
Oracle® FMW
Deploying and Managing Oracle Access
Management on Kubernetes

G21958-01
March 2025

Oracle FMW Deploying and Managing Oracle Access Management on Kubernetes,

G21958-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

Primary Authors: (primary author), (primary author)

Contributing Authors: (contributing author), (contributing author)

Contributors: (contributor), (contributor)

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 What's New in This Release?

Part I Introduction to Oracle Access Management on Kubernetes

2 Introducing Oracle Access Management on Kubernetes

2.1 Overview of Oracle Access Management on Kubernetes 2-1

2.2 Key Features of Oracle Access Management on Kubernetes 2-1

3 About the Kubernetes Deployment

3.1 What is Kubernetes? 3-1

3.2 About the Kubernetes Architecture 3-2

3.3 Key Components Used By an OAM Deployment 3-3

3.4 Overview of WebLogic Kubernetes Operator 3-7

3.5 OAM Deployment Methods 3-8

Part II Installing Oracle Access Management on Kubernetes

4 Before You Begin

5 System Requirements for OAM on Kubernetes

6 Preparing Your Environment

6.1 Confirming the Kubernetes Cluster is Ready 6-1

6.2 Obtaining the OAM Container image 6-2

6.3 Creating a Persistent Volume Directory 6-2

6.4 Setting Up the Code Repository for OAM 6-3

6.5 Installing the WebLogic Kubernetes Operator 6-5

6.6 Creating a Kubernetes Namespace 6-7

iii

6.7 Creating a Kubernetes Secret for the Container Registry 6-8

7 Creating Oracle Access Management Domains

7.1 Creating OAM Domains Using WLST Offline Scripts 7-1

7.1.1 Creating the RCU Schemas 7-1

7.1.2 Creating a Kubernetes Secret for the WLST Domain 7-6

7.1.3 Creating a Kubernetes Secret for RCU in WLST 7-7

7.1.4 Creating a Kubernetes Persistent Volume and Persistent Volume Claim 7-8

7.1.5 Preparing the Create Domain Script 7-12

7.1.6 Creating the domain.yaml 7-18

7.1.7 Setting the OAM Server Memory Parameters 7-20

7.1.8 Deploying the WLST OAM Domain 7-22

7.1.9 Verifying the WLST OAM Deployment 7-23

7.2 Creating OAM Domains Using WDT Models 7-30

7.2.1 Creating a Kubernetes Secret for the WDT Domain 7-31

7.2.2 Creating a Kubernetes Secret for RCU in WDT 7-32

7.2.3 Preparing the WDT Create Domain YAML File 7-34

7.2.4 Creating the WDT YAML files 7-37

7.2.5 Building the Domain Creation Image 7-39

7.2.6 Deploying the WDT OAM Domain 7-46

7.2.7 Verifying the WDT OAM Deployment 7-53

8 Configuring Ingress

8.1 Installing the NGINX Repository 8-1

8.2 Creating a Kubernetes Namespace for NGINX 8-2

8.3 Generating SSL Certificates 8-2

8.4 Installing the NGINX Controller 8-4

8.5 Preparing the Ingress values.yaml 8-8

8.6 Creating the Ingress 8-10

9 Validating the Domain URLs

10

Post Installation Configuration

10.1 Creating a Server Overrides File 10-1

10.2 Removing OAM Server from WebLogic Server 14c Default Coherence Cluster 10-3

10.3 WebLogic Server Tuning 10-4

10.4 Enabling Virtualization 10-7

iv

10.5 Restarting the Domain 10-7

11

Validating Basic SSO Flow With Oracle WebGate

11.1 Updating the OAM Hostname and Port for the Load Balancer 11-1

11.2 Registering an Oracle WebGate Agent 11-2

11.3 Configuring the Application Domain 11-2

11.4 Creating Host Identifiers 11-2

11.5 Configuring OHS to Use the Oracle WebGate 11-3

Part III Administering Oracle Access Management on Kubernetes

12

Scaling OAM Pods

12.1 Viewing Existing OAM Instances 12-1

12.2 Scaling Up OAM Servers 12-2

12.3 Scaling Down OAM Servers 12-4

12.4 Stopping the OAM Domain 12-6

12.5 Domain Life Cycle Scripts 12-9

13

WLST Administration Operations

13.1 Connecting to OAM via WLST 13-1

13.2 Sample WLST Operations 13-3

13.3 Performing WLST Administration via SSL 13-7

14

Logging and Visualization

14.1 Installing Elasticsearch and Kibana 14-1

14.2 Creating the Logstash Pod 14-1

14.2.1 Variables Used in This Section 14-1

14.2.2 Creating a Kubernetes Secret for ELK 14-2

14.2.3 Finding Required Domain Details 14-3

14.2.4 Creating the ConfigMap 14-5

14.2.5 Enabling Logstash 14-8

14.3 Verifying the Pods 14-11

14.4 Verifying and Accessing the Kibana Console 14-12

15

Monitoring an Oracle Access Management Domain

v

16

Kubernetes Horizontal Pod Autoscaler

16.1 Prerequisite Configurations 16-1

16.2 Deploying the Kubernetes Metrics Server 16-3

16.3 Troubleshooting the Metrics Server 16-4

16.4 Deploying HPA 16-5

16.5 Verifying HPA 16-6

16.6 Deleting HPA 16-9

16.7 Other Considerations for HPA 16-9

17

Patching and Upgrading

17.1 Patching and Upgrading Within 14.1.2 17-1

17.1.1 Patching a Container Image 17-1

17.1.2 Upgrading WebLogic Kubernetes Operator 17-3

17.2 Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2 17-6

17.2.1 Upgrade Prerequisite Steps 17-6

17.2.2 Creating the domainUpgradeResponse.txt File 17-8

17.2.3 Creating the domain-upgrade-pod.yaml 17-12

17.2.4 Shutting Down the OAM Domain 17-14

17.2.5 Backing Up the Database and Persistent Volume 17-15

17.2.6 Creating an Upgrade ConfigMap 17-16

17.2.7 Performing the Upgrade 17-16

17.2.8 Updating the OAM Container Image to 14c 17-21

17.2.9 Updating the WebLogic Kubernetes Operator 17-22

17.2.10 Starting the OAM 14c Deployment 17-23

17.2.11 Upgrading the Ingress 17-24

17.2.12 Restoring After a Failed Upgrade 17-25

18

General Troubleshooting

18.1 Viewing Pod Logs 18-1

18.2 Viewing Pod Descriptions 18-1

18.3 Known Issues 18-4

19

Deleting an OAM Deployment

19.1 Deleting the OAM Domain 19-1

19.2 Deleting RCU Schemas 19-2

19.3 Deleting Persistent Volume Contents 19-4

19.4 Deleting the WebLogic Kubernetes Operator 19-4

19.5 Deleting the Ingress 19-5

vi

19.6 Deleting the OAM Namespace 19-5

vii

List of Figures

3-1 An Illustration of the Kubernetes Cluster 3-2

viii

1
What's New in This Release?

This preface shows current and past versions of Oracle Access Management (OAM) 14c
container images and deployment scripts on Kubernetes. If any new functionality is added,
details are outlined.

Table 1-1 Release Notes for Oracle Access Management 14c on Kubernetes

Date Version Change

March 2025 14.1.2.1.0

GitHub release version 25.1.3

Initial release of Oracle Access
Management 14.1.2.1.0 on
Kubernetes.

Supports Oracle Access
Management 14.1.2.1.0
deployment using the OAM
container image and WebLogic
Kubernetes Operator 4.2.10.

The GitHub release version is the
latest version of the deployment
scripts used in Setting Up the
Code Repository for OAM.

1-1

https://github.com/oracle/fmw-kubernetes/releases

Part I
Introduction to Oracle Access Management on
Kubernetes

Oracle Access Management (OAM) can be deployed on Kubernetes.

This section includes the following chapters:

• Introducing Oracle Access Management on Kubernetes

• About the Kubernetes Deployment

2
Introducing Oracle Access Management on
Kubernetes

Oracle Access Management (OAM) is supported for deployment on Kubernetes.

This chapter includes the following topics:

• Overview of Oracle Access Management on Kubernetes

• About the Kubernetes Deployment

2.1 Overview of Oracle Access Management on Kubernetes
Oracle Access Management provides an enterprise-level security platform, delivers risk-aware
end-to-end user authentication, single sign-on, and authorization protection. Oracle Access
Management enables enterprises to secure access and seamlessly integrate social identities
with applications.

Oracle Access Management can be deployed using modern container orchestration with
Kubernetes, bringing enhanced agility and scalability to IT environments.

2.2 Key Features of Oracle Access Management on Kubernetes
The key features of using Oracle Access Management (OAM) on Kubernetes are:

• Simplified Deployment and DevOps: Containers allow teams to automate deployments
and streamline application lifecycle management, reducing manual effort, cost, and time to
deploy.

• Portability: Containerized OAM can run seamlessly across different environments,
including on-premises data centers, public clouds, and hybrid setups

• Scalability: Containers allow organizations to scale their security components dynamically,
ensuring that they can handle fluctuating workloads

• Improved Resource Efficiency: Containers provide lightweight, efficient runtime
environments that optimize resource utilization compared to traditional virtual machines.

2-1

3
About the Kubernetes Deployment

Containers offer an excellent mechanism to bundle and run applications. In a production
environment, you have to manage the containers that run the applications and ensure there is
no downtime. For example, if a container goes down, another container has to start
immediately. Kubernetes simplifies container management.

This chapter includes the following topics:

• What is Kubernetes?

• About the Kubernetes Architecture

• Key Components Used By an OAM Deployment

• Overview of WebLogic Kubernetes Operator

• OAM Deployment Methods

3.1 What is Kubernetes?
Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services that facilitates both declarative configuration and automation.

Kubernetes sits on top of a container platform such as CRI-O or Docker. Kubernetes provides
a mechanism which enables container images to be deployed to a cluster of hosts. When you
deploy a container through Kubernetes, Kubernetes deploys that container on one of its worker
nodes. The placement mechanism is transparent to the user.

Kubernetes provides:

• Service Discovery and Load Balancing: Kubernetes can expose a container using the
DNS name or using their own IP address. If traffic to a container is high, Kubernetes
balances the load and distributes the network traffic so that the deployment remains stable.

• Storage Orchestration: Kubernetes enables you to automatically mount a storage system
of your choice, such as local storages, NAS storages, public cloud providers, and more.

• Automated Rollouts and Rollbacks: You can describe the desired state for your
deployed containers using Kubernetes, and it can change the actual state to the desired
state at a controlled rate. For example, you can automate Kubernetes to create new
containers for your deployment, remove existing containers, and adopt all their resources
to the new container.

• Automatic Bin Packing: If you provide Kubernetes with a cluster of nodes that it can use
to run containerized tasks, and indicate the CPU and memory (RAM) each container
needs, Kubernetes can fit containers onto the nodes to make the best use of the available
resource.

• Self-healing: Kubernetes restarts containers that fail, replaces containers, kills containers
that do not respond to your user-defined health check, and does not advertise them to
clients until they are ready to serve.

• Secret and Configuration Management: Kubernetes lets you store and manage sensitive
information such as passwords, OAuth tokens, and SSH keys. You can deploy and update

3-1

secrets and application configuration without rebuilding your container images, and without
exposing secrets in your stack configuration.

When deploying Kubernetes, Oracle highly recommends that you use the traditional
recommendations of keeping different workloads in separate Kubernetes clusters. For
example, it is not a good practice to mix development and production workloads in the same
Kubernetes cluster.

3.2 About the Kubernetes Architecture
A Kubernetes host consists of a control plane and worker nodes.

Control Plane: A control plane is responsible for managing the Kubernetes components and
deploying applications. In an enterprise deployment, you need to ensure that the Kubernetes
control plane is highly available so that the failure of a control plane host does not fail the
Kubernetes cluster.

Worker Nodes: Worker nodes which are where the containers are deployed.

Note:

An individual host can be both a control plane host and a worker host.

Figure 3-1 An Illustration of the Kubernetes Cluster

Description of Components:

Chapter 3
About the Kubernetes Architecture

3-2

• Control Plane: The control plane comprises the following:

– kube-api server: The API server is a component of the control plane that exposes the
Kubernetes APIs.

– etcd: It is used to store the Kubernetes backing store and all the cluster data.

– Scheduler: The scheduler is responsible for the placement of containers on the worker
nodes. It takes into account resource requirements, hardware and software policy
constraints, affinity specifications, and data affinity.

– Control Manager: It is responsible for running the controller processes. Controller
processes consist of:

* Node Controller

* Route Controller

* Service Controller

The control plane consists of three nodes where the Kubernetes API server is
deployed, front ended by an LBR.

• Worker Node Components: The worker nodes include the following components:

– Kubelet: An Agent that runs on each worker node in the cluster. It ensures that the
containers are running in a pod.

– Kube Proxy: Kube proxy is a network proxy that runs on each node of the cluster. It
maintains network rules, which enable inter pod communications as well as
communications outside of the cluster.

– Add-ons: Add-ons extend the cluster further, providing such services as:

* DNS

* Web UI Dashboard

* Container Resource Monitoring

* Logging

3.3 Key Components Used By an OAM Deployment
An Oracle Access Management (OAM) deployment uses the Kubernetes components such as
pods and Kubernetes services.

Container Image

A container image is an immutable, static file that includes executable code. When deployed
into Kubernetes, it is the container image that is used to create a pod. The image contains the
system libraries, system tools, and Oracle binaries required to run in Kubernetes. The image
shares the OS kernel of its host machine.

A container image is compiled from file system layers built onto a parent or base image. These
layers promote the reuse of various components. So, there is no need to create everything
from scratch for every project.

A pod is based on a container image. This container image is read-only. Each pod has its own
instance of a container image.

A container image contains all the software and libraries required to run the product. It does
not require the entire operating system. Many container images do not include standard
operating utilities such as the vi editor or ping.

Chapter 3
Key Components Used By an OAM Deployment

3-3

When you upgrade a pod, you are actually instructing the pod to use a different container
image. For example, if the container image for Oracle Access Management is based on the
July Critical Patch Update (CPU), then to upgrade the pod to use the October CPU image, you
have to tell the pod to use the October CPU image and restart the pod. Further information on
upgrading can be found in Patching and Upgrading.

Oracle containers are built using a specific user and group ID. Oracle supplies its container
images using the user ID 1000 and group ID 0. To enable writing to file systems or persistent
volumes, you should grant the write access to this user ID. Oracle supplies all container
images using this user and group ID.

If your organization already uses this user or group ID, you should reconfigure the image to
use different IDs. This feature is outside the scope of this document.

Pods

A pod is a group of one or more containers, with shared storage/network resources, and a
specification for how to run the containers. A pod's contents are always co-located and co-
scheduled, and run in a shared context. A pod models an application-specific logical host that
contains one or more application containers which are relatively tightly coupled.

In an Oracle Access Management (OAM) deployment, each OAM server runs in a different
pod.

If a node becomes unavailable, Kubernetes does not delete the pods automatically. Pods that
run on an unreachable node attain the 'Terminating' or 'Unknown' state after a timeout. Pods
may also attain these states when a user attempts to delete a pod on an unreachable node
gracefully. You can remove a pod in such a state from the apiserver in one of the following
ways:

• You or the Node Controller deletes the node object.

• The kubelet on the unresponsive node starts responding, terminates the pod, and removes
the entry from the apiserver.

• You force delete the pod.

Oracle recommends the best practice of using the first or the second approach. If a node is
confirmed to be dead (for example: permanently disconnected from the network, powered
down, and so on), delete the node object. If the node suffers from a network partition, try to
resolve the issue or wait for the partition to heal. When the partition heals, the kubelet
completes the deletion of the pod and frees up its name in the apiserver.

Typically, the system completes the deletion if the pod is no longer running on a node or an
administrator has deleted it. You may override this by force deleting the pod.

Pod Scheduling

By default, Kubernetes will schedule a pod to run on any worker node that has sufficient
capacity to run that pod. In some situations, it may be desirable that scheduling occurs on a
subset of the worker nodes available. This type of scheduling can be achieved by using
Kubernetes labels.

Persistent Volumes

When a pod is created, it is based on a container image. A container image is supplied by
Oracle for the products you are deploying. When a pod gets created, a runtime environment is
created based upon that image. That environment is refreshed with the container image every
time the pod is restarted. This means that any changes you make inside a runtime
environment are lost whenever the container gets restarted.

Chapter 3
Key Components Used By an OAM Deployment

3-4

A persistent volume is an area of disk, usually provided by NFS that is available to the pod but
not part of the image itself. This means that the data you want to keep, for example the OAM
domain configuration, is still available after you restart a pod, that is to say, that the data is
persistent.

There are two ways of mounting a persistent volume (PV) to a pod:

1. Mount the PV to the pod directly, so that wherever the pod starts in the cluster the PV is
available to it. The upside to this approach is that a pod can be started anywhere without
extra configuration. The downside to this approach is that there is one NFS volume which
is mounted to the pod. If the NFS volume becomes corrupted, you will have to either revert
to a backup or have to failover to a disaster recovery site.

2. Mount the PV to the worker node and have the pod interact with it as if it was a local file
system. The advantages of this approach are that you can have different NFS volumes
mounted to different worker nodes, providing built-in redundancy. The disadvantages of
this approach are:

• Increased management overhead.

• Pods have to be restricted to nodes that use a specific version of the file system. For
example, all odd numbered pods use odd numbered worker nodes mounted to file
system 1, and all even numbered pods use even numbered worker nodes mounted to
file system 2.

• File systems have to be mounted to every worker node on which a pod may be
started. This requirement is not an issue in a small cluster, unlike in a large cluster.

• Worker nodes become linked to the application. When a worker node undergoes
maintenance, you need to ensure that file systems and appropriate labels are restored.

You will need to set up a process to ensure that the contents of the NFS volumes are kept
in sync by using something such as the rsync cron job.
If maximum redundancy and availability is your goal, then you should adopt this solution.

Kubernetes Services

Kubernetes services expose the processes running in the pods regardless of the number of
pods that are running. For example, OAM servers, each running in different pods will have a
service associated with them. This service will redirect your request to the individual pods in
the cluster.

Kubernetes services can be internal or external to the cluster. Internal services are of the type
ClusterIP and external services are of the type NodePort.

Some deployments use a proxy in front of the service. This proxy is typically provided by an
'Ingress' load balancer such as Ngnix. Ingress allows a level of abstraction to the underlying
Kubernetes services.

When using Kubernetes, NodePort Services have a similar result as using Ingress. In the
NodePort mode, Ingress allows for consolidated management of these services.

This guide describes how to use Ingress using the Nginx Ingress Controller.

The Kubernetes services use a small port range. Therefore, when a Kubernetes service is
created, there will be a port mapping. For instance, if a pod is using port 7001, then a
Kubernetes/Ingress service may use 30701 as its port, mapping port 30701 to 7001 internally.
It is worth noting that if you are using individual NodePort Services, then the corresponding
Kubernetes service port will be reserved on every worker node in the cluster.

Chapter 3
Key Components Used By an OAM Deployment

3-5

Kubernetes/ingress services are known to each worker node, regardless of the worker node on
which the containers are running. Therefore, a load balancer is often placed in front of the
worker node to simplify routing and worker node scalability.

To interact with a service, you have to refer to it using the format:
worker_node_hostname:Service port.

If you have multiple worker nodes, then you should include multiple worker nodes in your calls
to remove single points of failure. You can do this in a number of ways including:

• Load balancer

• Direct proxy calls

• DNS CNames

Ingress Controller

There are two ways of interacting with your Kubernetes services. You can create an externally
facing service for each Kubernetes object you want to access. This type of service is known as
the Kubernetes NodePort Service. Alternatively, you can use an ingress service inside the
Kubernetes cluster to redirect requests internally.

Ingress is a proxy server which sits inside the Kubernetes cluster, unlike the NodePort
Services which reserve a port per service on every worker node in the cluster. With an ingress
service, you can reserve single ports for all HTTP / HTTPS traffic. An Ingress service has the
concept of virtual hosts and can terminate SSL, if required. There are various implementations
of Ingress. However, this guide describes the installation and configuration of NGNIX. The
installation will be similar for other Ingress services but the command syntax may be different.
Therefore, when you use a different Ingress, see the appropriate vendor documentation for the
equivalent commands. Ingress can proxy HTTP, HTTPS, LDAP, and LDAPS protocols. Ingress
is not mandatory

Ingress runs inside the Kubernetes cluster. You can configure it in different ways:

• Load Balancer: Load balancer provides an external IP address to which you can connect
to interact with the Kubernetes services.

• NodePort: In this mode, Ingress acts as a simple load balancer between the Kubernetes
services. The difference between using an Ingress NodePort Service as opposed to
individual node port services is that the Ingress controller reserves one port for each
service type it offers. For example, one for all HTTP communications, another for all LDAP
communications, and so on. Individual node port services reserve one port for each
service and type used in an application.

Domain Name System

Every service defined in the cluster (including the DNS server itself) is assigned a DNS name.
By default, a client pod's DNS search list includes the pod's own namespace and the cluster's
default domain.

The following types of DNS records are created for a Kubernetes cluster:

• Services
Record Type: A or AAAA record

Name format: my-svc.namespace.svc.cluster-example.com
• Pods

Record Type: A or AAAA record

Name format: podname.namespace.pod.cluster-example.com

Chapter 3
Key Components Used By an OAM Deployment

3-6

Kubernetes uses a built-in DNS server called 'CoreDNS' which is used for the internal
name resolution.

External name resolution (names used outside of the cluster, for example:
loadbalancer.example.com) may not possible inside the Kubernetes cluster. If you
encounter this issue, you can use one of the following options:

– Option 1 - Add a secondary DNS server to CoreDNS for the company domain.

– Option 2 - Add individual host entries to CoreDNS for the external hosts.

Namespaces

Namespaces enable you to organize clusters into virtual sub-clusters which are helpful when
different teams or projects share a Kubernetes cluster. You can add any number of
namespaces within a cluster, each logically separated from others but with the ability to
communicate with each other.

In this guide the OAM deployment uses the namespace oamns.

3.4 Overview of WebLogic Kubernetes Operator
The WebLogic Kubernetes Operator (the “operator”) supports running Oracle Access
Management (OAM) domains on Kubernetes.

The operator takes advantage of the Kubernetes operator pattern, which means that it uses
Kubernetes APIs to provide support for operations, such as: provisioning, lifecycle
management, application versioning, product patching, scaling, and security. The operator also
enables the use of tooling that is native to this infrastructure for monitoring, logging, tracing,
and security.

OAM domains are supported using the “domain on a persistent volume” model only, where the
domain home is located in a persistent volume (PV).

Domain on persistent volume (Domain on PV) is an operator domain home source type, which
requires that the domain home exists on a persistent volume. The domain home can be
created either manually using the WebLogic Scripting Tool (WLST) scripts or automatically with
WebLogic Deployment Tool (WDT) models by specifying the section,
domain.spec.configuration.initializeDomainOnPV, in the domain resource YAML file. The
initial domain topology and resources are described using WebLogic Deploy Tooling (WDT)
models.

Note:

The initializeDomainOnPV section provides a one time only domain home
initialization. The operator creates the domain when the domain resource is first
deployed. After the domain is created, this section is ignored. Subsequent domain
lifecycle updates must be controlled by the WebLogic Server Administration Console,
WebLogic Scripting Tool (WLST), or other mechanisms.

The WebLogic Kubernetes Operator has several key features to assist you with deploying and
managing Oracle Access Management domains in a Kubernetes environment. You can:

• Create OAM instances in a Kubernetes persistent volume. This persistent volume can
reside in an NFS file system or other Kubernetes volume types.

• Start servers based on declarative startup parameters and desired states.

Chapter 3
Overview of WebLogic Kubernetes Operator

3-7

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/choosing-a-model/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/choosing-a-model/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/overview/#weblogic-deploy-tooling-models
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/overview/#weblogic-deploy-tooling-models

• Expose the OAM Services through external access.

• Scale OAM domains by starting and stopping Managed Servers on demand.

• Publish operator and WebLogic Server logs into Elasticsearch and interact with them in
Kibana.

• Monitor the OAM instance using Prometheus and Grafana.

WebLogic Kubernetes Operator Limitations with OAM

Compared to running a WebLogic Server domain in Kubernetes using the operator, the
following limitations currently exist for OAM domains:

• OAM domains are supported using the “domain on a persistent volume” model only, where
the domain home is located in a persistent volume (PV).The “domain in image” model is
not supported.

• Only configured clusters are supported. Dynamic clusters are not supported for OAM
domains. Note that you can still use all of the scaling features, but you need to define the
maximum size of your cluster at domain creation time, using the parameter
configuredManagedServerCount. For more details on this parameter, see Preparing the
Create Domain Script. It is recommended to pre-configure your cluster so it’s sized a little
larger than the maximum size you plan to expand it to. You must rigorously test at this
maximum size to make sure that your system can scale as expected.

• The WebLogic Monitoring Exporter currently supports the WebLogic MBean trees only.
Support for JRF MBeans has not been added yet.

• We do not currently support running OAM in non-Linux containers.

3.5 OAM Deployment Methods
Oracle Access Management (OAM) can be deployed using one of the following methods:

• WebLogic Scripting Tool (WLST) configuration scripts

• WebLogic Deploy Tooling (WDT) models

WebLogic Scripting Tool Configuration Scripts

The OAM WebLogic Scripting Tool (WLST) deployment scripts require you to deploy a
separate Kubernetes job that creates the OAM domain on an existing Kubernetes persistent
volume (PV) and persistent volume claim (PVC). The Repository Creation Utility (RCU)
schemas required for OAM must be created manually in the Oracle Database. The WLST
deployment scripts also generate the domain YAML file, which can then be used to start the
Kubernetes resources of the corresponding domain.

WebLogic Deploy Tooling Models

WebLogic Deploy Tooling (WDT) models are a convenient and simple alternative to WLST
configuration scripts. They compactly define a WebLogic domain using model files, variable
properties files, and application archive files.

Using WDT models, all the required information is specified in the domain custom resource
YAML file, eliminating the requirement for a separate Kubernetes job. With WDT models, the
WebLogic Kubernetes Operator will create the RCU schemas, create the persistent volume
and claim, then create the WebLogic domain on the persistent volume, prior to starting the
servers.

Chapter 3
OAM Deployment Methods

3-8

https://github.com/oracle/weblogic-monitoring-exporter

For more information about the model format and its integration, see Usage and Working With
WDT Model Files. The WDT model format is fully described in the open source, WebLogic
Deploy Tooling GitHub project.

The main benefits of WDT models are:

• A set of single-purpose tools supporting Weblogic domain configuration lifecycle
operations.

• All tools work off of a shared, declarative model, eliminating the need to maintain
specialized WLST scripts.

• WDT knowledge base understands the MBeans, attributes, and WLST capabilities/bugs
across WLS versions.

Chapter 3
OAM Deployment Methods

3-9

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/usage/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/model-files/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/model-files/
https://oracle.github.io/weblogic-deploy-tooling/
https://oracle.github.io/weblogic-deploy-tooling/

Part II
Installing Oracle Access Management on
Kubernetes

Install Oracle Access Management (OAM) on Kubernetes.

This section contains the following chapters:

• Before You Begin

• System Requirements for OAM on Kubernetes

• Preparing Your Environment

• Creating Oracle Access Management Domains

• Configuring Ingress

• Validating the Domain URLs

• Post Installation Configuration

• Validating Basic SSO Flow With Oracle WebGate

4
Before You Begin

This documentation explains how to configure Oracle Access Management (OAM) on a
Kubernetes cluster where no other Oracle Identity Management products will be deployed. For
detailed information about this type of deployment, start at System Requirements for OAM on
Kubernetes and follow the documentation sequentially.

Please note that this documentation does not explain how to configure a Kubernetes cluster
given the product can be deployed on any compliant Kubernetes vendor.

If you are deploying multiple Oracle Identity Management products on the same Kubernetes
cluster, then you must follow Enterprise Deployment Guide for Oracle Identity and Access
Management in a Kubernetes Cluster. Please note, you also have the option to follow the
Enterprise Deployment Guide for Oracle Identity and Access Management in a Kubernetes
Cluster even if you are only installing OAM and no other Oracle Identity Management products.

If you need to understand how to configure a Kubernetes cluster ready for an Oracle Access
Management deployment, you should follow Enterprise Deployment Guide for Oracle Identity
and Access Management in a Kubernetes Cluster. The Enterprise Deployment Automation
section in that guide also contains details on automation scripts that can:

• Automate the creation of a Kubernetes cluster on Oracle Cloud Infrastructure (OCI), ready
for the deployment of Oracle Identity Management products.

• Automate the deployment of Oracle Identity Management products on any compliant
Kubernetes cluster.

Considerations for Deploying OAM and OHS on Kubernetes

If you intend to use Oracle HTTP Server (OHS) and Oracle WebGate, and want to deploy OHS
on Kubernetes, you must read and understand the Supported Architectures in Deploying and
Managing Oracle HTTP Server on Kubernetes before continuing.

4-1

5
System Requirements for OAM on Kubernetes

This section provides information about the system requirements and limitations for deploying
and running Oracle Access Management (OAM) on Kubernetes with the WebLogic Kubernetes
Operator 4.2.10.

Kubernetes Requirements

You must have a running Kubernetes cluster that meets the following requirements:

• The Kubernetes cluster and container engine must meet the minimum version
requirements outlined in document ID 2723908.1 on My Oracle Support.

• An administrative host from which to deploy the products: This host could be a Kubernetes
Control host, a Kubernetes Worker host, or an independent host. This host must have
kubectl deployed using the same version as your cluster.

Note:

All the commands in this guide should be run from the Kubernetes administrative
host unless otherwise stated.

• The Kubernetes cluster must have sufficient nodes and resources.

• You must have the cluster-admin role to install the WebLogic Kubernetes Operator.

• An installation of Helm is required on the Kubernetes cluster. Helm is used to create and
deploy the necessary resources on the Kubernetes cluster.

• A supported container engine such as CRI-O or Docker must be installed and running on
the Kubernetes cluster.

• The nodes in the Kubernetes cluster must have access to a persistent volume such as a
Network File System (NFS) mount, or a shared file system.

• The system clocks on node of the Kubernetes cluster must be synchronized. Run the date
command simultaneously on all the nodes in each cluster and then synchronize
accordingly.

Note:

This documentation does not tell you how to install a Kubernetes cluster, Helm, or the
container engine. Please refer to your vendor specific documentation for this
information. Also see Before You Begin.

Database Requirements

You must have a running Oracle Database that meets the following requirements:

• Oracle Database 19.23 or later. The database must be a supported version for OAM as
outlined in Oracle Fusion Middleware 14c Certifications.

5-1

https://support.oracle.com

• The database must meet the requirements as outlined in About Database Requirements
for an Oracle Fusion Middleware Installation and in RCU Requirements for Oracle
Databases.

• It is recommended that the database initialization parameters are set as per Minimum
Initialization Parameters.

Container Registry Requirements

You must have your own container registry to store container and domain images in the
following circumstances:

• If your Kubernetes cluster does not have network access to Oracle Container Registry,
then you must have your own container registry to store the OAM container images.

• If you intend to deploy OAM with WDT models, you must have a container registry to store
the domain image.

Your container registry must be accessible from all nodes in the Kubernetes cluster.

Alternatively if you don’t have your own container registry, you can load the images on each
worker node in the cluster. Loading the images on each worker node is not recommended as it
incurs a large administrative overhead.

Note:

This documentation does not tell you how to install a container registry. Please refer
to your vendor specific documentation for this information.

Chapter 5

5-2

https://container-registry.oracle.com

6
Preparing Your Environment

Before embarking on Oracle Access Management (OAM) deployment on Kubernetes, you
must prepare your environment.

This chapter contains the following topics:

• Confirming the Kubernetes Cluster is Ready

• Obtaining the OAM Container image

• Creating a Persistent Volume Directory

• Setting Up the Code Repository for OAM

• Installing the WebLogic Kubernetes Operator

• Creating a Kubernetes Namespace

• Creating a Kubernetes Secret for the Container Registry

6.1 Confirming the Kubernetes Cluster is Ready
As per System Requirements for OAM on Kubernetes, a Kubernetes cluster should have
already been configured.

1. Run the following command on the Kubernetes administrative node to check the cluster
and worker nodes are running:

kubectl get nodes,pods -n kube-system

The output will look similar to the following:

NAME STATUS ROLES AGE VERSION
 node/worker-node1 Ready <none> 17h 1.30.3+1.el8
 node/worker-node2 Ready <none> 17h 1.30.3+1.el8
 node/master-node Ready control-plane,master 23h 1.30.3+1.el8

 NAME READY STATUS RESTARTS AGE
 pod/coredns-66bff467f8-fnhbq 1/1 Running 0 23h
 pod/coredns-66bff467f8-xtc8k 1/1 Running 0 23h
 pod/etcd-master 1/1 Running 0 21h
 pod/kube-apiserver-master-node 1/1 Running 0 21h
 pod/kube-controller-manager-master-node 1/1 Running 0 21h
 pod/kube-flannel-ds-amd64-lxsfw 1/1 Running 0 17h
 pod/kube-flannel-ds-amd64-pqrqr 1/1 Running 0 17h
 pod/kube-flannel-ds-amd64-wj5nh 1/1 Running 0 17h
 pod/kube-proxy-2kxv2 1/1 Running 0 17h
 pod/kube-proxy-82vvj 1/1 Running 0 17h
 pod/kube-proxy-nrgw9 1/1 Running 0 23h
 pod/kube-scheduler-master 1/1 Running 0 21h

6-1

6.2 Obtaining the OAM Container image
The Oracle Access Management (OAM) Kubernetes deployment requires access to an OAM
container image.

Prebuilt OAM Container Image

The latest prebuilt OAM 14.1.2.1.0 container image can be downloaded from Oracle Container
Registry. This image is prebuilt by Oracle and includes Oracle Access Management 14.1.2.1.0,
the latest Patch Set Update (PSU) and other fixes released with the Critical Patch Update
(CPU) program.

• The OAM container images available can be found on Oracle Container Registry, by
navigating to Middleware > oam for the initial March 2025 release, and Middleware >
oam_cpu for subsequent releases that contain the latest PSU and CPU fixes.

• Before using the image you must login and accept the license agreement.

• Throughout this documentation, the image repository and tag used is: container-
registry.oracle.com/middleware/oam_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD> where
<YYMMDD> is the date shown in the image tag. For the initial March 2025 release, replace
with container-registry.oracle.com/middleware/oam:14.1.2.1.0-jdk17-ol8-
<YYMMDD>.

You can use this image in the following ways:

• Pull the container image from the Oracle Container Registry automatically during the OAM
Kubernetes deployment.

• Manually pull the container image from the Oracle Container Registry and then upload it to
your own container registry.

• Manually pull the container image from the Oracle Container Registry and manually stage
it on each worker node.

6.3 Creating a Persistent Volume Directory
As referenced in System Requirements for OAM on Kubernetes, the nodes in the Kubernetes
cluster must have access to a persistent volume such as a Network File System (NFS) mount
or a shared file system.

In the examples below an NFS volume is mounted on all nodes in the Kubernetes cluster, and
is accessible via the directory /nfs_volumes/oam/accessdomainpv.

Perform the following steps:

1. On the administrative host, run the following command to create an accessdomainpv
directory:

cd <persistent_volume>
mkdir accessdomainpv
sudo chown -R 1000:0 accessdomainpv

Chapter 6
Obtaining the OAM Container image

6-2

https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://container-registry.oracle.com/

For example:

cd /nfs_volumes/oam
mkdir accessdomainpv
sudo chown -R 1000:0 accessdomainpv

2. On the administrative host run the following to ensure it is possible to read and write to the
persistent volume:

Note:

The following assumes the user creating the file has userid 1000 or is part of
group 0.

cd <persistent_volume>/accessdomainpv
touch fileadmin.txt
ls fileadmin.txt

For example:

cd /nfs_volumes/oam/accessdomainpv
touch fileadmin.txt
ls fileadmin.txt

6.4 Setting Up the Code Repository for OAM
To deploy Oracle Access Management (OAM) you need to set up the code repository which
provides sample deployment yaml files.

The OAM deployment on Kubernetes leverages the WebLogic Kubernetes Operator
infrastructure, and deployment scripts provided by Oracle for creating OAM containers.

Perform the following steps to set up the OAM deployment scripts:

Note:

The steps below should be performed on the administrative node that has access to
the Kubernetes cluster.

1. Create a working directory to setup the source code:

mkdir <workdir>

For example:

mkdir /OAMK8S

Chapter 6
Setting Up the Code Repository for OAM

6-3

2. Download the latest OAM deployment scripts from the OAM repository:

cd <workdir>
git clone https://github.com/oracle/fmw-kubernetes.git

For example:

cd /OAMK8S
git clone https://github.com/oracle/fmw-kubernetes.git

The output will look similar to the following:

Cloning into 'fmw-kubernetes'...
remote: Enumerating objects: 41547, done.
remote: Counting objects: 100% (6171/6171), done.
remote: Compressing objects: 100% (504/504), done.
remote: Total 41547 (delta 5638), reused 5919 (delta 5481), pack-reused
35376 (from 3)
Receiving objects: 100% (41547/41547), 70.32 MiB | 13.12 MiB/s, done.
Resolving deltas: 100% (22214/22214), done.
Checking connectivity... done.
Checking out files: 100% (19611/19611), done

3. Set the $WORKDIR environment variable as follows:

export WORKDIR=<workdir>/fmw-kubernetes/OracleAccessManagement

For example:

export WORKDIR=/OAMK8S/fmw-kubernetes/OracleAccessManagement

4. Run the following command and see if the WebLogic custom resource definition name
already exists:

kubectl get crd

In the output you should see:

No resources found

If you see any of the following:

NAME AGE
clusters.weblogic.oracle 5d
domains.weblogic.oracle 5d

Chapter 6
Setting Up the Code Repository for OAM

6-4

then run the following command to delete the existing crd’s:

kubectl delete crd clusters.weblogic.oracle

kubectl delete crd domains.weblogic.oracle

6.5 Installing the WebLogic Kubernetes Operator
Oracle Access Management (OAM) on Kubernetes leverages the WebLogic Kubernetes
Operator.

