
Oracle® FMW
Deploying and Managing Oracle Identity
Governance on Kubernetes

G22497-01
March 2025

Oracle FMW Deploying and Managing Oracle Identity Governance on Kubernetes,

G22497-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

Primary Author: Russell Hodgson

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 What's New in This Release?

Part I Introduction to Oracle Identity Governance on Kubernetes

2 Introducing Oracle Identity Governance on Kubernetes

2.1 Overview of Oracle Identity Governance on Kubernetes 2-1

2.2 Key Features of Oracle Identity Governance on Kubernetes 2-1

3 About the Kubernetes Deployment

3.1 What is Kubernetes? 3-1

3.2 About the Kubernetes Architecture 3-2

3.3 Key Components Used By an OIG Deployment 3-3

3.4 Overview of WebLogic Operator 3-7

3.5 OIG Deployment Methods 3-8

Part II Installing Oracle Identity Governance on Kubernetes

4 Before You Begin

5 System Requirements for OIG on Kubernetes

6 Preparing Your Environment

6.1 Confirming the Kubernetes Cluster is Ready 6-1

6.2 Obtaining the OIG Container Image 6-2

6.3 Creating a Persistent Volume Directory 6-2

6.4 Setting Up the Code Repository for OIG 6-3

6.5 Installing the WebLogic Kubernetes Operator 6-5

6.6 Creating a Kubernetes Namespace 6-7

iii

6.7 Creating a Kubernetes Secret for the Container Registry 6-8

7 Creating Oracle Identity Governance Domains

7.1 Creating OIG Domains Using WLST Offline Scripts 7-1

7.1.1 Creating the RCU Schemas 7-1

7.1.2 Creating a Kubernetes Secret for the WLST Domain 7-7

7.1.3 Creating a Kubernetes Secret for RCU in WLST 7-8

7.1.4 Creating a Kubernetes Persistent Volume and Persistent Volume Claim 7-9

7.1.5 Preparing the Create Domain Script 7-13

7.1.6 Creating the domain.yaml 7-20

7.1.7 Setting the OIG Server Memory Parameters 7-23

7.1.8 Deploying the WLST OIG Domain 7-24

7.1.9 Verifying the OIG WLST Deployment 7-27

7.2 Creating OIG Domains Using WDT Models 7-34

7.2.1 Creating a Kubernetes Secret for the WDT Domain 7-35

7.2.2 Creating a Kubernetes Secret for RCU in WDT 7-36

7.2.3 Preparing the WDT Create Domain YAML Files 7-38

7.2.4 Creating the WDT YAML files 7-42

7.2.5 Building the Domain Creation Image 7-44

7.2.6 Deploying the WDT OIG Domain 7-51

7.2.7 Verifying the WDT OIG Deployment 7-59

8 Configuring Ingress

8.1 Installing the NGINX Repository 8-1

8.2 Creating a Kubernetes Namespace for NGINX 8-2

8.3 Generating SSL Certificates 8-2

8.4 Installing the NGINX Controller 8-4

8.5 Preparing the Ingress values.yaml 8-8

8.6 Creating the Ingress 8-9

9 Validating the Domain URLs

10

Post Installation Configuration

10.1 Creating a Server Overrides File 10-1

10.2 Setting OIMFrontendURL Using MBeans 10-3

10.3 Updating the OIM Integration URLs 10-4

10.4 Installing and Configuring Connectors 10-5

10.4.1 Downloading OIG Connectors 10-5

iv

10.4.2 Copying the OIG Connector 10-5

10.4.3 Installing the OIG Connector 10-6

10.5 Configuring Design Console 10-6

10.5.1 Configuring the Design Console Ingress 10-7

10.5.2 Updating the T3 Channel 10-9

10.5.3 Using the Design Console Client 10-10

10.5.3.1 Using On-Premises Design Console 10-10

10.5.3.2 Using a Container Image for Design Console 10-10

10.5.4 Logging in to the Design Console 10-13

Part III Administering Oracle Identity Governance on Kubernetes

11

Scaling OIG Pods

11.1 Viewing Existing OIG Instances 11-1

11.2 Scaling Up OIG Instances 11-2

11.3 Scaling Down OIG Instances 11-4

11.4 Stopping the Domain 11-6

11.5 Domain Life Cycle Scripts 11-9

12

WLST Administration Operations

12.1 Connecting to OIG via WLST 12-1

12.2 Sample WLST Operations 12-3

12.3 Performing WLST Administration via SSL 12-4

13

Logging and Visualization

13.1 Installing Elasticsearch and Kibana 13-1

13.2 Creating the Logstash Pod 13-1

13.2.1 Variables Used in This Section 13-1

13.2.2 Creating a Kubernetes Secret for ELK 13-2

13.2.3 Finding Required Domain Details 13-3

13.2.4 Creating the Configmap 13-5

13.2.5 Enabling Logstash 13-8

13.3 Verifying the Pods 13-11

13.4 Verifying and Accessing the Kibana Console 13-12

14

Monitoring an Oracle Identity Governance Domain

v

15

Kubernetes Horizontal Pod Autoscaler

15.1 Prerequisite Configurations 15-1

15.2 Deploying the Kubernetes Metrics Server 15-3

15.3 Troubleshooting the Metrics Server 15-4

15.4 Deploying HPA 15-5

15.5 Verifying HPA 15-6

15.6 Deleting HPA 15-9

15.7 Other Considerations for HPA 15-9

16

Patching and Upgrading

16.1 Patching and Upgrading Within 14.1.2 16-1

16.1.1 Patching a Container Image 16-1

16.1.2 Upgrading WebLogic Kubernetes Operator 16-4

16.2 Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2 16-6

16.2.1 Upgrade Prerequisite Steps 16-6

16.2.2 Creating the domainUpgradeResponse.txt File 16-8

16.2.3 Creating the OIGDomainConfigResponse.txt File 16-12

16.2.4 Creating the domain-upgrade-pod.yaml 16-15

16.2.5 Shutting Down the OIG Domain 16-17

16.2.6 Backing Up the Database and Persistent Volume 16-18

16.2.7 Creating an Upgrade ConfigMap 16-18

16.2.8 Performing the Upgrade 16-19

16.2.9 Updating the OIG Container Image to 14c 16-28

16.2.10 Updating the WebLogic Kubernetes Operator 16-29

16.2.11 Starting the OIG 14c Deployment 16-29

16.2.12 Upgrading the Ingress 16-31

16.2.13 Restoring After a Failed Upgrade 16-32

17

General Troubleshooting

17.1 Viewing Pod Logs 17-1

17.2 Viewing Pod Descriptions 17-1

17.3 Known Issues 17-5

18

Deleting an OIG Deployment

18.1 Deleting the OIG Domain 18-1

18.2 Deleting RCU Schemas 18-2

18.3 Deleting Persistent Volume Contents 18-4

18.4 Deleting the WebLogic Kubernetes Operator 18-4

18.5 Deleting the Ingress 18-5

vi

18.6 Deleting the OIG Namespace 18-5

vii

List of Figures

3-1 An Illustration of the Kubernetes Cluster 3-2

viii

1
What's New in This Release?

This preface shows current and past versions of Oracle Identity Governance (OIG) 14c
container images and deployment scripts on Kubernetes. If any new functionality is added,
details are outlined.

Table 1-1 Release Notes for Oracle Identity Governance 14c on Kubernetes

Date Version Change

March 2025 14.1.2.1.0

GitHub release version 25.1.3

Initial release of Oracle Identity
Governance 14.1.2.1.0 on
Kubernetes.

Supports Oracle Identity
Governance 14.1.2.1.0
deployment using the OIG
container image and WebLogic
Operator 4.2.10.

The GitHub release version is the
latest version of the deployment
scripts used in Setting Up the
Code Repository for OIG.

1-1

https://github.com/oracle/fmw-kubernetes/releases

Part I
Introduction to Oracle Identity Governance on
Kubernetes

Oracle Identity Governance (OIG) can be deployed on Kubernetes.

This section includes the following chapters:

• Introducing Oracle Identity Governance on Kubernetes

• About the Kubernetes Deployment

2
Introducing Oracle Identity Governance on
Kubernetes

Oracle Identity Governance (OIG) is supported for deployment on Kubernetes.

This chapter includes the following topics:

• Overview of Oracle Identity Governance on Kubernetes

• Key Features of Oracle Identity Governance on Kubernetes

2.1 Overview of Oracle Identity Governance on Kubernetes
Oracle Identity Governance (OIG) provides an enterprise-level security platform, delivers risk-
aware end-to-end user authentication, single sign-on, and authorization protection. OIG
enables enterprises to secure access and seamlessly integrate social identities with
applications.

OIG can be deployed using modern container orchestration with Kubernetes, bringing
enhanced agility and scalability to IT environments

2.2 Key Features of Oracle Identity Governance on Kubernetes
The key features of using Oracle Identity Governance (OIG) on Kubernetes are:

• Simplified Deployment and DevOps: Containers allow teams to automate deployments
and streamline application lifecycle management, reducing manual effort, cost, and time to
deploy.

• Portability: Containerized OIG can run seamlessly across different environments,
including on-premises data centers, public clouds, and hybrid setups

• Scalability: Containers allow organizations to scale their security components dynamically,
ensuring that they can handle fluctuating workloads

• Improved Resource Efficiency: Containers provide lightweight, efficient runtime
environments that optimize resource utilization compared to traditional virtual machines.

2-1

3
About the Kubernetes Deployment

Containers offer an excellent mechanism to bundle and run applications. In a production
environment, you have to manage the containers that run the applications and ensure there is
no downtime. For example, if a container goes down, another container has to start
immediately. Kubernetes simplifies container management.

This chapter includes the following topics:

• What is Kubernetes?

• About the Kubernetes Architecture

• Key Components Used By an OIG Deployment

• Overview of WebLogic Operator

• OIG Deployment Methods

3.1 What is Kubernetes?
Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services that facilitates both declarative configuration and automation.

Kubernetes sits on top of a container platform such as CRI-O or Docker. Kubernetes provides
a mechanism which enables container images to be deployed to a cluster of hosts. When you
deploy a container through Kubernetes, Kubernetes deploys that container on one of its worker
nodes. The placement mechanism is transparent to the user.

Kubernetes provides:

• Service Discovery and Load Balancing: Kubernetes can expose a container using the
DNS name or using their own IP address. If traffic to a container is high, Kubernetes
balances the load and distributes the network traffic so that the deployment remains stable.

• Storage Orchestration: Kubernetes enables you to automatically mount a storage system
of your choice, such as local storages, NAS storages, public cloud providers, and more.

• Automated Rollouts and Rollbacks: You can describe the desired state for your
deployed containers using Kubernetes, and it can change the actual state to the desired
state at a controlled rate. For example, you can automate Kubernetes to create new
containers for your deployment, remove existing containers, and adopt all their resources
to the new container.

• Automatic Bin Packing: If you provide Kubernetes with a cluster of nodes that it can use
to run containerized tasks, and indicate the CPU and memory (RAM) each container
needs, Kubernetes can fit containers onto the nodes to make the best use of the available
resource.

• Self-healing: Kubernetes restarts containers that fail, replaces containers, kills containers
that do not respond to your user-defined health check, and does not advertise them to
clients until they are ready to serve.

• Secret and Configuration Management: Kubernetes lets you store and manage sensitive
information such as passwords, OAuth tokens, and SSH keys. You can deploy and update

3-1

secrets and application configuration without rebuilding your container images, and without
exposing secrets in your stack configuration.

When deploying Kubernetes, Oracle highly recommends that you use the traditional
recommendations of keeping different workloads in separate Kubernetes clusters. For
example, it is not a good practice to mix development and production workloads in the same
Kubernetes cluster.

3.2 About the Kubernetes Architecture
A Kubernetes host consists of a control plane and worker nodes.

Control Plane: A control plane is responsible for managing the Kubernetes components and
deploying applications. In an enterprise deployment, you need to ensure that the Kubernetes
control plane is highly available so that the failure of a control plane host does not fail the
Kubernetes cluster.

Worker Nodes: Worker nodes which are where the containers are deployed.

Note:

An individual host can be both a control plane host and a worker host.

Figure 3-1 An Illustration of the Kubernetes Cluster

Description of Components:

Chapter 3
About the Kubernetes Architecture

3-2

• Control Plane: The control plane comprises the following:

– kube-api server: The API server is a component of the control plane that exposes the
Kubernetes APIs.

– etcd: It is used to store the Kubernetes backing store and all the cluster data.

– Scheduler: The scheduler is responsible for the placement of containers on the worker
nodes. It takes into account resource requirements, hardware and software policy
constraints, affinity specifications, and data affinity.

– Control Manager: It is responsible for running the controller processes. Controller
processes consist of:

* Node Controller

* Route Controller

* Service Controller

The control plane consists of three nodes where the Kubernetes API server is
deployed, front ended by an LBR.

• Worker Node Components: The worker nodes include the following components:

– Kubelet: An Agent that runs on each worker node in the cluster. It ensures that the
containers are running in a pod.

– Kube Proxy: Kube proxy is a network proxy that runs on each node of the cluster. It
maintains network rules, which enable inter pod communications as well as
communications outside of the cluster.

– Add-ons: Add-ons extend the cluster further, providing such services as:

* DNS

* Web UI Dashboard

* Container Resource Monitoring

* Logging

3.3 Key Components Used By an OIG Deployment
An Oracle Identity Governance (OIG) deployment uses the Kubernetes components such as
pods and Kubernetes services.

Container Image

A container image is an immutable, static file that includes executable code. When deployed
into Kubernetes, it is the container image that is used to create a pod. The image contains the
system libraries, system tools, and Oracle binaries required to run in Kubernetes. The image
shares the OS kernel of its host machine.

A container image is compiled from file system layers built onto a parent or base image. These
layers promote the reuse of various components. So, there is no need to create everything
from scratch for every project.

A pod is based on a container image. This container image is read-only. Each pod has its own
instance of a container image.

A container image contains all the software and libraries required to run the product. It does
not require the entire operating system. Many container images do not include standard
operating utilities such as the vi editor or ping.

Chapter 3
Key Components Used By an OIG Deployment

3-3

When you upgrade a pod, you are actually instructing the pod to use a different container
image. For example, if the container image for Oracle Identity Governance is based on the July
Critical Patch Update (CPU), then to upgrade the pod to use the October CPU image, you
have to tell the pod to use the October CPU image and restart the pod. Further information on
upgrading can be found in Patching and Upgrading Within 14.1.2.

Oracle containers are built using a specific user and group ID. Oracle supplies its container
images using the user ID 1000 and group ID 0. To enable writing to file systems or persistent
volumes, you should grant the write access to this user ID. Oracle supplies all container
images using this user and group ID.

If your organization already uses this user or group ID, you should reconfigure the image to
use different IDs. This feature is outside the scope of this document.

Pods

A pod is a group of one or more containers, with shared storage/network resources, and a
specification for how to run the containers. A pod's contents are always co-located and co-
scheduled, and run in a shared context. A pod models an application-specific logical host that
contains one or more application containers which are relatively tightly coupled.

In an Oracle Identity Governance (OIG) deployment, each OIG server runs in a different pod.

If a node becomes unavailable, Kubernetes does not delete the pods automatically. Pods that
run on an unreachable node attain the 'Terminating' or 'Unknown' state after a timeout. Pods
may also attain these states when a user attempts to delete a pod on an unreachable node
gracefully. You can remove a pod in such a state from the apiserver in one of the following
ways:

• You or the Node Controller deletes the node object.

• The kubelet on the unresponsive node starts responding, terminates the pod, and removes
the entry from the apiserver.

• You force delete the pod.

Oracle recommends the best practice of using the first or the second approach. If a node is
confirmed to be dead (for example: permanently disconnected from the network, powered
down, and so on), delete the node object. If the node suffers from a network partition, try to
resolve the issue or wait for the partition to heal. When the partition heals, the kubelet
completes the deletion of the pod and frees up its name in the apiserver.

Typically, the system completes the deletion if the pod is no longer running on a node or an
administrator has deleted it. You may override this by force deleting the pod.

Pod Scheduling

By default, Kubernetes will schedule a pod to run on any worker node that has sufficient
capacity to run that pod. In some situations, it may be desirable that scheduling occurs on a
subset of the worker nodes available. This type of scheduling can be achieved by using
Kubernetes labels.

Persistent Volumes

When a pod is created, it is based on a container image. A container image is supplied by
Oracle for the products you are deploying. When a pod gets created, a runtime environment is
created based upon that image. That environment is refreshed with the container image every
time the pod is restarted. This means that any changes you make inside a runtime
environment are lost whenever the container gets restarted.

Chapter 3
Key Components Used By an OIG Deployment

3-4

A persistent volume is an area of disk, usually provided by NFS that is available to the pod but
not part of the image itself. This means that the data you want to keep, for example the OIG
domain configuration, is still available after you restart a pod, that is to say, that the data is
persistent.

There are two ways of mounting a persistent volume (PV) to a pod:

1. Mount the PV to the pod directly, so that wherever the pod starts in the cluster the PV is
available to it. The upside to this approach is that a pod can be started anywhere without
extra configuration. The downside to this approach is that there is one NFS volume which
is mounted to the pod. If the NFS volume becomes corrupted, you will have to either revert
to a backup or have to failover to a disaster recovery site.

2. Mount the PV to the worker node and have the pod interact with it as if it was a local file
system. The advantages of this approach are that you can have different NFS volumes
mounted to different worker nodes, providing built-in redundancy. The disadvantages of
this approach are:

• Increased management overhead.

• Pods have to be restricted to nodes that use a specific version of the file system. For
example, all odd numbered pods use odd numbered worker nodes mounted to file
system 1, and all even numbered pods use even numbered worker nodes mounted to
file system 2.

• File systems have to be mounted to every worker node on which a pod may be
started. This requirement is not an issue in a small cluster, unlike in a large cluster.

• Worker nodes become linked to the application. When a worker node undergoes
maintenance, you need to ensure that file systems and appropriate labels are restored.

You will need to set up a process to ensure that the contents of the NFS volumes are kept
in sync by using something such as the rsync cron job.
If maximum redundancy and availability is your goal, then you should adopt this solution.

Kubernetes Services

Kubernetes services expose the processes running in the pods regardless of the number of
pods that are running. For example, OIG servers, each running in different pods will have a
service associated with them. This service will redirect your request to the individual pods in
the cluster.

Kubernetes services can be internal or external to the cluster. Internal services are of the type
ClusterIP and external services are of the type NodePort.

Some deployments use a proxy in front of the service. This proxy is typically provided by an
'Ingress' load balancer such as Ngnix. Ingress allows a level of abstraction to the underlying
Kubernetes services.

When using Kubernetes, NodePort Services have a similar result as using Ingress. In the
NodePort mode, Ingress allows for consolidated management of these services.

This guide describes how to use Ingress using the Nginx Ingress Controller.

The Kubernetes services use a small port range. Therefore, when a Kubernetes service is
created, there will be a port mapping. For instance, if a pod is using port 7001, then a
Kubernetes/Ingress service may use 30701 as its port, mapping port 30701 to 7001 internally.
It is worth noting that if you are using individual NodePort Services, then the corresponding
Kubernetes service port will be reserved on every worker node in the cluster.

Chapter 3
Key Components Used By an OIG Deployment

3-5

Kubernetes/ingress services are known to each worker node, regardless of the worker node on
which the containers are running. Therefore, a load balancer is often placed in front of the
worker node to simplify routing and worker node scalability.

To interact with a service, you have to refer to it using the format:
worker_node_hostname:Service port.

If you have multiple worker nodes, then you should include multiple worker nodes in your calls
to remove single points of failure. You can do this in a number of ways including:

• Load balancer

• Direct proxy calls

• DNS CNames

Ingress Controller

There are two ways of interacting with your Kubernetes services. You can create an externally
facing service for each Kubernetes object you want to access. This type of service is known as
the Kubernetes NodePort Service. Alternatively, you can use an ingress service inside the
Kubernetes cluster to redirect requests internally.

Ingress is a proxy server which sits inside the Kubernetes cluster, unlike the NodePort
Services which reserve a port per service on every worker node in the cluster. With an ingress
service, you can reserve single ports for all HTTP / HTTPS traffic. An Ingress service has the
concept of virtual hosts and can terminate SSL, if required. There are various implementations
of Ingress. However, this guide describes the installation and configuration of NGNIX. The
installation will be similar for other Ingress services but the command syntax may be different.
Therefore, when you use a different Ingress, see the appropriate vendor documentation for the
equivalent commands. Ingress can proxy HTTP, HTTPS, LDAP, and LDAPS protocols. Ingress
is not mandatory

Ingress runs inside the Kubernetes cluster. You can configure it in different ways:

• Load Balancer: Load balancer provides an external IP address to which you can connect
to interact with the Kubernetes services.

• NodePort: In this mode, Ingress acts as a simple load balancer between the Kubernetes
services. The difference between using an Ingress NodePort Service as opposed to
individual node port services is that the Ingress controller reserves one port for each
service type it offers. For example, one for all HTTP communications, another for all LDAP
communications, and so on. Individual node port services reserve one port for each
service and type used in an application.

Domain Name System

Every service defined in the cluster (including the DNS server itself) is assigned a DNS name.
By default, a client pod's DNS search list includes the pod's own namespace and the cluster's
default domain.

The following types of DNS records are created for a Kubernetes cluster:

• Services
Record Type: A or AAAA record

Name format: my-svc.namespace.svc.cluster-example.com
• Pods

Record Type: A or AAAA record

Name format: podname.namespace.pod.cluster-example.com

Chapter 3
Key Components Used By an OIG Deployment

3-6

Kubernetes uses a built-in DNS server called 'CoreDNS' which is used for the internal
name resolution.

External name resolution (names used outside of the cluster, for example:
loadbalancer.example.com) may not possible inside the Kubernetes cluster. If you
encounter this issue, you can use one of the following options:

– Option 1 - Add a secondary DNS server to CoreDNS for the company domain.

– Option 2 - Add individual host entries to CoreDNS for the external hosts.

Namespaces

Namespaces enable you to organize clusters into virtual sub-clusters which are helpful when
different teams or projects share a Kubernetes cluster. You can add any number of
namespaces within a cluster, each logically separated from others but with the ability to
communicate with each other.

In this guide the OIG deployment uses the namespace oigns.

3.4 Overview of WebLogic Operator
The WebLogic Kubernetes Operator (the “operator”) supports running Oracle Identity
Governance (OIG) domains on Kubernetes.

The operator takes advantage of the Kubernetes operator pattern, which means that it uses
Kubernetes APIs to provide support for operations, such as: provisioning, lifecycle
management, application versioning, product patching, scaling, and security. The operator also
enables the use of tooling that is native to this infrastructure for monitoring, logging, tracing,
and security.

OIG domains are supported using the “domain on a persistent volume” model only, where the
domain home is located in a persistent volume (PV).

Domain on persistent volume (Domain on PV) is an operator domain home source type, which
requires that the domain home exists on a persistent volume. The domain home can be
created either manually using the WebLogic Scripting Tool (WLST) scripts or automatically with
WebLogic Deployment Tool (WDT) models by specifying the section,
domain.spec.configuration.initializeDomainOnPV, in the domain resource YAML file. The
initial domain topology and resources are described using WebLogic Deploy Tooling (WDT)
models.

Note:

The initializeDomainOnPV section provides a one time only domain home
initialization. The operator creates the domain when the domain resource is first
deployed. After the domain is created, this section is ignored. Subsequent domain
lifecycle updates must be controlled by the WebLogic Server Administration Console,
WebLogic Scripting Tool (WLST), or other mechanisms.

The WebLogic Kubernetes Operator has several key features to assist you with deploying and
managing Oracle Identity Governance domains in a Kubernetes environment. You can:

• Create OIG instances in a Kubernetes persistent volume. This persistent volume can
reside in an NFS file system or other Kubernetes volume types.

• Start servers based on declarative startup parameters and desired states.

Chapter 3
Overview of WebLogic Operator

3-7

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/choosing-a-model/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/choosing-a-model/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/overview/#weblogic-deploy-tooling-models
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/overview/#weblogic-deploy-tooling-models

• Expose the OIG Services through external access.

• Scale OIG domains by starting and stopping Managed Servers on demand.

• Publish operator and WebLogic Server logs into Elasticsearch and interact with them in
Kibana.

• Monitor the OIG instance using Prometheus and Grafana.

WebLogic Kubernetes Operator Limitations with OIG

Compared to running a WebLogic Server domain in Kubernetes using the operator, the
following limitations currently exist for OIG domains:

• OIG domains are supported using the “domain on a persistent volume” model only, where
the domain home is located in a persistent volume (PV).The “domain in image” model is
not supported.

• Only configured clusters are supported. Dynamic clusters are not supported for OIG
domains. Note that you can still use all of the scaling features, but you need to define the
maximum size of your cluster at domain creation time, using the parameter
configuredManagedServerCount. For more details on this parameter, see Preparing the
Create Domain Script. It is recommended to pre-configure your cluster so it’s sized a little
larger than the maximum size you plan to expand it to. You must rigorously test at this
maximum size to make sure that your system can scale as expected.

• The WebLogic Monitoring Exporter currently supports the WebLogic MBean trees only.
Support for JRF MBeans has not been added yet.

• We do not currently support running OIG in non-Linux containers.

3.5 OIG Deployment Methods
Oracle Identity Governance (OIG) can be deployed using one of the following methods:

• WebLogic Scripting Tool (WLST) configuration scripts

• WebLogic Deploy Tooling (WDT) models

WebLogic Scripting Tool Configuration Scripts

The OIG WebLogic Scripting Tool (WLST) deployment scripts require you to deploy a separate
Kubernetes job that creates the OIG domain on an existing Kubernetes persistent volume (PV)
and persistent volume claim (PVC). The Repository Creation Utility (RCU) schemas required
for OIG must be created manually in the Oracle Database. The WLST deployment scripts also
generate the domain YAML file, which can then be used to start the Kubernetes resources of
the corresponding domain.

WebLogic Deploy Tooling Models

WebLogic Deploy Tooling (WDT) models are a convenient and simple alternative to WLST
configuration scripts. They compactly define a WebLogic domain using model files, variable
properties files, and application archive files.

Using WDT models, all the required information is specified in the domain custom resource
YAML file, eliminating the requirement for a separate Kubernetes job. With WDT models, the
WebLogic Kubernetes Operator will create the RCU schemas, create the persistent volume
and claim, then create the WebLogic domain on the persistent volume, prior to starting the
servers.

Chapter 3
OIG Deployment Methods

3-8

https://github.com/oracle/weblogic-monitoring-exporter

For more information about the model format and its integration, see Usage and Working With
WDT Model Files. The WDT model format is fully described in the open source, WebLogic
Deploy Tooling GitHub project.

The main benefits of WDT models are:

• A set of single-purpose tools supporting Weblogic domain configuration lifecycle
operations.

• All tools work off of a shared, declarative model, eliminating the need to maintain
specialized WLST scripts.

• WDT knowledge base understands the MBeans, attributes, and WLST capabilities/bugs
across WLS versions.

Chapter 3
OIG Deployment Methods

3-9

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/usage/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/model-files/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/model-files/
https://oracle.github.io/weblogic-deploy-tooling/
https://oracle.github.io/weblogic-deploy-tooling/

Part II
Installing Oracle Identity Governance on
Kubernetes

Install Oracle Identity Governance (OIG) on Kubernetes.

This section contains the following chapters:

• Before You Begin

• System Requirements for OIG on Kubernetes

• Preparing Your Environment

• Creating Oracle Identity Governance Domains

• Configuring Ingress

• Validating the Domain URLs

• Post Installation Configuration

4
Before You Begin

This documentation explains how to configure Oracle Identity Governance (OIG) on a
Kubernetes cluster where no other Oracle Identity Management products will be deployed. For
detailed information about this type of deployment, start at System Requirements for OIG on
Kubernetes and follow the documentation sequentially.

Please note that this documentation does not explain how to configure a Kubernetes cluster
given the product can be deployed on any compliant Kubernetes vendor.

If you are deploying multiple Oracle Identity Management products on the same Kubernetes
cluster, then you must follow Enterprise Deployment Guide for Oracle Identity and Access
Management in a Kubernetes Cluster. Please note, you also have the option to follow the
Enterprise Deployment Guide for Oracle Identity and Access Management in a Kubernetes
Cluster even if you are only installing OIG and no other Oracle Identity Management products.

The Enterprise Deployment Automation section in that guide also contains details on
automation scripts that can:

• Automate the creation of a Kubernetes cluster on Oracle Cloud Infrastructure (OCI), ready
for the deployment of Oracle Identity Management products.

• Automate the deployment of Oracle Identity Management products on any compliant
Kubernetes cluster.

4-1

5
System Requirements for OIG on Kubernetes

This section provides information about the system requirements and limitations for deploying
and running Oracle Identity Management (OIG) on Kubernetes with the WebLogic Kubernetes
Operator 4.2.10.

Kubernetes Requirements

You must have a running Kubernetes cluster that meets the following requirements:

• The Kubernetes cluster and container engine must meet the minimum version
requirements outlined in document ID 2723908.1 on My Oracle Support.

• An administrative host from which to deploy the products: This host could be a Kubernetes
Control host, a Kubernetes Worker host, or an independent host. This host must have
kubectl deployed using the same version as your cluster.

• The Kubernetes cluster must have sufficient nodes and resources.

• You must have the cluster-admin role to install the WebLogic Kubernetes Operator.

• An installation of Helm is required on the Kubernetes cluster. Helm is used to create and
deploy the necessary resources on the Kubernetes cluster.

• A supported container engine such as CRI-O or Docker must be installed and running on
the Kubernetes cluster.

• The nodes in the Kubernetes cluster must have access to a persistent volume such as a
Network File System (NFS) mount, or a shared file system.

• The system clocks on node of the Kubernetes cluster must be synchronized. Run the date
command simultaneously on all the nodes in each cluster and then synchronize
accordingly.

Note:

This documentation does not tell you how to install a Kubernetes cluster, Helm, or the
container engine. Please refer to your vendor specific documentation for this
information. Also see System Requirements for OIG on Kubernetes.

Database Requirements

You must have a running Oracle Database that meets the following requirements:

• Oracle Database 19.23 or later. The database must be a supported version for OIG as
outlined in Oracle Fusion Middleware 14c Certifications.

• The database must meet the requirements as outlined in About Database Requirements
for an Oracle Fusion Middleware Installation and in RCU Requirements for Oracle
Databases.

• It is recommended that the database initialization parameters are set as per Minimum
Initialization Parameters.

5-1

https://support.oracle.com

Container Registry Requirements

You must have your own container registry to store container and domain images in the
following circumstances:

• If your Kubernetes cluster does not have network access to Oracle Container Registry,
then you must have your own container registry to store the OIG container images.

• If you intend to deploy OIG with WDT models, you must have a container registry to store
the domain image.

Your container registry must be accessible from all nodes in the Kubernetes cluster.

Alternatively if you don’t have your own container registry, you can load the images on each
worker node in the cluster. Loading the images on each worker node is not recommended as it
incurs a large administrative overhead.

Note:

This documentation does not tell you how to install a container registry. Please refer
to your vendor specific documentation for this information.

Chapter 5

5-2

https://container-registry.oracle.com

6
Preparing Your Environment

Before embarking on Oracle Identity Management (OIG) deployment on Kubernetes, you must
prepare your environment.

This chapter contains the following topics:

• Confirming the Kubernetes Cluster is Ready

• Obtaining the OIG Container Image

• Creating a Persistent Volume Directory

• Setting Up the Code Repository for OIG

• Installing the WebLogic Kubernetes Operator

• Creating a Kubernetes Namespace

• Creating a Kubernetes Secret for the Container Registry

6.1 Confirming the Kubernetes Cluster is Ready
As per System Requirements for OIG on Kubernetes, a Kubernetes cluster should have
already been configured.

1. Run the following command on the Kubernetes administrative node to check the cluster
and worker nodes are running:

kubectl get nodes,pods -n kube-system

The output will look similar to the following:

NAME STATUS ROLES AGE VERSION
 node/worker-node1 Ready <none> 17h 1.30.3+1.el8
 node/worker-node2 Ready <none> 17h 1.30.3+1.el8
 node/master-node Ready control-plane,master 23h 1.30.3+1.el8

 NAME READY STATUS RESTARTS AGE
 pod/coredns-66bff467f8-fnhbq 1/1 Running 0 23h
 pod/coredns-66bff467f8-xtc8k 1/1 Running 0 23h
 pod/etcd-master 1/1 Running 0 21h
 pod/kube-apiserver-master-node 1/1 Running 0 21h
 pod/kube-controller-manager-master-node 1/1 Running 0 21h
 pod/kube-flannel-ds-amd64-lxsfw 1/1 Running 0 17h
 pod/kube-flannel-ds-amd64-pqrqr 1/1 Running 0 17h
 pod/kube-flannel-ds-amd64-wj5nh 1/1 Running 0 17h
 pod/kube-proxy-2kxv2 1/1 Running 0 17h
 pod/kube-proxy-82vvj 1/1 Running 0 17h
 pod/kube-proxy-nrgw9 1/1 Running 0 23h
 pod/kube-scheduler-master 1/1 Running 0 21h

6-1

6.2 Obtaining the OIG Container Image
The Oracle Identity Governance (OIG) Kubernetes deployment requires access to an OIG
container image.

Prebuilt OIG Container Image

The latest prebuilt OIG 14.1.2.1.0 container image can be downloaded from Oracle Container
Registry. This image is prebuilt by Oracle and includes Oracle Identity Governance 14.1.2.1.0,
the latest Patch Set Update (PSU) and other fixes released with the Critical Patch Update
(CPU) program.

• The OIG container images available can be found on Oracle Container Registry, by
navigating to Middleware > oig for the initial March 2025 release, and Middleware >
oig_cpu for subsequent releases that contain the latest PSU and CPU fixes.

• Before using the image you must login and accept the license agreement.

• Throughout this documentation, the image repository and tag used is: container-
registry.oracle.com/middleware/oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD> where
<YYMMDD> is the date shown in the image tag. For the initial March 2025 release, replace
with container-registry.oracle.com/middleware/oig:14.1.2.1.0-jdk17-ol8-
<YYMMDD>.

You can use this image in the following ways:

• Pull the container image from the Oracle Container Registry automatically during the OIG
Kubernetes deployment.

• Manually pull the container image from the Oracle Container Registry and then upload it to
your own container registry.

• Manually pull the container image from the Oracle Container Registry and manually stage
it on each worker node.

6.3 Creating a Persistent Volume Directory
As referenced in System Requirements for OIG on Kubernetes, the nodes in the Kubernetes
cluster must have access to a persistent volume such as a Network File System (NFS) mount
or a shared file system.

In the examples below an NFS volume is mounted on all nodes in the Kubernetes cluster, and
is accessible via the directory /nfs_volumes/oig/governancedomainpv.

Perform the following steps:

1. On the administrative host, run the following command to create an governancedomainpv
directory:

Chapter 6
Obtaining the OIG Container Image

6-2

https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://container-registry.oracle.com/

Note:

The following assumes the user creating the file has userid 1000 or is part of
group 0.

cd <persistent_volume>
mkdir governancedomainpv
sudo chown -R 1000:0 governancedomainpv

For example:

cd /nfs_volumes/oig
mkdir governancedomainpv
sudo chown -R 1000:0 governancedomainpv

2. On the administrative host run the following to ensure it is possible to read and write to the
persistent volume:

cd <persistent_volume>/governancedomainpv
touch fileadmin.txt
ls fileadmin.txt

For example:

cd /nfs_volumes/oig/governancedomainpv
touch fileadmin.txt
ls fileadmin.txt

6.4 Setting Up the Code Repository for OIG
To deploy Oracle Identity Governance (OIG) you need to set up the code repository which
provides sample deployment yaml files.

The OIG deployment on Kubernetes leverages the WebLogic Kubernetes Operator
infrastructure, and deployment scripts provided by Oracle for creating OIG containers.

Perform the following steps to set up the OIG deployment scripts:

Note:

The steps below should be performed on the administrative node that has access to
the Kubernetes cluster.

1. Create a working directory to setup the source code:

mkdir <workdir>

Chapter 6
Setting Up the Code Repository for OIG

6-3

For example:

mkdir /OIGK8S

2. Download the latest OIG deployment scripts from the OIG repository:

cd <workdir>
git clone https://github.com/oracle/fmw-kubernetes.git

For example:

cd /OIGK8S
git clone https://github.com/oracle/fmw-kubernetes.git

The output will look similar to the following:

Cloning into 'fmw-kubernetes'...
remote: Enumerating objects: 41547, done.
remote: Counting objects: 100% (6171/6171), done.
remote: Compressing objects: 100% (504/504), done.
remote: Total 41547 (delta 5638), reused 5919 (delta 5481), pack-reused
35376 (from 3)
Receiving objects: 100% (41547/41547), 70.32 MiB | 13.12 MiB/s, done.
Resolving deltas: 100% (22214/22214), done.
Checking connectivity... done.
Checking out files: 100% (19611/19611), done

3. Set the $WORKDIR environment variable as follows:

export WORKDIR=<workdir>/fmw-kubernetes/OracleIdentityGovernance

For example:

export WORKDIR=/OIGK8S/fmw-kubernetes/OracleIdentityGovernance

4. Run the following command and see if the WebLogic custom resource definition name
already exists:

kubectl get crd

In the output you should see:

No resources found

If you see any of the following:

NAME AGE
clusters.weblogic.oracle 5d
domains.weblogic.oracle 5d

Chapter 6
Setting Up the Code Repository for OIG

6-4

then run the following command to delete the existing crd’s:

kubectl delete crd clusters.weblogic.oracle

kubectl delete crd domains.weblogic.oracle

6.5 Installing the WebLogic Kubernetes Operator
Oracle Identity Governance (OIG) on Kubernetes leverages the WebLogic Kubernetes
Operator.

1. Create a Kubernetes namespace for the WebLogic Kubernetes Operator by running the
following command:

kubectl create namespace <sample-kubernetes-operator-ns>

For example:

kubectl create namespace opns

The output will look similar to the following:

namespace/opns created

2. Create a service account for the operator in the operator’s namespace by running the
following command:

kubectl create serviceaccount -n <sample-kubernetes-operator-ns> <sample-
kubernetes-operator-sa>

For example:

kubectl create serviceaccount -n opns op-sa

The output will look similar to the following:

serviceaccount/op-sa created

3. Navigate to the $WORKDIR:

 cd $WORKDIR

4. Run the following helm command to install and start the operator:

helm install weblogic-kubernetes-operator kubernetes/charts/weblogic-
operator \
--namespace <sample-kubernetes-operator-ns> \
--set image=ghcr.io/oracle/weblogic-kubernetes-operator:4.2.10 \
--set serviceAccount=<sample-kubernetes-operator-sa> \
--set "enableClusterRoleBinding=true" \
--set "domainNamespaceSelectionStrategy=LabelSelector" \

Chapter 6
Installing the WebLogic Kubernetes Operator

6-5

--set "domainNamespaceLabelSelector=weblogic-operator\=enabled" \
--set "javaLoggingLevel=FINE" --wait

For example:

helm install weblogic-kubernetes-operator kubernetes/charts/weblogic-
operator \
--namespace opns \
--set image=ghcr.io/oracle/weblogic-kubernetes-operator:4.2.10 \
--set serviceAccount=op-sa \
--set "enableClusterRoleBinding=true" \
--set "domainNamespaceSelectionStrategy=LabelSelector" \
--set "domainNamespaceLabelSelector=weblogic-operator\=enabled" \
--set "javaLoggingLevel=FINE" --wait

The output will look similar to the following:

NAME: weblogic-kubernetes-operator
LAST DEPLOYED: <DATE>
NAMESPACE: opns
STATUS: deployed
REVISION: 1
TEST SUITE: None

5. Verify that the operator’s pod and services are running by executing the following
command:

kubectl get all -n <sample-kubernetes-operator-ns>

For example:

kubectl get all -n opns

The output will look similar to the following:

NAME READY STATUS
RESTARTS AGE
pod/weblogic-operator-676d5cc6f4-wct7b 1/1 Running
0 40s
pod/weblogic-operator-webhook-7996b8b58b-9sfhd 1/1 Running
0 40s

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
service/weblogic-operator-webhook-svc ClusterIP 10.100.91.237
<none> 8083/TCP,8084/TCP 47s

NAME READY UP-TO-DATE
AVAILABLE AGE
deployment.apps/weblogic-operator 1/1 1
1 40s
deployment.apps/weblogic-operator-webhook 1/1 1
1 40s

Chapter 6
Installing the WebLogic Kubernetes Operator

6-6

NAME DESIRED CURRENT
READY AGE
replicaset.apps/weblogic-operator-676d5cc6f4 1 1
1 40s
replicaset.apps/weblogic-operator-webhook-7996b8b58b 1 1
1 46s

6. Verify the operator pod’s log:

kubectl logs -n <sample-kubernetes-operator-ns> -c weblogic-operator
deployments/weblogic-operator

For example:

kubectl logs -n opns -c weblogic-operator deployments/weblogic-operator

The output will look similar to the following:

...
{"timestamp":"<DATE>","thread":21,"fiber":"","namespace":"","domainUID":"",
"level":"FINE","class":"oracle.kubernetes.operator.DeploymentLiveness","met
hod":"run","timeInMillis":1678183291191,"message":"Liveness file last
modified time set","exception":"","code":"","headers":{},"body":""}
{"timestamp":"<DATE>","thread":37,"fiber":"","namespace":"","domainUID":"",
"level":"FINE","class":"oracle.kubernetes.operator.DeploymentLiveness","met
hod":"run","timeInMillis":1678183296193,"message":"Liveness file last
modified time set","exception":"","code":"","headers":{},"body":""}
{"timestamp":"<DATE>","thread":31,"fiber":"","namespace":"","domainUID":"",
"level":"FINE","class":"oracle.kubernetes.operator.DeploymentLiveness","met
hod":"run","timeInMillis":1678183301194,"message":"Liveness file last
modified time set","exception":"","code":"","headers":{},"body":""}
{"timestamp":"<DATE>","thread":31,"fiber":"","namespace":"","domainUID":"",
"level":"FINE","class":"oracle.kubernetes.operator.DeploymentLiveness","met
hod":"run","timeInMillis":1678183306195,"message":"Liveness file last
modified time set","exception":"","code":"","headers":{},"body":""}

6.6 Creating a Kubernetes Namespace
You must create a namespace to store the Kubernetes objects for Oracle Identity Governance
(OIG).

