
Oracle® Fusion Middleware
Administering Oracle GoldenGate for HP
NonStop (Guardian Data Sources)

12c (12.3.0.1.0)
E99939-01
September 2018

Oracle Fusion Middleware Administering Oracle GoldenGate for HP NonStop (Guardian Data Sources), 12c
(12.3.0.1.0)

E99939-01

Copyright © 2014, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Related Information xii

Conventions xiii

1 Understanding Oracle GoldenGate for HP NonStop

Oracle GoldenGate Overview 1-1

Oracle GoldenGate Configuration 1-1

Oracle GoldenGate Features 1-2

Oracle GoldenGate Architecture 1-3

Oracle GoldenGate Components 1-3

Extract 1-4

Logger 1-4

Collector 1-4

Trails 1-4

Replicat 1-5

Manager 1-5

Syncfile 1-6

Processing Groups 1-6

Checkpoints 1-6

Parameters 1-7

Reader 1-7

Coordinator 1-7

Oracle GoldenGate Processing 1-7

Initial Data Synchronization 1-7

File to Replicat 1-8

Direct Load 1-8

Direct Bulk Load 1-8

Capturing Data Changes from TMF Applications 1-8

Capturing Changes for Distributed Network Transactions 1-10

Capturing Data Changes from Non-TMF applications 1-11

iii

Using Extract for Data Distribution 1-11

Batch Processing 1-12

Capturing Directly from Files 1-12

Custom Event Processing 1-12

Oracle GoldenGate Commands 1-12

To Start GGSCI 1-13

2 Planning the Configuration

Planning Overview 2-1

Configuring TMF-Enabled Processing 2-1

Adding Columns to a Source Table 2-1

Ensuring All Audit is Processed 2-2

Keeping Necessary Audit Available for Extract 2-2

Ensuring TMF Cannot Purge Audit 2-2

Copying the Audit to an Alternative Location 2-3

Using Tape Dumps as an Alternative Location 2-3

Minimizing Vulnerability to Outages 2-3

Configuring FUP RELOAD Activity 2-4

Data Compression 2-4

Compressed Enscribe Records 2-4

Compressed SQL Records 2-5

DCOMPRESS File Attribute Not Supported 2-5

AUDITCOMPRESS File Attribute Considerations 2-5

Configuring for Distributed Network Transactions 2-6

Re-configuring TMF 2-9

Configuring Non-TMF-Enabled Processing 2-9

Maintaining Data Integrity 2-9

Supported File Types and Operations 2-10

Authentication for Bound Programs 2-11

System Utilities That Update Databases 2-11

Private Memory and Stack Space 2-11

Impact on Existing Application Performance 2-11

Configuring Oracle Goldengate Global Operations 2-11

GLOBALS Parameter File 2-12

Changing the Default Location of AUDCFG 2-12

Configuring Replication 2-12

Replicating SQL Tables with System Keys 2-12

Replicating Primary Key Updates 2-13

Missing Row Errors 2-13

Non-Audited Target 2-13

iv

Compressed Updates to Enscribe Targets 2-13

Files and Tables Other Than Key-Sequenced 2-14

Load Balancing and Performance Issues 2-14

Potential Problems with Audit Compressed Files 2-15

Conflicts with Updating the Target 2-15

Many-to-One Replication 2-16

Bi-Directional Replication 2-16

Replicating Data to Non-TMF Enabled Databases 2-16

Replicating New SQL Columns 2-17

Configuring for Maximum Throughput 2-17

Extraction 2-17

TMF Extraction 2-17

Non-TMF Data Extraction 2-17

Replication 2-17

Latency Issues 2-18

Capacity Planning 2-18

TMF Data Extraction 2-18

Non-TMF Data Extraction 2-18

Data Transfer into Oracle GoldenGate Trails 2-18

Replicat Throughput 2-18

Changing Default Component Names 2-18

Using Wildcards 2-19

Support for DDL and DDL2 2-20

Specifying Internet Protocol Addresses 2-20

3 Configuring Initial Data Synchronization

Initial Data Synchronization 3-1

Example Steps for Initial Data Load 3-1

Configure and Run Extract 3-1

Perform Initial Load Using the File to Replicat Method 3-2

Configure and Run Replicat 3-2

Direct Load 3-3

To run direct load: 3-3

Using Wildcards 3-4

Direct Bulk Load 3-4

To run direct bulk load: 3-5

Synchronizing Nonstop Databases Using Database Utilities Through TCP/IP 3-5

Controlling the IP Process for Replicat 3-6

Loading Oracle, Microsoft, or Sybase SQL Server Tables 3-7

Loading to Oracle or SQL Server 3-7

v

Initial Sync Parameter File Examples 3-8

Sample NonStop to Oracle Parameter Files 3-8

Sample SQL Server Parameter Files 3-9

Limiting the Enscribe Source Key Range for Initial Load 3-9

Restarting an Initial Load 3-9

Loading Initial Data from Windows and Unix 3-10

Integrating Source and Target Data 3-10

Distributing Extracted Data 3-11

Direct File Extraction 3-11

Batch Processing 3-12

One-Time Database Extraction 3-12

Trickle Batch Processing 3-12

Determining the Next File 3-13

When the Next File is Processed 3-13

4 Configuring Oracle GoldenGate Security

Using Encryption 4-1

How Data is Encrypted 4-1

Encrypting Trail or Extract Files 4-2

Encrypting a Database Password 4-2

Encrypting Data Sent Across TCP/IP 4-3

Generating Encryption Keys 4-4

Using Command Security 4-5

Securing the CMDSEC File 4-7

5 Configuring the Manager and Collector

Introducing Manager 5-1

Configuring and Starting Manager 5-1

Creating and Configuring the Manager Parameter File 5-1

A Sample Manager Parameter File 5-2

Starting and Stopping Manager 5-3

Configuring and Running the Collector 5-3

Maintaining Ports for Remote Connections through Firewalls 5-3

Configuring Collector 5-4

Configuration Examples 5-5

The TCP/IP Port 5-5

Dynamic Method 5-5

Explicit Method 5-6

Monitoring Collector 5-6

vi

Security Considerations 5-6

Collecting Between Open Systems and NonStop 5-6

6 Configuring Change Synchronization

Introduction 6-1

Change Synchronization for TMF Applications 6-1

Configuring Extract 6-1

Configuring Trails 6-2

Configuring Replicat 6-2

Change Synchronization for Non-TMF Applications 6-3

Creating the LOGPARM File 6-3

Sample LOGPARM File 6-4

Configuring Logger and GGSLIB 6-5

Starting Logger 6-5

Using Macros to Bind GGSLIB to a Non-TMF Application 6-6

Building GGSLIB 6-6

Private Memory and Stack Space 6-7

Alternate Methods of Binding GGSLIB to an Application 6-7

Using the ?Search Directive 6-7

Non-Native Environments 6-7

Native Mode Itanium Systems 6-7

Libraries for Native Applications 6-8

Running NLDLIB 6-8

Removing a Library 6-9

Activating Authorization of Bound Libraries 6-9

Managing the Authorization Event 6-10

Adding and Verifying the Authorization Event 6-10

Using Different PARAM-TEXT Options 6-11

Getting the Current Status of the Authorization Event 6-11

Working with Parameter Files 6-12

Creating a Parameter File 6-13

Storing Parameter Files 6-15

Viewing a Parameter File 6-15

Changing a Parameter File 6-16

Using OBEY and Macros in Parameters 6-16

Verifying a Parameter File 6-16

Substituting a Parameter 6-17

vii

7 Configuring Custom Operations

User Exits 7-1

Record Formats for User Exits 7-1

Creating User Exits 7-2

Binding the User Exit 7-3

Binding User Exits in Native Mode 7-4

Debugging Replicat User Exits 7-5

Sample User Exits 7-5

Using Oracle GoldenGate Macros 7-6

Creating a Macro 7-6

Creating Macro Parameters 7-7

Changing the Macro Character 7-8

Running the Macro 7-8

Invoking a Macro Without Parameters 7-9

Sample Macros 7-9

Implementing Multiple Uses of a Statement 7-9

Consolidating Multiple Commands 7-9

Macro Libraries 7-10

Sample Macro Libraries 7-10

Suppressing Report File Listing 7-12

Tracing Parameter Expansion 7-12

Using OBEY Files 7-13

Creating High Pin Processes 7-13

Replicat 7-13

Extract and GGSCI 7-13

TACL DEFINE 7-14

8 Integrating Data

Selecting Records 8-1

Selecting Records with FILTER 8-1

Selecting Records with WHERE 8-1

Comparing Fields 8-2

Compressed Update Considerations 8-2

Testing for NULL Values 8-2

Column Mapping 8-3

Mapping Between Different Database Structures 8-3

Data Type Conversions 8-4

Oracle GoldenGate User Tokens 8-4

Populating User Tokens in the Trail Header 8-5

Retrieving Values 8-6

viii

Default Mapping 8-6

Mapping Examples 8-6

Legal Column Mapping 8-7

Dangerous Mapping if AUDITCOMPRESS Used on Source File 8-7

Using Constants, Taking Default Values. 8-8

Field Conversion Functions 8-8

Function Arguments 8-8

Arithmetic Expressions 8-8

Null, Invalid, and Missing Columns and Fields 8-9

Overriding Exceptional Conditions 8-10

Retrieving Before Values 8-10

9 Managing and Monitoring

Managing Tasks 9-1

Getting Information on Tasks 9-1

Managing Tasks Using the Process Name 9-1

Managing Oracle GoldenGate Trails 9-2

Initial Allocation of Storage for Trails 9-2

To estimate the required trail space 9-2

Ongoing Trail Management 9-3

Setting the Size of the Trail 9-3

Setting the PURGEOLDEXTRACTS rules 9-4

Manager Purge Trail Processing 9-4

Recommendations for Managing Trail Purges 9-5

Oracle GoldenGate Self Describing Trail Files 9-6

Understanding the Self-Describing Trail Behavior 9-7

Managing Log Trails 9-8

Monitoring Processing 9-9

Error Handling 9-9

Error Handling Parameters 9-10

Handling Replicat Errors 9-10

TCP/IP Error Handling 9-10

Altering TCP/IP Error Handling Parameters 9-11

Using Discard Files 9-11

Using the Discard File 9-12

Using the SQL Formatted Discard File 9-13

Conflict Detection with SQLEXEC 9-14

A SQLEXEC Example 9-14

Using the Event Log 9-15

Using the Process Report 9-15

ix

Viewing Process Reports 9-17

Storing Process Reports 9-17

Managing Process Reports 9-17

Generating Run-time Statistics 9-17

Viewing Record Counts 9-18

The STATS Command 9-18

Collecting Events from Other Systems 9-20

Running EMSCLNT on Other Operating Systems 9-20

10

Using Oracle GoldenGate Utilities

Generating Data Definitions with DEFGEN 10-1

Configuring DEFGEN Interactively 10-2

Configuring DEFGEN in Batch 10-2

A Sample Definitions File 10-3

Running DEFGEN to Use Existing Definitions 10-3

Creating Target Database DDL 10-4

Configuring DDLGEN Interactively 10-4

Configuring DDLGEN in Batch 10-5

Addressing Enscribe DDL Peculiarities 10-5

Understanding the Template File 10-6

Sample Template File 10-7

Sample NonStop SQL Table Definition 10-8

Modifying the Sample Template File 10-8

Generating the Sample Definition 10-9

Using Syncfile 10-9

Implementing Syncfile 10-10

A Oracle Oracle GoldenGate Components

Programs, Utilities, Macros, and Libraries A-1

Oracle GoldenGate Database A-3

External Component Summary A-4

Templates, Demonstrations, and Sample Code A-5

B Installing Event Detail Text

Standard Installation B-1

Custom Installation B-1

Customizing Error Messages B-2

x

Index

xi

Preface

This guide contains information on configuring, and running Oracle GoldenGate on the
HP NonStop Guardian platform.

Audience
This guide is intended for system administrators who are configuring, and running
Oracle GoldenGate on the HP NonStop Guardian platform.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Information
The Oracle GoldenGate Product Documentation Libraries are found at

Oracle GoldenGate

Oracle GoldenGate Application Adapters

Oracle GoldenGate for Big Data

Oracle GoldenGate Plug-in for EMCC

Oracle GoldenGate Monitor

Oracle GoldenGate for HP NonStop (Guardian)

Oracle GoldenGate Veridata

Oracle GoldenGate Studio

Additional Oracle GoldenGate information, including best practices, articles, and
solutions, is found at:

Oracle GoldenGate A-Team Chronicles

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/goldengate/c1221/gg-winux/index.html
https://docs.oracle.com/goldengate/gg121211/gg-adapter/index.html
https://docs.oracle.com/goldengate/bd1221/gg-bd/index.html
http://docs.oracle.com/goldengate/em1321/gg-emplugin/index.html
https://docs.oracle.com/goldengate/m12212/gg-monitor/index.html
http://docs.oracle.com/goldengate/ns1221/gg-nsk/index.html
http://docs.oracle.com/goldengate/v12212/gg-veridata/index.html
https://docs.oracle.com/goldengate/s1221/gg-studio/index.html
http://www.ateam-oracle.com/category/data-integration/di-ogg/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, such as "From the File menu, select Save." Boldface
also is used for terms defined in text or in the glossary.

italic
italic

Italic type indicates placeholder variables for which you supply
particular values, such as in the parameter statement: TABLE
table_name. Italic type also is used for book titles and emphasis.

monospace

MONOSPACE

Monospace type indicates code components such as user exits and
scripts; the names of files and database objects; URL paths; and input
and output text that appears on the screen. Uppercase monospace
type is generally used to represent the names of Oracle GoldenGate
parameters, commands, and user-configurable functions, as well as
SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless
the name is intended to be a specific case.

{ } Braces within syntax enclose a set of options that are separated by
pipe symbols, one of which must be selected, for example: {option1 |
option2 | option3}.

[] Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group_name [,
SAVE count]. Multiple options within an optional element are separated
by a pipe symbol, for example: [option1 | option2].

Preface

xiii

1
Understanding Oracle GoldenGate for HP
NonStop

This topic describes the capabilities of Oracle GoldenGate for HP NonStop to
manipulate data at the transactions level and to replicate selected data to a variety of
heterogeneous applications and platforms. It introduces both the configuration and the
features of Oracle GoldenGate for HP NonStop.

This topic includes the following sections:

Oracle GoldenGate Overview
Oracle GoldenGate for HP NonStop has modular architecture that gives you the
flexibility to extract and replicate selected data records and transactional changes
across a variety of heterogeneous applications and platforms.

You can configure Oracle GoldenGate for HP NonStop to manage data from multiple,
heterogeneous sources and targets. Oracle GoldenGate for HP NonStop contains
features that enables your business to manage data at the transaction level across the
enterprise.

Oracle GoldenGate Configuration
Oracle GoldenGate offers flexibility in configuring your transaction management
system, supporting both homogeneous and heterogeneous data replication. This lets
you configure Oracle GoldenGate to capture and deliver data to best suit your
operating environment. Options include:

1. One-to-one, from a single source to a single target

2. One-to-many, from a single source to multiple targets

1-1

3. Many-to-one, from multiple sources to a single target

4. Bi-directional, between a single source and a single target

In doing so, the following business needs can be met:

• Change synchronization, supporting both online and batch change synchronization
for Transaction Management Facility (TMF)-enabled and non-TMF-enabled
applications.

– Online change synchronization continuously processes incremental data
changes.

– Batch change synchronization processes change records that are generated
during specific periods of time.

• Initial load, extracting complete records directly from a source file or table, then
loading them into the target. You can use initial load to populate the target and to
synchronize the source and target for change synchronization.

• Data distribution, sending extracted records to more than one target.

Oracle GoldenGate Features
Oracle GoldenGate features let you select, map, and transform data so it can be used
for a variety of applications. You can configure Oracle GoldenGate to integrate and
convert data by selecting data based on filtering criteria. You can implement custom
logic so Oracle GoldenGate works seamlessly with your own applications.

For example, you can configure the activities of Oracle GoldenGate by:

• Configuring data selection to deliver only required records, filter records to extract
specific column data, and control which types of operations are extracted

• Mapping named source files and tables to the target when the target has similar
formats but different file or table names

• Splitting single rows into multiple rows and combining rows from different tables to
a single table

Chapter 1
Oracle GoldenGate Overview

1-2

• Implementing data transformations to:

– Convert dates from one format to another

– Perform arithmetic calculations

– Transform DML operations, such as converting delete operations into insert
operations on the target table

You can also configure Oracle GoldenGate to run your custom programs and
frequently-used routines with user exits, macros, and obey files. These features
increase the flexibility of Oracle GoldenGate by:

• Inserting user exits to call your applications and/or custom data management logic

• Using macros to implement multiple uses of a statement, consolidate multiple
commands, and call other macros

• Automating frequently-used routines by using the OBEY command, which instructs
Oracle GoldenGate to process parameters specified in another parameter file.

The modular architecture of Oracle GoldenGate lets you implement just the
components you need. These components are introduced in the next section.

Oracle GoldenGate Architecture
Oracle GoldenGate processes data by capturing records from a data source, housing
it temporarily, then delivering it to a data target. Each of these steps is handled by a
modular component of Oracle GoldenGate.

Oracle GoldenGate Components
Oracle GoldenGate for HP NonStop consists of the following components:

• Extract, for extracting and processing records from Transaction Monitoring Facility
(TMF)-enabled applications

• Logger, for extracting and processing records from non-TMF-enabled applications

• Collector, for facilitating the transmittal of records between local and remote
systems

• Oracle GoldenGate trails, for transmitting change records from the source to the
target

• Replicat, for processing and replicating records to a target

• Oracle GoldenGate Manager, for controlling, monitoring, and reporting on Oracle
GoldenGate processing.

• Checkpoint groups, for helping maintain data integrity by tracking where, on the
source, processing starts and stops

• Parameters, for compiling instructions for Extract, Replicat, Manager, and utilities

• Reader, for monitoring Oracle GoldenGate trails for distributed network
transactions and communicating status information to the Coordinator

• Coordinator, for tracking distributed network transactions to coordinate processing
across multiple nodes

Chapter 1
Oracle GoldenGate Architecture

1-3

Extract
Extract extracts source data from the TMF audit trail and writes it to one or more files,
called Oracle GoldenGate trails. Multiple Extracts can operate on different sources at
the same time. For example, one Extract could continuously extract data changes from
a database and stream them to an up-to-date decision-support database, while
another Extract performs batch extracts from other tables for periodic reporting. Or,
two Extract processes can extract and transmit in parallel to two Replicat processes to
minimize target latency when the databases are large.