1. Create a Kubernetes namespace for the WebLogic Kubernetes Operator by running the
following command:

kubectl create namespace <sample-kubernetes-operator-ns>

For example:

kubectl create namespace opns

The output will look similar to the following:

namespace/opns created

2. Create a service account for the operator in the operator’s namespace by running the
following command:

kubectl create serviceaccount -n <sample-kubernetes-operator-ns> <sample-
kubernetes-operator-sa>

For example:

kubectl create serviceaccount -n opns op-sa

The output will look similar to the following:

serviceaccount/op-sa created

3. Navigate to the $WORKDIR:

 cd $WORKDIR

4. Run the following helm command to install and start the operator:

helm install weblogic-kubernetes-operator kubernetes/charts/weblogic-
operator \
--namespace <sample-kubernetes-operator-ns> \
--set image=ghcr.io/oracle/weblogic-kubernetes-operator:4.2.10 \
--set serviceAccount=<sample-kubernetes-operator-sa> \
--set "enableClusterRoleBinding=true" \
--set "domainNamespaceSelectionStrategy=LabelSelector" \

Chapter 6
Installing the WebLogic Kubernetes Operator

6-5

--set "domainNamespaceLabelSelector=weblogic-operator\=enabled" \
--set "javaLoggingLevel=FINE" --wait

For example:

helm install weblogic-kubernetes-operator kubernetes/charts/weblogic-
operator \
--namespace opns \
--set image=ghcr.io/oracle/weblogic-kubernetes-operator:4.2.10 \
--set serviceAccount=op-sa \
--set "enableClusterRoleBinding=true" \
--set "domainNamespaceSelectionStrategy=LabelSelector" \
--set "domainNamespaceLabelSelector=weblogic-operator\=enabled" \
--set "javaLoggingLevel=FINE" --wait

The output will look similar to the following:

NAME: weblogic-kubernetes-operator
LAST DEPLOYED: <DATE>
NAMESPACE: opns
STATUS: deployed
REVISION: 1
TEST SUITE: None

5. Verify that the operator’s pod and services are running by executing the following
command:

kubectl get all -n <sample-kubernetes-operator-ns>

For example:

kubectl get all -n opns

The output will look similar to the following:

NAME READY STATUS
RESTARTS AGE
pod/weblogic-operator-676d5cc6f4-wct7b 1/1 Running
0 40s
pod/weblogic-operator-webhook-7996b8b58b-9sfhd 1/1 Running
0 40s

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
service/weblogic-operator-webhook-svc ClusterIP 10.100.91.237
<none> 8083/TCP,8084/TCP 47s

NAME READY UP-TO-DATE
AVAILABLE AGE
deployment.apps/weblogic-operator 1/1 1
1 40s
deployment.apps/weblogic-operator-webhook 1/1 1
1 40s

Chapter 6
Installing the WebLogic Kubernetes Operator

6-6

NAME DESIRED CURRENT
READY AGE
replicaset.apps/weblogic-operator-676d5cc6f4 1 1
1 40s
replicaset.apps/weblogic-operator-webhook-7996b8b58b 1 1
1 46s

6. Verify the operator pod’s log:

kubectl logs -n <sample-kubernetes-operator-ns> -c weblogic-operator
deployments/weblogic-operator

For example:

kubectl logs -n opns -c weblogic-operator deployments/weblogic-operator

The output will look similar to the following:

...
{"timestamp":"<DATE>","thread":21,"fiber":"","namespace":"","domainUID":"",
"level":"FINE","class":"oracle.kubernetes.operator.DeploymentLiveness","met
hod":"run","timeInMillis":1678183291191,"message":"Liveness file last
modified time set","exception":"","code":"","headers":{},"body":""}
{"timestamp":"<DATE>","thread":37,"fiber":"","namespace":"","domainUID":"",
"level":"FINE","class":"oracle.kubernetes.operator.DeploymentLiveness","met
hod":"run","timeInMillis":1678183296193,"message":"Liveness file last
modified time set","exception":"","code":"","headers":{},"body":""}
{"timestamp":"<DATE>","thread":31,"fiber":"","namespace":"","domainUID":"",
"level":"FINE","class":"oracle.kubernetes.operator.DeploymentLiveness","met
hod":"run","timeInMillis":1678183301194,"message":"Liveness file last
modified time set","exception":"","code":"","headers":{},"body":""}
{"timestamp":"<DATE>","thread":31,"fiber":"","namespace":"","domainUID":"",
"level":"FINE","class":"oracle.kubernetes.operator.DeploymentLiveness","met
hod":"run","timeInMillis":1678183306195,"message":"Liveness file last
modified time set","exception":"","code":"","headers":{},"body":""}

6.6 Creating a Kubernetes Namespace
You must create a namespace to store the Kubernetes objects for Oracle Access Management
(OAM).

1. Create a Kubernetes namespace for the OAM deployment by running the following
command:

kubectl create namespace <namespace>

For example:

kubectl create namespace oamns

Chapter 6
Creating a Kubernetes Namespace

6-7

The output will look similar to the following:

namespace/oamns created

2. Run the following command to tag the namespace so the WebLogic Kubernetes Operator
can manage it:

kubectl label namespaces <domain_namespace> weblogic-operator=enabled

For example:

kubectl label namespaces oamns weblogic-operator=enabled

The output will look similar to the following:

namespace/oamns labeled

3. Run the following command to check the label was created:

kubectl describe namespace <domain_namespace>

For example:

kubectl describe namespace oamns

The output will look similar to the following:

Name: oamns
Labels: kubernetes.io/metadata.name=oamns
 weblogic-operator=enabled
Annotations: <none>
Status: Active

No resource quota.

No LimitRange resource.

6.7 Creating a Kubernetes Secret for the Container Registry
Create a Kubernetes secret to stores the credentials for the container registry where the
Oracle Access Management (OAM) image is stored. This step must be followed if using Oracle
Container Registry or your own private container registry. If you are not using a container
registry and have loaded the images on each of the worker nodes, you can skip this section.

1. Run the following command to create the secret:

kubectl create secret docker-registry "orclcred" --docker-
server=<CONTAINER_REGISTRY> \
--docker-username="<USER_NAME>" \
--docker-password=<PASSWORD> --docker-email=<EMAIL_ID> \
--namespace=<domain_namespace>

Chapter 6
Creating a Kubernetes Secret for the Container Registry

6-8

For example, if using Oracle Container Registry:

kubectl create secret docker-registry "orclcred" --docker-server=container-
registry.oracle.com \
--docker-username="user@example.com" \
--docker-password=password --docker-email=user@example.com \
--namespace=oamns

Replace <USER_NAME> and <PASSWORD> with the credentials for the registry with the
following caveats:

• If using Oracle Container Registry to pull the OAM container image, this is the
username and password used to login to Oracle Container Registry. Before you can
use this image you must login to Oracle Container Registry, navigate to Middleware >
oam and accept the license agreement. For future releases (post March 2025) that
contain the latest Patch Set Update (PSU) and other fixes released with the Critical
Patch Update (CPU) program, you should navigate to Middleware > oam_cpu.

• If using your own container registry to store the OAM container image, this is the
username and password (or token) for your container registry.

The output will look similar to the following:

secret/orclcred created

Chapter 6
Creating a Kubernetes Secret for the Container Registry

6-9

https://container-registry.oracle.com/
https://container-registry.oracle.com/

7
Creating Oracle Access Management
Domains

Choose one of the following supported methods to create an Oracle Access Management
(OAM) domain:

• Creating OAM Domains Using WLST Offline Scripts

• Creating OAM Domains Using WDT Models

7.1 Creating OAM Domains Using WLST Offline Scripts
The Oracle Access Management (OAM) deployment scripts demonstrate the creation of an
OAM domain home on an existing Kubernetes persistent volume (PV) and persistent volume
claim (PVC). The scripts also generate the domain YAML file, which can then be used to start
the Kubernetes artifacts of the corresponding domain.

Before following this section, make sure you have followed Preparing Your Environment, and
ensure your Oracle Database is running.

This section includes the following topics:

• Creating the RCU Schemas

• Creating a Kubernetes Secret for the WLST Domain

• Creating a Kubernetes Secret for RCU in WLST

• Creating a Kubernetes Persistent Volume and Persistent Volume Claim

• Preparing the Create Domain Script

• Creating the domain.yaml

• Setting the OAM Server Memory Parameters

• Deploying the WLST OAM Domain

• Verifying the WLST OAM Deployment

7.1.1 Creating the RCU Schemas
In this section you create the Repository Creation Utility (RCU) schemas in the Oracle
Database.

Note:

Before following the steps below, make sure that the Oracle Database and Listener
are up and running, and you can connect to the database via SQL*Plus or other
client tool.

1. Run the following command to create a helper pod to run RCU:

7-1

• If using Oracle Container Registry or your own container registry for the Oracle Access
Management (OAM) container image:

kubectl run --image=<image_name-from-registry>:<tag> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1", "spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \
helper -n <domain_namespace> \
-- sleep infinity

For example:

kubectl run --image=container-registry.oracle.com/middleware/
oam_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1","spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \
helper -n oamns \
-- sleep infinity

• If you are not using a container registry and have loaded the image on each of the
worker nodes, run the following command:

kubectl run helper --image <image>:<tag> -n oamns -- sleep infinity

For example:

kubectl run helper --image oracle/oam_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>
-n oamns -- sleep infinity

The output will look similar to the following:

pod/helper created

2. Run the following command to check the pod is running:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
helper 1/1 Running 0 3m

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-2

Note:

If you are pulling the image from a container registry it may take several minutes
before the pod has a READY status of 1\1. While the pod is starting you can check
the status of the pod, by running the following command:

kubectl describe pod helper -n oamns

3. Run the following command to start a bash shell in the helper pod:

kubectl exec -it helper -n <domain_namespace> -- /bin/bash

For example:

kubectl exec -it helper -n oamns -- /bin/bash

This will take you into a bash shell in the running helper pod:

[oracle@helper ~]$

4. In the helper bash shell run the following commands to set the environment:

export CONNECTION_STRING=<db_host.domain>:<db_port>/<service_name>

export RCUPREFIX=<rcu_schema_prefix>

echo -e <db_pwd>"\n"<rcu_schema_pwd> > /tmp/pwd.txt

cat /tmp/pwd.txt

Where:

• <db_host.domain>:<db_port>/<service_name> is your database connect string.

• <rcu_schema_prefix> is the RCU schema prefix you want to set.

• <db_pwd> is the SYS password for the database.

• <rcu_schema_pwd> is the password you want to set for the <rcu_schema_prefix>

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-3

For example:

export CONNECTION_STRING=mydatabasehost.example.com:1521/orcl.example.com

export RCUPREFIX=OAMK8S

echo -e <password>"\n"<password> > /tmp/pwd.txt

cat /tmp/pwd.txt

Ensure the cat /tmp/pwd.txt command shows the correct passwords.

5. In the helper bash shell, run the following command to create the RCU schemas in the
database:

/u01/oracle/oracle_common/bin/rcu -silent -createRepository -databaseType
ORACLE -connectString \
$CONNECTION_STRING -dbUser sys -dbRole sysdba -
useSamePasswordForAllSchemaUsers true \
-selectDependentsForComponents true -schemaPrefix $RCUPREFIX -component
MDS -component IAU \
-component IAU_APPEND -component IAU_VIEWER -component OPSS -component WLS
-component STB -component OAM -f < /tmp/pwd.txt

The output will look similar to the following:

RCU Logfile: /tmp/RCU<DATE>/logs/rcu.log
Processing command line
Repository Creation Utility - Checking Prerequisites
Checking Global Prerequisites
Repository Creation Utility - Checking Prerequisites
Checking Component Prerequisites
Repository Creation Utility - Creating Tablespaces
Validating and Creating Tablespaces
Create tablespaces in the repository database
Repository Creation Utility - Create
Repository Create in progress.
Executing pre create operations
Percent Complete: 18
Percent Complete: 18
Percent Complete: 19
Percent Complete: 20
Percent Complete: 21
Percent Complete: 21
Percent Complete: 22
Percent Complete: 22
Creating Common Infrastructure Services(STB)
Percent Complete: 30
Percent Complete: 30
Percent Complete: 39
Percent Complete: 39
Percent Complete: 39

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-4

Creating Audit Services Append(IAU_APPEND)
Percent Complete: 46
Percent Complete: 46
Percent Complete: 55
Percent Complete: 55
Percent Complete: 55
Creating Audit Services Viewer(IAU_VIEWER)
Percent Complete: 62
Percent Complete: 62
Percent Complete: 63
Percent Complete: 63
Percent Complete: 64
Percent Complete: 64
Creating Metadata Services(MDS)
Percent Complete: 73
Percent Complete: 73
Percent Complete: 73
Percent Complete: 74
Percent Complete: 74
Percent Complete: 75
Percent Complete: 75
Percent Complete: 75
Creating Weblogic Services(WLS)
Percent Complete: 80
Percent Complete: 80
Percent Complete: 83
Percent Complete: 83
Percent Complete: 91
Percent Complete: 98
Percent Complete: 98
Creating Audit Services(IAU)
Percent Complete: 100
Creating Oracle Platform Security Services(OPSS)
Creating Oracle Access Manager(OAM)
Executing post create operations
Repository Creation Utility: Create - Completion Summary
Database details:

Host Name : mydatabasehost.example.com
Port : 1521
Service Name : ORCL.EXAMPLE.COM
Connected As : sys
Prefix for (prefixable) Schema Owners : OAMK8S
RCU Logfile : /tmp/RCU<DATE>/logs/rcu.log

Component schemas created:

Component Status Logfile

Common Infrastructure Services Success /tmp/RCU<DATE>/
logs/stb.log
Oracle Platform Security Services Success /tmp/RCU<DATE>/
logs/opss.log
Oracle Access Manager Success /tmp/RCU<DATE>/
logs/oam.log
Audit Services Success /tmp/RCU<DATE>/

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-5

logs/iau.log
Audit Services Append Success /tmp/RCU<DATE>/
logs/iau_append.log
Audit Services Viewer Success /tmp/RCU<DATE>/
logs/iau_viewer.log
Metadata Services Success /tmp/RCU<DATE>/
logs/mds.log
WebLogic Services Success /tmp/RCU<DATE>/
logs/wls.log

Repository Creation Utility - Create : Operation Completed
[oracle@helper ~]$

6. Exit the helper bash shell by issuing the command exit.

7.1.2 Creating a Kubernetes Secret for the WLST Domain
Create a Kubernetes secret for the domain using the create-weblogic-credentials script.

1. Navigate to the $WORKDIR/kubernetes/create-weblogic-domain-credentials directory:

cd $WORKDIR/kubernetes/create-weblogic-domain-credentials

2. Run the following command to create the secret:

./create-weblogic-credentials.sh -u weblogic -p <pwd> -n
<domain_namespace> -d <domain_uid> -s <kubernetes_domain_secret>

Where:

• -u weblogic is the WebLogic username.

• -p <pwd> is the password for the WebLogic user.

• -n <domain_namespace> is the domain namespace.

• -d <domain_uid> is the domain UID to be created.

• -s <kubernetes_domain_secret> is the name you want to create for the secret for this
namespace.

For example:

./create-weblogic-credentials.sh -u weblogic -p <password> -n oamns -d
accessdomain -s accessdomain-credentials

The output will look similar to the following:

secret/accessdomain-credentials created
secret/accessdomain-credentials labeled
The secret accessdomain-credentials has been successfully created in the
oamns namespace.

3. Verify the secret is created using the following command:

kubectl get secret <kubernetes_domain_secret> -o yaml -n <domain_namespace>

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-6

For example:

kubectl get secret accessdomain-credentials -o yaml -n oamns

The output will look similar to the following:

apiVersion: v1
data:
 password: V2VsY29tZTE=
 username: d2VibG9naWM=
kind: Secret
metadata:
 creationTimestamp: "<DATE>"
 labels:
 weblogic.domainName: accessdomain
 weblogic.domainUID: accessdomain
 name: accessdomain-credentials
 namespace: oamns
 resourceVersion: "29428101"
 uid: 6dac0561-d157-4144-9ed7-c475a080eb3a
type: Opaque

7.1.3 Creating a Kubernetes Secret for RCU in WLST
Create a Kubernetes secret for RCU using the create-rcu-credentials script.

1. Navigate to the following directory:

cd $WORKDIR/kubernetes/create-rcu-credentials

2. Run the following command to create the secret:

./create-rcu-credentials.sh -u <rcu_prefix> -p <rcu_schema_pwd> -a sys -q
<sys_db_pwd> -d <domain_uid> -n <domain_namespace> -s
<kubernetes_rcu_secret>

Where:

• -u <rcu_prefix> is the name of the RCU schema prefix created in Creating the RCU
Schemas.

• -p <rcu_schema_pwd> is the password for the RCU schema prefix.

• -q <sys_db_pwd> is the SYS database password.

• -d <domain_uid> is the same domain UID that you specified in Creating a Kubernetes
Secret for the WLST Domain.

• -n <domain_namespace> is the domain namespace.

• -s <kubernetes_rcu_secret> is the name of the RCU secret to create.

For example:

./create-rcu-credentials.sh -u OAMK8S -p <password> -a sys -q <password> -
d accessdomain -n oamns -s accessdomain-rcu-credentials

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-7

The output will look similar to the following:

secret/accessdomain-rcu-credentials created
secret/accessdomain-rcu-credentials labeled
The secret accessdomain-rcu-credentials has been successfully created in
the oamns namespace.

3. Verify the secret is created using the following command:

kubectl get secret <kubernetes_rcu_secret> -o yaml -n <domain_namespace>

For example:

kubectl get secret accessdomain-rcu-credentials -o yaml -n oamns

The output will look similar to the following:

apiVersion: v1
data:
 password: T3JhY2xlXzEyMw==
 sys_password: T3JhY2xlXzEyMw==
 sys_username: c3lz
 username: T0FNSzhT
kind: Secret
metadata:
 creationTimestamp: "<DATE>"
 labels:
 weblogic.domainName: accessdomain
 weblogic.domainUID: accessdomain
 name: accessdomain-rcu-credentials
 namespace: oamns
 resourceVersion: "29428242"
 uid: 1b81b6e0-fd7d-40b8-a060-454c8d23f4dc
type: Opaque

7.1.4 Creating a Kubernetes Persistent Volume and Persistent Volume
Claim

As referenced in Creating a Persistent Volume Directory , the nodes in the Kubernetes cluster
must have access to a persistent volume such as a Network File System (NFS) mount or a
shared file system.

A persistent volume is the same as a disk mount but is inside a container. A Kubernetes
persistent volume is an arbitrary name (determined in this case, by Oracle) that is mapped to a
physical volume on a disk.

When a container is started, it needs to mount that volume. The physical volume should be on
a shared disk accessible by all the Kubernetes worker nodes because it is not known on which
worker node the container will be started. In the case of Oracle Access Management, the
persistent volume does not get erased when a container stops. This enables persistent
configurations.

The example below uses an NFS mounted volume (<persistent_volume>/accessdomainpv).
Other volume types can also be used. See, Volumes for more information.

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-8

https://kubernetes.io/docs/concepts/storage/volumes/

To create a Kubernetes persistent volume, perform the following steps:

1. Navigate to the $WORKDIR/kubernetes/create-weblogic-domain-pv-pvc directory:

cd $WORKDIR/kubernetes/create-weblogic-domain-pv-pvc

2. Make a backup copy of the create-pv-pvc-inputs.yaml file and create an output
directory:

cp create-pv-pvc-inputs.yaml create-pv-pvc-inputs.yaml.orig

mkdir output

3. Edit the create-pv-pvc-inputs.yaml file and update the following parameters to reflect
your settings. Save the file when complete:

baseName: <domain>
domainUID: <domain_uid>
namespace: <domain_namespace>
weblogicDomainStorageType: NFS
weblogicDomainStorageNFSServer: <nfs_server>
weblogicDomainStoragePath: <physical_path_of_persistent_storage>
weblogicDomainStorageSize: 10Gi

For example:

The base name of the pv and pvc
baseName: domain

Unique ID identifying a domain.
If left empty, the generated pv can be shared by multiple domains
This ID must not contain an underscope ("_"), and must be lowercase and
unique across all domains in a Kubernetes cluster.
domainUID: accessdomain

Name of the namespace for the persistent volume claim
namespace: oamns
...
Persistent volume type for the persistent storage.
The value must be 'HOST_PATH' or 'NFS'.
If using 'NFS', weblogicDomainStorageNFSServer must be specified.
weblogicDomainStorageType: NFS

The server name or ip address of the NFS server to use for the
persistent storage.
The following line must be uncomment and customized if
weblogicDomainStorateType is NFS:
weblogicDomainStorageNFSServer: mynfsserver

Physical path of the persistent storage.
When weblogicDomainStorageType is set to HOST_PATH, this value should be
set the to path to the

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-9

domain storage on the Kubernetes host.
When weblogicDomainStorageType is set to NFS, then
weblogicDomainStorageNFSServer should be set
to the IP address or name of the DNS server, and this value should be
set to the exported path
on that server.
Note that the path where the domain is mounted in the WebLogic
containers is not affected by this
setting, that is determined when you create your domain.
The following line must be uncomment and customized:
weblogicDomainStoragePath: /nfs_volumes/oam/accessdomainpv

Reclaim policy of the persistent storage
The valid values are: 'Retain', 'Delete', and 'Recycle'
weblogicDomainStorageReclaimPolicy: Retain

Total storage allocated to the persistent storage.
weblogicDomainStorageSize: 10Gi

4. Execute the create-pv-pvc.sh script to create the PV and PVC configuration files:

./create-pv-pvc.sh -i create-pv-pvc-inputs.yaml -o output

The output will be similar to the following:

Input parameters being used
export version="create-weblogic-sample-domain-pv-pvc-inputs-v1"
export baseName="domain"
export domainUID="accessdomain"
export namespace="oamns"
export weblogicDomainStorageType="NFS"
export weblogicDomainStorageNFSServer="mynfsserver"
export weblogicDomainStoragePath="/nfs_volumes/oam/accessdomainpv"
export weblogicDomainStorageReclaimPolicy="Retain"
export weblogicDomainStorageSize="10Gi"

Generating output/pv-pvcs/accessdomain-domain-pv.yaml
Generating output/pv-pvcs/accessdomain-domain-pvc.yaml
The following files were generated:
 output/pv-pvcs/accessdomain-domain-pv.yaml.yaml
 output/pv-pvcs/accessdomain-domain-pvc.yaml

5. Run the following command to show the files are created:

ls output/pv-pvcs

The output will look similar to the following:

accessdomain-domain-pv.yaml accessdomain-domain-pvc.yaml create-pv-pvc-
inputs.yaml

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-10

6. Run the following command to create the PV in the domain namespace:

kubectl create -f output/pv-pvcs/accessdomain-domain-pv.yaml -n
<domain_namespace>

For example:

kubectl create -f output/pv-pvcs/accessdomain-domain-pv.yaml -n oamns

The output will look similar to the following:

persistentvolume/accessdomain-domain-pv created

7. Run the following commands to verify the PV was created successfully:

kubectl describe pv accessdomain-domain-pv

The output will look similar to the following:

Name: accessdomain-domain-pv
Labels: weblogic.domainUID=accessdomain
Annotations: pv.kubernetes.io/bound-by-controller: yes
Finalizers: [kubernetes.io/pv-protection]
StorageClass: accessdomain-domain-storage-class
Status: Bound
Claim: oamns/accessdomain-domain-pvc
Reclaim Policy: Retain
Access Modes: RWX
VolumeMode: Filesystem
Capacity: 10Gi
Node Affinity: <none>
Message:
Source:
 Type: NFS (an NFS mount that lasts the lifetime of a pod)
 Server: mynfsserver
 Path: /nfs_volumes/oam/accessdomainpv
 ReadOnly: false
Events: <none>

8. Run the following command to create the PVC in the domain namespace:

kubectl create -f output/pv-pvcs/accessdomain-domain-pvc.yaml -n
<domain_namespace>

For example:

kubectl create -f output/pv-pvcs/accessdomain-domain-pvc.yaml -n oamns

The output will look similar to the following:

persistentvolume/accessdomain-domain-pvc created

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-11

9. Run the following commands to verify the PVC was created successfully:

kubectl describe pvc accessdomain-domain-pvc -n <namespace>

For example:

kubectl describe pvc accessdomain-domain-pvc -n oamns

The output will look similar to the following:

Name: accessdomain-domain-pvc
Namespace: oamns
StorageClass: accessdomain-domain-storage-class
Status: Bound
Volume: accessdomain-domain-pv
Labels: weblogic.domainUID=accessdomain
Annotations: pv.kubernetes.io/bind-completed: yes
 pv.kubernetes.io/bound-by-controller: yes
Finalizers: [kubernetes.io/pvc-protection]
Capacity: 10Gi
Access Modes: RWX
VolumeMode: Filesystem
Events: <none>
Mounted By: <none>

7.1.5 Preparing the Create Domain Script
The sample scripts for Oracle Access Management (OAM) domain deployment are available in
the $WORKDIR/kubernetes/create-access-domain directory. You must prepare the scripts
before deploying OAM.

1. Navigate to the $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv
directory:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv

2. Make a copy of the create-domain-inputs.yaml file:

cp create-domain-inputs.yaml create-domain-inputs.yaml.orig

3. Edit the create-domain-inputs.yaml and modify the following parameters. Save the file
when complete:

domainUID: <domain_uid>
domainHome: /u01/oracle/user_projects/domains/<domain_uid>
image: <image_name>:<tag>
imagePullSecretName: <container_registry_secret>
weblogicCredentialsSecretName: <kubernetes_domain_secret>
logHome: /u01/oracle/user_projects/domains/logs/<domain_uid>
namespace: <domain_namespace>
persistentVolumeClaimName: <pvc_name>
rcuSchemaPrefix: <rcu_prefix>

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-12

rcuDatabaseURL: <rcu_db_host>:<rcu_db_port>/<rcu_db_service_name>
rcuCredentialsSecret: <kubernetes_rcu_secret>

For example:

domainUID: accessdomain
domainHome: /u01/oracle/user_projects/domains/accessdomain
image: container-registry.oracle.com/middleware/oam_cpu:14.1.2.1.0-jdk17-
ol8-<YYMMDD>
imagePullSecretName: orclcred
weblogicCredentialsSecretName: accessdomain-credentials
logHome: /u01/oracle/user_projects/domains/logs/accessdomain
namespace: oamns
persistentVolumeClaimName: accessdomain-domain-pvc
rcuSchemaPrefix: OAMK8S
rcuDatabaseURL: mydatabasehost.example.com:1521/orcl.example.com
rcuCredentialsSecret: accessdomain-rcu-credentials

A full list of parameters in the create-domain-inputs.yaml file are shown below:

Parameter Definition Default

adminPort Port number for the
Administration Server inside the
Kubernetes cluster.

7001

adminNodePort Port number of the Administration
Server outside the Kubernetes
cluster.

30701

adminServerName Name of the Administration
Server.

AdminServer

clusterName Name of the WebLogic cluster
instance to generate for the
domain. By default the cluster
name is oam_cluster for the OAM
domain.

oam_cluster

configuredManagedServerCount Number of Managed Server
instances to generate for the
domain.

5

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-13

Parameter Definition Default

createDomainFilesDir Directory on the host machine to
locate all the files to create a
WebLogic domain, including the
script that is specified in the
createDomainScriptName
property. By default, this directory
is set to the relative path wlst,
and the create script will use the
built-in WLST offline scripts in the
wlst directory to create the
WebLogic domain. It can also be
set to the relative path wdt, and
then the built-in WDT scripts will
be used instead. An absolute
path is also supported to point to
an arbitrary directory in the file
system. The built-in scripts can
be replaced by the user-provided
scripts or model files as long as
those files are in the specified
directory. Files in this directory
are put into a Kubernetes config
map, which in turn is mounted to
the
createDomainScriptsMountPa
th, so that the Kubernetes pod
can use the scripts and
supporting files to create a
domain home.

wlst

createDomainScriptsMountPath Mount path where the create
domain scripts are located inside
a pod. The create-domain.sh
script creates a Kubernetes job to
run the script (specified in the
createDomainScriptName
property) in a Kubernetes pod to
create a domain home. Files in
the createDomainFilesDir
directory are mounted to this
location in the pod, so that the
Kubernetes pod can use the
scripts and supporting files to
create a domain home.

/u01/weblogic

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-14

Parameter Definition Default

createDomainScriptName Script that the create domain
script uses to create a WebLogic
domain. The create-domain.sh
script creates a Kubernetes job to
run this script to create a domain
home. The script is located in the
in-pod directory that is specified
in the
createDomainScriptsMountPath
property. If you need to provide
your own scripts to create the
domain home, instead of using
the built-it scripts, you must use
this property to set the name of
the script that you want the create
domain job to run.

create-domain-job.sh

domainHome Home directory of the OAM
domain. If not specified, the value
is derived from the domainUID
as /shared/domains/
<domainUID>.

/u01/oracle/user_projects/
domains/accessdomain

domainPVMountPath Mount path of the domain
persistent volume.

/u01/oracle/user_projects/
domains

domainUID Unique ID that will be used to
identify this particular domain.
Used as the name of the
generated WebLogic domain as
well as the name of the
Kubernetes domain resource.
This ID must be unique across all
domains in a Kubernetes cluster.
This ID cannot contain any
character that is not valid in a
Kubernetes service name.

accessdomain

domainType Type of the domain. Mandatory
input for OAM domains. You must
provide one of the supported
domain type value: oam (deploys
an OAM domain)

oam

exposeAdminNodePort Boolean indicating if the
Administration Server is exposed
outside of the Kubernetes cluster.

false

exposeAdminT3Channel Boolean indicating if the T3
administrative channel is exposed
outside the Kubernetes cluster.

false

image OAM container image. The
operator requires OAM 14.1.2.
Refer to Obtaining the OAM
Container image for details on
how to obtain or create the
image.

oracle/oam:14.1.2.1.0

imagePullPolicy WebLogic container image pull
policy. Legal values are
IfNotPresent, Always, or
Never

IfNotPresent

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-15

Parameter Definition Default

imagePullSecretName Name of the Kubernetes secret to
access the container registry to
pull the OAM container image.
The presence of the secret will be
validated when this parameter is
specified.

orclcred

includeServerOutInPodLog Boolean indicating whether to
include the server .out to the
pod’s stdout.

true

initialManagedServerReplicas Number of Managed Servers to
initially start for the domain.

1

javaOptions Java options for starting the
Administration Server and
Managed Servers. A Java option
can have references to one or
more of the following pre-defined
variables to obtain WebLogic
domain information: $
(DOMAIN_NAME), $
(DOMAIN_HOME), $
(ADMIN_NAME), $
(ADMIN_PORT), and $
(SERVER_NAME).

-
Dweblogic.StdoutDebugEnabled=
false

logHome The in-pod location for the
domain log, server logs, server
out, and Node Manager log files.
If not specified, the value is
derived from the domainUID as /
shared/logs/<domainUID>.

/u01/oracle/user_projects/
domains/logs/accessdomain

managedServerNameBase Base string used to generate
Managed Server names.

oam_server

managedServerPort Port number for each Managed
Server.

14100

namespace Kubernetes namespace in which
to create the domain.

oamns

persistentVolumeClaimName Name of the persistent volume
claim created to host the domain
home. If not specified, the value
is derived from the domainUID as
<domainUID>-weblogic-
sample-pvc.

accessdomain-domain-pvc

productionModeEnabled Boolean indicating if production
mode is enabled for the domain.

true

serverStartPolicy Determines which WebLogic
Server instances will be started.
Legal values are Never,
IfNeeded, AdminOnly.

IfNeeded

t3ChannelPort Port for the T3 channel of the
NetworkAccessPoint.

30012

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-16

Parameter Definition Default

t3PublicAddress Public address for the T3
channel. This should be set to the
public address of the Kubernetes
cluster. This would typically be a
load balancer address. For
development environments only:
In a single server (all-in-one)
Kubernetes deployment, this may
be set to the address of the
master, or at the very least, it
must be set to the address of one
of the worker nodes.

If not provided, the script will
attempt to set it to the IP address
of the Kubernetes cluster

weblogicCredentialsSecretName Name of the Kubernetes secret
for the Administration Server’s
user name and password. If not
specified, then the value is
derived from the domainUID as
<domainUID>-weblogic-
credentials.

accessdomain-domain-
credentials

serverPodCpuRequest,
serverPodMemoryRequest,
serverPodCpuCLimit,
serverPodMemoryLimit

The maximum amount of
compute resources allowed, and
minimum amount of compute
resources required, for each
server pod. Please refer to the
Kubernetes documentation on
Managing Compute Resources
for Containers for details.

Resource requests and resource
limits are not specified.

rcuSchemaPrefix The schema prefix to use in the
database, for example OAM1.
You may wish to make this the
same as the domainUID in order
to simplify matching domains to
their RCU schemas.

OAM1

rcuDatabaseURL The database URL. xxxxx.example.com:1521/
oampdb1.example.com

rcuCredentialsSecret The Kubernetes secret containing
the database credentials.

accessdomain-rcu-credentials

datasourceType Type of JDBC datasource
applicable for the OAM domain.
Legal values are agl and generic.
Choose agl for Active GridLink
datasource and generic for
Generic datasource. For
enterprise deployments, Oracle
recommends that you use
GridLink data sources to connect
to Oracle RAC databases. See,
Enterprise Deployment Guide for
Oracle Identity and Access
Management in a Kubernetes
Cluster for further details.

generic

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-17

Note:

The names of the Kubernetes resources in the generated YAML files may be formed
with the value of some of the properties specified in the create-inputs.yaml file.
Those properties include the adminServerName, clusterName and
managedServerNameBase. If those values contain any characters that are invalid in a
Kubernetes service name, those characters are converted to valid values in the
generated YAML files. For example, an uppercase letter is converted to a lowercase
letter and an underscore ("_") is converted to a hyphen ("-").
The sample demonstrates how to create an OAM domain home and associated
Kubernetes resources for a domain that has one cluster only. In addition, the sample
provides the capability for users to supply their own scripts to create the domain
home for other use cases. The generated domain YAML file could also be modified to
cover more use cases.

7.1.6 Creating the domain.yaml
To create the domain.yaml file used in the Oracle Access Management (OAM) deployment:

1. Navigate to the $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv
directory:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv

2. Run the create domain script, specifying your inputs file and an output directory to store
the generated artifacts. This command creates a domain.yaml file required for domain
creation:

./create-domain.sh -i create-domain-inputs.yaml -o output

The output will look similar to the following:

export version="create-weblogic-sample-domain-inputs-v1"
export adminPort="7001"
export adminServerSSLPort="7002"
export adminServerName="AdminServer"
export domainUID="accessdomain"
export domainType="oam"
export domainHome="/u01/oracle/user_projects/domains/accessdomain"
export serverStartPolicy="IfNeeded"
export clusterName="oam_cluster"
export configuredManagedServerCount="5"
export initialManagedServerReplicas="1"
export managedServerNameBase="oam_server"
export managedServerPort="14100"
export image="container-registry.oracle.com/middleware/oam_cpu:14.1.2.1.0-
jdk17-ol8-<YYMMDD>"
export imagePullPolicy="IfNotPresent"
export imagePullSecretName="orclcred"
export productionModeEnabled="true"
export weblogicCredentialsSecretName="accessdomain-credentials"
export includeServerOutInPodLog="true"

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-18

export logHome="/u01/oracle/user_projects/domains/logs/accessdomain"
export httpAccessLogInLogHome="true"
export t3ChannelPort="30012"
export exposeAdminT3Channel="false"
export adminNodePort="30701"
export exposeAdminNodePort="false"
export namespace="oamns"
javaOptions=-Dweblogic.StdoutDebugEnabled=false
export persistentVolumeClaimName="accessdomain-domain-pvc"
export domainPVMountPath="/u01/oracle/user_projects/domains"
export createDomainScriptsMountPath="/u01/weblogic"
export createDomainScriptName="create-domain-job.sh"
export createDomainFilesDir="wlst"
export rcuSchemaPrefix="OAMK8S"
export rcuDatabaseURL="mydatabasehost.example.com:1521/orcl.example.com"
export rcuCredentialsSecret="accessdomain-rcu-credentials"
export datasourceType="generic"

validateWlsDomainName called with accessdomain
createFiles - valuesInputFile is create-domain-inputs.yaml
createDomainScriptName is create-domain-job.sh
Generating output/weblogic-domains/accessdomain/create-domain-job.yaml
Generating output/weblogic-domains/accessdomain/delete-domain-job.yaml
Generating output/weblogic-domains/accessdomain/domain.yaml
Checking to see if the secret accessdomain-credentials exists in namespace
oamns
configmap/accessdomain-create-oam-infra-domain-job-cm created
Checking the configmap accessdomain-create-oam-infra-domain-job-cm was
created
configmap/accessdomain-create-oam-infra-domain-job-cm labeled
Checking if object type job with name accessdomain-create-oam-infra-domain-
job exists
No resources found in oamns namespace.
Creating the domain by creating the job output/weblogic-domains/
accessdomain/create-domain-job.yaml
job.batch/accessdomain-create-oam-infra-domain-job created
Waiting for the job to complete...
status on iteration 1 of 20
pod accessdomain-create-oam-infra-domain-job-6tgw4 status is Running
status on iteration 2 of 20
pod accessdomain-create-oam-infra-domain-job-6tgw4 status is Running
status on iteration 3 of 20
pod accessdomain-create-oam-infra-domain-job-6tgw4 status is Running
status on iteration 4 of 20
pod accessdomain-create-oam-infra-domain-job-6tgw4 status is Running
status on iteration 5 of 20
pod accessdomain-create-oam-infra-domain-job-6tgw4 status is Running
status on iteration 6 of 20
pod accessdomain-create-oam-infra-domain-job-6tgw4 status is Completed

Domain accessdomain was created and will be started by the WebLogic
Kubernetes Operator

The following files were generated:
 output/weblogic-domains/accessdomain/create-domain-inputs.yaml

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-19

 output/weblogic-domains/accessdomain/create-domain-job.yaml
 output/weblogic-domains/accessdomain/domain.yaml

Note:

If the domain creation fails, refer to Domain Creation Failure With WLST in
Known Issues.

7.1.7 Setting the OAM Server Memory Parameters
By default, the java memory parameters assigned to the oam-cluster are very small. The
minimum recommended values are -Xms4096m -Xmx8192m. However, Oracle recommends you
to set these to -Xms8192m -Xmx8192m in a production environment.

1. Navigate to the /output/weblogic-domains/<domain_uid> directory:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/output/
weblogic-domains/<domain_uid>

For example:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/output/
weblogic-domains/accessdomain

2. Take a backup of the domain.yaml:

cp domain.yaml domain.yaml.orig

3. Edit the domain.yaml file and inside name: accessdomain-oam-cluster, add the memory
setting as below:

 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: "-XX:+UseContainerSupport -Djava.security.egd=file:/dev/./
urandom -Xms8192m -Xmx8192m"
 resources:
 limits:
 cpu: "2"
 memory: "8Gi"
 requests:
 cpu: "1000m"
 memory: "4Gi"

For example:

apiVersion: weblogic.oracle/v1
kind: Cluster
metadata:
 name: accessdomain-oam-cluster
 namespace: oamns

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-20

spec:
 clusterName: oam_cluster
 serverService:
 precreateService: true
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: "-XX:+UseContainerSupport -Djava.security.egd=file:/dev/./
urandom -Xms8192m -Xmx8192m"
 resources:
 limits:
 cpu: "2"
 memory: "8Gi"
 requests:
 cpu: "1000m"
 memory: "4Gi"
 replicas: 1

Note:

Administrators should be aware of the following:

• The above CPU and memory values are for examples only. For Enterprise
Deployments, please review the performance recommendations and sizing
requirements in Enterprise Deployment Guide for Oracle Identity and Access
Management in a Kubernetes Cluster .

• Limits and requests for CPU resources are measured in CPU units. One
CPU in Kubernetes is equivalent to 1 vCPU/Core for cloud providers, and 1
hyperthread on bare-metal Intel processors. An “m” suffix in a CPU attribute
indicates ‘milli-CPU’, so 500m is 50% of a CPU. Memory can be expressed
in various units, where one Mi is one IEC unit mega-byte (1024^2), and one
Gi is one IEC unit giga-byte (1024^3). For more information, see Resource
Management for Pods and Containers, Assign Memory Resources to
Containers and Pods, and Assign CPU Resources to Containers and Pods

• The parameters above are also utilized by the Kubernetes Horizontal Pod
Autoscaler (HPA). For more details on HPA, see Kubernetes Horizontal Pod
Autoscaler.

• If required you can also set the same resources and limits for the
accessdomain-policy-cluster.

4. In the domain.yaml locate the section of the file starting with adminServer:. Under the env:
tag add the following CLASSPATH entries. This is required for running the idmconfigtool
from the Administration Server:

- name: CLASSPATH
 value: "/u01/oracle/wlserver/server/lib/weblogic.jar"

For example:

 # adminServer is used to configure the desired behavior for starting the
administration server.
 adminServer:

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-21

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/

 # adminService:
 # channels:
 # The Admin Server's NodePort
 # - channelName: default
 # nodePort: 30701
 # Uncomment to export the T3Channel as a service
 # - channelName: T3Channel
 serverPod:
 # an (optional) list of environment variable to be set on the admin
servers
 env:
 - name: USER_MEM_ARGS
 value: "-Djava.security.egd=file:/dev/./urandom -Xms512m -Xmx1024m
"
 - name: CLASSPATH
 value: "/u01/oracle/wlserver/server/lib/weblogic.jar"

5. If required, you can add the optional parameter maxClusterConcurrentStartup to the spec
section of the domain.yaml. This parameter specifies the number of managed servers to
be started in sequence per cluster.

For example,if you updated the initialManagedServerReplicas to 4 in create-domain-
inputs.yaml and only had 2 nodes, then setting maxClusterConcurrentStartup: 1 will
start one managed server at a time on each node, rather than starting them all at once.
This can be useful to take the strain off individual nodes at startup.