1. Create a Kubernetes namespace for the OIG deployment by running the following
command:

kubectl create namespace <namespace>

For example:

kubectl create namespace oigns

Chapter 6
Creating a Kubernetes Namespace

6-7

The output will look similar to the following:

namespace/oigns created

2. Run the following command to tag the namespace so the WebLogic Kubernetes Operator
can manage it:

kubectl label namespaces <domain_namespace> weblogic-operator=enabled

For example:

kubectl label namespaces oigns weblogic-operator=enabled

The output will look similar to the following:

namespace/oigns labeled

3. Run the following command to check the label was created:

kubectl describe namespace <domain_namespace>

For example:

kubectl describe namespace oigns

The output will look similar to the following:

Name: oigns
Labels: kubernetes.io/metadata.name=oigns
 weblogic-operator=enabled
Annotations: <none>
Status: Active

No resource quota.

No LimitRange resource.

6.7 Creating a Kubernetes Secret for the Container Registry
Create a Kubernetes secret to stores the credentials for the container registry where the
Oracle Identity Governance (OIG) image is stored. This step must be followed if using Oracle
Container Registry or your own private container registry. If you are not using a container
registry and have loaded the images on each of the worker nodes, you can skip this section.

1. Run the following command to create the secret:

kubectl create secret docker-registry "orclcred" --docker-
server=<CONTAINER_REGISTRY> \
--docker-username="<USER_NAME>" \
--docker-password=<PASSWORD> --docker-email=<EMAIL_ID> \
--namespace=<domain_namespace>

Chapter 6
Creating a Kubernetes Secret for the Container Registry

6-8

For example, if using Oracle Container Registry:

kubectl create secret docker-registry "orclcred" --docker-server=container-
registry.oracle.com \
--docker-username="user@example.com" \
--docker-password=password --docker-email=user@example.com \
--namespace=oigns

Replace <USER_NAME> and <PASSWORD> with the credentials for the registry with the
following caveats:

• If using Oracle Container Registry to pull the OIG container image, this is the
username and password used to login to Oracle Container Registry. Before you can
use this image you must login to Oracle Container Registry, navigate to Middleware >
oig and accept the license agreement. For future releases (post March 2025) that
contain the latest Patch Set Update (PSU) and other fixes released with the Critical
Patch Update (CPU) program, you should navigate to Middleware > oig_cpu.

• If using your own container registry to store the OIG container image, this is the
username and password (or token) for your container registry.

The output will look similar to the following:

secret/orclcred created

Chapter 6
Creating a Kubernetes Secret for the Container Registry

6-9

https://container-registry.oracle.com/
https://container-registry.oracle.com/

7
Creating Oracle Identity Governance Domains

Choose one of the following supported methods to create an Oracle Identity Governance (OIG)
domain:

• Creating OIG Domains Using WLST Offline Scripts

• Creating OIG Domains Using WDT Models

7.1 Creating OIG Domains Using WLST Offline Scripts
The Oracle Identity Governance (OIG) deployment scripts demonstrate the creation of an OIG
domain home on an existing Kubernetes persistent volume (PV) and persistent volume claim
(PVC). The scripts also generate the domain YAML file, which can then be used to start the
Kubernetes artifacts of the corresponding domain.

Before following this section, make sure you have followed Preparing Your Environment, and
ensure your Oracle Database is running.

This section includes the following topics:

• Creating the RCU Schemas

• Creating a Kubernetes Secret for the WLST Domain

• Creating a Kubernetes Secret for RCU in WLST

• Creating a Kubernetes Persistent Volume and Persistent Volume Claim

• Preparing the Create Domain Script

• Creating the domain.yaml

• Setting the OIG Server Memory Parameters

• Deploying the WLST OIG Domain

• Verifying the OIG WLST Deployment

7.1.1 Creating the RCU Schemas
In this section you create the Repository Creation Utility (RCU) schemas in the Oracle
Database.

Note:

Before following the steps below, make sure that the Oracle Database and Listener
are up and running, and you can connect to the database via SQL*Plus or other
client tool.

1. Run the following command to create a helper pod to run RCU:

7-1

• If using Oracle Container Registry or your own container registry for the Oracle Identity
Governance (OIG) container image:

kubectl run --image=<image_name-from-registry>:<tag> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1", "spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \
helper -n <domain_namespace> \
-- sleep infinity

For example:

kubectl run --image=container-registry.oracle.com/middleware/
oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1","spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \
helper -n oigns \
-- sleep infinity

• If you are not using a container registry and have loaded the image on each of the
worker nodes, run the following command:

kubectl run helper --image <image>:<tag> -n oigns -- sleep infinity

For example:

kubectl run helper --image oracle/oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>
-n oigns --sleep infinity

The output will look similar to the following:

pod/helper created

2. Run the following command to check the pod is running:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
helper 1/1 Running 0 3m

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-2

Note:

If you are pulling the image from a container registry it may take several minutes
before the pod has a READY status of 1\1. While the pod is starting you can check
the status of the pod, by running the following command:

kubectl describe pod helper -n oigns

3. Run the following command to start a bash shell in the helper pod:

kubectl exec -it helper -n <domain_namespace> -- /bin/bash

For example:

kubectl exec -it helper -n oigns -- /bin/bash

This will take you into a bash shell in the running helper pod:

[oracle@helper ~]$

4. In the helper bash shell run the following commands to set the environment:

export DB_HOST=<db_host.domain>

export DB_PORT=<db_port>

export DB_SERVICE=<service_name>

export RCUPREFIX=<rcu_schema_prefix>

export RCU_SCHEMA_PWD=<rcu_schema_pwd>

echo -e <db_pwd>"\n"<rcu_schema_pwd> > /tmp/pwd.txt

cat /tmp/pwd.txt

Where:

• <db_host.domain> is the database server hostname.

• <db_port> is the database listener port.

• <service_name> is the database service name.

• <rcu_schema_prefix> is the RCU schema prefix you want to set.

• <db_pwd> is the SYS password for the database.

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-3

• <rcu_schema_pwd> is the password you want to set for the <rcu_schema_prefix>.

For example:

export DB_HOST=mydatabasehost.example.com

export DB_PORT=1521

export DB_SERVICE=orcl.example.com

export RCUPREFIX=OIGK8S

export RCU_SCHEMA_PWD=<password>

echo -e <password>"\n"<password> > /tmp/pwd.txt

cat /tmp/pwd.txt

Ensure the cat /tmp/pwd.txt command shows the correct passwords.

5. In the helper bash shell, run the following command to create the RCU schemas in the
database:

/u01/oracle/oracle_common/bin/rcu -silent -createRepository -databaseType
ORACLE \
-connectString $DB_HOST:$DB_PORT/$DB_SERVICE \
-dbUser sys -dbRole sysdba -useSamePasswordForAllSchemaUsers true \
-selectDependentsForComponents true -schemaPrefix $RCUPREFIX -component
OIM -component MDS -component SOAINFRA -component OPSS \
-f < /tmp/pwd.txt

The output will look similar to the following:

RCU Logfile: /tmp/RCU<DATE>/logs/rcu.log

Processing command line
Repository Creation Utility - Checking Prerequisites
Checking Global Prerequisites

Repository Creation Utility - Checking Prerequisites
Checking Component Prerequisites
Repository Creation Utility - Creating Tablespaces
Validating and Creating Tablespaces
Create tablespaces in the repository database
Repository Creation Utility - Create
Repository Create in progress.
 Percent Complete: 10
Executing pre create operations

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-4

 Percent Complete: 25
 Percent Complete: 25
 Percent Complete: 26
 Percent Complete: 27
 Percent Complete: 28
 Percent Complete: 28
 Percent Complete: 29
 Percent Complete: 29
Creating Common Infrastructure Services(STB)
 Percent Complete: 36
 Percent Complete: 36
 Percent Complete: 44
 Percent Complete: 44
 Percent Complete: 44
Creating Audit Services Append(IAU_APPEND)
 Percent Complete: 51
 Percent Complete: 51
 Percent Complete: 59
 Percent Complete: 59
 Percent Complete: 59
Creating Audit Services Viewer(IAU_VIEWER)
 Percent Complete: 66
 Percent Complete: 66
 Percent Complete: 67
 Percent Complete: 67
 Percent Complete: 68
 Percent Complete: 68
Creating Metadata Services(MDS)
 Percent Complete: 76
 Percent Complete: 76
 Percent Complete: 76
 Percent Complete: 77
 Percent Complete: 77
 Percent Complete: 78
 Percent Complete: 78
 Percent Complete: 78
Creating Weblogic Services(WLS)
 Percent Complete: 82
 Percent Complete: 82
 Percent Complete: 83
 Percent Complete: 84
 Percent Complete: 86
 Percent Complete: 88
 Percent Complete: 88
 Percent Complete: 88
Creating User Messaging Service(UCSUMS)
 Percent Complete: 92
 Percent Complete: 92
 Percent Complete: 95
 Percent Complete: 95
 Percent Complete: 100
Creating Audit Services(IAU)
Creating Oracle Platform Security Services(OPSS)
Creating SOA Infrastructure(SOAINFRA)
Creating Oracle Identity Manager(OIM)
Executing post create operations

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-5

Repository Creation Utility: Create - Completion Summary

Database details:

Host Name : mydatabasehost.example.com
Port : 1521
Service Name : ORCL.EXAMPLE.COM
Connected As : sys
Prefix for (prefixable) Schema Owners : OIGK8S
RCU Logfile : /tmp/RCU<DATE>/logs/rcu.log

Component schemas created:

Component Status Logfile

Common Infrastructure Services Success /tmp/RCU<DATE>/
logs/stb.log
Oracle Platform Security Services Success /tmp/RCU<DATE>/
logs/opss.log
SOA Infrastructure Success /tmp/RCU<DATE>/
logs/soainfra.log
Oracle Identity Manager Success /tmp/RCU<DATE>/
logs/oim.log
User Messaging Service Success /tmp/RCU<DATE>/
logs/ucsums.log
Audit Services Success /tmp/RCU<DATE>/
logs/iau.log
Audit Services Append Success /tmp/RCU<DATE>/
logs/iau_append.log
Audit Services Viewer Success /tmp/RCU<DATE>/
logs/iau_viewer.log
Metadata Services Success /tmp/RCU<DATE>/
logs/mds.log
WebLogic Services Success /tmp/RCU<DATE>/
logs/wls.log

Repository Creation Utility - Create : Operation Completed
[oracle@helper oracle]$

6. Run the following command inside the helper pod to patch schemas in the database:

Note:

This command should not be run for the initial February 2025 release. It should
only be run when using an OIG image that contains the latest OIG Patch Set
Update (PSU) and Critical Patch Update (CPU).

/u01/oracle/oracle_common/modules/thirdparty/org.apache.ant/apache-
ant/bin/ant \
-f /u01/oracle/idm/server/setup/deploy-files/automation.xml \
run-patched-sql-files \
-logger org.apache.tools.ant.NoBannerLogger \
-logfile /u01/oracle/idm/server/bin/patch_oim_wls.log \

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-6

-DoperationsDB.host=$DB_HOST \
-DoperationsDB.port=$DB_PORT \
-DoperationsDB.serviceName=$DB_SERVICE \
-DoperationsDB.user=${RCUPREFIX}_OIM \
-DOIM.DBPassword=$RCU_SCHEMA_PWD \
-Dojdbc=/u01/oracle/oracle_common/modules/oracle.jdbc/ojdbc11.jar

The output will look similar to the following:

Buildfile: /u01/oracle/idm/server/setup/deploy-files/automation.xml

7. Verify the database was patched successfully by viewing the patch_oim_wls.log:

cat /u01/oracle/idm/server/bin/patch_oim_wls.log

8. Exit the helper bash shell by issuing the command exit.

7.1.2 Creating a Kubernetes Secret for the WLST Domain
Create a Kubernetes secret for the domain using the create-weblogic-credentials script.

1. Run the following command to create the secret:The output will look similar to the
following:

cd $WORKDIR/kubernetes/create-weblogic-domain-credentials

./create-weblogic-credentials.sh -u weblogic -p <pwd> -n
<domain_namespace> -d <domain_uid> -s <kubernetes_domain_secret>

Where:

• -u weblogic is the WebLogic username.

• -p <pwd> is the password for the WebLogic user.

• -n <domain_namespace> is the domain namespace.

• -d <domain_uid> is the domain UID to be created.

• -s <kubernetes_domain_secret> is the name you want to create for the secret for this
namespace.

For example:

cd $WORKDIR/kubernetes/create-weblogic-domain-credentials

./create-weblogic-credentials.sh -u weblogic -p <password> -n oigns -d
governancedomain -s oig-domain-credentials

The output will look similar to the following:

secret/oig-domain-credentials created
secret/oig-domain-credentials labeled

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-7

The secret oig-domain-credentials has been successfully created in the
oigns namespace.

2. Verify the secret is created using the following command:

kubectl get secret <kubernetes_domain_secret> -o yaml -n <domain_namespace>

For example:

kubectl get secret oig-domain-credentials -o yaml -n oigns

The output will look similar to the following:

apiVersion: v1
data:
 password: V2VsY29tZTE=
 username: d2VibG9naWM=
kind: Secret
metadata:
 creationTimestamp: "<DATE>"
 labels:
 weblogic.domainName: governancedomain
 weblogic.domainUID: governancedomain
 name: oig-domain-credentials
 namespace: oigns
 resourceVersion: "3216738"
 uid: c2ec07e0-0135-458d-bceb-c648d2a9ac54
type: Opaque

7.1.3 Creating a Kubernetes Secret for RCU in WLST
Create a Kubernetes secret for RCU using the create-rcu-credentials script.

1. Run the following command to create the secret:

cd $WORKDIR/kubernetes/create-rcu-credentials

./create-rcu-credentials.sh -u <rcu_prefix> -p <rcu_schema_pwd> -a sys -q
<sys_db_pwd> -d <domain_uid> -n <domain_namespace> -s
<kubernetes_rcu_secret>

Where:

• -u <rcu_prefix> is the name of the RCU schema prefix created in Creating the RCU
Schemas.

• -p <rcu_schema_pwd> is the password for the RCU schema prefix.

• -q <sys_db_pwd> is the SYS database password.

• -d <domain_uid> is the same domain UID that you specified in Creating a Kubernetes
Secret for the WLST Domain.

• -n <domain_namespace> is the domain namespace.

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-8

• -s <kubernetes_rcu_secret> is the name of the RCU secret to create.

For example:

cd $WORKDIR/kubernetes/create-rcu-credentials

./create-rcu-credentials.sh -u OIGK8S -p <password> -a sys -q <password> -
d governancedomain -n oigns -s oig-rcu-credentials

The output will look similar to the following:

secret/oig-rcu-credentials created
secret/oig-rcu-credentials labeled
The secret oig-rcu-credentials has been successfully created in the oigns
namespace.

2. Verify the secret is created using the following command:

kubectl get secret <kubernetes_rcu_secret> -o yaml -n <domain_namespace>

For example:

kubectl get secret oig-rcu-credentials -o yaml -n oigns

The output will look similar to the following:

apiVersion: v1
data:
 password: V2VsY29tZTE=
 sys_password: V2VsY29tZTE=
 sys_username: c3lz
 username: T0lHSzhT
kind: Secret
metadata:
 creationTimestamp: "<DATE>"
 labels:
 weblogic.domainName: governancedomain
 weblogic.domainUID: governancedomain
 name: oig-rcu-credentials
 namespace: oigns
 resourceVersion: "3217023"
 uid: ce70b91a-fbbc-4839-9616-4cc2c1adeb4f
type: Opaque

7.1.4 Creating a Kubernetes Persistent Volume and Persistent Volume
Claim

As referenced in Creating a Persistent Volume Directory , the nodes in the Kubernetes cluster
must have access to a persistent volume such as a Network File System (NFS) mount or a
shared file system.

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-9

A persistent volume is the same as a disk mount but is inside a container. A Kubernetes
persistent volume is an arbitrary name (determined in this case, by Oracle) that is mapped to a
physical volume on a disk.

When a container is started, it needs to mount that volume. The physical volume should be on
a shared disk accessible by all the Kubernetes worker nodes because it is not known on which
worker node the container will be started. In the case of Oracle Identity Governance, the
persistent volume does not get erased when a container stops. This enables persistent
configurations.

The example below uses an NFS mounted volume (<persistent_volume>/
governancedomainpv). Other volume types can also be used. See, Volumes for more
information.

To create a Kubernetes persistent volume, perform the following steps:

1. Navigate to the $WORKDIR/kubernetes/create-weblogic-domain-pv-pvc directory:

cd $WORKDIR/kubernetes/create-weblogic-domain-pv-pvc

2. Make a backup copy of the create-pv-pvc-inputs.yaml file and create an output
directory:

cp create-pv-pvc-inputs.yaml create-pv-pvc-inputs.yaml.orig

mkdir output

3. Edit the create-pv-pvc-inputs.yaml file and update the following parameters to reflect
your settings. Save the file when complete:

baseName: <domain>
domainUID: <domain_uid>
namespace: <domain_namespace>
weblogicDomainStorageType: NFS
weblogicDomainStorageNFSServer: <nfs_server>
weblogicDomainStoragePath: <physical_path_of_persistent_storage>
weblogicDomainStorageSize: 10Gi

For example:

The base name of the pv and pvc
baseName: domain

Unique ID identifying a domain.
If left empty, the generated pv can be shared by multiple domains
This ID must not contain an underscope ("_"), and must be lowercase and
unique across all domains in a Kubernetes cluster.
domainUID: governancedomain

Name of the namespace for the persistent volume claim
namespace: oigns

Persistent volume type for the persistent storage.
The value must be 'HOST_PATH' or 'NFS'.
If using 'NFS', weblogicDomainStorageNFSServer must be specified.

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-10

https://kubernetes.io/docs/concepts/storage/volumes/

weblogicDomainStorageType: NFS

The server name or ip address of the NFS server to use for the
persistent storage.
The following line must be uncomment and customized if
weblogicDomainStorateType is NFS:
weblogicDomainStorageNFSServer: mynfsserver

Physical path of the persistent storage.
When weblogicDomainStorageType is set to HOST_PATH, this value should be
set the to path to the
domain storage on the Kubernetes host.
When weblogicDomainStorageType is set to NFS, then
weblogicDomainStorageNFSServer should be set
to the IP address or name of the DNS server, and this value should be
set to the exported path
on that server.
Note that the path where the domain is mounted in the WebLogic
containers is not affected by this
setting, that is determined when you create your domain.
The following line must be uncomment and customized:
weblogicDomainStoragePath: /nfs_volumes/oig/governancedomainpv

Reclaim policy of the persistent storage
The valid values are: 'Retain', 'Delete', and 'Recycle'
weblogicDomainStorageReclaimPolicy: Retain

Total storage allocated to the persistent storage.
weblogicDomainStorageSize: 10Gi

4. Execute the create-pv-pvc.sh script to create the PV and PVC configuration files:

./create-pv-pvc.sh -i create-pv-pvc-inputs.yaml -o output

The output will be similar to the following:

Input parameters being used
export version="create-weblogic-sample-domain-pv-pvc-inputs-v1"
export baseName="domain"
export domainUID="governancedomain"
export namespace="oigns"
export weblogicDomainStorageType="NFS"
export weblogicDomainStorageNFSServer="mynfsserver"
export weblogicDomainStoragePath="/nfs_volumes/oig/governancedomainpv"
export weblogicDomainStorageReclaimPolicy="Retain"
export weblogicDomainStorageSize="10Gi"

Generating output/pv-pvcs/governancedomain-domain-pv.yaml
Generating output/pv-pvcs/governancedomain-domain-pvc.yaml
The following files were generated:
 output/pv-pvcs/governancedomain-domain-pv.yaml
 output/pv-pvcs/governancedomain-domain-pvc.yaml

Completed

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-11

5. Run the following command to show the files are created:

ls output/pv-pvcs

The output will look similar to the following:

governancedomain-domain-pv.yaml governancedomain-domain-pvc.yaml create-
pv-pvc-inputs.yaml

6. Run the following command to create the PV in the domain namespace:

kubectl create -f output/pv-pvcs/governancedomain-domain-pv.yaml -n
<domain_namespace>

For example:

kubectl create -f output/pv-pvcs/governancedomain-domain-pv.yaml -n oigns

The output will look similar to the following:

persistentvolume/governancedomain-domain-pv created

7. Run the following commands to verify the PV was created successfully:

kubectl describe pv governancedomain-domain-pv

The output will look similar to the following:

Name: governancedomain-domain-pv
Labels: weblogic.domainUID=governancedomain
Annotations: pv.kubernetes.io/bound-by-controller: yes
Finalizers: [kubernetes.io/pv-protection]
StorageClass: governancedomain-domain-storage-class
Status: Bound
Claim: oigns/governancedomain-domain-pvc
Reclaim Policy: Retain
Access Modes: RWX
VolumeMode: Filesystem
Capacity: 10Gi
Node Affinity: <none>
Message:
Source:
 Type: NFS (an NFS mount that lasts the lifetime of a pod)
 Server: mynfsserver
 Path: /nfs_volumes/oig/governancedomainpv
 ReadOnly: false
Events: <none>

8. Run the following command to create the PVC in the domain namespace:

kubectl create -f output/pv-pvcs/governancedomain-domain-pvc.yaml -n
<domain_namespace>

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-12

For example:

kubectl create -f output/pv-pvcs/governancedomain-domain-pvc.yaml -n oigns

The output will look similar to the following:

persistentvolumeclaim/governancedomain-domain-pvc created

9. Run the following commands to verify the PVC was created successfully:

kubectl describe pvc governancedomain-domain-pvc -n <namespace>

For example:

kubectl describe pvc governancedomain-domain-pvc -n oigns

The output will look similar to the following:

Name: governancedomain-domain-pvc
Namespace: oigns
StorageClass: governancedomain-domain-storage-class
Status: Bound
Volume: governancedomain-domain-pv
Labels: weblogic.domainUID=governancedomain
Annotations: pv.kubernetes.io/bind-completed: yes
 pv.kubernetes.io/bound-by-controller: yes
Finalizers: [kubernetes.io/pvc-protection]
Capacity: 10Gi
Access Modes: RWX
VolumeMode: Filesystem
Mounted By: <none>
Events: <none>

7.1.5 Preparing the Create Domain Script
The sample scripts for Oracle Identity Governance (OIG) domain deployment are available in
the $WORKDIR/kubernetes/create-oim-domain directory. You must prepare the scripts before
deploying OIG.

1. Navigate to the $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv directory:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv

2. Make a copy of the create-domain-inputs.yaml file:

cp create-domain-inputs.yaml create-domain-inputs.yaml.orig

3. Edit the create-domain-inputs.yaml and modify the following parameters. Save the file
when complete:

domainUID: <domain_uid>
domainHome: /u01/oracle/user_projects/domains/<domain_uid>

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-13

image: <image_name>
imagePullSecretName: <container_registry_secret>
weblogicCredentialsSecretName: <kubernetes_domain_secret>
logHome: /u01/oracle/user_projects/domains/logs/<domain_id>
namespace: <domain_namespace>
persistentVolumeClaimName: <pvc_name>
rcuSchemaPrefix: <rcu_prefix>
rcuDatabaseURL: <rcu_db_host>:<rcu_db_port>/<rcu_db_service_name>
rcuCredentialsSecret: <kubernetes_rcu_secret>
frontEndHost: <front_end_hostname>
frontEndPort: <front_end_port>

For example:

domainUID: governancedomain
domainHome: /u01/oracle/user_projects/domains/governancedomain
image: container-registry.oracle.com/middleware/oig_cpu:14.1.2.1.0-jdk8-
ol8-<YYMMDD>
imagePullSecretName: orclcred
weblogicCredentialsSecretName: oig-domain-credentials
logHome: /u01/oracle/user_projects/domains/logs/governancedomain
namespace: oigns
persistentVolumeClaimName: governancedomain-domain-pvc
rcuSchemaPrefix: OIGK8S
rcuDatabaseURL: mydatabasehost.example.com:1521/orcl.example.com
rcuCredentialsSecret: oig-rcu-credentials
frontEndHost: example.com
frontEndPort: 14100

Note:

For now frontEndHost and frontEndPort should be set to example.com and
14100 respectively. These values will be changed to the correct values in post
installation tasks in Setting OIMFrontendURL Using MBeans.

A full list of parameters in the create-domain-inputs.yaml file are shown below:

Parameter Definition Default

adminPort Port number for the
Administration Server inside the
Kubernetes cluster.

7001

adminNodePort Port number of the Administration
Server outside the Kubernetes
cluster.

30701

adminServerName Name of the Administration
Server.

AdminServer

clusterName Name of the WebLogic cluster
instance to generate for the
domain. By default the cluster
name is oim_cluster for the oig
domain.

oim_cluster

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-14

Parameter Definition Default

configuredManagedServerCount Number of Managed Server
instances to generate for the
domain.

5

createDomainFilesDir Directory on the host machine to
locate all the files to create a
WebLogic domain, including the
script that is specified in the
createDomainScriptName
property. By default, this directory
is set to the relative path wlst,
and the create script will use the
built-in WLST offline scripts in the
wlst directory to create the
WebLogic domain. It can also be
set to the relative path wdt, and
then the built-in WDT scripts will
be used instead. An absolute
path is also supported to point to
an arbitrary directory in the file
system. The built-in scripts can
be replaced by the user-provided
scripts or model files as long as
those files are in the specified
directory. Files in this directory
are put into a Kubernetes config
map, which in turn is mounted to
the
createDomainScriptsMountPa
th, so that the Kubernetes pod
can use the scripts and
supporting files to create a
domain home.

wlst

createDomainScriptsMountPath Mount path where the create
domain scripts are located inside
a pod. The create-domain.sh
script creates a Kubernetes job to
run the script (specified in the
createDomainScriptName
property) in a Kubernetes pod to
create a domain home. Files in
the createDomainFilesDir
directory are mounted to this
location in the pod, so that the
Kubernetes pod can use the
scripts and supporting files to
create a domain home.

/u01/weblogic

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-15

Parameter Definition Default

createDomainScriptName Script that the create domain
script uses to create a WebLogic
domain. The create-domain.sh
script creates a Kubernetes job to
run this script to create a domain
home. The script is located in the
in-pod directory that is specified
in the
createDomainScriptsMountPath
property. If you need to provide
your own scripts to create the
domain home, instead of using
the built-it scripts, you must use
this property to set the name of
the script that you want the create
domain job to run.

create-domain-job.sh

domainHome Home directory of the OIG
domain. If not specified, the value
is derived from the domainUID
as /shared/domains/
<domainUID>.

/u01/oracle/user_projects/
domains/governancedomain

domainPVMountPath Mount path of the domain
persistent volume.

/u01/oracle/user_projects/
domains

domainUID Unique ID that will be used to
identify this particular domain.
Used as the name of the
generated WebLogic domain as
well as the name of the
Kubernetes domain resource.
This ID must be unique across all
domains in a Kubernetes cluster.
This ID cannot contain any
character that is not valid in a
Kubernetes service name.

governancedomain

exposeAdminNodePort Boolean indicating if the
Administration Server is exposed
outside of the Kubernetes cluster.

false

exposeAdminT3Channel Boolean indicating if the T3
administrative channel is exposed
outside the Kubernetes cluster.

true

image OIG container image. The
operator requires OIG 14.1.2.
Refer to Obtaining the OIG
Container Image for details on
how to obtain or create the
image.

oracle/oig:14.1.2.1.0

imagePullPolicy WebLogic container image pull
policy. Legal values are
IfNotPresent, Always, or
Never

IfNotPresent

imagePullSecretName Name of the Kubernetes secret to
access the container registry to
pull the OIG container image. The
presence of the secret will be
validated when this parameter is
specified.

orclcred

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-16

Parameter Definition Default

includeServerOutInPodLog Boolean indicating whether to
include the server .out to the
pod’s stdout.

true

initialManagedServerReplicas Number of Managed Servers to
initially start for the domain.

2

javaOptions Java options for starting the
Administration Server and
Managed Servers. A Java option
can have references to one or
more of the following pre-defined
variables to obtain WebLogic
domain information: $
(DOMAIN_NAME), $
(DOMAIN_HOME), $
(ADMIN_NAME), $
(ADMIN_PORT), and $
(SERVER_NAME).

-
Dweblogic.StdoutDebugEnabled=
false

logHome The in-pod location for the
domain log, server logs, server
out, and Node Manager log files.
If not specified, the value is
derived from the domainUID as /
shared/logs/<domainUID>.

/u01/oracle/user_projects/
domains/logs/governancedomain

managedServerNameBase Base string used to generate
Managed Server names.

oim_server

managedServerPort Port number for each Managed
Server.

14000

namespace Kubernetes namespace in which
to create the domain.

oigns

persistentVolumeClaimName Name of the persistent volume
claim created to host the domain
home. If not specified, the value
is derived from the domainUID as
<domainUID>-weblogic-
sample-pvc.

governancedomain-domain-pvc

productionModeEnabled Boolean indicating if production
mode is enabled for the domain.

true

serverStartPolicy Determines which WebLogic
Server instances will be started.
Legal values are Never,
IfNeeded, AdminOnly.

IfNeeded

t3ChannelPort Port for the T3 channel of the
NetworkAccessPoint.

30012

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-17

Parameter Definition Default

t3PublicAddress Public address for the T3
channel. This should be set to the
public address of the Kubernetes
cluster. This would typically be a
load balancer address. For
development environments only:
In a single server (all-in-one)
Kubernetes deployment, this may
be set to the address of the
master, or at the very least, it
must be set to the address of one
of the worker nodes.

If not provided, the script will
attempt to set it to the IP address
of the Kubernetes cluster

weblogicCredentialsSecretName Name of the Kubernetes secret
for the Administration Server’s
user name and password. If not
specified, then the value is
derived from the domainUID as
<domainUID>-weblogic-
credentials.

oig-domain-credentials

weblogicImagePullSecretName Name of the Kubernetes secret
for the container registry, used to
pull the WebLogic Server image.

serverPodCpuRequest,
serverPodMemoryRequest,
serverPodCpuCLimit,
serverPodMemoryLimit

The maximum amount of
compute resources allowed, and
minimum amount of compute
resources required, for each
server pod. Please refer to the
Kubernetes documentation on
Managing Compute Resources
for Containers for details.

Resource requests and resource
limits are not specified.

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-18

Parameter Definition Default

rcuSchemaPrefix The schema prefix to use in the
database, for example OIGK8S.
You may wish to make this the
same as the domainUID in order
to simplify matching domains to
their RCU schemas.

No

te:

The
RC
U
sch
ema
prefi
x
can
only
cont
ain
alph
a-
num
eric
char
acte
rs,
and
cont
ain
no
spa
ces,
or
othe
r
spe
cial
char
acte
rs. It
mus
t
begi
n
with
a
lette
r
and
be
no
long
er

OIGK8S

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-19

Parameter Definition Default

than
8
char
acte
rs.

rcuDatabaseURL The database URL. oracle-
db.default.svc.cluster.local:1521/
devpdb.k8s

rcuCredentialsSecret The Kubernetes secret containing
the database credentials.

oig-rcu-credentials

frontEndHost The entry point URL for the OIG. Not set

frontEndPort The entry point port for the OIF. Not set

datasourceType Type of JDBC datasource
applicable for the OIG domain.
Legal values are agl and generic.
Choose agl for Active GridLink
datasource and generic for
Generic datasource. For
enterprise deployments, Oracle
recommends that you use
GridLink data sources to connect
to Oracle RAC databases. See
the Enterprise Deployment Guide
for Oracle Identity and Access
Management in a Kubernetes
Cluster for further details.

generic

Note:

The names of the Kubernetes resources in the generated YAML files may be formed
with the value of some of the properties specified in the create-domain-inputs.yaml
file. Those properties include the adminServerName, clusterName and
managedServerNameBase. If those values contain any characters that are invalid in a
Kubernetes service name, those characters are converted to valid values in the
generated YAML files. For example, an uppercase letter is converted to a lowercase
letter and an underscore ("_") is converted to a hyphen ("-").
The sample demonstrates how to create an OIG domain home and associated
Kubernetes resources for a domain that has one cluster only. In addition, the sample
provides the capability for users to supply their own scripts to create the domain
home for other use cases. The generated domain YAML file could also be modified to
cover more use cases.

7.1.6 Creating the domain.yaml
To create the domain.yaml file used in the Oracle Identity Governance (OIG) deployment:

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-20

1. Navigate to the $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv

2. Run the create domain script, specifying your inputs file and an output directory to store
the generated artifacts. This command creates a domain.yaml file required for domain
creation:

./create-domain.sh -i create-domain-inputs.yaml -o output

The output will look similar to the following:

Input parameters being used
export version="create-weblogic-sample-domain-inputs-v1"
export adminPort="7001"
export adminServerName="AdminServer"
export domainUID="governancedomain"
export domainHome="/u01/oracle/user_projects/domains/governancedomain"
export serverStartPolicy="IfNeeded"
export clusterName="oim_cluster"
export configuredManagedServerCount="5"
export initialManagedServerReplicas="1"
export managedServerNameBase="oim_server"
export managedServerPort="14000"
export image="container-registry.oracle.com/middleware/oig_cpu:14.1.2.1.0-
jdk8-ol8-<YYMMDD>"
export imagePullPolicy="IfNotPresent"
export imagePullSecretName="orclcred"
export productionModeEnabled="true"
export weblogicCredentialsSecretName="oig-domain-credentials"
export includeServerOutInPodLog="true"
export logHome="/u01/oracle/user_projects/domains/logs/governancedomain"
export t3ChannelPort="30012"
export exposeAdminT3Channel="false"
export adminNodePort="30701"
export exposeAdminNodePort="false"
export namespace="oigns"
javaOptions=-Dweblogic.StdoutDebugEnabled=false
export persistentVolumeClaimName="governancedomain-domain-pvc"
export domainPVMountPath="/u01/oracle/user_projects/domains"
export createDomainScriptsMountPath="/u01/weblogic"
export createDomainScriptName="create-domain-job.sh"
export createDomainFilesDir="wlst"
export rcuSchemaPrefix="OIGK8S"
export rcuDatabaseURL="mydatabasehost.example.com:1521/orcl.example.com"
export rcuCredentialsSecret="oig-rcu-credentials"
export frontEndHost="example.com"
export frontEndPort="14100"
export datasourceType="generic"

validateWlsDomainName called with governancedomain
createFiles - valuesInputFile is create-domain-inputs.yaml
createDomainScriptName is create-domain-job.sh
Generating output/weblogic-domains/governancedomain/create-domain-job.yaml
Generating output/weblogic-domains/governancedomain/delete-domain-job.yaml

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-21

Generating output/weblogic-domains/governancedomain/domain.yaml
Checking to see if the secret governancedomain-domain-credentials exists
in namespace oigns
configmap/governancedomain-create-fmw-infra-sample-domain-job-cm created
Checking the configmap governancedomain-create-fmw-infra-sample-domain-job-
cm was created
configmap/governancedomain-create-fmw-infra-sample-domain-job-cm labeled
Checking if object type job with name governancedomain-create-fmw-infra-
sample-domain-job exists
No resources found in oigns namespace.
Creating the domain by creating the job output/weblogic-domains/
governancedomain/create-domain-job.yaml
job.batch/governancedomain-create-fmw-infra-sample-domain-job created
Waiting for the job to complete...
status on iteration 1 of 40
pod governancedomain-create-fmw-infra-sample-domain-job-8cww8 status is
Running
status on iteration 2 of 40
pod governancedomain-create-fmw-infra-sample-domain-job-8cww8 status is
Running
status on iteration 3 of 40
pod governancedomain-create-fmw-infra-sample-domain-job-8cww8 status is
Running
status on iteration 4 of 40
pod governancedomain-create-fmw-infra-sample-domain-job-8cww8 status is
Running
status on iteration 5 of 40
pod governancedomain-create-fmw-infra-sample-domain-job-8cww8 status is
Running
status on iteration 6 of 40
pod governancedomain-create-fmw-infra-sample-domain-job-8cww8 status is
Running
status on iteration 7 of 40
pod governancedomain-create-fmw-infra-sample-domain-job-8cww8 status is
Running
status on iteration 8 of 40
pod governancedomain-create-fmw-infra-sample-domain-job-8cww8 status is
Running
status on iteration 9 of 40
pod governancedomain-create-fmw-infra-sample-domain-job-8cww8 status is
Running
status on iteration 10 of 40
pod governancedomain-create-fmw-infra-sample-domain-job-8cww8 status is
Running
status on iteration 11 of 40
pod governancedomain-create-fmw-infra-sample-domain-job-8cww8 status is
Completed

Domain governancedomain was created and will be started by the WebLogic
Kubernetes Operator

The following files were generated:
 output/weblogic-domains/governancedomain/create-domain-inputs.yaml
 output/weblogic-domains/governancedomain/create-domain-job.yaml
 output/weblogic-domains/governancedomain/domain.yaml
sed

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-22

Completed

Note:

If the domain creation fails, refer to the Domain Creation Failure With WLST in
Known Issues.

7.1.7 Setting the OIG Server Memory Parameters
By default, the java memory parameters assigned to the oim_cluster are very small. The
minimum recommended values are -Xms4096m -Xmx8192m. However, Oracle recommends you
to set these to -Xms8192m -Xmx8192m in a production environment.

1. Navigate to the /output/weblogic-domains/<domain_uid> directory:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/output/weblogic-
domains/<domain_uid>

For example:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/output/weblogic-
domains/governancedomain

2. Edit the domain.yaml file. Locate the section of the file starting with: clusterName:
oim_cluster under governancedomain-oim-cluster. Add the memory settings as below:

 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: "-XX:+UseContainerSupport -Djava.security.egd=file:/dev/./
urandom -Xms8192m -Xmx8192m"
 resources:
 limits:
 cpu: "2"
 memory: "8Gi"
 requests:
 cpu: "1000m"
 memory: "4Gi"

For example:

apiVersion: weblogic.oracle/v1
kind: Cluster
metadata:
 name: governancedomain-oim-cluster
 namespace: oigns
spec:
 clusterName: oim_cluster
 serverService:
 precreateService: true
 serverPod:

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-23

 env:
 - name: USER_MEM_ARGS
 value: "-XX:+UseContainerSupport -Djava.security.egd=file:/dev/./
urandom -Xms8192m -Xmx8192m"
 resources:
 limits:
 cpu: "2"
 memory: "8Gi"
 requests:
 cpu: "1000m"
 memory: "4Gi"
 replicas: 0

Note:

Administrators should be aware of the following:

• The above CPU and memory values are for examples only. For Enterprise
Deployments, please review the performance recommendations and sizing
requirements in Enterprise Deployment Guide for Oracle Identity and Access
Management in a Kubernetes Cluster.

• Limits and requests for CPU resources are measured in CPU units. One
CPU in Kubernetes is equivalent to 1 vCPU/Core for cloud providers, and 1
hyperthread on bare-metal Intel processors. An “m” suffix in a CPU attribute
indicates ‘milli-CPU’, so 500m is 50% of a CPU. Memory can be expressed
in various units, where one Mi is one IEC unit mega-byte (1024^2), and one
Gi is one IEC unit giga-byte (1024^3). For more information, see Resource
Management for Pods and Containers, Assign Memory Resources to
Containers and Pods, and Assign CPU Resources to Containers and Pods.

• The parameters above are also utilized by the Kubernetes Horizontal Pod
Autoscaler (HPA). For more details on HPA, see Kubernetes Horizontal Pod
Autoscaler.

• If required you can also set the same resources and limits for the
governancedomain-soa-cluster.

3. Save the changes to domain.yaml.

7.1.8 Deploying the WLST OIG Domain
Deploy the Oracle Identity Governance (OIG) domain using the domain.yaml.

1. Run the following command to deploy the OIG domain:

kubectl apply -f $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/
output/weblogic-domains/<domain_uid>/domain.yaml

For example:

kubectl apply -f $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/
output/weblogic-domains/governancedomain/domain.yaml

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-24

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/

The output will look similar to the following:

domain.weblogic.oracle/governancedomain unchanged
cluster.weblogic.oracle/governancedomain-oim-cluster created
cluster.weblogic.oracle/governancedomain-soa-cluster created

2. Whilst the domain creation is running, you can run the following command to monitor the
progress:

kubectl get pods -n <domain_namespace> -w

Note:

The -w flag allows you watch the status of the pods as they change.

For example:

kubectl get pods -n oigns -w

The output will initially look similar to the following:

NAME READY
STATUS RESTARTS AGE
governancedomain-create-fmw-infra-sample-domain-job-8cww8 0/1
Completed 0 27m
governancedomain-introspector-rctsv 1/1
Running 0 6s
helper 1/1
Running 0 3h30m

The introspector pod will be displayed first.
After several minutes the Administration Server and SOA Server are both started.

Note:

It will take several minutes before all the pods are started. When a pod has a
STATUS of 0/1 the pod is started but the OIG server associated with it is currently
starting. While the pods are starting you can check the startup status in the pod
logs, by running the following command:

 kubectl logs <pod> -n <domain_namespace>

For example:

kubectl logs governancedomain-adminserver -n oigns

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-25

When started, the pods should have aSTATUS of Running and READY = 1/1:

NAME READY
STATUS RESTARTS AGE/
governancedomain-adminserver 1/1
Running 0 7m30s
governancedomain-create-fmw-infra-sample-domain-job-8cww8 0/1
Completed 0 35m
governancedomain-soa-server1 1/1
Running 0 4m
helper 1/1
Running 0 3h38m

Note:

If there any failures, follow Domain Creation Failure with WLST in Known
Issues.

