the resource provisioned to the OIM User.

6. Unassign the OIM User from the role to which the user was added earlier.

Chapter 15
Loading OIM User Data

15-20



7. Modify the account profile again to restore the profile to its original state.

8. Check if the User Resource Access report (an operational report) and the User Resource
Access History report can be generated for the user.

15.6.9 Generating an Audit Snapshot
If required, you can generate an audit snapshot of Oracle Identity Manager data after a bulk
load operation, or at any time during the bulk load operation.

You can also generate audit snapshots by selecting option 7 in the Bulk Load utility. The utility
uses the audit engine shipped with Oracle Identity Manager. Internally, the GenerateSnapshot
script is called when you run the audit utility. Similarly, the GenerateSnapshot script is called
when you select the option to generate an audit snapshot.

Note:

Oracle Identity Manager must be up and running when you run the audit utility.

Before you generate an audit snapshot, for running the GenerateSnapshot script, you must set
the following environment variables:

• APP_SERVER: weblogic

• OIM_ORACLE_HOME: c:\work1\Oracle_IDM1

• JAVA_HOME: C:\jdk180

• MW_HOME: c:\work1

• WL_HOME: c:\work1\wlserver

• DOMAIN_HOME: C:\work1\user_projects\domains\base_domain

Note:

C:\work1\ is a sample directory path of MW_HOME.

See Configuring Auditing in Administering Oracle Identity Governance for information about the
procedure to generate audit snapshots.

15.6.10 Running the Bulk Load Post Process Scheduled Task
The Bulk Load Post Process scheduled task does the post processing operations for users
loaded via the Bulk Load utility.

There is no post process job for any other entity loaded into Oracle Identity Governance by
using the Bulk Load utility. The Bulk Load Post Process job can only perform the following
operations:

• Password generation: By default, the Bulk Load utility copies the same password of a user
created by Oracle Identity Governance, which it prompts while execution. With this, the
entire set of users have the same password initially. Then you can generate a random
password by running the Bulk Load Post Process job.

Chapter 15
Loading OIM User Data

15-21



• Email notification: Oracle Identity Governance notifies all the users with their credentials.

• LDAP synchronization: Bulk Load Post Process job takes care of the bulk loaded users to
the LDAP configured in LDAP synchronization mode.

See Predefined Scheduled Tasks in Administering Oracle Identity Governance for more
information about the Bulk Load Post Process scheduled task.

15.7 Loading Account Data
Loading account data involves creating the input source for the bulk load operation, running
the Bulk Load utility, and handling exceptions, if any.

This section provides detailed information about the steps involved in loading account data. It
contains the following topics:

• Overview of Loading Account Data

• Bulk Load Utility for Loading Accounts in SSL mode

• Requirements and Features of the Bulk Load Operation for Account Data

• Creating the Input Source for the Bulk Load Operation

• Determining Values for the Input Parameters of the Utility

• Monitoring the Progress of the Operation

• Handling Exceptions Recorded During the Operation

• Fixing Exceptions and Reloading Data Records

• Verifying the Outcome of the Bulk Load Operation

15.7.1 Overview of Loading Account Data
Loading account data involves creating the input source for the bulk load operation, running
the Bulk Load utility, and handling exceptions, if any.

The following is a summary of the steps involved in loading account data:

1. Prepare your database for a bulk load operation, if not already done. See Preparing Your
Database for a Bulk Load Operation for details.

2. Create the input source for the bulk load operation.

If you want to use a database table as the input source, then create the table and copy
account data into the table.

If you want to use CSV files as the input source, then create the CSV files and copy
account data into the files.

3. Determine values for the input parameters of the utility.

4. Stop Oracle Identity Manager.

5. Run the oim_blkld.sh or oim_blkld.bat script.

6. Monitor the progress of the bulk load operation.

7. Determine the outcome of the bulk load operation.

8. If required, reload data that was not loaded during the first run.

9. Restart Oracle Identity Manager.

10. Verify the outcome of the bulk load operation.

Chapter 15
Loading Account Data

15-22



11. Gather diagnostic data from the operation.

12. Remove temporary tables and files created during the operation.

15.7.2 Bulk Load Utility for Loading Accounts in SSL mode
Bulk Load Utility for Loading Accounts in SSL mode by using default setting.

Example for Linux:

Comment the line below in oim_blkld_accounts.sh

SSL_CONFIG_PARAMS=“$SSL_CONFIG_PARAMS -
Dweblogic.security.SSL.trustedCAKeyStore=$TRUSTSTORE_LOCATION -
Dweblogic.security.SSL.protocolVersion=TLSv1.2 -Dhttps.protocols=TLSv1.2 -
Dweblogic.security.SSL.minimumProtocolVersion=TLSv1.2 -
Dweblogic.ssl.JSSEEnabled=true -Dweblogic.security.SSL.enableJSSE=true -
Dweblogic.security.allowCryptoJDefaultJCEVerification=true -
Dweblogic.security.SSL.enforceConstraints=off -
Dweblogic.security.SSL.ignoreHostnameVerification=true”
Add the following:

SSL_CONFIG_PARAMS="-Dweblogic.security.TrustKeyStore=DemoTrust -
Dweblogic.security.SSL.ignoreHostnameVerification=true -DproviderURL=t3s://
<hostname>:<port> -Djavax.net.ssl.trustStore=$MW_HOME/wlserver/server/lib/
DemoTrust.jks
Example for Windows:

Comment the line:

set SSL_CONFIG_PARAMS=-
Dweblogic.security.SSL.trustedCAKeyStore=$TRUSTSTORE_LOCATION -
Dweblogic.security.SSL.protocolVersion=TLSv1.2 -Dhttps.protocols=TLSv1.2 -
Dweblogic.security.SSL.minimumProtocolVersion=TLSv1.2 -
Dweblogic.ssl.JSSEEnabled=true -Dweblogic.security.SSL.enableJSSE=true -
Dweblogic.security.allowCryptoJDefaultJCEVerification=true -
Dweblogic.security.SSL.enforceConstraints=off -
Dweblogic.security.SSL.ignoreHostnameVerification=true
Add the below:

set SSL_CONFIG_PARAMS=“-Dweblogic.security.TrustKeyStore=DemoTrust -
Dweblogic.security.SSL.ignoreHostnameVerification=true -DproviderURL= t3s://
<hostname>:<port> -Djavax.net.ssl.trustStore=%MW_HOME%
\wlserver\server\lib\DemoTrust.jks”

15.7.3 Requirements and Features of the Bulk Load Operation for Account
Data

There are certain requirements of loading account data by running the Bulk Load utility, for
example reconciliation must be set up and you should be able to test reconciliation by
importing a few accounts from the target system.

The following are requirements and features of the bulk load operation for account data:

• Reconciliation must be set up and you should be able to test reconciliation by importing a
few accounts from the target system.

Chapter 15
Loading Account Data

15-23



• Only accounts for which there are corresponding OIM Users can be loaded.

• A target system that requires multiple IT resources is not supported.

• Duplicate accounts cannot be detected during a bulk load operation. If there are multiple
entries for the same account in the input source, then multiple accounts are created for the
corresponding OIM User.

• For a particular target system, if there are multiple provisioning processes/process forms in
Oracle Identity Manager, then the utility uses the default provisioning process for the
resource object.

• Information about the stage up to which earlier bulk load operations progressed is not
stored. In other words, the utility cannot resume a bulk load operation. You must backup
the Oracle Identity Manager database before a bulk load operation. If you want to retry a
bulk load operation, you must first restore the database and then rerun the procedure.

• Bulk Load utility takes the corresponding application instance name as input to load
account data. If the application instance name is not known to the user, then Bulk Load
utility prompts for the resource object name and IT resource name, based on which
account data is loaded.

• Loading accounts where the target system is Active Directory, make sure that the input
source (CSV file or database table) have the following attributes as mandatory in the
attribute list along with its values:

– UD_ADUSER_COMMONNAME

– UD_ADUSER_USERPRINCIPALNAME

Failing to load values for these attributes at the time of Bulkload can result into failures in
the provisioning-related operations at a later stage for this target.

• If you are loading account data with entitlements, then:

1. Ensure that the lookup recon task has been run to populate the appropriate lookup
table, and the table is recent.

2. Run the Entitlement List scheduled job and let it complete before loading the data. To
verify, ensure that all the entitlements are showing up in the ENT_LIST table. See 
Predefined Scheduled Tasks in Administering Oracle Identity Governance for
information about the Entitlement List scheduled job.

Failure to do these steps before account load may lead to missing entitlements on user
pages. Such situation can be corrected by running the Entitlement Assignments scheduled
job to completion after bulk load, which is avoidable if steps 1 and 2 are followed. See 
Predefined Scheduled Tasks in Administering Oracle Identity Governance for information
about the Entitlement Assignments scheduled job.

15.7.4 Creating the Input Source for the Bulk Load Operation
Depending on the input source that you want to use, you must apply the guidelines for using
CSV files or creating database tables as the input source.

This section contains the following topics:

• Using CSV Files As the Input Source

• Creating Database Tables As the Input Source

• Sample Parent Table Structure

• Sample Child Table Structure

Chapter 15
Loading Account Data

15-24



15.7.4.1 Using CSV Files As the Input Source
If you want to use CSV files as the input source for the bulk load operation, then apply the
following guidelines while creating the CSV files:

• The CSV files must be placed in the oimbulkload/csv_files directory.

• The first line in the CSV file is called the control line. This line must contain a comma-
separated list of column names in the account (UD_*) table into which you want to load the
account data. To find out the UD_ table, go to the process form in the Design Console. See 
Developing Provisioning Processes for information about process forms.

Note:

Ensure that the Password column or any other encrypted column is not included
in the list of columns.

• From the second line onward, the file must contain values for the columns in the control
line. The order of columns in the first line and the values in the rest of the lines must be the
same.

• If the value in any column contains a comma, then that value must be enclosed in double
quotation marks (").

• The CSV file must contain values for all columns that are designated as mandatory in the
account table. The key mandatory columns in the account table must be ignored.

• If you want to load account data into parent and child tables, then you must create one
parent CSV file and one child CSV file for each child table. For example if you are loading
data into one parent table and three child tables, then you must create one parent CSV file
and three child CSV files.

• If you want to load account data into parent and child tables, then at least one column must
be the same in both tables. This column corresponds to the link attribute between the
parent and child CSV files. The following example illustrates this:

The following are sample contents of a parent CSV file:

UD_ADUSER_UID,,UD_ADUSER_FNAME,UD_ADUSER_LNAME,UD_ADUSER_MNAME,UD_ADUSER_FULLNAME,UD_
ADUSER_OBJECTGUID
ADTEST1,"7~CN=ForeignSecurityPrincipals,dc=example,dc=com",adtest1,adtest1,,adtest1,1
02

Note:

– The UD_ADUSER_OBJECTGUID column is mandatory in the parent CSV
file for loading accounts by using the bulk load operation. This column must
be added to the parent CSV file in spite of nullable column in the database.

– Common key column being defined in parent and child CSV need not be
present in the child database table. This column is being used by the
BulkUpload utility to identify the record key and make the respective entries
in corresponding child tables. For example, UD_ADUSER_UID. This column
should be present in parent table but need not be present in any of the child
table.

Chapter 15
Loading Account Data

15-25



The following are sample contents of a child CSV file:

UD_ADUSER_UID,UD_ADUSRC_GROUPNAME
ADTEST1,"7~CN=ForeignSecurityPrincipals,dc=example,dc=com",group2

The UD_ADUSER_UID column is common to both the parent file and the child file.

• If the CSV file is generated on Microsoft Windows and is to be loaded on Linux
environment, then remove the special characters, such as '\n\r', to avoid run-time errors.

15.7.4.2 Creating Database Tables As the Input Source
If you want to use a database table as the input source for loading account data, then apply the
following guidelines while creating the database table:

• Create the table in the Oracle Identity Manager database.

• The table must contain the following primary key column:

OIM_BLKLD_USRSEQ NUMBER(19)

The utility uses this column as the primary key. If required, you can use a database
sequence to populate this column.

• The rest of the columns must be the same as the ones in the account (UD_) table that you
want to use. In other words, ignore optional UD_ columns that you do not want to include
in the table that you create.

15.7.4.3 Sample Parent Table Structure
Table 15-2 shows the structure of a sample parent table.

Table 15-2    Structure of a Sample Database Table

Name Null? Type

UD_ADUSER_UID VARCHAR2(20)

UD_ADUSER_ORGNAME VARCHAR2(256)

UD_ADUSER_FNAME VARCHAR2(80)

UD_ADUSER_LNAME VARCHAR2(80)

UD_ADUSER_MNAME VARCHAR2(80)

UD_ADUSER_FULLNAME VARCHAR2(240)

OIM_BLKLD_SEQ NOT NULL NUMBER(19)

15.7.4.4 Sample Child Table Structure
Table 15-3 shows the structure of a sample child table.

Table 15-3    Structure of a Sample Child Database Table

Name Null? Type

UD_ADUSER_UID VARCHAR2(20)

UD_ADUSER_ORGNAME VARCHAR2(256)

UD_ADUSRC_GROUPNAME VARCHAR2(32)

Chapter 15
Loading Account Data

15-26



Table 15-3    (Cont.) Structure of a Sample Child Database Table

Name Null? Type

OIM_BLKLD_SEQ NOT NULL NUMBER(19)

15.7.5 Determining Values for the Input Parameters of the Utility
You must set correct values for the input parameters of the Bulk Load utility for the type of data
being loaded.

The following are input parameters of the utility:

• Oracle Home

Value of the ORACLE_HOME environment variable on the host computer for the Oracle
Identity Manager database.

• Database Connection String

Connection string to connect to the database that must be entered in the following format:

//HOST_IP_ADDRESS:PORT_NUMBER/SERVICE_NAME

• OIM DB User

Database login ID of the Oracle Identity Manager database user.

• OIM DB Pwd

Password of the Oracle Identity Manager database user. This must be entered twice when
prompted.

• Application instance name (APP_INSTANCE)

Name of the application instance corresponding to the account data to be loaded. If the
user is not aware of the application instance name, then Account Bulkload utility prompts
for the resource object name and IT resource name. The prompt is as shown:

Do you know the Application Instance name? (Y,y,N,n)

If you enter Y or y, then you are prompted for the application instance name. If you enter N
or n, then you are prompted for the following:

– Resource Object Name (OBJ_NAME)

If the user is not aware of the application instance name, then Bulk Load utility prompts
for the resource object name corresponding to the account data to be loaded.

– IT Resource Name

Name of the IT resource created for the target system. This is required only when the
user is not aware of the application instance name. The account bulkload utility first
prompts for resource object name, and then prompts for IT resource name.

• CSV file names

Names of the CSV files to be used as the input source.

This parameter is used only if the input source is CSV files. See Using CSV Files As the
Input Source for more information. If you are loading data from parent and child CSV file,
then use a comma-delimited list to enter the names of the files. The name of the parent
CSV file must be provided first, and it must be followed by the names of the child CSV
files. In addition, enter the column that links the parent and child data.

Chapter 15
Loading Account Data

15-27



• Tmp table name

Name of the temporary table to be used as the input source.

This parameter is used only if the input source for the bulk load operation is a database
table. See Creating Database Tables As the Input Source for more information.

• Control Line

Comma-separated list of names of columns to be loaded from the database table into
Oracle Identity Manager.

This parameter is used only if the input source for the bulk load operation is a database
table.

• Tablespace Name

Name of the tablespace in which temporary tables are to be created during the bulk load
operation (if end user won't provide the tablespace name then it will pick the default
tablespace).

See Preparing Your Database for a Bulk Load Operation for more information.

• Date format

Date format used by date columns in the CSV files.

This parameter is used only if the input source is a single or multiple CSV files.

The date format must match the following:

– Oracle supported date formats, such as dd-mm-yyyy or MM-DD-YYYY

– The date format specified in the CSV file

• Batch Size

Number of user records that must be processed by the utility as a single transaction.

The batch size can influence the performance of the bulk load operation. The default value
of this parameter is 10000.

• Debug Flag

You can specify Y or N as the value of this parameter. If this parameter is set to Y, then the
utility records detailed information about events that occur during the bulk load operation.
See Data Recorded During the Operation for more information.

• Application Instance (APP_INSTANCE)

Name of the application instance corresponding to the account data to be loaded.

If the user is not aware of the application instance name, then account bulkload utility
prompts for the Object name (OBJ_NAME)

• User ID (USR_LOGIN)

The user login ID that is used to determine the user that provisioned Accounts using Bulk
Load utility.

Note:

After you apply Bundle Patch 12.2.1.4.201011, the Bulk Load Utility for loading
account data prompts for additional information. See Bulk Load Utility for Loading
Accounts in Oracle Identity Governance Bundle Patch Readme for information about
the additional input.

Chapter 15
Loading Account Data

15-28

https://docs.oracle.com/en/middleware/idm/identity-governance/12.2.1.4/oigps4bp04/index.html#BPOIG-GUID-B7731ED4-51B8-439F-9C5B-B4AA7515941A
https://docs.oracle.com/en/middleware/idm/identity-governance/12.2.1.4/oigps4bp04/index.html#BPOIG-GUID-B7731ED4-51B8-439F-9C5B-B4AA7515941A


15.7.6 Monitoring the Progress of the Operation
During the bulk load operation, you can query the OIM_BLKLD_LOG table for information
about the progress of the operation.

For example, you can run the following query to see progress messages generated during the
bulk load operation to load account data:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ACCOUNT' AND LOG_LEVEL = 'PROGRESS_MSG'
ORDER BY MSG_SEQ_NO;

Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table. The following is an example of the query to retrieve error messages:

SELECT MSG FROM OIM_BLKLD_LOG 
WHERE MODULE = 'ACCOUNT' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

15.7.7 Handling Exceptions Recorded During the Operation
At the end of a bulk load operation, the utility records statistics related to the operation.

The statistics are recorded in the following file:

oimbulkload/logs_YYYYMMDD_hhmm/oim_blkld_account_load_summary.log

To determine if there were exceptions during the operation, open this log file and look for the
number against the Number of Records Rejected label. If the number of rejected records is
greater than zero, then exceptions were thrown during the operation. User records that are
rejected by the utility are recorded in the exception table (OIM_BLKLD_EX_SUFFIX). For each
rejected record, the EXCEPTION_MSG column in the OIM_BLKLD_EX_SUFFIX table stores
information about the reason the record could not be loaded.

The following is the sample statistics recorded in the log file at the end of a bulk load operation
to store account data.

=============================================================
A C C O U N T    L O A D    S T A T I S T I C S
=============================================================
Start Time:   22-JUL-08 03.59.30.206000 PM
End Time:     22-JUL-08 04.03.21.126000 PM
Number of Records Processed:  100026
Number of Records Loaded:     100000
Number of Records Rejected:   26
=============================================================
 
The names of the TMP tables used during the load:
OIM_BLKLD_TMP_P100001
OIM_BLKLD_TMP_C100002
The names of the Exception tables used during the load:
OIM_BLKLD_EX_P100001
OIM_BLKLD_EX_C100002

In this sample, the number of rejected records is 26. If the log file shows that any records were
rejected by the utility, then see Fixing Exceptions and Reloading Data Records for information
about retrying the load operation for these records.

Chapter 15
Loading Account Data

15-29



Note:

At the end of each bulk load operation, it is recommended that you create a backup
of the exception tables.

15.7.8 Fixing Exceptions and Reloading Data Records
Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table.

Note:

If you want to load data from CSV files for multiple target systems, then you can
apply one of the following approaches:

• Approach 1: Run the utility for all the sets of CSV files, and then perform the
procedure described in this section.

• Approach 2: Run the utility for one set of CSV files, and perform the procedure
described in this section. Then, repeat this procedure for the next set of CSV
files.

This section describes exception handling for the bulk load operation and how to reload the
rejected records. It contains the following topics:

• About Fixing Exceptions

• Reloading Rejected Records

15.7.8.1 About Fixing Exceptions
Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table. The following is an example of the query to retrieve error messages:

SELECT MSG FROM OIM_BLKLD_LOG 
WHERE MODULE = 'ACCOUNT' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

An exception table OIM_BLKLD_EX_SUFFIX is created for each data table used as the input
source during the bulk load operation. Records that do not meet the criteria for the operation
are copied into this exception table. The suffix appended to the name of each exception table
is the same as suffix appended to the name of the corresponding data table.

15.7.8.2 Reloading Rejected Records
To reload rejected records:

1. Create a backup of the exception table in which rejected records are stored.

Chapter 15
Loading Account Data

15-30



Note:

Although this is an optional step, it is recommended that you create a backup.

2. Review each record in the exception table, and fix errors in the data based on the
message recorded in the EXCEPTION_MSG column.

3. After you fix errors in all the rejected records in an exception table, rename the table to
OIM_BLKLD_TMP_SUFFIX and then use it as the input source.

4. Load records from the OIM_BLKLD_TMP_SUFFIX table by running the utility. See 
Running the Utility for more information about running the Bulk Load utility.

5. Repeat Steps 1 through 4 until the Number of Records Rejected label in the
oim_blkld_account_load_summary.log file shows the value 0.

6. Restart Oracle Identity Manager if loading was done in offline mode.

Note:

Being a database-intensive operation by design, Bulk Load disables the constraints
and indexes on the relevant Oracle Identity Manager entity tables during the start of
the operation. Bulk Load operation failure towards the end of the load might at times
render the indexes and constraints in disabled state. To identify and fix this issue,
manually restore the indexes and constraints as follows:

1. Identify the unusable indexes and disabled constraints. To do so, the following
SQL queries or similar mechanism can be used:

SELECT TABLE_NAME, CONSTRAINT_NAME FROM user_constraints WHERE status = 
'DISABLED';
SELECT index_name FROM user_indexes WHERE status = 'UNUSABLE';

2. Enable the constraints and rebuild the indexes manually, as shown:

ALTER TABLE TABLE_NAME ENABLE CONSTRAINT CONSTRAINT_NAME;
ALTER INDEX INDEX_NAME REBUILD;

15.7.9 Verifying the Outcome of the Bulk Load Operation
Verify the outcome of the Bulk Load operation for one of the account added by the utility by
verifying if the newly created account is displayed in the UI and by logging in to the target
system by using the credentials of the account.

To verify the outcome of the bulk load operation, check if you are able to perform the following
steps for one of the OIM Users for whom an account has been added by the utility:

• Log in as the OIM User, and check if the newly created account is displayed in the
Accounts tab of the User details page or in My Accounts tab of My Access page for the
user.

• Log in to the target system by using the credentials of the newly created account.

Chapter 15
Loading Account Data

15-31



15.8 Loading Role, Role Hierarchy, Role Membership, and Role
Category Data

Loading role, role hierarchy, role membership, and role category data involves creating the
input source for the bulk load operation, running the Bulk Load utility, and handling exceptions,
if any.

This section provides detailed information about the steps involved in loading role, role
hierarchy, role membership, and role category data. It contains the following topics:

• Overview of Loading Role, Role Hierarchy, Role Membership, and Role Category Data

• Creating the Input Source for the Bulk Load Operation

• Determining Values for the Input Parameters of the Utility

• Monitoring the Progress of the Operation

• Handling Exceptions Recorded During the Operation

• Fixing Exceptions and Reloading Data Records

• Verifying the Outcome of the Bulk Load Operation

15.8.1 Overview of Loading Role, Role Hierarchy, Role Membership, and
Role Category Data

Loading role, role hierarchy, role membership, and role category data involves creating the
input source for the bulk load operation, running the Bulk Load utility, and handling exceptions,
if any.

The following is a summary of the steps involved in loading role-related data:

1. Prepare your database for a bulk load operation, if not already done. See Preparing Your
Database for a Bulk Load Operation for details.

2. Create the input source for the bulk load operation.

If you want to use a database table as the input source, then create the table and copy
role-related data into the table.

If you want to use CSV files as the input source, then create the CSV files and copy role-
related data into the files. In addition, create a master.txt file containing the names of the
files in the sequence in which you want to load data from them.

3. Determine values for the input parameters of the utility.

4. Stop Oracle Identity Manager.

5. Run the oim_blkld.sh or oim_blkld.bat script.

6. Monitor the progress of the bulk load operation.

7. Determine the outcome of the bulk load operation.

8. If required, reload data that is not loaded during the first run.

9. Restart Oracle Identity Manager.

10. Verify the outcome of the bulk load operation.

11. Gather diagnostic data from the operation.

Chapter 15
Loading Role, Role Hierarchy, Role Membership, and Role Category Data

15-32



12. Remove temporary tables and files created during the operation.

15.8.2 Creating the Input Source for the Bulk Load Operation
Depending on the input source that you want to use, you must apply the guidelines for using
CSV files or creating database tables as the input source.

This section contains the following topics:

• Using CSV Files As the Input Source

• Creating Database Tables As the Input Source

• Structure of a Sample Database Table

• Determining the UGP_NAME Generated After Role Load

15.8.2.1 Using CSV Files As the Input Source
If you want to use CSV files as the input source for the bulk load operation, then apply the
following guidelines while creating the CSV files:

• The CSV files must be placed in the oimbulkload/csv_files directory.

• The first line in the CSV file is called the control line.

• This line must contain a comma-separated list of column names based on the selected role
upload (role, role hierarchy, role membership, and role category) in the Oracle Identity
Manager database.

• From the second line onward, the file must contain values for the columns in the control
line. The order of columns in the first line and the values in the rest of the lines must be the
same. The following is a sample content of a role (UGP) CSV file:

UGP_ROLENAME,UGP_NAMESPACE,USR_LOGIN,ORG_NAME,INCLUDE_HIERARCHY
"Finance Controllers",Default,XELSYSADM,Finance,YES
"Finance Controllers",Default,XELSYSADM,Requests,YES

• Role load is capable of publishing the roles to organizations to follow the security model in
Oracle Identity Manager, with an option to include hierarchy.

As a value of the ORG_NAME parameter, specify the organization name, such as Finance
or Requests, to which you want to publish the roles. Specify YES for
INCLUDE_HIERARCHY if you want to publish the roles to the specified organization and
its suborganizations. Specify NULL or NO for INCLUDE_HIERARCHY if you want to
publish the roles only to the specified organization and not its suborganizations. If you do
not specify values for the ORG_NAME and INCLUDE_HIERARCHY parameters, then by
default, the roles are published to the Top organization with hierarchy.

• If the value in any column contains a comma, then that value must be enclosed in double
quotation marks (").

• The CSV file must contain values for all columns that are designated as mandatory in the
respective role tables.

• The CSV file must contain values for all columns that are designated as mandatory
depending on the upload role data, role hierarchy data, role membership data, and role
category data.

– Role UGP):
UGP_ROLENAME,UGP_NAMESPACE,USR_LOGIN,ORG_NAME,INCLUDE_HIERA
RCHY (UGP_NAMESPACE,ORG_NAME)

INCLUDE_HIERARCHY can be left as null when not required.

Chapter 15
Loading Role, Role Hierarchy, Role Membership, and Role Category Data

15-33



– Role Hierarchy (GPG): UGP_NAME, GPG_UGP_NAME

– Role Membership (USG): UGP_NAME, USR_LOGIN

– Role Category (ROLE_CATEGORY): ROLE_CATEGORY_NAME

Each row in the CSV file must have a unique value for the combinationation of manadatory
columns.

• The following default values are inserted into Oracle Identity Manager if the CSV file does
not contain values for these columns:

– For Role (UGP)

ROLE_CATEGORY_NAME: Default

UGP_DISPLAY_NAME: Defaults to UGP_NAME

ORG_NAME: TOP

INCLUDE_HIERARCHY: YES

– For Role Hierarchy (GPG)

None

– For Role Membership (USG)

RUL_KEY: RUL_KEY from RUL table with RUL_NAME as 'Default'

USG_PRIORITY: group and rank based on UGP_KEY based on the rows given for
upload.

– Role Category (ROLE CATEGORY)

None

• Create a master TXT file containing the names of the CSV files containing role data to be
loaded. You can specify any name for the file, for example, master.txt. Save the master file
in the oimbulkload/csv_files directory.

If you want to load multiple CSV files, then enter the name of each data CSV file on a
separate line in the master file. Order the list of CSV file names in the sequence in which
you want the utility to load data from the files. For example, suppose you have created
three data CSV files, Role1.csv, Role2.csv, and Role3.csv. In the master file, enter the
names of the data CSV files in the following order:

Role1.csv

Role2.csv

Role3.csv

When you run the utility, data is loaded in this order.

• If the CSV file is generated on Microsoft Windows and is to be loaded on Linux
environment, then remove the special characters, such as '\n\r', to avoid run-time errors.

15.8.2.2 Creating Database Tables As the Input Source
If you want to use a database table as the input source for loading OIM User data, then apply
the following guidelines while creating the database table:

• Create the table in the Oracle Identity Manager database.

• The table must contain the following primary key column:

OIM_BLKLD_USRSEQ NUMBER(19)

Chapter 15
Loading Role, Role Hierarchy, Role Membership, and Role Category Data

15-34



The utility uses this column as the primary key. If required, you can use a database
sequence to populate this column.

• The rest of the columns must be the same as the ones in the respective role tables that
you want to use.

15.8.2.3 Structure of a Sample Database Table
Table 15-4 shows the structure of a sample database role table.

Table 15-4    Structure of a Sample Database Table

Role NULL Type

UGP_ROLENAME NOT NULL VARCHAR2(2000)

UGP_NAMESPACE VARCHAR2(512)

ORG_NAME NOT NULL VARCHAR2(256)

INCLUDE_HIERARCHY NOT NULL VARCHAR2(256)

... ... ...

OIM_BLKLD_USRSEQ NOT NULL NUMBER(19)

Note:

ORG_NAME and INCLUDE_HIERARCHY are required for loading roles only, and not
for role hierarchy, role membership, and role category.

15.8.2.4 Determining the UGP_NAME Generated After Role Load
Bulkload utility generates UGP_NAME during role load in the following format:

UGP_NAMESPACE.UGP_ROLENAME

By default, the value of UGP_NAMESPACE is Default, when you do not provide any specific
value for UGP_NAMESPACE in the CSV file. To determine the generated UGP_NAME:

1. If UGP_NAMESPACE is null in the CSV file, then the namespace value is Default, and the
generated UGP_NAME is equal to the value of UGP_ROLENAME.

2. If UGP_NAMESPACE is not null and has a defined value in the CSV file, then the
generated UGP_NAME is equal to the value of UGP_NAMESPACE.UGP_ROLENAME.

On the basis of the UGP_NAME generation methodology, you can determine the UGP_NAME
values for the next loading of role hierarchy, role membership, and role category, even if you do
not have direct access to the database. Otherwise, you can check the generated value of
UGP_NAME in the UGP table.

15.8.3 Determining Values for the Input Parameters of the Utility
You must set correct values for the input parameters of the Bulk Load utility for the type of data
being loaded.

The following are input parameters of the utility:

• Oracle Home

Chapter 15
Loading Role, Role Hierarchy, Role Membership, and Role Category Data

15-35



Value of the ORACLE_HOME environment variable on the host computer for the Oracle
Identity Manager database

• Database Connection String

Connection string to connect to the database that must be entered in the following format:

//HOST_IP_ADDRESS:PORT_NUMBER/SERVICE_NAME

• OIM DB User

Database login ID of the Oracle Identity Manager database user

• OIM DB Pwd

Password of the Oracle Identity Manager database user. Enter the password twice when
prompted.

• CSV file names

Names of the CSV files to be used as the input source

This parameter is used only if the input source is CSV files. See Using CSV Files As the
Input Source for more information. If you are loading data from parent and child CSV file,
then use a comma-delimited list to enter the names of the files. The name of the parent
CSV file must be provided first, and it must be followed by the names of the child CSV
files.

• Tmp table name

Name of the temporary table to be used as the input source

This parameter is used only if the input source for the bulk load operation is a database
table. See Creating Database Tables As the Input Source for more information.

• Control Line

Comma-separated list of names of columns to be loaded from the database table into
Oracle Identity Manager

This parameter is used only if the input source for the bulk load operation is a database
table.

• Tablespace Name

Name of the tablespace in which temporary tables are to be created during the bulk load
operation (if end user won't provide the tablespace name then it will pick the default
tablespace)

See Preparing Your Database for a Bulk Load Operation for more information.

• Date format

Date format used by date columns in the CSV files. This is prompted only for role load, and
not for role hierarchy, role membership, and role category.

This parameter is used only if the input source is a single or multiple CSV files.

The date format must match the following:

– Oracle supported date formats, such as dd-mm-yyyy or MM-DD-YYYY

– The date format specified in the CSV file

• Batch Size

Number of user records that must be processed by the utility as a single transaction

The batch size can influence the performance of the bulk load operation. The default value
of this parameter is 10000.

Chapter 15
Loading Role, Role Hierarchy, Role Membership, and Role Category Data

15-36



• Debug Flag

You can specify Y or N as the value of this parameter. If this parameter is set to Y, then the
utility records detailed information about events that occur during the bulk load operation.
See Data Recorded During the Operation for more information.

15.8.4 Monitoring the Progress of the Operation
During the bulk load operation, you can query the OIM_BLKLD_LOG table for information
about the progress of the operation.

For example, you can run the following query to see progress messages generated during the
bulk load operation to load OIM Role data:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ROLE' AND LOG_LEVEL = 'PROGRESS_MSG'
ORDER BY MSG_SEQ_NO;

Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table. The following is an example of the query to retrieve error messages:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ROLE' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

15.8.5 Handling Exceptions Recorded During the Operation
At the end of a bulk load operation, the utility records statistics related to the operation.

The statistics are recorded in the following file:

oimbulkload/logs_YYYYMMDD_HHMM/oim_blkld_ENTITY_NAME_load_summary.log

In the log file name, ENTITY_NAME stands for the entity being loaded. For example:

• For roles, the log file name is oim_blkld_role_load_summary.log.

• For role memberships, the log file name is oim_blkld_rolemem_load_summary.log.

To determine if there were exceptions during the operation, open this log file and look for the
number against the Number of Records Rejected label. If the number of rejected records is
greater than zero, then exceptions were thrown during the operation. User records that are
rejected by the utility are recorded in the exception table (OIM_BLKLD_EX_SUFFIX). For each
rejected record, the EXCEPTION_MSG column in the OIM_BLKLD_EX_SUFFIX table stores
information about the reason the record could not be loaded.

The following is the sample statistics recorded in the log file at the end of a bulk load operation
to store OIM Role data.

*****************************************************************************************
**********
Processing File: Role.csv
=========================================================================================
=
R O L E    L O A D    S T A T I S T I C S    F O R   F I L E : Role.csv
=========================================================================================
=
Start Time:   17-NOV-09 02.48.18.447767 AM
End Time:     17-NOV-09 02.48.19.228710 AM
Number of Records Processed:  2
Number of Records Loaded:     2
Number of Records Rejected:   0

Chapter 15
Loading Role, Role Hierarchy, Role Membership, and Role Category Data

15-37



=========================================================================================
=

The name of the TMP table used during the load:
OIM_BLKLD_TMP_ROLE1

The name of the Exception table used during the load:
OIM_BLKLD_EX_ROLE1
=========================================================================================
=
===============================================================================
Time taken in re-building indexes and enabling FK constraints
===============================================================================

Start time:      17-NOV-09 02.48.19.243781 AM

In this sample, the number of rejected loaded is 2. If the log file shows that any records have
been rejected by the utility, then see Fixing Exceptions and Reloading Data Records for
information about retrying the load operation for these records.

Note:

You cannot use the utility to load data into a remote Oracle Identity Manager
database.

15.8.6 Fixing Exceptions and Reloading Data Records
Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table.

This section describes exception handling and how to reload the rejected records. It contains
the following topics:

• About Fixing Exceptions

• Reloading Rejected Records

15.8.6.1 About Fixing Exceptions
Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table. The following is an example of the query to retrieve error messages:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ROLE' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

An exception table OIM_BLKLD_EX_SUFFIX is created for each data table used as the input
source during the bulk load operation. Records that do not meet the criteria for the operation
are copied into this exception table. The suffix appended to the name of each exception table
is the same as suffix appended to the name of the corresponding data table.

15.8.6.2 Reloading Rejected Records
To reload rejected records:

1. Create a backup of the exception table in which rejected records are stored.

Chapter 15
Loading Role, Role Hierarchy, Role Membership, and Role Category Data

15-38



Note:

Although this is an optional step, it is recommended that you create a backup.

2. Review each record in the exception table, and fix errors in the data based on the
message recorded in the EXCEPTION_MSG column.

3. After you fix errors in all the rejected records in an exception table, rename the table to
OIM_BLKLD_TMP_SUFFIX and then use it as the input source.

4. Load records from the OIM_BLKLD_TMP_SUFFIX table by running the utility. See 
Running the Utility for more information about running the Bulk Load utility.

5. Repeat Steps 1 through 4 until the Number of Records Rejected label shows the value 0 in
the oim_blkld_role_load_summary.log file or the corresponding log file for role
membership, role hierarchy, and role category.

6. Restart Oracle Identity Manager if loading was done in offline mode.

Note:

Being a database-intensive operation by design, Bulk Load disables the constraints
and indexes on the relevant Oracle Identity Manager entity tables during the start of
the operation. Bulk Load operation failure towards the end of the load might at times
render the indexes and constraints in disabled state. To identify and fix this issue,
manually restore the indexes and constraints as follows:

1. Identify the unusable indexes and disabled constraints. To do so, the following
SQL queries or similar mechanism can be used:

SELECT TABLE_NAME, CONSTRAINT_NAME FROM user_constraints WHERE status = 
'DISABLED';
SELECT index_name FROM user_indexes WHERE status = 'UNUSABLE';

2. Enable the constraints and rebuild the indexes manually, as shown:

ALTER TABLE TABLE_NAME ENABLE CONSTRAINT CONSTRAINT_NAME;
ALTER INDEX INDEX_NAME REBUILD;

15.8.7 Verifying the Outcome of the Bulk Load Operation
Verify the outcome of the Bulk Load operation for one of the role, role hierarchy, role
membership, and role category added by the utility by verifying that the newly created role, role
hierarchy, role membership, and role category are displayed in the UI,

To verify the outcome of the bulk load operation, check if you are able to perform the following
steps for one of the OIM Role added by the utility:

1. Log in to Oracle Identity Self Service, and verify that the newly created role is displayed in
the search result for roles.

2. For the newly created role hierarchy and role members, click the Hierarchy and Members
tabs respectively on the role details page.

3. To verify the newly created role category, in the Welcome page of Oracle Identity
Administration, click Advanced Search - Role Categories. Then, perform an advanced
search to find the newly created role.

Chapter 15
Loading Role, Role Hierarchy, Role Membership, and Role Category Data

15-39



Note:

When roles are created using the Bulk Load utility, the catalog data is not
generated for the roles. To create the catalog data, run the Catalog
Synchronization Job with Process Role = true. See Predefined Scheduled
Tasks in Administering Oracle Identity Governance for information about the
Catalog Synchronization Job scheduled job.

15.9 Loading Organization Data
Loading organization data involves creating the input source for the bulk load operation,
running the Bulk Load utility, and handling exceptions, if any.

This section provides detailed information about the steps involved in loading organization
data. It contains the following topics:

• Overview of Loading Organization Data

• Creating the Input Source for the Bulk Load Operation

• Determining Values for the Input Parameters of the Utility

• Monitoring the Progress of the Operation

• Handling Exceptions Recorded During the Operation

• Fixing Exceptions and Reloading Data Records

• Verifying the Outcome of the Bulk Load Operation

15.9.1 Overview of Loading Organization Data
Loading organization data involves creating the input source for the bulk load operation,
running the Bulk Load utility, and handling exceptions, if any.

The following is a summary of steps involved in loading organization data:

1. Prepare your database for a bulk load operation, if not already done. See Preparing Your
Database for a Bulk Load Operation.

2. Create the input source for the bulk load operation.

If you want to use a database table as the input source, then create the table and copy
organization-related data into the table.

If you want to use CSV files as the input source, then create the CSV files and copy
organization-related data into the files. In addition, create a master.txt file containing the
names of the files in the sequence in which you want to load data from them.

3. Determine values for the input parameters of the utility.

4. Stop Oracle Identity Manager if you want to run Bulk Load utility in offline mode. For online
mode, Oracle Identity Manager server can be running.

5. Run the oim_blkld.sh (for UNIX) or oim_blkld.bat (for Windows) script.

6. Monitor the progress of the bulk load operation.

7. Determine the outcome of the bulk load operation.

8. If required, reload data that is not loaded during the first run.

9. Restart Oracle Identity Manager , if it was stopped in step 4.

Chapter 15
Loading Organization Data

15-40



10. Verify the outcome of the bulk load operation.

11. Gather diagnostic data from the operation.

12. Remove temporary tables and files created during the operation.

15.9.2 Creating the Input Source for the Bulk Load Operation
Depending on the input source that you want to use, you must apply the guidelines for using
CSV files or creating database tables as the input source.

This section contains the following sections:

• Using CSV Files as the Input Source

• Creating Database Tables as the Input Source

15.9.2.1 Using CSV Files as the Input Source
If you want to use CSV files as the input source for the bulk load operation, then apply the
following guidelines while creating the CSV files:

• The CSV files must be placed in the oimbulkload/csv_files directory.

• The first line in the CSV file is called the control line. This line must contain a comma-
separated list of column names of the ACT table in the Oracle Identity Manager database.

• From the second line onward, the file must contain values for the columns in the control
line. The order of columns in the first line and the values in the rest of the lines must be the
same. The following are sample contents of a CSV file:

ACT_NAME,ACT_PARENT_NAME,ACT_STATUS,ACT_CUST_TYPE
Org1,Xellerate Users,Active,System
Org2, Org3,Active,Company
Org3,Org4,Active, System
Org4,Top,Active,Company

• The CSV file can contain hierarchal data as well, such as the example provided in the
previous bullet point. Here, Org4 is created first, then Org3, and finally Org2 is created. If
the last entry of Org4 is missed from this CSV, then neither Org3 nor Org2 are created
because respective parents are not available in Oracle Identity Manager.

• ACT_NAME and ACT_PARENT_NAME are mandatory columns .Along with these
columns you can also load other columns present in ACT table.

• If the value in any column contains a comma, then that value must be enclosed in double
quotation marks (").

• The CSV file must contain values for all columns that are designated as mandatory in the
ACT table.

• Each row in the CSV file must have a unique value for the ACT_NAME column in the USR
table. If there are multiple files, then ensure that ACT_NAME values are unique across the
CSV files. This check for uniqueness of ACT_NAME values must also cover existing
organization in Oracle Identity Manager.

• Note that the following default values are inserted into Oracle Identity Manager if the CSV
file does not contain values for these columns:

ACT_PARENT_NAME : Top
ACT_CUST_TYPE : System

Chapter 15
Loading Organization Data

15-41



ACT_STATUS: Active
• Create a master TXT file containing the names of the CSV files containing organization

data to be loaded. You can specify any name for the file, for example, master.txt. Save the
master file in the oimbulkload/csv_files directory.

If you want to load multiple CSV files, then enter the name of each data CSV file on a
separate line in the master file. Order the list of CSV file names in the sequence in which
you want the utility to load data from the files. For example, suppose you have created
three data CSV files, London_Orgs.csv, NewYork_Orgs.csv, and Tokyo_Orgs.csv. In the
master file, you enter the names of the data CSV files in the following order:

Tokyo_Orgs.csv
London_Orgs.csv
NewYork_Orgs.csv

When you run the utility, data is loaded in this order. This is because the organization data
in London and New York may have a dependency on the Tokyo Orgs.

• If the CSV file is generated on Microsoft Windows and is to be loaded on Linux
environment, then remove the special characters, such as '\n\r', to avoid run-time errors.

Note:

While copying a CSV file from Windows to UNIX, Solaris, or Linux systems, some
special characters, such as ^M, are appended to the file. This is because, the file from
Windows is in DOS (ASCII) format and must be converted to ISO format. Solaris
preinstalls the dos2unix utility into the system to do this job. But for UNIX/Linux
systems, the CSV file must be converted from DOS format to UNIX format to ensure
sanity of the input file before being used in the Bulk Load operation. To do this, the
syntax is:

# dos2unix CSV_FILE_NAME

If the dos2unix utility does not exist in the UNIX/Linux systems, then the
administrator can install the utility for the respective UNIX/Linux versions by using the
relevant documentation.

15.9.2.2 Creating Database Tables as the Input Source
If you want to use a database table as the input source for loading organization data, then
apply the following guidelines while creating the database table:

• Create the table in the Oracle Identity Manager database.

• ACT_NAME and ACT_PARENT_NAME are mandatory columns.

• Along with mandatory columns, the table must contain the following primary key column:

OIM_BLKLD_ACTSEQ NUMBER(19)

The utility uses this column as the primary key. If required, you can use a database
sequence to populate this column.

Chapter 15
Loading Organization Data

15-42



• The rest of the columns must be the same as the ones in the ACT table that you want to
use. In other words, ignore optional ACT columns that you do not want to include in the
table that you create.

15.9.3 Determining Values for the Input Parameters of the Utility
You must set correct values for the input parameters of the Bulk Load utility for the type of data
being loaded.

The following are input parameters of the utility:

• Oracle Home

Value of the ORACLE_HOME environment variable on the host computer for the Oracle
Identity Manager database

• Database Connection String

Connection string to connect to the database that must be entered in the following format:

//HOST_IP_ADDRESS:PORT_NUMBER/SERVICE_NAME

• OIM DB User

Database login ID of the Oracle Identity Manager database user

• OIM DB Pwd

Password of the Oracle Identity Manager database user. Enter the password twice when
prompted.

• CSV file names

Names of the master CSV files to be used as the input source

This parameter is used only if the input source is CSV files. See Using CSV Files as the
Input Source. If you are loading data from parent and child CSV file, then use a comma-
delimited list to enter the names of the files. The name of the parent CSV file must be
provided first, and it must be followed by the names of the child CSV files.

• Tmp table name

Name of the temporary table to be used as the input source

This parameter is used only if the input source for the bulk load operation is a database
table. See Creating Database Tables as the Input Source.

• Control Line

Comma-separated list of names of columns to be loaded from the database table into
Oracle Identity Manager

This parameter is used only if the input source for the bulk load operation is a database
table.

• Tablespace Name

Name of the tablespace in which temporary tables are to be created during the bulk load
operation. (If end user does not provide the tablespace name, then it will pick the default
tablespace.) See Preparing Your Database for a Bulk Load Operation.

• Date format

Date format used by date columns in the CSV files.

This parameter is used only if the input source is CSV file.

The date format must march the following:

Chapter 15
Loading Organization Data

15-43



– Oracle supported date formats, such as dd-mm-yyyy or MM-DD-YYYY

– The date format specified in the CSV file

• Batch Size

Number of user records that must be processed by the utility as a single transaction

The batch size can influence the performance of the bulk load operation. The default value
of this parameter is 10000.

• Debug Flag

You can specify Y or N as the value of this parameter. If this parameter is set to Y, then the
utility records detailed information about events that occur during the bulk load operation.
See Data Recorded During the Operation.

15.9.4 Monitoring the Progress of the Operation
During the bulk load operation, you can query the OIM_BLKLD_LOG table for information
about the progress of the operation.

For example, you can run the following query to see progress messages generated during the
bulk load operation to load OIM Organization data:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ORG' AND LOG_LEVEL = 'PROGRESS_MSG'
ORDER BY MSG_SEQ_NO;

Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table. The following is an example of the query to retrieve error messages:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ORG' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

15.9.5 Handling Exceptions Recorded During the Operation
At the end of a bulk load operation, the utility records statistics related to the operation.

The statistics are recorded in the following file:

oimbulkload/logs_YYYYMMDD_hhmm/oim_blkld_org_load_summary.log

To determine if there were exceptions during the operation, open this log file and look for the
number against the Number of Records Rejected label. If the number of rejected records is
greater than zero, then exceptions were thrown during the operation. Organization records that
are rejected by the utility are recorded in the exception table (OIM_BLKLD_EX_SUFFIX). For
each rejected record, the ACT_LOAD_NOTE column in the OIM_BLKLD_EX_SUFFIX table
stores information about the reason the record could not be loaded. ACT_LOAD_NOTE
column in respective TMP table also shows the status/error of org creation.

The following is the sample statistics recorded in the log file at the end of a bulk load operation
to store OIM Organization data.

//Sample log file when source of input is DB table- 
*****************************************************************************************
**********
Bulkload Mode : online
 
 
*****************************************************************************************
**********

Chapter 15
Loading Organization Data

15-44



Source for Organization bulkload  : DB Table
Processing TMP table              : DB_TBL
successfully loaded  TMP Table    : DB_TBL
successfully loaded  TMP Table    : DB_TBL
TMP       Table                   : DB_TBL
Exception Table                   : DB_TBL_EX1
Log       Table                   : OIM_BLKLD_LOG
 
=========================================================================================
=
O R G    L O A D    S T A T I S T I C S    F O R   T A B L E : DB_TBL
=========================================================================================
=
Start Time                     :  19-FEB-16 12.55.35.101932 AM
End Time                       :  19-FEB-16 01.01.38.269610 AM
Number of Records Processed    :  160
Number of Records Loaded       :  160
Number of Records Rejected     :  0
 
//Sample log file when source of input is csv file- 
 
 
*****************************************************************************************
**********
Bulkload Mode : online
 
 
*****************************************************************************************
**********
Source for Organization bulkload  : CSV File
Processing csv File               : org.csv
successfully loaded  File         : org.csv
successfully loaded  TMP Table    : OIM_BLKLD_TMP_ORG1
TMP       Table                   : OIM_BLKLD_TMP_ORG1
Exception Table                   : OIM_BLKLD_EX_ORG1
Log       Table                   : OIM_BLKLD_LOG
 
=========================================================================================
=
O R G    L O A D    S T A T I S T I C S    F O R   F I L E : org.csv
=========================================================================================
=
Start Time                     :  19-FEB-16 12.39.27.469318 AM
End Time                       :  19-FEB-16 12.39.27.519390 AM
Number of Records Processed    :  4
Number of Records Loaded       :  0
Number of Records Rejected     :  4
=========================================================================================
=

In this sample, the number of rejected records is 4. If the log file shows that any records have
been rejected by the utility, then see Fixing Exceptions and Reloading Data Recordsfor
information about retrying the load operation for these records.

15.9.6 Fixing Exceptions and Reloading Data Records
Errors encountered during the bulk load operation can be viewed by querying the
OIM_BLKLD_LOG table.

This section describes exception handling for the bulk load operation and how to reload
rejected records. It contains the following topics:

Chapter 15
Loading Organization Data

15-45



• About Fixing Exceptions

• Reloading Rejected Records

15.9.6.1 About Fixing Exceptions
As mentioned earlier, errors encountered during the bulk load operation can be viewed by
querying the OIM_BLKLD_LOG table. The following is an example of the query to retrieve
error messages:

SELECT MSG FROM OIM_BLKLD_LOG
WHERE MODULE = 'ORG' AND LOG_LEVEL = 'ERROR'
ORDER BY MSG_SEQ_NO;

An exception table OIM_BLKLD_EX_SUFFIX is created for each data table used as the input
source during the bulk load operation. Records that do not meet the criteria for the operation
are copied into this exception table. The suffix appended to the name of each exception table
is the same as suffix appended to the name of the corresponding data table.

15.9.6.2 Reloading Rejected Records
To reload rejected records:

1. Create a backup of the exception table in which rejected records are stored.

Note:

Although this is an optional step, it is recommended that you create a backup.

2. Review each record in the exception table, and fix errors in the data based on the
message recorded in the EXCEPTION_MSG column.

3. After you fix errors in all the rejected records in an exception table, rename the table to
OIM_BLKLD_TMP_SUFFIX, and run the following update statement:

UPDATE OIM_BLKLD_TMP_SUFFIX
                SET   ACT_LOAD_STATUS='P',ACT_ACT_KEY=NULL,
                       ACT_LOAD_NOTE=NULL;
                COMMIT;

Now use the table as the input source.

4. Load records from the OIM_BLKLD_TMP_SUFFIX table by running the utility. SeeRunning
the Utilityfor more information about running the Bulk Load utility.

5. Repeat Steps 1 through 4 until the Number of Records Rejected label shows the value 0 in
the oim_blkld_role_load_summary.log file.

6. Restart Oracle Identity Manager if loading has been in offline mode.

Chapter 15
Loading Organization Data

15-46



Note:

Being a database-intensive operation by design, Bulk Load disables the
constraints and indexes on the relevant Oracle Identity Manager entity tables
during the start of the operation. Bulk Load operation failure towards the end of
the load might at times render the indexes and constraints in disabled state. To
identify and fix this issue, manually restore the indexes and constraints as
follows:

a. Identify the unusable indexes and disabled constraints. To do so, the
following SQL queries or similar mechanism can be used:

SELECT TABLE_NAME, CONSTRAINT_NAME FROM user_constraints WHERE status = 
'DISABLED';
SELECT index_name FROM user_indexes WHERE status = 'UNUSABLE';

b. Enable the constraints and rebuild the indexes manually, as shown:

ALTER TABLE TABLE_NAME ENABLE CONSTRAINT CONSTRAINT_NAME;
ALTER INDEX INDEX_NAME REBUILD;

15.9.7 Verifying the Outcome of the Bulk Load Operation
Verify the outcome of the Bulk Load operation for one of the organizations added by the utility
by verifying that the newly created organization is added in the UI.

To verify the outcome of the bulk load operation, check if you are able to perform the following
steps for one of the OIM Organizations added by the utility:

1. Log in to Oracle Identity Self Service, and verify that the newly created organization is
displayed in the search result for Organizations.

2. Create a user under newly created organization. To do so:

a. Click the Members tab of the newly created organization. This user should be
displayed as a member.

b. Click the Organization tab of the user. The newly created organization should be
displayed in the results.

15.10 Data Recorded During the Operation
During the bulk load operation, the utility inserts progress and error messages in the
OIM_BLKLD_LOG table.

Data in the OIM_BLKLD_LOG table is not deleted at the start of a new bulk load operation.
One of the columns in this table holds the time stamp at which messages are recorded in the
table.

Table 15-5 describes the structure of the OIM_BLKLD_LOG table.

Chapter 15
Data Recorded During the Operation

15-47



Table 15-5    Structure of the OIM_BLKLD_LOG Table

Column NULL Type Description

MSG_SEQ_NO NULL NUMBER(19) This column stores the number
that denotes the order in which
messages are inserted in this
table. The column is populated by
using the OIM_BLKLD_LOG_SEQ
sequence. You can use this
column to query for messages in
the order in which they are
recorded in the table.

MODULE NOT NULL VARCHAR2(20) This column stores one of the
following values:

ROLE: This value indicates that
the message has been recorded
while loading OIM Role data.

ROLE HIERARCHY: This value
indicates that the message has
been recorded while loading role
hierarchy data.

ROLE MEMBERSHIP: This value
indicates that the message has
been recorded while loading OIM
role membership data.

ROLE CATEGORY: This value
indicates that the message has
been recorded while loading OIM
role category data.

LOG_LEVEL NOT NULL VARCHAR2(20) This column stores one of the
following values:

ERROR: Designates fine-grained
informational events that are useful
to debug.

DEBUG: Designates error events
that might allow the application to
continue running. Error is used to
log all unhandled exceptions.

PROGRESS_MSG: Designates
intermediate progress messages.

LOAD_SOURCE NOT NULL VARCHAR2(40) This column indicates the source
of data for the bulk load operation
during which the row was inserted.
The value can be one of the
following:CSV File: FILE_NAME

DB Table

MSG NOT NULL VARCHAR2(4000) This column stores a message
corresponding to the value stored
in the LOG_LEVEL column.

Chapter 15
Data Recorded During the Operation

15-48



Table 15-5    (Cont.) Structure of the OIM_BLKLD_LOG Table

Column NULL Type Description

CREATE_DATE DATE This column holds the time stamp
at which the record was created.
The format for entries in this
column is as follows:

yyyy/mm/dd hh24:mi:ss

For example:

2008/06/23 21:49:16:32

15.11 Gathering Diagnostic Data from the Bulk Load Operation
Data recorded in the files can be used to collate performance-related information about the
bulk load operation.

The following log files are created during the bulk load operation:

• For OIM Users:

oimbulkload/logs_YYYYMMDD_HHMM/oim_blkld_user_load_summary.log

• For accounts:

oimbulkload/logs_YYYYMMDD_HHMM/oim_blkld_account_load_summary.log

• For roles, role hierarchies, memberships, and role categories:

oimbulkload/logs_YYYYMMDD_HHMM/oim_blkld_ENTITY_NAME_load_summary.log

In the log file name, ENTITY_NAME stands for the entity being loaded. For example:

– For roles, the log file name is oim_blkld_role_load_summary.log.

– For role memberships, the log file name is oim_blkld_rolemem_load_summary.log.

Data recorded in this file can be used to collate performance-related information about the bulk
load operation. The following information can be collected after the bulk load operation:

• Start time

• Input source

• Number of records in the system before the load

• Number of records successfully loaded

• Number of records rejected

• Total time taken

You can use this information during future runs of the utility.

See Also:

Table 15-5 for information about the log levels that stores error events

Chapter 15
Gathering Diagnostic Data from the Bulk Load Operation

15-49



15.12 Cleaning Up After a Bulk Load Operation
Log tables, tablespaces, and files for bulk load can be removed after the operation.

If you do not want to save the results of a bulk load operation, then:

• Remove the OIM_BLKLD_TMP_SUFFIX, OIM_BLKLD_EX_SUFFIX, and
OIM_BLKLD_LOG tables.

• Remove any files that you created or used during the operation.

• If you created a tablespace for the operation, then remove the tablespace.

• See Gathering Diagnostic Data from the Bulk Load Operation before you remove log files
created in the logs_timestamp directory.

Note:

At this point, you can restart Oracle Identity Manager if you have not already
done so.

15.13 Bulk Load High Volume Strategy and Case Studies
Follow best practices, and understand case studies and strategies for high-volume data load.

For information about general best practices and few case studies about high-volume data
load, see the technote titled OIM 11G BulkLoad Utility Strategies & Case Studies (Doc ID
1959363.1) in the My Oracle Support web site at:

https://support.oracle.com

Chapter 15
Cleaning Up After a Bulk Load Operation

15-50

https://support.oracle.com


16
Developing Scheduled Tasks

You can create scheduled tasks according to your requirements if none of the predefined
scheduled tasks fit your needs.
Oracle Identity Manager contains a set of predefined tasks that can be scheduled as job runs.
An example is a password warning task that sends email to users for password expiration.
Oracle Identity Manager also provides the capability of creating your own scheduled tasks. You
can create scheduled tasks according to your requirements if none of the predefined
scheduled tasks fit your needs. For example, you can configure a reconciliation run using a
scheduled task that checks for new information on target systems periodically and replicates
the data in Oracle Identity Manager.

The following sections describe how to create and implement your custom scheduled tasks:

• Overview of Task Creation

• Defining the Metadata for the Scheduled Task

• Configuring the Scheduled Task XML File

• Developing the Scheduled Task Class

• Configuring the Plug-in XML File

• Creating the Directory Structure for the Scheduled Task

• Scheduled Task Configuration File

• Best Practices for Creating Custom Scheduled Tasks

• Using the isStop() Method

• Monitoring Scheduled Jobs Performance using DMS

16.1 Overview of Task Creation
Review Oracle Identity Manager's predefined scheduled tasks to determine whether a custom
task is necessary.

This section outlines the essential steps in creating scheduled tasks, and presents an example
to illustrate the process. It contains the following topics:

• Steps in Task Creation

• Example of Scheduled Task

16.1.1 Steps in Task Creation
Creating a scheduled task involves updating the scheduled task XML file with task metadata,
developing the scheduled task Java class, packaging the scheduled task as a plug-in, and
packaging the task files.

The basic steps for configuring new scheduled tasks are as follows:

1. Review Oracle Identity Manager's predefined scheduled tasks to determine whether a
custom task is necessary.

16-1



For details about the predefined tasks, see Managing the Scheduler in the Administering
Oracle Identity Governance.

2. Determine key features of the scheduled task, such as the task name and the parameters
that control the actions performed by the task.

For details, see Defining the Metadata for the Scheduled Task.

3. Add the task metadata to the scheduled task XML file.

For details, see Configuring the Scheduled Task XML File.

4. Develop the scheduled task Java class.

For details, see Developing the Scheduled Task Class.

5. Declare the new scheduled task as a plug-in.

For details, see Configuring the Plug-in XML File.

6. Package the task files so that Oracle Identity Manager can locate the files and make the
task available for jobs.

For details, see Creating the Directory Structure for the Scheduled Task.

16.1.2 Example of Scheduled Task
To illustrate the steps in developing a scheduled task, use an example scheduled task that
retrieves employee records belonging to the given department from a given IT resource.

In addition, the scheduled task should allow the user to specify the number of records to be
retrieved and whether to include disabled records in the retrieval.

16.2 Defining the Metadata for the Scheduled Task
Metadata for a scheduled task includes mandatory information about the task and optional
parameters that the task accepts.

Each scheduled task contains the following metadata information:

• Name of the scheduled task

• Name of the Java class that implements the scheduled task

• Description

• Retry Interval

• (Optional) Parameters that the scheduled task accepts. Each parameter contains the
following additional information:

– Parameter Name

– Parameter Data Type

– Required/ Optional Parameter

– Help Text

16.3 Configuring the Scheduled Task XML File
Configuring the scheduled task XML file involves updating the XML file that contains the
definitions of custom scheduled tasks.

Chapter 16
Defining the Metadata for the Scheduled Task

16-2



This section describes how to update the task XML file with the details of the new custom
scheduled task.

You can modify the task.xml file located in the /db namespace of Oracle Identity Manager MDS
schema, or you can create a custom scheduled task file. If you create a custom file, then the
file name must be the same as the scheduled task name, with the .xml extension. You must
import the custom scheduled task file to the /db namespace of Oracle Identity Manager MDS
schema.

See Also:

Developing Plug-ins for examples of plug-ins.

Note:

The scheduled task XML file can be imported into MDS using the Oracle Enterprise
Manager. In a clustered environment, having the file in MDS avoids the need to copy
the file on each node of the cluster.

For details about importing files into MDS, see Migrating User Modifiable Metadata
Files.

The elements in the XML file reflect the task parameters that you described in Defining the
Metadata for the Scheduled Task.

The following example shows a sample XML code for the scheduled task described in the
preceding paragraph. Note that all the parameters are declared to be required parameters in
this example.

<scheduledTasks xmlns="http://xmlns.oracle.com/oim/scheduler">
    <task>
        <name>Test_scheduled_task</name>
        <class>oracle.iam.scheduler.TestScheduler</class>
        <description>Retrieve Employee Records For Given Department</description>
        <retry>5</retry>
        <parameters>
            <string-param required="true" encrypted="false" helpText="Name of the 
department">Department Name</string-param>
            <number-param required="true" helpText="Number of Records to Be 
Retrieved">Number of Records</number-param>
            <boolean-param required="false" helpText="Retrieve disabled employee 
records?">Get Disabled Employees</boolean-param>
        </parameters>
    </task>
</scheduledTasks>

See Also:

Scheduled Task Configuration File for details about the elements in the scheduled
task configuration file.

Chapter 16
Configuring the Scheduled Task XML File

16-3



This is basically exporting the task.xml from MDS and then adding the required tags to it and
importing it back into MDS.

Note:

For a task defined in a plugin, the metadata XML is not required to be seeded to
MDS. This can be included in the META-INF folder in the plugin ZIP file. For details,
see Creating the Directory Structure for the Scheduled Task.

You must export the task.xml file from MDS, add the required tags to the file, and then import it
back to MDS. See Migrating User Modifiable Metadata Files for information about exporting
and importing MDS files.

16.4 Developing the Scheduled Task Class
The Java class that implements a scheduled task is known as a scheduled task class.

The next step is to create a Java class to execute the task whose metadata was defined in the
XML file. The Java class that implements a scheduled task is known as a scheduled task
class.

To develop a Java class for the scheduled task:

1. Create a Java class file that extends the oracle.iam.scheduler.vo.TaskSupport class
and overrides the execute() method with processing logic based on your requirements.
The Java class must also override the other abstract methods:

public HashMap getAttributes();
public void setAttributes();

2. Create a JAR file for the Java class that you created. Name the JAR such that you can
readily associate this JAR with your custom scheduled task.

The JAR file can contain the dependent classes of the Java class. You can also create a
separate JAR file for the dependent classes and place it in the lib/directory.

3. Copy the JAR file into the lib/ directory.

4. Repeat Steps 1 through 3 for every Java class that you want to create.

16.5 Configuring the Plug-in XML File
You must configure the plugin.xml file in order to declare the scheduled task as a plug-in.

See Developing Plug-ins for more information about plug-ins.

Note:

Oracle recommends creating one plugin.xml file for one scheduled task. This is
because when the plugin is unregistered, the corresponding package is deleted.

To configure the plugin.xml file:

Chapter 16
Developing the Scheduled Task Class

16-4



1. Create the plugin.xml file by using any text editor.

Note:

Create the plugin.xml file only if no such file exists. If there are existing plugins,
then add a new plugin element for the new plugin.

2. Specify the plug-in point for the scheduled task by changing the value of the pluginpoint
attribute of the plugins element to oracle.iam.scheduler.vo.TaskSupport.
The following XML code block from the plugin.xml file shows the value entered within the
plugins element:

<plugins pluginpoint="oracle.iam.scheduler.vo.TaskSupport">

Note:

For scheduled tasks, the <plugins> element remains the same for all scheduled
tasks.

3. Add a <plugin> element for each scheduled task that you are adding.

To specify the class that implements the plug-in (in this case, the scheduled task), change
the value of the pluginclass attribute of the plugin element to the name of the Java class
that implements the scheduled task. The following XML code block from the plugin.xml file
shows sample values entered within the plugin element:

<plugin pluginclass= "oracle.iam.scheduler.TestScheduler" version="1.0.1" 
name="scheduler element"/>

After modification, the plugin.xml file looks similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<oimplugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<plugins pluginpoint="oracle.iam.scheduler.vo.TaskSupport">
<plugin pluginclass= "oracle.iam.scheduler.TestScheduler"
version="1.0.1" name="scheduler element">
</plugin>
</plugins>
</oimplugins>

4. Save and close the plugin.xml file.

16.6 Creating the Directory Structure for the Scheduled Task
The plugin.zip file that you create must contain a specific directory structure.

The final step in configuring the scheduled task is to create a plugin.zip file with the directory
structure, as shown:

plugin/
      lib/
      PLUGIN.JAR
      plugin.xml
      META-INF (optional)
            METADATA.xml

Chapter 16
Creating the Directory Structure for the Scheduled Task

16-5



In this example, a single plug-in is being added, but there can be multiple plugins in the
plugin.zip file. Scheduler requires that files be zipped in a particular structure and named
according to a particular naming convention. This ensures that Oracle Identity Manager
identifies the custom scheduled tasks and makes it available in Oracle Identity System
Administration while creating jobs.

Note that:

• The XML file for the plug-in must be named plugin.xml.

• The lib/ directory must contain only .JAR files. The lib/ directory consists of JAR files that
contains the classes implementing the plug-in logic and the dependent library JAR files. In
most instances, this directory consists of a single JAR file with the implementation of all the
plug-ins that are specified in plugin.xml. See Developing Plug-ins for information about the
directory structure.

• The directory for the scheduled task must contain the following files:

– XML for the plug-in

– JAR files

• There is one plugin.zip file for all the plug-ins that you create.

• The META-INF folder is an optional folder, in which metadata (task definition) file can be
stored. If this file is placed in the META-INF folder, then it is not required to be seeded in
MDS.

Note:

If the task definition XML file is stored in the META-INF directory rather than
seeded to MDS, then there is a limitation of exporting the scheduled task by
using the Deployment Manager.

• If META-INF folder does not exist or if the metadata file is not placed in the META-INF
folder, then seed the file to MDS.

In the preceding example, CLASS_NAME.JAR is the JAR file that you create in Developing the
Scheduled Task Class.

After you create the plugin.zip file, if deploying in a clustered environment, register the plug-in
to the database by using appropriate APIs. See Registering and Unregistering Plug-ins By
Using APIs for details about registering plug-ins to Oracle Identity Manager by using APIs.

Note:

The XML for the plug-in must be named plugin.xml. Ensure that the lib directory
contains only JAR files.

16.7 Scheduled Task Configuration File
Scheduled task definitions is contained in a XML file, which is called the scheduled task
configuration file.

This section describes the structure and details of the XML file containing scheduler task
definitions. It contains the following topics:

Chapter 16
Scheduled Task Configuration File

16-6



• Structure of the Scheduler XML File

• The scheduledTasks Element

• The task Element

• The name Element

• The class Element

• The description Element

• The retry Element

• The parameters Element

• The string-param Element

• The number-param Element

• The boolean-param Element

16.7.1 Structure of the Scheduler XML File
Some of the elements in the scheduled task configuration XML file are <name>, <class>,
<description>, <retry>, and <parameters>.

The following is a list of elements in the configuration XML file:

<scheduledTasks xmlns="http://xmlns.oracle.com/oim/scheduler">
    <task>
        <name>
        <class>
        <description>
        <retry>
        <parameters>
            <string-param>
            .....
            </string-param>
            
            <number-param>
            .......
            </number-param>
            
            <boolean-param>
            .......
            </boolean-param>
        </parameters>
    </task>
</scheduledTasks>

16.7.2 The scheduledTasks Element
The scheduledTasks element is the root element in XML used to define scheduled tasks.

Table 16-1 summarizes the properties of the scheduledTasks element.

Table 16-1    Properties of the scheduledTasks Element

Property Value

Parent Element NA

Chapter 16
Scheduled Task Configuration File

16-7



Table 16-1    (Cont.) Properties of the scheduledTasks Element

Property Value

Attributes The XML namespace is specified as an attribute of the scheduledTasks
element as follows:

<scheduledTasks xmlns="http://xmlns.oracle.com/oim/scheduler">

Note: The xmlns parameter is mandatory.

Child Elements task

Number of Occurrences One for each scheduled task XML file to be created.

Element Value NA

Mandatory or Optional? Mandatory

16.7.3 The task Element
The task element is the child element of the scheduledTasks element.

You use the task element to define a scheduled task. The task element contains information
about the scheduled task, for example, the name, class, description, and retry count of the
scheduled task.

Table 16-2 summarizes the properties of the task element.

Table 16-2    Properties of the task Element

Property Value

Parent Element scheduledTasks

Attributes None

Child Elements name, class, description, retry, and parameters

Number of Occurrences One for each task to be created.

NOTE: If you want to define more than one task in a single scheduled
task XML file, you must use one task element for every scheduled task
being defined.

Element Value NA

Mandatory or Optional? Mandatory

16.7.4 The name Element
The name element is the child element of the task element. The name element is used to
specify the name of the scheduled task being created.

Table 16-3 summarizes the properties of the name element.

Table 16-3    Properties of the name Element

Property Value

Parent Element task

Attributes None

Chapter 16
Scheduled Task Configuration File

16-8



Table 16-3    (Cont.) Properties of the name Element

Property Value

Child Elements None

Number of Occurrences One

Element Value Name of the scheduled task being created.

Note: The name of the scheduled task must be unique.

Mandatory or Optional? Mandatory

16.7.5 The class Element
The class element is a mandatory element and is the child element of the task element. You
use the class element to specify the name of the Java class that runs the scheduled task.

Table 16-4 summarizes the properties of the class element.

Table 16-4    Properties of the class Element

Property Value

Parent Element task

Attributes None

Child Elements None

Number of Occurrences One

Element Value Name of the Java class that runs the scheduled task. See Developing
the Scheduled Task Class for information on developing a class for the
scheduled task.

Mandatory or Optional? Mandatory

16.7.6 The description Element
The description element is a mandatory element and is the child element of the task element.
You can use the description element to provide a description of the task being created.

Table 16-5 summarizes the properties of the description element.

Table 16-5    Properties of the description Element

Property Value

Parent Element task

Attributes None

Child Elements None

Number of Occurrences One

Element Value Description of the task being created

Mandatory or Optional? Mandatory

Chapter 16
Scheduled Task Configuration File

16-9



16.7.7 The retry Element
You can use the retry element to provide the number of seconds the scheduler must wait
before it tries to schedule the task again.

Table 16-6 summarizes the properties of the retry element.

Table 16-6    Properties of the retry Element

Property Value

Parent Element task

Attributes None

Child Elements None

Number of Occurrences One

Element Value Number of seconds the scheduler must wait before it tries to schedule
the task again

Mandatory or Optional? Mandatory

16.7.8 The parameters Element
If you want to specify parameters at run time that the scheduled task requires for a successful
job run, you must use the parameters element. For example, you might create a scheduled
task that requires the user to specify the number of records to be retrieved at run time.

The parameters specified within this element are displayed under the Parameters section on
the Create Job page.

Table 16-7 summarizes the properties of the parameters element.

Table 16-7    Properties of the parameters Element

Property Value

Parent Element task

Attributes None

Child Elements string-param, number-param, boolean-param

Number of Occurrences One

Element Value NA

Mandatory or Optional? Optional

16.7.9 The string-param Element
You can use the string-param element to specify the name of the field that can take a value of
the string data type. In other words, the string-param element specifies a label for the field that
can hold a value of the string data type.

Table 16-8 summarizes the properties of the string-param element.

Chapter 16
Scheduled Task Configuration File

16-10



Table 16-8    Properties of the string-param Element

Property Value

Parent Element parameters

Attributes required, helpText, encrypted

Child Elements None

Number of Occurrences One for every parameter of the string data type

Element Value Name of the string parameter

Mandatory or Optional? Optional

As listed in Table 16-8, the string-param element contains the following attributes:

• required

This is a mandatory attribute and it can take a value of either true or false.

If the value of the required attribute is true, it is mandatory to enter a value for the
parameter at run time.

If the value of the required attribute is false, it is not mandatory to enter a value for the
parameter at run time.

• helpText

Use this attribute to specify the text that must appear at run time to help users know what
to enter in the field. The text that is specified is usually the description of the field that is
being created by the parameter.

• encrypted

By default, it has a value of false and this can take a value of either true or false.

If the value of the encrypted attribute is true, then the entered value for the parameter at
run time is stored in encrypted form.

If the value of the required attribute is false, then the entered value for the parameter at
run time is stored in plain text.

16.7.10 The number-param Element
You can use the number-param element to specify the name of the field that can take a value
of the long data type.

Table 16-9 summarizes the properties of the number-param element.

Table 16-9    Properties of the number-param Element

Property Value

Parent Element parameters

Attributes required, helpText

Child Elements None

Number of Occurrences One for every parameter of the long data type

Element Value Name of field that can hold a long data type

Chapter 16
Scheduled Task Configuration File

16-11



Table 16-9    (Cont.) Properties of the number-param Element

Property Value

Mandatory or Optional? Optional

The behavior and description of the require and helpText attributes for the number-param and
string-param elements is the same. See The string-param Element for information about the
require and helpText attributes.

16.7.11 The boolean-param Element
You can use the boolean-param element to specify the name of the field that can take a value
of the boolean data type.

Table 16-10 summarizes the properties of the boolean-param element.

Table 16-10    Properties of the boolean-param Element

Property Value

Parent Element parameters

Attributes required, helpText

Child Elements None

Number of Occurrences One for every parameter of the boolean data type

Element Value Name of field that can hold a boolean data type

Mandatory or Optional? Optional

The behavior and description of the require and helpText attributes for the boolean-param
element and the string-param element is the same. See The string-param Element for
information about the require and helpText attributes.

16.8 Best Practices for Creating Custom Scheduled Tasks
Variables and/or constants are used for creating custom scheduled tasks.

Table 16-11 provides the guidelines for using variables/constants for creating custom
scheduled tasks:

Table 16-11    Variables and Constants for Creating Custom Scheduled Tasks

Type Example Stor/Retrieve Value From

Target system connection details Hostname, port number, SSL IT Resource/application instance

Target system configurations Attribute mappings, Unique Attribute, User
Object Class

Lookup

Scheduled job-specific variables/
constants

Application Instance Name, IT Resource
Name, File Path, Search Filter, Batch Size,
Retries

Scheduled job

Scheduled job advanced configuration
variables/constants

Attribute Mappings, Target system Date
Format, Constants, Attribute
Transformation Classes

Lookup

Chapter 16
Best Practices for Creating Custom Scheduled Tasks

16-12



Table 16-11    (Cont.) Variables and Constants for Creating Custom Scheduled Tasks

Type Example Stor/Retrieve Value From

Oracle Identity Manager-specific
system wide highly static
configuration properties/constants/
variables

Default Date Format, Default policy for
username generation

System properties

Email notifications Subject, Body, To, From Email templates

16.9 Using the isStop() Method
The isStopped() method is called to add a check for getting the jobs status.

When a job is stopped from the Scheduler section in Oracle Identity System Administration, the
job does not stop and keeps running. To stop the scheduled task, you can perform the
following:

If you have developed a custom scheduled task, then you can call the isStop() or isStopped()
method at various stages inside the execute method. If this method returns true, then return
from the execute method. If you have loops inside the execute method, then make sure that
the isStop() or isStopped() method is called for each loop iteration.

In the execute method, add a check for getting the job status. This can be obtained by calling
the isStopped() method of the com.thortech.xl.scheduler.tasks.SchedulerBaseTask class. If the
isStopped() method returns TRUE, then return from the execute method without performing
any execution for the scheduled task. The following is the code snippet for this:

if(isStopped())
     return;

If you develop a custom scheduled task by extending the TaskSupport class, then call the
isStop() method in the execute method.

If the custom scheduled task code is extending legacy
com.thortech.xl.scheduler.tasks.SchedulerBaseTask class of Oracle Identity Manager Release
9.x, then call the isStopped() method in the execute method.

16.10 Monitoring Scheduled Jobs Performance using DMS
Dynamic Monitoring Service (DMS) can be used to view performance metrics.

The OIM_ScheduledJob DMS metrics is present for monitoring the performance of scheduled
jobs. It provides details, such as number of scheduled jobs run and average time taken by
scheduled job. Details of the successful jobs come under the execute column while failed job
details come under the Failed_execute column.

Chapter 16
Using the isStop() Method

16-13



Part V
Custom Operations

Developing customized operations in Oracle Identity Manager includes developing plug-ins
and event handlers.

This part contains the following chapters:

• Developing Plug-ins

• Developing Event Handlers



17
Developing Plug-ins

A plug-in is a logical component that extends the functionality of features provided by Oracle
Identity Manager. The plug-in framework enables you to define, register, and configure plug-
ins, which extend the functionality provided by the features.
This chapter describes the concepts related to plug-in and how to develop and use a plug-in. It
contains the following topics:

• Plug-ins and Plug-in Points

• Using Plug-ins in Deployments

• Plug-in Points

• Configuring Plug-ins

• Developing Custom Plug-ins

• Registering Plug-ins

• Migrating Plug-ins

17.1 Plug-ins and Plug-in Points
There are specific points, called plug-in points, in the business logic where extensibility can be
provided with the help of plug-ins.

The concepts related to plug-ins are described in the following sections:

• About Plug-ins and Plug-in Points

• Plug-ins and Event Handlers

• Plug-in Stores

17.1.1 About Plug-ins and Plug-in Points
The plug-in framework enables you to define, register, and configure plug-ins, which extend the
functionality provided by features. Plug-ins can be predefined or custom-developed, and they
are utilized at plug-in points.