Below is an example with the parameter added:

apiVersion: "weblogic.oracle/v9"
kind: Domain
metadata:
 name: accessdomain
 namespace: oamns
 labels:
 weblogic.domainUID: accessdomain
spec:
 # The WebLogic Domain Home
 domainHome: /u01/oracle/user_projects/domains/accessdomain
 maxClusterConcurrentStartup: 1

 # The domain home source type
 # Set to PersistentVolume for domain-in-pv, Image for domain-in-image,
or FromModel for model-in-image
 domainHomeSourceType: PersistentVolume

6. Save the changes to domain.yaml

7.1.8 Deploying the WLST OAM Domain
Deploy the Oracle Access Management (OAM) domain using the domain.yaml.

1. Run the following command to deploy the OAM domain:

kubectl apply -f $WORKDIR/kubernetes/create-access-domain/domain-home-on-
pv/output/weblogic-domains/<domain_uid>/domain.yaml

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-22

For example:

kubectl apply -f $WORKDIR/kubernetes/create-access-domain/domain-home-on-
pv/output/weblogic-domains/accessdomain/domain.yaml

The output will look similar to the following:

domain.weblogic.oracle/accessdomain created
cluster.weblogic.oracle/accessdomain-oam-cluster created
cluster.weblogic.oracle/accessdomain-policy-cluster created

7.1.9 Verifying the WLST OAM Deployment
Verifying the domain, pods and services

Verify the domain, servers pods and services are created and in the READY state with a status
of 1/1, by running the following command:

kubectl get all,domains -n <domain_namespace>

For example:

kubectl get all,domains -n oamns

The output will look similar to the following:

NAME READY STATUS
RESTARTS AGE
pod/accessdomain-adminserver 1/1 Running
0 11m
pod/accessdomain-create-oam-infra-domain-job-7c9r9 0/1 Completed
0 18m
pod/accessdomain-oam-policy-mgr1 1/1 Running
0 3m31s
pod/accessdomain-oam-server1 1/1 Running
0 3m31s

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
service/accessdomain-adminserver ClusterIP None
<none> 7001/TCP 11m
service/accessdomain-cluster-oam-cluster ClusterIP 10.101.59.154
<none> 14100/TCP 3m31s
service/accessdomain-cluster-policy-cluster ClusterIP 10.98.236.51
<none> 15100/TCP 3m31s
service/accessdomain-oam-policy-mgr1 ClusterIP None
<none> 15100/TCP 3m31s
service/accessdomain-oam-policy-mgr2 ClusterIP 10.104.92.12
<none> 15100/TCP 3m31s
service/accessdomain-oam-policy-mgr3 ClusterIP 10.96.244.37
<none> 15100/TCP 3m31s
service/accessdomain-oam-policy-mgr4 ClusterIP 10.105.201.23
<none> 15100/TCP 3m31s

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-23

service/accessdomain-oam-policy-mgr5 ClusterIP 10.110.12.227
<none> 15100/TCP 3m31s
service/accessdomain-oam-server1 ClusterIP None
<none> 14100/TCP 3m31s
service/accessdomain-oam-server2 ClusterIP 10.96.137.33
<none> 14100/TCP 3m31s
service/accessdomain-oam-server3 ClusterIP 10.103.178.35
<none> 14100/TCP 3m31s
service/accessdomain-oam-server4 ClusterIP 10.97.254.78
<none> 14100/TCP 3m31s
service/accessdomain-oam-server5 ClusterIP 10.105.65.104
<none> 14100/TCP 3m31s

NAME COMPLETIONS DURATION
AGE
job.batch/accessdomain-create-oam-infra-domain-job 1/1 2m6s
18m

NAME AGE
domain.weblogic.oracle/accessdomain 12m

NAME AGE
cluster.weblogic.oracle/accessdomain-oam-cluster 11m
cluster.weblogic.oracle/accessdomain-policy-cluster 11m

Note:

It will take several minutes before all the services listed above show. When a pod has
a STATUS of 0/1 the pod is started but the OAM server associated with it is currently
starting. While the pods are starting you can check the startup status in the pod logs,
by running the following command:

kubectl logs <pod> -n <namespace>

For example:

kubectl logs accessdomain-adminserver -n accessdomain-adminserver

The default domain created by the script has the following characteristics:

• An Administration Server named AdminServer listening on port 7001.

• A configured OAM cluster named oam_cluster of size 5.

• A configured Policy Manager cluster named policy_cluster of size 5.

• One started OAM Managed Server, named oam_server1, listening on port 14100.

• One started Policy Manager Managed Servers named oam-policy-mgr1, listening on port
15100.

• Log files that are located in <persistent_volume>/logs/<domainUID>.

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-24

Verifying the Domain

Run the following command to describe the domain:

kubectl describe domain <domain_uid> -n <domain_namespace>

For example:

kubectl describe domain accessdomain -n oamns

The output will look similar to the following:

Name: accessdomain
Namespace: oamns
Labels: weblogic.domainUID=accessdomain
Annotations: <none>
API Version: weblogic.oracle/v9
Kind: Domain
Metadata:
 Creation Timestamp: <DATE>
 Generation: 1
 Managed Fields:
 API Version: weblogic.oracle/v9
 Fields Type: FieldsV1
 fieldsV1:
 f:metadata:
 f:annotations:
 .:
 f:kubectl.kubernetes.io/last-applied-configuration:
 f:labels:
 .:
 f:weblogic.domainUID:
 f:spec:
 .:
 f:adminServer:
 .:
 f:adminChannelPortForwardingEnabled:
 f:serverPod:
 .:
 f:env:
 f:serverStartPolicy:
 f:clusters:
 f:dataHome:
 f:domainHome:
 f:domainHomeSourceType:
 f:failureRetryIntervalSeconds:
 f:failureRetryLimitMinutes:
 f:httpAccessLogInLogHome:
 f:image:
 f:imagePullPolicy:
 f:imagePullSecrets:
 f:includeServerOutInPodLog:
 f:logHome:
 f:logHomeEnabled:

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-25

 f:logHomeLayout:
 f:maxClusterConcurrentShutdown:
 f:maxClusterConcurrentStartup:
 f:maxClusterUnavailable:
 f:replicas:
 f:serverPod:
 .:
 f:env:
 f:volumeMounts:
 f:volumes:
 f:serverStartPolicy:
 f:webLogicCredentialsSecret:
 .:
 f:name:
 Manager: kubectl-client-side-apply
 Operation: Update
 Time: <DATE>
 API Version: weblogic.oracle/v9
 Fields Type: FieldsV1
 fieldsV1:
 f:status:
 .:
 f:clusters:
 f:conditions:
 f:observedGeneration:
 f:servers:
 f:startTime:
 Manager: Kubernetes Java Client
 Operation: Update
 Subresource: status
 Time: <DATE>
 Resource Version: 2074089
 UID: e194d483-7383-4359-adb9-bf97de36518b
Spec:
 Admin Server:
 Admin Channel Port Forwarding Enabled: true
 Server Pod:
 Env:
 Name: USER_MEM_ARGS
 Value: -Djava.security.egd=file:/dev/./urandom -Xms512m -
Xmx1024m
 Name: CLASSPATH
 Value: /u01/oracle/wlserver/server/lib/weblogic.jar
 Server Start Policy: IfNeeded
 Clusters:
 Name: accessdomain-oam-cluster
 Name: accessdomain-policy-cluster
 Data Home:
 Domain Home: /u01/oracle/user_projects/domains/
accessdomain
 Domain Home Source Type: PersistentVolume
 Failure Retry Interval Seconds: 120
 Failure Retry Limit Minutes: 1440
 Http Access Log In Log Home: true
 Image: container-registry.oracle.com/middleware/
oam_cpu:12.2.1.4-jdk8-ol8-<January'25>

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-26

 Image Pull Policy: IfNotPresent
 Image Pull Secrets:
 Name: orclcred
 Include Server Out In Pod Log: true
 Log Home: /u01/oracle/user_projects/domains/logs/
accessdomain
 Log Home Enabled: true
 Log Home Layout: ByServers
 Max Cluster Concurrent Shutdown: 1
 Max Cluster Concurrent Startup: 0
 Max Cluster Unavailable: 1
 Replicas: 1
 Server Pod:
 Env:
 Name: JAVA_OPTIONS
 Value: -Dweblogic.StdoutDebugEnabled=false
 Name: USER_MEM_ARGS
 Value: -Djava.security.egd=file:/dev/./urandom -Xms256m -Xmx1024m
 Volume Mounts:
 Mount Path: /u01/oracle/user_projects/domains
 Name: weblogic-domain-storage-volume
 Volumes:
 Name: weblogic-domain-storage-volume
 Persistent Volume Claim:
 Claim Name: accessdomain-domain-pvc
 Server Start Policy: IfNeeded
 Web Logic Credentials Secret:
 Name: accessdomain-credentials
Status:
 Clusters:
 Cluster Name: oam_cluster
 Conditions:
 Last Transition Time: <DATE>
 Status: True
 Type: Available
 Last Transition Time: <DATE>
 Status: True
 Type: Completed
 Label Selector:
weblogic.domainUID=accessdomain,weblogic.clusterName=oam_cluster
 Maximum Replicas: 5
 Minimum Replicas: 0
 Observed Generation: 1
 Ready Replicas: 1
 Replicas: 1
 Replicas Goal: 1
 Cluster Name: policy_cluster
 Conditions:
 Last Transition Time: <DATE>
 Status: True
 Type: Available
 Last Transition Time: <DATE>
 Status: True
 Type: Completed
 Label Selector:
weblogic.domainUID=accessdomain,weblogic.clusterName=policy_cluster

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-27

 Maximum Replicas: 5
 Minimum Replicas: 0
 Observed Generation: 1
 Ready Replicas: 1
 Replicas: 1
 Replicas Goal: 1
 Conditions:
 Last Transition Time: <DATE>
 Status: True
 Type: Available
 Last Transition Time: <DATE>
 Status: True
 Type: Completed
 Observed Generation: 1
 Servers:
 Health:
 Activation Time: <DATE>
 Overall Health: ok
 Subsystems:
 Subsystem Name: ServerRuntime
 Symptoms:
 Node Name: worker-node2
 Pod Phase: Running
 Pod Ready: True
 Server Name: AdminServer
 State: RUNNING
 State Goal: RUNNING
 Cluster Name: oam_cluster
 Health:
 Activation Time: <DATE>
 Overall Health: ok
 Subsystems:
 Subsystem Name: ServerRuntime
 Symptoms:
 Node Name: worker-node1
 Pod Phase: Running
 Pod Ready: True
 Server Name: oam_server1
 State: RUNNING
 State Goal: RUNNING
 Cluster Name: oam_cluster
 Server Name: oam_server2
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: oam_cluster
 Server Name: oam_server3
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: oam_cluster
 Server Name: oam_server4
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: oam_cluster
 Server Name: oam_server5
 State: SHUTDOWN
 State Goal: SHUTDOWN

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-28

 Cluster Name: policy_cluster
 Health:
 Activation Time: <DATE>
 Overall Health: ok
 Subsystems:
 Subsystem Name: ServerRuntime
 Symptoms:
 Node Name: worker-node1
 Pod Phase: Running
 Pod Ready: True
 Server Name: oam_policy_mgr1
 State: RUNNING
 State Goal: RUNNING
 Cluster Name: policy_cluster
 Server Name: oam_policy_mgr2
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: policy_cluster
 Server Name: oam_policy_mgr3
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: policy_cluster
 Server Name: oam_policy_mgr4
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: policy_cluster
 Server Name: oam_policy_mgr5
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Start Time: <DATE>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Created 15m weblogic.operator Domain accessdomain was
created.
 Normal Available 2m56s weblogic.operator Domain accessdomain is
available: a sufficient number of its servers have reached the ready state.
 Normal Completed 2m56s weblogic.operator Domain accessdomain is
complete because all of the following are true: there is no failure detected,
there are no pending server shutdowns, and all servers expected to be running
are ready and at their target image, auxiliary images, restart version, and
introspect version.

In the Status section of the output, the available servers and clusters are listed.

Verifying the Pods

Run the following command to view the pods and the nodes they are running on:

kubectl get pods -n <domain_namespace> -o wide

For example:

kubectl get pods -n oamns -o wide

Chapter 7
Creating OAM Domains Using WLST Offline Scripts

7-29

The output will look similar to the following:

NAME READY STATUS
RESTARTS AGE IP NODE NOMINATED NODE READINESS
GATES
accessdomain-adminserver 1/1 Running
0 18m 10.244.6.63 10.250.42.252 <none> <none>
accessdomain-create-oam-infra-domain-job-7c9r9 0/1 Completed
0 25m 10.244.6.61 10.250.42.252 <none> <none>
accessdomain-oam-policy-mgr1 1/1 Running
0 10m 10.244.5.13 10.250.42.255 <none> <none>
accessdomain-oam-server1 1/1 Running
0 10m 10.244.5.12 10.250.42.255 <none> <none>

Configuring the Ingress

If the domain deploys successfully, and all the above checks are verified, you are ready to
configure the Ingress. See, Configuring Ingress.

7.2 Creating OAM Domains Using WDT Models
Using WDT models, all the required information is specified in the domain custom resource
YAML file. With WDT models, the WebLogic Kubernetes Operator will create the RCU
schemas, create the persistent volume and claim, then create the WebLogic domain on the
persistent volume, prior to starting the servers.

In this section a domain creation image is built using the supplied model files and that image is
used for domain creation. You will need your own container registry to upload the domain
image to. Having your own container repository is a prerequisite before creating an OAM
domain with WDT models. If you don’t have your own container registry, you can load the
image on each node in the cluster instead. This documentation does not explain how to create
your own container registry, or how to load the image onto each node. Consult your vendor
specific documentation for more information.

Building a domain creation image is a one time activity. The domain creation image can be
used to create an OAM domain in multiple environments. You do not need to rebuild the
domain creation image every time you create a domain.

Before following this section, make sure you have followed Preparing Your Environment, and
ensure your Oracle Database is running.

This section includes the following topics:

• Creating a Kubernetes Secret for the WDT Domain

• Creating a Kubernetes Secret for RCU in WDT

• Preparing the WDT Create Domain YAML File

• Creating the WDT YAML files

• Building the Domain Creation Image

• Deploying the WDT OAM Domain

• Verifying the WDT OAM Deployment

Chapter 7
Creating OAM Domains Using WDT Models

7-30

7.2.1 Creating a Kubernetes Secret for the WDT Domain
Create a Kubernetes secret for the Oracle Access Management (OAM) domain using the
create-secret.sh script.

1. Navigate to the wdt-utils directory:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/wdt-utils

2. Run the following command to create the secret:

./create-secret.sh -l \
"username=weblogic" \
-l "password=<password>" \
-n <domain_namespace> \
-d <domain_uid> \
-s <domain-uid>-weblogic-credentials

Where:

• <password> is the password for the WebLogic user.

• <domain_namespace> is the domain namespace for OAM.

• <domain_uid> is the domain UID to be created.

• <domain-uid>-weblogic-credentials is the name you want to create for the secret
for this namespace.

Note:

The secret name must follow the format <domain-uid>-weblogic-
credentials or domain creation will fail.

For example:

./create-secret.sh -l \
"username=weblogic" \
-l "password=<password>" \
-n oamns \
-d accessdomain \
-s accessdomain-weblogic-credentials

The output will look similar to the following:

@@ Info: Setting up secret 'accessdomain-weblogic-credentials'.
secret/accessdomain-weblogic-credentials created
secret/accessdomain-weblogic-credentials labeled

3. Verify the secret is created using the following command:

kubectl get secret <kubernetes_domain_secret> -o yaml -n <domain_namespace>

Chapter 7
Creating OAM Domains Using WDT Models

7-31

For example:

kubectl get secret accessdomain-weblogic-credentials -o yaml -n oamns

The output will look similar to the following:

apiVersion: v1
data:
 password: <password>
 username: d2VibG9naWM=
kind: Secret
metadata:
 creationTimestamp: "<DATE>"
 labels:
 weblogic.domainUID: accessdomain
 name: accessdomain-weblogic-credentials
 namespace: oamns
 resourceVersion: "44175245"
 uid: a135780e-6f3b-4be1-8643-f81bfb9ba399
type: Opaque

7.2.2 Creating a Kubernetes Secret for RCU in WDT
Create a Kubernetes secret for RCU using the create-secret.sh script.

1. Navigate to the wdt-utils directory:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/wdt-utils

2. Run the following command to create the secret:

./create-secret.sh -l "rcu_prefix=<rcu_prefix>" \
-l "rcu_schema_password=<rcu_schema_pwd>" \
-l "db_host=<db_host.domain>" \
-l "db_port=<db_port>" \
-l "db_service=<service_name>" \
-l "dba_user=<sys_db_user>" \
-l "dba_password=<sys_db_pwd>" \
-n <domain_namespace> \
-d <domain_uid> \
-s <domain_uid>-rcu-credentials

Where:

• <rcu_prefix> is the name of the RCU schema prefix to be created.

• <rcu_schema_pwd> is the password you want to create for the RCU schema prefix.

• <db_host.domain> is the hostname.domain of the database.

• <db_port> is the database listener port.

• <service_name> is the service name of the database.

• <sys_db_user> is the database user with SYSDBA privilege.

• <sys_db_pwd> is the SYS database password.

Chapter 7
Creating OAM Domains Using WDT Models

7-32

• <domain_uid>is the domain_uid that you want to create. This must be the same
domain_uid used in Creating a Kubernetes Secret for the WDT Domain.

• <domain_namespace> is the OAM domain namespace.

• <domain_uid>-rcu-credentials is the name you want to create for the RCU secret for
this namespace.

Note:

The secret name must follow the format <domain_uid>-rcu-credentials or
domain creation will fail.

For example:

./create-secret.sh -l "rcu_prefix=OAMK8S" \
-l "rcu_schema_password=<password>" \
-l "db_host=mydatabasehost.example.com" \
-l "db_port=1521" \
-l "db_service=orcl.example.com" \
-l "dba_user=sys" \
-l "dba_password=<password>" \
-n oamns \
-d accessdomain \
-s accessdomain-rcu-credentials

The output will look similar to the following:

@@ Info: Setting up secret 'accessdomain-rcu-credentials'.
secret/accessdomain-rcu-credentials created
secret/accessdomain-rcu-credentials labeled

3. Verify the secret is created using the following command:

kubectl get secret <kubernetes_rcu_secret> -o yaml -n <domain_namespace>

For example:

kubectl get secrets -n oamns accessdomain-rcu-credentials -o yaml

The output will look similar to the following:

apiVersion: v1
data:
 db_host: <DB_HOST>
 db_port: MTUyMQ==
 db_service: <SERVICE_NAME>
 dba_password: <PASSWORD>
 dba_user: c3lz
 rcu_prefix: <RCU_PREFIX>
 rcu_schema_password: <RCU_PWD>
kind: Secret
metadata:

Chapter 7
Creating OAM Domains Using WDT Models

7-33

 creationTimestamp: "<DATE>"
 labels:
 weblogic.domainUID: accessdomain
 name: accessdomain-rcu-credentials
 namespace: oamns
 resourceVersion: "866948"
 uid: b5e3b4e0-9458-4413-a6ff-874e9af7511b
type: Opaque

7.2.3 Preparing the WDT Create Domain YAML File
Prepare the create-domain-wdt.yaml file by running the following commands:

1. Navigate to the $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/wdt-
utils/generate_models_utils directory:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/wdt-utils/
generate_models_utils

2. Make a copy of the create-domain-wdt.yaml file:

cp create-domain-wdt.yaml create-domain-wdt.yaml.orig

3. Edit the create-domain-wdt.yaml and modify the following parameters. Save the file when
complete:

appVersion: 14c
domainUID: <domain_uid>
domainHome: /u01/oracle/user_projects/domains/<domain_uid>
image: <image_name>:<tag>
imagePullSecretName: <container_registry_secret>
logHome: /u01/oracle/user_projects/domains/logs/<domain_uid>
namespace: <domain_namespace>
weblogicDomainStorageType: NFS
weblogicDomainStorageNFSServer: <nfs_server>
weblogicDomainStoragePath: <physical_path_of_persistent_storage>
weblogicDomainStorageSize: 10Gi

For example:

appVersion: 14c
domainUID: accessdomain
domainHome: /u01/oracle/user_projects/domains/accessdomain
image: container-registry.oracle.com/middleware/oam_cpu:14.1.2.1.0-jdk17-
ol8-<YYMMDD>
imagePullSecretName: orclcred
logHome: /u01/oracle/user_projects/domains/logs/accessdomain
namespace: oamns
weblogicDomainStorageType: NFS
weblogicDomainStorageNFSServer: mynfsserver
weblogicDomainStoragePath: /nfs_volumes/oam/accessdomainpv
weblogicDomainStorageSize: 10Gi

Chapter 7
Creating OAM Domains Using WDT Models

7-34

Note:

If using a shared file system instead of NFS, set weblogicDomainStorageType:
HOST_PATH and remove weblogicDomainStorageNFSServer.

A full list of parameters in the create-domain-wdt.yaml file are shown below:

Parameter Definition Default

adminPort Port number for the
Administration Server inside the
Kubernetes cluster.

7001

adminNodePort Port number of the Administration
Server outside the Kubernetes
cluster.

30701

configuredManagedServerCount Number of Managed Server
instances to generate for the
domain.

5

datasourceType Type of JDBC datasource
applicable for the OAM domain.
Legal values are agl and
generic. Choose agl for Active
GridLink datasource and
generic for Generic datasource.
For enterprise deployments,
Oracle recommends that you use
GridLink data sources to connect
to Oracle RAC databases. See
the Preparing an Existing
Database for an Enterprise
Deployment for further details.

generic

domainHome Home directory of the OAM
domain. If not specified, the value
is derived from the domainUID
as /shared/domains/
<domainUID>.

/u01/oracle/user_projects/
domains/accessdomain

domainPVMountPath Mount path of the domain
persistent volume.

/u01/oracle/user_projects/
domains

domainUID Unique ID that will be used to
identify this particular domain.
Used as the name of the
generated WebLogic domain as
well as the name of the
Kubernetes domain resource.
This ID must be unique across all
domains in a Kubernetes cluster.
This ID cannot contain any
character that is not valid in a
Kubernetes service name.

accessdomain

edgInstall Used only if performing an install
using the Enterprise Deployment
Guide.
See, Enterprise Deployment
Guide for Oracle Identity and
Access Management in a
Kubernetes Cluster

false

Chapter 7
Creating OAM Domains Using WDT Models

7-35

Parameter Definition Default

exposeAdminNodePort Boolean indicating if the
Administration Server is exposed
outside of the Kubernetes cluster.

false

exposeAdminT3Channel Boolean indicating if the T3
administrative channel is exposed
outside the Kubernetes cluster.

true

image OAM container image. The
operator requires OAM 14.1.2.
Refer to Obtaining the OAM
Container image for details on
how to obtain or create the
image.

oracle/oam:14.1.2.1.0

imagePullSecretName Name of the Kubernetes secret to
access the container registry to
pull the OAM container image.
The presence of the secret will be
validated when this parameter is
specified.

orclcred

initialManagedServerReplicas Number of Managed Servers to
initially start for the domain.

2

javaOptions Java options for starting the
Administration Server and
Managed Servers. A Java option
can have references to one or
more of the following pre-defined
variables to obtain WebLogic
domain information: $
(DOMAIN_NAME), $
(DOMAIN_HOME), $
(ADMIN_NAME), $
(ADMIN_PORT), and $
(SERVER_NAME).

-
Dweblogic.StdoutDebugEnabled=
false

logHome The in-pod location for the
domain log, server logs, server
out, and Node Manager log files.
If not specified, the value is
derived from the domainUID as /
shared/logs/<domainUID>.

/u01/oracle/user_projects/
domains/logs/accessdomain

namespace Kubernetes namespace in which
to create the domain.

oamns

oamCPU Initial CPU Units, 1000m = 1 CPU
core.

1000m

oamMaxCPU Max CPU a pod is allowed to
consume.

2

oamMemory Initial memory allocated to a pod. 4Gi

oamMaxMemory Max memory a pod is allowed to
consume.

8Gi

oamServerJavaParams The memory parameters to use
for the OAM managed servers.

"-Xms8192m -Xmx8192m"

productionModeEnabled Boolean indicating if production
mode is enabled for the domain.

true

Chapter 7
Creating OAM Domains Using WDT Models

7-36

Parameter Definition Default

t3PublicAddress Public address for the T3
channel. This should be set to the
public address of the Kubernetes
cluster. This would typically be a
load balancer address. For
development environments only:
In a single server (all-in-one)
Kubernetes deployment, this may
be set to the address of the
master, or at the very least, it
must be set to the address of one
of the worker nodes.

If not provided, the script will
attempt to set it to the IP address
of the Kubernetes cluster

weblogicDomainStorageType Persistent volume storage type.
Options are NFS for NFS volumes
or HOST_PATH for shared file
system.

NFS

weblogicDomainStorageNFSServ
er

Hostname or IP address of the
NFS Server.

nfsServer

weblogicDomainStoragePath Physical path to the persistent
volume.

/scratch/accessdomainpv

weblogicDomainStorageSize Total storage allocated to the
persistent storage.

10Gi

Note:

The above CPU and memory values are for examples only. For Enterprise
Deployments, please review the performance recommendations and sizing
requirements in Enterprise Deployment Guide for Oracle Identity and Access
Management in a Kubernetes Cluster.

7.2.4 Creating the WDT YAML files
Generate the required WDT models for the OAM domain, along with the domain resource yaml
files.

1. Navigate to the $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/wdt-
utils/generate_models_utils

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/wdt-utils/
generate_models_utils

2. Run the generate_wdt_models.sh, specifying your input file and an output directory to
store the generated artifacts:

./generate_wdt_models.sh -i create-domain-wdt.yaml -o
<path_to_output_directory>

For example:

./generate_wdt_models.sh -i create-domain-wdt.yaml -o output

Chapter 7
Creating OAM Domains Using WDT Models

7-37

The output will look similar to the following:

input parameters being used
export version="create-weblogic-sample-domain-inputs-v1"
export appVersion="14c"
export adminPort="7001"
export domainUID="accessdomain"
export configuredManagedServerCount="5"
export initialManagedServerReplicas="1"
export productionModeEnabled="true"
export t3ChannelPort="30012"
export datasourceType="generic"
export edgInstall="false"
export domainHome="/u01/oracle/user_projects/domains/accessdomain"
export image="container-registry.oracle.com/middleware/oam_cpu:14.1.2.1.0-
jdk17-ol8-<YYMMDD>"
export imagePullSecretName="orclcred"
export logHome="/u01/oracle/user_projects/domains/logs/accessdomain"
export exposeAdminT3Channel="false"
export adminNodePort="30701"
export exposeAdminNodePort="false"
export namespace="oamns"
javaOptions=-Dweblogic.StdoutDebugEnabled=false
export domainPVMountPath="/u01/oracle/user_projects"
export weblogicDomainStorageType="NFS"
export weblogicDomainStorageNFSServer="mynfsServer"
export weblogicDomainStoragePath="/nfs_volumes/oam/accessdomainpv"
export weblogicDomainStorageReclaimPolicy="Retain"
export weblogicDomainStorageSize="10Gi"
export oamServerJavaParams="-Xms8192m -Xmx8192m"
export oamMaxCPU="2"
export oamCPU="1000m"
export oamMaxMemory="8Gi"
export oamMemory="4Gi"

validateWlsDomainName called with accessdomain
WDT model file, property file and sample domain.yaml are genereted
successfully at output/weblogic-domains/accessdomain

Note:

This will generate the domain.yaml, oam.yaml and oam.properties in output/
weblogic-domains/accessdomain.

3. Copy the generated files to a $WORKDIR/yaml directory:

mkdir $WORKDIR/yaml

cp output/weblogic-domains/accessdomain/*.* $WORKDIR/yaml

Chapter 7
Creating OAM Domains Using WDT Models

7-38

7.2.5 Building the Domain Creation Image
You must build a domain creation image to host the WebLogic Deploy Tooling (WDT) model
files and (WDT) installer.

Domain creation images are used for deploying a domain using a Domain on PV model. The
domain creation image contains:

• WDT model files

• WDT variables files

• WDT application archive files (collectively known as WDT model files)

• The directory where the WebLogic Deploy Tooling software is installed (known as the WDT
Home),

You distribute WDT model files and the WDT executable using these images, and the
WebLogic Kubernetes Operator uses them to manage the domain.

Note:

These images are only used for creating the domain and will not be used to update
the domain. The domain creation image is used for domain creation only, it is not the
product container image used for Oracle Access Management (OAM).

The steps to build the domain creation image are shown in the sections below.

Prerequisites

Verify that your environment meets the following prerequisites:

• You have created the domain YAML files are per Creating the WDT YAML files.

• A container image client on the build machine, such as Docker or Podman:

– For Docker, a minimum version of 18.03.1.ce is required.

– For Podman, a minimum version of 3.0.1 is required.

• An installed version of JDK to run Image Tool, version 8+.

• Proxies are set accordingly at the OS level if required.

Preparing the Build Domain Image Script

1. Navigate to the $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/wdt-
utils/build-domain-creation-image/properties directory:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/wdt-utils/
build-domain-creation-image/properties

2. Make a copy of the build-domain-creation-image.properties:

cp build-domain-creation-image.properties build-domain-creation-
image.properties.orig

Chapter 7
Creating OAM Domains Using WDT Models

7-39

3. Edit the build-domain-creation-image.properties and modify the following parameters.
Save the file when complete:

JAVA_HOME=<Java home location>
IMAGE_TAG=<Image tag name>
REPOSITORY= <Container image repository to push the image>
REG_USER= <Container registry username>
IMAGE_PUSH_REQUIRES_AUTH=<Whether image push requires authentication to
the registry>
WDT_MODEL_FILE=<Full Path to WDT Model file oam.yaml>
WDT_VARIABLE_FILE=<Full path to WDT variable file oam.properties>
WDT_ARCHIVE_FILE=<Full Path to WDT Archive file>
WDT_VERSION="Version of WebLogic Deploy Tool version to use"
WIT_VERSION="Version of WebLogic Image Tool to use"

For example:

JAVA_HOME=/scratch/jdk
IMAGE_TAG=oam-aux-generic-v1
BASE_IMAGE=ghcr.io/oracle/oraclelinux:8-slim
REPOSITORY=container-registry.example.com/mytenancy/idm
REG_USER=mytenancy/myemail@example.com
IMAGE_PUSH_REQUIRES_AUTH=true
WDT_MODEL_FILE="/OAMK8S/fmw-kubernetes/OracleAccessManagement/yaml/
oam.yaml"
WDT_VARIABLE_FILE="/OAMK8S/fmw-kubernetes/OracleAccessManagement/yaml/
oam.properties"
WDT_ARCHIVE_FILE=""
WDT_VERSION="4.2.0"
WIT_VERSION="1.14.3"

A full list of parameters and descriptions in the build-domain-creation-
image.properties file are shown below:

Parameter Definition Default

JAVA_HOME Path to the JAVA_HOME for the
JDK8+.

/scratch/jdk/jdk1.8.0_351

IMAGE_TAG Image tag for the final domain
creation image.

oam-aux-generic-v1

BASE_IMAGE The Oracle Linux product
container image to use as a
base image.

ghcr.io/oracle/oraclelinux:8-slim

REPOSITORY Container image repository that
will host the domain creation
image.

iad.ocir.io/mytenancy/idm

REG_USER Username to authenticate to the
<REGISTRY> and push the
domain creation image.

mytenancy/
oracleidentitycloudservice/
myemail@example.com

IMAGE_PUSH_REQUIRES_AU
TH

If authentication to <REGISTRY>
is required then set to true, else
set to false. If set to false,
<REG_USER> is not required.

true

Chapter 7
Creating OAM Domains Using WDT Models

7-40

Parameter Definition Default

WDT_MODEL_FILE Absolute path to WDT model file
oam.yaml. For
example $WORKDIR/yaml/
oam.yaml.

/scratch/model/oam.yaml

WDT_MODEL_FILE Absolute path to WDT variable
file oam.properties. For
example $WORKDIR/yaml/
oam.properties.

/scratch/model/oam.properties

WDT_ARCHIVE_FILE Absolute path to WDT archive
file.

WDT_VERSION WebLogic Deploy Tool version.
If not specified the latest
available version will be
downloaded. It is recommended
to use the default value.

4.2.0

WIT_VERSION WebLogic Image Tool Version. If
not specified the latest available
version will be downloaded. It is
recommended to use the default
value.

1.14.3

TARGET Select the target environment in
which the created image will be
used. Supported values: Default
or OpenShift. See Additional
Information.

Default

CHOWN userid:groupid to be used for
creating files within the image,
such as the WDT installer, WDT
model, and WDT archive. If the
user or group does not exist in
the image, they will be added
with useradd/groupadd.

oracle:oracle

Note:

If IMAGE_PUSH_REQUIRES_AUTH=true, you must edit the $WORKDIR/kubernetes/
create-access-domain/domain-home-on-pv/wdt-utils/build-domain-
creation-image/properties/.regpassword and change <REGISTRY_PASSWORD>
to your registry password:

REG_PASSWORD="<REGISTRY_PASSWORD>"

Running the build-domain-creation-image Script

1. Navigate to the $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/wdt-
utils/build-domain-creation-image directory:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/wdt-utils/
build-domain-creation-image

Chapter 7
Creating OAM Domains Using WDT Models

7-41

2. Execute the build-domain-creation-image.sh by specifying the input properties
parameter files. Executing this command will build the image and push it to the container
registry :

./build-domain-creation-image.sh -i properties/build-domain-creation-
image.properties

Note:

Administrators should be aware of the following:

• If using a password file, you must add the following to the end of the
command:

-p properties/.regpassword

• You can use the same domain creation image to create a domain in multiple
environments, based on your need. You do not need to rebuild it every time
during domain creation. This is a one time activity.

The output will look similar to the following:

using WDT_DIR: /OAMK8S/fmw-kubernetes/OracleAccessManagement/kubernetes/
create-access-domain/domain-home-on-pv/wdt-utils/build-domain-creation-
image/workdir
Using WDT_VERSION 4.2.0
Using WIT_DIR /OAMK8S/fmw-kubernetes/OracleAccessManagement/kubernetes/
create-access-domain/domain-home-on-pv/wdt-utils/build-domain-creation-
image/workdir
Using WIT_VERSION 1.14.3
Using Image tag: oam-aux-generic-v1
using Base Image: ghcr.io/oracle/oraclelinux:8-slim
using IMAGE_BUILDER_EXE /usr/bin/podman
JAVA_HOME is set to /scratch/jdk
@@ Info: WIT_INSTALL_ZIP_URL is ''
@@ WIT_INSTALL_ZIP_URL is not set
@@ imagetool.sh not found in /OAMK8S/fmw-kubernetes/OracleAccessManagement/
kubernetes/create-access-domain/domain-home-on-pv/wdt-utils/build-domain-
creation-image/workdir/imagetool/bin. Installing imagetool...
@@ Info: Downloading https://github.com/oracle/weblogic-image-tool/
releases/download/release-1.14.3/imagetool.zip
@@ Info: Downloading https://github.com/oracle/weblogic-image-tool/
releases/download/release-1.14.3/imagetool.zip with https_proxy="http://
proxy.example.com:80"
@@ Info: Archive downloaded to /OAMK8S/fmw-kubernetes/
OracleAccessManagement/kubernetes/create-access-domain/domain-home-on-pv/
wdt-utils/build-domain-creation-image/workdir/imagetool.zip, about to
unzip via '/home/opc/jdk/bin/jar xf'.
@@ Info: imageTool cache does not contain a valid entry for wdt_4.2.0.
Installing WDT
@@ Info: WDT_INSTALL_ZIP_URL is ''
@@ WDT_INSTALL_ZIP_URL is not set
@@ Info: Downloading https://github.com/oracle/weblogic-deploy-tooling/

Chapter 7
Creating OAM Domains Using WDT Models

7-42

releases/download/release-4.2.0/weblogic-deploy.zip
@@ Info: Downloading https://github.com/oracle/weblogic-deploy-tooling/
releases/download/release-4.2.0/weblogic-deploy.zip with
https_proxy="http://proxy.example.com:80"
@@ Info: Archive downloaded to /OAMK8S/fmw-kubernetes/
OracleAccessManagement/kubernetes/create-access-domain/domain-home-on-pv/
wdt-utils/build-domain-creation-image/workdir/weblogic-deploy.zip
[INFO] Successfully added to cache. wdt_4.2.0=/OAMK8S/fmw-kubernetes/
OracleAccessManagement/kubernetes/create-access-domain/domain-home-on-pv/
wdt-utils/build-domain-creation-image/workdir/weblogic-deploy.zip
@@ Info: Install succeeded, imagetool install is in the /OAMK8S/fmw-
kubernetes/OracleAccessManagement/kubernetes/create-access-domain/domain-
home-on-pv/wdt-utils/build-domain-creation-image/workdir/imagetool
directory.
Starting Building Image registry.example.com/mytenancy/idm:oam-aux-generic-
v1
 Login Succeeded!
WDT_MODEL_FILE is set to /OAMK8S/fmw-kubernetes/OracleAccessManagement/
yaml/oam.yaml
WDT_VARIABLE_FILE is set to /OAMK8S/fmw-kubernetes/OracleAccessManagement/
yaml/oam.properties
Additional Build Commands file is set to /OAMK8S/fmw-kubernetes/
OracleAccessManagement/kubernetes/create-access-domain/domain-home-on-pv/
wdt-utils/build-domain-creation-image/additonal-build-files/build-files.txt
Additonal Build file is set to /OAMK8S/fmw-kubernetes/
OracleAccessManagement/kubernetes/create-access-domain/domain-home-on-pv/
wdt-utils/build-domain-creation-image/additonal-build-files/OAM.json
[INFO] WebLogic Image Tool version 1.14.3
[INFO] Image Tool build ID: 0c9aa58f-808b-4707-a11a-7766fb301cbb
[INFO] Temporary directory used for image build context: /home/oracle/
wlsimgbuilder_temp1198331326550546381
[INFO] Copying /OAMK8S/fmw-kubernetes/OracleAccessManagement/kubernetes/
create-access-domain/domain-home-on-pv/wdt-utils/build-domain-creation-
image/additonal-build-files/OAM.json to build context folder.
[INFO] User specified fromImage ghcr.io/oracle/oraclelinux:8-slim
[INFO] Inspecting ghcr.io/oracle/oraclelinux:8-slim, this may take a
few minutes if the image is not available locally.
[INFO] Copying /OAMK8S/fmw-kubernetes/OracleAccessManagement/yaml/
oam.yaml to build context folder.
[INFO] Copying /OAMK8S/fmw-kubernetes/OracleAccessManagement/yaml/
oam.properties to build context folder.
[INFO] Copying /OAMK8S/fmw-kubernetes/OracleAccessManagement/kubernetes/
create-access-domain/domain-home-on-pv/wdt-utils/build-domain-creation-
image/workdir/weblogic-deploy.zip to build context folder.
[INFO] Starting build: /usr/bin/podman build --no-cache --force-rm --
tag registry.example.com/mytenancy/idm:oam-aux-generic-v1 --pull --build-
arg http_proxy=http://proxy.example.com:80 --build-arg https_proxy=http://
proxy.example.com:80 --build-arg
no_proxy=localhost,127.0.0.0/8,.example.com,,/var/run/crio/
crio.sock,X.X.X.X /home/oracle/wlsimgbuilder_temp1198331326550546381
[1/3] STEP 1/5: FROM ghcr.io/oracle/oraclelinux:8-slim AS os_update
[1/3] STEP 2/5: LABEL
com.oracle.weblogic.imagetool.buildid="0c9aa58f-808b-4707-
a11a-7766fb301cbb"
--> ba91c351bf94
[1/3] STEP 3/5: USER root