3. Check the clusters using the following command:

kubectl get cluster -n <domain_namespace>

For example:

kubectl get cluster -n oigns

The output will look similar to the following:

NAME AGE
governancedomain-oim-cluster 9m
governancedomain-soa-cluster 9m

4. Start the OIM server using the following command:

kubectl patch cluster -n <domain_namespace> <OIMClusterName> --type=merge -
p '{"spec":{"replicas":<initialManagedServerReplicas>}}'

For example:

kubectl patch cluster -n oigns governancedomain-oim-cluster --type=merge -
p '{"spec":{"replicas":1}}'

The output will look similar to the following:

cluster.weblogic.oracle/governancedomain-oim-cluster patched

Run the following command to view the status of the OIG pods:

kubectl get pods -n <domain_namespace> -w

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-26

For example:

kubectl get pods -n oigns -w

The output will initially look similar to the following:

NAME READY
STATUS RESTARTS AGE
governancedomain-adminserver 1/1
Running 0 7m30s
governancedomain-create-fmw-infra-sample-domain-job-8cww8 0/1
Completed 0 35m
governancedomain-oim-server1 1/1
Running 0 4m25s
governancedomain-soa-server1 1/1
Running 0 4m
helper 1/1
Running 0 3h38m

Note:

It will take several minutes before the governancedomain-oim-server1 pod has a
STATUS of 1/1. While the pod is starting you can check the startup status in the
pod log, by running the following command:

kubectl logs governancedomain-oim-server1 -n oigns

Note:

If there any failures, follow Domain Creation Failure with WLST in Known
Issues.

7.1.9 Verifying the OIG WLST Deployment
Verifying the Domain, Pods and Services

Verify the domain, servers pods, and services are created, and are in the READY state with a
status of 1/1, by running the following command:

kubectl get all,domains -n <domain_namespace>

For example:

kubectl get all,domains -n oigns

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-27

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
pod/governancedomain-adminserver 1/1
Running 0 19m30s
pod/governancedomain-create-fmw-infra-sample-domain-job-8cww8 0/1
Completed 0 47m
pod/governancedomain-oim-server1 1/1
Running 0 16m25s
pod/governancedomain-soa-server1 1/1
Running 0 16m
pod/helper 1/1
Running 0 3h50m

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
service/governancedomain-adminserver ClusterIP None
<none> 7001/TCP 28m
service/governancedomain-cluster-oim-cluster ClusterIP 10.106.198.40
<none> 14002/TCP,14000/TCP 25m
service/governancedomain-cluster-soa-cluster ClusterIP 10.102.218.11
<none> 7003/TCP 25m
service/governancedomain-oim-server1 ClusterIP None
<none> 14002/TCP,14000/TCP 16m24s
service/governancedomain-oim-server2 ClusterIP 10.97.32.112
<none> 14002/TCP,14000/TCP 25m
service/governancedomain-oim-server3 ClusterIP 10.100.233.109
<none> 14002/TCP,14000/TCP 25m
service/governancedomain-oim-server4 ClusterIP 10.96.154.17
<none> 14002/TCP,14000/TCP 25m
service/governancedomain-oim-server5 ClusterIP 10.103.222.213
<none> 14002/TCP,14000/TCP 25m
service/governancedomain-soa-server1 ClusterIP None
<none> 7003/TCP 25m
service/governancedomain-soa-server2 ClusterIP 10.104.43.118
<none> 7003/TCP 25m
service/governancedomain-soa-server3 ClusterIP 10.110.180.120
<none> 7003/TCP 25m
service/governancedomain-soa-server4 ClusterIP 10.99.161.73
<none> 7003/TCP 25m
service/governancedomain-soa-server5 ClusterIP 10.97.67.196
<none> 7003/TCP 25m

NAME COMPLETIONS
DURATION AGE
job.batch/governancedomain-create-fmw-infra-sample-domain-job 1/1
3m6s 125m

NAME AGE
domain.weblogic.oracle/governancedomain 24m

NAME AGE
cluster.weblogic.oracle/governancedomain-oim-cluster 23m
cluster.weblogic.oracle/governancedomain-soa-cluster 23m

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-28

The default domain created by the script has the following characteristics:

• An Administration Server named AdminServer listening on port 7001.

• A configured OIG cluster named oim_cluster of size 5.

• A configured SOA cluster named soa_cluster of size 5.

• One started OIG managed server, named oim_server1, listening on port 14000.

• One started SOA managed server named soa_server1, listening on port 7003.

• Log files that are located in <persistent_volume>/logs/<domainUID>.

Verifying the Domain

Run the following command to describe the domain:

kubectl describe domain <domain_uid> -n <domain_namespace>

For example:

kubectl describe domain governancedomain -n oigns

The output will look similar to the following:

Name: governancedomain
Namespace: oigns
Labels: weblogic.domainUID=governancedomain
Annotations: <none>
API Version: weblogic.oracle/v9
Kind: Domain
Metadata:
 Creation Timestamp: <DATE>
 Generation: 1
 Managed Fields:
 API Version: weblogic.oracle/v9
 Fields Type: FieldsV1
 fieldsV1:
 f:metadata:
 f:annotations:
 .:
 f:kubectl.kubernetes.io/last-applied-configuration:
 f:labels:
 .:
 f:weblogic.domainUID:
 f:spec:
 .:
 f:adminServer:
 .:
 f:adminChannelPortForwardingEnabled:
 f:serverPod:
 .:
 f:env:
 f:serverStartPolicy:
 f:clusters:
 f:dataHome:
 f:domainHome:

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-29

 f:domainHomeSourceType:
 f:failureRetryIntervalSeconds:
 f:failureRetryLimitMinutes:
 f:httpAccessLogInLogHome:
 f:image:
 f:imagePullPolicy:
 f:imagePullSecrets:
 f:includeServerOutInPodLog:
 f:logHome:
 f:logHomeEnabled:
 f:logHomeLayout:
 f:maxClusterConcurrentShutdown:
 f:maxClusterConcurrentStartup:
 f:maxClusterUnavailable:
 f:replicas:
 f:serverPod:
 .:
 f:env:
 f:volumeMounts:
 f:volumes:
 f:serverStartPolicy:
 f:webLogicCredentialsSecret:
 .:
 f:name:
 Manager: kubectl-client-side-apply
 Operation: Update
 Time: <DATE>
 API Version: weblogic.oracle/v9
 Fields Type: FieldsV1
 fieldsV1:
 f:status:
 .:
 f:clusters:
 f:conditions:
 f:observedGeneration:
 f:servers:
 f:startTime:
 Manager: Kubernetes Java Client
 Operation: Update
 Subresource: status
 Time: <DATE>
 Resource Version: 1247307
 UID: 4933be73-df97-493f-a20c-bf1e24f6b3f2
Spec:
 Admin Server:
 Admin Channel Port Forwarding Enabled: true
 Server Pod:
 Env:
 Name: USER_MEM_ARGS
 Value: -Djava.security.egd=file:/dev/./urandom -Xms512m -
Xmx1024m
 Server Start Policy: IfNeeded
 Clusters:
 Name: governancedomain-oim-cluster
 Name: governancedomain-soa-cluster
 Data Home:

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-30

 Domain Home: /u01/oracle/user_projects/domains/
governancedomain
 Domain Home Source Type: PersistentVolume
 Failure Retry Interval Seconds: 120
 Failure Retry Limit Minutes: 1440
 Http Access Log In Log Home: true
 Image: container-registry.oracle.com/middleware/
oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>
 Image Pull Policy: IfNotPresent
 Image Pull Secrets:
 Name: orclcred
 Include Server Out In Pod Log: true
 Log Home: /u01/oracle/user_projects/domains/logs/
governancedomain
 Log Home Enabled: true
 Log Home Layout: ByServers
 Max Cluster Concurrent Shutdown: 1
 Max Cluster Concurrent Startup: 0
 Max Cluster Unavailable: 1
 Replicas: 1
 Server Pod:
 Env:
 Name: JAVA_OPTIONS
 Value: -Dweblogic.StdoutDebugEnabled=false
 Name: USER_MEM_ARGS
 Value: -Djava.security.egd=file:/dev/./urandom -Xms256m -Xmx1024m
 Volume Mounts:
 Mount Path: /u01/oracle/user_projects/domains
 Name: weblogic-domain-storage-volume
 Volumes:
 Name: weblogic-domain-storage-volume
 Persistent Volume Claim:
 Claim Name: governancedomain-domain-pvc
 Server Start Policy: IfNeeded
 Web Logic Credentials Secret:
 Name: oig-domain-credentials
Status:
 Clusters:
 Cluster Name: oim_cluster
 Conditions:
 Last Transition Time: <DATE>
 Status: True
 Type: Available
 Last Transition Time: <DATE>
 Status: True
 Type: Completed
 Label Selector:
weblogic.domainUID=governancedomain,weblogic.clusterName=oim_cluster
 Maximum Replicas: 5
 Minimum Replicas: 0
 Observed Generation: 2
 Ready Replicas: 1
 Replicas: 1
 Replicas Goal: 1
 Cluster Name: soa_cluster
 Conditions:

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-31

 Last Transition Time: <DATE>
 Status: True
 Type: Available
 Last Transition Time: <DATE>
 Status: True
 Type: Completed
 Label Selector:
weblogic.domainUID=governancedomain,weblogic.clusterName=soa_cluster
 Maximum Replicas: 5
 Minimum Replicas: 0
 Observed Generation: 1
 Ready Replicas: 1
 Replicas: 1
 Replicas Goal: 1
 Conditions:
 Last Transition Time: <DATE>
 Status: True
 Type: Available
 Last Transition Time: <DATE>
 Status: True
 Type: Completed
 Observed Generation: 1
 Servers:
 Health:
 Activation Time: <DATE>
 Overall Health: ok
 Subsystems:
 Subsystem Name: ServerRuntime
 Symptoms:
 Node Name: worker-node2
 Pod Phase: Running
 Pod Ready: True
 Server Name: AdminServer
 State: RUNNING
 State Goal: RUNNING
 Cluster Name: oim_cluster
 Health:
 Activation Time: <DATE>
 Overall Health: ok
 Subsystems:
 Subsystem Name: ServerRuntime
 Symptoms:
 Node Name: worker-node1
 Pod Phase: Running
 Pod Ready: True
 Server Name: oim_server1
 State: RUNNING
 State Goal: RUNNING
 Cluster Name: oim_cluster
 Server Name: oim_server2
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: oim_cluster
 Server Name: oim_server3
 State: SHUTDOWN
 State Goal: SHUTDOWN

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-32

 Cluster Name: oim_cluster
 Server Name: oim_server4
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: oim_cluster
 Server Name: oim_server5
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: soa_cluster
 Health:
 Activation Time: <DATE>
 Overall Health: ok
 Subsystems:
 Subsystem Name: ServerRuntime
 Symptoms:
 Node Name: worker-node1
 Pod Phase: Running
 Pod Ready: True
 Server Name: soa_server1
 State: RUNNING
 State Goal: RUNNING
 Cluster Name: soa_cluster
 Server Name: soa_server2
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: soa_cluster
 Server Name: soa_server3
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: soa_cluster
 Server Name: soa_server4
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: soa_cluster
 Server Name: soa_server5
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Start Time: <DATE>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Created 35m weblogic.operator Domain
governancedomain was created.
 Normal Changed 34m (x1127 over 35m) weblogic.operator Domain
governancedomain was changed.
 Warning Failed 34m (x227 over 35m) weblogic.operator Domain
governancedomain failed due to 'Domain validation error': Cluster resource
'governancedomain-oim-cluster' not found in namespace 'oigns'
 Cluster resource 'governancedomain-soa-cluster' not found in namespace
'oigns'. Update the domain resource to correct the validation error.
 Warning Unavailable 17m weblogic.operator Domain
governancedomain is unavailable: an insufficient number of its servers that
are expected to be running are ready.";
 Warning Incomplete 17m weblogic.operator Domain
governancedomain is incomplete for one or more of the following reasons:
there are failures detected, there are pending server shutdowns, or not all

Chapter 7
Creating OIG Domains Using WLST Offline Scripts

7-33

servers expected to be running are ready and at their target image, auxiliary
images, restart version, and introspect version.
 Normal Completed 13m (x2 over 26m) weblogic.operator Domain
governancedomain is complete because all of the following are true: there is
no failure detected, there are no pending server shutdowns, and all servers
expected to be running are ready and at their target image, auxiliary images,
restart version, and introspect version.
 Normal Available 13m (x2 over 26m) weblogic.operator Domain
governancedomain is available: a sufficient number of its servers have
reached the ready state.

In the Status section of the output, the available servers and clusters are listed.

Verifying the Pods

Run the following command to view the pods and the nodes they are running on:

kubectl get pods -n <domain_namespace> -o wide

For example:

kubectl get pods -n oigns -o wide

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE IP NODE NOMINATED
NODE READINESS GATES
governancedomain-adminserver 1/1
Running 0 24m 10.244.1.42 worker-node2 <none>
<none>
governancedomain-create-fmw-infra-sample-domain-job-8cww8 0/1
Completed 0 52m 10.244.1.40 worker-node2 <none>
<none>
governancedomain-oim-server1 1/1
Running 0 52m 10.244.1.44 worker-node2 <none>
<none>
governancedomain-soa-server1 1/1
Running 0 21m 10.244.1.43 worker-node2 <none>
<none>
helper 1/1
Running 0 3h55m 10.244.1.39 worker-node2 <none>
<none>

Configuring the Ingress

If the domain deploys successfully, and all the above checks are verified, you are ready to
configure the Ingress. See, Configuring Ingress.

7.2 Creating OIG Domains Using WDT Models
Using WDT models, all the required information is specified in the domain custom resource
YAML file. With WDT models, the WebLogic Kubernetes Operator will create the RCU

Chapter 7
Creating OIG Domains Using WDT Models

7-34

schemas, create the persistent volume and claim, then create the WebLogic domain on the
persistent volume, prior to starting the servers.

In this section a domain creation image is built using the supplied model files and that image is
used for domain creation. You will need your own container registry to upload the domain
image to. Having your own container repository is a prerequisite before creating an Oracle
Identity Governance (OIG) domain with WDT models. If you don’t have your own container
registry, you can load the image on each node in the cluster instead. This documentation does
not explain how to create your own container registry, or how to load the image onto each
node. Consult your vendor specific documentation for more information.

Building a domain creation image is a one time activity. The domain creation image can be
used to create an OIG domain in multiple environments. You do not need to rebuild the domain
creation image every time you create a domain.

Before following this section, make sure you have followed Preparing Your Environment, and
ensure your Oracle Database is running.

This section includes the following topics:

• Creating a Kubernetes Secret for the WDT Domain

• Creating a Kubernetes Secret for RCU in WDT

• Preparing the WDT Create Domain YAML Files

• Creating the WDT YAML files

• Building the Domain Creation Image

• Deploying the WDT OIG Domain

• Verifying the WDT OIG Deployment

7.2.1 Creating a Kubernetes Secret for the WDT Domain
Create a Kubernetes secret for the Oracle Identity Governance (OIG) domain using the
create-secret.sh script.

1. Navigate to the wdt-utils directory:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/wdt-utils

2. Run the following command to create the secret:

./create-secret.sh -l \
"username=weblogic" \
-l "password=<password>" \
-n <domain_namespace> \
-d <domain_uid> \
-s <domain-uid>-weblogic-credentials

Where:

• <password> is the password for the WebLogic user.

• <domain_namespace> is the domain namespace for OIG.

• <domain_uid> is the domain UID to be created.

• <domain-uid>-weblogic-credentials is the name you want to create for the secret
for this namespace.

Chapter 7
Creating OIG Domains Using WDT Models

7-35

Note:

The secret name must follow the format <domain-uid>-weblogic-
credentials or domain creation will fail.

For example:

./create-secret.sh -l \
"username=weblogic" \
-l "password=<password>" \
-n oigns \
-d governancedomain \
-s governancedomain-weblogic-credentials

The output will look similar to the following:

@@ Info: Setting up secret 'governancedomain-weblogic-credentials'.
secret/governancedomain-weblogic-credentials created
secret/governancedomain-weblogic-credentials labeled

3. Verify the secret is created using the following command:

kubectl get secret <kubernetes_domain_secret> -o yaml -n <domain_namespace>

For example:

kubectl get secret governancedomain-weblogic-credentials -o yaml -n oigns

The output will look similar to the following:

apiVersion: v1
data:
 password: <password>
 username: d2VibG9naWM=
kind: Secret
metadata:
 creationTimestamp: "<DATE>"
 labels:
 weblogic.domainName: governancedomain
 weblogic.domainUID: governancedomain
 name: governancedomain-weblogic-credentials
 namespace: oigns
 resourceVersion: "3216738"
 uid: c2ec07e0-0135-458d-bceb-c648d2a9ac54
type: Opaque

7.2.2 Creating a Kubernetes Secret for RCU in WDT
Create a Kubernetes secret for RCU using the create-secret.sh script.

Chapter 7
Creating OIG Domains Using WDT Models

7-36

1. Navigate to the wdt-utils directory:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/wdt-utils

2. Run the following command to create the secret:

./create-secret.sh -l "rcu_prefix=<rcu_prefix>" \
-l "rcu_schema_password=<rcu_schema_pwd>" \
-l "db_host=<db_host.domain>" \
-l "db_port=<db_port>" \
-l "db_service=<service_name>" \
-l "dba_user=<sys_db_user>" \
-l "dba_password=<sys_db_pwd>" \
-n <domain_namespace> \
-d <domain_uid> \
-s <domain_uid>-rcu-credentials

Where:

• <rcu_prefix> is the name of the RCU schema prefix to be created.

• <rcu_schema_pwd> is the password you want to create for the RCU schema prefix.

• <db_host.domain> is the hostname.domain of the database.

• <db_port> is the database listener port.

• <service_name> is the service name of the database.

• <sys_db_user> is the database user with SYSDBA privilege.

• <sys_db_pwd> is the SYS database password.

• <domain_uid> is the domain_uid that you want to create. This must be the same
domain_uid used in Creating a Kubernetes Secret for the WDT Domain.

• <domain_namespace> is the OIG domain namespace.

• <domain_uid>-rcu-credentials is the name you want to create for the RCU secret for
this namespace.

Note:

The secret name must follow the format <domain_uid>-rcu-credentials or
domain creation will fail.

For example:

./create-secret.sh -l "rcu_prefix=OIGK8S" \
-l "rcu_schema_password=<password>" \
-l "db_host=mydatabasehost.example.com" \
-l "db_port=1521" \
-l "db_service=orcl.example.com" \
-l "dba_user=sys" \
-l "dba_password=<password>" \
-n oigns \

Chapter 7
Creating OIG Domains Using WDT Models

7-37

-d governancedomain \
-s governancedomain-rcu-credentials

The output will look similar to the following:

@@ Info: Setting up secret 'governancedomain-rcu-credentials'.
secret/governancedomain-rcu-credentials created
secret/governancedomain-rcu-credentials labeled

3. Verify the secret is created using the following command:

kubectl get secret <kubernetes_rcu_secret> -o yaml -n <domain_namespace>

For example:

kubectl get secret governancedomain-rcu-credentials -o yaml -n oigns

The output will look similar to the following:

apiVersion: v1
data:
 db_host: <DB_HOST>
 db_port: MTUyMQ==
 db_service: <SERVICE_NAME>
 dba_password: <PASSWORD>
 dba_user: c3lz
 rcu_prefix: <RCU_PREFIX>
 rcu_schema_password: <RCU_PWD>
kind: Secret
metadata:
 creationTimestamp: "<DATE>"
 labels:
 weblogic.domainUID: governancedomain
 name: governancedomain-rcu-credentials
 namespace: oigns
 resourceVersion: "31695660"
 uid: 71cfcc73-4c96-42bd-b9a5-988ea9ed27ff
type: Opaque

7.2.3 Preparing the WDT Create Domain YAML Files
Prepare the create-domain-wdt.yaml file by running the following commands:

1. Navigate to the $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/wdt-
utils/generate_models_utils directory:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/wdt-utils/
generate_models_utils

2. Make a copy of the create-domain-wdt.yaml file:

cp create-domain-wdt.yaml create-domain-wdt.yaml.orig

Chapter 7
Creating OIG Domains Using WDT Models

7-38

3. Edit the create-domain-wdt.yaml and modify the following parameters. Save the file when
complete:

appVersion: 14c
domainUID: <domain_uid>
domainHome: /u01/oracle/user_projects/domains/<domain_uid>
image: <image_name>:<tag>
imagePullSecretName: <container_registry_secret>
logHome: /u01/oracle/user_projects/domains/logs/<domain_uid>
namespace: <domain_namespace>
weblogicDomainStorageType: NFS
weblogicDomainStorageNFSServer: <nfs_server>
weblogicDomainStoragePath: <physical_path_of_persistent_storage>
weblogicDomainStorageSize: 10Gi

For example:

appVersion: 14c
domainUID: governancedomain
domainHome: /u01/oracle/user_projects/domains/governancedomain
image: container-registry.oracle.com/middleware/oig_cpu:14.1.2.1.0-jdk17-
ol8-<YYMMDD>
imagePullSecretName: orclcred
logHome: /u01/oracle/user_projects/domains/logs/governancedomain
namespace: oigns
weblogicDomainStorageType: NFS
weblogicDomainStorageNFSServer: mynfsserver
weblogicDomainStoragePath: /nfs_volumes/oig/governancedomainpv
weblogicDomainStorageSize: 10Gi

Note:

If using a shared file system instead of NFS, set weblogicDomainStorageType:
HOST_PATH and remove weblogicDomainStorageNFSServer.

A full list of parameters in the create-domain-wdt.yaml file are shown below:

Parameter Definition Default

adminPort Port number for the
Administration Server inside the
Kubernetes cluster.

7001

adminNodePort Port number of the Administration
Server outside the Kubernetes
cluster.

30701

configuredManagedServerCount Number of Managed Server
instances to generate for the
domain.

5

Chapter 7
Creating OIG Domains Using WDT Models

7-39

Parameter Definition Default

datasourceType Type of JDBC datasource
applicable for the OIG domain.
Legal values are agl and
generic. Choose agl for Active
GridLink datasource and
generic for Generic datasource.
For enterprise deployments,
Oracle recommends that you use
GridLink data sources to connect
to Oracle RAC databases. See
the Preparing an Existing
Database for an Enterprise
Deploymentfor further details.

generic

domainHome Home directory of the OIG
domain. If not specified, the value
is derived from the domainUID
as /shared/domains/
<domainUID>.

/u01/oracle/user_projects/
domains/governancedomain

domainPVMountPath Mount path of the domain
persistent volume.

/u01/oracle/user_projects/
domains

domainUID Unique ID that will be used to
identify this particular domain.
Used as the name of the
generated WebLogic domain as
well as the name of the
Kubernetes domain resource.
This ID must be unique across all
domains in a Kubernetes cluster.
This ID cannot contain any
character that is not valid in a
Kubernetes service name.

governancedomain

edgInstall Used only if performing an install
using the Enterprise Deployment
Guide.
See, Enterprise Deployment
Guide for Oracle Identity and
Access Management in a
Kubernetes Cluster

false

exposeAdminNodePort Boolean indicating if the
Administration Server is exposed
outside of the Kubernetes cluster.

false

exposeAdminT3Channel Boolean indicating if the T3
administrative channel is exposed
outside the Kubernetes cluster.

true

frontEndHost The entry point URL for the OIM. example.com

frontEndPort The entry point port for the OIM. 14000

image OIG container image. The
operator requires OIG 14.1.2.
Refer to Obtaining the OIG
Container Image for details on
how to obtain or create the
image.

oracle/oig:14.1.2.1.0

Chapter 7
Creating OIG Domains Using WDT Models

7-40

Parameter Definition Default

imagePullSecretName Name of the Kubernetes secret to
access the container registry to
pull the OIG container image. The
presence of the secret will be
validated when this parameter is
specified.

orclcred

initialManagedServerReplicas Number of Managed Servers to
initially start for the domain.

2

javaOptions Java options for starting the
Administration Server and
Managed Servers. A Java option
can have references to one or
more of the following pre-defined
variables to obtain WebLogic
domain information: $
(DOMAIN_NAME), $
(DOMAIN_HOME), $
(ADMIN_NAME), $
(ADMIN_PORT), and $
(SERVER_NAME).

-
Dweblogic.StdoutDebugEnabled=
false

logHome The in-pod location for the
domain log, server logs, server
out, and Node Manager log files.
If not specified, the value is
derived from the domainUID as /
shared/logs/<domainUID>.

/u01/oracle/user_projects/
domains/logs/governancedomain

namespace Kubernetes namespace in which
to create the domain.

oigns

oimCPU Initial CPU Units, 1000m = 1 CPU
core.

1000m

oimMaxCPU Max CPU a pod is allowed to
consume.

2

oimMemory Initial memory allocated to a pod. 4Gi

oimMaxMemory Max memory a pod is allowed to
consume.

8Gi

oimServerJavaParams The memory parameters to use
for the OIG managed servers.

"-Xms8192m -Xmx8192m"

productionModeEnabled Boolean indicating if production
mode is enabled for the domain.

true

soaCPU Initial CPU Units, 1000m = 1 CPU
core.

1000m

soaMaxCPU Max CPU Cores pod is allowed to
consume.

1

soaMemory Initial Memory pod allocated to a
pod.

4Gi

soaMaxMemory Max Memory pod is allowed to
consume.

10Gi

soaServerJavaParams The memory parameters to use
for the SOA managed servers

"-Xms8192m -Xmx8192m"

Chapter 7
Creating OIG Domains Using WDT Models

7-41

Parameter Definition Default

t3PublicAddress Public address for the T3
channel. This should be set to the
public address of the Kubernetes
cluster. This would typically be a
load balancer address. For
development environments only:
In a single server (all-in-one)
Kubernetes deployment, this may
be set to the address of the
master, or at the very least, it
must be set to the address of one
of the worker nodes.

If not provided, the script will
attempt to set it to the IP address
of the Kubernetes cluster

weblogicDomainStorageType Persistent volume storage type.
Options are NFS for NFS volumes
or HOST_PATH for shared file
system.

NFS

weblogicDomainStorageNFSServ
er

Hostname or IP address of the
NFS Server.

nfsServer

weblogicDomainStoragePath Physical path to the persistent
volume.

/scratch/governancedomainpv

weblogicDomainStorageSize Total storage allocated to the
persistent storage.

10Gi

Note:

The above CPU and memory values are for examples only. For Enterprise
Deployments, please review the performance recommendations and sizing
requirements in Enterprise Deployment Guide for Oracle Identity and Access
Management in a Kubernetes Cluster.

7.2.4 Creating the WDT YAML files
Generate the required WDT models for the Oracle Identity Governance (OIG) domain, along
with the domain resource yaml files.

1. Navigate to the $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/wdt-
utils/generate_models_utils

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/wdt-utils/
generate_models_utils

2. Run the generate_wdt_models.sh, specifying your input file and an output directory to
store the generated artifacts:

./generate_wdt_models.sh -i create-domain-wdt.yaml -o
<path_to_output_directory>

For example:

./generate_wdt_models.sh -i create-domain-wdt.yaml -o output

Chapter 7
Creating OIG Domains Using WDT Models

7-42

The output will look similar to the following:

input parameters being used
export version="create-weblogic-sample-domain-inputs-v1"
export appVersion="14c"
export adminPort="7001"
export domainUID="governancedomain"
export configuredManagedServerCount="5"
export initialManagedServerReplicas="1"
export productionModeEnabled="true"
export t3ChannelPort="30012"
export datasourceType="generic"
export edgInstall="false"
export domainHome="/u01/oracle/user_projects/domains/governancedomain"
export image="container-registry.oracle.com/middleware/oig_cpu:14.1.2.1.0-
jdk17-ol8-<YYMMDD>"
export imagePullSecretName="orclcred"
export logHome="/u01/oracle/user_projects/domains/logs/governancedomain"
export exposeAdminT3Channel="false"
export adminNodePort="30701"
export exposeAdminNodePort="false"
export namespace="oigns"
javaOptions=-Dweblogic.StdoutDebugEnabled=false
export domainPVMountPath="/u01/oracle/user_projects"
export weblogicDomainStorageType="NFS"
export weblogicDomainStorageNFSServer="mynfsServer"
export weblogicDomainStoragePath="/scratch/shared/governancedomainpv"
export weblogicDomainStorageReclaimPolicy="Retain"
export weblogicDomainStorageSize="10Gi"
export frontEndHost="example.com"
export frontEndPort="14000"
export oimServerJavaParams="-Xms8192m -Xmx8192m "
export soaServerJavaParams="-Xms8192m -Xmx8192m "
export oimMaxCPU="2"
export oimCPU="1000m"
export oimMaxMemory="8Gi"
export oimMemory="4Gi"
export soaMaxCPU="1"
export soaCPU="1000m"
export soaMaxMemory="10Gi"
export soaMemory="4Gi"

validateWlsDomainName called with governancedomain
WDT model file, property file and sample domain.yaml are genereted
successfully at output/weblogic-domains/governancedomain

Note:

This will generate the domain.yaml, oig.yaml and oig.properties in output/
weblogic-domains/governancedomain.

Chapter 7
Creating OIG Domains Using WDT Models

7-43

3. Copy the generated files to a $WORKDIR/yaml directory:

mkdir $WORKDIR/yaml

cp output/weblogic-domains/governancedomain/*.* $WORKDIR/yaml

7.2.5 Building the Domain Creation Image
You must build a domain creation image to host the WebLogic Deploy Tooling (WDT) model
files and (WDT) installer.

Domain creation images are used for supplying WDT model files, WDT variables files, WDT
application archive files (collectively known as WDT model files), and the directory where the
WebLogic Deploy Tooling software is installed (known as the WDT Home), when deploying a
domain using a Domain on PV model. You distribute WDT model files and the WDT executable
using these images, and the WebLogic Kubernetes Operator uses them to manage the
domain.

Note:

These images are only used for creating the domain and will not be used to update
the domain. The domain creation image is used for domain creation only, it is not the
product container image used for Oracle Identity Governance (OIG).

The steps to build the domain creation image are shown in the sections below.

Prerequisites

Verify that your environment meets the following prerequisites:

• You have created the domain YAML files are per Creating the WDT YAML files.

• A container image client on the build machine, such as Docker or Podman:

– For Docker, a minimum version of 18.03.1.ce is required.

– For Podman, a minimum version of 3.0.1 is required.

• An installed version of JDK to run Image Tool, version 8+.

• Proxies are set accordingly at the OS level if required.

Preparing the Build Domain Image Script

1. Navigate to the $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/wdt-
utils/build-domain-creation-image/properties directory:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/wdt-utils/build-
domain-creation-image/properties

2. Make a copy of the build-domain-creation-image.properties:

cp build-domain-creation-image.properties build-domain-creation-
image.properties.orig

Chapter 7
Creating OIG Domains Using WDT Models

7-44

3. Edit the build-domain-creation-image.properties and modify the following parameters.
Save the file when complete:

JAVA_HOME=<Java home location>
IMAGE_TAG=<Image tag name>
REPOSITORY= <Container image repository to push the image>
REG_USER= <Container registry username>
IMAGE_PUSH_REQUIRES_AUTH=<Whether image push requires authentication to
the registry>
WDT_MODEL_FILE=<Full Path to WDT Model file oig.yaml>
WDT_VARIABLE_FILE=<Full path to WDT variable file oig.properties>
WDT_ARCHIVE_FILE=<Full Path to WDT Archive file>
WDT_VERSION="Version of WebLogic Deploy Tool version to use"
WIT_VERSION="Version of WebLogic Image Tool to use"

For example:

JAVA_HOME=/scratch/jdk
IMAGE_TAG=oig-aux-generic-v1
BASE_IMAGE=ghcr.io/oracle/oraclelinux:8-slim
REPOSITORY=container-registry.example.com/mytenancy/idm
REG_USER=mytenancy/myemail@example.com
IMAGE_PUSH_REQUIRES_AUTH=true
WDT_MODEL_FILE="/OIGK8S/fmw-kubernetes/OracleIdentityGovernance/yaml/
oig.yaml"
WDT_VARIABLE_FILE="/OIGK8S/fmw-kubernetes/OracleIdentityGovernance/yaml/
oig.properties"
WDT_ARCHIVE_FILE=""
WDT_VERSION="4.2.0"
WIT_VERSION="1.14.3"

A full list of parameters and descriptions in the build-domain-creation-
image.properties file are shown below:

Parameter Definition Default

JAVA_HOME Path to the JAVA_HOME for the
JDK8+.

/scratch/jdk/jdk1.8.0_351

IMAGE_TAG Image tag for the final domain
creation image.

oig-aux-generic-v1

BASE_IMAGE The Oracle Linux product
container image to use as a
base image.

ghcr.io/oracle/oraclelinux:8-slim

REPOSITORY Container image repository that
will host the domain creation
image.

iad.ocir.io/mytenancy/idm

REG_USER Username to authenticate to the
<REGISTRY> and push the
domain creation image.

mytenancy/
oracleidentitycloudservice/
myemail@example.com

IMAGE_PUSH_REQUIRES_AU
TH

If authentication to <REGISTRY>
is required then set to true, else
set to false. If set to false,
<REG_USER> is not required.

true

Chapter 7
Creating OIG Domains Using WDT Models

7-45

Parameter Definition Default

WDT_MODEL_FILE Absolute path to WDT model file
oig.yaml. For
example $WORKDIR/yaml/
oig.yaml.

/scratch/model/oig.yaml

WDT_MODEL_FILE Absolute path to WDT variable
file oig.properties. For
example $WORKDIR/yaml/
oig.properties.

/scratch/model/oig.properties

WDT_ARCHIVE_FILE Absolute path to WDT archive
file.

WDT_VERSION WebLogic Deploy Tool version.
If not specified the latest
available version will be
downloaded. It is recommended
to use the default value.

4.2.0

WIT_VERSION WebLogic Image Tool Version. If
not specified the latest available
version will be downloaded. It is
recommended to use the default
value.

1.14.3

TARGET Select the target environment in
which the created image will be
used. Supported values: Default
or OpenShift. See Additional
Information.

Default

CHOWN userid:groupid to be used for
creating files within the image,
such as the WDT installer, WDT
model, and WDT archive. If the
user or group does not exist in
the image, they will be added
with useradd/groupadd.

oracle:oracle

Note:

If IMAGE_PUSH_REQUIRES_AUTH=true, you must edit the $WORKDIR/kubernetes/
create-oim-domain/domain-home-on-pv/wdt-utils/build-domain-creation-
image/properties/.regpassword and change <REGISTRY_PASSWORD> to your
registry password:

REG_PASSWORD="<REGISTRY_PASSWORD>"

Running the build-domain-creation-image Script

1. Navigate to the $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/wdt-
utils/build-domain-creation-image directory:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/wdt-utils/build-
domain-creation-image

Chapter 7
Creating OIG Domains Using WDT Models

7-46

2. Execute the build-domain-creation-image.sh by specifying the input properties
parameter files. Executing this command will build the image and push it to the container
registry :

./build-domain-creation-image.sh -i properties/build-domain-creation-
image.properties

Note:

Administrators should be aware of the following:

• If using a password file, you must add the following to the end of the
command:

-p properties/.regpassword

• You can use the same domain creation image to create a domain in multiple
environments, based on your need. You do not need to rebuild it every time
during domain creation. This is a one time activity.