A plug-in is a logical component that extends the functionality of features provided by Oracle
Identity Manager. The plug-in framework enables you to define, register, and configure plug-
ins, which extend the functionality provided by features. Plug-ins can be predefined or custom-
developed, and they are utilized at plug-in points. A plug-in point is a specific point in the
business logic where extensibility can be provided. An interface definition called the plug-in
interface accompanies such a point. You can extend the plug-in interface based on the
business requirements and register them as plug-ins. To do this, you develop a Plugin Java
class and compile it before archiving in a JAR file, define plug-in metadata in an XML file, and
ZIP these artifacts as a plug-in package that is ready to deploy.

For example, user creation is a business operation in Oracle Identity Manager. But this
operation exposes a plug-in point for user name generation. If you want to model your custom
logic of user name generation, then you must identify the plug-in point specifications and
develop a plug-in accordingly.

17-1



17.1.2 Plug-ins and Event Handlers
Most of the business operations in Oracle Identity Manager, such as user creation, role
assignment to user, and user activation, are executed as orchestrations.

Therefore, if there is a requirement to induce any custom logic in these operations or
orchestrations, then you can model that logic as event handlers at stages, such as validation,
preprocess, and postprocess, in which customization is supported. However, you can analyze
if any such operation also exposes a plug-in point for inducing the custom logic. If a plug-in
point is available, then you can utilize the plug-in point rather than operating the underlying
orchestration. For example, you can implement username generation by using the exposed
plug-in without writing that as an event handler in the create user orchestration.

Figure 17-1 shows a diagrammatic representation of plug-ins and event handlers.

Figure 17-1    Plug-ins and Event Handlers

Validation

Pre Process

Action

Audit

Post Process

Finalization

Cancel

Compensation

Invalid

Underlying orchestration

containing event handlers

Business operations, for

example, create user

Plugin

point

Plugin

17.1.3 Plug-in Stores
The plug-in framework stores plug-ins in the plug-in stores.

This section describes plug-in stores and the types of stores. It contains the following sections:

• About Plug-in Stores

Chapter 17
Plug-ins and Plug-in Points

17-2



• The File Store

• The Database Store

17.1.3.1 About Plug-in Stores
The plug-in framework can store plug-ins in two types of stores:

• The File system. See The File Store for details.

• The Oracle Identity Manager database. See The Database Store for details.

When looking for plug-ins, the framework first examines plug-ins registered in the database,
and looks in the file system.

17.1.3.2 The File Store
The File Store consists of one or more directories on the Oracle Identity Manager host and is
primarily used in development environments. This type of store is not appropriate for a
production environment. File storage is convenient for the developer since there is no need to
explicitly register the developed plug-ins with a file store. Users can just drop in the plug-in zips
or exploded plug-in directory to the designated location(s).

By default, Plug-in framework looks for the plug-ins under the OIM_HOME/plugins directory.
Additional plug-in directories can also be specified.

If a monitoring thread is enabled, then the plug-in framework monitors all the additions,
modification, and deletions of plug-in zip files under the registered plug-in directories in the file
system, and automatically reloads the plug-ins. Plug-in metadata such as name, version, and
ID is read from the plug-in zip and is maintained in memory. This metadata is updated based
on any file changes. The latest plug-in zip file is considered to be the current version of the
plug-in. For details about how to configure the file store, see Configuring Plug-ins.

Note:

Oracle recommends not to use the file store in production. File store is more suitable
during plug-in development because it is easy to change the plug-in, and you are
required to change only the file in the file system. There is no need to register.
However, in production, plug-ins are not changed often, and therefore, avoid using
the file store because of certain disadvantages. It adds the overhead of file store
monitoring. In addition, the plug-ins are required to be replicated in all nodes of a
cluster for the clustered deployment of Oracle Identity Manager.

17.1.3.3 The Database Store
Plug-ins can be stored in the Oracle Identity Manager database, so that they are accessible
from any node in a cluster. The Plug-in Framework uses Operation DB as the database store.
This type of store is appropriate for a production environment.

You must explicitly register any plug-ins that are stored in the database. You can use the
Plugin Registration Utility, which is a command-line tool, to register and deregister plug-ins.
You can also use the registerPlugin API for this purpose. See Registering and Unregistering
Plug-ins By Using APIs for more information about registering plug-ins.

Chapter 17
Plug-ins and Plug-in Points

17-3



Note:

After registering a plug-in, the server must be restarted. However, restarting the
server might also depend on the feature that defines the plug-in point.

17.2 Using Plug-ins in Deployments
Plug-ins are used for customizing the default functionality in an Oracle Identity Manager
deployment.

The number of supported plug-in points is a defined and constrained set. Therefore, you can
use the plug-in points to extend the functionality only for the list of supported plug-in points.
See Plug-in Points for a list of the supported plug-in points.

17.3 Plug-in Points
Java interfaces act as plug-in points.

Table 17-1 lists the Java interfaces that act as plug-in points in Oracle Identity Manager:

Table 17-1    Plug-in Points

Plug-in Point Description

oracle.iam.ldapsync.LDAPContainerMapper This is used by LDAP synchronization to determine which user/role
container should be used to create the user/role in LDAP.

oracle.iam.platform.kernel.spi.EventHandler This is the kernel event handler. See Developing Event Handlers for
information about kernel event handlers.

Chapter 17
Using Plug-ins in Deployments

17-4



Table 17-1    (Cont.) Plug-in Points

Plug-in Point Description

oracle.iam.platform.auth.api.LoginMapper This is an implementation of a LoginMapper maps the JAAS user
principal name to the corresponding Oracle Identity Manager
username. This plug-in point is used to override the default mapping of
JAAS user principal name to Oracle Identity Manager username for
SSO scenarios. The default implementation returns the same value as
the JAAS user principal name.This plug-in point is typically used in
SSO scenarios where the JAAS user principal name and the Oracle
Identity Manager username might be different. For example, the SSO
system might set the email as the JAAS username but no user with
that username exist in Oracle Identity Manager. For Oracle Identity
Manager to recognize that user, the JAAS user principal name must
be mapped to the Oracle Identity Manager username. This can be
done by implementing a plug-in for LoginMapper, as shown:

public class CustomLoginMapper implements LoginMapper{
public String getOIMUserID(String jaasPrincipal) throws 
MappingException {
               return getUserName(jassPrincipal);
  }

private String getUserName(String emailID){
               String userName = null;

               //Use usermgmt APIs to get the username 
corresponding to this email id
               return userName;
 }
}

oracle.iam.identity.usermgmt.api.PasswordVerifier This is used for verification of old password while changing the user's
password. The class that is to be used for this validation is configured
in the OIM.OldPasswordValidator system property. By default, use the
container based authentication for verifying old password.

oracle.iam.request.plugins.StatusChangeEvent This allows running of custom code during request status change.

oracle.iam.request.plugins.RequestDataValidator This is used for custom validation of request data after submission.

oracle.iam.request.plugins.PrePopulationAdapter This is used to prepopulate an attribute value by running custom code
during request creation.

oracle.iam.scheduler.vo.TaskSupport This is used to run the job in context. Execute method of the task is
retrieved through the plug-in and is loaded.

oracle.iam.identity.usermgmt.api.UserNamePolicy This is an implementation of username policies that are used to
generate/validate username.

oracle.iam.identity.usermgmt.api.ReservationInLDA
P

This is an implementation for reservation of user attributes in LDAP.

17.4 Configuring Plug-ins
Use the oim-config.xml file in MDS to configure plug-ins.

You use the oim-config.xml file in the MDS to configure the following:

Chapter 17
Configuring Plug-ins

17-5



See Also:

Configuring the oim-config.xml File in Administering Oracle Identity Governance for
information about configuring the oim-config.xml file

• The directory or directories in which the files store will look for plug-ins.

• Whether to activate a thread that monitors the file store for any changes; the thread checks
the zip files or exploded files in all the plug-in directories.

The monitoring thread is typically activated in a dynamic development environment since
plug-ins are being added or modified in such an environment; it can be inactive in a
production system which contains a set of plug-ins . This is tracked by the
reloadingEnabled attribute.

• The time interval at which the monitoring thread wakes up and looks for any changes.

The following is a code snippet from the oim-config.xml file:

<pluginConfig storeType="common">
 
    <storeConfig reloadingEnabled="true"
 
      reloadingInterval="20">
 
      <!--
 
        Plugins present in the OIM_HOME/plugins directory are added by default.
 
        For adding more plugins, specify the plugin directory as below:
 
        <registeredDirs>/scratch/oimplugins</registeredDirs>
 
        <registeredDirs>/scratch/custom</registeredDirs>
 
      -->
 
    </storeConfig>
 
  </pluginConfig>

In this example:

• The common store designation tells the framework to monitor both database and file stores

Note:

Do not modify the Store value; common is appropriate in all environments.

• One directory is configured; additional directories can be configured by simply adding more
<registeredDirs> tags.

• The monitoring thread is active and looks for plug-in changes every 20 seconds by default.

Monitoring is typically active in development environments only. If you switch between
active and inactive, you must restart the application server for the change to take effect.

Chapter 17
Configuring Plug-ins

17-6



Note:

Restarting the application server is required for any changes made to plug-in
data in the oim-config.xml file.

17.5 Developing Custom Plug-ins
After configuring the plug-in XML file, you can develop and declare your plug-ins.

This section describes how to develop custom plug-ins. It contains the following topics:

• Developing Plug-ins

• Declaring Plug-ins

17.5.1 Developing Plug-ins
Developing plug-ins include identifying the plug-in point and Java class, configure the
plugin.xml file, identify the resource files required by the plug-in, and zipping the entire
package in the file store or database store.

To develop a plug-in:

1. Identify the plug-in point to extend.

2. Identify the Java class that implements the plug-in point interface. Package the Java class
and other dependent classes into a JAR file. Put the JAR file in the lib/ directory.

3. Create the plugin.xml file. See Declaring Plug-ins for details.

4. Identify the resource files required by the plug-in, such as property files, resource bundles,
and image files.

5. Zip the entire package.

An Oracle Identity Manager plug-in is distributed as a ZIP file with a specified directory
structure. The directory structure is as follows:

• The plugin.xml file: The XML file contains the metadata associated with all the plug-
ins such as the plug-in point it extends, the class implementing the plug-in, name, and
the version number. All the fields in the XML are mandatory except the name. If the
name is not given, then plugin class name is used as the name.

• The lib/ directory: The lib/ directory consists of JAR files that contains the classes
implementing the plug-in logic and the dependent library JAR files. In most instances,
this directory consists of a single JAR file with the implementation of all the plug-ins
that are specified in plugin.xml.

• The resources/ directory: Contains resource files required by the plug-in, such as
property files, resource bundles, and image files. These resources given in the
resources directory of the plug-in zip can be accessed as follows:

this.getClass().getClassLoader().getResourceAsStream(<resource_name>);
• The META-INF/ directory: Contains XML files showing plug-in points for event

handlers. Some services, such as the notification service, read the XML files from
MDS or from the META-INF/ directory of the plug-in.

Multiple plug-ins implementing the same plug-in point can be part of the same ZIP file.

Chapter 17
Developing Custom Plug-ins

17-7



A plug-in has a Java class that implements the plug-in point interface. The plug-in library
(JAR) can contain other dependent classes as well, but the class implementing the plug-in
is the only one that is exposed to the feature. This class must be specified in plugin.xml.

6. Place the ZIP file in the file store (the OIM_HOME/plugins/ directory) or database store.

7. If the ZIP is placed in the database store, then register the plug-in by using the Plug-in
Registration Utility, as described in Registering Plug-ins.

17.5.2 Declaring Plug-ins
To extend the functionality provided by Oracle Identity Manager, you can declare the plug-ins
for the application.

A plug-in has a Java class that implements the plug-in point interface. Be sure to assign unique
names to all the plug-ins associated with a specific plug-in point. If the plug-in names are non-
unique, an exception will be thrown during plug-in registration.

Declare the plug-ins in the plugin.xml file. For example:

<?xml version="1.0" encoding="UTF-8"?>
<oimplugins>
....
<plugins pluginpoint="oracle.iam.sample.passwdmgmt.service.PasswordElement">
        <plugin pluginclass=
        "oracle.iam.sample.passwdmgmt.custom.NumCustomPasswordElement" 
        version="1.0.1" name="num pwd element"/>
        <plugin pluginclass=
        "oracle.iam.sample.passwdmgmt.custom.DictionaryPasswordElement" 
        version="1.0.1" name="Dictionary password element" />        
</plugins>
....
</oimplugins>

Note:

You can have multiple versions of the plug-in stored and the feature can request a
specific version of the plug-in from the plug-in framework. By default, all of the current
plug-in points load the latest version of the plug-ins.

The XML shows two plug-in declarations. Both the plug-ins extend from the same plug-in point.

17.6 Registering Plug-ins
You can register the plug-ins by using APIs and Plugin Registration Utility.

This section describes how to register and unregister plug-ins by using APIs and Plugin
Registration Utility. It contains the following topics:

• Registering and Unregistering Plug-ins By Using APIs

• Registering and Unregistering Plug-ins By Using the Plugin Registration Utility

Chapter 17
Registering Plug-ins

17-8



17.6.1 Registering and Unregistering Plug-ins By Using APIs
You can use the PlatformService.registerPlugin and PlatformService.unRegisterPlugin
APIs for registration-related tasks.

Here is an example:

System.out.println("Creating client....");
String ctxFactory = "weblogic.jndi.WLInitialContextFactory";
String serverURL = "t3://OIM_HOSTNAME:OIM_PORT";
System.setProperty("java.security.auth.login.config", "OIM_CLIENT_HOME/conf/
authwl.conf");
String username = "USER_NAME";
char[] password = "PASSWORD".toCharArray();
Hashtable env = new Hashtable();
env.put(OIMClient.JAVA_NAMING_FACTORY_INITIAL,ctxFactory);
env.put(OIMClient.JAVA_NAMING_PROVIDER_URL, serverURL);

oimClient = new OIMClient(env);
System.out.println("Logging in");
oimClient.login(username, password);
PlatformService service = platform.getService(PlatformService.class);
File zipFile = new File(fileName);
FileInputStream fis = new FileInputStream(zipFile);
int size = (int) zipFile.length();
byte[] b = new byte[size];
int bytesRead = fis.read(b, 0, size);
while (bytesRead < size) {
bytesRead += fis.read(b, bytesRead, size - bytesRead);
}
fis.close();
service.registerPlugin(b);
service.unRegisterPlugin(pluginID, version);

Note:

Using OIMClient for information about using OIMClient for developing clients to
integrate with Oracle Identity Manager.

17.6.2 Registering and Unregistering Plug-ins By Using the Plugin
Registration Utility

Use the Plugin Registration Utility to register and unregister plug-ins.

This section describes how to register and unregister plug-ins by using the Plugin Registration
Utility. It contains the following topics:

• The Plugin Registration Utility

• Prerequisites of Using the Plugin Registration Utility

• Registering a Plug-in

• Unregistering a Plug-in

• Re-registering and Activating an Old Plug-in Version

Chapter 17
Registering Plug-ins

17-9



17.6.2.1 The Plugin Registration Utility
You can use the Plugin Registration Utility for registering and unregistering plug-ins. The utility
uses the following files:

• pluginregistration.xml

• ant.properties

These files are located in the OIM_HOME/plugin_utility/ directory.

Note:

Plug-in registration utilities require Apache Ant version 1.9.8 or later.

17.6.2.2 Prerequisites of Using the Plugin Registration Utility
Before using the utility, perform the following:

1. Ensure that the JAVA_HOME and ANT_HOME environment variable are set as shown
below:

Set JAVA_HOME to:

Linux:

setenv JAVA_HOME /home/Oracle/Java/jdk1.8.0_171

Window:

set JAVA_HOME=C:\Oracle\Java\jdk1.8.0_171

Set ANT_HOME to:

Linux:

setenv ANT_HOME $MW_HOME/oracle_common/modules/thirdparty/org.apache.ant/1.9.8.0.0/
apache-ant-1.9.8

Window:

set ANT_HOME=%MW_HOME%
\oracle_common\modules\thirdparty\org.apache.ant\1.9.8.0.0\apache-ant-1.9.8

2. Set the values for wls.home and oim.home in ant.properties.

For example:

wls.home =.../middleware/wlserver
oim.home =..../middleware/Oracle_IDM1/server

In addition, set the path for mw.home in the ant.properties file. Also, uncomment the
following:

#login.config=${oim.home}/config/authwl.conf

17.6.2.3 Registering a Plug-in
To register a plug-in:

Chapter 17
Registering Plug-ins

17-10



1. Execute the ant target "register":

ant -f  pluginregistration.xml register
2. This will prompt for the Oracle Identity Manager username and password along with the

server information and the location of the plugin zip file. Enter the complete path of the zip
file location.

17.6.2.4 Unregistering a Plug-in
To unregister a plug-in:

1. Execute the ant target "unregister":

ant -f  pluginregistration.xml unregister
2. This will prompt for the Oracle Identity Manager username and password along with the

server information and the classname of the plug-in class. Enter the classname with the
complete package.

17.6.2.5 Re-registering and Activating an Old Plug-in Version
To re-register and activate an older version of a plug-in:

1. Copy the old plug-in ZIP file in the OIM_HOME/plugins/ directory.

2. Execute the ant target "register":

ant -f  pluginregistration.xml register
3. This will prompt for the Oracle Identity Manager username and password along with the

server information and the location of the plug-in ZIP file. Enter the complete path of the
ZIP file.

A message is displayed stating that the plug-in is successfully re-registered.

17.7 Migrating Plug-ins
The Deployment Manager supports migrating plug-ins from one deployement of Oracle Identity
Manager to another.

For example, the event handlers can be implemented in a test environment, and then migrated
to the production environment by using the Deployment Manager. Figure 17-2 shows exporting
plug-ins via the Deployment Manager:

Chapter 17
Migrating Plug-ins

17-11



Figure 17-2    Exporting Plug-ins

See Also:

Migrating Incrementally Using the Deployment Manager in Administering Oracle
Identity Governance for information about the Deployment Manager

Chapter 17
Migrating Plug-ins

17-12



18
Developing Event Handlers

To extend the functionalities of Oracle Identity Manager, you can develop and register an event
handler, which is a piece of code, so that it is invoked at the relevant orchestration stage.
This chapter describes the concepts related to orchestration and how to write custom event
handlers to extend the functionalities of Oracle Identity Manager. It contains the following
topics:

• Orchestration Concepts

• Using Custom Event Handlers

• Orchestration Operations for Entities

• Developing Custom Event Handlers

• Sequencing the Execution of Event Handlers

• Writing Custom Validation Event Handlers

• Best Practices

• Migrating Event Handlers

• Troubleshooting Event Handlers

18.1 Orchestration Concepts
In an Identity Management system, any action performed by a user or system is called an
operation. Examples of operations are creating users, modifying roles, and creating password
policies. The process of any operation that goes through a predefined set of stages and
executes some business logic in each stage is called an orchestration.

The type of object that is changed by the orchestration is called an orchestration target. The
data that is required to carry out the orchestration operation is called orchestration parameter.

A bulk orchestration is the process of orchestrating same operation on multiple entities. For
example, if you want to update the organization of multiple users, then you can submit a bulk
orchestration. As a result, the operation on all the entities are performed in a single call.

Note:

If custom event handlers are required to be introduced for lock/unlock operations,
then you must implement bulk orchestrations. From the UI, bulk orchestrations are
triggered for a single user lock/unlock operation.

Orchestration is divided into predefined steps called stages. Every operation moves through
these stages until it reaches finalization. Orchestration has the following stages:

• Validation: Stage to perform validation on the orchestration, such as validity of
orchestration parameters. Orchestration parameter is the data that is required to carry out
the orchestration operation.

18-1



• Preprocess: Stage to perform orchestration parameter manipulations or get approvals or
perform Segregation of Duties (SoD) checks.

• Action: Stage in which the action takes place.

• Audit: Stage in which the auditing of operation is performed.

• Postprocess: Stage in which consequent operations related to the current operation takes
place. Examples of consequent operations are auto role membership and policy evaluation
on a user creation.

• Finalization: Last stage in the process to perform any clean up.

Each operation performed can have consequences for users or other entities. For example,
creating a user might result in provisioning of resources to that user, and creating a new
password policy can make certain user passwords invalid and require changes during next
login. Each consequence is represented as an orchestration. A differed consequence is
executed before the finalization of the current orchestration. An immediate consequence is
executed immediately after the current event handler returns, before proceeding to the next
event handler on the current orchestration. You can customize the consequences of some
operations, such as create, modify, delete, enable, disable, lock, and unlock users, by writing
event handlers, as described in subsequent sections.

There are orchestrations for which the starting point is the postprocess stage. If you are
reconciling users from a trusted source or bulk loading users and want to add this data as is in
Oracle Identity Manager. When the data is in Oracle Identity Manager, you can perform
postprocess operations on the users to compute autogroup membership or evaluate policies.
Therefore, reconciliation engine or bulk load utility submits postprocess-only orchestrations.

An event handler is a piece of code that is registered with an orchestration on various stages.
These event handlers are invoked when the relevant orchestration stage is performed. Event
handlers can either be asynchronous or synchronous. A synchronous event handler returns
with a response right away, whereas an asynchronous event handler completes at a later
stage. An event handler can be conditional, which means that the event handler is executed
when certain conditions are satisfied.

What happens at each stage of orchestration is determined by branching and by the event
handler, if any, that is deployed at that stage. If a stage has a branch, responses from the
event handlers decide which branch to take. If a stage has no event handlers, or event
handlers respond with no recommendation, then the operation follows the default path and
moves to the next stage. However, a process can move to some out-of-the-band stages if the
event handlers are invalid or canceled. These stages are:

• Invalid: Process is moved to this stage if orchestration validation fails.

• Veto: Process is moved to this stage if any of the preprocess event handlers are vetoed.
For example, if approvals are rejected by the approver, then orchestration is vetoed.

• Cancel: Process is moved to this stage if the operation is stopped by calling the cancel
method.

• Compensation: Process is moved to this stage if the operation is rolled back by calling the
compensate method.

Figure 18-1 shows the various orchestration stages:

Chapter 18
Orchestration Concepts

18-2



Figure 18-1    Orchestration Stages

Validation

Pre Process

Action

Audit

Post Process

Finalization

Cancel

Compensation

Invalid

Chapter 18
Orchestration Concepts

18-3



Note:

Dynamic Monitoring Service (DMS) can be used to view performance metrics. The
OIM_Orchestration DMS metric is present for monitoring orchestration performance.
It shows the orchestration operations executed and the time taken to perform an
orchestration operation.

18.2 Using Custom Event Handlers
Oracle Identity Manager allows you to implement Service Provider Interfaces (SPIs) to
customize the functionality of orchestration operations. Only customization of preprocess,
postprocess, validation, and finalization stages of an operation in an entity orchestration is
supported.

The following are examples of event handler implementation:

• When a user is created, the account status (enabled or disabled) is to be set based on
some rules. A preprocess event handler can be implemented to achieve this.

• Users of type Contractors must have an email address at the time of creation. Other users
can be created without email address. A validation event handler can be used to validate if
the user is a Contractor, and then allow or disallow the user creation based on the
validation result.

• Users of type Agents are to be notified in the user's alternate email address after the users
are created. This can be achieved by implementing a postprocess event handler.

Postprocess event handlers are most commonly implemented to meet business requirements.
The following example describes how a postprocess event handler implementation can meet
the given requirement:

Requirement:

If the enterprise user is a Contractor, then after the user is created in Oracle Identity Manager,
the user must be registered in the Contractor Registration System, which is an external
application. This application is a database application. The database has a structure that
stores the User ID, Contractor ID, First Name, and Last Name attributes of the users. After
successful registration, the Contractor ID of the users must be retrieved and updated in the
user's profile in Oracle Identity Manager.

Solution:

This use case can be developed as a plug-in and deployed on Oracle Identity Manager. The
plug-in can be used to retrieve the Contractor ID or any configured column name from
specified database table and update the user profile in Oracle Identity Manager.

A postprocess event handler can be implemented and registered for the create operation of the
user entity. It is a conditional event handler that executes for users only with type as
Contractor. If the user type is Contractor, then the event handler connects to the external
application to retrieve the Contractor ID based on the Oracle Identity Manager user ID, and
update the user profile in Oracle Identity Manager with contractor ID.

The following is another common example of postprocess implementation of event handlers:

Custom attribute generation if the data that is reconciled into Oracle Identity Manager is not
enough to implement all use cases and extra attributes need to be generated based on the

Chapter 18
Using Custom Event Handlers

18-4



reconciled data. This is a common use case, especially when the custom attributes are used in
the role membership rules or access policies.

18.3 Orchestration Operations for Entities
Orchestration operations are supported for the user, organization, role, role category, role user,
and role role entities.

Table 18-1 lists the orchestration operations supported for various entities.

Table 18-1    Orchestration Operations for Entities

Entity Orchestration operation

User CREATE

MODIFY

DELETE

DISABLE

ENABLE

LOCK

UNLOCK

CHANGE_PASSWORD

RESET_PASSWORD

ADD_PROXY

UPDATE_PROXY

REMOVE_PROXY

REMOVE_ALL_PROXIES

GET_ALL_PROXIES

SELFSETCHALLENGE

EVALUATE_POLICIES

Organization CREATE

MODIFY

ENABLE

DISABLE

DELETE

Role CREATE

MODIFY

MODIFY_RULE

DELETE

RoleCategory CREATE

MODIFY

DELETE

RoleUser CREATE

MODIFY

DELETE

RoleRole CREATE

MODIFY

DELETE

Chapter 18
Orchestration Operations for Entities

18-5



18.4 Developing Custom Event Handlers
Developing a custom event handler comprises of implementing the operation through Java
code, writing the XML definition, and creating and registering a plug-in.

The following sections provide information about developing custom event handlers:

• About Custom Event Handler Development

• Implementing the SPI and Creating a JAR

• Defining Custom Events Definition XML

• Creating and Registering a Plug-in ZIP

18.4.1 About Custom Event Handler Development
An event handler consists of Java code, XML definition, and plug-in definition.

In other words, the components of an event handlers are:

• Java code: Implementation of the operations

• XML definition: Association with the relevant orchestration at the right stage

• Plug-in definition: Registration of the event handlers and any extension code with Oracle
Identity Manager plug-in framework

Developing a custom event handler comprises of implementing the operation through Java
code, writing the XML definition, and creating and registering a plug-in.

18.4.2 Implementing the SPI and Creating a JAR
You write the JAVA code by implementing the SPI, and thereafter, create a JAR file.

This section describes how to write the JAVA code and create the JAR file. It contains the
following topics:

• Development Considerations

• Methods and Arguments

• Code Samples

• Creating a JAR File With Custom Event Handler Code

• SPIs to Write Custom Event Handlers

• Handling Exceptions

• Managing Transactions

18.4.2.1 Development Considerations
The following points must be considered for writing custom event handlers:

• The supported orchestration stages in which a custom event handler can be registered are
validation, preprocess, and postprocess.

• Validation, preprocess, and postprocess event handlers can be conditional. This means
that the event handler will execute only if a particular condition is met.

Chapter 18
Developing Custom Event Handlers

18-6



You can make the event handler conditional by implementing the
oracle.iam.platform.kernel.spi.ConditionalEventHandler interface and its isApplicable
method. Context data and orchestration parameters are available in this method. For
conditional event handlers, the applicability of event handlers is computed when the
operation is initiated. Therefore, if a context or orchestration parameters are modified
during the orchestration flow, then it might lead to execution of event handlers that must
not be executed.

• The event handlers can handle single as well as bulk entities.

• The event handlers can have associated failure handlers that callbacks certain operations
on the parent handlers.

• Because retry of event handlers is supported, the event handlers can be re-entrant.

• When reconciliation submits postprocess orchestrations, it submits bulk orchestrations.
The bulkExecute method on the event handlers is called for these orchestrations.
Therefore, make sure to implement this method.

• If data is to be passed between custom event handlers, you can pass it by using inter
event data. Calling the getInterEventData() method on orchestration returns a hashmap. In
this map, you can put any object with key beginning with custom, and you can access this
data in subsequent custom handlers. Do not modify or delete any predefined inter event
data that is part of the same hashmap.

• To make API calls inside event handlers for write or delete operations, get the API services
by using Platform.getServiceForEventHandlers method. API calls that are made using the
services obtained through this method are performed synchronously including the
postprocessing.

• Return type of event handlers, except validation handlers, are shown in the following table:

Event Handler Type On Success On Failure

Synchronous new EventResult() in the execute method and
new BulkEventResult() in bulk version of the
execute method

EventFailedException

Asynchronous Return null EventFailedException

• You must not define object-level variables at the event handler.

18.4.2.2 Methods and Arguments
Table 18-2 lists the methods that you can implement in the various orchestration stages:

Table 18-2    Methods to Implement Event Handlers

Method Applicable
Orchestration Stage

Description

initialize preprocess,
postprocess

This method is used to open connections and pool state or
resources.

execute for
single entity

preprocess,
postprocess

This method is used to read the input attributes of the
underlying operation and update to different values, if
required.

execute for bulk
orchestration

preprocess,
postprocess

This method is used to read the input attributes of multiple
underlying operations and update to different values, if
required.

Chapter 18
Developing Custom Event Handlers

18-7



Table 18-2    (Cont.) Methods to Implement Event Handlers

Method Applicable
Orchestration Stage

Description

isApplicable conditional This method is used in conditional handlers to determine if
the prerequisite condition for the event handler execution is
met.

validate validation This method is used for validation handlers to validate input
data.

cancel preprocess,
postprocess

This method is called when the orchestration operation is
canceled.

compensate preprocess,
postprocess

This method is called when the orchestration operation is
compensated.

For methods, such as execute, the following argument values are available:

• IDs that you can include in the code for troubleshooting purpose, which includes:

– Process ID: The ID of the orchestration instance

– Event ID: The ID of the event handler instance

• Orchestration object that consists of details of the underlying entity instance. This consists
of:

– Maps (key value pairs) containing ENTITY_ATTRIBUTE, VALUE from which the input
attributes of the underlying entity is read.

– Entity ID: To update back the values for the same or a different entity, use Entity
Manager API and pass the Entity ID and data to it. For bulk orchestration, you get
multiple Entity IDs and Maps.

Note:

Use Platform.getServiceForEventHandlers to get the services for calling
create, update, and delete operations in event handlers.

18.4.2.3 Code Samples
This section provides the following code samples that illustrate how to write various kinds of
event handlers:

• Example 1: Custom Email Validation

• Example 2: Custom Preprocess Event Handler to Set Middle Name

• Example 3: Custom Post-process Event Handler to Provision Resource Object

• Example 4: Custom User Postprocess Event Handler With bulkExecute Method

• Example 5: Using Context in isApplicable method

Chapter 18
Developing Custom Event Handlers

18-8



18.4.2.3.1 Example 1: Custom Email Validation

The following example shows a sample custom validation handler code fragment that checks
to ensure that the ampersand character (@) is used in the email id of the user.

public void validate(long processId, long eventId, Orchestration orchestration) throws 
ValidationException, ValidationFailedException {
    HashMap<String, Serializable> parameters = orchestration.getParameters();
    String email = (parameters.get("Email") instanceof ContextAware) ? (String) ((ContextAware) 
parameters
                .get("Email")).getObjectValue() : (String) parameters
                .get("Email");
        if (!(email.contains("@"))) {
             throw new ValidationFailedException("Email doesn't contain @");
         }
    }

18.4.2.3.2 Example 2: Custom Preprocess Event Handler to Set Middle Name

The following example shows a sample custom preprocess event handler code fragment that
sets the middle name to the first letter of the first name if the a value is not provided for middle
name.

// the middle initial when the user doesn't have a middle name
    public EventResult execute(long processId, long eventId,
            Orchestration orchestration) {
        HashMap<String, Serializable> parameters = orchestration
                .getParameters();
        // If the middle name is empty set the first letter of the first name
        // as the middle initial
        String middleName = getParamaterValue(parameters, "Middle Name");
        if ((middleName == null) || middleName.equals("")) {
            String firstName = getParamaterValue(parameters, "First Name");
            middleName = firstName.substring(0, 1);
            orchestration.addParameter("Middle Name", middleName);
        }
        return new EventResult();
    }
 
    private String getParamaterValue(HashMap<String, Serializable> parameters,
            String key) {
            if(parameters.containsKey(key)){
            String value = (parameters.get(key) instanceof ContextAware) ? (String) ((ContextAware) 
parameters
                .get(key)).getObjectValue() : (String) parameters.get(key);
            return value;
            }
            else{
                return null;
            }
    }

18.4.2.3.3 Example 3: Custom Post-process Event Handler to Provision Resource Object

The following example shows a sample custom post process event handler code fragment that
provisions a resource object OBJ005 to a user whose role is ROLE 005:

Chapter 18
Developing Custom Event Handlers

18-9



// This custom post process event handler provisions resource object 'OBJ005' 
// to a user who has role 'ROLE 005'
public EventResult execute(long processId, long eventId, 
  Orchestration orchestration) {
    tcUserOperationsIntf userOperationsService =   
    Platform.getService(tcUserOperationsIntf.class);
try {
  String userKey = getUserKey(processId, orchestration);
  if (hasRole(userKey, "ROLE 005")) {
     long objKey = findObject("OBJ001");
userOperationsService.provisionResource(Long.getLong(userKey), objKey);
}
} catch (Exception e) {
throw new EventFailedException(null, "Error occurred", null, null, e);
}
 
return new EventResult();
}
 
// This method retrieves the key of the user entity on which an operation 
// is performed
// This method shows how to retrieve the operation being performed, entity type
// and the associated value objects 
private String getUserKey (long processID, Orchestration orchestration) {
  String userKey;
  String entityType = orchestration.getTarget().getType();
  EventResult result = new EventResult();
 
if (!orchestration.getOperation().equals("CREATE")) {
userKey = orchestration.getTarget().getEntityId();
} else {
OrchestrationEngine orchEngine = Platform.getService(OrchestrationEngine.class);
userKey = (String) orchEngine.getActionResult(processID);
}
return userKey;
}
 
// This method checks if a given user has a given role. 
// It demonstrates how to invoke a OIM 11g API from a custom event handler
private boolean hasRole(String userKey, String roleName) 
  throws Exception {
  RoleManager roleManager = Platform.getService(RoleManager.class);
  List<Role> roles = roleManager.getUserMemberships(userKey, true);
 
  for (Iterator iterator = roles.iterator(); iterator.hasNext();) {
Role role = (Role) iterator.next();
if (roleName.equals((String)role.getAttribute("Role Name"))) {
return true;
}
 
}
return false;
}
 
// This method finds details about a resource object with the given name. 
// It demonstrates how to invoke a 9.1.x API from a custom event handler
private long findObject(String objName) throws Exception {
  long objKey = 0;
  tcObjectOperationsIntf objectOperationsService =  
  Platform.getService(tcObjectOperationsIntf.class);
HashMap params = new HashMap();
params.put("Objects.Name", objName);

Chapter 18
Developing Custom Event Handlers

18-10



tcResultSet objects = objectOperationsService.findObjects(params);
for (int i = 0; i < objects.getRowCount(); i++) {
  objects.goToRow(i);
  if (objects.getStringValue("Objects.Name").equals(objName)) {
  objKey = objects.getLongValue("Objects.Key");
}
}
 return objKey;
}

18.4.2.3.4 Example 4: Custom User Postprocess Event Handler With bulkExecute Method
The following example shows how to loop through users that are part of a bulk user create
orchestration.

public BulkEventResult execute(long processId, long eventId, BulkOrchestration 
orchestration){
 
HashMap<String, Serializable>[] orchParamArray = orchestration.getBulkParameters();
        
       // Array of user keys
        String [] entityIds = orchestration.getTarget().getAllEntityId();
        for(int i=0; i< entityIds.length; i++){
        }       
 
}

18.4.2.3.5 Example 5: Using Context in isApplicable method
Any operation in Oracle Identity Manager can take place in more than one context. For
example, creating a user can happen in four different contexts, which are administrator
creating a user as a direct operation, administrator creating a user by raising a request,
creating a user through self registration, and user creation through trusted source
reconciliation. In all these scenarios, Oracle Identity Manager submits the same user creation
orchestrations having the same parameter names and values with same data types.

The following example shows how to find the context in which this operation is performed to
figure out the applicability of the event handler.

public boolean isApplicable(AbstractGenericOrchestration orchestration) {    // Request 
Context
    if (ContextManager.getContextType() == ContextTypes.REQUEST) {
    }
    // Recon context
    if (ContextManager.getContextType() == ContextTypes.RECON) {
    }
 
 
}

18.4.2.4 Creating a JAR File With Custom Event Handler Code
To create a JAR with custom event handler code:

1. Implement one of the SPIs mentioned in SPIs to Write Custom Event Handlers to write a
custom preprocess, postprocess, or validation handler.

2. Include the following JAR files in the class path to compile a custom class:

From the OIM_ORACLE_HOME/server/platform/ directory:

• iam-platform-kernel.jar

Chapter 18
Developing Custom Event Handlers

18-11



• iam-platform-utils.jar

• iam-platform-context.jar

• iam-plaftorm-authz-service.jar

From the OIM_ORACLE_HOME/designconsole/lib/ directory:

• oimclient.jar

• xlAPI.jar

If some other Oracle Identity Manager JAR files are required for compilation, then these
can be found in the directories mentioned in this step.

3. Create a JAR file of the custom class.

18.4.2.5 SPIs to Write Custom Event Handlers
Table 18-3 lists the SPIs to write a custom preprocess, postprocess, or validation handler.

Table 18-3    SPIs to Write Custom Event Handlers

Stage SPI to implement

Preprocess oracle.iam.platform.kernel.spi.PreProcessHandler

Postprocess oracle.iam.platform.kernel.spi.PostProcessHandler

Validation oracle.iam.platform.kernel.spi.ValidationHandler

Finalization oracle.iam.platform.kernel.spi.FinalizationHandler

See Also:

See Java API Reference for Oracle Identity Governance for information about the
SPIs listed in Table 18-3

18.4.2.6 Handling Exceptions
For event handler exception handling, you must use conventional JAVA exception handling
methods. The following guidelines can be used for dealing with failures:

• In the event handler code, throw EventFailedException with the right arguments to indicate
failure.

• Failures can be handled by registering failure handlers. As part of failure handler, you can
implement necessary logic to remediate the failure. The failure handlers must return
FailedEventResult with the following options as Response:

– CANCEL: Indicates that operation must get canceled. The Cancel method on all event
handlers that are executed and completed so far is called by Kernel in reverse order of
execution.

– COMPENSATE: Indicates that operation must get rolled back. The Compensate
method on all event handlers that are executed and completed so far is called by
Kernel in reverse order of execution.

– MANUAL_COMPLETE: Indicates that the handler that failed is manually completed
and will proceed with the rest of the event handlers.

Chapter 18
Developing Custom Event Handlers

18-12

https://docs.oracle.com/middleware/12213/oig/OMJAV/index.html


– RETRY: Indicates to kernel that the event handler that failed must be retried.

– NULL: Indicates that there is no response or recommendation by the failed handler.

18.4.2.7 Managing Transactions
In the event handler XML file, set the tx attribute to true. If any exception is thrown in the event
handler, then the transaction will be rolled back or committed.

18.4.3 Defining Custom Events Definition XML
Use the elements of the event handler XML file to create a metadata XML file containing
definitions of the custom events.

The custom events definition XML is described in the following sections:

• Elements in the Event Handler XML Files

• Sample Event Definitions

18.4.3.1 Elements in the Event Handler XML Files
This section describes some of the elements and element attributes within Event Handlers
XML files. It also describes a mandatory namespace for the event handler XML definitions. It
contains the following topics:

• Elements

• Element Attributes

• Namespace Requirement in <eventhandlers> Element

18.4.3.1.1 Elements
The top-level (or parent) element in Event Handlers XML files is eventhandlers. Table 18-4
lists and describes sub-elements that are typically defined within the eventhandlers parent
element.

Table 18-4    Typical Sub-elements within the eventhandlers Element

Sub-element Description

validation-handler Identifies the validations that will be performed on the orchestration.

action-handler Identifies the operations that will be performed at preprocess,
postprocess, and action stages.

failed-handler Identifies the event handlers that will be executed if an event handler in
the default flow fails.

finalization-handler Identifies the event handlers to execute at the end of the orchestration.
Finalization is the last stage of any orchestration.

change-failed Identifies event handlers to be executed in parent orchestration upon
consequence orchestration failures.

out-of-band-handler Defines the event handlers for out-of-band orchestration flows, such as
veto and cancel.

compensate-handler Identifies the event handlers that will be executed in the compensation
flow of the orchestration.

Chapter 18
Developing Custom Event Handlers

18-13



18.4.3.1.2 Element Attributes

The elements within event handlers XML files contain attributes. Table 18-5 lists and describes
attributes that are typically defined within elements.

Table 18-5    Typical Attributes of Sub-elements within the eventhandlers Element

Element Attribute Description

Name The name of the event handler.

class Full package name of the Java class that implements the event handler.

entity-type Identifies the type of entity the event handler is executed on. A value of ANY
sets the event handler to execute on any entity. Most commonly defined entity
types are user, role, rolerole (role hierarchy), and roleuser (user role
membership).

operation Identifies the type of operation the event handler is executed on. A value of ANY
sets the event handler to execute on any operation. Typical operations are
create, modify, and delete.

order Identifies the order (or sequence) in which the event handler is executed. Order
value is in the scope of entity, operation, and stage. Order value for each event
handler in this scope must be unique. If there is a conflict, then the order in
which these conflicted event handlers are executed is arbitrary.

Supported values are FIRST (same as Integer.MIN_VALUE), LAST (same as
Integer.MAX_VALUE), or a numeral.

orch-target Identifies the type of orchestration, such as entity orchestration, Toplink
orchestration, and so on. The following is a list of supported values:

• oracle.iam.platform.kernel.vo.EntityOrchestration
• oracle.iam.platform.kernel.vo.MDSOrchestration
• oracle.iam.platform.kernel.vo.RelationOrchestration
• oracle.iam.platform.kernel.vo.ToplinkOrchestration
The default value is
oracle.iam.platform.kernel.vo.EntityOrchestration. This is the
only supported type for writing custom event handlers.

sync This attribute is operational in only the action-handler and change-failed
elements. The sync attribute indicates whether the event handler is
synchronous or asynchronous. Supported values are TRUE or FALSE. If set to
TRUE (synchronous), then the kernel expects the event handler to return an
EventResult. If set to FALSE (asynchronous), then you must return null as the
event result and notify the kernel about the event result later.

Note: The sync attribute must be set to TRUE for validation-handler elements.

stage This attribute is operational in only the out-of-band-handler, action-handler, and
failed-handler elements. The stage attribute indicates the stage at which the
event handler is executed. The following is a list of supported values:

• preprocess
• action
• audit
• postprocess
• veto
• canceled

Chapter 18
Developing Custom Event Handlers

18-14



Table 18-5    (Cont.) Typical Attributes of Sub-elements within the eventhandlers Element

Element Attribute Description

tx This attribute is operational in only the out-of-band-handler, action-handler,
compensate-handler, and finalization-handler elements. The tx attribute
indicates whether or not the event handler should run in its own transaction.
Supported values are TRUE or FALSE. By default, the value is FALSE.

18.4.3.1.3 Namespace Requirement in <eventhandlers> Element

All the event handler definitions must have the following mandatory namespace definition:

<eventhandlers xmlns="http://www.oracle.com/schema/oim/platform/kernel"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://www.oracle.com/schema/oim/platform/kernel
  orchestration-handlers.xsd">

18.4.3.2 Sample Event Definitions
Create a metadata XML file containing definitions of all the custom events, as shown in the
following example:

<?xml version='1.0' encoding='utf-8'?>
    <eventhandlers xmlns="http://www.oracle.com/schema/oim/platform/kernel"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xsi:schemaLocation="http://www.oracle.com/schema/oim/platform/kernel
      orchestration-handlers.xsd">
 
  <!-- Custom preprocess event handlers -->
  <action-handler
    class="oracle.oim.extensions.preprocess.SamplePreprocessExtension"
    entity-type="User" 
    operation="CREATE" 
    name="SetUserMiddleName"
    stage="preprocess"
    order="1000" 
    sync="TRUE"/>
 
  <!-- Custom postprocess event handlers -->
  <action-handler
    class="oracle.oim.extensions.postprocess.SamplePostprocessExtension"
    entity-type="User" 
    operation="CREATE" 
    name="SamplePostprocessExtension"
    stage="postprocess"
    order="1000" 
    sync="TRUE"/>
 
  <action-handler
    class="oracle.oim.extensions.postprocess.SamplePostprocessExtension"
    entity-type="User" 
    operation="MODIFY" 
    name="CustomResourceProv"
    stage="postprocess"
    order="1000" 
    sync="TRUE"/>
 

Chapter 18
Developing Custom Event Handlers

18-15



  <!-- Custom validation event handlers -->
   <validation-handler
    class="oracle.oim.extensions.validation.SampleValidationExtension"
    entity-type="User" 
    operation="CREATE" 
    name="ValidateUserEmail"
    order="1000"/>        
</eventhandlers>

18.4.4 Creating and Registering a Plug-in ZIP
To create plug-ins containing custom event handlers, you need to develop the appropriate
event handler classes.

See Developing Plug-ins for detailed information about plug-ins and plug-in points.

To create a plug-in ZIP and register it:

1. Define the plug-in XML with the event handler plug-in point.

Note:

Ensure that plug-in point used in the plug-in definition is set to
oracle.iam.platform.kernel.spi.EventHandler.

The following is an example of a plug-in XML file:

<?xml version="1.0" encoding="UTF-8"?>
<oimplugins>
  <plugins pluginpoint="oracle.iam.platform.kernel.spi.EventHandler">
    <plugin pluginclass=  
       "oracle.oim.extensions.preprocess.SamplePreprocessExtension" 
        version="1.0" 
        name="SamplePreprocessExtension">
    </plugin>
    <plugin pluginclass= 
        "oracle.oim.extensions.postprocess.SamplePostprocessExtension"
         version="1.0" 
         name="SamplePostprocessExtension">
    </plugin>
    <plugin pluginclass= 
       "oracle.oim.extensions.validation.SampleValidationExtension"
        version="1.0" 
        name="SampleValidationExtension">
    </plugin>
  </plugins>
</oimplugins>

2. Package the plug-in XML and the JAR file that contains the custom class or classes into a
plug-in ZIP file.

3. Package the event handler XML that is defined using the information described in Defining
Custom Events Definition XML into the same zip in a directory called META-INF.

4. Register the plug-in by using plug-in registration utilities. See Registering Plug-ins for
additional information.

Chapter 18
Developing Custom Event Handlers

18-16



18.5 Sequencing the Execution of Event Handlers
The list of custom event handlers that you deployed and registered can be viewed by using
Oracle Enterprise Manager. The event handlers are displayed in the order of invocation. Using
this list of event handlers, you can sequence the order of execution of the event handlers.

To specify the order for any custom event handler, you must know the list of existing event
handlers and their order for a given operation. To do so, you must invoke a mbean from the
Enterprise Manager by performing the following steps:

1. Login to the Enterprise Manager.

2. On the left navigation pane, expand Weblogic Domain, and select OIM DOMAIN.

3. Right-click the domain name, and select System Mbean Browser.

4. Under Application Defined Mbeans, expand oracle.iam.

5. Navigate to OIM_SERVER_NAME, oim, Kernel, and then click OrchestrationEngine.

6. Click the Operations tab.

7. Click the findEventHandlers method.

8. Provide entity name and operation name, and then click Invoke. The parameter values are
case-sensitive. The possible parameter values are:

• entity name: Values can be User, Role, or RoleUser

• operation: Values can be CREATE, MODIFY, or DELETE

18.6 Writing Custom Validation Event Handlers
An approver can update the attribute values before approving a request. To ensure sanitization
of the data entered by the approver, Oracle Identity Manager invokes validation handlers again
when approver updates the request.

This means that validation handlers configured for a particular entity and operations are
invoked multiple times in a single request flow, when the request is submitted and when the
approver modifies the request during approval workflow.

For example, when a self-registration request is submitted, the set of validation handlers
configured for USER CREATE is run. Next, when the approver modifies the request to
populate Organization or other user attributes, these validation handlers are re-run.

Therefore, custom validation handlers must be developed in such a way that the validation
logic is re-entrant because they are invoked multiple times in single request flow.

Note:

You can add a custom password validation for cases that are not available through
Oracle Identity Manager password policies. For example, you can add a password
validation to ensure that the password is not a word in a dictionary.

To add a custom password validation, add a custom validation event handler and set
the operation to CHANGEACCOUNTPASSWORD for the event handler. Then, you
can organize the order in which Oracle Identity Manager triggers the custom event
handler.

Chapter 18
Sequencing the Execution of Event Handlers

18-17



Consider the following example use case:

There is a requirement of generating the HR Employee Number UDF by appending a random
number to the value of the Department Number field. When the create user request or self-
registration request is submitted, the HR Employee Number UDF will be auto-generated based
on custom logic. If the approver edits the request during approval and modifies the Department
Number value, then the HR Employee Number UDF should be re-calculated by using the new
value provided for Department Number. But, if the approver does not change Department
Number, then the previous values generated at the time of request submission should be used.

For this, a new validation handler must be developed for generating the HR Employee Number
UDF by appending Department Number and a random number. This logic cannot be written in
preprocess handler because preprocess handlers are invoked only once in the lifecycle of a
request. The logic in this validation handler is as shown:

package custom.handlers;
 
import java.io.Serializable;
import java.util.HashMap;
import java.util.Random;
 
import oracle.iam.identity.usermgmt.api.UserManagerConstants;
import oracle.iam.identity.utils.Utils;
import oracle.iam.platform.kernel.ValidationException;
import oracle.iam.platform.kernel.ValidationFailedException;
import oracle.iam.platform.kernel.spi.ValidationHandler;
import oracle.iam.platform.kernel.vo.BulkOrchestration;
import oracle.iam.platform.kernel.vo.Orchestration;
 
public class EmployeeNumberGenerationHandler implements ValidationHandler {
 
@Override
public void initialize(HashMap<String, String> parameters) {
 
}
 
@Override
public void validate(long processId, long eventId, Orchestration orchestration) throws 
ValidationException, ValidationFailedException {
 
HashMap<String, Serializable> contextParams = orchestration.getParameters();
//1. Generate UDF Employee number during request submission as Department Number and a 
random number
//2. If request is in approval stage, then control has come here since approver has 
modified the request
//2a: Check if approver has modified Department Number. If yes, then re-generate
if( !Utils.isRequestInApprovalStage()) //Utility method to find if request is in 
approval stage or not? If it returns true, it means that approver is attempting to 
update the request during approval
{
 
//Step 1:
String dept = 
contextParams.get(UserManagerConstants.AttributeName.DEPARTMENT_NUMBER.getId()).toString(
);
String en = dept+"_"+random();
contextParams.put("SSN", en);
 
}
else
{
String dept = 

Chapter 18
Writing Custom Validation Event Handlers

18-18



contextParams.get(UserManagerConstants.AttributeName.DEPARTMENT_NUMBER.getId()).toString(
);
//compare with department number with which request was submitted, if modified by 
approver; the regenerate SSN
if( Utils.isAttributeModifiedByApprover(orchestration , 
UserManagerConstants.AttributeName.DEPARTMENT_NUMBER.getId()) )
 
// //Utility method to find if approver has edited the particular attribute or not , 
during approval?
{
String en = dept+"_"+random();
contextParams.put("SSN", en);
}
 
}
 
}
 
private String random() {
Random random = new Random();
String randomStr = "" + random.nextLong();
randomStr = randomStr.replaceAll("-", "");
return randomStr;
}
 
 
@Override
public void validate(long processId, long eventId,
BulkOrchestration orchestration) throws ValidationException,
ValidationFailedException {
 
}
 
}

18.7 Best Practices
As a best practice, analyze the operation before developing and implementing an event
handler.

If plug-in is supported for the operation, then use the plug-in for customization rather than
developing an event handler. For example, username generation must be implemented by
using the available plug-in, and do not attempt writing that as an event handler in the create
user orchestration.

For information about points to consider for developing event handlers, see Development
Considerations.

18.8 Migrating Event Handlers
The Deployment Manager supports migrating plug-ins, and the registered event handlers with
the plug-ins, from one deployment of Oracle Identity Manager to another.

To migrate event handlers from one deployment to another, you can export the event handlers
in one deployment and then import them in another deployment by using the Deployment
Manager. See Migrating Incrementally Using the Deployment Manager in Administering Oracle
Identity Governance for information exporting and importing migration artifacts by using the
Deployment Manager.

Chapter 18
Best Practices

18-19



The Deployment Manager supports exporting and importing of default event handlers and
custom event handlers. The following table lists the entities to be selected in the Deployment
Manager for default and custom event handlers.

Event Handler Type Deployment Manager Entity Selection

Default event handler Orchestration event handler

Custom event handler Plug-in

Note:

In addition to custom event handlers, custom
scheduled tasks and custom notification resolvers
are also migrated as part of plug-ins. Therefore,
you must select the plug-in with the custom event
handler while exporting and importing.

The Deployment Manager supports migrating plug-ins, and the registered event handlers with
the plug-ins, from one deployment of Oracle Identity Manager to another. See Registering
Plug-insfor information about registering and unregistering plug-ins by using the plug-in
registration utility.

Figure 18-2 shows exporting plug-ins via the Deployment Manager:

Figure 18-2    Exporting Plug-ins

The exported plug-in is complete in itself and contains both the definition and the
implementation. Therefore, you do not need to import/export the corresponding definition using
other Deployment Manager entities, such as orchestration event handler in case of custom
event handlers.

18.9 Troubleshooting Event Handlers
Troubleshoot your event handler if it is not triggered when the operation is executed

Chapter 18
Troubleshooting Event Handlers

18-20



Table 18-6 lists common problems and causes or solutions related to event handlers.

Table 18-6    Troubleshooting Event Handlers

Problem Cause/Solution

When a user is created through
reconciliation, the custom preprocess
event handlers are not triggered.

Reconciliation submits postprocess only orchestration
where starting stage is postprocess.

When a user is created through
reconciliation, the custom postprocess
event handler is triggered but the logic
inside the execute method is not triggered.

Reconciliation submits bulk orchestrations. Therefore, make
sure to implement the bulkExecute method.

The orchestration operation taking too
long to complete.

To determine the time spent on each event handler:

1. Connect to http://OIM_HOST:OIM_PORT/dms/Spy as
the WebLogic administrator.

2. In the Metric Tables, click
OIM_EntityType_ENTITY_NAME, for example,
OIM_EntityType_User for the user entity. How long
each event handler is taking is displayed in the execute/
bulkExecute column for orchestration/bulkOrchestration
respectively.

Chapter 18
Troubleshooting Event Handlers

18-21



Part VI
Customization

Major customization can be achieved by customizing the user interfaces available with Oracle
Identity Manager.

This part contains the following chapter:

• Customizing the Interface

• Using URLs

Using URLs

Oracle Identity Self Service exposes direct URLs that can be embedded as links into other web
application pages.

Other web applications may need to redirect end users and administrators to the Oracle
Identity Self Service task flows for their Identity Self Service and Identity Administration
requirements.

For the task flows listed in Table 7, Oracle Identity Self Service exposes direct URLs that can
be embedded as links into other web application pages.

Table 7    Task Flows and Direct URLs

Task Flow Title Direct URL (relative to https://
OIMHOST:PORT)

Description

Home /identity/faces/home?tf=home Displays the Home page task
flows.

My Information /identity/faces/home?
tf=my_information

Displays User Profile, Change
Password, Challenge Questions,
Proxies, and Direct Reports.

My Access Roles /identity/faces/home?
tf=my_access_roles

Displays enterprise role
memberships with Request Roles
action.

My Access Admin Roles /identity/faces/home?
tf=my_access_admin_roles

Displays admin role
memberships.

My Access Accounts /identity/faces/home?
tf=my_access_accounts

Displays assigned accounts with
Request Accounts action.

My Access Entitlements /identity/faces/home?
tf=my_access_entitlements

Displays assigned entitlements
with Request Entitlements action.

Approval Details /identity/faces/home?
tf=approval_details

Displays pending approval tasks.

Request Details /identity/faces/home?
tf=request_details&requestId=<R
equest Id>

Request ID is mandatory. This is
the ID generated on submission
of a request.

Organizations /identity/faces/home?
tf=organizations

Displays the Organization search
page.

Roles /identity/faces/home?tf=roles Displays the Role search page.



Table 7    (Cont.) Task Flows and Direct URLs

Task Flow Title Direct URL (relative to https://
OIMHOST:PORT)

Description

Role Categories /identity/faces/home?
tf=role_categories

Displays the Role Categories
search page.

Manage Users /identity/faces/home?tf=search-
users

Displays the User search page.



19
Customizing the Interface

You can customize various aspects of the user interfaces available in Oracle Identity Manager.
This chapter describes how to customize the UI. It contains the following topics:

Note:

This release of Oracle Identity Manager includes a number of UI pages based on
earlier UI technologies known as transitional UIs. Due to technical differences, the
transitional UIs are displayed in popup windows and have a different look and feel.
These UIs are discussed in the relevant sections in this chapter.

• Managing Sandboxes

• Skin Customization in Oracle Identity Governance

• Customizing Pages at Runtime

• Securing a Task Flow Region Using EL Expressions

• Customizing Oracle Identity Governance Help

• Customizing the Home Page

• Developing Managed Beans and Task Flows

• Configuring Additional Request Form

• Migrating UI Customizations

• UI Customization Best Practices

19.1 Managing Sandboxes
All customizations and form management are performed in a sandbox.

This section describes the concepts related to sandbox and how to manage sandboxes. It
contains the following topics:

• Understanding Sandbox Operations

• Handling Concurrency Conflicts

• Creating a Sandbox

• Activating a Sandbox

• Deactivating a Sandbox

• Viewing and Modifying Sandbox Details

• Exporting a Sandbox

• Importing a Sandbox

• Publishing a Sandbox

19-1



• Deleting a Sandbox

• Reverting Changes

19.1.1 Understanding Sandbox Operations
A sandbox allows you to isolate and experiment with customizations without affecting the
environment of other users.

Any user-interface changes made to a sandbox are visible only in the sandbox. You must
create and activate a sandbox to begin using the customization and form management
features. After customizations and extending forms are complete, you can publish the sandbox
to make the customizations available to other users.

Some of the sandbox operations are:

• Activate: You must activate a sandbox to use it. After you activate the sandbox, any
changes to UI metadata objects, for example pages and forms, are stored only in the
sandbox. There can be only one active sandbox at a time. The information about the active
sandbox is stored in the session. Therefore, a sandbox must be activated to continue with
customization after every login to Oracle Identity Manager.

• Deactivate: Reverse operation to activating a sandbox. If no sandbox is active, then
changes to metadata objects are not allowed, and therefore, no UI customization is
allowed.

• Publish: You must publish a sandbox to merge the changes stored in the sandbox to the
mainline and make it available to other users. After you publish the sandbox, the changes
are merged to the mainline and cannot be reverted. The sandbox can no longer be
activated, deactivated, exported, or deleted.

Note:

Before publishing a sandbox, export the sandbox to a ZIP file to have a backup
of UI customizations done.

Oracle recommends creating a backup of the MDS before publishing any
sandbox. MDS backup can be created by using tools, such as Oracle Enterprise
Manager. See Creating MDS Backup for information about creating a backup of
the MDS by using Oracle Enterprise Manager.

• Publish in bulk and sequence: If you have stored different types of changes in multiple
sandboxes, then you can publish more than one or all the sandboxes in bulk to merge all
the changes to the mainline and make them available to other users. While publishing the
sandboxes in bulk, you can specify the sequence in which the sandboxes are to be
published. See Publishing Sandboxes in Bulk and Sequence for the procedure to publish
sandboxes in bulk and sequence.

• Export: You can export all changes stored in the sandbox including sandbox metadata to
a ZIP file. Then, you can import these changes to the same or another environment.

• Import: You can import the sandbox archive (ZIP file) to an environment. Imported
sandbox can be used normally as it would have been created in the environment. Beware
when importing sandboxes that any available sandbox with the same name will be
overwritten by the imported sandbox.

Chapter 19
Managing Sandboxes

19-2



Caution:

Any available sandbox with the same name is overwritten by the imported
sandbox.

Sandbox management and sandbox operations resemble operations with concurrent
versioning system. You can think of a sandbox as a branch in the versioning system. Creating
a sandbox is similar to creating a branch. Activating a sandbox is similar to performing
changes on top of the branch, and publishing a sandbox is similar to merging the content of the
branch to the main branch, sometimes referred to as trunk.

Note:

When you create a sandbox, a new branch is created. You can modify MDS content
within that branch. Note that you will not be able to view the changes made in other
sandboxes that are created later and published to the main branch. Similarly, when
you try to merge this sandbox, a concurrent modification exception is generated. It is
recommended that you edit the contents of the sandbox manually to remove the
conflicting files. However, if manual editing is not possible, then create a new
sandbox again and redo the change.

19.1.2 Handling Concurrency Conflicts
Multiple users can customize an application by using sandboxes, which might result in
concurrency conflicts.

This section describes concurrency conflicts and how to handle them. It contains the following
topics:

• Understanding Concurrency Conflicts

• Guidelines to Avoid Conflicts When Multiple Users Work in a Single Sandbox

• Guidelines to Avoid Conflicts When Multiple Users Work in Multiple Sandboxes

• Troubleshooting Concurrency Issues

19.1.2.1 Understanding Concurrency Conflicts
When multiple users work to customize an application by using sandboxes, the following types
of concurrency conflicts might take place:

• Conflicts within a sandbox: Users overwriting changes created by other users, either
directly by changing the same artifact, or indirectly by affecting files that are shared
between the artifacts.

Conflicts within a sandbox can arise when multiple users are customizing an application by
using the same sandboxes at the same time, because more than one user may be
attempting to customize the same artifact, or performing a customization task that indirectly
affects other shared files. An example of a direct conflict is when different users attempt to
customize the same page, the same fragment, or the same metadata file in the same layer.
An example of an indirect conflict is when two users, each creating their own object, cause
a conflict in the metadata file that tracks which new objects have been created by both
saving their changes around the same time. Conflicts may also arise when users are

Chapter 19
Managing Sandboxes

19-3



editing a shared artifact, such as when a user performs an operation that adds or edits a
translatable string. For example, a user edits a field's display label or help text, or a
validation rule's error message, while another user performs an operation around the same
time that similarly affects translatable strings. Another example of a shared artifact conflict
is when two or more users are working in navigator menus which are shared across
applications.

• Conflicts between sandboxes intended for publishing: Multiple sandboxes with the
same customized artifact publishing to the mainline.

Conflicts between sandboxes can arise when there is more than one sandbox intended for
publishing in use. If two sandboxes contain conflicting customization changes to the same
artifact and both are being published, then the sandbox that is being published last will not
be allowed to be published, and an error describing the conflict will be displayed. To avoid
such conflicts, it is recommended to create and use only one sandbox at a time. These
types of conflicts can also occur with shared metadata files such as resource bundles that
store translatable strings.

19.1.2.2 Guidelines to Avoid Conflicts When Multiple Users Work in a Single Sandbox
When multiple users are working in a single sandbox, these guidelines must be followed:

• Multiple concurrent users in the same sandbox must operate only on different and
unrelated objects. For example, if user1 updates object1, then user2 can update object2
but should not update object1. Be aware that if both modifications involve changes to
translatable strings, then saving changes to separate objects around the same time may
still cause a conflict in the resource bundle that stores the translatable strings.

• Users in the same sandbox can see the changes created by one another. The latest
version of each object gets loaded on-demand the first time it is viewed. If there are ADF
Business Components customizations, then users must log out and log in again to see
those changes reflected in the UI.

19.1.2.3 Guidelines to Avoid Conflicts When Multiple Users Work in Multiple
Sandboxes

When multiple users are working in multiple sandboxes, in addition to all guidelines applicable
to multiple users working in a single sandbox, these guidelines must be followed:

• There can be any number of test-only sandboxes operating concurrently. Multiple users
can use multiple sandboxes concurrently for testing even if these sandboxes are never
published. Sandboxes that are used for testing only, and that are not published, cause no
conflicts with each other, but all guidelines for multiple users working in a single sandbox
must be followed. However, all modifications are lost when the sandboxes are deleted.

• For sandboxes that will be published, you can have multiple concurrent sandboxes only if
they operate on mutually exclusive artifacts. For example, you can have one sandbox that
contains a page that is being customized to add a task flow, and another sandbox that
contains a different page from a different application.

• If an artifact is updated in both the mainline and in the sandbox (or two different
sandboxes), when the sandbox is published, such conflicts are detected and an error is
generated.

19.1.2.4 Troubleshooting Concurrency Issues
Table 19-1 lists the issues that you might encounter if there are concurrency conflicts in the
sandbox usage and the possible solutions.

Chapter 19
Managing Sandboxes

19-4



Table 19-1    Troubleshooting Concurrency Issues

Example Scenario Problem Solution

Working on multiple sandboxes
intended for publishing concurrently:

Create sandbox S1, create sandbox S2,
make changes to S2, publish S2, make
changes to S1, and publish S1.

When you try to publish S1, an error is
thrown.

Create a new sandbox and redo the
changes.

Migrating sandboxes out-of-order:

In environment 1, create sandbox S1,
make changes to S1, export and publish
S1. Repeat the same for S2.

In environment 2, import S2, publish S2.
Then, import S1,and publish S1.

Sandboxes S1 and S2 are published in
different order.

If there is any overlap between S1 and
S2, for example both sandboxes
updated the same MDS document), then
changes made as part of S2 are
overwritten by S1.

For example, if AD connector form is
created as part of S1 and EBS
connector form is created as part of S2,
then there will be overlap in
CatalogAM.xml.xml and BizEditor
resource bundle file. After the migration,
both CatalogAM.xml.xml and BizEditor
resource bundle only contain changes
for AD Connector developed as part of
S1.

Publish the sandboxes in correct order.
You will be able to republish them.

Skipping sandbox during migration:

In environment 1, create sandbox S1,
make changes to S1, export and publish
S1. Repeat the same for S2.

In environment 2, import S2, publish S2.
Do not migrate S1 at all.

S1, which is published in environment 1,
is not migrated to environment 2.

If S2 depends on changes made as part
of S1, then those changes will be
missing in environment 2.

Publish both sandboxes. You will be
able to re-publish them.

Migrating sandboxes from multiple
source environments:

In environment 1, create sandbox S1,
make changes to S1, export and publish
S1.

In environment 2, create sandbox S2,
makes changes to S2, export and
publish S2.

In environment 3, import S1, publish S1.
Import S2, and publish S2.

If there is any overlap between S1 and
S2, for example both sandboxes
updated the same MDS document, then
changes made as part of S1 will be lost.

For example, if AD connector form is
created as part of S1 and EBS
connector form is created as part of S2,
then there will be overlap in
CatalogAM.xml.xml and BizEditor
resource bundle file. After the migration,
both CatalogAM.xml.xml and BizEditor
resource bundle only contain changes
for EBS Connector developed as part of
S2.

Manually merge the sandboxes into
one.

19.1.3 Creating a Sandbox
You can create a sandbox from Identity Self Service or Identity System Administration.

To create a sandbox:

1. Log in to Oracle Identity Self Service or Oracle Identity System Administration.

2. On the upper navigation bar, click Sandboxes. The Manage Sandboxes page is displayed.
This page has the following sections:

Chapter 19
Managing Sandboxes

19-5



• Available Sandboxes: Displays all the sandboxes that are available for testing the UI
customizations, which are not yet published.

• Published Sandboxes: Displays all the published sandboxes.

3. On the toolbar, click Create Sandbox. The Create Sandbox dialog box is displayed.

4. In the Sandbox Name field, enter a name for the sandbox. This is a mandatory field and
contains alphanumeric characters.

5. In the Sandbox Description field, enter a description of the sandbox. This is an optional
field.

6. Click Save and Close. A message is displayed with the sandbox name and creation label.

Caution:

Selecting the Activate Sandbox option closes all the open tabs except the
Manage Sandboxes tab and activates the created sandbox.

7. Click OK. The sandbox is displayed in the Available Sandboxes section of the Manage
Sandboxes page.

19.1.4 Activating a Sandbox
You must activate a sandbox to use it.

To activate a sandbox:

1. From the table showing the available sandboxes in the Manage Sandboxes page, select
the sandbox that you want to activate.

2. On the toolbar, click Activate Sandbox.

The table refreshes and a marker in the Active column is displayed. In addition, the
Sandboxes link on the upper navigation bar also displays the active sandbox name in
parentheses.

Caution:

If any other tabs are open except the Manage Sandboxes tab before activating
the sandbox, then Oracle Identity Manager prompts that all the tabs will be
closed before the sandbox can be activated.

19.1.5 Deactivating a Sandbox
You can deactivate a sandbox to stop allowing changes to metadata objects, thereby
disallowing UI customization.

To deactivate a sandbox:

1. From the table showing the available sandboxes in the Manage Sandboxes page, select
the active sandbox that you want to deactivate.

2. On the toolbar, click Deactivate Sandbox. The page refreshes and the marker in the
Active table disappears.

Chapter 19
Managing Sandboxes

19-6



Caution:

If any other tabs are open except the Manage Sandboxes tab before deactivating
the sandbox, then Oracle Identity Manager prompts that all the tabs will be
closed before the sandbox can be deactivated.

19.1.6 Viewing and Modifying Sandbox Details
You can view and manage sandboxes from the Manage Sandboxes page of the UI.

To view the details of a sandbox and modify the details:

1. In the table showing the available sandboxes in the Manage Sandboxes page, click the
sandbox name link. A dialog box with the sandbox details is displayed.

2. Make the following changes:

• In the Description field, you can enter a description for the sandbox.

• View all the changes to the sandbox in the Change Details table.

• Filter sandbox changes by using the Layer Names, Layer Values, and Change Types
lists, and the Filter toolbar icon.

• Delete any changes made in the sandbox by selecting the change in the table, and
clicking Delete Customization.

• Export the sandbox, if it contains any changes, by clicking Export Sandbox.

19.1.7 Exporting a Sandbox
Export all changes stored in the sandbox including sandbox metadata to a ZIP file.

To export a sandbox from an Oracle Identity Manager deployment to another:

1. From the table showing the available sandboxes in the Manage Sandboxes page, select
the sandbox that you want to export.

2. On the toolbar, click Export Sandbox.

If the sandbox contains any changes, then the sandbox content ZIP file starts
downloading. You can now take the ZIP file and import it to the same or another
environment.

Note:

The name of the sandbox ZIP file is not the sandbox name. The sandbox name
usually starts with IdM_ and it is specified in the XML file located inside the ZIP in
the /mdssys/sandbox/ directory.

Chapter 19
Managing Sandboxes

19-7



Caution:

If the deployment on which the sandbox content ZIP file is being imported
already contains a sandbox with the same name, then that sandbox will get
overwritten.

19.1.8 Importing a Sandbox
Import the sandbox archive (ZIP file) to an environment.

To import a sandbox from an Oracle Identity Manager deployment to another:

1. On the toolbar, click Import Sandbox. The Import Sandbox dialog box is displayed.

2. In the Sandbox Archive field, enter a path to the sandbox archive that you exported.

3. Click Import.

4. Click Refresh. The sandbox, which is imported to the target deployment, is displayed in the
Available Sandboxes tab.

19.1.9 Publishing a Sandbox
Publish a sandbox to merge the changes stored in the sandbox to the mainline and make it
available to other users.

To publish a sandbox:

Note:

• Make sure that you export the sandbox before publishing it. After the sandbox is
published, it cannot be exported anymore, and therefore, there is no way to
migrate it to another environment.

• Oracle recommends creating a backup of MDS before publishing the sandbox. A
backup of MDS can be created by using Oracle Enterprise Manager. See 
Creating MDS Backup for information about creating a backup of the MDS by
using Oracle Enterprise Manager.

1. From the table showing the available sandboxes in the Manage Sandboxes page, select
the sandbox that you want to publish.

2. On the toolbar, click Publish Sandbox. A message is displayed asking for confirmation.

3. Click Yes to confirm. The sandbox is published and the customizations it contained are
merged with the main line.

4. You can click the Published Sandboxes tab to view a list of the published sandboxes.

Chapter 19
Managing Sandboxes

19-8



19.1.10 Publishing Sandboxes in Bulk and Sequence
Publish multiple sandboxes in bulk and in sequence by creating and using a CSV file with the
names of sandboxes in the sequence in which you want to publish them.

To publish sandboxes in bulk and sequence:

1. Create a CSV file with the names of the sandboxes in the sequence in which you want to
publish them, separated by commas. Save the file.

2. In the Manage Sandboxes page, click Bulk Publish.

The Bulk Import and Publish dialog box is displayed.

3. In the Sandbox Archive section, click Choose Files, navigate to the directory that contains
the sandbox zip file, and select the file to include it in the list of sandboxes to be published.
Repeat the selection for all the sandboxes that you want to publish.

Note:

Both file selections, sandbox archive and CSV file, are mandatory to proceed for
bulk publish.

4. Click Choose Files adjacent to the Sandbox file to be uploaded field. Navigate and
select the CSV file containing the sandbox names and sequence, which you saved in step
1.

5. Click Generate Sandbox Sequence. The sandbox names along with the sequence in
which they will be published as specified in the CSV file are displayed in the Sandbox
Sequence field.

6. In the Sandbox Sequence field, review the sandbox names to be published and the
sequence in which they will be published.

7. If you want to change the sandbox archives or the sequence, then edit the CSV file with
the correct sandbox names and sequence, select it in the Sandbox file to be uploaded
field, and click Generate Sandbox Sequence again. Otherwise, click Publish.

19.1.11 Deleting a Sandbox
Delete a sandbox when you no longer need it.

To delete a sandbox:

1. From the table showing the available sandboxes in the Manage Sandboxes page, select
the sandbox that you want to delete.

2. On the toolbar, click Delete Sandbox. A message is displayed asking for confirmation.

3. Click Yes to confirm. The sandbox is deleted and is no longer displayed in the Manage
Sandboxes page.

Note:

Deleting a sandbox does not delete the forms created while the sandbox is active.
Deleting forms is not supported in this release of Oracle Identity Manager.

Chapter 19
Managing Sandboxes

19-9



19.1.12 Reverting Changes
Before publishing a sandbox, all customizations within a sandbox can be reverted to the
default settings.

This section describes how to revert the changes made in a sandbox. It contains the following
topics:

• Reverting Changes to Default Settings

• Reverting Changes When Unable to Login to Identity System Administration

19.1.12.1 Reverting Changes to Default Settings
You must perform all customizations within a sandbox. Until the sandbox is published, the
changes are visible to you only and can be easily reverted by deactivating or deleting the
sandbox. After the sandbox is published, the changes done cannot be reverted.

You can remove specific changes from the sandbox in any one of the following ways:

• Export the sandbox and modify it manually.

• Navigate to the Manage Sandboxes page, open the details of your sandbox, select a
change, and delete it by clicking Delete Customization.

When an MDS sandbox is published, the documents are committed to the MAIN line. Your
application starts using these documents immediately, and the application user views the effect
of publishing the sandbox. Sometimes, you might inadvertently publish an incomplete or a
wrong sandbox. In such instances, it is possible to recover your MAIN line to the state just
before you created the wrong sandbox.

For example, if you create a sandbox called ShowAdminFeature at time T1, and in that you
customized a JSFF fragment published at time T2. You realize later that the sandbox you
published is wrong, and you want to recover your state to time T1. Also, if you are unable to
login to Oracle Identity System Administration after customizing the interface and publishing
the sandbox, then perform the procedure described in Reverting Changes When Unable to
Login to Identity System Administration.

19.1.12.2 Reverting Changes When Unable to Login to Identity System
Administration

if you are unable to login to Oracle Identity System Administration after customizing the
interface and publishing the sandbox, then perform the following steps:

1. Login to Oracle Enterprise Manager.

2. In Application Deployments, select oracle.iam.ui.console.self-service.ear.

3. On the top-right of the page, select Application Deployment, and then select MDS
Configuration from the list.

4. At the bottom of the screen, select Runtime MBean Browser under the Advanced
Configuration section. The right side of the screen refreshes.

5. Click the Operations tab.

6. Scroll down and identify the listMetadataLabels MBean operation and invoke it. Select the
MBean operation that does not take any parameters. Select the sandbox precreate that
you want to restore, and copy it to the clipboard.

Chapter 19
Managing Sandboxes

19-10



For example, the value you copy can be similar to: Creation_IdM_test_09:25:00.

7. Click Return to go back to the Operation tab.

8. Find the promoteMetadataLabel MBean operation.

9. Invoke the promoteMetadataLabel MBean operation, and enter the value that you copied
in step 6.

10. Restart Oracle Identity Manager.

11. Login to Oracle Identity System Administration.

Note:

You can also restore to the last successful sandbox that was published by restoring
to the post label of that sandbox.

19.2 Skin Customization in Oracle Identity Governance
Oracle ADF uses skins along with styles to customize the appearance of an application. These
concepts apply to all the Oracle Identity Governance interfaces, with the exception of the
Transitional UI popups.

The following sections describe how to perform skin customization in Oracle Identity Manager:

• Configuring a New Skin

• Changing Branding and Logo

See Also:

Before customizing style sheets, see Customizing the Appearance Using Styles and
Skins in the Fusion Middleware Web User Interface Developer's Guide in the
following URL:

http://docs.oracle.com/cd/E15523_01/web.1111/b31973/af_skin.htm#ADFUI330
Following URL gives a list of all the CSS style selectors that can be used to
customize the style sheets:

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e15862/toc.htm

19.2.1 Configuring a New Skin
You can extend oim-alta skin to configure custom skins. The oim-alta skin is shipped with
Oracle Identity Manager. The custom skin files and skin definition are deployed as part of the
oracle.iam.ui.custom-dev-starter-pack.war shared library.

To create, deploy and configure a custom skin that extends oim-alta skin:

1. Create META-INF directory with trinidad-skins.xml file, as shown:

<?xml version="1.0" encoding='utf-8'?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">

Chapter 19
Skin Customization in Oracle Identity Governance

19-11

http://docs.oracle.com/cd/E15523_01/web.1111/b31973/af_skin.htm#ADFUI330
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e15862/toc.htm


    <skin>
        <id>my-skin.desktop</id>
        <family>my-skin</family>
        <version>
            <name>v1</name>
            <default>true</default>
        </version>
        <extends>oim-alta.desktop</extends>
        <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
        <style-sheet-name>skins/my-skin/my-skin.css</style-sheet-name>
  </skin>
</skins>

2. Create META-INF/skins/my-skin/my-skin.css, and add your custom skin selectors, as
described in section "Customizing the Appearance Using Styles and Skins" in Oracle
Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

3. Create a JAR file that contains the META-INF directory. For example, you can use the
following command to create the JAR file:

jar cf skins.jar META-INF

You must run the command from the parent directory of the META-INF directory. If the skin
is referencing custom images or other files, then include them in the JAR file as well.