Use Extract for:

• Initial load

• Change synchronization for TMF-enabled applications

• Transmitting change records between Logger (non-TMF) over TCP/IP to a remote
target

• Data distribution

Logger
Logger performs data extracts when a NonStop source is non-TMF. Logger requires
GGSLIB, an intercept library, that binds the Oracle GoldenGate application to the
user's NonStop application. When the application performs an Enscribe operation
(such as WRITE), GGSLIB intercepts it and sends the record to Logger. Logger writes
the records to a log trail which is read by Replicat.

Collector
When data is transmitted over a TCP/IP connection, the Collector resides on the target
system and receives incoming records. Each Replicat group has a dedicated Collector
process that terminates when the group's Extract process terminates.

Trails
Extract and Logger create trails to transmit data from the source to the target. An
Oracle GoldenGate trail can contain a sequence of files or a single flat file. Generally,
an Oracle GoldenGate trail is used during online change synchronization and an
Oracle GoldenGate file is used for one-time tasks, such as initial data load or certain
batch processes.

All trail file names begin with the same two characters, which you specify when you
create the trail. As files are created, the name is appended with a six-digit number that
increments sequentially from 000000 to 999999. When the sequence number reaches
999999, the numbering starts over at 000000.

There are two kinds of Oracle GoldenGate trails:

• Local trails. Local trails are transmitted to another NonStop system over Expand
and read by Replicat. Local trails can also reside on the source and be used as a
data source for Extract.

• Remote trails. Remote trails are transmitted to the target over TCP/IP and read by
Replicat on the remote target.

Chapter 1
Oracle GoldenGate Architecture

1-4

Each record in an Oracle GoldenGate trail includes the data, a header with transaction
information, an identifier of the record source, and other items. Trails are unstructured
for best performance and are collected into transactions, which process in a
continuous stream. Transaction identifiers indicate the first and last records in each
transaction. Transactions are written in commit order, which guarantees that:

• Each record has been committed in the original database

• All records in the original transaction are together in the output

• Inserts, updates, and deletes are presented, per record key, in the order in which
they were applied

To maximize throughput and minimize I/O load, extracted data is written to, and read
from, the trail in large blocks. By default, Oracle GoldenGate writes data to the trail in a
proprietary format which allows data to be exchanged rapidly and accurately among
heterogeneous databases. However, data can also be written in external ASCII, XML,
or other formats compatible with different applications.

Enabling Trail Recovery (FAR)

By default, Extract operates in an append mode. If there is a process failure, then a
recovery marker is written to the trail and the Extract appends recovery data to the file.
This is done to retain a history of all prior data recovery purposes. In an append mode,
the Extract initialization determines the identity of the last complete transaction that
was written to the trail at startup time.

With that information, Extract ends recovery when the commit record for that
transaction is encountered in the data source; then it begins a new data capture with
the next committed transaction that qualifies for extraction and then begins appending
the new data to the trail. A data pump or Replicat starts reading again from that
recovery point.

Overwrite mode is another version of Extract recovery that was used in versions of
Oracle GoldenGate prior to version 10.0. In these versions, Extract overwrites the
existing transaction data in the trail after the last write-checkpoint position, instead of
appending the new data. The first transaction that is written is the first one that
qualifies for extraction after the last read checkpoint position in the data source. This
behavior can be controlled manually with the FORMAT RELEASE option on EXTTRAIL/
RMTTRAIL parameter.

Replicat
Replicat reads data from Oracle GoldenGate trails that were created by Extract or
Logger. You can run multiple instances of Replicat to read multiple Oracle GoldenGate
trails. Replicat supports a high volume of replication activity on the target platform,
transferring data in blocks rather than a single record at a time. SQL operations are
compiled once and performed many times, and small transactions can be grouped into
larger transactions to improve performance.

Manager
Oracle GoldenGate is managed by the Manager. Manager is responsible for starting
and stopping Extract, Replicat, and their dependent subprocesses, such as Collector.
Extract and Replicat checkpoints give Manager information about what resources are
required at a particular time. No other Oracle GoldenGate processes will run if
Manager is stopped.

Chapter 1
Oracle GoldenGate Architecture

1-5

Syncfile
Syncfile lets you schedule and manage file duplication when you want to copy files in
their entirety. This is a common requirement for maintaining a secondary Oracle
GoldenGate instance that may see frequent database changes, but infrequent
configuration file changes. However, Syncfile can copy any type of file, database or
not, according to a schedule set by you. This makes it suitable for other off-hours,
small scale copying tasks.

Processing Groups
To differentiate among multiple Extract or Replicat processes on a system, you define
processing groups. A processing group consists of a process (either Extract, Replicat,
or Syncfile), its parameter file, its checkpoint file (if applicable), and any other files
associated with the process. For example, to replicate two sets of data in parallel, you
would create two Replicat groups. You might name one group GGSDEL1 and the other
GGSDEL2. Groups are defined by the ADD EXTRACT and ADD REPLICAT commands in
GGSCI.

A group name can contain up to eight characters and is not case-sensitive. All files
and checkpoints relating to a group share that name. Any time you issue a command
to control or view processing, you supply a group name or multiple group names with a
wildcard.

You can use numbers in group names, but it is best to avoid placing numbers at the
end. Oracle GoldenGate appends a numeric value of 0 to 9 to group names to create
report file names. In an instance with Replicats REP1 and REP11, for example, a report
file will be created for REP1 with the name REP11. This can cause confusion.

Checkpoints
Checkpoints are used to store the current read and write position of a process. They
ensure that data changes marked for synchronization are extracted, and they prevent
redundant extracts. Checkpoints provide fault tolerance by preventing the loss of data
if the system, the network, or an Oracle GoldenGate process must be restarted. For
advanced synchronization configurations, checkpoints enable multiple Extract or
Replicat processes to read from the same set of trails.

Checkpoints work with inter-process acknowledgments to prevent messages from
being lost in the network. Oracle GoldenGate has a proprietary guaranteed-message
delivery technology.

The Extract process checkpoints its position in the data source and in the trail. The
Replicat process checkpoints its position in the trail. The checkpoint position is a
combination of the sequence number of the trail file and the Relative Byte Address
(RBA) of the trail.

The read checkpoint is always synchronized with the write checkpoint. Thus, if Oracle
GoldenGate must re-read data that was already sent to the target system (for
example, after a process failure), checkpoints enable accurate overwriting of the old
data to the point where new transactions start and Oracle GoldenGate can resume
processing.

Chapter 1
Oracle GoldenGate Architecture

1-6

Parameters
Parameters manage all Oracle GoldenGate components and utilities, allowing you to
customize your data management environment to suit your needs. For example:

• The Manager parameter file contains instructions for controlling all other Oracle
GoldenGate processes.

• The Logger parameter file contains instructions for capturing data from non-TMF
applications.

• The Extract parameter file contains instructions for selecting, mapping, and
transforming TMF data, and sending trails to Replicat.

• The Replicat parameter file contains instructions for selecting, mapping, and
transforming data to the target.

• The Global parameter file contains instructions that can be applied globally to
Oracle GoldenGate processing.

Reader
A Reader on each node scans the local Oracle GoldenGate trail for distributed
transactions. When one is found, the Reader gathers local transaction information and
sends it to the Coordinator process.

Coordinator
The Coordinator process receives information from each replicating node on the status
of the distributed network transactions that are being processed. The transaction is not
committed until the Coordinator has been notified that all of the updates have been
received on their destination nodes. If any node has a failure, the changes are not
applied.

Oracle GoldenGate Processing
Oracle GoldenGate for NonStop processes data in a variety of ways, depending on
your organization's needs and operating environment. This section introduces the
primary ways Oracle GoldenGate captures and delivers data, including:

Initial Data Synchronization
Run initial data synchronization to synchronize the source and target databases. This
process can be run while your transaction system is operational because Oracle
GoldenGate will not lock data when it captures and delivers records. With Oracle
GoldenGate, your options for loading data include:

• Extracting data to a file and sending it to Replicat to apply to the target

• Using Oracle GoldenGate direct load

• Using Oracle GoldenGate direct bulk load when the target is Oracle

Chapter 1
Oracle GoldenGate Processing

1-7

File to Replicat
You can queue your data in one, or many, Oracle GoldenGate files before loading
your target for the first time. This lets you perform initial data synchronization while
your transaction system remains online.

Figure 1-1 File to Replicat Processing Flow

Direct Load
Using Oracle GoldenGate direct load lets you extract data directly from source tables
and send it in large blocks directly to Replicat, which writes data to its final target. This
method is particularly effective for source data that does not require transformation
(such as initial data loads).

Figure 1-2 Direct Load Processing Flow

Direct Bulk Load
If you are replicating from NonStop to Oracle, you can use Oracle GoldenGate direct
bulk load. Using direct bulk load lets you extract data directly from source tables and
send it in a large block to the delivery process. Replicat then communicates directly to
SQL*Loader. Using Replicat lets you perform additional data transformation before
loading the data. The direct bulk load method is the fastest technique available when
using Oracle GoldenGate.

Figure 1-3 Direct Bulk Load Processing Flow

Capturing Data Changes from TMF Applications
TMF audit trails provide the central resource for retrieving database changes in TMF-
enabled applications. Changes to TMF-enabled Enscribe files and SQL tables are

Chapter 1
Oracle GoldenGate Processing

1-8

recorded in TMF audit trails for transaction integrity and recoverability. The following
figure shows the processing flow for TMF-audited applications.

Note:

Because Oracle GoldenGate uses these audit trails for extract processing,
plan and manage TMF-related activities carefully. The Oracle GoldenGate
GGSCI and Manager tools provide optional audit management capabilities.

The Extract and Audserv work together to retrieve and process database changes for
TMF applications. When started, Extract starts an Audserv process, which returns
database changes from TMF audit trails. Audserv reads audit trails from their original
location on disk, from a disk or tape dump, or from a user-specified alternative
location. Audserv also determines the location of all required audit. Audserv can only
areturn changes to tables or files if the user has read access.

Figure 1-4 TMF Audited Process Flow

Database changes include insert, update or delete operations, along with transaction
information. Insert and update records are after-images, or the format of the database
record after the operation completes; delete records returned are before-images.
Before-images for updates can also be returned.

Extract saves each image in memory until an associated transaction commit record is
received. If the transaction aborts, the associated records are discarded. Committed
records can be sent to one or more user-designated extract files.

Audserv automatically excludes audit associated with SQL/MP and SQL/MX catalogs
(file codes 564, 564, 565, 572, and 585).

Chapter 1
Oracle GoldenGate Processing

1-9

Capturing Changes for Distributed Network Transactions
In a multi-node environment a single transaction can update files across different
nodes. Oracle GoldenGate includes processes to coordinate these network
transactions so an outage on one of the nodes will not result in a partially updated
transaction.

The central process is called the Coordinator. It receives information from each
replicating node on the status of the changes being processed. The transaction is not
committed until the Coordinator has been notified that all of the updates have been
received on their destination nodes. If any node has a failure, the changes are not
applied.

Figure 1-5 illustrates the processing flow for a transaction across two nodes. An order
from a customer, for example, can add information to the customer account file on the
\A and the customer order file on \B, and these files can each be replicated to backup
nodes.

Figure 1-5 Processing Flow for Distributed Network Transactions

Chapter 1
Oracle GoldenGate Processing

1-10

Capturing Data Changes from Non-TMF applications
Many Enscribe applications do not use the NonStop TMF audit facility. Oracle
GoldenGate provides an alternative method for capturing non-TMF-audited database
changes. Figure 5 displays the processing flow.

Figure 1-6 Oracle GoldenGate Processing Flow—Non-TMF Applications

The Oracle GoldenGate Software intercept library (GGSLIB) is a group of functions
with the same names as Guardian operating system procedures. GGSLIB is bound to
Guardian, acting as an interface between application programs and NonStop.

For example, when an application calls a Guardian function such as WRITE, GGSLIB
performs it instead of Guardian. The application is unaware of the substitution and
performs, from an application programming standpoint, exactly as it did before.

If the function succeeds, it sends its data to Logger, which writes it to an Oracle
GoldenGate log trail. Log trails are available for Extract and Replicat processing, which
perform formatting, distribution, and delivery steps.

Using Extract for Data Distribution
Extract can retrieve data from custom-created files or from trails created by Extract or
Logger—in this sense, distributing data. Applications can take advantage of the data
movement, formatting, conversion, and other features of Oracle GoldenGate without
reading the data directly from TMF audit trails or the database.

Figure 1-7 Extract as Data Distributor

Chapter 1
Oracle GoldenGate Processing

1-11

Batch Processing
When capturing incremental data changes in real-time is not appropriate, you can run
batch processing. Batch runs process data generated during a specific time frame,
defined by a begin and end time. Many Oracle GoldenGate operations, such as record
selection, mapping, and field conversions can be performed during batch processing.

Capturing Directly from Files
In some situations, Extract can read directly from a file rather than from the log trail;
however, the following conditions must be true:

• The file or sequence of files is entry-sequenced.

• Only inserts occur against the files—no updates or deletes.

• Records are inserted only at the end of the file.

Use this feature when:

• The method of logging is non-TMF-enabled.

• The files are BASE24 TLFX or PTLFX.

• The input files meet the conditions described above.

• You want to "trickle" the batch file contents throughout the day, rather than all at
once at the end of the day.

Custom Event Processing
Oracle GoldenGate user exits make it possible to incorporate custom processing
needs. A common application of user exits is database event triggering. For example,
a user exit might contain code to page a supervisor when an account balance falls
below a certain threshold. User exits reside outside the mainstream application—you
can add, change, or remove them with almost no impact on the application.

Oracle GoldenGate Commands
GGSCI is the command-line interface that lets you interface with all Oracle
GoldenGate components. Throughout this guide, you will see GGSCI commands
described; they are your primary tools for configuring, operating, managing, and
troubleshooting your data management environment.

Output from the Oracle GoldenGate GGSCI interface supports up to 1024 processing
groups, including Extract, Coordinator, Syncfile, and Replicat groups. At the supported
level, all groups can be controlled and viewed in full with the GGSCI commands, such
as INFO and STATUS commands. Beyond that supported level, group information is not
displayed and errors can occur. Oracle GoldenGate recommends keeping the
combined number of processing groups at 1024 or below in order to manage your
environment effectively.

Chapter 1
Oracle GoldenGate Commands

1-12

To Start GGSCI
Before you can start GGSCI, you must navigate to the Oracle GoldenGate installation
location. When you are in the correct subvolume, enter RUN GGSCI. Your prompt will
change to a GGSCI prompt. For example:

Example 1-1 Starting GGSCI

TACL> VOLUME $DATA.GGS
TACL> RUN GGSCI
GGSCI>

After you have the GGSCI command prompt, enter GGSCI commands on the
command line as needed. With GGSCI commands, you can edit parameter files, add
groups, view reports, and communicate with running processes. For more information,
see GGSCI Commands .

Chapter 1
Oracle GoldenGate Commands

1-13

2
Planning the Configuration

Plan how to configure your Oracle GoldenGate for HP to suit your own business
requirements.
This topic outlines techniques and procedures for the following configuration tasks.

This topic includes the following sections:

Planning Overview
Before running Oracle GoldenGate, you must make some decisions regarding your
Oracle GoldenGate installation. This includes determining your required resources and
their configuration. Other planning considerations include:

• Are you capturing change data from TMF-enabled or non-TMF-enabled
applications?

• Are you transmitting data to targets over TCP/IP?

• Which topology configurations are you using?

• How much data communications capacity is required between the source and
target systems?

• How much additional disk space is required to accommodate replication?

• Can Oracle GoldenGate accommodate present and future transaction volumes?

• How much overhead will Oracle GoldenGate add to the source and target
systems?

• How can you scale Oracle GoldenGate to meet high volume requirements?

Configuring TMF-Enabled Processing
Extract and its servant program Audserv read TMF data in large blocks (upwards of
28K at a time) before transferring the data to an Oracle GoldenGate trail. This requires
a small percentage of I/O messages because Audserv retrieves blocks of records from
audit cache rather than from disk.

You must consider several factors when planning for Audserv to read TMF data.
These include:

Adding Columns to a Source Table
Occasionally columns are added to source database tables. This means when a layout
of your file or table changes, you must stop Extract, make the changes, update any
source definitions files provided by DEFGEN, then restart Extract so it retrieves the new
definition from the dictionary or SQL catalog.

2-1

Ensuring All Audit is Processed
Various system events can require that you ensure all audit records are processed
before the event occurs. Examples include system maintenance, (such as an
operating system upgrade), TMF shutdown, and other events. Failing to do so can
result in missed data.

There are several methods for verifying that Extract is current with TMF activity.

• Use the GGSCI SEND EXTRACT AUDITEND command to determine Extract's position in
the audit trail. If the response indicates that all audit is processed, Extract has no
more work to do assuming that TMF-related applications are down or idle.

• Use the GGSCI ADD MARKER command to insert a marker record into the audit trails
after some significant event (such as taking the application down). Once Extract
and Replicat have processed the marker, you can assume that all records before
that point have been processed.

• Issue the INFO EXTRACT command from GGSCI, which returns the Extract lag
(approximate number of bytes and time behind the audit trails). If the status is
RUNNING and the number of bytes behind is less than 5000, it is likely that all audit
has been processed.

• Issue a LAG EXTRACT command from GGSCI which reports the current lag times.

Keeping Necessary Audit Available for Extract
TMF purges audit trails it no longer requires, because it has no knowledge of outside
processes that depend on it, such as Extract. This means you must plan how to keep
audit trails available. This section discusses several options:

• Make sure a certain number of audit files are always available, either in production
or backed up to an alternative subvolume.

• Copy the audit trails to an alternative subvolume (away from production TMF) and
let Extract read them from the alternative location.

• Configure the audit trails to make disk dumps, and let Extract read them.

• Configure the audit trails to make tape dumps, and let Extract restore the audit.

• Include the DISKTHRESHOLD parameter in the Manager parameter file, so Manager
warns you when audit trails are in danger of being purged.