The output will look similar to the following:

using WDT_DIR: /OIGK8S/fmw-kubernetes/OracleIdentityGovernance/kubernetes/
create-oim-domain/domain-home-on-pv/wdt-utils/build-domain-creation-image/
workdir
Using WDT_VERSION 4.2.0
Using WIT_DIR /OIGK8S/fmw-kubernetes/OracleIdentityGovernance/kubernetes/
create-oim-domain/domain-home-on-pv/wdt-utils/build-domain-creation-image/
workdir
Using WIT_VERSION 1.14.3
Using Image tag: oig-aux-generic-v1
using Base Image: ghcr.io/oracle/oraclelinux:8-slim
using IMAGE_BUILDER_EXE /usr/bin/podman
JAVA_HOME is set to /scratch/jdk
@@ Info: WIT_INSTALL_ZIP_URL is ''
@@ WIT_INSTALL_ZIP_URL is not set
@@ imagetool.sh not found in /OIGK8S/fmw-kubernetes/
OracleIdentityGovernance/kubernetes/create-oim-domain/domain-home-on-pv/
wdt-utils/build-domain-creation-image/workdir/imagetool/bin. Installing
imagetool...
@@ Info: Downloading https://github.com/oracle/weblogic-image-tool/
releases/download/release-1.14.3/imagetool.zip
@@ Info: Downloading https://github.com/oracle/weblogic-image-tool/
releases/download/release-1.14.3/imagetool.zip with https_proxy="http://
proxy.example.com:80"
@@ Info: Archive downloaded to /OIGK8S/fmw-kubernetes/
OracleIdentityGovernance/kubernetes/create-oim-domain/domain-home-on-pv/
wdt-utils/build-domain-creation-image/workdir/imagetool.zip, about to
unzip via '/home/opc/jdk/bin/jar xf'.
@@ Info: imageTool cache does not contain a valid entry for wdt_4.2.0.
Installing WDT
@@ Info: WDT_INSTALL_ZIP_URL is ''
@@ WDT_INSTALL_ZIP_URL is not set

Chapter 7
Creating OIG Domains Using WDT Models

7-47

@@ Info: Downloading https://github.com/oracle/weblogic-deploy-tooling/
releases/download/release-4.2.0/weblogic-deploy.zip
@@ Info: Downloading https://github.com/oracle/weblogic-deploy-tooling/
releases/download/release-4.2.0/weblogic-deploy.zip with
https_proxy="http://proxy.example.com:80"
@@ Info: Archive downloaded to /OIGK8S/fmw-kubernetes/
OracleIdentityGovernance/kubernetes/create-oim-domain/domain-home-on-pv/
wdt-utils/build-domain-creation-image/workdir/weblogic-deploy.zip
[INFO] Successfully added to cache. wdt_4.2.0=/OIGK8S/fmw-kubernetes/
OracleIdentityGovernance/kubernetes/create-oim-domain/domain-home-on-pv/
wdt-utils/build-domain-creation-image/workdir/weblogic-deploy.zip
@@ Info: Install succeeded, imagetool install is in the /OIGK8S/fmw-
kubernetes/OracleIdentityGovernance/kubernetes/create-oim-domain/domain-
home-on-pv/wdt-utils/build-domain-creation-image/workdir/imagetool
directory.
Starting Building Image registry.example.com/mytenancy/idm:oig-aux-generic-
v1
 Login Succeeded!
WDT_MODEL_FILE is set to /OIGK8S/fmw-kubernetes/OracleIdentityGovernance/
yaml/oig.yaml
WDT_VARIABLE_FILE is set to /OIGK8S/fmw-kubernetes/
OracleIdentityGovernance/yaml/oig.properties
Additional Build Commands file is set to /OIGK8S/fmw-kubernetes/
OracleIdentityGovernance/kubernetes/create-oim-domain/domain-home-on-pv/
wdt-utils/build-domain-creation-image/additonal-build-files/build-files.txt
Additonal Build file is set to /OIGK8S/fmw-kubernetes/
OracleIdentityGovernance/kubernetes/create-oim-domain/domain-home-on-pv/
wdt-utils/build-domain-creation-image/additonal-build-files/OIG.json
[INFO] WebLogic Image Tool version 1.14.3
[INFO] Image Tool build ID: 0c9aa58f-808b-4707-a11a-7766fb301cbb
[INFO] Temporary directory used for image build context: /home/oracle/
wlsimgbuilder_temp1198331326550546381
[INFO] Copying /OIGK8S/fmw-kubernetes/OracleIdentityGovernance/
kubernetes/create-oim-domain/domain-home-on-pv/wdt-utils/build-domain-
creation-image/additonal-build-files/OIG.json to build context folder.
[INFO] User specified fromImage ghcr.io/oracle/oraclelinux:8-slim
[INFO] Inspecting ghcr.io/oracle/oraclelinux:8-slim, this may take a
few minutes if the image is not available locally.
[INFO] Copying /OIGK8S/fmw-kubernetes/OracleIdentityGovernance/yaml/
oig.yaml to build context folder.
[INFO] Copying /OIGK8S/fmw-kubernetes/OracleIdentityGovernance/yaml/
oig.properties to build context folder.
[INFO] Copying /OIGK8S/fmw-kubernetes/OracleIdentityGovernance/
kubernetes/create-oim-domain/domain-home-on-pv/wdt-utils/build-domain-
creation-image/workdir/weblogic-deploy.zip to build context folder.
[INFO] Starting build: /usr/bin/podman build --no-cache --force-rm --
tag registry.example.com/mytenancy/idm:oig-aux-generic-v1 --pull --build-
arg http_proxy=http://proxy.example.com:80 --build-arg https_proxy=http://
proxy.example.com:80 --build-arg
no_proxy=localhost,127.0.0.0/8,.example.com,,/var/run/crio/
crio.sock,X.X.X.X /home/oracle/wlsimgbuilder_temp1198331326550546381
[1/3] STEP 1/5: FROM ghcr.io/oracle/oraclelinux:8-slim AS os_update
[1/3] STEP 2/5: LABEL
com.oracle.weblogic.imagetool.buildid="0c9aa58f-808b-4707-
a11a-7766fb301cbb"
--> ba91c351bf94

Chapter 7
Creating OIG Domains Using WDT Models

7-48

[1/3] STEP 3/5: USER root
--> d8f89c65892a
[1/3] STEP 4/5: RUN microdnf update && microdnf install gzip tar unzip
libaio libnsl jq findutils diffutils shadow-utils && microdnf clean all
Downloading metadata...
Downloading metadata...
Package Repository Size
Upgrading:
 libgcc-8.5.0-20.0.3.el8.x86_64 ol8_baseos_latest 93.4 kB
 replacing libgcc-8.5.0-20.0.2.el8.x86_64
 libstdc++-8.5.0-20.0.3.el8.x86_64 ol8_baseos_latest 474.6 kB
 replacing libstdc++-8.5.0-20.0.2.el8.x86_64
 systemd-libs-239-78.0.4.el8.x86_64 ol8_baseos_latest 1.2 MB
 replacing systemd-libs-239-78.0.3.el8.x86_64
Transaction Summary:
 Installing: 0 packages
 Reinstalling: 0 packages
 Upgrading: 3 packages
 Obsoleting: 0 packages
 Removing: 0 packages
 Downgrading: 0 packages
Downloading packages...
Running transaction test...
Updating: libgcc;8.5.0-20.0.3.el8;x86_64;ol8_baseos_latest
Updating: libstdc++;8.5.0-20.0.3.el8;x86_64;ol8_baseos_latest
Updating: systemd-libs;239-78.0.4.el8;x86_64;ol8_baseos_latest
Cleanup: libstdc++;8.5.0-20.0.2.el8;x86_64;installed
Cleanup: systemd-libs;239-78.0.3.el8;x86_64;installed
Cleanup: libgcc;8.5.0-20.0.2.el8;x86_64;installed
Complete.
Package Repository Size
Installing:
 diffutils-3.6-6.el8.x86_64 ol8_baseos_latest 369.3 kB
 findutils-1:4.6.0-21.el8.x86_64 ol8_baseos_latest 539.8 kB
 gzip-1.9-13.el8_5.x86_64 ol8_baseos_latest 170.7 kB
 jq-1.6-7.0.3.el8.x86_64 ol8_appstream 206.5 kB
 libaio-0.3.112-1.el8.x86_64 ol8_baseos_latest 33.4 kB
 libnsl-2.28-236.0.1.el8.7.x86_64 ol8_baseos_latest 111.4 kB
 oniguruma-6.8.2-2.1.el8_9.x86_64 ol8_appstream 191.5 kB
 unzip-6.0-46.0.1.el8.x86_64 ol8_baseos_latest 201.0 kB
Transaction Summary:
Installing: 8 packages
 Reinstalling: 0 packages
 Upgrading: 0 packages
 Obsoleting: 0 packages
 Removing: 0 packages
 Downgrading: 0 packages
Downloading packages...
Running transaction test...
Installing: oniguruma;6.8.2-2.1.el8_9;x86_64;ol8_appstream
Installing: jq;1.6-7.0.3.el8;x86_64;ol8_appstream
Installing: unzip;6.0-46.0.1.el8;x86_64;ol8_baseos_latest
Installing: libnsl;2.28-236.0.1.el8.7;x86_64;ol8_baseos_latest
Installing: libaio;0.3.112-1.el8;x86_64;ol8_baseos_latest
Installing: gzip;1.9-13.el8_5;x86_64;ol8_baseos_latest
Installing: findutils;1:4.6.0-21.el8;x86_64;ol8_baseos_latest

Chapter 7
Creating OIG Domains Using WDT Models

7-49

Installing: diffutils;3.6-6.el8;x86_64;ol8_baseos_latest
Complete.
Complete.
--> 73fb79fa40b2
[1/3] STEP 5/5: RUN if [-z "$(getent group oracle)"]; then groupadd
oracle || exit 1 ; fi && if [-z "$(getent group oracle)"]; then
groupadd oracle || exit 1 ; fi && if [-z "$(getent passwd oracle)"];
then useradd -g oracle oracle || exit 1; fi && mkdir -p /u01 && chown
oracle:oracle /u01 && chmod 775 /u01
--> ff6cf74351d1
[2/3] STEP 1/4: FROM
ff6cf74351d1e0124121321174eaa64ebefa0bc3eef80ec88caec12feb9e8fb3 AS
wdt_build
[2/3] STEP 2/4: RUN mkdir -p /auxiliary && mkdir -p /auxiliary/models &&
chown oracle:oracle /auxiliary
--> a061b678fa0a
[2/3] STEP 3/4: COPY --chown=oracle:oracle ["weblogic-deploy.zip", "/tmp/
imagetool/"]
--> 3daccfef2f06
[2/3] STEP 4/4: RUN test -d /auxiliary/weblogic-deploy && rm -rf /
auxiliary/weblogic-deploy || echo Initial WDT install && unzip -q
"/tmp/imagetool/weblogic-deploy.zip" -d /auxiliary
Initial WDT install
--> b77b02f66a83
[3/3] STEP 1/12: FROM
ff6cf74351d1e0124121321174eaa64ebefa0bc3eef80ec88caec12feb9e8fb3 AS final
[3/3] STEP 2/12: ENV AUXILIARY_IMAGE_PATH=/auxiliary WDT_HOME=/
auxiliary WDT_MODEL_HOME=/auxiliary/models
--> 10dc1832266f
[3/3] STEP 3/12: RUN mkdir -p /auxiliary && chown oracle:oracle /auxiliary
--> 0b85f8e7399a
[3/3] STEP 4/12: COPY --from=wdt_build --chown=oracle:oracle /auxiliary /
auxiliary/
--> c64bf2bef430
[3/3] STEP 5/12: RUN mkdir -p /auxiliary/models && chown oracle:oracle /
auxiliary/models
--> d8817f84ab58
[3/3] STEP 6/12: COPY --chown=oracle:oracle ["oig.yaml", "/auxiliary/
models/"]
--> 45b1d25264b9
[3/3] STEP 7/12: COPY --chown=oracle:oracle ["oig.properties", "/auxiliary/
models/"]
--> 2ceba77ee226
[3/3] STEP 8/12: RUN chmod -R 640 /auxiliary/models/*
--> 34385bac7974
[3/3] STEP 9/12: USER oracle
--> 409f6e3ccce4
[3/3] STEP 10/12: WORKDIR /auxiliary
--> aaa2f154f512
[3/3] STEP 11/12: COPY --chown=oracle:oracle files/OIG.json /auxiliary/
weblogic-deploy/lib/typedefs
--> c8a9d29106d3
[3/3] STEP 12/12: RUN chmod -R 755 /auxiliary
[3/3] COMMIT registry.example.com/mytenancy/idm:oig-aux-generic-v1
--> 0797418499a1
Successfully tagged registry.example.com/mytenancy/idm:oig-aux-generic-v1

Chapter 7
Creating OIG Domains Using WDT Models

7-50

0797418499a1dfd6d2a28672948c17ed747291ad069cebca5fac1b0410978d75
[INFO] Build successful. Build time=72s. Image tag=registry.example.com/
mytenancy/idm:oig-aux-generic-v1
Getting image source signatures
 Copying blob 462ffb36555c done
Copying blob 3db4d3748983 done
Copying blob 7e9f3f6c7a0a done
Copying blob 32aa5f13e19b done
Copying blob d979da323f64 done
Copying blob f18b9e5f415f done
Copying blob aaaea7c1392f done
Copying blob 5504fa641a87 done
Copying blob 5aa81493c602 done
Copying blob f56f992ba90d done
Copying blob 2b1e0644fbd3 done
Copying config a39dc6ae7f done
Writing manifest to image destination
Pushed image registry.example.com/mytenancy/idm/oig-aux-generic-v1 to
image registry Docker Hub

7.2.6 Deploying the WDT OIG Domain
You must modify the Oracle Identity Governance (OIG) domain.yaml and deploy the OIG
domain using the build image created.

Modify the OIG domain.yaml

1. Edit the $WORKDIR/yaml/domain.yaml and update the %DOMAIN_CREATION_IMAGE% with the
previously generated image name:

Note:

%DOMAIN_CREATION_IMAGE% takes the format of <REPOSITORY>:<TAG>.

domain:
 # Domain | DomainAndRCU
 createIfNotExists: DomainAndRCU
 # Image containing WDT installer and Model files.
 domainCreationImages:
 - image: '%DOMAIN_CREATION_IMAGE%'
 domainType: OIG

For example:

domain:
 # Domain | DomainAndRCU
 createIfNotExists: DomainAndRCU
 # Image containing WDT installer and Model files.
 domainCreationImages:
 - image: 'container-registry.example.com/mytenancy/idm:oig-aux-
generic-v1'
 domainType: OIG

Chapter 7
Creating OIG Domains Using WDT Models

7-51

2. In circumstances where you may be pulling the OIG product container image from Oracle
Container Registry, and then the domain image from a private registry, you must first
create a secret (privatecred) for the private registry. For example:

kubectl create secret docker-registry "privatecred" --docker-
server=container-registry.example.com \
--docker-username="user@example.com" \
--docker-password=password --docker-email=user@example.com \
--namespace=oigns

Then specify both secrets for imagePullSecrets in the domain.yaml. For example:

 ...
spec:
 # The WebLogic Domain Home
 domainHome: /u01/oracle/user_projects/domains/governancedomain

 # The domain home source type
 # Set to PersistentVolume for domain-in-pv, Image for domain-in-image,
or FromModel for model-in-image
 domainHomeSourceType: PersistentVolume

 # The WebLogic Server image that the Operator uses to start the domain
 image: "container-registry.oracle.com/middleware/oig_cpu:14.1.2.1.0-
jdk17-ol8-<YYMMDD>"

 # imagePullPolicy defaults to "Always" if image version is :latest
 imagePullPolicy: IfNotPresent

 imagePullSecrets:
 - name: orclcred
 - name: privatecred
 # Identify which Secret contains the WebLogic Admin credentials
...

For more information about the configuration parameters in domain.yaml, see Domain
Resources.

A sample domain.yaml is shown below:

 # Copyright (c) 2024, Oracle and/or its affiliates.
 # Licensed under the Universal Permissive License v 1.0 as shown at https://
oss.oracle.com/licenses/upl.
 #
 # This is an example of how to define an OIG Domain. For details about the
fields in domain specification, refer https://oracle.github.io/weblogic-
kubernetes-operator/managing-domains/domain-resource/
 #
 apiVersion: "weblogic.oracle/v9"
 kind: Domain
 metadata:
 name: governancedomain
 namespace: oigns
 labels:
 weblogic.domainUID: governancedomain

Chapter 7
Creating OIG Domains Using WDT Models

7-52

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-resource/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-resource/

 spec:
 # The WebLogic Domain Home
 domainHome: /u01/oracle/user_projects/domains/governancedomain

 # The domain home source type
 # Set to PersistentVolume for domain-in-pv, Image for domain-in-image, or
FromModel for model-in-image
 domainHomeSourceType: PersistentVolume

 # The WebLogic Server image that the Operator uses to start the domain
 image: "container-registry.oracle.com/middleware/oig_cpu:14.1.2.1.0-jdk17-
ol8-<YYMMDD>"

 # imagePullPolicy defaults to "Always" if image version is :latest
 imagePullPolicy: IfNotPresent

 # Add additional secret name if you are using a different registry for
domain creation image.
 # Identify which Secret contains the credentials for pulling an image
 imagePullSecrets:
 - name: orclcred
 - name: privatecred
 # Identify which Secret contains the WebLogic Admin credentials
 webLogicCredentialsSecret:
 name: governancedomain-weblogic-credentials

 # Whether to include the server out file into the pod's stdout, default is
true
 includeServerOutInPodLog: true

 # Whether to enable log home
 logHomeEnabled: true

 # Whether to write HTTP access log file to log home
 httpAccessLogInLogHome: true

 # The in-pod location for domain log, server logs, server out,
introspector out, and Node Manager log files
 logHome: /u01/oracle/user_projects/domains/logs/governancedomain
 # An (optional) in-pod location for data storage of default and custom
file stores.
 # If not specified or the value is either not set or empty (e.g. dataHome:
"") then the
 # data storage directories are determined from the WebLogic domain home
configuration.
 dataHome: ""

 # serverStartPolicy legal values are "Never, "IfNeeded", or "AdminOnly"
 # This determines which WebLogic Servers the Operator will start up when
it discovers this Domain
 # - "Never" will not start any server in the domain
 # - "AdminOnly" will start up only the administration server (no managed
servers will be started)
 # - "IfNeeded" will start all non-clustered servers, including the
administration server and clustered servers up to the replica count
 serverStartPolicy: IfNeeded

Chapter 7
Creating OIG Domains Using WDT Models

7-53

 serverPod:
 initContainers:
 #DO NOT CHANGE THE NAME OF THIS INIT CONTAINER
 - name: compat-connector-init
 # OIG Product image, same as spec.image mentioned above
 image: "container-registry.oracle.com/middleware/
oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>"
 imagePullPolicy: IfNotPresent
 command: ["/bin/bash", "-c", "mkdir -p /u01/oracle/user_projects/
domains/ConnectorDefaultDirectory", "mkdir -p /u01/oracle/user_projects/
domains/wdt-logs"]
 volumeMounts:
 - mountPath: /u01/oracle/user_projects
 name: weblogic-domain-storage-volume
 # a mandatory list of environment variable to be set on the servers
 env:
 - name: JAVA_OPTIONS
 value: -Dweblogic.StdoutDebugEnabled=false
 - name: USER_MEM_ARGS
 value: "-Djava.security.egd=file:/dev/./urandom -Xms256m -Xmx1024m "
 - name: WLSDEPLOY_LOG_DIRECTORY
 value: "/u01/oracle/user_projects/domains/wdt-logs"
 - name: FRONTENDHOST
 value: example.com
 - name: FRONTENDPORT
 value: "14000"
 - name: WLSDEPLOY_PROPERTIES
 value: "-Dwdt.config.disable.rcu.drop.schema=true"
 envFrom:
 - secretRef:
 name: governancedomain-rcu-credentials
 volumes:
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: governancedomain-domain-pvc
 volumeMounts:
 - mountPath: /u01/oracle/user_projects
 name: weblogic-domain-storage-volume

 # adminServer is used to configure the desired behavior for starting the
administration server.
 adminServer:
 # adminService:
 # channels:
 # The Admin Server's NodePort
 # - channelName: default
 # nodePort: 30701
 # Uncomment to export the T3Channel as a service
 # - channelName: T3Channel
 serverPod:
 # an (optional) list of environment variable to be set on the admin
servers
 env:
 - name: USER_MEM_ARGS
 value: "-Djava.security.egd=file:/dev/./urandom -Xms512m -Xmx1024m

Chapter 7
Creating OIG Domains Using WDT Models

7-54

"

 configuration:
 secrets: [governancedomain-rcu-credentials]
 initializeDomainOnPV:
 persistentVolume:
 metadata:
 name: governancedomain-domain-pv
 spec:
 storageClassName: governancedomain-domain-storage-class
 capacity:
 # Total storage allocated to the persistent storage.
 storage: 10Gi
 # Reclaim policy of the persistent storage
 # # The valid values are: 'Retain', 'Delete', and 'Recycle'
 persistentVolumeReclaimPolicy: Retain
 # Persistent volume type for the persistent storage.
 # # The value must be 'hostPath' or 'nfs'.
 # # If using 'nfs', server must be specified.
 nfs:
 server: mynfsserver
 # hostPath:
 path: "/scratch/shared/governancedomain"
 persistentVolumeClaim:
 metadata:
 name: governancedomain-domain-pvc
 spec:
 storageClassName: governancedomain-domain-storage-class
 resources:
 requests:
 storage: 10Gi
 volumeName: governancedomain-domain-pv
 domain:
 # Domain | DomainAndRCU
 createIfNotExists: DomainAndRCU
 # Image containing WDT installer and Model files.
 domainCreationImages:
 - image: 'container-registry.example.com/mytenancy/
idm:oig-aux-generic-v1'
 domainType: OIG
 # References to Cluster resources that describe the lifecycle options for
all
 # the Managed Server members of a WebLogic cluster, including Java
 # options, environment variables, additional Pod content, and the ability
to
 # explicitly start, stop, or restart cluster members. The Cluster resource
 # must describe a cluster that already exists in the WebLogic domain
 # configuration.
 clusters:
 - name: governancedomain-oim-cluster
 - name: governancedomain-soa-cluster

 # The number of managed servers to start for unlisted clusters
 # replicas: 1

Chapter 7
Creating OIG Domains Using WDT Models

7-55

 # This is an example of how to define a Cluster resource.
 apiVersion: weblogic.oracle/v1
 kind: Cluster
 metadata:
 name: governancedomain-oim-cluster
 namespace: oigns
 spec:
 clusterName: oim_cluster
 serverService:
 precreateService: true
 replicas: 0
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: "-Djava.security.egd=file:/dev/./urandom -Xms8192m -Xmx8192m
"
 resources:
 limits:
 cpu: "2"
 memory: "8Gi"
 requests:
 cpu: "1000m"
 memory: "4Gi"

 # This is an example of how to define a Cluster resource.
 apiVersion: weblogic.oracle/v1
 kind: Cluster
 metadata:
 name: governancedomain-soa-cluster
 namespace: oigns
 spec:
 clusterName: soa_cluster
 serverService:
 precreateService: true
 replicas: 1
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: "-Xms8192m -Xmx8192m "
 resources:
 limits:
 cpu: "1"
 memory: "10Gi"
 requests:
 cpu: "1000m"
 memory: "4Gi"

Optional WDT Models ConfigMap

If required, you can provide a Kubernetes ConfigMap with additional WDT models and WDT
variables files as supplements, or overrides, to those in domainCreationImages.

Chapter 7
Creating OIG Domains Using WDT Models

7-56

For example in the output/weblogic-domains/governancedomain/domain.yaml:

 domain:
 ...
 domainCreationImages:
 ...
 domainCreationConfigMap: mymodel-domain-configmap

The files inside domainCreationConfigMap must have file extensions, .yaml, .properties,
or .zip.

To create a configmap run the following commands:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/wdt-utils

./create-configmap.sh -n oigns -d governancedomain -c mymodel-domain-
configmap -f wdt_models/mymodel.yaml

For more information on the usage of additional configuration, see Optional WDT models
ConfigMap.

Deploying the OIG Domain

Deploy the OIG domain using the domain.yaml:

1. Run the following command to create OIG domain resources:

kubectl create -f $WORKDIR/yaml/domain.yaml

The following steps will be performed by WebLogic Kubernetes Operator:

• Run the introspector job.

• The introspection job will create the RCU Schemas.

• The introspector job pod will create the domain on PV using the model provided in the
domain creation image.

• The introspector job pod will execute OIG offline configuration actions post successful
creation of domain via WDT.

• Brings up the Administration Server, and the SOA Managed Server (soa_server1).

The output will look similar to the following:

domain.weblogic.oracle/governancedomain created
cluster.weblogic.oracle/governancedomain-oim-cluster created
cluster.weblogic.oracle/governancedomain-soa-cluster created

Whilst the domain creation is running, you can run the following command to monitor the
progress:

kubectl get pods -n <domain_namespace> -w

Chapter 7
Creating OIG Domains Using WDT Models

7-57

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/usage/#optional-wdt-models-configmap
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/usage/#optional-wdt-models-configmap

Note:

The -w flag allows you watch the status of the pods as they change.

For example:

kubectl get pods -n oigns -w

You can also tail the logs for the pods by running:

kubectl logs -f <pod> -n oigns

Note:

WDT specific logs can be found in <persistent_volume>/domains/wdt-logs.

2. Once everything is started you should see the Administration Server and SOA server are
running:

NAME READY STATUS RESTARTS AGE
governancedomain-adminserver 1/1 Running 0 13m
governancedomain-soa-server1 1/1 Running 0 10m

Note:

Depending on the speed of your cluster, it can take around 25 minutes for all the
pods to be in READY 1/1 state.

If there are any failures, follow Domain creation failure with WDT models in Known
Issues.

3. Start the OIM server by running the following command:

kubectl patch cluster -n <domain_namespace> <domainUID>-oim-cluster --
type=merge -p '{"spec":{"replicas":1}}'

For example:

kubectl patch cluster -n oigns governancedomain-oim-cluster --type=merge -
p '{"spec":{"replicas":1}}'

The output will look similar to the following:

 cluster.weblogic.oracle/governancedomain-oim-cluster patched

Chapter 7
Creating OIG Domains Using WDT Models

7-58

4. Run the following command to view the status of the OIM server:

kubectl get pods -n <domain_namespace> -w

For example:

kubectl get pods -n oigns -w

Once the OIM server is running, the output will look similar to the following:

NAME READY STATUS RESTARTS AGE
governancedomain-adminserver 1/1 Running 0 16m
governancedomain-soa-server1 1/1 Running 0 13m
governancedomain-oim-server1 1/1 Running 0 5m22s

If there are any failures, follow Domain creation failure with WDT models in Known Issues.

7.2.7 Verifying the WDT OIG Deployment
Verifying the Domain, Pods and Services

Verify the domain, servers pods and services are created and in the READY state with a status
of 1/1, by running the following command:

kubectl get all,domains -n <domain_namespace>

For example:

kubectl get all,domains -n oigns

The output will look similar to the following:

 NAME READY STATUS RESTARTS AGE
 pod/governancedomain-adminserver 1/1 Running 0 25m
 pod/governancedomain-oim-server1 1/1 Running 0 7m18s
 pod/governancedomain-soa-server1 1/1 Running 0 20m

 NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
 service/governancedomain-adminserver ClusterIP None
<none> 7001/TCP 25m
 service/governancedomain-cluster-oim-cluster ClusterIP 10.102.36.107
<none> 14002/TCP,14000/TCP 20m
 service/governancedomain-cluster-soa-cluster ClusterIP 10.102.230.187
<none> 7003/TCP 20m
 service/governancedomain-oim-server1 ClusterIP None
<none> 14002/TCP,14000/TCP 7m18s
 service/governancedomain-oim-server2 ClusterIP 10.111.183.16
<none> 14002/TCP,14000/TCP 20m
 service/governancedomain-oim-server3 ClusterIP 10.107.144.169
<none> 14002/TCP,14000/TCP 20m
 service/governancedomain-oim-server4 ClusterIP 10.110.18.114

Chapter 7
Creating OIG Domains Using WDT Models

7-59

<none> 14002/TCP,14000/TCP 20m
 service/governancedomain-oim-server5 ClusterIP 10.106.220.13
<none> 14002/TCP,14000/TCP 20m
 service/governancedomain-soa-server1 ClusterIP None
<none> 7003/TCP 20m
 service/governancedomain-soa-server2 ClusterIP 10.104.204.68
<none> 7003/TCP 20m
 service/governancedomain-soa-server3 ClusterIP 10.110.104.108
<none> 7003/TCP 20m
 service/governancedomain-soa-server4 ClusterIP 10.103.117.118
<none> 7003/TCP 20m
 service/governancedomain-soa-server5 ClusterIP 10.101.65.38
<none> 7003/TCP 20m

 NAME AGE
 domain.weblogic.oracle/governancedomain 32m

 NAME AGE
 cluster.weblogic.oracle/governancedomain-oim-cluster 32m
 cluster.weblogic.oracle/governancedomain-soa-cluster 32m

The default domain created by the script has the following characteristics:

• An Administration Server named AdminServer listening on port 7001.

• A configured OIG cluster named oig_cluster of size 5.

• A configured SOA cluster named soa_cluster of size 5.

• One started OIG Managed Server, named oim_server1, listening on port 14100.

• One started SOA Managed Server named soa_server1, listening on port 7003.

• Log files that are located in <persistent_volume>/logs/<domainUID>.

If the OIG deployment fails refer to General Troubleshooting.

Verifying the Domain

Run the following command to describe the domain:

kubectl describe domain <domain_uid> -n <domain_namespace>

For example:

kubectl describe domain governancedomain -n oigns

The output will look similar to the following:

 Name: governancedomain
 Namespace: oigns
 Labels: weblogic.domainUID=governancedomain
 Annotations: <none>
 API Version: weblogic.oracle/v9
 Kind: Domain
 Metadata:
 Creation Timestamp: <DATE>

Chapter 7
Creating OIG Domains Using WDT Models

7-60

 Generation: 1
 Resource Version: 1013312
 UID: b5b4446b-b056-431f-8ae4-db470ac7731e
 Spec:
 Admin Server:
 Admin Channel Port Forwarding Enabled: true
 Server Pod:
 Env:
 Name: USER_MEM_ARGS
 Value: -Djava.security.egd=file:/dev/./urandom -Xms512m
-Xmx1024m
 Server Start Policy: IfNeeded
 Clusters:
 Name: governancedomain-oim-cluster
 Name: governancedomain-soa-cluster
 Configuration:
 Initialize Domain On PV:
 Domain:
 Create If Not Exists: DomainAndRCU
 Domain Creation Images:
 Image: container-registry.example.com/mytenancy/idm:oig-
aux-generic-v1
 Domain Type: OIG
 Persistent Volume:
 Metadata:
 Name: governancedomain-domain-pv
 Spec:
 Capacity:
 Storage: 10Gi
 Nfs:
 Path: /nfs_volumes/oig/
governancedomainpv
 Server: mynfsserver
 Persistent Volume Reclaim Policy: Retain
 Storage Class Name: governancedomain-domain-
storage-class
 Persistent Volume Claim:
 Metadata:
 Name: governancedomain-domain-pvc
 Spec:
 Resources:
 Requests:
 Storage: 10Gi
 Storage Class Name: governancedomain-domain-storage-class
 Volume Name: governancedomain-domain-pv
 Override Distribution Strategy: Dynamic
 Secrets:
 governancedomain-rcu-credentials
 Data Home:
 Domain Home: /u01/oracle/user_projects/domains/
governancedomain
 Domain Home Source Type: PersistentVolume
 Failure Retry Interval Seconds: 120
 Failure Retry Limit Minutes: 1440
 Http Access Log In Log Home: true
 Image: container-registry.oracle.com/middleware/

Chapter 7
Creating OIG Domains Using WDT Models

7-61

oig_cpu:14.1.2.1.0-jdk8-ol8-<YYMMDD>
 Image Pull Policy: IfNotPresent
 Image Pull Secrets:
 Name: orclcred
 Name: privatecred
 Include Server Out In Pod Log: true
 Log Home: /u01/oracle/user_projects/domains/logs/
governancedomain
 Log Home Enabled: true
 Max Cluster Concurrent Shutdown: 1
 Max Cluster Concurrent Startup: 0
 Max Cluster Unavailable: 1
 Replace Variables In Java Options: false
 Replicas: 1
 Server Pod:
 Env:
 Name: JAVA_OPTIONS
 Value: -Dweblogic.StdoutDebugEnabled=false
 Name: USER_MEM_ARGS
 Value: -Djava.security.egd=file:/dev/./urandom -Xms256m -Xmx1024m
 Name: WLSDEPLOY_LOG_DIRECTORY
 Value: /u01/oracle/user_projects/domains/wdt-logs
 Name: FRONTENDHOST
 Value: example.com
 Name: FRONTENDPORT
 Value: 14000
 Name: WLSDEPLOY_PROPERTIES
 Value: -Dwdt.config.disable.rcu.drop.schema=true
 Env From:
 Secret Ref:
 Name: governancedomain-rcu-credentials
 Init Containers:
 Command:
 /bin/bash
 -c
 mkdir -p /u01/oracle/user_projects/domains/
ConnectorDefaultDirectory
 mkdir -p /u01/oracle/user_projects/domains/wdt-logs
 Image: container-registry.oracle.com/middleware/
oig_cpu:14.1.2.1.0-jdk8-ol8-<YYMMDD>
 Image Pull Policy: IfNotPresent
 Name: compat-connector-init
 Volume Mounts:
 Mount Path: /u01/oracle/user_projects
 Name: weblogic-domain-storage-volume
 Volume Mounts:
 Mount Path: /u01/oracle/user_projects
 Name: weblogic-domain-storage-volume
 Volumes:
 Name: weblogic-domain-storage-volume
 Persistent Volume Claim:
 Claim Name: governancedomain-domain-pvc
 Server Start Policy: IfNeeded
 Web Logic Credentials Secret:
 Name: governancedomain-weblogic-credentials
 Status:

Chapter 7
Creating OIG Domains Using WDT Models

7-62

 Clusters:
 Cluster Name: oim_cluster
 Conditions:
 Last Transition Time: <DATE>
 Status: True
 Type: Available
 Last Transition Time: <DATE>
 Status: True
 Type: Completed
 Label Selector:
weblogic.domainUID=governancedomain,weblogic.clusterName=oim_cluster
 Maximum Replicas: 5
 Minimum Replicas: 0
 Observed Generation: 2
 Ready Replicas: 1
 Replicas: 1
 Replicas Goal: 1
 Cluster Name: soa_cluster
 Conditions:
 Last Transition Time: <DATE>
 Status: True
 Type: Available
 Last Transition Time: <DATE>
 Status: True
 Type: Completed
 Label Selector:
weblogic.domainUID=governancedomain,weblogic.clusterName=soa_cluster
 Maximum Replicas: 5
 Minimum Replicas: 0
 Observed Generation: 1
 Ready Replicas: 1
 Replicas: 1
 Replicas Goal: 1
 Conditions:
 Last Transition Time: <DATE>
 Status: True
 Type: Available
 Last Transition Time: <DATE>
 Status: True
 Type: Completed
 Observed Generation: 1
 Servers:
 Health:
 Activation Time: <DATE>
 Overall Health: ok
 Subsystems:
 Subsystem Name: ServerRuntime
 Symptoms:
 Node Name: doc-worker2
 Pod Phase: Running
 Pod Ready: True
 Server Name: AdminServer
 State: RUNNING
 State Goal: RUNNING
 Cluster Name: oim_cluster
 Health:

Chapter 7
Creating OIG Domains Using WDT Models

7-63

 Activation Time: <DATE>
 Overall Health: ok
 Subsystems:
 Subsystem Name: ServerRuntime
 Symptoms:
 Node Name: doc-worker1
 Pod Phase: Running
 Pod Ready: True
 Server Name: oim_server1
 State: RUNNING
 State Goal: RUNNING
 Cluster Name: oim_cluster
 Server Name: oim_server2
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: oim_cluster
 Server Name: oim_server3
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: oim_cluster
 Server Name: oim_server4
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: oim_cluster
 Server Name: oim_server5
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: soa_cluster
 Health:
 Activation Time: <DATE>
 Overall Health: ok
 Subsystems:
 Subsystem Name: ServerRuntime
 Symptoms:
 Node Name: doc-worker1
 Pod Phase: Running
 Pod Ready: True
 Server Name: soa_server1
 State: RUNNING
 State Goal: RUNNING
 Cluster Name: soa_cluster
 Server Name: soa_server2
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: soa_cluster
 Server Name: soa_server3
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: soa_cluster
 Server Name: soa_server4
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: soa_cluster
 Server Name: soa_server5
 State: SHUTDOWN
 State Goal: SHUTDOWN

Chapter 7
Creating OIG Domains Using WDT Models

7-64

 Start Time: <DATE>
 Events: <none>

In the Status section of the output, the available servers and clusters are listed.

Verifying the Pods

Run the following command to view the pods and the nodes they are running on:

kubectl get pods -n <domain_namespace> -o wide

For example:

kubectl get pods -n oigns -o wide

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE IP NODE NOMINATED NODE
READINESS GATES
governancedomain-adminserver 1/1
Running 0 26m 10.244.1.42 worker-node2 <none>
<none
governancedomain-oim-server1 1/1
Running 0 7m56s 10.244.1.44 worker-node2 <none>
<none>
governancedomain-soa-server1 1/1
Running 0 21m 10.244.1.43 worker-node2 <none>
<none>

Configuring the Ingress

If the domain deploys successfully, and all the above checks are verified, you are ready to
configure the Ingress. See, Configuring Ingress.

Chapter 7
Creating OIG Domains Using WDT Models

7-65

8
Configuring Ingress

You must configure an ingress controller to allow access to Oracle Identity Governance (OIG).

The ingress can be configured in the following ways:

• Without SSL

• With SSL

This chapter includes the following topics:

• Installing the NGINX Repository

• Creating a Kubernetes Namespace for NGINX

• Generating SSL Certificates

• Installing the NGINX Controller

• Preparing the Ingress values.yaml

• Creating the Ingress

8.1 Installing the NGINX Repository
To install the NGINX ingress controller:

1. Add the Helm chart repository for NGINX using the following command:

helm repo add stable https://kubernetes.github.io/ingress-nginx

The output will look similar to the following:

"stable" has been added to your repositories

2. Update the repository using the following command:

helm repo update

The output will look similar to the following:

Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "stable" chart repository
Update Complete. Happy Helming!

8-1

8.2 Creating a Kubernetes Namespace for NGINX
Create a Kubernetes namespace for the NGINX deployment by running the following
command:

kubectl create namespace <namespace>

For example:

kubectl create namespace mynginxns

The output will look similar to the following:

namespace/mynginxns created

8.3 Generating SSL Certificates
This section should only be followed if you want to configure your ingress for SSL.

For production environments it is recommended to use a commercially available certificate,
traceable to a trusted Certificate Authority. For sandbox environments, you can generate your
own self-signed certificates.

Using a Third Party CA for Generating Certificates

If you are configuring the ingress controller to use SSL, you must use a wildcard certificate to
prevent issues with the Common Name (CN) in the certificate. A wildcard certificate is a
certificate that protects the primary domain and it's sub-domains. It uses a wildcard character
(*) in the CN, for example *.yourdomain.com.

How you generate the key and certificate signing request for a wildcard certificate will depend
on your Certificate Authority. Contact your Certificate Authority vendor for details.

In order to configure the ingress controller for SSL you require the following files:

• The private key for your certificate, for example oig.key.

• The certificate, for example oig.crt in PEM format.

• The trusted certificate authority (CA) certificate, for example rootca.crt in PEM format.

• If there are multiple trusted CA certificates in the chain, you need all the certificates in the
chain, for example rootca1.crt, rootca2.crt etc.

Once you have received the files, perform the following steps:

1. On the administrative host, create a $WORKDIR>/ssl directory and navigate to the folder:

mkdir $WORKDIR>/ssl

cd $WORKDIR>/ssl

2. Copy the files listed above to the $WORKDIR>/ssl directory.

Chapter 8
Creating a Kubernetes Namespace for NGINX

8-2

3. If your CA has multiple certificates in a chain, create a bundle.pem that contains all the CA
certificates:

cat rootca.pem rootca1.pem rootca2.pem >>bundle.pem

Using Self-Signed Certificates

1. On the administrative host, create a $WORKDIR>/ssl directory and navigate to the folder:

mkdir $WORKDIR/ssl

cd $WORKDIR/ssl

2. Run the following command to create the self-signed certificate:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout oig.key -out
oig.crt -subj "/CN=<hostname>"

For example:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout oig.key -out
oig.crt -subj "/CN=oig.example.com"

The output will look similar to the following:

Generating a 2048 bit RSA private key
..+++
...
............................+++
writing new private key to 'oig.key'

Creating a Kubernetes Secret for SSL

Run the following command to create a Kubernetes secret for SSL:

kubectl -n mynginxns create secret tls <domain_uid>-tls-cert --
key $WORKDIR/ssl/oig.key --cert $WORKDIR/ssl/oig.crt

Note:

If you have multiple CA certificates in the chain use --cert <workdir>/bundle.crt.

For example:

kubectl -n mynginxns create secret tls governancedomain-tls-cert --key /
OIGK8S/ssl/oig.key --cert /OIGK8S/ssl/oig.crt

Chapter 8
Generating SSL Certificates

8-3

The output will look similar to the following:

secret/governancedomain-tls-cert created

8.4 Installing the NGINX Controller
In this section you install the NGINX controller.

If you can connect directly to a worker node hostname or IP address from a browser, then
install NGINX with the --set controller.service.type=NodePort parameter.

If you are using a Managed Service for your Kubernetes cluster, for example Oracle
Kubernetes Engine (OKE) on Oracle Cloud Infrastructure (OCI), and connect from a browser to
the Load Balancer IP address, then use the --set controller.service.type=LoadBalancer
parameter. This instructs the Managed Service to setup a Load Balancer to direct traffic to the
NGINX ingress.

The instructions below use --set controller.service.type=NodePort. If using a managed
service, change to --set controller.service.type=LoadBalancer.

Configuring an Ingress Controller with SSL

To configure the ingress controller to use SSL, run the following command:

helm install nginx-ingress \
-n <domain_namespace> \
--set controller.service.nodePorts.http=<http_port> \
--set controller.service.nodePorts.https=<https_port> \
--set controller.extraArgs.default-ssl-certificate=<domain_namespace>/
<ssl_secret> \
--set controller.service.type=<type> \
--set controller.config.use-forwarded-headers=true \
--set controller.config.enable-underscores-in-headers=true \
--set controller.admissionWebhooks.enabled=false \
stable/ingress-nginx \
--version 4.7.2

Where:

• <domain_namespace> is your namespace, for example mynginxns.

• <http_port> is the HTTP port that you want the controller to listen on, for example 30777.

• <https_port> is the HTTPS port that you want the controller to listen on, for example
30443.

• <type> is the controller type. If using NodePort set to NodePort. If using a managed
service set to LoadBalancer. If using LoadBalancer remove --set
controller.service.nodePorts.http=<http_port> and --set
controller.service.nodePorts.https=<https_port>.

• <ssl_secret> is the secret you created in Generating SSL Certificates.

For example:

helm install nginx-ingress -n mynginxns \
--set controller.service.nodePorts.http=30777 \

Chapter 8
Installing the NGINX Controller

8-4

--set controller.service.nodePorts.https=30443 \
--set controller.extraArgs.default-ssl-certificate=mynginxns/governancedomain-
tls-cert \
--set controller.service.type=NodePort \
--set controller.config.use-forwarded-headers=true \
--set controller.config.enable-underscores-in-headers=true \
--set controller.admissionWebhooks.enabled=false \
stable/ingress-nginx \
--version 4.7.2

The output will look similar to the following:

NAME: nginx-ingress
LAST DEPLOYED: <DATE>

NAMESPACE: mynginxns
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The nginx-ingress controller has been installed.
Get the application URL by running these commands:
 export HTTP_NODE_PORT=30777
 export HTTPS_NODE_PORT=30443
 export NODE_IP=$(kubectl --namespace mynginxns get nodes -o
jsonpath="{.items[0].status.addresses[1].address}")

 echo "Visit http://$NODE_IP:$HTTP_NODE_PORT to access your application via
HTTP."
 echo "Visit https://$NODE_IP:$HTTPS_NODE_PORT to access your application
via HTTPS."

An example Ingress that makes use of the controller:

 apiVersion: networking.k8s.io/v1
 kind: Ingress
 metadata:
 annotations:
 kubernetes.io/ingress.class: nginx
 name: example
 namespace: foo
 spec:
 ingressClassName: example-class
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: exampleService
 port: 80
 # This section is only required if TLS is to be enabled for the Ingress
 tls:

Chapter 8
Installing the NGINX Controller

8-5

 - hosts:
 - www.example.com
 secretName: example-tls

If TLS is enabled for the Ingress, a Secret containing the certificate and
key must also be provided:

 apiVersion: v1
 kind: Secret
 metadata:
 name: example-tls
 namespace: foo
 data:
 tls.crt: <base64 encoded cert>
 tls.key: <base64 encoded key>
 type: kubernetes.io/tls

Configure an Ingress Controller Without SSL

To configure the ingress controller without SSL, run the following command:

helm install nginx-ingress \
-n <domain_namespace> \
--set controller.service.nodePorts.http=<http_port> \
--set controller.service.type=NodePort \
--set controller.config.use-forwarded-headers=true \
--set controller.config.enable-underscores-in-headers=true \
--set controller.admissionWebhooks.enabled=false \
stable/ingress-nginx
--version 4.7.2

Where:

• <domain_namespace> is your namespace, for example mynginxns.

• <http_port> is the HTTP port that you want the controller to listen on, for example 30777.

• <type> is the controller type. If using NodePort set to NodePort. If using a managed
service set to LoadBalancer. If using LoadBalancer remove --set
controller.service.nodePorts.http=<http_port>.

For example:

helm install nginx-ingress \
-n mynginxns \
--set controller.service.nodePorts.http=30777 \
--set controller.service.type=NodePort \
--set controller.config.use-forwarded-headers=true \
--set controller.config.enable-underscores-in-headers=true \
--set controller.admissionWebhooks.enabled=false \
stable/ingress-nginx \
--version 4.7.2

Chapter 8
Installing the NGINX Controller

8-6

The output will look similar to the following:

NAME: nginx-ingress
LAST DEPLOYED: <DATE>

NAMESPACE: mynginxns
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The nginx-ingress controller has been installed.
Get the application URL by running these commands:
 export HTTP_NODE_PORT=30777
 export HTTPS_NODE_PORT=$(kubectl --namespace mynginxns get services -o
jsonpath="{.spec.ports[1].nodePort}" nginx-ingress-ingress-nginx-controller)
 export NODE_IP=$(kubectl --namespace mygninx get nodes -o
jsonpath="{.items[0].status.addresses[1].address}")

 echo "Visit http://$NODE_IP:$HTTP_NODE_PORT to access your application via
HTTP."
 echo "Visit https://$NODE_IP:$HTTPS_NODE_PORT to access your application
via HTTPS."

An example Ingress that makes use of the controller:

 apiVersion: networking.k8s.io/v1
 kind: Ingress
 metadata:
 annotations:
 kubernetes.io/ingress.class: nginx
 name: example
 namespace: foo
 spec:
 ingressClassName: example-class
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: exampleService
 port: 80
 # This section is only required if TLS is to be enabled for the Ingress
 tls:
 - hosts:
 - www.example.com
 secretName: example-tls

If TLS is enabled for the Ingress, a Secret containing the certificate and
key must also be provided:

 apiVersion: v1
 kind: Secret

Chapter 8
Installing the NGINX Controller

8-7

 metadata:
 name: example-tls
 namespace: foo
 data:
 tls.crt: <base64 encoded cert>
 tls.key: <base64 encoded key>
 type: kubernetes.io/tls

8.5 Preparing the Ingress values.yaml
To prepare the values.yaml for the ingress:

1. Navigate to the following directory and make a copy of the values.yaml

cd $WORKDIR/kubernetes/charts/ingress-per-domain

2. Make a copy of the values.yaml:

cp values.yaml $WORKDIR/

3. Edit the $WORKDIR/kubernetes/charts/ingress-per-domain/values.yaml and modify the
following parameters if required:

• domainUID: - If you created your OIG domain with anything other than the default
governancedomain, change accordingly.