4. Include the newly created JAR file in the WEB-INF/lib/ directory of the
oracle.iam.ui.custom-dev-starter-pack.war shared library. You can find the deployed
version of the oracle.iam.ui.custom-dev-starter-pack.war shared library in the
IDM_HOME/server/apps/ directory. For example, you can use the following commands to
update the existing oracle.iam.ui.custom-dev-starter-pack.war and include the
additional JAR file:

mkdir -p WEB-INF/lib
cp skins.jar WEB-INF/lib
jar uf oracle.iam.ui.custom-dev-starter-pack.war WEB-INF/lib/skins.jar

5. Copy the updated oracle.iam.ui.custom-dev-starter-pack.war to the IDM_HOME/
server/apps/ directory.

6. Login to Oracle Identity System Administration, and change the values of the following
system properties:

Skin Family for OIM UI: Change the value to my-skin, or whatever value you specified for
family in the trinidad-skins.xml file.

Skin Version for OIM UI: Change the value to v1, or whatever value you specified for
version in the trinidad-skins.xml file.

7. Restart Oracle Identity Manager server.

Chapter 19
Skin Customization in Oracle Identity Governance

19-12



19.2.2 Changing Branding and Logo
Customizing or changing UI artifacts, such as logo, buttons, and menu items, can be done at
runtime.

Note:

The procedure documented in this section is for changing the branding and logo by
customizing Oracle Identity Self Service. If you want to customize UI artifacts of the
window that opens from the Oracle Identity System Administration (also referred to
as the legacy Advanced Console), for example, the window that opens when you
click Configuration Properties under System Configuration, then see:

http://docs.oracle.com/cd/E21764_01/doc.1111/e14309/uicust.htm#BABFCFID

To change the logo image:

Note:

To change the logo image the custom logo must be placed in the $OIM_HOME/server/
apps/oim.ear/iam-consoles-faces.war/images/ folder, where OIM_HOME is the
full path of the Oracle Identity Manager home.

1. Log in to Oracle Identity Self Service as the system administrator.

2. Create and activate a sandbox.

Note:

Creating and activating a sandbox is mandatory for customizing the UI by using
the Web Composer. Without an active sandbox, Oracle Identity Manager does
not allow to open any page in customization mode.

3. Click Customize. The customization panel is displayed at the top of the page.

4. Click Structure. The component tree is displayed. The component tree shows all the ADF
components of the page.

5. Click the logo. The Confirm Shared Component Edit dialog box is displayed asking for
confirmation.

6. Click Edit. The logo object is selected in the component tree, as shown in Figure 19-1:

Chapter 19
Skin Customization in Oracle Identity Governance

19-13

http://docs.oracle.com/cd/E21764_01/doc.1111/e14309/uicust.htm#BABFCFID


Figure 19-1    The Object Library in WebCenter Composer

7. Click the  icon. The Component Properties dialog box is displayed.

8. In Component Properties, click the down arrow icon next to the Icon property, and select
Expression Builder.

9. In the Expression Builder, replace the default value of #{attrs.logoImagePath} with your
logo path, that is /../oim/images/$LOGO_NAME, where LOGO_NAME is the name of the
custom logo.

Tip:

• Customizing the default EAR and WAR files, such as Self Service EAR,
System Administration EAR, and xlWebApp.war, is not supported.

• By default, the Oracle logo is 119x25 pixels. Therefore, you can use a
custom logo of the same dimensions. If you want a bigger logo, then it
requires CSS changes.

• If you want to specify a font for any ADF component by using the Style tab of
the Component Properties dialog box, then ensure that your target browsers
and platforms support that specific font name. To look at the supported list for
Mozilla Firefox, select Tools, Options, Content, Fonts and Colors. For
Microsoft Internet Explorer, select Tools, Internet Options, General, Fonts.

10. Click Apply. The logo has changed to the new one you specified.

11. To change the Identity Self Service global banner, click the Identity Self Service text, and
open the Component Properties dialog box.

Chapter 19
Skin Customization in Oracle Identity Governance

19-14



Tip:

To change the banner in the Oracle Identity Manager login page, you must open
the login page in the customization mode. However, the Customize link is not
available in the login page. Therefore, to open the login page in customization
mode:

a. Login to Oracle Identity Self Service as an administrator with privileges to
customize the UI.

b. In an active sandbox, click the Customize link. The Oracle Identity Self
Service is in customization mode.

c. Perform the steps described in Customizing Unauthenticated Pages.

12. In the Display Options tab of the Component Properties dialog box, click the down arrow
next to the Value field, and select Expression Builder. The Expression Editor dialog box
is displayed.

13. With the Type a value or expression selected, enter a text to replace Identity Self
Service, and click OK.

14. Click Apply.

15. Click Close to close WebCenter Composer.

16. Publish the sandbox.

19.3 Customizing Pages at Runtime
Customizing Oracle Identity Manager can be broadly categorized into customizing the UI and
extending the object definitions of the user, role, organization, catalog, and provisioning target
resource entities.

The following sections describe the customization:

• Customizable Entity Artifacts

• Using Expression Language in UI Customization

• Showing or Hiding UI Components Conditionally

• Showing Request Profiles Conditionally

• Validating Input Data Using ADF Validators

• Marking Input Attribute as Required

• Adding a Link or Button

• Hiding and Deleting an ADF Component

• Showing and Hiding Attributes

• Customizing Unauthenticated Pages

• Customizing the Toolbar Contents

• Customizing Certification Pages

Chapter 19
Customizing Pages at Runtime

19-15



19.3.1 Customizable Entity Artifacts
You can customize artifacts for various entities, such as user, role, organization, and catalog,
and provisioning target resource forms.

Table 19-2 lists the artifacts that can be customized for each entity.

Table 19-2    Entity Artifacts for Customization

Enity Artifacts

User Create Page

Modify Page

User Attribute Details

Advanced Search Interface

My Information

Self Registration

Role Create Page

Modify Page

Advanced Search Interface, which includes:

- Query Criteria

- Results Table columns

Organization Create page

Modify Page

Advanced Search interfact, which includes:

- Query Criteria

- Results Table columns

Catalog Catalog Search Page that includes:

- Results Table columns

- Catalog Item Details

Provisioning target resource Provisioning Target Resource Create Form

Provisioning Target Resource Modify Form

Provisioning Target Resource Bulk Form

See Also:

Managing Forms and Configuring Custom Attributes in Administering Oracle Identity
Governance for information about creating and managing forms by using the Form
Designer

19.3.2 Using Expression Language in UI Customization
Expression Language (EL) allows you to access application data stored in JavaBeans
components.

For an introduction to EL and EL expression syntax, refer to the following URL:

http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html

Chapter 19
Customizing Pages at Runtime

19-16

http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html


This section contains the following topics:

• Available EL Expressions in the User Context

• Retrieving User Attribute Values From the OIMContext Bean

• Available EL Expressions in the RequestFormContext

• Internationalization for Resource Strings

19.3.2.1 Available EL Expressions in the User Context
The OIMContext bean is defined as an ADF session-scoped bean and provides access to
information about the logged-in user.

Table 19-3 lists the available EL expressions in the Oracle Identity Manager user context.

Table 19-3    EL Expressions in User Context

EL Description

#{oimcontext.currentUser['ATTRIB
UTE_NAME']}

Access value of the ATTRIBUTE_NAME attribute of the logged-
in user.

#{oimcontext.currentUser['UDF_NA
ME']}

Access value of the UDF_NAME attribute of the logged-in user.
UDF attributes can be defined by using the Form Designer.

#{oimcontext.currentUser.roles} Access the ROLE_NAME and RoleEntity mapping that contains
the roles assigned to the logged-in user. RoleEntity is Java Bean
having name, description, key, and displayName properties.

#{oimcontext.currentUser.roles['
SYSTEM ADMINISTRATORS'] != null}

Boolean EL that evaluates to true if the logged-in user has the
System Administrator admin role. Similarly, you can modify the
EL to check for any other role.

#{oimcontext.currentUser.adminRo
leMap['OrclOIMSystemAdministrato
r'] != null}

Boolean EL that evaluates to true if the logged-in user has the
OrclOIMSystemAdministrator admin role. Similarly, you can
modify the EL to check for any other admin role.

19.3.2.2 Retrieving User Attribute Values From the OIMContext Bean
You can use EL expression to retrieve all available user attribute values from the oimcontext
bean, as shown in the following examples:

• To get the user key of the currently logged-in user:

#{oimcontext.currentUser.usr_key}

OR:

#{oimcontext.currentUser['usr_key']}
• To get the list of role names of the currently logged-in user:

#{oimcontext.currentUser.roles}
• To get the list of admin role names of the currently logged-in user:

#{oimcontext.currentUser.adminRoles}

Chapter 19
Customizing Pages at Runtime

19-17



As an example, if you want to display a message with the user login name when a user logs in
to Oracle Identity Self Service, then you can use EL expression to retrieve the login name of
the currently logged-in user, and display it on the page. The expression to retrieve the user
login name is the following:

#{oimcontext.currentUser['User Login']}

19.3.2.3 Available EL Expressions in the RequestFormContext
RequestFormContext is a bean available in the pageFlowScope of entity form details task flow.
The entity forms include user form, application instance form, role form, and entitlement form.
RequestFormContext provides various context information. Using this context information, you
can customize the forms based on specific business requirements.

Table 19-4 lists the EL expressions involving RequestFormContext.

Table 19-4    EL Expressions in RequestFormContext

EL Description

#{pageFlowScope.requestFormContext} Access current instance of RequestFormContext.

#{pageFlowScope.requestFormContext.
operation}

Access operation type that is being performed on the entity.
The possible values are CREATE, MODIFY, ENABLE,
DISABLE, and REMOVE.

#{pageFlowScope.requestFormContext.
operation == 'MODIFY'}

Boolean EL that evaluates to true if current operation being
performed on the entity is MODIFY.

#{pageFlowScope.requestFormContext.
actionType}

Access action that is being performed by the user when the
entity form is displayed. The possible values are APPROVAL,
FULFILL, REQUEST, VIEW, and SUMMARY.

#{pageFlowScope.requestFormContext.
actionType == 'REQUEST'}

Boolean EL that evaluates to true if the action that is being
performed by the user when the entity form is displayed is
REQUEST, for example, requesting role or application
instance.

#{pageFlowScope.requestFormContext.
bulk}

Boolean EL that evaluates to true if the operation being
performed is a bulk operation, for example, requesting
multiple application instances at a time.

#{pageFlowScope.requestFormContext.
beneficiaryIds}

Access the list of beneficiary or target user IDs. For example,
if you are requesting an application instance for user John
Doe, then the list contains the user ID of John Doe.

Note: Oracle recommends accessing the list and performing
operations on it by using Java code.

#{pageFlowScope.requestFormContext.
cartItemIds}

Access the list of cart item IDs. For example, if you are
requesting an application instance for a user, then the list
contains the application instance ID that is being requested.

Note: Oracle recommended accessing the list and
performing operations on it by using Java code.

#{pageFlowScope.requestFormContext.
requestEntityType}

Get entity type being requested. The possible values are
ROLE, ENTITLEMENT, APP_INSTANCE, and USER.

Chapter 19
Customizing Pages at Runtime

19-18



Table 19-4    (Cont.) EL Expressions in RequestFormContext

EL Description

#{pageFlowScope.requestFormContext.
requestEntityType == 
'APP_INSTANCE'}

Boolean EL that evaluates to true if the entity type being
requested is APP_INSTANCE.

#{pageFlowScope.requestFormContext.
requestEntitySubType}

Access subtype of entity being requested. For example,
when requesting APP_INSTANCE, requestEntitySubType is
the application instance key.

#{pageFlowScope.requestFormContext.
instanceKey}

Access the key of the instance being modified.

19.3.2.4 Internationalization for Resource Strings
In Oracle Identity Manager, you can create custom resource bundles and reference them in the
UI. If you want to modify some of the predefined UI elements, such as labels and headers, or
the values displayed on a certain page (for example, values displayed in the Status field of the
Request Summary page), then perform the procedures described in the following topics:

• Creating Custom Resource Bundles

• Using the Resource Bundles

19.3.2.4.1 Creating Custom Resource Bundles
To create custom resource bundles:

1. Open the oracle.iam.ui.custom-dev-starter-pack.war shared library. The deployed
version of the library is in the IDM_HOME/server/apps/ directory.

2. Create a new CustomResourceBundle.properties file.

3. In the new file, enter the key value pairs, for example:

CUSTOMRB_BANNER_TEXT=My Identity and Access
4. Create all localized files, for example CustomResourceBundle_it.properties and

CustomResourceBundle_es.properties, in the same directory.

5. Repackage the custom WAR, and update the custom WAR deployment in the server.

19.3.2.4.2 Using the Resource Bundles
To use the resource bundles:

1. In Oracle Identity Self Service, create a sandbox, and click Customize.

2. On the Component Properties dialog box, open the Expression Editor for the specific
property, and specify the expression, for example:

#{adfBundle['oracle.iam.ui.custom.CustomResourceBundle'].CUSTOMRB_BANNER_TEXT}
3. Click Test to test the expression. Click OK, then click Apply.

4. Click OK to close the Component Properties dialog box.

5. Export the sandbox, and then publish the sandbox.

Chapter 19
Customizing Pages at Runtime

19-19



Note:

Exporting the sandbox is optional, but it is a recommended step.

19.3.3 Showing or Hiding UI Components Conditionally
To conditionally show or hide UI components, use the rendered property of the component and
assign EL expression to it that evaluates to Boolean. If the EL expression evaluates to true,
then the component is shown.

Consider the following examples:

Note:

The rendered property of the component corresponds to the Show Component option
in Oracle Web Composer.

• To show a UI component if the logged-in user has the System Administrators admin role:

#{oimcontext.currentUser.roles['SYSTEM ADMINISTRATORS'] != null}

Similarly, the EL expression can be modified to check if the logged-in user has any other
role.

• To show a UI component if signed-in user has the System Administrator admin role:

#{oimcontext.currentUser.adminRoles['OrclOIMSystemAdministrator'] != null}

Similarly, the EL expression can be modified to check if the logged-in user has any other
admin role.

• To show a UI component if the usr_key attribute of the logged-in user is 1:

#{oimcontext.currentUser['usr_key'] == 1}
• To show a UI component if the logged-in user's last name is Doe:

#{oimcontext.currentUser['Last Name'] == 'Doe'}
• To show a UI component if the logged-in user belongs to the Xellerate Users organization:

#{oimcontext.currentUser['Organization Name'] == 'Xellerate Users'}
• To show a UI component if the user's UDF attribute called UDF_NAME equals to

UDF_VALUE:

#{oimcontext.currentUser['UDF_NAME'] == 'UDF_VALUE'}

Note:

Showing Components Conditionally describes showing components based on certain
conditions by implementing custom Managed Bean.

Chapter 19
Customizing Pages at Runtime

19-20



19.3.4 Showing Request Profiles Conditionally
Use EL expression to conditionally display a catalog request profile.

To show a catalog request profile conditionally:

1. Login to Oracle Identity Self Service.

2. Activate a sandbox.

3. In the Self Service tab, click the Request Access box, and select Request for Self. The
Add Access page of the Request Access wizard is displayed.

4. Click Customize. Click Structure. The component tree is displayed.

5. Using the component tree, navigate to the iterator component within Request Profiles. The
iterator component has panelGroupLayout subcomponent, which represents single request
profile.

6. Select panelGroupLayout:horizontal, which is a subcomponent of
panelGroupLayout:vertical inside the iterator component, and click Edit in the Web
Composer.

7. Assign a Boolean EL expression to the rendered property. This is the Show Component in
Web Composer.

For example, if you want to display a resource profile called Profile to users of the
Suppliers organization only, and display any other profile to other users, then use the
following expression:

#{(row.profileName == 'Profile' && oimcontext.currentUser['Organization Name'] == 
'Suppliers') || row.profileName != 'Profile'}

The EL expression is evaluated for every profile which is available. Similarly, you can
modify/extend the EL expression to conditionally display any other profile.

8. Publish the sandbox to globalize the change.

19.3.5 Validating Input Data Using ADF Validators
To validate input component data using predefined ADF validators, you must modify the JSFF
page fragment and include one of the ADF validators as a child element of input component.

Table 19-5 lists the ADF validators.

Table 19-5    ADF Validators

Validator Description

<af:validateByteLength> Validates the byte length of strings when encoded

<af:validateDateRestriction> Validates that the date entered is within a given restriction

<af:validateDateTimeRange> Validates that the date entered is within a given range

<af:validateDoubleRange> Validates that the date entered is within a given range

<af:validateLength> Validates that the value entered is within a given length

<af:validateLongRange> Validates that the value entered is within a given range

<af:validateRegExp> Validates an expression by using Java regular expression syntax

Chapter 19
Customizing Pages at Runtime

19-21



For example, to validate that the only allowed characters for the User Login attribute are
alphanumeric ASCII characters, you can include the following RegExp validator as a child
element of the User Login input component:

<af:validateRegExp pattern="[a-zA-Z0-9]*"/>

ADF validators cannot be added directly by using the Web Composer. Instead, you can add
another component as a child component of the User Login component, for example, another
input text. After that you can export the sandbox containing this change. Finally, update the
JSFF page fragment for the form in the exported sandbox, and then import the sandbox.

Note:

Implementing Custom Field Validation describes implementing the custom field
validator by using custom Managed Bean.

19.3.6 Marking Input Attribute as Required
To conditionally make an input field required, you can use the required property of the
component, and assign it a Boolean EL expression. If the EL expression evaluates to true,
then the component is marked as required, and the required validation is triggered.

For example EL expressions, see Showing or Hiding UI Components Conditionally.

For more information about making field conditionally mandatory based on the value of another
field, see Setting a Conditional Mandatory Field.

19.3.7 Adding a Link or Button
Use the Add Content dialog box to add a link or button to a UI page.

To add a link to Oracle Identity Self Service:

1. From any page in Oracle Identity Self Service, open WebCenter Composer.

2. Select the top panel on which you want to include the link. The ADF component is selected
in the component tree.

3. Click the plus (+) icon to open the Add Content dialog box. Navigate and select the Web
Components component from the list of components.

The Web Components component in the Add Content dialog box is shown in Figure 19-2:

Chapter 19
Customizing Pages at Runtime

19-22



Figure 19-2    The Add Content Dialog Box

4. Search for the link component that you want to add, and click Add in the same row. The
link is added to the selected panel.

Note:

For a complete list of UI components, see Using Common ADF Faces
Components in Developing Web User Interfaces with Oracle ADF Faces.

5. Click Close to quit customization mode.

Note:

For more details, see the following sections:

• Launching Taskflows

• Creating an External Link

Chapter 19
Customizing Pages at Runtime

19-23



19.3.8 Hiding and Deleting an ADF Component
Hiding an ADF component results in the UI artifact being hidden from the user.

This section describes how to hide and delete an ADF component. It contains the following
topics:

• Hiding an ADF Component

• Deleting an ADF Component

19.3.8.1 Hiding an ADF Component
To hide an ADF component:

1. In Oracle Identity Self Service, go to the page on which you want to hide a component.

2. Click Customize to open WebCenter Composer.

3. Click Structure to open the component tree.

4. Click the component on the page that you want to hide. The corresponding ADF
component in the component tree is selected.

5. Right-click the selected ADF component in the component tree, and select Hide.

19.3.8.2 Deleting an ADF Component
To delete an ADF component:

1. From the Oracle Identity Self Service page on which you want to delete any UI component,
open Web Composer.

2. Click Structure to open the component tree.

3. Click the component on the page that you want to delete. The corresponding ADF
component in the component tree is selected.

4. Right-click the selected ADF component in the component tree, and select Delete.

5. In the Delete Component Confirmation box, click Delete.

19.3.9 Showing and Hiding Attributes
Use the Child Components tab of the Component Properties dialog box to show or hide
attributes in a page.

To show or hide attributes in a page:

1. Go to the page on which you want to show or hide the attribute. For example, navigate to
the My Information page in the Oracle Identity Self Service if you want to show or hide the
Telephone field.

2. Click Customize to open Web Composer.

3. Click Structure to open the component tree.

4. Click the region or section that contains the attribute you want to hide, or you want the
attribute to be shown.

The Confirm Task Flow Edit message box is displayed.

5. Click Edit. The ADF component for the selected region is selected in the component tree.

Chapter 19
Customizing Pages at Runtime

19-24



6. Open the Component Properties dialog box.

7. Click the Child Components tab. All the UI components of the selected region are
displayed. Figure 19-3 shows a sample Child Components tab in the Component
Properties dialog box.

Figure 19-3    The Child Components Tab

8. Select or deselect the checkbox corresponding to the attributes to show or hide the
attributes respectively.

Note:

If you do not see an attribute listed here, then you must add the attribute into the
form. See Adding a Custom Attribute in Administering Oracle Identity
Governance for details.

9. Click Apply. The selected attributes are hidden or shown based on your selection.

10. Click OK, and then click Save on the toolbar.

19.3.10 Customizing Unauthenticated Pages
You can customize the unauthenticated pages of the Identity Self Service, such as User
Registration page or Sign In page.

To customize the unauthenticated pages:

Chapter 19
Customizing Pages at Runtime

19-25



1. Login to Oracle Identity Self Service as the system administrator.

2. Create and activate a sandbox, and click Customize.

3. Click the Self Service tab to open the Self Service Home page.

4. Click Structure to open the component tree.

5. Select the panelGridLayout component, as shown in Figure 19-4.

Figure 19-4    The panelGridLayout Component

6. Select the last gridRow component. The component is shown as grayed out.

7. Right-click the last gridRow component, and select Show Component. The gridCell
component is displayed.

8. Right-click the gridCell component and select Show Component.

9. Close the Structure tab. A new home page tile named Unauthenticated Pages is displayed.

10. Click Add Content to switch to design view.

11. Click the Unauthenticated Pages tile. A menu is displayed. Each menu item represents a
link to one of the unauthenticated pages. For example, click New User Registration, and
you will be redirected to User Registration page.

12. Click the Structure tab. On the component pane search for the links you want to hide and
right-click over each link you want to hide by selecting hide component.

13. Do not close the customize page, instead type in the browser address bar the URL to the
identity console. For example: http://<host:port>/identity.

14. Hide the Unauthenticated pages tile hiding the gridCell from Step 7 and gridRow from Step
6 in that order.

15. Publish the sandbox.

Chapter 19
Customizing Pages at Runtime

19-26



19.3.11 Customizing the Toolbar Contents
Use the Toolbar Components tab of the Component Properties dialog box to show or hide
buttons on a toolbar.

To show or hide buttons in the toolbar:

1. Login to Oracle Identity Self Service as the system administrator.

2. Go to the page that has to be customize. Select the toolbar.

3. Create and activate a sandbox, and click Customize.

4. Click Structure to open the component tree.

5. Select the toolbar component as shown in Figure 19-5.

Figure 19-5    The toolbar, (x)group component

6. To show the buttons in the toolbar:

a. Right-click the hidden component.

b. Select the Show Component option, and click Apply. The hidden button are enabled
as shown in Figure 19-6.

Chapter 19
Customizing Pages at Runtime

19-27



Figure 19-6    The ()group, toolbar component

7. To hide the buttons in the toolbar:

a. Right-click the component you want to hide.

b. Select the Hide Component option, and click Apply. The button are disabled as
shown in Figure 19-5.

19.3.12 Customizing Certification Pages
Customizing the pages in Identity Self Service related to the Certification feature involves
customizing the certification details pane, adding custom attributes to the certification table,
and customizing the certification table.

This section contains the following topics:

• Customizing the Certification Detail Pane

• Adding Custom Attributes to the Certification Table

• Customizing the Certification Table

Chapter 19
Customizing Pages at Runtime

19-28



19.3.12.1 Customizing the Certification Detail Pane
The information from the row selected in the certification table can be used for customizing the
detail pane found below the table. The procedure in this section can be used to customize the
user certification detail pane. The same procedure can be followed for any certfication type.

After you have entered the customization mode, perform the following steps:

1. Edit the panelFormLayout containing the User Detail Information.

2. Click Add Content.

3. Select Data Component - Certification.

4. Select UserCertificationUserVO1.

5. Search for the attribute you want to add, for example Title, and click Add.

6. Select ADF Readonly Input Text with Label component.

The input component is added to the page, but a value for it is not displayed. A label is
added that shows the name of the attribute.

7. Select the inputText component in the page source panel, and click Edit. The Component
Properties dialog box is displayed.

8. Scroll down and find the Value attribute, and open the Expression Builder.

9. Edit the expression value and set it to the following:

#{pageFlowScope.p1_row_idcTitle}
10. Save the changes and close Web Composer. Select a row in the table.

When a row is selected from the table, the information is stored in the pageFlowScope. To
display this information in the detail pane, steps 1 through 10 must be followed to extract
the correct data. The format of the EL to follow is:

#{pageFlowScope.p1_row_ATTRIBUTE_NAME}

Page 1 table information can also be used in page 2 by using the same format. Because
the data is stored in the pageFlowScope, the information remains in the scope making it
available for display. Page 2 has a Page 1 Detail section at the top of the page showing a
reference back to the item on page 1. You can add more page 1 details here using
p1_row_ATTRIBUTE_NAME in the expression.

The steps documented in this section apply to page1 or the summmary page, of the
current certification. If you want to customize page 2 or the detail page, then use the
following format:

#{pageFlowScope.p2_row_ATTRIBUTE_NAME}

19.3.12.2 Adding Custom Attributes to the Certification Table
To create a UDF and add it to the certification table:

1. Create and activate a sandbox.

2. Create a new user UDF, as described in Creating a Custom Attribute in Administering
Oracle Identity Governance.

3. Publish the sandbox.

4. To add the UDF, create and activate a new sandbox.

Chapter 19
Customizing Pages at Runtime

19-29



5. Navigate to the Certification Dashboard, and open the certification detail page for an entity.

6. Click Customize. Click Structure to open the component tree.

7. Click the table on the certification detail page. Click Edit on the Confirm Task Flow Edit
message box.

8. With the table selected on the component tree, click the plus (+) icon to open the Add
Content dialog box.

9. Click Data Component - Certification.

10. Select the VO corresponding to the table, for example,
ApplicationCertificationEntitlementVO1.

The following table lists the VOs that are to be selected for various types of certifications:

Certification Page VO

User Certification Phase 1 Page 1 UserCertificationUserVO

User Certification Phase 2 Page 2 UserCertificationPhase2EntitlementVO

Role Certification Detail Page RoleCertificationMemberVO

Application Instance Certification Detail Page ApplicationCertificationEntitlementVO

Entitlement Certification Detail Page EntitlementCertificationEntitlementMemberVO

11. Scroll down to the UDF you created, and click Add. Then, select ADF Table Column.

12. Click Close. The UDF column is added to the certification table.

Note:

To add a default attribute to the certification table, from the View menu, select
Columns, ATTRIBUTE_NAME. The default attribute column is added to the table.
Similarly, you can hide the attribute from the certification table by selecting it from the
View, Columns.

19.3.12.3 Customizing the Certification Table
To customize the certification table, for example, to increase the size of the table via
customization:

1. Create and activate a sandbox.

2. Go to the certification detail page, and click Customize.

3. Click Structure to open the component tree.

4. Click anywhere on the certification table so that table:t1 tag is selected on the component
tree. Right-click table:t1, and select Edit. Alternatively, you can click the show properties
icon on the toolbar of the component tree.

The Component Properties dialog box is displayed.

5. Scroll down to the Fetch Size property. Click the down arrow of the Fetch Size property,
and select Expression Builder.

6. In the Expression Builder, select the Type a value or expression option, and enter the
value as 75. Click OK.

Chapter 19
Customizing Pages at Runtime

19-30



7. Click Apply, and then click OK to close the Component Properties dialog box.

8. Click Close. The table has been expanded to 75 rows.

19.4 Securing a Task Flow Region Using EL Expressions
For each new task flow, there is an entry in the jazn-data.xml file.

The following is an example:

<permission>
<class>oracle.adf.controller.security.TaskFlowPermission</class>
<name>/WEB-INF/oracle/iam/ui/catalog/tfs/request-summary-details-tf.xml#request-summary-
details-tf</name>
<actions>view</actions>
</permission>

This is the basic level of permission required for any task flow to be visible on the Identity Self
Service UI. For advanced permissions dependent on admin roles, you can use EL expressions
to enforce functional security.

For securing task flows, the task flow must be used as a region in the parent JSFF file. You can
define EL expression for the region so that the task flow can be shown or hidden to the logged-
in user based on the user's permissions.

For securing a region, consider the following example:

On the my-access-accounts.jsff page, the details-information-tf task flow is rendered selectively
to the users by using the following EL expression:

rendered="# {oimappinstanceAuth.view [bindings.appInstanceKey].allowed}"

Here:

• oimappinstanceAuth is the mapped name of the ApplicationInstanceAuthz.java
authorization bean in the adfc-config.xml file.

• view is the name of the UIPermission that needs to be checked. The following permission
is defined in ApplicationInstanceAuthz.java, which is the actual bean file for reference of
oimappinstanceAuth:

Private UIPermission view = new UIPermission 
(PolicyConstants.Resources.APPLICATION_INSTANCE.getId(), 
PolicyConstants.ApplicationInstanceActions.VIEW_SEARCH.getId());

• appInstanceKey is the ID of the application instance that the user is trying to view, which is
passed as a parameter.

19.5 Customizing Oracle Identity Governance Help
Oracle Identity Governance lets you develop and use online Help systems in the Oracle
Identity Self Service and Oracle Identity System Administration.

This section describes how to develop the online Help system. It contains the following topics:

• Adding Custom Help Topics

• Adding Inline Help

Chapter 19
Securing a Task Flow Region Using EL Expressions

19-31



19.5.1 Adding Custom Help Topics
In addition to the Oracle Identity Manager help topics, you can also create and use custom
help topics.

This section describes how to create, configure, and view custom help topics. It contains the
following topics:

• Creating Custom Help Topics

• Referencing the Custom Help Topics

• Adding a Custom Help Topic to Identity Self Service

• Viewing the Custom Help Topics

19.5.1.1 Creating Custom Help Topics
The custom help book is provided as a separate JAR file. This is the OIM_HOME/help/
CUSTOMOHW.jar file. You can create your own help topics and custom help book JAR, and
then replace the CUSTOMOHW.jar file to display your custom help topics in the UI.

You create the custom help topics by using Oracle Help for the Web (OHW). For detailed
information about creating custom OHW help topics, see Understanding OHW Deployment in
Developing Help Systems with Oracle Help.

19.5.1.2 Referencing the Custom Help Topics
After creating the new custom help books, modify the following configuration files in the
OIM_HOME/help/ directory to reference the new help books:

• ohwconfig_identity.xml: Configuration file for custom help topics in Oracle Identity Self
Service

• ohwconfig_sysadmin.xml: Configuration file for custom help topics in Oracle Identity
System Administration

Note:

The configuration files are overwritten when you upgrade Oracle Identity Manager,
and you must modify the configuration files again to reference the custom help
books.

19.5.1.3 Adding a Custom Help Topic to Identity Self Service
After creating the custom help topics, create the custom help JAR file, and replace the
CUSTOMOHW.jar file with the new JAR file. You can now add your custom help topics on the
UI pages. The following procedure shows how to add a custom help topic to the Home page in
the Oracle Identity Self Service:

1. In Oracle Identity Self Service, activate a sandbox from the Manage Sandboxes page.

2. Go to one of the Home pages for Self Service, Compliance, or Manage, and click
Customize.

3. Click Structure to open the component tree.

Chapter 19
Customizing Oracle Identity Governance Help

19-32

https://docs.oracle.com/cd/E29542_01/doc.1111/e14149/rcdg_deployment.htm#OHJWG391


4. Click the section of the Home page where you want to add the help topic. Click Edit in the
Confirm Edit Task Flow popup.

5. Click the plus (+) icon to open the Add Content dialog box.

6. Scroll down and click Web Components.

7. In the row for Command Image Link, click Add. The selected component is added to the
Home page.

8. Select the added component, and click Edit. Open the Component Properties dialog box.

9. Click the Display Options tab.

10. In the Text field, enter the text for the help topic that will be displayed in the page.

11. In the Image field, enter the path and file name for the help icon image.

12. In the Action Listener field, enter the URL with the HelpTopicID of the custom help topic.

13. Click Apply, and then click OK.

14. Save and close customization mode. The help topic is added to the Home page. Clicking
the help topic displays the help topic in the custom help book JAR file.

19.5.1.4 Viewing the Custom Help Topics
To view the custom help topics:

1. Login to Oracle Identity Self Service.

2. On the navigation bar at the top, click the down-arrow with the logged-in user name, and
click Help. The Oracle Help for the Web window is displayed.

3. From the Book list, select Custom Help Topics for Oracle Identity Manager.

4. Expand the contents to view the help topics.

19.5.2 Adding Inline Help
Oracle Identity Manager does not provide inline help by default. However, you can add your
inline help for the various UI components, such as add tooltip text for fields and buttons.

This section describe the inline help configuration and how to add inline help. It contains the
following topics:

• Inline Help Configuration

• Adding Inline Help

19.5.2.1 Inline Help Configuration
The content for the inline help is picked up from the files in the custom WAR library
(oracle.iam.ui.custom-dev-starter-pack.war), such as the /oracle/iam/ui/custom/help/
CustomHelpResourceBundle.properties file. If the CustomHelpResourceBundle.properties file
is not available in the WAR library, then you can create it.

You can specify the inline help content through the entries in the
CustomHelpResourceBundle.properties file. The entries have a CUSTOMRB prefix, and have
any one of the following suffixes:

• _DEFINITION: This specifies inline help for a field or UI component. For example:

CUSTOMRB_EMAIL_DEFINITION=Enter your official e-mail ID if available.

Chapter 19
Customizing Oracle Identity Governance Help

19-33



EMAIL is the field name, and the value of the entry is the inline help text displayed on
placing your mouse pointer on the field.

• _INSTRUCTIONS: This specified inline help for a page layout. For example:

CUSTOMRB_MY_INFO_INSTRUCTIONS=Profile update will get reflected post approvals.

MY_INFO is the page, and the value of the entry is the inline help text displayed on the top
of the page.

19.5.2.2 Adding Inline Help
As an example, the following procedure shows how to add inline help to the Telephone field in
the My Information page of Oracle Identity Self Service:

1. In the Oracle Identity Self Service, navigate to the My Information page, and expand the
Basic User Information section.

2. Click Customize, and open the component tree.

3. Click the Telephone field.

4. Click Edit, and open the Component Properties dialog box.

5. In the Help Topic ID field, enter the help topic ID of the inline help that you want to
associate with the Telephone field, such as CUSTOMRB_TELEPHONE.

Note that specifying the _DEFINITION suffix is not required.

6. Click Apply, and then click OK.

7. Save and close customization mode. An information image with the interrogation sign (?) is
displayed before the Telephone field. When you place the mouse pointer on the icon, the
inline help text is displayed.

See Also:

Displaying Tips, Messages, and Help on the Web User Interface Developer's Guide
for Oracle Application Development Framework for information about defining tips
and messages and providing help information for ADF components

19.6 Customizing the Home Page
The Home pages provide a snapshot of the various functions in the Oracle Identity Self
Service. You can customize the Home page by adding, removing, and rearranging containers
or tiles.

This section describes how to customize the Home page. It contains the following topics:

• Adding a Tile to the Home Page

• Launching a New Page From the Tile Icon

• Launching a New Page From the Tile Menu

• Showing Tiles Conditionally

Chapter 19
Customizing the Home Page

19-34



19.6.1 Adding a Tile to the Home Page
Add a tile to the Identity Self Service Home page by customizing the UI.

To add a tile to the Home page:

1. Create and activate a sandbox.

2. Navigate to the Home page to which you want to add a tile.

Home pages consist of Panel Grid Layout, in which the page is divided into one or more
grid rows and each grid row can have up to four grid cells. Figure 19-7 shows how the
Home page is divided into grid rows and grid cells.

Figure 19-7    Home Page Panel Grid Layout

3. Click Customize to switch to the customization mode.

4. Click Structure to switch to structure view.

5. Identify a position on the Home page where you want to add the new tile.

Before you can add a new tile, a new Grid Cell and optionally a new Grid Row must be
added.

6. To add a grid row:

a. Select the Panel Grid Layout component as shown in Figure 19-8.

Chapter 19
Customizing the Home Page

19-35



Figure 19-8    Panel Grid Layout Component

b. Click the Add icon.

c. In the resource catalog, go to Web Components, and click the Add link next to grid row
component. A new grid row is added to the page as a first child of the panelGridLayout
component.

d. After adding the grid row component, you can change the values of Height, Margin
Top, and Margin Bottom properties to align it with the existing grid rows.

7. To add a grid cell:

a. Select the Panel Grid Layout component, as shown in Figure 19-8.

b. Using the Component tree on the right, select one of the child grid rows where you
want to add a new grid cell.

c. Click the Add icon.

d. In the resource catalog, go to Web Components, and click the Add link next to the grid
cell component. A new grid cell is added to the page as a first child of the selected grid
row component.

e. After adding the grid cell component, you can change the values of the Align, Margin
End, Margin Start, Width properties to align it with the existing grid cells.

8. After a new grid cell has been added, select it, and click the Add icon. In the resource
catalog, go to Web Components, and click the Add link next to the Dashboard Box
component. A new dashboard tile is added to the page.

Note:

If the new tile is not displayed in the page, then refresh the page.

9. You can select the tile (DashboardBox component must selected in the Component tree),
click the Edit icon, and change the values of the Hover Image, Image, Instruction Text, and
Title Text properties.

Chapter 19
Customizing the Home Page

19-36



Note:

After you add the tile, perform the steps described in one of the following
sections to launch a new page by clicking on the tile:

• Launching a New Page From the Tile Icon

• Launching a New Page From the Tile Menu

• Showing Tiles Conditionally

Do not publish your sandbox yet.

19.6.2 Launching a New Page From the Tile Icon
Edit the Home page jsff.xml file to launch a new page from the tile icon.

To launch a page by clicking on the tile icon:

1. Export the sandbox and unzip it.

2. Open the Home page jsff.xml file that you are working on by using a text editor. Oracle
Identity Manager has the following default Home pages for Self Service, Manage, and
Compliance:

oracle/iam/ui/homepage/home/pages/mdssys/cust/site/site/self-service-home.jsff.xml
oracle/iam/ui/homepage/home/pages/mdssys/cust/site/site/self-service-manage.jsff.xml
oracle/iam/ui/homepage/home/pages/mdssys/cust/site/site/self-service-
compliance.jsff.xml

3. Locate the oim:DashboardBox element in the XML file. The element looks similar to the
following:

<oim:DashboardBox xmlns:oim="/componentLib1" instructionText="My user details" 
titleText="My Details" image="/images/Dashboard/myAccess.png" hoverImage="/images/
Dashboard/myAccess_s2.png" iconClickable="true" id="e8533237995"/> 

4. Ensure that the value of iconClickable is set to true.

5. Add a new element attribute named iconClickAction, set the value of the attribute to:

#{backingBeanScope.dashboardNavigationBean.launchTaskFlow}
6. Add two new af:clientAttribute elements as child elements of oim:DashboardBox, as

follows:

<oim:DashboardBox xmlns:oim="/componentLib1" instructionText="My user details" 
titleText="My Details" image="/images/Dashboard/myAccess.png" hoverImage="/images/
Dashboard/myAccess_s2.png" iconClickable="true" id="e8533237995" 
iconClickAction="#{backingBeanScope.dashboardNavigationBean.launchTaskFlow}">
<af:clientAttribute xmlns:af="http://xmlns.oracle.com/adf/faces/rich" 
name="taskFlowId" value="/WEB-INF/oracle/iam/ui/manageusers/tfs/user-details-
tf.xml#user-details-tf"/>
<af:clientAttribute xmlns:af="http://xmlns.oracle.com/adf/faces/rich" name="title" 
value="My Details"/>
 
<!-- the following clientAttributes are optional, these are to pass values to input 
parameters of user-details task flow -->
<af:clientAttribute xmlns:af="http://xmlns.oracle.com/adf/faces/rich" 
name="userLogin" value="#{oimcontext.currentUser['User Login']}"/>
<af:clientAttribute xmlns:af="http://xmlns.oracle.com/adf/faces/rich" name=" 
usr_key" value="#{oimcontext.currentUser['usr_key']}"/>
</oim:DashboardBox>

Chapter 19
Customizing the Home Page

19-37



Make sure that oim:DashboardBox now has opening and closing tags, as shown in the
example. Also, ensure that the component IDs are unique.

Set values of taskFlowId and title client attributes. taskFlowId specifies which task flow will
be launched, and title specifies the title of the new tab.

You can add additional client attributes if you want to pass input parameters to the task
flow, as shown in the example in this step.

Tip:

If all the required taskflow parameters are not available through EL expressions,
then you can implement a custom actionListener, as described in Launching
Taskflows. The new actionListener method will be accessible through an EL that
must be set to iconClickAction property.

If you want to launch some of the following UIs that are obsolete in this release of
Oracle Identity Manager, then use the following ELs to set the iconClickAction
property:

• Attestation Dashboard:
#{backingBeanScope.dashboardNavigationBean.navigateAttestationDash
board}

• Pending Attestations:
#{backingBeanScope.dashboardNavigationBean.navigatePendingAttestat
ions}

• Legacy Homepage:
#{backingBeanScope.dashboardNavigationBean.navigateHome}

7. Save the jsff.xml file, and re-create the sandbox ZIP file with the same name and structure
as the original ZIP file.

8. Import the sandbox to Oracle Identity Manager.

9. Verify the changes and functionality of the new Home page tile.

10. Export the sandbox and publish it to make the changes available to all users.

19.6.3 Launching a New Page From the Tile Menu
Edit the Home page jsff.xml file to launch a new page from the tile menu.

To launch a page by clicking on tile menu item:

1. Export and unzip the sandbox.

2. Open the Home page jsff.xml file that you are working on by using a text editor. Oracle
Identity Manager has the following default Home pages for Self Service, Manage, and
Compliance:

oracle/iam/ui/homepage/home/pages/mdssys/cust/site/site/self-service-home.jsff.xml
oracle/iam/ui/homepage/home/pages/mdssys/cust/site/site/self-service-manage.jsff.xml
oracle/iam/ui/homepage/home/pages/mdssys/cust/site/site/self-service-
compliance.jsff.xml

3. Locate the oim:DashboardBox element in the XML file. The element looks similar to the
following:

Chapter 19
Customizing the Home Page

19-38



<oim:DashboardBox xmlns:oim="/componentLib1" instructionText="Attestations" 
titleText="Attestations" image="/images/Dashboard/myAccess.png" hoverImage="/images/
Dashboard/myAccess_s2.png" iconClickable="true" id="e85332379959"/>

4. Ensure that iconClickable is set to false.

5. Add new popupMenu f:facet element as child element of oim:DashboardBox, as follows:

<oim:DashboardBox xmlns:oim="/componentLib1" instructionText="Attestations" 
titleText="Attestations" image="/images/Dashboard/myAccess.png" hoverImage="/images/
Dashboard/myAccess_s2.png" iconClickable="false" id="e85332379959">
<f:facet xmlns:f="http://java.sun.com/jsf/core" name="popupMenu">
<af:menu xmlns:af="http://xmlns.oracle.com/adf/faces/rich" id="m8278911">
<af:commandMenuItem xmlns:af="http://xmlns.oracle.com/adf/faces/rich" 
text="Attestation Dashboard"
actionListener="#{backingBeanScope.dashboardNavigationBean.navigateAttestationDashboa
rd}"
id="cmi2478915"/>
<af:commandMenuItem xmlns:af="http://xmlns.oracle.com/adf/faces/rich" text="Pending 
Attestations"
actionListener="#{backingBeanScope.dashboardNavigationBean.navigatePendingAttestation
s}"
id="cmi2478916"/>
</af:menu>
</f:facet>
</oim:DashboardBox>

The menu can have as many command items as you want. The command menu items can
use one of the following:

• Generic actionListener
(#{backingBeanScope.dashboardNavigationBean.launchTaskFlow}) in conjunction with
clientAttributes, as shown in Launching a New Page From the Tile Icon.

• Custom actionListener, as described in Launching Taskflows.

• One of the following actionListeners to launch interfaces that are obsolete in this
release of Oracle Identity Manger, such as:

– Attestation Dashboard:
#{backingBeanScope.dashboardNavigationBean.navigateAttestationDashboard
}

– Pending Attestations:
#{backingBeanScope.dashboardNavigationBean.navigatePendingAttestations}

– Legacy Homepage:
#{backingBeanScope.dashboardNavigationBean.navigateHome}

Make sure the oim:DashboardBox now has opening and closing tags, as shown in the
example in this step. Also, ensure that component IDs are unique.

6. Save the jsff.xml, and re-create the sandbox ZIP file with the same name and structure as
the original ZIP file.

7. Import the sandbox to Oracle Identity Manager.

8. Verify the changes and functionality of the new Home page tile.

9. Publish the sandbox to make the changes available to all users.

Chapter 19
Customizing the Home Page

19-39



19.6.4 Showing Tiles Conditionally
By default, all the home page tiles are displayed. However, sometimes you might want to hide
some of the tiles from certain users. For example, you might want to hide the Provisioning
Tasks tile for end users.

To do so, select the Grid Cell component that contains the Provisioning Tasks tile, and use the
following EL for rendered property (shown as Show Component in Web Composer):

#{oimcontext.currentUser.adminRoles['OrclOIMSystemAdministrator'] != null}

See Showing or Hiding UI Components Conditionally for details.

19.7 Developing Managed Beans and Task Flows
To implement advanced customization in Oracle Identity Manager, you can develop new task
flows and managed beans by using JDeveloper IDE and then package them in the custom
WAR file, which is oracle.iam.ui.custom-dev-starter-pack.war.

This section describes advanced customization using managed beans and task flows. It
contains the following topics:

• Types of Managed Beans

• Prerequisites for Developing Managed Beans and Task Flows

• Setting Up the ViewController Project

• Setting Up a Model Project

• Adding Custom Managed Bean

• Deploying Custom Code to Oracle Identity Governance

• Using Managed Beans

• Using Managed Beans to Populate Request Attributes

• Using Public Taskflows

• Customizing Catalog Search

• Customizing Task Details Page for Approval Tasks

19.7.1 Types of Managed Beans
Managed beans can either be request beans or state beans.

The beans are of the following types:

• Request beans: New instance of the bean is created for every request. JSFF component
bindings and listeners are usually bound to request beans.

• State beans: Beans holding the state of the application, user session, or a particular flow.
Values of components, such as af:inputText, can be bound to state beans. State beans
must be serializable (implement java.io.Serializable) as ADF serializes/deserializes these
beans between requests.

19.7.2 Prerequisites for Developing Managed Beans and Task Flows

Chapter 19
Developing Managed Beans and Task Flows

19-40



Before developing a custom task details taskflow, you must have the following software
installed:

• Oracle Identity Governance 12c (12.2.1.3.0)

• JDeveloper 12c (install by running the SOA quick start installer 12.2.1.3.0)

Note:

The same task details taskflow can be used for multiple human tasks as long as the
human tasks have the same set of outcomes and share the same payload structure.
Therefore, different taskflows must be built for approvals, challenge, provide
information, and manual fulfillment tasks.

19.7.3 Setting Up the ViewController Project
Managed beans are created in a ViewController project. All your custom taskflows, pages, and
managed beans must be present in the ViewController project.

To setup the ViewController project:

1. Create a new JDeveloper application. To do so:

a. Start JDeveloper.

b. Select File, New.

c. Select Generic Application, and then click OK.

d. Provide the application name and directory, and then click Finish. The application is
created using a sample project.

e. To delete the sample project, right-click the project, and select Delete.

2. Setup the ViewController project. To do so:

a. Select File, New.

b. Find and select ADF ViewController Project, and then click OK.

c. Provide the project name, for example CustomUI, and project directory, and then click
Next.

d. Enter the default package name as oracle.iam.ui.custom, and then click Finish. The
new project is created.

3. Add Oracle Identity Manager libraries to the project classpath. To do so:

a. Right-click the new project, and select Project Properties.

b. On the left navigation bar, select Libraries and Classpath.

c. Click Add Library. Add ADF Model Runtime.

d. Click Add Library, click Load Dir, provide the path as IDM_HOME/server/jdev.lib,
and then click OK.

e. From the list of libraries, select the following:

• OIM View Shared Library

• OIM Model Shared Library

• OIM Client Library

Chapter 19
Developing Managed Beans and Task Flows

19-41



f. Click OK.

4. Define the deployment profile for the newly created ViewController project. To do so:

a. Right-click the project, and select Project Properties.

b. On the left navigation bar, select Deployment.

c. Delete any existing deployment profiles.

d. Click New, and select ADF Library JAR File as the archive type.

Note:

The ADF Library JAR File and JAR File archive types are different. Make
sure that you select the ADF Library JAR File archive type.

e. Provide and confirm the archive name, such as adflibCustomUI, and then click OK.

Your ViewController project setup is complete. You can now start adding custom taskflows,
pages, and managed beans.

Note:

Some examples in the consecutive sections in this document use the FacesUtils
class. For information about this class, see The FacesUtils Class.

19.7.4 Setting Up a Model Project
All your custom EOs/VOs and classes interacting directly with Oracle Identity Manager APIs
must be present in a model project.

To setup the model project:

1. Click File, New.

2. Find and select ADF Model Project, and then click OK.

3. Provide the Project Name, for example CustomModel, and Project Directory, and then click
Next.

4. Enter Default Package name as oracle.iam.ui.custom, and then click Finish. The new
project is created.

5. Add Oracle Identity Manager libraries to the project classpath:

a. Right-click the project, and select Project Properties.

b. On the left navigation bar, select Libraries and Classpath.

c. Click Add Library.

d. Click Load Dir, provide the path as IDM_HOME/server/jdev.lib, and then click OK.

e. From the list of libraries select the following:

• OIM Model Shared Library

• OIM Client Library

f. Click OK.

Chapter 19
Developing Managed Beans and Task Flows

19-42



6. Define the deployment profile for the newly created model project. To do so:

a. Right-click the project, and select Project Properties.

b. On the left navigation bar, select Deployment.

c. Delete any existing deployment profiles.

d. Click New, and select ADF Library JAR File as the archive type.

Note:

The ADF Library JAR File and JAR File archive types are different. Make
sure that you select the ADF Library JAR File archive type.

e. Provide and confirm the archive name, such as adflibCustomModel, and then click OK.

Your model project setup is complete. You can now start adding custom EOs, VOs, and
classes for interacting with Oracle Identity Manager APIs.

Note:

Some examples in the consecutive sections in this document use the FacesUtils
class. For information about this class, see The FacesUtils Class.

19.7.5 Adding Custom Managed Bean
Add your custom managed bean by creating a class and registering it with a taskflow.

To add your custom managed bean:

1. Right-click the ViewController project, and select New.

2. Select the Java Class category.

3. Provide the class name, for example CustomReqBean or CustomStateBean, and the
package name.

4. After creating the class, to register it with a taskflow:

a. If you are developing your own bounded task flow, then navigate to your task flow
definition file, and open it. Otherwise, locate the adfc-config.xml file in your
ViewController project, and open it.

b. Click the Overview tab, and select Managed Beans.

c. Add a new managed bean entry. To do so:

i) Provide managed bean name, for example customReqBean or customStateBean.
This is the name that you will later use to refer to an instance of your bean.

ii) Provide the managed bean class name.

iii) Provide the scope. For request beans use backingBean scope. For state beans,
use pageFlow scope.

Chapter 19
Developing Managed Beans and Task Flows

19-43



Note:

• The pageFlow scope beans are visible only in the taskflow for which they
are defined.

• To refer to your managed bean from JSFF/taskflow definition or other
places, you can use EL expression. For example, if you register your
bean under the name customReqBean and put the bean to backingBean
scope, then you can reference your bean by using the following EL
expression:

#{backingBeanScope.customReqBean}

If you put the bean to pageFlow scope, you can reference your bean by
using the following EL expression:

#{pageFlowScope.customStateBean}

19.7.6 Deploying Custom Code to Oracle Identity Governance
Deploy the custom code by adding your custom JAR file to the dev-starter-pack.war file and
updating the custom library in WebLogic Administration Console.

To deploy an ADF library JAR file produced by your custom model or ViewController projects:

1. Copy the oracle.iam.ui.custom-dev-starter-pack.war to a temporary location.

2. Open the oracle.iam.ui.custom-dev-starter-pack.war.

3. Add the custom jar file to the WEB-INF/lib directory. If the lib directory does not exist, then
create it.

4. Save the oracle.iam.ui.custom-dev-starter-pack.war file.

5. Copy the oracle.iam.ui.custom-dev-starter-pack.war file back to its original location in
the $OIM_ORACLE_HOME/server/apps/ directory.

6. Stop Oracle Identity Manager Managed Server.

7. In WebLogic Administration Console, update the oracle.iam.ui.custom library deployment,
and activate the changes.

8. Start Oracle Identity Manager Managed Server.

19.7.7 Using Managed Beans
You can develop managed beans to customize Oracle Identity Manager interface.

This section provides the following use cases for developing managed beans to customize
Oracle Identity Manager interface:

• Showing Components Conditionally

• Prepopulating Fields Conditionally

• Setting a Conditional Mandatory Field

• Implementing Custom Field Validation

• Implementing Custom Cascading LOVs

Chapter 19
Developing Managed Beans and Task Flows

19-44



• Customizing Forms By Using RequestFormContext

• Overriding the Submit Button in Request Catalog

• Launching Taskflows

• Creating an External Link

Note:

The examples in this section use the FacesUtils class. For information about this
class, see The FacesUtils Class.

19.7.7.1 Showing Components Conditionally
You can show or hide certain fields conditionally based on the values of other fields. For
example, to show the Contact Information panel on the Create User page only when the User
Type is Full-Time Employee, perform the following steps:

1. In your custom request bean, define properties for component bindings of the User Type
field and any parent component of the Contact Information panel, for example, the form
root panel. To do so, use the following code:

private UIComponent rootPanelPGL;
    private UIComponent userTypeSOC;
        
    public void setRootPanelPGL(UIComponent rootPanelPGL) {
        this.rootPanelPGL = rootPanelPGL;
    }
 
    public UIComponent getRootPanelPGL() {
        return rootPanelPGL;
    }
 
    public void setUserTypeSOC(UIComponent userTypeSOC) {
        this.userTypeSOC = userTypeSOC;
    }
 
    public UIComponent getUserTypeSOC() {
        return userTypeSOC;
    }

2. Create or extend existing valueChangeListener that will be invoked when user selects the
new value in the User Type list. To do so, use the following code:

Note:

The listener will refresh the form.

public void valueChangeListener(ValueChangeEvent valueChangeEvent) {        
        if (valueChangeEvent.getSource().equals(userTypeSOC)) {   
            // refresh form
            FacesUtils.partialRender(rootPanelPGL);
        }
    }

Chapter 19
Developing Managed Beans and Task Flows

19-45



3. Create a method that returns boolean value. The method will determine if the Contact
Information panel is to be displayed when the page is rendered. In this example, the
Contact Information panel will be shown if the User Type is Full-Time Employee.

The method is as follows:

private static final String USER_TYPE_ATTRIBUTE = "usr_emp_type__c";
    
    public boolean isFullTimeEmployeeUserTypeSelected() {
        // return true if value of "usr_emp_type__c" binding attribute equals to 
"Full-Time"
        // "usr_emp_type__c" binding attribute is used to display value of User Type 
in the User Type drop-down        
        return "Full-
Time".equals(FacesUtils.getListBindingValue(USER_TYPE_ATTRIBUTE, String.class));    
    }

4. Package and deploy the managed bean, as described in Deploying Custom Code to
Oracle Identity Governance.

5. To bind the code with JSFF:

a. Set component bindings for the User Type list and root panel components to point to
the properties that you defined.

b. Define the valueChangeListener for the User Type list.

Note:

Make sure that the autosubmit property is set to true for the User Type list.

c. Set EL expression for the rendered property, which is Show Component in Web
Composer, on the Contact Information panel to point to the
isFullTimeEmployeeUserTypeSelected() method defined in step 3.

Note:

Ignore if the following error is displayed while setting EL expression for the
rendered property:

"javax.faces.validator.ValidatorException:
java.lang.IllegalArgumentException: Control Binding 'usr_emp_type__c' not 
found"

19.7.7.2 Prepopulating Fields Conditionally
You prepopulate certain fields based on the values of other fields. For example, to prepopulate
values in the User Login and E-mail fields on the Create User page based on the values of the
First Name and Last Name fields, perform the following steps:

1. In your custom request bean, define properties for component bindings of First Name and
Last Name fields and any parent component of the User Login and E-mail fields, for
example, form root panel. To do so, use the following code:

private UIComponent firstNameIT;
    private UIComponent lastNameIT;
    private UIComponent rootPanelPGL;

Chapter 19
Developing Managed Beans and Task Flows

19-46



    
    public void setFirstNameIT(UIComponent firstNameIT) {
        this.firstNameIT = firstNameIT;
    }
 
    public UIComponent getFirstNameIT() {
        return firstNameIT;
    }
 
    public void setLastNameIT(UIComponent lastNameIT) {
        this.lastNameIT = lastNameIT;
    }
 
    public UIComponent getLastNameIT() {
        return lastNameIT;
    }
 
    public void setRootPanelPGL(UIComponent rootPanelPGL) {
        this.rootPanelPGL = rootPanelPGL;
    }
 
    public UIComponent getRootPanelPGL() {
        return rootPanelPGL;
    }

2. Create or extend existing valueChangeListener that will be invoked when the user updates
the First Name or Last Name fields. To do so, use the following code:

Note:

The listener will update User Login and E-mail accordingly and refresh the form.

private static final String USER_LOGIN_ATTRIBUTE = "usr_login__c";
    private static final String EMAIL_ATTRIBUTE = "usr_email__c";
    private static final String LAST_NAME_ATTRIBUTE = "usr_last_name__c";
    private static final String FIRST_NAME_ATTRIBUTE = "usr_first_name__c";
    
    public void valueChangeListener(ValueChangeEvent valueChangeEvent) {
        if (valueChangeEvent.getSource().equals(firstNameIT)) {
            // get new value of first name from the event
            String firstName = (String)valueChangeEvent.getNewValue();            
            // get existing value of last name through binding
            String lastName = 
FacesUtils.getAttributeBindingValue(LAST_NAME_ATTRIBUTE, String.class);
            setUserLoginAndEmail(firstName, lastName);
        } else if (valueChangeEvent.getSource().equals(lastNameIT)) {
            // get existing value of first name through binding
            String firstName = 
FacesUtils.getAttributeBindingValue(FIRST_NAME_ATTRIBUTE, String.class);            
            // get new value of last name from the event
            String lastName = (String)valueChangeEvent.getNewValue();
            setUserLoginAndEmail(firstName, lastName);
        }
        // refresh form
        FacesUtils.partialRender(rootPanelPGL);
    }
 
    private void setUserLoginAndEmail(String firstName, String lastName) {
        StringBuilder sb = new StringBuilder();        

Chapter 19
Developing Managed Beans and Task Flows

19-47



        if (firstName != null) {
            sb.append(firstName);
        }
        if (firstName != null && !firstName.isEmpty() && lastName != null && !
lastName.isEmpty()) {
            sb.append(".");
        }
        if (lastName != null) {
            sb.append(lastName);
        }
        String userLogin = sb.toString();
        // set new value for User Login and E-mail through binding
        FacesUtils.setAttributeBindingValue(USER_LOGIN_ATTRIBUTE, userLogin);
        FacesUtils.setAttributeBindingValue(EMAIL_ATTRIBUTE, userLogin + 
"@example.com");    
}

3. Package and deploy the managed bean, as described in Deploying Custom Code to
Oracle Identity Governance.

4. Add the code to the JSFF. To do so:

a. Set the component bindings for First Name, Last Name, and root panel to point to the
properties that you defined.

b. Define valueChangeListener for First Name and Last Name input texts, and make sure
that the autosubmit property is set to true on both input texts.

19.7.7.3 Setting a Conditional Mandatory Field
You can make a field conditionally mandatory based on the value of another field. For example,
to make the Manager field on the Create User page mandatory only if the User Type is Intern,
perform the following steps:

Note:

Enforcing field validation cannot be performed by setting the required property in
Web Composer. You must develop a managed bean to perform field validation, as
described in this section.

1. In your custom request bean, define properties for component bindings of the User Type
field and any parent component of Manager field, for example, form root panel. To do so,
use the following code:

private UIComponent rootPanelPGL;
    private UIComponent userTypeSOC;
        
    public void setRootPanelPGL(UIComponent rootPanelPGL) {
        this.rootPanelPGL = rootPanelPGL;
    }
 
    public UIComponent getRootPanelPGL() {
        return rootPanelPGL;
    }
 
    public void setUserTypeSOC(UIComponent userTypeSOC) {
        this.userTypeSOC = userTypeSOC;
    }
 

Chapter 19
Developing Managed Beans and Task Flows

19-48



    public UIComponent getUserTypeSOC() {
        return userTypeSOC;
    }

2. Create or extend existing valueChangeListener that will be invoked when user selects new
value in the User Type list. To do so, use the following code:

Note:

The listener will refresh the form.

public void valueChangeListener(ValueChangeEvent valueChangeEvent) {        
        if (valueChangeEvent.getSource().equals(userTypeSOC)) {   
            // refresh form
            FacesUtils.partialRender(rootPanelPGL);
        }
    }

3. Create a method that returns boolean value. The method determines whether or not the
field is mandatory. In this example, the Manager field will be marked as mandatory if User
Type is Intern.

The method is as follows:

    public boolean isInternUserTypeSelected() {
        // return true if value of "usr_emp_type__c" binding attribute equals to 
"Intern"
        // "usr_emp_type__c" binding attribute is used to display value of User Type 
in the User Type drop-down
return 
"Intern".equals(FacesUtils.getValueFromELExpression("#{bindings.usr_emp_type__c.attri
buteValue}", String.class));
    }

4. Package and deploy the managed bean, as described in Deploying Custom Code to
Oracle Identity Governance.

5. Add the code to the JSFF. To do so:

a. Set component bindings for the User Type list and root panel components to point to
the properties you defined.

b. Define valueChangeListener for the User Type list. Make sure that the autosubmit
property is set to true for the User Type list.

c. Set EL expression for the required property on the Manager field to point to the
isInternUserTypeSelected() method defined is step 3.

d. Set EL expression for the Show required property on the Manager field
panelLabelAndMessage to point to the isInternUserTypeSelected() method defined is
step 3.

19.7.7.4 Implementing Custom Field Validation
Custom field validation can be implemented using managed beans.

This section describes how to implement custom field validation using custom managed beans.
It contains the following topics:

• Custom Field Validation and Managed Beans

Chapter 19
Developing Managed Beans and Task Flows

19-49



• Implementing Custom Field Validation Using Managed Beans

• Setting the Validator Property

19.7.7.4.1 Custom Field Validation and Managed Beans
Managed beans can be used to introduce custom validations. For example, you can implement
the following validations for the Start Date and End Date fields on the Account Effective Dates
panel of the Create User page:

• Start Date cannot be after End Date.

• The interval between Start Date and End Date cannot exceed 180 days for Contractors.

19.7.7.4.2 Implementing Custom Field Validation Using Managed Beans
To implement custom validation using Managed Beans:

1. In your custom request bean, define properties for component bindings of the Start Date
and End Date fields, as shown:

private UIComponent startDateID;
private UIComponent endDateID;
 
public void setStartDateID(UIComponent startDateID) {
    this.startDateID = startDateID;
}
 
public UIComponent getStartDateID() {
    return startDateID;
}
 
public void setEndDateID(UIComponent endDateID) {
    this.endDateID = endDateID;
}
 
public UIComponent getEndDateID() {
    return endDateID;
}

2. Add method for validation in your managed bean that will be invoked when the user selects
new value for the Start Date or End Date field. The validator generates an error message
when validation fails and attaches it to the field being updated. To do so, use the following
code:

private static final String START_DATE_END_DATE_VALIDATION_MSG = "Start Date - End 
Date interval cannot exceed 180 days for Contractors.";
    private static final String START_DATE_AFTER_END_DATE_VALIDATION_MSG = "Start 
Date cannot be after End Date.";
 
    private static final String USER_TYPE_ATTRIBUTE = "usr_emp_type__c";
    private static final String START_DATE_ATTRIBUTE = "usr_start_date__c";
    private static final String END_DATE_ATTRIBUTE = "usr_end_date__c";
    
    public void validator(FacesContext facesContext, UIComponent uiComponent, Object 
object) {
        if (uiComponent.equals(startDateID)) {
            // get value of End Date through binding
            oracle.jbo.domain.Date jboEndDate = 
FacesUtils.getAttributeBindingValue(END_DATE_ATTRIBUTE, 
oracle.jbo.domain.Date.class);
            // only validate if both Start Date and End Date are set
            if (jboEndDate != null) {

Chapter 19
Developing Managed Beans and Task Flows

19-50



                // value of Start Date is passed to validator
                Date startDate = ((oracle.jbo.domain.Date)object).getValue();
                Date endDate = jboEndDate.getValue();
                validateStartDateEndDate(facesContext, uiComponent, startDate, 
endDate);
            }
        } else if (uiComponent.equals(endDateID)) {
            // get value of Start Date through binding
            oracle.jbo.domain.Date jboStartDate = 
FacesUtils.getAttributeBindingValue(START_DATE_ATTRIBUTE, 
oracle.jbo.domain.Date.class);
            // only validate if both Start Date and End Date are set
            if (jboStartDate != null) {
                Date startDate = jboStartDate.getValue();
                // value of End Date is passed to validator
                Date endDate = ((oracle.jbo.domain.Date)object).getValue();
                validateStartDateEndDate(facesContext, uiComponent, startDate, 
endDate);
            }
        }
    }
 
    private void validateStartDateEndDate(FacesContext facesContext, UIComponent 
uiComponent, Date startDate, Date endDate) {
        Date startDatePlus180Days = new Date(startDate.getTime() + 180L * 24 * 60 * 
60 * 1000);
        if (startDate.after(endDate)) {
            // queue error message for the component which is being validated 
(either Start Date or End Date)
            facesContext.addMessage(uiComponent.getClientId(facesContext),
                                    new FacesMessage(FacesMessage.SEVERITY_ERROR, 
START_DATE_AFTER_END_DATE_VALIDATION_MSG, null));
        } else if (isContractorUserTypeSelected() && 
startDatePlus180Days.before(endDate)) {
            // queue error message for the component which is being validated 
(either Start Date or End Date)
            facesContext.addMessage(uiComponent.getClientId(facesContext),
                                    new FacesMessage(FacesMessage.SEVERITY_ERROR, 
START_DATE_END_DATE_VALIDATION_MSG, null));
        } else {
            // re-render -- in case there was an error message in queue for any of 
the two components it will be released
            FacesUtils.partialRender(startDateID);
            FacesUtils.partialRender(endDateID);
        }
    }
 
    public boolean isContractorUserTypeSelected() {
        // return true if value of "usr_emp_type__c" binding attribute equals to 
"Contractor"
        // "usr_emp_type__c" binding attribute is used to display value of User Type 
in the User Type drop-down
        return 
"Contractor".equals(FacesUtils.getListBindingValue(USER_TYPE_ATTRIBUTE, 
String.class));
    }

Chapter 19
Developing Managed Beans and Task Flows

19-51



See Also:

The FacesUtils Class for more information about the FacesUtils class

3. Package and deploy the managed bean, as described in Deploying Custom Code to
Oracle Identity Governance.

4. Bind the code to the JSFF. To do so:

a. Set component bindings for the Start Date and End Date fields to point to the
properties that you defined.

b. Define EL expression for validator property on Start Date and End Date fields to point
to the validator method that you defined in step 2. For example:

<mds:attribute name="binding" 
value="#{backingBeanScope.validatorBean.startDateID}"/>
      <mds:attribute name="validator" 
value="#{backingBeanScope.validatorBean.validator}"/>

Note:

The validator property cannot be added directly by using the Web Composer.
This must be set manually in the MDS file for the JSFF, as described in 
Setting the Validator Property.

19.7.7.4.3 Setting the Validator Property
The validator property cannot be added directly by using the Web Composer. This must be set
manually in the MDS file for the JSFF. To do so:

1. Export the sandbox after setting component bindings for the Start Date and End Date fields
by using the Web Composer.

2. Extract the contents of the ZIP file and locate the XML file for the form on which Start Date
and End fields are modified. For example, the XML file for the Create User form is
oracle/iam/ui/runtime/form/view/pages/mdssys/cust/site/site/userCreateForm.jsff.xml.

3. In a text editor, open the XML file and set validator for StartDate and EndDate fields. For
Example:

<mds:modify element="_xg_36">
       <mds:attribute name="binding" 
value="#{backingBeanScope.validatorBean.startDateID}"/>
      <mds:attribute name="validator" 
value="#{backingBeanScope.validatorBean.validator}"/>
   </mds:modify>
   <mds:modify element="_xg_13">
      <mds:attribute name="binding" 
value="#{backingBeanScope.validatorBean.endDateID}"/>
      <mds:attribute name="validator" 
value="#{backingBeanScope.validatorBean.validator}"/>
   </mds:modify>

4. Save the changes, repackage the ZIP file (the sandbox archive), and then import it back to
your environment.

Chapter 19
Developing Managed Beans and Task Flows

19-52



19.7.7.5 Implementing Custom Cascading LOVs
Cascading LOVs are LOV components for which the list of values in one component is
dependent on the currently selected value in another component. For example, based on the
selected value in the User Type list on the Create User page, you might want to display the Job
Code list or another LOV component whose list of values is dependent on the currently
selected value in the User Type list.

The following are the high-level guidelines to implement custom cascading LOVs:

1. Define component binding for the User Type field and any parent component of Job Code,
for example, form root panel.

2. Implement the model for Job Code LOV component by ensuring the following:

• The model must take into account the current value of the User Type field.

• For af:selectOneChoice, you must implement a method that returns
List<javax.faces.model.SelectItem>.

• For af:inputListOfValues, you must implement a method that returns an instance of
oracle.adf.view.rich.model.ListOfValuesMode.

See Also:

Using List-of-Values Components in the Web User Interface Developer's Guide
for Oracle Application Development Framework for information about using a
LOV component to display a model-driven list of objects from which a user can
select a value

3. Implement valueChangeListener for the User Type field. Set the autosubmit property to
true for the User Type field.

valueChangeListener must update model of Job Code LOV component with the current
value of the User Type field. In addition, valueChangeListener must re-render the form so
that Job Code LOV component is updated with the current list of values.

19.7.7.6 Customizing Forms By Using RequestFormContext
You can customize forms by using the RequestFormContext bean.

This section describes the RequestFormContext bean and how to use it to customize forms. It
contains the following topics:

• The RequestFormContext Bean

• Using the RequestFormContext Bean

19.7.7.6.1 The RequestFormContext Bean
RequestFormContext is a bean available in the pageFlowScope of entity form details taskflow.
The entity forms include user form, application instance form, role form, and entitlement form.
The instance provides various context information. Using this context information, you can
customize various forms based on specific business requirements.

You can get an instance of the class by using Java code, as shown:

RequestFormContext.getCurrentInstance();

Chapter 19
Developing Managed Beans and Task Flows

19-53



You can also get an instance of the class by using EL, as shown:

#{pageFlowScope.requestFormContext}

RequestFormContext provides the following context information:

• operation: The operation that is being performed on the entity. The possible values are
CREATE and MODIFY.

• actionType: The action that is being performed by the user when the entity form is
displayed. The possible values are: APPROVAL, FULFILL, REQUEST, VIEW, SUMMARY.

• bulk: Whether or not it is a bulk operation.

• beneficiaryIds: The list of beneficiary or target user IDs. For example, if you are
requesting an application instance for the user John Doe, then the list contains the user ID
of John Doe.

• cartItemIds: The list of cart item IDs. For example, if you are requesting an application
instance for a user, then the list contains the application instance ID that is being
requested.

• requestEntityType: The entity type being requested, which is any one of ROLE,
ENTITLEMENT, APP_INSTANCE, USER.

• requestEntitySubType: The subtype of entity being requsted. For example, when
requesting for an application instance, the requestEntitySubType is the application
instance key.

• instanceKey: The key of the instance being modified.

19.7.7.6.2 Using the RequestFormContext Bean
This section describes the following example usage of the RequestFormContext bean:

You might want to add new Prepopulate button to the Create Application Instance form, and
make the button visible only when there is only one target user. When the button is clicked,
some of the application instance fields, such as User Login, First Name, and Last Name) will
be prepopulated based on the current target user. To achieve this:

1. In your custom request bean, define properties for component bindings of the Prepopulate
button and the form root panel, as shown:

private UIComponent rootPanel;
    private UIComponent prepopulateButton;
        
    public void setRootPanel(UIComponent rootPanel) {
        this.rootPanel = rootPanel;
    }
 
    public UIComponent getRootPanel() {
        return rootPanel;
    }
 
    public void setPrepopulateButton(UIComponent prepopulateButton) {
        this.prepopulateButton = prepopulateButton;
    }
 
    public UIComponent getPrepopulateButton() {
        return prepopulateButton;
    }

2. Implement an actionListener that will be invoked when the Prepopulate button is clicked.
The actionListener uses the target user ID and fetches user data, such as First Name and

Chapter 19
Developing Managed Beans and Task Flows

19-54



Last Name, by using Oracle Identity Manager API. Use the fetched data, and set certain
application instance attributes through attribute binding, and finally refresh the form so that
new values are displayed. The actionListener is as shown:

private static final String
ACCOUNT_LOGIN_ATTRIBUTE = "UD_EBS2722_LOGIN__c";
    private static final String ACCOUNT_ID_ATTRIBUTE = "UD_EBS2722_ACCOUNTID__c";
    private static final String FIRST_NAME_ATTRIBUTE = "firstName__c";
    private static final String LAST_NAME_ATTRIBUTE = "lastName__c";
public void actionListener(ActionEvent e) {
        if (e.getSource().equals(prepopulateButton)) {
            RequestFormContext requestFormContext = 
RequestFormContext.getCurrentInstance();
            List<String> beneficiaryIds = requestFormContext.getBeneficiaryIds();
            if (beneficiaryIds.size() == 1) {
                // prepopulate fields based on selected beneficiary
                User user = getUser(beneficiaryIds.get(0));
                FacesUtils.setAttributeBindingValue(ACCOUNT_LOGIN_ATTRIBUTE, 
user.getLogin());
                FacesUtils.setAttributeBindingValue(ACCOUNT_ID_ATTRIBUTE, 
user.getId());
                FacesUtils.setAttributeBindingValue(FIRST_NAME_ATTRIBUTE, 
user.getFirstName());
                FacesUtils.setAttributeBindingValue(LAST_NAME_ATTRIBUTE, 
user.getLastName());
            }
        }
        FacesUtils.partialRender(rootPanel);
    }
 
    private User getUser(String userId) {
        UserManager userManager = OIMClientFactory.getUserManager();
        try {
            return userManager.getDetails(userId, null, false);
        } catch (NoSuchUserException e) {
            throw new RuntimeException(e);
        } catch (UserLookupException e) {
            throw new RuntimeException(e);
        }
    }

3. Create a method that returns Boolean value. The method determines if the Prepopulate
button is to be displayed when the form is rendered. In this example, the Prepopulate
button will be displayed when the number of target users is equal to 1. The method is as
follows:

public boolean isPrepopulateButtonRendered() {
        RequestFormContext requestFormContext = 
RequestFormContext.getCurrentInstance();
        return requestFormContext.getActionType() == 
RequestFormContext.ActionType.REQUEST && 
requestFormContext.getBeneficiaryIds().size() == 1;
    }

4. Package and deploy the managed bean. See Deploying Custom Code to Oracle Identity
Governance for information about deploying the managed bean.

5. Bind the code with JSFF. To do so:

a. Add a Prepopulate button to the Create Application Instance form.

b. Set bindings for the Prepopulate button and the root panel.

Chapter 19
Developing Managed Beans and Task Flows

19-55



c. Set the Prepopulate button actionListener property to point to the actionListener
method implemented in step 2.

Note:

The actionListener property cannot be set by using the Web Composer. This
must be set manually as follows:

i. Export the sandbox.

ii. Edit the JSFF to set the actionListener attribute value. For example:

<mds:attribute name="actionListener" 
value="#{backingBeanScope.accountFormReqBean.submitButtonActionListe
ner}"/>)

iii. Import the updated sandbox.

This procedure is applicable to setting the actionListener property in all the
examples in this document.

d. Set the rendered property to point to the isPrepopulateButtonRendered() method
implemented in step 3.

19.7.7.7 Overriding the Submit Button in Request Catalog
You can override the Submit button in the request catalog and execute additional logic based
on your requirements. For example, to add additional check for number of target users or
beneficiaries when submitting a request, and allow submitting the request when the number of
beneficiaries is not more than five.

To do so, perform the following steps:

1. Implement actionListener that will override the original Submit button.

The actionListener will be invoked when the user clicks the Submit button. The
actionListener performs the extra check and either display error messages or executes the
original actionListener bound to the Submit button. Original Submit button actionListener
can be executed using the following EL expression:

#{backingBeanScope.cartReqBean.submitActionListener}

The actionListener code is as shown:

private static final String MORE_THAN_FIVE_TARGET_USERS_MSG = "Cannot submit request 
for more than five target users.";
public void submitButtonActionListener(ActionEvent e) {
        // only submit request if there is no more than 5 beneficiaries
        Boolean moreThanFiveTargetUsers = 
FacesUtils.getValueFromELExpression("#{backingBeanScope.cartReqBean.targetUserSize > 
5}", Boolean.class);
        if (moreThanFiveTargetUsers) {
            // display error message
            FacesMessage fm = new FacesMessage();
            fm.setSeverity(FacesMessage.SEVERITY_ERROR);
            fm.setSummary(MORE_THAN_FIVE_TARGET_USERS_MSG);
            FacesUtils.showFacesMessage(fm);
        } else {
            // execute original submit button action listener
            MethodExpression originalActionListener =
                

Chapter 19
Developing Managed Beans and Task Flows

19-56



FacesUtils.getMethodExpressionFromEL("#{backingBeanScope.cartReqBean.submitActionList
ener}", null, new Class[] { ActionEvent.class });
            originalActionListener.invoke(FacesUtils.getELContext(), new Object[] 
{ e });
        }    
    }

2. Update the Submit button actionListener property to point to the new actionListener
implementation.

Note:

Along with information about the request submitted, OperationResult also
contains information about any Policy Violations in the submitted request. A new
public VO(SodResult:[entityname, entityId, isSodViolationPresent])
value has been included in OperationResult that will help customize the Submit
with Violation button.