Ensuring TMF Cannot Purge Audit
Keep a certain number of audit files in production or as backup copies. One method
for backing up files is using the GGSCI ADD ATCONFIG command with the DUPFILES
option. Should you choose this option, limiting the number of duplicate files ensures
that the backup disk does not fill up.

Chapter 2
Configuring TMF-Enabled Processing

2-2

Note:

Using the DUPFILES option greatly increases the resources required to run
Oracle GoldenGate. This is because duplicate audit requires exponentially
more disk space.

Copying the Audit to an Alternative Location
You can instruct Manager to copy audit trails to an alternative volume, then point
Extract to read the alternative trails first. This keeps Extract activity from affecting
production. To duplicate audit automatically, use the GGSCI ADD ATCONFIG command
with the ALTLOC and DUPFILES or DUP options.

Using Tape Dumps as an Alternative Location
If you specify a tape as the alternative location, Extract displays a message asking the
operator to restore the tape. The Extract program restores tape dumps to one of three
locations before processing the audit. In order of preference, the locations are:

• The subvolume indicated by the ALTLOC option of the ADD ATCONFIG command

• The first restore volume configured for the audit trail with TMFCOM

• The original location of the file

To preserve disk space the restored file is purged as soon as it is processed, unless
the restore was performed before run time. To prevent redundant restores, Extract
determines if the restore occurs before run time. If yes, Extract assumes other Extract
groups may need the file and does not purge it. Manager purges them at the
appropriate time if the ADD ATCONFIG PURGE option is set.

Restoring tape dumps before run time can be convenient. To determine which tapes
must be restored for a specific Extract group, use the GGSCI STATUS EXTRACT
command. The command lists the names of required audit files and whether they exist
on disk or tape. All files on tape must be restored. The GGSCI STATUS AUDITTRAIL
command lists the names of all audit trails required across all Extract groups.

Minimizing Vulnerability to Outages
Extended network or target system outages can have an adverse impact on Extract
processing. When the intended target system is unavailable, Extract cannot process
the audit trail. If the target system remains down, critical audit will eventually be
deleted from the system before it can be processed.

To prevent this problem, extract the data to a local trail for Replicat to access over
Expand. This solution only applies when both the source and target are NonStop
systems.

An alternative is to extract the data from the audit trails to an intermediate Oracle
GoldenGate trail on the source, then configure a second Extract to move data to the
target system. This ensures that data can always be extracted.

Outages also pose problems for transactions that are distributed across nodes. See
"Configuring for Distributed Network Transactions" for information on ensuring
transaction integrity for distributed transactions.

Chapter 2
Configuring TMF-Enabled Processing

2-3

Configuring FUP RELOAD Activity
FUP RELOAD commands are used to optimize database storage and access. They also
generate a large amount of audit compared with typical activity. This can cause Extract
to fall significantly behind the current location in the audit trails, sometimes requiring
audit tape dumps to be restored. This process requires operator intervention.

You can often avoid tape restores by scheduling FUP RELOADs more effectively.
Schedule reloads less frequently, or over several periods rather than all at once (For
instance, reload 20% of the database each night for five nights, instead of reloading
100% of the database in a single evening.)

Data Compression
You can optionally configure Oracle GoldenGate to compress data before sending it
over TCP/IP. The Collector automatically decompresses it on the target system. To
compress records over TCP/IP, include the COMPRESS and COMPRESSTHRESHOLD options in
the RMTHOST parameter statement.

• COMPRESS specifies that outgoing block of extracted changes are compressed,
resulting in a typical 4 to1 ratio or better.

• COMPRESSTHRESHOLD sets the minimum byte size for which compression will occur.
The default is 1000 bytes.

For TMF-audited Enscribe files, set the NonStop AUDITCOMPRESS file attribute when
creating the file. For non-TMF files, specify the COMPRESSUPDATES argument in the
Logger configuration.

Compressed Enscribe Records
Whether TMF or non-TMF, Enscribe compression transfers the following data (rather
than sending all field values).

• Each fragment of the record that changed

• The key fragment of the record

• Four additional bytes per fragment indicating fragment position and length

The format of a compressed Enscribe record is as follows:

Field Description

field offset
The offset within the original record of the changed value (2 bytes)

field length
The length of field value (2 bytes)

field value
The data, including null or varchar length indicators

The first field in a compressed Enscribe record is the primary or system key.

Chapter 2
Configuring TMF-Enabled Processing

2-4

Compressed SQL Records
By default, SQL updates are compressed in the audit trails. This means each SQL
update record includes the following data.

• Each column that was SET in the SQL UPDATE statement

• Each key column in each row updated

• Four additional bytes per column indicating column number and length

Unlike Enscribe compression, you can estimate SQL update size directly using the
MEASFLS and MEASRPT utilities and do not need other methods of estimation.

The format of a compressed SQL record is as follows:

Argument Description

field index
The ordinal index of the SQL column within the source tables (2 bytes)

field length
The length of field value (2 bytes)

field value
The data, including null or varchar length indicators

DCOMPRESS File Attribute Not Supported
Turn off the NonStop DCOMPRESS file attribute for both SQL tables and Enscribe files
extracted using TMF audit trails. When DCOMPRESS is on, compression occurs within
each data block, which prevents the resolution of entire record values. Extract is
permitted, but unpredictable results can occur.

AUDITCOMPRESS File Attribute Considerations
When update operations occur on a file or table with audit compression on, only
changed columns or fields and those that are part of the primary key are recorded.
This means the full update images are not immediately available to Extract. Instead, a
compressed image is retrieved and written.

This is acceptable for replication because only changes are required. However,
problems can occur in the following circumstances:

• A selection clause includes columns that are not part of the source file's primary
key.

• Columns are mapped, and the primary key of the target is different than that of the
source.

• User exits or custom applications do not anticipate compressed records, which are
more complex to process.

Extract provides an option to retrieve full record images from the original database.
However, retrieving each update can slow processing considerably. The options you
use, and whether you use audit compression, is based on your application's
requirements.

Chapter 2
Configuring TMF-Enabled Processing

2-5

The NonStop AUDITCOMPRESS attribute is controlled at the file and table level using FUP
and SQLCI.

Configuring for Distributed Network Transactions
In a multi-node environment a single transaction may include changes to files on more
than one node. For example, a customer's order may require updates to the customer
file on \A, the customer account file on \B, and the order file on \C. Updates like these,
as well as updates to tables that are partitioned across nodes, are referred to as
distributed network transactions.

To help ensure the completeness of the transaction when one node experiences an
outage, you should configure components that coordinate the updates for distributed
network transactions. This avoids part of a transaction being committed while the
changes going to a disabled node are lost.

The following processes play a part in this coordination. The required configuration
setup is explained for each component.

• Manager

When using a Coordinator, PURGEOLDEXTRACTS should be defined for the Manager
rather than Replicat or Extract. This allows consideration of Coordinator
checkpoints to ensure trail files are not purged before Coordinator has completed
processing them. See "Recommendations for Managing Trail Purges" for more
information.

Also the Manager on the node where the Coordinator resides may optionally be
configured to AUTOSTART the Coordinator process.

• Extract

There are no configuration changes needed for Extract, but if it has the
PURGEOLDEXTRACTS parameter, this should be moved to the Manager.

• Replicat

The COORDINATOR parameter is added to the Replicat parameter file to define the
name of the process that is coordinating its distributed transactions. When the
Replicat encounters a distributed transaction, it communicates with this
Coordinator to determine when it can process that transaction.

If the Replicat has the PURGEOLDEXTRACTS parameter, it should be moved to the
Manager to allow consideration of the Coordinator's checkpoints.

• Reader

READER parameters are included in the COORDINATOR parameter file. These are used
to configure Reader processes when the Coordinator is started.

The Reader scans the local Oracle GoldenGate trail for distributed transactions.
When one is found, the Reader gathers local transaction information and sends it
to the Coordinator process.

Chapter 2
Configuring TMF-Enabled Processing

2-6

Note:

If Readers will not be configured because distributed network
transactions do not need to be replicated, the Extract parameter
EXCLUDEGGSTRANSRECS can be used. This will suppress the creation of trail
records that track distributed network transactions.

• Coordinator

A Coordinator process must be added on one of the nodes in the system. This is
added using the GGSCI ADD COORDINATOR command. The parameter file for it
includes READER parameters to establish the Reader process for each node and
Oracle GoldenGate trail.

Chapter 2
Configuring TMF-Enabled Processing

2-7

Figure 2-1 Process flow for distributed network transaction support

Example 2-1 Sample Coordinator Parameter File

COORDINATOR COORD1
FASTREADS
READER EXTTRAIL \NY.$DATA5.GGSDAT.AA, PROCESS $GGRD1, CPU 1, PRI 180
READER EXTTRAIL \LA.$DATA01.GGSDAT.BB, PROCESS $GGRD2
READER EXTTRAIL \FL.$DATA2.GGSDAT.CC, CPU 1, PRI 170

Coordinator receives information from the Readers, tallies the number of changes that
have been received, and stores checkpoints. Coordinator uses this information to
respond to queries from the Replicats on each of the nodes asking if the transaction is
complete. When all of the operations for the transaction have verified their arrival,
Coordinator releases the transaction to the Replicats for processing.

Chapter 2
Configuring TMF-Enabled Processing

2-8

The following diagram shows an example of coordination processes for a distributed
network transaction that spans three nodes, with each node replicated to a backup
node.

Re-configuring TMF
When facts about the audit trails change, the checkpoints recorded by Extract can be
invalidated, and TMF must be re-configured.

Before re-configuring TMF:

1. Use the GGSCI INFO EXTRACT * command to ensure that all Extract groups have
processed through the end of the last audit file.

2. Use the GGSCI DELETE ATCONFIG * command to delete the current audit
management parameters.

3. Delete all Extract groups.

After TMF is reconfigured:

1. Manually re-add all of the Extract groups.

2. Purge audit files that were restored or copied to an alternative location.

Using TMFCOM, dynamically add and delete the volumes on which audit files are
located. Deleting an ACTIVE or a RESTORE volume can have adverse effects. Before
deleting a volume, make sure all groups have processed outstanding audit on that
volume, or copy all files on that volume to the alternative location. After a volume is
deleted, the Extract process and Manager will not be able to find the associated audit.
You can add an ACTIVE or RESTORE volume with no impact on Extract operations.

Configuring Non-TMF-Enabled Processing
To capture data from non-TMF applications, you must bind GGSLIB to the user
application. GGSLIB will intercept certain NonStop commands in the application's
place, while Logger will write data to a log trail. This causes the following planning
issues:

Maintaining Data Integrity
The following issues can cause GGSLIB and Logger to miss records and/or
compromise data integrity:

• Log processes are stopped by an operator while the application is updating a
database. Several safeguards are built in to deal with this potential problem.

• If a log process is stopped from TACL by process number, which can happen
accidentally, the backup process takes over with no loss of data.

• If a log process is stopped from TACL by name, this is assumed to be a mistake
(because the proper method is the GGSCI STOP LOGGER command). Manager
immediately restarts log processes stopped this way, although records can be lost
if this occurs while there is activity in the system.

• Double CPU failure occurs, taking down both the primary and backup log process
CPUs. When this happens, other data integrity issues will surface on NonStop as
a whole, such as loss of file buffers.

Chapter 2
Configuring Non-TMF-Enabled Processing

2-9

• Application programs are not bound with GGSLIB. This can happen when a
program is omitted from the initial bind list. This can also happen when migrating
new object code into production, then forgetting to perform the GGSLIB bind. To
avoid this problem, include GGSLIB binding into version control procedures and
check any programs that generate warnings (See "Authentication for Bound
Programs" for more detail.)

• An application process is killed from TACL. This can mean that reads from or
writes to the database could be lost in transit to the log process, depending on the
timing of the STOP command. This is not a problem when issuing FREEZE and STOP
commands to Pathway servers.

• Extract or Replicat processes fall far behind Logger. Eventually, log trails are
recycled by Manager, regardless of whether they are required by Extract or
Replicat. EMS warnings can be generated to alert operators to this condition. This
most likely happens when a network or target system is down for an extended
period.

Supported File Types and Operations
GGSLIB and Logger behave according to the following rules regarding file operations.

• The following file types are supported: Key-sequenced, entry-sequenced, queue-
files, syskey-files, relative and unstructured file operations. However, updates to
edit files and the spooler cannot be extracted. Unstructured files must be extracted
explicitly (using the GETUNSTRUCTURED parameter in the Logger parameter file).

• Bulk I/O operations, i.e. operations that use SETMODE, are supported. The current
list of SETMODEs includes:

– 1 - Set file security

– 2 - Set file owner

– 3 - Set write verification

– 57 - Set serial writes

– 90 - Set buffered

– 92 - Set maxextents

– 93 - Set unstructured buffer length

– 94 - Set auditcompress

– 97 - Set licensed

– 123 - Set generic lock key length

– 138 - Set/Reset corrupt

– 153 - Set variable length audit compression

FUP DUP, FUP LOAD and SELECT n AREA in COBOL programs are also included.

• To extract bulk I/O operations, specify the GETBULKIO option in the Logger
parameter file. FUP COPY is supported by default. Use GETFILEOPS in Extract and
Replicat to propagate these operations to the target database.

• FILE ALTER, CREATE, DUP, PURGE, PURGEDATA, and RENAME operations (to disk files) are
supported.

• The following CONTROL operations are supported:

Chapter 2
Configuring Non-TMF-Enabled Processing

2-10

– 2 - set end-of-line

– 20 - PURGEDATA

– 21 - Allocate/Deallocate extents

• Use GETFILEOPS in Extract and Replicat to propagate the operations listed above to
the target database.

• Undocumented, privileged function calls used by FUP DUP and FUP LOAD to change
file labels are supported (This requires PRIVLIB to be licensed and included as
Replicat's user library.) These functions are required to fully implement FUP DUP
and FUP LOAD of key-sequenced files.

Authentication for Bound Programs
An exit can be activated within NonStop Safeguard to access the Oracle GoldenGate
module SFGEXIT. This program runs as an independent process to monitor non-
audited file opens for update access. (Opens for audited files or SQL tables and read-
only opens are ignored.) When a non-audited open is found, SFGEXIT determines if
the opening program has the Oracle GoldenGate intercept library bound to it. If it does
not, the following warning is issued to EMS to alert the user that updates may occur
without replication.

GoldenGate Library is not bound to $vol.subvol.program_name and it may
update $vol.subvol.application filename

System Utilities That Update Databases
Standard NonStop utilities, notably FUP and TACL, perform file operations such as
CREATE, COPY, PURGE, PURGEDATA, DUP, LOAD, and RENAME. You can monitor these activities
by binding GGSLIB to these utilities just as you would to an application program.

Private Memory and Stack Space
GGSLIB routines minimize stack space requirements. By doing so, programs are
ensured there will be enough stack room for typical activities.

For its own working space, GGSLIB allocates a small private memory segment to
handle in-transit I/O buffers and keep its own state variables.

Impact on Existing Application Performance
GGSLIB and Logger add a small amount of overhead to existing application activities.
Messages to log processes are sent asynchronously (NOWAIT) to avoid making the
application wait for logging to occur. In addition, log processes write all data
sequentially into buffered files for the best possible performance.

Configuring Oracle Goldengate Global Operations
User can configure Oracle GoldenGate global operations.

Chapter 2
Configuring Oracle Goldengate Global Operations

2-11

GLOBALS Parameter File
Oracle Goldengate provides the GLOBALS parameter file to standardize Oracle
Goldengate configuration. Typically, you set global parameters when you install Oracle
Goldengate. Once set, you rarely need to change them. Some of the operations you
can standardize are:

• The initial allocation for wildcard entries

• The time out value when GGSCI communicates with Oracle GoldenGate
components

• NonStop nodes in the network

• The refresh interval

• TACL DEFINEs for GGS_AUDCFG and GGS_PREFIX when not using the default

To support versatility, some of the parameters set in GLOBALS can be temporarily
overridden by other Oracle GoldenGate programs.

See Oracle GoldenGate Parameters for more information about global parameters.

Changing the Default Location of AUDCFG
Run BUILDMAC or NLDLIB to change the default location where an instance of BASELIB,
GGSLIB, GGSSRL, or GGSDLL will look for the AUDCFG segment. When it builds the new
library, the macro prompts to ask if you want to change the AUDCFG location. If the
answer is yes, you will be prompted for the new default $VOL.SUBVOL location.

If you want multiple Oracle GoldenGate environments to each have a different location
for the AUDCFG segment, each environment will need a unique copy of GGSLIB or BASELIB
linked with the location specific to that environment.

If the library specifies a different location for the AUDCFG than the DEFINES included in the
GLOBALS parameters, the GLOBALS DEFINES will override the library.

Configuring Replication
Replicat provides a high degree of flexibility when processing data between files;
however, there can be logical restrictions involved for which you must plan. This
section details different scenarios that require additional planning, including:

Replicating SQL Tables with System Keys
Entry-sequenced SQL tables with non-unique keys are sometimes difficult to replicate
accurately. This is because their keys are a SYSKEY value generated by the system.
Replicat has no control over the SYSKEY value when replicating an insert operation into
the target table; therefore subsequent update and delete records cannot be replicated
exactly. Even though the SYSKEY value of the original record is known, the replicated
record has a different SYSKEY value, requiring you to create a workaround so your keys
resolve properly.

There are two methods for working with this issue. You can specify a view that
contains all columns from the base table excluding the SYSKEY. Use the view as the
target in the replication MAP, along with a KEYCOLS specification to define a different

Chapter 2
Configuring Replication

2-12

method for accessing the table for delete and update operations. This requires each
target row to have some type of unique identifier, such as a unique index.

Another method is to add a column called GGS_SYSKEY to your target table, then map the
source SYSKEY value to the GGS_SYSKEY column. Specify GGS_SYSKEY in the KEYCOL option
of the map argument and use the FORCEUSESYSKEY parameter.

Replicating Primary Key Updates
Although Nonstop Enscribe and SQL/MP do not allow changes to primary keys,
operations for primary key updates may be received from Oracle GoldenGate systems
running for other databases. To maintain compatibility, Oracle GoldenGate for
NonStop processes these primary key update operations by deleting the record and
then inserting it with the same data, but a new primary key.

Primary key updates for Enscribe entry-sequenced and queue files are not supported
and will generate an error.