Chapter 7
Creating OAM Domains Using WDT Models

7-43

--> d8f89c65892a
[1/3] STEP 4/5: RUN microdnf update && microdnf install gzip tar unzip
libaio libnsl jq findutils diffutils shadow-utils && microdnf clean all
Downloading metadata...
Downloading metadata...
Package Repository Size
Upgrading:
 libgcc-8.5.0-20.0.3.el8.x86_64 ol8_baseos_latest 93.4 kB
 replacing libgcc-8.5.0-20.0.2.el8.x86_64
 libstdc++-8.5.0-20.0.3.el8.x86_64 ol8_baseos_latest 474.6 kB
 replacing libstdc++-8.5.0-20.0.2.el8.x86_64
 systemd-libs-239-78.0.4.el8.x86_64 ol8_baseos_latest 1.2 MB
 replacing systemd-libs-239-78.0.3.el8.x86_64
Transaction Summary:
 Installing: 0 packages
 Reinstalling: 0 packages
 Upgrading: 3 packages
 Obsoleting: 0 packages
 Removing: 0 packages
 Downgrading: 0 packages
Downloading packages...
Running transaction test...
Updating: libgcc;8.5.0-20.0.3.el8;x86_64;ol8_baseos_latest
Updating: libstdc++;8.5.0-20.0.3.el8;x86_64;ol8_baseos_latest
Updating: systemd-libs;239-78.0.4.el8;x86_64;ol8_baseos_latest
Cleanup: libstdc++;8.5.0-20.0.2.el8;x86_64;installed
Cleanup: systemd-libs;239-78.0.3.el8;x86_64;installed
Cleanup: libgcc;8.5.0-20.0.2.el8;x86_64;installed
Complete.
Package Repository Size
Installing:
 diffutils-3.6-6.el8.x86_64 ol8_baseos_latest 369.3 kB
 findutils-1:4.6.0-21.el8.x86_64 ol8_baseos_latest 539.8 kB
 gzip-1.9-13.el8_5.x86_64 ol8_baseos_latest 170.7 kB
 jq-1.6-7.0.3.el8.x86_64 ol8_appstream 206.5 kB
 libaio-0.3.112-1.el8.x86_64 ol8_baseos_latest 33.4 kB
 libnsl-2.28-236.0.1.el8.7.x86_64 ol8_baseos_latest 111.4 kB
 oniguruma-6.8.2-2.1.el8_9.x86_64 ol8_appstream 191.5 kB
 unzip-6.0-46.0.1.el8.x86_64 ol8_baseos_latest 201.0 kB
Transaction Summary:
Installing: 8 packages
 Reinstalling: 0 packages
 Upgrading: 0 packages
 Obsoleting: 0 packages
 Removing: 0 packages
 Downgrading: 0 packages
Downloading packages...
Running transaction test...
Installing: oniguruma;6.8.2-2.1.el8_9;x86_64;ol8_appstream
Installing: jq;1.6-7.0.3.el8;x86_64;ol8_appstream
Installing: unzip;6.0-46.0.1.el8;x86_64;ol8_baseos_latest
Installing: libnsl;2.28-236.0.1.el8.7;x86_64;ol8_baseos_latest
Installing: libaio;0.3.112-1.el8;x86_64;ol8_baseos_latest
Installing: gzip;1.9-13.el8_5;x86_64;ol8_baseos_latest
Installing: findutils;1:4.6.0-21.el8;x86_64;ol8_baseos_latest
Installing: diffutils;3.6-6.el8;x86_64;ol8_baseos_latest

Chapter 7
Creating OAM Domains Using WDT Models

7-44

Complete.
Complete.
--> 73fb79fa40b2
[1/3] STEP 5/5: RUN if [-z "$(getent group oracle)"]; then groupadd
oracle || exit 1 ; fi && if [-z "$(getent group oracle)"]; then
groupadd oracle || exit 1 ; fi && if [-z "$(getent passwd oracle)"];
then useradd -g oracle oracle || exit 1; fi && mkdir -p /u01 && chown
oracle:oracle /u01 && chmod 775 /u01
--> ff6cf74351d1
[2/3] STEP 1/4: FROM
ff6cf74351d1e0124121321174eaa64ebefa0bc3eef80ec88caec12feb9e8fb3 AS
wdt_build
[2/3] STEP 2/4: RUN mkdir -p /auxiliary && mkdir -p /auxiliary/models &&
chown oracle:oracle /auxiliary
--> a061b678fa0a
[2/3] STEP 3/4: COPY --chown=oracle:oracle ["weblogic-deploy.zip", "/tmp/
imagetool/"]
--> 3daccfef2f06
[2/3] STEP 4/4: RUN test -d /auxiliary/weblogic-deploy && rm -rf /
auxiliary/weblogic-deploy || echo Initial WDT install && unzip -q
"/tmp/imagetool/weblogic-deploy.zip" -d /auxiliary
Initial WDT install
--> b77b02f66a83
[3/3] STEP 1/12: FROM
ff6cf74351d1e0124121321174eaa64ebefa0bc3eef80ec88caec12feb9e8fb3 AS final
[3/3] STEP 2/12: ENV AUXILIARY_IMAGE_PATH=/auxiliary WDT_HOME=/
auxiliary WDT_MODEL_HOME=/auxiliary/models
--> 10dc1832266f
[3/3] STEP 3/12: RUN mkdir -p /auxiliary && chown oracle:oracle /auxiliary
--> 0b85f8e7399a
[3/3] STEP 4/12: COPY --from=wdt_build --chown=oracle:oracle /auxiliary /
auxiliary/
--> c64bf2bef430
[3/3] STEP 5/12: RUN mkdir -p /auxiliary/models && chown oracle:oracle /
auxiliary/models
--> d8817f84ab58
[3/3] STEP 6/12: COPY --chown=oracle:oracle ["oam.yaml", "/auxiliary/
models/"]
--> 45b1d25264b9
[3/3] STEP 7/12: COPY --chown=oracle:oracle ["oam.properties", "/auxiliary/
models/"]
--> 2ceba77ee226
[3/3] STEP 8/12: RUN chmod -R 640 /auxiliary/models/*
--> 34385bac7974
[3/3] STEP 9/12: USER oracle
--> 409f6e3ccce4
[3/3] STEP 10/12: WORKDIR /auxiliary
--> aaa2f154f512
[3/3] STEP 11/12: COPY --chown=oracle:oracle files/OAM.json /auxiliary/
weblogic-deploy/lib/typedefs
--> c8a9d29106d3
[3/3] STEP 12/12: RUN chmod -R 755 /auxiliary
[3/3] COMMIT registry.example.com/mytenancy/idm:oam-aux-generic-v1
--> 0797418499a1
Successfully tagged registry.example.com/mytenancy/idm:oam-aux-generic-v1
0797418499a1dfd6d2a28672948c17ed747291ad069cebca5fac1b0410978d75

Chapter 7
Creating OAM Domains Using WDT Models

7-45

[INFO] Build successful. Build time=72s. Image tag=registry.example.com/
mytenancy/idm:oam-aux-generic-v1
Getting image source signatures
 Copying blob 462ffb36555c done
Copying blob 3db4d3748983 done
Copying blob 7e9f3f6c7a0a done
Copying blob 32aa5f13e19b done
Copying blob d979da323f64 done
Copying blob f18b9e5f415f done
Copying blob aaaea7c1392f done
Copying blob 5504fa641a87 done
Copying blob 5aa81493c602 done
Copying blob f56f992ba90d done
Copying blob 2b1e0644fbd3 done
Copying config a39dc6ae7f done
Writing manifest to image destination
Pushed image registry.example.com/mytenancy/idm/oam-aux-generic-v1 to
image registry Docker Hub

7.2.6 Deploying the WDT OAM Domain
You must modify the Oracle Access Management (OAM) domain.yaml and deploy the OAM
domain using the build image created.

Modify the OAM domain.yaml

1. Edit the $WORKDIR/yaml/domain.yaml and update the %DOMAIN_CREATION_IMAGE% with the
previously generated image name:

Note:

%DOMAIN_CREATION_IMAGE% takes the format of <REPOSITORY>:<TAG>.

domain:
 # Domain | DomainAndRCU
 createIfNotExists: DomainAndRCU
 # Image containing WDT installer and Model files.
 domainCreationImages:
 - image: '%DOMAIN_CREATION_IMAGE%'
 domainType: OAM

For example:

domain:
 # Domain | DomainAndRCU
 createIfNotExists: DomainAndRCU
 # Image containing WDT installer and Model files.
 domainCreationImages:
 - image: 'container-registry.example.com/mytenancy/idm:oam-aux-
generic-v1'
 domainType: OAM

Chapter 7
Creating OAM Domains Using WDT Models

7-46

2. In circumstances where you may be pulling the OAM product container image from Oracle
Container Registry, and then the domain image from a private registry, you must first
create a secret (privatecred) for the private registry. For example:

kubectl create secret docker-registry "privatecred" --docker-
server=container-registry.example.com \
--docker-username="user@example.com" \
--docker-password=password --docker-email=user@example.com \
--namespace=oamns

Then specify both secrets for imagePullSecrets in the domain.yaml. For example:

 ...
spec:
 # The WebLogic Domain Home
 domainHome: /u01/oracle/user_projects/domains/accessdomain

 # The domain home source type
 # Set to PersistentVolume for domain-in-pv, Image for domain-in-image,
or FromModel for model-in-image
 domainHomeSourceType: PersistentVolume

 # The WebLogic Server image that the Operator uses to start the domain
 image: "container-registry.oracle.com/middleware/oam_cpu:14.1.2.1.0-
jdk17-ol8-<YYMMDD>"

 # imagePullPolicy defaults to "Always" if image version is :latest
 imagePullPolicy: IfNotPresent

 imagePullSecrets:
 - name: orclcred
 - name: privatecred
 # Identify which Secret contains the WebLogic Admin credentials
...

For more information about the configuration parameters in domain.yaml, see Domain
Resources.

A sample domain.yaml is shown below:

Copyright (c) 2024, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://
oss.oracle.com/licenses/upl.
#
This is an example of how to define an OAM Domain. For details about the
fields in domain specification, refer https://oracle.github.io/weblogic-
kubernetes-operator/managing-domains/domain-resource/
#
apiVersion: "weblogic.oracle/v9"
kind: Domain
metadata:
 name: accessdomain
 namespace: oamns
 labels:
 weblogic.domainUID: accessdomain

Chapter 7
Creating OAM Domains Using WDT Models

7-47

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-resource/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-resource/

spec:
 # The WebLogic Domain Home
 domainHome: /u01/oracle/user_projects/domains/accessdomain

 # The domain home source type
 # Set to PersistentVolume for domain-in-pv, Image for domain-in-image, or
FromModel for model-in-image
 domainHomeSourceType: PersistentVolume

 # The WebLogic Server image that the Operator uses to start the domain
 image: "container-registry.oracle.com/middleware/oam_cpu:14.1.2.1.0-jdk17-
ol8-<YYMMDD>"

 # imagePullPolicy defaults to "Always" if image version is :latest
 imagePullPolicy: IfNotPresent

 # Add additional secret name if you are using a different registry for
domain creation image.
 # Identify which Secret contains the credentials for pulling an image
 imagePullSecrets:
 - name: orclcred
 - name: privatecred
 # Identify which Secret contains the WebLogic Admin credentials
 webLogicCredentialsSecret:
 name: accessdomain-weblogic-credentials

 # Whether to include the server out file into the pod's stdout, default is
true
 includeServerOutInPodLog: true

 # Whether to enable log home
 logHomeEnabled: true

 # Whether to write HTTP access log file to log home
 httpAccessLogInLogHome: true

 # The in-pod location for domain log, server logs, server out, introspector
out, and Node Manager log files
 logHome: /u01/oracle/user_projects/domains/logs/accessdomain
 # An (optional) in-pod location for data storage of default and custom file
stores.
 # If not specified or the value is either not set or empty (e.g. dataHome:
"") then the
 # data storage directories are determined from the WebLogic domain home
configuration.
 dataHome: ""

 # serverStartPolicy legal values are "Never, "IfNeeded", or "AdminOnly"
 # This determines which WebLogic Servers the Operator will start up when it
discovers this Domain
 # - "Never" will not start any server in the domain
 # - "AdminOnly" will start up only the administration server (no managed
servers will be started)
 # - "IfNeeded" will start all non-clustered servers, including the
administration server and clustered servers up to the replica count
 serverStartPolicy: IfNeeded

Chapter 7
Creating OAM Domains Using WDT Models

7-48

 serverPod:
 initContainers:
 #DO NOT CHANGE THE NAME OF THIS INIT CONTAINER
 - name: compat-connector-init
 # OAM Product image, same as spec.image mentioned above
 image: "container-registry.oracle.com/middleware/oam_cpu:14.1.2.1.0-
jdk17-ol8-<YYMMDD>"
 imagePullPolicy: IfNotPresent
 command: ["/bin/bash", "-c", "mkdir -p /u01/oracle/user_projects/
domains/wdt-logs"]
 volumeMounts:
 - mountPath: /u01/oracle/user_projects
 name: weblogic-domain-storage-volume
 # a mandatory list of environment variable to be set on the servers
 env:
 - name: JAVA_OPTIONS
 value: -Dweblogic.StdoutDebugEnabled=false
 - name: USER_MEM_ARGS
 value: "-Djava.security.egd=file:/dev/./urandom -Xms256m -Xmx1024m "
 - name: WLSDEPLOY_LOG_DIRECTORY
 value: "/u01/oracle/user_projects/domains/wdt-logs"
 - name: WLSDEPLOY_PROPERTIES
 value: "-Dwdt.config.disable.rcu.drop.schema=true"
 volumes:
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: accessdomain-domain-pvc
 volumeMounts:
 - mountPath: /u01/oracle/user_projects
 name: weblogic-domain-storage-volume

 # adminServer is used to configure the desired behavior for starting the
administration server.
 adminServer:
 # adminService:
 # channels:
 # The Admin Server's NodePort
 # - channelName: default
 # nodePort: 30701
 # Uncomment to export the T3Channel as a service
 # - channelName: T3Channel
 serverPod:
 # an (optional) list of environment variable to be set on the admin
servers
 env:
 - name: USER_MEM_ARGS
 value: "-Djava.security.egd=file:/dev/./urandom -Xms512m -Xmx1024m "
 - name: CLASSPATH
 value: "/u01/oracle/wlserver/server/lib/weblogic.jar"

 configuration:
 secrets: [accessdomain-rcu-credentials]
 initializeDomainOnPV:
 persistentVolume:
 metadata:

Chapter 7
Creating OAM Domains Using WDT Models

7-49

 name: accessdomain-domain-pv
 spec:
 storageClassName: accessdomain-domain-storage-class
 capacity:
 # Total storage allocated to the persistent storage.
 storage: 10Gi
 # Reclaim policy of the persistent storage
 # # The valid values are: 'Retain', 'Delete', and 'Recycle'
 persistentVolumeReclaimPolicy: Retain
 # Persistent volume type for the persistent storage.
 # # The value must be 'hostPath' or 'nfs'.
 # # If using 'nfs', server must be specified.
 nfs:
 server: mynfserver
 # hostPath:
 path: "/nfs_volumes/oam/accessdomainpv"
 persistentVolumeClaim:
 metadata:
 name: accessdomain-domain-pvc
 spec:
 storageClassName: accessdomain-domain-storage-class
 resources:
 requests:
 storage: 10Gi
 volumeName: accessdomain-domain-pv
 domain:
 # Domain | DomainAndRCU
 createIfNotExists: DomainAndRCU
 # Image containing WDT installer and Model files.
 domainCreationImages:
 - image: 'container-registry.example.com/mytenancy/idm:oam-
aux-generic-v1'
 domainType: OAM
 # References to Cluster resources that describe the lifecycle options for
all
 # the Managed Server members of a WebLogic cluster, including Java
 # options, environment variables, additional Pod content, and the ability to
 # explicitly start, stop, or restart cluster members. The Cluster resource
 # must describe a cluster that already exists in the WebLogic domain
 # configuration.
 clusters:
 - name: accessdomain-oam-cluster
 - name: accessdomain-policy-cluster

 # The number of managed servers to start for unlisted clusters
 # replicas: 1

This is an example of how to define a Cluster resource.
apiVersion: weblogic.oracle/v1
kind: Cluster
metadata:
 name: accessdomain-oam-cluster
 namespace: oamns
spec:
 clusterName: oam_cluster

Chapter 7
Creating OAM Domains Using WDT Models

7-50

 serverService:
 precreateService: true
 replicas: 1
 serverPod:
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: "-XX:+UseContainerSupport -Djava.security.egd=file:/dev/./
urandom -Xms8192m -Xmx8192m "
 resources:
 limits:
 cpu: "2"
 memory: "8Gi"
 requests:
 cpu: "1000m"
 memory: "4Gi"

This is an example of how to define a Cluster resource.
apiVersion: weblogic.oracle/v1
kind: Cluster
metadata:
 name: accessdomain-policy-cluster
 namespace: oamns
spec:
 clusterName: policy_cluster
 serverService:
 precreateService: true
 replicas: 1

Optional WDT Models ConfigMap

If required, you can provide a Kubernetes ConfigMap with additional WDT models and WDT
variables files as supplements, or overrides, to those in domainCreationImages.

For example in the output/weblogic-domains/accessdomain/domain.yaml:

 domain:
 ...
 domainCreationImages:
 ...
 domainCreationConfigMap: mymodel-domain-configmap

The files inside domainCreationConfigMap must have file extensions, .yaml, .properties,
or .zip.

To create a configmap run the following commands:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/wdt-utils

./create-configmap.sh -n oamns -d accessdomain -c mymodel-domain-configmap -f
wdt_models/mymodel.yaml

Chapter 7
Creating OAM Domains Using WDT Models

7-51

For more information on the usage of additional configuration, see Optional WDT models
ConfigMap.

Deploying the OAM Domain

Deploy the OAM domain using the domain.yaml:

1. Run the following command to create OAM domain resources:

kubectl create -f $WORKDIR/yaml/domain.yaml

The following steps will be performed by WebLogic Kubernetes Operator:

• Run the introspector job.

• The introspection job will create the RCU Schemas.

• The introspector job pod will create the domain on PV using the model provided in the
domain creation image.

• The introspector job pod will execute OAM offline configuration actions post successful
creation of domain via WDT.

• Brings up the Administration Server, OAM Managed Server (oam_server1), and the
OAM Policy Managed Server (oam_policy_mgr1).

The output will look similar to the following:

domain.weblogic.oracle/accessdomain created
cluster.weblogic.oracle/accessdomain-oam-cluster created
cluster.weblogic.oracle/accessdomain-policy-cluster created

Whilst the domain creation is running, you can run the following command to monitor the
progress:

kubectl get pods -n <domain_namespace> -w

Note:

The -w flag allows you watch the status of the pods as they change.

For example:

kubectl get pods -n oamns -w

You can also tail the logs for the pods by running:

kubectl logs -f <pod> -n oamns

Note:

WDT specific logs can be found in <persistent_volume>/domains/wdt-logs.

Chapter 7
Creating OAM Domains Using WDT Models

7-52

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/usage/#optional-wdt-models-configmap
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/usage/#optional-wdt-models-configmap

2. Once everything is started, you should see the Administration Server and OAM servers are
running:

NAME READY STATUS RESTARTS AGE
accessdomain-adminserver 1/1 Running 0 11m
accessdomain-oam-policy-mgr1 1/1 Running 0 3m53s
accessdomain-oam-server1 1/1 Running 0 3m53s

If there are any failures, follow Domain Creation Failure with WDT Models in Known
Issues.

7.2.7 Verifying the WDT OAM Deployment
Verifying the Domain, Pods and Services

Verify the domain, servers pods and services are created and in the READY state with a status
of 1/1, by running the following command:

kubectl get all,domains -n <domain_namespace>

For example:

kubectl get all,domains -n oamns

The output will look similar to the following:

NAME READY STATUS RESTARTS AGE
pod/accessdomain-adminserver 1/1 Running 0 12m
pod/accessdomain-oam-policy-mgr1 1/1 Running 0 4m19s
pod/accessdomain-oam-server1 1/1 Running 0 4m19s

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
service/accessdomain-adminserver ClusterIP None
<none> 7001/TCP 12m
service/accessdomain-cluster-oam-cluster ClusterIP 10.104.17.83
<none> 14100/TCP 4m19s
service/accessdomain-cluster-policy-cluster ClusterIP 10.98.157.157
<none> 15100/TCP 4m19s
service/accessdomain-oam-policy-mgr1 ClusterIP None
<none> 15100/TCP 4m19s
service/accessdomain-oam-policy-mgr2 ClusterIP 10.101.141.238
<none> 15100/TCP 4m19s
service/accessdomain-oam-policy-mgr3 ClusterIP 10.107.167.143
<none> 15100/TCP 4m19s
service/accessdomain-oam-policy-mgr4 ClusterIP 10.106.100.191
<none> 15100/TCP 4m19s
service/accessdomain-oam-policy-mgr5 ClusterIP 10.105.5.126
<none> 15100/TCP 4m19s
service/accessdomain-oam-server1 ClusterIP None
<none> 14100/TCP 4m19s
service/accessdomain-oam-server2 ClusterIP 10.98.248.74
<none> 14100/TCP 4m19s

Chapter 7
Creating OAM Domains Using WDT Models

7-53

service/accessdomain-oam-server3 ClusterIP 10.106.224.54
<none> 14100/TCP 4m19s
service/accessdomain-oam-server4 ClusterIP 10.104.241.109
<none> 14100/TCP 4m19s
service/accessdomain-oam-server5 ClusterIP 10.96.189.205
<none> 14100/TCP 4m19s

NAME AGE
domain.weblogic.oracle/accessdomain 18m

NAME AGE
cluster.weblogic.oracle/accessdomain-oam-cluster 18m
cluster.weblogic.oracle/accessdomain-policy-cluster 18m

The default domain created by the script has the following characteristics:

• An Administration Server named AdminServer listening on port 7001.

• A configured OAM cluster named oam_cluster of size 5.

• A configured Policy Manager cluster named policy_cluster of size 5.

• One started OAM Managed Server, named oam_server1, listening on port 14100.

• One started Policy Manager Managed Servers named oam-policy-mgr1, listening on port
15100.

• Log files that are located in <persistent_volume>/logs/<domainUID>.

If the OAM deployment fails refer to Domain Creation Failure with WDT Models in Known
Issues.

Verifying the Domain

Run the following command to describe the domain:

kubectl describe domain <domain_uid> -n <domain_namespace>

For example:

kubectl describe domain accessdomain -n oamns

The output will look similar to the following:

Name: accessdomain
Namespace: oamns
Labels: weblogic.domainUID=accessdomain
Annotations: <none>
API Version: weblogic.oracle/v9
Kind: Domain
Metadata:
 Creation Timestamp: <DATE>
 Generation: 1
 Resource Version: 2930591
 UID: 7eafcfd3-f0f3-436d-a1f0-87c31f042d62
Spec:
 Admin Server:

Chapter 7
Creating OAM Domains Using WDT Models

7-54

 Admin Channel Port Forwarding Enabled: true
 Server Pod:
 Env:
 Name: USER_MEM_ARGS
 Value: -Djava.security.egd=file:/dev/./urandom -Xms512m -
Xmx1024m
 Name: CLASSPATH
 Value: /u01/oracle/wlserver/server/lib/weblogic.jar
 Server Start Policy: IfNeeded
 Clusters:
 Name: accessdomain-oam-cluster
 Name: accessdomain-policy-cluster
 Configuration:
 Initialize Domain On PV:
 Domain:
 Create If Not Exists: DomainAndRCU
 Domain Creation Images:
 Image: container-registry.example.com/mytenancy/idm:oam-aux-
generic-v1
 Domain Type: OAM
 Persistent Volume:
 Metadata:
 Name: accessdomain-domain-pv
 Spec:
 Capacity:
 Storage: 10Gi
 Nfs:
 Path: /<NFS_PATH>/accessdomainpv
 Server: <NFS_SERVER>
 Persistent Volume Reclaim Policy: Retain
 Storage Class Name: accessdomain-domain-storage-class
 Persistent Volume Claim:
 Metadata:
 Name: accessdomain-domain-pvc
 Spec:
 Resources:
 Requests:
 Storage: 10Gi
 Storage Class Name: accessdomain-domain-storage-class
 Volume Name: accessdomain-domain-pv
 Override Distribution Strategy: Dynamic
 Secrets:
 accessdomain-rcu-credentials
 Data Home:
 Domain Home: /u01/oracle/user_projects/domains/
accessdomain
 Domain Home Source Type: PersistentVolume
 Failure Retry Interval Seconds: 120
 Failure Retry Limit Minutes: 1440
 Http Access Log In Log Home: true
 Image: container-registry.oracle.com/middleware/
oam_cpu:14.1.2.1.0-jdk17-ol8-<DDMMYY>
 Image Pull Policy: IfNotPresent
 Image Pull Secrets:
 Name: orclcred
 Include Server Out In Pod Log: true

Chapter 7
Creating OAM Domains Using WDT Models

7-55

 Log Home: /u01/oracle/user_projects/domains/logs/
accessdomain
 Log Home Enabled: true
 Max Cluster Concurrent Shutdown: 1
 Max Cluster Concurrent Startup: 0
 Max Cluster Unavailable: 1
 Replace Variables In Java Options: false
 Replicas: 1
 Server Pod:
 Env:
 Name: JAVA_OPTIONS
 Value: -Dweblogic.StdoutDebugEnabled=false
 Name: USER_MEM_ARGS
 Value: -Djava.security.egd=file:/dev/./urandom -Xms256m -Xmx1024m
 Name: WLSDEPLOY_LOG_DIRECTORY
 Value: /u01/oracle/user_projects/domains/wdt-logs
 Name: WLSDEPLOY_PROPERTIES
 Value: -Dwdt.config.disable.rcu.drop.schema=true
 Init Containers:
 Command:
 /bin/bash
 -c
 mkdir -p /u01/oracle/user_projects/domains/wdt-logs
 Image: container-registry.oracle.com/middleware/
oam_cpu:14.1.2.1.0-jdk17-ol8-<DDMMYY>
 Image Pull Policy: IfNotPresent
 Name: compat-connector-init
 Volume Mounts:
 Mount Path: /u01/oracle/user_projects
 Name: weblogic-domain-storage-volume
 Volume Mounts:
 Mount Path: /u01/oracle/user_projects
 Name: weblogic-domain-storage-volume
 Volumes:
 Name: weblogic-domain-storage-volume
 Persistent Volume Claim:
 Claim Name: accessdomain-domain-pvc
 Server Start Policy: IfNeeded
 Web Logic Credentials Secret:
 Name: accessdomain-weblogic-credentials
Status:
 Clusters:
 Cluster Name: oam_cluster
 Conditions:
 Last Transition Time: <DATE>
 Status: False
 Type: Available
 Last Transition Time: <DATE>
 Status: False
 Type: Completed
 Label Selector:
weblogic.domainUID=accessdomain,weblogic.clusterName=oam_cluster
 Maximum Replicas: 5
 Minimum Replicas: 0
 Observed Generation: 1
 Replicas: 1

Chapter 7
Creating OAM Domains Using WDT Models

7-56

 Replicas Goal: 1
 Cluster Name: policy_cluster
 Conditions:
 Last Transition Time: <DATE>
 Status: False
 Type: Available
 Last Transition Time: <DATE>
 Status: False
 Type: Completed
 Label Selector:
weblogic.domainUID=accessdomain,weblogic.clusterName=policy_cluster
 Maximum Replicas: 5
 Minimum Replicas: 0
 Observed Generation: 1
 Replicas: 1
 Replicas Goal: 1
 Conditions:
 Last Transition Time: <DATE>
 Message: No application servers are ready.
 Status: False
 Type: Available
 Last Transition Time: <DATE>
 Status: False
 Type: Completed
 Observed Generation: 1
 Servers:
 Health:
 Activation Time: <DATE>
 Overall Health: ok
 Subsystems:
 Subsystem Name: ServerRuntime
 Symptoms:
 Node Name: worker-node1
 Pod Phase: Running
 Pod Ready: True
 Server Name: AdminServer
 State: RUNNING
 State Goal: RUNNING
 Cluster Name: oam_cluster
 Node Name: worker-node2
 Pod Phase: Running
 Pod Ready: False
 Server Name: oam_server1
 State: STARTING
 State Goal: SHUTDOWN
 Cluster Name: oam_cluster
 Server Name: oam_server2
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: oam_cluster
 Server Name: oam_server3
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: oam_cluster
 Server Name: oam_server4
 State: SHUTDOWN

Chapter 7
Creating OAM Domains Using WDT Models

7-57

 State Goal: SHUTDOWN
 Cluster Name: oam_cluster
 Server Name: oam_server5
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: policy_cluster
 Node Name: worker-node1
 Pod Phase: Running
 Pod Ready: False
 Server Name: oam_policy_mgr1
 State: STARTING
 State Goal: SHUTDOWN
 Cluster Name: policy_cluster
 Server Name: oam_policy_mgr2
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: policy_cluster
 Server Name: oam_policy_mgr3
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: policy_cluster
 Server Name: oam_policy_mgr4
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Cluster Name: policy_cluster
 Server Name: oam_policy_mgr5
 State: SHUTDOWN
 State Goal: SHUTDOWN
 Start Time: <DATE>

 Events:
 Type Reason Age From
Message
 ---- ------ ---- ----

 Normal Created 19m weblogic.operator
Domain accessdomain was created.
 Warning Failed 19m weblogic.operator
Domain accessdomain failed due to 'Persistent volume claim unbound':
PersistentVolumeClaim 'accessdomain-domain-pvc' is not bound; the status
phase is 'Pending'.. Operator is waiting for the persistent volume claim to
be bound, it may be a temporary condition. If this condition persists, then
ensure that the PVC has a correct volume name or storage class name and is in
bound status..
 Normal PersistentVolumeClaimBound 19m weblogic.operator
The persistent volume claim is bound and ready.
 Normal Available 3m19s weblogic.operator
Domain accessdomain is available: a sufficient number of its servers have
reached the ready state.
 Normal Completed 3m19s weblogic.operator
Domain accessdomain is complete because all of the following are true: there
is no failure detected, there are no pending server shutdowns, and all
servers expected to be running are ready and at their target image, auxiliary
images, restart version, and introspect version.

Chapter 7
Creating OAM Domains Using WDT Models

7-58

In the Status section of the output, the available servers and clusters are listed.

Verifying the Pods

Run the following command to view the pods and the nodes they are running on:

kubectl get pods -n <domain_namespace> -o wide

For example:

kubectl get pods -n oamns -o wide

The output will look similar to the following:

NAME READY STATUS
RESTARTS AGE IP NODE NOMINATED NODE READINESS
GATES
accessdomain-adminserver 1/1 Running
0 18m 10.244.6.63 10.250.42.252 <none> <none>
accessdomain-oam-policy-mgr1 1/1 Running
0 10m 10.244.5.13 10.250.42.255 <none> <none>
accessdomain-oam-server1 1/1 Running
0 10m 10.244.5.12 10.250.42.255 <none> <none>

Configuring the Ingress

If the domain deploys successfully, and all the above checks are verified, you are ready to
configure the Ingress. See, Configuring Ingress.

Chapter 7
Creating OAM Domains Using WDT Models

7-59

8
Configuring Ingress

You must configure an ingress controller to allow access to Oracle Access Management
(OAM).

The ingress can be configured in the following ways:

• Without SSL

• With SSL

• OAM URI’s are accessible from all hosts

• OAM URI’s are accessible using virtual hostnames only

The option you choose will depend on the architecture you are configuring. For example, if you
have an architecture such as Oracle HTTP Server on an Independent Kubernetes cluster,
where SSL is terminated at the load balancer, then you would configure the ingress without
SSL.

In almost all circumstances, the ingress should be configured to be accessible from all hosts
(using host.enabled: false in the values.yaml). You can only configure ingress to use virtual
hostnames (using host.enabled: true in the values.yaml), if all of the following criteria are
met:

• SSL is terminated at the load balancer

• The SSL port is 443

• You have separate hostnames for OAM administration URL’s (for example https://
admin.example.com/em), and OAM runtime URL’s (for example https://
runtime.example.com/oam/server).

This chapter includes the following topics:

• Installing the NGINX Repository

• Creating a Kubernetes Namespace for NGINX

• Generating SSL Certificates

• Installing the NGINX Controller

• Preparing the Ingress values.yaml

• Creating the Ingress

8.1 Installing the NGINX Repository
To install the NGINX ingress controller:

1. Add the Helm chart repository for NGINX using the following command:

helm repo add stable https://kubernetes.github.io/ingress-nginx

8-1

The output will look similar to the following:

"stable" has been added to your repositories

2. Update the repository using the following command:

helm repo update

The output will look similar to the following:

Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "stable" chart repository
Update Complete. Happy Helming!

8.2 Creating a Kubernetes Namespace for NGINX
Create a Kubernetes namespace for the NGINX deployment by running the following
command:

kubectl create namespace <namespace>

For example:

kubectl create namespace mynginxns

The output will look similar to the following:

namespace/mynginxns created

8.3 Generating SSL Certificates
This section should only be followed if you want to configure your ingress controller to use
SSL.

For production environments it is recommended to use a commercially available certificate,
traceable to a trusted Certificate Authority.

For sandbox environments, you can generate your own self-signed certificates.

Note:

Using self-signed certificates you will get certificate errors when accessing the
ingress controller via a browser.

Using a Third Party CA for Generating Certificates

If you are configuring the ingress controller to use SSL, you must use a wildcard certificate to
prevent issues with the Common Name (CN) in the certificate. A wildcard certificate is a
certificate that protects the primary domain and it's sub-domains. It uses a wildcard character
(*) in the CN, for example *.yourdomain.com.

Chapter 8
Creating a Kubernetes Namespace for NGINX

8-2

How you generate the key and certificate signing request for a wildcard certificate will depend
on your Certificate Authority. Contact your Certificate Authority vendor for details.

In order to configure the ingress controller for SSL you require the following files:

• The private key for your certificate, for example oam.key.

• The certificate, for example oam.crt in PEM format.

• The trusted certificate authority (CA) certificate, for example rootca.crt in PEM format.

• If there are multiple trusted CA certificates in the chain, you need all the certificates in the
chain, for example rootca1.crt, rootca2.crt etc.

Once you have received the files, perform the following steps:

1. On the administrative host, create a $WORKDIR>/ssl directory and navigate to the folder:

mkdir $WORKDIR>/ssl

cd $WORKDIR>/ssl

2. Copy the files listed above to the $WORKDIR>/ssl directory.

3. If your CA has multiple certificates in a chain, create a bundle.pem that contains all the CA
certificates:

cat rootca.pem rootca1.pem rootca2.pem >>bundle.pem

Using Self-Signed Certificates

1. On the administrative host, create a $WORKDIR>/ssl directory and navigate to the folder:

mkdir $WORKDIR>/ssl

cd $WORKDIR>/ssl

2. Run the following command to create the self-signed certificate:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout oam.key -out
oam.crt -subj "/CN=<hostname>"

For example:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout oam.key -out
oam.crt -subj "/CN=oam.example.com"

The output will look similar to the following:

Generating a 2048 bit RSA private key
..+++
...
............................+++

Chapter 8
Generating SSL Certificates

8-3

writing new private key to 'oam.key'

Creating a Kubernetes Secret for SSL

Run the following command to create a Kubernetes secret for SSL:

kubectl -n mynginxns create secret tls <domain_uid>-tls-cert --
key $WORKDIR>/ssl/oam.key --cert $WORKDIR>/ssl/oam.crt

Note:

If you have multiple CA certificates in the chain use --cert <workdir>/bundle.crt..

For example:

kubectl -n mynginxns create secret tls accessdomain-tls-cert --key /
OAMK8S/ssl/oam.key --cert /OAMK8S/ssl/oam.crt

The output will look similar to the following:

secret/accessdomain-tls-cert created

8.4 Installing the NGINX Controller
In this section you install the NGINX controller.

If you can connect directly to a worker node hostname or IP address from a browser, then
install NGINX with the --set controller.service.type=NodePort parameter.

If you are using a Managed Service for your Kubernetes cluster, for example Oracle
Kubernetes Engine (OKE) on Oracle Cloud Infrastructure (OCI), and connect from a browser to
the Load Balancer IP address, then use the --set controller.service.type=LoadBalancer
parameter. This instructs the Managed Service to setup a Load Balancer to direct traffic to the
NGINX ingress.

The instructions below use --set controller.service.type=NodePort. If using a managed
service, change to --set controller.service.type=LoadBalancer.

Configuring an Ingress Controller with SSL

To configure the ingress controller to use SSL, run the following command:

helm install nginx-ingress \
-n <domain_namespace> \
--set controller.service.nodePorts.http=<http_port> \
--set controller.service.nodePorts.https=<https_port> \
--set controller.extraArgs.default-ssl-certificate=<domain_namespace>/
<ssl_secret> \
--set controller.service.type=<type> \
--set controller.config.use-forwarded-headers=true \
--set controller.config.enable-underscores-in-headers=true \

Chapter 8
Installing the NGINX Controller

8-4

--set controller.admissionWebhooks.enabled=false \
stable/ingress-nginx \
--version 4.7.2

Where:

• <domain_namespace> is your namespace, for example mynginxns.

• <http_port> is the HTTP port that you want the controller to listen on, for example 30777.

• <https_port> is the HTTPS port that you want the controller to listen on, for example
30443.

• <type> is the controller type. If using NodePort set to NodePort. If using a managed
service set to LoadBalancer. If using LoadBalancer remove --set
controller.service.nodePorts.http=<http_port> and --set
controller.service.nodePorts.https=<https_port>.

• <ssl_secret> is the secret you created in Generating SSL Certificates.

For example:

helm install nginx-ingress -n mynginxns \
--set controller.service.nodePorts.http=30777 \
--set controller.service.nodePorts.https=30443 \
--set controller.extraArgs.default-ssl-certificate=mynginxns/accessdomain-tls-
cert \
--set controller.service.type=NodePort \
--set controller.config.use-forwarded-headers=true \
--set controller.config.enable-underscores-in-headers=true \
--set controller.admissionWebhooks.enabled=false \
stable/ingress-nginx \
--version 4.7.2

The output will look similar to the following:

NAME: nginx-ingress
LAST DEPLOYED: <DATE>

NAMESPACE: mynginxns
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The nginx-ingress controller has been installed.
Get the application URL by running these commands:
 export HTTP_NODE_PORT=30777
 export HTTPS_NODE_PORT=30443
 export NODE_IP=$(kubectl --namespace mynginxns get nodes -o
jsonpath="{.items[0].status.addresses[1].address}")

 echo "Visit http://$NODE_IP:$HTTP_NODE_PORT to access your application via
HTTP."
 echo "Visit https://$NODE_IP:$HTTPS_NODE_PORT to access your application
via HTTPS."

An example Ingress that makes use of the controller:

Chapter 8
Installing the NGINX Controller

8-5

 apiVersion: networking.k8s.io/v1
 kind: Ingress
 metadata:
 annotations:
 kubernetes.io/ingress.class: nginx
 name: example
 namespace: foo
 spec:
 ingressClassName: example-class
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: exampleService
 port: 80
 # This section is only required if TLS is to be enabled for the Ingress
 tls:
 - hosts:
 - www.example.com
 secretName: example-tls

If TLS is enabled for the Ingress, a Secret containing the certificate and
key must also be provided:

 apiVersion: v1
 kind: Secret
 metadata:
 name: example-tls
 namespace: foo
 data:
 tls.crt: <base64 encoded cert>
 tls.key: <base64 encoded key>
 type: kubernetes.io/tls

Configure an Ingress Controller Without SSL

To configure the ingress controller without SSL, run the following command:

helm install nginx-ingress \
-n <domain_namespace> \
--set controller.service.nodePorts.http=<http_port> \
--set controller.service.type=NodePort \
--set controller.config.use-forwarded-headers=true \
--set controller.config.enable-underscores-in-headers=true \
--set controller.admissionWebhooks.enabled=false \
stable/ingress-nginx
--version 4.7.2

Where:

Chapter 8
Installing the NGINX Controller

8-6

• <domain_namespace> is your namespace, for example mynginxns.

• <http_port> is the HTTP port that you want the controller to listen on, for example 30777.

• <type> is the controller type. If using NodePort set to NodePort. If using a managed
service set to LoadBalancer. If using LoadBalancer remove --set
controller.service.nodePorts.http=<http_port>.