19.7.7.8 Launching Taskflows
You can create your custom UI taskflow and launch them.

This section describes how to launch taskflows and how to add your own UI or taskflows. It
contains the following topics:

• Launching a Taskflow in Self Service

• Adding Custom Taskflow

19.7.7.8.1 Launching a Taskflow in Self Service
You can launch a taskflow in the Self Service interface. For example, if you want to launch a
tab with a bounded taskflow running in it, then perform the following steps:

1. Develop a custom managed bean with the following method, which is also called action
listener:

public void launchMyTaskFlow(ActionEvent evt){
       
User user = OIMClientFactory.getAuthenticatedSelfService().getProfileDetails(null);
       String taskFlowId = "/WEB-INF/oracle/iam/ui/taskflows/public/tfs/user-details-tf.xml#user-
details-tf";
       // This id uniquely identifies the taskflow after launch. Add a suffix, for example 
entityPrimaryKey, to make it unique.
       String id = "user-detail-tf";  
       String name = user.getDisplayName() ;  // this is shown as the tab title
       String description = ""; // Add any suitable description
       String icon = "/images/user.png";
       String  helpTopicId = ConstantsDefinition.DEFAULT_HELP_TOPIC_ID; // Or your custom OHW 
integrated help topic id
       boolean inDialog = false;
       Map params = new HashMap();  // These are your taskflow's input parameters being passed from 
this launcher method
       params.put("userLogin",  user.getLogin());   
 
       String jsonPayLoad = TaskFlowUtils.createContextualEventPayLoad(id, taskFlowId, name, icon, 
description, helpTopicId, inDialog, params);

Chapter 19
Developing Managed Beans and Task Flows

19-57



       TaskFlowUtils.raiseContextualEvent(TaskFlowUtils.RAISE_TASK_FLOW_LAUNCH_EVENT, jsonPayLoad);
 }

Note:

The above code snippet uses the user details public taskflow to display the user
details when the user login is provided. For a list of available public taskflows that
you can use for customization of UI, see Using Public Taskflows.

Package and deploy the managed bean, as described in Deploying Custom Code to
Oracle Identity Governance.

2. Using sandbox and Web Composer customization, add an ADF CommandLink to the
correct page (JSFF file). Open the sandbox zip, and edit the jsff.xml to bind actionListener
for that link to the managed bean method.

3. Ensure that the page definition of the jsff has the raiseTaskFlowLaunchEvent binding. To
find the name of the page definition file, you first need to know the name of the jsff page on
which you have the launch link.

If your launch link is on a custom jsff page, for example, your page name is my-custom.jsff,
then look for a file named my-custom_pageDef.xml within the same JDev project. JDev
automatically creates this file for each jsff. You must add the following eventBinding into
this pageDef xml file:

<eventBinding id="raiseTaskFlowLaunchEvent">
      <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
        <event name="oracle.idm.shell.event.TaskFlowLaunchEvent"/>
      </events>
    </eventBinding>

Note:

Existing Oracle Identity Manager pages already contain the eventBinding. You
must define the eventBinding for JSFF pages that you build.

19.7.7.8.2 Adding Custom Taskflow
Oracle Identity Manager allows you to add your own UI or taskflows, such as goLink,
commandLink, commandButton, or launch a taskflow. Perform the following steps to add your
custom UI or taskflow:

1. Write a managed bean and register using adfc-config.xml in oracle.iam.ui.custom-dev-
starter-pack.war.

2. Add a new commandLink or commandButton on the page where you want to display the
link or button by using Web Composer.

3. Set the actionListener property of the link or button component that you added to point to
the actionListener method.

4. Raise the contextual event using the managed bean, which will be handled by Oracle
Identity Manager. The taskflow is launched.

Chapter 19
Developing Managed Beans and Task Flows

19-58



19.7.7.9 Creating an External Link
To add a link or button that redirects the user to a certain URL:

1. In your custom request bean, create the following actionListener that will be invoked when
the user clicks a link or button:

public void actionListener(ActionEvent e) {
        FacesUtils.redirect("http://www.oracle.com");
    }

2. Package and deploy the managed bean. See Deploying Custom Code to Oracle Identity
Governance for information.

3. Add a new commandLink or commandButton to the page on which you want to display the
link or button by using Web Composer. See Adding a Link or Button for details.

4. Set the actionListener property of the link or button component that you added to point to
the actionListener method.

19.7.8 Using Managed Beans to Populate Request Attributes
Request attributes can be populated by using managed beans or by using the prepopulate
plug-in.

This section describes the following approaches for populating request attributes:

• Populating Request Attributes Using Managed Beans

• Populating Request Attributes by Using the Prepopulate Plug-in

19.7.8.1 Populating Request Attributes Using Managed Beans
Populating request attributes by using managed beans is done by creating a managed bean,
deploying it to the placeholder library, and customizing the UI to add the button to the page.

This section contains the following topics:

• Approach Taken to Populate Request Attributes Using Managed Beans

• Creating the Java Class

• Declaring the PrePopulateMBean Class

• Deploying the View Controller Project and Custom Code

• Customizing the UI to Add the Button

• Configuring the Properties of the Prepopulate Button

• Testing the Customization

19.7.8.1.1 Approach Taken to Populate Request Attributes Using Managed Beans
This approach involves creating a managed bean that gets invoked when the user clicks a
custom button. The managed bean must be deployed to the Oracle Identity Manager
customization placeholder library, which is oracle.iam.ui.custom-dev-starter-pack.war. The
button, referred to as the Prepopulate button, is part of the UI customization and must be
manually added to the page by using Web Composer.

The managed bean code is responsible for fetching the information to be populated in the
request form. It uses Oracle Identity Manager APIs to get the beneficiary information from the

Chapter 19
Developing Managed Beans and Task Flows

19-59



request and from the user management layer, and uses JSF/ADF APIs to update the request
form UI components.

19.7.8.1.2 Creating the Java Class
To populate request attributes by using managed beans, you must first create the Java class.
To do so:

1. Create the JDev application workspace and project, as described inSetting Up the
ViewController Project.

2. Create a Java class. In this example, the complete class name is
com.oracle.demo.iam.prepop.view.PrePopulateMBean. This class contains:

• Two member variables that hold references to the UI components, the custom
Prepopulate button and its parent container.

• Accessor methods (get and set) for the variables member variables.

• An action listener type method to be invoked when the user clicks the custom
Prepopulate button.

• A method that returns a boolean value determines when the custom Prepopulate
button must be disabled

The custom code for this example is:

public class PrePopulateMBean {
 
    private UIComponent rootPanel;
    private UIComponent prepopulateButton;
 
    public PrePopulateMBean() {
        super();
    }
 
    public void setRootPanel(UIComponent rootPanel) {
        this.rootPanel = rootPanel;
    }
 
    public UIComponent getRootPanel() {
        return rootPanel;
    }
 
    public void setPrepopulateButton(UIComponent prepopulateButton) {
        this.prepopulateButton = prepopulateButton;
    }
 
    public UIComponent getPrepopulateButton() {
        return prepopulateButton;
    }
 
    public boolean isPrepopulateButtonRendered() {
        
        boolean ret = false;   
        RequestFormContext requestFormContext = 
RequestFormContext.getCurrentInstance();
        if (requestFormContext != null) {
            
            boolean isActionRequest   = (requestFormContext.getActionType() == 
RequestFormContext.ActionType.REQUEST);
            boolean singleUserRequest = false;
 

Chapter 19
Developing Managed Beans and Task Flows

19-60



            if (requestFormContext.getBeneficiaryIds()!=null) {
                singleUserRequest = (requestFormContext.getBeneficiaryIds().size() 
== 1);
            }
            ret = isActionRequest && singleUserRequest;
        }    
        return (ret);            
    }
 
    public void actionListener(ActionEvent e) {
 
        if (e.getSource().equals(prepopulateButton)) {
            
            RequestFormContext requestFormContext = 
RequestFormContext.getCurrentInstance();
            List<String> beneficiaryIds = requestFormContext.getBeneficiaryIds();
            
            if (beneficiaryIds.size() == 1) {
                
                try {
                    User user = getUser(beneficiaryIds.get(0));
                    FacesUtils.setAttributeBindingValue("UD_OID_USR_FNAME__c", 
user.getFirstName());
                    FacesUtils.setAttributeBindingValue("UD_OID_USR_LNAME__c", 
user.getLastName());
 
                } catch (NoSuchUserException f) {
                    f.printStackTrace();
                } catch (UserLookupException f) {
                    f.printStackTrace();
                }
            }
        }
        FacesUtils.partialRender(rootPanel);
    }
 
    private User getUser(String userKey) throws NoSuchUserException, 
UserLookupException {
        
        UserManager userMgr = OIMClientFactory.getUserManager();
        
        HashSet<String> searchAttrs = new java.util.HashSet<String>();
        searchAttrs.add(AttributeName.USER_LOGIN.getId());
        searchAttrs.add(AttributeName.LASTNAME.getId());
        searchAttrs.add(AttributeName.FIRSTNAME.getId());
        
        return userMgr.getDetails(userKey,searchAttrs, false);
    }
}

In the code for the Java class:

• The isPrepopulateButtonRendered method returns true if a RequestContext is
available, and if there is only one request beneficiary. The check on the
RequestContext availability is required to avoid issues at the time of customization.
This method is invoked when the custom Prepopulate button is loaded, or its container
is refreshed.

• The actionListener method executes a user search in Oracle Identity Manager by
invoking the getUser method, which uses the request beneficiary information. Then, it
directly sets values on the UD_OID_USR_FNAME__c and UD_OID_USR_LNAME__c
UI components with the information returned from the user search, and invokes a

Chapter 19
Developing Managed Beans and Task Flows

19-61



partial rendering on the rootPanel. This is the panel that holds the custom button and
the request form. The partial rendering will display the values in the respective fields. It
is important to mention here that this custom code contains a direct reference to the UI
components, and that these direct references can be found by exporting the sandbox.
This method is invoked when the custom Prepopulate button is loaded or its container
refreshed.

• The FacesUtil class is responsible for rendering the UI changes. See The FacesUtils
Class for the code for this class.

19.7.8.1.3 Declaring the PrePopulateMBean Class
Declare the PrePopulateMBean class as a managed bean in the JDev project. This makes the
MBean available in the UI so that it can be invoked by using EL expressions. To configure this,
specify the following values in the Managed Beans section of the View Controller project:

• Name: prepopMBean

• Class: com.oracle.demo.iam.prepop.view.PrePopulateMBean

• Scope: backingBean

19.7.8.1.4 Deploying the View Controller Project and Custom Code
To deploy the View Controller project and the custom code:

1. Deploy the View Controller project as an ADF library JAR file. This type of deployment can
be created in JDeveloper through the deployment profiles option. The deployment
generates a JAR file. Copy this file into oracle.iam.ui.custom-dev-starter-pack.war, which is
Oracle Identity Manager placeholder library. This file is available along with the other
Oracle Identity Manager application packages, such as EAR and WAR files, at
the $OIM_ORACLE_HOME/server/apps/ directory. Create a backup of this file before
modifying it.

2. Deploy the custom code. See Deploying Custom Code to Oracle Identity Governance for
information.

19.7.8.1.5 Customizing the UI to Add the Button
To manually add the Prepopulate button by customizing the UI:

1. In Oracle Identity Self Service, create and activate a sandbox. In this example, the
sandbox name is RequestPrePop.

2. Navigate to the access catalog.

3. Search for the specific application instance to be customized. In this example, the
application instance is called Local OID. Add the application instance to the cart, and click
Checkout.

4. Click Customize.

5. Select Structure to open the component tree.

6. In the Cart Items and Details sections of the page, click close to the Details label. Make
sure that the showDetailHeader:Details component is selected.

7. Click Edit. In the dialog box that opens, edit the Binding property, and configure the
following EL using the Expression Builder:

#{backingBeanScope.prepopMBean.rootPanel}

Chapter 19
Developing Managed Beans and Task Flows

19-62



This expression bind will make the UI invoke the setRootPanel method in the custom
managed bean. Click OK.

8. Make sure that the showDetailHeader:Details component is selected. Click Add Content.

9. Scroll down, and open the Web Components section.

10. Click Add on the right of the Command Toolbar Button component. A button is added on
the Details section.

11. Click the button, and then click Edit.

12. Edit the Text property, and set PrePopulate as the label.

13. Edit the Binding property and configure the following EL using the Expression Builder:

#{backingBeanScope.prepopMBean.prepopulateButton}

This bind is for invoking the setPprepopulateButton method in the custom managed bean.
Click OK.

14. Edit the Disabled property, and configure the following EL by using the Expression Builder:

#{!backingBeanScope.prepopMBean.prepopulateButtonRendered}

This is to invoke the isPrepopulateButtonRendered method in the managed bean. Click
Ok.

15. Click the Style tab. Set the Width property to 100, and the Margin - Left property to 100.
Click OK. This configuration will properly place the PrePopulate button in the UI.

16. Exit the customization mode by clicking Close.

19.7.8.1.6 Configuring the Properties of the Prepopulate Button
To manually configure the properties of the Prepopulate button:

1. Navigate to the Sandbox page. De-activate and export the sandbox.

2. Save the sandbox ZIP file in the local file system.

3. Extract the ZIP file. In a text editor, open the XML file corresponding to the customization.
In this example, the file is oracle/iam/ui/runtime/form/view/pages/mdssys/cust/site/site/
OIDUserFormCreateForm.jsff.xml.

4. Search for the section defining the custom Prepopulate button, which can be similar to the
following:

<af:commandToolbarButton xmlns:af="http://xmlns.oracle.com/adf/faces/rich" 
id="e8829502064" binding="#{backingBeanScope.prepopMBean.prepopulateButton}" 
text="PrePopulate"

5. Add the actionListener property to the custom Prepopulate button, as shown:

actionListener="#{backingBeanScope.prepopMBean.actionListener}
6. Save the file and repackage the ZIP. Make sure that the path is preserved when repacking

the contens.

7. Import the sandbox, and import the ZIP file. Make sure that the sandbox is not active when
importing it.

8. Activate the sandbox.

19.7.8.1.7 Testing the Customization
To test the UI customization:

Chapter 19
Developing Managed Beans and Task Flows

19-63



1. Navigate to the Catalog, find the application instance and add it do the shopping cart.

2. In the cart summary page, the custom Prepopulate button is displayed.when clicking on it,
the First Name and Last Name fields will be updated with the beneficiary's information

3. Click the Prepopulate button. The First Name and Last Name fields are updated with the
beneficiary's information.

4. Publish the sandbox.

19.7.8.2 Populating Request Attributes by Using the Prepopulate Plug-in
Prepopulate plug-ins can be used when the same logic is to be executed for both UI and API
request creation, and can also be used when a UI interaction is not required. In this approach,
a plug-in is present for each attribute that must be prepopulated in the request. The same plug-
in can be used across different resources and different attributes.

The plug-in code implements the oracle.iam.request.plugins.PrePopulationAdapter interface.
The following is an example code:

package com.oracle.demo.iam.prepop.plugin;
 
import java.io.Serializable;
 
import java.util.HashSet;
import java.util.List;
 
import oracle.iam.identity.usermgmt.api.UserManager;
import oracle.iam.identity.usermgmt.api.UserManagerConstants.AttributeName;
import oracle.iam.identity.usermgmt.vo.User;
import oracle.iam.platform.Platform;
import oracle.iam.request.vo.Beneficiary;
import oracle.iam.request.vo.RequestData;
 
public class UserLoginPrePop implements oracle.iam.request.plugins.PrePopulationAdapter {
 
    public UserLoginPrePop() {
        super();
    }
 
    public Serializable prepopulate(RequestData requestData) {
 
        String prePopUserId = null;
 
        List<Beneficiary> benList = requestData.getBeneficiaries();
        
        if(benList.size()==1){
            
            UserManager  usersvc = Platform.getService(UserManager.class);
            
            for(Beneficiary benf: benList){
                                        
                HashSet<String> searchAttrs = new java.util.HashSet<String>();
                searchAttrs.add(AttributeName.USER_LOGIN.getId());
            
                try {
                    User userBenef = 
usersvc.getDetails(benf.getBeneficiaryKey(),searchAttrs, false);
                    if (userBenef!= null) {
                        prePopUserId = userBenef.getLogin();        
                    }
                } catch (Exception e) {

Chapter 19
Developing Managed Beans and Task Flows

19-64



                    e.printStackTrace();
                }
            }
        }
        return prePopUserId;
    }
}

A prepopulate plug-in is similar to any other plug-in in Oracle Identity Manager. The plug-in
class is compiled and deployed to a JAR file. The JAR file must be added to a ZIP file in the lib
directory. The ZIP file must contain in the root path a XML file declaring the plug-in. The XML
used in this example is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<oimplugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <plugins pluginpoint="oracle.iam.request.plugins.PrePopulationAdapter">
 <plugin pluginclass= "com.oracle.demo.iam.prepop.plugin.UserLoginPrePop" version="1.0" 
name="UserLoginPrePop">
  <metadata name="PrePopulationAdapater">
   <value>OracleDBUMForm::Username|OIDUserForm::User ID</value>
  </metadata>
 </plugin>
</plugins>
</oimplugins>

In the XML code:

• The xmlns tag attribute must be present in the XML. Otherwise, the plug-in is not invoked
by Oracle Identity Manager.

• The value in the pluginpoint element must be
oracle.iam.request.plugins.PrePopulationAdapter.

• The metadata tag contains a value child node. This value child node must contain the pairs
of FormName::AttributeName. Each pair indicates a form attribute that will be populated by
the prepopulate plug-in. In this example, such attributes are Username in the
OracleDBUMForm form and User ID in the OIDUserForm form. The form names are
configured when the ApplicationInstances and their forms were created, and not the
process form created when the connector is imported into Oracle Identity Manager.

The prepopulate plug-in can be deployed to the $OIM_HOME/server/plugins/ directory, or it
can be registered using the plug-in registration script. In production environments, it is always
recommended to deploy the plug-in by using the command line so that the plug-in Zip file is
uploaded to the database.

19.7.9 Using Public Taskflows
Oracle Identity Manager provides default taskflows for using them in the customized pages of
Oracle Identity Self Service and to invoke other taskflows.

This section describes the public taskflows in Oracle Identity Manager. It contains the following
topics:

• About Public Taskflows

• Public Taskflows and Input Parameters

19.7.9.1 About Public Taskflows
Oracle Identity Manager provides default taskflows for using them in the customized pages of
Oracle Identity Self Service and to invoke other taskflows. For example, you can customize the

Chapter 19
Developing Managed Beans and Task Flows

19-65



user details page so that the user details of the manager will be displayed if you click the
manager login name in the user details page.

The default or predefined taskflows are called public taskflows. While launching the public
taskflows, you must provide appropriate values for some parameters. For example, to launch
the request details page for a particular request, you must provide the request ID for the
request.

19.7.9.2 Public Taskflows and Input Parameters
Table 19-6 lists the public taskflows provided by Oracle Identity Manager along with the input
parameters that are required to invoke the taskflows.

Table 19-6    Public Taskflows

Taskflow
name

Taskflow path Description Parameter Mandatory

Request
Details

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/request-
details-tf.xml#request-details-tf

This is launched to view the
details of a request that is
submitted for approval.

requestID:
The ID of the request
whose details is to be
displayed.

Yes

User Details /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/user-details-
tf.xml#user-details-tf

This is launched to view the
details of a user.

userLogin: User Login
attribute value of the user
whose details is to be
displayed.

Yes

Role Details /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/role-details-
tf.xml#role-details-tf

This is launched to view the
details of a role.

roleName: Name of the
role whose details is to
be displayed.

Yes

Request Role /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/request-role-
tf.xml#request-role-tf

This is launched to request for
assignment of role(s) for
beneficiaries.

roleNames: Names of
the role(s) that are to be
assinged. The names
must be separated by
commas.

Yes

Request Role /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/request-role-
tf.xml#request-role-tf

This is launched to request for
assignment of role(s) for
beneficiaries.

userLogins: User Login
attribute values of the
user(s) or beneficaries for
whom the roles are to be
assigned. The values
must be separated by
commas.

If a value is not provided,
then the request action is
applicable for the
currently logged-in user.

No

Revoke Role /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/revoke-role-
tf.xml#revoke-role-tf

This is launched to request for
revoking of role(s) that are
assigned to beneficiaries.

roleNames: Names of
the role(s) that are to be
revoked.

Yes

Chapter 19
Developing Managed Beans and Task Flows

19-66



Table 19-6    (Cont.) Public Taskflows

Taskflow
name

Taskflow path Description Parameter Mandatory

Revoke Role /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/revoke-role-
tf.xml#revoke-role-tf

This is launched to request for
revoking of role(s) that are
assigned to beneficiaries.

userLogins: User Login
attribute values of the
user(s) or beneficiaries
for whom the roles are to
be revoked. The values
must be separated by
commas.

If a value is not provided,
then the revoke action is
applicable for the
currently logged-in user.

No

Request
Account

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/request-
account-tf.xml#request-account-
tf

This is launched to request for
creation of account(s) for the
beneficiaries.

appInstNames: Names
of the application
instance(s) where
accounts are to be
created. The values must
be separated by commas.

Yes

Request
Account

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/request-
account-tf.xml#request-account-
tf

This is launched to request for
creation of account(s) for the
beneficiaries.

userLogins: User Login
attribute values of the
user(s) or beneficiaries
for whom the accounts
are to be assigned. The
values must be separated
by commas.

If a value is not provided,
then the request action is
applicable for the
currently logged-in user.

No

Modify Account /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/modify-
account-tf.xml#modify-account-tf

This is launched to modify the
account details created for a
user or beneficiary.

accountNames: Name
of the accounts whose
details are to be modified.
The values must be
separated by commas.

Yes

Modify Account /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/modify-
account-tf.xml#modify-account-tf

This is launched to modify the
account details created for a
user or beneficiary.

userLogins: User Login
attribute values of the
users or beneficiaries
whose account details
are to be modified. The
values must be separated
by commas.

If a value is not provided,
then the revoke action is
applicable for the
currently logged-in user.

No

Enable Account /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/enable-
account-tf.xml#enable-account-tf

This is launched to enable
accounts assigned to user(s)
or beneficiaries.

accountNames: Names
of the accounts that are
to be enabled. The values
must be separated by
commas.

Yes

Chapter 19
Developing Managed Beans and Task Flows

19-67



Table 19-6    (Cont.) Public Taskflows

Taskflow
name

Taskflow path Description Parameter Mandatory

Enable Account /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/enable-
account-tf.xml#enable-account-tf

This is launched to enable
accounts assigned to user(s)
or beneficiaries.

userLogins: User Login
attribute values of the
user(s) or beneficiaries
whose accounts are to be
enabled. The values must
be separated by commas.

If a value is not provided,
then the request action is
applicable for the
currently logged-in user.

No

Disable
Account

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/disable-
account-tf.xml#disable-account-tf

This is launched to disable
accounts assigned to user(s)
or beneficiaries.

accountNames: Names
of the accounts that are
to be disabled. The
values must be separated
by commas.

Yes

Disable
Account

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/disable-
account-tf.xml#disable-account-tf

This is launched to disable
accounts assigned to user(s)
or beneficiaries.

userLogins: User Login
attribute values of the
user(s) or beneficiaries
whose accounts are to be
disabled. The values
must be separated by
commas.

If a value is not provided,
then the request action is
applicable for the
currently logged-in user.

No

Delete Account /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/delete-
account-tf.xml#delete-account-tf

This is launched to delete
accounts assigned to user(s)
or beneficiaries.

accountNames: Names
of the accounts that are
to be deleted. The values
must be separated by
commas.

Yes

Delete Account /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/delete-
account-tf.xml#delete-account-tf

This is launched to delete
accounts assigned to user(s)
or beneficiaries.

userLogins: User Login
attribute values of the
user(s) or beneficiaries
whose accounts are to be
deleted. The values must
be separated by commas.

If a value is not provided,
then the request action is
applicable for the
currently logged-in user.

No

Request
Entitlement

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/request-
entitlement-tf.xml#request-
entitlement-tf

This is launched to request for
the assignment of
entilement(s) for beneficiaries.

entlmntNames: Names
of the entilement(s) that
are to be assigned. The
values must be separated
by commas.

Yes

Chapter 19
Developing Managed Beans and Task Flows

19-68



Table 19-6    (Cont.) Public Taskflows

Taskflow
name

Taskflow path Description Parameter Mandatory

Request
Entitlement

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/request-
entitlement-tf.xml#request-
entitlement-tf

This is launched to request for
the assignment of
entilement(s) for beneficiaries.

userLogins: User Login
attribute values of the
user(s) or beneficiaries to
whom the entitlements
are to be assigned. The
values must be separated
by commas.

If a value is not provided,
then the request action is
applicable for the
currently logged-in user.

No

Revoke
Entitlement

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/revoke-
entitlement-tf.xml#revoke-
entitlement-tf

This is launched to request for
revoking of entilement(s)
assigned to beneficiaries.

entlmntNames: Names
of the entilement(s) that
are to be revoked. The
values must be separated
by commas.

Yes

Revoke
Entitlement

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/revoke-
entitlement-tf.xml#revoke-
entitlement-tf

This is launched to request for
revoking of entilement(s)
assigned to beneficiaries.

userLogins: User Login
attribute values of the
user(s) or beneficiaries
from whom the
entitlements are to be
revoked. The values must
be separated by commas.

If a value is not provided,
then the request action is
applicable for the
currently logged-in user.

No

Create User /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/create-user-
tf.xml#create-user-tf

This is launched to create an
user entity.

No parameters are
required.

No

Modify User /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/modify-user-
tf.xml#modify-user-tf

This is launched to modify the
user details.

userLogins: User Login
attribute values of the
user(s) whose details are
to be modified.

If more than one
userLogin attribute is
provided as parameter,
then bulk modify page is
displayed. The values
must be separated by
commas.

Yes

Enable User /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/enable-user-
tf.xml#enable-user-tf

This is launched to enable the
disabled user(s).

userLogins: The User
Login attribute values of
the users that are to be
enabled. The values must
be separated by commas.

Yes

Chapter 19
Developing Managed Beans and Task Flows

19-69



Table 19-6    (Cont.) Public Taskflows

Taskflow
name

Taskflow path Description Parameter Mandatory

Disable User /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/disable-user-
tf.xml#disable-user-tf

This is launched to disable the
enabled user(s).

userLogins: The User
Login attribute values of
the users that are to be
disabled. The values
must be separated by
commas.

Yes

Delete User /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/modify-user-
tf.xml#modify-user-tf

This is launched to delete
user(s).

userLogins: The User
Login attribute values of
the users that are to be
deleted. The values must
be separated by commas.

Yes

Chapter 19
Developing Managed Beans and Task Flows

19-70



Table 19-6    (Cont.) Public Taskflows

Taskflow
name

Taskflow path Description Parameter Mandatory

Catalog Search /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/catalog-
search-tf.xml#catalog-search-tf

This is launched to specify the
catalog search criteria and
display the search results
page or cart details page
directly without using the
catalog search page.

searchCrtieria: Various
string attributes in the
following format:

{criteriaName: 
"string", 
allowSearch: "true/
false", profileName: 
"string", 
                
directCheckout: 
"true/false", 
showEntityTypeSelecto
r: "true/false", 
                
hiddenTag: "string", 
allowedEntityTypes: 
"string", tags: 
"string", 
                
entityType: 
"string", 
auditObjective: 
"string", riskLevel: 
"string", 
                
ANY_UDF: "string"}

Here:

• criteriaName:
Optional string
attribute that will be
displayed in the
catalog results page.

• allowSearch:
Optional boolean
attribute to control
rendering of tag
search field in results
page.

• profileName:
Optional string
attribute to take user
to cart page by
simulating the saved
profile click.

• directCheckout:
Optional parameter
to add search results
to the cart and take
user to checkout
page (true/false).

• showEntityTypeSel
ectorOptional
boolean attribute to

Yes

Chapter 19
Developing Managed Beans and Task Flows

19-71



Table 19-6    (Cont.) Public Taskflows

Taskflow
name

Taskflow path Description Parameter Mandatory

show
entityTypeSelector
dropdown. This is
displayed only if
allowSearch is also
set to true.

• hiddenTag: Optional
string attribute to
further narrow down
the search within the
specified tags.

• allowedEntityTypes
: Optional string
attribute to show
entityTypes in the
entityTypeSelector
dropdown. If more
than one entity is to
be shown, then they
must be separated
by the tilde (~)
delimiter, for
example,
Role~Entitlement

• tags: Search criteria
for tags. It is a
mandatory string
attribute except when
profileName is
specified.

• entityType: Optional
string attribute
specifying search
criteria for entity
type, such as role,
entitlement, or
application instance

• auditObjective:
Default value of the
audit objective
attribute.

• riskLevel: Default
values of the risk
level attribute. Values
can be 3(Low Risk),
5(Medium Risk),
7(High Risk).

• Any user-defined
field (UDF) that you
add in the request
catalog.

Chapter 19
Developing Managed Beans and Task Flows

19-72



Table 19-6    (Cont.) Public Taskflows

Taskflow
name

Taskflow path Description Parameter Mandatory

Catalog Search /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/catalog-
search-tf.xml#catalog-search-tf

This is launched to specify the
catalog search criteria and
display the search results
page or cart details page
directly without using the
catalog search page.

userLogins: The User
Login attribute values of
the users to be displayed
in the beneficiary table in
the catalog search results
page. The values must be
separated by commas. If
value is not passed, then
the current logged-in user
is shown in the
beneficiary table.

Catalog Item
Details

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/catalog-item-
details-tf.xml#catalog-item-
details-tf

This is launched to display the
details of a catalog item.

catalogItemName:
Name of the catalog item
whose details are to be
displayed.

Yes

Catalog Item
Details

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/catalog-item-
details-tf.xml#catalog-item-
details-tf

This is launched to display the
details of a catalog item.

catalogItemType: Type
of the catalog item whose
details are to be
displayed. The valid
values are Role,
ApplicationIstance, or
Entitlement.

Yes

User Roles /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/user-roles-
tf.xml#user-roles-tf

This is launched to view the
roles page of a given user.

userLogin: User Login
attribute value of the user
whose roles page is to be
displayed.

Yes

User Accounts /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/user-
accounts-tf.xml#user-accounts-tf

This is launched to view the
accounts page of a given user.

userLogin: User Login
attribute value of the user
whose accounts page is
to be displayed.

Yes

User
Entitlements

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/user-
entitlements-tf.xml#user-
entitlements-tf

This is launched to view the
entitlements page of a given
user.

userLogin: User Login
attribute value of the user
whose entitlements page
is to be displayed.

Yes

User Assigned
Admin Roles

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/user-
assigned-adminroles-
tf.xml#user-assigned-
adminroles-tf

This is launched to view the
assigned admin roles page of
a given user.

userLogin: User Login
attribute value of the user
whose assigned admin
roles page is to be
displayed.

Yes

Organization
Details

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/org-details-
tf.xml#org-details-tf

This is launched to view the
organization details page.

orgName: Name of the
organization whose
details page is to be
displayed.

Yes

My Access /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/my-access-
tf.xml#my-access-tf

This is launched to display the
access page of the currently
logged-in user.

No parameters are
required.

No

Change User
Account
Password

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/account-
passwd-reset-tf.xml#account-
passwd-reset-tf

This is launched to display the
change user account
password page for a given
user.

accountName: Name of
the user's account whose
password is to be
changed.

Yes

Chapter 19
Developing Managed Beans and Task Flows

19-73



Table 19-6    (Cont.) Public Taskflows

Taskflow
name

Taskflow path Description Parameter Mandatory

Change User
Account
Password

/WEB-INF/oracle/iam/ui/
taskflows/public/tfs/account-
passwd-reset-tf.xml#account-
passwd-reset-tf

This is launched to display the
change user account
password page for a given
user.

userLogin: User Login
attribute value of the user
whose account password
is to be changed.

Yes

Account Details /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/account-
details-tf.xml#account-details-tf

This is launched to display the
details of a user's account.

accountName: Name of
the user's account whose
details is to be displayed.

Yes

Account Details /WEB-INF/oracle/iam/ui/
taskflows/public/tfs/account-
details-tf.xml#account-details-tf

This is launched to display the
details of a user's account.

userLogin: User Login
attribute value of the user
whose account is to be
displayed.

Yes

Note:

• The parameters of all the public taskflows listed in Table 19-6 are of type
java.lang.String.

• The public taskflows can be launched by using contextual event as described in 
Launching Taskflows. Otherwise, public taskflows can be embedded in an ADF
faces page. To embed public taskflows in an ADF faces page, the following
parameter (in addition to the parameters listed in Table 19-6) must be added to
the taskflow definition in the page definition file of the ADF faces page:

Parameter name: "uiShell"

value: "#{pageFlowScope.uiShell}"

19.7.10 Customizing Catalog Search
For advanced customizations to the catalog search, such as adding search fields and search
operators, it is recommended to create a custom taskflow and then replace the default catalog
taskflow with the custom taskflow.

For customizing the default catalog search form, see Configuring the Access Request Catalog
in Administering Oracle Identity Governance.

This section describes how to implement a custom taskflow for catalog search. It contains the
following topics:

• Developing the Custom Taskflow

• Adding the Presentation Logic for the Custom Form

• Constructing the SearchCriteria Object

• Deploying the Taskflow

Chapter 19
Developing Managed Beans and Task Flows

19-74



19.7.10.1 Developing the Custom Taskflow
Develop the custom taskflow as a bounded taskflow based on page fragments in the
ViewController project. Make sure that OIM client, OIM model, and OIM view libraries are also
added to the ViewController project. For information about setting up the ViewController
project, see Setting Up the ViewController Project.

The custom taskflow can be based on the taskflow template /WEB-INF/oracle/iam/ui/
catalog/tfs/catalog-search-template.xml, as shown in Figure 19-9:

Figure 19-9    Catalog Taskflow Based on Template

By extending this template, values to the following parameters are automatically passed to the
custom taskflow. These parameters can be accessed from pageFlowScope in the custom
taskflow.

• entityType: When requesting for roles, entitlements, or accounts from the My Access page
of Identity Self Service, the value passed to this parameter is Role, Entitlement, Application
Instance respectively.

• showEntityTypeSelector: When requesting for roles, entitlements, or accounts from the
My Access page, the value for this parameter is passed as false. This parameter can be
used to hide the entity type selector in the custom taskflow.

• showAppSelector: When requesting for entitlements from the My Accounts tab in the My
Access page, the value for this parameter is passed as false. This parameter can be used
to hide the application selector in the custom taskflow.

• parentEntityKey: When requesting for entitlement from the My Accounts tab in the My
Access page, the application instance key corresponding to the selected account is passed
to this parameter.

Chapter 19
Developing Managed Beans and Task Flows

19-75



The page fragment in the custom taskflow can be based on the template /oracle/iam/ui/
catalog/pages/catalog-advanced-search-template.jspx, as shown in Figure 19-10:

Figure 19-10    JSF Page Fragment Based on Page Template

Make sure that the pageTemplateBinding is automatically added in the page definition of the
custom page by Jdeveloper, as shown in Figure 19-11:

Figure 19-11    Page Bindings for JSF Page Fragments

19.7.10.2 Adding the Presentation Logic for the Custom Form
Add the presentation logic for the custom form in the search facet, as shown:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
          xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
          xmlns:f="http://java.sun.com/jsf/core"
          xmlns:c="http://java.sun.com/jsp/jstl/core">
  <af:pageTemplate viewId="/oracle/iam/ui/catalog/pages/catalog-advanced-search-

Chapter 19
Developing Managed Beans and Task Flows

19-76



template.jspx"
                   value="#{bindings.pageTemplateBinding}" id="pt1">
    <f:facet name="search">
      <!-- ######## CUSTOM SEARCH CONTENT BEGIN ###### -->       
      <!-- ####### CUSTOM SEARCH CONTENT END########## -->      
    </f:facet>
  </af:pageTemplate>
</jsp:root>

19.7.10.3 Constructing the SearchCriteria Object
The search button on the custom form must have an action listener defined. In the action
listener, construct the SearchCriteria object and invoke the following utility method:

oracle.iam.ui.catalog.view.CatalogAdvancedSearch.executeCatalogSearch(oracle.iam.platform
.entitymgr.vo.SearchCriteria criteria)
public void searchActionListener(ActionEvent event){
    SearchCriteria criteria = null;
    //build your search criteria
    //and then call executeCatalogSearch
    CatalogAdvancedSearch.executeCatalogSearch(criteria);
}

19.7.10.4 Deploying the Taskflow
To deploy the custom taskflow:

1. Deploy the taskflow as part of the oracle.iam.ui.custom shared library. For information
about deploying the bounded taskflow, see Deploying Custom Code to Oracle Identity
Governance.

2. Add permissions to the custom taskflow by using the Authorization Policy Manager (APM)
UI to secure the taskflow.

Note:

If WLST script is used to grant permissions to the custom taskflow, then use
appStripe =”OIM”, as shown in the following example:

grantPermission(appStripe="OIM",
principalClass="oracle.security.jps.service.policystore.ApplicationRole",
principalName="OIMSysAdmin",
permClass="oracle.adf.controller.security.TaskFlowPermission",
permTarget="/WEB-INF/oracle/iam/ui/sample/catalogsearch/tfs/catalog-custom-
search-tf.xml#catalog-custom-search-tf", permActions="view")

3. Update the Catalog Advanced Search Taskflow system property to point to the custom
taskflow. Specify the value in the format TASKFLOW_DOCUMENT#TASKFLOW_ID. See 
Default System Properties in Oracle Identity Manager in Administering Oracle Identity
Governance for information about this system property.

4. Restart Oracle Identity Manager server.

Chapter 19
Developing Managed Beans and Task Flows

19-77



19.7.11 Customizing Task Details Page for Approval Tasks
Customizing the task details page for approval tasks involves building and creating a custom
taskflow, creating a task details page, populating the page with task information, and
configuring the human task to use the custom taskflow.

This section contains the following topics:

• Prerequisites for Developing Custom Task Details Taskflow

• Building a Custom Taskflow for a Human Task

• Creating the Task Details Taskflow

• Creating the Task Details Page

• Populating the Page With Task Information

• Taskflows to Show Request-Related Information

• Configuring the Human Task to Use the Custom Taskflow

19.7.11.1 Prerequisites for Developing Custom Task Details Taskflow
Before developing a custom task details taskflow, you must have the following software
installed:

• Oracle Identity Manager 12c Release 2 (12.2.1.2)

• Oracle SOA Suite 11g (11.1.1.9.0)

• JDeveloper 11g (11.1.1.9.0) with Oracle SOA Composite Editor extension

Note:

The same task details taskflow can be used for multiple human tasks as long as the
human tasks have same set of outcomes and share the same payload structure.
Therefore, different taskflows must be built for approvals, challenge, provide
information, and manual fulfillment tasks.

19.7.11.2 Building a Custom Taskflow for a Human Task
To build a custom taskflow for a human task:

1. Create a ViewController project. For information about setting up the ViewController
project, see Setting Up the ViewController Project.

2. Create the task details taskflow, as described in Creating the Task Details Taskflow.

3. Go to Application Sources under the ViewController project, and then delete
hwtaskflow.xml.

4. Create the task details page, as described in Creating the Task Details Page.

5. Populate the page with task information, as described in Populating the Page With Task
Information.

Chapter 19
Developing Managed Beans and Task Flows

19-78



6. In the application navigator, enable the Show Libraries option, as shown in Figure 19-12.
This allows you to drag and drop taskflows from OIM view shared library to your custom
task details taskflow.

Figure 19-12    Enabling Show Libraries

7. Add request information to the Details page. The taskflows from OIM View Shared library
that can be dropped as a region on the Details page to show request-related information is
described in Taskflows to Show Request-Related Information.

8. Add a separate page for email notification (optional). By default, for sending email
notification, if there is no separate page for email, then the same task details page
developed in this section is sent in email notification. Sometimes, limited information needs
to be sent in email notification. In such scenarios, separate page for email notification can
be developed. The email page will also be part of the same task details taskflow. For more
information on building custom page for email, refer to Creating an Email Notification in the
Developer's Guide for Oracle SOA Suite.

9. Deploy the taskflow as part of the oracle.iam.ui.custom shared library. For information
about deploying the bounded taskflow, see Deploying Custom Code to Oracle Identity
Governance.

10. Configure the human task to use the custom taskflow, as described in Configuring the
Human Task to Use the Custom Taskflow.

11. Repeat step 10 for all the human tasks for which you want to reuse this custom taskflow.

12. Restart all servers.

19.7.11.3 Creating the Task Details Taskflow
To create the task details taskflow:

1. Navigate to the following directory in the shiphome:

IAM_HOME/server/workflows/composites/

2. Unzip the composite:

• For building details page for approvals and challenge tasks, unzip
DefaultRequestApproval.zip.

Chapter 19
Developing Managed Beans and Task Flows

19-79



• For building details page for provide information tasks, unzip ProvideInformation.zip.

• For building details page for manual fulfillment tasks, unzip
DisconnectedProvisioning.zip.

3. Go back to JDeveloper, right-click the ViewController project created in Step 1, and select
New.

4. Select Web Tier, JSF, and ADF task flow based on the human task.

5. In the file browser, navigate to the directory in which you unzipped the composite ZIP file.
Select the appropriate human task file, as follows:

• For building details page for approvals task, select DefaultRequestApproval /
ApprovalTask.task.

• For building details page for challenge task, select DefaultRequestApproval/
ChallengeTask.task.

• For building details page for provide information task, select ProvideInformation/
ApprovalTask.task.

• For building details page for manual fulfillment task, select
DisconnectedProvisioning /ManualProvisioningTask.task.

6. In the Create Task flow dialog box, specify values for the following:

File Name: For example, request-approval-details-tf.xml.

Directory: Make sure that the taskflow is created under the WEB-INF/oracle/iam/ui/
custom/ directory. All taskflows under the WEB-INF/oracle/iam/ui/custom/ directory are
secured with view permission.

Task Flow ID: For example, request-approval-details-tf.

7. Click OK.

19.7.11.4 Creating the Task Details Page
To create the task details page:

1. Open the taskflow created in Step 2. Switch to diagram mode.

2. Rename taskdetails1_jspx view activity, for example, request-approval-details.

3. Right-click the view activity, and select Create Page. Provide values for the following:

File name: For example, request-approval-details.jspx
Directory: Put the JSPX file under the public_html/oracle/iam/ui/custom/ directory

Initial Page layout and content: Blank Page
4. Click OK.

19.7.11.5 Populating the Page With Task Information
To populate the page with task information:

1. In the Data Controls palette, the data control with your project name is already created.
Use this data control to render task-related information on the details page.

2. To drop the Task object on the page, from the Create context menu, select Human Task,
Complete Task without Payload, as shown in Figure 19-13.

Chapter 19
Developing Managed Beans and Task Flows

19-80



Figure 19-13    Complete Task Without Payload

3. In the Edit Action dialog box, do not modify anything, and click OK.

Note that task-related content, such as actions, basic information, history, comments, and
attachments are added to the page.

Note:

For manual fulfillment task, you can also choose the Complete Task with
Payload option to show payload data. For approval, challenge, or provide
information tasks, you can reuse Oracle Identity Manager taskflows mentioned in
step 7 for showing payload-related information.

19.7.11.6 Taskflows to Show Request-Related Information
The following taskflows from OIM View Shared library can be dropped as a region on the
Details page to show request-related information.

• WEB-INF/oracle/iam/ui/catalog/tfs/request-summary-information-tf.xml: This taskflow
shows basic request information. This is not applicable for manual fulfillment task.

• WEB-INF/oracle/iam/ui/catalog/tfs/request-summary-details-tf.xml: This taskflow shows
target users, related requests, and dependent requests. This is not applicable for manual
fulfillment task.

• WEB-INF/oracle/iam/ui/catalog/tfs/catalog-tf.xml: This taskflow shows cart items and form
data for each item in the request. It should be used for all request types except create,
modify, or delete role. This taskflow can be used for approvals, challenge, provide
information, and manual fulfillment tasks.

Chapter 19
Developing Managed Beans and Task Flows

19-81



• WEB-INF/oracle/iam/ui/role/tfs/create-role-train-tf.xml: This taskflow should be used
instead of catalog-tf taskflow for create, modify, or delete role types of requests. It is not
applicable for challenge, provide information, and manual fulfillment tasks.

19.7.11.7 Configuring the Human Task to Use the Custom Taskflow
To configure the human task to use the custom taskflow:

1. Login to Oracle Enterprise Manager as WebLogic user.

2. Navigate to Farm_IAM_DOMAIN, SOA, soa_infra (SOA_SERVER), default,
COMPOSITE_NAME. An example of composite name can be
DefaultRequestApproval[5.0].

3. Click Component Metrics, HUMAN_TASK. Human task can be ApprovalTask or
ChallengeTask or ManualProvisioningTask, as shown in Figure 19-14.

Figure 19-14    Human Tasks

4. Click the Administration tab.

5. Modify the URI in the existing entry to point to the custom taskflow, as follows:

Application Name: Worklist

Host Name: Hostname in OIMExternalFrontendURL

HTTP Port: HTTP Port in OIMExternalFrontEndURL if SSL is not configured

HTTPS Port: HTTPS Port in OIMExternalFrontEndURL if SSL is configured

URI: It is of the format /identity/faces/adf.task-flow?
_id=TASKFLOW_ID&_document=TASKFLOW_DOCUMENT . For example, /identity/faces/
adf.task-flow?_id=request-approval-details-tf&_document=WEB-INF/oracle/iam/ui/custom/
request-approval-details-tf.xml

19.8 Configuring Additional Request Form
Users can enter additional information for a request that can be useful for the request
approvers.

This section contains the following topics:

Chapter 19
Configuring Additional Request Form

19-82



• Additional Request Information Concepts

• Understanding the Guidelines for Developing Custom Taskflow for Additional Request
Information

• Configuring Custom Taskflow for Additional Request Information

• Validating Additional Request Information

19.8.1 Additional Request Information Concepts
Additional information about the request cart item or about the request itself can be provided
during request submission. It may be required for request approval decisions when default
form information is not sufficient.

The following features are supported with respect to additional information:

• Additional Information for the Request Cart Item

• Additional Information for the Request

19.8.1.1 Additional Information for the Request Cart Item
With custom taskflows developed, users can provide additional information about the cart item
(role/account/entitlement) when raising a request. You can provide additional information form
about the request cart item as shown in the following sample screenshot.

Chapter 19
Configuring Additional Request Form

19-83



When the user clicks the additional info icon (marked in red), a form is displayed with custom
fields. The user can enter appropriate information that is useful for the request approvers.

The request approver can view and/or update additional request information provided at the
cart item level. The request approver can access the request from Identity Self Service on the
Inbox page or the Pending Approvals page.

19.8.1.2 Additional Information for the Request
There are instances where additional information about the request is required, for example
additional information about the modify user request. Unlike additional information at cart item
level, there is no explicit placeholder in the cart submission UI for this type of additional
information. However, after developing a custom taskflow, you can customize the cart details
page to create a link to show additional information about the request.

19.8.2 Understanding the Guidelines for Developing Custom Taskflow for
Additional Request Information

Developing a custom taskflow for additional request information involves implementing custom
taskflow for additional information, passing the input parameters when the taskflow is
launched, saving and retrieving additional information in the managed bean, and using
RequestFormContext to achieve the required customizations.

This section contains the following topics:

• Implementing Custom Taskflow for Additional Request Information

• Taskflow Input Parameters

• Saving and Retrieving Additional Information in Managed Bean Developed for the Project

• Understanding the AdditionalRequestInfo Interface

• Using RequestFormContext to Achieve the Required Customizations

19.8.2.1 Implementing Custom Taskflow for Additional Request Information
To implement a custom taskflow that can be used for providing and viewing additional request
information:

1. Develop the custom taskflow as a bounded taskflow in ViewController projects. For
information about setting up the ViewController project, see Setting Up the ViewController
Project. Specify the default package as oracle.iam.ui.custom.

2. Create a taskflow to render additional form. Make sure that the taskflow is in the WEB-INF/
oracle/iam/ui/custom/ directory or its subdirectory, for example, /WEB-INF/
oracle/iam/ui/custom/sample/catalog/tfs/additional-role-info.xml#additional-
role-info.

3. Define taskflow input parameters as required. See Taskflow Input Parameters for
information about the predefined input parameters that are passed when the taskflow is
launched.

4. Deploy the taskflow as part of the oracle.iam.ui.custom shared library. For information
about deploying the bounded taskflow, see Deploying Custom Code to Oracle Identity
Governance.

Chapter 19
Configuring Additional Request Form

19-84



19.8.2.2 Taskflow Input Parameters
The following table lists predefined input parameters that are passed when the taskflow is
launched:

Parameter Name Type Description

additionalRequestIn
fo

oracle.iam.ui.commo
n.model.catalog.req
uestdetails.Additio
nalRequestInfo

An instance of AdditionalRequestInfo interface.

It is used to set and get values of additional request-
level and cart item level request attributes. For more
information about the interface methods, see 
Understanding the AdditionalRequestInfo Interface.

requestFormContext oracle.iam.ui.platf
orm.view.RequestFor
mContext

An instance of RequestFormContext.

RequestFormContext provides various context
information related to the request and currently
selected cart item.

For example, you can leverage the information
provided by RequestFormContext to decide whether
the input components of the custom taskflow must
be rendered in read-only or editable mode.

For more information, see Available EL Expressions
in the RequestFormContext.

19.8.2.3 Saving and Retrieving Additional Information in Managed Bean Developed
for the Project

The additionalRequestInfo pageFlowScope input parameter can be used to retrieve and
store additional information about request or request cart item, as shown:

AdditionalRequestInfo additionalRequestInfo  =  
(oracle.iam.ui.common.model.catalog.requestdetails.AdditionalRequestInfo) 
AdfFacesContext.getCurrentInstance().getPageFlowScope().get("additionalRequestInfo");

Note:

The
oracle.iam.ui.common.model.catalog.requestdetails.AdditionalRequestInfo
interface is described in Understanding the AdditionalRequestInfo Interface.

To set or get additional information about the request at the cart item level, use the following:

startDate = (Date additionalRequestInfo.getAttribute(cartItemId, START_DATE);
contractNumber = (String) additionalRequestInfo.getAttribute(cartItemId,  
"CONTRACT_NUMBER" );

Similarly, to set the additional information at cart item level, use the following:

contractNumber = (String) additionalRequestInfo.setAttribute(cartItemId,  
"CONTRACT_NUMBER" , "123");

Chapter 19
Configuring Additional Request Form

19-85



Note:

To retrieve the current cart ID item selected in this context, use the
requestFormContext pageFlowScope input parameter, as shown:

RequestFormContext requestFormContext = 
(oracle.iam.ui.platform.view.RequestFormContext) 
AdfFacesContext.getCurrentInstance().getPageFlowScope().get("requestFormContext
");
cartItemId = requestFormContext.getUniqueCartItemIdentifier();

To set or get additional information about the request, use the following:

temporaryLocation = (String) additionalRequestInfo.getAttribute("TEMPORARY_LOC");
additionalRequestInfo.setAttribute("TEMPORARY_LOC", "A-24");

19.8.2.4 Understanding the AdditionalRequestInfo Interface
AdditionalRequestInfo interface extends Serializable as shown in the following code.
Therefore, an instance of AdditionalRequestInfo can be stored in pageFlowScope of the
custom taskflow.

public interface AdditionalRequestInfo extends Serializable {
    public void setAttribute(String name, Serializable value);
    public void setAttribute(String cartItemId, String name, Serializable value);
    public Serializable getAttribute(String name);
    public Serializable getAttribute(String cartItemId, String name);
}

To get or set the individual cart item additional information, use the following:

public void setAttribute(String cartItemId, String name, Serializable value);
public Serializable getAttribute(String cartItemId, String name);

The cartItemId parameter must be specified. You can use the getUniqueCartItemIdentifier
EL expression in the RequestFormContext to access the selected cartItemId. For more
information, see Available EL Expressions in the RequestFormContext.

To get or set the request level additional information, use the following:

public void setAttribute(String name, Serializable value);
public Serializable getAttribute(String name);

19.8.2.5 Using RequestFormContext to Achieve the Required Customizations
To distinguish between the various flows in which the taskflow is being launched (cart
submission, request details, and approval details flows), you can rely on the
requestFormContext parameter that is passed to the custom taskflow.

For instance, if you want to show the components of additional information taskflow to be in
read-only mode for request summary, then use the following:

if  (requestFormContext.getActionType() == requestFormContext.ActionType.APPROVAL) {
    isFormUpdateable = Boolean.TRUE;
}

Chapter 19
Configuring Additional Request Form

19-86



19.8.3 Configuring Custom Taskflow for Additional Request Information
Configuring custom taskflow for additional request information involves configuring custom
taskflow for additional request information and configuring additional request information at
request level.

This section contains the following topics:

• Configuring Custom Taskflow for the Cart Item Level

• Configuring Additional Request Information at Request Level

19.8.3.1 Configuring Custom Taskflow for the Cart Item Level
The cart submission UI has explicit placeholders where the additional cart item information can
be displayed.

You can enable users to provide additional information specific to a cart item, such as
application instance, role, or entitlement. However, you are allowed to configure only one
additional information taskflow per each entity type: role, entitlement, or application instance.
This configuration is done with the help of the following system properties:

• Catalog Additional Application Details Task Flow: Set the value to the custom
additional information taskflow that is applicable to application instance entity type.

• Catalog Additional Entitlement Details Task Flow: Set the value to the custom
additional information taskflow that is applicable to entitlement entity type.

• Catalog Additional Role Details Task Flow: Set the value to the custom additional
information taskflow that is applicable to role entity type.

Note:

For more information on setting system properties, see Configuring Oracle Identity
Manager in Administering Oracle Identity Governance.

For example, to launch a specific additional information taskflow for the role entity type, the
value of the Catalog Additional Role Details Task Flow system property can be set as
follows:

/WEB-INF/oracle/iam/ui/custom/sample/catalog/tfs/additional-role-
info.xml#additional-role-info
The Cart Items table is displayed in the Cart Checkout, Request Summary, and Request
Approval pages whenever the UI operation involves cart items. Clicking the cart item's
additional info icon, the custom taskflow configured for cart entity type (such as role,
application instance, entitlement) is displayed, as shown in the following sample screenshot:

Chapter 19
Configuring Additional Request Form

19-87



19.8.3.2 Configuring Additional Request Information at Request Level
There are some scenarios when additional information is required at the request level, for
example while submitting user modification request, where requester can provide additional
information about user, and approver can review those. This feature is not available in the
Identity Self Service by default, and must be implemented by developing custom taskflow,
creating a sandbox, and UI customization, and establishing a link between the custom taskflow
and the UI.

This section contains the following topics:

• About Additional Request Information at Request Level

• Predefined Attributes to Determine the Custom Taskflow

• Sample Code for the Command Link

19.8.3.2.1 About Additional Request Information at Request Level
You can enable users to provide additional information specific to a request, such as Modify
User request. To do so, you can add a link or a button to the catalog checkout page by
customizing the UI. The newly added link or button can be made visible to Cart Checkout,
Request Summary, and Request Approval pages. On clicking the link or button, you can invoke
the popup to display the additional information about request.

A set of attributes defined as descendants of the component determine which custom taskflow
is to be launched and how the popup window is displayed, as listed in Predefined Attributes to
Determine the Custom Taskflow.

19.8.3.2.2 Predefined Attributes to Determine the Custom Taskflow
The following table lists the predefined attributes defined as descendants of the component
that determine which taskflow is to be launched and how the popup window is displayed.

Name Type Required Description

taskFlowId java.lang.String Yes ID of the custom taskflow to be launched by the
component.

dialogTitle java.lang.String Optional Title of the popup window in which the custom
taskflow is launched. If no value is specified, then the
title is blank.

Chapter 19
Configuring Additional Request Form

19-88



Name Type Required Description

dialogTitleIcon java.lang.String Optional Path to the icon that is displayed in the popup window
in which the custom taskflow is launched. If no value
is specified, then the default icon is used.

19.8.3.2.3 Sample Code for the Command Link
The following is a sample code snippet for the Command Link added through UI customization
to invoke Additional Request Information popup:

Note:

For information about adding a Command Link through UI customization, see Adding
a Link or Button.

<af:commandLink xmlns:af="http://xmlns.oracle.com/adf/faces/rich" id="e8065932664" 
text="Additional Cart Information" 
actionListener="#{catalogRequestBean.launchAdditionalRequestInfoTaskFlow}" 
rendered="#{backingBeanScope.additionalInfoHelperBean.renderAdditionalDetailsForRequest}"
>
         <af:clientAttribute xmlns:af="http://xmlns.oracle.com/adf/faces/rich" 
name="taskFlowId" 
value="#{backingBeanScope.additionalInfoHelperBean.additionalInfoTaskFlowIdForRequest}"/>
         <af:clientAttribute xmlns:af="http://xmlns.oracle.com/adf/faces/rich" 
name="dialogTitleIcon" value="/images/request_ena.png"/>
         <af:clientAttribute xmlns:af="http://xmlns.oracle.com/adf/faces/rich" 
name="headerText" value="Additional Cart Information"/>
         <af:clientAttribute xmlns:af="http://xmlns.oracle.com/adf/faces/rich" 
name="dialogTitle" value="#{backingBeanScope.additionalInfoHelperBean.popupTitle}"/>
</af:commandLink>

In this sample code snippet, a custom Additional Cart Information link is added to cart details
page. Here:

• The actionlistener for the command link must be set to
catalogRequestBean.launchAdditionalRequestInfoTaskFlow as follows:

actionListener="#{catalogRequestBean.launchAdditionalRequestInfoTaskFlow}"
• The custom link can be selectively displayed for the rendered property by using the EL

expression:

#{backingBeanScope.additionalInfoHelperBean.renderAdditionalDetailsForRequest}

To use this EL expression, develop a managed JAVA bean, such as
additionalRequestInfoHelperBean, with the isRenderAdditionalDetailsForRequest
method. This method returns a boolean value (true or false) based on whether the link has
to be displayed or not. For more information about the managed bean, see Developing
Managed Beans and Task Flows.

• Launch different taskflows using the EL expression,
#{backingBeanScope.additionalInfoHelperBean.additionalInfoTaskFlowIdForRequest
}, specified as the value of the taskFlowId attribute. This is a mandatory attribute.

To use this EL expression, include the getAdditionalInfoTaskFlowIdForRequest method
in the managed bean named additionalRequestInfoHelperBean. This method returns a

Chapter 19
Configuring Additional Request Form

19-89



String value representing the ID of the custom taskflow deployed as part of
oracle.iam.ui.custom-dev-starter-pack.war, for example, /WEB-INF/oracle/iam/ui/
custom/catalog/tfs/additional-cart-info-tf.xml#additional-cart-info-tf.

• Set different popup window titles using the EL expression,
#{backingBeanScope.additionalInfoHelperBean.popupTitle}, specified as the value of
the dialogTitle attribute.

To use this EL expression, include the getPopupTitle method in the managed bean
named additionalRequestInfoHelperBean. This method returns the desired String value
to be displayed as the popup window title.

19.8.4 Validating Additional Request Information
If the additional request information has any mandatory attribute values to be submitted, then
you can validate the submission by using a RequestDataValidator plug-in, which can validate
RequestData.

The following is a sample configuration for the Assign Roles operation in the plugin.xml file
while registering the validator plug-in. This configuration ensures that
mycompany.iam.plugin.validation.AssignRolesDataValidator is invoked for all Assign
Roles operations.

<plugins pluginpoint="oracle.iam.request.plugins.RequestDataValidator"> 
    <plugin pluginclass="mycompany.iam.plugin.validation.AssignRolesDataValidator" 
version="1.0" name="AssignRolesDataValidator">
           <metadata name="DataValidator">
                  <value>AssignRolesDataset</value> 
           </metadata>
    </plugin>
</plugins>

Similarly, for the Assign Entitlements operation, plugin.xml can be configured as follows:

<plugins  pluginpoint="oracle.iam.request.plugins.RequestDataValidator">
    <plugin  
pluginclass="mycompany.iam.plugin.validation.AssignEntitlementsDataValidator"  
version="1.0" name="AssignEntitlementsDataValidator">
           <metadata name="DataValidator">
                  <value> EBSForm.UD_EBS_RESP</value> 
           </metadata>
    </plugin>
</plugins>

19.9 Migrating UI Customizations
You can migrate UI customizations from one deployment to another by using incremental test
to production (T2P).

Migrating UI customizations from one Oracle Identity Manager environment to another
environment or test to production (T2P) is described with the help of the following scenario:

• Scenario I: Incremental T2P

19.9.1 Scenario I: Incremental T2P
During the development cycle, you want to incrementally build configuration and keep moving
the configuration from one Oracle Identity Manager setup to another.

Chapter 19
Migrating UI Customizations

19-90



To do this, you use the Deployment Manager, as described in Migrating Incrementally Using
the Deployment Manager in Administering Oracle Identity Governance. But exporting and
importing data using the Deployment Manager does not include the UI customization. For this
reason, Oracle Identity Manager provides sandboxes, using which you can create
customizations bound by sandboxes, test them, and eventually export/import them on an
incremental basis.

However, incremental migration of customizations has a problem. You have to keep your
sandboxes exported in advance, and then only publish the changes. But if you have already
published the changes, then you cannot export. This is a known issue.

19.10 UI Customization Best Practices
Some best practices and guidelines must be followed for UI customization, such as creating
sandboxes with detailed descriptions and exporting sandboxes before publishing.

This section describes some best practices and guidelines related to UI customization. It
contains the following topics:

• Create Sandboxes With Detailed Description

• Create a Backup of MDS Before Publishing a Sandbox

• Migrate All Sandboxes to the Target Environment and Publish in the Same Order

• Export the Sandbox Before Publishing

• Test the Sandbox Before Publishing

• Do Not Change Default Component IDs

• Use Discretion When Deleting Components From a Page

• Note That Direct Changes to Default EOs/VOs Are Not Supported

• Specify Name Space for JSFF Tags

• Note That Customizations Are Only Allowed in Site/Site Layer

• Note That Each Application Instance or Entitlement Form Has Three Page Fragments
(JSFF)

• Use Discretion When Using the Searchable Picklist Option

• Sign-out After Adding/Updating UDF

• Verify the UDF After Adding it to the Page

• Map UDF With Correct LDAP Attribute

• Deploy Custom Managed Beans as Part of the oracle.iam.ui.custom-dev-starter-pack.war
Shared Library

• Consider Replacing the Entire Taskflow

• Do Not Update Oracle Identity Manager WAR/EAR Files

• Consider Conditionally Showing Certain Home Page Tiles

• Do Not Invoke Platform APIs From Custom Managed Bean

• Use Recommended Value of Display Width While Creating Lookup UDFs

Chapter 19
UI Customization Best Practices

19-91



19.10.1 Create Sandboxes With Detailed Description
When creating a sandbox, create it with a detailed description and list all the entities for which
you are creating the sandbox.

For example, if you are creating an application instance, note that this sandbox is created for
application instance creation. When the application instance is created, publish the sandbox,
and then go to Identity Self Service to create another sandbox to perform the UI customization.
This is to avoid issues when two or more users create different sandboxes to create the same
entity (application instance in this example) and try to publish it at different times.

19.10.2 Create a Backup of MDS Before Publishing a Sandbox
Create a backup of MDS before publishing a sandbox.

Before publishing a sandbox, create a backup of MDS so that the earlier state of MDS can be
restored if anything goes wrong.

19.10.3 Migrate All Sandboxes to the Target Environment and Publish in the
Same Order

All the sandboxes that have been published in the first environment (or source environment)
must be migrated and published in the second environment (or target environment), and the
sandboxes must be published in the same order.

If this guideline is not followed, then some of the customizations will be missing in the target
environment resulting in ADF errors or missing attribute display labels.

Migrating sandboxes from multiple source environments into a single target environment is not
supported. See sections Handling Concurrency Conflicts and Troubleshooting Concurrency
Issues for detailed information about various scenarios.

19.10.4 Export the Sandbox Before Publishing
If you are planning to migrate customizations from one environment to another, then all the
sandboxes must be exported before publishing.

It is not possible to export a sandbox that has already been published.

19.10.5 Test the Sandbox Before Publishing
Publish a sandbox only after testing of related use cases.

The main purpose of using sandboxes is to be able to experiment with customizations.
Therefore, publish a sandbox only after thorough testing of related use cases. After the
sandbox is published, it cannot be unpublished easily. This also applies to migration of
sandboxes to another environment, where the sandbox must be published only after sanity
testing.

19.10.6 Do Not Change Default Component IDs
Treat the IDs of default components as read-only.

Chapter 19
UI Customization Best Practices

19-92



It is possible to view and edit component IDs by using WebCenter Composer, as shown in 
Figure 19-15.

Figure 19-15    Component ID

Note that changing IDs of default components on system-defined pages must be avoided.
Component ID must be treated as read-only. It can be used, for example, in the Partial
Triggers property of another component if the component is supposed to be re-rendered
based on changes or when click to the component is being referenced.

19.10.7 Use Discretion When Deleting Components From a Page
Exercise caution when deleting system-defined components from pages, especially when the
component binding property is set.

These components can be referenced from the managed beans shipped with Oracle Identity
Manager, and removing the component from the page will result in bindings not being set. This
can lead to errors, such as NullPointerException. In such instances, it is preferable to hide
the component from the page by setting the Visible property to false.

Note that marking a component as not being rendered (deselected Show Component option)
has the same effect on component bindings, which means it will not be set.

Chapter 19
UI Customization Best Practices

19-93



19.10.8 Note That Direct Changes to Default EOs/VOs Are Not Supported
Making any direct changes, such as exporting the EO/VO XML from MDS and modifying it, to
system-defined EOs/VOs, such as UserVO, OrganizationVO, and RoleDetailsVO, is not
supported.

The Form Designer, which accessed via User, Organization, Role, or Catalog system entities
links in the Identity System Administration, is the only supported way of adding new attributes
or modifying existing ones.

19.10.9 Specify Name Space for JSFF Tags
If you are manually adding JSFF components in an exported sandbox, then specify name
space for each of the JSFF tags.

The following code snippet shows an example customization document where new
af:outputText is being added:

<?xml version='1.0' encoding='UTF-8'?>
<mds:customization version="11.1.1.66.49" xmlns:mds="http://xmlns.oracle.com/mds" 
motype_local_name="root" motype_nsuri="http://java.sun.com/JSP/Page">
   <mds:insert parent="sdh1" position="first">
      <af:outputText value="Some text" id="e7869964958"/>
   </mds:insert>
</mds:customization>

Note that there is no name space specified for af:outputText. Such code snippet will cause
java.io.IOException: Stream closed when user opens the page. No exception is thrown
during sandbox import or when activating the sandbox. The exception is thrown only when the
page is being accessed.

The following code snippet shows the corrected af:outputText with xmlns:af="http://
xmlns.oracle.com/adf/faces/rich" name space specified:

<?xml version='1.0' encoding='UTF-8'?>
<mds:customization version="11.1.1.66.49" xmlns:mds="http://xmlns.oracle.com/mds" 
motype_local_name="root" motype_nsuri="http://java.sun.com/JSP/Page">
   <mds:insert parent="sdh1" position="first">
      <af:outputText xmlns:af="http://xmlns.oracle.com/adf/faces/rich" value="Some text" 
id="e7869964958"/>
   </mds:insert>
</mds:customization>

19.10.10 Note That Customizations Are Only Allowed in Site/Site Layer
If you are manually editing an MDS customization document, for example, in an exported
sandbox, then you are only allowed to edit documents in the site/site customization layer.

All other customization layers, such as site/oim, edition/xe, and edition/ee, must not be
used.

You can find out from the document path which layer the document resides in. For example,
the oracle/iam/ui/myinformation/pages/mdssys/cust/site/site/my-info.jsff.xml
document resides in the site/site layer. The layer name is specified after mdssys/cust.

All the customizations made by using WebCenter Composer are stored in the site/site layer.
Home page personalizations and other personalizations are stored in user/USER_NAME layer.

Chapter 19
UI Customization Best Practices

19-94



While personalization documents can be manually edited, they are only applicable to the
USER_NAME user.

19.10.11 Note That Each Application Instance or Entitlement Form Has
Three Page Fragments (JSFF)

Each application instance or entitlement form has create, modify, and bulk page fragments.

Every application instance or entitlement form has the following page fragments (JSFF):

• create: Displayed when requesting for application instance or entitlement

• modify: Displayed when modifying existing application instance or entitlement; also used
when viewing application instance or entitlement details on application instance or
entitlement pages in user profile and My Access sections of Identity Self Service

• bulk: Displayed for bulk requests

Whenever you are customizing the application instance or entitlement form, you typically want
to customize all three page fragments (JSFF), or at least create and modify page fragment.
Create page fragment can be customized when requesting for application instance or
entitlement, and modify page fragment can be customized when modifying existing application
instance or entitlement. All three page fragments are regenerated when you click the
Regenerate View button in the Form Designer.

19.10.12 Use Discretion When Using the Searchable Picklist Option
Select the Searchable Picklist option only if you are planning to use Input List of Values
component when adding the UDF to the page.

When creating lookup UDFs you have an option to select the Searchable Picklist option. This
option must be checked only if you are planning to use Input List of Values component
when adding the UDF to the page, which you must decide at the time of creating the UDF
because the value of Searchable Picklist cannot be changed later. If you decide to select the
Searchable Picklist option, then there is an additional VO attribute created. The attribute is
suffixed with __c_Id__c and is for internal use only. When adding the UDF to the page, select
and add the regular attribute, not the one with __c_Id__c suffix.

If you did not select the Searchable Picklist option, then the correct component to choose
when adding the UDF to the page is Select One Choice and not Input List of Values.

19.10.13 Sign-out After Adding/Updating UDF
You must sign-out from Identity Self-Service or Identity System Administration after adding new
or updating existing UDF. This is to avoid known caching issue in ADF layer wherein older
version of the VO is being cached and new changes are not being picked up.

If you forget to sign-out and go directly to the page where the VO is being used, you will see an
error similar to JBO-25058: Definition MyUDF__c of type Attribute is not found in
UserVO, or you will not be able to select the UDF in WebCenter Composer catalog while adding
the UDF to the page.

19.10.14 Verify the UDF After Adding it to the Page
Make sure to create the UDF properly and use the correct Data Component and VO when
adding the UDF.

Chapter 19
UI Customization Best Practices

19-95



If you add a UDF to the page and the UDF is not working, for example the input component is
shown as read-only although it should be editable or the provided UDF value is not being
properly saved, then you can verify the following:

• Make sure that you use the right Data Component and VO when adding the UDF to the
page, as described in Entities and Corresponding Data Components and View Objects in
Administering Oracle Identity Governance.

• Check if the UDF has been properly created. For the UDF that is created, there must be a
column created in the corresponding database table, for example in the USR table for User
UDF, and corresponding dataset must be updated, for example User.xml for User UDF.

If any of these have not been or is missing, then the UDF is not properly created and must be
created again.

If you forget to set autoSubmit=true and set valueChangeListener on the UDF component, as
described in Adding a Custom Attribute in Administering Oracle Identity Governance, then the
UDF works but the Save/Cancel or Apply/Revert buttons are not enabled.

19.10.15 Map UDF With Correct LDAP Attribute
Map the UDF with the correct LDAP attribute.

While creating a UDF in Oracle Identity Manager deployment in LDAP mode, map the UDF
with the correct LDAP attribute.

19.10.16 Deploy Custom Managed Beans as Part of the
oracle.iam.ui.custom-dev-starter-pack.war Shared Library

When introducing custom managed beans, the beans must be deployed as part of the
oracle.iam.ui.custom-dev-starter-pack.war shared library.

Recommended scope of the custom managed beans is either pageFlowScope or
backingBeanScope. Avoid defining custom beans in sessionScope and consider using
pageFlowScope instead. The pageFlowScope bean class must be serializable. Implement
java.io.Serializable interface and all the class fields must be serializable as well. Note that
component bindings, such as RichOutpuText, are not serializable, and therefore, must be
defined in backingBeanScope bean. If you are implementing a custom task flow, then the
recommended practice is to have two managed beans:

• pageFlowScope bean, which holds the state of the taskflow (if any).

• backingBeanScope bean for component bindings actionListeners (or listeners in general).
The backingBeanScope bean can access pageFlowScope bean and its properties via an EL,
not vice versa.

19.10.17 Consider Replacing the Entire Taskflow
If you want to significantly change the default look and feel of the page, then it might be
beneficial to completely re-implement the entire taskflow.

This way it is guaranteed that your custom taskflow will work even after upgrading Oracle
Identity Manager. This may not be true if you significantly customize one of the predefined
pages. Although Oracle Identity Manager UI customizations are upgrade-safe, there are
exceptions to this when customizations are broken or lost post-upgrade. This is because it is
sometimes not possible to retain customizations if the flow changes completely.

Chapter 19
UI Customization Best Practices

19-96



If you decide to re-implement the entire taskflow, then you can add a new Home page tile on
one of the Home pages to launch the new taskflow and hide the original tile by launching a
default taskflow. See Adding a Tile to the Home Page for more information about adding a tile
to the Home page..

19.10.18 Do Not Update Oracle Identity Manager WAR/EAR Files
Note the WAR/EAR files that you can update.

You must not updated the following WAR/EAR files:

• oracle.iam.console.identity.self-service.ear
• oracle.iam.console.identity.sysadmin.ear
• oracle.iam.ui.view.war
• oracle.iam.ui.oia-view.war
• oracle.iam.ui.model.ear
Any changes to one of these WAR/EAR files are lost during upgrade.

The only WAR file that you can update is oracle.iam.ui.custom-dev-starter-pack.war. In
fact, this WAR file is intended for use in customizations, such as in custom managed beans,
resource bundles, and taskflows. Changes to oracle.iam.ui.custom-dev-starter-pack.war
are retained during upgrade.

19.10.19 Consider Conditionally Showing Certain Home Page Tiles
By default, all the home page tiles are displayed. However, you might want to consider hiding
some of the tiles from certain users to prevent them from accessing the pages.

For example, you might want to hide the Provisioning Tasks tile for end users. See Showing
Tiles Conditionally for information about showing tile based on conditions.

19.10.20 Do Not Invoke Platform APIs From Custom Managed Bean
Invoking Platform APIs directly by using Oracle Identity Manager data source in custom
managed bean is not supported.

Only Public APIs that are exposed through OIMClient can be invoked.

19.10.21 Use Recommended Value of Display Width While Creating Lookup
UDFs

Use the recommended value of the Dislpay Width field.

While creating lookup type UDF, the recommended value of the Display Width field is 40.

Chapter 19
UI Customization Best Practices

19-97



Part VII
Interfaces to Integrate With Other Applications

You can use Java APIs and SCIM/REST services for application development.

This part describes the APIS and Web services that Oracle Identity Manager supports. It
contains the following chapters:

• Using APIs

• Using SCIM/REST Services

• Using the JSON Web Token Service

• Understanding Global Policy Attachments



20
Using APIs

Oracle Identity Manager provides APIs for application development.
This chapter contains the following topics:

• About Oracle Identity Governance APIs

• Accessing Oracle Identity Governance Services

• Oracle Identity Governance Services

• Commonly Used Services

• Mapping Between Legacy and New Services

• Working With Legacy Oracle Identity Manager APIs

• Code Samples

• Using the Custom API ZIP File

20.1 About Oracle Identity Governance APIs
Oracle provides a network-aware, Java-based application programming interface (API) that
exposes Services available in Oracle Identity Governance.

This API is based on Plain Old Java Objects (POJO) and takes care of all the plumbing
required to interact with Oracle Identity Governance. This API can be used for building clients
for Oracle Identity Governance and for integrating third-party products with the Oracle Identity
Governance platform.

Note:

In this release, Oracle Identity Governance does not support the following:

• Legacy APIs

• Signature-based login

20.2 Accessing Oracle Identity Governance Services
You can use the OIMClient class for developing clients to integrate with Oracle Identity
Manager.

This section describes Oracle Identity Manager services and how to use the services to
develop clients to integrate with Oracle Identity Manager.

It contains the following topics:

• About Oracle Identity Governance Services

• Using OIMClient

20-1



• Using OIMClient and tcUtilityFactory in Integrated Deployments

20.2.1 About Oracle Identity Governance Services
The entry point to Oracle Identity Manager Services is through oracle.iam.platform.OIMClient
class.

Thor.API.tcUtilityFactory used in earlier releases is also supported. Oracle recommends using
the oracle.iam.platform.OIMClient for developing clients to integrate with Oracle Identity
Manager.

20.2.2 Using OIMClient
Using OIMClient involves creating an instance of OIMClient, looking up a service, and calling
method on a service.

OIMClient is the entry point for accessing the services available in Oracle Identity Manager.
You use the following sequence of steps when using OIMClient:

1. Create an instance of OIMClient with the environment information required to connect to
Oracle Identity Manager application, as shown:

Hashtable env = new Hashtable();

env.put(OIMClient.JAVA_NAMING_FACTORY_INITIAL, 
"weblogic.jndi.WLInitialContextFactory");
env.put(OIMClient.JAVA_NAMING_PROVIDER_URL, t3://OIM_HOSTNAME:OIM_PORT);
OIMClient oimClient = new OIMClient(env);

Here, replace OIM_HOSTNAME with the host name on which Oracle Identity Manager is
deployed and OIM_PORT with the port number.

2. Login to the Oracle Identity Manager with the appropriate credentials, as shown:

oimClient.login(OIM_USERNAME, OIM_PASSWORD);
3. Lookup a service, as shown:

UserManager usermgr = oimClient.getService(UserManager.class);
OR
tcLookupOperationsIntf lookupIntf = 
oimClient.getService(tcLookupOperationsIntf.class);

4. Call method on a service, as shown:

HashMap userAttributes = new HashMap();
……………..
UserManagerResult result = userMgr.create(new User(null, userAttributes));

20.2.3 Using OIMClient and tcUtilityFactory in Integrated Deployments
Using OIMClient and tcUtilityFactory in integrated deployments can be done by using OPSS
Framework or by invoking the OIMClient API.

In Oracle Identity Manager deployment that is integrated with Access Manager (OAM),
OIMSignatureAuthenticator is not configured in the Oracle Identity Manager domain's security
realm. Therefore, all the custom or partner applications that you want to integrate with Oracle
Identity Manager must not use signature-based login to Oracle Identity Manager. Instead, you
must follow any one of the following approaches:

Chapter 20
Accessing Oracle Identity Governance Services

20-2



• Oracle Platform Security Services (OPSS) Framework: If the partner or client
application is a J2EE application based on Fusion Middleware stack, then it can use the
following from OPSS framework:

Note:

See Introduction to Oracle Platform Security Services in the Application Security
Guide for information about OPSS and its main features

– OPSS credential store: This allows credentials to be managed (store, retrieve,
modify) in a secure manner. You can store the password in the OPSS credential store,
and retrieve it while performing a Oracle Identity Manager client login by using user ID
and password. See Managing the Credential Store in the Application Security Guide
for more information about OPSS credential store.