The default is to process primary key updates, but a parameter is available to turn this
off and discard the record. Contact Oracle GoldenGate Technical Support to use this
parameter.

Missing Row Errors
Because values are needed for the columns that were not changed, an error will occur
if the record cannot be fetched from the target database.

If HANDLECOLLISIONS is turned on and the fetch fails, there is an attempt to insert the
missing record. Otherwise if REPERROR responses have been defined for a missing row,
the rules specified by the REPERROR will be applied.

Non-Audited Target
An error message is returned if an unaudited Enscribe record is deleted and then the
insert of the new primary key record fails. Because it is not possible to back out the
records processed since the last checkpoint, the system will advance the checkpoint to
the record that is in error. User intervention will be required to correct the target record
and restart the Replicat.

• For a file system error, correct the cause of the problem and insert the record from
the discard file. Then skip over the primary key update record by advancing the
checkpoint RBA to the next record.

• If the insert generates a duplicate error, try to determine if the discarded record is
more correct than the target record. If it is, delete the record in the file and replace
it with the discarded record. Then skip over the primary key update record by
advancing the checkpoint RBA to the next record.

Compressed Updates to Enscribe Targets
TARGETDEF using DICTIONARY or SOURCEDEFS is required when:

• Compressed updates are being replicated to an Enscribe target database.

• The data source is on open systems or it is HP NonStop SQL/MP or SQL/MX.

• The target MAP statement does not explicitly use COLMAP.

Chapter 2
Configuring Replication

2-13

Files and Tables Other Than Key-Sequenced
You can replicate files and tables that are not key-sequenced, but there will be
conditions that apply.

For relative files, Oracle GoldenGate forces the relative key of the target file to be the
same as the source, so target records can be found for updates and deletes. The
condition is that you can only replicate from a single source to a single target.

You have more flexibility if the relative file or table has a unique index. Then the
columns in that index can be specified with KEYCOLS to identify a path for update and
delete statements. However, any application that stores system keys as foreign keys
in other tables will have unreliable results.

For entry-sequenced files or tables, selective replication (that is, where selection
criteria are applied) is only feasible for inserts. This is due to the difficulty identifying
the correct target record for updates. Selective replication from one source to one
target is feasible for relative files and tables.

Entry-sequenced files can be replicated in the same order when the source database
is TMF audited because the TMF data is in the correct order. If the source database is
non-TMF, and GGSLIB is used to extract the data, records may be written to the target
file in a different order than they appear in the source. This has a corresponding effect
when updates to entry-sequenced records are processed: the record address of the
source may be different from that in the target, resulting in a missing or incorrect
update.

To get around this, when replicating a non-TMF entry-sequenced file from one source
to one target, you can use the parameter and option ENTRYSEQUPDATES EXACTKEY. This
requires the target file to be opened with PROTECTED or EXCLUSIVE access so other
processes (including other Replicats) can not update the file. See Oracle GoldenGate
Parameters for more information on how to use this parameter.

See "Bi-Directional Replication" for information on an environment not limited to single
source updating a single target.

Load Balancing and Performance Issues
Replicat often proves to be a bottleneck when initially configured, especially for hot site
applications that replicate the entire database. This bottleneck is because Replicat
often mimics the original application's processing. In general, this may mean many
more random, unbuffered I/Os. In contrast, Extract and Logger perform serial, buffered
I/Os, usually in large blocks.

To solve this problem, configure multiple Replicat processes, each of which replicates
a portion of the overall data.

One way to do this is assign different files or tables to different Replicat processes.
This is conceptually simple. For example, if an application consists of data in four
tables, TAB1, TAB2, TAB3, and TAB4, let Replicat process #1 replicate TAB1 and TAB2, while
Replicat process #2 replicates TAB3 and TAB4.

A more complex option is to split the same file or table among multiple Replicat
processes. This might be necessary, for example, when one million inserts and
updates per day might occur against FILE1, while in the rest of the system only

Chapter 2
Configuring Replication

2-14

100,000 inserts and updates occur. In this case, the optimal configuration may be two
Replicat processes for FILE1. This is accomplished in two steps:

1. Let Extract split the data into two trails. Each trail contains half the data for FILE1.
To split the data, use the WHERE, RANGE, or FILTER clause of the Extract file
parameter.

2. Assign a Replicat process to each of the resulting trails.

Example 2-2 Splitting to Two Trails

EXTRACT DEMO
EXTTRAIL \NY.$DATA1.GGSDAT.E1
TABLE $DATA.MASTER.ACCOUNT, WHERE (ACCOUNT < 500000);
EXTTRAIL \NY.$DATA3.GGSDAT.E2
TABLE $DATA.MASTER.ACCOUNT, WHERE (ACCOUNT >= 500000);

A Replicat group is then dedicated to process each of the trails above.

Splitting up tables among different Extract processes may temporarily upset original
transaction integrity boundaries, because two or more processes may be replicating a
single transaction.

The following Extract parameter file splits $DATA.MASTER.ACCOUNT into two trails.

Potential Problems with Audit Compressed Files
When replicating records selected with WHERE criteria from a source file with audit
compression, update records can be missed (deletes and inserts will always be
extracted). You can guarantee that all updates are processed by omitting fields that
are not part of the primary key from your WHERE clauses. Primary key fields are always
present in compressed update records.

When mapping selected columns with COLMAP, audit compression also causes potential
conflicts. If the key of the target file includes a field not contained in the key of the
source, target updates can fail. Updates require the presence of the entire key to
guarantee success.

The easiest method for avoiding these conflicts is to turn off audit compression for
source tables and files. This may or may not be feasible depending on the
characteristics of your transaction load.

Conflicts with Updating the Target
If both Oracle GoldenGate and another application are allowed to update a target,
conflicts can arise unless you establish rules to avoid them. For example, application
#1 might update a record in the source database that application #2 has deleted from
the target database. In such cases, it is impossible for Oracle GoldenGate to apply the
source update at the target because the record to update no longer exists.

As a general rule, Replicat should have control over ranges of data that other
applications cannot update. However, if conflicts are tolerable, Oracle GoldenGate
provides features that allow operations to continue uninterrupted when errors occur:

• Use the REPERROR (error, IGNORE) parameter entries to ignore errors that otherwise
cause transactions to abort.

• Use OVERRIDEDUPS and INSERTMISSINGUPDATES to ensure all updates are inserted.

Chapter 2
Configuring Replication

2-15

• Review the Replicat discard file for operations that failed, and determine corrective
measures.

Many-to-One Replication
When replicating many files to one file (collecting), applications should ensure that
each source file manages a specific range of keys. If different source files can update
the same key value, there can be conflicts at the target. For example, if two source
tables receive an insert with the same key, both operations cannot be applied at the
target because a duplicate error will result (Guardian error 10, SQL error -8227).

Oracle GoldenGate provides several alternatives for dealing with this problem. One is
the HANDLECOLLISIONS parameter that directs Replicat to insert the latest version of the
record, even if the key exists. HANDLECOLLISIONS ignores missing update and delete
conditions. Another option is to restrict the range of values replicated from each source
with WHERE criteria. Most often the best alternative is to avoid the possibility of such
conflicts as part of the application's processing rules.

Bi-Directional Replication
Sometimes, you may want to have two or more files replicating data to each other. In
such cases, have each file manage a unique range of keys directly, as in the many-to-
one case above. The difference here is that each file will hold data it manages, along
with data replicated from the other file. In this way, each file can act as a backup for
the other. The application should ensure that replicated data is read-only in such
cases.

Because both files must be replicated, each replicated change will itself be extracted
and replicated back to its source, which will cause errors. There are two methods for
avoiding this condition:

• Restrict the ranges of key values that are extracted and replicated using WHERE
criteria.

• Use the IGNOREREPLICATE parameter in Extract processing. This parameter causes
Extract to discard any operations that were applied by Replicat processes.

Note:

PURGEDATA is a DDL statement that is automatically committed and not
linked to any transaction, so GETPURGEDATAS is not supported for audited
files in a bidirectional configuration. In this case loop detection is not
effective and IGNOREPURGEDATAS must be included in the Extract
parameters.

Replicating Data to Non-TMF Enabled Databases
You can stimulate overall system performance by implementing buffering on your non-
TMF Enscribe databases. To do so, turn on file buffering for target database files with
the FUP ALTER filename, BUFFERED command. This imposes no real risk because the
data is mirrored at the source system and can be recovered from there.

Chapter 2
Configuring Replication

2-16

Use the NOAUDITREPS Replicat parameter to avoid unnecessary event messages
regarding non-audited target files.

Replicating New SQL Columns
To replicate new SQL columns that were created since the current Extract and
Replicat processes were started, include REPNEWCOLUMNS in the Replicat parameter file.
REPNEWCOLUMNS replicates the SQL ALTER TABLE ADD COLUMN statements to create the new
columns in the target.

Alternatively, you can specify GETNEWCOLUMNS to update table definitions when a column
change is detected on a source table. GETNEWCOLUMNS ensures that data in columns
created after Replicat starts up (using ALTER TABLE ADD COLUMN on the source system)
are accounted for.

Configuring for Maximum Throughput
You can maximize throughput by modifying Extract, Replicat, or both. This section
details strategies for implementing Oracle GoldenGate parameters to achieve data
management that suits your needs.

Extraction
Techniques for maximizing throughput on Extract depends on whether the source
system produces TMF trails or non-TMF logs.

TMF Extraction
In most cases, only a single instance of Extract is required to extract and transmit data
to the target system. A single Extract is advantageous because TMF audit trails are
only read once.

In rare cases, extracting high volumes of SQL UPDATE statements requires multiple
instances of Extract.

Non-TMF Data Extraction
Non-TMF logging is linearly scalable by adding more Logger processes to the
configuration. Because there is no penalty for adding Logger processes to the
configuration, Oracle GoldenGate recommends allocating plenty of slack for high
volume activity. In most cases, two or three Logger processes is more than enough to
achieve the desired throughput.

Replication
To achieve required throughput, more Replicat processes may be required. This is
because Replicat's I/O activity tends to be random access, as opposed to Logger and
Extract I/O, which is serial, blocked and buffered.

You can add Replicat processes to achieve near linear performance gains. However,
to ensure good performance, no more than three Replicat processes should read each
Oracle GoldenGate trail. Otherwise, excessively redundant reads result, sometimes
causing contention issues on the trail's disk.

Chapter 2
Configuring for Maximum Throughput

2-17

Latency Issues
Latency often refers to the difference in time between when an update occurs on the
source database and when that same update is replicated on the target database. In
this respect, latency measures the amount of time "behind" that the target system is
from the source system, and can be important when determining the target database's
accuracy. Database latency is especially important in certain bi-directional scenarios
when two systems might update the same record in different databases at virtually the
same time.

Another measure of latency is the lag between an update on the source and the time
at which that update has been stored on the target system for later replication. This
measure of latency represents the potential for the amount of data lost in a disaster.
Once data has been transmitted to the target, it will be replicated eventually and is not
exposed to the risk of disaster.

Capacity Planning
Through testing, Oracle GoldenGate has compiled some capacity planning guidelines,
presented in the following sections. Consider these observations as guidelines; actual
performance depends on many of the factors previously discussed including network
topology, operating systems, etc.

TMF Data Extraction
Oracle GoldenGate output figures are far less than the audit generated, because
extracted data does not include alternate keys, SQL indexes, FUP RELOAD information
and assorted audit records.

Non-TMF Data Extraction
Non-TMF extracts are linearly scalable. Therefore, the potential extraction rate of data
is close to the system limits for existing application activity.

Data Transfer into Oracle GoldenGate Trails
The potential for data transfer is around 75-80% of the communication channel's
actual potential. When this limit is reached, you can split data into multiple trails to
achieve greater throughput with parallelism.

Replicat Throughput
The potential throughput of Replicat is greater than that of the database I/O performed
on the source system. Replicat performs essentially the same I/Os on the target
system as were performed on the source system, excluding reads. In addition,
Replicat uses transaction grouping features as mentioned earlier to improve TMF-
related performance

Changing Default Component Names
GGSCI provides default names for processes, parameter files, and report files. You
may want to change these defaults to make them more descriptive. For example, you

Chapter 2
Changing Default Component Names

2-18

may want to denote the parameter files and reports associated with a particular Extract
or Replicat group (when have multiple Extracts and Replicats).

To change default component names:

1. Launch GGSCI.

2. Specify the define =GGS_PREFIX using the following syntax.

GGSCI> ADD DEFINE =GGS_PREFIX, CLASS MAP, FILE $prefix

Where:

prefix consists of two letters.

Consider the example:

GGSCI> ADD DEFINE =GGS_PREFIX, CLASS MAP, FILE $EF

This example changes the following default components.

• The Manager process name changes from $GGMGR to $EFMGR.

• Logger process names become $EFLnn instead of $GGLnn.

• Parameter files are stored in the EFSPARM subvolume rather than GGSPARM.

• Report files are stored in the EFSRPT subvolume rather than GGSRPT.

• Extract processes are called $EFEnn rather than $GGEnn.

• Replicat processes are called $EFRnn rather than $GGRnn.

• Syncfile processes are called $EFSnn rather than $GGSnn.

• Coordinator processes are called $EFCnn rather than $GGCnn.

3. One way to tell GGSCI and application programs bound with GGSLIB where to
establish and retrieve configuration information is to use the =GGS_AUDCFG define.
Alternatively the location can be specified when running BUILDMAC or NLDLIB. When
this location is not provided with one of these methods, the default
is $SYSTEM.GGS.AUDCFG.

GGSCI> ADD DEFINE =GGS_AUDCFG, CLASS MAP, FILE config_file

Where:

config_file is a file name, and the file portion of the file name is no longer than six
characters.

Using Wildcards
You can use wildcard arguments to express volumes, subvolumes, files and tables.
However, you can't use wildcard arguments to express views. Oracle GoldenGate
allows wildcards to be expressed as a question mark (?) or an asterisk (*). An asterisk
matches any number of characters, whereas a question mark matches only a single
character.

The wildcard expression in the following example refers to any file set in the specified
volume and subvolume:

FILE $DATA1.MYSUB.*;

Chapter 2
Using Wildcards

2-19

In this next example, the wildcard expression refers to any volume $DATAn, where n
represents the fifth character in the volume name, and any file in the specified
subvolume:

FILE $DATA?.MYSUB.*;

By default, Oracle GoldenGate initially allocates 100 wildcard entries. You can change
this initial allocation using the MAXWILDCARDENTRIES parameter in the GLOBALS, Extract,
and Replicat parameter files. Once this initial MAXWILDCARDENTRIES allocation is
exhausted, the program will allocate an additional 100 entries each time it needs more.

When you specify MAXWILDCARDENTRIES in the GLOBALS parameter file, that specification
becomes the default. You can override that default using the MAXWILDCARDENTRIES
parameter in the Extract or Replicat parameter files. Ensure that a View exists before
the Extract is started.

Most parameters that specify file names or table names can use wildcard expressions.
Exceptions are documented in the parameter's description.

Support for DDL and DDL2
Oracle GoldenGate for HP NonStop supports Enscribe Data Definition Language
dictionary builds for DDL or DDL2. The versions that are supported include the
following:

• C20 and C30 operating system, DDL Version 5

• D00, D10 and D20 operating system, DDL Version 6

• D30 and later, DDL Version 7

• H01 and later, DDL Version 8 and DDL2 Version 9

An error will be generated if a valid version is not identified.

No parameters are required for DDL2 support. Definitions of either size are supported
for column mapping. User exits support record manipulation on the DDL2 large record
formats by using a new set of function calls. See the user exit function calls in the
Oracle GoldenGate Parameters for details.

Specifying Internet Protocol Addresses
Manager and Extract can be restricted to a specific IP address by using the
IPINTERFACE stand-alone parameter or the @ip_address option of TCPIPPROCESSNAME.

• This example using the IPINTERFACE stand-alone parameter sets the IP address to
2001:db8:2010:5040:4fff:ffff:ffff:28.

IPINTERFACE 2001:db8:2010:5040:4fff:ffff:ffff:28

• This example using the @ip_address option of TCPIPPROCESSNAME parameter sets
the process name to $ZTC4 and its IP address to
2001:db8:2010:5040:4fff:ffff:ffff:28.

TCPIPPROCESSNAME $ZTC4@2001:db8:2010:5040:4fff:ffff:ffff:28

Targets can be restricted using options of the RMTHOST parameter.

• This example using the IPINTERFACE option sets the IP address of the host to
2001:db8:2010:5040:4fff:ffff:ffff:28

Chapter 2
Support for DDL and DDL2

2-20

RMTHOST host01, MGRPORT 12345,
IPINTERFACE 2001:db8:2010:5040:4fff:ffff:ffff:28

• This example using the @ip_address option of TCPIPPROCESSNAME sets process name
to $ZTC1 and IP address to 2001:db8:2010:5040:4fff:ffff:ffff:28.

RMTHOST host01, MGRPORT 12345,
TCPIPPROCESSNAME $ztc1@2001:db8:2010:5040:4fff:ffff:ffff:28

See the Oracle GoldenGate Parameters for more details on how to use these
parameters.

Oracle GoldenGate for HP NonStop supports Internet Protocol versions 4 and 6 (IPv4
and IPv6.) If an IP address is specified for Manager or Extract, the matching version
must be configured for that host or an error is generated. If a name is specified for the
host and both IPv4 and IPv6 are configured for that host, the default is to use IPv6.
The parameter USEIPV4ONLY forces Extract to use IPv4.

Chapter 2
Specifying Internet Protocol Addresses

2-21

3
Configuring Initial Data Synchronization

Before running the Oracle GoldenGate for Nonstop for the first time, synchronize the
source and target databases. Here we address initial data synchronization when the
source is TMF-Enabled.
This topic includes the following sections:

Initial Data Synchronization
You can use Oracle GoldenGate to load data in any of the following ways.

• Using database utilities. The utility program performs the initial load. Examples
include loading the target using FUP or SQL and using back up and restore.

• Loading from a file to a database utility. Extract writes records to an extract file in
external ASCII format. The files are used as input to a bulk load utility that writes to
target. Replicat creates the run and control files.

• Loading from a file to Replicat. Extract writes records to an extract file and Replicat
applies them to the target tables.

• Using an Oracle GoldenGate direct load. Extract communicates with Replicat
directly without using a Collector process or files. Replicat applies the data to the
target.