For example:

helm install nginx-ingress \
-n mynginxns \
--set controller.service.nodePorts.http=30777 \
--set controller.service.type=NodePort \
--set controller.config.use-forwarded-headers=true \
--set controller.config.enable-underscores-in-headers=true \
--set controller.admissionWebhooks.enabled=false \
stable/ingress-nginx \
--version 4.7.2

The output will look similar to the following:

NAME: nginx-ingress
LAST DEPLOYED: <DATE>

NAMESPACE: mynginxns
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The nginx-ingress controller has been installed.
Get the application URL by running these commands:
 export HTTP_NODE_PORT=30777
 export HTTPS_NODE_PORT=$(kubectl --namespace mynginxns get services -o
jsonpath="{.spec.ports[1].nodePort}" nginx-ingress-ingress-nginx-controller)
 export NODE_IP=$(kubectl --namespace mygninx get nodes -o
jsonpath="{.items[0].status.addresses[1].address}")

 echo "Visit http://$NODE_IP:$HTTP_NODE_PORT to access your application via
HTTP."
 echo "Visit https://$NODE_IP:$HTTPS_NODE_PORT to access your application
via HTTPS."

An example Ingress that makes use of the controller:

 apiVersion: networking.k8s.io/v1
 kind: Ingress
 metadata:
 annotations:
 kubernetes.io/ingress.class: nginx
 name: example
 namespace: foo
 spec:
 ingressClassName: example-class
 rules:
 - host: www.example.com

Chapter 8
Installing the NGINX Controller

8-7

 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: exampleService
 port: 80
 # This section is only required if TLS is to be enabled for the Ingress
 tls:
 - hosts:
 - www.example.com
 secretName: example-tls

If TLS is enabled for the Ingress, a Secret containing the certificate and
key must also be provided:

 apiVersion: v1
 kind: Secret
 metadata:
 name: example-tls
 namespace: foo
 data:
 tls.crt: <base64 encoded cert>
 tls.key: <base64 encoded key>
 type: kubernetes.io/tls

8.5 Preparing the Ingress values.yaml
To prepare the values.yaml for the ingress:

1. Navigate to the following directory:

cd $WORKDIR/kubernetes/charts/ingress-per-domain

2. Make a copy of the values.yaml:

cp values.yaml $WORKDIR/

3. Edit the $WORKDIR/kubernetes/charts/ingress-per-domain/values.yaml and modify the
following parameters if required:

• domainUID: - If you created your OAM domain with anything other than the default
accessdomain, change accordingly.

• sslType: - Values supported are SSL and NONSSL. If you created your ingress controller
to use SSL then set to SSL, otherwise set to NONSSL.

• hostName.enabled: false - This should be set to false in almost all circumstances.
Setting to false allows OAM URI’s to be accessible from all hosts. Setting to true
configures ingress for virtual hostnames only. See Configuring Ingress for full details of
the criteria that must be met set to this value to true.

• hostName.admin: <hostname> - Should only be set if hostName.enabled: true and
sslType: NONSSL. This should be set to the hostname.domain of the URL you access

Chapter 8
Preparing the Ingress values.yaml

8-8

OAM administration URL’s from, for example if you access the OAM Administration
Console via https://admin.example.com/oamconsole, then set to
admin.example.com.

• hostName.runtime: <hostname> - Should only be set if hostName.enabled: true. This
should be set to the hostname.domain of the URL you access OAM runtime URL’s
from, for example if the oam/server URI is accessed via https://
runtime.example.com/oam/server, then set to runtime.example.com.

The following show example files based on different configuration types:

SSL values.yaml

Load balancer type. Supported values are: NGINX
type: NGINX

Type of Configuration Supported Values are : SSL and NONSSL
sslType: SSL

domainType. Supported values are: oam
domainType: oam

#WLS domain as backend to the load balancer
wlsDomain:
 domainUID: accessdomain
 adminServerName: AdminServer
 adminServerPort: 7001
 adminServerSSLPort:
 oamClusterName: oam_cluster
 oamManagedServerPort: 14100
 oamManagedServerSSLPort:
 policyClusterName: policy_cluster
 policyManagedServerPort: 14150
 policyManagedServerSSLPort:

Host specific values
hostName:
 enabled: false
 admin:
 runtime:

NONSSL values.yaml Using All Hostnames

Load balancer type. Supported values are: NGINX
type: NGINX

Type of Configuration Supported Values are : SSL and NONSSL
sslType: NONSSL

domainType. Supported values are: oam
domainType: oam

#WLS domain as backend to the load balancer
wlsDomain:

Chapter 8
Preparing the Ingress values.yaml

8-9

 domainUID: accessdomain
 adminServerName: AdminServer
 adminServerPort: 7001
 adminServerSSLPort:
 oamClusterName: oam_cluster
 oamManagedServerPort: 14100
 oamManagedServerSSLPort:
 policyClusterName: policy_cluster
 policyManagedServerPort: 14150
 policyManagedServerSSLPort:

Host specific values
hostName:
 enabled: false
 admin:
 runtime:

NONSSL values.yaml Using Virtual Hostnames

Load balancer type. Supported values are: NGINX
type: NGINX

Type of Configuration Supported Values are : SSL and NONSSL
sslType: NONSSL

domainType. Supported values are: oam
domainType: oam

#WLS domain as backend to the load balancer
wlsDomain:
 domainUID: accessdomain
 adminServerName: AdminServer
 adminServerPort: 7001
 adminServerSSLPort:
 oamClusterName: oam_cluster
 oamManagedServerPort: 14100
 oamManagedServerSSLPort:
 policyClusterName: policy_cluster
 policyManagedServerPort: 14150
 policyManagedServerSSLPort:

Host specific values
hostName:
 enabled: true
 admin: admin.example.com
 runtime: runtime.example.com

8.6 Creating the Ingress
Run the following commands to create the ingress:

Chapter 8
Creating the Ingress

8-10

1. Navigate to the $WORKDIR:

cd $WORKDIR

2. Run the following helm command to create the ingress:

helm install oam-nginx kubernetes/charts/ingress-per-domain \
--namespace <domain_namespace> \
--values kubernetes/charts/ingress-per-domain/values.yaml

For example:

helm install oam-nginx kubernetes/charts/ingress-per-domain \
--namespace oamns \
--values kubernetes/charts/ingress-per-domain/values.yaml

The output will look similar to the following:

NAME: oam-nginx
LAST DEPLOYED: <DATE>
NAMESPACE: oamns
STATUS: deployed
REVISION: 1
TEST SUITE: None

3. Run the following command to show the ingress is created successfully:

kubectl get ing -n <domain_namespace>

For example

kubectl get ing -n oamns

If hostname.enabled: false, the output will look similar to the following:

NAME CLASS HOSTS ADDRESS PORTS AGE
accessdomain-nginx nginx * 80 5s

If hostname.enabled: true, the output will look similar to the following:

NAME CLASS HOSTS ADDRESS PORTS AGE
oamadmin-ingress nginx admin.example.com 80 14s
oamruntime-ingress nginx runtime.example.com 80 14s

4. Run the following command to check the ingress:

kubectl describe ing <ingress> -n <domain_namespace>

For example:

kubectl describe ing accessdomain-nginx -n oamns

Chapter 8
Creating the Ingress

8-11

The output will look similar to the following for accessdomain-nginx:

Name: accessdomain-nginx
Labels: app.kubernetes.io/managed-by=Helm
Namespace: oamns
Address: 10.109.22.22
Ingress Class: nginx
Default backend: <default>

Rules:
 Host Path Backends
 ---- ---- --------
 *
 /console accessdomain-
adminserver:7001 (10.244.1.200:7001)
 /consolehelp accessdomain-
adminserver:7001 (10.244.1.200:7001)
 /rreg/rreg accessdomain-
adminserver:7001 (10.244.1.200:7001)
 /em accessdomain-
adminserver:7001 (10.244.1.200:7001)
 /management accessdomain-
adminserver:7001 (10.244.1.200:7001)
 /oamconsole accessdomain-
adminserver:7001 (10.244.1.200:7001)
 /dms accessdomain-
adminserver:7001 (10.244.1.200:7001)
 /oam/services/rest accessdomain-
adminserver:7001 (10.244.1.200:7001)
 /iam/admin/config accessdomain-
adminserver:7001 (10.244.1.200:7001)
 /iam/admin/diag accessdomain-
adminserver:7001 (10.244.1.200:7001)
 /iam/access accessdomain-cluster-oam-
cluster:14100 (10.244.2.127:14100)
 /oam/admin/api accessdomain-
adminserver:7001 (10.244.1.200:7001)
 /oam/services/rest/access/api accessdomain-cluster-oam-
cluster:14100 (10.244.2.127:14100)
 /access accessdomain-cluster-policy-
cluster:15100 (10.244.2.126:14150)
 /oam accessdomain-cluster-oam-
cluster:14100 (10.244.2.127:14100)
 / accessdomain-cluster-oam-
cluster:14100 (10.244.2.127:14100)
Annotations: meta.helm.sh/release-name: oam-nginx
 meta.helm.sh/release-namespace: oamns
 nginx.ingress.kubernetes.io/enable-access-log: false
 nginx.ingress.kubernetes.io/proxy-buffer-size: 2000k
Events: <none>
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Sync 33s nginx-ingress-controller Scheduled for sync

Chapter 8
Creating the Ingress

8-12

The output will look similar to the following for oamadmin-ingress:

Name: oamadmin-ingress
Labels: app.kubernetes.io/managed-by=Helm
Namespace: oamns
Address: 10.109.22.22
Ingress Class: nginx
Default backend: <default>
Rules:
 Host Path Backends
 ---- ---- --------
 admin.example.com
 /console
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /consolehelp
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /rreg/rreg
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /em
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /oamconsole
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /dms
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /oam/services/rest
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /iam/admin/config
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /oam/admin/api
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /iam/admin/diag
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /oam/services
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /iam/admin
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /oam/services/rest/11.1.2.0.0
accessdomain-adminserver:7001 (10.244.1.200:7001)
 /oam/services/rest/ssa
accessdomain-cluster-oam-cluster:14100 (10.244.2.127:14100)
 /access
accessdomain-cluster-policy-cluster:14150 (10.244.2.126:15100)
Annotations: meta.helm.sh/release-name: oam-
nginx
 meta.helm.sh/release-namespace:
oamns
 nginx.ingress.kubernetes.io/
affinity: cookie
 nginx.ingress.kubernetes.io/
enable-access-log: false
 nginx.ingress.kubernetes.io/
ingress.allow-http: true
 nginx.ingress.kubernetes.io/
proxy-buffer-size: 2000k
 nginx.ingress.kubernetes.io/ssl-
redirect: false

Chapter 8
Creating the Ingress

8-13

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Sync 32s nginx-ingress-controller Scheduled for sync

The output will look similar to the following for oamruntime-ingress:

Name: oamruntime-ingress
Labels: app.kubernetes.io/managed-by=Helm
Namespace: oamns
Address: 10.109.22.22
Ingress Class: nginx
Default backend: <default>
Rules:
 Host Path Backends
 ---- ---- --------
 runtime.example.com
 /
ms_oauth accessdomain-cluster-oam-cluster:14100
(10.244.2.127:14100)
 /oam/services/rest/
auth accessdomain-cluster-oam-cluster:14100
(10.244.2.127:14100)
 /oam/services/rest/
access accessdomain-cluster-oam-cluster:14100
(10.244.2.127:14100)
 /
oamfed accessdomain-cluster-oam-cluster:14100
(10.244.2.127:14100)
 /
otpfp/ accessdomain-cluster-oam-cluster:14100
(10.244.2.127:14100)
 /
oauth2 accessdomain-cluster-oam-cluster:14100
(10.244.2.127:14100)
 /oam
 accessdomain-cluster-oam-cluster:14100 (10.244.2.127:14100)
 /.well-known/openid-
configuration accessdomain-cluster-oam-cluster:14100 (10.244.2.127:14100)
 /.well-known/oidc-
configuration accessdomain-cluster-oam-cluster:14100
(10.244.2.127:14100)
 /
CustomConsent accessdomain-cluster-oam-cluster:14100
(10.244.2.127:14100)
 /iam/
access accessdomain-cluster-oam-cluster:14100
(10.244.2.127:14100)
Annotations: meta.helm.sh/release-name: oam-
nginx
 meta.helm.sh/release-namespace:
oamns
 nginx.ingress.kubernetes.io/
affinity: cookie
 nginx.ingress.kubernetes.io/

Chapter 8
Creating the Ingress

8-14

enable-access-log: false
 nginx.ingress.kubernetes.io/
proxy-buffer-size: 2000k
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Sync 3m34s (x2 over 4m10s) nginx-ingress-controller
Scheduled for sync

5. To confirm that the new ingress is successfully routing to the domain’s server pods, run the
following command to send a request to the OAM Administration Console:

• For SSL:

curl -v -k https://${HOSTNAME}:${PORT}/oamconsole

• For NONSSL:

curl -v http://${HOSTNAME}:${PORT}/oamconsole

The ${HOSTNAME}:${PORT} to use depends on the value set for hostName.enabled.

If hostName.enabled: false use the hostname and port where the ingress controller is
installed, for example http://oam.example.com:30777.

If using hostName.enabled: true then you can only access via the admin hostname, for
example https://admin.example.com/oamconsole.

Note:

You can only access via the admin URL if it is currently accessible and routing
correctly to the ingress host and port.

For example:

curl -v http://oam.example.com:30777/oamconsole

The output will look similar to the following. You should receive a 302 Moved Temporarily
message:

> GET /oamconsole HTTP/1.1
> Host: oam.example.com:30777
> User-Agent: curl/7.61.1
> Accept: */*
>
< HTTP/1.1 302 Moved Temporarily
< Date: <DATE>
< Content-Type: text/html
< Content-Length: 333
< Connection: keep-alive
< Location: http://oam.example.com:30777/oamconsole/
< X-Content-Type-Options: nosniff
< X-Frame-Options: DENY
<

Chapter 8
Creating the Ingress

8-15

<html><head><title>302 Moved Temporarily</title></head>
<body bgcolor="#FFFFFF">
<p>This document you requested has moved
temporarily.</p>
<p>It's now at http://
oam.example.com:30777/oamconsole/.</p>
</body></html>
* Connection #0 to host oam.example.com left intact

After confirming the above, verify that the domain applications are accessible. See, Validating
the Domain URLs.

Chapter 8
Creating the Ingress

8-16

9
Validating the Domain URLs

Launch a browser and access the following URL’s. Login with the weblogic username and
password (weblogic/<password>).

Note:

The ${HOSTNAME}:${PORT} depends on the architecture configured, and your ingress
setup as per Configuring Ingress.

Console or Page URL

Oracle Enterprise Manager Console http(s)://${HOSTNAME}:${PORT}/em
Oracle Access Management Console http(s)://${HOSTNAME}:${PORT}/

oamconsole
Oracle Access Management Console http(s)://${HOSTNAME}:${PORT}/access
Logout URL http(s)://${HOSTNAME}:${PORT}/oam/

server/logout

Note:

Administrators should be aware of the following:

• To monitor the Oracle Access Management (OAM) WebLogic Server domain in
14.1.2.1.0 you must use the Oracle WebLogic Remote Console. For more
information about installing and configuring the console, see Getting Started
Using Administration Console.

• The Oracle WebLogic Remote Console and Oracle Enterprise Manager Console
should only be used to monitor the servers in the OAM domain. To control the
Administration Server and OAM Managed Servers (start/stop) you must use
Kubernetes. See Scaling OAM Pods for more information.

The browser will give certificate errors if you used a self signed certificate and have not
imported it into the browsers Certificate Authority store. If this occurs you can proceed with the
connection and ignore the errors.

After validating the URL’s proceed to Post Installation Configuration.

9-1

10
Post Installation Configuration

After the OAM domain is successfully deployed, you must perform some post configuration
steps.

This chapter includes the following topics:

• Creating a Server Overrides File

• Removing OAM Server from WebLogic Server 14c Default Coherence Cluster

• WebLogic Server Tuning

• Enabling Virtualization

• Restarting the Domain

10.1 Creating a Server Overrides File
Perform the following steps to create a server overrides file for Oracle Access Management
(OAM):

1. Navigate to the following directory:

• For OAM domains created with WLST:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/output/
weblogic-domains/accessdomain

• For OAM domains created with WDT:

cd $WORKDIR/kubernetes/create-access-domain/domain-home-on-pv/

2. Create a setUserOverrides.sh with the following contents:

DERBY_FLAG=false
JAVA_OPTIONS="${JAVA_OPTIONS} -Djava.net.preferIPv4Stack=true"
MEM_ARGS="-Xms8192m -Xmx8192m"

3. Copy the setUserOverrides.sh file to the Administration Server pod:

chmod 755 setUserOverrides.sh

 kubectl cp setUserOverrides.sh <domain_namespace>/<domain-uid>-
adminserver:/u01/oracle/user_projects/domains/<domain-uid>/bin/
setUserOverrides.sh

10-1

For example:

 kubectl cp setUserOverrides.sh oamns/accessdomain-adminserver:/u01/oracle/
user_projects/domains/accessdomain/bin/setUserOverrides.sh

4. Stop the OAM domain using the following command:

kubectl -n <domain_namespace> patch domains <domain_uid> --type='json' -
p='[{"op": "replace", "path": "/spec/serverStartPolicy", "value":
"Never" }]'

For example:

kubectl -n oamns patch domains accessdomain --type='json' -p='[{"op":
"replace", "path": "/spec/serverStartPolicy", "value": "Never" }]'

The output will look similar to the following:

domain.weblogic.oracle/accessdomain patched

5. Check that all the pods are stopped:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Terminating 0 27m
accessdomain-oam-policy-mgr1 1/1
Terminating 0 24m
accessdomain-oam-server1 1/1
Terminating 0 24m

The Administration Server pod and Managed Server pods will move to a STATUS of
Terminating. After a few minutes, run the command again and the pods should have
disappeared.

6. Start the domain using the following command:

kubectl -n <domain_namespace> patch domains <domain_uid> --type='json' -
p='[{"op": "replace", "path": "/spec/serverStartPolicy", "value":
"IfNeeded" }]'

Chapter 10
Creating a Server Overrides File

10-2

For example:

kubectl -n oamns patch domains accessdomain --type='json' -p='[{"op":
"replace", "path": "/spec/serverStartPolicy", "value": "IfNeeded" }]'

7. Run the following kubectl command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-introspector-mckp2 1/1
Running 0 8s

The Administration Server pod will start followed by the OAM Managed Servers pods. This
process will take several minutes, so keep executing the command until all the pods are
running with READY status 1/1:

Note:

You can watch the status of the pods by adding the watch flag, for example:

kubectl get pods -n oamns -w

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 5m38s
accessdomain-oam-policy-mgr1 1/1
Running 0 2m51s
accessdomain-oam-server1 1/1
Running 0 2m50s

10.2 Removing OAM Server from WebLogic Server 14c Default
Coherence Cluster

Exclude all Oracle Access Management (OAM) clusters (including Policy Manager and OAM
runtime server) from the default WebLogic Server 14c coherence cluster by using the
WebLogic Server Administration Console.

In OAM 14.1.2.1.0, server-side session management uses the database and does not require
coherence cluster to be established. In some environments, warnings and errors are observed

Chapter 10
Removing OAM Server from WebLogic Server 14c Default Coherence Cluster

10-3

due to default coherence cluster initialized by WebLogic. To avoid or fix these errors, exclude
all of the OAM clusters from default WebLogic Server coherence cluster using the following
steps:

1. Connect to the OAM Administration Server in the WebLogic Remote Console.

2. In the left pane of the console, expand Environment and select Coherence Clusters
System Resources.

3. Click defaultCoherenceCluster and select the Members tab.

4. From Servers and Clusters, deselect all OAM clusters (oam_cluster and
policy_cluster).

5. Click Save.

6. Click the Shopping Cart in the top right of the console, and click Commit Changes.

10.3 WebLogic Server Tuning
For production environments, WebLogic Server tuning parameters must be set.

Installing the WebLogic Remote Console Extension

In order to perform the tuning tasks, you must install the latest WebLogic Remote Console
extension console-rest-ext-2.4.15.war in the OAM %DOMAIN_HOME%.

To install the extension, perform the following steps:

1. On the administrative host, download the latest WebLogic Remote Console extension,
console-rest-ext-2.4.15.war, from the WebLogic Remote Console GitHub Repository:

cd $WORKDIR

wget https://github.com/oracle/weblogic-remote-console/releases/download/
v2.4.15/console-rest-ext-2.4.15.war

2. Run the following command to find the Domain Home:

kubectl describe domains <domainUID> -n <namespace> | grep "Domain Home:"

For example:

kubectl describe domains accessdomain -n oamns | grep "Domain Home:"

The output will look similar to the following:

 Domain Home: /u01/oracle/user_projects/domains/
accessdomain

3. Execute the following command to enter a bash shell in the <domainUID>-adminserver
pod:

 kubectl exec -it <domainUID>-adminserver -n <domain_namespace> -- /bin/
bash

Chapter 10
WebLogic Server Tuning

10-4

https://github.com/oracle/weblogic-remote-console/releases

For example:

kubectl exec -it accessdomain-adminserver -n oamns -- /bin/bash

This will take you inside a bash shell of the pod:

[oracle@accessdomain-adminserver oracle]$

4. Inside the bash shell run the following commands to create a management-services-ext
directory:

mkdir %DOMAIN_HOME%/management-services-ext

Where %DOMAIN_HOME% is the path returned earlier.
For example:

mkdir /u01/oracle/user_projects/domains/accessdomain/management-services-
ext

5. Outside of the bash shell, run the following command to copy the console-rest-
ext-2.4.15.war into the container:

kubectl -n <namespace> cp $WORKDIR/console-rest-ext-2.4.15.war <domainUID>-
adminserver:%DOMAIN_HOME%/management-services-ext/

For example:

kubectl -n oamns cp $WORKDIR/console-rest-ext-2.4.15.war accessdomain-
adminserver:/u01/oracle/user_projects/domains/accessdomain/management-
services-ext/

6. Inside the bash shell, run the following to make sure the console-rest-ext-2.4.15.war
was copied:

ls -l %DOMAIN_HOME%/management-services-ext

For example:

ls /u01/oracle/user_projects/domains/accessdomain/management-services-ext

The output will look similar to the following:

console-rest-ext-2.4.15.war

Add Minimum Thread Constraint and MaxThreadsCount

1. Connect to the OAM Administration Server in the WebLogic Remote Console.

2. In the Home page, select Monitoring Tree

3. In the left hand navigation menu, select Deployments > Application Management.

Chapter 10
WebLogic Server Tuning

10-5

4. Click oam_server.

5. Click Create Plan and provide the Plan Path as: /u01/oracle/user_projects/domains/
accessdomain/Plan.xml and click Done.

6. In the left hand navigation menu, select Deployments -> Deployment Tasks and check
the plan was successfully deployed (Progress: Success).

7. In the left hand navigation menu, select Deployments > Application Management >
oam_server > Deployment Plan (Advanced).

8. Select the Variable Assignments tab.

9. Type CTRL + F (menu Edit > Find) and Search for: /weblogic-web-app/work-manager/
[name="wm/OAPOverRestWM"]/min-threads-constraint/[name="MinThreadsCount"]/
count.

10. Click the checkbox for that row, and click the Edit button (above the table). Change the
following and click Done:

• Value: 400
• Operation: replace

11. Type CTRL + F (menu Edit > Find) and Search for: /weblogic-web-app/work-manager/
[name="wm/OAPOverRestWM"]/max-threads-constraint/[name="MaxThreadsCount"]/
count.

12. Check the checkbox for that row, and click the Edit button (above the table). Change the
following and click Done:

• Value: 1000

• Operation: Replace

13. In the left hand navigation menu, select Deployments > Application Management.

14. Click the checkbox in the oam_server row, and click Update/Redeploy and select
Redeploy - Deployment Source and Plan on Server. Click Done.

15. In the left hand navigation menu, select Deployments -> Deployment Tasks and check
the plan was successfully deployed (Progress: Success).

16. To check that the values have been updated, access the Oracle Enterprise Manager
Fusion Middleware Control console, and perform the following steps:

• From the WebLogic Domain drop-down menu, select System MBean Browser.

• Click the Search icon, and search for the MBean wm/OAPOverRestWM.

• In the left hand menu, expand MinThreadsConstraintRuntime > MinThreadsCount,
and check the Count value is 400.

• In the left hand menu, expand MaxThreadsConstraintRuntime > MaxThreadsCount and
check the Count value is 1000.

oamDS DataSource Tuning

1. Connect to the OAM Administration Server in the WebLogic Remote Console.

2. Click Edit Tree and in the left pane of the console, expand Services > Data Sources >
oamDS. In the right hand pane click the Connection Pool tab.

3. Change Initial Capacity, Maximum Capacity, and Minimum Capacity to 800.

4. Click Save.

Chapter 10
WebLogic Server Tuning

10-6

5. Click the Shopping Cart in the top right of the console, and click Commit Changes.

10.4 Enabling Virtualization
To enable virtualization, perform the following steps:

Enable Virtualization

1. Login to Oracle Enterprise Manager Fusion Middleware Control.

2. Click WebLogic Domain > Security > Security Provider Configuration.

3. Expand Security Store Provider.

4. Expand Identity Store Provider.

5. Click Configure.

6. Add a custom property.

7. Select virtualize property with value true and click OK.

8. Click OK again to persist the change.

10.5 Restarting the Domain
You must restart the Oracle Access Management (OAM) domain for the post configuration
changes to take effect.

1. Stop the OAM domain using the following command:

kubectl -n <domain_namespace> patch domains <domain_uid> --type='json' -
p='[{"op": "replace", "path": "/spec/serverStartPolicy", "value":
"Never" }]'

For example:

kubectl -n oamns patch domains accessdomain --type='json' -p='[{"op":
"replace", "path": "/spec/serverStartPolicy", "value": "Never" }]'

The output will look similar to the following:

domain.weblogic.oracle/accessdomain patched

2. Check that all the pods are stopped:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oamns

Chapter 10
Enabling Virtualization

10-7

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Terminating 0 27m
accessdomain-oam-policy-mgr1 1/1
Terminating 0 24m
accessdomain-oam-server1 1/1
Terminating 0 24m

The Administration Server pod and Managed Server pods will move to a STATUS of
Terminating. After a few minutes, run the command again and the pods should have
disappeared.

3. Start the domain using the following command:

kubectl -n <domain_namespace> patch domains <domain_uid> --type='json' -
p='[{"op": "replace", "path": "/spec/serverStartPolicy", "value":
"IfNeeded" }]'

For example:

kubectl -n oamns patch domains accessdomain --type='json' -p='[{"op":
"replace", "path": "/spec/serverStartPolicy", "value": "IfNeeded" }]'

4. Run the following kubectl command to view the pods:

kubectl get pods -n <domain_namespace> -w

Note:

The -w flag allows you watch the status of the pods as they change.

For example:

kubectl get pods -n oamns -w

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-introspector-mckp2 1/1
Running 0 8s

After the introspect job has run, the Administration Server pod will start followed by the
OAM Managed Servers pods. This process will take several minutes, so keep executing
the command until all the pods are running with READY status 1/1:

NAME READY
STATUS RESTARTS AGE

Chapter 10
Restarting the Domain

10-8

accessdomain-adminserver 1/1
Running 0 5m38s
accessdomain-oam-policy-mgr1 1/1
Running 0 2m51s
accessdomain-oam-server1 1/1
Running 0 2m50s

Chapter 10
Restarting the Domain

10-9

11
Validating Basic SSO Flow With Oracle
WebGate

In this chapter you validate single-sign on (SSO) works with the Oracle Access Management
(OAM) Kubernetes deployment using Oracle WebGate.

The instructions assume you have a running Oracle HTTP Server (OHS), for example ohs1,
and Oracle WebGate installed either in an on-premises setup, or in a Kubernetes cluster.

If you are deploying OHS on a Kubernetes cluster, see Supported Architectures for Oracle
HTTP Server.

The instructions also assume you have a working knowledge of OHS and Oracle WebGate.

The topics in this chapter include:

• Updating the OAM Hostname and Port for the Load Balancer

• Registering an Oracle WebGate Agent

• Configuring the Application Domain

• Creating Host Identifiers

• Configuring OHS to Use the Oracle WebGate

11.1 Updating the OAM Hostname and Port for the Load
Balancer

You must update OAM with the protocol, hostname.domain, and port for your OAM entry point.

For example:

• https://loadbalancer.example.com - if OAM URL’s are accessed directly via a load
balancer URL, with hostname loadbalancer.example.com and port 443.

• https://ohs.example.com:4443 - if OAM URL’s are accessed directly via an OHS URL,
with hostname ohs.example.com and port 4443

• https://oam.example.com:31501 - if OAM URL’s are accessed directly via the ingress
controller, with hostname oam.example.com and port 31501.

In the following examples change {HOSTNAME}:${PORT} accordingly.

1. Launch a browser and access the OAM console (https://${HOSTNAME}:${PORT}/
oamconsole). Login with the weblogic username and password (weblogic/<password>).

2. Navigate to Configuration > Settings (View) > Access Manager.

3. Under Load Balancing modify the OAM Server Host and OAM Server Port, to point to the
hostname.domain of your OAM entry point, for example loadbalancer.example.com and
443 respectively. In the OAM Server Protocol drop down list select https.

4. Under WebGate Traffic Load Balancer modify the OAM Server Host and OAM Server
Port, to point to the hostname.domain of your OAM entry point, for example

11-1

loadbalancer.example.com and 443 respectively. In the OAM Server Protocol drop down
list select https.

5. Click Apply.

11.2 Registering an Oracle WebGate Agent
To register an Oracle WebGate perform the following steps:

1. Launch a browser, and access the OAM console.

2. Navigate to Application Security > Quick Start Wizards > SSO Agent Registration.
Register the agent in the usual way.

3. After creating the agent, make sure the User Defined Parameters for
OAMRestEndPointHostName, OAMRestEndPointPort, and
OAMServerCommunicationMode are set to the same values as per Updating the OAM
Hostname and Port for the Load Balancer. Click Apply.

4. Click Download to download the agent zip file and keep in a safe place. This file this will
be required in Configuring OHS to Use the Oracle WebGate.

11.3 Configuring the Application Domain
To configure the application domain, perform the following steps:

1. In the OAM console, navigate to Application Security > Application Domains. Click
Search, and click the domain for the agent just created

2. In the Application Domain page, under Resources, click Create and protect a simple
resource, for example /myapp/**. Change the following:

• Type: HTTP
• Host Identifier: <your_application_domain>
• Protection Level: Protected: Protected
• Authentication Policy: Protected Resource Policy
• Authorization Policy: Protected Resource Policy

Note:

The purpose of the above is to test a simple page protection works. Once
everything is confirmed as working, you can configure your desired resources
and policies.

3. Click Apply.

11.4 Creating Host Identifiers
To create host identifiers, perform the following steps:

1. In the OAM console, navigate to Application Security → Access Manager → Host
Identifiers. Click Search, and click the Name for the agent just created.

2. In the Host Name Variations, click Add.

Chapter 11
Registering an Oracle WebGate Agent

11-2

3. In the new line that appears, add the details for any URL that will be used for this
WebGate. For example if you access a protected URL via https://
loadbalancer.example.com, then under Host Name enter loadbalancer.example.com
and under Port enter 443.

4. Click Apply.

5. Repeat for any other required URL’s.

11.5 Configuring OHS to Use the Oracle WebGate
Follow the relevant section depending on whether your are using on-premises Oracle HTTP
Server (OHS), or OHS deployed in Kubernetes.

On-premises OHS Installation

In all the examples below, change to the directory path for your installation.

1. Run the following command on the server with OHS and Oracle WebGate installed:

cd <OHS_ORACLE_HOME>/webgate/ohs/tools/deployWebGate

./deployWebGateInstance.sh -w <OHS_DOMAIN_HOME>/config/fmwconfig/
components/OHS/ohs1 -oh <OHS_ORACLE_HOME> -ws ohs

The output will look similar to the following:

Copying files from WebGate Oracle Home to WebGate Instancedir

2. Run the following command to update the OHS configuration files appropriately:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<OHS_ORACLE_HOME>/lib

cd <OHS_ORACLE_HOME>/webgate/ohs/tools/setup/InstallTools/

./EditHttpConf -w <OHS_DOMAIN_HOME>/config/fmwconfig/components/OHS/ohs1 -
oh <OHS_ORACLE_HOME>

The output will look similar to the following:

The web server configuration file was successfully updated
<OHS_DOMAIN_HOME>/config/fmwconfig/components/OHS/ohs1/httpd.conf has been
backed up as <OHS_DOMAIN_HOME>/config/fmwconfig/components/OHS/ohs1/
httpd.conf.ORIG

3. Copy the agent zip file downloaded earlier and copy to the OHS server directory , for
example: <OHS_DOMAIN_HOME>/config/fmwconfig/components/OHS/ohs1/webgate/config.
Extract the zip file.

4. Obtain the Certificate Authority (CA) certificate (cacert.pem) that signed the certificate for
your OAM entry point. Copy to the to the same directory, for example:
<OHS_DOMAIN_HOME>/config/fmwconfig/components/OHS/ohs1/webgate/config.

Chapter 11
Configuring OHS to Use the Oracle WebGate

11-3

Note:

Administrators should be aware of the following:

• The CA certificate is the certificate that signed the certificate for your OAM
entry point. For example if you access OAM directly via a load balancer, then
this is the CA of the load balancer certificate.

• The file must be renamed to cacert.pem.

5. Restart OHS.

6. Access the protected resource, for example https://ohs.example.com/myapp, and check
you are redirected to the SSO login page. Login and make sure you are redirected
successfully to the application.

OHS Deployed on Kubernetes

If deploying OHS on Kubernetes you must copy the agent zip file downloaded earlier to
the $WORKDIR/ohsConfig/webgate/config directory on your Kubernetes administrative node,
and extract it.

For detailed instructions, see Preparing Your OHS Configuration Files

Changing WebGate Agent to use OAP

Note:

This section should only be followed if you need to change the OAM/WebGate Agent
communication from HTTPS to OAP.

To change the WebGate agent to use OAP:

1. In the OAM Console click Application Security and then Agents.

2. Search for the agent you want modify and select it.

3. In the User Defined Parameters change:

• OAMServerCommunicationMode from HTTPS to OAP. For example,
OAMServerCommunicationMode=OAP

• OAMRestEndPointHostName=<hostname> to the hostname the ingress controller is
deployed. For example OAMRestEndPointHostName=oam.example.com.

4. In the Server Lists section click Add to add a new server with the following values:

• Access Server: Other
• Host Name: to the hostname the ingress controller is deployed. For example

oam.example.com
• Host Port: <oamoap-service NodePort>

Chapter 11
Configuring OHS to Use the Oracle WebGate

11-4

Note:

To find the value for Host Port run the following:

kubectl describe svc accessdomain-oamoap-service -n oamns

The output will look similar to the following:

Name: accessdomain-oamoap-service
Namespace: oamns
Labels: <none>
Annotations: <none>
Selector: weblogic.clusterName=oam_cluster
Type: NodePort
IP Families: <none>
IP: 10.100.202.44
IPs: 10.100.202.44
Port: <unset> 5575/TCP
TargetPort: 5575/TCP
NodePort: <unset> 30540/TCP
Endpoints: 10.244.5.21:5575,10.244.6.76:5575
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

In the example above the NodePort is 30540.

5. Delete all servers in Server Lists except for the one just created, and click Apply.

6. Click Download to download the webgate zip file. Copy the zip file to the desired
WebGate.

7. Delete the cache from <OHS_DOMAIN_HOME>/servers/ohs1/cache and restart Oracle HTTP
Server.

Chapter 11
Configuring OHS to Use the Oracle WebGate

11-5

Part III
Administering Oracle Access Management on
Kubernetes

Administer Oracle Access Management on Kubernetes

This section contains the following chapters:

• Scaling OAM Pods

• WLST Administration Operations

• Logging and Visualization

• Monitoring an Oracle Access Management Domain

• Kubernetes Horizontal Pod Autoscaler

• Patching and Upgrading

• General Troubleshooting

• Deleting an OAM Deployment

12
Scaling OAM Pods

As Oracle Access Management (OAM) domains use the WebLogic Kubernetes Operator,
domain life cycle operations are managed using the WebLogic Kubernetes Operator itself.

Note:

The instructions below are for starting, stopping, and scaling servers up or down
manually. If you wish to use autoscaling, see Kubernetes Horizontal Pod Autoscaler.
Please note, if you have enabled autoscaling, and then decide to run the commands
manually, it is recommended to delete the autoscaler before running the commands
in the topics below.

For more detailed information refer to Domain Life Cycle in the WebLogic Kubernetes Operator
documentation.

This chapter includes the following topics:

• Viewing Existing OAM Instances

• Scaling Up OAM Servers

• Scaling Down OAM Servers

• Stopping the OAM Domain

• Domain Life Cycle Scripts

12.1 Viewing Existing OAM Instances
The default Oracle Access Management (OAM) deployment starts the Administration Server
(AdminServer), one OAM Managed Server (oam_server1) and one OAM Policy Manager
server (oam_policy_mgr1).

The deployment also creates, but doesn’t start, four extra OAM Managed Servers (oam-
server2 to oam-server5) and four more OAM Policy Manager servers (oam_policy_mgr2 to
oam_policy_mgr5).

All these servers are visible in the WebLogic Remote Console by navigating to Environment >
Servers.

Run the following command to view the pods in the OAM deployment:

kubectl --namespace <namespace> get pods

For example:

kubectl get pods -n oamns

12-1

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-lifecycle/
https://oracle.github.io/weblogic-kubernetes-operator/

The output should look similar to the following:

NAME READY STATUS
RESTARTS AGE
accessdomain-adminserver 1/1 Running
0 3h29m
accessdomain-oam-policy-mgr1 1/1 Running
0 3h21m
accessdomain-oam-server1 1/1 Running
0 3h21m

12.2 Scaling Up OAM Servers
The number of Oracle Access Management (OAM) managed servers running, or policy
managed servers running, is dependent on the replicas parameter configured for the oam-
cluster and policy_cluster respectively.

To start more OAM servers perform the following steps:

1. Run the following command to edit the cluster

• For OAM managed servers:

kubectl edit cluster accessdomain-oam-cluster -n <domain_namespace>

For example:

kubectl edit cluster accessdomain-oam-cluster -n oamns

• For OAM policy manager servers:

kubectl edit cluster accessdomain-policy-cluster -n <domain_namespace>

For example:

kubectl edit cluster accessdomain-policy-cluster -n oamns

Note:

This opens an edit session for the cluster, where parameters can be changed
using standard vi commands.

2. In the edit session, search for spec:, and then look for the replicas parameter under
clusterName: <cluster>.
By default the replicas parameter, for both OAM managed servers and policy manager
servers, is set to “1” hence one OAM managed server and one policy manager server is
started (oam_server1 and oam-policy-mgr1 respectively):

• For oam_cluster:

...
spec:

Chapter 12
Scaling Up OAM Servers

12-2

 clusterName: oam_cluster
 replicas: 1
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: -XX:+UseContainerSupport -Djava.security.egd=file:/dev/./
urandom -Xms8192m
 -Xmx8192m
...

• For policy_cluster:

...
spec:
 clusterName: policy_cluster
 replicas: 1
 serverService:
 precreateService: true
...

3. To start more OAM managed servers or policy manager servers, increase the replicas
value as desired.
In the example below, two more OAM managed servers (oam-server2 and oam-server3)
will be started by setting replicas to “3” for the oam_cluster:

...
spec:
 clusterName: oam_cluster
 replicas: 3
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: -XX:+UseContainerSupport -Djava.security.egd=file:/dev/./
urandom -Xms8192m
 -Xmx8192m
...