– OPSS SubjectSecurity API: If a partner application wants to invoke Oracle Identity
Manager EJB/Service APIs with a higher privilege, such as system administrator user,
then OPSS SubjectSecurity API can be used. The following sample partner application
code tries to invoke Oracle Identity Manager API with higher privilege:

See Also:

Oracle Fusion Middleware Java API Reference for Oracle Platform Security
Services for detailed information about the SubjectSecurity API

//Get ActionExecutor for OIM System administrator, xelsysadm
ActionExecutor actionExecutor = 
SubjectSecurity.getInstance().getActionExecutor("xelsysadm");
actionExecutor.execute(new PrivilegedAction<Object>() {
  public Object run() {
       //OIM EJB method invocation goes here….
                   Hashtable env = new Hashtable();
      //serverURL – OIM server's RMI URL
                   // ctxFactory – WLS/WAS context factory class
         env.put(OIMClient.JAVA_NAMING_PROVIDER_URL, serverURL);
         env.put(OIMClient.JAVA_NAMING_FACTORY_INITIAL,ctxFactory);
         OIMClient client = new OIMClient(env);
  //Invoking EJB service method as "xelsysadm"
         RequestService reqSrvc = client.getService(RequestService.class);
         reqSrvc.getBasicRequestData("1");//1 is the request ID.
              }
});

• If using the OPSS framework is not possible for some reason, then it is recommended to
invoke the OIMClient API with user ID and password. However, it is up to the client or
partner to store and manage the Oracle Identity Manager user's password in a secure
manner.

20.3 Oracle Identity Governance Services
The Oracle Identity Manager API provides access to services available in Oracle Identity
Manager.

Chapter 20
Oracle Identity Governance Services

20-3



Because the APIs in Oracle Identity Manager 11g Release 1(11.1.1) onwards and the legacy
APIs use different conventions, this section discusses them separately in the following topics:

• Services in Oracle Identity Governance

• Legacy Services or Utilities

20.3.1 Services in Oracle Identity Governance
Services are based on conventions related to package names and service interface names.

Services in Oracle Identity Manager 11g onwards are based on the following conventions:

• Package Names: Services are in packages whose names end with "api", for example:

oracle.iam.request.api
oracle.iam.identity.usermgmt.api

• Service Interface Names: Services introduced in 11g typically use the naming convention
of "*Service", for example:

oracle.iam.request.api.RequestService
oracle.iam.selfservice.self.selfmgmt.api.AuthenticatedSelfService

Some Identity Administration APIs use the "*Manager" naming convention for their APIs,
for example:

oracle.iam.identity.usermgmt.api.UserManager
Some new services introduced in Oracle Identity Manager are:

oracle.iam.api.OIMService
oracle.iam.platform.authopss.api.AuthorizationService
oracle.iam.provisioning.api.ProvisioningService
oracle.iam.provisioning.api.ApplicationInstanceService

20.3.2 Legacy Services or Utilities
Utilities follow naming conventions related to package names and service interface names.

Legacy services, also called utilities, follow the following naming conventions

• Package Names: All legacy APIs are in Thor.API.Operations package.

• Service Interface Names: Service names are of the form "*Intf", for example,
Thor.API.Operations.tcImportOperationsIntf.

See Also:

Oracle Fusion Middleware Java API Reference for Oracle Identity Governance for a
full list of services available in Oracle Identity Manager. You can use the naming
conventions above to find the APIs.

Chapter 20
Oracle Identity Governance Services

20-4

https://docs.oracle.com/middleware/12213/oig/OMJAV/index.html


20.4 Commonly Used Services
Some commonly used services are UserManager, RequestService, RoleManager,
OrganizationManager, and oracle.iam.api.OIMService.

Table 20-1 lists some commonly used services in Oracle Identity Manager.

Table 20-1    Commonly Used Services

Service Name Description

UserManager Provides operations for user management, such as create,
search, modify, and delete users

RequestService Provides operations to submit, withdraw, close, and search
requests.

RoleManager Provides operations for role management such as create,
search, modify, and delete roles. In addition, this service
provides operations for management of role members and
relationships between roles.

OrganizationManager Provides operations for organization management such as
create, search, modify, delete, enable, and disable
organizations.

oracle.iam.api.OIMService Provides method to perform an operation in Oracle Identity
Manager. You can pass an intent while calling API of this
service. Intent here can be request or direct.

20.5 Mapping Between Legacy and New Services
In Oracle Identity Manager, some of the legacy APIs have been rewritten by using new
architecture and the corresponding utility services or interface classes have been changed.

Table 20-2 provides a high-level correspondence between the legacy and new interfaces.

Table 20-2    Mapping Between Legacy and New Services

Legacy Service New Service

Thor.API.Operations.tcUserOperationsIntf oracle.iam.identity.usermgmt.api.UserManager

Thor.API.Operations.tcGroupOperationsIntf

Note: The Group Manager APIs related all
delegated admin APIs for adding and removing
admins have been deprecated.

oracle.iam.identity.rolemgmt.api.RoleManager

Thor.API.Operations.tcOrganizationOperationsInt
f

oracle.iam.identity.orgmgmt.api.OrganizationManager

Thor.API.Operations.tcRequestOperationsIntf oracle.iam.request.api.RequestService

Thor.API.Operations.tcSchedulerOperationsIntf oracle.iam.scheduler.api.SchedulerService

Thor.API.Operations.tcEmailOperationsIntf oracle.iam.notification.api.NotificationService

20.6 Working With Legacy Oracle Identity Manager APIs
Legacy Oracle Identity Manager APIs extensively use the tcResultSet interface.

Chapter 20
Commonly Used Services

20-5



This section describes how to use the result set. It contains the following topics:

• Using a Result Set Object

• Example of Using a Result Set

• Handling Oracle Identity Manager Exceptions

• Cleaning Up

20.6.1 Using a Result Set Object
The Thor.API.tcResultSet interface is a data structure that stores records retrieved from the
database.

Methods in the Oracle Identity Manager API that must return a set of data use a result set. This
is a two-dimensional data structure in which the columns correspond to the attributes and rows
correspond to the entities. For example, a result set that is returned by the method that
searches for users, each row would represent data pertaining to one user, and each column in
the row would be an attribute for that user.

You can scroll through the result set and retrieve individual entries corresponding to particular
attributes by using the various methods provided. To locate a particular row in the result set,
use the goToRow() method with the row number as a parameter. To retrieve the values for the
columns from a row, use appropriate accessor methods, such as getStringValue(). To obtain
the value from a specific column, pass the column name as a parameter to the accessor
method. The column name is the descriptive code defined in the Oracle Identity Manager
Meta-Data system.

The following table shows some sample metadata values. This mapping is based on lookup
codes and can be looked up in the Design Console by using the Lookup Definition Form.

Column Code Explanation

IT Resources.Name The name of an IT resource

Process Definition.Name The name of a provisioning process

Note:

Keep track of the result set objects that are retrieved, because they will be required
when updating an existing record.

20.6.2 Example of Using a Result Set
Understand the example that obtains a result set by calling the findAllUsers() method. This
method searches for all users matching certain criteria.

The following is an example of how to use a result set.

tcResultSet moResultSet = moUserUtility.findAllUsers(mhAttribs);

To check if the findAllUsers() method returned any records, use the isEmpty() method, for
example:

boolean mbEmpty = moResultSet.isEmpty();

Chapter 20
Working With Legacy Oracle Identity Manager APIs

20-6



To retrieve the number of records found, use the getRowCount() method. If no records are
found, then the method returns 0. The following is an example:

int mnNumRec = moResultSet.getRowCount();

To select a particular record in the system, use the goToRow() method:

moResultSet.goToRow(5);

To retrieve the values of attributes from the current row, use the appropriate accessor method,
for example:

String msUserLastName = moResultSet.getStringValue("Users.Last Name");

20.6.3 Handling Oracle Identity Manager Exceptions
The API methods throw Oracle-defined Java exceptions.

Instead of using the getMessage() method on the exception object received, you can access
the isMessage internal variable to retrieve the exception message.

20.6.4 Cleaning Up
The tcUtilityFactory class manages all resources used by a utility or factory instance and
provides a means to release these resources after they are used.

If you instantiate and use tcUtilityFactory to obtain utility class instances, to release the
resources that are associated with the utility class, call the close(utility Object) method on
the factory class. If the session has ended, then call the close() method on the factory
instance to release all the utility classes, the session objects, and the database objects.

If you obtain a utility class directly by using static calls, after the utility object is no longer
needed, call the close(object) method on the utility object.

20.7 Code Samples
Understand code samples for retrieving information and using Certification and OIMService
APIs.

This section contains the following code samples:

• Retrieving Oracle Identity Governance Information

• Using Certification APIs

• Using OIMService API

20.7.1 Retrieving Oracle Identity Governance Information
Understand the example that creates an instance of the factory class. The instance is then
called several times to retrieve individual utility classes and use them to retrieve Oracle Identity
Governance information.

To retrieve Oracle Identity Governance information:

1. As a prerequisite, make sure that the following JAR files are in the classpath for API
execution:

Chapter 20
Code Samples

20-7



$MW_HOME/oracle_common/modules/oracle.jrf/jrf-api.jar
$MW_HOME/idm/designconsole/lib/oimclient.jar
$MW_HOME/oracle_common/modules/thirdparty/spring-context-4.3.20.RELEASE.jar
$MW_HOME/oracle_common/modules/org.apache.commons.logging_1.2.jar
$MW_HOME/idm/server/idmdf/idmdf-common.jar
$MW_HOME/wlserver/server/lib/wlthint3client.jar
$MW_HOME/oracle_common/modules/thirdparty/spring-core-4.3.20.RELEASE.jar

2. Run the following command to execute the code:

$JAVA_HOME/bin/java -Djava.security.policy=$DC_HOME/config/xl.policy -
Djava.security.auth.login.config=$DC_HOME/config/authwl.conf  -DAPPSERVER_TYPE=wls -
cp $CLASSPATH Sample

The following sample code illustrates how to retrieve Oracle Identity Governance
information.

/*
 This class is intented to showcase some of OIM API's. These API's are 
 specific to OIM 11g release. As an example, Legacy API's usage for
 Organization is also shown. 
*/
 
// Role related API's
import oracle.iam.identity.rolemgmt.api.RoleManager;
import oracle.iam.identity.rolemgmt.vo.Role;
import oracle.iam.identity.exception.RoleSearchException;
import oracle.iam.identity.rolemgmt.api.RoleManagerConstants.RoleAttributeName;
import oracle.iam.identity.rolemgmt.api.RoleManagerConstants.RoleCategoryAttributeName;
 
// User related API's
import oracle.iam.identity.usermgmt.api.UserManager;
import oracle.iam.identity.usermgmt.vo.User;
import oracle.iam.identity.exception.UserSearchException;
import oracle.iam.identity.usermgmt.api.UserManagerConstants.AttributeName;
 
// Organization Legacy API's
import Thor.API.Operations.tcOrganizationOperationsIntf;
import Thor.API.tcResultSet;
import Thor.API.Exceptions.tcAPIException; 
import Thor.API.Exceptions.tcColumnNotFoundException; 
import Thor.API.Exceptions.tcOrganizationNotFoundException; 
 
import oracle.iam.platform.OIMClient;
import oracle.iam.platform.authz.exception.AccessDeniedException;
import oracle.iam.platform.entitymgr.vo.SearchCriteria;
 
import java.util.*;
 
import javax.naming.NamingException;
import javax.security.auth.login.LoginException;
 
 
public class Sample {
 
     private static OIMClient oimClient;
 
     /*
      * Initialize the context and login with client supplied environment
     */
     public void init() throws LoginException {
        System.out.println("Creating client....");
        String ctxFactory = "weblogic.jndi.WLInitialContextFactory";

Chapter 20
Code Samples

20-8



        String serverURL = "t3://OIM_HOSTNAME:OIM_PORT";
        String username = "xelsysadm";
        char[] password = "xelsysadm".toCharArray();
        Hashtable env = new Hashtable();
        env.put(OIMClient.JAVA_NAMING_FACTORY_INITIAL,ctxFactory);
        env.put(OIMClient.JAVA_NAMING_PROVIDER_URL, serverURL);
 
        oimClient = new OIMClient(env);
        System.out.println("Logging in");        
        oimClient.login(username, password);
        System.out.println("Log in successful");
     }
 
     /**
     * Retrieves User login based on the first name using OIM 11g 
     * UserManager service API. 
     */
     public List getUserLogin(String psFirstName) {
        Vector mvUsers = new Vector();
        UserManager userService = oimClient.getService(UserManager.class); 
        Set<String> retAttrs = new HashSet<String>();
 
        // Attributes that should be returned as part of the search. 
        // Retrieve "User Login" attribute of the User.
        // Note: Additional attributes can be specified in a 
        // similar fashion.
        retAttrs.add(AttributeName.USER_LOGIN.getId());
 
        // Construct a search criteria. This search criteria states 
        // "Find User(s) whose 'First Name' equals 'psFirstName'".  
        SearchCriteria criteria;
        criteria = new SearchCriteria(AttributeName.FIRSTNAME.getId(), psFirstName, 
SearchCriteria.Operator.EQUAL);
        try {
            // Use 'search' method of UserManager API to retrieve 
            // records that match the search criteria. The return 
            // object is of type User. 
            List<User> users = userService.search(criteria, retAttrs, null);
            
            for (int i = 0; i < users.size(); i++) {
                //Print User First Name and Login ID 
                System.out.println("First Name : " + psFirstName + "  --  Login ID : " + 
users.get(i).getLogin());
                mvUsers.add(users.get(i).getLogin());
            }
        } catch (AccessDeniedException ade) {
            // handle exception
        } catch (UserSearchException use) {
            // handle exception
        }
       return mvUsers;
    }
 
    /** 
     * Retrieves the administrators of an Organization based on the 
     * Organization name. This is Legacy service API usage. 
     */
    public List getAdministratorsOfOrganization(String psOrganizationName) {
        Vector mvOrganizations = new Vector();
        tcOrganizationOperationsIntf moOrganizationUtility = 
oimClient.getService(tcOrganizationOperationsIntf.class);
        Hashtable mhSearchCriteria = new Hashtable();

Chapter 20
Code Samples

20-9



        mhSearchCriteria.put("Organizations.Organization Name", psOrganizationName);
        try {
            tcResultSet moResultSet = moOrganizationUtility.findOrganizations(mhSearchCriteria);
            tcResultSet moAdmins;
            for (int i = 0; i < moResultSet.getRowCount(); i++) {
                moResultSet.goToRow(i);
                moAdmins = 
moOrganizationUtility.getAdministrators(moResultSet.getLongValue("Organizations.Key"));
                mvOrganizations.add(moAdmins.getStringValue("Groups.Group Name"));
                System.out.println("Organization Admin Name : " + 
moAdmins.getStringValue("Groups.Group Name"));
            }
        } catch (tcAPIException tce) {
            // handle exception
        } catch (tcColumnNotFoundException cnfe) {
            // handle exception
        } catch (tcOrganizationNotFoundException onfe) {
            // handle exception
        }
        return mvOrganizations;
    }
 
    /**
     * Retrieves Role Display Name based on Role name and Role Category 
     * using OIM 11g RoleManager service API. This example shows how 
     * to construct compound search criteria.
     */
    public List getRoleDisplayName(String roleName, String roleCategory ) {
        Vector mvRoles = new Vector();
        RoleManager roleService = oimClient.getService(RoleManager.class); 
        Set<String> retAttrs = new HashSet<String>();
 
        // Attributes that should be returned as part of the search. 
        // Retrieve the "Role Display Name" attribute of a Role.
        // Note: Additional attributes can be specified in a 
        // similar fashion.
        retAttrs.add(RoleAttributeName.DISPLAY_NAME.getId());
 
        // Construct the first search criteria. This search criteria 
        // states "Find Role(s) whose 'Name' equals 'roleName'".  
        SearchCriteria criteria1;
        criteria1 = new SearchCriteria(RoleAttributeName.NAME.getId(), roleName, 
SearchCriteria.Operator.EQUAL);
 
        // Construct the second search criteria. This search criteria 
        // states "Find Role(s) whose 'category' equals 'roleCategory'".  
        SearchCriteria criteria2;
        criteria2 = new SearchCriteria(RoleCategoryAttributeName.NAME.getId(), roleCategory, 
SearchCriteria.Operator.EQUAL);
        
        // Construct the compound search criteria using 'criteria1' and 
        // 'criteria2' as arguments. This showcases how to construct
        // compound search criterias. 
        SearchCriteria criteria = new SearchCriteria(criteria1, criteria2, 
SearchCriteria.Operator.AND);
        try {
            // Use 'search' method of RoleManager API to retrieve 
            // records that match the search criteria. The return 
            // object is of type Role. 
            List<Role> roles = roleService.search(criteria, retAttrs, null);
 
            for (int i = 0; i < roles.size(); i++) {

Chapter 20
Code Samples

20-10



                //Print Role Display Name
                System.out.println("Role Display Name : " + 
                    roles.get(i).getDisplayName());
                mvRoles.add(roles.get(i).getDisplayName());
            }
        } catch (AccessDeniedException ade) {
            // handle exception
        } catch (RoleSearchException use) {
            // handle exception
        }
        return mvRoles;
    }
 
    // Main method invocation 
    // Following assumptions are made
    //1. A User "Joe Doe" already exists in OIM
    //2. An Organization  "Example Organization" already exists in OIM
    //3. A Role "Foobar" already exists in OIM
    public static void main(String args[]) {
        List moList = null;
    
        try {
            Sample oimSample = new Sample();
 
            // initialize resources
            oimSample.init();
            // retrieve User logins with first name 'Joe'
            moList=oimSample.getUserLogin("Joe");
            // retrieve User logins with first names starting with 'J'
            moList=oimSample.getUserLogin("J*");
            // retrieve the administrators of an Organization with name 
            // 'Example Organization'
            moList=oimSample.getAdministratorsOfOrganization(
                "Example Organization");
            // retrieve Role display name with role name 'FooBar'
            // and role category as 'Defaut' 
            moList=oimSample.getRoleDisplayName("foobar", "Default");
            // release resources
            oimClient.logout();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

The following is the sample output:

[java] Creating client....
[java] Logging in
[java] Log in successful
[java] First Name : Joe  --  Login ID : JDOE
[java] First Name : J*  --  Login ID : JHOND
[java] First Name : J*  --  Login ID : JDOE
[java] Organization Admin Name : SYSTEM ADMINISTRATORS
[java] Role Display Name : foobar

20.7.2 Using Certification APIs
Understand code examples for retrieving certifications belonging to a user, retrieving
application instance certification, certifying or denying certifications, and completing the
certification.

Chapter 20
Code Samples

20-11



This section provides code examples for using APIs related to certification, such as
CertificationService. It contains the following topics:

• Retrieving Certifications Belonging to a User

• Retrieving an Application Instance Certification

• Certifying or Denying Certifications

• Completing the Certification

20.7.2.1 Retrieving Certifications Belonging to a User
The following example provides the code sample to get certifications belonging to a user.

public List<CertificationInstance> findCertifications(SearchCriteria
searchCriteria, Set<String> retAttrs, Map<String,Object> configParams) throws
CertificationServiceException;
Example of searchCriteria to use:
  SearchCriteria searchCriteria1 = new
SearchCriteria(CertificationConstants.CERTIFICATION_SEARCH_FIELDPRIMARY_REVIEW
ER_ID, userKey, SearchCriteria.Operator.EQUAL);
  SearchCriteria searchCriteria2 = new
SearchCriteria("certificationStatusForQuery",
CertificationConstants.STATE_IN_PROGRESS.toString(),
SearchCriteria.Operator.EQUAL);
  SearchCriteria searchCriteria = new SearchCriteria(searchCriteria1,
searchCriteria2, SearchCriteria.Operator.AND);

20.7.2.2 Retrieving an Application Instance Certification
The following example provides the code sample to retrieve an application instance
certification.

public List<IDCAccountAttributeAndRoleWrapper> 
loadBatchUserEntitlements(LongcertificationId, String taskUid, Long userId, 
PaginationContext context,SearchCriteria searchCriteria) throws 
CertificationServiceException;

20.7.2.3 Certifying or Denying Certifications
The following example provides the code sample to certify or deny entitlements.

public void certifyUserEntitlements(Long certId, String taskUid, Long
userEntityId, Set<Long> roleEntityIds, Set<Long> accountEntityIds, Set<Long>
accountAttributeEntityIds, Integer certified, Date statusEndDate, String
comments) throws CertificationServiceException;

20.7.2.4 Completing the Certification
The following example provides the code sample to complete the certification.

public CertificationInstance completeCertification(final Long certificationId, String 
taskUid, char[] cleartextPassword)

20.7.3 Using OIMService API
Construct the RequestData object and understand examples of OIMService API usage for
invoking operations through OIMService API.

Chapter 20
Code Samples

20-12



This section lists the sample usage for few operations by using the OIMService API. It contains
the following topics:

• RequestData Object Construction

• Samples of OIMService API Usage

20.7.3.1 RequestData Object Construction
For invoking the operations supported through OIMService API, you must first construct the
RequestData object.

This section describes the RequestData object construction. It contains the following topics:

• Constructing RequestData Object for Operations Involving Target User and Cart Item

• Constructing RequestData Object for Operations Involving the User Entity

• Operations and Entity Keys

20.7.3.1.1 Constructing RequestData Object for Operations Involving Target User and Cart Item
For all the operations that involve target user and cart item, such as role, application instance,
or entitlement, construct the RequestData object as follows:

1. Create an instance of the RequestData object.

2. Create List of Beneficiary object(s), set the fields, and associate the object with
RequestData object by invoking:

requestData.setBeneficiaries();
3. Create List of RequestBeneficiaryEntity object(s), and set the cart item data, such as entity

type, entity key, and operation. Associate the object with Beneficiary object by invoking:

beneficiary.setTargetEntities();

The entityKey, which is set by using the entity.setEntityKey() method for a given
operation, must be based on Table 20-3.

4. Create List of RequestBeneficiaryEntityAttribute object(s), and set the attribute name and
value in each object. Associate the object with the entity object by invoking
entity.setEntityData().This is required only if the cart item is associated with a form.

Note:

• RequestData.setTargetEntities() must not be used in this scenario.

• See Samples of OIMService API Usagefor more details on OIMService API
usage.

20.7.3.1.2 Constructing RequestData Object for Operations Involving the User Entity
For all the operations that involve only the User entity, such as Create User, Modify User,
Enable User, Disable User, and Delete User, the RequestData object must be populated as
follows:

1. Create an instance of the RequestData object.

Chapter 20
Code Samples

20-13



2. Create List of RequestEntity object(s) by setting entity type, entity key, and operation.
Entity key must be set as user key for all the operations exception Create User.

3. Create List of RequestEntityAttribute object(s), and set attribute name and value in each
object. This is required only for Create User and Modify User operations.

20.7.3.1.3 Operations and Entity Keys
Table 20-3 lists the operations and corresponding entity keys that are set by using the
entity.setEntityKey() method.

Table 20-3    Operation and entityKey

Operation entityKey

Provision Application Instance Application Instance Key

Modify Account Account Key

Revoke Account Account Key

Enable Account Account Key

Disable Account Account Key

Provision Entitlement Entitlement Key

Modify Entitlement Entitlement Instance Key

Revoke Entitlement Entitlement Instance Key

20.7.3.2 Samples of OIMService API Usage
Understand code samples of revoking an account and creating a user by using OIMService
API.

This section provides code samples of using the OIMService API. It contains the following
topics:

• Revoking an Account

• Creating a User

20.7.3.2.1 Revoking an Account
The following is a code sample for revoking an account:

RequestData requestData = new RequestData();
Beneficiary beneficiary = new Beneficiary();
beneficiary.setBeneficiaryKey("12"); //User with key 12
beneficiary.setBeneficiaryType(Beneficiary.USER_BENEFICIARY);
 
RequestBeneficiaryEntity entity = new RequestBeneficiaryEntity();
entity.setEntityType("ApplicationInstance");
entity.setEntityKey(String.valueOf(accountKey));
entity.setOperation("REVOKE");
 
List<RequestBeneficiaryEntity> entities = new ArrayList<RequestBeneficiaryEntity>();
 
entities.add(entity);
beneficiary.setTargetEntities(entities);
 
List<Beneficiary> beneficiaries = new ArrayList<Beneficiary>();
beneficiaries.add(beneficiary);

Chapter 20
Code Samples

20-14



requestData.setBeneficiaries(beneficiaries);
OperationResult result = oimService.doOperation(requestData, OIMService.Intent.ANY);
if( result.getRequestID() != null ) {
//Operation resulted in to request creation.
System.out.println("Request submitted with ID: " + result.getRequestID());
} else {
System.out.println("Account is revoked successfully");
}

20.7.3.2.2 Creating a User
The followins is a code sample for creating a user:

RequestData requestData = new RequestData("Create User");
RequestEntity ent = new RequestEntity();
ent.setRequestEntityType(OIMType.User);
ent.setOperation("CREATE");
HashMap<String, String> userData = new HashMap<String, String>();
 
List<RequestEntityAttribute> attrs = new ArrayList<RequestEntityAttribute>();
 
RequestEntityAttribute attr = new RequestEntityAttribute("Last Name", "Doe", 
RequestEntityAttribute.TYPE.String);
attrs.add(attr);        
attr = new RequestEntityAttribute("First Name", "John", 
RequestEntityAttribute.TYPE.String);
attrs.add(attr);
attr = new RequestEntityAttribute("User Login", "jdoe", 
RequestEntityAttribute.TYPE.String);
attrs.add(attr);
Long organizationKey = new Long(1);
attr = new RequestEntityAttribute("Organization", organizationKey , 
RequestEntityAttribute.TYPE.Long);
attrs.add(attr);
attr = new RequestEntityAttribute("Role", "Full-Time", 
RequestEntityAttribute.TYPE.String);
attrs.add(attr);
 
ent.setEntityData(attrs);
 
List<RequestEntity> entities = new ArrayList<RequestEntity>();
entities.add(ent);
requestData.setTargetEntities(entities);
OperationResult result = oimService.doOperation(requestData, OIMService.Intent.ANY);
if( result.getRequestID() != null ) {
//Operation resulted in to request creation.
System.out.println("Request submitted with ID: " + result.getRequestID());
} else {
System.out.println("User is created successfully");
}

20.8 Using the Custom API ZIP File
For the ease of API development cycle, Oracle Identity Manager provides the custom API ZIP
file.

To configure the custom API ZIP file:

1. Extract the $MW_HOME/idm/designconsole/CustomClient.zip file.

2. Modify xlCustomClient.bat as follows:

Chapter 20
Using the Custom API ZIP File

20-15



a. Modify the CLASSPATH to JARs associated with the custom client.

b. Set CLIENT_CLASS to the custom client main class name.

c. Modify the following properties:

-Djava.security.auth.login.config=config\authwl.conf 
-Djava.naming.provider.url=t3://HOST_NAME:PORT_NUMBER/

3. Modify <Custom Client>/config/xlconfig.xml as follows:

a. Modify the application server name.

<appServerName>weblogic</appServerName>

b. Modify the Discovery setting for WebLogic-specific values.

<Discovery>
  <CoreServer>
    <java.naming.provider.url>
      t3://HOST_IP_ADDRESS:PORT_NUMBER
    </java.naming.provider.url>
    <java.naming.factory.initial>
      weblogic.jndi.WLInitialContextFactory
    </java.naming.factory.initial>
  </CoreServer>
</Discovery>

Chapter 20
Using the Custom API ZIP File

20-16



21
Using SCIM/REST Services

Representation State Transfer (REST) is an architectural style for building web services over
HTTP. Identity REST services are a set of REST web services that provide functionality for
self-service, user, role/group, organization, and password policy management.
This chapter describes the SCIM/REST services and REST API usage. It contains the
following topics:

• Overview of SCIM/REST Services

• Supported Resources and Operations

• Resource Schema

• Operation Types

• HTTP Response Codes

• SCIM-Based API Examples

• Securing SCIM Resources

• Oracle Identity Governance REST Service

Note:

By default, SCIM is configured to run on both HTTP and HTTPs ports. If you want to
enable SCIM to run only on HTTPs ports, then perform the steps described in 
Enabling SCIM to Run Only on HTTPS.

21.1 Overview of SCIM/REST Services
Identity REST services are based on the System for Cross-Domain Identity Management
(SCIM) protocol.

Oracle Identity Governance SCIM service is available by default with the SCIM schema and
IDM extensions, as described in Schema Attributes for the User Resource.

The supported schema can be retrieved, as described in Retrieving Schemas.

When you deploy Oracle Identity Governance, SCIM is deployed by default as a web
application on the Oracle Identity Governance server.

SCIM implementation in Oracle Identity Governance follows draft-ietf-scim-api-13 and draft-
ietf-scim-core-schema-13. For information about IETF drafts, refer to the following URL:

http://www.simplecloud.info/

21.2 Supported Resources and Operations
SCIM-based APIs used for the supported operations are available for various resources, such
as User, Organization, Password Policy, and System Property.

21-1

http://www.simplecloud.info/


Table 21-1 lists SCIM-based APIs used for the supported operations in Oracle Identity
Governance.

Table 21-1    SCIM-Based APIs and Supported Operations

Resource Endpoint Operation Schema URL Description

User /Users GET, POST,
PUT, PATCH,
DELETE

urn:ietf:params:scim:schemas:
core:2.0:User

urn:ietf:params:scim:schemas:
extension:enterprise:2.0:User

urn:ietf:params:scim:schemas:
extension:oracle:2.0:IDM:User

urn:ietf:params:scim:schemas:
extension:oracle:2.0:OIG:User

Get/Add/Modify/Disable/Enable/Lock/
Unlock/Delete Users -
identity.usermgmt.api.UserManager

User /Me GET, POST,
PUT, PATCH

urn:ietf:params:scim:schemas:
core:2.0:User

urn:ietf:params:scim:schemas:
extension:enterprise:2.0:User

urn:ietf:params:scim:schemas:
extension:oracle:2.0:IDM:User

urn:ietf:params:scim:schemas:
extension:oracle:2.0:OIG:User

Get/Modify My Profile, Change My
Password, Change My Challenge
Responses -,
selfservice.self.selfmgmt.api.Authenticat
edSelfService

Self Registration - via
UnauthenticatedSelfService

PasswordRes
etterWithChall
enges

/
PasswordReset
terWithChallen
ges

POST urn:ietf:params:scim:schemas:
oracle:core:2.0:IDM:Password
ResetterWithChallenges

PasswordValid
ator

/
PasswordValid
ator

POST urn:ietf:params:scim:schemas:
oracle:core:2.0:IDM:Password
Validator

UserNameGe
nerator

/
UserNameGen
erator

POST urn:ietf:params:scim:schemas:
oracle:core:2.0:IDM:UserName
Generator

UserNameRe
coverer

/
UserNameRec
overer

POST urn:ietf:params:scim:schemas:
oracle:core:2.0:IDM:UserName
Recoverer

UserNameVali
dator

/
UserNameValid
ator

POST urn:ietf:params:scim:schemas:
oracle:core:2.0:IDM:UserName
Validator

Group /Groups GET, POST,
PUT, PATCH,
DELETE

urn:ietf:params:scim:schemas:
core:2.0:Group

urn:ietf:params:scim:schemas:
extension:oracle:2.0:IDM:Grou
p

urn:ietf:params:scim:schemas:
extension:oracle:2.0:OIG:Grou
p

Get/Add/Modify/
SetUserMembershipRule/Delete Groups
- identity.rolemgmt.api.RoleManager

Organization /Organizations GET, POST,
PUT, PATCH,
DELETE

urn:ietf:params:scim:schemas:
oracle:core:2.0:OIG:Organizati
on

Get/Add/Modify/
SetUserMembershipRule/Delete
Organizations -
identity.orgmgmt.api.OrganizationManag
er

Chapter 21
Supported Resources and Operations

21-2



Table 21-1    (Cont.) SCIM-Based APIs and Supported Operations

Resource Endpoint Operation Schema URL Description

Password
Policy

/
PasswordPolici
es

GET, POST,
PUT, PATCH,
DELETE

urn:ietf:params:scim:schemas:
oracle:core:2.0:IDM:Password
Policy

Get/Add/Modify/Delete Password
Policies -
passwordmgmt.api.PasswordMgmtServi
ce

Notification
Template

/
NotificationTem
plates

GET, POST,
PUT, PATCH,
DELETE

urn:ietf:params:scim:schemas:
oracle:core:2.0:OIG:Notificatio
nTemplate

Get/Add/Modify/Delete Notification
Templates -
notification.api.NotificationService

System
Property

/
SystemProperti
es

GET, PATCH urn:ietf:params:scim:schemas:
oracle:core:2.0:OIG:SystemPro
perty

Get/Modify System Property -
config.api.SystemConfigurationService

Service
Provider
Configuration
Schema

/
ServiceProvide
rConfigs

GET urn:ietf:params:scim:schemas:
core:2.0:ServiceProviderConfig

Get the service provider's configuration

Resource
Type

/
ResourceTypes

GET urn:ietf:params:scim:schemas:
core:2.0:ResourceType

Get the resource type's configuration

Schema /Schemas GET urn:ietf:params:scim:schemas:
core:2.0:Schema

urn:ietf:params:scim:schemas:
extension:oracle:2.0:OIG:Sche
ma

Get a resource's schema

Search [prefix]/.search POST NA Perform search at system root or with in
a resource endpoint for one or more
resource types using POST

21.3 Resource Schema
Understand the resource schema and the schema attributes of the supported resources.

This section describes the resource schema and lists the schema attributes of the supported
resources. It contains the following topics:

• Introduction to Resource Schema

• Schema Attributes for the User Resource

• Schema Attributes for the PasswordResetterWithChallenges Resource

• Schema Attributes for the PasswordValidator Resource

• Schema Attributes for the UserNameValidator Resource

• Schema Attributes for the UserNameGenerator Resource

• Schema Attributes for the UserNameRecoverer Resource

• Schema Attributes for the Group Resource

• Schema Attributes for the Organization Resource

• Schema Attributes for the Password Policy Resource

• Schema Attributes for the Notification Template Resource

• Schema Attributes for the System Property Resource

Chapter 21
Resource Schema

21-3



• Schema Attributes for the Service Provider Configuration Schema Resource

• Schema Attributes for the Resource Type Resource

• Schema Attributes for the Schema Resource

21.3.1 Introduction to Resource Schema
Understand the supported SCIM attributes, types of SCIM schema attributes, and mutability.

The resource schema tables listed in this section show the supported SCIM attributes. All
SCIM resource types and schema extensions are identified by the following URI in both JSON
requests and responses:

urn:oracle:scim:schemas:idm:2.0:RESOURCE_TYPE

All SCIM resources, such as users, groups, and organizations, include the following types of
SCIM schema attributes:

• SVA: Single-valued attribute

• MVA: Multi-valued attribute.

• CSVA: Complex single-valued attribute

• CMVA: Complex multi-valued attribute.

SCIM user schema supports CMVA, such as email address, where each value can have
subattributes, such as personal email address, work email address, and other email
address, and value. As Oracle Identity Governance does not support CMVA, Oracle
Identity Governance SCIM/REST API also does not support them, except where they can
be mapped to existing Oracle Identity Governance user schema attributes. If a request is
made that includes a complex SCIM attribute that is not supported by the Oracle Identity
Governance SCIM/REST, then an error is returned in the REST response indicating the
same.

Mutability is the way a given attribute is accessed. The possible mutability values are:

• Read-only (RO): Allows create and read/search operations

• WO: Allows create but not read/search operations

• RW: Allows create as well as read/search operations

21.3.2 Schema Attributes for the User Resource
Understand the schema attributes for the User resource, which includes user schema
attributes, enterprise user schema attributes, IDM common user schema attributes, and OIG
user schema extension attributes.

This section describes the schema attributes for the User resource. It contains the following
topics:

• User Schema Attributes

• Enterprise User Schema Attributes

• IDM Common User Schema Extension Attributes

• OIG User Schema Extension Attributes

Chapter 21
Resource Schema

21-4



21.3.2.1 User Schema Attributes
Table 21-2 lists the SCIM user schema attributes.

Note:

Accounts and entitlements are not supported by Oracle Identity Governance SCIM
services.

Table 21-2    urn:ietf:params:scim:schemas:core:2.0:User

SCIM Attribute Attribute
Type

Data Type Required Mutability

userName SVA String Y RW

name.formatted SVA String N RW

name.familyName SVA String N RW

name.givenName SVA String N RW

name.middleName SVA String N RW

name.honorificPrefix SVA String N RW

name.honorificSuffix SVA String N RW

displayName SVA String N RW

nickName SVA String N RW

profileUrl SVA String N RW

title SVA String N RW

title SVA String N RW

userType SVA String N RW

preferredLanguage SVA String N RW

timezone SVA String N RW

locale SVA String N RW

active SVA Boolean N RW

password SVA String N WO

emails CMVA NA N RW

emails[work].value SVA String N RW

emails[<type>].primary SVA String N RW

phoneNumbers CMVA NA N RW

phoneNumbers.type SVA String N RW

phoneNumbers[work].value SVA String N RW

phoneNumbers[home].value SVA String N RW

phoneNumbers[mobile].value SVA String N RW

phoneNumber[fax].value SVA String N RW

phoneNumber[pager].value SVA String N RW

phoneNumber[other].value SVA String N RW

Chapter 21
Resource Schema

21-5



Table 21-2    (Cont.) urn:ietf:params:scim:schemas:core:2.0:User

SCIM Attribute Attribute
Type

Data Type Required Mutability

ims CMVA NA N RW

photos CMVA NA N RW

addresses CMVA NA N RW

addresses.type SVA String N RW

addresses[<type>].primary SVA String N RW

addresses[work].formatted SVA String N RW

addresses[home].formatted SVA String N RW

addresses[work].streetAddress SVA String N RW

addresses[work].locality SVA String N RW

addresses[work].region SVA String N RW

addresses[work].postalCode SVA String N RW

addresses[work].country SVA String N RW

groups CMVA NA N RO

groups.value SVA String N RO

groups.$ref SVA String N RO

groups.type SVA String N RO

entitlements SMVA String N RW

roles SMVA String N RW

x509Certificates SMVA String N RW

21.3.2.2 Enterprise User Schema Attributes
Table 21-3 lists the SCIM enterprise user schema attributes.

Table 21-3    urn:ietf:params:scim:schemas:extension:enterprise:2.0:User

SCIM Attribute Attribute Type Data Type Required Mutability

employeeNumber SVA String N RW

costCenter SVA String N RW

organization SVA String N RO

division SVA String N RW

department SVA String N RW

manager.value SVA String N RW

manager.$ref SVA String N RW

manager.displayName SVA String N RO

21.3.2.3 IDM Common User Schema Extension Attributes
Table 21-4lists the SCIM IDM common user schema extension attributes.

Chapter 21
Resource Schema

21-6



Table 21-4    urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User

SCIM Attribute Attribute Type Data Type Required Mutability

createBy.value SVA String N RO

createBy.$ref SVA String N RO

updateBy.value SVA String N RO

updateBy.$ref SVA String N RO

passwd CSVA

passwd.value SVA String N WO

passwd.oldValue SVA String N WO

passwd.sendNotification SVA String N WO

passwd.sendNotificationTo SVA String N WO

passwordMustChange SVA String N RO

passwordExpireDate SVA String N RO

locked.value SVA String N RW

locked.duration SVA String N RW

locked.reason SVA String N RO

locked.on SVA String N RO

challenges CMVA NA N RW

challenges.challenge SVA String N RW

challenges.response SVA String N RW

21.3.2.4 OIG User Schema Extension Attributes
Table 21-5 lists the Oracle Identity Governance (OIG) user schema extension attributes.

Table 21-5    urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User

SCIM Attribute Attribute Type Data Type Required Mutability

dataLevel SVA String N RO

disabled SVA String N RO

passwordCreateDate SVA Date N RO

passwordCantChange SVA String N RO

passwordNeverExpires SVA String N RO

passwordIsExpired SVA String N RO

passwordWarnDate SVA Date N RO

lastSuccessfulLoginDate SVA Date N RO

lastFailedLoginDate SVA Date N RO

hireDate SVA Date N RW

startDate SVA Date N RW

endDate SVA Date N RW

provisioningDate SVA Date N RW

Chapter 21
Resource Schema

21-7



Table 21-5    (Cont.) urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User

SCIM Attribute Attribute Type Data Type Required Mutability

provisionedDate SVA Date N RO

deprovisioningDate SVA Date N RW

deprovisionedDate SVA Date N RO

automaticallyDeleteOn SVA Date N RO

userLoginAttemptsCounter SVA Int N RO

userPasswordResetAttempts
Counter

SVA Int N RO

userMustChangePasswordAt
NextLogin

SVA String N RO

userPasswordMinAgeDate SVA Date N RO

description SVA String N RW

ldapCommonName SVA String N RW

ldapCommonNameGenerate
d

SVA String N RW

ldapOrganization SVA String N RW

ldapOrganizationalUnit SVA String N RW

ldapDn SVA String N RW

ldapGuid SVA String N RW

poBox SVA String N RW

jobCode SVA String N RW

officeName SVA String N RW

initials SVA String N RW

faLanguage SVA String N RW

faTerritory SVA String N RW

embeddedHelp SVA String N RW

fontSize SVA String N RW

colorContrast SVA String N RW

accessibilityMode SVA String N RW

numberFormat SVA String N RW

dateFormat SVA String N RW

timeFormat SVA String N RW

currency SVA String N RW

summaryRisk SVA String N RO

hasHighRiskRole SVA String N RO

hasHighRiskResource SVA String N RO

hasHighRiskEntitlement SVA String N RO

hasHighRiskProvisioningMet
hod

SVA String N RO

hasHighRiskOpenSod SVA String N RO

Chapter 21
Resource Schema

21-8



Table 21-5    (Cont.) urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User

SCIM Attribute Attribute Type Data Type Required Mutability

hasHighRiskLastCert SVA String N RO

roleSummaryRisk SVA String N RO

accountSummaryRisk SVA String N RO

entitlementSummaryRisk SVA String N RO

riskUpdateDate SVA String N RO

homeOrganization CSVA NA N RW

homeOrganization.value SVA String N RW

homeOrganization.$ref SVA String N RO

Organizations CMVA NA N RO

organizations.value SVA String N RO

organizations.$ref SVA String N RO

passwordPolicyDescription SVA String N RO

requestId SVA String N RO

21.3.3 Schema Attributes for the PasswordResetterWithChallenges
Resource

Understand the IDM PasswordResetterWithChallenges user schema attributes.

Table 21-6 lists the IDM PasswordResetterWithChallenges user schema attributes.

Table 21-6    urn:ietf:params:scim:schemas:oracle:core:2.0:PasswordResetterWithChall
enges

SCIM Attributes Attribute Type Data Type Required Mutability

userName SVA String Y WO

Challenges CMVA NA Y WO

challenges.challenge SVA String Y WO

challenges.response SVA String Y WO

password SVA String Y WO

21.3.4 Schema Attributes for the PasswordValidator Resource
Understand the IDM PasswordValidator schema attributes.

Table 21-7 lists the IDM PasswordValidator schema attributes.

Table 21-7    urn:ietf:params:scim:schemas:oracle:core:2.0:PasswordValidator

SCIM Attribute Attribute Type Data Type Required Mutability

userRef SVA String Y WO

Chapter 21
Resource Schema

21-9



Table 21-7    (Cont.) urn:ietf:params:scim:schemas:oracle:core:2.0:PasswordValidator

SCIM Attribute Attribute Type Data Type Required Mutability

password SVA String Y WO

21.3.5 Schema Attributes for the UserNameValidator Resource
Understand the IDM UserNameValidator schema attributes.

Table 21-8 lists the IDM UserNameValidator schema attributes.

Table 21-8    urn:ietf:params:scim:schemas:oracle:core:2.0:UserNameValidator

SCIM Attribute Attribute Type Data Type Required Mutability

userName SVA String Y WO

21.3.6 Schema Attributes for the UserNameGenerator Resource
Understand the IDM UserNameGenerator schema attributes.

Table 21-9 lists the IDM UserNameGenerator schema attributes.

Table 21-9    urn:ietf:params:scim:schemas:oracle:core:2.0:UserNameGenerator

SCIM Attribute Attribute Type Data Type Required Mutability

name CSVA NA Y WO

name.formatted SVA String Y WO

name.familyName SVA String Y WO

name.givenName SVA String Y WO

name.middleName SVA String Y WO

name.honorificSuffix SVA String Y WO

21.3.7 Schema Attributes for the UserNameRecoverer Resource
Understand the IDM UserNameRecoverer schema attributes.

Table 21-10 lists the IDM UserNameRecoverer schema attributes.

Table 21-10    urn:ietf:params:scim:schemas:oracle:core:2.0:UserNameRecoverer

SCIM Attribute Attribute Type Data Type Required Mutability

email SVA String Y WO

Chapter 21
Resource Schema

21-10



21.3.8 Schema Attributes for the Group Resource
Understand the schema attributes of the Group resource, which includes group schema
attributes, IDM common group schema extension attributes, and OIG group schema extension
attributes.

This section describes the schema attributes for the Group resource. It contains the following
topics:

• Group Schema Attributes

• IDM Common Group Schema Extension Attributes

• OIG Group Schema Extension Attributes

21.3.8.1 Group Schema Attributes
Table 21-11 lists the SCIM group schema attributes.

Table 21-11    urn:ietf:params:scim:schemas:core:2.0:Group

SCIM Attribute Attribute Type Data Type Required Mutability

displayName SVA String Y RW

members CMVA NA N

members.value SVA String N RW

members .$ref SVA String N RW

21.3.8.2 IDM Common Group Schema Extension Attributes
Table 21-12 lists the IDM common group schema extension attributes.

Table 21-12    urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group

SCIM Attributes Attribute Type Data Type Required Mutability

createBy.value SVA String N RO

createBy.$ref SVA String N RO

updateBy.value SVA String N RO

updateBy.$ref SVA String N RO

email SVA String N RW

description SVA String N RW

owner CSVA NA N RW

owner.value SVA String N RW

owner.$ref SVA String N RO

owner.firstName SVA String N RO

owner.lastName SVA String N RO

owner.displayName SVA String N RO

owner.email SVA String N RO

Chapter 21
Resource Schema

21-11



Table 21-12    (Cont.) urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group

SCIM Attributes Attribute Type Data Type Required Mutability

owner.login SVA String N RO

21.3.8.3 OIG Group Schema Extension Attributes
Table 21-13 lists the OIG group schema extension attributes.

Table 21-13    urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group

SCIM Attribute Attribute Type Data Type Required Mutability

dataLevel SVA String N RO

namespace SVA String N RW

category CSVA NA N RW

category.value SVA String N RW

category.name SVA String N RO

ldapGuid SVA String N RO

ldapDn SVA String N RO

requestId SVA String N RO

accessPolicies.value MVA String N RW

organizationsPublishedTo CMVA NA N RW

organizationsPublishedTo.val
ue

SVA String N RW

organizationsPublishedTo.$re
f

SVA String N RO

catalog CSVA NA N RW

catalog.id SVA String N RO

catalog.categoryName SVA String N RW

catalog.auditObjectives SVA String N RW

catalog.itemRisk SVA Integer N RW

catalog.userDefinedTags SVA String N RW

catalog.certifiable SVA Boolean N RW

catalog.auditable SVA Boolean N RW

catalog.requestable SVA Boolean N RW

catalog.tags SVA String N RO

catalog.hierarchicalDataAvail
able

SVA Boolean N RO

catalogApproverUser.value SVA String N RW

catalogApproverUser.$ref SVA Reference N RW

catalogApproverRole.value SVA String N RW

catalogApproverRole.$ref SVA Reference N RW

catalogCertifierUser.value SVA String N RW

Chapter 21
Resource Schema

21-12



Table 21-13    (Cont.) urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group

SCIM Attribute Attribute Type Data Type Required Mutability

catalogCertifierUser.$ref SVA Reference N RW

catalogCertifierRole.value SVA String N RW

catalogCertifierRole.$ref SVA Reference N RW

catalogFulfillmentUser.value SVA String N RW

catalogFulfillmentUser.$ref SVA Reference N RW

catalogFulfillmentRole.value SVA String N RW

catalogFulfillmentRole.$ref SVA Reference N RW

catalogAttributes CMVA NA N RW

catalogAttributes.name SVA String N RW

catalogAttributes.value SVA String N RW

catalogAttributes.udf SVA Boolean N RW

catalogAttributes.description SVA String N RW

catalogAttributes.searchable SVA Boolean N RW

catalogAttributes.sortable SVA Boolean N RW

catalogAttributes.certifiable SVA Boolean N RW

catalogAttributes.datatype SVA String N RO

userMembershipRule CSVA NA N RW

userMembershipRule.value SVA String N RW

userMembershipRule.evaluat
e

SVA Boolean N WO

21.3.9 Schema Attributes for the Organization Resource
Understand the OIG organization schema attributes.

Table 21-14 lists the OIG organization schema attributes.

Table 21-14    urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:Organization

SCIM Attribute Attribute Type Data Type Required Mutability

createBy.value SVA String N RO

createBy.$ref SVA String N RO

updateBy.value SVA String N RO

updateBy.$ref SVA String N RO

dataLevel SVA String N RO

name SVA String N RW

customerType SVA String N RW

status SVA String N RW

disabled SVA String N RW

parent CSVA NA N RW

Chapter 21
Resource Schema

21-13



Table 21-14    (Cont.) urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:Organization

SCIM Attribute Attribute Type Data Type Required Mutability

parent.value SVA String N RW

parent.$ref SVA String N RO

parent.name SVA String N RO

passwordPolicy CSVA NA N RW

passwordPolicy.value SVA String N RW

passwordPolicy.$ref SVA String N RO

passwordPolicy.name SVA String N RO

certifierUser CSVA NA N RW

certifierUser.value SVA String N RW

certifierUser.$ref SVA String N RO

certifierUser.login SVA String N RO

enforceNewPasswordPolicy SVA String N RW

userMembershipRule CSVA NA N RW

userMembershipRule.value SVA String N RW

userMembershipRule.evaluate SVA String N WO

members CMVA NA N RO

members.value SVA String N RO

members.$ref SVA String N RO

childOrganizations CSVA NA N RO

childOrganizations.value SVA String N RO

childOrganizations.$ref SVA Reference N RO

21.3.10 Schema Attributes for the Password Policy Resource
Understand the IDM password policy schema attributes.

Table 21-15 lists the IDM password policy schema attributes.

Table 21-15    urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordPolicy

SCIM Attribute Attribute Type Data Type Required Mutability

name SVA String N RW

description SVA String N RW

maxLength SVA String N RW

minLength SVA String N RW

minAlphas SVA String N RW

minNumerals SVA String N RW

minAlphaNumerals SVA String N RW

minSpecialChars SVA String N RW

Chapter 21
Resource Schema

21-14



Table 21-15    (Cont.)
urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordPolicy

SCIM Attribute Attribute Type Data Type Required Mutability

maxSpecialChars SVA String N RW

minUpperCase SVA String N RW

minLowerCase SVA String N RW

minUniqueChars SVA String N RW

maxRepeatedChars SVA String N RW

startsWithAlphabet SVA String N RW

minUnicodeChars SVA String N RW

maxUnicodeChars SVA String N RW

firstNameDisallowed SVA String N RW

lastNameDisallowed SVA String N RW

userIdDisallowed SVA String N RW

minPasswordAgeInDays SVA String N RW

passwordWarningAfterInDays SVA String N RW

passwordExpiresAfterInDays SVA String N RW

requiredChars SVA String N RW

disallowedChars SVA String N RW

allowedChars SVA String N RW

disallowedSubstrings SVA String N RW

dictionaryLocation SVA String N RW

dictionaryDelimiter SVA String N RW

numPasswordsInHistory SVA String N RW

maxIncorrectAttempts SVA String N RW

lockoutDuration SVA String N RW

complexPolicy SVA String N RW

challengesEnabled SVA String N RW

challengeSource SVA String N RW

challengeDefaultQuestions.va
lue

SVA String N RW

challengeMinQuestions SVA String N RW

challengeMinAnswers SVA String N RW

challengeAllAtOnce SVA String N RW

challengeResponseMinLengt
h

SVA String N RW

challengeAllowDuplicateResp
onses

SVA String N RW

challengeMaxIncorrectAttemp
ts

SVA String N RW

Chapter 21
Resource Schema

21-15



21.3.11 Schema Attributes for the Notification Template Resource
Understand the OIG notification template schema attributes.

Table 21-16 lists the OIG notification template schema attributes.

Table 21-16    urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:NotificationTemplate

SCIM Attribute Attribute Type Data Type Required Mutability

name SVA String Y RW

eventName SVA String Y RW

description SVA String N RW

locales CMVA NA N RW

locales.locale SVA String Y RW

locales.encoding SVA String Y RW

locales .subject SVA String Y RW

locales .contentType SVA String Y RW

locales.shortMessage SVA String N RW

locales.longMessage SVA String Y RW

21.3.12 Schema Attributes for the System Property Resource
Understand the OIG system property schema attributes.

Table 21-17 lists the OIG system property schema attributes.

Table 21-17    urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:SystemProperty

SCIM Attribute Attribute Type Data Type Required Mutability

name SVA String Y RW

displayName SVA String N RW

value SVA String N RW

21.3.13 Schema Attributes for the Service Provider Configuration Schema
Resource

Understand the SCIM service provider configuration schema attributes.

Table 21-18 lists the SCIM service provider configuration schema attributes.

Table 21-18    urn:ietf:params:scim:schemas:core:2.0:ServiceProviderConfig

SCIM Attribute Attribute Type Data Type Required Mutability

documentationUrl SVA String N RO

patch.supported SVA Boolean N RO

Chapter 21
Resource Schema

21-16



Table 21-18    (Cont.) urn:ietf:params:scim:schemas:core:2.0:ServiceProviderConfig

SCIM Attribute Attribute Type Data Type Required Mutability

bulk.supported SVA Boolean N RO

bulk.maxOperations SVA Integer N RO

bulk.maxPayloadSize SVA Integer N RO

filter.supported SVA Boolean N RO

filter.maxResults SVA Integer N RO

changePassword.supported SVA Boolean N RO

sort.supported SVA Boolean N RO

Etag.supported SVA Boolean N RO

authenticationSchemes.name SVA String N RO

authenticationSchemes.descri
ption

SVA String N RO

authenticationSchemes.specU
rl

SVA String N RO

authenticationSchemes.docu
mentationUrl

SVA String N RO

21.3.14 Schema Attributes for the Resource Type Resource
Understand the SCIM resource type schema attributes.

Table 21-19 lists the SCIM resource type schema attributes.

Table 21-19    urn:ietf:params:scim:schemas:core:2.0:ResourceType

SCIM Attribute Attribute Type Data Type Required Mutability

name SVA String N RO

description SVA String N RO

endpoint SVA String N RO

schema SVA String N RO

schemaExtensions.schema SVA String N RO

schemaExtensions.required SVA Boolean N RO

21.3.15 Schema Attributes for the Schema Resource
Understand the schema attributes of the Schema resource, which includes SCIM schema
attributes and OIG schema extension attributes.

This section describes the schema attributes of the Schema resource. It contains the following
topics:

• SCIM Schema Attributes

• OIG Schema Extension Attributes

Chapter 21
Resource Schema

21-17



21.3.15.1 SCIM Schema Attributes
Table 21-20 lists the attributes of the SCIM schema.

Table 21-20    urn:ietf:params:scim:schemas:core:2.0:Schema

SCIM Attribute Attribute Type Data Type Required Mutability

id SVA String N RO

name SVA String N RO

description SVA String N RO

attributes.name SVA String N RO

attributes.type SVA String N RO

attributes.multiValued SVA String N RO

attributes.description SVA String N RO

attributes.readOnly SVA Boolean N RO

attributes.required SVA Boolean N RO

attributes.mutability SVA String N RO

attributes.returned SVA String N RO

attributes.uniqueness SVA String N RO

attributes.caseExact SVA Boolean N RO

21.3.15.2 OIG Schema Extension Attributes
Table 21-21 lists the schema extension attribute of the OIG schema.

Table 21-21    urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Schema

SCIM Attribute Attribute Type Data Type Required Mutability

attributes.indexes SVA String N RO

21.4 Operation Types
The supported operation types are GET, POST, PUT, PATCH, and DELETE.

The following operation types are supported:

• GET: Retrieves one or more complete or partial resources.

• POST: Creates new resources or creates search requests, depending on the endpoint.

• PUT: Modifies a resource by replacing existing attributes with a specified set of
replacement attributes (replace). PUT must not be used to create new resources.

• PATCH: Modifies a resource with a set of client-specified changes (partial updates).

• DELETE: Deletes a resource.

For more information about operation types, refer to the following URL:

https://tools.ietf.org/html/draft-ietf-scim-api-13#page-5

Chapter 21
Operation Types

21-18

https://tools.ietf.org/html/draft-ietf-scim-api-13#page-5


21.5 HTTP Response Codes
In addition to returning a HTTP response code, Identity REST services return the errors in the
body of the response with error code and descriptions.

This section lists the error codes, success codes, and their meaning. It contains the following
topics:

• Error Codes

• Success Codes

21.5.1 Error Codes
Understand the error conditions, HTTP return codes, and their meanings.

Table 21-22 lists the error codes and their meaning.

Table 21-22    Error Codes and Meaning

Error Condition HTTP Return
Code

Meaning

Not able to parse input, input does not
match required entities, or validation
failures

400 Bad Request: validation failures, schema
violations

Requested resource not found 404 Not found
ADDITIONAL_INFORMATION_INDICATI
NG_NOT_FOUND_OBJECT

User not authorized to execute service 401 Unauthorized

Requested method not supported 501 Method not allowed

Client does not accept produced content
type

406 Not acceptable

Incorrect request parameter semantics 422 Unprocessable Entity.
ADDITIONAL_INFORMATION_ON_NAT
URE_OF_ERROR

Client media type unsupported 415 Unsupported media type

Failed Dependency 424 Failed Dependency.
ADDITIONAL_INFORMATION_ON_FAIL
ED_DEPENDENCY

Generic server failure 500 Internal server error

conflict 409 The specified version number does not
match, or the resource's latest version
number or a service provider refused to
create a new, duplicate resource

precondition failed 412 Failed to update as resource ID changed
on the server last retrieved

forbidden 403 Server does not support requested
operation on a given resource

Chapter 21
HTTP Response Codes

21-19



21.5.2 Success Codes
Understand the HTTP return codes for successful operations and their meanings.

Table 21-23 lists the success codes and their meaning.

Table 21-23    Success Codes and Meaning

HTTP Return Code Meaning

200 Processed successfully.

201 The request has been fulfilled and resulted in a new resource
being created.

204 The server has fulfilled the request but does not return a response
body.

21.6 SCIM-Based API Examples
SCIM-based API usage is available for various types of operations, such as self service, entity
management, and system property management.

This section provides the following examples for SCIM-based API usage:

• User Management

• Role Management

• Organization Management

• Password Policy Management

• Notification Template Management

• System Property Management

• Service Provider Configuration Management

• Resource Types Management

• Using POST Search

• Retrieving Schemas

Note:

You can use user defined fields (UDFs) in SCIM requests. After UDFs are created in
Oracle Identity Governance, they automatically appear in SCIM resources as regular
attributes. There is no difference in the requests and responses with regular
attributes.

21.6.1 User Management
Understand SCIM-based API usage examples for the User resource.

This section provides the following examples of the User resource:

Chapter 21
SCIM-Based API Examples

21-20



• Create User

• Modify User (PUT)

• Modify User (PATCH)

• View Users with Pagination

• Delete User

• Lock User

• Unlock User

• Reset Password by Providing New Password

• Reset Password by Auto-Generated Password

• View User

• Self Registration

• Modify Self Profile (PATCH)

• Modify Profile (PUT)

• PasswordResetterWithChallenges

• PasswordValidator

• UserNameValidator

• UserNameGenerator

• UserNameRecoverer

21.6.1.1 Create User
This section provides an example of the request and response of the Create User operation
using the POST operation type. It contains the following topics:

• Create User Request

• Create User Response

21.6.1.1.1 Create User Request
The request for the Create User operation consists of:

Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/Users
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{
  "schemas":
  [
    "urn:ietf:params:scim:schemas:core:2.0:User",
    "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User",
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User"
  ],

Chapter 21
SCIM-Based API Examples

21-21



  "userName": "bjensen@example.com",
  "name": {
    "familyName": "Jensen",
    "givenName": "Barbara",
    "middleName": "Jane",
    "honorificSuffix": "III"
  },
  "displayName": "Babs Jensen",
  "profileUrl": "https://HOST_NAME:PORT/bjensen",
  "emails":
  [
    {
      "value": "bjensen@example.com",
      "type": "work"
    }
  ],
  "addresses": [
    {
      "type": "work",
      "streetAddress": "100 Universal City Plaza",
      "locality": "Hollywood",
      "region": "CA",
      "postalCode": "91608",
      "country": "USA",
      "formatted": "100 Universal City Plaza\nHollywood, CA 91608 USA"
    },
    {
      "type": "home",
      "formatted": "456 Hollywood Blvd\nHollywood, CA 91608 USA"
    }
  ],
  "phoneNumbers": [
    {
      "value": "555-555-5555",
      "type": "work"
    },
    {
      "value": "555-555-4444",
      "type": "mobile"
    }
  ],
  "userType": "Contractor",
  "title": "Tour Guide",
  "preferredLanguage":"en-US",
  "locale": "en-US",
  "timezone": "America/Los_Angeles",
  "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User":
  {
    "employeeNumber": "701984",
    "costCenter": "4130",
    "division": "Theme Park",
    "department": "Tour Operations",
    "manager":
    {
      "value": "1",
      "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
    }
  },
  "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User":
  {
    "homeOrganization":
    {

Chapter 21
SCIM-Based API Examples

21-22



      "value": "1",
      "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1"
    }
  }
}

21.6.1.1.2 Create User Response
The response for the Create User operation consists of:

Status: HTTP/1.1 201 Created
Body:

{
    "schemas": 
    [
       "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User",
       "urn:ietf:params:scim:schemas:core:2.0:User",
       "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User",
       "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User"
    ],
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User": {
        "userLoginAttemptsCounter": 0,
        "passwordIsExpired": "0",
        "ldapCommonNameGenerated": 0,
        "userPasswordResetAttemptsCounter": 0,
        "passwordWarnDate": "2015-04-29T03:24:16.000-07:00",
        "homeOrganization": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1"
        },
        "passwordCreateDate": "2015-01-06T03:24:16.000-08:00",
        "provisionedDate": "2015-01-06T03:24:16.000-08:00",
        "passwordPolicyDescription": [],
        "userMustChangePasswordAtNextLogin": "1",
        "disabled": false,
        "organizations": [
            {
                "value": "1",
                "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1",
                "display": "Xellerate Users"
            }
        ]
    },
    "displayName": "Babs Jensen",
    "id": "145",
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User": {
        "createBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "updateBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "passwordExpireDate": "2015-05-06T03:24:16.000-07:00",
        "locked": {
            "duration": 0,
            "value": "0",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/0"
        }

Chapter 21
SCIM-Based API Examples

21-23



    },
    "userName": "BJENSEN@EXAMPLE.COM",
    "emails": [
        {
            "value": "bjensen@example.com",
            "type": "work"
        }
    ],
    "active": true,
    "userType": "Contractor",
    "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User": {
        "employeeNumber": "701984",
        "manager": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance//v1/Users/1",
            "displayName": "new display"
        },
        "department": "Tour Operations",
        "organization": "Xellerate Users"
    },
    "preferredLanguage": "en-US",
    "phoneNumbers": [
        {
            "value": "555-555-4444",
            "type": "mobile"
        },
        {
            "value": "555-555-5555",
            "type": "work"
        }
    ],
    "name": {
        "middleName": "Jane",
        "familyName": "Jensen",
        "givenName": "Barbara",
        "honorificSuffix": "III"
    },
    "addresses": [
        {
            "region": "CA",
            "streetAddress": "100 Universal City Plaza",
            "formatted": "100 Universal City Plaza\nHollywood, CA 91608 USA",
            "postalCode": "91608",
            "locality": "Hollywood",
            "country": "USA",
            "type": "work"
        },
        {
            "formatted": "456 Hollywood Blvd\nHollywood, CA 91608 USA",
            "type": "home"
        }
    ],
    "groups": [
        {
            "value": "3",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/3",
            "type": "direct"
        }
    ],
    "timezone": "America/Los_Angeles",
    "title": "Tour Guide",
    "meta": {

Chapter 21
SCIM-Based API Examples

21-24



        "lastModified": "2015-01-06T03:24:17.000-08:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/145",
        "created": "2015-01-06T03:24:17.000-08:00",
        "resourceType": "User"
    }
}

21.6.1.2 Modify User (PUT)
This section provides an example of the request and response of the Modify User operation
using the PUT operation type. It contains the following topics:

• Modify User (PUT) Request

• Modify User (PUT) Response

21.6.1.2.1 Modify User (PUT) Request
The request for the Modify User operation (PUT) consists of:

Operation and URI: PUT http://HOST_NAME:PORT/iam/governance/scim/v1/Users/355
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{   
  "schemas":    
  [       
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User",        
    "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User",       
    "urn:ietf:params:scim:schemas:core:2.0:User"   
  ],   
  "userName": "userName_user216_08_09.382323",   
  "name":    
  {       
    "familyName": "familyName2_user216_08_09.382323"   
  },   
  "userType": "Contractor",   
  "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User":    
  {       
    "description": "description2_user216_08_09.382323"   
  },   
  "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User":    
  {       
      "homeOrganization":       
    {           
      "value": "4",           
      "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/4"       
    }   
  }
}

21.6.1.2.2 Modify User (PUT) Response
The response of the Modify User (PUT) operation consists of:

Chapter 21
SCIM-Based API Examples

21-25



Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User",
        "urn:ietf:params:scim:schemas:core:2.0:User",
        "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User",
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User"
    ],
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User": {
        "passwordIsExpired": "0",
        "userLoginAttemptsCounter": 0,
        "ldapCommonNameGenerated": 0,
        "userPasswordResetAttemptsCounter": 0,
        "passwordWarnDate": "2015-07-02T08:46:57.000-07:00",
        "homeOrganization": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1"
        },
        "passwordCreateDate": "2015-03-11T08:46:57.000-07:00",
        "provisionedDate": "2015-03-11T08:46:57.000-07:00",
        "passwordPolicyDescription": [
            {
                "value": "Password must not match or contain first name."
            },
            {
                "value": "Password must not match or contain last name."
            },
            {
                "value": "Password must contain at least 2 alphabetic character(s)."
            },
            {
                "value": "Password must be at least 6 character(s) long."
            },
            {
                "value": "Password must contain at least 1 lowercase letter(s)."
            },
            {
                "value": "Password must contain at least 1 numeric character(s)."
            },
            {
                "value": "Password must contain at least 1 uppercase letter(s)."
            },
            {
                "value": "Password must start with an alphabetic character."
            },
            {
                "value": "Password must not match or contain user ID."
            }
        ],
        "userMustChangePasswordAtNextLogin": "1",
        "disabled": false,
        "organizations": [
            {
                "value": "1",
                "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1",
                "display": "Xellerate Users"
            }
        ],
        "description": "description2_user216_08_09.382323"
    },

Chapter 21
SCIM-Based API Examples

21-26



    "displayName": "Babs Jensen",
    "id": "355",
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User": {
        "createBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "updateBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "passwordExpireDate": "2015-07-09T08:46:57.000-07:00",
        "locked": {
            "duration": 0,
            "value": "0"
        }
    },
    "userName": "USERNAME_USER216_08_09.382323",
    "emails": [
        {
            "value": "u1@example.com",
            "type": "work"
        }
    ],
    "active": true,
    "userType": "Contractor",
    "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User": {
        "employeeNumber": "701984",
        "manager": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1",
            "displayName": "display"
        },
        "department": "Tour Operations",
        "organization": "Xellerate Users"
    },
    "preferredLanguage": "en-US",
    "phoneNumbers": [
        {
            "value": "555-555-4444",
            "type": "mobile"
        },
        {
            "value": "555-555-5555",
            "type": "work"
        }
    ],
    "name": {
        "middleName": "Jane",
        "familyName": "familyName2_user216_08_09.382323",
        "givenName": "Barbara",
        "honorificSuffix": "III"
    },
    "addresses": [
        {
            "region": "CA",
            "streetAddress": "100 Universal City Plaza",
            "formatted": "100 Universal City Plaza\nHollywood, CA 91608 USA",
            "postalCode": "91608",
            "locality": "Hollywood",
            "country": "USA",
            "type": "work"

Chapter 21
SCIM-Based API Examples

21-27



        },
        {
            "formatted": "456 Hollywood Blvd\nHollywood, CA 91608 USA",
            "type": "home"
        }
    ],
    "groups": [
        {
            "value": "3",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/3",
            "type": "direct"
        }
    ],
    "timezone": "America/Los_Angeles",
    "title": "Tour Guide",
    "meta": {
        "lastModified": "2015-03-11T08:47:19.000-07:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/355",
        "created": "2015-03-11T08:46:57.000-07:00",
        "resourceType": "User"
    }
}

21.6.1.3 Modify User (PATCH)
This section provides an example of the request and response of the Modify User operation
using the PATCH operation type. It contains the following topics:

• Modify User (PATCH) Request

• Modify User (PATCH) Response

21.6.1.3.1 Modify User (PATCH) Request
The request of the Modify User operation (PATCH) consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/Users/355
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{   
  "schemas":   
  [     
    "urn:ietf:params:scim:api:messages:2.0:PatchOp"   
  ],   
  "Operations":   
  [      
    {         
      "op":"replace",
      "path":"urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User:description,
      "value":"description3"      
    }   
  ]
}

Chapter 21
SCIM-Based API Examples

21-28



21.6.1.3.2 Modify User (PATCH) Response
The response of the Modify User (PATCH) consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User",
        "urn:ietf:params:scim:schemas:core:2.0:User",
        "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User",
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User"
    ],
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User": {
        "passwordIsExpired": "0",
        "userLoginAttemptsCounter": 0,
        "ldapCommonNameGenerated": 0,
        "userPasswordResetAttemptsCounter": 0,
        "passwordWarnDate": "2015-07-02T08:46:57.000-07:00",
        "homeOrganization": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1"
        },
        "passwordCreateDate": "2015-03-11T08:46:57.000-07:00",
        "provisionedDate": "2015-03-11T08:46:57.000-07:00",
        "passwordPolicyDescription": [
            {
                "value": "Password must not match or contain first name."
            },
            {
                "value": "Password must not match or contain last name."
            },
            {
                "value": "Password must contain at least 2 alphabetic character(s)."
            },
            {
                "value": "Password must be at least 6 character(s) long."
            },
            {
                "value": "Password must contain at least 1 lowercase letter(s)."
            },
            {
                "value": "Password must contain at least 1 numeric character(s)."
            },
            {
                "value": "Password must contain at least 1 uppercase letter(s)."
            },
            {
                "value": "Password must start with an alphabetic character."
            },
            {
                "value": "Password must not match or contain user ID."
            }
        ],
        "userMustChangePasswordAtNextLogin": "1",
        "disabled": false,
        "organizations": [
            {
                "value": "1",

Chapter 21
SCIM-Based API Examples

21-29



                "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1",
                "display": "Xellerate Users"
            }
        ],
        "description": "description3"
    },
    "displayName": "Babs Jensen",
    "id": "355",
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User": {
        "createBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "updateBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "passwordExpireDate": "2015-07-09T08:46:57.000-07:00",
        "locked": {
            "duration": 0,
            "value": "0"
        }
    },
    "userName": "USERNAME_USER216_08_09.382323",
    "emails": [
        {
            "value": "u1@example.com",
            "type": "work"
        }
    ],
    "active": true,
    "userType": "Contractor",
    "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User": {
        "employeeNumber": "701984",
        "manager": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1",
            "displayName": "display"
        },
        "department": "Tour Operations",
        "organization": "Xellerate Users"
    },
    "preferredLanguage": "en-US",
    "phoneNumbers": [
        {
            "value": "555-555-4444",
            "type": "mobile"
        },
        {
            "value": "555-555-5555",
            "type": "work"
        }
    ],
    "name": {
        "middleName": "Jane",
        "familyName": "familyName2_user216_08_09.382323",
        "givenName": "Barbara",
        "honorificSuffix": "III"
    },
    "addresses": [
        {
            "region": "CA",

Chapter 21
SCIM-Based API Examples

21-30



            "streetAddress": "100 Universal City Plaza",
            "formatted": "100 Universal City Plaza\nHollywood, CA 91608 USA",
            "postalCode": "91608",
            "locality": "Hollywood",
            "country": "USA",
            "type": "work"
        },
        {
            "formatted": "456 Hollywood Blvd\nHollywood, CA 91608 USA",
            "type": "home"
        }
    ],
    "groups": [
        {
            "value": "3",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/3",
            "type": "direct"
        }
    ],
    "timezone": "America/Los_Angeles",
    "title": "Tour Guide",
    "meta": {
        "lastModified": "2015-03-11T08:49:17.000-07:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/355",
        "created": "2015-03-11T08:46:57.000-07:00",
        "resourceType": "User"
    }
}

21.6.1.4 View Users with Pagination
This section provides an example of the request and response of the View Users with
Pagination operation using the GET operation type. It contains the following topics:

• View Users with Pagination Request

• View Users with Pagination Response

• Search Filter Examples

21.6.1.4.1 View Users with Pagination Request
The following is the request of the View Users with Pagination operation:

Operation and URI: GET /Users http://HOST_NAME:PORT/iam/governance/scim/v1/Users?
attributes=id&startIndex=6&count=5

21.6.1.4.2 View Users with Pagination Response
The response of the View Users with Pagination operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:api:messages:2.0:ListResponse"
    ],
    "totalResults": 5,
    "itemsPerPage": 5,
    "startIndex": 6,

Chapter 21
SCIM-Based API Examples

21-31



    "Resources": [
        {
            "id": "59"
        },
        {
            "id": "42"
        },
        {
            "id": "25"
        },
        {
            "id": "106"
        },
        {
            "id": "89"
        }
    ]
}

21.6.1.4.3 Search Filter Examples
The following are examples of search filters:

http://HOST_NAME:PORT/iam/governance/scim/v1/Users?filter=(userName co xel)&attributes=id

http://HOST_NAME:PORT/iam/governance/scim/v1/Users?attributes=userName&filter=(userName 
co 4) and (userName co BUG)

http://HOST_NAME:PORT/iam/governance/scim/v1/Users?
attributes=userName&filter=(emails.type eq work and emails.value sw u)

Note:

For a complete description of search filters, see the "Filtering" section of the SCIM
REST API IETF draft at the following URL:

https://tools.ietf.org/html/draft-ietf-scim-api-14#section-3.2.2.2

21.6.1.5 Delete User
This section provides an example request and response of the Delete User operation using the
DELETE operation type. It contains the following topics:

• Delete User Request

• Delete User Response

21.6.1.5.1 Delete User Request
The request of the Delete User operation consists of:

Operation and URI: DELETE http://HOST_NAME:PORT/iam/governance/scim/v1/Users/355
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8

Chapter 21
SCIM-Based API Examples

21-32

https://tools.ietf.org/html/draft-ietf-scim-api-14#section-3.2.2.2


• X-Requested-By: <random_value>
Body: NA

21.6.1.5.2 Delete User Response
The response of the Delete User operation consists of:

Status: 204 No Content
Body: NA

21.6.1.6 Lock User
This section provides an example of the request and response of the Lock User operation
using the PATCH operation type. It contains the following topics:

• Lock User Request

• Lock User Response

21.6.1.6.1 Lock User Request
The request of the Lock User operation consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/Users/356
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{
  "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
  "Operations": [
  {
    "op":"replace",
    "path":"urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User:locked",
    "value" :
      {
        "value" : 1,
        "duration" : 3600
      }
  }
  ]
}

21.6.1.6.2 Lock User Response
The response of the Lock User operation returns the full resource with lock attribute update.

Status: HTTP/1.1 200 OK

21.6.1.7 Unlock User
This section provides the request and response of the Unlock User operation using the PATCH
operation type. It contains the following topics:

Chapter 21
SCIM-Based API Examples

21-33



• Unlock User Request

• Unlock User Response

21.6.1.7.1 Unlock User Request
The request of the Unlock User operation consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/Users/356
Header:

• Content-Type: application/scim+json

• Authorization: Bearer h480djs93hd8

• X-Requested-By: <random_value>
Body:

{
  "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
  "Operations": [
  {
    "op":"replace",
    "path":"urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User:locked",
    "value" :
      {
        "value" : 0
      }
  }
]
}

21.6.1.7.2 Unlock User Response
The response of the Unlock User operation returns the full resource with lock attribute update.

Status: HTTP/1.1 200 OK

21.6.1.8 Reset Password by Providing New Password
This section provides the request and response of the Reset Password by Providing New
Password operation using the PATCH operation type. It contains the following topics:

• Reset Password by Providing New Password Request

• Reset Password by Providing New Password Response

21.6.1.8.1 Reset Password by Providing New Password Request
The request of the Reset Password by Providing New Password operation consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/Users/356
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

Chapter 21
SCIM-Based API Examples

21-34



{
      "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
      "Operations": [
              {
                    "op": "replace","path": 
"urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User:passwd",
                    "value" :
                  {
                        "value": "newPassw0rd",
                        "sendNotification": "true",
                        "sendNotificationTo": "example2@example.com"
                  }
 
            }
      ]
 
}

21.6.1.8.2 Reset Password by Providing New Password Response
The response of the Reset Password by Providing New Password operation contains the
modified resource.

Status: HTTP/1.1 200 OK

21.6.1.9 Reset Password by Auto-Generated Password
This section provides an example of the request and response of the Reset Password by Auto-
generated Password operation using the PATCH operation type. It contains the following
topics:

• Reset Password by Auto-Generated Password Request

• Reset Password by Auto-Generated Password Response

21.6.1.9.1 Reset Password by Auto-Generated Password Request
The request of the Reset Password by Auto-generated password consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/Users/356
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{
      "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
      "Operations": [
              {
                    "op": "replace", "path": 
"urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User:passwd",
                    "value":
                  {
                        "value": "auto-generate",
                        "sendNotification": "true",
                        "sendNotificationTo": "john.doe@example.com"

Chapter 21
SCIM-Based API Examples

21-35



                  }
 
            }
      ]
 
}

21.6.1.9.2 Reset Password by Auto-Generated Password Response
The response of the Reset Password by Auto-generated password operation is the modified
resource.