• Using direct bulk load. Extract writes records in external ASCII format and delivers
them directly to Replicat, which delivers them to the Oracle SQL*Loader bulk load
utility. This is the fastest method of loading Oracle data with Oracle GoldenGate.

The method you choose depends, in part, on the database types of your source and
target. For example, if you are replicating from a NonStop source to an Oracle target,
your choices include direct bulk load, which interacts with SQL*Loader.

Regardless of the method chosen, the initial data synchronization should be run after
initiating change capture and before configuring delivery. The steps are:

1. Configure and run Extract to capture all active database changes to an Oracle
GoldenGate trail.

2. Perform initial load.

3. Configure and run Replicat.

Example Steps for Initial Data Load
This example shows how you might follow these three steps to configure change
capture and delivery and perform an initial data load.

Configure and Run Extract
You can configure this Extract process to read change records from a TMF audit trail,
log trail, or flat file, and process them to an Oracle GoldenGate trail. This step is

3-1

necessary before doing the initial load because it extracts and delivers ongoing
changes to the source database, preserving data integrity for your business
operations.

Instructions for configuring and running Extract can be found in "Planning the
Configuration".

Perform Initial Load Using the File to Replicat Method
You can perform your initial load using any of the methods; however this example
addresses how to use Oracle GoldenGate to do the initial load by queuing data to an
Oracle GoldenGate file that will be picked up by Replicat.

1. Create one Extract parameter file to read directly from each source database.

2. Use the NonStop text editor to set up an Extract parameter file to include the
following information.

• The SOURCEISFILE parameter to indicate that data should be retrieved directly
from the table.

• The format for the target file, usually FORMATASCII (for example, FORMATASCII,
SQLLOADER or FORMATASCII, BCP).

• If you are transmitting data to a system other than NonStop, or to a NonStop
system over TCP/IP, include the name of the remote TCP/IP host and port
number of the remote Collector.

• The name of the local output file (EXTFILE) or the remote file (RMTFILE) to which
the Extract program writes extract information. If you need to write to a series
of trails, then add the MAXFILES 2 to the remote trail's parameter file. MAXFILES
will append a six-digit trail sequence to the remote trail's file name.

• The name of the file or table to extract (FILE or TABLE parameter).

• Other optional parameters, including clauses for selecting records, column
mapping, or data conversion.

3. Configure Replicat as a batch task, specifying the SPECIALRUN and BEGIN and END
parameters.

4. Start the initial data load:

TACL> RUN EXTRACT /IN parameter_file/
TACL> RUN REPLICAT /IN parameter_file/

Configure and Run Replicat
When your initial data load finishes writing to its trails, configure Replicat on the target
system. This can be the same parameter file you use for ongoing Replicat work,
however, you will need to add HANDLECOLLISIONS and END parameters, run the batch,
then remove those parameters before beginning ongoing change extract.

1. Configure Replicat on the target system, including HANDLECOLLISIONS and END in the
parameter file. The END parameter is the time recorded for the completion of the
Extract process.

2. Start Replicat with the START REPLICAT command.

3. When Replicat stops, remove the HANDLECOLLISIONS and END parameters.

4. Start Replicat for incremental data synchronization.

Chapter 3
Initial Data Synchronization

3-2

Direct Load
Using direct load, you can extract data directly from the source tables and send it, in a
large block, to Replicat. You may do this on any operating system and database
combination Oracle GoldenGate supports (such as NonStop to NonStop, NonStop to
Oracle, Oracle to NonStop).

To run direct load:
1. Define an Extract group:

GGSCI> ADD EXTRACT group_name, SOURCEISFILE

2. Define a Replicat group:

GGSCI> ADD REPLICAT group_name, SPECIALRUN

Replicat is automatically started by Manager, at Extract's request.

3. Create the parameter files.

For the Extract parameter file:

EXTRACT INITEXT
RMTHOST targethost, MGRPORT 7809
RMTTASK REPLICAT, GROUP INITREP
TABLE $DATA.MASTER.ACCOUNT, AUTOTRUNCATE;
TABLE $DATA.MASTER.PRODUCT, AUTOTRUNCATE;
TABLE $DATA.MASTER.CUSTOMER AUTOTRUNCATE;

• AUTOTRUNCATE sends a PURGEDATA command to Replicat before any data is
processed. This ensures the target is clean and ready to receive data.

Note:

Use AUTOTRUNCATE with extreme caution, as it causes all existing data
to be purged from the target file. Refer to Reference for Oracle
GoldenGate on HP NonStop Guardian for more information.

• RMTHOST establishes the remote TCP/IP host and port number.

• RMTTASK instructs Manager on the target system to start Replicat with the
specified GROUP name.

• The TABLE parameters identify the source tables.

• Specify SOURCEISFILE in the parameter if you want to include a SOURCEISFILE
option:

– SELECTVIEW: Selects data from a specified SQL view in the file parameter.
Without SELECTVIEW, Extract selects data from the base table of the view,
then maps the base table columns to the view columns (This also occurs
when processing audit trails and a view is specified.)

– FASTUNLOAD: Processes the file or table several times faster than the default
method. Records are written out in random order, rather than primary key
order. FASTUNLOAD has no effect when an SQL view is specified. The file

Chapter 3
Initial Data Synchronization

3-3

parameter option PARTITIONS can restrict the data retrieved to a certain
subset of the file or table

– FASTUNLOADSHARED: Allows a shared open of the source file or table. Use this
only on files that are not receiving updates at the same time data is being
extracted.

For the Replicat parameter file:

REPLICAT INITREP
USERID GoldenUser, PASSWORD pass
SOURCEDEFS $DATA.DIRDEF.SRCDEF
MAP $DATA.MASTER.ACCOUNT, TARGET $DATA3.MASTER.ACCOUNT;
MAP $DATA.MASTER.PRODUCT, TARGET $DATA3.MASTER.PRODUCT;
MAP $DATA.MASTER.CUSTOMER, TARGET $DATA3.MASTER.CUSTOMER;

In the above example:

– USERID and PASSWORD are required to access the target database.

– SOURCEDEFS identifies the file containing the source data definitions.

– The MAP parameters map the source tables to the target tables, based on
the data definitions in SOURCEDEFS.

4. Start Extract:

GGSCI> START EXTRACT INITEXT

Using Wildcards
Wildcards can be used for the FILE and TABLE statements in direct load parameter files,
but not for views.

Refer back to the example of an Extract group added with the SOURCEISFILE parameter
in "To run direct load:". If the ACCOUNT, PRODUCT and CUSTOMER files are the only files
on $DATA.MASTER, the Extract parameters could be changed to use wildcards. This use
of wildcards is shown in the following direct load parameter file:

EXTRACT INITEXT
RMTHOST targethost, MGRPORT 7809
RMTTASK REPLICAT, GROUP INITREP
TABLE $DATA.MASTER.*, AUTOTRUNCATE;

Direct Bulk Load
If you are loading to an Oracle target, you may choose to use direct bulk load. Direct
bulk load is the fastest technique for capturing and delivering data to SQL*Loaders.
Extract sends the data, in a large block, to Replicat. Manager dynamically starts
Replicat, which communicates directly with SQL*Loader using an API.

Note:

You can only use this direct bulk load from NonStop to Oracle.

Chapter 3
Initial Data Synchronization

3-4

To run direct bulk load:
1. Define an Extract group:

GGSCI> ADD EXTRACT group_name, SOURCEISFILE

2. Define a Replicat group:

GGSCI> ADD REPLICAT group_name, SPECIALRUN

Replicat is automatically started by Manager, at Extract's request.

3. Create the Extract and Replicat parameter files.

Following are the examples of sample direct bulk load parameter files.

Sample Extract parameter file:

EXTRACT INITEXT
RMTHOST targethost, MGRPORT 7809
RMTTASK REPLICAT, GROUP INITREP
TABLE $DATA.MASTER.ACCOUNT;
TABLE $DATA.MASTER.PRODUCT;
TABLE $DATA.MASTER.CUSTOMER;

• RMTHOST establishes the remote TCP/IP host and port number.

• RMTTASK instructs Manager on the target system to start Replicat with the
specified group name.

• The TABLE parameters identify the source tables.

Sample Replicat parameter file:

REPLICAT INITREP
USERID GoldenUser, PASSWORD pass
BULKLOAD
SOURCEDEFS /GGS/DIRDEF/SRCDEF
MAP $DATA.MASTER.ACCOUNT, TARGET master.account;
MAP $DATA.MASTER.PRODUCT, TARGET master.product;
MAP $DATA.MASTER.CUSTOMER, TARGET master.customer;

• USERID and PASSWORD are required to access the target database.

• BULKLOAD tells Replicat that SQL*Loader will load the target tables.

• SOURCEDEFS identifies the file containing the source data definitions.

• The MAP parameters map the source tables to the target tables, based on the
data definitions in SOURCEDEFS.

4. Start Extract:

GGSCI> START EXTRACT group_name

Synchronizing Nonstop Databases Using Database Utilities Through
TCP/IP

You can synchronize two NonStop tables or files on different systems over a TCP/IP
connection using the trail to database utility method. Use the following steps:

1. Start the Collector on the target system.

Chapter 3
Initial Data Synchronization

3-5

2. Create a parameter file to perform initial file extraction over TCP/IP.

Sample Extract parameter file:

SOURCEISFILE, FASTUNLOAD
FORMATLOAD
RMTHOST 192.0.2.12, PORT 7829
RMTFILE $D3.INIDAT.TRANSTAB, PURGE
FILE \SRC.$D2.MYDB.TRANSTAB;

For this example parameter file, named GGSPARM.TRANINI, you are identifying the
Collector on the remote system.

• SOURCEISFILE, FASTUNLOAD directs Extract to retrieve data directly from the
blocks of the table.

• FORMATLOAD directs Extract to format the data compatible with FUP or SQLCI
LOAD.

• RMTHOST identifies the IP address and port of the Collector process. When
NonStop is the receiver, a separate Collector is required for each
simultaneously active session.

• RMTFILE identifies a flat file that holds the extracted data until the load is
finished.

• FILE identifies the source file or table from which to extract the data.

3. Run Extract to extract the data into a flat file on the target system.

4. Use FUP or SQLCI to insert the data into the target system, similar to:

SQLCI> LOAD $D3.INIDAT.TRANSTAB, $D4.MYDB.TRANSTAB, RECIN 236, RECOUT 236;

The figures for RECIN and RECOUT are derived from Extract's recordings in $S.#TRAN,
which includes the physical length of the records in the target. For Enscribe, this is
the same as the record length returned by FUP INFO. For SQL, the size will vary
and can be returned from RECORDSIZE column in the FILE table from the source
table's catalog.

Controlling the IP Process for Replicat
Although you can configure multiple initial-load Extracts and Replicats, by default the
Replicats will inherit the IP process of the Manager running on the target. This results
in a single IP channel that does not spread the load across the processors.

To configure the Extract and Replicat pairs to use different channels, you can use
static Replicats as shown in the next example.

1. Configure multiple Extracts to use the PORT parameter, rather than MGRPORT. Assign
a different port to each.

EXTRACT extl1
RMTHOST 192.0.2.1, PORT 12345
RMTTASK REPLICAT, GROUP repl1
EXTRACT extl2
RMTHOST 192.0.2.2, PORT 12346
RMTTASK REPLICAT, GROUP repl2

2. Start static Replicats using the run-time parameter INITIALDATALOAD with the -p
option to assign the port from the parameter file.

Chapter 3
Controlling the IP Process for Replicat

3-6

TACL> ASSIGN STDERR, $0
TACL> ADD DEFINE =TCPIP^PROCESS^NAME, FILES $ZTC1
TACL> RUN REPLICAT/IN GGSPARM.REPL1,OUT GGSRPT.REPL1/INITIALDATALOAD -p 12345
TACL> ASSIGN STDERR, $0
TACL> ADD DEFINE =TCPIP^PROCESS^NAME, FILES $ZTC2
TACL> RUN REPLICAT/IN GGSPARM.REPL2,OUT GGSRPT.REPL2/INITIALDATALOAD -p 12346

Note:

Since the Replicats are started statically, they will not be restarted by
Manager if there is a system problem.

Loading Oracle, Microsoft, or Sybase SQL Server Tables
NonStop tables and files can be synchronized with Oracle or SQL Server tables in
very much the same way as NonStop-to-NonStop synchronization.

Loading to Oracle or SQL Server
To load to Oracle or SQL Server:

1. Run DEFGEN to export source data definitions to the target system. Be sure to
satisfy any other prerequisites.

2. Start the Collector on the target system:

For UNIX:

$server –d /ggs/mydb.def 2> server.log &

For Windows:

server –d \ggs\mydb.def 2> server.log

Use the –d option to specify the definitions file created by DEFGEN (mydb.def).

3. Create an Extract parameter file to perform initial table extract over TCP/IP.

4. Run the Extract program to extract the data into a flat file on the target system:

TACL> RUN GGS.EXTRACT /IN GGSPARM.TRANINI, OUT $S.#TRAN/

This command creates a flat file on the target. If you specified the FORMATASCII,
SQLLOADER in a parameter file for Oracle, Oracle GoldenGate generates the flat file
in a format that SQL*Loader can read. If you specified FORMATASCII, BCP in the
parameter file for SQL Server, Oracle GoldenGate generates a flat file that is
compatible with the BCP utility.

5. Create a Replicat parameter file using the MAP parameter to map between source
and target tables.

6. Run Replicat to create files called TRANSTAB.ctl and TRANSTAB.run for Oracle, and
TRANSTAB.bat and TRANSTAB.fmt for SQL Server. These files contain mapping
definitions and run commands required to load.

For UNIX:

replicat paramfile/ggs/dirprm/tranini.prm

Chapter 3
Loading Oracle, Microsoft, or Sybase SQL Server Tables

3-7

For Windows:

C:\replicat paramfile\ggs\dirprm\tranini

7. Load the data.

For UNIX:

$TRANSTAB.run

For Windows:

TRANSTAB.bat

Initial Sync Parameter File Examples
This sections contains these examples:

• An Extract parameter file example for Oracle running on UNIX

• A Replicat parameter file example for Oracle running on UNIX

• An Extract parameter file example for SQL Server running on Windows

• A Replicat parameter file example for SQL Server running on Windows

Sample NonStop to Oracle Parameter Files
Following are examples of NonStop to Oracle Extract parameter files.

Extract Parameter File GGSPARM.ORAINI:

SOURCEISFILE, FASTUNLOAD
FORMATASCII, SQLLOADER
RMTHOST ntbox12, MGRPORT 7809, PARAMS "-d c:\ggs\dirdef\source.def"
RMTFILE TRANSTAB.dat, PURGE
FILE \SRC.$D2.MYDB.TRANSTAB;

• FORMATASCII, SQLLOADER specifies the data format is compatible with Oracle's
SQL*Loader utility.

• RMTFILE identifies TRANSTAB.dat as the source table.

Replicat Parameter File /ggs/dirprm/tranini.prm:

GENLOADFILES
USERID me, PASSWORD orapw
SOURCEDEFS /ggs/mydb.def
MAP $D2.MYDB.TRANSTAB, TARGET ORATRANS;
RMTFILE /ggsdat/tranini, PURGE
FILE \SRC.$D2.MYDB.TRANSTAB;

• GENLOADFILES generates load control files and then quits. These control files
generate maps, even between dissimilar tables.

• USERID and PASSWORD specify the database log on.

• SOURCEDEFS specifies the location of the NonStop definitions exported by DEFGEN
(These are required to generate a load map.)

• MAP specifies the source to target relationship of the NonStop to Oracle table.

• Errors are displayed to the screen and detailed messages are written to the
TRANSTAB.err and TRANSTAB.log files

Chapter 3
Loading Oracle, Microsoft, or Sybase SQL Server Tables

3-8

Sample SQL Server Parameter Files
Following are examples of parameter files for SQL Server.

Extract parameter file GGSPARM.SQLINI:

SOURCEISFILE, FASTUNLOAD
FORMATASCII, BCP
RMTHOST ntbox12, MGRPORT 7809, PARAMS "-d c:\ggs\dirdef\source.def"
RMTFILE C:\GGS\TRANSTAB.dat, PURGE
TABLE $DATA.MASTER.TRANS

• FORMATASCII, BCP specifies the data format is compatible with the Microsoft BCP
utility.

• RMTFILE identifies TRANSTAB.dat as the source table. Using the dat extension makes
it compatible with the load functions.

To load data to SQL Server, you must use the BCP template provided by Oracle
GoldenGate. You can call BCP from your Replicat parameter file or run it interactively
from the operating system shell. The template tells Replicat how data is laid out in the
SQL Server target.

Replicat parameter file for GGSPARM.TRANINI

GENLOADFILES BCPFMT.TPLTARGETDB
TARGETDB MYAPP, USERID MYNAME, PASSWORD MSPW
SOURCEDEFS c:\ggs\mydb.def
MAP $D2.MYDB.TRANSTAB, TARGET SCHEMA.ORATRANS;

Limiting the Enscribe Source Key Range for Initial Load
If your parameters meet the requirements, the FILE parameter options STARTKEY and
ENDKEY can be used to limit the range of Enscribe records selected for a SOURCEISFILE
initial-load process. This allows you to load subsets of the data for different purposes
or to break up the a large initial data load. Refer to Reference for Oracle GoldenGate
on HP NonStop Guardian FILE | TABLE parameter for specifics on the requirements
and how to use STARTKEY and ENDKEY.

Restarting an Initial Load
You can restart initial loads using the RESTARTCHECKPOINTS option of the SOURCEISFILE or
SOURCEISTABLE parameter if your Extract is added from GGSCI.

You can use RESTARTCHECKPOINTS for:

• SQL/MP source tables with or without the SQLPREDICATE option

• Enscribe whether or not you use the FILE STARTKEY and ENDKEY options

• Both SQL/MP and Enscribe with or without FASTUNLOAD.

Refer to Reference for Oracle GoldenGate on HP NonStop Guardian for additional
conditions and restrictions for using the SOURCEISFILE RESTARTCHECKPOINTS option.

The messages generated when the SOURCEISFILE Extract restarts vary based on the
type of database and the parameters and options that are used. Some different types
of examples are shown next.