4. Save the file and exit (:wq!).
The output will look similar to the following:

cluster.weblogic.oracle/accessdomain-oam-cluster edited

5. Run the following command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE

Chapter 12
Scaling Up OAM Servers

12-3

accessdomain-adminserver 1/1
Running 0 3h33m
accessdomain-oam-policy-mgr1 1/1
Running 0 3h25m
accessdomain-oam-server1 1/1
Running 0 3h25m
accessdomain-oam-server2 0/1
Running 0 9s
accessdomain-oam-server3 0/1
Pending 0 9s

Two new pods (accessdomain-oam-server2 and accessdomain-oam-server3) are started,
but currently have a READY status of 0/1. This means oam_server2 and oam_server3 are
not currently running but are in the process of starting.
The servers will take several minutes to start so keep executing the command until READY
shows 1/1:

Note:

Alternatively, you can add the watch flag, -w, which allows you watch the status
of the pods as they change.

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 3h37m
accessdomain-oam-policy-mgr1 1/1
Running 0 3h29m
accessdomain-oam-server1 1/1
Running 0 3h29m
accessdomain-oam-server2 1/1
Running 0 3m45s
accessdomain-oam-server3 1/1
Running 0 3m45s

To check what is happening during server startup when READY is 0/1, run the following
command to view the log of the pod that is starting:

kubectl logs <pod> -n <domain_namespace>

For example:

kubectl logs accessdomain-oam-server3 -n oamns

12.3 Scaling Down OAM Servers
Scaling down Oracle Access Management (OAM) servers is performed in exactly the same
way as in Scaling Up OAM Servers except the replicaCount is reduced to the required
number of servers.

Chapter 12
Scaling Down OAM Servers

12-4

To stop one or more OAM servers, perform the following steps:

1. Run the following command to edit the cluster:

• For OAM managed servers:

kubectl edit cluster accessdomain-oam-cluster -n <domain_namespace>

For example:

kubectl edit cluster accessdomain-oam-cluster -n oamns

• For OAM policy manager servers:

kubectl edit cluster accessdomain-policy-cluster -n <domain_namespace>

For example:

kubectl edit cluster accessdomain-policy-cluster -n oamns

Note:

This opens an edit session for the cluster where parameters can be changed
using standard vi commands.

2. In the edit session, search for spec:, and then look for the replicas parameter under
clusterName: <cluster>.
In the example below replicas is set to “3”, hence three OAM managed servers are
started (access-domain-oam_server1 - access-domain-oam_server3):

...
spec:
 clusterName: oam_cluster
 replicas: 3
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: -XX:+UseContainerSupport -Djava.security.egd=file:/dev/./
urandom -Xms8192m
 -Xmx8192m
...

3. To stop OAM servers, decrease the replicas value as desired. In the example below, two
managed servers will be stopped by setting replicas to “1”:

...
spec:
 clusterName: oam_cluster
 replicas: 1
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: -XX:+UseContainerSupport -Djava.security.egd=file:/dev/./

Chapter 12
Scaling Down OAM Servers

12-5

urandom -Xms8192m
 -Xmx8192m
...

4. Save the file and exit (:wq!).
The output will look similar to the following:

cluster.weblogic.oracle/accessdomain-oam-cluster edited

5. Run the following command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 3h45m
accessdomain-oam-policy-mgr1 1/1
Running 0 3h37m
accessdomain-oam-server1 1/1
Running 0 3h37m
accessdomain-oam-server2 1/1
Running 0 6m14s
accessdomain-oam-server3 1/1
Terminating 0 6m14s

One pod now has a STATUS of Terminating (accessdomain-oam-server3).

The server will take a minute or two to stop. Once terminated the other pod
(accessdomain-oam-server2) will move to Terminating and then stop.

The servers will take several minutes to stop so keep executing the command until the
pods have disappeared:

NAME READY STATUS
RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 3h48m
accessdomain-oam-policy-mgr1 1/1
Running 0 3h40m
accessdomain-oam-server1 1/1
Running 0 3h40m

12.4 Stopping the OAM Domain
Stopping the Oracle Access Management (OAM) domain shuts down all the OAM servers and
the Administration Server in one operation.

Chapter 12
Stopping the OAM Domain

12-6

To stop the OAM domain:

1. Run the following kubectl command to edit the domain:

kubectl edit domain <domain_uid> -n <domain_namespace>

For example:

kubectl edit domain accessdomain -n oamns

2. In the edit session, search for serverStartPolicy: IfNeeded under the domain spec:

...
 volumeMounts:
 - mountPath: /u01/oracle/user_projects/domains
 name: weblogic-domain-storage-volume
 volumes:
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: accessdomain-domain-pvc
 serverStartPolicy: IfNeeded
...

3. Change serverStartPolicy: IfNeeded to Never as follows:

...
 volumeMounts:
 - mountPath: /u01/oracle/user_projects/domains
 name: weblogic-domain-storage-volume
 volumes:
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: accessdomain-domain-pvc
 serverStartPolicy: Never
...

4. Save the file and exit (:wq!).

5. Run the following command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Terminating 0 3h52m
accessdomain-oam-policy-mgr1 1/1
Terminating 0 3h44m

Chapter 12
Stopping the OAM Domain

12-7

accessdomain-oam-server1 1/1
Terminating 0 3h44m

The Administration Server pods and OAM server pods will move to a STATUS of
Terminating. After a few minutes, run the command again and the pods should have
disappeared.

6. To start the Administration Server and Managed Servers up again, repeat the previous
steps but change serverStartPolicy: Never to IfNeeded as follows:

...
 volumeMounts:
 - mountPath: /u01/oracle/user_projects/domains
 name: weblogic-domain-storage-volume
 volumes:
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: accessdomain-domain-pvc
 serverStartPolicy: IfNeeded
...

7. Run the following command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-introspector-jwqxw 1/1
Running 0 10s

The introspect job will start, followed by the Administration Server pod, and then the OAM
server pods. This process will take several minutes, so keep executing the command until
all the pods are running with READY status 1/1:

Note:

Alternatively, you can add the watch flag, -w, which allows you watch the status
of the pods as they change.

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 10m
accessdomain-oam-policy-mgr1 1/1
Running 0 7m35s

Chapter 12
Stopping the OAM Domain

12-8

accessdomain-oam-server1 1/1
Running 0 7m35s

12.5 Domain Life Cycle Scripts
The WebLogic Kubernetes Operator provides sample scripts to start up or shut down a specific
Managed Server or cluster in a deployed domain, or the entire deployed domain.

Note:

Prior to running these scripts, you must have previously created and deployed the
domain.

The scripts are located in the $WORKDIR/kubernetes/domain-lifecycle directory.

For more information, see Sample Lifecycle Management Scripts.

Chapter 12
Domain Life Cycle Scripts

12-9

https://github.com/oracle/fmw-kubernetes/tree/master/OracleAccessManagement/kubernetes/domain-lifecycle

13
WLST Administration Operations

This chapter contains the following topics:

• Connecting to OAM via WLST

• Sample WLST Operations

• Performing WLST Administration via SSL

13.1 Connecting to OAM via WLST
In order to use WLST to administer the Oracle Access Management (OAM) domain, use must
use a helper pod.

1. Check to see if the helper pod exists by running:

kubectl get pods -n <domain_namespace> | grep helper

For example:

kubectl get pods -n oamns | grep helper

The output should look similar to the following:

helper 1/1 Running 0 26h

If the helper pod doesn’t exist, run the following:

• If using Oracle Container Registry or your own container registry for the OAM
container image:

kubectl run --image=<image_name-from-registry>:<tag> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1", "spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \
helper -n <domain_namespace> \
-- sleep infinity

For example:

kubectl run --image=container-registry.oracle.com/middleware/
oam_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1","spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \

13-1

helper -n oamns \
-- sleep infinity

• If you are not using a container registry and have loaded the image on each of the
worker nodes, run the following command:

kubectl run helper --image <image>:<tag> -n oamns -- sleep infinity

For example:

kubectl run helper --image oracle/oam_cpu:14.1.2.1-jdk17-ol8-<YYDDMM> -
n oamns -- sleep infinity

The output will look similar to the following:

pod/helper created

2. Run the following command to start a bash shell in the helper pod:

kubectl exec -it helper -n <domain_namespace> -- /bin/bash

For example:

kubectl exec -it helper -n oamns -- /bin/bash

This will take you into a bash shell in the running helper pod:

[oracle@helper ~]$

3. Inside the helper pod, connect to WLST using the following command:

cd $ORACLE_HOME/oracle_common/common/bin

./wlst.sh

The output will look similar to the following:

Initializing WebLogic Scripting Tool (WLST) ...

Jython scans all the jar files it can find at first startup. Depending on
the system, this process may take a few minutes to complete, and WLST may
not return a prompt right away.

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline>

Chapter 13
Connecting to OAM via WLST

13-2

4. To access t3 for the Administration Server connect as follows:

connect('weblogic','<password>','t3://accessdomain-adminserver:7001')

The output will look similar to the following:

Connecting to t3://accessdomain-adminserver:7001 with userid weblogic ...
Successfully connected to Admin Server "AdminServer" that belongs to
domain "accessdomain".

Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used
instead.

wls:/accessdomain/serverConfig/>

Or to access t3 for the OAM Cluster service, connect as follows:

connect('weblogic','<password>','t3://accessdomain-cluster-oam-
cluster:14100')

The output will look similar to the following:

Connecting to t3://accessdomain-cluster-oam-cluster:14100 with userid
weblogic ...
Successfully connected to managed Server "oam_server1" that belongs to
domain "accessdomain".

Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used
instead.

wls:/accessdomain/serverConfig/>

13.2 Sample WLST Operations
The following are some sample WLST operations that can be performed against the Oracle
Access Management (OAM) domain.

For a full list of WLST operations, see WebLogic Server WLST Online and Offline Command
Reference.

Display Servers

1. Run the following commands to display the server:

wls:/accessdomain/serverConfig/> cd('/Servers')

wls:/accessdomain/serverConfig/Servers> ls()

Chapter 13
Sample WLST Operations

13-3

The output will look similar to the following:

dr-- AdminServer
dr-- oam_policy_mgr1
dr-- oam_policy_mgr2
dr-- oam_policy_mgr3
dr-- oam_policy_mgr4
dr-- oam_policy_mgr5
dr-- oam_server1
dr-- oam_server2
dr-- oam_server3
dr-- oam_server4
dr-- oam_server5

wls:/accessdomain/serverConfig/Servers>

Configure Logging for Managed Servers

1. Run the following command to change to the domainRuntime tree:

wls:/accessdomain/serverConfig/> domainRuntime()

The output will look similar to the following:

Location changed to domainRuntime tree. This is a read-only tree
with DomainMBean as the root MBean.
For more help, use help('domainRuntime')

wls:/accessdomain/domainRuntime/>

wls:/accessdomain/domainRuntime/>
listLoggers(pattern="oracle.oam.*",target="oam_server1")
--+-----------------
Logger | Level
--+-----------------
oracle.oam | <Inherited>
oracle.oam.admin.foundation.configuration | <Inherited>
oracle.oam.admin.service.config | <Inherited>
oracle.oam.agent | <Inherited>
oracle.oam.agent-default | <Inherited>
oracle.oam.audit | <Inherited>
oracle.oam.binding | <Inherited>
oracle.oam.certvalidation | <Inherited>
oracle.oam.certvalidation.mbeans | <Inherited>
oracle.oam.common.healthcheck | <Inherited>
oracle.oam.common.runtimeent | <Inherited>
oracle.oam.commonutil | <Inherited>
oracle.oam.config | <Inherited>
oracle.oam.controller | <Inherited>
oracle.oam.default | <Inherited>
oracle.oam.diagnostic | <Inherited>
oracle.oam.engine.authn | <Inherited>
oracle.oam.engine.authz | <Inherited>
oracle.oam.engine.policy | <Inherited>
oracle.oam.engine.ptmetadata | <Inherited>

Chapter 13
Sample WLST Operations

13-4

oracle.oam.engine.session | <Inherited>
oracle.oam.engine.sso | <Inherited>
oracle.oam.esso | <Inherited>
oracle.oam.extensibility.lifecycle | <Inherited>
oracle.oam.foundation.access | <Inherited>
oracle.oam.idm | <Inherited>
oracle.oam.install | <Inherited>
oracle.oam.install.bootstrap | <Inherited>
oracle.oam.install.mbeans | <Inherited>
oracle.oam.ipf.rest.api | <Inherited>
oracle.oam.oauth | <Inherited>
oracle.oam.plugin | <Inherited>
oracle.oam.proxy.oam | <Inherited>
oracle.oam.proxy.oam.workmanager | <Inherited>
oracle.oam.proxy.opensso | <Inherited>
oracle.oam.pswd.service.provider | <Inherited>
oracle.oam.replication | <Inherited>
oracle.oam.user.identity.provider | <Inherited>
wls:/accessdomain/domainRuntime/>

2. Set the log level to TRACE:32:

wls:/accessdomain/domainRuntime/>
setLogLevel(target='oam_server1',logger='oracle.oam',level='TRACE:32',persi
st="1",addLogger=1)

3. Run the following command to view the log level was updated:

wls:/accessdomain/domainRuntime/>
listLoggers(pattern="oracle.oam.*",target="oam_server1")

The output will look similar to the following:

--+-----------------
Logger | Level
--+-----------------
oracle.oam | TRACE:32
oracle.oam.admin.foundation.configuration | <Inherited>
oracle.oam.admin.service.config | <Inherited>
oracle.oam.agent | <Inherited>
oracle.oam.agent-default | <Inherited>
oracle.oam.audit | <Inherited>
oracle.oam.binding | <Inherited>
oracle.oam.certvalidation | <Inherited>
oracle.oam.certvalidation.mbeans | <Inherited>
oracle.oam.common.healthcheck | <Inherited>
oracle.oam.common.runtimeent | <Inherited>
oracle.oam.commonutil | <Inherited>
oracle.oam.config | <Inherited>
oracle.oam.controller | <Inherited>
oracle.oam.default | <Inherited>
oracle.oam.diagnostic | <Inherited>
oracle.oam.engine.authn | <Inherited>
oracle.oam.engine.authz | <Inherited>

Chapter 13
Sample WLST Operations

13-5

oracle.oam.engine.policy | <Inherited>
oracle.oam.engine.ptmetadata | <Inherited>
oracle.oam.engine.session | <Inherited>
oracle.oam.engine.sso | <Inherited>
oracle.oam.esso | <Inherited>
oracle.oam.extensibility.lifecycle | <Inherited>
oracle.oam.foundation.access | <Inherited>
oracle.oam.idm | <Inherited>
oracle.oam.install | <Inherited>
oracle.oam.install.bootstrap | <Inherited>
oracle.oam.install.mbeans | <Inherited>
oracle.oam.ipf.rest.api | <Inherited>
oracle.oam.oauth | <Inherited>
oracle.oam.plugin | <Inherited>
oracle.oam.proxy.oam | <Inherited>
oracle.oam.proxy.oam.workmanager | <Inherited>
oracle.oam.proxy.opensso | <Inherited>
oracle.oam.pswd.service.provider | <Inherited>
oracle.oam.replication | <Inherited>
oracle.oam.user.identity.provider | <Inherited>
wls:/accessdomain/domainRuntime/>

4. Verify that TRACE:32 log level is set by connecting to the Administration Server and viewing
the logs:

kubectl exec -it accessdomain-adminserver -n <domain_namespace> -- /bin/
bash

For example:

kubectl exec -it accessdomain-adminserver -n oamns -- /bin/bash

This will take you into a bash shell in the Administration Server pod:

[oracle@accessdomain-adminserver oracle]$

a. Navigate to the log directory:

cd /u01/oracle/user_projects/domains/accessdomain/servers/oam_server1/
logs

b. View the oam_server1-diagnostic.log:

tail oam_server1-diagnostic.log

The output will look similar to the following:

[<DATE>] [oam_server1] [TRACE:32] [] [oracle.oam.config] [tid:
Configuration Store Observer] [userId: <anonymous>] [ecid: 8b3ac37b-
c7cf-46dd-aeee-5ed67886be21-0000000b,0:1795] [APP: oam_server]
[partition-name: DOMAIN] [tenant-name: GLOBAL] [SRC_CLASS:
oracle.security.am.admin.config.util.observable.ObservableConfigStore$St
oreWatcher] [SRC_METHOD: run] Start of run before start of detection at

Chapter 13
Sample WLST Operations

13-6

1,635,848,774,793. Detector:
oracle.security.am.admin.config.util.observable.DbStoreChangeDetector:Da
tabase configuration store:DSN:jdbc/oamds. Monitor: { StoreMonitor:
{ disabled: 'false' } }
[<DATE>] [oam_server1] [TRACE] [] [oracle.oam.config] [tid:
Configuration Store Observer] [userId: <anonymous>] [ecid: 8b3ac37b-
c7cf-46dd-aeee-5ed67886be21-0000000b,0:1795] [APP: oam_server]
[partition-name: DOMAIN] [tenant-name: GLOBAL] [SRC_CLASS:
oracle.security.am.admin.config.util.store.StoreUtil] [SRC_METHOD:
getContainerProperty] Configuration property CONFIG_HISTORY not
specified
[<DATE>] [oam_server1] [TRACE] [] [oracle.oam.config] [tid:
Configuration Store Observer] [userId: <anonymous>] [ecid: 8b3ac37b-
c7cf-46dd-aeee-5ed67886be21-0000000b,0:1795] [APP: oam_server]
[partition-name: DOMAIN] [tenant-name: GLOBAL] [SRC_CLASS:
oracle.security.am.admin.config.util.store.StoreUtil] [SRC_METHOD:
getContainerProperty] Configuration property CONFIG not specified
[<DATE>] [oam_server1] [TRACE:32] [] [oracle.oam.config] [tid:
Configuration Store Observer] [userId: <anonymous>] [ecid: 8b3ac37b-
c7cf-46dd-aeee-5ed67886be21-0000000b,0:1795] [APP: oam_server]
[partition-name: DOMAIN] [tenant-name: GLOBAL] [SRC_CLASS:
oracle.security.am.admin.config.util.store.DbStore] [SRC_METHOD:
getSelectSQL] SELECT SQL:SELECT version from IDM_OBJECT_STORE where
id = ? and version = (select max(version) from IDM_OBJECT_STORE where
id = ?)
[<DATE>] [oam_server1] [TRACE] [] [oracle.oam.config] [tid:
Configuration Store Observer] [userId: <anonymous>] [ecid: 8b3ac37b-
c7cf-46dd-aeee-5ed67886be21-0000000b,0:1795] [APP: oam_server]
[partition-name: DOMAIN] [tenant-name: GLOBAL] [SRC_CLASS:
oracle.security.am.admin.config.util.store.DbStore] [SRC_METHOD: load]
Time (ms) to load key CONFIG:-1{FIELD_TYPES=INT, SELECT_FIELDS=SELECT
version from IDM_OBJECT_STORE }:4

13.3 Performing WLST Administration via SSL
The following steps show how to perform WLST administration via SSL:

1. By default the SSL port is not enabled for the Administration Server or Oracle Access
Management (OAM) managed servers. To configure the SSL port for the Administration
Server and managed servers:

a. Login to WebLogic Remote Console.

b. Click Edit Tree and in the left-hand navigation menu navigate to Environment >
Servers > <server_name> and click on the General tab.

c. Check the SSL Listen Port Enabled button and provide the SSL Port (For
AdminServer: 7002 and for oam_server1): 14101

d. Click Save.

e. Click the Shopping Cart and select Commit Changes.

Chapter 13
Performing WLST Administration via SSL

13-7

Note:

If configuring the OAM managed servers for SSL you must enable SSL on the
same port for all servers (oam_server1 through oam_server5).

2. Create a myscripts directory as follows:

cd $WORKDIR/kubernetes

mkdir myscripts

cd myscripts

3. Create a <domain_uid>-adminserver-ssl.yaml file in the myscripts directory for the OAM
administration server:

Note:

Update the domainName, domainUID and namespace based on your environment.
For example:

apiVersion: v1
kind: Service
metadata:
 labels:
 serviceType: SERVER
 weblogic.domainName: accessdomain
 weblogic.domainUID: accessdomain
 weblogic.resourceVersion: domain-v2
 weblogic.serverName: AdminServer
 name: accessdomain-adminserverssl
 namespace: oamns
spec:
 clusterIP: None
 ports:
 - name: default
 port: 7002
 protocol: TCP
 targetPort: 7002
 selector:
 weblogic.createdByOperator: "true"
 weblogic.domainUID: accessdomain
 weblogic.serverName: AdminServer
 type: ClusterIP

4. Create a <domain_uid>-oamcluster-ssl.yaml for the OAM managed server:

apiVersion: v1
kind: Service
metadata:

Chapter 13
Performing WLST Administration via SSL

13-8

 labels:
 serviceType: SERVER
 weblogic.domainName: accessdomain
 weblogic.domainUID: accessdomain
 weblogic.resourceVersion: domain-v2
 name: accessdomain-oamcluster-ssl
 namespace: oamns
spec:
 clusterIP: None
 ports:
 - name: default
 port: 14101
 protocol: TCP
 targetPort: 14101
 selector:
 weblogic.clusterName: oam_cluster
 weblogic.createdByOperator: "true"
 weblogic.domainUID: accessdomain
 type: ClusterIP

5. Apply the template using the following command for the administration server:

kubectl apply -f <domain_uid>-adminserver-ssl.yaml

For example:

kubectl apply -f accessdomain-adminserver-ssl.yaml

The output will look similar to the following:

service/accessdomain-adminserverssl created

6. Apply the template using the following command for the OAM managed server:

kubectl apply -f <domain_uid>-oamcluster-ssl.yaml

For example:

kubectl apply -f accessdomain-oamcluster-ssl.yaml

The output will look similar to the following:

service/accessdomain-oamcluster-ssl created

7. Validate that the Kubernetes services to access SSL ports are created successfully:

kubectl get svc -n <domain_namespace> |grep ssl

For example:

kubectl get svc -n oamns |grep ssl

Chapter 13
Performing WLST Administration via SSL

13-9

The output will look similar to the following:

accessdomain-adminserverssl ClusterIP None
<none> 7002/TCP 102s
accessdomain-oamcluster-ssl ClusterIP None
<none> 14101/TCP 35s

8. Inside the bash shell of the running helper pod, run the following:

export WLST_PROPERTIES="-
Dweblogic.security.SSL.ignoreHostnameVerification=true -
Dweblogic.security.TrustKeyStore=DemoTrust"

cd /u01/oracle/oracle_common/common/bin

./wlst.sh

The output will look similar to the following:

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands
wls:/offline>

To connect to the Administration Server t3s service:

connect('weblogic','<password>','t3s://accessdomain-adminserverssl:7002')

The output will look similar to the following:

Connecting to t3s://accessdomain-adminserverssl:7002 with userid
weblogic ...
<<DATE>> <Info> <Security> <BEA-090905> <Disabling the CryptoJ JCE
Provider self-integrity check for better startup performance. To enable
this check, specify -
Dweblogic.security.allowCryptoJDefaultJCEVerification=true.>
<<DATE>> <Info> <Security> <BEA-090906> <Changing the default Random
Number Generator in RSA CryptoJ from ECDRBG128 to HMACDRBG. To disable
this change, specify -Dweblogic.security.allowCryptoJDefaultPRNG=true.>
<<DATE>> <Info> <Security> <BEA-090909> <Using the configured custom SSL
Hostname Verifier implementation:
weblogic.security.utils.SSLWLSHostnameVerifier$NullHostnameVerifier.>
Successfully connected to Admin Server "AdminServer" that belongs to
domain "accessdomain".

wls:/accessdomain/serverConfig/>

Chapter 13
Performing WLST Administration via SSL

13-10

To connect to the OAM Managed Server t3s service:

connect('weblogic','<password>','t3s://accessdomain-oamcluster-ssl:14101')

The output will look similar to the following:

Connecting to t3s://accessdomain-oamcluster-ssl:14101 with userid
weblogic ...
<<DATE>> <Info> <Security> <BEA-090905> <Disabling the CryptoJ JCE
Provider self-integrity check for better startup performance. To enable
this check, specify -
Dweblogic.security.allowCryptoJDefaultJCEVerification=true.>
<<DATE>> <Info> <Security> <BEA-090906> <Changing the default Random
Number Generator in RSA CryptoJ from ECDRBG128 to HMACDRBG. To disable
this change, specify -Dweblogic.security.allowCryptoJDefaultPRNG=true.>
<<DATE>> <Info> <Security> <BEA-090909> <Using the configured custom SSL
Hostname Verifier implementation:
weblogic.security.utils.SSLWLSHostnameVerifier$NullHostnameVerifier.>
Successfully connected to managed Server "oam_server1" that belongs to
domain "accessdomain".

Chapter 13
Performing WLST Administration via SSL

13-11

14
Logging and Visualization

This chapter describes how to publish WebLogic Kubernetes Operator and WebLogic server
logs into Elasticsearch, and interact with them in Kibana.

The ELK stack consists of Elasticsearch, Logstash, and Kibana. Using ELK you can gain
insights in real-time from the log data from your applications.

Elasticsearch is a distributed, RESTful search and analytics engine capable of solving a
growing number of use cases. As the heart of the Elastic Stack, it centrally stores your data so
you can discover the expected and uncover the unexpected.

Logstash is an open source, server-side data processing pipeline that ingests data from a
multitude of sources simultaneously, transforms it, and then sends it to your favorite “stash.”

Kibana lets you visualize your Elasticsearch data and navigate the Elastic Stack. It gives you
the freedom to select the way you give shape to your data, and you don’t always have to know
what you’re looking for.

This chapter includes the following topics:

• Installing Elasticsearch and Kibana

• Creating the Logstash Pod

• Verifying the Pods

• Verifying and Accessing the Kibana Console

14.1 Installing Elasticsearch and Kibana
If you do not already have a centralized Elasticsearch (ELK) stack then you must configure this
first.

For details on how to configure the ELK stack, see Installing the Monitoring and Visualization
Software.

14.2 Creating the Logstash Pod
Topics in the section include:

• Variables Used in This Section

• Creating a Kubernetes Secret for ELK

• Finding Required Domain Details

• Creating the ConfigMap

• Enabling Logstash

14.2.1 Variables Used in This Section
In order to create the logstash pod, you must create several yaml files. These files contains
variables which you must substitute with variables applicable to your ELK environment.

14-1

Most of the values for the variables will be based on your ELK deployment as per Installing the
Monitoring and Visualization Software.

The table below outlines the variables and values you must set:

Variable Sample Value Description

<ELK_VER> 8.3.1 The version of logstash you want
to install.

<ELK_SSL> true If SSL is enabled for ELK set the
value to true, or if NON-SSL set
to false. This value must be
lowercase.

<ELK_HOSTS> https://
elasticsearch.example.com:
9200

The URL for sending logs to
Elasticsearch. HTTP if NON-SSL
is used.

<ELK_USER> logstash_internal The name of the user for logstash
to access Elasticsearch.

<ELK_PASSWORD> password The password for <ELK_USER>.

<ELK_APIKEY> apikey The API key details.

You will also need the BASE64 version of the Certificate Authority (CA) certificate(s) that
signed the certificate of the Elasticsearch server. If using a self-signed certificate, this is the
self signed certificate of the Elasticsearch server. See Copying the Elasticsearch Certificate, for
details on how to get the correct certificate. In the example below the certificate is called
elk.crt.

14.2.2 Creating a Kubernetes Secret for ELK
1. Create a Kubernetes secret for Elasticsearch using the API Key or Password:

a. If ELK uses an API Key for authentication:

kubectl create secret generic elasticsearch-pw-elastic -n
<domain_namespace> --from-literal password=<ELK_APIKEY>

For example:

kubectl create secret generic elasticsearch-pw-elastic -n oamns --from-
literal password=<ELK_APIKEY>

The output will look similar to the following:

secret/elasticsearch-pw-elastic created

b. If ELK uses a password for authentication:

kubectl create secret generic elasticsearch-pw-elastic -n
<domain_namespace> --from-literal password=<ELK_PASSWORD>

Chapter 14
Creating the Logstash Pod

14-2

For example:

kubectl create secret generic elasticsearch-pw-elastic -n oudns --from-
literal password=<ELK_PASSWORD>

The output will look similar to the following:

secret/elasticsearch-pw-elastic created

Note:

It is recommended that the ELK Stack is created with authentication enabled. If
no authentication is enabled you may create a secret using the values above.

2. Create a Kubernetes secret to access the required images on hub.docker.com:

Note:

Before executing the command below, you must first have a user account on
hub.docker.com.

kubectl create secret docker-registry "dockercred" --docker-
server="https://index.docker.io/v1/" \
--docker-username="<DOCKER_USER_NAME>" \
--docker-password=<DOCKER_PASSWORD> --docker-email=<DOCKER_EMAIL_ID> \
--namespace=<domain_namespace>

For example:

kubectl create secret docker-registry "dockercred" --docker-
server="https://index.docker.io/v1/" \
--docker-username="user@example.com" \
--docker-password=password --docker-email=user@example.com \
--namespace=oamns

The output will look similar to the following:

secret/dockercred created

14.2.3 Finding Required Domain Details
The YAML files for ELK require certain domain values to be added.

1. Run the following command to get the mountPath of your domain:

kubectl describe domains <domain_uid> -n <domain_namespace> | grep "Mount
Path"

Chapter 14
Creating the Logstash Pod

14-3

http://hub.docker.com
http://hub.docker.com

For example:

kubectl describe domains accessdomain -n oamns | grep "Mount Path"

If you deployed OAM using WLST, the output will look similar to the following:

Mount Path: /u01/oracle/user_projects/domains

If you deployed OAM using WDT, the output will look similar to the following:

Mount Path: /u01/oracle/user_projects

2. Run the following command to get the Domain Home and Log Home of your domain:

kubectl describe domains <domain_uid> -n <domain_namespace> | egrep
"Domain Home: | Log Home:"

For example:

kubectl describe domains accessdomain -n oamns | egrep "Domain Home: | Log
Home:"

The output will look similar to the following:

Domain Home: /u01/oracle/user_projects/domains/
accessdomain
Http Access Log In Log Home: true
Log Home: /u01/oracle/user_projects/domains/logs/
accessdomain

3. Run the following command to get the OAM domain persistence volume details:

kubectl get pv -n <domain_namespace>

For example:

kubectl get pv -n oamns

The output will look similar to the following:

NAME CAPACITY ACCESS MODES RECLAIM POLICY
STATUS CLAIM
STORAGECLASS REASON AGE
accessdomain-domain-pv 10Gi RWX Retain
Bound oamns/accessdomain-domain-pvc accessdomain-domain-storage-
class 23h

Make note of the CLAIM value. In the example above the value is accessdomain-domain-
pvc.

Chapter 14
Creating the Logstash Pod

14-4

14.2.4 Creating the ConfigMap
Perform the following steps to create the Kubernetes ConfigMap for ELK:

1. Copy the elk.crt file to the $WORKDIR/kubernetes/elasticsearch-and-kibana directory.

2. Navigate to the $WORKDIR/kubernetes/elasticsearch-and-kibana directory and run the
following:

kubectl create configmap elk-cert --from-file=elk.crt -n <namespace>

For example:

kubectl create configmap elk-cert --from-file=elk.crt -n oamns

The output will look similar to the following:

configmap/elk-cert created

3. Create a logstash_cm.yaml file in the $WORKDIR/kubernetes/elasticsearch-and-kibana
directory as follows:

apiVersion: v1
kind: ConfigMap
metadata:
 name: oam-logstash-configmap
 namespace: <ELKNS>
data:
 logstash.yml: |
 #http.host: "0.0.0.0"
 logstash-config.conf: |
 input {
 file {
 path => "<Log Home>/**/logs/AdminServer*.log"
 tags => "Adminserver_log"
 start_position => beginning
 }
 file {
 path => "<Log Home>/**/logs/oam_policy_mgr*.log"
 tags => "Policymanager_log"
 start_position => beginning
 }
 file {
 path => "<Log Home>/**/logs/oam_server*.log"
 tags => "Oamserver_log"
 start_position => beginning
 }
 file {
 path => "<Domain Home>/servers/AdminServer/logs/AdminServer-
diagnostic.log"
 tags => "Adminserver_diagnostic"
 start_position => beginning
 }
 file {

Chapter 14
Creating the Logstash Pod

14-5

 path => "<Domain Home>/servers/**/logs/oam_policy_mgr*-
diagnostic.log"
 tags => "Policy_diagnostic"
 start_position => beginning
 }
 file {
 path => "<Domain Home>/servers/AdminServer/logs/auditlogs/OAM/
audit.log"
 tags => "Audit_logs"
 start_position => beginning
 }
 }
 filter {
 grok {
 match => ["message", "<%{DATA:log_timestamp}> <%{WORD:log_level}>
<%{WORD:thread}> <%{HOSTNAME:hostname}> <%{HOSTNAME:servername}> <%
{DATA:timer}> <<%{DATA:kernel}>> <> <%{DATA:uuid}> <%{NUMBER:timestamp}> <%
{DATA:misc}> <%{DATA:log_number}> <%{DATA:log_message}>"]
 }
 if "_grokparsefailure" in [tags] {
 mutate {
 remove_tag => ["_grokparsefailure"]
 }
 }
 }
 output {
 elasticsearch {
 hosts => ["<ELK_HOSTS>"]
 cacert => '/usr/share/logstash/config/certs/elk.crt'
 index => "oamlogs-000001"
 ssl => true
 ssl_certificate_verification => false
 user => "<ELK_USER>"
 password => "${ELASTICSEARCH_PASSWORD}"
 api_key => "${ELASTICSEARCH_PASSWORD}"
 }
 }

Change the values in the above file as follows:

• Change the <ELKNS>, <ELK_HOSTS>, <ELK_SSL>, and <ELK_USER> to match the values in
Variables Used in This Section.

• Change <Log Home> and <Domain Home> to match the Log Home and Domain Home
returned in Finding Required Domain Details.

• If using API KEY for your ELK authentication, delete the user and password lines.

• If using a password for ELK authentication, delete the api_key line.

• If no authentication is used for ELK, delete the user, password, and api_key lines.

For example:

apiVersion: v1
kind: ConfigMap
metadata:
 name: oam-logstash-configmap

Chapter 14
Creating the Logstash Pod

14-6

 namespace: oamns
data:
 logstash.yml: |
 #http.host: "0.0.0.0"
 logstash-config.conf: |
 input {
 file {
 path => "/u01/oracle/user_projects/domains/logs/accessdomain/**/
logs/AdminServer*.log"
 tags => "Adminserver_log"
 start_position => beginning
 }
 file {
 path => "/u01/oracle/user_projects/domains/logs/accessdomain/**/
logs/oam_policy_mgr*.log"
 tags => "Policymanager_log"
 start_position => beginning
 }
 file {
 path => "/u01/oracle/user_projects/domains/logs/accessdomain/**/
logs/oam_server*.log"
 tags => "Oamserver_log"
 start_position => beginning
 }
 file {
 path => "/u01/oracle/user_projects/domains/accessdomain/servers/
AdminServer/logs/AdminServer-diagnostic.log"
 tags => "Adminserver_diagnostic"
 start_position => beginning
 }
 file {
 path => "/u01/oracle/user_projects/domains/accessdomain/servers/**/
logs/oam_policy_mgr*-diagnostic.log"
 tags => "Policy_diagnostic"
 start_position => beginning
 }
 file {
 path => "/u01/oracle/user_projects/domains/accessdomain/servers/
AdminServer/logs/auditlogs/OAM/audit.log"
 tags => "Audit_logs"
 start_position => beginning
 }
 }
 filter {
 grok {
 match => ["message", "<%{DATA:log_timestamp}> <%{WORD:log_level}>
<%{WORD:thread}> <%{HOSTNAME:hostname}> <%{HOSTNAME:servername}> <%
{DATA:timer}> <<%{DATA:kernel}>> <> <%{DATA:uuid}> <%{NUMBER:timestamp}> <%
{DATA:misc}> <%{DATA:log_number}> <%{DATA:log_message}>"]
 }
 if "_grokparsefailure" in [tags] {
 mutate {
 remove_tag => ["_grokparsefailure"]
 }
 }
 }

Chapter 14
Creating the Logstash Pod

14-7

 output {
 elasticsearch {
 hosts => ["https://elasticsearch.example.com:9200"]
 cacert => '/usr/share/logstash/config/certs/elk.crt'
 index => "oamlogs-000001"
 ssl => true
 ssl_certificate_verification => false
 user => "logstash_internal"
 password => "${ELASTICSEARCH_PASSWORD}"
 }
 }

4. Run the following command to create the ConfigMap:

 kubectl apply -f logstash_cm.yaml

The output will look similar to the following:

configmap/oam-logstash-configmap created

14.2.5 Enabling Logstash
Perform the following steps to enable logstash:

1. Navigate to the $WORKDIR/kubernetes/elasticsearch-and-kibana directory and create a
logstash.yaml file as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: oam-logstash
 namespace: <ELKNS>
spec:
 selector:
 matchLabels:
 k8s-app: logstash
 template: # create pods using pod definition in this template
 metadata:
 labels:
 k8s-app: logstash
 spec:
 imagePullSecrets:
 - name: dockercred
 containers:
 - command:
 - logstash
 image: logstash:<ELK_VER>
 imagePullPolicy: IfNotPresent
 name: oam-logstash
 env:
 - name: ELASTICSEARCH_PASSWORD
 valueFrom:
 secretKeyRef:
 name: elasticsearch-pw-elastic

Chapter 14
Creating the Logstash Pod

14-8

 key: password
 resources:
 ports:
 - containerPort: 5044
 name: logstash
 volumeMounts:
 - mountPath: <mountPath>
 name: weblogic-domain-storage-volume
 - name: shared-logs
 mountPath: /shared-logs
 - mountPath: /usr/share/logstash/pipeline/
 name: oam-logstash-pipeline
 - mountPath: /usr/share/logstash/config/logstash.yml
 subPath: logstash.yml
 name: config-volume
 - mountPath: /usr/share/logstash/config/certs
 name: elk-cert
 volumes:
 - configMap:
 defaultMode: 420
 items:
 - key: elk.crt
 path: elk.crt
 name: elk-cert
 name: elk-cert
 - configMap:
 defaultMode: 420
 items:
 - key: logstash-config.conf
 path: logstash-config.conf
 name: oam-logstash-configmap
 name: oam-logstash-pipeline
 - configMap:
 defaultMode: 420
 items:
 - key: logstash.yml
 path: logstash.yml
 name: oam-logstash-configmap
 name: config-volume
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: accessdomain-domain-pvc
 - name: shared-logs
 emptyDir: {}

• Change the <ELK_VER>, <ELK_SSL> to match the values for your environment.

• Change <mountPath> to match the mountPath returned in Finding Required Domain
Details.