• sslType: - Values supported are SSL and NONSSL. If you created your ingress controller
to use SSL then set to SSL, otherwise set to NONSSL.

The following show example files based on different configuration types:

SSL values.yaml

Load balancer type. Supported values are: NGINX
type: NGINX

SSL configuration Type. Supported Values are : NONSSL,SSL
sslType: SSL

domainType. Supported values are: oim
domainType: oim

#WLS domain as backend to the load balancer
wlsDomain:
 domainUID: governancedomain
 adminServerName: AdminServer
 adminServerPort: 7001
 adminServerSSLPort:
 soaClusterName: soa_cluster
 soaManagedServerPort: 7003
 soaManagedServerSSLPort:
 oimClusterName: oim_cluster
 oimManagedServerPort: 14000
 oimManagedServerSSLPort:

Host specific values

Chapter 8
Preparing the Ingress values.yaml

8-8

hostName:
 enabled: false
 admin:
 runtime:
 internal:

Ngnix specific values
nginx:
 nginxTimeOut: 180

NONSSL values.yaml

Load balancer type. Supported values are: NGINX
type: NGINX

SSL configuration Type. Supported Values are : NONSSL,SSL
sslType: NONSSL

domainType. Supported values are: oim
domainType: oim

#WLS domain as backend to the load balancer
wlsDomain:
 domainUID: governancedomain
 adminServerName: AdminServer
 adminServerPort: 7001
 adminServerSSLPort:
 soaClusterName: soa_cluster
 soaManagedServerPort: 7003
 soaManagedServerSSLPort:
 oimClusterName: oim_cluster
 oimManagedServerPort: 14000
 oimManagedServerSSLPort:

Host specific values
hostName:
 enabled: false
 admin:
 runtime:
 internal:

Ngnix specific values
nginx:
 nginxTimeOut: 180

8.6 Creating the Ingress
Run the following commands to create the ingress:

1. Navigate to the $WORKDIR:

 cd $WORKDIR

Chapter 8
Creating the Ingress

8-9

2. Run the following helm command to create the ingress:

helm install governancedomain-nginx kubernetes/charts/ingress-per-domain \
--namespace <domain_namespace> \
--values kubernetes/charts/ingress-per-domain/values.yaml

Note:

The $WORKDIR/kubernetes/charts/ingress-per-domain/templates/nginx-
ingress-ssl.yaml has nginx.ingress.kubernetes.io/enable-access-log set
to false. If you want to enable access logs then set this value to true before
executing the command. Enabling access-logs can cause issues with disk space
if not regularly maintained.

For example:

helm install governancedomain-nginx kubernetes/charts/ingress-per-domain --
namespace oigns --values kubernetes/charts/ingress-per-domain/values.yaml

The output will look similar to the following:

NAME: governancedomain-nginx
LAST DEPLOYED: <DATE>
NAMESPACE: oigns
STATUS: deployed
REVISION: 1
TEST SUITE: None

3. Run the following command to show the ingress is created successfully:

kubectl get ing -n <domain_namespace>

For example

kubectl get ing -n oigns

If hostname.enabled: false, the output will look similar to the following:

NAME CLASS HOSTS ADDRESS PORTS AGE
governancedomain-nginx <none> * 80 49s

4. Run the following command to check the ingress:

kubectl describe ing <ingress> -n <domain_namespace>

For example:

kubectl describe ing governancedomain-nginx -n oigns

Chapter 8
Creating the Ingress

8-10

The output will look similar to the following:

Name: governancedomain-nginx
Labels: app.kubernetes.io/managed-by=Helm
Namespace: oigns
Address: 10.109.22.22
Ingress Class: nginx
Default backend: <default>
Rules:
 Host Path Backends
 ---- ---- --------
 *
 /console governancedomain-
adminserver:7001 (10.244.1.43:7001)
 /consolehelp governancedomain-
adminserver:7001 (10.244.1.43:7001)
 /em governancedomain-
adminserver:7001 (10.244.1.43:7001)
 /management governancedomain-
adminserver:7001 (10.244.1.43:7001)
 /ws_utc governancedomain-cluster-soa-
cluster:7003 (10.244.2.247:7003)
 /soa governancedomain-cluster-soa-
cluster:7003 (10.244.2.247:7003)
 /integration governancedomain-cluster-soa-
cluster:7003 (10.244.2.247:7003)
 /soa-infra governancedomain-cluster-soa-
cluster:7003 (10.244.2.247:7003)
 /identity governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /admin governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /dms governancedomain-
adminserver:7001 (10.244.1.43:7001)
 /oim governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /sysadmin governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /workflowservice governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /callbackResponseService governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /spml-xsd governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /HTTPClnt governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /reqsvc governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /iam governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /provisioning-callback governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /CertificationCallbackService governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /ucs governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)

Chapter 8
Creating the Ingress

8-11

 /FacadeWebApp governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /OIGUI governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
 /weblogic governancedomain-cluster-oim-
cluster:14000 (10.244.2.248:14000)
Annotations: meta.helm.sh/release-name: governancedomain-nginx
 meta.helm.sh/release-namespace: oigns
 nginx.ingress.kubernetes.io/affinity: cookie
 nginx.ingress.kubernetes.io/affinity-mode: persistent
 nginx.ingress.kubernetes.io/enable-access-log: false
 nginx.ingress.kubernetes.io/proxy-read-timeout: 180
 nginx.ingress.kubernetes.io/proxy-send-timeout: 180
 nginx.ingress.kubernetes.io/session-cookie-name: sticky
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Sync 72s (x2 over 83s) nginx-ingress-controller Scheduled
for sync

5. To confirm that the new ingress is successfully routing to the domain’s server pods, run the
following command to send a request to the OIG Enterprise Manager Fusion Middleware
Control:

• For SSL:

curl -v -k https://${HOSTNAME}:${PORT}/em

• For NONSSL:

curl -v http://${HOSTNAME}:${PORT}/em

Where ${HOSTNAME} is the host.domain of any of the nodes in the Kubernetes cluster,
and ${PORT} is the ingress controller port. For example http://
oig.example.com:30777/em.
For example:

curl -v http://oig.example.com:30777/em

The output will look similar to the following. You should receive a 302 Moved Temporarily
message:

> GET /em HTTP/1.1
> Host: oig.example.com:30777
> User-Agent: curl/7.61.1
> Accept: */*
>
< HTTP/1.1 302 Moved Temporarily
< Date: <DATE>
< Content-Type: text/html
< Content-Length: 353
< Connection: keep-alive
< Set-Cookie: sticky=fda412d59b87742b3b045e51cea11ade|
59a94680c4648be4c706b7db494ae03c; Path=/em; HttpOnly
< Location: http://oig.example.com:30777/em/console/home

Chapter 8
Creating the Ingress

8-12

< X-ORACLE-DMS-ECID: 9f09f338-557f-494c-b93c-a73817b15ef0-00000838
< X-ORACLE-DMS-RID: 0
< X-Content-Type-Options: nosniff
< Set-Cookie:
ADMINCONSOLESESSION=yCmKRBfyGrPN5ZUFb1Ys4CRyKisRHhcnuJfhUaSgswd5aPfTZGhO!
1679590153; path=/; HttpOnly
< X-Frame-Options: DENY
<
<html><head><title>302 Moved Temporarily</title></head>
<body bgcolor="#FFFFFF">
<p>This document you requested has moved
temporarily.</p>

<p>It's now at http://
oig.example.com:30777/em/.</p>
</body></html>
* Connection #0 to host oig.example.com left intact

After confirming the above, verify that the domain applications are accessible. See, Validating
the Domain URLs.

Chapter 8
Creating the Ingress

8-13

9
Validating the Domain URLs

Launch a browser and access the following URL’s.

Login to Oracle Enterprise Manager Console with the weblogic username and password
(weblogic/<password>).

Login to Oracle Identity Governance with the xelsysadm username and password (xelsysadm/
<password>).

Note:

The ${HOSTNAME}:${PORT} depends on the architecture configured, and your ingress
setup as per Configuring Ingress.

Console or Page URL

Oracle Enterprise Manager Console http(s)://${HOSTNAME}:${PORT}/em
Oracle Identity System Administration http(s)://${HOSTNAME}:${PORT}/sysadmin
Oracle Identity Self Service http(s)://${HOSTNAME}:${PORT}/identity

Note:

Administrators should be aware of the following:

• To monitor the OIG WebLogic Server domain in 14.1.2.1.0 you must use the
Oracle WebLogic Remote Console. For more information about installing and
configuring the console, see Getting Started Using Administration Console

• The Oracle WebLogic Remote Console and Oracle Enterprise Manager Console
should only be used to monitor the servers in the OIG domain. To control the
Administration Server and OIG Managed Servers (start/stop) you must use
Kubernetes. See Scaling OIG Pods for more information.

The browser will give certificate errors if you used a self signed certificate and have not
imported it into the browsers Certificate Authority store. If this occurs you can proceed with the
connection and ignore the errors.

After validating the URL’s proceed to Post Installation Configuration.

9-1

10
Post Installation Configuration

After the Oracle Identity Governance (OIG) domain is successfully deployed, you must perform
some post configuration steps.

This chapter includes the following topics:

• Creating a Server Overrides File

• Setting OIMFrontendURL Using MBeans

• Updating the OIM Integration URLs

• Installing and Configuring Connectors

• Configuring Design Console

10.1 Creating a Server Overrides File
Perform the following steps to create a server overrides file for Oracle Identity Governance
(OIG):

1. Navigate to the following directory:

• For OIG domains created with WLST:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/output/
weblogic-domains/governancedomain

• For OIG domains created with WDT:

cd $WORKDIR/kubernetes/create-oim-domain/domain-home-on-pv/

2. Create a setUserOverrides.sh with the following contents:

DERBY_FLAG=false
JAVA_OPTIONS="${JAVA_OPTIONS} -Djava.net.preferIPv4Stack=true"
MEM_ARGS="-Xms8192m -Xmx8192m"

3. Copy the setUserOverrides.sh file to the Administration Server pod:

chmod 755 setUserOverrides.sh

kubectl cp setUserOverrides.sh <domain_namespace/<domainUID>-
adminserver:/u01/oracle/user_projects/domains/<domainUID>/bin/
setUserOverrides.sh

10-1

For example:

kubectl cp setUserOverrides.sh oigns/governancedomain-adminserver:/u01/
oracle/user_projects/domains/governancedomain/bin/setUserOverrides.sh

4. Stop the OIG domain using the following command:

kubectl -n <domain_namespace> patch domains <domain_uid> --type='json' -
p='[{"op": "replace", "path": "/spec/serverStartPolicy", "value":
"Never" }]'

For example:

kubectl -n oigns patch domains governancedomain --type='json' -p='[{"op":
"replace", "path": "/spec/serverStartPolicy", "value": "Never" }]'

The output will look similar to the following:

domain.weblogic.oracle/governancedomain patched

5. Check that all the pods are stopped:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
governancedomain-adminserver 1/1
Terminating 0 18h
governancedomain-oim-server1 1/1
Terminating 0 18h
governancedomain-soa-server1 1/1
Terminating 0 18h

The Administration Server pod and Managed Server pods will move to a STATUS of
Terminating. After a few minutes, run the command again and the pods should have
disappeared.

6. Start the domain using the following command:

kubectl -n <domain_namespace> patch domains <domainUID> --type='json' -
p='[{"op": "replace", "path": "/spec/serverStartPolicy", "value":
"IfNeeded" }]'

Chapter 10
Creating a Server Overrides File

10-2

For example:

kubectl -n oigns patch domains governancedomain --type='json' -p='[{"op":
"replace", "path": "/spec/serverStartPolicy", "value": "IfNeeded" }]'

7. Run the following kubectl command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY STATUS RESTARTS
AGE
governancedomain-introspector-jhjtj 1/1 Running 0
8s

The Administration Server pod will start followed by the OIG Managed Servers pods. This
process will take several minutes, so keep executing the command until all the pods are
running with READY status 1/1:

Note:

You can watch the status of the pods by adding the watch flag, for example:

kubectl get pods -n oigns -w

NAME READY STATUS
RESTARTS AGE
governancedomain-adminserver 1/1 Running
0 6m4s
governancedomain-oim-server1 1/1 Running
0 3m5s
governancedomain-soa-server1 1/1 Running
0 3m5s

10.2 Setting OIMFrontendURL Using MBeans
Perform the following steps to set the OIMFrontendURL:

1. Login to Oracle Enterprise Manager Console, for example https://${HOSTNAME}:$
{PORT}/em.

2. Click the Target Navigation icon in the top left of the screen and navigate to the following:

• Expand Identity and Access > Access > OIM > oim.

Chapter 10
Setting OIMFrontendURL Using MBeans

10-3

• Right click the instance oim and select System MBean Browser

• Under Application Defined MBeans, navigate to oracle.iam, Server:oim_server1 >
Application:oim > XMLConfig > Config > XMLConfig.DiscoveryConfig >
Discovery.

3. In OimFrontEndURL enter the value as the URL entry point for OIG, for example
http(s)://${HOSTNAME}:${PORT}.

Note:

The http(s)://${HOSTNAME}:${PORT} depends on the architecture configured,
and your ingress setup as per Configuring Ingress.

4. Click Apply.

10.3 Updating the OIM Integration URLs
Perform the following steps to set the OIM Integration URL's:

1. Login to Oracle Enterprise Manager Console, for example https://${HOSTNAME}:$
{PORT}/em.

2. Click Weblogic Domain, and then click System Mbean Browser.

3. In the search box, enter OIMSOAIntegrationMBean, and click Search. The mbean is
displayed.

4. In the Operations tab of the mbean, select integrateWithSOAServer.

5. Enter the following information:

• WebLogic Administrator User Name: Enter the name of the WebLogic administrator.
For example: weblogic.

• WebLogic Administrator Password: Enter the password for the above account.

• OIM Front end URL: Enter the value as the URL entry point for OIG, for example
http(s)://${HOSTNAME}:${PORT}.

Note:

The http(s)://${HOSTNAME}:${PORT} depends on the architecture
configured, and your ingress setup as per Configuring Ingress.

• OIM External Front End URL: Enter the value as the URL entry point for OIG, for
example http(s)://${HOSTNAME}:${PORT}.

• SOA SOAP URL: Set this URL to the SOA Kubernetes Service used for internal call
backs: http://<domain-UID>-cluster-soa-
cluster.<domain_namespace>.svc.cluster.local:7003, for example: http://
governancedomain-cluster-soa-cluster.oigns.svc.cluster.local:7003.

• SOA RMI URL: Set this URL to the SOA Kubernetes Service used for internal call
backs: t3://<domain-UID>-cluster-soa-cluster.<domain-
namespace>.svc.cluster.local:7003, for example: http://governancedomain-
cluster-soa-cluster.oigns.svc.cluster.local:7003.

Chapter 10
Updating the OIM Integration URLs

10-4

• UMS Webservice URL: Set this to the following URL: http://<domain-UID>-
cluster-soa-cluster.<domain_namespace>.svc.cluster.local:7003/ucs/
messaging/webservice, for example http://governancedomain-cluster-soa-
cluster.oigns.svc.cluster.local:7003/ucs/messaging/webservice.

6. Click Invoke.

10.4 Installing and Configuring Connectors
If you need to use Oracle Identity Governance (OIG) connectors in Kubernetes you must
download the connector, copy it so it can be used by the OIG deployment, and install it.

This section contains the following topics:

• Downloading OIG Connectors

• Copying the OIG Connector

• Installing the OIG Connector

10.4.1 Downloading OIG Connectors
Perform the following steps to download any Oracle Identity Govenance (OIG) connectors you
require:

1. Download the connector you require. See, Oracle Identity Manager Connector Downloads.

2. Copy the connector zip file to a staging directory on the Kubernetes administrative host
and unzip it:

mkdir <workdir>/connectors

cp <download_location><connector>.zip <workdir>/connectors

unzip <connector>.zip

For example:

cp $HOME/Downloads/Exchange-12.2.1.3.0.zip /OIGK8S/connectors

cd /OIGK8S/connectors

unzip exchange-12.2.1.3.0.zip

3. Change the permissions on the extracted files and directories:

chmod -R 755 *

10.4.2 Copying the OIG Connector
There are two options to copy Oracle Identity Governance (OIG) connectors to your
Kubernetes cluster:

Chapter 10
Installing and Configuring Connectors

10-5

https://www.oracle.com/security/identity-management/technologies/oim-connectors-downloads/

• Copy the connector directly to the persistent volume.

• Use the kubectl cp command to copy the connector to the persistent volume.

Note:

It is recommended to copy the connector directly to the persistent volume, however
there may be cases, for example when using a Managed Service such as Oracle
Kubernetes Engine on Oracle Cloud Infrastructure, where it may not be feasible to
directly mount the domain directory. In such cases the kubectl cp command should
be used.

Copying the Connector Directly to the Persistent Volume

Run the following command to copy the connector zip file to the persistent volume:

cp -R <workdir>/connectors/<connector> <persistent_volume>/governancedomainpv/
ConnectorDefaultDirectory

For example:

cp -R /OIGK8S/connectors/Exchange-12.2.1.3.0 /nfs_volumes/oig/
governancedomainpv/ConnectorDefaultDirectory/

Using the kubectl cp Command

Run the following command to copy the connector zip file:

kubectl -n <domain_namespace> cp <workdir>/connectors/<connector>
<cluster_name>:/u01/oracle/idm/server/ConnectorDefaultDirectory/

For example:

kubectl -n oigns cp /OIGK8S/connectors/Exchange-12.2.1.3.0 governancedomain-
oim-server1:/u01/oracle/idm/server/ConnectorDefaultDirectory/

10.4.3 Installing the OIG Connector
The connectors are installed as they are on a standard on-premises setup, via Application On
Boarding or via the Connector Installer.

Refer to your connector specific documentation for instructions.

10.5 Configuring Design Console
If you need to use the Oracle Identity Governance (OIG) Design Console you must configure
an ingress to allow Design Console to connect to OIG in your Kubernetes cluster.

Before following this section, make sure you have installed the ingress controller as per
Configuring Ingress, and that you know the entry point to OIG, for example http(s)://$
{HOSTNAME}:${PORT}.

Chapter 10
Configuring Design Console

10-6

If your ingress controller is configured for SSL, you will need the names of the secrets created
for the certificates in Generating SSL Certificates.

This section contains the following topics:

• Configuring the Design Console Ingress

• Updating the T3 Channel

• Using the Design Console Client

• Logging in to the Design Console

10.5.1 Configuring the Design Console Ingress
To prepare the values.yaml for the Design Console ingress:

1. Navigate to the following directory and make a copy of the values.yaml:

cd $WORKDIR/kubernetes/design-console-ingress

2. Make a copy of the values.yaml:

cp values.yaml $WORKDIR/dcvalues.yaml

3. Edit the $WORKDIR/kubernetes/design-console-ingress/values.yaml and modify the
following parameters if required:

• domainUID: - If you created your OIG domain with anything other than the default
governancedomain, change accordingly.

• sslType: - Values supported are SSL and NONSSL. If you created your ingress controller
to use SSL then set to SSL, otherwise set to NONSSL.

• secretName: If using SSL, change the name to the secret for your ingress controller, or
if using NONSSL leave the default value.

For example:

Load balancer type. Supported values are: NGINX
type: NGINX
Type of Configuration Supported Values are : NONSSL,SSL
tls: NONSSL
tls: SSL
TLS secret name if the mode is SSL
secretName: governancedomain-tls-cert

WLS domain as backend to the load balancer
wlsDomain:
 domainUID: governancedomain
 oimClusterName: oim_cluster
 oimServerT3Port: 14002

4. Navigate to the $WORKDIR directory:

cd $WORKDIR

Chapter 10
Configuring Design Console

10-7

5. Run the following commands to create the ingress:

helm install governancedomain-nginx-designconsole kubernetes/design-
console-ingress --namespace <domain_namespace> --values kubernetes/
design-console-ingress/values.yaml

For example:

helm install governancedomain-nginx-designconsole kubernetes/design-
console-ingress --namespace oigns --values kubernetes/design-console-
ingress/values.yaml

The output will look similar to the following:

NAME: governancedomain-nginx-designconsole
<DATE>
NAMESPACE: oigns
STATUS: deployed
REVISION: 1
TEST SUITE: None

6. Run the following command to show the ingress is created successfully:

kubectl describe ing governancedomain-nginx-designconsole -n
<domain_namespace>

For example:

kubectl describe ing governancedomain-nginx-designconsole -n oigns

7. The output will look similar to the following:

• For Non-SSL:

Name: governancedomain-nginx-designconsole
Labels: app.kubernetes.io/managed-by=Helm
 weblogic.resourceVersion=domain-v2
Namespace: oigns
Address:
Ingress Class: nginx
Default backend: <default>
Rules:
 Host Path Backends
 ---- ---- --------
 *
 governancedomain-cluster-oim-cluster:14002
(10.244.2.250:14002)
Annotations: meta.helm.sh/release-name: governancedomain-nginx-
designconsole
 meta.helm.sh/release-namespace: oigns
 nginx.ingress.kubernetes.io/affinity: cookie
 nginx.ingress.kubernetes.io/enable-access-log: false
Events:
 Type Reason Age From Message

Chapter 10
Configuring Design Console

10-8

 ---- ------ ---- ---- -------
 Normal Sync 5s nginx-ingress-controller Scheduled for sync

• For SSL:

Name: governancedomain-nginx-designconsole
Labels: app.kubernetes.io/managed-by=Helm
 weblogic.resourceVersion=domain-v2
Namespace: oigns
Address:
Ingress Class: nginx
Default backend: <default>
Rules:
 Host Path Backends
 ---- ---- --------
 *
 governancedomain-cluster-oim-cluster:14002
(10.244.2.250:14002)
Annotations: meta.helm.sh/release-name: governancedomain-nginx-
designconsole
 meta.helm.sh/release-namespace: oigns
 nginx.ingress.kubernetes.io/affinity: cookie
 nginx.ingress.kubernetes.io/enable-access-log: false
 nginx.ingress.kubernetes.io/configuration-snippet:
 more_set_input_headers "X-Forwarded-Proto: https";
 more_set_input_headers "WL-Proxy-SSL: true";
 nginx.ingress.kubernetes.io/enable-access-log: false
 nginx.ingress.kubernetes.io/ingress.allow-http: false
 nginx.ingress.kubernetes.io/proxy-buffer-size: 2000k
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Sync 5s nginx-ingress-controller Scheduled for sync

10.5.2 Updating the T3 Channel
To update the T3 channel, perform the following steps:

1. Connect to the OIG Administration Server in the WebLogic Remote Console.

2. Select Edit Tree and In the left pane of the console, expand Environment > Servers >
oim_server1 > Channels. Click on T3Channel.

3. In the Channel General tab, set the External Listen Address to the hostname of the OIG
URL entry point, for example ${HOSTNAME} and the External Listen Port to the port of the
OIG URL entry point, for example ${PORT}.

4. Click Save.

5. Click the Shopping Cart in the top right of the console, and click Commit Changes.

6. Restart the OIG Managed Server for the above changes to take effect:

cd $WORKDIR/kubernetes/domain-lifecycle

./restartServer.sh -s oim_server1 -d <domain_uid> -n <domain_namespace>

Chapter 10
Configuring Design Console

10-9

For example:

./restartServer.sh -s oim_server1 -d governancedomain -n oigns

The output will look similar to the following:

[<DATE>][INFO] Initiating restart of 'oim_server1' by deleting server pod
'governancedomain-oim-server1'.
[<DATE>][INFO] Server restart succeeded !

7. Check oim-server1 has a READY status of 1/1 before continuing:

kubectl get pods -n <domain_namespace> | grep oim-server1

For example:

kubectl get pods -n oigns | grep oim-server1

The output will look similar to the following:

governancedomain-oim-server1 1/1
Running 0 8m

10.5.3 Using the Design Console Client
To use the Design Console with an Oracle Identity Governance (OIG) deployed on Kubernetes,
you can choose one of the following options:

• Using On-Premises Design Console

• Using a Container Image for Design Console

10.5.3.1 Using On-Premises Design Console
To use on-premises Design Console with Oracle Identity Governance (OIG), perform the
following steps:

1. Install Design Console on an on-premises machine.

2. If your OIG entry point uses SSL, then import the Certificate Authority (CA) certificate(s)
that signed the certificate into the java truststore used by the Design Console. For
example:

keytool -import -trustcacerts -alias dc -file <certificate> -
keystore $JAVA_HOME/jre/lib/security/cacerts

Where <certificate> is the CA certificate(s).

3. Follow Logging in to the Design Console.

10.5.3.2 Using a Container Image for Design Console
The Design Console can be run from a container using X Windows emulation.

Chapter 10
Configuring Design Console

10-10

To use a container image for Design Console with Podman or Docker, perform the following
steps:

Note:

The example below use podman. Unless stated the podman command can be
replaced with docker.

1. On the parent machine where the Design Console is to be displayed, run xhost +.

2. Find which worker node the oim-server1 pod is running. For example:

kubectl get pods -n <domain_namespace> -o wide | grep <domainUID>-oim-
server1

For example:

kubectl get pods -n oigns -o wide | grep governancedomain-oim-server1

The output will look similar to the following:

governancedomain-oim-server1 1/1
Running 0 31m 10.244.2.98 worker-node2

3. On the worker node returned above, for example worker-node2, execute the following
command to find the OIG container image name:

sudo podman images

The output will be similar to the following:

REPOSITORY
TAG IMAGE ID CREATED SIZE
container-registry.oracle.com/middleware/oig_cpu 14.1.2.1.0-jdk17-ol8-
<YYDDMM> 7cde9673ba56 5 days ago 4.43 GB

4. Run the following command to start a container to run Design Console:

podman run -u root --name oigdcbase -it <image> bash

For example:

podman run -u root -it --name oigdcbase container-registry.oracle.com/
middleware/oig_cpu:14.1.2.1.0-jdk17-ol8-<YYDDMM> bash

This will take you into a bash shell inside the container:

bash-4.2#

Chapter 10
Configuring Design Console

10-11

5. Inside the bash shell for the container, run the following command to set the proxy to the
internet:

export https_proxy=http://proxy.example.com:80

6. Run the following command to install the required packages:

yum install libXext libXrender libXtst

7. If using SSL, copy the Certificate Authority (CA) certificate(s) for your OIG URL entry point,
to the worker node where the oigdcbase image is to be created. Run the following
command outside the container:

cd $WORKDIR>/ssl

podman cp <certificate> <container_name>:/u01/jdk/jre/lib/security/
<certificate>

For example:

podman cp ca.crt oigdcbase:/u01/jdk/jre/lib/security/ca.crt

8. Inside the bash shell for the container, run the following command to import the CA
certificate:

/u01/jdk/bin/keytool -import -trustcacerts -alias dc -
file /u01/jdk/jre/lib/security/<certificate> \
-keystore /u01/jdk/jre/lib/security/cacerts

For example:

/u01/jdk/bin/keytool -import -trustcacerts -alias dc -
file /u01/jdk/jre/lib/security/ca.crt \
-keystore /u01/jdk/jre/lib/security/cacerts

9. Outside the container, run the following command to create a new Design Console image
from the container:

podman commit <container_name> <design_console_image_name>

For example:

podman commit oigdcbase oigdc

10. Exit the container bash session:

exit

11. Start a new container using the Design Console image:

podman run --name oigdc -it oigdc /bin/bash

Chapter 10
Configuring Design Console

10-12

This will take you into a bash shell for the container:

bash-4.2#

12. In the bash shell for the container, run the following to export the DISPLAY:

export DISPLAY=<parent_machine_hostname:1>

13. Start the Design Console from inside the container:

cd idm/designconsole

sh xlclient.sh

The Design Console login should be displayed.

10.5.4 Logging in to the Design Console
To login to the Design Console, perform the following steps:

1. Launch the Design Console and in the Oracle Identity Manager Design Console login page
enter the following details and click Login:

• Server URL: http(s)://${HOSTNAME}:${PORT}
• User ID: xelsysadm
• Password: <password>

2. If successful the Design Console will be displayed.

Chapter 10
Configuring Design Console

10-13

Part III
Administering Oracle Identity Governance on
Kubernetes

Administer Oracle Identity Governance (OIG) on Kubernetes.

This section contains the following chapters:

• Scaling OIG Pods

• WLST Administration Operations

• Logging and Visualization

• Monitoring an Oracle Identity Governance Domain

• Kubernetes Horizontal Pod Autoscaler

• Patching and Upgrading

• General Troubleshooting

• Deleting an OIG Deployment

11
Scaling OIG Pods

As Oracle Identity Governance (OIG) domains use the WebLogic Kubernetes Operator,
domain life cycle operations are managed using the WebLogic Kubernetes Operator itself.

Note:

The instructions below are for starting, stopping, and scaling servers up or down
manually. If you wish to use autoscaling, see Kubernetes Horizontal Pod Autoscaler.
Please note, if you have enabled autoscaling, and then decide to run the commands
manually, it is recommended to delete the autoscaler before running the commands
in the topics below.

For more detailed information refer to Domain Life Cycle in the WebLogic Kubernetes Operator
documentation.

This chapter includes the following topics:

• Viewing Existing OIG Instances

• Scaling Up OIG Instances

• Scaling Down OIG Instances

• Stopping the Domain

• Domain Life Cycle Scripts

11.1 Viewing Existing OIG Instances
The default Oracle Identity Governance (OIG) deployment starts the Administration Server
(AdminServer), one OIG Managed Server (oim_server1) and one SOA Managed Server
(soa_server1).

The deployment also creates, but doesn’t start, four extra OIG Managed Servers (oim-server2
to oim-server5) and four more SOA Managed Servers (soa_server2 to soa_server5).

All these servers are visible in the WebLogic Remote Console by navigating to Environment >
Servers.

Run the following command to view the pods in the OIG deployment:

kubectl --namespace <namespace> get pods

For example:

kubectl get pods -n oigns

11-1

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-lifecycle/
https://oracle.github.io/weblogic-kubernetes-operator/

The output should look similar to the following:

NAME READY
STATUS RESTARTS AGE
governancedomain-adminserver 1/1
Running 0 23h
governancedomain-oim-server1 1/1
Running 0 23h
governancedomain-soa-server1 1/1
Running 0 23h

11.2 Scaling Up OIG Instances
The number of Oracle Identity Governance (OIG) managed servers running, or SOA managed
servers running, is dependent on the replicas parameter configured for the oim_cluster and
soa_cluster respectively.

To start more OIG servers perform the following steps:

1. Run the following command to edit the cluster:

• For OIG managed servers:

kubectl edit cluster <domainUID>-oim-cluster -n <domain_namespace>

For example:

kubectl edit cluster governancedomain-oim-cluster -n oigns

• For SOA Managed servers:

kubectl edit cluster <domainUID>-soa-cluster -n <domain_namespace>

For example:

kubectl edit cluster governancedomain-soa-cluster -n oigns

Note:

This opens an edit session for the cluster, where parameters can be changed
using standard vi commands.

2. In the edit session, search for spec:, and then look for the replicas parameter under
clusterName: <cluster>.
By default the replicas parameter, for both OIG managed servers and SOA managed
servers, is set to “1” hence one OIG managed server and one SOA managed server is
started (oim_server1 and soa-server1 respectively):

• For oim_cluster:

spec:
 clusterName: oim_cluster

Chapter 11
Scaling Up OIG Instances

11-2

 replicas: 1
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: -Djava.security.egd=file:/dev/./urandom -Xms8192m -Xmx8192m
...

• For soa_cluster:

spec:
 clusterName: soa_cluster
 replicas: 1
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: '-Xms8192m -Xmx8192m '
...

3. To start more OIG managed servers or SOA managed servers, increase the replicas
value as desired.
In the example below, two more OIG managed servers (oim-server2 and oim-server3)
will be started by setting replicas to “3” for the oim_cluster:

spec:
 clusterName: oim_cluster
 replicas: 3
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: -Djava.security.egd=file:/dev/./urandom -Xms8192m -Xmx8192m
...

4. Save the file and exit (:wq!).
The output will look similar to the following:

cluster.weblogic.oracle/governancedomain-oim-cluster edited

5. Run the following command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
governancedomain-adminserver 1/1
Running 0 23h
governancedomain-oim-server1 1/1
Running 0 23h
governancedomain-oim-server2 0/1

Chapter 11
Scaling Up OIG Instances

11-3

Running 0 7s
governancedomain-oim-server3 0/1
Running 0 7s
governancedomain-soa-server1 1/1
Running 0 23h

Two new pods (governancedomain-oim-server2 and governancedomain-oim-server3) are
started, but currently have a READY status of 0/1. This means oim_server2 and
oim_server3 are not currently running but are in the process of starting.
The servers will take several minutes to start so keep executing the command until READY
shows 1/1:

Note:

Alternatively, you can run kubectl get pods -n oigns -w to watch updates to
the status of the pods.

NAME READY
STATUS RESTARTS AGE
governancedomain-adminserver 1/1
Running 0 23h
governancedomain-oim-server1 1/1
Running 0 23h
governancedomain-oim-server2 1/1
Running 0 5m27s
governancedomain-oim-server3 1/1
Running 0 5m27s
governancedomain-soa-server1 1/1
Running 0 23h

To check what is happening during server startup when READY is 0/1, run the following
command to view the log of the pod that is starting:

kubectl logs <pod> -n <domain_namespace>

For example:

kubectl logs governancedomain-oim-server2 -n oigns

11.3 Scaling Down OIG Instances
Scaling down Oracle Identity Governance (OIG) servers is performed in exactly the same way
as in Scaling Up OIG Instances except the replicaCount is reduced to the required number of
servers.

To stop one or more OIG servers, perform the following steps:

1. Run the following command to edit the cluster:

Chapter 11
Scaling Down OIG Instances

11-4

• For OIG managed servers:

kubectl edit cluster <domainUID>-oim-cluster -n <domain_namespace>

For example:

kubectl edit cluster governancedomain-oim-cluster -n oigns

• For SOA managed servers:

kubectl edit cluster <domainUID>-soa-cluster -n <domain_namespace>

For example:

kubectl edit cluster governancedomain-soa-cluster -n oigns

Note:

This opens an edit session for the cluster where parameters can be changed
using standard vi commands.

2. In the edit session, search for spec:, and then look for the replicas parameter under
clusterName: <cluster>.
In the example below replicas is set to “3”, hence three OIG managed servers are started
(oim_server1 - oim_server3):

...
spec:
 clusterName: oim_cluster
 replicas: 3
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: -Djava.security.egd=file:/dev/./urandom -Xms8192m -Xmx8192m
...

3. To stop OIG servers, decrease the replicas value as desired. In the example below, two
managed servers will be stopped by setting replicas to “1”:

...
spec:
 clusterName: oim_cluster
 replicas: 1
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: -Djava.security.egd=file:/dev/./urandom -Xms8192m -Xmx8192m
...

4. Save the file and exit (:wq!).

Chapter 11
Scaling Down OIG Instances

11-5

The output will look similar to the following:

cluster.weblogic.oracle/governancedomain-oim-cluster edited

5. Run the following command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
governancedomain-adminserver 1/1
Running 0 23h
governancedomain-oim-server1 1/1
Running 0 23h
governancedomain-oim-server2 1/1
Running 0 7m30s
governancedomain-oim-server3 1/1
Terminating 0 7m30s
governancedomain-soa-server1 1/1
Running 0 23h

One pod now has a STATUS of Terminating (governancedomain-oim-server3).

The server will take a minute or two to stop. Once terminated the other pod
(governancedomain-oim-server2) will move to Terminating and then stop.

The servers will take several minutes to stop so keep executing the command until the
pods have disappeared:

NAME READY
STATUS RESTARTS AGE
governancedomain-adminserver 1/1
Running 0 23h
governancedomain-oim-server1 1/1
Running 0 23h
governancedomain-soa-server1 1/1
Running 0 23h

11.4 Stopping the Domain
Stopping the Oracle Identity Governance (OIG) domain shuts down all the OIG servers and the
Administration Server in one operation.

To stop the OIG domain:

Chapter 11
Stopping the Domain

11-6

1. Run the following kubectl command to edit the domain:

kubectl edit domain <domain_uid> -n <domain_namespace>

For example:

kubectl edit domain governancedomain -n oigns

2. In the edit session, search for serverStartPolicy: IfNeeded under the domain spec:

...
 volumeMounts:
 - mountPath: /u01/oracle/user_projects
 name: weblogic-domain-storage-volume
 volumes:
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: governancedomain-domain-pvc
 serverStartPolicy: IfNeeded
 webLogicCredentialsSecret:
 name: governance-domain-credentials
 ...

3. Change serverStartPolicy: IfNeeded to Never as follows:

...
 volumeMounts:
 - mountPath: /u01/oracle/user_projects
 name: weblogic-domain-storage-volume
 volumes:
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: governancedomain-domain-pvc
 serverStartPolicy: IfNeeded
 webLogicCredentialsSecret:
 name: governance-domain-credentials
 ...

4. Save the file and exit (:wq!).

5. Run the following command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
governancedomain-adminserver 1/1
Terminating 0 23h

Chapter 11
Stopping the Domain

11-7

governancedomain-oim-server1 1/1
Terminating 0 23h
governancedomain-soa-server1 1/1
Terminating 0 23h

The Administration Server pods and OIG server pods will move to a STATUS of
Terminating. After a few minutes, run the command again and the pods should have
disappeared.

6. To start the Administration Server and Managed Servers up again, repeat the previous
steps but change serverStartPolicy: Never to IfNeeded as follows:

 ...
 volumeMounts:
 - mountPath: /u01/oracle/user_projects
 name: weblogic-domain-storage-volume
 volumes:
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: governancedomain-domain-pvc
 serverStartPolicy: Never
 webLogicCredentialsSecret:
 name: governance-domain-credentials
 ...

7. Run the following command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
goverancedomain-introspector-jwqxw 1/1
Running 0 10s

The introspect job will start, followed by the Administration Server pod, and then the OIG
server pods. This process will take several minutes, so keep executing the command until
all the pods are running with READY status 1/1:

Note:

Alternatively, you can run kubectl get pods -n oigns -w to watch updates to
the status of the pods.

NAME READY
STATUS RESTARTS AGE

Chapter 11
Stopping the Domain

11-8

governancedomain-adminserver 1/1
Running 0 6m57s
governancedomain-oim-server1 1/1
Running 0 4m33s
governancedomain-soa-server1 1/1
Running 0 4m33s

11.5 Domain Life Cycle Scripts
The WebLogic Kubernetes Operator provides sample scripts to start up or shut down a specific
Managed Server or cluster in a deployed domain, or the entire deployed domain.

Note:

Prior to running these scripts, you must have previously created and deployed the
domain.

The scripts are located in the $WORKDIR/kubernetes/domain-lifecycle directory.

For more information, see Sample Lifecycle Management Scripts.

Chapter 11
Domain Life Cycle Scripts

11-9

https://github.com/oracle/fmw-kubernetes/tree/master/OracleAccessManagement/kubernetes/domain-lifecycle

12
WLST Administration Operations

This chapter contains the following topics:

• Connecting to OIG via WLST

• Sample WLST Operations

• Performing WLST Administration via SSL

12.1 Connecting to OIG via WLST
In order to use WLST to administer the Oracle Identity Governance (OIG) domain, use must
use a helper pod.

1. Check to see if the helper pod exists by running:

kubectl get pods -n <domain_namespace> | grep helper

For example:

kubectl get pods -n oigns | grep helper

The output should look similar to the following:

helper 1/1 Running 0 26h

If the helper pod doesn’t exist then run the following:

• If using Oracle Container Registry or your own container registry for the OIG container
image:

kubectl run --image=<image_name-from-registry>:<tag> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1", "spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \
helper -n <domain_namespace> \
-- sleep infinity

For example:

kubectl run --image=container-registry.oracle.com/middleware/
oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1","spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \

12-1

helper -n oigns \
-- sleep infinity

• If you are not using a container registry and have loaded the image on each of the
worker nodes, run the following command:

kubectl run helper --image <image>:<tag> -n oigns -- sleep infinity

For example:

kubectl run helper --image oracle/oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>
-n oigns -- sleep infinity

The output will look similar to the following:

pod/helper created

2. Run the following command to start a bash shell in the helper pod:

kubectl exec -it helper -n <domain_namespace> -- /bin/bash

For example:

kubectl exec -it helper -n oigns -- /bin/bash

This will take you into a bash shell in the running helper pod:

[oracle@helper ~]$

3. Inside the helper pod, connect to WLST using the following command:

cd $ORACLE_HOME/oracle_common/common/bin

./wlst.sh

The output will look similar to the following:

Initializing WebLogic Scripting Tool (WLST) ...

Jython scans all the jar files it can find at first startup. Depending on
the system, this process may take a few minutes to complete, and WLST may
not return a prompt right away.

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline>

Chapter 12
Connecting to OIG via WLST

12-2

4. To access t3 for the Administration Server connect as follows:

connect('weblogic','<password>','t3://governancedomain-adminserver:7001')

The output will look similar to the following:

Connecting to t3://governancedomain-adminserver:7001 with userid
weblogic ...
Successfully connected to Admin Server "AdminServer" that belongs to
domain "governancedomain".

Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used
instead.

wls:/governancedomain/serverConfig/>

Or to access t3 for the OIG Cluster service, connect as follows:

connect('weblogic','<password>','t3://governancedomain-cluster-oim-
cluster:14000')

The output will look similar to the following:

Connecting to t3://governancedomain-cluster-oim-cluster:14000 with userid
weblogic ...
Successfully connected to managed Server "oim_server1" that belongs to
domain "governancedomain".

Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used
instead.

wls:/governancedomain/serverConfig/>

12.2 Sample WLST Operations
The following are some sample WLST operations that can be performed against the Oracle
Identity Governance(OIG) domain.

For a full list of WLST operations, see WebLogic Server WLST Online and Offline Command
Reference.

Display Servers

1. Run the following commands to display the server:

wls:/governancedomain/serverConfig/> cd('/Servers')

wls:/governancedomain/serverConfig/Servers> ls()

Chapter 12
Sample WLST Operations

12-3

The output will look similar to the following:

dr-- AdminServer
dr-- oim_server1
dr-- oim_server2
dr-- oim_server3
dr-- oim_server4
dr-- oim_server5
dr-- soa_server1
dr-- soa_server2
dr-- soa_server3
dr-- soa_server4
dr-- soa_server5

wls:/governancedomain/serverConfig/Servers>

12.3 Performing WLST Administration via SSL
The following steps show how to perform WLST administration via SSL:

1. By default the SSL port is not enabled for the Administration Server or Oracle Identity
Governance (OIG) managed servers. To configure the SSL port for the Administration
Server and Managed Servers:

a. Login to WebLogic Remote Console.

b. Click Edit Tree and in the left-hand navigation menu, navigate to Environment >
Servers > <server_name> and click on the General tab.

c. Check the SSL Listen Port Enabled button and provide the SSL Port (For
AdminServer: 7002 and for oim_server1): 14101

d. Click Save.

e. Click the Shopping Cart and select Commit Changes.

Note:

If configuring the OIG managed servers for SSL you must enable SSL on the
same port for all servers (oim_server1 through oim_server5).

2. Create a myscripts directory as follows:

cd $WORKDIR/kubernetes

mkdir myscripts

cd myscripts

3. Create a sample yaml template file in the myscripts directory called <domain_uid>-
adminserver-ssl.yaml to create a Kubernetes service for the Administration Server:

Chapter 12
Performing WLST Administration via SSL

12-4

Note:

Update the domainName, domainUID and namespace based on your environment.
For example:

apiVersion: v1
kind: Service
metadata:
 labels:
 serviceType: SERVER
 weblogic.domainName: governancedomain
 weblogic.domainUID: governancedomain
 weblogic.resourceVersion: domain-v2
 weblogic.serverName: AdminServer
 name: governancedomain-adminserver-ssl
 namespace: oigns
spec:
 clusterIP: None
 ports:
 - name: default
 port: 7002
 protocol: TCP
 targetPort: 7002
 selector:
 weblogic.createdByOperator: "true"
 weblogic.domainUID: governancedomain
 weblogic.serverName: AdminServer
 type: ClusterIP

4. Create a <domain_uid>-oimcluster-ssl.yaml for the OIG managed server:

apiVersion: v1
kind: Service
metadata:
 labels:
 serviceType: SERVER
 weblogic.domainName: governancedomain
 weblogic.domainUID: governancedomain
 weblogic.resourceVersion: domain-v2
 name: governancedomain-cluster-oim-cluster-ssl
 namespace: oigns
spec:
 clusterIP: None
 ports:
 - name: default
 port: 14101
 protocol: TCP
 targetPort: 14101
 selector:
 weblogic.clusterName: oim_cluster
 weblogic.createdByOperator: "true"
 weblogic.domainUID: governancedomain
 type: ClusterIP

Chapter 12
Performing WLST Administration via SSL

12-5

5. Apply the template using the following command for the AdminServer:

kubectl apply -f <domain_uid>-adminserver-ssl.yaml

For example:

kubectl apply -f governancedomain-adminserver-ssl.yaml

The output will look similar to the following:

service/governancedomain-adminserverssl created

6. Apply the template using the following command for the OIG managed server:

kubectl apply -f governancedomain-oim-cluster-ssl.yaml

For example:

kubectl apply -f governancedomain-oimcluster-ssl.yaml

The output will look similar to the following:

service/governancedomain-oimcluster-ssl created

7. Validate that the Kubernetes services to access SSL ports are created successfully:

kubectl get svc -n <domain_namespace> |grep ssl

For example:

kubectl get svc -n oigns |grep ssl

The output will look similar to the following:

governancedomain-adminserver-ssl ClusterIP None
<none> 7002/TCP 74s
governancedomain-cluster-oim-cluster-ssl ClusterIP None
<none> 14101/TCP 21s

8. Inside the bash shell of the running helper pod, run the following:

export WLST_PROPERTIES="-
Dweblogic.security.SSL.ignoreHostnameVerification=true -
Dweblogic.security.TrustKeyStore=DemoTrust"

cd /u01/oracle/oracle_common/common/bin

./wlst.sh

Chapter 12
Performing WLST Administration via SSL

12-6

The output will look similar to the following:

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands
wls:/offline>

To connect to the Administration Server t3s service:

connect('weblogic','<password>','t3s://governancedomain-adminserver-
ssl:7002')

The output will look similar to the following:

Connecting to t3s://governancedomain-adminserver-ssl:7002 with userid
weblogic ...
<DATE> <Info> <Security> <BEA-090905> <Disabling the CryptoJ JCE Provider
self-integrity check for better startup performance. To enable this check,
specify -Dweblogic.security.allowCryptoJDefaultJCEVerification=true.>
<DATE> <Info> <Security> <BEA-090906> <Changing the default Random Number
Generator in RSA CryptoJ from ECDRBG128 to HMACDRBG. To disable this
change, specify -Dweblogic.security.allowCryptoJDefaultPRNG=true.>
<DATE> <Info> <Security> <BEA-090909> <Using the configured custom SSL
Hostname Verifier implementation:
weblogic.security.utils.SSLWLSHostnameVerifier$NullHostnameVerifier.>
Successfully connected to Admin Server "AdminServer" that belongs to
domain "governancedomain".

wls:/governancedomain/serverConfig/>

To connect to the OIG Managed Server t3s service:

connect('weblogic','<password>','t3s://governancedomain-cluster-oim-
cluster-ssl:14101')

The output will look similar to the following:

Connecting to t3s://governancedomain-cluster-oim-cluster-ssl:14101 with
userid weblogic ...
<DATE> <Info> <Security> <BEA-090905> <Disabling the CryptoJ JCE Provider
self-integrity check for better startup performance. To enable this check,
specify -Dweblogic.security.allowCryptoJDefaultJCEVerification=true.>
<DATE> <Info> <Security> <BEA-090906> <Changing the default Random Number
Generator in RSA CryptoJ from ECDRBG128 to HMACDRBG. To disable this
change, specify -Dweblogic.security.allowCryptoJDefaultPRNG=true.>
<DATE> <Info> <Security> <BEA-090909> <Using the configured custom SSL
Hostname Verifier implementation:
weblogic.security.utils.SSLWLSHostnameVerifier$NullHostnameVerifier.>
Successfully connected to managed Server "oim_server1" that belongs to
domain "governancedomain".

Chapter 12
Performing WLST Administration via SSL

12-7

wls:/governancedomain/serverConfig/>

Chapter 12
Performing WLST Administration via SSL

12-8

13
Logging and Visualization

This chapter describes how to publish WebLogic Kubernetes Operator and WebLogic server
logs into Elasticsearch, and interact with them in Kibana.

The ELK stack consists of Elasticsearch, Logstash, and Kibana. Using ELK you can gain
insights in real-time from the log data from your applications.

Elasticsearch is a distributed, RESTful search and analytics engine capable of solving a
growing number of use cases. As the heart of the Elastic Stack, it centrally stores your data so
you can discover the expected and uncover the unexpected.

Logstash is an open source, server-side data processing pipeline that ingests data from a
multitude of sources simultaneously, transforms it, and then sends it to your favorite “stash.”

Kibana lets you visualize your Elasticsearch data and navigate the Elastic Stack. It gives you
the freedom to select the way you give shape to your data, and you don’t always have to know
what you’re looking for.

This chapter includes the following topics:

• Installing Elasticsearch and Kibana

• Creating the Logstash Pod

• Verifying the Pods

• Verifying and Accessing the Kibana Console

13.1 Installing Elasticsearch and Kibana
If you do not already have a centralized Elasticsearch (ELK) stack then you must configure this
first.

For details on how to configure the ELK stack, see Installing the Monitoring and Visualization
Software.

13.2 Creating the Logstash Pod
Topics in the section include:

• Variables Used in This Section

• Creating a Kubernetes Secret for ELK

• Finding Required Domain Details

• Creating the Configmap

• Enabling Logstash

13.2.1 Variables Used in This Section
In order to create the logstash pod, you must create several yaml file. These files contains
variables which you must substitute with variables applicable to your ELK environment.

13-1

Most of the values for the variables will be based on your ELK deployment as per Installing the
Monitoring and Visualization Software.

The table below outlines the variables and values you must set:

Variable Sample Value Description

<ELK_VER> 8.3.1 The version of logstash you want
to install.

<ELK_SSL> true If SSL is enabled for ELK set the
value to true, or if NON-SSL set
to false. This value must be
lowercase.

<ELK_HOSTS> https://
elasticsearch.example.com:
9200

The URL for sending logs to
Elasticsearch. HTTP if NON-SSL
is used.

<ELK_USER> logstash_internal The name of the user for logstash
to access Elasticsearch.

<ELK_PASSWORD> password The password for <ELK_USER>.

<ELK_APIKEY> apikey The API key details.

You will also need the BASE64 version of the Certificate Authority (CA) certificate(s) that
signed the certificate of the Elasticsearch server. If using a self-signed certificate, this is the
self signed certificate of the Elasticsearch server. See Copying the Elasticsearch Certificate, for
details on how to get the correct certificate. In the example below the certificate is called
elk.crt.

13.2.2 Creating a Kubernetes Secret for ELK
1. Create a Kubernetes secret for Elasticsearch using the API Key or Password:

a. If ELK uses an API Key for authentication:

kubectl create secret generic elasticsearch-pw-elastic -n
<domain_namespace> --from-literal password=<ELK_APIKEY>

For example:

kubectl create secret generic elasticsearch-pw-elastic -n oigns --from-
literal password=<ELK_APIKEY>

The output will look similar to the following:

secret/elasticsearch-pw-elastic created

b. If ELK uses a password for authentication:

kubectl create secret generic elasticsearch-pw-elastic -n
<domain_namespace> --from-literal password=<ELK_PASSWORD>

Chapter 13
Creating the Logstash Pod

13-2

For example:

kubectl create secret generic elasticsearch-pw-elastic -n oigns --from-
literal password=<ELK_PASSWORD>

The output will look similar to the following:

secret/elasticsearch-pw-elastic created

Note:

It is recommended that the ELK Stack is created with authentication enabled. If
no authentication is enabled you may create a secret using the values above.

2. Create a Kubernetes secret to access the required images on hub.docker.com:

Note:

Before executing the command below, you must first have a user account on
hub.docker.com.

kubectl create secret docker-registry "dockercred" --docker-
server="https://index.docker.io/v1/" \
--docker-username="<DOCKER_USER_NAME>" \
--docker-password=<DOCKER_PASSWORD> --docker-email=<DOCKER_EMAIL_ID> \
--namespace=<domain_namespace>

For example:

kubectl create secret docker-registry "dockercred" --docker-
server="https://index.docker.io/v1/" \
--docker-username="user@example.com" \
--docker-password=password --docker-email=user@example.com \
--namespace=oigns

The output will look similar to the following:

secret/dockercred created

13.2.3 Finding Required Domain Details
The YAML files for ELK require certain domain values to be added.

1. Run the following command to get the mountPath of your domain:

kubectl describe domains <domain_uid> -n <domain_namespace> | grep "Mount
Path"

Chapter 13
Creating the Logstash Pod

13-3

http://hub.docker.com
http://hub.docker.com

For example:

kubectl describe domains governancedomain -n oigns | grep "Mount Path"

If you deployed OIG using WLST, the output will look similar to the following:

Mount Path: /u01/oracle/user_projects/domains

If you deployed OIG using WDT, the output will look similar to the following:

Mount Path: /u01/oracle/user_projects

2. Run the following command to get the Domain Home and Log Home of your domain:

kubectl describe domains <domain_uid> -n <domain_namespace> | egrep
"Domain Home: | Log Home:"

For example:

kubectl describe domains governancedomain -n oigns | egrep "Domain Home: |
Log Home:"

The output will look similar to the following:

Domain Home: /u01/oracle/user_projects/domains/
governancedomain
Http Access Log In Log Home: true
Log Home: /u01/oracle/user_projects/domains/logs/
governancedomain

3. Run the following command to get the OIG domain persistence volume details:

kubectl get pv -n <domain_namespace>

For example:

kubectl get pv -n oigns

The output will look similar to the following:

NAME CAPACITY ACCESS MODES RECLAIM POLICY
STATUS CLAIM
STORAGECLASS REASON AGE
governancedomain-domain-pv 10Gi RWX Retain
Bound oigns/governancedomain-domain-pvc governancedomain-oim-storage-
class 28h

Make note of the CLAIM value. In the example above the value is governancedomain-
domain-pvc.

Chapter 13
Creating the Logstash Pod

13-4

13.2.4 Creating the Configmap
Perform the following steps to create the Kubernetes ConfigMap for ELK:

1. Copy the elk.crt file to the $WORKDIR/kubernetes/elasticsearch-and-kibana directory.

2. Navigate to the $WORKDIR/kubernetes/elasticsearch-and-kibana directory and run the
following:

kubectl create configmap elk-cert --from-file=elk.crt -n <namespace>

For example:

kubectl create configmap elk-cert --from-file=elk.crt -n oigns

The output will look similar to the following:

configmap/elk-cert created

3. Create a logstash_cm.yaml file in the $WORKDIR/kubernetes/elasticsearch-and-kibana
directory as follows:

apiVersion: v1
kind: ConfigMap
metadata:
 name: oig-logstash-configmap
 namespace: <ELKNS>
data:
 logstash.yml: |
 #http.host: "0.0.0.0"
 logstash-config.conf: |
 input {
 file {
 path => "<Log Home>/servers/AdminServer/logs/AdminServer*.log*"
 tags => "Adminserver_log"
 start_position => beginning
 }
 file {
 path => "<Log Home>/**/logs/soa_server*.log*"
 tags => "soaserver_log"
 start_position => beginning
 }
 file {
 path => "<Log Home>/**/logs/oim_server*.log*"
 tags => "Oimserver_log"
 start_position => beginning
 }
 file {
 path => "<Domain Home>/servers/AdminServer/logs/AdminServer-
diagnostic.log*"
 tags => "Adminserver_diagnostic"
 start_position => beginning
 }
 file {

Chapter 13
Creating the Logstash Pod

13-5

 path => "<Domain Home>/servers/**/logs/soa_server*-diagnostic.log*"
 tags => "Soa_diagnostic"
 start_position => beginning
 }
 file {
 path => "<Domain Home>/servers/**/logs/oim_server*-diagnostic.log*"
 tags => "Oimserver_diagnostic"
 start_position => beginning
 }
 file {
 path => "<Domain Home>/servers/**/logs/access*.log*"
 tags => "Access_logs"
 start_position => beginning
 }
 }
 filter {
 grok {
 match => ["message", "<%{DATA:log_timestamp}> <%{WORD:log_level}>
<%{WORD:thread}> <%{HOSTNAME:hostname}> <%{HOSTNAME:servername}> <%
{DATA:timer}> <<%{DATA:kernel}>> <> <%{DATA:uuid}> <%{NUMBER:timestamp}> <%
{DATA:misc} > <%{DATA:log_number}> <%{DATA:log_message}>"]
 }
 if "_grokparsefailure" in [tags] {
 mutate {
 remove_tag => ["_grokparsefailure"]
 }
 }
 }
 output {
 elasticsearch {
 hosts => ["<ELK_HOSTS>"]
 cacert => '/usr/share/logstash/config/certs/elk.crt'
 index => "oiglogs-000001"
 ssl => <ELK_SSL>
 ssl_certificate_verification => false
 user => "<ELK_USER>"
 password => "${ELASTICSEARCH_PASSWORD}"
 api_key => "${ELASTICSEARCH_PASSWORD}"
 }
 }

Change the values in the above file as follows:

• Change the <ELKNS>, <ELK_HOSTS>, <ELK_SSL>, and <ELK_USER> to match the values in
Variables Used in This Section.

• Change <Log Home> and <Domain Home> to match the Log Home and Domain Home
returned in Finding Required Domain Details.

• If using API KEY for your ELK authentication, delete the user and password lines.

• If using a password for ELK authentication, delete the api_key line.

• If no authentication is used for ELK, delete the user, password, and api_key lines.

Chapter 13
Creating the Logstash Pod

13-6

For example:

apiVersion: v1
kind: ConfigMap
metadata:
 name: oig-logstash-configmap
 namespace: oigns
data:
 logstash.yml: |
 #http.host: "0.0.0.0"
 logstash-config.conf: |
 input {
 file {
 path => "/u01/oracle/user_projects/domains/logs/governancedomain/
servers/AdminServer/logs/AdminServer*.log*"
 tags => "Adminserver_log"
 start_position => beginning
 }
 file {
 path => "/u01/oracle/user_projects/domains/logs/
governancedomain/**/logs/soa_server*.log*"
 tags => "soaserver_log"
 start_position => beginning
 }
 file {
 path => "/u01/oracle/user_projects/domains/logs/
governancedomain/**/logs/oim_server*.log*"
 tags => "Oimserver_log"
 start_position => beginning
 }
 file {
 path => "/u01/oracle/user_projects/domains/governancedomain/
servers/AdminServer/logs/AdminServer-diagnostic.log*"
 tags => "Adminserver_diagnostic"
 start_position => beginning
 }
 file {
 path => "/u01/oracle/user_projects/domains/governancedomain/
servers/**/logs/soa_server*-diagnostic.log*"
 tags => "Soa_diagnostic"
 start_position => beginning
 }
 file {
 path => "/u01/oracle/user_projects/domains/governancedomain/
servers/**/logs/oim_server*-diagnostic.log*"
 tags => "Oimserver_diagnostic"
 start_position => beginning
 }
 file {
 path => "/u01/oracle/user_projects/domains/governancedomain/
servers/**/logs/access*.log*"
 tags => "Access_logs"
 start_position => beginning
 }
 }
 filter {

Chapter 13
Creating the Logstash Pod

13-7

 grok {
 match => ["message", "<%{DATA:log_timestamp}> <%{WORD:log_level}>
<%{WORD:thread}> <%{HOSTNAME:hostname}> <%{HOSTNAME:servername}> <%
{DATA:timer}> <<%{DATA:kernel}>> <> <%{DATA:uuid}> <%{NUMBER:timestamp}> <%
{DATA:misc} > <%{DATA:log_number}> <%{DATA:log_message}>"]
 }
 if "_grokparsefailure" in [tags] {
 mutate {
 remove_tag => ["_grokparsefailure"]
 }
 }
 }
 output {
 elasticsearch {
 hosts => ["https://elasticsearch.example.com:9200"]
 cacert => '/usr/share/logstash/config/certs/elk.crt'
 index => "oiglogs-000001"
 ssl => true
 ssl_certificate_verification => false
 user => "logstash_internal"
 password => "${ELASTICSEARCH_PASSWORD}"
 }
 }

4. Run the following command to create the ConfigMap:

kubectl apply -f logstash_cm.yaml

The output will look similar to the following:

configmap/oig-logstash-configmap created

13.2.5 Enabling Logstash
Perform the following steps to enable logstash:

1. Navigate to the $WORKDIR/kubernetes/elasticsearch-and-kibana directory and create a
logstash.yaml file as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: oig-logstash
 namespace: <ELKNS>
spec:
 selector:
 matchLabels:
 k8s-app: logstash
 template: # create pods using pod definition in this template
 metadata:
 labels:
 k8s-app: logstash
 spec:
 imagePullSecrets:

Chapter 13
Creating the Logstash Pod

13-8

 - name: dockercred
 containers:
 - command:
 - logstash
 image: logstash:<ELK_VER>
 imagePullPolicy: IfNotPresent
 name: oig-logstash
 env:
 - name: ELASTICSEARCH_PASSWORD
 valueFrom:
 secretKeyRef:
 name: elasticsearch-pw-elastic
 key: password
 resources:
 ports:
 - containerPort: 5044
 name: logstash
 volumeMounts:
 - mountPath: <mountPath>
 name: weblogic-domain-storage-volume
 - name: shared-logs
 mountPath: /shared-logs
 - mountPath: /usr/share/logstash/pipeline/
 name: oig-logstash-pipeline
 - mountPath: /usr/share/logstash/config/logstash.yml
 subPath: logstash.yml
 name: config-volume
 - mountPath: /usr/share/logstash/config/certs
 name: elk-cert
 volumes:
 - configMap:
 defaultMode: 420
 items:
 - key: elk.crt
 path: elk.crt
 name: elk-cert
 name: elk-cert
 - configMap:
 defaultMode: 420
 items:
 - key: logstash-config.conf
 path: logstash-config.conf
 name: oig-logstash-configmap
 name: oig-logstash-pipeline
 - configMap:
 defaultMode: 420
 items:
 - key: logstash.yml
 path: logstash.yml
 name: oig-logstash-configmap
 name: config-volume
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: governancedomain-domain-pvc
 - name: shared-logs
 emptyDir: {}

Chapter 13
Creating the Logstash Pod

13-9

• Change the <ELK_VER>, <ELK_SSL> to match the values for your environment.

• Change <mountPath> to match the mountPath returned in Finding Required Domain
Details.

• Change the claimName value to match the claimName returned earlier

• If your Kubernetes environment does not allow access to the internet to pull the
logstash image, you must load the logstash image in your own container registry and
change image: logstash:<ELK_VER> to the location of the image in your container
registry, for example container-registry.example.com/logstash:8.3.1

For example:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: oig-logstash
 namespace: oigns
spec:
 selector:
 matchLabels:
 k8s-app: logstash
 template: # create pods using pod definition in this template
 metadata:
 labels:
 k8s-app: logstash
 spec:
 imagePullSecrets:
 - name: dockercred
 containers:
 - command:
 - logstash
 image: logstash:8.3.1
 imagePullPolicy: IfNotPresent
 name: oig-logstash
 env:
 - name: ELASTICSEARCH_PASSWORD
 valueFrom:
 secretKeyRef:
 name: elasticsearch-pw-elastic
 key: password
 resources:
 ports:
 - containerPort: 5044
 name: logstash
 volumeMounts:
 - mountPath: /u01/oracle/user_projects
 name: weblogic-domain-storage-volume
 - name: shared-logs
 mountPath: /shared-logs
 - mountPath: /usr/share/logstash/pipeline/
 name: oig-logstash-pipeline
 - mountPath: /usr/share/logstash/config/logstash.yml
 subPath: logstash.yml
 name: config-volume
 - mountPath: /usr/share/logstash/config/certs
 name: elk-cert

Chapter 13
Creating the Logstash Pod

13-10

 volumes:
 - configMap:
 defaultMode: 420
 items:
 - key: elk.crt
 path: elk.crt
 name: elk-cert
 name: elk-cert
 - configMap:
 defaultMode: 420
 items:
 - key: logstash-config.conf
 path: logstash-config.conf
 name: oig-logstash-configmap
 name: oig-logstash-pipeline
 - configMap:
 defaultMode: 420
 items:
 - key: logstash.yml
 path: logstash.yml
 name: oig-logstash-configmap
 name: config-volume
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: governancedomain-domain-pvc
 - name: shared-logs
 emptyDir: {}

2. Deploy the logstash pod by executing the following command:

kubectl create -f $WORKDIR/kubernetes/elasticsearch-and-kibana/
logstash.yaml

The output will look similar to the following:

deployment.apps/oig-logstash created

13.3 Verifying the Pods
1. Run the following command to check the logstash pod is created correctly:

kubectl get pods -n <namespace>

For example:

kubectl get pods -n oigns

The output should look similar to the following:

NAME READY STATUS
RESTARTS AGE
governancedomain-adminserver 1/1 Running

Chapter 13
Verifying the Pods

13-11

0 90m
governancedomain-oim-server1 1/1 Running
0 88m
governancedomain-soa-server1 1/1 Running
0 88m
oig-logstash-77fbbc66f8-lsvcw 1/1 Running
0 3m25s

Wait a couple of minutes to make sure the logstash pod has not had any failures or
restarts. If the pod fails you can view the pod log using:

kubectl logs -f oig-logstash-<pod> -n oigns

Most errors occur due to misconfiguration of the logstash_cm.yaml or logstash.yaml.
This is usually because of an incorrect value set, or the certificate was not pasted with the
correct indentation.
If the pod has errors, delete the pod and ConfigMap as follows:

kubectl delete -f $WORKDIR/kubernetes/elasticsearch-and-kibana/
logstash.yaml

kubectl delete -f $WORKDIR/kubernetes/elasticsearch-and-kibana/
logstash_cm.yaml

Once you have resolved the issue in the yaml files, run the commands outlined earlier to
recreate the ConfigMap and logstash pod.

13.4 Verifying and Accessing the Kibana Console
To access the Kibana console you will need the Kibana URL as per Installing the Monitoring
and Visualization Software.

Kibana Version 7.8.X or Higher

1. Access the Kibana console with http://<hostname>:<port>/app/kibana and login with
your username and password.

2. From the Navigation menu, navigate to Management > Kibana > Index Patterns.

3. In the Create Index Pattern page enter oiglogs* for the Index pattern and click Next
Step.

4. In the Configure settings page, from the Time Filter field name drop down menu select
@timestamp and click Create index pattern.

5. Once the index pattern is created click on Discover in the navigation menu to view the
OIG logs.

Kibana 7.7.x or Lower

1. Access the Kibana console with http://<hostname>:<port>/app/kibana and login with
your username and password.

2. From the Navigation menu, navigate to Management > Stack Management.

3. Click Data Views in the Kibana section.

Chapter 13
Verifying and Accessing the Kibana Console

13-12

4. Click Create Data View and enter the following information:

• Name: oiglogs*
• Timestamp: @timestamp

5. Click Create Data View.

6. From the Navigation menu, click Discover to view the log file entries.

7. From the drop down menu, select oiglogs* to view the log file entries.

Chapter 13
Verifying and Accessing the Kibana Console

13-13

14
Monitoring an Oracle Identity Governance
Domain

Using the WebLogic Monitoring Exporter you can scrape runtime information from a running
Oracle Identity Governance (OIG) domain and monitor using Prometheus and Grafana.

To set up monitoring, see Monitor the Oracle Identity Governance Instance Using Prometheus
and Grafana.

For more information on WebLogic Monitoring Exporter, see WebLogic Monitoring Exporter.

14-1

https://github.com/oracle/fmw-kubernetes/blob/v25.1.1/OracleIdentityGovernance/kubernetes/monitoring-service/README.md
https://github.com/oracle/fmw-kubernetes/blob/v25.1.1/OracleIdentityGovernance/kubernetes/monitoring-service/README.md
https://github.com/oracle/weblogic-monitoring-exporter

15
Kubernetes Horizontal Pod Autoscaler

Kubernetes Horizontal Pod Autoscaler (HPA) allows automatic scaling (up and down) of the
Oracle Identity Governance (OIG) servers. If load increases then extra OIG servers will be
started as required, up to the value configuredManagedServerCount defined when the domain
was created. Similarly, if load decreases, OIG servers will be automatically shutdown.

For more information on HPA, see Horizontal Pod Autoscaling.

The instructions below show you how to configure and run an HPA to scale an OIG cluster
(governancedomain-oim-cluster), based on CPU utilization or memory resource metrics. If
required, you can also perform the following for the governancedomain-soa-cluster.

Note:

If you enable HPA and then decide you want to start,stop, or scale OIG servers
manually as per Scaling OIG Pods, it is recommended to delete HPA beforehand as
per Deleting HPA.

This chapter includes the following topics:

• Prerequisite Configurations

• Deploying the Kubernetes Metrics Server

• Troubleshooting the Metrics Server

• Deploying HPA

• Verifying HPA

• Deleting HPA

• Other Considerations for HPA

15.1 Prerequisite Configurations
In order to use HPA, Oracle Identity Governance (OIG) must have been created with the
required resources parameter. For OIG domains created with WLST scripts, this is as per
Setting the OIG Server Memory Parameters. For OIG domains created with WDT models, the
values should be set by default. For example:

For example:

 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: -XX:+UseContainerSupport -Djava.security.egd=file:/dev/./urandom
-Xms8192m -Xmx8192m
 resources:
 limits:
 cpu: "2"

15-1

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

 memory: 8Gi
 requests:
 cpu: 1000m
 memory: 4Gi

If you created the OIG domain without setting these parameters, then you can update the
domain using the following steps:

1. Run the following command to edit the cluster:

kubectl edit cluster <cluster> -n <namespace>

For example:

kubectl edit cluster governancedomain-oim-cluster -n oigns

Note:

This opens an edit session for the cluster where parameters can be changed
using standard vi commands.

2. In the edit session, search for spec:, and then look for the replicas parameter under
clusterName: oim_cluster. Change the entry so it looks as follows:

spec:
 clusterName: oim_cluster
 replicas: 1
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: -XX:+UseContainerSupport -Djava.security.egd=file:/dev/./
urandom -Xms8192m -Xmx8192m
 resources:
 limits:
 cpu: "2"
 memory: 8Gi
 requests:
 cpu: 1000m
 memory: 4Gi
 serverService:
 precreateService: true
 ...

3. Save the file and exit (:wq!).
The output will look similar to the following:

cluster.weblogic.oracle/governancedomain-oim-cluster edited

The OIG managed server pods will then automatically be restarted.

Chapter 15
Prerequisite Configurations

15-2

15.2 Deploying the Kubernetes Metrics Server
Before deploying HPA you must deploy the Kubernetes Metrics Server.

1. Check to see if the Kubernetes Metrics Server is already deployed:

kubectl get pods -n kube-system | grep metric

If a row is returned as follows, then Kubernetes Metric Server is deployed and you can
move to Deploying HPA:

metrics-server-d9694457-mf69d 1/1 Running 0
5m13s

2. If no rows are returned by the previous command, then the Kubernetes Metric Server
needs to be deployed. Run the following commands to get the components.yaml:

mkdir $WORKDIR/kubernetes/hpa

cd $WORKDIR/kubernetes/hpa

wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/
download/components.yaml

3. Deploy the Kubernetes Metrics Server by running the following command:

kubectl apply -f components.yaml

The output will look similar to the following:

serviceaccount/metrics-server created
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader
created
clusterrole.rbac.authorization.k8s.io/system:metrics-server created
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-
delegator created
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created
service/metrics-server created
deployment.apps/metrics-server created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created

4. Run the following command to check Kubernetes Metric Server is running:

kubectl get pods -n kube-system | grep metric

Chapter 15
Deploying the Kubernetes Metrics Server

15-3

Make sure the pod has a READY status of 1/1:

metrics-server-d9694457-mf69d 1/1 Running 0 39s

15.3 Troubleshooting the Metrics Server
If the Kubernetes Metric Server does not reach the READY 1/1 state, run the following
commands:

kubectl describe pod <metrics-server-pod> -n kube-system

kubectl logs <metrics-server-pod> -n kube-system

If you see errors such as:

Readiness probe failed: HTTP probe failed with statuscode: 500

and:

E0907 13:07:50.937308 1 scraper.go:140] "Failed to scrape node"
err="Get \"https://X.X.X.X:10250/metrics/resource\": x509: cannot validate
certificate for 100.105.18.113 because it doesn't contain any IP SANs"
node="worker-node1"

then you may need to install a valid cluster certificate for your Kubernetes cluster.

For testing purposes, you can resolve this issue by:

1. Delete the Kubernetes Metrics Server by running the following command:

kubectl delete -f $WORKDIR/kubernetes/hpa/components.yaml

2. Edit the $WORKDIR/hpa/components.yaml and locate the args: section. Add kubelet-
insecure-tls to the arguments. For example:

spec:
 containers:
 - args:
 - --cert-dir=/tmp
 - --secure-port=4443
 - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
 - --kubelet-use-node-status-port
 - --kubelet-insecure-tls
 - --metric-resolution=15s
 image: registry.k8s.io/metrics-server/metrics-server:v0.6.4
 ...

3. Deploy the Kubernetes Metrics Server using the command:

kubectl apply -f components.yaml

Chapter 15
Troubleshooting the Metrics Server

15-4

4. Run the following and make sure the READY status shows 1/1:

kubectl get pods -n kube-system | grep metric

The output should look similar to the following:

metrics-server-d9694457-mf69d 1/1 Running 0 40s

15.4 Deploying HPA
The steps below show how to configure and run an HPA to scale Oracle Identity Governance
(OIG), based on the CPU or memory utilization resource metrics.

The default OIG deployment creates the cluster governancedomain-oim-cluster which starts
one OIG managed server (oim_server1). The deployment also creates, but doesn’t start, four
extra OIG Managed Servers (oig-server2 to oig-server5).

In the following example an HPA resource is created, cluster resource governancedomain-oim-
cluster. This resource will autoscale OIG managed server from a minimum of 1 cluster
member up to 5 cluster members. Scaling up will occur when the average CPU is consistently
over 70%. Scaling down will occur when the average CPU is consistently below 70%.

1. Navigate to the $WORKDIR/kubernetes/hpa and create an autoscalehpa.yaml file that
contains the following:

#
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: governancedomain-oim-cluster-hpa
 namespace: oigns
spec:
 scaleTargetRef:
 apiVersion: weblogic.oracle/v1
 kind: Cluster
 name: governancedomain-oim-cluster
 behavior:
 scaleDown:
 stabilizationWindowSeconds: 60
 scaleUp:
 stabilizationWindowSeconds: 60
 minReplicas: 1
 maxReplicas: 5
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 70

where:

• governancedomain is the <domainUID>

Chapter 15
Deploying HPA

15-5

• oigns is the <domain_namespace>.

• minReplicas and maxReplicas should match your current domain setting.

Note:

For setting HPA based on Memory Metrics, update the metrics block with the
following content. Please note, Oracle recommends using only CPU or Memory,
not both:

metrics:
- type: Resource
 resource:
 name: memory
 target:
 type: Utilization
 averageUtilization: 70

2. Run the following command to create the autoscaler:

kubectl apply -f autoscalehpa.yaml

The output will look similar to the following:

horizontalpodautoscaler.autoscaling/governancedomain-oim-cluster-hpa
created

3. Verify the status of the autoscaler by running the following:

kubectl get hpa -n oigns

The output will look similar to the following:

NAME REFERENCE
TARGETS MINPODS MAXPODS REPLICAS AGE
governancedomain-oim-cluster-hpa Cluster/governancedomain-oim-cluster
16%/70% 1 5 1 20s

In the example above, this shows that CPU is currently running at 16% for the
governancedomain-oim-cluster-hpa.

15.5 Verifying HPA
To verify the Horizontal Pod Autoscaler (HPA) works, perform the following steps:

1. Check the current status of the Oracle Identity Governance (OIG) servers:

kubectl get pods -n oigns

Chapter 15
Verifying HPA

15-6

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
governancedomain-adminserver 1/1
Running 0 20m
governancedomain-oim-server1 1/1
Running 0 17m
governancedomain-soa-server1 1/1
Running 0 17m

In the above example only governancedomain-oim-server1 is running.

2. To test HPA can scale up the WebLogic cluster governancedomain-oim-cluster, run the
following commands:

kubectl exec --stdin --tty governancedomain-oim-server1 -n oigns -- /bin/
bash

This will take you inside a bash shell inside the oim_server1 pod:

[oracle@governancedomain-oim-server1 oracle]$

3. Inside the bash shell, run the following command to increase the load on the CPU:

[oracle@governancedomain-oim-server1 oracle]$ dd if=/dev/zero of=/dev/null

This command will continue to run in the foreground.

4. In a command window outside the bash shell, run the following command to view the
current CPU usage:

kubectl get hpa -n oigns

The output will look similar to the following:

NAME REFERENCE
TARGETS MINPODS MAXPODS REPLICAS AGE
governancedomain-oim-cluster-hpa Cluster/governancedomain-oim-cluster
386%/70% 1 5 1 2m47s

In the above example the CPU has increased to 386%. As this is above the 70% limit, the
autoscaler increases the replicas on the Cluster resource, and the operator responds by
starting additional cluster members.

5. Run the following to see if any more OIG Managed Servers are started:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE

Chapter 15
Verifying HPA

15-7

governancedomain-adminserver 1/1
Running 0 30m
governancedomain-oim-server1 1/1
Running 0 27m
governancedomain-oim-server2 1/1
Running 0 10m
governancedomain-oim-server3 1/1
Running 0 10m
governancedomain-oim-server4 1/1
Running 0 10m
governancedomain-oim-server5 1/1
Running 0 10m
governancedomain-soa-server1 1/1
Running 0 27m

In the example above four more OIG managed servers have been started (oig-server2 -
oig-server5).

Note:

It may take some time for the server to appear and start. Once the servers are at
READY status of 1/1, the servers are started.

6. To stop the load on the CPU, in both bash shells, issue a Control C, and then exit the bash
shell:

[oracle@governancedomain-oim-server1 oracle]$ dd if=/dev/zero of=/dev/null
^C
[oracle@governancedomain-oim-server1 oracle]$ exit

7. Run the following command to view the current CPU usage:

kubectl get hpa -n oigns

The output will look similar to the following:

NAME REFERENCE
TARGETS MINPODS MAXPODS REPLICAS AGE
governancedomain-oim-cluster-hpa Cluster/governancedomain-oim-cluster
33%/70% 1 5 5 37m

In the above example CPU has dropped to 33%. As this is below the 70% threshold, you
should see the autoscaler scale down the servers:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
governancedomain-adminserver 1/1
Running 0 43m

Chapter 15
Verifying HPA

15-8

governancedomain-oim-server1 1/1
Running 0 40m
governancedomain-oim-server2 1/1
Running 0 13m
governancedomain-oim-server3 1/1
Running 0 13m
governancedomain-oim-server4 1/1
Running 0 13m
governancedomain-oim-server5 0/1
Terminating 0 13m
governancedomain-soa-server1 1/1
Running 0 40m

Eventually, all the servers except oim-server1 will disappear:

NAME READY
STATUS RESTARTS AGE
governancedomain-adminserver 1/1
Running 0 44m
governancedomain-oim-server1 1/1
Running 0 41m
governancedomain-soa-server1 1/1
Running 0 41m

15.6 Deleting HPA
If you need to delete the Horizontal Pod Autoscaler (HPA), you can do so by running the
following commands:

cd $WORKDIR/kubernetes/hpa

kubectl delete -f autoscalehpa.yaml

The output will look similar to the following:

horizontalpodautoscaler.autoscaling "governancedomain-oim-cluster-hpa" deleted

15.7 Other Considerations for HPA
Administrators should be aware of the following considerations after deploying the Horizontal
Pod Autoscaler (HPA):

• If HPA is deployed and you need to upgrade the Oracle Identity Governance (OIG)
container image, then you must delete the HPA before upgrading. To delete the HPA, see
Deleting HPA. Once the upgrade is successful you can deploy HPA again.

• If you choose to start/stop an OIG managed server manually as per Scaling OIG Pods,
then it is recommended to delete the HPA before doing so.

Chapter 15
Deleting HPA

15-9

16
Patching and Upgrading

This chapter includes the following topics:

• Patching and Upgrading Within 14.1.2

• Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16.1 Patching and Upgrading Within 14.1.2
Learn how to patch or upgrade the Oracle Identity Governance (OIG) image used by an OIG
14.1.2 container.

This section contains the following topics:

• Patching a Container Image

• Upgrading WebLogic Kubernetes Operator

16.1.1 Patching a Container Image

The instructions in this section relate to patching or upgrading an existing 14.1.2.1.0 Oracle
Identity Governance (OIG) deployment with a new OIG container image.

Note:

Administrators should be aware of the following:

• If you are not using Oracle Container Registry or your own container registry,
then you must first load the new container image on all nodes in your Kubernetes
cluster.

• If you have Kubernetes Horizontal Pod Autoscaler (HPA) enabled, you must
disable HPA before performing the steps below. See, Deleting HPA.

The OIG domain patching script automatically performs the update of your OIG Kubernetes
cluster with a new OIG container image.

The script executes the following steps sequentially:

• Checks if the helper pod exists in the given namespace. If yes, then it deletes the helper
pod.

• Brings up a new helper pod with the new image.

• Stops the Administration Server, SOA and OIG managed servers using
serverStartPolicy set as Never in the domain definition yaml.

• Waits for all servers to be stopped (default timeout 2000s) Introspects database properties
including credentials from the job configmap or RCU Secrets.

16-1

• Performs database schema changes from the helper pod Starts the Administration Server,
SOA and OIG managed servers by setting serverStartPolicy to IfNeeded and image to
new image tag.

• Waits for all the servers to be ready (default timeout 2000s).

Prerequisites

Before you begin, perform the following steps:

• Ensure that you have a running OIG deployment in your cluster.

• Ensure that the database is up and running.

• Ensure you have download the latest code repository. See, Setting Up the Code
Repository for OIG and set the $WORKDIR correctly.

Running the Patch Domain Script

1. Navigate to the $WORKDIR:

cd $WORKDIR/kubernetes/domain-lifecycle

2. Run the patch domain script as follows. Specify the inputs required by the script:

Note:

If you need help understanding the inputs run the command help with -h.