Chapter 3
Limiting the Enscribe Source Key Range for Initial Load

3-9

Example 1 SQL/MP tables produced without using FASTUNLOAD
A message similar to the following is produced for SQL/MP source tables without
FASTUNLOAD. In this example the option SQLPREDICATE is being used and WHERE (STATE =
"CA") is the user's predicate. AC_KEY is the multi-column key for the restart.

Output extract file \NY.$DATA02.ACDAT.PA000009 Write Position: RBA 19126
Extract SourceIsFile process is restartable
Processing File \NY.$DATA02.ACDAT.ACCT
Using this SQL statement to retrieve data:
SELECT * FROM \NY.$DATA02.ACDAT.ACCT WHERE (STATE = "CA") AND AC_KEY1, AC_KEY2,
AC_KEY3 > 13 ,4781 ,27 BROWSE ACCESS

Example 2 SQL/MP or Enscribe tables produced using FASTUNLOAD
A message similar to the following is produced for SQL/MP or Enscribe source tables
using FASTUNLOAD. The restart key is RBA 9555968 of partition $DATA03.

Output extract file \NY.$DATA02.ACDAT.PA000009 Write Position: RBA 19126
Extract SourceIsFile process is restartable
Processing File \NY.$DATA02.ACDAT.ACCT2
Processing Partition \NY.$DATA03.ACDAT.ACCT2
Positioning Restart at RBA 9555968

Example 3 Enscribe tables produced without FASTUNLOAD or STARTKEY
A message similar to the following is produced for Enscribe that is not using
FASTUNLOAD and without STARTKEY. The CUST-KEY used for the restart is 1234.

Output extract file \NY.$DATA02.ACDAT.PA000009 Write Position: RBA 19126
ExtractSourceIsFile process is restartable
Processing File \NY.$DATA02.ACDAT.ALTPART
Processing using restart values (CUST-KEY = 1234)

Example 4 Enscribe tables produced without FASTLOAD and with a STARTKEY
A message similar to the following is produced for Enscribe without FASTUNLOAD and
with STARTKEY. The CUST-KEY used for the restart is 1234.

file $data02.acdat.altpart, startkey (CUST-key = 0000), def ens-rec,
 endkey (CUST-key = 5555);
file $data02.acdat.altpart, startkey (CUST-key = 5556), def ens-rec,
 endkey (CUST-key = 999999);
Output extract file \NY.$DATA02.ACDAT.PA000009 Write Position: RBA 19126
Extract SourceIsFile process is restartable
Processing File \NY.$DATA02.ACDAT.ALTPART
Processing using restart values (CUST-KEY = 1234)
Finished to EndKey (CUST-KEY = 5555)
Processing from StartKey (CUST-KEY = 5556)
Finished to EndKey (CUST-KEY = 999999)

Loading Initial Data from Windows and Unix
Use Replicat to load data from a Windows or UNIX system into a NonStop target
database. See Getting Started with the Oracle GoldenGate Process Interfaces for
details.

Integrating Source and Target Data
When only a subset of source rows or columns are needed in the target, you can use
one of the following techniques to integrate selected data into your target:

Chapter 3
Loading Initial Data from Windows and Unix

3-10

• Selecting on the source with WHERE or FILTER

• Mapping columns on the target with COLMAP

When the data source is a SQL table, you can specify SQL Views. This allows
automatic filtering of columns before transmission.

Data transformation (such as six-to-eight digit date conversion) takes a little extra
effort during the load process. There are a couple of ways to achieve initial loads in
this situation.

The first solution involves extracting the entire table into a flat file. In this case, do not
specify FORMATASCII. Next use Replicat to load the table using the SPECIALRUN
parameter. This method, while slower than native loads, is often sufficient and allows
field conversion functions to be used during replication.

The second solution is to perform all data mapping on the NonStop before
transmission on the target side. This means that all conversion work is performed by
Extract. Using this strategy can result in less network traffic, since filtering can be
performed before data reaches the pipe. However, this can also require the creation of
a dummy table or DDL definition on the NonStop side that mimics the structure of the
real target table.

Distributing Extracted Data
In addition to extracting and replicating database changes, Extract can forward and
distribute changes that have already been extracted. This process is known as data
pumping.

Use data pumping in the following scenarios:

• A network or target system may be down for an extended time, but extraction or
logging activities must occur constantly.

• Data extracted by Logger must be forwarded over TCP/IP to non-NonStop
systems.

Running Extract for these purposes is nearly identical to capturing data from TMF
audit trails. To run Extract in this manner, perform the following tasks.

1. Using the EXTTRAILSOURCE or LOGTRAILSOURCE option, create an initial Extract
checkpoint with the GGSCI ADD EXTRACT command.

2. Add a local or remote Oracle GoldenGate trail with the GGSCI ADD EXTTRAIL or ADD
RMTTRAIL command. By adding the trails, you direct Extract where to write the data
you need.

3. Set up an Extract parameter file.

4. Start Extract using the GGSCI START EXTRACT command.

Direct File Extraction
Rather than capturing from trails, you can extract directly from a file or a sequence of
files. You can read a file directly only when the following conditions are true:

• The file or sequence of files is entry-sequenced.

• Only inserts occur against the files (no updates).

Chapter 3
Distributing Extracted Data

3-11

• Records are inserted only at the end of the file.

Use this feature when:

• The method of logging is non-TMF.

• The files are BASE24 TLF or PTLF.

• The input files meet the conditions described above.

• You want to transfer the batch file contents a little at a time throughout the day
("trickle" transfer), rather than all at once at the end of the day.

To extract directly from a file:

1. Enter a GGSCI ADD EXTRACT command, specifying the FILETYPE parameter. FILETYPE
indicates the type of file from which you are reading.

2. If more than one file in a sequence might be open at a time, start Extract for each
file in use simultaneously. Enter an ALTINPUT parameter in each process's
parameter file with a RANGE option to distribute the files among the processes. For
further details, see Controlling Extract and Replicat.

Batch Processing
You can configure Extract and Replicat to run in batch when capturing and delivering
incremental changes is not appropriate for the application. You can configure ongoing
batch runs for a specific time daily, or special, one-time batch runs.

One-Time Database Extraction
You can run Extract against a specified period of audit trail or Oracle GoldenGate trail
data a single time. Do this, for example, to extract changes to a particular account in a
database over the course of a day.

To extract changes for a specific period, perform the following steps.

1. Set up a parameter file using the NonStop editor.

2. Use SPECIALRUN to capture data from TMF-audit trails. SPECIALRUN indicates that no
checkpoints are maintained.

3. To extract data from an Oracle GoldenGate trail, use the SPECIALRUN,
EXTTRAILSOURCE or LOGTRAILSOURCE option.

4. Set up BEGIN and END parameters to designate the period of activity to extract.

5. Designate an EXTFILE or RMTFILE rather than an extract trail. If you require multiple
trails, add the MAXFILE argument to the EXTFILE or RMTFILE parameter.

6. Specify additional parameters as needed.

7. Start Extract from TACL, as in this example.

TACL> RUN EXTRACT /IN GGSPARM.SPECEXT, OUT GGSRPT.SPECEXT/

Trickle Batch Processing
When you are extracting batch files using RMTBATCH, you may need to perform the
following steps:

Chapter 3
Batch Processing

3-12

1. Use the SYSKEYCONVERT parameter in the Extract parameter file if the input record's
length is variable. This specifies the format of the SYSKEY in the output.

2. Use the POSITIONFIRSTRECORD parameter to reread an input file when you have used
SYSKEYCONVERT. POSITIONFIRSTRECORD resets Extract to read from the beginning of the
input file.

Determining the Next File
Use ALTINPUT for direct file extraction. With ACI files, multiple files can be in use at one
time. For example, processing can continue for Monday's file after midnight, while
Tuesday's file is opened for new data. To handle a multiple file situation, run more than
one Extract process for the file sequence. Use the ALTINPUT RANGE option to distribute
the files across the processes so that Extract never processes two files in sequence.
You can also use ALTINPUT to specify the access mode of the file open, and to move
Extract to the next sequential file if an application has a file open that it is not updating.

By default, Extract looks for the next alphabetical file name. The file name must
conform to a template for the file type, which defaults to predefined characteristics.
You can also specify the template by parameter.

If the file type is ACITLF or ACIPTLF, the template is in the form $VOL.SUBVOL.XXYYMMDD,
where XX is a two character prefix, followed by a six digit date.

If the file type is ACITLFX or ACIPTLFX, the template is in the form $VOL.SUBVOL.XMMDDNNN,
where X is a one character prefix, followed by a month, day and three digit sequence
number.

When specifying any of the ACI file types in the FILETYPE option, do not include the
date or sequence number. The next file is the one following the current file in name
order, and must also satisfy any RANGE criteria in the ALTINPUT parameter.

If the file type is ENTRY, you specify the template in the ALTINPUT parameter TEMPLATE
option. NonStop wildcards are acceptable. For example, the template $DATA*.MYDAT.FL*
processes files starting with FL residing on different $Data volumes.

When using FILETYPE ENTRY, specify the first file to process, not the file prefix. By
default, the next file is the next file name to fit the template. As an alternative, you can
use FILETYPE USENEXTMODIFIED. This option selects the next file modified after the
current file that also fits the template.

When the Next File is Processed
Before moving to the next file in a sequence, Extract must process the entire contents
of the current file. By default, Extract uses the following rules to determine that the
current file has been exhausted and the next file is ready for processing.

• End-of-file was reached in current file at least five seconds earlier, and no new
data has appeared since.

• No processes have the current file open for write access.

• The next file exists and has at least one record in it.

• The next file was modified after the current file.

You can modify these rules with the NOWAITNEXTMODIFIED, WAITNEXTRBA, and OPENTIMEOUT
options for the ALTINPUT parameter.

Chapter 3
Batch Processing

3-13

4
Configuring Oracle GoldenGate Security

This topic discusses the security features that you can use to protect your Oracle
GoldenGate for HP NonStop environment as well as the data that is being processed.

This topic includes the following sections:

The following tables summarizes the security features that are available in Oracle
GoldenGate for HP NonStop:

Table 4-1 Oracle GoldenGate Security Features

Security feature Description

Encryption Options are available for encrypting and decrypting:

• data in an extract file or trail
• database passwords
• data sent across TCP/IP

Command security Sets user-level permissions for accessing Oracle GoldenGate
commands through GGSCI.

Using Encryption
This section contains instructions for encrypting and decrypting the following:

• The trail or extract file that holds data being processed by Oracle GoldenGate

• A database password

• The data sent across TCP/IP

How Data is Encrypted
The following encryption methods are used:

• To encrypt trail or extract files, Oracle GoldenGate uses 256-key byte substitution.
All records going into those files are encrypted both across any data links and
within the files themselves.

• To encrypt the database password or data sent across TCP/IP, Oracle
GoldenGate uses Blowfish encryption. Blowfish is a symmetric block cipher that
can be used as a drop-in replacement for DES or IDEA. The Oracle GoldenGate
implementation of Blowfish can take a variable-length key from 32 bits to 128 bits.
Blowfish encryption can be combined with Oracle GoldenGate trail encryption.

Note:

AES encryption is currently not supported on the HP NonStop.

4-1

Encrypting Trail or Extract Files
You can encrypt the data in any local or remote trail or file.

Note:

This feature cannot be used when FORMATASCII is used to write data to a file
in ASCII format. The trail or file must be written in default canonical format.

To encrypt trail or extract files

1. In the Extract parameter file, list the following parameter before all trails or files
that you want to be encrypted. You can list multiple trails or files after one instance
of this parameter.

ENCRYPTTRAIL

2. To disable encryption for any files or trails listed in the Extract parameter file,
precede their entries with the following parameter:

NOENCRYPTTRAIL

3. In the Replicat parameter file, include the following parameter so that Replicat
decrypts the data for processing.

DECRYPTTRAIL

You also can use DECRYPTTRAIL for an Extract data pump to decrypt the data for
column mapping, filtering, transformation, and so forth. You can then leave it
decrypted for downstream trails or files, or you can use ENCRYPTTRAIL to encrypt the
data again before it is written to those files.

Encrypting a Database Password
Use the following steps to encrypt the database password used by the Oracle
GoldenGate processes.

1. Run GGSCI and issue the ENCRYPT PASSWORD command to generate an encrypted
password. The command provides the following options.

• The default ENCRYPT PASSWORD command, without any options, generates an
encrypted password using a default key that is randomly generated by Oracle
GoldenGate.

ENCRYPT PASSWORD password

• ENCRYPT PASSWORD with the ENCRYPTKEY keyname generates an encrypted
password using a user-defined key contained in the ENCKEYS lookup file.

ENCRYPT PASSWORD password ENCRYPTKEY keyname

For keyname, specify the logical name for the key you want to use, as it appears
in the local ENCKEYS file. To use this option, you must first generate a key,
create an ENCKEYS file on the local system, and create an entry in the file for the
generated key. For instructions, see "Generating Encryption Keys".

Chapter 4
Using Encryption

4-2

The encrypted password is displayed to the screen when you run the ENCRYPT
PASSWORD command.

2. Copy the encrypted password and paste it into the Oracle GoldenGate parameter
file as follows.

USERID user_id, PASSWORD password, &
[ENCRYPTKEY {DEFAULT | keyname}]

Where:

• user_id is the database user name for the Oracle GoldenGate process.

• password is the encrypted password that is copied from the ENCRYPT PASSWORD
command results.

• ENCRYPTKEY DEFAULT is required if the password was encrypted using ENCRYPT
PASSWORD without the ENCRYPTKEY option.

• ENCRYPTKEY keyname is required if the password was encrypted using ENCRYPT
PASSWORD with the ENCRYPTKEY keyname option. Specify the logical name of the
key as it appears in the ENCKEYS lookup file.

Encrypting Data Sent Across TCP/IP
You can encrypt captured data before Oracle GoldenGate sends it across the TCP/IP
network to the target system. On the target system, Oracle GoldenGate decrypts the
data before writing it to the Oracle GoldenGate trails (unless trail encryption also is
specified). By default, data sent across a network is not encrypted.

To encrypt data sent across TCP/IP

1. On the source system, generate one or more encryption keys and create an
ENCKEYS file. See "Generating Encryption Keys" for more information.

2. Copy the finished ENCKEYS file to the Oracle GoldenGate installation location on all
target systems. The key names and values in the source ENCKEYS file must match
those of the target ENCKEYS file, or else the data exchange will fail and Extract and
Collector will abort with the following message:

GGS error 118 – TCP/IP Server with invalid data.

3. In the Extract parameter file, use the ENCRYPT option of the RMTHOST parameter to
specify the type of encryption and the logical key name as shown:

RMTHOST hostname, MGRPORT port, ENCRYPT BLOWFISH, KEYNAME keyname

Where:

• BLOWFISH specifies Blowfish encryption.

• keyname is the logical name for the encryption key you want to use, as it
appears in the ENCKEYS file.

An example of encrypting data sent across TCP/IP:

RMTHOST sys1, MGRPORT 7840, ENCRYPT BLOWFISH, KEYNAME superkey

4. If using a static Collector and Blowfish encryption, append the following additional
parameters in the Collector startup string:

-KEYNAME name
-ENCRYPT BLOWFISH

Chapter 4
Using Encryption

4-3

Where:

• KEYNAME name specifies the name of the key.

• ENCRYPT BLOWFISH specifies Blowfish encryption.

Collector matches these parameters to those specified with the KEYNAME and
ENCRYPT options of RMTHOST.

Generating Encryption Keys
You must create at least one encryption key and two ENCKEYS lookup files, one on the
source and one on the target, if you want to:

• Encrypt data sent across TCP/IP

• Use a user-defined key to encrypt the database password

This procedure is not required if:

• You are using a default key to encrypt the database password.

• You are encrypting a trail or extract file.

You can define your own key or run the Oracle GoldenGate KEYGEN utility to create a
key randomly.

To define your own key

• The key name can be a string of 1 to 24 alphanumeric characters without spaces
or quotation marks.

• The key value can be up to 128 bits (16 bytes) as a quoted alphanumeric string
(for example "Dailykey") or a hex string with the prefix 0x (for example
0x420E61BE7002D63560929CCA17A4E1FB).

To Use KEYGEN to Generate a Key

Change subvolumes to the Oracle GoldenGate installation location on the source
system, and issue the following shell command. You can create multiple keys, if
needed. The key values are returned to your screen.

TACL> RUN KEYGEN key_length number

Where:

• key_length is the encryption key length, up to 128 bits.

• number represents the number of keys to generate.

To store the keys for use by Oracle GoldenGate

1. On the source system, open a new ASCII text file.

For each key that you generated, enter a logical name followed by the key value
itself. Place multiple key definitions on separate lines. Do not enclose a key name
or value within quotation marks; otherwise it will be interpreted as text. Use the
following sample file as a guide.

Key name Key Value
superkey 0x420E61BE7002D63560929CCA17A4E1FB
secretkey 0x027742185BBF232D7C664A5E1A76B040
superkey1 0x42DACD1B0E94539763C6699D3AE8E200

Chapter 4
Generating Encryption Keys

4-4

superkey2 0x0343AD757A50A08E7F9A17313DBAB045
superkey3 0x43AC8DCE660CED861B6DC4C6408C7E8A

2. Save the file as ENCKEYS without an extension in the Oracle GoldenGate installation
location. The name must be in upper case.

3. Copy the ENCKEYS file to the target Oracle GoldenGate installation location. The key
names and values in the source ENCKEYS file must match those of the target ENCKEYS
file, or else the data exchange will fail and Extract and Collector will abort with the
following message:

GGS error 118 – TCP/IP Server with invalid data.

Example 4-1 Using KEYGEN to Generate a Key

TACL> RUN KEYGEN 128 4

Using Command Security
You can establish command security for Oracle GoldenGate to control which users
have access to which Oracle GoldenGate functions. For example, you can allow
certain users to issue INFO and STATUS commands, while preventing their use of START
and STOP commands. Security levels are defined by the operating system's user
groups.

To implement security for Oracle GoldenGate commands, you create a CMDSEC file in
the Oracle GoldenGate installation location. Without this file, access to all Oracle
GoldenGate commands is granted to all users.

To implement command security

1. Open a new ASCII text file.

2. Referring to the following syntax and the example on "Table 4-2", create one or
more security rules for each command that you want to restrict, one rule per line.
Order the rules from the most specific (those with no wildcards) to the least
specific. Security rules are processed from the top of the CMDSEC file downward.
The first rule satisfied is the one that determines whether access is allowed.