• Change the claimName value to match the claimName returned earlier

• If your Kubernetes environment does not allow access to the internet to pull the
logstash image, you must load the logstash image in your own container registry and
change image: logstash:<ELK_VER> to the location of the image in your container
registry, for example container-registry.example.com/logstash:8.3.1

Chapter 14
Creating the Logstash Pod

14-9

For example:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: oam-logstash
 namespace: oamns
spec:
 selector:
 matchLabels:
 k8s-app: logstash
 template: # create pods using pod definition in this template
 metadata:
 labels:
 k8s-app: logstash
 spec:
 imagePullSecrets:
 - name: dockercred
 containers:
 - command:
 - logstash
 image: logstash:8.3.1
 imagePullPolicy: IfNotPresent
 name: oam-logstash
 env:
 - name: ELASTICSEARCH_PASSWORD
 valueFrom:
 secretKeyRef:
 name: elasticsearch-pw-elastic
 key: password
 resources:
 ports:
 - containerPort: 5044
 name: logstash
 volumeMounts:
 - mountPath: /u01/oracle/user_projects
 name: weblogic-domain-storage-volume
 - name: shared-logs
 mountPath: /shared-logs
 - mountPath: /usr/share/logstash/pipeline/
 name: oam-logstash-pipeline
 - mountPath: /usr/share/logstash/config/logstash.yml
 subPath: logstash.yml
 name: config-volume
 - mountPath: /usr/share/logstash/config/certs
 name: elk-cert
 volumes:
 - configMap:
 defaultMode: 420
 items:
 - key: elk.crt
 path: elk.crt
 name: elk-cert
 name: elk-cert
 - configMap:
 defaultMode: 420

Chapter 14
Creating the Logstash Pod

14-10

 items:
 - key: logstash-config.conf
 path: logstash-config.conf
 name: oam-logstash-configmap
 name: oam-logstash-pipeline
 - configMap:
 defaultMode: 420
 items:
 - key: logstash.yml
 path: logstash.yml
 name: oam-logstash-configmap
 name: config-volume
 - name: weblogic-domain-storage-volume
 persistentVolumeClaim:
 claimName: accessdomain-domain-pvc
 - name: shared-logs
 emptyDir: {}

2. Deploy the logstash pod by executing the following command:

kubectl create -f $WORKDIR/kubernetes/elasticsearch-and-kibana/
logstash.yaml

The output will look similar to the following:

deployment.apps/oam-logstash created

14.3 Verifying the Pods
1. Run the following command to check the logstash pod is created correctly:

kubectl get pods -n <namespace>

For example:

kubectl get pods -n oamns

The output should look similar to the following:

NAME READY STATUS
RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 18h
accessdomain-oam-policy-mgr1 1/1
Running 0 18h
accessdomain-oam-server1 1/1
Running 1 18h
oam-logstash-bbbdf5876-85nkd 1/1
Running 0 4m23s

Chapter 14
Verifying the Pods

14-11

Wait a couple of minutes to make sure the logstash pod has not had any failures or
restarts. If the pod fails you can view the pod log using:

kubectl logs -f oam-logstash-<pod> -n oamns

Most errors occur due to misconfiguration of the logstash_cm.yaml or logstash.yaml.
This is usually because of an incorrect value set, or the certificate was not pasted with the
correct indentation.
If the pod has errors, delete the pod and ConfigMap as follows:

kubectl delete -f $WORKDIR/kubernetes/elasticsearch-and-kibana/
logstash.yaml

kubectl delete -f $WORKDIR/kubernetes/elasticsearch-and-kibana/
logstash_cm.yaml

Once you have resolved the issue in the yaml files, run the commands outlined earlier to
recreate the ConfigMap and logstash pod.

14.4 Verifying and Accessing the Kibana Console
To access the Kibana console you will need the Kibana URL as per Installing the Monitoring
and Visualization Software.

Kibana Version 7.8.X or Higher

1. Access the Kibana console with http://<hostname>:<port>/app/kibana and login with
your username and password.

2. From the Navigation menu, navigate to Management > Kibana > Index Patterns.

3. In the Create Index Pattern page enter oamlogs* for the Index pattern and click Next
Step.

4. In the Configure settings page, from the Time Filter field name drop down menu select
@timestamp and click Create index pattern.

5. Once the index pattern is created click on Discover in the navigation menu to view the
OAM logs.

Kibana 7.7.x or Lower

1. Access the Kibana console with http://<hostname>:<port>/app/kibana and login with
your username and password.

2. From the Navigation menu, navigate to Management > Stack Management.

3. Click Data Views in the Kibana section.

4. Click Create Data View and enter the following information:

• Name: oamlogs*
• Timestamp: @timestamp

5. Click Create Data View.

6. From the Navigation menu, click Discover to view the log file entries.

Chapter 14
Verifying and Accessing the Kibana Console

14-12

7. From the drop down menu, select oamlogs* to view the log file entries.

Chapter 14
Verifying and Accessing the Kibana Console

14-13

15
Monitoring an Oracle Access Management
Domain

Using the WebLogic Monitoring Exporter you can scrape runtime information from a running
Oracle Access Management (OAM) domain and monitor using Prometheus and Grafana.

To set up monitoring, see Monitor the Oracle Access Management instance using Prometheus
and Grafana.

For more information on WebLogic Monitoring Exporter, see WebLogic Monitoring Exporter.

15-1

https://github.com/oracle/fmw-kubernetes/blob/v25.1.1/OracleAccessManagement/kubernetes/monitoring-service/README.md
https://github.com/oracle/fmw-kubernetes/blob/v25.1.1/OracleAccessManagement/kubernetes/monitoring-service/README.md
https://github.com/oracle/weblogic-monitoring-exporter

16
Kubernetes Horizontal Pod Autoscaler

Kubernetes Horizontal Pod Autoscaler (HPA) allows automatic scaling (up and down) of the
Oracle Access Management (OAM) servers. If load increases then extra OAM servers will be
started as required, up to the value configuredManagedServerCount defined when the domain
was created. Similarly, if load decreases, OAM servers will be automatically shutdown.

For more information on HPA, see Horizontal Pod Autoscaling.

The instructions below show you how to configure and run an HPA to scale an OAM cluster
(accessdomain-oam-cluster), based on CPU utilization or memory resource metrics. If
required, you can also perform the following for the accessdomain-policy-cluster.

Note:

If you enable HPA and then decide you want to start,stop, or scale OAM servers
manually as per Scaling OAM Pods, it is recommended to delete HPA beforehand as
per Deleting HPA.

This chapter includes the following topics:

• Prerequisite Configurations

• Deploying the Kubernetes Metrics Server

• Troubleshooting the Metrics Server

• Deploying HPA

• Verifying HPA

• Deleting HPA

• Other Considerations for HPA

16.1 Prerequisite Configurations
In order to use HPA, Oracle Access Management (OAM) must have been created with the
required resources parameter. For OAM domains created with WLST scripts, this is as per
Setting the OAM Server Memory Parameters. For OAM domains created with WDT models,
the values should be set by default. For example:

For example:

serverPod:
 env:
 - name: USER_MEM_ARGS
 value: "-XX:+UseContainerSupport -Djava.security.egd=file:/dev/./urandom -
Xms8192m -Xmx8192m"
 resources:
 limits:
 cpu: "2"

16-1

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

 memory: "8Gi"
 requests:
 cpu: "1000m"
 memory: "4Gi"

If you created the OAM domain without setting these parameters, then you can update the
domain using the following steps:

1. Run the following command to edit the cluster:

kubectl edit cluster <cluster> -n <namespace>

kubectl edit cluster accessdomain-oam-cluster -n oamns

Note:

This opens an edit session for the cluster where parameters can be changed
using standard vi commands.

2. In the edit session, search for spec:, and then look for the replicas parameter under
clusterName: oam_cluster. Change the entry so it looks as follows:

spec:
 clusterName: oam_cluster
 replicas: 1
 serverPod:
 env:
 - name: USER_MEM_ARGS
 value: -XX:+UseContainerSupport -Djava.security.egd=file:/dev/./
urandom -Xms8192m -Xmx8192m
 resources:
 limits:
 cpu: "2"
 memory: 8Gi
 requests:
 cpu: 1000m
 memory: 4Gi
 serverService:
 precreateService: true
 ...

3. Save the file and exit (:wq!).
The output will look similar to the following:

cluster.weblogic.oracle/accessdomain-oam-cluster edited

The OAM managed server pods will then automatically be restarted.

Chapter 16
Prerequisite Configurations

16-2

16.2 Deploying the Kubernetes Metrics Server
Before deploying Horizontal Pod Autoscaler (HPA) you must deploy the Kubernetes Metrics
Server.

1. Check to see if the Kubernetes Metrics Server is already deployed:

kubectl get pods -n kube-system | grep metric

If a row is returned as follows, then Kubernetes Metric Server is deployed and you can
move to Deploying HPA:

metrics-server-d9694457-mf69d 1/1 Running 0
5m13s

2. If no rows are returned by the previous command, then the Kubernetes Metric Server
needs to be deployed. Run the following commands to get the components.yaml:

mkdir $WORKDIR/kubernetes/hpa

cd $WORKDIR/kubernetes/hpa

wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/
download/components.yaml

3. Deploy the Kubernetes Metrics Server by running the following command:

kubectl apply -f components.yaml

The output will look similar to the following:

serviceaccount/metrics-server created
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader
created
clusterrole.rbac.authorization.k8s.io/system:metrics-server created
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-
delegator created
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created
service/metrics-server created
deployment.apps/metrics-server created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created

4. Run the following command to check Kubernetes Metric Server is running:

kubectl get pods -n kube-system | grep metric

Chapter 16
Deploying the Kubernetes Metrics Server

16-3

Make sure the pod has a READY status of 1/1:

metrics-server-d9694457-mf69d 1/1 Running 0 39s

16.3 Troubleshooting the Metrics Server
If the Kubernetes Metric Server does not reach the READY 1/1 state, run the following
commands:

kubectl describe pod <metrics-server-pod> -n kube-system

kubectl logs <metrics-server-pod> -n kube-system

If you see errors such as:

Readiness probe failed: HTTP probe failed with statuscode: 500

and:

E0907 13:07:50.937308 1 scraper.go:140] "Failed to scrape node"
err="Get \"https://X.X.X.X:10250/metrics/resource\": x509: cannot validate
certificate for 100.105.18.113 because it doesn't contain any IP SANs"
node="worker-node1"

then you may need to install a valid cluster certificate for your Kubernetes cluster.

For testing purposes, you can resolve this issue by:

1. Delete the Kubernetes Metrics Server by running the following command:

kubectl delete -f $WORKDIR/kubernetes/hpa/components.yaml

2. Edit the $WORKDIR/hpa/components.yaml and locate the args: section. Add kubelet-
insecure-tls to the arguments. For example:

spec:
 containers:
 - args:
 - --cert-dir=/tmp
 - --secure-port=4443
 - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
 - --kubelet-use-node-status-port
 - --kubelet-insecure-tls
 - --metric-resolution=15s
 image: registry.k8s.io/metrics-server/metrics-server:v0.6.4
 ...

3. Deploy the Kubernetes Metrics Server using the command:

kubectl apply -f components.yaml

Chapter 16
Troubleshooting the Metrics Server

16-4

4. Run the following and make sure the READY status shows 1/1:

kubectl get pods -n kube-system | grep metric

The output should look similar to the following:

metrics-server-d9694457-mf69d 1/1 Running 0 40s

16.4 Deploying HPA
The steps below show how to configure and run Horizontal Pod Autoscaler (HPA) to scale
Oracle Access Management (OAM), based on the CPU or memory utilization resource metrics.

The default OAM deployment creates the cluster accessdomain-oam-cluster which starts one
OAM managed server (oam_server1). The deployment also creates, but doesn’t start, four
extra OAM Managed Servers (oam-server2 to oam-server5).

In the following example an HPA resource is created, cluster resource accessdomain-oam-
cluster. This resource will autoscale OAM managed server from a minimum of 1 cluster
member up to 5 cluster members. Scaling up will occur when the average CPU is consistently
over 70%. Scaling down will occur when the average CPU is consistently below 70%.

1. Navigate to the $WORKDIR/kubernetes/hpa and create an autoscalehpa.yaml file that
contains the following:

#
#
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: accessdomain-oam-cluster-hpa
 namespace: oamns
spec:
 scaleTargetRef:
 apiVersion: weblogic.oracle/v1
 kind: Cluster
 name: accessdomain-oam-cluster
 behavior:
 scaleDown:
 stabilizationWindowSeconds: 60
 scaleUp:
 stabilizationWindowSeconds: 60
 minReplicas: 1
 maxReplicas: 5
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 70

where:

Chapter 16
Deploying HPA

16-5

• accessdomain is the <domainUID>
• oamns is the <domain_namespace>.

• minReplicas and maxReplicas should match your current domain setting.

Note:

For setting HPA based on Memory Metrics, update the metrics block with the
following content. Please note, Oracle recommends using only CPU or Memory,
not both:

metrics:
- type: Resource
 resource:
 name: memory
 target:
 type: Utilization
 averageUtilization: 70

2. Run the following command to create the autoscaler:

kubectl apply -f autoscalehpa.yaml

The output will look similar to the following:

horizontalpodautoscaler.autoscaling/accessdomain-oam-cluster-hpa created

3. Verify the status of the autoscaler by running the following:

kubectl get hpa -n oamns

The output will look similar to the following:

NAME REFERENCE
TARGETS MINPODS MAXPODS REPLICAS AGE
accessdomain-oam-cluster-hpa Cluster/accessdomain-oam-cluster
5%/70% 1 5 1 21s

In the example above, this shows that CPU is currently running at 5% for the
accessdomain-oam-cluster-hpa.

16.5 Verifying HPA
To verify the Horizontal Pod Autoscaler (HPA) works, perform the following steps:

1. Check the current status of the Oracle Access Management (OAM) servers:

kubectl get pods -n oamns

Chapter 16
Verifying HPA

16-6

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 0/1
Running 0 141m
accessdomain-oam-policy-mgr1 0/1
Running 0 138m
accessdomain-oam-server1 1/1
Running 0 138m

In the above example only accessdomain-oam-server1 is running.

2. To test HPA can scale up the WebLogic cluster accessdomain-oam-cluster, run the
following commands:

kubectl exec --stdin --tty accessdomain-oam-server1 -n oamns -- /bin/bash

This will take you inside a bash shell inside the oam_server1 pod:

[oracle@accessdomain-oam-server1 oracle]$

3. Inside the bash shell, run the following command to increase the load on the CPU:

[oracle@accessdomain-oam-server1 oracle]$ dd if=/dev/zero of=/dev/null

This command will continue to run in the foreground.

4. In a command window outside the bash shell, run the following command to view the
current CPU usage:

kubectl get hpa -n oamns

The output will look similar to the following:

NAME REFERENCE
TARGETS MINPODS MAXPODS REPLICAS AGE
accessdomain-oam-cluster-hpa Cluster/accessdomain-oam-cluster
470%/70% 1 5 1 21s

In the above example the CPU has increased to 470%. As this is above the 70% limit, the
autoscaler increases the replicas on the Cluster resource, and the operator responds by
starting additional cluster members.

5. Run the following to see if any more OAM Managed Servers are started:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 0/1

Chapter 16
Verifying HPA

16-7

Running 143m
accessdomain-oam-policy-mgr1 0/1
Running 0 140m
accessdomain-oam-server1 1/1
Running 0 140m
accessdomain-oam-server2 1/1
Running 0 3m20s
accessdomain-oam-server3 1/1
Running 0 3m20s
accessdomain-oam-server4 1/1
Running 0 3m19s
accessdomain-oam-server5 1/1
Running 0 3m5s

In the example above four more OAM managed servers have been started (oam-server2 -
oam-server5).

Note:

It may take some time for the server to appear and start. Once the servers are at
READY status of 1/1, the servers are started.

6. To stop the load on the CPU, in both bash shells, issue a Control C, and then exit the bash
shell:

[oracle@accessdomain-oam-server1 oracle]$ dd if=/dev/zero of=/dev/null
^C
[oracle@accessdomain-oam-server1 oracle]$ exit

7. Run the following command to view the current CPU usage:

kubectl get hpa -n oamns

The output will look similar to the following:

NAME REFERENCE
TARGETS MINPODS MAXPODS REPLICAS AGE
accessdomain-oam-cluster-hpa Cluster/accessdomain-oam-cluster
19%/70% 1 5 5 19m

In the above example CPU has dropped to 19%. As this is below the 70% threshold, you
should see the autoscaler scale down the servers:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 152m
accessdomain-oam-policy-mgr1 1/1

Chapter 16
Verifying HPA

16-8

Running 0 149m
accessdomain-oam-server1 1/1
Running 0 149m
accessdomain-oam-server2 1/1
Running 0 14m
accessdomain-oam-server3 0/1
Terminating 0 14m

Eventually, all the servers except oam-server1 will disappear:

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 154m
accessdomain-oam-policy-mgr1 1/1
Running 0 151m
accessdomain-oam-server1 1/1
Running 0 151m

16.6 Deleting HPA
If you need to delete the Horizontal Pod Autoscaler (HPA), you can do so by running the
following commands:

cd $WORKDIR/kubernetes/hpa

kubectl delete -f autoscalehpa.yaml

16.7 Other Considerations for HPA
Administrators should be aware of the following considerations after deploying the Horizontal
Pod Autoscaler (HPA):

• If HPA is deployed and you need to upgrade the Oracle Access Management (OAM)
container image, then you must delete the HPA before upgrading. To delete the HPA, see
Deleting HPA. Once the upgrade is successful you can deploy HPA again.

• If you choose to start/stop an OAM managed server manually as per Scaling OAM Pods,
then it is recommended to delete the HPA before doing so.

Chapter 16
Deleting HPA

16-9

17
Patching and Upgrading

This chapter includes the following topics:

• Patching and Upgrading Within 14.1.2

• Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17.1 Patching and Upgrading Within 14.1.2
Learn how to patch or upgrade the Oracle Access Management (OAM) image used by an
OAM 14.1.2 container.

This section contains the following topics:

• Patching a Container Image

• Upgrading WebLogic Kubernetes Operator

17.1.1 Patching a Container Image

The instructions in this section relate to patching or upgrading an existing 14.1.2.1.0 Oracle
Access Management (OAM) deployment with a new OAM container image.

Note:

Administrators should be aware of the following:

• If you are not using Oracle Container Registry or your own container registry,
then you must first load the new container image on all nodes in your Kubernetes
cluster.

• If you have Kubernetes Horizontal Pod Autoscaler (HPA) enabled, you must
disable HPA before performing the steps below. See, Deleting HPA.

• Updating the container image leads to a rolling restart of the pods. The
administration server will terminate and restart, followed by any OAM managed
servers and policy manager servers.

Choose one of the following options to update your OAM deployment with a new image:

• Running the kubectl edit domain command.

• Running the kubectl patch domain command.

Running the kubectl edit domain Command

To update the domain:

17-1

1. Run the following command:

kubectl edit domain <domainname> -n <namespace>

For example:

kubectl edit domain accessdomain -n oamns

Note:

This opens an edit session for the domain, where parameters can be changed
using standard vi commands.

2. Update the image parameter to reference the new OAM container image:

• If using Oracle Container Registry or your own container registry for your OAM
container image, update the image to point at the location of the new image, for
example:

...
image: container-registry.oracle.com/middleware/oam_cpu:<new_tag>
 imagePullPolicy: IfNotPresent
 imagePullSecrets:
 - name: orclcred
...

• If you are not using a container registry and have loaded the image on each of the
worker nodes, update the image to point at the new image:

...
image: container-registry.oracle.com/middleware/oam_cpu:<new_tag>
 imagePullPolicy: oracle/oam:<new_tag>
...

3. Save the file and exit (:wq!)

Running the kubectl patch Command

To update the domain:

1. Run the following command to set the image parameter to the location of the new image:

kubectl patch domain <domain> -n <namespace> --type merge -p '{"spec":
{"image":"<repository>:<new_tag>"}}'

For example:

• If using Oracle Container Registry or your own container registry for your OAM
container image:

kubectl patch domain accessdomain -n oamns --type merge -p '{"spec":
{"image":"container-registry.oracle.com/middleware/oam_cpu:<new_tag>"}}'

Chapter 17
Patching and Upgrading Within 14.1.2

17-2

• If you are not using a container registry and have loaded the image on each of the
worker nodes:

kubectl patch domain accessdomain -n oamns --type merge -p '{"spec":
{"image":"oracle/oam:<new_tag>"}}'

The output will look similar to the following:

domain.weblogic.oracle/accessdomain patched

Verifying the OAM Deployment is Using the New Image

After following the above steps, a rolling restart will be performed. The administration server
will terminate and restart, followed by the OAM managed server(s) and policy manager
server(s).

While the servers are restarting you can run the following command to view the status:

kubectl get pods -n <domain_namespace> -w

For example:

kubectl get pods -n oamns -w

Once the pods are up and running, you can run the following command to show the image is
used by the pods:

kubectl describe pod <pod> -n <domain_namespace>

For example:

kubectl describe pod accessdomain-oam-server1 -n oamns

The new image should be displayed in the following section:

...
Containers:
 weblogic-server:
 Container ID: cri-o://
220fa83d079e079ac183c00f884b10ea30a794527dbb65e6964a035d450384f8
 Image: container-registry.oracle.com/middleware/oam_cpu:<new_tag>
 Image ID: container-registry.oracle.com/middleware/
oam_cpu@sha256:cdf51b6aa47cd05573bc53244681b193fb4e2f6db56e50d2251b9416bc68ebc
0
 Port: 14100/TCP
 Host Port: 0/TCP
 Command:
...

17.1.2 Upgrading WebLogic Kubernetes Operator

Chapter 17
Patching and Upgrading Within 14.1.2

17-3

The instructions in this section relate to upgrading the WebLogic Kubernetes Operator used by
an Oracle Access Management (OAM) deployment.

Note:

This applies to WebLogic Kubernetes Operator in the 4.X release family as additional
versions are released.

To upgrade the WebLogic Kubernetes Operator used by the OAM deployment, perform the
following steps:

1. On the Kubernetes administrative host, download the new WebLogic Kubernetes Operator
source code from the operator github project:

mkdir <workdir>/weblogic-kubernetes-operator-4.X.X

cd <workdir>/weblogic-kubernetes-operator-4.X.X

git clone https://github.com/oracle/weblogic-kubernetes-operator.git --
branch v4.X.X

For example:

mkdir /OAMK8S/weblogic-kubernetes-operator-4.X.X

cd /OAMK8S/weblogic-kubernetes-operator-4.X.X

git clone https://github.com/oracle/weblogic-kubernetes-operator.git --
branch v4.X.X

2. Run the following helm commands to upgrade the operator::

cd <workdir>/weblogic-kubernetes-operator-4.X.X/weblogic-kubernetes-
operator

helm upgrade --reuse-values \
--set image=ghcr.io/oracle/weblogic-kubernetes-operator:4.X.X \
--namespace <sample-kubernetes-operator-ns> \
--wait weblogic-kubernetes-operator \
kubernetes/charts/weblogic-operator

For example:

cd /OAMK8S/weblogic-kubernetes-operator-4.X.X/weblogic-kubernetes-operator

helm upgrade --reuse-values \
--set image=ghcr.io/oracle/weblogic-kubernetes-operator:4.X.X \

Chapter 17
Patching and Upgrading Within 14.1.2

17-4

--namespace opns \
--wait weblogic-kubernetes-operator \
kubernetes/charts/weblogic-operator

The output will look similar to the following:

Release "weblogic-kubernetes-operator" has been upgraded. Happy Helming!
NAME: weblogic-kubernetes-operator
LAST DEPLOYED: <DATE>
NAMESPACE: opns
STATUS: deployed
REVISION: 2
TEST SUITE: None

3. Verify that the operator’s pod and services are running by executing the following
command:

kubectl get all -n <sample-kubernetes-operator-ns>

For example:

kubectl get all -n opns

The output will look similar to the following:

NAME READY STATUS
RESTARTS AGE
pod/weblogic-operator-b7d6df78c-mfrc4 1/1 Running
0 40s
pod/weblogic-operator-webhook-7996b8b58b-frtwp 1/1 Running
0 42s

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
service/weblogic-operator-webhook-svc ClusterIP 10.106.51.57
<none> 8083/TCP,8084/TCP 42s

NAME READY UP-TO-DATE
AVAILABLE AGE
deployment.apps/weblogic-operator 1/1 1
1 6d
deployment.apps/weblogic-operator-webhook 1/1 1
1 42s

NAME DESIRED CURRENT
READY AGE
replicaset.apps/weblogic-operator-5884685f4f 0 0
0 6d
replicaset.apps/weblogic-operator-b7d6df78c 1 1
1 40s
replicaset.apps/weblogic-operator-webhook-7996b8b58b 1 1
1 42s

Chapter 17
Patching and Upgrading Within 14.1.2

17-5

17.2 Upgrading from Oracle Access Management 12.2.1.4 to
14.1.2

The instructions in this section are for upgrading an existing Oracle Access Management
(OAM) 12.2.1.4 deployment on Kubernetes to OAM 14.1.2.1.0.

Note:

Administrators should be aware that the upgrade requires a period of down time.

This section contains the following topics:

• Upgrade Prerequisite Steps

• Creating the domainUpgradeResponse.txt File

• Creating the domain-upgrade-pod.yaml

• Shutting Down the OAM Domain

• Backing Up the Database and Persistent Volume

• Creating an Upgrade ConfigMap

• Performing the Upgrade

• Updating the OAM Container Image to 14c

• Updating the WebLogic Kubernetes Operator

• Starting the OAM 14c Deployment

• Restoring After a Failed Upgrade

17.2.1 Upgrade Prerequisite Steps

Before upgrading Oracle Access Management (OAM) from 12c to 14c, you must meet the
following prerequisites.

OAM 12c Prerequisites

It is recommended to be on the latest OAM 12c container image and supported WebLogic
Kubernetes Operator, before upgrading to 14c. For further details on latest versions and
supported operator versions, see, Oracle Access Management 12c on Kubernetes Release
Notes.

Kubernetes Prerequisites

• The Kubernetes cluster and container engine must meet the minimum version
requirements outlined in document ID 2723908.1 on My Oracle Support.

• You must have enough storage to back up the persistent volume.

Gathering Variables

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-6

https://oracle.github.io/fmw-kubernetes/idm-products/oam/release-notes/
https://oracle.github.io/fmw-kubernetes/idm-products/oam/release-notes/
https://support.oracle.com

You must gather the following information for your existing OAM 12c deployment. The values
for these variables will be used in Creating the domainUpgradeResponse.txt File and Creating
the domain-upgrade-pod.yaml.

Table 17-1 List of Variables

Variable Description Sample Value

%NAMESPACE% The domain namespace used by the OAM 12c
deployment.

oamns

%DOMAIN_UID% This is the domain uid used by the OAM 12c
deployment.

To find the domain name, run:

kubectl get domain -n %NAMESPACE%

accessdomain

%DOMAIN_MOUN
T_PATH%

The mount path used by the OAM 12c deployment.

To find the mount path, run:

kubectl describe domains
%DOMAIN_UID% -n %NAMESPACE% | grep
"Mount Path"

• For WDT domains:/u01/
oracle/
user_projects

• For WLST
domains:/u01/oracle/
user_projects/
domains

%DOMAIN_HOME
%

The domain home location used by the OAM 12c
deployment.

To find the mount path, run:

kubectl describe domains
%DOMAIN_UID% -n %NAMESPACE% | grep
"Domain Home:"

/u01/oracle/
user_projects/domains/
accessdomain

%DOMAIN_ROOT
_DIR%

For WLST created domains, this is the
%DOMAIN_MOUNT_PATH%/.

For WDT created domains, this is the
%DOMAIN_MOUNT_PATH%/domains directory.

/u01/oracle/
user_projects/domains

%CONNECTION_
STRING%

The connection string for the database where the
OAM 12c schemas reside, in the format:

<host.domain>:<db_port>/<db_service>

mydatabasehost.example.
com:1521/
orcl.example.com

%RCU_PREFIX% The RCU schema prefix for the OAM 12c
deployment.

OAMK8S

%RCU_SCHEMA_
PWD%

The password for %RCUPREFIX%. <password>

%SYS_USERNAM
E%

The SYS username for the database where the
OAM 12c schemas reside.

sys

%SYS_USERNAM
E_PWD%

The password for %SYS_USERNAME%. <password>

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-7

Table 17-1 (Cont.) List of Variables

Variable Description Sample Value

%DOMAIN_PVC_N
AME%

The persistent volume claim (PVC) for the OAM
12c deployment.

To find the PVC, run:

kubectl get pvc -n %NAMESPACE%

accessdomain-domain-pvc

%RCU_CREDENTI
ALS_SECRET_NA
ME%

The RCU secret for the OAM 12c deployment.

To find the RCU secret, run:

kubectl get secrets -n %NAMESPACE% |
grep rcu

accessdomain-rcu-
credentials

%WEBLOGIC_IMA
GE%

The location of the OAM 14c container image. container-
registry.oracle.com/
middleware/
oam_cpu:14.1.2.1.0-
jdk17-ol8-<YYMMDD>

%WEBLOGIC_IMA
GE_PULL_POLICY
%

The image pull policy you used in the OAM 12c
deployment.

To find the image pull policy, run:

kubectl describe domains
%DOMAIN_UID% -n %NAMESPACE% | grep
"Image Pull Policy"

IfNotPresent

17.2.2 Creating the domainUpgradeResponse.txt File

Run the following steps to create the domainUpgradeResponse.txt file:

1. Create a working directory for the upgrade scripts and navigate to it:

mkdir <workdir>/upgradescripts

cd <workdir>/upgradescripts

For example:

mkdir /OAM12CUPG/upgradescripts

cd /OAM12CUPG/upgradescripts

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-8

2. Create a domainUpgradeResponse.txt file and replace the environment variables listed
with the corresponding values collected in Upgrade Prerequisite Steps:

[GENERAL]

fileFormatVersion = 3

#==
[UAWLSINTERNAL.UAWLS]
pluginInstance = 1

Specifies the WebLogic Server domain directory:
UASVR.path = %DOMAIN_HOME%
UASVR.enforce = no

#==
[MDS.SCHEMA_UPGRADE]
pluginInstance = 2
MDS.databaseType = Oracle Database
MDS.databaseConnectionString = %CONNECTION_STRING%
MDS.schemaConnectionString = %CONNECTION_STRING%
MDS.schemaUserName = %RCU_PREFIX%_MDS
MDS.cleartextSchemaPassword = %RCU_SCHEMA_PWD%
MDS.dbaUserName = %SYS_USERNAME% as sysdba
MDS.cleartextDbaPassword = %SYS_USERNAME_PWD%

#==
[OPSS.OPSS_SCHEMA_PLUGIN]
pluginInstance = 3
OPSS.databaseConnectionString = %CONNECTION_STRING%
OPSS.schemaUserName = %RCU_PREFIX%_OPSS
OPSS.cleartextSchemaPassword = %RCU_SCHEMA_PWD%
OPSS.dbaUserName = %SYS_USERNAME% as sysdba
OPSS.cleartextDbaPassword = %SYS_USERNAME_PWD%

#==
[IAU.AUDIT_SCHEMA_PLUGIN]
pluginInstance = 4
IAU.databaseConnectionString = %CONNECTION_STRING%
IAU.schemaUserName = %RCU_PREFIX%_IAU
IAU.cleartextSchemaPassword = %RCU_SCHEMA_PWD%
IAU.dbaUserName = %SYS_USERNAME% as sysdba
IAU.cleartextDbaPassword = %SYS_USERNAME_PWD%

#==
[FMWCONFIG.CIE_SCHEMA_PLUGIN]
pluginInstance = 5
STB.databaseConnectionString = %CONNECTION_STRING%
STB.schemaUserName = %RCU_PREFIX%_STB
STB.cleartextSchemaPassword = %RCU_SCHEMA_PWD%
STB.dbaUserName = %SYS_USERNAME% as sysdba
STB.cleartextDbaPassword = %SYS_USERNAME_PWD%

#==
[WLS.WLS]
pluginInstance = 6

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-9

WLS.databaseConnectionString = %CONNECTION_STRING%
WLS.schemaUserName = %RCU_PREFIX%_WLS
WLS.cleartextSchemaPassword = %RCU_SCHEMA_PWD%
WLS.dbaUserName = %SYS_USERNAME% as sysdba
WLS.cleartextDbaPassword = %SYS_USERNAME_PWD%

WLS_RUNTIME entries
WLS_RUNTIME.databaseConnectionString = %CONNECTION_STRING%
WLS_RUNTIME.schemaUserName = %RCU_PREFIX%_WLS_RUNTIME
WLS_RUNTIME.cleartextSchemaPassword = %RCU_SCHEMA_PWD%
WLS_RUNTIME.dbaUserName = %SYS_USERNAME% as sysdba
WLS_RUNTIME.cleartextDbaPassword = %SYS_USERNAME_PWD%

#==
[OAM.SCHEMAPLUGIN]
pluginInstance = 7
OAM.databaseConnectionString = %CONNECTION_STRING%
OAM.schemaUserName = %RCU_PREFIX%_OAM
OAM.cleartextSchemaPassword = %RCU_SCHEMA_PWD%
OAM.dbaUserName = %SYS_USERNAME% as sysdba
OAM.cleartextDbaPassword = %SYS_USERNAME_PWD%

For example:

Copyright (c) 2024, 2025, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at
https://oss.oracle.com/licenses/upl.
#
This is a response file for the Fusion Middleware Upgrade Assistant.
Individual component upgrades are performed in the order they are
described here.
Each upgrade is introduced by a section header containing the name of the
component and name of the upgrade plugin. The form of the section header
is
[ComponentName.PluginName]
These names can be found in the Upgrade Descriptor files for the
components.

Individual input lines consist of a name, an equal sign, and a value.
The name is in two parts separated by a period. The first part is the
"name"
attribute from the Descriptor File XML tag by which the plugin refers to
the value.
The second part of the name identifies a field within that value. Some
input
types have only one field, while other types can have half a dozen. Do
not
intermix input lines that apply to different XML tags.

[GENERAL]

fileFormatVersion = 3

#==
[UAWLSINTERNAL.UAWLS]

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-10

pluginInstance = 1

Specifies the WebLogic Server domain directory:
UASVR.path = /u01/oracle/user_projects/domains/accessdomain
UASVR.enforce = no

#==
[MDS.SCHEMA_UPGRADE]
pluginInstance = 2
MDS.databaseType = Oracle Database
MDS.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
MDS.schemaConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
MDS.schemaUserName = OAMK8S_MDS
MDS.cleartextSchemaPassword = <password>
MDS.dbaUserName = sys as sysdba
MDS.cleartextDbaPassword = <password>

#==
[OPSS.OPSS_SCHEMA_PLUGIN]
pluginInstance = 3
OPSS.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
OPSS.schemaUserName = OAMK8S_OPSS
OPSS.cleartextSchemaPassword = <password>
OPSS.dbaUserName = sys as sysdba
OPSS.cleartextDbaPassword = <password>

#==
[IAU.AUDIT_SCHEMA_PLUGIN]
pluginInstance = 4
IAU.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
IAU.schemaUserName = OAMK8S_IAU
IAU.cleartextSchemaPassword = <password>
IAU.dbaUserName = sys as sysdba
IAU.cleartextDbaPassword = <password>

#==
[FMWCONFIG.CIE_SCHEMA_PLUGIN]
pluginInstance = 5
STB.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
STB.schemaUserName = OAMK8S_STB
STB.cleartextSchemaPassword = <password>
STB.dbaUserName = sys as sysdba
STB.cleartextDbaPassword = <password>

#==
[WLS.WLS]
pluginInstance = 6
WLS.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
WLS.schemaUserName = OAMK8S_WLS
WLS.cleartextSchemaPassword = <password>

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-11

WLS.dbaUserName = sys as sysdba
WLS.cleartextDbaPassword = <password>

WLS_RUNTIME entries
WLS_RUNTIME.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
WLS_RUNTIME.schemaUserName = OAMK8S_WLS_RUNTIME
WLS_RUNTIME.cleartextSchemaPassword = <password>
WLS_RUNTIME.dbaUserName = sys as sysdba
WLS_RUNTIME.cleartextDbaPassword = <password>

#==
[OAM.SCHEMAPLUGIN]
pluginInstance = 7
OAM.databaseConnectionString = mydatabasehost.example.com:1521/
orcl.example.com
OAM.schemaUserName = OAMK8S_OAM
OAM.cleartextSchemaPassword = <password>
OAM.dbaUserName = sys as sysdba
OAM.cleartextDbaPassword = <password>

17.2.3 Creating the domain-upgrade-pod.yaml

Run the following steps to create the domain-upgrade-pod.yaml file:

1. In the <workdir>/upgradescripts directory create a domain-upgrade-pod.yaml and
replace the environment variables listed, with the corresponding values collected in
Upgrade Prerequisite Steps:

apiVersion: v1
kind: Pod
metadata:
 labels:
 weblogic.domainUID: %DOMAIN_UID%
 weblogic.domainName: %DOMAIN_UID%
 app: %DOMAIN_UID%-domain-upgrade
 name: %DOMAIN_UID%-domain-upgrade
 namespace: %NAMESPACE%
spec:
 containers:
 - args:
 - sleep
 - infinity
 image: %WEBLOGIC_IMAGE%
 imagePullPolicy: %WEBLOGIC_IMAGE_PULL_POLICY%
 name: %DOMAIN_UID%-domain-upgrade
 volumeMounts:
 - mountPath: /u01/scripts
 name: domain-upgrade-cm-volume
 - mountPath: %DOMAIN_MOUNT_PATH%
 name: domain-storage-volume
 - mountPath: /weblogic-operator/rcu-secrets
 name: rcu-credentials-volume
 env:
 - name: DOMAIN_UID

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-12

 value: "%DOMAIN_UID%"
 - name: DOMAIN_ROOT_DIR
 value: "%DOMAIN_ROOT_DIR%"
 - name: DOMAIN_HOME_DIR
 value: "%DOMAIN_HOME%"
 - name: DOMAIN_NAME
 value: "%DOMAIN_UID%"
 - name: CONNECTION_STRING
 value: "%CONNECTION_STRING%"
 - name: RCUPREFIX
 value: "%RCU_PREFIX%"
 - name: DOMAIN_TYPE
 value: "OAM"
 - name: SECURE_ENABLED
 value: "false"
 volumes:
 - name: domain-upgrade-cm-volume
 configMap:
 name: %DOMAIN_UID%-domain-upgrade-pod-cm
 - name: domain-storage-volume
 persistentVolumeClaim:
 claimName: %DOMAIN_PVC_NAME%
 - name: rcu-credentials-volume
 secret:
 secretName: %RCU_CREDENTIALS_SECRET_NAME%

For example:

apiVersion: v1
kind: Pod
metadata:
 labels:
 weblogic.domainUID: accessdomain
 weblogic.domainName: accessdomain
 app: accessdomain-domain-upgrade
 name: accessdomain-domain-upgrade
 namespace: oamns
spec:
 containers:
 - args:
 - sleep
 - infinity
 image: container-registry.oracle.com/middleware/oam_cpu:14.1.2.1.0-
jdk17-ol8-<YYMMDD>
 imagePullPolicy: IfNotPresent
 name: accessdomain-domain-upgrade
 volumeMounts:
 - mountPath: /u01/scripts
 name: domain-upgrade-cm-volume
 - mountPath: /u01/oracle/user_projects
 name: domain-storage-volume
 - mountPath: /weblogic-operator/rcu-secrets
 name: rcu-credentials-volume
 env:

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-13

 - name: DOMAIN_UID
 value: "accessdomain"
 - name: DOMAIN_ROOT_DIR
 value: " /u01/oracle/user_projects/domains"
 - name: DOMAIN_HOME_DIR
 value: " /u01/oracle/user_projects/domains/accessdomain"
 - name: DOMAIN_NAME
 value: "accessdomain"
 - name: CONNECTION_STRING
 value: "mydatabasehost.example.com:1521/orcl.example.com"
 - name: RCUPREFIX
 value: "OAMK8S"
 - name: DOMAIN_TYPE
 value: "OAM"
 - name: SECURE_ENABLED
 value: "false"
 volumes:
 - name: domain-upgrade-cm-volume
 configMap:
 name: accessdomain-domain-upgrade-pod-cm
 - name: domain-storage-volume
 persistentVolumeClaim:
 claimName: accessdomain-domain-pvc
 - name: rcu-credentials-volume
 secret:
 secretName: accessdomain-rcu-credentials

17.2.4 Shutting Down the OAM Domain

Run the following commands to shutdown the Oracle Access Management (OAM) 12c
deployment:

1. Shut down the OAM deployment using the following command:

 kubectl patch domain %DOMAIN_UID% -n %NAMESPACE% --type=merge --patch
"{\"spec\": {\"serverStartPolicy\": \"Never\"}}"

For example:

 kubectl patch domain accessdomain -n oamns --type=merge --patch
"{\"spec\": {\"serverStartPolicy\": \"Never\"}}"

The output will look similar to the following:

domain.weblogic.oracle/accessdomain patched

2. Run the following kubectl command to view the pods:

kubectl get pods -n %NAMESPACE%

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-14

For example:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 21h
accessdomain-oam-policy-mgr1 1/1
Running 0 21h
accessdomain-oam-server1 0/1
Terminating 0 21h

The Administration Server pods and Managed Server pods will move to a STATUS of
Terminating.

After a few minutes, run the command again and make sure the pods should have
disappeared before continuing.

3. If a helper pod exists, then delete it:

kubectl delete pod helper -n %NAMESPACE%

For example:

kubectl delete pod helper -n oamns

17.2.5 Backing Up the Database and Persistent Volume

You must take a backup of the Oracle Database used by Oracle Access Management (OAM)
12c, and the persistent volume.