./patch_oig_domain.sh -i <target_image_tag> -n <domain_namespace>

For example:

./patch_oig_domain.sh -i 14.1.2.1.0-jdk17-ol8-<YYMMDD> -n oigns

The output will look similar to the following:

[INFO] Found domain name: governancedomain
[INFO] Image Registry: container-registry.oracle.com/middleware/oig_cpu
[INFO] Domain governancedomain is currently running with image: container-
registry.oracle.com/middleware/oig_cpu:14.1.2.1.0-jdk17-ol8-<old>
current no of pods under governancedomain are 3
[INFO] The pod helper already exists in namespace oigns.
[INFO] Deleting pod helper
pod "helper" deleted
[INFO] Fetched Image Pull Secret: orclcred
[INFO] Creating new helper pod with image: container-registry.oracle.com/
middleware/oig_cpu:14.1.2.1.0-jdk17-ol8-<new>
pod/helper created
Checking helper Running
[INFO] Stopping Admin, SOA and OIM servers in domain governancedomain.
This may take some time, monitor log /scratch/OIGK8Slatest/fmw-kubernetes/
OracleIdentityGovernance/kubernetes/domain-lifecycle/log/oim_patch_log-

Chapter 16
Patching and Upgrading Within 14.1.2

16-2

<DATE>/stop_servers.log for details
[INFO] All servers are now stopped successfully. Proceeding with DB Schema
changes
[INFO] Patching OIM schemas...
[INFO] DB schema update successful. Check log /scratch/OIGK8Slatest/fmw-
kubernetes/OracleIdentityGovernance/kubernetes/domain-lifecycle/log/
oim_patch_log-<DATE>/patch_oim_wls.log for details
[INFO] Starting Admin, SOA and OIM servers with new image container-
registry.oracle.com/middleware/oig_cpu:14.1.2.1.0-jdk17-ol8-<new>
[INFO] Waiting for 3 weblogic pods to be ready..This may take several
minutes, do not close the window. Check log /scratch/OIGK8Slatest/fmw-
kubernetes/OracleIdentityGovernance/kubernetes/domain-lifecycle/log/
oim_patch_log-<DATE>/monitor_weblogic_pods.log for progress
[SUCCESS] All servers under governancedomain are now in ready state with
new image: container-registry.oracle.com/middleware/oig_cpu:14.1.2.1.0-
jdk17-ol8-<new>

The logs are available at $WORKDIR/kubernetes/domain-lifecycle by default. A custom
log location can also be provided to the script.

Note:

If the patch domain script creation fails, refer to General Troubleshooting.

Verifying the OIG Deployment is Using the New Image

Once the upgrade is successful, you can run the following command to show the image is
used by the pods:

kubectl describe pod <pod> -n <domain_namespace>

For example:

kubectl describe pod governancedomain-oim-server1 -n oigns

The new image should be displayed in the following section:

...
Containers:
 weblogic-server:
 Container ID: cri-o://
220fa83d079e079ac183c00f884b10ea30a794527dbb65e6964a035d450384f8
 Image: container-registry.oracle.com/middleware/oig_cpu:<new>
 Image ID: container-registry.oracle.com/middleware/
oig_cpu@sha256:cdf51b6aa47cd05573bc53244681b193fb4e2f6db56e50d2251b9416bc68ebc
0
 Port: 14100/TCP
 Host Port: 0/TCP
 Command:
...

Chapter 16
Patching and Upgrading Within 14.1.2

16-3

16.1.2 Upgrading WebLogic Kubernetes Operator

The instructions in this section relate to upgrading the WebLogic Kubernetes Operator used by
an Oracle Identity Governance (OIG) deployment.

Note:

This applies to WebLogic Kubernetes Operator in the 4.X release family as additional
versions are released.

To upgrade the WebLogic Kubernetes Operator used by the OIG deployment, perform the
following steps:

1. On the Kubernetes administrative host, download the new WebLogic Kubernetes Operator
source code from the operator github project:

mkdir <workdir>/weblogic-kubernetes-operator-4.X.X

cd <workdir>/weblogic-kubernetes-operator-4.X.X

git clone https://github.com/oracle/weblogic-kubernetes-operator.git --
branch v4.X.X

For example:

mkdir /OIGK8S/weblogic-kubernetes-operator-4.X.X

cd /OIGK8S/weblogic-kubernetes-operator-4.X.X

git clone https://github.com/oracle/weblogic-kubernetes-operator.git --
branch v4.X.X

2. Run the following helm commands to upgrade the operator::

cd <workdir>/weblogic-kubernetes-operator-4.X.X/weblogic-kubernetes-
operator

helm upgrade --reuse-values \
--set image=ghcr.io/oracle/weblogic-kubernetes-operator:4.X.X \
--namespace <sample-kubernetes-operator-ns> \
--wait weblogic-kubernetes-operator \
kubernetes/charts/weblogic-operator

Chapter 16
Patching and Upgrading Within 14.1.2

16-4

For example:

cd /OIGK8S/weblogic-kubernetes-operator-4.X.X/weblogic-kubernetes-operator

helm upgrade --reuse-values \
--set image=ghcr.io/oracle/weblogic-kubernetes-operator:4.X.X \
--namespace opns \
--wait weblogic-kubernetes-operator \
kubernetes/charts/weblogic-operator

The output will look similar to the following:

Release "weblogic-kubernetes-operator" has been upgraded. Happy Helming!
NAME: weblogic-kubernetes-operator
LAST DEPLOYED: <DATE>
NAMESPACE: opns
STATUS: deployed
REVISION: 2
TEST SUITE: None

3. Verify that the operator’s pod and services are running by executing the following
command:

kubectl get all -n <sample-kubernetes-operator-ns>

For example:

kubectl get all -n opns

The output will look similar to the following:

NAME READY STATUS
RESTARTS AGE
pod/weblogic-operator-b7d6df78c-mfrc4 1/1 Running
0 40s
pod/weblogic-operator-webhook-7996b8b58b-frtwp 1/1 Running
0 42s

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
service/weblogic-operator-webhook-svc ClusterIP 10.106.51.57
<none> 8083/TCP,8084/TCP 42s

NAME READY UP-TO-DATE
AVAILABLE AGE
deployment.apps/weblogic-operator 1/1 1
1 6d
deployment.apps/weblogic-operator-webhook 1/1 1
1 42s

NAME DESIRED CURRENT
READY AGE
replicaset.apps/weblogic-operator-5884685f4f 0 0

Chapter 16
Patching and Upgrading Within 14.1.2

16-5

0 6d
replicaset.apps/weblogic-operator-b7d6df78c 1 1
1 40s
replicaset.apps/weblogic-operator-webhook-7996b8b58b 1 1
1 42s

16.2 Upgrading from Oracle Identity Governance 12.2.1.4 to
14.1.2

The instructions in this section are for upgrading an existing Oracle Identity Governance (OIG)
12.2.1.4 deployment on Kubernetes to OIG 14.1.2.1.0.

This section contains the following topics:

• Upgrade Prerequisite Steps

• Creating the domainUpgradeResponse.txt File

• Creating the OIGDomainConfigResponse.txt File

• Creating the domain-upgrade-pod.yaml

• Shutting Down the OIG Domain

• Backing Up the Database and Persistent Volume

• Creating an Upgrade ConfigMap

• Performing the Upgrade

• Updating the OIG Container Image to 14c

• Updating the WebLogic Kubernetes Operator

• Starting the OIG 14c Deployment

• Upgrading the Ingress

• Restoring After a Failed Upgrade

16.2.1 Upgrade Prerequisite Steps

Before upgrading Oracle Identity Governance (OIG) from 12c to 14c, you must meet the
following prerequisites.

OIG 12c Prerequisites

It is recommended to be on the latest OIG 12c container image, and supported WebLogic
Kubernetes Operator, before upgrading to 14c. For further details on latest versions and
supported operator versions, see, Oracle Identity Governance 12c on Kubernetes Release
Notes.

Kubernetes Prerequisties

• The Kubernetes cluster and container engine must meet the minimum version
requirements outlined in document ID 2723908.1 on My Oracle Support.

• You must have enough storage to back up the persistent volume.

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-6

https://oracle.github.io/fmw-kubernetes/idm-products/oig/release-notes/
https://oracle.github.io/fmw-kubernetes/idm-products/oig/release-notes/
https://support.oracle.com

Gathering Variables

You must gather the following information for your existing OIG 12c deployment. The values for
these variables will be used later in Creating the domainUpgradeResponse.txt File, Creating
the OIGDomainConfigResponse.txt File, and Creating the domain-upgrade-pod.yaml .

Table 16-1 List of Variables

Variable Description Sample Value

%NAMESPACE% The domain namespace used by the OIG 12c
deployment.

oigns

%DOMAIN_UID% This is the domain uid used by the OIG 12c
deployment.

To find the domain name, run:

kubectl get domain -n <namespace>

governancedomain

%DOMAIN_MOUN
T_PATH%

The mount path used by the OIG 12c deployment.

To find the mount path, run:

kubectl describe domains <domainUID>
-n <namespace> | grep "Mount Path"

• For WDT domains:/u01/
oracle/
user_projects

• For WLST
domains:/u01/oracle/
user_projects/
domains

%DOMAIN_HOME
%

The domain home location used by the OIG 12c
deployment.

To find the mount path, run:

kubectl describe domains <domainUID>
-n <namespace> | grep "Domain Home:"

/u01/oracle/
user_projects/domains/
governancedomain

%DOMAIN_ROOT
_DIR%

For WLST created domains, this is the
%DOMAIN_MOUNT_PATH%/.

For WDT created domains, this is the
%DOMAIN_MOUNT_PATH%/domains directory.

/u01/oracle/
user_projects/domains

%CONNECTION_
STRING%

The connection string for the database where the
OIG 12c schemas reside, in the format:

<host.domain>:<db_port>/<db_service>

mydatabasehost.example.
com:1521/
orcl.example.com

%RCU_PREFIX% The RCU schema prefix for the OIG 12c
deployment.

OIGK8S

%RCU_SCHEMA_
PWD%

The password for %RCUPREFIX%. <password>

%SYS_USERNAM
E%

The SYS username for the database where the
OIG 12c schemas reside.

sys

%SYS_USERNAM
E_PWD%

The password for %SYS_USERNAME%. <password>

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-7

Table 16-1 (Cont.) List of Variables

Variable Description Sample Value

%DOMAIN_PVC_N
AME%

The persistent volume claim (PVC) for the OIG 12c
deployment.

To find the PVC, run:

kubectl get pvc -n <namespace>

governancedomain-
domain-pvc

%RCU_CREDENTI
ALS_SECRET_NA
ME%

The RCU secret for the OIG 12c deployment.

To find the RCU secret, run:

kubectl get secrets -n <namespace> |
grep rcu

governancedomain-rcu-
credentials

%WEBLOGIC_IMA
GE%

The location of the OIG 14c container image. container-
registry.oracle.com/
middleware/
oig_cpu:14.1.2.1.0-
jdk17-ol8-<YYMMDD>

%WEBLOGIC_IMA
GE_PULL_POLICY
%

The image pull policy you used in the OIG 12c
deployment.

To find the image pull policy, run:

kubectl describe domains <domainUID>
-n <namespace> | grep "Image Pull
Policy"

IfNotPresent

16.2.2 Creating the domainUpgradeResponse.txt File

Run the following steps to create the domainUpgradeResponse.txt file:

1. Create a working directory for the upgrade scripts and navigate to it:

mkdir <workdir>/upgradescripts

cd <workdir>/upgradescripts

For example:

mkdir /OIG12CUPG/upgradescripts

cd /OIG12CUPG/upgradescripts

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-8

2. Create a domainUpgradeResponse.txt file and replace the environment variables listed
with the corresponding values collected in Upgrade Prerequisite Steps:

[GENERAL]

fileFormatVersion = 3

#==
[UAWLSINTERNAL.UAWLS]
pluginInstance = 1

Specifies the WebLogic Server domain directory:
UASVR.path = %DOMAIN_HOME%

#==
[MDS.SCHEMA_UPGRADE]
pluginInstance = 2
MDS.databaseConnectionString = %CONNECTION_STRING%
MDS.schemaConnectionString = %CONNECTION_STRING%
MDS.schemaUserName = %RCUPREFIX%_MDS
MDS.cleartextSchemaPassword = %SCHEMA_PASSWORD%
MDS.dbaUserName = %SYS_USERNAME% as sysdba
MDS.cleartextDbaPassword = %SYS_SCHEMA_PASSWORD%

#==
[SOA.SOA1]
pluginInstance = 3
dependsOnPluginInstance = 2
SOAINFRA.databaseConnectionString = %CONNECTION_STRING%
SOAINFRA.schemaUserName = %RCUPREFIX%_SOAINFRA
SOAINFRA.cleartextSchemaPassword = %SCHEMA_PASSWORD%
SOAINFRA.dbaUserName = %SYS_USERNAME% as sysdba
SOAINFRA.cleartextDbaPassword = %SYS_SCHEMA_PASSWORD%

#==
[OPSS.OPSS_SCHEMA_PLUGIN]
pluginInstance = 4
OPSS.databaseConnectionString = %CONNECTION_STRING%
OPSS.schemaUserName = %RCUPREFIX%_OPSS
OPSS.cleartextSchemaPassword = %SCHEMA_PASSWORD%
OPSS.dbaUserName = %SYS_USERNAME% as sysdba
OPSS.cleartextDbaPassword = %SYS_SCHEMA_PASSWORD%

#==
[IAU.AUDIT_SCHEMA_PLUGIN]
pluginInstance = 5
IAU.databaseConnectionString = %CONNECTION_STRING%
IAU.schemaConnectionString = %CONNECTION_STRING%
IAU.schemaUserName = %RCUPREFIX%_IAU
IAU.cleartextSchemaPassword = %SCHEMA_PASSWORD%
IAU.dbaUserName = %SYS_USERNAME% as sysdba
IAU.cleartextDbaPassword = %SYS_SCHEMA_PASSWORD%

#==
[FMWCONFIG.CIE_SCHEMA_PLUGIN]
pluginInstance = 6

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-9

STB.databaseConnectionString = %CONNECTION_STRING%
STB.schemaConnectionString = %CONNECTION_STRING%
STB.schemaUserName = %RCUPREFIX%_STB
STB.cleartextSchemaPassword = %SCHEMA_PASSWORD%
STB.dbaUserName = %SYS_USERNAME% as sysdba
STB.cleartextDbaPassword = %SYS_SCHEMA_PASSWORD%

#==
[WLS.WLS]
pluginInstance = 7
WLS.databaseConnectionString = %CONNECTION_STRING%
WLS.schemaConnectionString = %CONNECTION_STRING%
WLS.schemaUserName = %RCUPREFIX%_WLS
WLS.cleartextSchemaPassword = %SCHEMA_PASSWORD%
WLS.dbaUserName = %SYS_USERNAME% as sysdba
WLS.cleartextDbaPassword = %SYS_SCHEMA_PASSWORD%

WLS_RUNTIME entries
WLS_RUNTIME.databaseConnectionString = %CONNECTION_STRING%
WLS_RUNTIME.schemaUserName = %RCUPREFIX%_WLS_RUNTIME
WLS_RUNTIME.cleartextSchemaPassword = %SCHEMA_PASSWORD%
WLS_RUNTIME.dbaUserName = %SYS_USERNAME% as sysdba
WLS_RUNTIME.cleartextDbaPassword = %SYS_SCHEMA_PASSWORD%

#==
[UCSUMS.UCSUMS_SCHEMA_PLUGIN]
pluginInstance = 8
UMS.databaseConnectionString = %CONNECTION_STRING%
UMS.schemaUserName = %RCUPREFIX%_UMS
UMS.cleartextSchemaPassword = %SCHEMA_PASSWORD%
UMS.dbaUserName = %SYS_USERNAME% as sysdba
UMS.cleartextDbaPassword = %SYS_SCHEMA_PASSWORD%

#==
[OIM.OIM1]
pluginInstance = 9
dependsOnPluginInstance = 3
OIM.databaseConnectionString = %CONNECTION_STRING%
OIM.schemaUserName = %RCUPREFIX%_OIM
OIM.cleartextSchemaPassword = %SCHEMA_PASSWORD%
OIM.dbaUserName = %SYS_USERNAME% as sysdba
OIM.cleartextDbaPassword = %SYS_SCHEMA_PASSWORD%

For example:

[GENERAL]

fileFormatVersion = 3

#==
[UAWLSINTERNAL.UAWLS]
pluginInstance = 1

Specifies the WebLogic Server domain directory:
UASVR.path = /u01/oracle/user_projects/domains/governancedomain

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-10

#==
[MDS.SCHEMA_UPGRADE]
pluginInstance = 2
MDS.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
MDS.schemaConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
MDS.schemaUserName = OIGK8S_MDS
MDS.cleartextSchemaPassword = <password>
MDS.dbaUserName = sys as sysdba
MDS.cleartextDbaPassword = <password>

#==
[SOA.SOA1]
pluginInstance = 3
dependsOnPluginInstance = 2
SOAINFRA.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
SOAINFRA.schemaUserName = OIGK8S_SOAINFRA
SOAINFRA.cleartextSchemaPassword = <password>
SOAINFRA.dbaUserName = sys as sysdba
SOAINFRA.cleartextDbaPassword = <password>

#==
[OPSS.OPSS_SCHEMA_PLUGIN]
pluginInstance = 4
OPSS.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
OPSS.schemaUserName = OIGK8S_OPSS
OPSS.cleartextSchemaPassword = <password>
OPSS.dbaUserName = sys as sysdba
OPSS.cleartextDbaPassword = <password>

#==
[IAU.AUDIT_SCHEMA_PLUGIN]
pluginInstance = 5
IAU.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
IAU.schemaConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
IAU.schemaUserName = OIGK8S_IAU
IAU.cleartextSchemaPassword = <password>
IAU.dbaUserName = sys as sysdba
IAU.cleartextDbaPassword = <password>

#==
[FMWCONFIG.CIE_SCHEMA_PLUGIN]
pluginInstance = 6
STB.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
STB.schemaConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
STB.schemaUserName = OIGK8S_STB
STB.cleartextSchemaPassword = <password>
STB.dbaUserName = sys as sysdba

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-11

STB.cleartextDbaPassword = <password>

#==
[WLS.WLS]
pluginInstance = 7
WLS.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
WLS.schemaConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
WLS.schemaUserName = OIGK8S_WLS
WLS.cleartextSchemaPassword = <password>
WLS.dbaUserName = sys as sysdba
WLS.cleartextDbaPassword = <password>

WLS_RUNTIME entries
WLS_RUNTIME.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
WLS_RUNTIME.schemaUserName = OIGK8S_WLS_RUNTIME
WLS_RUNTIME.cleartextSchemaPassword = <password>
WLS_RUNTIME.dbaUserName = sys as sysdba
WLS_RUNTIME.cleartextDbaPassword = <password>

#==
[UCSUMS.UCSUMS_SCHEMA_PLUGIN]
pluginInstance = 8
UMS.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
UMS.schemaUserName = OIGK8S_UMS
UMS.cleartextSchemaPassword = <password>
UMS.dbaUserName = sys as sysdba
UMS.cleartextDbaPassword = <password>

#==
[OIM.OIM1]
pluginInstance = 9
dependsOnPluginInstance = 3
OIM.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
OIM.schemaUserName = OIGK8S_OIM
OIM.cleartextSchemaPassword = <password>
OIM.dbaUserName = sys as sysdba
OIM.cleartextDbaPassword = <password>

16.2.3 Creating the OIGDomainConfigResponse.txt File

Run the following steps to create the OIGDomainConfigResponse.txt file:

1. In the <workdir>/upgradescripts create an OIGDomainConfigResponse.txt file and
replace the %DOMAIN_HOME% environment variable with the value collected in Upgrade
Prerequisite Steps:

[GENERAL]
This is the file format version number. Do not change the next line.
fileFormatVersion = 3

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-12

The next section contains information for accessing a WebLogic Server
domain.
[UAWLSINTERNAL.UAWLS]
The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 1

Specifies the WebLogic Server domain directory:
UASVR.path = %DOMAIN_HOME%

The next section contains the information for performing a mid-tier
upgrade on Oracle Identity Manager, as described in the Upgrade
Descriptor file located at
/u01/oracle/idm/plugins/upgrade/oim.xml
Do not change the next line.
[OIM.OIMCONFIGPLUGIN]
The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 17

The next section contains the information for performing a mid-tier
upgrade on Oracle JRF, as described in the Upgrade
Descriptor file located at
/u01/oracle/oracle_common/plugins/upgrade/jrfua.xml
Do not change the next line.
[JRF.JRF_CONFIG_PLUGIN]
The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 6

The next section contains the information for performing a mid-tier
upgrade on System Components Infrastructure, as described in the Upgrade
Descriptor file located at
/u01/oracle/oracle_common/plugins/upgrade/syscomp.xml
Do not change the next line.
[CAM.SYSCOMP]
The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 11

The next section contains the information for performing a mid-tier
upgrade on Oracle Web Services Manager, as described in the Upgrade
Descriptor file located at
/u01/oracle/oracle_common/plugins/upgrade/wsm.xml
Do not change the next line.
[WSM.WSMPLUGIN]
The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 10

The next section contains the information for performing a mid-tier
upgrade on User Messaging Service, as described in the Upgrade
Descriptor file located at
/u01/oracle/oracle_common/plugins/upgrade/usermessaging.xml
Do not change the next line.
[UCSUMS.UCSUMS_CONFIGURATION_PLUGIN]

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-13

The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 9
Specifies a choice from a collection of values,
"Is this correct?"
REMOTE_COPY_CHOICE.choose = REMOTE_COPY_CHOICE3

For example:

[GENERAL]
This is the file format version number. Do not change the next line.
fileFormatVersion = 3

The next section contains information for accessing a WebLogic Server
domain.
[UAWLSINTERNAL.UAWLS]
The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 1

Specifies the WebLogic Server domain directory:
UASVR.path = /u01/oracle/user_projects/domains/governancedomain

The next section contains the information for performing a mid-tier
upgrade on Oracle Identity Manager, as described in the Upgrade
Descriptor file located at
/u01/oracle/idm/plugins/upgrade/oim.xml
Do not change the next line.
[OIM.OIMCONFIGPLUGIN]
The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 17

The next section contains the information for performing a mid-tier
upgrade on Oracle JRF, as described in the Upgrade
Descriptor file located at
/u01/oracle/oracle_common/plugins/upgrade/jrfua.xml
Do not change the next line.
[JRF.JRF_CONFIG_PLUGIN]
The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 6

The next section contains the information for performing a mid-tier
upgrade on System Components Infrastructure, as described in the Upgrade
Descriptor file located at
/u01/oracle/oracle_common/plugins/upgrade/syscomp.xml
Do not change the next line.
[CAM.SYSCOMP]
The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 11

The next section contains the information for performing a mid-tier

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-14

upgrade on Oracle Web Services Manager, as described in the Upgrade
Descriptor file located at
/u01/oracle/oracle_common/plugins/upgrade/wsm.xml
Do not change the next line.
[WSM.WSMPLUGIN]
The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 10

The next section contains the information for performing a mid-tier
upgrade on User Messaging Service, as described in the Upgrade
Descriptor file located at
/u01/oracle/oracle_common/plugins/upgrade/usermessaging.xml
Do not change the next line.
[UCSUMS.UCSUMS_CONFIGURATION_PLUGIN]
The following number uniquely identifies this instance of an
upgrade plugin. Do not change it.
pluginInstance = 9
Specifies a choice from a collection of values,
"Is this correct?"
REMOTE_COPY_CHOICE.choose = REMOTE_COPY_CHOICE3

16.2.4 Creating the domain-upgrade-pod.yaml

Run the following steps to create the domain-upgrade-pod.yaml file:

1. In the <workdir>/upgradescripts directory create a domain-upgrade-pod.yaml and
replace the environment variables listed, with the corresponding values collected in
Upgrade Prerequisite Steps:

apiVersion: v1
kind: Pod
metadata:
 labels:
 weblogic.domainUID: %DOMAIN_UID%
 weblogic.domainName: %DOMAIN_UID%
 app: %DOMAIN_UID%-domain-upgrade
 name: %DOMAIN_UID%-domain-upgrade
 namespace: %NAMESPACE%
spec:
 containers:
 - args:
 - sleep
 - infinity
 image: %WEBLOGIC_IMAGE%
 imagePullPolicy: %WEBLOGIC_IMAGE_PULL_POLICY%
 name: %DOMAIN_UID%-domain-upgrade
 volumeMounts:
 - mountPath: /u01/scripts
 name: domain-upgrade-cm-volume
 - mountPath: %DOMAIN_MOUNT_PATH%
 name: domain-storage-volume
 - mountPath: /weblogic-operator/rcu-secrets
 name: rcu-credentials-volume
 env:

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-15

 - name: DOMAIN_UID
 value: "%DOMAIN_UID%"
 - name: DOMAIN_ROOT_DIR
 value: "%DOMAIN_ROOT_DIR%"
 - name: DOMAIN_HOME_DIR
 value: "%DOMAIN_HOME%"
 - name: DOMAIN_NAME
 value: "%DOMAIN_UID%"
 - name: CONNECTION_STRING
 value: "%CONNECTION_STRING%"
 - name: RCUPREFIX
 value: "%RCUPREFIX%"
 - name: DOMAIN_TYPE
 value: "OIG"
 - name: SECURE_ENABLED
 value: "false"
 volumes:
 - name: domain-upgrade-cm-volume
 configMap:
 name: %DOMAIN_UID%-domain-upgrade-pod-cm
 - name: domain-storage-volume
 persistentVolumeClaim:
 claimName: %DOMAIN_PVC_NAME%
 - name: rcu-credentials-volume
 secret:
 secretName: %RCU_CREDENTIALS_SECRET_NAME%

For example:

apiVersion: v1
kind: Pod
metadata:
 labels:
 weblogic.domainUID: governancedomain
 weblogic.domainName: governancedomain
 app: governancedomain-domain-upgrade
 name: governancedomain-domain-upgrade
 namespace: oigns
spec:
 containers:
 - args:
 - sleep
 - infinity
 image: container-registry.oracle.com/middleware/oig_cpu:14.1.2.1.0-
jdk17-ol8-<YYMMDD>
 imagePullPolicy: IfNotPresent
 name: governancedomain-domain-upgrade
 volumeMounts:
 - mountPath: /u01/scripts
 name: domain-upgrade-cm-volume
 - mountPath: /u01/oracle/user_projects
 name: domain-storage-volume
 - mountPath: /weblogic-operator/rcu-secrets
 name: rcu-credentials-volume

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-16

 env:
 - name: DOMAIN_UID
 value: "governancedomain"
 - name: DOMAIN_ROOT_DIR
 value: "/u01/oracle/user_projects/domains"
 - name: DOMAIN_HOME_DIR
 value: "/u01/oracle/user_projects/domains/governancedomain"
 - name: DOMAIN_NAME
 value: "governancedomain"
 - name: CONNECTION_STRING
 value: "mydatabasehost.example.com:1521/orcl.example.com"
 - name: RCUPREFIX
 value: "OIGK8S"
 - name: DOMAIN_TYPE
 value: "OIG"
 - name: SECURE_ENABLED
 value: "false"
 volumes:
 - name: domain-upgrade-cm-volume
 configMap:
 name: governancedomain-domain-upgrade-pod-cm
 - name: domain-storage-volume
 persistentVolumeClaim:
 claimName: governancedomain-domain-pvc
 - name: rcu-credentials-volume
 secret:
 secretName: governancedomain-rcu-credentials

16.2.5 Shutting Down the OIG Domain

Run the following commands to shutdown the Oracle Identity Governance (OIG) 12c
deployment:

1. Shut down the OIG deployment using the following command:

 kubectl patch domain %DOMAIN_UID% -n %NAMESPACE% --type=merge --patch
"{\"spec\": {\"serverStartPolicy\": \"Never\"}}"

For example:

 kubectl patch domain governancedomain -n oigns --type=merge --patch
"{\"spec\": {\"serverStartPolicy\": \"Never\"}}"

The output will look similar to the following:

domain.weblogic.oracle/governancedomain patched

2. Run the following kubectl command to view the pods:

kubectl get pods -n %NAMESPACE%

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-17

For example:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
governancedomain-adminserver 1/1 Running 0 22h
governancedomain-soa-server1 1/1 Running 0 22h
governancedomain-oim-server1 0/1 Terminating 0 22h

The Administration Server pods and Managed Server pods will move to a STATUS of
Terminating.

After a few minutes, run the command again and make sure the pods should have
disappeared before continuing.

3. If a helper pod exists, then delete it:

kubectl delete pod helper -n %NAMESPACE%

For example:

kubectl delete pod helper -n oigns

16.2.6 Backing Up the Database and Persistent Volume

You must take a backup of the Oracle Database used by Oracle Identity Governance (OIG)
12c, and the persistent volume.

Backing Up the Oracle Database

Take a backup of the Oracle Database used by OIG 12c, using your usual Oracle Database
backup procedure.

Backing Up the Persistent Volume

Take a backup of the persistent volume directory:

sudo cp -rp <persistent_volume>/governancedomainpv <persistent_volume>/
governancedomain_bkp12c

For example:

sudo cp -rp /nfs_volumes/oig/governancedomainpv /nfs_volumes/oig/
governancedomainpv_bkp12c

16.2.7 Creating an Upgrade ConfigMap

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-18

Create a ConfigMap for the upgrade by performing the following:

1. Run the following command to create the ConfigMap:

kubectl create configmap %DOMAIN_UID%-domain-upgrade-pod-cm -n %NAMESPACE%
\
--from-file <workdir>/upgradescripts --dry-run=client -o yaml

For example:

kubectl create configmap governancedomain-domain-upgrade-pod-cm -n oigns \
--from-file /OIG12CUPG/upgradescripts --dry-run=client -o yaml | kubectl
apply -f -

The output should look similar to the following:

configmap/governancedomain-domain-upgrade-pod-cm created

16.2.8 Performing the Upgrade

To perform the upgrade you must create an upgrade pod and run several upgrade commands.

Note:

If the upgrade fails, see Restoring After a Failed Upgrade.

1. Run the following command to create the domain-upgrade-pod:

kubectl apply -f <workdir>/upgradescripts/domain-upgrade-pod.yaml

For example:

kubectl apply -f /OIG12CUPG/upgradescripts/domain-upgrade-pod.yaml

The output should look similar to the following:

pod/governancedomain-domain-upgrade created

2. Run the following kubectl command to view the pods:

kubectl get pods -n %NAMESPACE%

For example:

kubectl get pods -n oigns

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-19

The output will look similar to the following:

NAME READY STATUS
RESTARTS AGE
governancedomain-domain-upgrade 1/1 Running
0 2m3s

It may take a few minutes until the pod is in a status of READY 1/1.

3. Run the following command to enter a bash shell in the domain-upgrade pod:

kubectl exec -it %DOMAIN_UID%-domain-upgrade -n %NAMESPACE% -- /bin/bash

For example:

kubectl exec -it governancedomain-domain-upgrade -n oigns -- /bin/bash

This will take you into a bash shell in the domain-upgrade pod:

[oracle@governancedomain-domain-upgrade oracle]$

4. Inside the upgrade pod, navigate to the /u01/scriptsdirectory:

cd /u01/scripts

5. Run the following command to run the Upgrade Assistant:

$ORACLE_HOME/oracle_common/upgrade/bin/ua -response /u01/scripts/
domainUpgradeResponse.txt -logLevel TRACE -logDir /tmp

The output should look similar to the following:

Oracle Fusion Middleware Upgrade Assistant 14.1.2.0.0
Log file is located at: /tmp/ua<DATE>.log
Reading installer inventory, this will take a few moments...
...completed reading installer inventory.
Using response file /u01/scripts/domainUpgradeResponse.txt for input
 Oracle Metadata Services schema examine is in progress
 Oracle Platform Security Services schema examine is in progress
 Oracle Audit Services schema examine is in progress
 Common Infrastructure Services schema examine is in progress
 Common Infrastructure Services schema examine finished with status: ready
for upgrade
 Oracle Metadata Services schema examine finished with status: ready for
upgrade
 Oracle WebLogicServer schema examine is in progress
 User Messaging Service schema examine is in progress
 Oracle WebLogicServer schema examine finished with status: ready for
upgrade
 Oracle SOA schema examine is in progress
 Oracle Platform Security Services schema examine finished with status:
ready for upgrade

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-20

 User Messaging Service schema examine finished with status: ready for
upgrade
 Oracle SOA schema examine finished with status: ready for upgrade
 Oracle Identity Manager schema examine is in progress
 Oracle Audit Services schema examine finished with status: ready for
upgrade
 Oracle Identity Manager schema examine finished with status: ready for
upgrade
Schema Version Registry saved to: /tmp/ua2025-03-13-15-34-59PM.xml
 Oracle Metadata Services schema upgrade is in progress
 Common Infrastructure Services schema upgrade is in progress
 Oracle Platform Security Services schema upgrade is in progress
 Oracle Audit Services schema upgrade is in progress
 Common Infrastructure Services schema upgrade finished with status:
succeeded
 User Messaging Service schema upgrade is in progress
 Oracle Audit Services schema upgrade finished with status: succeeded
 Oracle WebLogicServer schema upgrade is in progress
 Oracle Metadata Services schema upgrade finished with status: succeeded
 Oracle SOA schema upgrade is in progress
 Oracle WebLogicServer schema upgrade finished with status: succeeded
 Oracle Platform Security Services schema upgrade finished with status:
succeeded
 User Messaging Service schema upgrade finished with status: succeeded
 Oracle SOA schema upgrade finished with status: succeeded
 Oracle Identity Manager schema upgrade is in progress
UPGRADE PATH : [12.2.1.4.0, 14.1.2.1.0]
 Oracle Identity Manager schema upgrade finished with status: succeeded

Oracle SOA
1. The Upgrade Assistant has successfully upgraded all active instances.
You can now close the Upgrade Assistant.
2. The automated upgrade of closed instances will continue in the
background after the Upgrade Assistant is exited and until the SOA server
is started,at which point the upgrade will stop. You can schedule the
upgrade of any remaining closed instances for a time when the SOA server
is less busy.
 Close the Upgrade Assistant and use the instance data administration
scripts to administer and monitor the overall progress of this automated
upgrade. For more information see "Administering and Monitoring the
Upgrade of SOA Instance Data" in Upgrading SOA Suite and Business Process
Management.

[oracle@governancedomain-domain-upgrade scripts]$

6. Enter a wlst prompt inside the domain-upgrade pod:

$ORACLE_HOME/oracle_common/common/bin/wlst.sh

The output will look similar to the following:

Initializing WebLogic Scripting Tool (WLST) ...

Jython scans all the jar files it can find at first startup. Depending on
the system, this process may take a few minutes to complete, and WLST may

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-21

not return a prompt right away.

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline>

7. Run the following at the wlst prompt to perform domain reconfiguration:

a. Set the domainHome:

domainHome='/u01/oracle/user_projects/domains/%DOMAIN_UID%'

For example:

domainHome='/u01/oracle/user_projects/domains/governancedomain'

b. Read the domanHome:

readDomainForUpgrade(domainHome)

The output will look similar to the following:

wls:/offline/governancedomain>

c. Update the domain:

updateDomain()

Note:

This command can take approximately 10 minutes to complete.

The output will look similar to the following:

INFO: JPS Config: /u01/oracle/user_projects/domains/governancedomain/
config/fmwconfig/jps-config-jse.xml
INFO: JPS Config: /u01/oracle/user_projects/domains/governancedomain/
config/fmwconfig/jps-config.xml
WARNING: Bootstrap services are used by OPSS internally and clients
should never need to directly read/write bootstrap credentials. If
required, use Wlst or configuration management interfaces.
INFO: JPS Config: /u01/oracle/user_projects/domains/governancedomain/
config/fmwconfig/jps-config-jse.xml
INFO: JPS Config: /u01/oracle/user_projects/domains/governancedomain/
config/fmwconfig/jps-config.xml
INFO: No ADFLoggerExtension registration, skipping.
INFO: ADFLoggerExtensionODL setup complete
WARNING: MDS-11019: The default CharSet US-ASCII is not a unicode
character set. File names with non-ASCII characters may not operate as
expected. Check locale settings.