Separate each of the following components with spaces or tabs.

command_name command_object user_group user YES|NO

Where:

• command_name is a GGSCI command name or a wildcard, for example START or
STOP or *. Command names are not validated for accuracy.

• command_object is any GGSCI command object or a wildcard, for example
EXTRACT or REPLICAT or MANAGER. Command objects are not validated for
accuracy.

• user_group is the numeric ID of the Guardian user group, such as 100 or 255.
You can use a wildcard to specify all groups.

• user is the Guardian user numeric ID, such as 2 or 255. You can use a
wildcard to specify all users.

• YES|NO specifies whether access to the command is granted or prohibited.

3. Save the file as CMDSEC in the Oracle GoldenGate installation location

Chapter 4
Using Command Security

4-5

The following example illustrates the correct implementation of a CMDSEC file on a
NonStop system.

Table 4-2 Sample Cmdsec File with Explanations

File Contents Explanation

--GG command security
Comment line

STATUS REPLICAT 100 15 NO
STATUS REPLICAT is denied to user 15 of group 100.

STATUS * 100 * YES
Except for the preceding rule, all users in 100 are granted all
STATUS commands.

START REPLICAT 255 * YES
START REPLICAT is granted to all members of the Super
(255) group.

START REPLICAT * * NO
Except for the preceding rule, START REPLICAT is denied to
all users.

* EXTRACT 200 * NO
All EXTRACT commands are denied to all groups with ID of
200.

* * 255 255 YES
Grants the Super.Super user any command.

* * * * NO
Denies all commands to all users. This line covers security
for any other users that were not explicitly granted or denied
access by preceding rules. Without it, all commands would
be granted to all users except for preceding explicit grants or
denials.

Table 4-3 Incorrect CMDSEC Entries

File Contents Description

STATUS REPLICAT 100 15 NO
STATUS REPLICAT is denied to user 15 of group 100.

STOP * 100 * NO
All STOP commands are denied to everyone in group 100.

STOP * * 15 YES
All STOP commands are granted to user 15.

The above incorrect example illustrates what to avoid when creating a CMDSEC file. The
order of the entries in Table 4-3 causes a logical error. From the first rule (line 1), you
can see that user 15 is a member of group 100. The second rule (line 2) denies all STOP
commands to all members of group 100. The third rule (line 3) grants all STOP
commands to user 15. However, because 15 is a member of the 100 group, he has
been denied access to all STOP commands by the second rule.

The proper way to configure this security rule is to set the user-specific rule before the
more general rules. Thus, to correct the error, you would reverse the order of the two
STOP rules.

Chapter 4
Using Command Security

4-6

Securing the CMDSEC File
Because the CMDSEC file is a source of security, it must be secured. You can grant read
access as needed, but Oracle GoldenGate recommends denying write and delete
access to everyone but the Oracle GoldenGate administrator. For example, a proper
security string might be "NUUU".

Chapter 4
Using Command Security

4-7

5
Configuring the Manager and Collector

The Manager and the Collector are Oracle GoldenGate components that facilitate day-
to-day data management. See how to configure, start, and run these components.
This topic includes the following sections:

Introducing Manager
Manager runs as a NonStop process, ensuring that Oracle GoldenGate for NonStop
components run and restart if a CPU failure or operator error occurs. Manager spawns
a copy of itself so that tasks that take longer, such as duplicating a TMF audit trail, do
not interfere with real-time tasks. Tasks are divided between the Manager and its child
process accordingly. Manager tasks on NonStop include:

• Starting Logger, Extract, Replicat and Syncfile

• Monitoring and reporting status of Oracle GoldenGate processing

• Starting the dynamic Collector process on the target

• Automatically restarting critical processes

• Threshold reporting, such as when Extract falls behind the TMF-audit trail

• Managing resources for the TMF audit trail, such as maintaining copies of audit
trails on backup volumes

• Purging trails when Extract and Replicat has finished with them

• Pre-allocating log trail space for Logger processing

Configuring and Starting Manager
Now that you have your GGSCI prompt, you are ready to configure and start Manager.
To configure Manager, create an appropriate parameter file. To control an Oracle
GoldenGate Manager process, use the following commands.

Command Description

START MANAGER
Starts Manager.

STOP MANAGER
Stops Manager. You can stop Manager gracefully, or forcefully with the !
option.

Creating and Configuring the Manager Parameter File
Enter Manager parameters in the MGRPARM file. If no MGRPARM file exists, default
management parameters are taken. To add parameters, edit this file using the EDIT
PARAMS MGRPARM command.

5-1

Manager retrieves parameters as established by GGSCI ATCONFIG commands. These
parameters affect audit trail resource management.

See Oracle GoldenGate Parameters for more information about Manager parameters.

A Sample Manager Parameter File
A Manager parameter file would be similar to this sample.

Example 5-1 Sample Manager Parameter File

TCPIPPROCESSNAME $ZTC2
PORT 7844
DYNAMICPORTLIST 7850 - 7880, 7895
CHECKMINUTES 30
PURGEOLDEXTRACTS $DATA1.GGSDAT.*, USECHECKPOINTS, MINKEEPDAYS 2
THRESHOLD 30
LAGREPORTMINUTES 60
LAGINFOMINUTES 10
LAGCRITICALMINUTES 10
LOGFILESBEHIND 2
LOGFILESBEHINDINFO 10
DOWNCRITICAL
DOWNREPORTHOURS 1

In this Sample Manager Parameter File

• TCPIPPROCESSNAME specifies the TCP/IP process. The default process is $ZTC0. Use
the TCPIPPROCESSNAME parameter to specify a process other than the default.

• Specify the PORT parameter so Manager can create a dynamic Collector process.

• DYNAMICPORTLIST specifies up to 256 entries for ports to be dynamically assigned to
processes started by Manager. If no dynamic ports are specified, Manager starts
with port 7819 and increments until it finds an available port.

• CHECKMINUTES 30 directs Manager to perform maintenance activities every 30
minutes. The default is 10 minutes.

• Use the PURGEOLDEXTRACTS parameter when multiple Replicat processes are reading
a set of trails. For this sample, PURGEOLDEXTRACTS directs manager to purge old files
from the trail $DATA1.GGSDAT.*. The options:

– USECHECKPOINTS specifies that Replicat checkpoints are to be used to determine
when Replicat has finished processing.

– MINKEEPDAYS 2 purges files only after they have been closed for 2 days.

• THRESHOLD 30 directs Manager to generate an event message when the number of
audit files remaining to be processed falls below 30%.

• LAGREPORTMINUTES 60 specifies that Manager check lag every 60 minutes.

• LAGINFOMINUTES 10 specifies that Manager report lag information to the event log
every 10 minutes.

• LAGCRITICALMINUTES 10 specifies that Manager write a critical message to the event
log when there is 10 minute lag.

• LOGFILESBEHIND 2 sends a critical message whenever a process lags a specified
number of files behind the current log trail file.

Chapter 5
Configuring and Starting Manager

5-2

• LOGFILESBEHINDINFO 10 sends an informational message whenever the process
falls the specified number of files behind.

• DOWNCRITICAL sends a critical message whenever Extract or Replicat abends.

• DOWNREPORTHOURS sends reports of Extract and Replicat abending.

Starting and Stopping Manager
You must start Manager before you can configure and run other Oracle GoldenGate
components. The following example starts Manager in CPU 3. Manager selects a CPU
in which to run a backup process for fault-tolerance.

GGSCI> START Manager, CPU 3, PRI 170

If Manager encounters a TCP/IP error, for example if it attempts to bind to a port that is
in use, it retries the error every 60 seconds and does not abend after a set number of
attempts. Unlike other Oracle GoldenGate processes, it does not use the TCPERRS file to
set the delay and the number of retries.

Manager runs indefinitely, or until you enter the GGSCI STOP MANAGER command. You
might stop Manager if you need to stop the Extract and Replicat groups it manages or
if you to want to activate a change to a Manager parameter.

See STOP MANAGER for more information about GGSCI commands for Manager.

Configuring and Running the Collector
The Collector collects data from Extract and writes data to files on the target system.
Extract requests Manager to start a collector process when it sees data must transmit
over TCP/IP to a remote trail. Once started, the Collector waits for and performs
requests to write, open, and close files in the Oracle GoldenGate trail during Extract
processing.

Note:

You do not need to run collector if data transmits over an Expand
connection.

Maintaining Ports for Remote Connections through Firewalls
If a firewall is being used at an Oracle GoldenGate target location, additional ports are
required on the target system to receive dynamic TCP/IP communications from remote
Oracle GoldenGate processes. These ports are:

• One port for each Collector process that is started by the local Manager to receive
propagated transaction data from remote online Extract processes. When an
Extract process sends data to a target, the Manager on the target starts a
dedicated Collector process.

• One port for each Replicat process that is started by the local Manager as part of a
remote task. A remote task is used for initial loads and is specified with the RMTTASK
parameter. This port is used to receive incoming requests from the remote Extract
process. For more information see, RMTTASK

Chapter 5
Configuring and Running the Collector

5-3

• Some extra ports in case they are needed for expansion of the local Oracle
GoldenGate configuration.

• Ports for the other Oracle GoldenGate products if they interact with the local
Oracle GoldenGate instance, as stated in the documentation of those products.

To specify these ports, use the DYNAMICPORTLIST parameter in the Manager parameter
file. Follow these guidelines:

• You can specify up to 300 ports in any combination of the following formats:

7830, 7833, 7835
7830-7835
7830-7835, 7839

• The ports must be unreserved and unrestricted.

• Each Manager instance on a system must use a different port list.

Although not a required parameter, DYNAMICPORTLIST is strongly recommended for best
performance. The Collector process is responsible for finding and binding to an
available port, and having a known list of qualified ports speeds this process. In the
absence of DYNAMICPORTLIST (or if not enough ports are specified with it), Collector tries
to use port 7840 for remote requests. If 7840 is not available, Collector increments by
one until it finds an available port. This can delay the acceptance of the remote
request. If Collector runs out of ports in the DYNAMICPORTLIST list, the following occurs:

• Manager reports an error in its process report and in the Oracle GoldenGate
LOGGGS.

• Collector retries based on the rules in the Oracle GoldenGate tcperrs file. For
more information about the tcperrs file, see section"TCP/IP Error Handling ".

For more information see, DYNAMICPORTLIST.

Configuring Collector
To configure a Collector, you must know the port the Collector will use, the host name
or IP address where the remote trail resides, and edit your Manager and Extract
parameter files. You may also specify a variety of operating options, described in the
"Configuration Examples".

To configure and start Collector:

1. In the Manager parameter file, specify the port parameter, such as: PORT 7809.

2. In the Extract parameter file, specify the RMTHOST parameter as follows:

RMTHOST host, [MGRPORT port_number] [, option] [, . . .]

Argument Description

host Either a remote system name or an IP address, such as:
RMTHOST eastnode or RMTHOST 192.0.2.20.

MGRPORT port_number Specify the port that is defined in the Manager parameter
file.

Chapter 5
Configuring and Running the Collector

5-4

Argument Description

options You can specify a variety of options, including Collector
parameters. See "Creating and Configuring the Manager
Parameter File" for information on these options. See Oracle
GoldenGate Parameters for information about other RMTHOST
options.

3. The remote system must be the same system on which Collector was started, and
the port number must match the port number in the Collector startup command.
See "Configuration Examples" for more information.

4. If you specify a remote system name in the RMTHOST parameter, you must also
enter the remote system name in the TCP/IP hosts file on the target system, or on
the names server for your network. For example, if you specify: RMTHOST eastnode,
you must make an entry similar to: 192.0.2.20 eastnode in the HOSTS file.

If you specify the remote system IP address in the RMTHOST parameter, there is no
need to make a corresponding HOSTS file entry.

Configuration Examples
Following are the examples for configuration:

To configure Collector for port 5432 on remote system named eastnode:

1. In the Manager parameter file, specify: PORT 5432

2. In the Extract parameter file, specify: RMTHOST eastnode, MGRPORT 5432, and options
if desired.

3. In the TCP/IP HOSTS file, enter: 192.0.2.20 eastnode

To configure Collector for the default port on remote system address 192.0.2.20:

1. In the Manager parameter file, specify: PORT 7809

2. In the Extract parameter file, specify: RMTHOST 192.0.2.20, and options if desired.

3. No TCP/IP hosts file entry is required.

The TCP/IP Port
There are two ways to use Collector and your TCP/IP port: dynamically and explicitly.
The dynamic method lets Extract request Manager to start Collector as needed.
However, a user can explicitly start the Collector and let it run in the background,
ready to transmit data as needed. This method is called the explicit method.

Dynamic Method
Dynamic method is the default way to use Collector. The examples above illustrate
how this is configured: a port is specified in the Manager parameter file, a remote trail
is specified in the Extract parameter file, and, if required, the IP address is added to
your hosts file.

Chapter 5
Configuring and Running the Collector

5-5

Explicit Method
When capturing data over TCP/IP to remote systems that do not support dynamic
Collectors, you must explicitly start a Collector on the target system before starting
Extract. Each Extract must explicitly name the port to which it is writing, using the
RMTHOST parameter.

To explicitly configure your Collector, start GGSCI and enter the following:

TACL > ASSIGN STDERR, event_message_collector
TACL > RUN SERVER /NOWAIT/ [-P port_number]

Note:

Your event_message_collector may be the standard system log, $0, or a
virtual process, such as $VHS.

In the above example, the Collector listens on port 12345. When you start the
Collector, it references a default TCP/IP process ($ZTC0). You can change this to the
process of your choice by running a DEFINE statement before you start your collector.

TACL > ASSIGN STDERR, $0
TACL> DEFINE =TCPIP^PROCESS^NAME, FILE $ZTC8
TACL > RUN SERVER /NOWAIT, NAME $COLL/ -P 12345

See Collector Parameters for more information about the Collector parameters.

Example 5-2 Explicit Method

TACL > ASSIGN STDERR, $0
TACL > RUN SERVER /NOWAIT, NAME $COLL/ -P 12345

Monitoring Collector
Collector event messages are output to the ggserr.log file. You can view this file using
the GGSCI VIEW GGSEVT command.

Security Considerations
The user ID under which the Collector is started determines whether target files can be
written and purged. Ensure that the ID has the proper system access to the files and
locations written by the Collector.

Collecting Between Open Systems and NonStop
Event messages created by the Collector and Replicat on Windows and UNIX systems
can be extracted and sent back to EMS on NonStop systems. This feature enables
centralized viewing of Oracle GoldenGate messages across platforms.

Chapter 5
Collecting Between Open Systems and NonStop

5-6

To collect events from other systems:

1. Run Collector on NonStop to collect and distribute EMS messages. For each
EMSCLNT process, run one Collector process.

The following example runs Collector and outputs its messages to $0.

TACL> ASSIGN STDERR, $0
TACL> RUN SERVER /NOWAIT/ –p 7880

2. Run the EMSCLNT utility on the remote target. EMSCLNT reads a designated
error log and runs indefinitely, waiting for more messages to send. When
EMSCLNT receives a message, it sends the message to a collector process on
NonStop.

See the examples for running EMSCLNT on open systems for syntax information.

This UNIX example reads the file ggslog.err for error messages. Error messages
are sent to the collector to the NonStop at IP address 192.0.2.2 listening on port
7850. The Collector on NonStop writes formatted messages to EMS Collector $0.

The Windows example below (from the DOS prompt) reads the file d:\ggserrs\log.txt
for error messages. Error messages are sent to the collector on host ggs2 listening on
port 9876. The Collector on NonStop writes formatted messages to EMS Collector $P0.

> emsclnt –h ggs2 –p 9876 –f d:\ggserrs\log.txt –c $P0

Argument Description

–h ggs2
The node on which the collector is being run. Can be a name or
IP address. This is a required parameter.

–p 9876
The port where the collector is listening for messages. This is a
required parameter.

–f d:\ggserrs\log.txt
The error file where EMSCLNT retrieves error messages. This is
a required parameter.

–c $P0
The collector where EMS messages should be written on the
NonStop (default is $0).

Example 5-3 Running EMSCLNT on Open Systems

> $emsclnt –h 192.0.2.2 –p 7850 –f ggserr.log –c $0

Chapter 5
Collecting Between Open Systems and NonStop

5-7

6
Configuring Change Synchronization

Online change synchronization extracts data and transmits it to a target. Here you see
how to prepare Extract, Replicat, and Logger, and how to work with parameter files.

This topic includes the following:

Introduction
If your application is TMF-protected, perform change synchronization using Extract
and Replicat. Non-TMF applications use Logger and Replicat to perform the same
functions. You can configure Oracle GoldenGate to process changes from the
following sources:

• A TMF audit trail

• An intermediate Oracle GoldenGate trail, created either by Logger or Extract

• Directly from entry-sequenced files, or from BASE24, TLF or PTLF files.

• Oracle GoldenGate logs generated from non-TMF applications

Change Synchronization for TMF Applications
TMF application change synchronization requires at least one Extract group, one trail,
and one Replicat group.

Configuring Extract
To configure and run Extract, you must create an Extract group and an Extract
parameter file.

1. Start GGSCI:

TACL> RUN GGSCI

2. Add an Extract group. Specify CPU and priority:

GGSCI> ADD EXTRACT EXTORD, BEGIN NOW, CPU 1, PRI 160

3. Create the Extract parameter file:

GGSCI> EDIT PARAMS EXTORD

Example 6-1 Sample Extract Parameter File

-- Extract parameter file for
-- TCUSTMER and TCUSTORD changes
EXTRACT EXTORD
GETROLLBACKS
EXTTRAIL \LA.$DATA03.JDSDAT.ET
TABLE $DATA11.JDSSOU.TCUSTMER;
TABLE $DATA11.JDSSOU.TCUSTORD;

6-1

The name of the parameter file is usually the same as the process group name. For
more information on parameter guidelines, see "Working with Parameter Files".

Configuring Trails
Based on considerations such as performance, hard disk constraints, and data
throughput speed, you can specify where you want your trails to reside. For example,
if you are concerned about disk space in your Extract environment, you may choose to
create your trails on the system where Replicat is installed.

To configure your trail, you must create an empty trail using GGSCI, then start its
associated process. You can test the trail by checking to see data is being written to it.
If an INFO ALL command shows data being written to your trail, it is configured
correctly.