Backing Up the Oracle Database

Take a backup of the Oracle Database used by OAM 12c, using your usual Oracle Database
backup procedure.

Backing Up the Persistent Volume

Take a backup of the persistent volume directory:

sudo cp -rp <persistent_volume>/accessdomainpv <persistent_volume>/
accessdomain_bkp12c

For example:

sudo cp -rp /nfs_volumes/oam/accessdomainpv /nfs_volumes/oam/
accessdomainpv_bkp12c

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-15

17.2.6 Creating an Upgrade ConfigMap

Create a ConfigMap for the upgrade by performing the following:

1. Run the following command to create the ConfigMap:

kubectl create configmap %DOMAIN_UID%-domain-upgrade-pod-cm -n %NAMESPACE%
\
--from-file <workdir>/upgradescripts --dry-run=client -o yaml

For example:

kubectl create configmap accessdomain-domain-upgrade-pod-cm -n oamns \
--from-file /OAM12CUPG/upgradescripts --dry-run=client -o yaml | kubectl
apply -f -

The output should look similar to the following:

configmap/accessdomain-domain-upgrade-pod-cm created

17.2.7 Performing the Upgrade

To perform the upgrade you must create an upgrade pod and run several upgrade commands.

Note:

If the upgrade fails, see Restoring After a Failed Upgrade.

1. Run the following command to create the domain-upgrade-pod:

kubectl apply -f <workdir>/upgradescripts/domain-upgrade-pod.yaml

For example:

kubectl apply -f /OAM12CUPG//upgradescripts/domain-upgrade-pod.yaml

The output should look similar to the following:

pod/accessdomain-domain-upgrade created

2. Run the following kubectl command to view the pods:

kubectl get pods -n %NAMESPACE%

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-16

For example:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-domain-upgrade 1/1
Running 0 2m3s

It may take a few minutes until the pod is in a status of READY 1/1.

3. Run the following command to enter a bash shell in the domain-upgrade pod:

kubectl exec -it %DOMAIN_UID%-domain-upgrade -n %NAMESPACE% -- /bin/bash

For example:

kubectl exec -it accessdomain-domain-upgrade -n oamns -- /bin/bash

This will take you into a bash shell in the domain-upgrade pod:

[oracle@accessdomain-domain-upgrade oracle]$

4. Inside the upgrade pod, navigate to the /u01/scripts directory:

cd /u01/scripts

5. Run the following command to run the Upgrade Assistant:

$ORACLE_HOME/oracle_common/upgrade/bin/ua -response /u01/scripts/
domainUpgradeResponse.txt -logLevel TRACE -logDir /tmp

The output should look similar to the following:

Oracle Fusion Middleware Upgrade Assistant 14.1.2.0.0
Log file is located at: /tmp/ua<DATE>.log
Reading installer inventory, this will take a few moments...
...completed reading installer inventory.
UPGAST-00238: Warning: A dependency by component OIM on component SOA is
unresolved. Upgrades of component OIM will be disabled.
A dependent component was not found while discovering upgrade components
and their dependencies.
Make sure the required component has been installed.
Using response file /u01/scripts/domainUpgradeResponse.txt for input
 Oracle Platform Security Services schema examine is in progress
 Oracle Access Management Suite (Schema Upgrade) schema examine is in
progress
 Oracle Audit Services schema examine is in progress
 Oracle Metadata Services schema examine is in progress
 Oracle Platform Security Services schema examine finished with status:

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-17

ready for upgrade
 Oracle Access Management Suite (Schema Upgrade) schema examine finished
with status: ready for upgrade
 Oracle WebLogicServer schema examine is in progress
 Common Infrastructure Services schema examine is in progress
 Oracle Metadata Services schema examine finished with status: ready for
upgrade
 Common Infrastructure Services schema examine finished with status: ready
for upgrade
 Oracle WebLogicServer schema examine finished with status: ready for
upgrade
 Oracle Audit Services schema examine finished with status: ready for
upgrade
Schema Version Registry saved to: /tmp/ua<DATE>.xml
 Oracle Audit Services schema upgrade is in progress
 Oracle Platform Security Services schema upgrade is in progress
 Oracle Access Management Suite (Schema Upgrade) schema upgrade is in
progress
 Oracle Metadata Services schema upgrade is in progress
 Oracle Access Management Suite (Schema Upgrade) schema upgrade finished
with status: succeeded
 Common Infrastructure Services schema upgrade is in progress
 Common Infrastructure Services schema upgrade finished with status:
succeeded
 Oracle WebLogicServer schema upgrade is in progress
 Oracle Audit Services schema upgrade finished with status: succeeded
 Oracle Metadata Services schema upgrade finished with status: succeeded
 Oracle WebLogicServer schema upgrade finished with status: succeeded
 Oracle Platform Security Services schema upgrade finished with status:
succeeded

Note:

The following message above can be ignored:

UPGAST-00238: Warning: A dependency by component OIM on component
SOA is unresolved. Upgrades of component OIM will be disabled.
A dependent component was not found while discovering upgrade
components and their dependencies.
Make sure the required component has been installed.

6. Enter a wlst prompt inside the domain-upgrade pod:

$ORACLE_HOME/oracle_common/common/bin/wlst.sh

The output will look similar to the following:

Initializing WebLogic Scripting Tool (WLST) ...

Jython scans all the jar files it can find at first startup. Depending on
the system, this process may take a few minutes to complete, and WLST may
not return a prompt right away.

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-18

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline>

7. Run the following commands at the wls:/offline> prompt to perform domain
reconfiguration:

a. Set the domainHome:

domainHome='/u01/oracle/user_projects/domains/%DOMAIN_UID%'

For example:

domainHome='/u01/oracle/user_projects/domains/accessdomain'

b. Read the domanHome:

readDomainForUpgrade(domainHome)

The output will look similar to the following:

wls:/offline/accessdomain>

c. Update the domain:

updateDomain()

Note:

This command can take approximately 25 minutes to complete.

The output will look similar to the following:

<DATE> 9:28:33 AM
oracle.security.jps.internal.config.xml.XmlConfigurationFactory
validateFileLocation
INFO: JPS Config: /u01/oracle/user_projects/domains/accessdomain/config/
fmwconfig/jps-config-jse.xml
<DATE> 9:28:34 AM
oracle.security.jps.internal.config.xml.XmlConfigurationFactory
validateFileLocation
INFO: JPS Config: /u01/oracle/user_projects/domains/accessdomain/config/
fmwconfig/jps-config.xml
<DATE> 9:28:34 AM
oracle.security.opss.internal.runtime.ServiceContextManagerImpl
getContext
WARNING: Bootstrap services are used by OPSS internally and clients
should never need to directly read/write bootstrap credentials. If
required, use Wlst or configuration management interfaces.

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-19

<DATE> 9:28:35 AM
oracle.security.jps.internal.config.xml.XmlConfigurationFactory
validateFileLocation
INFO: JPS Config: /u01/oracle/user_projects/domains/accessdomain/config/
fmwconfig/jps-config-jse.xml
<DATE> 9:28:35 AM
oracle.security.jps.internal.config.xml.XmlConfigurationFactory
validateFileLocation
INFO: JPS Config: /u01/oracle/user_projects/domains/accessdomain/config/
fmwconfig/jps-config.xml
<DATE> 9:54:05 AM
oracle.security.jps.az.internal.runtime.policy.AbstractPolicyImpl
initializeReadStore
INFO: Property for read store in parallel:
oracle.security.jps.az.runtime.readstore.threads = null
wls:/offline/accessdomain>

d. Close the domain:

closeDomain()

8. Run the following post upgrade steps at the wls:/offline> prompt:

a. Set the domainHome:

domainHome='/u01/oracle/user_projects/domains/%DOMAIN_UID%'

For example:

domainHome='/u01/oracle/user_projects/domains/accessdomain'

b. Set the RCUPREFIX and RCU_SCHEMA_PWD password:

wlsRuntimeUser='%RCUPREFIX%_WLS_RUNTIME'

schemaPassword='%RCU_SCHEMA_PWD%'

For example:

wlsRuntimeUser='OAMK8S_WLS_RUNTIME'

schemaPassword='<password>'

c. Read the domain:

readDomain(domainHome)

d. Change to the following directory:

cd('/JdbcSystemResource/WLSRuntimeSchemaDataSource/JdbcResource/
WLSRuntimeSchemaDataSource/JdbcDriverParams/NO_NAME_0')

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-20

e. Set the CONNECTION_STRING:

dbUrl="jdbc:oracle:thin:@%CONNECTION_STRING%"

For example:

dbUrl="jdbc:oracle:thin:@mydatabasehost.example.com:1521/
orcl.example.com"

f. Run the following to update the domain:

cmo.setUrl(dbUrl)

cmo.setDriverName('oracle.jdbc.OracleDriver')

set('PasswordEncrypted', schemaPassword)

cd('Properties/NO_NAME_0/Property/user')

cmo.setValue(wlsRuntimeUser)

cd('/')

updateDomain()

No output will be returned to the screen and you will just be returned to the prompt.

g. Close the domain and exit:

closeDomain()

exit()

9. Exit the domain-upgrade pod:

exit

17.2.8 Updating the OAM Container Image to 14c

You must update the deployment to use the Oracle Access Management (OAM) 14c container
image:

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-21

Note:

If the upgrade fails, see Restoring After a Failed Upgrade.

1. Run the following command to update the deployment with the OAM 14c container image:

kubectl patch domain %DOMAIN_UID% -n %NAMESPACE% --type merge -p '{"spec":
{"image":"%WEBLOGIC_IMAGE%"}}'

For example:

• If using Oracle Container Registry or your own container registry for your OAM
container image:

kubectl patch domain accessdomain -n oamns --type merge -p '{"spec":
{"image":"container-registry.oracle.com/middleware/oam_cpu:<new_tag>"}}'

• If you are not using a container registry and have loaded the image on each of the
worker nodes:

kubectl patch domain accessdomain -n oamns --type merge -p '{"spec":
{"image":"oracle/oam:14.1.2.1.0"}}'

The output will look similar to the following:

domain.weblogic.oracle/accessdomain patched

17.2.9 Updating the WebLogic Kubernetes Operator

You must update the deployment to use a WebLogic Kubernetes Operator version supported
with 14c. The current supported version is 4.2.10.

1. Run the following command to see the current version of the WebLogic Kubernetes
Operator:

helm list -n opns

The output will look similar to the following:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
weblogic-kubernetes-operator opns 1 <DATE>
deployed weblogic-operator-4.1.8-RELEASE-MARKER 4.1.8-RELEASE-
MARKER

In the above example the version is 4.1.8 and therefore the operator must be upgraded.

2. To upgrade the WebLogic Kubernetes Operator to 4.2.10, see Upgrading WebLogic
Kubernetes Operator.

3. Once the operator is upgraded, continue with Starting the OAM 14c Deployment.

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-22

17.2.10 Starting the OAM 14c Deployment
Start the Oracle Access Management (OAM) 14c deployment.

1. Run the following command to start the OAM domain:

kubectl patch domain.v9.weblogic.oracle "%DOMAIN_UID%" -n "%NAMESPACE%" \
--type=merge --patch "{\"spec\": {\"serverStartPolicy\": \"IfNeeded\"}}"

For example:

kubectl patch domain.v9.weblogic.oracle "accessdomain" -n "oamns" \
--type=merge --patch "{\"spec\": {\"serverStartPolicy\": \"IfNeeded\"}}"

The output will look similar to the following:

domain.weblogic.oracle/accessdomain patched

2. Run the following command to view the pods:

kubectl get pods -n %NAMESPACE%

For example:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-introspector-jwqxw 1/1
Running 0 10s

The introspect job will start, followed by the Administration Server pod, and then the OAM
server pods. This process will take several minutes, so keep executing the command until
all the pods are running with READY status 1/1:

Note:

Alternatively, you can add the watch flag, -w, which allows you watch the status
of the pods as they change.

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 10m
accessdomain-oam-policy-mgr1 1/1
Running 0 7m35s

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-23

accessdomain-oam-server1 1/1
Running 0 7m35s

3. Once everything is running, check the consoles are accessible as per Validating the
Domain URLs.

4. Once you are confident the upgrade is successful, delete the domain-upgrade pod and
ConfigMap as follows:

kubectl delete pod %DOMAIN_UID%-domain-upgrade -n %NAMESPACE%

kubectl delete configmap %DOMAIN_UID%-domain-upgrade-pod-cm -n %NAMESPACE%

For example:

kubectl delete pod accessdomain-domain-upgrade -n oamns

kubectl delete configmap accessdomain-domain-upgrade-pod-cm -n oamns

17.2.11 Upgrading the Ingress
In order to access the Oracle Access Management (OAM) 14c domain via WebLogic Remote
Console, you must upgrade the ingress.

1. Download the latest code repository to a new directory and set the $WORKDIR to the new
directory structure. See, Setting Up the Code Repository for OAM.

Note:

Make sure not to delete the original OAM 12c code repository as you will need
the values.yaml used to create the original ingress.

2. Navigate to the following directory:

cd $WORKDIR/kubernetes/charts/ingress-per-domain

3. Make a copy of the values.yaml:

cp values.yaml $WORKDIR/

4. Copy over the values.yaml from the original OAM 12c code repository. For example:

cp /OAMK8S/fmw-kubernetes/OracleAccessManagement/kubernetes/charts/ingress-
per-domain \
$WORKDIR/kubernetes/charts/ingress-per-domain

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-24

5. Upgrade the oam-nginx with the following commands:

cd $WORKDIR

helm upgrade oam-nginx kubernetes/charts/ingress-per-domain/ --namespace
%NAMESPACE% \
--values kubernetes/charts/ingress-per-domain/values.yaml --reuse-values

For example:

helm upgrade oam-nginx kubernetes/charts/ingress-per-domain/ --namespace
oamns \
--values kubernetes/charts/ingress-per-domain/values.yaml --reuse-values

The output will look similar to the following:

Release "oam-nginx" has been upgraded. Happy Helming!
NAME: oam-nginx
LAST DEPLOYED: <DATE>
NAMESPACE: oamns
STATUS: deployed
REVISION: 2
TEST SUITE: None

6. Check you can connect to the OAM 14c domain using the WebLogic Remote Console.

Note:

For more information about installing and configuring the console, see Getting
Started Using Administration Console.

17.2.12 Restoring After a Failed Upgrade

If the upgrade fails at any point, you can restore back to the Oracle Access Management
(OAM) 12c deployment using the following steps:

1. Shut down the OAM 14c deployment using the following command:

 kubectl patch domain <domain> -n <domain_namespace> --type=merge --patch
"{\"spec\": {\"serverStartPolicy\": \"Never\"}}"

For example:

 kubectl patch domain accessdomain -n oamns --type=merge --patch
"{\"spec\": {\"serverStartPolicy\": \"Never\"}}"

The output will look similar to the following:

domain.weblogic.oracle/accessdomain patched

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-25

2. Run the following kubectl command to view the pods:

kubectl get pods -n <domain_namespace>

For example:

kubectl get pods -n oamns

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 3h52m
accessdomain-oam-policy-mgr1 1/1
Running 0 3h44m
accessdomain-oam-server1 1/1
Terminating 0 3h44m

The Administration Server pods and Managed Server pods will move to a STATUS of
Terminating.

After a few minutes, run the command again and make sure the pods should have
disappeared before continuing.

3. Restore the persistent volume from the backup taken before the upgrade:

sudo cp -rp <persistent_volume>/accessdomainpv <persistent_volume>/
accessdomain_bkp14c

sudo rm -rf <persistent_volume>/accessdomainpv

sudo cp -rp <persistent_volume>/accessdomainpv_bkp12c <persistent_volume>/
accessdomain

For example:

sudo cp -rp /nfs_volumes/oam/accessdomainpv /nfs_volumes/oam/
accessdomain_bkp14c

sudo rm -rf /nfs_volumes/oam/accessdomainpv

sudo cp -rp /nfs_volumes/oam/accessdomainpv_bkp12c /nfs_volumes/oam/
accessdomain

4. Restore the Oracle Database from the backup taken before the upgrade.

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-26

5. Run the following command to update the deployment with the OAM 12c container image
used previously:

kubectl patch domain %DOMAIN_UID% -n %NAMESPACE% --type merge -p '{"spec":
{"image":"%WEBLOGIC_IMAGE%"}}'

For example:

• If using Oracle Container Registry or your own container registry for your OAM
container image:

kubectl patch domain accessdomain -n oamns \
--type merge -p '{"spec":{"image":"container-registry.oracle.com/
middleware/oam_cpu:12.2.1.4-jdk8-ol8-<YYMMDD>"}}'

• If you are not using a container registry and have loaded the image on each of the
worker nodes:

kubectl patch domain accessdomain -n oamns \
--type merge -p '{"spec":{"image":"oracle/oam:12.2.1.4.0"}}'

The output will look similar to the following:

domain.weblogic.oracle/accessdomain patched

6. Downgrade the WebLogic Kubernetes Operator to a version supported by OAM 12c.
Follow the instructions at, Updating the WebLogic Kubernetes Operator, but use a
supported operator for OAM 12c.

7. Run the following command to start the OAM domain:

kubectl patch domain.v9.weblogic.oracle "%DOMAIN_UID%" -n "%NAMESPACE%" \
--type=merge --patch "{\"spec\": {\"serverStartPolicy\": \"IfNeeded\"}}"

For example:

kubectl patch domain.v9.weblogic.oracle "accessdomain" -n "oamns" \
--type=merge --patch "{\"spec\": {\"serverStartPolicy\": \"IfNeeded\"}}"

The output will look similar to the following:

domain.weblogic.oracle/accessdomain patched

8. Run the following command to view the pods:

kubectl get pods -n %NAMESPACE%

For example:

kubectl get pods -n oamns

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-27

The output will look similar to the following:

NAME READY
STATUS RESTARTS AGE
accessdomain-introspector-jwqxw 1/1
Running 0 10s

The introspect job will start, followed by the Administration Server pod, and then the OAM
server pods. This process will take several minutes, so keep executing the command until
all the pods are running with READY status 1/1:

Note:

Alternatively, you can add the watch flag, -w, which allows you watch the status
of the pods as they change.

NAME READY
STATUS RESTARTS AGE
accessdomain-adminserver 1/1
Running 0 10m
accessdomain-oam-policy-mgr1 1/1
Running 0 7m35s
accessdomain-oam-server1 1/1
Running 0 7m35s

9. Once everything is running, check the consoles are accessible as per Validating the
Domain URLs.

Chapter 17
Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2

17-28

18
General Troubleshooting

This chapter includes the following topics:

• Viewing Pod Logs

• Viewing Pod Descriptions

• Known Issues

18.1 Viewing Pod Logs
To view logs for a pod use the following command:

kubectl logs <pod> -n <namespace>

For example:

kubectl logs accessdomain-oam-server1 -n oamns

Note:

If you add -f to the command, then the log will be streamed.

18.2 Viewing Pod Descriptions
Details about a pod can be viewed using the kubectl describe command:

kubectl describe pod <pod> -n <namespace>

For example:

kubectl describe pod accessdomain-oam-server1 -n oamns

The output will look similar to the following:

Name: accessdomain-oam-server1
Namespace: oamns
Priority: 0
Service Account: default
Node: worker-node1/100.105.211.49
Start Time: <DATE>
Labels: weblogic.clusterName=oam_cluster
 weblogic.clusterObservedGeneration=1

18-1

 weblogic.createdByOperator=true
 weblogic.domainName=accessdomain
 weblogic.domainObservedGeneration=3
 weblogic.domainUID=accessdomain
 weblogic.operatorVersion=4.2.10
 weblogic.serverName=oam_server1
Annotations: prometheus.io/path: /wls-exporter/metrics
 prometheus.io/port: 14100
 prometheus.io/scrape: true
 weblogic.sha256:
6be088360c66ca7e30d3e77399ca888b61a5c20d6c46939f59f00667067b3f3b
Status: Running
SeccompProfile: RuntimeDefault
IP: 10.244.1.43
IPs:
 IP: 10.244.1.43
Controlled By: Domain/accessdomain
Containers:
 weblogic-server:
 Container ID: cri-o://
61135f79df711adddab9e935fd778df333ac4bd96695760ced658604a70d4d04
 Image: container-registry.oracle.com/middleware/
oam_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>
 Image ID: container-registry.oracle.com/middleware/
oam_cpu@sha256:1c29d2688506f29be17a49a084e4bffaf8a224c1e328a8bc2224f8598a168e4
e
 Port: 14100/TCP
 Host Port: 0/TCP
 Command:
 /weblogic-operator/scripts/startServer.sh
 State: Running
 Started: <DATE>
 Last State: Terminated
 Reason: Error
 Exit Code: 137
 Started: <DATE>
 Finished: <DATE>
 Ready: True
 Restart Count: 1
 Limits:
 cpu: 2
 memory: 8Gi
 Requests:
 cpu: 1
 memory: 4Gi
 Liveness: exec [/weblogic-operator/scripts/livenessProbe.sh] delay=30s
timeout=5s period=45s #success=1 #failure=1
 Readiness: http-get http://:14100/weblogic/ready delay=30s timeout=5s
period=5s #success=1 #failure=1
 Environment:
 USER_MEM_ARGS: -XX:+UseContainerSupport -
Djava.security.egd=file:/dev/./urandom -Xms8192m -Xmx8192m
 JAVA_OPTIONS: -Dweblogic.StdoutDebugEnabled=false
 DOMAIN_NAME: accessdomain
 DOMAIN_HOME: /u01/oracle/user_projects/domains/
accessdomain

Chapter 18
Viewing Pod Descriptions

18-2

 ADMIN_NAME: AdminServer
 ADMIN_PORT: 7001
 SERVER_NAME: oam_server1
 DOMAIN_UID: accessdomain
 NODEMGR_HOME: /u01/nodemanager
 LOG_HOME: /u01/oracle/user_projects/domains/
logs/accessdomain
 SERVER_OUT_IN_POD_LOG: true
 SERVICE_NAME: accessdomain-oam-server1
 AS_SERVICE_NAME: accessdomain-adminserver
 ADMIN_USERNAME:
 ADMIN_PASSWORD:
 LOCAL_ADMIN_PORT: 14100
 LOCAL_ADMIN_PROTOCOL: t3
 SHUTDOWN_TYPE: Graceful
 SHUTDOWN_TIMEOUT: 30
 SHUTDOWN_IGNORE_SESSIONS: false
 REPLACE_VARIABLES_IN_JAVA_OPTIONS: false
 DYNAMIC_CONFIG_OVERRIDE: true
 DOMAIN_SOURCE_TYPE: PersistentVolume
 Mounts:
 /u01/oracle/user_projects/domains from weblogic-domain-storage-volume
(rw)
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-
pmvtq (ro)
 /weblogic-operator/debug from weblogic-domain-debug-cm-volume (ro)
 /weblogic-operator/introspector from weblogic-domain-introspect-cm-
volume (rw)
 /weblogic-operator/scripts from weblogic-scripts-cm-volume (ro)
Conditions:
 Type Status
 PodReadyToStartContainers True
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 weblogic-scripts-cm-volume:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: weblogic-scripts-cm
 Optional: false
 weblogic-domain-debug-cm-volume:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: accessdomain-weblogic-domain-debug-cm
 Optional: true
 weblogic-domain-introspect-cm-volume:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: accessdomain-weblogic-domain-introspect-cm
 Optional: false
 weblogic-domain-storage-volume:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim
in the same namespace)
 ClaimName: accessdomain-domain-pvc
 ReadOnly: false
 kube-api-access-pmvtq:
 Type: Projected (a volume that contains injected data

Chapter 18
Viewing Pod Descriptions

18-3

from multiple sources)
 TokenExpirationSeconds: 3607
 ConfigMapName: kube-root-ca.crt
 ConfigMapOptional: <nil>
 DownwardAPI: true
QoS Class: Burstable
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists
for 300s
 node.kubernetes.io/unreachable:NoExecute
op=Exists for 300s
Events:
 Type Reason Age From
Message
 ---- ------ ---- ----

18.3 Known Issues
This section contains information about known issues.

Domain Creation Failure With WLST

The instructions in this section relate to problems creating Oracle Access Management (OAM)
domains using WLST. See, Creating OAM Domains Using WLST Offline Scripts.

If the OAM domain creation fails, run the following to diagnose the issue:

kubectl logs <domain_job> -n <domain_namespace>

For example:

kubectl logs accessdomain-create-fmw-infra-sample-domain-job-c6vfb -n oamns

Also run:

kubectl describe pod <domain_job> -n <domain_namespace>

For example:

kubectl describe pod accessdomain-create-fmw-infra-sample-domain-job-c6vfb -n
oamns

Using the output you should be able to diagnose the problem and resolve the issue.

If any of the above commands return the following error:

Failed to start container "create-fmw-infra-sample-domain-job": Error
response from daemon: error while creating mount source path
'/nfs_volumes/oam/accessdomainpv ': mkdir /nfs_volumes/oam/accessdomainpv :
permission denied

Chapter 18
Known Issues

18-4

Then there is a permissions error on the directory for the PV and PVC and the following should
be checked:

• The directory has 777 permissions: chmod -R 777 <persistent_volume>/
accessdomainpv.

• If it does have the permissions, check if an oracle user exists and the uid is 1000 and gid is
0.
Create the oracle user if it doesn’t exist and set the uid to 1000 and gid to 0.

• Edit the $WORKDIR/kubernetes/create-weblogic-domain-pv-pvc/create-pv-pvc-
inputs.yaml and add a slash to the end of the directory for the
weblogicDomainStoragePath parameter:

weblogicDomainStoragePath: /nfs_volumes/oam/accessdomainpv/

Once you have diagnosed the problem, clean down the failed domain creation by following:

• Deleting the OAM Domain

• Deleting RCU Schemas

• Deleting Persistent Volume Contents

Then follow the instructions again in Creating OAM Domains Using WLST Offline Scripts

Domain Creation Failure With WDT Models

The instructions in this section relate to problems creating OAM domains using WDT models.
See, Creating OAM Domains Using WDT Models.

If the domain creation fails while creating domain resources using the domain.yaml file, run the
following steps to diagnose the issue:

1. Check the domain events, by running the following command:

kubectl describe domain <domain name> -n <domain_namespace>

For example:

kubectl describe domain accessdomain -n oamns

Using the output, you should be able to diagnose the problem and resolve the issue.

2. If the instrospector job fails due to validation errors, then you can recreate the domain
resources using the commands:

kubectl delete -f domain.yaml

kubectl create -f domain.yaml

3. If the domain creation fails because of database issues:

a. Create a helper pod:

 kubectl run --image=container-registry.oracle.com/middleware/
oam_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD> --image-pull-
policy="IfNotPresent" --overrides='{"apiVersion": "v1","spec":

Chapter 18
Known Issues

18-5

{"imagePullSecrets": [{"name": "orclcred"}]}}' helper -n oamns -- sleep
infinity

b. Once you have diagnosed the problem, clean down the failed domain creation by
following:

• Deleting the OAM Domain

• Deleting RCU Schemas

• Deleting Persistent Volume Contents

c. Execute the steps in Creating OAM Domains Using WDT Models again.

Note:

You might need to recreate the domain creation image depending upon the
errors. Domain creation logs are stored in <persistent_volume>/domains/wdt-
logs.

4. If there is any issues bringing up the administration server, OAM managed server pods or
policy manager pods, you can run the following to check the logs:

kubectl logs <pod> -n <domain_namespace>

For example:

kubectl logs accessdomain-adminserver -n oamns

If the above does not give any information you can also run:

kubectl describe pod <pod> -n <domain_namespace>

For example:

kubectl describe pod accessdomain-adminserver -n oamns

For more details related to debugging issues, refer to Domain Debugging.

Chapter 18
Known Issues

18-6

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/debugging/

19
Deleting an OAM Deployment

This chapter explains how to delete the Oracle Access Management (OAM) domain and other
Kubernetes objects used by the OAM domain.

The instructions in this chapter should only be followed if you need to remove a certain part of
the domain because of a deployment failure, or if you need clear the domain down completely
for some other reason. If you are unsure consult Oracle Support.

This chapter includes the following topics:

• Deleting the OAM Domain

• Deleting RCU Schemas

• Deleting Persistent Volume Contents

• Deleting the WebLogic Kubernetes Operator

• Deleting the Ingress

• Deleting the OAM Namespace

19.1 Deleting the OAM Domain
The steps to delete an Oracle Access Management (OAM) domain depends on whether the
domain was created with WLST or WDT.

Deleting WLST OAM Domains

1. Navigate to the $WORKDIR/kubernetes/delete-domain directory:

cd $WORKDIR/kubernetes/delete-domain

2. Run the following command to delete the domain:

./delete-weblogic-domain-resources.sh -d <domain_uid>

For example:

./delete-weblogic-domain-resources.sh -d accessdomain

Deleting WDT OAM Domains

1. Run the following command to delete the domain and clusters:

kubectl delete -f $WORKDIR/yaml/domain.yaml

2. Navigate to the $WORKDIR/kubernetes/delete-domain directory:

cd $WORKDIR/kubernetes/delete-domain

19-1

3. Run the following command to remove other domain objects:

./delete-weblogic-domain-resources.sh -d <domain_uid>

For example:

./delete-weblogic-domain-resources.sh -d accessdomain

19.2 Deleting RCU Schemas
To delete the RCU schemas, perform the following steps:

1. Check to see if the helper pod exists by running:

kubectl get pods -n <domain_namespace> | grep helper

For example:

kubectl get pods -n oamns | grep helper

The output should look similar to the following:

helper 1/1 Running 0 26h

If the helper pod doesn’t exist, run the following:

• If using Oracle Container Registry or your own container registry for the Oracle Access
Management (OAM) container image:

kubectl run --image=<image_name-from-registry>:<tag> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1", "spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \
helper -n <domain_namespace> \
-- sleep infinity

For example:

kubectl run --image=container-registry.oracle.com/middleware/
oam_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD> \
--image-pull-policy="IfNotPresent" \
--overrides='{"apiVersion": "v1","spec":{"imagePullSecrets": [{"name":
"orclcred"}]}}' \
helper -n oamns \
-- sleep infinity

• If you are not using a container registry and have loaded the image on each of the
worker nodes, run the following command:

kubectl run helper --image <image>:<tag> -n oamns -- sleep infinity

Chapter 19
Deleting RCU Schemas

19-2

For example:

kubectl run helper --image oracle/oam_cpu:14.1.2.1.0-jdk17-ol8-<YYMMDD>
-n oamns -- sleep infinity

The output will look similar to the following:

pod/helper created

2. Run the following command to start a bash shell in the helper pod:

kubectl exec -it helper -n <domain_namespace> -- /bin/bash

For example:

kubectl exec -it helper -n oamns -- /bin/bash

This will take you into a bash shell in the running helper pod:

[oracle@helper ~]$

3. In the helper bash shell run the following commands to set the environment:

export CONNECTION_STRING=<db_host.domain>:<db_port>/<service_name>

export RCUPREFIX=<rcu_schema_prefix>

echo -e <db_pwd>"\n"<rcu_schema_pwd> > /tmp/pwd.txt

Where:

• <db_host.domain>:<db_port>/<service_name> is your database connect string.

• <rcu_schema_prefix> is the RCU schema prefix.

• <db_pwd> is the SYS password for the database.

• <rcu_schema_pwd> is the password for the <rcu_schema_prefix>
For example:

export CONNECTION_STRING=mydatabasehost.example.com:1521/orcl.example.com

export RCUPREFIX=OAMK8S

echo -e <password>"\n"<password> > /tmp/pwd.txt

cat /tmp/pwd.txt

Ensure the cat /tmp/pwd.txt command shows the correct passwords.

Chapter 19
Deleting RCU Schemas

19-3

4. In the helper bash shell, drop the RCU schemas as follows:

/u01/oracle/oracle_common/bin/rcu -silent -dropRepository -databaseType
ORACLE -connectString $CONNECTION_STRING \
-dbUser sys -dbRole sysdba -selectDependentsForComponents true -
schemaPrefix $RCUPREFIX \
-component MDS -component IAU -component IAU_APPEND -component IAU_VIEWER -
component OPSS \
-component WLS -component STB -component OAM -f < /tmp/pwd.txt

5. Exit the helper bash shell by issuing the command exit.

19.3 Deleting Persistent Volume Contents
Perform the following step to delete the persistent volume contents:

rm -rf <persistent_volume>/accessdomainpv/*

For example:

rm -rf /nfs_volumes/oam/accessdomainpv/*

19.4 Deleting the WebLogic Kubernetes Operator
To delete the WebLogic Kubernetes Operator, perform the following steps:

1. Run the following command to remove the operator:

helm delete weblogic-kubernetes-operator -n opns

2. Delete the label from the OAM namespace::

kubectl label namespaces <domain_namespace> weblogic-operator-

For example:

kubectl label namespaces oamns weblogic-operator-

3. Delete the service account for the operator:

kubectl delete serviceaccount <sample-kubernetes-operator-sa> -n
<domain_namespace>

For example:

kubectl delete serviceaccount op-sa -n opns

4. Delete the operator namespace:

kubectl delete namespace <sample-kubernetes-operator-ns>

Chapter 19
Deleting Persistent Volume Contents

19-4

For example:

kubectl delete namespace opns

19.5 Deleting the Ingress
Perform the following steps to delete the ingress and ingress controller:

1. To delete the ingress:

helm delete oam-nginx -n <domain_namespace>

For example:

helm delete oam-nginx -n oamns

2. To delete the ingress controller:

helm delete nginx-ingress -n <domain_namespace>

For example:

helm delete nginx-ingress -n mynginxns

3. Delete the namespace using the following command:

kubectl delete namespace <domain_namespace>

For example:

kubectl delete namespace mynginxns

19.6 Deleting the OAM Namespace
Perform the following step to delete the Oracle Access Management (OAM) namespace:

1. Delete the helper pod if it is running:

kubectl delete pod helper -n <domain_namepace>

For example:

kubectl delete pod helper -n oamns

2. Check to make sure all Kubernetes in the namespace are deleted:

kubectl get all,domains -n <domain_namepace>

Chapter 19
Deleting the Ingress

19-5

For example:

kubectl get all,domains -n oamns

If any objects remain, delete them manually.

3. Delete the namespace using the following command:

kubectl delete namespace <domain_namespace>

For example:

kubectl delete namespace oamns

Chapter 19
Deleting the OAM Namespace

19-6

	Contents
	List of Figures
	1 What's New in This Release?
	Part I Introduction to Oracle Access Management on Kubernetes
	2 Introducing Oracle Access Management on Kubernetes
	2.1 Overview of Oracle Access Management on Kubernetes
	2.2 Key Features of Oracle Access Management on Kubernetes

	3 About the Kubernetes Deployment
	3.1 What is Kubernetes?
	3.2 About the Kubernetes Architecture
	3.3 Key Components Used By an OAM Deployment
	3.4 Overview of WebLogic Kubernetes Operator
	3.5 OAM Deployment Methods

	Part II Installing Oracle Access Management on Kubernetes
	4 Before You Begin
	5 System Requirements for OAM on Kubernetes
	6 Preparing Your Environment
	6.1 Confirming the Kubernetes Cluster is Ready
	6.2 Obtaining the OAM Container image
	6.3 Creating a Persistent Volume Directory
	6.4 Setting Up the Code Repository for OAM
	6.5 Installing the WebLogic Kubernetes Operator
	6.6 Creating a Kubernetes Namespace
	6.7 Creating a Kubernetes Secret for the Container Registry

	7 Creating Oracle Access Management Domains
	7.1 Creating OAM Domains Using WLST Offline Scripts
	7.1.1 Creating the RCU Schemas
	7.1.2 Creating a Kubernetes Secret for the WLST Domain
	7.1.3 Creating a Kubernetes Secret for RCU in WLST
	7.1.4 Creating a Kubernetes Persistent Volume and Persistent Volume Claim
	7.1.5 Preparing the Create Domain Script
	7.1.6 Creating the domain.yaml
	7.1.7 Setting the OAM Server Memory Parameters
	7.1.8 Deploying the WLST OAM Domain
	7.1.9 Verifying the WLST OAM Deployment

	7.2 Creating OAM Domains Using WDT Models
	7.2.1 Creating a Kubernetes Secret for the WDT Domain
	7.2.2 Creating a Kubernetes Secret for RCU in WDT
	7.2.3 Preparing the WDT Create Domain YAML File
	7.2.4 Creating the WDT YAML files
	7.2.5 Building the Domain Creation Image
	7.2.6 Deploying the WDT OAM Domain
	7.2.7 Verifying the WDT OAM Deployment

	8 Configuring Ingress
	8.1 Installing the NGINX Repository
	8.2 Creating a Kubernetes Namespace for NGINX
	8.3 Generating SSL Certificates
	8.4 Installing the NGINX Controller
	8.5 Preparing the Ingress values.yaml
	8.6 Creating the Ingress

	9 Validating the Domain URLs
	10 Post Installation Configuration
	10.1 Creating a Server Overrides File
	10.2 Removing OAM Server from WebLogic Server 14c Default Coherence Cluster
	10.3 WebLogic Server Tuning
	10.4 Enabling Virtualization
	10.5 Restarting the Domain

	11 Validating Basic SSO Flow With Oracle WebGate
	11.1 Updating the OAM Hostname and Port for the Load Balancer
	11.2 Registering an Oracle WebGate Agent
	11.3 Configuring the Application Domain
	11.4 Creating Host Identifiers
	11.5 Configuring OHS to Use the Oracle WebGate

	Part III Administering Oracle Access Management on Kubernetes
	12 Scaling OAM Pods
	12.1 Viewing Existing OAM Instances
	12.2 Scaling Up OAM Servers
	12.3 Scaling Down OAM Servers
	12.4 Stopping the OAM Domain
	12.5 Domain Life Cycle Scripts

	13 WLST Administration Operations
	13.1 Connecting to OAM via WLST
	13.2 Sample WLST Operations
	13.3 Performing WLST Administration via SSL

	14 Logging and Visualization
	14.1 Installing Elasticsearch and Kibana
	14.2 Creating the Logstash Pod
	14.2.1 Variables Used in This Section
	14.2.2 Creating a Kubernetes Secret for ELK
	14.2.3 Finding Required Domain Details
	14.2.4 Creating the ConfigMap
	14.2.5 Enabling Logstash

	14.3 Verifying the Pods
	14.4 Verifying and Accessing the Kibana Console

	15 Monitoring an Oracle Access Management Domain
	16 Kubernetes Horizontal Pod Autoscaler
	16.1 Prerequisite Configurations
	16.2 Deploying the Kubernetes Metrics Server
	16.3 Troubleshooting the Metrics Server
	16.4 Deploying HPA
	16.5 Verifying HPA
	16.6 Deleting HPA
	16.7 Other Considerations for HPA

	17 Patching and Upgrading
	17.1 Patching and Upgrading Within 14.1.2
	17.1.1 Patching a Container Image
	17.1.2 Upgrading WebLogic Kubernetes Operator

	17.2 Upgrading from Oracle Access Management 12.2.1.4 to 14.1.2
	17.2.1 Upgrade Prerequisite Steps
	17.2.2 Creating the domainUpgradeResponse.txt File
	17.2.3 Creating the domain-upgrade-pod.yaml
	17.2.4 Shutting Down the OAM Domain
	17.2.5 Backing Up the Database and Persistent Volume
	17.2.6 Creating an Upgrade ConfigMap
	17.2.7 Performing the Upgrade
	17.2.8 Updating the OAM Container Image to 14c
	17.2.9 Updating the WebLogic Kubernetes Operator
	17.2.10 Starting the OAM 14c Deployment
	17.2.11 Upgrading the Ingress
	17.2.12 Restoring After a Failed Upgrade

	18 General Troubleshooting
	18.1 Viewing Pod Logs
	18.2 Viewing Pod Descriptions
	18.3 Known Issues

	19 Deleting an OAM Deployment
	19.1 Deleting the OAM Domain
	19.2 Deleting RCU Schemas
	19.3 Deleting Persistent Volume Contents
	19.4 Deleting the WebLogic Kubernetes Operator
	19.5 Deleting the Ingress
	19.6 Deleting the OAM Namespace