Status: HTTP/1.1 200 OK

21.6.1.10 View User
This section provides an example of the request and response of the View User operation
using the GET operation type. It contains the following topics:

• View User Request

• View User Response

21.6.1.10.1 View User Request
The request of the View User operation consists of:

Operation and URI: GET http://HOST_NAME:PORT/iam/governance/scim/v1/Me
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8

21.6.1.10.2 View User Response
The response of the View User operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User",
        "urn:ietf:params:scim:schemas:core:2.0:User",
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User",
        "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User"
    ],
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User": {
        "userLoginAttemptsCounter": 0,
        "ldapCommonNameGenerated": 0,
        "userPasswordResetAttemptsCounter": 0,
        "ldapCommonName": "System Administrator",
        "passwordWarnDate": "2015-06-30T01:51:27.000-07:00",
        "lastSuccessfulLoginDate": "2015-03-11T00:00:00.000-07:00",
        "homeOrganization": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1"
        },
        "passwordPolicyDescription": [

Chapter 21
SCIM-Based API Examples

21-36



            {
                "value": "Password must not match or contain first name."
            },
            {
                "value": "Password must not match or contain last name."
            },
            {
                "value": "Password must contain at least 2 alphabetic character(s)."
            },
            {
                "value": "Password must be at least 6 character(s) long."
            },
            {
                "value": "Password must contain at least 1 lowercase letter(s)."
            },
            {
                "value": "Password must contain at least 1 numeric character(s)."
            },
            {
                "value": "Password must contain at least 1 uppercase letter(s)."
            },
            {
                "value": "Password must start with an alphabetic character."
            },
            {
                "value": "Password must not match or contain user ID."
            }
        ],
        "disabled": false,
        "dataLevel": "2",
        "organizations": [
            {
                "value": "1",
                "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1",
                "display": "Xellerate Users"
            }
        ]
    },
    "displayName": "display",
    "id": "1",
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User": {
        "createBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "updateBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "passwordExpireDate": "2015-07-07T01:51:27.000-07:00",
        "locked": {
            "value": "0"
        }
    },
    "userName": "XELSYSADM",
    "emails": [
        {
            "value": "donotreply@example.com",
            "type": "work"
        }
    ],
    "active": true,

Chapter 21
SCIM-Based API Examples

21-37



    "userType": "Full-Time",
    "name": {
        "familyName": "Administrator",
        "givenName": "System"
    },
    "groups": [
        {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/1",
            "type": "direct"
        },
        {
            "value": "6",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/6",
            "type": "direct"
        }
    ],
    "meta": {
        "lastModified": "2015-03-11T08:15:44.000-07:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Me",
        "created": "2015-03-09T01:51:27.000-07:00",
        "resourceType": "User"
    },
    "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User": {
        "organization": "Xellerate Users"
    }
}

21.6.1.11 Self Registration
This section provides an example of the request and response of the Self Registration
operation using the POST operation type. It contains the following topics:

• Self Registration Request

• Self Registration Response

21.6.1.11.1 Self Registration Request
The request of the Self Registration operation consists of:

Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/Me
Header:

• Content-Type: application/scim+json
• Authorization: NA

• X-Requested-By: <random_value>
Body:

{
  "schemas": ["urn:ietf:params:scim:schemas:core:2.0:User",
              "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User",
              "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User",
              "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User"],
  "userName": "bjensen@example.com",
  "name": {
    "familyName": "Jensen",
    "givenName": "Barbara",
    "middleName": "Jane",

Chapter 21
SCIM-Based API Examples

21-38



    "honorificSuffix": "III"
  },
  "displayName": "Babs Jensen",
  "emails": [
    {
      "value": "bjensen@example.com",
      "type": "work"
    }
  ],
  "userType": "Full-Time",
  "password":"t1meMa$heen",
  "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User": {
    "challenges": [
        {
            "challenge":"What is your favorite color?",
            "response":"color"
        },
        {
            "challenge":"What is the name of your pet?",
            "response":"pet"
        },
        {
            "challenge":"What is the city of your birth?",
            "response":"city"
        }
    ]
  }
}

21.6.1.11.2 Self Registration Response
As the response of the Self Registration operation, the user is created directly and entityId of
the new user is returned.

Status: HTTP/1.1 201 Created

21.6.1.12 Modify Self Profile (PATCH)
This section provides an example of the request and response of the Modify Self Profile
operation using the PATCH operation type. It contains the following topics:

• Modify Self Profile (PATCH) Request

• Modify Self Profile (PATCH) Response

21.6.1.12.1 Modify Self Profile (PATCH) Request
The request of the Modify Self Profile (PATCH) operation consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/Me
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

Chapter 21
SCIM-Based API Examples

21-39



{
"schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
"Operations":[
  {
  "op":"replace",
  "path":"displayName",
  "value" : "NEW_NAME"
  }
]
}

21.6.1.12.2 Modify Self Profile (PATCH) Response
The response of the Modify Self Profile (PATCH) operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User",
        "urn:ietf:params:scim:schemas:core:2.0:User",
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User",
        "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User"
    ],
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User": {
        "userLoginAttemptsCounter": 0,
        "ldapCommonNameGenerated": 0,
        "userPasswordResetAttemptsCounter": 0,
        "ldapCommonName": "System Administrator",
        "passwordWarnDate": "2015-06-30T01:51:27.000-07:00",
        "lastSuccessfulLoginDate": "2015-03-11T00:00:00.000-07:00",
        "homeOrganization": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1"
        },
        "passwordPolicyDescription": [
            {
                "value": "Password must not match or contain first name."
            },
            {
                "value": "Password must not match or contain last name."
            },
            {
                "value": "Password must contain at least 2 alphabetic character(s)."
            },
            {
                "value": "Password must be at least 6 character(s) long."
            },
            {
                "value": "Password must contain at least 1 lowercase letter(s)."
            },
            {
                "value": "Password must contain at least 1 numeric character(s)."
            },
            {
                "value": "Password must contain at least 1 uppercase letter(s)."
            },
            {
                "value": "Password must start with an alphabetic character."
            },

Chapter 21
SCIM-Based API Examples

21-40



            {
                "value": "Password must not match or contain user ID."
            }
        ],
        "disabled": false,
        "dataLevel": "2",
        "organizations": [
            {
                "value": "1",
                "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1",
                "display": "Xellerate Users"
            }
        ]
    },
    "displayName": "NEW_NAME",
    "id": "1",
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User": {
        "createBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "updateBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "passwordExpireDate": "2015-07-07T01:51:27.000-07:00",
        "locked": {
            "value": "0"
        }
    },
    "userName": "XELSYSADM",
    "emails": [
        {
            "value": "donotreply@example.com",
            "type": "work"
        }
    ],
    "active": true,
    "userType": "Full-Time",
    "name": {
        "familyName": "Administrator",
        "givenName": "System"
    },
    "groups": [
        {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/1",
            "type": "direct"
        },
        {
            "value": "6",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/6",
            "type": "direct"
        }
    ],
    "meta": {
        "lastModified": "2015-03-11T08:55:23.000-07:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Me",
        "created": "2015-03-09T01:51:27.000-07:00",
        "resourceType": "User"
    },
    "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User": {

Chapter 21
SCIM-Based API Examples

21-41



        "organization": "Xellerate Users"
    }
}

21.6.1.13 Modify Profile (PUT)
This section provides an example of the request and response of the Modify Profile operation
using the PUT operation type. It contains the following topics:

• Modify Profile (PUT) Request

• Modify Profile (PUT) Response

21.6.1.13.1 Modify Profile (PUT) Request
The request of the Modify Profile (PUT) operation consists of:

Operation and URI: PUT http://HOST_NAME:PORT/iam/governance/scim/v1/Me
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{   
  "schemas":    
  [       
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User",        
    "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User",       
    "urn:ietf:params:scim:schemas:core:2.0:User"   
  ],   
  "userName": "bjensen@example.com",   
  "name":    
  {       
    "familyName": "Jensen"   
  },   
  "userType": "Contractor",      
  "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User":    
  {       
    "organization": "Xellerate Users",       
    "homeOrganization":       
    {           
      "value": "1",           
      "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1"       
    }   
  }
}

21.6.1.13.2 Modify Profile (PUT) Response
The response of the Modify Profile (PUT) operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": 

Chapter 21
SCIM-Based API Examples

21-42



    [
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User",
        "urn:ietf:params:scim:schemas:core:2.0:User",
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User",
        "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User"
    ],
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:User": {
        "userLoginAttemptsCounter": 0,
        "passwordIsExpired": "0",
        "ldapCommonNameGenerated": 0,
        "userPasswordResetAttemptsCounter": 0,
        "passwordWarnDate": "2015-04-29T03:24:16.000-07:00",
        "homeOrganization": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1"
        },
        "passwordCreateDate": "2015-01-06T03:24:16.000-08:00",
        "provisionedDate": "2015-01-06T03:24:16.000-08:00",
        "passwordPolicyDescription": [],
        "userMustChangePasswordAtNextLogin": "1",
        "disabled": false,
        "organizations": [
            {
                "value": "1",
                "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/1",
                "display": "Xellerate Users"
            }
        ]
    },
    "displayName": "Babs Jensen",
    "id": "145",
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:User": {
        "createBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "updateBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "passwordExpireDate": "2015-05-06T03:24:16.000-07:00",
        "locked": {
            "duration": 0,
            "value": "0",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/0"
        }
    },
    "userName": "BJENSEN@EXAMPLE.COM",
    "emails": [
        {
            "value": "bjensen@example.com",
            "type": "work"
        }
    ],
    "active": true,
    "userType": "Contractor",
    "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User": {
        "employeeNumber": "701984",
        "manager": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1",
            "displayName": "new display"

Chapter 21
SCIM-Based API Examples

21-43



        },
        "department": "Tour Operations",
        "organization": "Xellerate Users"
    },
    "preferredLanguage": "en-US",
    "phoneNumbers": [
        {
            "value": "555-555-4444",
            "type": "mobile"
        },
        {
            "value": "555-555-5555",
            "type": "work"
        }
    ],
    "name": {
        "middleName": "Jane",
        "familyName": "Jensen",
        "givenName": "Barbara",
        "honorificSuffix": "III"
    },
    "addresses": [
        {
            "region": "CA",
            "streetAddress": "100 Universal City Plaza",
            "formatted": "100 Universal City Plaza\nHollywood, CA 91608 USA",
            "postalCode": "91608",
            "locality": "Hollywood",
            "country": "USA",
            "type": "work"
        },
        {
            "formatted": "456 Hollywood Blvd\nHollywood, CA 91608 USA",
            "type": "home"
        }
    ],
    "groups": [
        {
            "value": "3",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/3",
            "type": "direct"
        }
    ],
    "timezone": "America/Los_Angeles",
    "title": "Tour Guide",
    "meta": {
        "lastModified": "2015-01-06T03:24:17.000-08:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/145",
        "created": "2015-01-06T03:24:17.000-08:00",
        "resourceType": "User"
    }
}

21.6.1.14 PasswordResetterWithChallenges
This section provides an example of the request and response of the
PasswordResetterWithChallenges operation using the POST operation type. It contains the
following topics:

• PasswordResetterWithChallenges Request

• PasswordResetterWithChallenges Response

Chapter 21
SCIM-Based API Examples

21-44



21.6.1.14.1 PasswordResetterWithChallenges Request
The request of the PasswordResetterWithChallenges operation consists of:

Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/
PasswordResetterWithChallenges
Header:

• Content-Type: application/json
• Authorization: NA

• X-Requested-By: <random_value>
Body:

{
  "schemas":
  ["urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordResetterWithChallenges"],
  "userName": "JDOE",
  "challenges":
  [
        {
             "challenge":"What is the name of your pet?",
             "response":"name"
        },
        {
             "challenge":"What is the city of your birth?",
             "response":"city"
        },
        {
             "challenge":"What is your favorite color?",
             "response":"color"
        }
 
   ],
   "password": "Welcome3"
}

21.6.1.14.2 PasswordResetterWithChallenges Response
The response of the PasswordResetterWithChallenges operation is empty.

Status: HTTP/1.1 204 No Content

21.6.1.15 PasswordValidator
This section provides an example of the PasswordValidator operation using the POST
operation type. It contains the following topics:

• PasswordValidator Request

• PasswordValidator Response

21.6.1.15.1 PasswordValidator Request
The following request is to validate a potential password. Successful response of validate
password request means password is valid.

Chapter 21
SCIM-Based API Examples

21-45



Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/
PasswordValidator
Header:

• Content-Type: application/json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{
  "schemas":
  [
    "urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordValidator"
  ],
  "userRef": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1",
  "password": "jijijSSij1"
}

21.6.1.15.2 PasswordValidator Response
The response of the PasswordValidator operation consists of:

Status:

• If the possible password is valid according to the password policy: HTTP/1.1 204 No
Content

• If password is invalid for that user according to the password policy:

HTTP/1.1 400 Bad Request

21.6.1.16 UserNameValidator
This section provides an example of the request and response of the UserNameValidator
operation using the POST operation type. It contains the following topics:

• UserNameValidator Request

• UserNameValidator Response

21.6.1.16.1 UserNameValidator Request
Successful response of validate user name request means password is valid. The request is
as follows:

Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/
UserNameValidator
Header:

• Content-Type: application/json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{
  "schemas":["urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:UserNameValidator"],

Chapter 21
SCIM-Based API Examples

21-46



  "userName": "aUserName"
}

21.6.1.16.2 UserNameValidator Response
The response of the UserNameValidator operation consists of:

Status: HTTP/1.1 204 No Content

21.6.1.17 UserNameGenerator
This section provides an example of the request and response of the UserNameGenerator
operation using the POST oepration type. It contains the following topics:

• UserNameGenerator Request

• UserNameGenerator Response

21.6.1.17.1 UserNameGenerator Request
The request of the UserNameGenerator operation consists of:

Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/
UserNameGenerator
Header:

• Content-Type: application/json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{
  "schemas":["urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:UserNameGenerator"],
  "name":
  {
    "formatted": "Ms. Barbara J Doe III",
    "familyName": "Doe",
    "givenName": "Barbara",
    "middleName": "Jane",
    "honorificSuffix": "III"
  }
}

21.6.1.17.2 UserNameGenerator Response
The response of the UserNameGenerator operation consists of:

Status: HTTP/1.1 201 Created
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:core:2.0:User",
        "urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:UserNameGenerator"
    ],
    "meta": {
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/UserNameGenerator",

Chapter 21
SCIM-Based API Examples

21-47



        "resourceType": "UserNameGenerator"
    },
    "urn:ietf:params:scim:schemas:core:2.0:User": {
        "userName": "Barbara.Doe@example.com"
    }
}

21.6.1.18 UserNameRecoverer
This section provides an example of the request and response of the UserNameRecoverer
operation using the POST operation type. It contains the following topics:

• UserNameRecoverer Request

• UserNameRecoverer Response

21.6.1.18.1 UserNameRecoverer Request
The request of the UserNameRecoverer operation is as follows (no authorization header,
unauthenticated flow):

Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/
UserNameRecoverer
Header:

• Content-Type: application/json
• Authorization: NA

• X-Requested-By: <random_value>
Body:

{
  "schemas": ["urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:UserNameRecoverer"],
  "email": "myemail@example.com"
}

21.6.1.18.2 UserNameRecoverer Response
As a response of the UserNameRecoverer operation, the username is sent to the user's email
address.

Status: HTTP/1.1 204 No Content

21.6.2 Role Management
Understand SCIM-based API usage examples for the group resource.

This section provides the following examples of the group resource:

• View Role

• Create Role

• Modify Role (PUT)

• Modify Role (PATCH)

• Delete Role

• Remove Role (PATCH)

Chapter 21
SCIM-Based API Examples

21-48



21.6.2.1 View Role
This section provides an example of the request and response of the View Role operation
using the GET operation type. It contains the following topics:

• View Role Request

• View Role Response

21.6.2.1.1 View Role Request
The request of the View Role operation consists of:

Operation and URI: GET http://HOST_NAME:PORT/iam/governance/scim/v1/Groups?
attributes=id,displayName

21.6.2.1.2 View Role Response
The response of the View Role operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:api:messages:2.0:ListResponse"
    ],
    "totalResults": 4,
    "Resources": [
        {
            "displayName": "Group1",
            "id": "2"
        },
        {
            "displayName": "SYSTEM ADMINISTRATORS",
            "id": "3"
        },
        {
            "displayName": "Group2",
            "id": "4"
        },
        {
            "displayName": "Group3",
            "id": "5"
        }
    ]
}

21.6.2.2 Create Role
This section provides an example of the request and response of the Create Role operation
using the POST operation type. It contains the following topics:

• Create Role Request

• Create Role Response

Chapter 21
SCIM-Based API Examples

21-49



21.6.2.2.1 Create Role Request
The request of the Create Role operation consists of:

Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/Groups
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{   
    "schemas":   
    [       
        "urn:ietf:params:scim:schemas:core:2.0:Group",       
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group",       
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group"   
    ],   
    "displayName": "Group33",   
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group":    
    {       
        "email": "group33@example.com",       
        "description": "description1"        
    },   
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group":   
    {       
        "namespace": "Default"   
    }
}

21.6.2.2.2 Create Role Response
The response of the Create Role operation consists of:

Status: HTTP/1.1 201 Created
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group",
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group",
        "urn:ietf:params:scim:schemas:core:2.0:Group"
    ],
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group": {
        "organizationsPublishedTo": [
            {
                "value": "3",
                "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/3"
            }
        ],
        "category": {
            "name": "Default",
            "value": 1
        },
        "namespace": "Default",
        "catalog": {

Chapter 21
SCIM-Based API Examples

21-50



            "tags": "Group33 Group33 Default",
            "requestable": true,
            "certifiable": false,
            "id": "151",
            "categoryName": "Role",
            "auditable": false,
            "itemRisk": 3,
            "hierarchicalDataAvailable": false
        }
    },
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group": {
        "createBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "description": "description1",
        "updateBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "owner": {
            "lastName": "Administrator",
            "email": "donotreply@example.com",
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1",
            "login": "XELSYSADM",
            "firstName": "System",
            "displayName": "NEW_NAME"
        },
        "email": "group33@example.com"
    },
    "meta": {
        "lastModified": "2015-03-11T08:55:57.000-07:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/157",
        "created": "2015-03-11T08:55:57.000-07:00",
        "resourceType": "Group"
    },
    "displayName": "Group33",
    "id": "157"
}

21.6.2.3 Modify Role (PUT)
This section provides an example of the request and response of the Modify Role operation
using the PUT operation type. It contains the following topics:

• Modify Role (PUT) Request

• Modify Role (PUT) Response

21.6.2.3.1 Modify Role (PUT) Request
The request of the Modify Role (PUT) operation consists of:

Operation and URI: PUT http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/157
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8

Chapter 21
SCIM-Based API Examples

21-51



• X-Requested-By: <random_value>
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group",
        "urn:ietf:params:scim:schemas:core:2.0:Group",
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group"
    ],
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group": {
        "organizationsPublishedTo": [
            {
                "value": "3",
                "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/3"
            }
        ],
        "category": {
            "name": "Default",
            "value": 1
        },
        "namespace": "Default"
    },
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group": {
        "description": "description1",
        "localeNames": [
            {
                "name": "Group_group09_53_11.228163",
                "locale": "base"
            }
        ],
 
        "email": "group_new@example.com"
    },
    "displayName": "Group_group09_53_11.228163"
}

21.6.2.3.2 Modify Role (PUT) Response
The response of the Modify Role (PUT) operation consists of:

Status: HTTP/1.1 200 OK
Location: https://HOST_NAME:PORT/Groups/157
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group",
        "urn:ietf:params:scim:schemas:core:2.0:Group",
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group"
    ],
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group": {
        "organizationsPublishedTo": [
            {
                "value": "3",
                "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/3"
            }
        ],
        "category": {
            "name": "Default",
            "value": 1

Chapter 21
SCIM-Based API Examples

21-52



        },
        "namespace": "Default"
    },
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group": {
        "createBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "description": "description1",
        "localeNames": [
            {
                "name": "Group_group09_53_11.228163",
                "locale": "base"
            }
        ],
        "updateBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "owner": {
            "lastName": "Administrator",
            "email": "donotreply@example.com",
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1",
            "login": "XELSYSADM",
            "displayName": "System Administrator",
            "firstName": "System"
        },
        "email": "group_new@example.com"
    },
    "meta": {
        "lastModified": "2015-01-05T06:59:25.000-08:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/157",
        "created": "2015-01-05T06:55:14.000-08:00",
        "resourceType": "Group"
    },
    "displayName": "Group_group09_53_11.228163",
    "id": "157"
}

21.6.2.4 Modify Role (PATCH)
This section provides an example of the Modify Role operation using the PATCH operation
type. It contains the following topics:

• Modify Role (PATCH) Request

• Modify Role (PATCH) Response

21.6.2.4.1 Modify Role (PATCH) Request
The request of the Modify Role (PATCH) operation consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/153
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>

Chapter 21
SCIM-Based API Examples

21-53



Body:

{   
  "schemas":   
  [     
    "urn:ietf:params:scim:api:messages:2.0:PatchOp"   
  ],   
  "Operations":   
  [      
    {         
      "op":"replace"          ,
      "path":"urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group:description",
      "value":"description3"      
    }   
  ]
}

21.6.2.4.2 Modify Role (PATCH) Response
The response of the Modify Role (PATCH) operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group",
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group",
        "urn:ietf:params:scim:schemas:core:2.0:Group"
    ],
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group": {
        "organizationsPublishedTo": [
            {
                "value": "3",
                "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/3"
            }
        ],
        "category": {
            "name": "Default",
            "value": 1
        },
        "namespace": "Default",
        "catalog": {
            "tags": "replace_catalog_requestable_6587843 
replace_catalog_requestable_6587843 Default",
            "requestable": true,
            "certifiable": false,
            "id": "147",
            "categoryName": "Role",
            "auditable": false,
            "itemRisk": 3,
            "hierarchicalDataAvailable": false
        }
    },
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group": {
        "createBy": {
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "description": "description3",
        "updateBy": {

Chapter 21
SCIM-Based API Examples

21-54



            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
        },
        "owner": {
            "lastName": "Administrator",
            "email": "donotreply@example.com",
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1",
            "login": "XELSYSADM",
            "firstName": "System",
            "displayName": "NEW_NAME"
        }
    },
    "meta": {
        "lastModified": "2015-03-11T08:59:16.000-07:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/153",
        "created": "2015-03-11T08:13:11.000-07:00",
        "resourceType": "Group"
    },
    "displayName": "replace_catalog_requestable_6587843",
    "id": "153"
}

21.6.2.5 Delete Role
This section provides an example of the Delete Role operation using the DELETE operation
type. It contains the following topics:

• Delete Role Request

• Delete Role Response

21.6.2.5.1 Delete Role Request
The request of the Delete Role operation consists of:

Operation and URI: DELETE http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/153
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>

21.6.2.5.2 Delete Role Response
The response of the Delete Role operation consists of:

Status: HTTP/1.1 204 No Content

21.6.2.6 Remove Role (PATCH)

This section provides an example of the Remove Role operation using the PATCH operation
type. It contains the following topics:

• Remove Role (PATCH) Request

• Remove Role (PATCH) Response

Chapter 21
SCIM-Based API Examples

21-55



21.6.2.6.1 Remove Role (PATCH) Request

The request of the Remove Role (PATCH) operation consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/
<role_id>
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{
  "schemas":
  [
    "urn:ietf:params:scim:api:messages:2.0:PatchOp"
  ],
  "Operations":
  [
    {
      "op":"remove",
      "path":"urn:ietf:params:scim:schemas:core:2.0:Group:members",
      "value":[
       {
       "value":"<usr_key>",
       "$ref":"http://HOST_NAME:PORT/idaas/im/scim/v1/Users/<usr_key>"
       }
       ]
    }
  ]
 }

21.6.2.6.2 Remove Role (PATCH) Response

The response of the Remove Role (PATCH) operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group",
        "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group",
        "urn:ietf:params:scim:schemas:core:2.0:Group"
    ],
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:OIG:Group": {
        "namespace": "Default",
        "organizationsPublishedTo": [
            {
                "value": "3",
                "$ref":
"http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/3"
            }
        ],
        "category": {

Chapter 21
SCIM-Based API Examples

21-56



            "name": "Default",
            "value": 1
        },
        "ldapDn": "cn=tesrole1,cn=groups,dc=isc,dc=com",
        "catalog": {
            "auditable": true,
            "hierarchicalDataAvailable": false,
            "id": "101",
            "requestable": true,
            "itemRisk": 3,
            "certifiable": true,
            "categoryName": "Role",
            "tags": "tesrole1 tesrole1 Default"
        }
    },
    "urn:ietf:params:scim:schemas:extension:oracle:2.0:IDM:Group": {
        "createBy": {
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1",
            "value": "1"
        },
        "owner": {
            "firstName": "System",
            "lastName": "Administrator",
            "displayName": "System Administrator",
            "login": "XELSYSADM",
            "value": "1",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1",
            "email": "donotreply@oracle.com"
        },
        "updateBy": {
            "value": "5",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/5"
        }
    },
    "members": [
        {
            "value": "7002",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/7002"
        }
    ],
    "meta": {
        "created": "2018-11-13T08:48:49.000+05:30",
        "location":
"http://HOST_NAME:PORT/iam/governance/scim/v1/Groups/<role_id>",
        "lastModified": "2018-11-13T08:53:58.000+05:30",
        "resourceType": "Group"
    },
    "displayName": "<role name>",
    "id": "<role_d>"
}

21.6.3 Organization Management
Understand SCIM-based API usage examples for the organization resource.

This section provides the following examples of the organization resource:

• View Organization

• Create Organization

• Modify Organization (PUT)

Chapter 21
SCIM-Based API Examples

21-57



• Modify Organizations (PATCH)

• Delete Organization

21.6.3.1 View Organization
This section provides an example of the View Organization operation using the GET operation
type. It contains the following topics:

• View Organization Request

• View Organization Response

21.6.3.1.1 View Organization Request
The request of the View Organization operation consists of:

Operation and URI: GET http://HOST_NAME:PORT/iam/governance/scim/v1/
Organizations/148
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8

21.6.3.1.2 View Organization Response
The response of the View Organization operation consists of:

Status: HTTP/1.1 200 OK
Location: https://HOST_NAME:PORT/Organization/148
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:Organization"
    ],
    "parent": {
        "name": "Top",
        "value": "3",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/3"
    },
    "name": "org_pcu3_1426086587854",
    "passwordPolicy": {
        "name": "ppchg_1426086587854",
        "value": "94"
    },
    "id": "148",
    "meta": {
        "lastModified": "2015-03-11T08:16:00.000-07:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/148",
        "created": "2015-03-11T08:16:00.000-07:00",
        "resourceType": "Organization"
    },
    "customerType": "Company",
    "createBy": {
        "value": "1",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
    },

Chapter 21
SCIM-Based API Examples

21-58



    "enforceNewPasswordPolicy": "Yes",
    "updateBy": {
        "value": "1",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
    },
    "status": "Active",
    "members": [
        {
            "value": "353",
            "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/353"
        }
    ]
}

21.6.3.2 Create Organization
This section provides an example of the request and response of the Create Organization
operation using the POST operation type. It contains the following topics:

• Create Organization Request

• Create Organization Response

21.6.3.2.1 Create Organization Request
The request of the Create Organization operation consists of:

Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{ 
  "schemas":     
  [       
    "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:Organization"     
  ],     
  "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:Organization":     
  {       
    "name": "organization16_08_50.141529",       
    "customerType": "Scim1"     
  }
}

21.6.3.2.2 Create Organization Response
The response of the Create Organization operation consists of:

Status: HTTP/1.1 201 Created
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:Organization"
    ],

Chapter 21
SCIM-Based API Examples

21-59



    "parent": {
        "name": "Top",
        "value": "3",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/3"
    },
    "name": "organization16_08_50.141529",
    "id": "77",
    "meta": {
        "lastModified": "2015-02-06T07:06:46.000-08:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/77",
        "created": "2015-02-06T07:06:46.000-08:00",
        "resourceType": "Organization"
    },
    "customerType": "Scim1",
    "createBy": {
        "value": "1",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
    },
    "enforceNewPasswordPolicy": "Yes",
    "updateBy": {
        "value": "1",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
    },
    "status": "Active"
}

21.6.3.3 Modify Organization (PUT)
This section provides an example of the request and response of the Modify Organization
operation using the PUT operation type. It contains the following topics:

• Modify Organization (PUT) Request

• Modify Organization (PUT) Response

21.6.3.3.1 Modify Organization (PUT) Request
The request of the Modify Organization (PUT) operation consists of:

Operation and URI: PUT http://HOST_NAME:PORT/iam/governance/scim/v1/
Organizations/77
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

 
{ 
  "schemas":     
  [       
    "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:Organization"     
  ],     
  "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:Organization":     
  {       
    "name": "organization16_08_53.883452",       
    "customerType": "Scim2"     

Chapter 21
SCIM-Based API Examples

21-60



  }
}

21.6.3.3.2 Modify Organization (PUT) Response
The response of the Modify Organization (PUT) operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:Organization"
    ],
    "parent": {
        "name": "Top",
        "value": "3",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/3"
    },
    "name": "organization16_08_53.883452",
    "id": "77",
    "meta": {
        "lastModified": "2015-02-06T07:09:27.000-08:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/77",
        "created": "2015-02-06T07:06:46.000-08:00",
        "resourceType": "Organization"
    },
    "customerType": "Scim2",
    "createBy": {
        "value": "1",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
    },
    "enforceNewPasswordPolicy": "Yes",
    "updateBy": {
        "value": "1",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
    },
    "status": "Active"
}

21.6.3.4 Modify Organizations (PATCH)
This section provides an example of the request and response of the Modify Organizations
operation using the PATCH operation type. It contains the following topics:

• Modify Organizations (PATCH) Request

• Modify Organizations (PATCH) Response

21.6.3.4.1 Modify Organizations (PATCH) Request
The request of the Modify Organizations (PATCH) operation consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/
Organizations/77
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8

Chapter 21
SCIM-Based API Examples

21-61



• X-Requested-By: <random_value>
Body:

{   
  "schemas":   
  [     
    "urn:ietf:params:scim:api:messages:2.0:PatchOp"   
  ],   
  "Operations":   
  [      
    {         
      "op":"replace",
      "path":"customerType",
      "value":"Scim3"      
    }   
  ]
}

21.6.3.4.2 Modify Organizations (PATCH) Response
The response of the Modify Organizations (PATCH) operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:Organization"
    ],
    "parent": {
        "name": "Top",
        "value": "3",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/3"
    },
    "name": "organization16_08_53.883452",
    "id": "77",
    "meta": {
        "lastModified": "2015-02-06T07:13:19.000-08:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/Organizations/77",
        "created": "2015-02-06T07:06:46.000-08:00",
        "resourceType": "Organization"
    },
    "customerType": "Scim3",
    "createBy": {
        "value": "1",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
    },
    "enforceNewPasswordPolicy": "Yes",
    "updateBy": {
        "value": "1",
        "$ref": "http://HOST_NAME:PORT/iam/governance/scim/v1/Users/1"
    },
    "status": "Active"
}

21.6.3.5 Delete Organization
This section provides an example of the request and response of the Delete Organization
operation using the DELETE operation type. It contains the following topics:

Chapter 21
SCIM-Based API Examples

21-62



• Delete Organization Request

• Delete Organization Response

21.6.3.5.1 Delete Organization Request
The request of the Delete Organization operation consists of:

Operation and URI: DELETE http://HOST_NAME:PORT/iam/governance/scim/v1/
Organizations/77
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>

21.6.3.5.2 Delete Organization Response
The response of the Delete Organization operation consists of:

Status: HTTP/1.1 204 No Content

21.6.4 Password Policy Management
Understand SCIM-based API usage examples for the password policy resource.

This section provides the following examples of the password policy resource:

• View Password Policy

• Create Password Policy

• Modify Password Policy (PUT)

• Modify Password Policy (PATCH)

• Delete Password Policy

21.6.4.1 View Password Policy
This section provides an example of the request and response of the View Password Policy
operation using the GET operation type. It contains the following topics:

• View Password Policy Request

• View Password Policy Response

21.6.4.1.1 View Password Policy Request
The request of the View Password Policy operation consists of:

Operation and URI: GET http://HOST_NAME:PORT/iam/governance/scim/v1/
PasswordPolicies?
filter=(urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordPolicy:allowedCh
ars co q)&attributes=id,description,name

Chapter 21
SCIM-Based API Examples

21-63



21.6.4.1.2 View Password Policy Response
The response of the View Password Policy operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:api:messages:2.0:ListResponse"
    ],
    "totalResults": 3,
    "Resources": [
        {
            "id": "2",
            "name": "pwp1_1423213466123",
            "description": "1"
        },
        {
            "id": "6",
            "name": "pwp_q_3466186",
            "description": "pwp_q_3466186"
        },
        {
            "id": "36",
            "name": "p1214_1423213645161"
        }
    ]
}

21.6.4.2 Create Password Policy
This section provides an example of the Create Password Policy operation using the POST
operation type. It contains the following sections:

• Create Password Policy Request

• Create Password Policy Response

21.6.4.2.1 Create Password Policy Request
The request of the Create Password Policy operation consists of:

Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/
PasswordPolicies
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{   
  "schemas":    
  [       
    "urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordPolicy"   
  ],   

Chapter 21
SCIM-Based API Examples

21-64



  "urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordPolicy":
  {       
    "name":"pwdpol0901258070",       
    "description":"complex password policy for ST org",       
    "passwordWarningAfterInDays": 20,       
    "passwordExpiresAfterInDays": 30,       
    "minPasswordAgeInDays": 10,       
    "userIdDisallowed": "false",       
    "minLength": 3,       
    "maxLength": 8,       
    "firstNameDisallowed": "true",       
    "challengeSource": 1,       
    "challengeMinQuestions": 3,       
    "challengeMinAnswers": 2,       
    "challengeResponseMinLength": 5,       
    "challengeAllowDuplicateResponses": "false",       
    "challengeMaxIncorrectAttempts": 5,       
    "challengeDefaultQuestions":       
    [           
      {               
        "value": "what is your favorite color"           
      },           
      {               
        "value": "what is name of your pet"           
      },           
      {             
        "value": "which is your favorite movie"           
      },           
      {               
        "value": "which is your favorite sport"           
      }       
    ]   
  }
}

21.6.4.2.2 Create Password Policy Response
The response of the Create Password Policy operation consists of:

Status: HTTP/1.1 201 Created
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordPolicy"
    ],
    "challengesEnabled": false,
    "id": "49",
    "challengeSource": 1,
    "minLength": 3,
    "startsWithAlphabet": false,
    "description": "complex password policy for ST org",
    "name": "pwdpol0901258070",
    "complexPolicy": false,
    "challengeDefaultQuestions": [
        {
            "value": "what is your favorite color"
        },
        {
            "value": "what is name of your pet"
        },

Chapter 21
SCIM-Based API Examples

21-65



        {
            "value": "which is your favorite movie"
        },
        {
            "value": "which is your favorite sport"
        }
    ],
    "challengeAllAtOnce": true,
    "minPasswordAgeInDays": 10,
    "passwordWarningAfterInDays": 20,
    "challengeResponseMinLength": 5,
    "userIdDisallowed": false,
    "maxLength": 8,
    "challengeMinQuestions": 3,
    "meta": {
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/PasswordPolicies/49",
        "resourceType": "PasswordPolicy"
    },
    "challengeMaxIncorrectAttempts": 5,
    "challengeMinAnswers": 2,
    "passwordExpiresAfterInDays": 30,
    "challengeAllowDuplicateResponses": false,
    "lastNameDisallowed": false,
    "firstNameDisallowed": true,
    "dictionaryDelimiter": "\u0000"
}

21.6.4.3 Modify Password Policy (PUT)
This section provides an example of the request and response of the Modify Password Policy
operation using the PUT operation type. It contains the following topics:

• Modify Password Policy (PUT) Request

• Modify Password Policy (PUT) Response

21.6.4.3.1 Modify Password Policy (PUT) Request
The request of the Modify Password Policy (PUT) operation consists of:

Operation and URI: PUT http://HOST_NAME:PORT/iam/governance/scim/v1/
PasswordPolicies/49
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{   
  "schemas":    
  [       
    "urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordPolicy"   
  ],   
  "urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordPolicy":
  {       
    "name":"pwdpol0905770857",       
    "description":"complex password policy for ST org",       
    "passwordWarningAfterInDays": 20,       

Chapter 21
SCIM-Based API Examples

21-66



    "passwordExpiresAfterInDays": 30,       
    "minPasswordAgeInDays": 10,       
    "userIdDisallowed": "false",       
    "minLength": 3,       
    "maxLength": 8,       
    "firstNameDisallowed": "true",       
    "challengeSource": 1,       
    "challengeMinQuestions": 3,       
    "challengeMinAnswers": 2,       
    "challengeResponseMinLength": 5,       
    "challengeAllowDuplicateResponses": "false",       
    "challengeMaxIncorrectAttempts": 5,       
    "challengeDefaultQuestions":       
    [           
      {               
        "value": "what is your favorite car"           
      },           
      {               
        "value": "what is name of your truck"          
      },          
      {               
        "value": "which is your favorite bicycle"           
      },           
      {               
        "value": "which is your favorite shoe"           
      }       
    ]   
  }
}

21.6.4.3.2 Modify Password Policy (PUT) Response
The response of the Modify Password Policy (PUT) operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordPolicy"
    ],
    "challengesEnabled": false,
    "id": "49",
    "challengeSource": 1,
    "minLength": 3,
    "startsWithAlphabet": false,
    "description": "complex password policy for ST org",
    "name": "pwdpol0905770857",
    "complexPolicy": false,
    "challengeDefaultQuestions": [
        {
            "value": "what is your favorite car"
        },
        {
            "value": "what is name of your truck"
        },
        {
            "value": "which is your favorite bicycle"
        },
        {
            "value": "which is your favorite shoe"

Chapter 21
SCIM-Based API Examples

21-67



        }
    ],
    "challengeAllAtOnce": true,
    "minPasswordAgeInDays": 10,
    "passwordWarningAfterInDays": 20,
    "challengeResponseMinLength": 5,
    "userIdDisallowed": false,
    "maxLength": 8,
    "challengeMinQuestions": 3,
    "meta": {
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/PasswordPolicies/49",
        "resourceType": "PasswordPolicy"
    },
    "challengeMaxIncorrectAttempts": 5,
    "challengeMinAnswers": 2,
    "passwordExpiresAfterInDays": 30,
    "challengeAllowDuplicateResponses": false,
    "lastNameDisallowed": false,
    "firstNameDisallowed": true,
    "dictionaryDelimiter": "\u0000"
}

21.6.4.4 Modify Password Policy (PATCH)
This section provides an example of the request and response of the Modify Password Policy
operation using the PATCH operation type. It contains the following topics:

• Modify Password Policy (PATCH) Request

• Modify Password Policy (PATCH) Response

21.6.4.4.1 Modify Password Policy (PATCH) Request
The request of the Modify Password Policy (PATCH) operation consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/
PasswordPolicies/49
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{   
  "schemas":   
  [     
    "urn:ietf:params:scim:api:messages:2.0:PatchOp"   
  ],   
  "Operations":   
  [      
    {         
      "op":"replace",
      "path":"firstNameDisallowed",
      "value":"false"      
    }   
  ]
}

Chapter 21
SCIM-Based API Examples

21-68



21.6.4.4.2 Modify Password Policy (PATCH) Response
The response of the Modify Password Policy (PATCH) operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:oracle:core:2.0:IDM:PasswordPolicy"
    ],
    "challengesEnabled": false,
    "id": "49",
    "challengeSource": 1,
    "minLength": 3,
    "startsWithAlphabet": false,
    "description": "complex password policy for ST org",
    "name": "pwdpol0905770857",
    "complexPolicy": false,
    "challengeDefaultQuestions": [
        {
            "value": "what is your favorite car"
        },
        {
            "value": "what is name of your truck"
        },
        {
            "value": "which is your favorite bicycle"
        },
        {
            "value": "which is your favorite shoe"
        }
    ],
    "challengeAllAtOnce": true,
    "minPasswordAgeInDays": 10,
    "passwordWarningAfterInDays": 20,
    "challengeResponseMinLength": 5,
    "userIdDisallowed": false,
    "maxLength": 8,
    "challengeMinQuestions": 3,
    "meta": {
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/PasswordPolicies/49",
        "resourceType": "PasswordPolicy"
    },
    "challengeMaxIncorrectAttempts": 5,
    "challengeMinAnswers": 2,
    "passwordExpiresAfterInDays": 30,
    "challengeAllowDuplicateResponses": false,
    "lastNameDisallowed": false,
    "firstNameDisallowed": false,
    "dictionaryDelimiter": "\u0000"
}

21.6.4.5 Delete Password Policy
This section provides an example of the request and response of the Delete Password Policy
operation using the DELETE operation type. It contains the following topics:

• Delete Password Policy Request

Chapter 21
SCIM-Based API Examples

21-69



• Delete Password Policy Response

21.6.4.5.1 Delete Password Policy Request
The request of the Delete Password Policy operation consists of:

Operation and URI: DELETE http://HOST_NAME:PORT/iam/governance/scim/v1/
PasswordPolicies/49
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>

21.6.4.5.2 Delete Password Policy Response
The response of the Delete Password Policy operation consists of:

Status: HTTP/1.1 204 NO Content

21.6.5 Notification Template Management
Understand SCIM-based API usage examples for the notification template resource.

This section provides the following examples of the notification template resource:

• View Notification Template

• Create Notification Template

• Modify Notification Template (PUT)

• Modify Notification Template (PATCH)

• Delete Notification Template

21.6.5.1 View Notification Template
This section provides an example of the request and response of the View Notification
Template operation using the GET operation type. It contains the following topics:

• View Notification Template Request

• View Notification Template Response

21.6.5.1.1 View Notification Template Request
The request of the View Notification Template operation consists of:

Operation and URI: GET http://HOST_NAME:PORT/iam/governance/scim/v1/
NotificationTemplates?attributes=id,name

21.6.5.1.2 View Notification Template Response
The response of the View Notification Template operation consists of:

Status: HTTP/1.1 200 OK
Body:

Chapter 21
SCIM-Based API Examples

21-70



{
    "schemas": [
        "urn:ietf:params:scim:api:messages:2.0:ListResponse"
    ],
    "totalResults": 4,
    "Resources": [
        {
            "name": "AddProxyNotificationTemplate",
            "id": "12"
        },
        {
            "name": "BulkRequestCreation",
            "id": "6"
        },
        {
            "name": "CreateUserSelfServiceNotification",
            "id": "7"
        },
        {
            "name": "UserDeletedNotificationTemplate",
            "id": "10"
        }
    ]
}

21.6.5.2 Create Notification Template
This section provides an example request and response of the Create Notification Template
operation using the POST operation type. It contains the following topics:

• Create Notification Template Request

• Create Notification Template Response

21.6.5.2.1 Create Notification Template Request
The request of the Create Notification Template operation consists of:

Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/
NotificationTemplates/
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{   
  "schemas":       
  [          
    "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:NotificationTemplate"      
  ],      
  "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:NotificationTemplate":      
  {          
    "name":"notificationtemplate16_09_14.724166_1",          
    "eventName":"AddProxy",          
    "description":"myTemplate",          
    "locales":           
    [              

Chapter 21
SCIM-Based API Examples

21-71



      {                  
        "locale": "dddd",                  
        "subject": "Notification for contractors 1",                  
        "encoding": "UTF-8",                  
        "contentType": "text/html, charset=UTF-8",                  
        "shortMessage": "short message1",                  
        "longMessage": "long message1"              
      },              
      {                  
        "locale": "eeee",                  
        "subject": "Notification for contractors 2",                  
        "encoding": "UTF-8",                  
        "contentType": "text/html, charset=UTF-8",                  
        "shortMessage": "short message2",                  
        "longMessage": "long message2"              
      }          
    ]      
  }
}

21.6.5.2.2 Create Notification Template Response
The response of the Create Notification Template operation consists of:

Status: HTTP/1.1 201 Created
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:NotificationTemplate"
    ],
    "meta": {
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/NotificationTemplates/
25",
        "resourceType": "NotificationTemplate"
    },
    "name": "notificationtemplate16_09_14.724166_1",
    "eventName": "AddProxy",
    "locales": [
        {
            "subject": "Notification for contractors 2",
            "locale": "eeee",
            "shortMessage": "short message2",
            "encoding": "UTF-8",
            "contentType": "text/html, charset=UTF-8",
            "longMessage": "long message2"
        },
        {
            "subject": "Notification for contractors 1",
            "locale": "dddd",
            "shortMessage": "short message1",
            "encoding": "UTF-8",
            "contentType": "text/html, charset=UTF-8",
            "longMessage": "long message1"
        }
    ],
    "description": "myTemplate",
    "id": "25"
}

Chapter 21
SCIM-Based API Examples

21-72



21.6.5.3 Modify Notification Template (PUT)
This section provides an example of the request and response of the Modify Notification
Template operation using the PUT operation type. It contains the following topics:

• Modify Notification Template (PUT) Request

• Modify Notification Template (PUT) Response

21.6.5.3.1 Modify Notification Template (PUT) Request
The request of the Modify Notification Template (PUT) operation consists of:

Operation and URI: PUT http://HOST_NAME:PORT/iam/governance/scim/v1/
NotificationTemplates/25
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{   
  "schemas":       
  [          
    "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:NotificationTemplate"      
  ],      
  "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:NotificationTemplate":      
  {          
    "name":"notificationtemplate16_09_17.742004_2",          
    "eventName":"AddProxy",          
    "description":"Template to notify contractors after password has been 
reset",          
    "locales":           
    [              
      {                  
        "subject": "Notification for contractors 1",                  
        "encoding": "UTF-8",                  
        "contentType": "text/html, charset=UTF-8",                  
        "shortMessage": "short message1",                  
        "longMessage": "long message1",                  
        "locale": "ffff"              
      },              
      {                  
        "subject": "Notification for contractors 2",                  
        "encoding": "UTF-8",                  
        "contentType": "text/html, charset=UTF-8",                  
        "shortMessage": "short message2",                  
        "longMessage": "long message2",                  
        "locale": "gggg"              
      }          
    ]      
  }
}

Chapter 21
SCIM-Based API Examples

21-73



21.6.5.3.2 Modify Notification Template (PUT) Response
The response of the Modify Notification Template (PUT) operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:NotificationTemplate"
    ],
    "meta": {
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/NotificationTemplates/
25",
        "resourceType": "NotificationTemplate"
    },
    "name": "notificationtemplate16_09_14.724166_1",
    "eventName": "AddProxy",
    "locales": [
        {
            "subject": "Notification for contractors 2",
            "locale": "gggg",
            "shortMessage": "short message2",
            "encoding": "UTF-8",
            "contentType": "text/html, charset=UTF-8",
            "longMessage": "long message2"
        },
        {
            "subject": "Notification for contractors 1",
            "locale": "ffff",
            "shortMessage": "short message1",
            "encoding": "UTF-8",
            "contentType": "text/html, charset=UTF-8",
            "longMessage": "long message1"
        }
    ],
    "description": "Template to notify contractors after password has been reset",
    "id": "25"
}

21.6.5.4 Modify Notification Template (PATCH)
This section provides an example of the request and response of the Modify Notification
Template operation using the PATCH operation type. It contains the following topics:

• Modify Notification Template (PATCH) Request

• Modify Notification Template (PATCH) Response

21.6.5.4.1 Modify Notification Template (PATCH) Request
The request of the Modify Notification Template (PATCH) operation consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/
NotificationTemplates/25
Header:

• Content-Type: application/scim+json

Chapter 21
SCIM-Based API Examples

21-74



• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{   
  "schemas":   
  [     
    "urn:ietf:params:scim:api:messages:2.0:PatchOp"   
  ],   
  "Operations":   
  [      
    {         
      "op":"replace",
      "path":"description",
      "value":"description3"      
    }   
  ]
}

21.6.5.4.2 Modify Notification Template (PATCH) Response
The response of the Modify Notification Template (PATCH) operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:NotificationTemplate"
    ],
    "meta": {
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/NotificationTemplates/
25",
        "resourceType": "NotificationTemplate"
    },
    "name": "notificationtemplate16_09_14.724166_1",
    "eventName": "AddProxy",
    "locales": [
        {
            "subject": "Notification for contractors 2",
            "locale": "gggg",
            "shortMessage": "short message2",
            "encoding": "UTF-8",
            "contentType": "text/html, charset=UTF-8",
            "longMessage": "long message2"
        },
        {
            "subject": "Notification for contractors 1",
            "locale": "ffff",
            "shortMessage": "short message1",
            "encoding": "UTF-8",
            "contentType": "text/html, charset=UTF-8",
            "longMessage": "long message1"
        }
    ],
    "description": "description3",
    "id": "25"
}

Chapter 21
SCIM-Based API Examples

21-75



21.6.5.5 Delete Notification Template
This section provides an example of the request and response of the Delete Notification
Template operation using the DELETE operation type. It contains the following topics:

• Delete Notification Template Request

• Delete Notification Template Response

21.6.5.5.1 Delete Notification Template Request
The request of the Delete Notification Template operation consists of:

Operation and URI: DELETE http://HOST_NAME:PORT/iam/governance/scim/v1/
NotificationTemplates/12
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>

21.6.5.5.2 Delete Notification Template Response
The response of the Delete Notification Template operation consists of:

Status: HTTP/1.1 204 No Content

21.6.6 System Property Management
Understand SCIM-based API usage examples for the system property resource.

This section provides the following examples of the system property resource:

• View System Properties

• Modify System Properties (PATCH)

21.6.6.1 View System Properties
This section provides an example of the request and response of the View System Properties
operation using the GET operation type. It contains the following topics:

• View System Properties Request

• View System Properties Response

21.6.6.1.1 View System Properties Request
The request of the View System Properties operation consists of:

Operation and URI: GET http://HOST_NAME:PORT/iam/governance/scim/v1/
SystemProperties?filter=(name eq AllowDisabledManagers)

21.6.6.1.2 View System Properties Response
The response of the View System Properties operation consists of:

Chapter 21
SCIM-Based API Examples

21-76



Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:api:messages:2.0:ListResponse"
    ],
    "totalResults": 1,
    "Resources": [
        {
            "schemas": [
                "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:SystemProperty"
            ],
            "id": "40",
            "meta": {
                "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/
SystemProperties/40",
                "resourceType": "SystemProperty"
            },
            "value": "FALSE",
            "name": "AllowDisabledManagers",
            "displayName": "Is disabled manager allowed"
        }
    ]
}

21.6.6.2 Modify System Properties (PATCH)
This section provides an example of the Modify System Properties operation using the PATCH
operation type. It contains the following topics:

• Modify System Properties (PATCH) Request

• Modify System Properties (PATCH) Response

21.6.6.2.1 Modify System Properties (PATCH) Request
The request of the Modify System Properties (PATCH) operation consists of:

Operation and URI: PATCH http://HOST_NAME:PORT/iam/governance/scim/v1/
SystemProperties/27
Header:

• Content-Type: application/scim+json
• Authorization: Bearer h480djs93hd8
• X-Requested-By: <random_value>
Body:

{   
  "schemas":   
  [     
    "urn:ietf:params:scim:api:messages:2.0:PatchOp"   
  ],   
  "Operations":   
  [      
    {         
      "op":"replace",
      "path":"displayName",

Chapter 21
SCIM-Based API Examples

21-77



      "value":"new_displayName_for_systemProperty"      
    }   
  ]
}

21.6.6.2.2 Modify System Properties (PATCH) Response
The response of the Modify System Properties (PATCH) operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:schemas:oracle:core:2.0:OIG:SystemProperty"
    ],
    "id": "27",
    "meta": {
        "lastModified": "2015-02-05T08:44:04.000-08:00",
        "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/SystemProperties/27",
        "created": "2015-02-05T08:44:04.000-08:00",
        "resourceType": "SystemProperty"
    },
    "value": "NONE",
    "name": "OIM.ChallengeQuestionModificationURL",
    "displayName": "new_displayName_for_systemProperty"
}

21.6.7 Service Provider Configuration Management
Understand SCIM-based API usage examples of the request and response of the Service
Provider Configuration operation using the GET operation type.

This section contains the following topics:

• Service Provider Configuration Request

• Service Provider Configuration Response

21.6.7.1 Service Provider Configuration Request
The request of the Service Provider Configuration operation consists of:

Operation and URI: GET http://HOST_NAME:PORT/iam/governance/scim/v1/
ServiceProviderConfigs

21.6.7.2 Service Provider Configuration Response
The response of the Service Provider Configuration operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:api:messages:2.0:ListResponse"
    ],
    "totalResults": 1,
    "Resources": [

Chapter 21
SCIM-Based API Examples

21-78



        {
            "schemas": [
                "urn:ietf:params:scim:schemas:core:2.0:ServiceProviderConfig"
            ],
            "patch": {
                "supported": true
            },
            "meta": {
                "location": "http://HOST_NAME:PORT/iam/governance/scim/v1/
ServiceProviderConfigs",
                "resourceType": "ServiceProviderConfig"
            },
            "bulk": {
                "maxPayloadSize": 1048576,
                "supported": false,
                "maxOperations": 1000
            },
            "authenticationSchemes": [
                {
                    "documentationUrl": "http://HOST_NAME/help/httpBasic.htm",
                    "specUrl": "http://www.ietf.org/rfc/rfc2617.txt",
                    "description": "Authentication Scheme using the Http Basic Standard",
                    "name": "HTTP Basic"
                }
            ],
            "documentationUrl": "http://HOST_NAME",
            "changePassword": {
                "supported": true
            },
            "etag": {
                "supported": false
            },
            "sort": {
                "supported": true
            },
            "filter": {
                "supported": true,
                "maxResults": 200
            }
        }
    ]
}

21.6.8 Resource Types Management
Understand the examples of the request and response of the Resource Types Management
operation using the GET operation type.

This section contains the following topics:

• Resource Types Management Request

• Resource Types Management Response

21.6.8.1 Resource Types Management Request
The request of the Resource Types Management operation consists of:

Operation and URI: GET http://HOST_NAME:PORT/iam/governance/scim/v1/ResourceTypes?
attributes=name

Chapter 21
SCIM-Based API Examples

21-79



21.6.8.2 Resource Types Management Response
The response of the Resource Types Management operation consists of:

Status: HTTP/1.1 200 OK
Body:

{
    "schemas": [
        "urn:ietf:params:scim:api:messages:2.0:ListResponse"
    ],
    "totalResults": 15,
    "Resources": [
        {
            "name": "User"
        },
        {
            "name": "PasswordValidator"
        },
        {
            "name": "UserNameRecoverer"
        },
        {
            "name": "Schema"
        },
        {
            "name": "ServiceProviderConfig"
        },
        {
            "name": "Organization"
        },
        {
            "name": "Request"
        },
        {
            "name": "Group"
        },
        {
            "name": "PasswordPolicy"
        },
        {
            "name": "SystemProperty"
        },
        {
            "name": "NotificationTemplate"
        },
        {
            "name": "ResourceType"
        },
        {
            "name": "PasswordResetterWithChallenges"
        },
        {
            "name": "UserNameValidator"
        },
        {
            "name": "UserNameGenerator"
        }
    ]
}

Chapter 21
SCIM-Based API Examples

21-80



21.6.9 Using POST Search
Understand the examples of the request and response of the Search operation using the
POST operation type.

This section contains the following topics:

• Using POST Search Request

• Using POST Search Response

21.6.9.1 Using POST Search Request
The request is issued with POST [prefix]/.search, which is an alternate way of searching for
resources. Instead of passing parameters on the URL, the request parameters are passed in
the POST body, as shown in the example in this section. The request consists of:

Operation and URI: POST http://HOST_NAME:PORT/iam/governance/scim/v1/Users/.search

Content-Type: application/scim+json
Authorization: Bearer h480djs93hd8
X-Requested-By: <random_value>
Body:

{
     "schemas":["urn:ietf:params:scim:api:messages:2.0:SearchRequest"],
     "attributes": [ "id", "userName" ],
     "filter": "userType eq \"Employee\" and (emails [type eq \"work\" and value co 
\"HOST_NAME\"] or name.givenName co \"doe\")",
     "startIndex":1,
     "count":2,
     "sortBy": "userName",
     "sortOrder": "ascending"
}

21.6.9.2 Using POST Search Response
The response of the Search (POST) operation consists of:

Body:

{
    "schemas": [
        "urn:ietf:params:scim:api:messages:2.0:ListResponse"
    ],
    "totalResults": 2,
    "itemsPerPage": 2,
    "startIndex": 1,
    "Resources": [
        {
            "id": "10",
            "userName": "John Doe"
        },
        {
            "id": "89",
            "userName": "Mary Doe"
        }

Chapter 21
SCIM-Based API Examples

21-81



    ]
}

21.6.10 Retrieving Schemas
Use the GET /Schemas request to retrieve the schema.

To retrieve the schema supported by Oracle Identity Governance REST service, submit the
following SCIM request:

GET /Schemas

21.7 Securing SCIM Resources
SCIM resources are secured by using custom OWSM policy, custom request headers, and
CORS whitelist.

This section contains the following topics:

• Securing SCIM Resources Using OWSM Policy

• Securing SCIM Resources Using Custom Request Headers

• Securing SCIM Resources Using Origin Whitelist

21.7.1 Securing SCIM Resources Using OWSM Policy
SCIM resources are secured by custom Oracle Web Services Manager (OWSM) policies
oracle/multi_token_rest_service_policy and oracle/no_authentication_service_policy
created by default during installation or upgrade of Oracle Identity Governance.

These policies enforce one of the following authentication polices when a token is sent by the
client or allows anonymous when no token is supplied:

• HTTP Basic

• SAML 2.0 Bearer token in HTTP header

• HTTP OAM security

• SPNEGO over HTTP security

• JWT token in HTTP header

See Understanding Global Policy Attachments for information about the oracle/
multi_token_rest_service_policy and oracle/no_authentication_service_policy
policies.

21.7.2 Securing SCIM Resources Using Custom Request Headers
Custom request headers are used to protect SCIM resources from CSRF attacks.

This section contains the following topics:

• About Cross-Site Request Forgery

• Applicability of CSRF Protection to Identity REST Services

• Protecting SCIM Resources Using Custom Request Headers

Chapter 21
Securing SCIM Resources

21-82



21.7.2.1 About Cross-Site Request Forgery

Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute unwanted
actions on a web application in which the user is currently authenticated. CSRF attacks
specifically target state-changing requests and not theft of data because the attacker has no
way to see the response to the forged request. With a little help of social engineering, such as
sending a link via email or chat, an attacker might trick the users of a web application into
executing actions of the attacker's choice. If the victim is a normal user, then a successful
CSRF attack can force the user to perform state-changing requests, such as transferring funds
or changing the email address. If the victim has an administrative account, then CSRF can
compromise the entire web application.

CSRF attack can trick the victim into submitting a malicious request. It inherits the identity and
privileges of the victim to perform an undesired function on behalf of the victim. For most sites,
browser requests automatically include any credentials associated with the site, such as the
user's session cookie, IP address, and Windows domain credentials. Therefore, if the user is
currently authenticated to the site, then the site will have no way to distinguish between a
forged request sent by the victim and a legitimate request sent by the victim.

Synonyms

CSRF attacks are also known by a number of other names including XSRF, sea surf, session
riding, Cross-Site Reference Forgery, and hostile linking.

21.7.2.2 Applicability of CSRF Protection to Identity REST Services

CSRF protection is required on the /tokens invocation because the oimjsessionid cookie or
SSO token is automatically included in the HTTP request to Oracle Identity Governance.
Several of the scenarios require CSRF protection, because a user tricked into clicking a link to
either the /tokens endpoint or facade token webapp can result in an unintended but
successful /tokens invocation. In particular, the scenarios that authenticate to the Oracle
Identity Governance UI are vulnerable to CSRF attacks, as is the HTTP Basic auth scenario.
As the token service cannot distinguish whether the client is susceptible to CSRF, all
invocations to the token service, the façade token webapp and /tokens service, must be
protected against CSRF.

In the cases an HTTP session is established with Oracle Identity Governance, the /tokens
implementation can enforce a synchronizer token in the request. However, this mechanism
cannot be used in the HTTP Basic Auth.

Instead, as the requests to the Oracle Identity Governance SCIM and REST API are from a
different origin, the Origin header can be used to enforce CSRF.

The Origin request header is required and the CORS allowed-origin computation is used to
enforce CSRF protection.

21.7.2.3 Protecting SCIM Resources Using Custom Request Headers

A defense against CSRF is the use of a custom request header, which only a valid user would
know. The custom header being used is:

X-Requested-By: <Random_value>

Chapter 21
Securing SCIM Resources

21-83



This approach has the double advantage of usually requiring no UI changes and not
introducing any server-side state, which coupled with CORS protection, makes for a robust
system.

This header is required for all HTTP calls that can change the state of the system, such as
PUT, POST, PATCH, and DELETE. If this header is not provided in such calls, then the SCIM
service returns HTTP 400 Error Code, particularly for HTTP methods other than GET.

21.7.3 Securing SCIM Resources Using Origin Whitelist
Cross-origin HTTP requests can be restricted by using an origin whitelist.

This section contains the following topics:

• About HTTP Access Control (CORS)

• Applicability of CORS to Identity REST Services

• Protecting SCIM Service Using Origin Whitelist

21.7.3.1 About HTTP Access Control (CORS)

A resource makes a cross-origin HTTP request when it requests a resource from a different
domain or port than the one that the first resource itself serves. For example, an HTML page
served from http://domain-a.com makes an <img> src request for http://domain-b.com/
image.jpg. Many pages on the web load resources, such as CSS stylesheets, images, and
scripts, from separate domains.

For security reasons, browsers restrict cross-origin HTTP requests initiated from within scripts.

The Cross-Origin Resource Sharing (CORS) mechanism gives web servers cross-domain
access controls, which enable secure cross-domain data transfers. See the CORS page in
Mozilla Development Network for general information about CORS and CORS headers.

The Cross-Origin Resource Sharing standard works by adding new HTTP headers that allow
servers to describe the set of origins that are permitted to read that information using a web
browser. See the HTTP headers page in Mozilla Development Network for detailed information
about HTTP headers, such as types of headers, authentication, and caching.

In addition, for HTTP request methods that can cause side effects on server's data (in
particular for HTTP methods other than GET or for POST usage), the specification mandates
that browsers preflight the request, soliciting supported methods from the server with an HTTP
OPTIONS request method, and then upon approval from the server, sending the actual request
with the actual HTTP request method. See the OPTIONS page in Mozilla Development
Network for information about the syntax and examples of the HTTP OPTIONS method.

Servers can also notify clients whether credentials, including cookies and HTTP Authentication
data, should be sent with requests.

21.7.3.2 Applicability of CORS to Identity REST Services

Given an HTML5/JS application loaded from a web tier distinct from the Oracle Identity
Governance deployment, the web browser same-origin policy would prevent the application JS
from accessing the Oracle Identity Governance SCIM and REST resources. CORS is a
mechanism to work around that restriction. The implementation for CORS for SCIM and JWT
supports configurable Access-Control-Allow-Origin; specifically, a white-list that is configurable
for the deployment.

Chapter 21
Securing SCIM Resources

21-84

https://developer.mozilla.org/en-US/docs/Glossary/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS


21.7.3.3 Protecting SCIM Service Using Origin Whitelist

The configurable whitelist is maintained in the XL.AllowedOrigins system property in Oracle
Identity Governance. Only the origins specified in this property will be allowed to access the
SCIM and JWT resources.

This whitelist should contain a comma-separated list of all allowed origins. Mozilla and Chrome
extensions are exempt.

The origins specified must be valid URL in the following format:

<scheme>://<host>.<domain>/<page>

For example:

http://myhost.example.com/index.php

See Non-Default System Properties in Oracle Identity Governance in Administering Oracle
Identity Governance for information about the guidelines to specify values for the
XL.AllowedOrigins system property.

21.8 Oracle Identity Governance REST Service
Identity Governance REST service provides APIs for Identity Self Service, Token Service,
Application Management, and Deployment Manager via Oracle REST Catalog.

Oracle Identity Governance REST service supports the following APIs in Oracle REST
Catalog:

• Self Service: For documentation, see REST API for Oracle Identity Governance Self
Service.

• Java Token Service: For documentation, see REST API for Oracle Identity Governance
Token Service.

• FacadeWebApp to get JWT token for OIG: For documentation, see REST API for
FacadeWebApp Token Service.

• Application Management: For documentation, see REST API for Oracle Identity
Governance Application Management.

• Deployment Manager: For documentation, see REST API for Oracle Identity Governance
Deployment Manager.

Chapter 21
Oracle Identity Governance REST Service

21-85



22
Using the JSON Web Token Service

Using the JSON Web Token (JWT) service simplifies the use of Oracle Identity Governance
SCIM and REST services.

This chapter describes how to use the JWT service for Oracle Identity Governance SCIM and
REST services. It contains the following topics:

• About the JWT Service

• Authentication Scenarios

• Acquiring and Applying a JWT

• JWT-Based OIM Identity Provider for SCIM-REST Authentication

• Endpoints and the Facade Application

• CSRF and CORS Protection

22.1 About the JWT Service
The JSON Web Token (JWT) service simplifies the use of Oracle Identity Governance SCIM
and REST services in various deployment scenarios.

The JWT produced by the Oracle Identity Governance token service contains a subject claim
for an OIM user that is signed by the Oracle Identity Governance server. This claim can be
presented for authentication to the OWSM agent that protects the SCIM and REST API.

The default multitoken OWSM policy protecting the Oracle Identity Governance SCIM and
REST services accepts various standard authentication mechanisms. This OIM Identity
Provider is targeted towards OIG enterprise deployments that are not already integrated into
an authentication domain, or to augmented authentication mechanisms, such as WebSSO,
which do not natively support REST-style APIs. This document describes the various
authentication scenarios that are supported in Oracle Identity Governance deployments for
access to the SCIM and REST services.

In some instances, an application might be deployed as an extension to the Oracle Identity
Governance UI, while in other cases, an application that is independent of the Oracle Identity
Governance UI uses the SCIM and REST services to satisfy identity requirements. The SCIM
and REST consumer might be an HTML5/JS application that is loaded from a web-tier distinct
from that in which Oracle Identity Governance is deployed and running in a browser, or it might
be the backend of a JSP or .Net application. A mobile application might also consume SCIM
and REST services.

22.2 Authentication Scenarios
An application can acquire JWT and access SCIM and REST services in various
authentication scenarios, such as a stand-alone deployment or a mobile application.

The following use cases describe various authentication scenarios that precede acquiring a
JWT and accessing the SCIM and REST services:

22-1



• Stand-alone Oracle Identity Manager UI authentication (via WLS and OIM Identity Store;
no WAM):

A user who is already authenticated by the Oracle Identity Manager UI login page has
access to the REST and SCIM API (through a separate HTML5/JS application) without
having to authenticate again.

• Stand-alone (no WAM):

Authentication is through OIG Portal. Oracle Identity Manager UI authentication does not
take place. Authentication takes place using either of the following:

– Direct authentication to the OIG REST API using Oracle Identity Manager as the
identity store

– Authentication using another mechanism, such as OAuth2, in which the subject
corresponds to an Oracle Identity Manager username.

• WAM-enabled OIM domain (OAM, SM, and TAM):

The user has authenticated to the WAM domain, which protects Oracle Identity Manager.
The application has an SSO token whose subject matches an Oracle Identity Manager
user name, or the SSO agent has set a special request header that asserts the user name.

• Mobile application

The application has a security token, such as OAuth2, whose subject matches an Oracle
Identity Manager user name. In all scenarios, OWSM protects the Oracle Identity Manager
SCIM and REST services. The OWSM agent is configured with http_jwt_token_
service_policy.

22.3 Acquiring and Applying a JWT
The Oracle Identity Manager SCIM and REST services are augmented with a JWT identity
provider that presents an endpoint in /iam/governance/token/api/v1/tokens.

Through this endpoint, the application can acquire a JWT for subsequent use with SCIM and
REST services, as shown in Figure 22-1.

Chapter 22
Acquiring and Applying a JWT

22-2



Figure 22-1    Token Endpoint Service

In some scenarios, the application interacts directly with the /tokens endpoint. In other
scenarios, the application is protected by an external authentication mechanism, and the user's
credentials are not available to the application. For example, suppose a user authenticates to
the Oracle Identity Manager UI by opening a SCIM or REST-based application that augments
the Oracle Identity Manager UI, and expects to proceed without re-authenticating. To
accommodate such configurations, a façade token service that is deployed within the
application's authentication domain facilitates the acquisition of a JWT that corresponds to the
user. The token façade has an OWSM SAML client policy applied. It extracts the user account
from the session and creates a SAML token that is used for authentication at the token
endpoint. Then, the token service generates a JWT token for the logged-in user. The JWT is
returned to the application. When an application that is authenticated on behalf of a user
invokes the façade web app (/iam/governance/token/api/v1/tokens), the web app can retrieve a
JWT from the service and relay it back to the application, as shown in Figure 22-2.

Chapter 22
Acquiring and Applying a JWT

22-3



Figure 22-2    Token Facade Web App

At the /tokens endpoint, OWSM authenticates the user and asserts the ID to the /tokens
endpoint implementation. If the authenticated user has sufficient privileges, the endpoint can
issue a token for self. The implementation validates the target user name, matches an OIM
user, and issues a JWT that claims the user name in the HTTP response. This JWT is used for
all subsequent access by the application to the Oracle Identity Manager SCIM and REST API.

By default, the façade web application is deployed with Oracle Identity Manager.

22.4 JWT-Based OIM Identity Provider for SCIM-REST
Authentication

The JWT-based OIM Identity Provider for SCIM and REST authentication issues the JWT. It
also includes SCIM and REST security, an identity provider endpoint, and session timeout and
refresh.

This section describes the JWT-based OIM identity provider for SCIM and REST
authentication. It contains the following topics:

• Overview of SCIM and REST Security

• JSON Web Token (JWT)

• The OIM Identity Provider Endpoint

Chapter 22
JWT-Based OIM Identity Provider for SCIM-REST Authentication

22-4



• Session Timeout and Refresh

• Configuring JWT Timeout Period

22.4.1 Overview of SCIM and REST Security
The SCIM and REST services are protected by OWSM authentication-only policies that are
specific to the REST services. They are also protected by OPSS authorization policies that are
common to accesses to OIM entities from any service.

The default OWSM authentication-only policy configured for the SCIM and REST services
accepts the JWT produced by the token service, among other authentication mechanisms. See 
Understanding Global Policy Attachments for information about OWSM policy attachments and
the default Oracle Identity Manager policies.

22.4.2 JSON Web Token (JWT)
The JSON Web Token (JWT) is defined in RFC 7519.

The JWT issued by OIM Identity Provider contains a claim segment for a subject (OIM user),
issuer, expiration, and other data.

{"exp":1448420525,"sub":"xelsysadm","iss":"www.oracle.com","prn":"xelsysadm","iat":144841
8725}

The JWT also includes an authentication header (JOSE) that indicates the algorithm and
certificate key used for the JWS computation:

{"alg":"RS256","typ":"JWT","x5t":"8KTfKAncWGbLsNOlLZRQ77qSE74","kid":"xell"}

The header and payload are base64url encoded, concatenated, and separated by a period
character (.). The RSA signature is computed over that input, base64url encoded, and
appended following a period character. The OIM Identity Provider encapsulates the result in
another JSON structure that resembles the following:

{
    "tokenType": "Bearer",
    "accessToken": 
"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsIng1dCI6IjhLVGZLQW5jV0diTHNOT2xMWlJRNzdxU0U3NCIsImtp
ZCI6InhlbGwifQ.eyJleHAiOjE0NDg0MjA1MjUsInN1YiI6InhlbHN5c2FkbSIsImlzcyI6Ind3dy5vcmFjbGUuY2
9tIiwicHJuIjoieGVsc3lzYWRtIiwiaWF0IjoxNDQ4NDE4NzI1fQ.s6OLNLmYdJXF2Zj6SaTM5vPHOcKuBIcJlBvV
mSATCBKnS-_qmvUYn9-8bcXDbEBo9qum2O3kF0SmbtH0u6-rx-QtNXWupf9-
vbtAUVoOpm8f6X3tHVbhzBVixKYnwAZC8tN3LJ6UNOhYzxe7iOZfclmhEQILgA7I3J152gToKmU",
    "expiresIn": "1799"
    }

In a subsequent call to the SCIM-REST service, the value of accessToken is submitted in the
authentication header, for example JWT, produced via
oracle.security.jps.service.trust.TrustService and
oracle.security.restsec.jwt.JwtToken.

22.4.3 The OIM Identity Provider Endpoint
The OIM Identity Provider endpoint is a REST service deployed in the OIM server context
(JVM) in /iam/governance/token/api/v1/tokens.

When the endpoint is invoked, it returns a JWT that contains a subject claim for an OIM user
name.

Chapter 22
JWT-Based OIM Identity Provider for SCIM-REST Authentication

22-5



In token-for-self mode, the request is processed for the authenticated user. Any valid user can
request a token for self.

22.4.4 Session Timeout and Refresh
The JWT must include an expiration time that is set from a server configuration value. A JWT
can be refreshed at the /iam/governance/token/api/v1/tokens service by supplying an
unexpired JWT using the HTTP PUT method. Therefore, OWSM should be configured to
accept both HTTP Basic Auth and JWT for the /iam/governance/token/api/v1/tokens
endpoint.

The HTML5/JS (web browser) application must manage token refresh, including stopping the
refresh cycle when the application has been idle. After the final token expires, the application
reauthenticates through whatever mechanism was previously used.

A mobile application can securely store the necessary credentials to acquire a JWT. Therefore,
reauthentication may not require user interaction, even in the case of username/password
authentication.

22.4.5 Configuring JWT Timeout Period
The JWT timeout period is specified in the jps-config.xml file.

To configure the JWT timeout period:

1. In a text editor, open the $DOMAIN/config/fmwconfig/jps-config.xml file.

2. 2. In the trust.provider.embedded property set, change the value of
trust.token.validityPeriod to a value in seconds as in the following example:

<propertySet name="trust.provider.embedded">
    <property name="trust.aliasName" value="xell"/>
    <property name="trust.issuerName" value="www.oracle.com"/>
    <property name="trust.keyStoreName" value="kss://opss/trustservice_ks"/>
    <property name="trust.keystoreType" value="KSS"/>
    <property name="trust.trustStoreName" value="kss://opss/trustservice_ts"/>
    <property name="trust.token.validityPeriod" value="1800"/>

Note:

If the trust.token.validityPeriod property is defined twice in the
trust.provider.embedded property set, then delete one definition.

3. Save the jps-config.xml file.

4. Restart Oracle Identity Manager Managed Server.

22.5 Endpoints and the Facade Application
Endpoints include the Token endpoint and Refresh Token endpoint. The Facade application
fetches a token for the logged in user.

The Token and Refresh Token endpoints are /iam/governance/token/api/v1/tokens.

This section describes the endpoints and the Facade application. It contains the following
topics:

Chapter 22
Endpoints and the Facade Application

22-6



• Endpoints

• The Facade Application

22.5.1 Endpoints
The Token and Refresh Token endpoints are /iam/governance/token/api/v1/tokens.

This section describes the Token endpoint and Refresh Token endpoint. It contains the
following topics:

• The Token Endpoint ( /iam/governance/token/api/v1/tokens)

• The Refresh Token Endpoint (/iam/governance/token/api/v1/tokens)

22.5.1.1 The Token Endpoint ( /iam/governance/token/api/v1/tokens)

This section describes the token endpoint. It contains the following topics:

• About the Token Endpoint

• Token Endpoint Authorization

• Token Request

22.5.1.1.1 About the Token Endpoint

This endpoint is exposed so that the application can get the token for the user. OWSM at
the /iam/governance/token/api/v1/tokens endpoint authenticates the user and serves as an ID
Asserter to the endpoint implementation. If the authenticated user has sufficient privileges, the
endpoint can issue a token for self. In the HTTP response, the implementation validates that
the target user name matches an OIM user and issues a JWT that claims the user name. This
JWT is used for all subsequent access by the application to the Oracle Identity Manager SCIM
and REST API.

22.5.1.1.2 Token Endpoint Authorization

For authorization, any authenticated user can request a token-for-self. This case is identified
by an empty payload in the token request.

The target user is the user name identified in the Basic Auth header.

22.5.1.1.3 Token Request

Token Request (Self)

Token Request (Self) includes the following request method, URL, and headers:

• Request method: POST

• URL: http://<host>:<port>/iam/governance/token/api/v1/tokens

• Headers:

– Authorization: Basic <Base64 encoded user:password>

– Accept: application/json

– Content-Type: application/json

Chapter 22
Endpoints and the Facade Application

22-7



– X-REQUESTED-BY: <random value>

22.5.1.2 The Refresh Token Endpoint (/iam/governance/token/api/v1/tokens)

This section describes the Refresh Token Endpoint. It contains the following topics:

• About the Refresh Token Endpoint

• Refresh Token End Point Configuration

• Refresh Token Request

22.5.1.2.1 About the Refresh Token Endpoint

This endpoint is exposed so that the application can refresh its existing token by providing the
old token before it expires. This endpoint validates the existing token and then reissues a token
if the existing token is still valid. This endpoint is protected by JWT OWSM policy.

22.5.1.2.2 Refresh Token End Point Configuration

Table 22-1lists the Refresh Token endpoint configuration.

Table 22-1    Refresh Token Endpoint Configuration

Use Case Availability Description

Web browser with existing Oracle
Identity Manager UI login session
(non-SSO)

No The application fetches the token
for the logged-in user by using
the Façade application. Because
the user can log out from Oracle
Identity Manager any time, the
refresh endpoint is not available
in this scenario. If the user is still
logged in to Oracle Identity
Manager when the user token
expires, then the application can
get a new token by using the
Façade application.

Web browser with existing Oracle
Identity Manager UI login session
(SSO)

No The application fetches the token
for the logged-in user by using
the Façade application. Because
the user can log out from SSO
any time, the refresh endpoint is
not available in this scenario. If
the user is still logged in to SSO
when the user token expires, then
the application can get a new
token by using the Façade
application.

Web browser via portal with
Oracle Identity Manager as the
Identity Store

Yes The application fetches the token
directly by accessing the /tokens
endpoint and providing the user
name and password. If the token
is about to expire, then the
application accesses the /tokens
endpoint by providing the existing
token and receives a new token.

Chapter 22
Endpoints and the Facade Application

22-8



Table 22-1    (Cont.) Refresh Token Endpoint Configuration

Use Case Availability Description

Web browser via portal with an
external authentication provider

Yes The application fetches the token
for a user who is authenticated by
an external authentication
provider. If the token is about to
expire, then the application
accesses the /tokens endpoint by
providing the existing token and
receives a new token.

22.5.1.2.3 Refresh Token Request

The Refresh Token Request includes the following request method, URL, and headers:

• Request method: PUT

• URL: http://<host>:<port>/iam/governance/token/api/v1/tokens

• Headers:

– Authorization: Bearer <token value>

– Accept: application/json

– Content-Type: application/json

– X-Requested-By: <random_value>

22.5.2 The Facade Application
The Facade application is fetches a token for the logged-in user based on the existing user
session. Users who are logged in to an OIM/SSO application and moved to an HTML/JS
application can use the façade application to get the token for the logged-in user.

Table 22-2 shows the usability of the Facade application.

Table 22-2    Facade Application Usability

Use Case Required

Web browser with existing Oracle Identity Manager
UI login session (non-SSO)

Yes

Web browser with existing Oracle Identity Manager
UI login session (SSO)

Yes

Web browser via portal with Oracle Identity
Manager as the identity store

No

Web browser via portal with an external
authentication provider

No

A user can use the FacadeWebApp REST API to fetch a JWT token by using the following
URI:

/FacadeWebApp/GetToken GET: This retrieves the JWT token for the user. See REST API for
FacadeWebApp Token Service.

Chapter 22
Endpoints and the Facade Application

22-9



22.6 CSRF and CORS Protection
Custom request headers are used to protect SCIM resources from Cross-Site Request Forgery
(CSRF) attacks. Cross-origin HTTP requests are restricted by using the Cross-Origin Resource
Sharing (CORS) mechanism.

See Securing SCIM Resources for detailed information about CSRF and CORS protection.