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-22

INFO: MDS_Repository type being ignored with insufficient uniqueness
in /oracle/mds/ (MDS)
INFO: MDS_Partition type being ignored with insufficient uniqueness in /
oracle/mds//oracle (MDS_Repository)
INFO: Property for read store in parallel:
oracle.security.jps.az.runtime.readstore.threads = null
INFO: MDS_Partition type being ignored with insufficient uniqueness in /
oracle/mds//oracle (MDS_Repository)

d. Close the domain:

closeDomain()

8. Run the following post upgrade steps at the wls:/offline> prompt:

a. Set the domainHome:

domainHome='/u01/oracle/user_projects/domains/%DOMAIN_UID%'

For example:

domainHome='/u01/oracle/user_projects/domains/governancedomain'

b. Set the RCUPREFIX and RCU_SCHEMA_PWD password:

wlsRuntimeUser='%RCUPREFIX%_WLS_RUNTIME'

schemaPassword='%RCU_SCHEMA_PWD%'

For example:

wlsRuntimeUser='OIGK8S_WLS_RUNTIME'

schemaPassword='<password>'

c. Read the domain:

readDomain(domainHome)

d. Change to the following directory:

cd('/JdbcSystemResource/WLSRuntimeSchemaDataSource/JdbcResource/
WLSRuntimeSchemaDataSource/JdbcDriverParams/NO_NAME_0')

e. Set the CONNECTION_STRING:

dbUrl="jdbc:oracle:thin:@%CONNECTION_STRING%"

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-23

For example:

dbUrl="jdbc:oracle:thin:@mydatabasehost.example.com:1521/
orcl.example.com"

f. Run the following to update the domain:

cmo.setUrl(dbUrl)

cmo.setDriverName('oracle.jdbc.OracleDriver')

set('PasswordEncrypted', schemaPassword)

cd('Properties/NO_NAME_0/Property/user')

cmo.setValue(wlsRuntimeUser)

cd('/')

updateDomain()

No output will be returned to the screen and you will just be returned to the prompt.

g. Close the domain and exit:

closeDomain()

exit()

9. Indide bash shell of the domain-upgrade pod. run the following to perform the configuration
upgrade:

$ORACLE_HOME/oracle_common/upgrade/bin/ua -configUpgrade -response /u01/
scripts/OIGDomainConfigResponse.txt -logLevel TRACE -logDir /tmp

The output will look similar to the following:

Oracle Fusion Middleware Upgrade Assistant 14.1.2.0.0
Log file is located at: /tmp/ua2025-03-13-15-45-36PM.log
Reading installer inventory, this will take a few moments...
...completed reading installer inventory.
Using response file /u01/scripts/OIGDomainConfigResponse.txt for input
 Oracle Identity Manager configuration examine is in progress
UPGRADE PATH : [12.2.1.4.0, 14.1.2.1.0]
 Oracle Identity Manager configuration examine finished with status:
upgrade not necessary
 Oracle JRF configuration examine is in progress
 Oracle JRF configuration examine finished with status: upgrade not

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-24

necessary
 System Components Infrastructure configuration examine is in progress
 System Components Infrastructure configuration examine finished with
status: upgrade not necessary
 Oracle Web Services Manager configuration examine is in progress
java.lang.Throwable: STARTUP - DIAGNOSTIC STACK
 at
oracle.adf.share.platform.AdfServerPlatformUtil$SingletonHolder.internalLog
SystemProperties(AdfServerPlatformUtil.java:746)
 at
oracle.adf.share.platform.AdfServerPlatformUtil$SingletonHolder.logSystemPr
operties(AdfServerPlatformUtil.java:723)
 at
oracle.adf.share.platform.AdfServerPlatformUtil$SingletonHolder.<clinit>(Ad
fServerPlatformUtil.java:485)
 at
oracle.adf.share.platform.AdfServerPlatformUtil.<clinit>(AdfServerPlatformU
til.java:297)
 at
oracle.adf.share.mt.util.CloudHelper$SingletonHolder.<clinit>(CloudHelper.j
ava:37)
 at
oracle.adf.share.mt.util.CloudHelper.isMultitenancySupportable(CloudHelper.
java:89)
 at
oracle.adf.share.mt.util.MultiPartitionStorage.initValueStorage(MultiPartit
ionStorage.java:21)
 at
oracle.adf.share.mt.util.MultiTenantStorage.<init>(MultiTenantStorage.java:
47)
 at
oracle.adf.share.mt.util.MultiPartitionStorage.<init>(MultiPartitionStorage
.java:15)
 at
oracle.mds.internal.util.MDSTimerMTS$4.<init>(MDSTimerMTS.java:277)
 at
oracle.mds.internal.util.MDSTimerMTS.<clinit>(MDSTimerMTS.java:275)
 at oracle.mds.internal.util.MDSTimer.createTimer(MDSTimer.java:67)
 at
oracle.mds.persistence.stores.db.DBMetadataStore.<clinit>(DBMetadataStore.j
ava:2290)
 at
oracle.wsm.repository.mds.MDSInstanceFactory.getMDSInstance(MDSInstanceFact
ory.java:352)
 at
oracle.wsm.lifecycle.common.util.PluginBeanCreator.getBean(PluginBeanCreato
r.java:87)
 at
oracle.wsm.lifecycle.upgrade.impl.UpgradePluginExecutor.<init>(UpgradePlugi
nExecutor.java:186)
 at
oracle.wsm.lifecycle.upgrade.impl.WSMUpgradePlugin.examine(WSMUpgradePlugin
.java:316)
 at oracle.ias.update.plugin.Plugin.examine(Plugin.java:689)
 at oracle.ias.update.plan.PlanStep.examine(PlanStep.java:734)
 at

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-25

oracle.ias.update.PhaseProcessor$ExamineProcessor.runStepPhase(PhaseProcess
or.java:900)
 at
oracle.ias.update.PhaseProcessor.runStep(PhaseProcessor.java:481)
 at
oracle.ias.update.PhaseProcessor$ExtendedRunnable.run(PhaseProcessor.java:1
735)
 at java.base/
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1
136)
 at java.base/
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:
635)
 at java.base/java.lang.Thread.run(Thread.java:842)
STARTUP - SYSTEM PROPERTIES
APPSERVER_TYPE=wls
common.components.home=/u01/oracle/oracle_common
file.encoding=ANSI_X3.4-1968
file.separator=/
ice.pilots.html4.ignoreNonGenericFonts=true
java.class.path=/u01/oracle/oracle_common/upgrade/jlib/ua.jar:/u01/oracle/
oracle_common/upgrade/jlib/SchemaVersion.jar:/u01/oracle/oracle_common/
modules/features/com.oracle.db.jdbc-no-dms.jar:/u01/oracle/oracle_common/
modules/datadirect/fmwgenerictoken.jar:/u01/oracle/oracle_common/modules/
datadirect/wlsqlserver.jar:/u01/oracle/oracle_common/modules/datadirect/
wldb2.jar:/u01/oracle/oracle_common/modules/mysql-connector-java-
commercial-5.1.22/mysql-connector-java-commercial-5.1.22-bin.jar:/u01/
oracle/wlserver/common/derby/lib/derbyclient.jar:/u01/oracle/oracle_common/
modules/oracle.bali.jewt/jewt4.jar:/u01/oracle/oracle_common/modules/
oracle.bali.jewt/olaf2.jar:/u01/oracle/oracle_common/modules/oracle.odl/
ojdl.jar:/u01/oracle/oracle_common/modules/oracle.dms/dms.jar:/u01/oracle/
oracle_common/modules/oracle.bali.share/share.jar:/u01/oracle/jlib/
ojmisc.jar:/u01/oracle/oracle_common/modules/oracle.ldap/
ldapjclnt.jar:/u01/oracle/oracle_common/modules/oracle.help/help-
share.jar:/u01/oracle/oracle_common/modules/oracle.help/ohj.jar:/u01/
oracle/oracle_common/modules/oracle.help/oracle_ice.jar:/u01/oracle/jlib/
oraclepki.jar:/u01/oracle/oracle_common/modules/oracle.nlsrtl/orai18n-
mapping.jar:/u01/oracle/oracle_common/modules/oracle.jrf/jrf-api.jar:/u01/
oracle/wlserver/server/lib/weblogic.jar:/u01/oracle/wlserver/modules/
org.slf4j.slf4j-nop.jar:/u01/oracle/wlserver/modules/wlstt3client.jar:/u01/
oracle/oracle_common/jlib/wizardCommonResources.jar:/u01/oracle/
oracle_common/jlib/rcucommon.jar:/u01/oracle/oracle_common/modules/
features/rcuapi_lib.jar:/u01/oracle/oracle_common/modules/features/
cieCfg_wls_lib.jar:/u01/oracle/oracle_common/modules/features/
cieCfg_cam_lib.jar:/u01/oracle/oui/modules/gdr-external.jar:/u01/oracle/
oracle_common/modules/oracle.jps/jps-manifest.jar:/u01/oracle/oui/modules/
private/xml-apis-1.4.01.jar
java.class.version=61.0
java.home=/u01/jdk
java.io.tmpdir=/tmp
java.library.path=/u01/oracle/oracle_common/lib:/u01/oracle/oracle_common/
adr::/usr/java/packages/lib:/usr/lib64:/lib64:/lib:/usr/lib
java.runtime.name=Java(TM) SE Runtime Environment
java.runtime.version=17.0.12+8-LTS-286
java.security.egd=file:/dev/urandom
java.specification.name=Java Platform API Specification

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-26

java.specification.vendor=Oracle Corporation
java.specification.version=17
java.vendor=Oracle Corporation
java.vendor.url=https://java.oracle.com/
java.vendor.url.bug=https://bugreport.java.com/bugreport/
java.version=17.0.12
java.version.date=2024-07-16
java.vm.compressedOopsMode=32-bit
java.vm.info=mixed mode, sharing
java.vm.name=Java HotSpot(TM) 64-Bit Server VM
java.vm.specification.name=Java Virtual Machine Specification
java.vm.specification.vendor=Oracle Corporation
java.vm.specification.version=17
java.vm.vendor=Oracle Corporation
java.vm.version=17.0.12+8-LTS-286
jdk.debug=release
line.separator=

native.encoding=ANSI_X3.4-1968
oracle.domain.config.dir=/u01/oracle/user_projects/domains/
governancedomain/config/fmwconfig
oracle.security.jps.config=/u01/oracle/user_projects/domains/
governancedomain/config/fmwconfig/jps-config-jse.xml
oracle.webservice.policy.config=/u01/oracle/user_projects/domains/
governancedomain/config/fmwconfig
org.jboss.logging.provider=jdk
org.xml.sax.driver=com.sun.org.apache.xerces.internal.parsers.SAXParser
os.arch=amd64
os.name=Linux
os.version=5.15.0-302.167.6.el8uek.x86_64
path.separator=:
sun.arch.data.model=64
sun.boot.library.path=/u01/jdk/lib
sun.cpu.endian=little
sun.io.unicode.encoding=UnicodeLittle
sun.java.command=oracle.ias.update.UpgradeDriver -configUpgrade -
response /u01/scripts/OIGDomainConfigResponse.txt -logLevel TRACE -
logDir /tmp
sun.java.launcher=SUN_STANDARD
sun.jnu.encoding=ANSI_X3.4-1968
sun.lang.ClassLoader.allowArraySyntax=true
sun.management.compiler=HotSpot 64-Bit Tiered Compilers
sun.stderr.encoding=ANSI_X3.4-1968
sun.stdout.encoding=ANSI_X3.4-1968
ua.home=/u01/oracle/oracle_common
ua.wl.home=/u01/oracle/wlserver
user.country=US
user.dir=/u01/scripts
user.home=/home/oracle
user.language=en
user.name=oracle
user.timezone=UTC

STARTUP - INITED STATE
isODLAvailable=true, isDMSAvailable=true, isDMS4LoggingAvailable=true,
isJRFAvailable=true, isMDSAvailable=true, isDFWAvailable=true,

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-27

isJEE=false, platName=jse, isWebLogic=false, isWebLogicCore=false,
isWebSphere=false, isWebSphereND=false, isWebSphereAS=false,
isJBoss=false, isGlassfish=false, isTomcat=false, isGrizzly=false,
isMicroServicePlatform=false, isOciNative=false, breezeVer=,
breezeStat=SUCCESS - !isClassAvailable(com/oracle/breeze/Breeze)
 Oracle Web Services Manager configuration examine finished with status:
ready for upgrade
 User Messaging Service configuration examine is in progress
 User Messaging Service configuration examine finished with status: ready
for upgrade
 Oracle Web Services Manager configuration upgrade is in progress
 Oracle Web Services Manager configuration upgrade finished with status:
succeeded
 User Messaging Service configuration upgrade is in progress
 User Messaging Service configuration upgrade finished with status:
succeeded

Note:

The java.lang.Throwable: STARTUP - DIAGNOSTIC STACK message can be
ignored.

10. Exit the domain-upgrade pod:

exit

16.2.9 Updating the OIG Container Image to 14c

You must update the deployment to use the Oracle Identity Governance (OIG) 14c container
image:

Note:

If the container image upgrade fails, see Restoring After a Failed Upgrade.

1. Run the following command to update the deployment with the OIG 14c container image:

kubectl patch domain %DOMAIN_UID% -n %NAMESPACE% --type merge -p '{"spec":
{"image":"%WEBLOGIC_IMAGE%"}}'

For example:

• If using Oracle Container Registry or your own container registry for your OIG
container image:

kubectl patch domain governancedomain -n oigns --type merge -p
'{"spec":{"image":"container-registry.oracle.com/middleware/
oig_cpu:<new_tag>"}}'

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-28

• If you are not using a container registry and have loaded the image on each of the
worker nodes:

kubectl patch domain governancedomain -n oigns --type merge -p
'{"spec":{"image":"oracle/oig:14.1.2.1.0"}}'

The output will look similar to the following:

domain.weblogic.oracle/governancedomain patched

16.2.10 Updating the WebLogic Kubernetes Operator

You must update the deployment to use a WebLogic Kubernetes Operator version supported
with 14c. The current supported version is 4.2.10.

1. Run the following command to see the current version of the WebLogic Kubernetes
Operator:

helm list -n opns

The output will look similar to the following:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
weblogic-kubernetes-operator opns 1 <DATE>
deployed weblogic-operator-4.1.8-RELEASE-MARKER 4.1.8-RELEASE-
MARKER

In the above example the version is 4.1.8 and therefore the operator must be upgraded.

2. To upgrade the WebLogic Kubernetes Operator to 4.2.10, see Updating the WebLogic
Kubernetes Operator.

3. Once the operator is upgraded, continue with Starting the OIG 14c Deployment.

16.2.11 Starting the OIG 14c Deployment
Start the Oracle Identity Governance (OIG) 14c deployment.

1. Run the following command to start the OIG domain:

kubectl patch domain.v9.weblogic.oracle "%DOMAIN_UID%" -n "%NAMESPACE%" \
--type=merge --patch "{\"spec\": {\"serverStartPolicy\": \"IfNeeded\"}}"

For example:

kubectl patch domain.v9.weblogic.oracle "governancedomain" -n "oigns" \
--type=merge --patch "{\"spec\": {\"serverStartPolicy\": \"IfNeeded\"}}"

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-29

The output will look similar to the following:

domain.weblogic.oracle/governancedomain patched

2. Run the following command to view the pods:

kubectl get pods -n %NAMESPACE%

For example:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
governancedomain-introspector-jwqxw 1/1
Running 0 10s

The introspect job will start, followed by the Administration Server pod, and then the OIG
server pods. This process will take several minutes, so keep executing the command until
all the pods are running with READY status 1/1:

Note:

Alternatively, you can add the watch flag, -w, which allows you watch the status
of the pods as they change.

NAME READY STATUS RESTARTS AGE
governancedomain-adminserver 1/1 Running 0 16m
governancedomain-soa-server1 1/1 Running 0 13m
governancedomain-oim-server1 1/1 Running 0 13m

3. Once everything is running, check the consoles are accessible as per Validating the
Domain URLs.

4. Once you are confident the upgrade is successful, delete the domain-upgrade pod and
ConfigMap as follows:

kubectl delete pod %DOMAIN_UID%-domain-upgrade -n %NAMESPACE%

kubectl delete configmap %DOMAIN_UID%-domain-upgrade-pod-cm -n %NAMESPACE%

For example:

kubectl delete pod governancedomain-domain-upgrade -n oigns

kubectl delete configmap governancedomain-domain-upgrade-pod-cm -n oigns

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-30

16.2.12 Upgrading the Ingress
In order to access the Oracle Identity Governance (OIG) 14c domain via WebLogic Remote
Console, you must upgrade the ingress.

1. Download the latest code repository to a new directory and set the $WORKDIR to the new
directory structure. See, Setting Up the Code Repository for OIG.

Note:

Make sure not to delete the original OIG 12c code repository as you will need the
values.yaml used to create the original ingress.

2. Navigate to the following directory:

cd $WORKDIR/kubernetes/charts/ingress-per-domain

3. Make a copy of the values.yaml:

cp values.yaml $WORKDIR/

4. Copy over the values.yaml from the original OIG 12c code repository. For example:

cp /OIGK8S/fmw-kubernetes/OracleIdentityGovernance/kubernetes/charts/
ingress-per-domain \
$WORKDIR/kubernetes/charts/ingress-per-domain

5. Upgrade the governancedomain-nginx with the following commands:

cd $WORKDIR

helm upgrade governancedomain-nginx kubernetes/charts/ingress-per-domain/
--namespace %NAMESPACE% \
--values kubernetes/charts/ingress-per-domain/values.yaml --reuse-values

For example:

helm upgrade governancedomain-nginx kubernetes/charts/ingress-per-domain/
--namespace oigns \
--values kubernetes/charts/ingress-per-domain/values.yaml --reuse-values

The output will look similar to the following:

Release "governancedomain-nginx" has been upgraded. Happy Helming!
NAME: governancedomain-nginx
LAST DEPLOYED: <DATE>
NAMESPACE: oigns
STATUS: deployed
REVISION: 2
TEST SUITE: None

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-31

6. Check you can connect to the OIG 14c domain using the WebLogic Remote Console.

Note:

For more information about installing and configuring the console, see Getting
Started Using Administration Console.

16.2.13 Restoring After a Failed Upgrade

If the upgrade fails at any point, you can restore back to the Oracle Identity Governance 12c
deployment using the following steps:

1. Shut down the OIG 14c deployment using the following command:

kubectl patch domain <domain> -n <domain_namespace> --type=merge --patch
"{\"spec\": {\"serverStartPolicy\": \"Never\"}}"

For example:

kubectl patch domain governancedomain -n oigns --type=merge --patch
"{\"spec\": {\"serverStartPolicy\": \"Never\"}}"

The output will look similar to the following:

domain.weblogic.oracle/governancedomain patched

2. Run the following kubectl command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
governancedomain-adminserver 1/1 Terminating 0 16m
governancedomain-soa-server1 1/1 Terminating 0 13m
governancedomain-oim-server1 1/1 Terminating 0 5m22s

The Administration Server pods and Managed Server pods will move to a STATUS of
Terminating.

After a few minutes, run the command again and make sure the pods should have
disappeared before continuing.

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-32

3. Restore the persistent volume from the backup taken before the upgrade:

sudo cp -rp <persistent_volume>/governancedomainpv <persistent_volume>/
governancedomain_bkp14c

sudo rm -rf <persistent_volume>/governancedomainpv

sudo cp -rp <persistent_volume>/governancedomainpv_bkp12c
<persistent_volume>/governancedomain

For example:

sudo cp -rp /nfs_volumes/oig/governancedomainpv /nfs_volumes/oig/
governancedomain_bkp14c

sudo rm -rf /nfs_volumes/oig/governancedomainpv

sudo cp -rp /nfs_volumes/oig/governancedomainpv_bkp12c /nfs_volumes/oig/
governancedomain

4. Restore the Oracle Database from the backup taken before the upgrade.

5. Run the following command to update the deployment with the OIG 12c container image
used previously:

kubectl patch domain %DOMAIN_UID% -n %NAMESPACE% --type merge -p '{"spec":
{"image":"%WEBLOGIC_IMAGE%"}}'

For example:

• If using Oracle Container Registry or your own container registry for your OIG
container image:

kubectl patch domain governancedomain -n oigns \
--type merge -p '{"spec":{"image":"container-registry.oracle.com/
middleware/oig_cpu:12.2.1.4-jdk8-ol8-<YYMMDD>"}}'

• If you are not using a container registry and have loaded the image on each of the
worker nodes:

kubectl patch domain governancedomain -n oigns \
--type merge -p '{"spec":{"image":"oracle/oig:12.2.1.4.0"}}'

The output will look similar to the following:

domain.weblogic.oracle/governancedomain patched

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-33

6. Run the following command to start the OIG domain:

kubectl patch domain.v9.weblogic.oracle "%DOMAIN_UID%" -n "%NAMESPACE%" \
--type=merge --patch "{\"spec\": {\"serverStartPolicy\": \"IfNeeded\"}}"

For example:

kubectl patch domain.v9.weblogic.oracle "governancedomain" -n "oigns" \
--type=merge --patch "{\"spec\": {\"serverStartPolicy\": \"IfNeeded\"}}"

The output will look similar to the following:

domain.weblogic.oracle/governancedomain patched

7. Downgrade the WebLogic Kubernetes Operator to a version supported by OIG 12c. Follow
the instructions at Updating the WebLogic Kubernetes Operator, but use a supported
operator for OIG 12c.

8. Run the following command to view the pods:

kubectl get pods -n %NAMESPACE%

For example:

kubectl get pods -n oigns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
governancedomain-introspector-jwqxw 1/1
Running 0 10s

The introspect job will start, followed by the Administration Server pod, and then the OIG
server pods. This process will take several minutes, so keep executing the command until
all the pods are running with READY status 1/1:

Note:

Alternatively, you can add the watch flag, -w, which allows you watch the status
of the pods as they change.

NAME READY STATUS RESTARTS AGE
governancedomain-adminserver 1/1 Running 0 16m
governancedomain-soa-server1 1/1 Running 0 13m
governancedomain-oim-server1 1/1 Running 0 5m22s

9. Once everything is running, check the consoles are accessible as per Validating the
Domain URLs.

Chapter 16
Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2

16-34

17
General Troubleshooting

This chapter includes the following topics:

• Viewing Pod Logs

• Viewing Pod Descriptions

• Known Issues

17.1 Viewing Pod Logs
To view logs for a pod use the following command:

kubectl logs <pod> -n <namespace>

For example:

kubectl logs governancedomain-oim-server1 -n oigns

Note:

If you add -f to the command, then the log will be streamed.

17.2 Viewing Pod Descriptions
Details about a pod can be viewed using the kubectl describe command:

kubectl describe pod <pod> -n <namespace>

For example:

kubectl describe pod governancedomain-oim-server1 -n oigns

The output will look similar to the following:

Name: governancedomain-oim-server1
Namespace: oigns
Priority: 0
Service Account: default
Node: worker-2/100.105.211.87
Start Time: <DATE>
Labels: weblogic.clusterName=oim_cluster
 weblogic.clusterObservedGeneration=2

17-1

 weblogic.createdByOperator=true
 weblogic.domainName=governancedomain
 weblogic.domainObservedGeneration=3
 weblogic.domainUID=governancedomain
 weblogic.operatorVersion=4.2.10
 weblogic.serverName=oim_server1
Annotations: prometheus.io/path: /wls-exporter/metrics
 prometheus.io/port: 14000
 prometheus.io/scrape: true
 weblogic.sha256:
ca63e88a762186c5b4ca394be1c7c3b3ca0f0474c91bb3c8b6a928546aeafd35
Status: Running
SeccompProfile: RuntimeDefault
IP: 10.244.2.251
IPs:
 IP: 10.244.2.251
Controlled By: Domain/governancedomain
Init Containers:
 compat-connector-init:
 Container ID: cri-o://
dbd6a9ef07c3b9cbaa30685e6382f587a4be5461f1ada4750a947e00349e5c2e
 Image: container-registry.oracle.com/middleware/
oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>
 Image ID: container-registry.oracle.com/middleware/
oam_cpu@sha256:b52e106cdb9b522e9a7a971888481af3869542ef433ba3ea9cd6d47b323c781
b
 Port: <none>
 Host Port: <none>
 Command:
 /bin/bash
 -c
 mkdir -p /u01/oracle/user_projects/domains/ConnectorDefaultDirectory
 mkdir -p /u01/oracle/user_projects/domains/wdt-logs
 State: Terminated
 Reason: Completed
 Exit Code: 0
 Started: <DATE>
 Finished: <DATE>
 Ready: True
 Restart Count: 0
 Limits:
 cpu: 2
 memory: 8Gi
 Requests:
 cpu: 1
 memory: 4Gi
 Environment: <none>
 Mounts:
 /u01/oracle/user_projects from weblogic-domain-storage-volume (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-
qxpt4 (ro)
Containers:
 weblogic-server:
 Container ID: cri-o://
80b0b0d9241ae88e57a7ceb5d81d0716f1b812d70d5e7c1b1ee148495559a8b3
 Image: container-registry.oracle.com/middleware/

Chapter 17
Viewing Pod Descriptions

17-2

oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>
 Image ID: container-registry.oracle.com/middleware/
oig_cpu@sha256:b52e106cdb9b522e9a7a971888481af3869542ef433ba3ea9cd6d47b323c781
b
 Ports: 14002/TCP, 14000/TCP
 Host Ports: 0/TCP, 0/TCP
 Command:
 /weblogic-operator/scripts/startServer.sh
 State: Running
 Started: <DATE>
 Last State: Terminated
 Reason: Error
 Exit Code: 137
 Started: <DATE>
 Finished: <DATE>
 Ready: True
 Restart Count: 1
 Limits:
 cpu: 2
 memory: 8Gi
 Requests:
 cpu: 1
 memory: 4Gi
 Liveness: exec [/weblogic-operator/scripts/livenessProbe.sh] delay=30s
timeout=5s period=45s #success=1 #failure=1
 Readiness: http-get http://:14000/weblogic/ready delay=30s timeout=5s
period=5s #success=1 #failure=1
 Environment Variables from:
 governancedomain-rcu-credentials Secret Optional: false
 Environment:
 USER_MEM_ARGS: -Djava.security.egd=file:/dev/./
urandom -Xms8192m -Xmx8192m
 JAVA_OPTIONS: -Dweblogic.StdoutDebugEnabled=false
 WLSDEPLOY_LOG_DIRECTORY: /u01/oracle/user_projects/domains/
wdt-logs
 FRONTENDHOST: example.com
 FRONTENDPORT: 14000
 WLSDEPLOY_PROPERTIES: -
Dwdt.config.disable.rcu.drop.schema=true
 DOMAIN_NAME: governancedomain
 DOMAIN_HOME: /u01/oracle/user_projects/domains/
governancedomain
 ADMIN_NAME: AdminServer
 ADMIN_PORT: 7001
 SERVER_NAME: oim_server1
 DOMAIN_UID: governancedomain
 NODEMGR_HOME: /u01/nodemanager
 LOG_HOME: /u01/oracle/user_projects/domains/
logs/governancedomain
 SERVER_OUT_IN_POD_LOG: true
 SERVICE_NAME: governancedomain-oim-server1
 AS_SERVICE_NAME: governancedomain-adminserver
 ADMIN_USERNAME:
 ADMIN_PASSWORD:
 LOCAL_ADMIN_PORT: 14000
 LOCAL_ADMIN_PROTOCOL: t3

Chapter 17
Viewing Pod Descriptions

17-3

 SHUTDOWN_TYPE: Graceful
 SHUTDOWN_TIMEOUT: 30
 SHUTDOWN_IGNORE_SESSIONS: false
 REPLACE_VARIABLES_IN_JAVA_OPTIONS: false
 DYNAMIC_CONFIG_OVERRIDE: true
 DOMAIN_SOURCE_TYPE: PersistentVolume
 Mounts:
 /u01/oracle/user_projects from weblogic-domain-storage-volume (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-
qxpt4 (ro)
 /weblogic-operator/debug from weblogic-domain-debug-cm-volume (ro)
 /weblogic-operator/introspector from weblogic-domain-introspect-cm-
volume (rw)
 /weblogic-operator/scripts from weblogic-scripts-cm-volume (ro)
Conditions:
 Type Status
 PodReadyToStartContainers True
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 weblogic-scripts-cm-volume:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: weblogic-scripts-cm
 Optional: false
 weblogic-domain-debug-cm-volume:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: governancedomain-weblogic-domain-debug-cm
 Optional: true
 weblogic-domain-introspect-cm-volume:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: governancedomain-weblogic-domain-introspect-cm
 Optional: false
 weblogic-domain-storage-volume:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim
in the same namespace)
 ClaimName: governancedomain-domain-pvc
 ReadOnly: false
 kube-api-access-qxpt4:
 Type: Projected (a volume that contains injected data
from multiple sources)
 TokenExpirationSeconds: 3607
 ConfigMapName: kube-root-ca.crt
 ConfigMapOptional: <nil>
 DownwardAPI: true
QoS Class: Burstable
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists
for 300s
 node.kubernetes.io/unreachable:NoExecute
op=Exists for 300s
Events:

Chapter 17
Viewing Pod Descriptions

17-4

17.3 Known Issues
This section contains information about known issues.

Domain Creation Failure With WLST

The instructions in this section relate to problems creating Oracle Identity Governance (OIG)
domains using WLST. See, Creating OIG Domains Using WLST Offline Scripts.

If the OIG domain creation fails, run the following to diagnose the issue:

kubectl logs <domain_job> -n <domain_namespace>

For example:

kubectl logs governancedomain-create-fmw-infra-sample-domain-job-c6vfb -n
oigns

Also run:

kubectl describe pod <domain_job> -n <domain_namespace>

For example:

kubectl describe pod governancedomain-create-fmw-infra-sample-domain-job-
c6vfb -n oigns

Using the output you should be able to diagnose the problem and resolve the issue.

If any of the above commands return the following error:

Failed to start container "create-fmw-infra-sample-domain-job": Error
response from daemon: error while creating mount source path
'/nfs_volumes/oig/governancedomainpv ': mkdir /nfs_volumes/oig/
governancedomainpv : permission denied

Then there is a permissions error on the directory for the PV and PVC and the following should
be checked:

• The directory has 777 permissions: chmod -R 777 <persistent_volume>/
governancedomainpv.

• If it does have the permissions, check if an oracle user exists and the uid is 1000 and gid is
0.
Create the oracle user if it doesn’t exist and set the uid to 1000 and gid to 0.

• Edit the $WORKDIR/kubernetes/create-weblogic-domain-pv-pvc/create-pv-pvc-
inputs.yaml and add a slash to the end of the directory for the
weblogicDomainStoragePath parameter:

weblogicDomainStoragePath: /nfs_volumes/oig/governancedomainpv/

Chapter 17
Known Issues

17-5

Once you have diagnosed the problem, clean down the failed domain creation by following:

• Deleting the OIG Domain

• Deleting RCU Schemas

• Deleting Persistent Volume Contents

Then follow the instructions again in Creating OIG Domains Using WLST Offline Scripts

Domain Creation Failure With WDT Models

The instructions in this section relate to problems creating OIG domains using WDT models.
See, Creating OIG Domains Using WDT Models.

If the domain creation fails while creating domain resources using the domain.yaml file, run the
following steps to diagnose the issue:

1. Check the domain events, by running the following command:

kubectl describe domain <domain name> -n <domain_namespace>

For example:

kubectl describe domain governancedomain -n oigns

Using the output, you should be able to diagnose the problem and resolve the issue.

2. If the introspect job fails due to validation errors, then you can recreate the domain
resources using the commands:

kubectl delete -f domain.yaml

kubectl create -f domain.yaml

3. If the domain creation fails because of database issues:

a. Create a helper pod:

 kubectl run --image=container-registry.oracle.com/middleware/
oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD> --image-pull-
policy="IfNotPresent" --overrides='{"apiVersion": "v1","spec":
{"imagePullSecrets": [{"name": "orclcred"}]}}' helper -n oigns -- sleep
infinity

b. Once you have diagnosed the problem, clean down the failed domain creation by
following:

• Deleting the OIG Domain

• Deleting RCU Schemas

• Deleting Persistent Volume Contents

c. Execute the steps in Creating OIG Domains Using WDT Models again.

Chapter 17
Known Issues

17-6

Note:

You might need to recreate the domain creation image depending upon the
errors. Domain creation logs are stored in <persistent_volume>/domains/wdt-
logs.

4. If there is any issues bringing up the administration server, or OIG managed server pods,
you can run the following to check the logs:

kubectl logs <pod> -n <domain_namespace>

For example:

kubectl logs governancedomain-adminserver -n oigns

If the above does not give any information you can also run:

kubectl describe pod <pod> -n <domain_namespace>

For example:

kubectl describe pod governancedomain-adminserver -n oigns

For more details related to debugging issues, refer to Domain Debugging.

Pods Restarting Due to LivenessProbe

If the server pods keep restarting due to livenessProbe or readinessProbe failure, then make
the following changes in the oim-cluster and soa-cluster respectively.

If the restart is due to resource (CPU in this case) limit issue, then the CPU parameter need to
be adjusted as needed:

kubectl edit cluster <cluster> -n <domain_namespace>

For example:

kubectl edit cluster governancedomain-oim-cluster -n oigns

In the edit session change the CPU parameter as follows:

spec:
 clusterName: oim_cluster
 replicas: 1
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: '-Djava.security.egd=file:/dev/./urandom -Xms4096m -Xmx10240m -
Dweblogic.rjvm.allowUnknownHost=true '
 livenessProbe:
 failureThreshold: 3
 periodSeconds: 60

Chapter 17
Known Issues

17-7

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/debugging/

 timeoutSeconds: 60
 readinessProbe:
 failureThreshold: 3
 periodSeconds: 60
 timeoutSeconds: 60
 resources:
 limits:
 cpu: 1700m
 memory: 6Gi
 requests:
 cpu: 500m
 memory: 4Gi

Patch Domain Failures

The instructions in this section relate to problems patching a deployment with a new image as
per Patching a Container Image.

If the OIG domain patching fails when running patch_oig_domain.sh, run the following to
diagnose the issue:

kubectl describe domain <domain name> -n <domain_namespace>

For example:

kubectl describe domain governancedomain -n oigns

Using the output you should be able to diagnose the problem and resolve the issue.

If the domain is already patched successfully and the script failed at the last step of waiting for
pods to come up with the new image, then you do not need to rerun the script again after issue
resolution. The pods will come up automatically once you resolve the underlying issue.

If the script is stuck at the following message for a long time:

[INFO] Waiting for weblogic pods to be ready..This may take several minutes,
do not close the window. Check log /scratch/OIGK8Slatest/fmw-kubernetes/
OracleIdentityGovernance/kubernetes/domain-lifecycle/log/oim_patch_log-<DATE>/
monitor_weblogic_pods.log for progress

Run the following command to diagnose the issue:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oigns

Run the following to check the logs of the Admininstration Server, SOA server or OIM server
pods, as there may be an issue that is not allowing the domain pods to start properly:

kubectl logs <pod> -n oigns

Chapter 17
Known Issues

17-8

If the above does not glean any information you can also run:

kubectl describe pod <pod> -n oigns

Further diagnostic logs can also be found under the $WORKDIR/kubernetes/domain-lifecycle.

Once any issue is resolved the pods will come up automatically without the need to rerun the
script.

Chapter 17
Known Issues

17-9

18
Deleting an OIG Deployment

This chapter explains how to delete the Oracle Identity Governance (OIG) domain and other
Kubernetes objects used by the OIG domain.

The instructions in this chapter should only be followed if you need to remove a certain part of
the domain because of a deployment failure, or if you need clear the domain down completely
for some other reason. If you are unsure consult Oracle Support.

This chapter includes the following topics:

• Deleting the OIG Domain

• Deleting RCU Schemas

• Deleting Persistent Volume Contents

• Deleting the WebLogic Kubernetes Operator

• Deleting the Ingress

• Deleting the OIG Namespace

18.1 Deleting the OIG Domain
The steps to delete an Oracle Identity Governance (OIG) domain depends on whether the
domain was created with WLST or WDT.

Deleting WLST OIG Domains

1. Navigate to the $WORKDIR/kubernetes/delete-domain directory:

cd $WORKDIR/kubernetes/delete-domain

2. Run the following command to delete the domain:

./delete-weblogic-domain-resources.sh -d <domain_uid>

For example:

./delete-weblogic-domain-resources.sh -d governancedomain

Deleting WDT OIG Domains

1. Run the following command to delete the domain and clusters:

kubectl delete -f $WORKDIR/yaml/domain.yaml

2. Navigate to the $WORKDIR/kubernetes/delete-domain directory:

cd $WORKDIR/kubernetes/delete-domain

18-1

3. Run the following command to remove other domain objects:

./delete-weblogic-domain-resources.sh -d <domain_uid>

For example:

./delete-weblogic-domain-resources.sh -d governancedomain

18.2 Deleting RCU Schemas
To delete the RCU schemas, perform the following steps:

1. Check to see if the helper pod exists by running:

kubectl get pods -n <domain_namespace> | grep helper

For example:

kubectl get pods -n oigns | grep helper

The output should look similar to the following:

helper 1/1 Running 0 26h

If the helper pod doesn’t exist, run the following:

• If using Oracle Container Registry or your own container registry for the Oracle Identity
Governance (OIG) container image:

kubectl run --image=<image_name-from-registry>:<tag> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1", "spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \
helper -n <domain_namespace> \
-- sleep infinity

For example:

kubectl run --image=container-registry.oracle.com/middleware/
oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1","spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \
helper -n oigns \
-- sleep infinity

• If you are not using a container registry and have loaded the image on each of the
worker nodes, run the following command:

kubectl run helper --image <image>:<tag> -n oigns -- sleep infinity

Chapter 18
Deleting RCU Schemas

18-2

For example:

kubectl run helper --image oracle/oig_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>
-n oigns -- sleep infinity

The output will look similar to the following:

pod/helper created

2. Run the following command to start a bash shell in the helper pod:

kubectl exec -it helper -n <domain_namespace> -- /bin/bash

For example:

kubectl exec -it helper -n oigns -- /bin/bash

This will take you into a bash shell in the running helper pod:

[oracle@helper ~]$

3. In the helper bash shell run the following commands to set the environment:

export CONNECTION_STRING=<db_host.domain>:<db_port>/<service_name>

export RCUPREFIX=<rcu_schema_prefix>

echo -e <db_pwd>"\n"<rcu_schema_pwd> > /tmp/pwd.txt

Where:

• <db_host.domain>:<db_port>/<service_name> is your database connect string.

• <rcu_schema_prefix> is the RCU schema prefix.

• <db_pwd> is the SYS password for the database.

• <rcu_schema_pwd> is the password for the <rcu_schema_prefix>
For example:

export CONNECTION_STRING=mydatabasehost.example.com:1521/orcl.example.com

export RCUPREFIX=OIGK8S

echo -e <password>"\n"<password> > /tmp/pwd.txt

cat /tmp/pwd.txt

Ensure the cat /tmp/pwd.txt command shows the correct passwords.

Chapter 18
Deleting RCU Schemas

18-3

4. In the helper bash shell, drop the RCU schemas as follows:

/u01/oracle/oracle_common/bin/rcu -silent -dropRepository -databaseType
ORACLE -connectString $CONNECTION_STRING \
-dbUser sys -dbRole sysdba -selectDependentsForComponents true -
schemaPrefix $RCUPREFIX \
-component MDS -component IAU -component IAU_APPEND -component IAU_VIEWER -
component OPSS \
-component WLS -component STB -component OIM -component SOAINFRA -
component UCSUMS -f < /tmp/pwd.txt

5. Exit the helper bash shell by issuing the command exit.

18.3 Deleting Persistent Volume Contents
Perform the following step to delete the persistent volume contents:

rm -rf <persistent_volume>/governancedomainpv/*

For example:

rm -rf /nfs_volumes/oig/governancedomainpv/*

18.4 Deleting the WebLogic Kubernetes Operator
To delete the WebLogic Kubernetes Operator, perform the following steps:

1. Run the following command to remove the operator:

helm delete weblogic-kubernetes-operator -n opns

2. Delete the label from the OIG namespace::

kubectl label namespaces <domain_namespace> weblogic-operator-

For example:

kubectl label namespaces oigns weblogic-operator-

3. Delete the service account for the operator:

kubectl delete serviceaccount <sample-kubernetes-operator-sa> -n
<domain_namespace>

For example:

kubectl delete serviceaccount op-sa -n opns

Chapter 18
Deleting Persistent Volume Contents

18-4

4. Delete the operator namespace:

kubectl delete namespace <sample-kubernetes-operator-ns>

For example:

kubectl delete namespace opns

18.5 Deleting the Ingress
Perform the following steps to delete the ingress and ingress controller:

1. To delete the ingress:

helm delete governancedomain-nginx -n <domain_namespace>

For example:

helm delete governancedomain-nginx -n oigns

2. To delete the ingress controller:

helm delete nginx-ingress -n <domain_namespace>

For example:

helm delete nginx-ingress -n mynginxns

3. Delete the namespace using the following command:

kubectl delete namespace <domain_namespace>

For example:

kubectl delete namespace mynginxns

18.6 Deleting the OIG Namespace
Perform the following step to delete the Oracle Identity Governance (OIG) namespace:

1. Delete the helper pod if it is running:

kubectl delete pod helper -n <domain_namepace>

For example:

kubectl delete pod helper -n oigns

Chapter 18
Deleting the Ingress

18-5

2. Check to make sure all Kubernetes in the namespace are deleted:

kubectl get all,domains -n <domain_namepace>

For example:

kubectl get all,domains -n oigns

If any objects remain, delete them manually.

3. Delete the namespace using the following command:

kubectl delete namespace <domain_namespace>

For example:

kubectl delete namespace oigns

Chapter 18
Deleting the OIG Namespace

18-6

	Contents
	List of Figures
	1 What's New in This Release?
	Part I Introduction to Oracle Identity Governance on Kubernetes
	2 Introducing Oracle Identity Governance on Kubernetes
	2.1 Overview of Oracle Identity Governance on Kubernetes
	2.2 Key Features of Oracle Identity Governance on Kubernetes

	3 About the Kubernetes Deployment
	3.1 What is Kubernetes?
	3.2 About the Kubernetes Architecture
	3.3 Key Components Used By an OIG Deployment
	3.4 Overview of WebLogic Operator
	3.5 OIG Deployment Methods

	Part II Installing Oracle Identity Governance on Kubernetes
	4 Before You Begin
	5 System Requirements for OIG on Kubernetes
	6 Preparing Your Environment
	6.1 Confirming the Kubernetes Cluster is Ready
	6.2 Obtaining the OIG Container Image
	6.3 Creating a Persistent Volume Directory
	6.4 Setting Up the Code Repository for OIG
	6.5 Installing the WebLogic Kubernetes Operator
	6.6 Creating a Kubernetes Namespace
	6.7 Creating a Kubernetes Secret for the Container Registry

	7 Creating Oracle Identity Governance Domains
	7.1 Creating OIG Domains Using WLST Offline Scripts
	7.1.1 Creating the RCU Schemas
	7.1.2 Creating a Kubernetes Secret for the WLST Domain
	7.1.3 Creating a Kubernetes Secret for RCU in WLST
	7.1.4 Creating a Kubernetes Persistent Volume and Persistent Volume Claim
	7.1.5 Preparing the Create Domain Script
	7.1.6 Creating the domain.yaml
	7.1.7 Setting the OIG Server Memory Parameters
	7.1.8 Deploying the WLST OIG Domain
	7.1.9 Verifying the OIG WLST Deployment

	7.2 Creating OIG Domains Using WDT Models
	7.2.1 Creating a Kubernetes Secret for the WDT Domain
	7.2.2 Creating a Kubernetes Secret for RCU in WDT
	7.2.3 Preparing the WDT Create Domain YAML Files
	7.2.4 Creating the WDT YAML files
	7.2.5 Building the Domain Creation Image
	7.2.6 Deploying the WDT OIG Domain
	7.2.7 Verifying the WDT OIG Deployment

	8 Configuring Ingress
	8.1 Installing the NGINX Repository
	8.2 Creating a Kubernetes Namespace for NGINX
	8.3 Generating SSL Certificates
	8.4 Installing the NGINX Controller
	8.5 Preparing the Ingress values.yaml
	8.6 Creating the Ingress

	9 Validating the Domain URLs
	10 Post Installation Configuration
	10.1 Creating a Server Overrides File
	10.2 Setting OIMFrontendURL Using MBeans
	10.3 Updating the OIM Integration URLs
	10.4 Installing and Configuring Connectors
	10.4.1 Downloading OIG Connectors
	10.4.2 Copying the OIG Connector
	10.4.3 Installing the OIG Connector

	10.5 Configuring Design Console
	10.5.1 Configuring the Design Console Ingress
	10.5.2 Updating the T3 Channel
	10.5.3 Using the Design Console Client
	10.5.3.1 Using On-Premises Design Console
	10.5.3.2 Using a Container Image for Design Console

	10.5.4 Logging in to the Design Console

	Part III Administering Oracle Identity Governance on Kubernetes
	11 Scaling OIG Pods
	11.1 Viewing Existing OIG Instances
	11.2 Scaling Up OIG Instances
	11.3 Scaling Down OIG Instances
	11.4 Stopping the Domain
	11.5 Domain Life Cycle Scripts

	12 WLST Administration Operations
	12.1 Connecting to OIG via WLST
	12.2 Sample WLST Operations
	12.3 Performing WLST Administration via SSL

	13 Logging and Visualization
	13.1 Installing Elasticsearch and Kibana
	13.2 Creating the Logstash Pod
	13.2.1 Variables Used in This Section
	13.2.2 Creating a Kubernetes Secret for ELK
	13.2.3 Finding Required Domain Details
	13.2.4 Creating the Configmap
	13.2.5 Enabling Logstash

	13.3 Verifying the Pods
	13.4 Verifying and Accessing the Kibana Console

	14 Monitoring an Oracle Identity Governance Domain
	15 Kubernetes Horizontal Pod Autoscaler
	15.1 Prerequisite Configurations
	15.2 Deploying the Kubernetes Metrics Server
	15.3 Troubleshooting the Metrics Server
	15.4 Deploying HPA
	15.5 Verifying HPA
	15.6 Deleting HPA
	15.7 Other Considerations for HPA

	16 Patching and Upgrading
	16.1 Patching and Upgrading Within 14.1.2
	16.1.1 Patching a Container Image
	16.1.2 Upgrading WebLogic Kubernetes Operator

	16.2 Upgrading from Oracle Identity Governance 12.2.1.4 to 14.1.2
	16.2.1 Upgrade Prerequisite Steps
	16.2.2 Creating the domainUpgradeResponse.txt File
	16.2.3 Creating the OIGDomainConfigResponse.txt File
	16.2.4 Creating the domain-upgrade-pod.yaml
	16.2.5 Shutting Down the OIG Domain
	16.2.6 Backing Up the Database and Persistent Volume
	16.2.7 Creating an Upgrade ConfigMap
	16.2.8 Performing the Upgrade
	16.2.9 Updating the OIG Container Image to 14c
	16.2.10 Updating the WebLogic Kubernetes Operator
	16.2.11 Starting the OIG 14c Deployment
	16.2.12 Upgrading the Ingress
	16.2.13 Restoring After a Failed Upgrade

	17 General Troubleshooting
	17.1 Viewing Pod Logs
	17.2 Viewing Pod Descriptions
	17.3 Known Issues

	18 Deleting an OIG Deployment
	18.1 Deleting the OIG Domain
	18.2 Deleting RCU Schemas
	18.3 Deleting Persistent Volume Contents
	18.4 Deleting the WebLogic Kubernetes Operator
	18.5 Deleting the Ingress
	18.6 Deleting the OIG Namespace