Chapter 22
CSRF and CORS Protection

22-10



23
Understanding Global Policy Attachments

When you install Oracle Identity Manager, or upgrade to this release of Oracle Identity
Manager, certain OWSM policy sets are created by default. These Policy sets contain attached
OWSM policies on application path that make Restful and SOAP services secure. By default,
the policies are not SSL-enabled.

This chapter contains the following topics:

• Predefined Policies

• Viewing and Editing Global Policy Attachments

• Enabling SCIM to Run Only on HTTPS

• Enabling REST to Run Only on HTTPS

23.1 Predefined Policies
As part of Global Policy Attachments, OWSM policies for both RESTful and SOAP web
services govern the security access to the REST and SOAP services respectively. These
policies can be modified to apply different levels or types of security to the applications.

Table 23-1 lists the RESTful WSM policy sets and the corresponding attached policies.

Table 23-1    RESTful WSM Policy Sets

Policy Set
Name

Policy Attached Description

policySetAPPO
NBRD

oracle/
multi_token_rest_service_
policy

This policy enforces one of the following authentication
policies based on the token sent by the client:
HTTP basic (username/password)

SAML 2.0 Bearer token

JWT token security

HTTP OAM security (disabled by default)

policySetDM oracle/
multi_token_rest_service_
policy

This policy enforces one of the following authentication
policies based on the token sent by the client:
HTTP basic (username/password)

SAML 2.0 Bearer token

JWT token security

HTTP OAM security (disabled by default)

policySetREST_
Auth

oracle/
multi_token_rest_service_
policy

This policy enforces one of the following authentication
policies based on the token sent by the client:
HTTP basic (username/password)

SAML 2.0 Bearer token

JWT token security

HTTP OAM security (disabled by default)

23-1



Table 23-1    (Cont.) RESTful WSM Policy Sets

Policy Set
Name

Policy Attached Description

policySetREST_
Unauth

oracle/
no_authentication_service
_policy

This policy facilitates the disabling of a globally attached
authentication policy. This includes disabling the whole
global policy containing any other assertions in addition to
the authentication assertion.

policySetSCIM_
Auth

oracle/
multi_token_rest_service_
policy

This policy enforces one of the following authentication
policies based on the token sent by the client:
HTTP basic (username/password)

SAML 2.0 Bearer token

JWT token security

HTTP OAM security (disabled by default)

policySetSCIM_
Unauth

oracle/
no_authentication_service
_policy

This policy facilitates the disabling of a globally attached
authentication policy. This includes disabling the whole
global policy containing any other assertions in addition to
the authentication assertion.

policySetTOKE
N

oracle/
multi_token_rest_service_
policy

This policy enforces one of the following authentication
policies based on the token sent by the client:
HTTP basic (username/password)

SAML 2.0 Bearer token

JWT token security

HTTP OAM security (disabled by default)

policySetFacad
e

oracle/
http_saml20_token_beare
r_client_policy

This policy governs generation of SAML token from facade
application that is used for authentication at /tokens end
point.

Table 23-2 lists the SOAP WSM policy sets and the corresponding attached policies.

Table 23-2    SOAP WSM Policy Sets

Policy Set Name Policy Attached

policySetCertCallbackSvc oracle/wss_username_token_service_policy

policySetIdAuditCallbackSvc oracle/wss_username_token_service_policy

policySetProvCallback oracle/
wss11_saml_or_username_token_with_message_protection_service_po
licy

policySetReqSvc oracle/wss_username_token_service_policy

policySetSPMLXSD oracle/wss_saml_or_username_token_service_policy

policySetWorkflowSvc oracle/
wss11_saml_or_username_token_with_message_protection_service_po
licy

Note:

See Security Policies-Authentication Only in Securing Web Services and Managing
Policies with Oracle Web Services Manager for detailed information about the default
RESTful and SOAP WSM policies.

Chapter 23
Predefined Policies

23-2



23.2 Viewing and Editing Global Policy Attachments
You can view and edit the policy attachments by using Oracle Enterprise Manager Fusion
Middleware Control.

To view the policy sets and the attached policies and edit the policy sets, see Attaching
Policies to Manage and Secure Web Services in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

When you make change to a policy, the change to the policy takes effect at the next polling
interval for policy changes. The default polling interval is 10 minutes, which is 600000
milliseconds.

23.3 Enabling SCIM to Run Only on HTTPS
By default, SCIM is configured to run on both HTTP and HTTPs ports. You can enable SCIM to
run only on HTTPs ports by editing the policySetSCIM_Auth and policySetSCIM_Unauth
policy sets.

SCIM can run on both HTTP and HTTPs ports by default. For example, both the following
URLs will work by default without any configuration changes:

http://OIM_HOST:OIM_HTTP_PORT/iam/governance/scim/v1/Users
https://OIM_HOST:OIM_HTTP_PORT/iam/governance/scim/v1/Users

To enable SCIM to run only on HTTPs ports:

1. Login to Oracle Enterprise Manager Fusion Middleware Control.

2. Click WebLogic Domain, and select Web Services, WSM Policy Sets.

3. Edit the WSM policy set policySetSCIM_Auth, and move to the Add Policy References
page.

4. Detach the existing oracle/multi_token_rest_service_policy, and attach the oracle/
multi_token_over_ssl_rest_service_policy.

5. Go to the Summary page and save the policy set.

6. Edit the WSM policy Set policySetSCIM_Unauth, and move to the Add Policy References
page.

7. Detach the existing oracle/no_authentication_service_policy, and attach the oracle/
http_anonymous_rest_over_ssl_service_policy.

8. Go to the Summary page, and save the policy set.

23.4 Enabling REST to Run Only on HTTPS
By default, REST is configured to run on both HTTP and HTTPs ports. You can enable REST
to run only on HTTPS ports by editing the policySetREST_Auth and policySetREST_Unauth
policy sets.

To enable REST to run only on HTTPS ports:

1. Login to Oracle Enterprise Manager Fusion Middleware Control.

2. Click WebLogic Domain, and select Web Services, WSM Policy Sets.

Chapter 23
Viewing and Editing Global Policy Attachments

23-3



3. Edit the WSM policy set policySetREST_Auth, and move to the Add Policy References
page.

4. Detach the existing oracle/multi_token_rest_service_policy and attach the oracle/
multi_token_over_ssl_rest_service_policy.

5. Go to the Summary page and save the policy set.

6. Edit the WSM policy set policySetREST_Unauth, and move to the Add Policy References
page.

7. Detach the existing oracle/no_authentication_service_policy and attach the oracle/
http_anonymous_rest_over_ssl_service_policy.

8. Go to the Summary page and save the policy set.

Chapter 23
Enabling REST to Run Only on HTTPS

23-4



Part VIII
Notification Service

Notification service includes custom notification by developing notifications events.

This part contains the following chapters:

• Developing Notification Events



24
Developing Notification Events

For developing custom notification for various operations, the notification engine supports
creation of notification events and notification templates.
This chapter describes how to develop notification events. It contains the following sections:

• Notification Concepts

• Developing Custom Notification

24.1 Notification Concepts
An event is an operation that occurs in Oracle Identity Manager, such as user creation, request
initiation, or any custom event created by the user.

The events are generated as part of business operations or via generation of errors. Event
definition is the metadata that describes the event. To define metadata for events, it is
important to identify all event types supported by a functional component. For example, as a
part of the scheduler component, metadata can be defined for scheduled job execution failed
and shutting down of the scheduler. Every time a job fails or the scheduler is shut down, the
events are raised and notifications associated with that event are sent.

Notification templates are associated to specific events. The templates are used for defining
the format of the notification. Oracle Identity Manager provides predefined or default
notification templates. In addition, you can create new notification templates.

For some events, Oracle Identity Manager sends notification by default. For example, when a
user is created without username and password through UI or reconciliation, the login
credentials are notified to the user and user's manager.

You can define new notification events by using notification APIs and resolver class, as
described in the subsequent sections. The following are examples of custom notification
requirements:

• A user is assigned to a role. The user and role owner are to be notified.

• A user is assigned with a new application instance, which is financially significant, as part
of reconciliation. The application instance owner and compliance officer is to be notified for
prospective rogue attempts.

24.2 Developing Custom Notification
Developing custom notification involves building the notification logic, creating the plug-in pack,
building the invocation logic, and configuring the notification service.

This section describes how to develop custom notification. It contains the following topics:

• Building the Notification Logic

• Creating Plug-in Pack Containing the Resolver Class

• Building the Invocation Logic

• Configuring the Notification Service

24-1



24.2.1 Building the Notification Logic
Building the notification logic involves defining the event metadata XML and creating the
Resolver class.

This section describes how to build the notification logic. It contains the following topics:

• Defining Event Metadata

• Creating the Resolver Class

• Creating the plugin.xml File

24.2.1.1 Defining Event Metadata
Corresponding to each event, you must create an XML file that has the specific schema
defined by the notification engine. Compliant to that schema (.xsd file), an XML file is created
that defines how an event looks like. When the event is defined, you can configure a
notification template for that event.

An event file must be compliant with the schema defined by the notification engine, which is
NotificationEvent.xsd. The event file contains basic information about the event.

Note:

The NotificationEvent.xsd file is in the iam\iam-product\features\notification\metadata
directory in the MDS.

The following is a sample event XML file:

<?xml version="1.0" encoding="UTF-8"?>
<Events xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="../../../metadata/NotificationEvent.xsd">
  <EventType name="User Created">
    <StaticData>
      <Attribute DataType="X2-Entity" EntityName="User" Name="Granted User"/>
      <Attribute DataType="X2-Entity" EntityName="User" Name="Grantee User"/>
      <Attribute DataType="91-Entity" EntityName="User Group" Name="User Grp"/>
    </StaticData>
      <Resolver class="oracle.iam.notification.DemoResolver">
      <Param DataType="91-Entity" EntityName="Resource" Name="ResourceInfo"/>
    </Resolver>
  </EventType>
</Events>

The event XML file has the following elements:

• EventType name: The name of the event that will be available while creating notification
templates for the event.

• StaticData: The list of static parameters. This set of parameters specifically let the user
add parameters that are not data dependent. In other words, this element defines the static
data to be displayed when notification template is to be configured. For instance, the user
entity is not data dependent, and when resolved, has the same set of attributes for all the
event instances and notification templates.

Chapter 24
Developing Custom Notification

24-2



• Param DataType: The list of dynamic parameters. This set of parameters specifically let
the user add parameters that are data dependent. For instance, the Resource entity is data
dependent. Corresponding to this field, a lookup is displayed on the UI. When the user
selects the resource object, the call goes to the Resolver class provided to get the fields
that are shown in the tree from which user can select the attribute to be used on the
template.

Note:

Available data is the list of attributes that can be embedded as a token in the
template. These tokens are replaced by the value passed by the resolver class at
run time. See step 7 of Creating a Notification Template in Administering Oracle
Identity Governance for an example of a token.

Available data is displayed in a drop-down list while creating a notification
template, as described in Creating a Notification Template in Administering
Oracle Identity Governance.

Selected data is a single attribute that helps user to copy and paste the attribute
name in a notification template. Selected data is the same attribute name as
selected in the Available Data list.

The dynamic entities supported for lookup are user, resource, and organization. These
entity names must be specified in the Param DataType element.

Note:

The <Param DataType> element is not a mandatory element. However, when it
is used, the entity names must be specified as User, Resource, or Organization.

• Resolver class: The Resolver class must be defined for each notification. It defines what
parameters are available in the notification creation screen and how those parameters are
replaced when the notification is to be sent. In other words, the resolver class resolves the
data dynamically at run time and displays the attributes in the UI. See Creating the
Resolver Class for information about implementing the resolver class.

Notification service reads the custom event XML files from the META-INF directory of a plug-in.

The recommended way to use the event XML is by placing it in a plugin's META-INF directory.
The structure of the custom notification event plug-in is:

• The lib/ directory

– Notification_Resolver.jar

• The META-INF directory

– Notification_Event.xml

• plugin.xml

See Developing Plug-ins for detailed information about creating the plug-in JAR and deploying
it by using the Plugin Registration Utility.

Chapter 24
Developing Custom Notification

24-3



24.2.1.2 Creating the Resolver Class
All classes have to implement the NotificationEventResolver interface.

This section describes the methods of the NotificationEventResolver interface and provides an
example of creating a custom resolver class. It contains the following topics:

• The getAvailableData Method

• The getReplacedData Method

• Example: Creating a Custom Resolver Class

Note:

To compile any custom notification event resolver class, the ORACLE_HOME/server/
apps/oim.ear/APP-INF/lib/OIMServer.jar file must be included in the CLASSPATH.

24.2.1.2.1 The getAvailableData Method
The API is:

public List<NotificationAttribute> getAvailableData(String eventType, Map<String, 
Object> params);

This API returns the list of available data variables. These variables are available on the UI
while creating or modifying the templates and allows the user to select the variables so that
they can be the part of the messages on the template.

The eventType parameter specifies the event name for which the template is to be read.

The params parameter is the map that has the entity name and the corresponding value for
which available data is to be fetched. For instance:

map.put("Resource", "laptop");

This helps you fetch the fields associated with the laptop resource or other data according to
the code that you have provided in the resolver class.

Sample code:

/**
* this is a dummy implementation and uses hardcoded values
* Implementors need to iterate the XML as found through the event type
* params : will have all the specific values that your resolver needs
* for instance resource name = "laptop" that you may want here to be resolved through 
your custon implementation
*/
 
List<NotificationAttribute> list = new ArrayList<NotificationAttribute>(); 
NotificationAttribute subatr = new NotificationAttribute(); subatr.setName("Dynamic1"); 
subatr.setType("91-Entity"); subatr.setEntityName("Resource"); 
subatr.setRequired(false); subatr.setSearchable(true); 
subatr.setSubtree(lookup91EntityMetaData("resource"), params.get(0)); list.add(subatr);

The main tree contains the entity information and the subtree contains all the nodes that are
available on the UI. The name field from each node in the subtree is available on the UI for
selection.

Chapter 24
Developing Custom Notification

24-4



24.2.1.2.2 The getReplacedData Method
The API is:

HashMap<String, String> getReplacedData(String eventType, Map<String, Object> params);

This API returns the resolved value of the variables present on the template at run time when
notification is being sent.

The eventType parameter specifies the event name for which the template is to be read.

The params parameter is the map that has the base values, such as usr_key and obj_key,
required by the resolver implementation to resolve the rest of the variables in the template.

Sample code:

HashMap<String, Object> resolvedData = new HashMap<String, Object>(); 
resolvedData.put("shortDate", new Date()); resolvedData.put("longDate", new Date());
String firstName = getUserFirstname(params.get("usr_key")); resolvedData.put("fname", 
firstName); resolvedData.put("lname", "lastname"); resolvedData.put("count", "1 
million");
return resolvedData;

24.2.1.2.3 Example: Creating a Custom Resolver Class
Consider the example of Oracle Identity Manager sending email notification to the user who
has been added as a proxy. If the requirement is to change the date format in the notification
email, then create a new resolver class file, such as AddProxyResolverModified, for notification
while adding a proxy. The following is the code for the AddProxyResolverModified resolver
class:

package oracle.iam.selfservice.notification;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Date;
import java.util.logging.Level;
import java.text.ParseException;
import java.text.SimpleDateFormat;
 
import static oracle.iam.identity.utils.Constants.PROXY_START_DATE;
import static oracle.iam.identity.utils.Constants.PROXY_END_DATE;
import static oracle.iam.identity.utils.Constants.PROXY_ORIGINAL_USR_NAME;
import static oracle.iam.identity.utils.Constants.PROXY_ORIG_USER_LOGIN;
import static oracle.iam.identity.utils.Constants.FIRSTNAME;
import static oracle.iam.identity.utils.Constants.LASTNAME;
import oracle.iam.notification.impl.NotificationEventResolver;
import oracle.iam.notification.vo.NotificationAttribute;
 
public class AddProxyResolverModified implements NotificationEventResolver {
public List<NotificationAttribute> getAvailableData(String eventType, Map<String, 
Object> params) throws Exception {
return null;
}
    
    public HashMap<String, Object> getReplacedData(String eventType, Map<String, Object> 
params)throws Exception {
 
        SimpleDateFormat sdfSource = new SimpleDateFormat("MMMMMMMM DD,yyyy HH:mm:ss a 
z");
        SimpleDateFormat sdfDestination = new SimpleDateFormat("EEE, d MMM yyyy HH:mm:ss 

Chapter 24
Developing Custom Notification

24-5



Z");
        Date sdate = null;
        Date edate = null;

        HashMap<String, Object> resolvedData = new HashMap<String, Object>();
        resolvedData.put("firstName",params.get(FIRSTNAME));
        resolvedData.put("lastName",params.get(LASTNAME));
        resolvedData.put("originalusername",params.get(PROXY_ORIG_USER_LOGIN));

        String proxy_startDate = (String )params.get(PROXY_START_DATE);
        System.out.println("proxy_startDate : " + proxy_startDate);
        String proxy_endDate = (String)  params.get(PROXY_END_DATE);
        System.out.println("proxy_endDate : " + proxy_endDate);

        sdate = sdfSource.parse(proxy_startDate);
        edate = sdfSource.parse(proxy_endDate);

        proxy_startDate = sdfDestination.format(sdate);
        System.out.println("proxy_startDate : " + proxy_startDate);
        proxy_endDate = sdfDestination.format(edate);
        System.out.println("proxy_endDate : " + proxy_endDate);

        resolvedData.put("proxystartdate", proxy_startDate);
        resolvedData.put("proxyenddate", proxy_endDate);
        return resolvedData;
    }
}

24.2.1.3 Creating the plugin.xml File
The plugin.xml file is a standard XML file used by the plug-in framework. If any feature uses
plug-ins, then it exposes a plug-in point. This XML has the information of plug-in point.

For notification event and resolver plug-in, the exposed plug-in point is:

oracle.iam.notification.impl.NotificationEventResolver

Sample plugin.xml for Notification event and resolver is:

<?xml version="1.0" encoding="UTF-8" ?> <oimplugins xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
<plugins pluginpoint="oracle.iam.notification.impl.NotificationEventResolver">
<plugin pluginclass="ext.domain.notification.resolver.SendChallengeQuestionsResolver" 
version="1.0" name="Challenge Question Resolver" /> </plugins>
</oimplugins>

24.2.2 Creating Plug-in Pack Containing the Resolver Class
After creating the Resolver class, you must package it into a plug-in JAR file, and deploy the
JAR file by using the Plug-in Registration Utility.

See Developing Plug-ins for detailed information about creating the plug-in JAR and deploying
it by using the Plugin Registration Utility.

Chapter 24
Developing Custom Notification

24-6



24.2.3 Building the Invocation Logic
After building the notification logic by defining event metadata XML and creating the Resolver
class, you can call the notification logic at a specific operation in Oracle Identity Manager. This
is achieved by using event handlers.

The invocation logic for the notification is built as a custom event handler. The custom event
handler is then configured at the right stage in the relevant operation. The custom event
handler is then deployed by using the Plugin Registration Utility. See Developing Event
Handlers for details about developing event handlers.

24.2.4 Configuring the Notification Service
Infrastructure-level configuration for notification can be done in Oracle Identity Manager or in
BPEL workflow.

You have the following options for creating the infrastructure-level configuration for notification:

• Notification Configuration in Oracle Identity Manager: In Oracle Identity Manager,
notification configurations are handled via notification providers. UMS is the default
notification provider. For information about notification providers, see Managing Notification
Providers in Administering Oracle Identity Governance.

• Notification Configuration in BPEL workflow: SOA exposes notification service, which
can be called in BPEL workflow for notification. For information about SOA email
notification, see Configuring SOA Email Notification in Administering Oracle Identity
Governance.

Note:

Dynamic Monitoring Service (DMS) can be used to view performance metrics. The
following DMS metrics are present for monitoring notification performance:

• OIM_Notification: It provides the fine grained details about the time taken by
the notification provider.

• oracle.iam.notification.api.NotificationService: It provides details, such
as the number of notifications and time taken by notification.

Chapter 24
Developing Custom Notification

24-7



Part IX
Customization Lifecycle

Customization utilities are available for deploying and undeploying customizations, and
migrating JAR files and resource bundles.

This part describes how to use the customization utilities provided by Oracle Identity Manager.
It contains the following chapter:

• Deploying and Undeploying Customizations



25
Deploying and Undeploying Customizations

You can deploy and undeploy customizations in Oracle Identity Manager by migrating
metadata files, JAR files containing various artifacts, and resource bundles.
This chapter describes how to deploy and undeploy customizations in Oracle Identity Manager.
It contains the following topics:

• Migrating User Modifiable Metadata Files

• Migrating JARs and Resource Bundle

25.1 Migrating User Modifiable Metadata Files
The user modifiable metadata XML files can be exported to MDS, imported from MDS, and
deleted from MDS by using Oracle Enterprise Manager.

This section contains the following topics:

• Exporting Metadata Files to MDS

• Importing Metadata Files from MDS

• Deleting Metadata Files from MDS

• Creating MDS Backup

• Exporting All MDS Data for Oracle Identity Governance

• Sample WLST Script

25.1.1 Exporting Metadata Files to MDS
Use Oracle Enterprise Manager to export metadata files to MDS.

To export metadata XML files to MDS:

1. Login to Oracle Enterprise Manager as the administrator user by navigating to the URL in
the following format:

http://ADMINSTRATION_SERVER/em

Make sure that the Administrative Server and at least one Oracle Identity Manager
Managed Server are running.

2. Navigate to Identity and Access, oim, oim(VERSION). Right-click and navigate to
System MBean Browser.

3. Under Application Defined MBeans, navigate to oracle.mds.lcm, Server:oim_server1,
Application:oim, MDSAppRuntime, MDSAppRuntime.

4. Export metadata by using the operations. To do so:

a. In the Operations tab, select and open the first exportMetadata operation in the list.

b. For toLocation, provide the path to a temporary directory, in which this file is to be
exported. This file will be exported to the computer on which Oracle Identity Manager

25-1



is running. Therefore, make sure that the directory path you specify exist on that
computer.

c. For docs, click the pencil icon, click Add, and in the Element box, provide the full path
of the file to be exported. By clicking Add, you can provide the path to multiple docs.
Click OK at the bottom after adding the metadata docs to be exported.

d. Invoke the operation.

25.1.2 Importing Metadata Files from MDS
Use Oracle Enterprise Manager to import metadata files from MDS.

To import metadata XML files from MDS:

1. Login to Oracle Enterprise Manager as the admin user. Make sure that the Administrative
Server and at least one Oracle Identity Manager Managed Server are running.

2. Navigate to Identity and Access, oim, oim(VERSION). Right-click and navigate to
System MBean Browser.

3. Under Application Defined MBeans, navigate to oracle.mds.lcm, Server:oim_server1,
Application:oim, MDSAppRuntime, MDSAppRuntime.

4. Import metadata by using the operations. To do so:

a. In the Operations tab, select the first importMetadata operation in the list.

b. For fromLocation, provide the directory path of the Oracle Identity Manager host from
where documents are to be imported.

c. For docs, click the pencil icon, click Add, and in the Element box, provide the full path
of the file to be imported. By clicking Add, you can provide the path to multiple docs. If
no value is provided, then it imports everything under the fromLocation directory
recursively.

d. Invoke the operation.

25.1.3 Deleting Metadata Files from MDS
Use Oracle Enterprise Manager to delete metadata files form MDS.

To delete metadata XML files from MDS.

1. Navigate to MDSAppRuntime mbeans, as described in step 1 of Exporting Metadata Files
to MDS.

2. Delete metadata by using the operations. To do so:

a. In the Operations tab, select the first deleteMetadata operation in the list.

b. For docs, click the pencil icon, click Add, and in the Element box, provide the full path
of the file to be deleted. By clicking Add, you can provide the path to multiple docs to
be deleted.

c. Invoke the operation.

25.1.4 Creating MDS Backup
You might need to create a backup of the MDS before performing customizations.

To create a backup of the MDS by using Oracle Enterprise Manager:

Chapter 25
Migrating User Modifiable Metadata Files

25-2



1. Login to Oracle Enterprise Manager as the administrator.

2. Navigate to Application Deployments, oracle.iam.console.identity.self-
service.ear(V2.0). Right-click and navigate to MDS configuration.

3. Under Export, select the Export metadata documents to an archive on the machine
where this web browser is running option, and then click Export.

All the metadata is exported in a ZIP file.

25.1.5 Exporting All MDS Data for Oracle Identity Governance
Some configurations for Oracle Identity Governance are stored in an MDS repository rather
than on a file system on the Oracle Identity Governance Server. Troubleshooting configuration
issues can sometimes require exporting all MDS data in order to examine it and make
corrections if required.

To export all of the Oracle Identity Governance metadata contained in the MDS repository:

1. Setup the environment as a prerequisite:

a. To perform MDS operations, log in to the Oracle Identity Governance server host with
the account used to install and run WebLogic Application Server.

b. Set you environment variables for the Oracle Identity Governance domain by running
the appropriate setDomainEnv script found in the MIDDLEWAR_HOME/user_projects/
domains/DOMAIN_NAME/bin/ directory. The command is as shown:

$ cd MIDDLEWARE_HOME/user_projects/domains/OIMDomain/bin
$ .setDomainEnv.sh

c. Create a temporary directory, such as /tmp/OIM/MDSData/, which will be used to store
the resulting XML files from the database.

d. Verify that the application server is up and running.

e. Ensure that you know the WebLogic administrator username and the URL to the
Admin Server.

2. Perform the export, as follows:

a. In the command shell or console window, go to the OIM_ORACLE_HOME/
common/bin/ directory.

b. Run the wlst.sh command, and then run the connect() command, as shown:

$ ./wlst.sh
CLASSPATH=/opt/oracle/Middleware/wlserver/server/ext/jdbc/oracle/11g/
ojdbc6dms.jar:...
...
Your environment has been set.
...
Initializing WebLogic Scripting Tool (WLST) ...
 
Welcome to WebLogic Server Administration Scripting Shell
 
Type help() for help on available commands
wls:/offline> connect()
Please enter your username [weblogic] :
Please enter your password [PASSWORD] :
Please enter your server URL [t3://localhost:port] :
Connecting to t3://localhost:port with userid weblogic ...
Successfully connected to Admin Server 'AdminServer' that belongs to domain 
'OIMDomain'.
 

Chapter 25
Migrating User Modifiable Metadata Files

25-3



Warning: An insecure protocol was used to connect to the server. To ensure on-
the-wire security, the SSL port or Admin port should be used instead.

c. Provide the WebLogic administrator username and password and the URL to the
Admin Server.

d. Run the exportMetadata command providing at least the application, server, and
toLocation arguments, as shown:

Note:

Be sure to pass the argument data in single quotes, such as:

server='oim_server1'

wls:/OIMDomain/serverConfig> exportMetadata(application='OIMMetadata', 
server='oim_server1', toLocation='/tmp/OIM/MDSData')

e. A list of the files exported is displayed. At this point, you can run the disconnect()
command followed by the exit() command, as shown:

wls:/OIMDomain/serverConfig> disconnect()
Disconnected from weblogic server: AdminServer
wls:/offline> exit()
 
 
Exiting WebLogic Scripting Tool.
 
$

f. Go to the /tmp/OIM/MDSData/ directory, and view the db/oim-config.xml file, or the db/
form-metadata/FormMetaData.xml file, or any other exported MDS file.

25.1.6 Sample WLST Script
Use the WLST script to export all MDS files, or save the script in a .py file and run it.

The following is an example WLST script for exporting all MDS files:

connect('WEBLOGIC_USERNAME','PASSWORD','t3://localhost:PORT')
exportMetadata(application='OIMMetadata', server='oim_server1', toLocation='/tmp/OIM/
MDSData')
disconnect()
exit()

You can save this script in a .py file, for example /tmp/exportOIMMDS.py, which you can run to
automatically produce the same results. The following is a sample .py file:

cd MIDDLEWARE_HOME/user_projects/domains/OIMDomain/bin
. setDomainEnv.sh
mkdir -p /tmp/OIM/MDSData
cd $OIM_ORACLE_HOME/common/bin
./wlst.sh /tmp/exportOIMMDS.py

25.2 Migrating JARs and Resource Bundle
When migrating from test to production environment, all the connector artifacts must be
migrated to the respective database tables. This can be done by using the Upload JAR,

Chapter 25
Migrating JARs and Resource Bundle

25-4



Download JAR, Delete JAR, Download Resource Bundle, and Delete Resource Bundle
utilities.

This section contains the following topics:

• Upload JAR Utility

• Download JAR Utility

• Delete JAR Utility

• Upload Resource Bundle Utility

• Download Resource Bundle Utility

• Delete Resource Bundle Utility

Chapter 25
Migrating JARs and Resource Bundle

25-5



Note:

• All the Upload JAR and Resource Bundle utilities must be run from the
OIM_HOME/bin/ directory.

• Set APP_SERVER, OIM_ORACLE_HOME, JAVA_HOME, MW_HOME,
WL_HOME, and DOMAIN_HOME before running the scripts.

• All the scripts for the JAR files and resource bundles support both interactive
mode and command-line mode usage. But it is recommended to use interactive
mode because this is secure and the passwords are not echoed on the console.

• For running the scripts in command-line mode, run it with the -help argument. For
example:

sh UploadJars.sh -help

To upload a JAR file in the silent mode:

UploadJars.sh [-username USERNAME] [-password PASSWORD] [-serverURL <t3://
OIM_HOSTNAME:OIM_PORT>] [-ctxFactory 
<weblogic.jndi.WLInitialContextFactory>] [-JavaTasks 
LOCATION_OF_JAVA_TASK_JAR]

For information about configuring the utilities to upload/download JAR files and
resource bundle over SSL, see Configuring SSL for Oracle Identity Manager
Utilities in Administering Oracle Identity Governance.

To upload multiple JAR files in the silent mode:

UploadJars.sh [-username USERNAME] [-password PASSWORD] [-serverURL <t3://
OIM_HOSTNAME:OIM_PORT>] [-ctxFactory 
<weblogic.jndi.WLInitialContextFactory>] [-JavaTasks 
LOCATION_OF_JAVA_TASK_JAR] [-ScheduleTask LOCATION_OF_SCHEDULED_TASK_JAR] [-
ThirdParty LOCATION_OF_THIRD_PARTY_JAR] [-ICFBundle 
LOCATION_OF_ICF_BUNDLE_JAR]

• In this document, interactive mode usage of the JAR and Resource Bundle
utilities are explained because it is a secure way of running the utilities and is
recommended.

To run the JAR or Resource Bundle utilities in interactive mode, run the scripts
without specifying any arguments. For example:

sh UploadJars.sh
• If Oracle Identity Governance is installed on IPv6 Linux host computer, then pass

ipv6 as the last input argument to the UploadJars.sh, DownloadJars, DeleteJars,
UploadResourceBundles, DownloadResourceBundles, and
DeleteResourceBundles sh scripts. For example:

sh UploadJars.sh ipv6

If you do not pass the ipv6 input argument, then the script will run in IPv4 mode.

• On Windows environment, do not pass any parameter for IPv6 while running the
utilities.

Chapter 25
Migrating JARs and Resource Bundle

25-6



25.2.1 Upload JAR Utility
The UploadJars.sh and UploadJars.bat scripts are available in the OIM_HOME/bin/ directory.
Running these scripts upload the JAR files in to the database.

A sample invocation of this utility is as shown:

[Enter Xellerate admin username :]ADMISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimportno for weblogic)]:]t3://xyz.com:14000
[[Enter context (Ex. weblogic.jndi.WLInitialContextFactory for 
weblogic)]:]weblogic.jndi.WLInitialContextFactory
Enter the jar type
 1.JavaTasks
 2.ScheduleTask
 3.ThirdParty
 4.ICFBundle
1
Enter the path/location of jar file :
/tmp/example.jar
Do u want to load more jars [y/n] :n

Note:

14000 is Oracle Identity Manager port.

25.2.2 Download JAR Utility
The DownloadJars.sh and DownloadJars.bat scripts are available in the OIM_HOME/bin/
directory. Running these scripts download the JAR files from the database.

A sample invocation of this utility is as shown:

[Enter Xellerate admin username :]ADMINISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimport for weblogic)]:]t3://localhost:14000
[[Enter context (i.e.: weblogic.jndi.WLInitialContextFactory for 
weblogic)]:]weblogic.jndi.WLInitialContextFactory
Enter the jar type
1.JavaTasks
2.ScheduleTask
3.ThirdParty
4.ICFBundle
1
Enter the full path of the download directory :
/home/joe/tmp
Enter the name of jar file to be downloaded from DB :
example.jar
Do u want to download more jars [y/n] :n

Chapter 25
Migrating JARs and Resource Bundle

25-7



Note:

• 14000 is Oracle Identity Manager port.

• When you run the DownloadJars.sh utility in an IPv6 enabled setup, the following
error is encountered:

Exception in thread "main" javax.security.auth.login.LoginException:
java.net.UnknownHostException: exampledomain.com: Name or service not known

To workaround this issue:

1. Open the DownloadJars.sh script in a text editor.

2. Modify the following line:

bash oimClientWrapper.sh $CLIENT_CLASS

To:

bash oimClientWrapper.sh $CLIENT_CLASS $*
3. Save the file.

25.2.3 Delete JAR Utility
The DeleteJars.sh and DeleteJars.bat scripts are available at the OIM_HOME/bin/ directory.
Running these scripts delete the JAR files from the database.

A sample invocation of this utility is as shown:

[Enter Xellerate admin username :]ADMINISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimport for weblogic)]:]t3://localhost:14000
[[Enter context (i.e.: weblogic.jndi.WLInitialContextFactory for 
weblogic)]:]weblogic.jndi.WLInitialContextFactory
Enter the jar type
1.JavaTasks
2.ScheduleTask
3.ThirdParty
4.ICFBundle
1
Enter the name of jar to be deleted from DB :
example.jar
Do u want to delete more jars [y/n] :n 

25.2.4 Upload Resource Bundle Utility
The UploadResourceBundles.sh and UploadResourceBundles.bat scripts are available in the
OIM_HOME/server/bin/ directory. Running these scripts upload the connector or custom
resources to the database.

A sample invocation of this utility is as shown:

Enter Xellerate admin username :]ADMINISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimportno for weblogic)]:]t3://localhost:14000
[[Enter context (i.e.: weblogic.jndi.WLInitialContextFactory for 
weblogic)]:]weblogic.jndi.WLInitialContextFactory

Chapter 25
Migrating JARs and Resource Bundle

25-8



Enter the resource bundle type
 1.Custom Resource
 2.Connector Resource
 2
Enter the path/location of resource bundle file :
/tmp/example.properties
Do u want to load more resource bundles [y/n] :n

25.2.5 Download Resource Bundle Utility
The DownloadResourceBundles.sh and DownloadResourceBundles.bat scripts are available
in the OIM_HOME/bin/ directory. Running these scripts download the resource bundles from
the database.

A sample invocation of this utility is as shown:

[Enter Xellerate admin username :]ADMINISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimportno for weblogic)]:]t3://localhost:14000
[[Enter context (i.e.: weblogic.jndi.WLInitialContextFactory for 
weblogic)]:]weblogic.jndi.WLInitialContextFactory
Enter the resource bundle type
1.Custom Resource
2.Connector Resource
2
Enter the full path of the download directory :
/home/joe/tmp
Enter the name of resource bundle file :
example.properties
Do u want to download more resource bundles [y/n] :n

25.2.6 Delete Resource Bundle Utility
The DeleteResourceBundles.sh and DeleteResourceBundles.bat are available in the
OIM_HOME/bin/ directory. Running these utilities delete the resource bundles from the
database.

A sample invocation of this utility is as shown:

[Enter Xellerate admin username :]ADMINISTRATOR_LOGIN
[Enter the admin password :]ADMINISTRATOR_PASSWORD
[[Enter serverURL (Ex. t3://oimhostname:oimportno for weblogic)]:]t3://localhost:14000
[[Enter context (i.e.: weblogic.jndi.WLInitialContextFactory for 
weblogic)]:]weblogic.jndi.WLInitialContextFactory
Enter the resource bundle type
1.Custom Resource
2.Connector Resource
2
Enter the name of resource bundle file to be deleted from DB:
example.properties
Do u want to delete more resource bundles [y/n] :n

Chapter 25
Migrating JARs and Resource Bundle

25-9



Note:

When you run the DeleteResourceBundles.sh utility in an IPv6 enabled setup, the
following error is encountered:

Exception in thread "main" javax.security.auth.login.LoginException:
java.net.UnknownHostException: exampledomain.com: Name or service not known

To workaround this issue:

1. Open the DeleteResourceBundles.sh script in a text editor.

2. Modify the following line:

bash oimClientWrapper.sh $CLIENT_CLASS

To:

bash oimClientWrapper.sh $CLIENT_CLASS $*
3. Save the file.

Chapter 25
Migrating JARs and Resource Bundle

25-10



Part X
Reports and Audit

Configure Oracle Business Intelligence (BI) Publisher as the primary reporting tool for Oracle
Identity Governance; and understand about auditing, audit levels, tables used in audit, and
audit messages.

This part describes about audit engine and how to configure reports in Oracle Identity
Manager. It contains the following chapters:

• Configuring Reports

• Understanding Auditing



26
Configuring Reports

You can configure and use reports when standalone Oracle Analytics Server is deployed.

This chapter describes how to configure Oracle Identity Governance reports. It contains the
following topics:

• What are Oracle Identity Governance Reports?

• What is Oracle Analytics Server?

• Oracle Analytics Server (7.0) Licensing

• Installing and Configuring Oracle Analytics Server (7.0)

• Integrating Standalone Oracle Analytics Server with Oracle Identity Governance

• Configuring Oracle Identity Governance Reports

• Configuring Data Sources for Running Oracle Identity Governance Reports

• Generating Oracle Identity Governance Reports

• Configuring Certification Reports

26.1 What are Oracle Identity Governance Reports?
Oracle Identity Governance reports enable you to use Oracle Analytics Server (7.0) as the
reporting solution for Oracle Identity Management products.

Note:

Oracle Identity Governance reports are classified based on the functional areas, for
instance, Access Policy Reports, Request and Approval Reports, Password Reports,
and so on. It is no longer named Operational and Historical.

Oracle Identity Governance reports provide a restricted-use license for Oracle Analytics Server
(7.0) and easy-to-use reporting packages for multiple Oracle Identity Management products.

As shown in Figure 26-1, Oracle Identity Governance reports use Oracle Analytics Server to
query and report on information in Oracle Identity Management product databases. With
minimal setup, Oracle Identity Governance reports provide a common method to create,
manage, and deliver Oracle Identity Governance reports.

26-1



Figure 26-1    Oracle Identity Manager Reports Architecture

The report templates included in Oracle Identity Governance reports are standard Oracle
Analytics Server (7.0) templates. However, you can customize each template to change its
look and feel. If schema definitions for an Oracle Identity Management product are available,
you can use that information to create your own custom reports.

Note:

Oracle strongly recommends creating back-up copies of the original default report
templates before customizing them.

26.2 What is Oracle Analytics Server?
Oracle Analytics Server (7.0) is an Oracle's enterprise reporting solution and provides a single
reporting environment to author, manage, and deliver all of your reports and business
documents.

Utilizing a set of familiar desktop tools, such as Microsoft Word, Microsoft Excel, or Adobe
Acrobat, you can create and maintain report layouts based on data from diverse sources,
including Oracle Identity Management products.

26.3 Oracle Analytics Server (7.0) Licensing
Oracle Analytics Server (7.0) is included when you separately license Oracle Identity
Governance.

Oracle Identity Governance can be separately licensed, independent of any Oracle Application
Server or WebLogic edition. Oracle Analytics Server (7.0) is included when you separately
license Oracle Identity Governance:

• Shipped Oracle Analytics Server (7.0) reports. Layout changes are allowed, AND

• Shipped or newly created Oracle Analytics Server (7.0) reports that are modified to access
data from the existing Identity Management schema that has not been customized.

Note:

Oracle Analytics Server (7.0) is certified with this release of Oracle Identity
Governance.

Chapter 26
What is Oracle Analytics Server?

26-2



26.4 Installing and Configuring Oracle Analytics Server (7.0)
Install Oracle Analytics Server (7.0) software and configure Oracle Analytics Server with new
schema option.

To install and configure Oracle Analytics Server (7.0):

1. Install Oracle Analytics Server (7.0) software. See Installing the Oracle Analytics Server
Software in Installing and Configuring Oracle Analytics Server.

Note:

Create a separate Middleware home directory for installing standalone Oracle
Analytics Server (7.0). As a prerequisite, install WebLogic in the same
Middleware home before installing standalone Oracle Analytics Server (7.0).

2. Configure Oracle Analytics Server (7.0). After Oracle Analytics Server installation,
configure only with new schema option using the MW_HOME/bi/bin/config.sh utility. While
doing so, create a new OAS domain. See Configuring Oracle Analytics Server in Installing
and Configuring Oracle Analytics Server.

Note:

During Oracle Analytics Server (7.0) configuration for Oracle Identity Manager,
you must configure only Oracle Analytics Publisher. If you select other
components during Oracle Analytics Server configuration, then the integration
with Oracle Identity Manager may not work.

26.5 Integrating Standalone Oracle Analytics Server with Oracle
Identity Governance

After installing and configuring standalone Oracle Analytics Server (7.0), you integrate the
same with Oracle Identity Governance to run and view Oracle Identity Governance reports.

To configure Oracle Identity Governance reports in the Oracle Analytics Server (7.0) domain:

1. Log in to Oracle Enterprise Manager of OIG.

2. Click weblogic_domain and select System Mbean browser.

3. In the System MBean, navigate to the path Application Defined MBeans, oracle.iam,
Server: <oim_server_name>, Application: oim, XMLConfig, Config,
XMLConfig.DiscoveryConfig, Discovery.

4. Update the value of the BIPublisherURL attribute with Oracle Analytics Server URL.

5. Click Apply.

6. Create OIG system administrator user (for example xelsysadm) under the default security
realm by using the WebLogic Administrative Console. To do so:

Chapter 26
Installing and Configuring Oracle Analytics Server (7.0)

26-3

https://docs.oracle.com/en/middleware/bi/analytics-server/install-config-oas/installing-product-software.html#GUID-D5AFD830-8A7D-42CC-8C22-CE68C452CF4A
https://docs.oracle.com/en/middleware/bi/analytics-server/install-config-oas/installing-product-software.html#GUID-D5AFD830-8A7D-42CC-8C22-CE68C452CF4A
https://docs.oracle.com/en/middleware/bi/analytics-server/install-config-oas/configuring-product.html#GUID-5EB7CED2-4EAF-4212-9B78-32538A767030


Note:

Creating OIM system administrator user under the default security realm is
required to use the default security model of Oracle Analytics Server (OAS),
which is Oracle Fusion Middleware security model. If you want to use some other
security model, then refer the OAS documentation.

a. Log in to OAS Server WLS Console http://HOST:PORT/console by using WebLogic
admin credentials.

b. Go to the Security Realms link, and click the myrealm link.

c. Click the Users and Groups tab.

d. Click New, and provide the credentials of Oracle Identity Governance system
administrator user.

7. Assign the BIServiceAdministrator application role to OIG system administrator user (for
example xelsysadm) by using Oracle Enterprise Manager. To do so:

a. Log in to OAS Server EM Console using WebLogic admin credentials.

b. Click Weblogic Domain, and select Security, Application roles.

c. Search for the default application role in the obi stripe.

d. Click the BIServiceAdministrator role, and click Edit.

e. Click Add, and search with the User type.

f. Select the system administrator user, and click OK.

26.6 Configuring Oracle Identity Governance Reports
After standalone Oracle Analytics Server is integrated with Oracle Identity Governance, you
can deploy the predefined reports for using them.

To deploy Oracle Identity Governance reports:

1. Copy and unzip the predefined report MW_HOME/idm/server/reports/
oim_product_BIPReports_12c.zip file to OAS_DOMAIN_HOME/bidata/components/
bipublisher/repository/Reports/ directory.

2. Add folder level permission to the BIServiceAdministrator application role to view and
run the predefined Oracle Identity Governance reports. To do so:

a. Log in to Oracle Analytics Server by using WebLogic admin credentials. For example - 
http://oas.example.com:9502/xmlpserver.
Click the Catalog link at the top. The Oracle Identity Manager named folder under
Shared Folders is displayed in the left pane. Select the Oracle Identity Manager
named folder.

b. Click the Permissions option under the Tasks window on the bottom left.

c. Click the plus sign and perform a blank search on the available role.

d. Select the BI Service Administrator role, and add to the right panel. Click OK.

3. Logout as WebLogic user, login as Oracle Identity Governance system administrator user
to Oracle Analytics Server console, and run the Oracle Identity Governance reports.

Chapter 26
Configuring Oracle Identity Governance Reports

26-4

http://oas.example.com:9502/xmlpserver


26.7 Configuring Data Sources for Running Oracle Identity
Governance Reports

For running and viewing Oracle Identity Governance reports using Oracle Anaytics Server,
Oracle Identity Governance JDBC connection and BPEL-based JDBC connection is required.

This section describes how to configure data sources for running Oracle Identity Governance
reports. It contains the following topics:

• Configuring Oracle Identity Governance JDBC Connection

• Configuring BPEL-Based JDBC Connection

26.7.1 Configuring Oracle Identity Governance JDBC Connection
To configure Oracle Identity Governance JDBC connection:

1. Click the Administration link on the top of the Oracle Analytics Server Home page. The
OAS Administration page is displayed.

2. Under Data Sources, click the JDBC Connection link. The Data Sources page is
displayed.

3. In the JDBC tab, click Add Data Source to create a JDBC connection to your database.
The Add Data Source page is displayed.

4. Enter values in the following fields:

• Data Source Name: Specify the Oracle Identity Manager JDBC connection name.

• Driver Type: Select a driver type to suit your database. For example, you can select
Oracle 11g or Oracle 12c to suit your database.

• Database Driver Class: Specify a driver class to suit your database, such as
oracle.jdbc.driver.OracleDriver.

• Connection String: Specify the database connection details in the format
jdbc:oracle:thin:@HOST_NAME:PORT_NUMBER:SID. For example,
jdbc:oracle:thin:@localhost:7003:orcl.

• User name: Specify the Oracle Identity Manager database user name having postfix
as _OIM.

• Password: Specify the Oracle Identity Manager database user password.

5. Click Test Connection to verify the connection, and then click Apply to establish the
connection.

6. If the connection to the database is established, a confirmation message is displayed
indicating the success. Click Apply.

In the JDBC page, you can see the newly defined Oracle Identity Manager JDBC
connection in the list of JDBC data sources.

26.7.2 Configuring BPEL-Based JDBC Connection
You can configure a secondary source for BPEL-based reports.

This section describes how to configure BPEL-based JDBC connection. It contains the
following topics:

Chapter 26
Configuring Data Sources for Running Oracle Identity Governance Reports

26-5



• About Reports With Secondary Data Source

• Configuring a Secondary Data Source for BPEL-Based Reports

26.7.2.1 About Reports With Secondary Data Source
In Oracle Analytics Server, only one data source can be assigned to a report. The first data
source is the Oracle Identity Manager data source. The following reports have a secondary
data source, which connects to the BPEL database to retrieve BPEL data:

• Task Assignment History

• Request Details

• Request Summary

• Approval Activity

26.7.2.2 Configuring a Secondary Data Source for BPEL-Based Reports
To configure a secondary data source for BPEL-based reports:

1. In the Oracle Analytics Server Home page, click Administration. The Oracle Analytics
Server Administration page is displayed.

2. Under Data Sources, click the JDBC Connection link. The Data Sources page is
displayed.

3. In the JDBC tab, click Add Data Source to create a JDBC connection to your database.
The Add Data Source page is displayed.

4. Enter values in the following fields:

• Data Source Name: Specify the BPEL JDBC connection name.

• Driver Type: Select a driver type to suit your database. For example, you can select
Oracle 11g or Oracle 12c to suit your database.

• Database Driver Class: Specify a driver class to suit your database, such as
oracle.jdbc.driver.OracleDriver.

• Connection String: Specify the database connection details in the format
jdbc:oracle:thin:@HOST_NAME:PORT_NUMBER:SID. For example,
jdbc:oracle:thin:@localhost:7003:orcl.

• User name: Specify the SOA database user name.

• Password: Specify the SOA database user password.

5. Click Test Connection to verify the connection, and then click Apply to establish the
connection.

6. If the connection to the database is established, a confirmation message is displayed
indicating the success. Click Apply.

In the JDBC page, you can see the newly defined BPEL JDBC connection in the list of
JDBC data sources.

26.8 Generating Oracle Identity Governance Reports
Oracle Identity Governance reports can be generated against the sample data source, Oracle
Identity Governance JDBC data source, or BPEL-based JDBC data source.

Chapter 26
Generating Oracle Identity Governance Reports

26-6



This section describes how to generate Oracle Identity Governance reports. It contains the
following topics:

• Generating the Reports Against the Sample Data Source

• Generating Reports Against the Oracle Identity Governance JDBC Data Source

• Generating Reports Against the BPEL-Based JDBC Data Source

Note:

Oracle Analytics Server can be accessed through the Identity Self Service for viewing
the certification reports. But for all other reports, you must open Oracle Analytics
Server explicitly to access the Oracle Identity Governance 12c reports.

26.8.1 Generating the Reports Against the Sample Data Source
After you create a Sample Data Source, you can generate sample reports against it by
performing the following steps:

1. Log in to Oracle Analytics Server.

2. Click Shared Folders, Oracle Identity Manager Reports, and then select Sample
Reports.

3. Click View for the sample report you want to generate.

4. Select an output format for the sample report and click View.

The sample report is generated.

26.8.2 Generating Reports Against the Oracle Identity Governance JDBC
Data Source

To generate reports against the OIG JDBC data source, navigate to Oracle Identity
Governance reports by logging in to Oracle Analytics Server, and select an output format for
the report you want to generate.

To generate reports against the Oracle Identity Governance JDBC data source:

1. Log in to Oracle Analytics Server.

2. Navigate to Oracle Identity Governance reports. To do so:

a. In the Oracle Analytics Server Home page, under Browse/Manage, click Catalog
Folders. Alternatively, you can click Catalog at the top of the page.

The Catalog page is displayed with a tree structure on the left side of the page and the
details on the right.

b. On the left pane, expand Shared Folders, and navigate to Oracle Identity
Governance. All the objects in the Oracle Identity Governance folder are displayed.

You are ready to navigate to OAS and use the Oracle Identity Governance OAS
reports.

3. Click View for the report you want to generate.

4. Select an output format for the report and click View.

Chapter 26
Generating Oracle Identity Governance Reports

26-7



The report is generated.

Note:

See Oracle Analytics Server Documentation to learn more about Oracle Analytics
Server.

26.8.3 Generating Reports Against the BPEL-Based JDBC Data Source
Some reports have a secondary data source, which is BPEL-based JDBC data source.

This section describes how to generate reports against the BPEL-based JDBC data source. It
contains the following topics:

• Reports With Secondary Data Source

• Generating the Reports Against the BPEL-Based JDBC Data Source

26.8.3.1 Reports With Secondary Data Source
The following four reports have a secondary data source, which connects to the BPEL
database to retrieve BPEL data:

• Task Assignment History

• Request Details

• Request Summary

• Approval Activity

These reports have a secondary data source, which is the BPEL-based JDBC Data Source,
and is called BPEL JDBC.

26.8.3.2 Generating the Reports Against the BPEL-Based JDBC Data Source
To generate reports against the BPEL-based JDBC data source:

1. Ensure that a BPEL data source exists in Oracle Analytics Server. This BPEL Data Source
must point to the BPEL database. See Configuring BPEL-Based JDBC Connection for
more information about creating a BPEL data source.

2. Log in to Oracle Analytics Server.

3. Navigate to Oracle Identity Manager reports. To do so:

a. In the Oracle Analytics Server Home page, under Browse/Manage, click Catalog
Folders. Alternatively, you can click Catalog at the top of the page.

The Catalog page is displayed with a tree structure on the left side of the page and the
details on the right.

b. On the left pane, expand Shared Folders, and navigate to Oracle Identity Manager.
All the objects in the Oracle Identity Manager folder are displayed.

You are ready to navigate to OAS and use the Oracle Identity Governance OAS
reports.

4. Click Open for the report you want to generate.

Chapter 26
Generating Oracle Identity Governance Reports

26-8



5. Select an output format for the report, and click Apply.

The report is generated based on the BPEL-based JDBC data source.

26.9 Configuring Certification Reports
Certification reports are implemented in Oracle Analytics Server. When using a standalone
deployment of Oracle Analytics Server, Oracle Identity Manager reports must be deployed on
Oracle Analytics Server.

This section describes how to configure certification reports. It contains the following topics:

• Configuring the Oracle Analytics Server URL

• Enabling Certification Reports

• Enabling the Display of the Reports Tab

• Report Formats

Note:

• Oracle Identity Manager reports must be deployed on Oracle Analytics Server.
See Generating Certification Reports in Performing Self Service Tasks with
Oracle Identity Governance for information about the default certification reports
and generating certification reports.

• If Oracle Analytics Server credentials and URL are not configured in Oracle
Identity Manager, then the Reports tab in the Dashboard and the Export to PDF
or Excel option in the Certification page are not available.

26.9.1 Configuring the Oracle Analytics Server URL
Update the value of the BIPublisherURL attribute with Oracle Analytics Server URL for the
DiscoveryConfig.Discovery mbean in Oracle Enterprise Manager.

To configure Oracle Analytics Server URL:

1. Log in to Oracle Enterprise Manager.

2. Click Identity and Access.

3. Select OIM cluster, OIM node, System MBean Browser.

4. In the System MBean Browser, navigate to Application Defined MBeans, oracle.iam,
Server: <oim_server_name>, Application: oim, XMLConfig, Config,
XMLConfig.DiscoveryConfig, Discovery.

5. Update the value of the BIPublisherURL attribute with Oracle Analytics Server URL.

6. Click Apply.

Chapter 26
Configuring Certification Reports

26-9



26.9.2 Enabling Certification Reports
Select or deselect the Enable Certification Reports option to enable or disable certification
reports.

To enable the generation of certification reports, after configuring Oracle Analytics Server
credentials and URL, go to the certification configuration screen in Identity System
Administration, and select the Enable Certification Reports option.

26.9.3 Enabling the Display of the Reports Tab
The Reports tab can be displayed in the Detailed Information section of the Dashboard.

To configure the display of the Reports tab in the Detailed Information section of the
Dashboard:

1. Log in to Oracle Identity Self Service.

2. Click the Compliance tab.

3. Click the Identity Certification box, and select Certification Configuration. The
Certification Configuration page is displayed.

4. Select the Enable Certification Reports option.

5. Click Save.

26.9.4 Report Formats
The supported formats for report generation are PDF, RTF, HTML, Microsoft Excel, and CSV.

Reports can be generated in the following formats:

• PDF

• RTF

• HTML

• Microsoft Excel

• CSV

Chapter 26
Configuring Certification Reports

26-10



27
Understanding Auditing

User profile audits cover changes to user profile attributes, user membership, resource
provisioning, access policies, and resource forms.
This chapter describes the concepts related to auditing in Oracle Identity Manager. It contains
the following topics:

• Overview of Auditing

• Audit Levels

• Tables Used for Storing Information About Auditors

• Issuing Audit Messages

27.1 Overview of Auditing
The audit engine collects auditing information in Oracle Identity Manager.

Whenever a profile is modified, the audit engine captures the changes (the delta) and updates
(or generates, if missing) the snapshots of the user and role profiles and stores these
snapshots and deltas in XML format. The audit engine also contains post-processors, which,
based on the generated XML, populate the reporting tables with relevant data. To maintain
high performance, by default the audit engine performs these tasks in an asynchronous and
offline manner by using the underlying Java Messaging Service (JMS) provided by the
application server.

27.2 Audit Levels
When you install Oracle Identity Manager, user profile auditing is enabled by default and the
auditing level is set to Resource Form.

If you change the auditing level, then you must run the GenerateSnapshot.sh script (on UNIX)
or the GenerateSnapshot.bat script (on Microsoft Windows). This script is in the IDM_HOME/
server/bin directory. The script examines all users in Oracle Identity Manager database and
generates new snapshots based on the new auditing level.

27-1



Note:

Before running the GenerateSnapshot script, you must set the following environment
variables:

• APP_SERVER: Set the value to weblogic.

• OIM_ORACLE_HOME: Set it to the directory on which Oracle Identity Manager
is installed.

• JAVA_HOME: Set it to the directory path of the Java Runtime directory for the
Oracle Identity Manager server.

• WL_HOME: Set it to the directory on which Oracle WebLogic Server is installed.

• MW_HOME: Set it to the directory on which Oracle Fusion Middleware is
installed.

• DOMAIN_HOME: Set it to the Oracle Identity Manager domain.

When you run the GenerateSnapshot script, you are prompted to enter the following:

[Enter Xellerate admin username :]SYSTEM_ADMINISTRATOR_USERNAME
[Enter password for xelsysadm :]SYSTEM_ADMINISTRATOR_PASSWORD
[Threads to use [ 8 ]]
[Enter serverURL :[t3://OIM_HOST:OIM_PORT]
[Enter context Factory :[ weblogic.jndi.WLInitialContextFactory]

Note:

If you change the auditing level, then you must run the GenerateSnapshot script
before allowing users to access the system.

You can configure the "level of detail for auditing" aspect of the auditing engine and specify the
audit level as the value of the XL.UserProfileAuditDataCollection system property in the
Advanced Administration.

See Also:

Default System Properties in Oracle Identity Manager in Administering Oracle Identity
Governance for information about the XL.UserProfileAuditDataCollection system
property

The supported audit levels are:

• Process Task: Audits the entire user profile snapshot together with the resource lifecycle
process.

• Resource Form: Audits user record, role membership, resource provisioned, and any
form data associated to the resource.

• Resource: Audits the user record, role membership, and resource provisioning.

• Membership: Only audits the user record and role membership.

Chapter 27
Audit Levels

27-2



• Core: Only audits the user record.

• None: No audit is stored.

Note:

When you specify a particular audit level, all audit levels that are at a lower priority
level are automatically enabled. For example, if you specify the Membership audit
level, then the Core audit level is automatically enabled.

Audit level specifications are case-sensitive. When you specify an audit level, ensure
that you do not change the case (uppercase and lowercase) of the audit level.

27.3 Tables Used for Storing Information About Auditors
Information about auditors is stored in the AUD and aud_jms tables of the database.

Information about auditors is stored in the following tables of the database:

• AUD: This table stores metadata about all the auditors defined in Oracle Identity Manager.

• aud_jms: This table stores data to be consumed by the audit engine and eventually by the
auditors. It is an operational and intermediate staging table.

The key in this table is sent to the JMS. Oracle Identity Manager uses this table to control
the order of the changes when multiple changes are made to the same user. You can use
the Issue Audit Messages Task scheduled task to automate the reissue of messages that
are not processed. For more information about this scheduled task, see Predefined
Scheduled Tasks in Administering Oracle Identity Governance.

27.4 Issuing Audit Messages
Oracle Identity Manager provides a scheduled task named Issue Audit Messages Task. This
scheduled task retrieves audit message details from the aud_jms table and sends a single
JMS message for a particular identifier and auditor entry in the aud_jms table. An MDB
processes the corresponding audit message.

The following is the attribute of this task:

Max Records:

Use the Max Records attribute to specify the maximum number of audit messages to be
processed for a specified scheduled task run. The default value of this attribute is 400.

If there is a backlog of audit messages in the aud_jms table, then you can increase the value
of the Max Records attribute. The value that you set depends on how many messages the
JMS engine can process during the default scheduled task execution interval. This, in turn,
depends on the performance of the application server and database. Before increasing the
Max Records value, you must determine how much time is taken to process the number of
audit messages in the JMS destination (oimAuditQueue) by, for example, using the
administrative console of the application server. If the time taken is less than the scheduled
task interval, then you can make a corresponding increase in the value of the Max Records
attribute.

Chapter 27
Tables Used for Storing Information About Auditors

27-3



Part XI
Appendixes

Supplementary information for developers include usage of the FacesUtils class, user name
reservation, and common name generation.

This part contains the following appendixes:

• The FacesUtils Class

• Username Reservation and Common Name Generation



A
The FacesUtils Class

The FacesUtils class contains various helper methods for re-rendering components, evaluating
EL expressions, and accessing attributes through binding, and is used in the customization use
cases for which managed beans are developed.
The FacesUtils class is used in the customization use cases shown in Using Managed Beans.

The following example provides the code snippet of the FacesUtils class with implementation
of some of the methods:

Note:

If you add the code from the FacesUtils class in any ViewControllerProject source
code, then some packages, such as the following, might not be found:

import oracle.adf.model.BindingContext;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCControlBinding;
import oracle.binding.AttributeBinding;
import oracle.binding.ControlBinding;

You must add ADF Model Runtime to the class path to resolve the errors related to
importing these packages. To add ADF Model Runtime to project class path:

1. Right-click the project, and select Project Properties.

2. On the left navigation bar, select Libraries and Classpath.

3. Click Add Library.

4. Under Extension, select ADF Model Runtime.

5. Click OK.

6. Click OK.

package oracle.iam.ui.sample.common.view.utils;
 
import java.io.IOException;
 
import java.util.Map;
import java.util.ResourceBundle;
 
import javax.el.ELContext;
import javax.el.ExpressionFactory;
import javax.el.MethodExpression;
import javax.el.ValueExpression;
 
import javax.faces.application.Application;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
 
import oracle.adf.model.BindingContext;

A-1



import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCControlBinding;
import oracle.adf.view.rich.context.AdfFacesContext;
 
import oracle.binding.AttributeBinding;
import oracle.binding.ControlBinding;
 
import oracle.iam.ui.platform.utils.TaskFlowUtils;
 
import oracle.jbo.uicli.binding.JUCtrlActionBinding;
import oracle.jbo.uicli.binding.JUCtrlListBinding;
import oracle.jbo.uicli.binding.JUEventBinding;
 
 
public class FacesUtils {
 
    private FacesUtils() {
        // do not instantiate
        throw new AssertionError();
    }
 
    /*
     * Re-render the component.
     */
    public static void partialRender(UIComponent component) {
        if (component != null) {
            AdfFacesContext.getCurrentInstance().addPartialTarget(component);
        }
    }
 
    /*
     * Sets attribute value through attribute binding.
     */
    public static void setAttributeBindingValue(String attributeName,
                                                Object value) {
        AttributeBinding binding = getAttributeBinding(attributeName);
        if (binding != null) {
            binding.setInputValue(value);
        } else {
            throw new IllegalArgumentException("Binding " + attributeName +
                                               " does not exist.");
        }
    }
 
    /*
     * Gets attribute value using attribute binding.
     */
    public static <T> T getAttributeBindingValue(String attributeName,
                                                 Class<T> clazz) {
        AttributeBinding binding = getAttributeBinding(attributeName);
        if (binding != null) {
            return (T)binding.getInputValue();
        } else {
            throw new IllegalArgumentException("Binding " + attributeName +
                                               " does not exist.");
        }
    }
 
    /*
     * Gets attribute value using list binding.
     */
    public static <T> T getListBindingValue(String attributeName,

Appendix A

A-2



                                            Class<T> clazz) {
        ControlBinding ctrlBinding = getControlBinding(attributeName);
        if (ctrlBinding instanceof JUCtrlListBinding) {
            JUCtrlListBinding listBinding = (JUCtrlListBinding)ctrlBinding;
            return (T)listBinding.getAttributeValue();
        } else {
            throw new IllegalArgumentException("Binding " + attributeName +
                                               " is not list binding.");
        }
    }
 
    public static ControlBinding getControlBinding(String name) {
        ControlBinding crtlBinding = getBindings().getControlBinding(name);
        if (crtlBinding == null) {
            throw new IllegalArgumentException("Control Binding '" + name +
                                               "' not found");
        }
        return crtlBinding;
    }
 
    public static AttributeBinding getAttributeBinding(String name) {
        ControlBinding ctrlBinding = getControlBinding(name);
        AttributeBinding attributeBinding = null;
        if (ctrlBinding != null) {
            if (ctrlBinding instanceof AttributeBinding) {
                attributeBinding = (AttributeBinding)ctrlBinding;
            }
        }
        return attributeBinding;
    }
 
    public static DCBindingContainer getBindings() {
        FacesContext fc = FacesContext.getCurrentInstance();
        ExpressionFactory exprfactory =
            fc.getApplication().getExpressionFactory();
        ELContext elctx = fc.getELContext();
 
        ValueExpression valueExpression =
            exprfactory.createValueExpression(elctx, "#{bindings}",
                                              Object.class);
 
        DCBindingContainer dcbinding =
            (DCBindingContainer)valueExpression.getValue(elctx);
 
        return dcbinding;
    }
 
    /*
     * Evaluates EL expression and returns value.
     */
    public static <T> T getValueFromELExpression(String expression,
                                                 Class<T> clazz) {
        FacesContext facesContext = FacesContext.getCurrentInstance();
        Application app = facesContext.getApplication();
        ExpressionFactory elFactory = app.getExpressionFactory();
        ELContext elContext = facesContext.getELContext();
        ValueExpression valueExp =
            elFactory.createValueExpression(elContext, expression, clazz);
        return (T)valueExp.getValue(elContext);
    }
 
    /*

Appendix A

A-3



     * Gets MethodExpression based on the EL expression. MethodExpression can then be 
used to invoke the method.
     */
    public static MethodExpression getMethodExpressionFromEL(String expression,
                                                             Class<?> returnType,
                                                             Class[] paramTypes) {
        FacesContext facesContext = FacesContext.getCurrentInstance();
        Application app = facesContext.getApplication();
        ExpressionFactory elFactory = app.getExpressionFactory();
        ELContext elContext = facesContext.getELContext();
        MethodExpression methodExp =
            elFactory.createMethodExpression(elContext, expression, returnType,
                                             paramTypes);
        return methodExp;
    }
 
    public static ELContext getELContext() {
        return FacesContext.getCurrentInstance().getELContext();
    }
 
    /*
     * Shows FacesMessage. The message will not be bound to any component.
     */
    public static void showFacesMessage(FacesMessage fm) {
        FacesContext.getCurrentInstance().addMessage(null, fm);
    }
 
    /*
     * Launch bounded taskFlow based on provided parameters.
     */
    public static void launchTaskFlow(String id, String taskFlowId,
                                      String name, String icon,
                                      String description, String helpTopicId,
                                      boolean inDialog,
                                      Map<String, Object> params) {
        // create JSON payload for the contextual event
        String jsonPayLoad =
            TaskFlowUtils.createContextualEventPayLoad(id, taskFlowId,
                                                       name, icon, description,
                                                       helpTopicId, inDialog,
                                                       params);
        
        // create and enqueue contextual event
        DCBindingContainer bc =
            (DCBindingContainer)BindingContext.getCurrent().getCurrentBindingsEntry();
        DCControlBinding ctrlBinding = 
bc.findCtrlBinding(TaskFlowUtils.RAISE_TASK_FLOW_LAUNCH_EVENT);        
        // support both bindings - using eventBinding as well as methodAction
        if (ctrlBinding instanceof JUEventBinding) {
            JUEventBinding eventProducer = (JUEventBinding) ctrlBinding;
            bc.getEventDispatcher().queueEvent(eventProducer, jsonPayLoad);
        } else if (ctrlBinding instanceof JUCtrlActionBinding) {
            JUCtrlActionBinding actionBinding = (JUCtrlActionBinding) ctrlBinding;
            bc.getEventDispatcher().queueEvent(actionBinding.getEventProducer(), 
jsonPayLoad);
        } else {
            throw new IllegalArgumentException("Incorrect binding for " + 
TaskFlowUtils.RAISE_TASK_FLOW_LAUNCH_EVENT);
        }
        bc.getEventDispatcher().processContextualEvents();
    }
 

Appendix A

A-4



    /*
     * Redirect to a provided url.
     */
    public static void redirect(String url) {
        try {
            FacesContext fctx = FacesContext.getCurrentInstance();
            fctx.getExternalContext().redirect(url);
            fctx.responseComplete();
        } catch (IOException ex) {
            throw new RuntimeException(ex);
        }
    }
    
}

Appendix A

A-5



B
Username Reservation and Common Name
Generation

You can reserve the username in both Oracle Identity Manager and LDAP while the create
user request is pending for approval. Also, Oracle Identity Manager must generate a unique
common name user attribute value.
This appendix describes username reservation and common name generation. It contains the
following topics:

• Username Reservation

• Common Name Generation

B.1 Username Reservation
Reserving the username involves enabling and disabling username reservation, configuring
and writing the username policy, releasing the username, and configuring username
generation to support Active Directory.

This section provides information about the concepts and configurations related to username
reservation. It contains the following topics:

• Overview of Username Reservation

• Enabling and Disabling Username Reservation

• Configuring the Username Policy

• Writing Custom User Name Policy

• Releasing the Username

• Configuring Username Generation to Support Microsoft Active Directory

B.1.1 Overview of Username Reservation
You can reserve the username in both Oracle Identity Manager and LDAP while the create
user request is pending for approval.

When the request for user creation is submitted, the following scenarios are possible:

• While the request is pending, another create user request is submitted with the same
username. If the second request is approved and the user is created, then the first request,
when approved, fails because the username already exists in Oracle Identity Manager.

• While the request is pending, another user with the same username is directly created in
the LDAP identity store. When the create user request is approved, it fails while
provisioning the user entity to LDAP because an entry already exists in LDAP with the
same username.

To avoid these problems, you can reserve the username in both Oracle Identity Manager and
LDAP while the create user request is pending for approval. If a request is created to create a
user with the same username, then an error message is displayed and the create user request
is not created.

B-1



For reserving the username:

• The USER ATTRIBUTE RESERVATION ENABLED system property must be set to TRUE
for the functionality to be enabled. For information about searching and modifying system
properties, see Creating and Managing System Properties in Administering Oracle Identity
Governance.

• Reservation in LDAP is done only if reservation functionality is enabled, and LDAP is in
sync with Oracle Identity Manager database.

Note:

– If LDAP provider is not configured, then the reservation is done only in
Oracle Identity Manager.

– When LDAP synchronization and user attribute reservation features are
enabled, it is recommended to enable UID uniqueness in the directory server.
Without this, user reservation in the directory does not work properly
because while the user is reserved in the reservation container, the user with
the same user ID can be created in the user container. This results is user
creation failure when Oracle Identity Manager tries to move the user from the
reservation container to the user container.

If user attribute reservation is enabled, the reservation happens in two phases:

In the first phase, an entry is created in Oracle Identity Manager database and a user is
created in reservation container. This entry in Oracle Identity Manager database is removed
after successful creation of user, rejection by approver, or request failure.

In the second phase, in LDAP, on successful creation, the user is moved to the reservation
container. In other cases such as rejection by approver or request failure, the user is removed
from the reservation container.

After the request-level and operation-level approvals are obtained for the create user request,
the username is no longer reserved in the username container in LDAP. The username is
moved to the container in which the existing users are stored. The user is also created in
Oracle Identity Manager.

B.1.2 Enabling and Disabling Username Reservation
The username reservation functionality is enabled by default. This is done by keeping the
value of the USER ATTRIBUTE RESERVATION ENABLED system property to TRUE.

You can verify the value of this system property in the System Configuration section of the
Oracle Identity Manager System Administration Console.

To disable username reservation:

1. Log in to Oracle Identity System Administration.

2. In the left pane, under System Management, click System Configuration. The Advanced
Administration opens in a new window.

3. In the left pane, click the search icon to search for all existing system properties. A list of
system properties are displayed in the search results table.

4. Click User Attribute Reservation Enabled. The System Property Detail page for the
selected system property is displayed, as shown in Figure B-1:

Appendix B
Username Reservation

B-2



Figure B-1    The System Property Detail Page

5. In the Value field, enter False.

6. Click Save. The username reservation functionality is disabled.

B.1.3 Configuring the Username Policy
Username Policy is a plugin implementation for username operations, such as username
generation and username validation.

The following topics describe the username policy configuration:

• About Username Policies

• Predefined Username Policies

• API for Username Generation

• Constraints in UserNameGenerationUtil

• Configuring the Default Username Policy

B.1.3.1 About Username Policies
Username Policy is a plugin implementation for username operations, such as username
generation and username validation. You can change the default policies from the System
Configuration section in Oracle Identity System Administration.

For a Create User usecase, the plugins are invoked only if the user login is not provided. In
such a case, the plugin to be invoked is picked up from the system property, "Default policy for
username generation". The custom user name policy is honored in all the following use cases:

• Create Admin User

• Create User Request

• Reconciliation

• Bulk Load

The policy implementations generate the username, check for its availability, and if the
username is not available, then generate other username based on the policy in the order

Appendix B
Username Reservation

B-3



mentioned in Table B-1, and repeat the procedure. The dollar ($) sign in the username
generation indicates random alphabet. If any of the expected information is missing, then the
policies generate errors.

Values must be provided for all the parameters of the username generation format. If any of the
parameters are not provided, then Oracle Identity Manager generates an error. For example, If
the firstname.lastname policy is configured and the firstname is not provided, then the error
would be "An error occurred while generating the Username. Please provide firstname as
expected by the firstname.lastname policy".

B.1.3.2 Predefined Username Policies
Table B-1 lists the predefined username policies provided by Oracle Identity Manager. In this
table, the dollar ($) sign in the username generation indicates random alphabet:

Table B-1    Predefined Username Policies

Policy Name Expected Information Username Generated

oracle.iam.identity.usermgmt.impl.plugins.E
mailIdPolicy

E-mail E-mail value is used as the auto-
generated user name

oracle.iam.identity.usermgmt.impl.plugins.La
stNameFirstInitialLocalePolicy

First name, last name, and locale last name + first initial_locale, last name
+ middle initial + first initial_locale, last
name + $ + first initial_locale (all
possibilities of single random alphabets),
last name + $$ + first initial_locale

oracle.iam.identity.usermgmt.impl.plugins.Fir
stInitialLastNameLocalePolicy

Firstname, Lastname, Locale first initial + lastname_locale, first initial +
middle initial + first name_locale, first
initial + $ + lastname_locale, first initial
+ $$ + lastname_locale

oracle.iam.identity.usermgmt.impl.plugins.La
stNameFirstInitialPolicy

Firstname, Lastname lastname+firstInitial,
lastname+middleinitial+firstInitial,
lastname+$+firstInitial ( all possibilities of
single random alphabets) , lastname+$$
+firstInitial

oracle.iam.identity.usermgmt.impl.plugins.Fir
stInitialLastNamePolicy

Firstname, Lastname firstInitial+lastname,
firstInitial+middleInitial+firstname,
firstInitial+$+lastname, firstInitial+$$
+lastname

oracle.iam.identity.usermgmt.impl.plugins.La
stNameFirstNamePolicy

Firstname, Lastname lastname.firstname,
lastname.middleinitial.firstname,
lastname.$.firstname ( all possibilities of
single random alphabets) ,
lastname.$$.firstname

oracle.iam.identity.usermgmt.impl.plugins.Fir
stNameLastNamePolicy

Firstname, Lastname firstname.lastname,
firstname.middleinitial.lastname,
firstname.$.lastname (all possibilities of
single random alphabets) ,
firstname.$$.lastname

Appendix B
Username Reservation

B-4



Table B-1    (Cont.) Predefined Username Policies

Policy Name Expected Information Username Generated

oracle.iam.identity.usermgmt.impl.plugins.D
efaultComboPolicy

Any one of the following:

- Email

- Firstname, Last Name

- Last name.

If e-mail is provided, then username is
generated based on the e-mail. If e-mail
is not available, then it generates
username based on firstname and
lastname by appending a user domain to
it. If first name is not available, then it
generates the username based of the
last name only by appending a user
domain to it.

The user domain is configured as the
Default user name domain system
property, and the default value is
@oracle.com

oracle.iam.identity.usermgmt.impl.plugins.La
stNamePolicy,

Lastname lastname, middle initial + lastname , $ +
lastname, $$ + lastname

oracle.iam.identity.usermgmt.impl.plugins.La
stNameLocalePolicy

Lastname, Locale lastname_locale, middle initial +
lastname_locale , $ +
lastname_locale, $$ + lastname_locale

oracle.iam.identity.usermgmt.impl.plugins.Fir
stNameLastNamePolicyForAD

Firstname, Lastname firstname+lastname, substring of
firstname+lastname+$, substring of
firstname+ substring of lastname+$

oracle.iam.identity.usermgmt.impl.plugins.La
stNameFirstNamePolicyForAD

Lastname, Firstname lastname+firstname, lastname+substring
of firstname+$, substring of lastname+
substring of firstname+$

B.1.3.3 API for Username Generation
The username generation is exposed as public APIs in User Manager. Oracle Identity Manager
provides an utility class for accessing the functionality of generating user names. The class
that contains utility methods is as shown:

oracle.iam.identity.usermgmt.api.UserManager

The UserManager class exposes the following public API for username generation and
validation:

//Method that will generate username based on default policy

    public String generateUserNameFromDefaultPolicy(Map<String,  Object> attrMap)
 throws UserNameGenerationException,  UserManagerException;

//Method that will generate username based on policy

    public String generateUserNameFromPolicy(String policyId,  Map<String, Object> 
attrMap) throws UserNameGenerationException,  UserManagerException;

//Method that will check whether username is valid against default policy

    public boolean isUserNameValidForDefaultPolicy(String userName,  Map<String, 
Object> attrMap) throws UserManagerException;

//Method that will check whether username is valid against given policy

Appendix B
Username Reservation

B-5



    public boolean isUserNameValidForPolicy(String userName, String  policyId, 
Map<String, Object> attrMap) throws  UserManagerException;

//Method to return all policies (including customer written)

        public List<Map<String, String>> getAllUserNamePolicies(Locale locale)

//Method that will return policy description in given locale

    public String getPolicyDescription(String policyID, Locale locale)

B.1.3.4 Constraints in UserNameGenerationUtil
Table B-2 lists the constants defined in
oracle.iam.identity.usermgmt.utils.UserNameGenerationUtil to represent the policy ID of the
default username policies:

Table B-2    Constants Representing Policy IDs

Policy Name Constant

EmailIDPolicy EMAIL_ID_POLICY

LastNameFirstInitialLocalePolic
y

FIRSTNAME_LASTNAME_POLICY

FirstInitialLastNameLocalePolic
y

LASTNAME_FIRSTNAME_POLICY

LastNameFirstInitialPolicy FIRSTINITIAL_LASTNAME_POLICY

FirstInitialLastNamePolicy LASTNAME_FIRSTINITIAL_POLICY

LastNameFirstNamePolicy FIRSTINITIAL_LASTNAME_LOCALE_POLICY

FirstNameLastNamePolicy LASTNAME_FIRSTINITIAL_LOCALE_POLICY

DefaultComboPolicy DEFAULT_COMBO_POLICY

LastNamePolicy LASTNAME_POLICY

LastNameLocalePolicy LASTNAME_LOCALE_POLICY

FirstNameLastNamePolicyForA
D

FIRSTNAME_LASTNAME_POLICY_FOR_AD

LastNameFirstNamePolicyForA
D

LASTNAME_FIRSTNAME_POLICY_FOR_AD

When called to generate username, the policy classes expect the attribute values to be set in a
map by using the key constants defined in the oracle.iam.identity.utils class.Constants. This
means that a proper parameter value must be passed to call the method by using the
appropriate constant defined for it, for example, the FirstName parameter has a constant
defined for it.

B.1.3.5 Configuring the Default Username Policy
The default username policy can be configured by using the Oracle Identity System
Administration. To do so:

1. Navigate to the System Configuration section.

2. Search for all the system properties.

3. Click Default policy for username generation. The System Property Detail page for the
selected property is displayed, as shown in Figure B-2:

Appendix B
Username Reservation

B-6



Figure B-2    The Default Username Policy Configuration

The XL.DefaultUserNameImpl system property is provided for picking up the default policy
implementation. By default, it points to the default username policy, which is
oracle.iam.identity.usermgmt.impl.plugins.DefaultComboPolicy displayed in the Value field.

4. In the Value field, enter oracle.iam.identity.usermgmt.impl.plugins.POLICY. Here,
POLICY is one of the policy implementations.

Note:

All the plug-ins must be registered with Oracle Identity Manager by using the /
identity/metadata/plugin.xml file. A sample plugin.xml file is as shown:

<plugins 
pluginpoint="oracle.iam.identity.usermgmt.api.UserNamePolicy">        
<plugin
pluginclass="oracle.iam.identity.usermgmt.impl.plugins.LastNameFirstNamePoli
cy"
version="1.0" name="LastNameFirstNamePolicy"/>
</plugins>

5. Click Save.

B.1.4 Writing Custom User Name Policy
Writing custom user name policy involves implementing the plug-in interface and creating and
registering the plugin.xml file.

This section describes how to write custom username policy. It contains the following topics:

• Introduction to Custom Username Policy Development

• Implementing the Plug-in Interface

• Creating and Registering the plugin.xml File

• Guidelines for Writing Custom Username Policies

Appendix B
Username Reservation

B-7



• Sample Implementation

B.1.4.1 Introduction to Custom Username Policy Development
You can write your own policies by adding new plug-ins and changing the default policies from
the System Configuration section in Oracle Identity System Administration.

See Also:

Developing Plug-ins for information about the plug-in framework

The UserManager exposes APIs for username operations. The APIs take the user data as
input and return a generated username. The APIs make a call to plug-ins that return the
username. This allows you to replace the default policies with custom plug-ins with your
implementation for username operations.

Note:

• For user name generation and validation, public APIs are exposed in
UserManager.

• While creating the policy, ensure that the attributes used in generating the
username are defined in the request data set.

B.1.4.2 Implementing the Plug-in Interface
You can write your own username policies by implementing the plug-in interface, as shown:

package oracle.iam.identity.usermgmt.api;

public interface UserNameGenerationPolicy extends
 oracle.iam.identity.usermgmt.api.UserNamePolicy {
public String getUserName(Map<String, Object> reqData) throws 
UserNameGenerationException;
public boolean isGivenUserNameValid(String userName, Map<String, Object> reqData);

//methods inherited from old user name policy interface
//oracle.iam.identity.usermgmt.api.UserNamePolicy
public String getUserNameFromPolicy(HashMap<String, String> reqData) throws 
UserNameGenerationException;
public boolean isUserNameValid(String userName, HashMap<String, String> reqData);
public String getDescription(Locale locale);

}

This plug-in point is exposed as a kernel plug-in that takes request data as input and returns
the username. Each plug-in expects some information and generates username based on that
information provided.

Appendix B
Username Reservation

B-8



Note:

Oracle Identity Manager provides an abstract implementation of the
oracle.iam.identity.usermgmt.api.UserNameGenerationPolicy interface as the
oracle.iam.identity.usermgmt.api.AbstractUserNameGenerationPolicy class name.
Therefore, you need not implement the following two methods:

public String getUserNameFromPolicy(HashMap<String, String> reqData) throws 
UserNameGenerationException;

public boolean isUserNameValid(String userName, HashMap<String, String> 
reqData);

B.1.4.3 Creating and Registering the plugin.xml File
To create and register the plugin.xml file:

1. Create the plug-in ZIP with lib (containing the JAR) and the plugin.xml file. The following is
a sample plugin.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<oimplugins>
<plugins pluginpoint="oracle.iam.identity.usermgmt.api.UserNamePolicy">
<plugin 
pluginclass="oracle.iam.identity.usermgmt.impl.plugins.CustomDepartmentNumberEmployee
NumberPolicy" version="1.0" name="CustomDepartmentNumberEmployeeNumberPolicy"/>
</plugins>
</oimplugins>

2. Register the plug-in by performing the procedure in section Registering and Unregistering
Plug-ins By Using the Plugin Registration Utility.

B.1.4.4 Guidelines for Writing Custom Username Policies
The following are the guidelines on while writing custom user name policies:

• Policies should implement the new interface
oracle.iam.identity.usermgmt.api.UserNameGenerationPolicy.

• Custom user name policies must be re-entrant. This means that the custom code in the
policy should return the same user login if approver has updated an attribute that does not
contribute in generating the user login.

B.1.4.5 Sample Implementation
The following is a sample implementation of the plug-in:

package oracle.iam.identity.usermgmt.impl.plugins;

import java.util.Locale;
import java.util.Map;

import oracle.iam.identity.exception.UserNameGenerationException;
import oracle.iam.identity.usermgmt.api.AbstractUserNameGenerationPolicy;
import oracle.iam.identity.usermgmt.api.UserManagerConstants;
import oracle.iam.identity.usermgmt.api.UserNameGenerationPolicy;

public class CustomDepartmentNumberEmployeeNumberPolicy extends 

Appendix B
Username Reservation

B-9



AbstractUserNameGenerationPolicy implements UserNameGenerationPolicy {

          private String departmentNumberKey = 
UserManagerConstants.AttributeName.DEPARTMENT_NUMBER.getId();

          private String employeeNumberKey = 
UserManagerConstants.AttributeName.EMPLOYEE_NUMBER.getId();

          @Override
          public String getUserName(Map<String, Object> reqData)
                                    throws UserNameGenerationException {

          String departmentnumber = reqData.get(departmentNumberKey) == null ? null : 
reqData.get(departmentNumberKey).toString();

          String employeeNumber = reqData.get(employeeNumberKey) == null ? null : 
reqData.get(employeeNumberKey).toString();
           
          // Required in case of approver edit. If approver has not modified any 
attribute which contributes in user name generation , then return same old user login

          //Check if user data is not changed using checkForSameUserLogin method present 
in AbstractUserNameGenerationPolicy, then return same user login

          //OR use Map<String, Object> existingData = (Map<String, Object>) 
reqData.get(oracle.iam.identity.usermgmt.api.UserManagerConstants.EXISTING_DATA ) to 
implement your own comparison logic

          // If existingData is NULL, it means generate a new user login. If it is not 
NULL, then it means policy is invoked during approver edit.

          // If it is NOT NULL, Compare value of participating attributes from 
existingData and reqData. If same, return same user login as present in existingData ; 
otherwise generate a new user login.

          String oldUserLogin = checkForSameUserLogin(reqData , new String[]
{departmentNumberKey , employeeNumberKey});
               if(oldUserLogin!=null)
                    return oldUserLogin;

               // TODO: DO basic validations. Also, Ensure newly generated user name is 
unique and not reserved. You may use utility methods in 
oracle.iam.identity.usermgmt.utils.UserNamePolicyUtil for preforming validations.
               return departmentnumber + "-" + employeeNumber;
          }

          @Override
          public boolean isGivenUserNameValid(String userName, Map<String, Object> 
reqData) {
               // TODO : custom implementation
               return true;
}

@Override
public String getDescription(Locale locale) {
               return "User Name Generation Policy using department number and employee 
number";
     }

}

Appendix B
Username Reservation

B-10



B.1.5 Releasing the Username
Username is released when request is approved, rejected, or failed.

The username is released in the following scenarios:

• When the request is approved, and the user is successfully created in Oracle Identity
Manager and provisioned to LDAP, and the username from the reserved table is removed.
The reserved username is removed after successful user creation after the approvals. The
reserved entry in LDAP is removed and the actual user is created.

• If the request is rejected, then the reserved entry of username in LDAP and Oracle Identity
Manager is removed.

• If the request fails while or before creating a user in Oracle Identity Manager or LDAP, then
the reserved username is deleted.

B.1.6 Configuring Username Generation to Support Microsoft Active
Directory

Auto generation of the username when AD is used as the data store is done by setting the
value of the XL.DefaultUserNamePolicyImpl system property.

In Oracle Identity Manager deployment with LDAP synchronization is enabled, where Microsoft
Active Directory (AD) is the data store, the User Login attribute in Oracle Identity Manager is
mapped to the uid attribute in LDAP, which in turn is mapped to the sAMAccountName
attribute. The sAMAccountName attribute is used as login for all AD-based applications. There
is a limitation on the maximum length supported for value contained in the sAMAccountName
attribute in AD. It cannot exceed 20 characters.

Oracle Identity Manager accepts user name as an input at the time of user creation and it can
be more than 20 characters. Because AD does not support user name of more than 20
characters, Oracle Identity Manager can be configured to generate the user name, which
consists of less than 20 characters.

When AD is used as data store, you can configure the autogeneration of user name by setting
the value of the XL.DefaultUserNamePolicyImpl system property to any one of the following:

• FirstNameLastNamePolicyForAD: Generates the user login by prefixing a substring from
the first name to that of the last name

• LastNameFirstNamePolicyForAD: Generates the user login by prefixing a substring from
last name to that of the first name

See Configuring Oracle Identity Manager in Administering Oracle Identity Governance for
information about the XL.DefaultUserNamePolicyImpl system property and setting values of
system properties.

Note:

If AD is the data store, then any one of the FirstNameLastNamePolicyForAD or
LastNameFirstNamePolicyForAD policies must be used. Any other user name
generation policy will fail to generate the user name.

Appendix B
Username Reservation

B-11



B.2 Common Name Generation
Generation of the Common Name user attribute value can be done for create user and modify
user operations.

This section describes generation of the Common Name user attribute value in Oracle Identity
Manager. It contains the following topics:

• Common Name Generation for Create User Operation

• Configuring Common Name Generation

• Common Name Generation for Modify User Operation

• RDN Modification Scenarios

B.2.1 Common Name Generation for Create User Operation
Common name is generated with the help of a common name generation policy.

In an LDAP-enabled deployment of Oracle Identity Manager, Fusion applications such as
Human Capability Management (HCM) does not pass the common name via SPML request.
Given that the common name is a mandatory attribute in LDAP and Oracle Identity Manager is
setup to use it as the RDN, Oracle Identity Manager must generate a unique common name.

Based on the description on Common Name, it is the user's display name consisting of first
name and last name. Therefore, Oracle Identity Manager generates the Common Name with
the help of a common name generation policy that specifies the Common Name in the
"firstname lastname" format.

The following are the details of the FirstNameLastNamePolicy:

• Expected information: Firstname, Lastname

• Common Name generated: firstname.lastname, firstname.$.lastname (all possibilities of
single random alphabets), firstname.$$.lastname and so on until a unique common name
is generated

Note:

The common name must be reserved until the user is created by the request so
that multiple requests generated simultaneously having same first and last
names do not generate the same common name.

B.2.2 Configuring Common Name Generation
To configure common name generation in Oracle Identity Manager, set the value of the
XL.DefaultCommonNamePolicyImpl system property to
oracle.iam.identity.usermgmt.impl.plugins.FirstNameLastNamePolicy.

For information about the XL.DefaultCommonNamePolicyImpl system property and setting the
value of a system property, see Configuring Oracle Identity Manager in Administering Oracle
Identity Governance.

Appendix B
Common Name Generation

B-12



B.2.3 Common Name Generation for Modify User Operation
For modify user operations, referential integrity must be turned on in the target LDAP server.

When the user profile is modified, one or more attributes can change. HCM cannot filter out
and send only the modified data to Oracle Identity Manager because it does not have the old
user attributes and cannot determine which ones are modified. Therefore, all attributes
including the common name (CN) are passed to Oracle Identity Manager by the SPML
request. Because the CN changed, Oracle Identity Manager attempts a modify operation
(modrdn) in the directory resulting in DN change. Because of this unintended DN change, the
group membership DN becomes stale resulting in the user loosing membership in that group.
This subsequently results in authorization failure. This happens when referential integrity is
turned off in the LDAP server, and therefore, the referenced groups are not updated when the
RDN of the user changes. Therefore, referential integrity must be turned on in the target LDAP
server. Otherwise, the group memberships become stale. The referential integrity issue is also
applicable to roles. Groups are also members of other groups and any RDN changes must be
reflected as well.

You can turn on the referential integrity by setting the value of the
XL.IsReferentialIntegrityEnabled system property to TRUE. For information about this system
property, see Configuring Oracle Identity Manager in Administering Oracle Identity
Governance.

For information about RDN modification scenarios, see RDN Modification Scenarios.

B.2.4 RDN Modification Scenarios
The result of the modify operation depends on the possible scenarios when RDN is modified.

Table B-3 lists the possible scenarios when RDN is modified.

Table B-3    RDN Modification Scenarios

Referential Integrity in LDAP XL.IsReferentialIntegrityE
nabled

Result of Modify Operation (modrdn)

Disabled FALSE Oracle Identity Manager generates an error and operation
fails.

Disabled TRUE Modify operation passes from Oracle Identity Manager and
RDN is changed in LDAP. However, the group references
are not updated and are stale. This configuration is not
recommended.

Enabled FALSE Oracle Identity Manager generates an error and modify
operation fails. This property must be set to TRUE in
Oracle Identity Manager because referential integrity is
enabled in LDAP.

Enabled TRUE Modify operation passes and RDN is updated. In addition,
the references for the DN are updated in LDAP.

Multiple directories with roles
and users stored in separate
directories.

Referential integrity property is
not relevant here.

FALSE Modify operation fails from Oracle Identity Manager. This is
not supported by LDAP. Therefore, FALSE is the
recommended value in Oracle Identity Manager for the
property.

Appendix B
Common Name Generation

B-13



Table B-3    (Cont.) RDN Modification Scenarios

Referential Integrity in LDAP XL.IsReferentialIntegrityE
nabled

Result of Modify Operation (modrdn)

Multiple directories with roles
and users stored in separate
directories.

Referential integrity property is
not relevant here.

TRUE Modify operation passes and RDN is modified. However,
because LDAP does not support referential integrity in
multiple directories, the group references are stale and
must be manually updated.

Appendix B
Common Name Generation

B-14


	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New In This Guide
	Part I Application Provisioning
	1 Developing Application Instances
	1.1 Overview of Application Instances
	1.2 Managing Resources By Using the Design Console
	1.2.1 Overview of Resource Management
	1.2.2 IT Resources Type Definition Form
	1.2.3 Fields of the IT Resource Type Definition Form
	1.2.4 Defining a Template (a Resource Type) for IT Resources

	1.3 Converting a Disconnected Application Instance to Connected Application Instance
	1.3.1 Assumptions and Broad-Level Steps
	1.3.2 Creating a Disconnected Application Instance in the Production Environment
	1.3.3 Exporting Disconnected Application Instance From Test Environment
	1.3.4 Importing the Disconnected Application Instance in Production Environment
	1.3.5 Modifying the Application Instance from Disconnected to Connected
	1.3.6 Testing the Connected Application Instance


	2 Developing Provisioning Processes
	2.1 Process Definition Form
	2.2 Fields of the Process Definition Form
	2.3 Creating a Process Definition
	2.4 Tabs on the Process Definition Form
	2.4.1 The Tasks Tab
	2.4.1.1 About the Tasks Tab
	2.4.1.2 Adding a Process Task
	2.4.1.3 Editing a Process Task
	2.4.1.4 Deleting a Process Task

	2.4.2 The Reconciliation Field Mappings Tab
	2.4.2.1 About the Reconciliation Field Mappings Tab
	2.4.2.2 User Account Status Reconciliation
	2.4.2.3 Mapping a Target Resource Field to Oracle Identity Governance
	2.4.2.4 Mapping a Single Value Field
	2.4.2.5 Mapping a Multi-Value Field (For Target Resources Only)
	2.4.2.6 Deleting a Mapping


	2.5 Modifying Process Tasks
	2.5.1 The General Tab
	2.5.1.1 About the General Tab
	2.5.1.2 Fields of the General Tab
	2.5.1.3 Modifying a Process Task's General Information
	2.5.1.4 Triggering Process Tasks for Events Defined in Lookup.USR_PROCESS_TRIGGERS Fields
	2.5.1.4.1 About the USR_STATUS Attribute
	2.5.1.4.2 Triggering for the USR_STATUS Attribute For Transition from Disabled to Enabled Status
	2.5.1.4.3 Triggering for the USR_STATUS Attribute For Transition from Enabled to Disabled Status
	2.5.1.4.4 Triggering for the USR_STATUS Attribute for Transition From Enabled/Disabled/Provisioned to Revoked status
	2.5.1.4.5 Triggering For the USR_LOCKED, USR_LOCKED_ON, USR_MANUALLY_LOCKED Attributes


	2.5.2 Integration Tab
	2.5.2.1 About the Integration Tab
	2.5.2.2 Assigning an Adapter or Event Handler to a Process Task
	2.5.2.3 Mapping Adapter Variables
	2.5.2.4 Removing an Adapter or Event Handler from a Process Task

	2.5.3 Task Dependency Tab
	2.5.3.1 About the Dependency Tab
	2.5.3.2 Assigning a Preceding Task to a Process Task
	2.5.3.3 Removing a Preceding Task from a Process Task
	2.5.3.4 Assigning a Dependent Task to a Process Task
	2.5.3.5 Removing a Dependent Task from a Process Task

	2.5.4 Responses Tab
	2.5.4.1 About the Responses Tab
	2.5.4.2 Adding a Response to a Process Task
	2.5.4.3 Removing a Response from a Process Task
	2.5.4.4 Assigning a Generated Task to a Process Task
	2.5.4.5 Removing a Generated Task From a Process Task

	2.5.5 Task to Object Status Mapping Tab
	2.5.5.1 About the Task to Object Status Mapping Tab
	2.5.5.2 Mapping a Process Task Status to a Provisioning Status
	2.5.5.3 Unmapping a Process Task Status From a Provisioning Status




	Part II Connectors
	3 Using the Adapter Factory
	3.1 Introduction to Adapters
	3.2 Types of Adapters
	3.2.1 Rule Generator Adapters
	3.2.2 Entity Adapters
	3.2.3 Task Assignment Adapters
	3.2.4 Prepopulate Adapters
	3.2.5 Process Task Adapters

	3.3 Adapter Environment and Tools
	3.3.1 Configuring the Adapter Environment
	3.3.2 The Adapter Factory
	3.3.3 Compiling Adapters
	3.3.3.1 Automatic Compilation of Adapters
	3.3.3.2 Compiling Adapters Manually


	3.4 Defining Adapters
	3.5 Tabs of the Adapter Factory Form
	3.5.1 The Adapter Tasks Tab
	3.5.2 The Resources Tab
	3.5.3 The Variable List Tab
	3.5.4 The Usage Lookup Tab
	3.5.5 The Responses Tab

	3.6 Disabling and Re-enabling Adapters
	3.7 Working With Adapter Variables
	3.7.1 Creating an Adapter Variable
	3.7.2 Items on the Map To Menu
	3.7.3 Modifying an Adapter Variable
	3.7.4 Deleting an Adapter Variable

	3.8 Creating Adapter Tasks
	3.8.1 Types of Adapter Tasks
	3.8.2 Creating a Java Task
	3.8.3 Options in the Object Instance Selection Window
	3.8.4 Regions of the Add an Adapter Factory Task Window
	3.8.5 Reassigning the Value of an Adapter Variable
	3.8.5.1 About Reassigning Adapter Variable
	3.8.5.2 Creating a Set Variable Task
	3.8.5.3 Types of Operands
	3.8.5.4 Creating Additional Set Variable Tasks


	3.9 Modifying Adapter Tasks
	3.10 Changing the Order and Nesting of Tasks
	3.11 Deleting Adapter Tasks
	3.12 Working with Responses
	3.12.1 About Responses
	3.12.2 Creating a Response
	3.12.3 Modifying a Response
	3.12.4 Deleting a Response

	3.13 Working with Prepopulate Adapters
	3.13.1 Attaching Prepopulate Adapters to Form Fields
	3.13.2 Fields of the Prepopulate Adapters Dialog Box
	3.13.3 Fields of the Map Adapter Variables Window
	3.13.4 Removing Prepopulate Adapters from Form Fields

	3.14 Working with Process Task Adapters
	3.14.1 Guidelines for Working with a Process Task Adapter
	3.14.2 Attaching Process Task Adapters to Process Tasks
	3.14.3 Fields of the Data Mapping for Variable Window
	3.14.4 Removing Process Task Adapters from Process Tasks

	3.15 Adapter Mapping Information
	3.15.1 About Adapters
	3.15.2 Adapter Task Mapping Information
	3.15.2.1 Adapter Variables
	3.15.2.2 Adapter Task
	3.15.2.3 Literal for an Adapter Task
	3.15.2.4 Adapter References
	3.15.2.5 Process Definition
	3.15.2.6 User Definition

	3.15.3 Adapter Variable Mapping Information
	3.15.3.1 Adapter Type and Location
	3.15.3.2 From the Variable List Tab
	3.15.3.3 Process Task Adapter Variable Mappings
	3.15.3.4 Task Assignment Adapter Variable Mappings
	3.15.3.5 Rule Generator and Entity Adapter Variable Mappings
	3.15.3.6 Prepopulate Adapter Variable Mappings


	3.16 Defining Error Messages
	3.16.1 The Error Message Definition Form
	3.16.2 Fields of the Error Message Definition Form
	3.16.3 Creating an Error Message


	4 Understanding the Identity Connector Framework
	4.1 Advantages of ICF
	4.2 Introducing the ICF Architecture
	4.2.1 Identity Connector Framework Deployment
	4.2.2 Compatibility Between the ICF and Connector Bundles
	4.2.3 Deployment Methodology to Support Multiple Versions of Same Target
	4.2.4 Connector Server Remote System Framework
	4.2.5 ICF Framework

	4.3 Using the ICF API
	4.3.1 The ConnectorInfoManagerFactory Class
	4.3.2 The ConnectorInfoManager Interface
	4.3.3 The ConnectorKey Class
	4.3.4 The ConnectorInfo Interface
	4.3.5 The APIConfiguration Interface
	4.3.6 The ConfigurationProperties Interface
	4.3.7 The ConnectorFacadeFactory Class
	4.3.8 The ConnectorFacade Interface

	4.4 Introducing the ICF SPI
	4.4.1 Implementing the Required Interfaces
	4.4.1.1 The org.identityconnectors.framework.spi.Connector Interface
	4.4.1.2 Implementing the Connector Methods
	4.4.1.2.1 Implementing the init Method
	4.4.1.2.2 Implementing the dispose Method
	4.4.1.2.3 Implementing the getConfiguration Method

	4.4.1.3 The org.identityconnectors.framework.spi.Configuration Interface
	4.4.1.4 Implementing the Configuration Methods
	4.4.1.4.1 The validate() Method
	4.4.1.4.2 The setConnectorMessages() Method
	4.4.1.4.3 The getConnectorMessages() Method


	4.4.2 Implementing the Feature-based Interfaces
	4.4.2.1 The org.identityconnectors.framework.spi.PoolableConnector Interface
	4.4.2.2 The org.identityconnectors.framework.spi.AttributeNormalizer Interface

	4.4.3 Implementing the Operation Interfaces
	4.4.3.1 About Operation Interfaces
	4.4.3.2 Implementing the SchemaOp Interface
	4.4.3.3 Implementing the CreateOp Interface
	4.4.3.4 Implementing the DeleteOp Interface
	4.4.3.5 Implementing the SearchOp Interface
	4.4.3.5.1 About Implementing the SearchOp Interface
	4.4.3.5.2 Implementing the createFilterTranslator Method
	4.4.3.5.3 Implementing the executeQuery Method

	4.4.3.6 Implementing the UpdateOp Interface

	4.4.4 Common Classes

	4.5 Extending an Identity Connector Bundle
	4.6 Using an Identity Connector Server
	4.6.1 About the Identity Connector Server
	4.6.2 Using the Java Connector Server
	4.6.2.1 Installing and Configuring a Java Connector Server
	4.6.2.2 Properties in the ConnectorServer.properties File
	4.6.2.3 Running the Java Connector Server on Microsoft Windows
	4.6.2.4 Options Supported by the ConnectorServer.bat Script
	4.6.2.5 Running the Java Connector Server on Solaris and Linux
	4.6.2.6 Options Supported by the connectorserver.sh Script
	4.6.2.7 Installing an Identity Connector in a Java Connector Server
	4.6.2.8 Using SSL to Communicate with a Connector Server

	4.6.3 Using the .NET Connector Server
	4.6.3.1 Installing the .NET Connector Server
	4.6.3.2 Configuring the .NET Connector Server
	4.6.3.3 Upgrading the .NET Connector Server
	4.6.3.4 Configuring Trace Settings
	4.6.3.5 Running the .NET Connector Server
	4.6.3.6 Installing Multiple Connectors on a .NET Connector Server



	5 Developing Identity Connectors Using Java
	5.1 Introduction to Flat File Connector Development
	5.2 Developing a Flat File Connector
	5.2.1 Overview of Developing a Flat File Connector
	5.2.2 Implementation of AbstractConfiguration
	5.2.3 Implementation of PoolableConnector
	5.2.4 Implementation of AbstractFilterTranslator
	5.2.5 The MANIFEST.MF File

	5.3 Supporting Classes for File Input and Output Handling
	5.3.1 Implementation of the FlatFileIOFactory Supporting Class
	5.3.2 Implementation of the FlatFileMetaData Supporting Class
	5.3.3 Implementation of the FlatFileParser Supporting Class
	5.3.4 Implementation of the FlatFileWriter Supporting Class
	5.3.5 Implementation of the FlatfileLineIterator Supporting Class
	5.3.6 Implementation of the FlatfileUserAccount Supporting Class
	5.3.7 Implementation of the FlatfileAccountConversionHandler Supporting Class
	5.3.8 Implementation of the Messages.Properties Supporting Class

	5.4 Uploading the Identity Connector Bundle to Oracle Identity Governance Database
	5.4.1 Registering the Connector Bundle with Oracle Identity Governance
	5.4.2 Creating Basic Identity Connector Metadata
	5.4.2.1 Creating the IT Resource Type Definition
	5.4.2.2 Creating the Resource Object
	5.4.2.3 Creating Lookups
	5.4.2.3.1 Creating the Main Configuration Lookup
	5.4.2.3.2 Creating Object Type Configuration Lookup


	5.4.3 Creating Provisioning Metadata
	5.4.3.1 Creating a Process Form
	5.4.3.1.1 Creating a Process Form
	5.4.3.1.2 About Process Forms
	5.4.3.1.3 Attributes in the Connector Schema

	5.4.3.2 Creating Adapters
	5.4.3.3 Creating A Process Definition
	5.4.3.4 Creating a Provisioning Attribute Mapping Lookup
	5.4.3.4.1 About Provisioning Attribute Mapping Lookup
	5.4.3.4.2 Creating a Provisioning Attribute Mapping Lookup
	5.4.3.4.3 Field Flags Used in the Provisioning Attributes Map


	5.4.4 Creating Reconciliation Metadata
	5.4.4.1 Creating a Reconciliation Scheduled Task
	5.4.4.1.1 Defining the Scheduled Task
	5.4.4.1.2 Creating a Scheduled Task

	5.4.4.2 Creating a Reconciliation Profile
	5.4.4.3 Setting a Reconciliation Action Rule
	5.4.4.4 Creating Reconciliation Mapping
	5.4.4.5 Field Flags Used in the Reconciliation Attributes Map
	5.4.4.6 Defining a Reconciliation Matching Rule


	5.5 Provisioning a Flat File Account
	5.6 Installing the Java Connector Server
	5.7 Configuring the Java Connector Server with SSL for Oracle Identity Governance
	5.8 Configuring the Java Connector Server without SSL for Oracle Identity Governance
	5.9 Upgrading the Java Connector Server

	6 Developing Identity Connectors Using .NET
	6.1 Developing a Flat File .NET Connector
	6.1.1 Overview of Developing a Flat File .NET Connector
	6.1.2 Developing a Flat File .NET Connector
	6.1.3 Implementation of AbstractConfiguration
	6.1.4 Implementation of PoolableConnector
	6.1.5 Implementation of AbstractFilterTranslator
	6.1.6 Sample AssemblyInfo.cs File

	6.2 Deploying the Identity Connector Bundle on .NET Connector Server
	6.2.1 Registering the Connector Bundle with .NET Connector Server
	6.2.2 Creating Basic Identity Connector Metadata
	6.2.2.1 Creating the IT Resource Type Definition
	6.2.2.2 Creating the Resource Object
	6.2.2.3 Creating Lookups
	6.2.2.3.1 Creating the Main Configuration Lookup
	6.2.2.3.2 Creating Object Type Configuration Lookup


	6.2.3 Creating Provisioning Metadata
	6.2.3.1 Creating a Process Form
	6.2.3.1.1 About Process Forms
	6.2.3.1.2 Creating a Process Form
	6.2.3.1.3 Attributes in the Connector Schema

	6.2.3.2 Creating Adapters
	6.2.3.3 Creating a Process Definition
	6.2.3.4 Creating a Provisioning Attribute Mapping Lookup
	6.2.3.4.1 About Provisioning Attribute Mapping Lookup
	6.2.3.4.2 Creating a Provisioning Attribute Mapping Lookup
	6.2.3.4.3 Field Flags Used in the Provisioning Attributes Map


	6.2.4 Creating Reconciliation Metadata
	6.2.4.1 Creating a Reconciliation Scheduled Task
	6.2.4.1.1 Defining the Scheduled Task
	6.2.4.1.2 Creating a Scheduled Job

	6.2.4.2 Creating a Reconciliation Profile
	6.2.4.3 Setting a Reconciliation Action Rule
	6.2.4.4 Creating Reconciliation Mapping
	6.2.4.5 Field Flags Used in the Reconciliation Attributes Map
	6.2.4.6 Defining a Reconciliation Matching Rule


	6.3 Provisioning a Flat File Account

	7 Integrating ICF with Oracle Identity Governance
	7.1 ICF Common
	7.2 Integration Architecture
	7.3 Global Oracle Identity Governance Lookups
	7.3.1 About Global Lookups
	7.3.2 Main Lookup Configuration
	7.3.3 User Management Configuration
	7.3.4 Recon Transformation Lookup (Lookup.CONNECTOR_NAME.UM.ReconTransformation)
	7.3.5 Recon Validation Lookup (Lookup.CONNECTOR_NAME.UM.ReconValidation)
	7.3.6 Optional Defaults Lookup

	7.4 About IT Resources for ICF Integration
	7.5 Provisioning Using ICF
	7.5.1 ICF Provisioning Manager
	7.5.1.1 APIs for Provisioning
	7.5.1.2 Account Related Operations
	7.5.1.3 Multivalued Operations
	7.5.1.4 Other operations

	7.5.2 Provisioning Lookup
	7.5.3 Non-User Object Types
	7.5.4 Optional Lookups for Provisioning
	7.5.5 Provisioning Validation Lookup
	7.5.6 Optional Flags in Lookups for Provisioning Attribute Map
	7.5.7 Compound attributes in Provisioning Attribute Map

	7.6 Concepts of Reconciliation in ICF Common
	7.6.1 Types of Reconciliation
	7.6.1.1 About Reconciliation Types
	7.6.1.2 ICF Common Reconciliation Parameters
	7.6.1.3 Target and Trusted Reconciliation
	7.6.1.4 Full, Incremental Reconciliation
	7.6.1.5 Advanced Incremental Reconciliation
	7.6.1.6 Delete Reconciliation
	7.6.1.7 Group Lookup Reconciliation

	7.6.2 List of Reconciliation Artifacts in Oracle Identity Governance
	7.6.2.1 Methods of Control Over Reconciliation
	7.6.2.2 Lookups for Reconciliation
	7.6.2.3 Example of Reconciliation With Child Table
	7.6.2.3.1 Example Showing Design Console Updates to Setup Reconciliation with Child Table
	7.6.2.3.2 Setting Up Reconciliation With Child Tables



	7.7 Predefined Scheduled Tasks
	7.7.1 LookupReconTask
	7.7.2 SearchReconTask
	7.7.3 SearchReconDeleteTask
	7.7.4 SyncReconTask

	7.8 ICF Filter Syntax
	7.8.1 Filter Examples
	7.8.2 Definition in EBNF Format
	7.8.3 Keywords and Syntax for the Filter Attribute


	8 Using Java APIs for ICF Integration
	9 Configuring ICF Connectors
	9.1 Configuring Connector Load Balancer
	9.1.1 About the Load Balancer Configuration
	9.1.2 Configuring the Load Balancer for a Connector Server

	9.2 Configuring Validation of Data During Reconciliation and Provisioning
	9.2.1 About Validation of Data During Reconciliation and Provisioning
	9.2.2 Configuring Validation of Data
	9.2.3 Sample Validation Class

	9.3 Configuring Transformation of Data During User Reconciliation
	9.3.1 About Transformation of Data During User Reconciliation
	9.3.2 Configuring Transformation of Single-Valued User Data Fetched During Reconciliation
	9.3.3 Sample Transformation Class

	9.4 Configuring Resource Exclusion Lists
	9.4.1 About Resource Excursion Lists
	9.4.2 Format of Values Stored in the Lookups
	9.4.3 Adding Entries in the Lookup for Exclusion

	9.5 Configuring SSL Communication
	9.5.1 Setting SSL for Connector Server and Oracle Identity Governance
	9.5.2 Troubleshooting SSL

	9.6 Adding Target System Attributes
	9.6.1 Adding Target System Attributes for Provisioning
	9.6.1.1 Adding a New Form Field
	9.6.1.2 Adding the New Field to the Provisioning Mapping Lookup
	9.6.1.3 Changing the Process Task to Handle Updates
	9.6.1.4 Mapping the Adapter Variables

	9.6.2 Adding Target System Attributes for Target Reconciliation
	9.6.3 Adding Target System Attributes for Trusted Reconciliation


	10 Understanding ICF Best Practices and FAQs
	10.1 Best Practices for ICF
	10.2 FAQs on ICF

	11 Using Generic Technology Connectors
	11.1 Overview of Generic Technology Connectors
	11.2 Using the Generic Connection Pool Framework in Custom Connectors
	11.2.1 Basic Steps to Use Generic Connection Pool in Custom Connector
	11.2.2 Providing concrete implementation for ResourceConnection interface
	11.2.3 Defining Additional ITResource Parameters
	11.2.4 Getting and Releasing Connections from the Pool
	11.2.5 Using a Third-party Pool
	11.2.6 Example: Implementation of ResourceConnection

	11.3 Best Practices
	11.3.1 Working with the Provide Basic Information Page
	11.3.2 Working with the Specify Parameter Values Page
	11.3.3 Working with the Modify Connector Configuration Page
	11.3.3.1 Names of Fields
	11.3.3.2 Password Fields
	11.3.3.3 Password-Like Fields
	11.3.3.4 Mappings
	11.3.3.5 Oracle Identity Governance Data Sets

	11.3.4 Working with Shared Drive Reconciliation Transport Provider
	11.3.5 Working with Custom Providers
	11.3.6 Working with Connector Objects
	11.3.7 Modifying Generic Technology Connectors


	12 Predefined Providers for Generic Technology Connectors
	12.1 Shared Drive Reconciliation Transport Provider
	12.1.1 Parameters of the Shared Drive Reconciliation Transport Provider
	12.1.1.1 Staging Directory (Parent Identity Data)
	12.1.1.2 Staging Directory (Multivalued Identity Data)
	12.1.1.3 Archiving Directory
	12.1.1.4 File Prefix
	12.1.1.5 Specified Delimiter
	12.1.1.6 Tab Delimiter
	12.1.1.7 Fixed Column Width
	12.1.1.8 Unique Attribute (Parent Data)
	12.1.1.9 File Encoding

	12.1.2 Permissions to Be Set on the Staging and Archiving Directories

	12.2 CSV Reconciliation Format Provider
	12.3 SPML Provisioning Format Provider
	12.3.1 About the SPML Provisioning Format Provider
	12.3.2 Parameters of the SPML Provisioning Format Provider
	12.3.2.1 Run-Time Parameters
	12.3.2.2 Design Parameters
	12.3.2.3 Nonmandatory Parameters
	12.3.2.4 Parameters with Predetermined Values


	12.4 Web Services Provisioning Transport Provider
	12.4.1 About the Web Services Provisioning Transport Provider
	12.4.2 The Web Service URL Parameter
	12.4.3 Configuring SSL Communication Between Oracle Identity Manager and the Target System Web Service

	12.5 Transformation Providers
	12.5.1 About Transformation Providers
	12.5.2 Concatenation Transformation Provider
	12.5.3 Adding a Concatenation Transformation Provider
	12.5.4 Translation Transformation Provider
	12.5.5 Using the Translation Transformation Provider
	12.5.6 Configuring Account Status Reconciliation
	12.5.6.1 About Account Status Reconciliation Using Translation Transformation Provider
	12.5.6.2 High-Level Steps to Configure Account Status Reconciliation
	12.5.6.3 Detailed Steps to Configure Account Status Reconciliation


	12.6 Validation Providers


	Part III Workflows
	13 Developing Workflows
	13.1 Introducing Workflows
	13.1.1 Overview of Workflows
	13.1.2 Workflow Concepts
	13.1.3 Workflow Architecture
	13.1.4 Human Task Process Flow

	13.2 Predefined SOA Composites
	13.3 Creating New SOA Composites
	13.3.1 Creating a New SOA Composite
	13.3.1.1 Standards of Using SOA Composites as Approval Process
	13.3.1.2 Creating a Custom SOA Composite Using the Helper Utility

	13.3.2 Deploying a SOA Composite in Oracle SOA Server
	13.3.3 Setting the Prerequisites for Communication to Oracle Identity Governance Through SSL Mode

	13.4 Developing Workflows: Vision Request Tutorial
	13.4.1 Introducing the Tutorial
	13.4.2 Assumptions
	13.4.3 Creating the Application Instance
	13.4.3.1 Creating the FinApp Application Instance
	13.4.3.2 Defining Application Instance Attributes and Creating a Form
	13.4.3.3 Publishing the Application Instance to One or More Organizations
	13.4.3.4 Linking Entitlements to the Application Instance
	13.4.3.5 Publishing the Application Instance With Entitlements to the Catalog

	13.4.4 Configuring FinApp in the Catalog
	13.4.5 Creating and Configuring the SOA Composite for Approval
	13.4.5.1 Creating the Approval Workflow
	13.4.5.2 Making Request and Catalog Data Available to the BPEL Process
	13.4.5.3 Configuring Workflow Selection
	13.4.5.4 Configuring Human Tasks
	13.4.5.4.1 Configuring the Parallel Human Task
	13.4.5.4.2 Properties of the Parallel Approval Task
	13.4.5.4.3 Configuring the Serial Approval Task
	13.4.5.4.4 Properties of the Serial Approval Task
	13.4.5.4.5 Configuring the Default Approval Task

	13.4.5.5 Configuring the Human Task and BPEL Mappings
	13.4.5.5.1 Configuring the Serial Approval Human Task
	13.4.5.5.2 Configuring the Parallel Human Task
	13.4.5.5.3 Configuring Auto Approval

	13.4.5.6 Deploying the SOA Composite
	13.4.5.7 Creating the Workflow Rules


	13.5 Configuring Default Approval Composites for Single and Bulk Operations
	13.6 Creating and Deploying Custom Task Details Taskflow
	13.6.1 Prerequisites for Developing Custom Task Details Taskflow
	13.6.2 Developing Custom Task Details Taskflow
	13.6.2.1 Building a Custom Taskflow: Broad-Level Steps
	13.6.2.2 Adding Managed Beans for the Task Details Page
	13.6.2.3 Creating the Details Page Structure
	13.6.2.4 Populating the Request Information Tab
	13.6.2.5 Populating the Task Information Tab

	13.6.3 Developing Custom Task Details for Email Notification (Optional)
	13.6.4 Deploying the Task Details Taskflow
	13.6.5 Configuring Human Task and Taskflow Permissions
	13.6.5.1 Adding View Permission for Custom Taskflow
	13.6.5.2 Configuring Human Task to Use the Custom Taskflow

	13.6.6 Testing the Custom Taskflow

	13.7 Extending Request Management Operations
	13.7.1 Running Custom Code Based on Request Status Change
	13.7.2 Validating Request Data
	13.7.2.1 About Validating Request Data
	13.7.2.2 Associating Plug-ins With Data Validators and Prepopulate Adapters
	13.7.2.3 Scenario I: Provisioning Users to a Target System
	13.7.2.4 Scenario II: Provisioning or Modifying Entitlement Request

	13.7.3 Prepopulation of an Attribute Value During Request Creation
	13.7.4 Enabling Request Approval by Account Beneficiary

	13.8 Enabling Auto-Approval for Self Registration Requests
	13.9 Hiding the Skip Current Assignment Option
	13.10 Customizing Certification Oversight
	13.10.1 Understanding Certification Oversight Customization
	13.10.2 Customizing Certification Oversight

	13.11 Customizing the Identity Audit Composite


	Part IV Data Synchronization
	14 Customizing Reconciliation
	14.1 Reconciliation Features
	14.1.1 Performance Enhancement Features
	14.1.1.1 New Metadata Model - Profiles
	14.1.1.2 Parameters to Control Flow and Processing of Events
	14.1.1.2.1 Parameters to Control Event Processing
	14.1.1.2.2 System Property to Control AutoRetry

	14.1.1.3 Grouping of Events by Reconciliation Runs
	14.1.1.4 Grouping of Events by Batches
	14.1.1.5 Implementing Reconciliation Engine Logic in the Database
	14.1.1.6 Improved Java Engine
	14.1.1.7 Improved Database Schema

	14.1.2 Web-Based Event Management Interface
	14.1.3 Other Reconciliation Features
	14.1.3.1 Staging Tables
	14.1.3.1.1 About Staging Tables
	14.1.3.1.2 Creating and Maintaining Staging Tables

	14.1.3.2 Handling of Race Conditions
	14.1.3.3 Ad Hoc Linking


	14.2 Reconciliation Architecture
	14.2.1 Reconciliation Process Flow
	14.2.2 Reconciliation Profile
	14.2.2.1 Sample Configuration Profile
	14.2.2.2 Elements and Structures of Reconciliation Profile

	14.2.3 Reconciliation Metadata
	14.2.4 Reconciliation Target
	14.2.5 Reconciliation Run
	14.2.6 Reconciliation APIs
	14.2.7 Reconciliation Schema
	14.2.8 Reconciliation Engine
	14.2.8.1 About the Reconciliation Engine
	14.2.8.2 Matching Module
	14.2.8.3 Action Module

	14.2.9 Connector for Reconciliation
	14.2.10 Archival
	14.2.11 Backward Compatibility
	14.2.12 Reconciliation Event Management

	14.3 Defining Reconciliation Rules
	14.3.1 Understanding Reconciliation Rules
	14.3.2 Defining a Reconciliation Rule
	14.3.3 Adding a Rule Element
	14.3.4 Transformation Properties
	14.3.5 Nesting a Rule Within a Rule
	14.3.6 Deleting a Rule Element or Rule

	14.4 Developing Reconciliation Scheduled Tasks
	14.5 Updating Reconciliation Profiles Manually
	14.5.1 About Creating and Updating Reconciliation Profiles
	14.5.2 Creating and Updating Reconciliation Profiles
	14.5.3 Changing the Profile Mode

	14.6 Understanding Reconciliation APIs
	14.6.1 Overview of Reconciliation APIs
	14.6.2 The ReconOperationsService API
	14.6.2.1 Ignore Event
	14.6.2.2 Create Event
	14.6.2.3 Process Event
	14.6.2.4 Deletion Detection

	14.6.3 Invoking Non-scheduled Task-Based Reconciliation in a Multithreaded Environment

	14.7 Postprocessing for Trusted Reconciliation
	14.8 Reconciliation FAQs
	14.9 Troubleshooting Reconciliation
	14.9.1 Changing the Logging Level for Reconciliation
	14.9.2 Troubleshooting General Reconciliation Issues
	14.9.3 Troubleshooting Database-Related Reconciliation Issues
	14.9.3.1 Missing Critical Oracle Database 11g Release 1 Interim Patches
	14.9.3.2 Missing Critical Oracle Database 11g Release 2 Interim Patches
	14.9.3.3 Slow Reconciliation and Similar Traces in Error Log
	14.9.3.4 Reconciliation Event Does Not Process With Error

	14.9.4 Troubleshooting Reconciliation Profile Configuration Failures
	14.9.5 Troubleshooting LDAP Reconciliation Issues
	14.9.5.1 LDAP User Create and Update Reconciliation Scheduled Job Fails With Error
	14.9.5.2 External Changelog Cookie Expiration Issue When Performing Reconciliation with OUD

	14.9.6 Troubleshooting Reconciliation Issues in the PL/SQL Layer

	14.10 Populating Data in the RECON_EXCEPTIONS Table
	14.10.1 About the RECON_EXCEPTIONS Table
	14.10.2 Populating Data in the RECON_EXCEPTIONS Table

	14.11 Reconciliation Best Practices
	14.11.1 Selecting Additional Indexes for Matching Module
	14.11.1.1 About Additional Indexes for the Matching Module
	14.11.1.2 Selecting Indexes Based on the Matching Rule Criteria

	14.11.2 Collecting Database Schema Statistics for Reconciliation Performance

	14.12 Monitoring Reconciliation Performance Using DMS

	15 Using the Bulk Load Utility
	15.1 Modes of Running the Utility
	15.2 Features of the Bulk Load Utility
	15.3 Prerequisites for Running the Bulk Load Utility
	15.3.1 Installing the Bulk Load Utility
	

	15.3.2 Understanding Bulk Load Options and Additional Details
	15.3.2.1 Scripts That Constitute the Utility
	15.3.2.2 Temporary Tables Used During a Bulk Load Operation
	15.3.2.3 Options Offered by the Utility

	15.3.3 Preparing Your Database for a Bulk Load Operation
	15.3.3.1 Creating a Tablespace for Temporary Tables
	15.3.3.2 Creating a Datafile in the Oracle Identity Governance Tablespace


	15.4 Running the Utility
	15.5 Performance Best Practices for Bulk Load
	15.6 Loading OIM User Data
	15.6.1 Overview of Loading OIM User Data
	15.6.2 Setting a Default Password for OIM Users Added by the Utility
	15.6.3 Creating the Input Source for the Bulk Load Operation
	15.6.3.1 Using CSV Files As the Input Source
	15.6.3.2 Creating Database Tables As the Input Source
	15.6.3.3 Structure of a Sample Database Table

	15.6.4 Determining Values for the Input Parameters of the Utility
	15.6.5 Monitoring the Progress of the Operation
	15.6.6 Handling Exceptions Recorded During the Operation
	15.6.7 Fixing Exceptions and Reloading Data Records
	15.6.7.1 About Fixing Exceptions
	15.6.7.2 Reloading Rejected Records

	15.6.8 Verifying the Outcome of the Bulk Load Operation
	15.6.9 Generating an Audit Snapshot
	15.6.10 Running the Bulk Load Post Process Scheduled Task

	15.7 Loading Account Data
	15.7.1 Overview of Loading Account Data
	15.7.2 Bulk Load Utility for Loading Accounts in SSL mode
	15.7.3 Requirements and Features of the Bulk Load Operation for Account Data
	15.7.4 Creating the Input Source for the Bulk Load Operation
	15.7.4.1 Using CSV Files As the Input Source
	15.7.4.2 Creating Database Tables As the Input Source
	15.7.4.3 Sample Parent Table Structure
	15.7.4.4 Sample Child Table Structure

	15.7.5 Determining Values for the Input Parameters of the Utility
	15.7.6 Monitoring the Progress of the Operation
	15.7.7 Handling Exceptions Recorded During the Operation
	15.7.8 Fixing Exceptions and Reloading Data Records
	15.7.8.1 About Fixing Exceptions
	15.7.8.2 Reloading Rejected Records

	15.7.9 Verifying the Outcome of the Bulk Load Operation

	15.8 Loading Role, Role Hierarchy, Role Membership, and Role Category Data
	15.8.1 Overview of Loading Role, Role Hierarchy, Role Membership, and Role Category Data
	15.8.2 Creating the Input Source for the Bulk Load Operation
	15.8.2.1 Using CSV Files As the Input Source
	15.8.2.2 Creating Database Tables As the Input Source
	15.8.2.3 Structure of a Sample Database Table
	15.8.2.4 Determining the UGP_NAME Generated After Role Load

	15.8.3 Determining Values for the Input Parameters of the Utility
	15.8.4 Monitoring the Progress of the Operation
	15.8.5 Handling Exceptions Recorded During the Operation
	15.8.6 Fixing Exceptions and Reloading Data Records
	15.8.6.1 About Fixing Exceptions
	15.8.6.2 Reloading Rejected Records

	15.8.7 Verifying the Outcome of the Bulk Load Operation

	15.9 Loading Organization Data
	15.9.1 Overview of Loading Organization Data
	15.9.2 Creating the Input Source for the Bulk Load Operation
	15.9.2.1 Using CSV Files as the Input Source
	15.9.2.2 Creating Database Tables as the Input Source

	15.9.3 Determining Values for the Input Parameters of the Utility
	15.9.4 Monitoring the Progress of the Operation
	15.9.5 Handling Exceptions Recorded During the Operation
	15.9.6 Fixing Exceptions and Reloading Data Records
	15.9.6.1 About Fixing Exceptions
	15.9.6.2 Reloading Rejected Records

	15.9.7 Verifying the Outcome of the Bulk Load Operation

	15.10 Data Recorded During the Operation
	15.11 Gathering Diagnostic Data from the Bulk Load Operation
	15.12 Cleaning Up After a Bulk Load Operation
	15.13 Bulk Load High Volume Strategy and Case Studies

	16 Developing Scheduled Tasks
	16.1 Overview of Task Creation
	16.1.1 Steps in Task Creation
	16.1.2 Example of Scheduled Task

	16.2 Defining the Metadata for the Scheduled Task
	16.3 Configuring the Scheduled Task XML File
	16.4 Developing the Scheduled Task Class
	16.5 Configuring the Plug-in XML File
	16.6 Creating the Directory Structure for the Scheduled Task
	16.7 Scheduled Task Configuration File
	16.7.1 Structure of the Scheduler XML File
	16.7.2 The scheduledTasks Element
	16.7.3 The task Element
	16.7.4 The name Element
	16.7.5 The class Element
	16.7.6 The description Element
	16.7.7 The retry Element
	16.7.8 The parameters Element
	16.7.9 The string-param Element
	16.7.10 The number-param Element
	16.7.11 The boolean-param Element

	16.8 Best Practices for Creating Custom Scheduled Tasks
	16.9 Using the isStop() Method
	16.10 Monitoring Scheduled Jobs Performance using DMS


	Part V Custom Operations
	17 Developing Plug-ins
	17.1 Plug-ins and Plug-in Points
	17.1.1 About Plug-ins and Plug-in Points
	17.1.2 Plug-ins and Event Handlers
	17.1.3 Plug-in Stores
	17.1.3.1 About Plug-in Stores
	17.1.3.2 The File Store
	17.1.3.3 The Database Store


	17.2 Using Plug-ins in Deployments
	17.3 Plug-in Points
	17.4 Configuring Plug-ins
	17.5 Developing Custom Plug-ins
	17.5.1 Developing Plug-ins
	17.5.2 Declaring Plug-ins

	17.6 Registering Plug-ins
	17.6.1 Registering and Unregistering Plug-ins By Using APIs
	17.6.2 Registering and Unregistering Plug-ins By Using the Plugin Registration Utility
	17.6.2.1 The Plugin Registration Utility
	17.6.2.2 Prerequisites of Using the Plugin Registration Utility
	17.6.2.3 Registering a Plug-in
	17.6.2.4 Unregistering a Plug-in
	17.6.2.5 Re-registering and Activating an Old Plug-in Version


	17.7 Migrating Plug-ins

	18 Developing Event Handlers
	18.1 Orchestration Concepts
	18.2 Using Custom Event Handlers
	18.3 Orchestration Operations for Entities
	18.4 Developing Custom Event Handlers
	18.4.1 About Custom Event Handler Development
	18.4.2 Implementing the SPI and Creating a JAR
	18.4.2.1 Development Considerations
	18.4.2.2 Methods and Arguments
	18.4.2.3 Code Samples
	18.4.2.3.1 Example 1: Custom Email Validation
	18.4.2.3.2 Example 2: Custom Preprocess Event Handler to Set Middle Name
	18.4.2.3.3 Example 3: Custom Post-process Event Handler to Provision Resource Object
	18.4.2.3.4 Example 4: Custom User Postprocess Event Handler With bulkExecute Method
	18.4.2.3.5 Example 5: Using Context in isApplicable method

	18.4.2.4 Creating a JAR File With Custom Event Handler Code
	18.4.2.5 SPIs to Write Custom Event Handlers
	18.4.2.6 Handling Exceptions
	18.4.2.7 Managing Transactions

	18.4.3 Defining Custom Events Definition XML
	18.4.3.1 Elements in the Event Handler XML Files
	18.4.3.1.1 Elements
	18.4.3.1.2 Element Attributes
	18.4.3.1.3 Namespace Requirement in <eventhandlers> Element

	18.4.3.2 Sample Event Definitions

	18.4.4 Creating and Registering a Plug-in ZIP

	18.5 Sequencing the Execution of Event Handlers
	18.6 Writing Custom Validation Event Handlers
	18.7 Best Practices
	18.8 Migrating Event Handlers
	18.9 Troubleshooting Event Handlers


	Part VI Customization
	19 Customizing the Interface
	19.1 Managing Sandboxes
	19.1.1 Understanding Sandbox Operations
	19.1.2 Handling Concurrency Conflicts
	19.1.2.1 Understanding Concurrency Conflicts
	19.1.2.2 Guidelines to Avoid Conflicts When Multiple Users Work in a Single Sandbox
	19.1.2.3 Guidelines to Avoid Conflicts When Multiple Users Work in Multiple Sandboxes
	19.1.2.4 Troubleshooting Concurrency Issues

	19.1.3 Creating a Sandbox
	19.1.4 Activating a Sandbox
	19.1.5 Deactivating a Sandbox
	19.1.6 Viewing and Modifying Sandbox Details
	19.1.7 Exporting a Sandbox
	19.1.8 Importing a Sandbox
	19.1.9 Publishing a Sandbox
	19.1.10 Publishing Sandboxes in Bulk and Sequence
	19.1.11 Deleting a Sandbox
	19.1.12 Reverting Changes
	19.1.12.1 Reverting Changes to Default Settings
	19.1.12.2 Reverting Changes When Unable to Login to Identity System Administration


	19.2 Skin Customization in Oracle Identity Governance
	19.2.1 Configuring a New Skin
	19.2.2 Changing Branding and Logo

	19.3 Customizing Pages at Runtime
	19.3.1 Customizable Entity Artifacts
	19.3.2 Using Expression Language in UI Customization
	19.3.2.1 Available EL Expressions in the User Context
	19.3.2.2 Retrieving User Attribute Values From the OIMContext Bean
	19.3.2.3 Available EL Expressions in the RequestFormContext
	19.3.2.4 Internationalization for Resource Strings
	19.3.2.4.1 Creating Custom Resource Bundles
	19.3.2.4.2 Using the Resource Bundles


	19.3.3 Showing or Hiding UI Components Conditionally
	19.3.4 Showing Request Profiles Conditionally
	19.3.5 Validating Input Data Using ADF Validators
	19.3.6 Marking Input Attribute as Required
	19.3.7 Adding a Link or Button
	19.3.8 Hiding and Deleting an ADF Component
	19.3.8.1 Hiding an ADF Component
	19.3.8.2 Deleting an ADF Component

	19.3.9 Showing and Hiding Attributes
	19.3.10 Customizing Unauthenticated Pages
	19.3.11 Customizing the Toolbar Contents
	19.3.12 Customizing Certification Pages
	19.3.12.1 Customizing the Certification Detail Pane
	19.3.12.2 Adding Custom Attributes to the Certification Table
	19.3.12.3 Customizing the Certification Table


	19.4 Securing a Task Flow Region Using EL Expressions
	19.5 Customizing Oracle Identity Governance Help
	19.5.1 Adding Custom Help Topics
	19.5.1.1 Creating Custom Help Topics
	19.5.1.2 Referencing the Custom Help Topics
	19.5.1.3 Adding a Custom Help Topic to Identity Self Service
	19.5.1.4 Viewing the Custom Help Topics

	19.5.2 Adding Inline Help
	19.5.2.1 Inline Help Configuration
	19.5.2.2 Adding Inline Help


	19.6 Customizing the Home Page
	19.6.1 Adding a Tile to the Home Page
	19.6.2 Launching a New Page From the Tile Icon
	19.6.3 Launching a New Page From the Tile Menu
	19.6.4 Showing Tiles Conditionally

	19.7 Developing Managed Beans and Task Flows
	19.7.1 Types of Managed Beans
	19.7.2 Prerequisites for Developing Managed Beans and Task Flows
	19.7.3 Setting Up the ViewController Project
	19.7.4 Setting Up a Model Project
	19.7.5 Adding Custom Managed Bean
	19.7.6 Deploying Custom Code to Oracle Identity Governance
	19.7.7 Using Managed Beans
	19.7.7.1 Showing Components Conditionally
	19.7.7.2 Prepopulating Fields Conditionally
	19.7.7.3 Setting a Conditional Mandatory Field
	19.7.7.4 Implementing Custom Field Validation
	19.7.7.4.1 Custom Field Validation and Managed Beans
	19.7.7.4.2 Implementing Custom Field Validation Using Managed Beans
	19.7.7.4.3 Setting the Validator Property

	19.7.7.5 Implementing Custom Cascading LOVs
	19.7.7.6 Customizing Forms By Using RequestFormContext
	19.7.7.6.1 The RequestFormContext Bean
	19.7.7.6.2 Using the RequestFormContext Bean

	19.7.7.7 Overriding the Submit Button in Request Catalog
	19.7.7.8 Launching Taskflows
	19.7.7.8.1 Launching a Taskflow in Self Service
	19.7.7.8.2 Adding Custom Taskflow

	19.7.7.9 Creating an External Link

	19.7.8 Using Managed Beans to Populate Request Attributes
	19.7.8.1 Populating Request Attributes Using Managed Beans
	19.7.8.1.1 Approach Taken to Populate Request Attributes Using Managed Beans
	19.7.8.1.2 Creating the Java Class
	19.7.8.1.3 Declaring the PrePopulateMBean Class
	19.7.8.1.4 Deploying the View Controller Project and Custom Code
	19.7.8.1.5 Customizing the UI to Add the Button
	19.7.8.1.6 Configuring the Properties of the Prepopulate Button
	19.7.8.1.7 Testing the Customization

	19.7.8.2 Populating Request Attributes by Using the Prepopulate Plug-in

	19.7.9 Using Public Taskflows
	19.7.9.1 About Public Taskflows
	19.7.9.2 Public Taskflows and Input Parameters

	19.7.10 Customizing Catalog Search
	19.7.10.1 Developing the Custom Taskflow
	19.7.10.2 Adding the Presentation Logic for the Custom Form
	19.7.10.3 Constructing the SearchCriteria Object
	19.7.10.4 Deploying the Taskflow

	19.7.11 Customizing Task Details Page for Approval Tasks
	19.7.11.1 Prerequisites for Developing Custom Task Details Taskflow
	19.7.11.2 Building a Custom Taskflow for a Human Task
	19.7.11.3 Creating the Task Details Taskflow
	19.7.11.4 Creating the Task Details Page
	19.7.11.5 Populating the Page With Task Information
	19.7.11.6 Taskflows to Show Request-Related Information
	19.7.11.7 Configuring the Human Task to Use the Custom Taskflow


	19.8 Configuring Additional Request Form
	19.8.1 Additional Request Information Concepts
	19.8.1.1 Additional Information for the Request Cart Item
	19.8.1.2 Additional Information for the Request

	19.8.2 Understanding the Guidelines for Developing Custom Taskflow for Additional Request Information
	19.8.2.1 Implementing Custom Taskflow for Additional Request Information
	19.8.2.2 Taskflow Input Parameters
	19.8.2.3 Saving and Retrieving Additional Information in Managed Bean Developed for the Project
	19.8.2.4 Understanding the AdditionalRequestInfo Interface
	19.8.2.5 Using RequestFormContext to Achieve the Required Customizations

	19.8.3 Configuring Custom Taskflow for Additional Request Information
	19.8.3.1 Configuring Custom Taskflow for the Cart Item Level
	19.8.3.2 Configuring Additional Request Information at Request Level
	19.8.3.2.1 About Additional Request Information at Request Level
	19.8.3.2.2 Predefined Attributes to Determine the Custom Taskflow
	19.8.3.2.3 Sample Code for the Command Link


	19.8.4 Validating Additional Request Information

	19.9 Migrating UI Customizations
	19.9.1 Scenario I: Incremental T2P

	19.10 UI Customization Best Practices
	19.10.1 Create Sandboxes With Detailed Description
	19.10.2 Create a Backup of MDS Before Publishing a Sandbox
	19.10.3 Migrate All Sandboxes to the Target Environment and Publish in the Same Order
	19.10.4 Export the Sandbox Before Publishing
	19.10.5 Test the Sandbox Before Publishing
	19.10.6 Do Not Change Default Component IDs
	19.10.7 Use Discretion When Deleting Components From a Page
	19.10.8 Note That Direct Changes to Default EOs/VOs Are Not Supported
	19.10.9 Specify Name Space for JSFF Tags
	19.10.10 Note That Customizations Are Only Allowed in Site/Site Layer
	19.10.11 Note That Each Application Instance or Entitlement Form Has Three Page Fragments (JSFF)
	19.10.12 Use Discretion When Using the Searchable Picklist Option
	19.10.13 Sign-out After Adding/Updating UDF
	19.10.14 Verify the UDF After Adding it to the Page
	19.10.15 Map UDF With Correct LDAP Attribute
	19.10.16 Deploy Custom Managed Beans as Part of the oracle.iam.ui.custom-dev-starter-pack.war Shared Library
	19.10.17 Consider Replacing the Entire Taskflow
	19.10.18 Do Not Update Oracle Identity Manager WAR/EAR Files
	19.10.19 Consider Conditionally Showing Certain Home Page Tiles
	19.10.20 Do Not Invoke Platform APIs From Custom Managed Bean
	19.10.21 Use Recommended Value of Display Width While Creating Lookup UDFs


	Using URLs

	Part VII Interfaces to Integrate With Other Applications
	20 Using APIs
	20.1 About Oracle Identity Governance APIs
	20.2 Accessing Oracle Identity Governance Services
	20.2.1 About Oracle Identity Governance Services
	20.2.2 Using OIMClient
	20.2.3 Using OIMClient and tcUtilityFactory in Integrated Deployments

	20.3 Oracle Identity Governance Services
	20.3.1 Services in Oracle Identity Governance
	20.3.2 Legacy Services or Utilities

	20.4 Commonly Used Services
	20.5 Mapping Between Legacy and New Services
	20.6 Working With Legacy Oracle Identity Manager APIs
	20.6.1 Using a Result Set Object
	20.6.2 Example of Using a Result Set
	20.6.3 Handling Oracle Identity Manager Exceptions
	20.6.4 Cleaning Up

	20.7 Code Samples
	20.7.1 Retrieving Oracle Identity Governance Information
	20.7.2 Using Certification APIs
	20.7.2.1 Retrieving Certifications Belonging to a User
	20.7.2.2 Retrieving an Application Instance Certification
	20.7.2.3 Certifying or Denying Certifications
	20.7.2.4 Completing the Certification

	20.7.3 Using OIMService API
	20.7.3.1 RequestData Object Construction
	20.7.3.1.1 Constructing RequestData Object for Operations Involving Target User and Cart Item
	20.7.3.1.2 Constructing RequestData Object for Operations Involving the User Entity
	20.7.3.1.3 Operations and Entity Keys

	20.7.3.2 Samples of OIMService API Usage
	20.7.3.2.1 Revoking an Account
	20.7.3.2.2 Creating a User



	20.8 Using the Custom API ZIP File

	21 Using SCIM/REST Services
	21.1 Overview of SCIM/REST Services
	21.2 Supported Resources and Operations
	21.3 Resource Schema
	21.3.1 Introduction to Resource Schema
	21.3.2 Schema Attributes for the User Resource
	21.3.2.1 User Schema Attributes
	21.3.2.2 Enterprise User Schema Attributes
	21.3.2.3 IDM Common User Schema Extension Attributes
	21.3.2.4 OIG User Schema Extension Attributes

	21.3.3 Schema Attributes for the PasswordResetterWithChallenges Resource
	21.3.4 Schema Attributes for the PasswordValidator Resource
	21.3.5 Schema Attributes for the UserNameValidator Resource
	21.3.6 Schema Attributes for the UserNameGenerator Resource
	21.3.7 Schema Attributes for the UserNameRecoverer Resource
	21.3.8 Schema Attributes for the Group Resource
	21.3.8.1 Group Schema Attributes
	21.3.8.2 IDM Common Group Schema Extension Attributes
	21.3.8.3 OIG Group Schema Extension Attributes

	21.3.9 Schema Attributes for the Organization Resource
	21.3.10 Schema Attributes for the Password Policy Resource
	21.3.11 Schema Attributes for the Notification Template Resource
	21.3.12 Schema Attributes for the System Property Resource
	21.3.13 Schema Attributes for the Service Provider Configuration Schema Resource
	21.3.14 Schema Attributes for the Resource Type Resource
	21.3.15 Schema Attributes for the Schema Resource
	21.3.15.1 SCIM Schema Attributes
	21.3.15.2 OIG Schema Extension Attributes


	21.4 Operation Types
	21.5 HTTP Response Codes
	21.5.1 Error Codes
	21.5.2 Success Codes

	21.6 SCIM-Based API Examples
	21.6.1 User Management
	21.6.1.1 Create User
	21.6.1.1.1 Create User Request
	21.6.1.1.2 Create User Response

	21.6.1.2 Modify User (PUT)
	21.6.1.2.1 Modify User (PUT) Request
	21.6.1.2.2 Modify User (PUT) Response

	21.6.1.3 Modify User (PATCH)
	21.6.1.3.1 Modify User (PATCH) Request
	21.6.1.3.2 Modify User (PATCH) Response

	21.6.1.4 View Users with Pagination
	21.6.1.4.1 View Users with Pagination Request
	21.6.1.4.2 View Users with Pagination Response
	21.6.1.4.3 Search Filter Examples

	21.6.1.5 Delete User
	21.6.1.5.1 Delete User Request
	21.6.1.5.2 Delete User Response

	21.6.1.6 Lock User
	21.6.1.6.1 Lock User Request
	21.6.1.6.2 Lock User Response

	21.6.1.7 Unlock User
	21.6.1.7.1 Unlock User Request
	21.6.1.7.2 Unlock User Response

	21.6.1.8 Reset Password by Providing New Password
	21.6.1.8.1 Reset Password by Providing New Password Request
	21.6.1.8.2 Reset Password by Providing New Password Response

	21.6.1.9 Reset Password by Auto-Generated Password
	21.6.1.9.1 Reset Password by Auto-Generated Password Request
	21.6.1.9.2 Reset Password by Auto-Generated Password Response

	21.6.1.10 View User
	21.6.1.10.1 View User Request
	21.6.1.10.2 View User Response

	21.6.1.11 Self Registration
	21.6.1.11.1 Self Registration Request
	21.6.1.11.2 Self Registration Response

	21.6.1.12 Modify Self Profile (PATCH)
	21.6.1.12.1 Modify Self Profile (PATCH) Request
	21.6.1.12.2 Modify Self Profile (PATCH) Response

	21.6.1.13 Modify Profile (PUT)
	21.6.1.13.1 Modify Profile (PUT) Request
	21.6.1.13.2 Modify Profile (PUT) Response

	21.6.1.14 PasswordResetterWithChallenges
	21.6.1.14.1 PasswordResetterWithChallenges Request
	21.6.1.14.2 PasswordResetterWithChallenges Response

	21.6.1.15 PasswordValidator
	21.6.1.15.1 PasswordValidator Request
	21.6.1.15.2 PasswordValidator Response

	21.6.1.16 UserNameValidator
	21.6.1.16.1 UserNameValidator Request
	21.6.1.16.2 UserNameValidator Response

	21.6.1.17 UserNameGenerator
	21.6.1.17.1 UserNameGenerator Request
	21.6.1.17.2 UserNameGenerator Response

	21.6.1.18 UserNameRecoverer
	21.6.1.18.1 UserNameRecoverer Request
	21.6.1.18.2 UserNameRecoverer Response


	21.6.2 Role Management
	21.6.2.1 View Role
	21.6.2.1.1 View Role Request
	21.6.2.1.2 View Role Response

	21.6.2.2 Create Role
	21.6.2.2.1 Create Role Request
	21.6.2.2.2 Create Role Response

	21.6.2.3 Modify Role (PUT)
	21.6.2.3.1 Modify Role (PUT) Request
	21.6.2.3.2 Modify Role (PUT) Response

	21.6.2.4 Modify Role (PATCH)
	21.6.2.4.1 Modify Role (PATCH) Request
	21.6.2.4.2 Modify Role (PATCH) Response

	21.6.2.5 Delete Role
	21.6.2.5.1 Delete Role Request
	21.6.2.5.2 Delete Role Response

	21.6.2.6 Remove Role (PATCH)
	21.6.2.6.1 Remove Role (PATCH) Request
	21.6.2.6.2 Remove Role (PATCH) Response


	21.6.3 Organization Management
	21.6.3.1 View Organization
	21.6.3.1.1 View Organization Request
	21.6.3.1.2 View Organization Response

	21.6.3.2 Create Organization
	21.6.3.2.1 Create Organization Request
	21.6.3.2.2 Create Organization Response

	21.6.3.3 Modify Organization (PUT)
	21.6.3.3.1 Modify Organization (PUT) Request
	21.6.3.3.2 Modify Organization (PUT) Response

	21.6.3.4 Modify Organizations (PATCH)
	21.6.3.4.1 Modify Organizations (PATCH) Request
	21.6.3.4.2 Modify Organizations (PATCH) Response

	21.6.3.5 Delete Organization
	21.6.3.5.1 Delete Organization Request
	21.6.3.5.2 Delete Organization Response


	21.6.4 Password Policy Management
	21.6.4.1 View Password Policy
	21.6.4.1.1 View Password Policy Request
	21.6.4.1.2 View Password Policy Response

	21.6.4.2 Create Password Policy
	21.6.4.2.1 Create Password Policy Request
	21.6.4.2.2 Create Password Policy Response

	21.6.4.3 Modify Password Policy (PUT)
	21.6.4.3.1 Modify Password Policy (PUT) Request
	21.6.4.3.2 Modify Password Policy (PUT) Response

	21.6.4.4 Modify Password Policy (PATCH)
	21.6.4.4.1 Modify Password Policy (PATCH) Request
	21.6.4.4.2 Modify Password Policy (PATCH) Response

	21.6.4.5 Delete Password Policy
	21.6.4.5.1 Delete Password Policy Request
	21.6.4.5.2 Delete Password Policy Response


	21.6.5 Notification Template Management
	21.6.5.1 View Notification Template
	21.6.5.1.1 View Notification Template Request
	21.6.5.1.2 View Notification Template Response

	21.6.5.2 Create Notification Template
	21.6.5.2.1 Create Notification Template Request
	21.6.5.2.2 Create Notification Template Response

	21.6.5.3 Modify Notification Template (PUT)
	21.6.5.3.1 Modify Notification Template (PUT) Request
	21.6.5.3.2 Modify Notification Template (PUT) Response

	21.6.5.4 Modify Notification Template (PATCH)
	21.6.5.4.1 Modify Notification Template (PATCH) Request
	21.6.5.4.2 Modify Notification Template (PATCH) Response

	21.6.5.5 Delete Notification Template
	21.6.5.5.1 Delete Notification Template Request
	21.6.5.5.2 Delete Notification Template Response


	21.6.6 System Property Management
	21.6.6.1 View System Properties
	21.6.6.1.1 View System Properties Request
	21.6.6.1.2 View System Properties Response

	21.6.6.2 Modify System Properties (PATCH)
	21.6.6.2.1 Modify System Properties (PATCH) Request
	21.6.6.2.2 Modify System Properties (PATCH) Response


	21.6.7 Service Provider Configuration Management
	21.6.7.1 Service Provider Configuration Request
	21.6.7.2 Service Provider Configuration Response

	21.6.8 Resource Types Management
	21.6.8.1 Resource Types Management Request
	21.6.8.2 Resource Types Management Response

	21.6.9 Using POST Search
	21.6.9.1 Using POST Search Request
	21.6.9.2 Using POST Search Response

	21.6.10 Retrieving Schemas

	21.7 Securing SCIM Resources
	21.7.1 Securing SCIM Resources Using OWSM Policy
	21.7.2 Securing SCIM Resources Using Custom Request Headers
	21.7.2.1 About Cross-Site Request Forgery
	21.7.2.2 Applicability of CSRF Protection to Identity REST Services
	21.7.2.3 Protecting SCIM Resources Using Custom Request Headers

	21.7.3 Securing SCIM Resources Using Origin Whitelist
	21.7.3.1 About HTTP Access Control (CORS)
	21.7.3.2 Applicability of CORS to Identity REST Services
	21.7.3.3 Protecting SCIM Service Using Origin Whitelist


	21.8 Oracle Identity Governance REST Service

	22 Using the JSON Web Token Service
	22.1 About the JWT Service
	22.2 Authentication Scenarios
	22.3 Acquiring and Applying a JWT
	22.4 JWT-Based OIM Identity Provider for SCIM-REST Authentication
	22.4.1 Overview of SCIM and REST Security
	22.4.2 JSON Web Token (JWT)
	22.4.3 The OIM Identity Provider Endpoint
	22.4.4 Session Timeout and Refresh
	22.4.5 Configuring JWT Timeout Period

	22.5 Endpoints and the Facade Application
	22.5.1 Endpoints
	22.5.1.1 The Token Endpoint ( /iam/governance/token/api/v1/tokens)
	22.5.1.1.1 About the Token Endpoint
	22.5.1.1.2 Token Endpoint Authorization
	22.5.1.1.3 Token Request

	22.5.1.2 The Refresh Token Endpoint (/iam/governance/token/api/v1/tokens)
	22.5.1.2.1 About the Refresh Token Endpoint
	22.5.1.2.2 Refresh Token End Point Configuration
	22.5.1.2.3 Refresh Token Request


	22.5.2 The Facade Application

	22.6 CSRF and CORS Protection

	23 Understanding Global Policy Attachments
	23.1 Predefined Policies
	23.2 Viewing and Editing Global Policy Attachments
	23.3 Enabling SCIM to Run Only on HTTPS
	23.4 Enabling REST to Run Only on HTTPS


	Part VIII Notification Service
	24 Developing Notification Events
	24.1 Notification Concepts
	24.2 Developing Custom Notification
	24.2.1 Building the Notification Logic
	24.2.1.1 Defining Event Metadata
	24.2.1.2 Creating the Resolver Class
	24.2.1.2.1 The getAvailableData Method
	24.2.1.2.2 The getReplacedData Method
	24.2.1.2.3 Example: Creating a Custom Resolver Class

	24.2.1.3 Creating the plugin.xml File

	24.2.2 Creating Plug-in Pack Containing the Resolver Class
	24.2.3 Building the Invocation Logic
	24.2.4 Configuring the Notification Service



	Part IX Customization Lifecycle
	25 Deploying and Undeploying Customizations
	25.1 Migrating User Modifiable Metadata Files
	25.1.1 Exporting Metadata Files to MDS
	25.1.2 Importing Metadata Files from MDS
	25.1.3 Deleting Metadata Files from MDS
	25.1.4 Creating MDS Backup
	25.1.5 Exporting All MDS Data for Oracle Identity Governance
	25.1.6 Sample WLST Script

	25.2 Migrating JARs and Resource Bundle
	25.2.1 Upload JAR Utility
	25.2.2 Download JAR Utility
	25.2.3 Delete JAR Utility
	25.2.4 Upload Resource Bundle Utility
	25.2.5 Download Resource Bundle Utility
	25.2.6 Delete Resource Bundle Utility



	Part X Reports and Audit
	26 Configuring Reports
	26.1 What are Oracle Identity Governance Reports?
	26.2 What is Oracle Analytics Server?
	26.3 Oracle Analytics Server (7.0) Licensing
	26.4 Installing and Configuring Oracle Analytics Server (7.0)
	26.5 Integrating Standalone Oracle Analytics Server with Oracle Identity Governance
	26.6 Configuring Oracle Identity Governance Reports
	26.7 Configuring Data Sources for Running Oracle Identity Governance Reports
	26.7.1 Configuring Oracle Identity Governance JDBC Connection
	26.7.2 Configuring BPEL-Based JDBC Connection
	26.7.2.1 About Reports With Secondary Data Source
	26.7.2.2 Configuring a Secondary Data Source for BPEL-Based Reports


	26.8 Generating Oracle Identity Governance Reports
	26.8.1 Generating the Reports Against the Sample Data Source
	26.8.2 Generating Reports Against the Oracle Identity Governance JDBC Data Source
	26.8.3 Generating Reports Against the BPEL-Based JDBC Data Source
	26.8.3.1 Reports With Secondary Data Source
	26.8.3.2 Generating the Reports Against the BPEL-Based JDBC Data Source


	26.9 Configuring Certification Reports
	26.9.1 Configuring the Oracle Analytics Server URL
	26.9.2 Enabling Certification Reports
	26.9.3 Enabling the Display of the Reports Tab
	26.9.4 Report Formats


	27 Understanding Auditing
	27.1 Overview of Auditing
	27.2 Audit Levels
	27.3 Tables Used for Storing Information About Auditors
	27.4 Issuing Audit Messages


	Part XI Appendixes
	A The FacesUtils Class
	B Username Reservation and Common Name Generation
	B.1 Username Reservation
	B.1.1 Overview of Username Reservation
	B.1.2 Enabling and Disabling Username Reservation
	B.1.3 Configuring the Username Policy
	B.1.3.1 About Username Policies
	B.1.3.2 Predefined Username Policies
	B.1.3.3 API for Username Generation
	B.1.3.4 Constraints in UserNameGenerationUtil
	B.1.3.5 Configuring the Default Username Policy

	B.1.4 Writing Custom User Name Policy
	B.1.4.1 Introduction to Custom Username Policy Development
	B.1.4.2 Implementing the Plug-in Interface
	B.1.4.3 Creating and Registering the plugin.xml File
	B.1.4.4 Guidelines for Writing Custom Username Policies
	B.1.4.5 Sample Implementation

	B.1.5 Releasing the Username
	B.1.6 Configuring Username Generation to Support Microsoft Active Directory

	B.2 Common Name Generation
	B.2.1 Common Name Generation for Create User Operation
	B.2.2 Configuring Common Name Generation
	B.2.3 Common Name Generation for Modify User Operation
	B.2.4 RDN Modification Scenarios