To add an Oracle GoldenGate trail:

1. Determine if your trail will run locally or remotely. Base this decision on
performance considerations vs. data throughput speed.

2. If you are not at the GGSCI prompt, start GGSCI.

TACL> RUN GGSCI

3. Add your trail using the following commands:

GGSCI> ADD EXTTRAIL trail_path, EXTRACT extract_group, [trail_size_limit],
[limit_of_files_waiting_to_be_written]
GGSCI> ADD RMTTRAIL trail_path, EXTRACT extract_group, [trail_size_limit]

For example, a local trail would read:

GGSCI> ADD EXTTRAIL \LA.$DATA03.JDSDAT.ET, EXTRACT EXTORD, MEGABYTES 5, MAXFILES
10

To test a trail:

1. Issue the GGSCI command INFO ALL.

2. Check to make sure Extract and Replicat are both running, and checkpoint sizes
show relative byte addresses.

Configuring Replicat
Replicat gathers data from your trail and delivers it to your target. A Replicat group
contains the named Replicat itself, a Replicat parameter file, and checkpoint groups,
as desired.

To configure Replicat:

1. From GGSCI, create a Replicat group:

GGSCI> ADD REPLICAT group_name, EXTTRAIL trail_name

For example:

GGSCI> ADD REPLICAT REPORD, EXTTRAIL $DATA03.JDSDAT.ET

2. Launch a NonStop text editor to create a Replicat parameter file (or use GGSCI):

TACL> TEDIT PARAMS REPORD

Chapter 6
Change Synchronization for TMF Applications

6-2

3. Enter your parameters as desired.

The name of the parameter file is usually the same as the process group name.
For more information on parameter guidelines, see "Working with Parameter
Files". Following is a sample Replicat parameter file.

-- Replicat parameter file for replicating
-- TCUSTMER and TCUSTORD changes
REPLICAT REPORD
HANDLECOLLISIONS
PURGEOLDEXTRACTS
ASSUMETARGETDEFS
DISCARDFILE \LA.$DATA11.GGSDISC.REPORD, PURGE
MAP \LA.$DATA11.GGSSOU.TCUSTORD,
TARGET \NY.$DATA03.GGSTAR.TCUSTORD;
MAP \LA.$DATA11.GGSSOU.TCUSTMER,TARGET \NY.$DATA03.GGSTAR.TCUSTMER;

4. Start GGSCI, then start the Replicat you just configured.

GGSCI> START REPLICAT REPORD

5. Verify that Replicat is working and receiving data from Extract.

Change Synchronization for Non-TMF Applications
The Logger program, with the GGSLIB run-time library, extracts changed records from
files that are not protected by TMF. A Logger process records database updates in a
log trail, which feeds data to Replicat. Each Logger process in a set is named $GGLnn,
where nn is a sequenced identifier beginning with 00. For example, if you configure two
Logger processes, they are named $GGL00 and $GGL01. Each Logger group has one or
more Logger process, a parameter file, one or more log trails, and file extraction lists.

Log trails are sets of files, written to disk, that hold data extracted and sent to a
particular Logger. Each log trail is owned by one Logger process. The parameter file
holds specific volume locations and the number and size of each log file.

A log trail's name is comprised of the volume and subvolume where Oracle
GoldenGate Logger is installed, the process prefix, and a series of letters and
numbers that grow depending on the number of log trails. For
example, $DATA1.GLOGGGL.AA000000 means Oracle GoldenGate Logger is installed on
volume Data1, subvolume GLOG, the process prefix is GGL, and the trail itself is called
AA000000.

To configure and run change synchronization for non-TMF applications, you must:

1. Create the LOGPARM parameter file.

2. Configure Logger and GGSLIB with the ADD LOGGER command.

3. Start Logger.

4. Bind GGSLIB to the non-TMF application.

Creating the LOGPARM File
Just as Extract and Replicat are controlled by parameter files, so is Logger. Unlike
either Extract or Replicat, you must create the LOGPARM before you add your Logger to
Oracle GoldenGate Manager.

To create a Logger parameter file:

Chapter 6
Change Synchronization for Non-TMF Applications

6-3

1. Start GGSCI.

TACL> VOLUME Oracle_GoldenGate_installation_location
TACL> RUN GGSCI

2. Enter Logger and GGSLIB parameters into the LOGPARM file.

GGSCI> TEDIT PARAMS LOGPARM

3. Add required parameters, including:

• LOG entries, where each entry describes both a process and a log trail in which
the process records database updates. Each log process writes to exactly one
log trail.

• FILE parameters, which specify one or more files to be extracted by the current
log process (The current log is the first log entry preceding the FILE entry.) The
FILE entry may be a wildcard. In addition, FILE may specify compression of
update records.

• EXCLUDEFILE parameters, which specifically exclude a file from a list for a
particular log if it has been included with FILE.

• The primary and backup CPUs in which the particular log process will run.

• The priority at which the Logger process will run (PRIORITY).

Logger parameters are detailed in Reference for Oracle GoldenGate on HP NonStop
Guardian. The following section outlines a sample Logger parameter file.

Sample LOGPARM File
This sample parameter file configures two log processes $GGL00 and $GGL01. These
process names have been explicitly set with the PROCESS parameter, but when not set
the names default to $GGLnn. The system will increment nn from 00 so the default will
generate the same process names in this instance.

Note:

Parameter position is important. As soon as a log entry is specified with the
log parameter, it becomes the current log. Parameters entered below the
current log parameter apply only to the current log. For instance, in the
following example, all parameters after the LOG $D3.GGSLOG.AA and before the
LOG $D15.GGSLOG.BB entry apply to LOG $D3.GGSLOG.AA.

• Creates a log trail $D3.GGSLOG.AA that contains 10 files each sized at 500 megabytes
(for a total of 5,000 megabytes). The file names will be AA000000, AA000001, through
AA000009. As new files are required, the oldest one is recycled and takes the next
sequence number; in this case, AA000000 will become AA000010. File space is pre-
allocated by the GGSCI and Manager processes.

• Configures $GGL00 to run on CPU 9, with backup CPU 4.

• Specifies that data written by the application in $DATA4 will be logged to the log
trail $D3.GGSLOG.AA.

• Specifies that data written by the application in $DATA5 will be logged to the log
trail $D3.GGSLOG.AA.

Chapter 6
Change Synchronization for Non-TMF Applications

6-4

• Excludes $DATA4.REPORTS.* from being logged to AA.

• Excludes $DATA4.DAT.TRANSFL from being logged to AA.

Logger GGL01:

• Creates a log trail $D15.GGSLOG.BB that contains 100 files each sized at 10
megabytes (for a total of 1,000 megabytes). The file names will be BB000000,
BB000001, through BB000009. These files are recycled when needed.

• Configures $GGL01 to run in CPU 3, with backup CPU 2.

• Specifies that data written by the application to files in any location should be
written to the BB log trail, except $DATA4.REPORTS.* and any data already captured
by $GGL00 (in this case, $DATA4.*.* and $DATA5.*.*). $DATA4.DAT.TRANSFL will be
captured in BB since it was implicitly included in $*.*.* and excluded nowhere for
this logger.

Example 6-2 Sample Logger Parameter File

-- Logger configuration for two Loggers
LOG $D3.GGSLOG.AA, PROCESS $GGL00, MEGABYTES 500, NUMFILES 10, SECURE "NUUU"
CPU 9,4
FILE $DATA4.*.*
FILE $DATA5.*.*
EXCLUDEFILE $DATA4.REPORTS.*
EXCLUDEFILE $DATA4.DAT.TRANSFL
LOG $D15.GGSLOG.BB, PROCESS $GGL01, MEGABYTES 100, NUMFILES 10, SECURE "NUUU"
CPU 3,2
FILE $*.*.*
EXCLUDEFILE $DATA4.REPORTS.*

Logger GGL00:

Configuring Logger and GGSLIB
Run the ADD LOGGER command to process the configuration in LOGPARM. This step
establishes a configuration for both Logger and GGSLIB and pre-allocates disk files for
each Logger process to use for logging database updates.

Before starting Logger, Oracle GoldenGate must process and store its configuration.
This step pre-allocates file space for each log trail to ensure extracted records can be
stored.

To process the Logger configuration, enter the following command.

GGSCI> ADD LOGGER

Starting Logger
To start Logger:

1. Start GGSCI.

2. Enter START LOGGER.

GGSCI> START LOGGER

By default, this command starts the logger group $GGLnn. If, for example, you have
three LOG entries in the LOGPARM file, START LOGGER starts three processes,
named $GGL00, $GGL01 and $GGL02.

Chapter 6
Change Synchronization for Non-TMF Applications

6-5

Using Macros to Bind GGSLIB to a Non-TMF Application
Use the GGSCI BIND PROGRAMS command to bind the GGSLIB library to your non-TMF
application. This step also binds GGSLIB to existing user libraries the application calls.

TACL > RUN GGSCI
GGSCI> BIND PROGRAMS

BIND PROGRAMS prompts for a list of programs to bind with GGSLIB. GGSCI analyzes
this list to see which files are already bound and which ones it must bind.

In this context, bound means that GGSLIB runs as a user library in the application
program (BIND CHANGE LIBRARY GGSLIB in program_name is performed). GGSLIB is not
literally bound with the application program. If a program already calls a user library,
that library is literally bound with GGSLIB to create a new library. The library will have
the same name as the old user library.

Building GGSLIB
GGSLIB, built as part of installation, contains the BASELIB module that intercepts
Guardian function calls made by the application. GGSLIB also contains C, CRE and
COBOL run-time libraries that call Guardian functions. When bound to GGSLIB, these
libraries attempt to call the operating system function, but actually call the Oracle
GoldenGate function instead. GGSLIB in turn calls the intended operating system
function transparently to the application. GGSLIB uses a shared extended memory
segment for efficient configuration storage, and maintains a private memory segment
for working storage variables.

Without the presence of these libraries, the C and COBOL run-time libraries would be
called at the operating system level and would bypass Oracle GoldenGate intercept
functions.

Therefore, build these libraries carefully. Keep the following libraries up-to-date with
your latest operating system release and related IPMs. Not all of these libraries are
required in the GGSLIB build if your application does not run COBOL74, COBOL85 or
C routines. It is recommended, however, to bind each of these components that exist
on your system into GGSLIB.

Library Function

$SYSTEM.ZCOBOLRT.CLIBOBJ
COBOL74 routines

$SYSTEM.ZCOB85RT.C8LIB
COBOL85 routines

$SYSTEM.ZCRERTL.CFELIB
Common Run-time Environment

$SYSTEM.SYSTEM.CRELIB
Common Run-time Environment

$SYSTEM.SYSTEM.COBOLLIB
More COBOL85 routines

To build a new version of GGSLIB, issue the following command from TACL.

> RUN BUILDMAC

Chapter 6
Change Synchronization for Non-TMF Applications

6-6

In some Guardian releases there are insignificant conflicts between functions that
appear in more than one of the above libraries. You can safely ignore the resultant
BIND warnings during the build.

Private Memory and Stack Space
GGSLIB routines minimize stack space requirements. By doing so, programs are
ensured that typical activities will have enough stack room left for themselves.

For its own working space, GGSLIB allocates a small private memory segment to
handle in-transit I/O buffers and keep its own state variables. This requires
approximately 250 words.

Alternate Methods of Binding GGSLIB to an Application
There are alternatives to using the Oracle GoldenGate macros (NLDLIB for example) to
bind the Oracle GoldenGate intercept library to your application. These alternatives
may vary depending on your NonStop environment.

For non-native mode systems, a type 100 object file is produced using the TAL,
COBOL, or C language compilers. Native mode Itanium systems use EPTAL,
ECOBOL or CCOMP to compile type 800 objects.

Using the ?Search Directive
You can connect the application to the Oracle GoldenGate intercept library by using
the ?SEARCH directive in the compile. This copies the library into the application object
file. The drawback to this method is that an upgrade to the Oracle GoldenGate
application or the operating system will not be picked up by the built-in modules of
these programs. A recompile is required to replace the modules.

Non-Native Environments
You can bind the intercept library to application programs in non-native environments
by using:

• The NonStop BIND utility

BIND CHANGE LIBRARY $vol.subvol.library IN application_object

• A /LIB / parameter in the run statement

RUN application_object/LIB $vol.subvol.library/

• SET SERVER GUARDIAN-LIB parameter if it is a Pathway server

Native Mode Itanium Systems
The native mode Itanium system does not require any special steps. The intercept
library can be bound to the application by any of the following.

• Using the TNS/E Link edit (ELD) utility change command

ELD -CHANGE LIBNAME '$vol.svol.library' application_object

• A /LIB / parameter in the run statement

RUN application_program/LIB Oracle_GoldenGate_library/

Chapter 6
Change Synchronization for Non-TMF Applications

6-7

• Using the server parameter GUARDIAN-LIB.

Libraries for Native Applications
If your NonStop environment is running in native mode, you may decide to use native
mode libraries so processes run more efficiently. You must use native mode modules
and libraries if you are using the encryption or compression capabilities of Oracle
GoldenGate. Oracle GoldenGate provides a TACL macro, NLDLIB, for building the
following native libraries:

• BASELIBR: A relinkable, native version of BASELIB, a module that intercepts
function calls made by the application.

• GGSDLL: A native version of BASELIB for use as a dynamically linked library (DLL)
on the operating systems.

• GGSLIBR: A relinkable, native BASELIB containing CRE and COBOL SRLs.

Note:

Applications running on the operating systems that include native C,
native COBOL, and pTAL require two intercept libraries. The one to be
linked to the C and COBOL applications should reference the COBOL
and CRE dynamic -link libraries, and the one for pTAL should not. This is
due to the limitation that pTAL does not perform the necessary
initialization of the run-time environment.

Running NLDLIB
Running the NLDLIB macro lets you create these libraries and combine them with the
native mode Oracle GoldenGate BASELIBN library and certain Guardian system
libraries. You can run NLDLIB as part of your initial installation routine or on its own.

1. Run the following:

TACL> RUN NLDLIB

2. The NLDLIB macro runs, and you are asked if you want to include a user library.
Reply either Y or N.

NLDLIB builds the native relinkable object GGSLIBRA Native User Library will be
built as GGSDLLEnter X at any prompt to EXIT
Do you want to include your own User Library (Y/N): N

3. You are asked if you want combine your own library.

4. You are asked if you want to change the location of the AUDCFG.

Do you want to change the location for the AUDCFG segment(Y/N) : N

If you respond with yes, it prompts you for the new default location ($vol.subvol) of
the AUDCFG segment.

NLDLIB builds the GGSLIBR and GGSDLL libraries, displaying a series of informational
messages and the names of the files that were created.

Chapter 6
Change Synchronization for Non-TMF Applications

6-8

5. When the libraries are built, add the new relinkable library to your program object
using the LINK PROGRAMS command in GGSCI. You could also run the program as
follows:

TACL> RUN your_program_name /LIB new_library_name/

You can also run the NLDLIB macro from the TACL prompt providing arguments in the
command line. This is not recommended, however, as it may produce unexpected
results. Interactive responses help ensure the appropriate options for your
environment.

Removing a Library
To remove the Oracle GoldenGate library from your application, run your program with
an empty LIB parameter as follows:

TACL> RUN your_program_name /LIB/

Activating Authorization of Bound Libraries
You can add the Oracle GoldenGate SFGEXIT module to Safeguard to produce a
warning for any program that opens non-audited files for update and does not have the
Oracle GoldenGate intercept library bound to it. See "Authentication for Bound
Programs" for more information.

Note:

Opens on SQL tables, unstructured files, and TMF protected files are always
ignored. Opens from processes on remote nodes are also ignored.

You can enable the authorization event and supply optional PARAM-TEXT arguments
when the program is added.

The syntax for the ADD within Safecom is:

=ADD EVENT-EXIT-PROCESS OPENCHECK PROG $vol.subvol.SFGEXIT
[, PNAME process_name]
[, ENABLE-AUTHORIZATION-EVENT {ON | OFF}]
[, ENABLE {ON | OFF}]
[, PARAM-TEXT
[, DETAIL] |
[, OSOPENSUMMARY| OSOPENDETAIL | NOOSOPENS]
[, AUDCFG filename [REJECT]]
]

Option Description

ENABLE-AUTHORIZATION-EVENT
ON | OFF

You can set the authorization event to ON during the ADD of the
event. If it is not set, ENABLE-AUTHORIZATION-EVENT will default
to OFF. You can set it to ON after the ADD by using an ALTER
command.

ENABLE ON | OFF
You can also set ENABLE to ON if ENABLE-AUTHORIZATION-
EVENT is set to ON during the ADD. If not set, ENABLE will default
to OFF. You can set ENABLE to ON using the ALTER command.

Chapter 6
Change Synchronization for Non-TMF Applications

6-9

Option Description

PNAME process_name
You can optionally enter a logical process name.

PARAM-TEXT
PARAM-TEXT has the following options:

• DETAIL

DETAIL specifies that a message should be logged to
EMS every time a user application that is not bound to the
Oracle GoldenGate library opens a file for update. The
default is to display a message only the first time the
application opens a file for update.

Note: Use the DETAIL option with care. It may produce a
large number of EMS messages due to OPENS for
alternate key files and partitions.

OSOPENDETAIL | OSOPENSUMMARY | NOOSOPENS

OSOPENDETAIL and OSOPENSUMMARY both specify that
messages will be logged for OS processes (programs
started from $SYSTEM.SYSTEM and $SYSTEM.SYSnn).
NOOSOPENS will not log warnings for this type of process.
The default is NOOSOPENS.

OSOPENDETAIL further specifies that messages should be
logged to EMS every time a process that is not bound to
the Oracle GoldenGate library opens a file for update.
OSOPENSUMMARY displays a message only the first time the
process opens a file for update.

AUDCFG filename [REJECT] Identifies the Logger audit configuration file as filename. When
this option is used, only files matching an entry in the indicated
AUDCFG file are acted upon. If a file not in the AUDCFG is
opened for update, SFGEXIT replies NO RECORD without
applying any processing.

If REJECT is specified, an open will be refused when a program
does not have GGSLIB bound in and it tries to open a file
listed in AUDCFG.

Note: Using wildcards in the file list may generate an
unexpected number 48 errors if it causes the tracking of files
that the application would not typically open.

Managing the Authorization Event
Perform the following steps to manage the authorization event:

Adding and Verifying the Authorization Event
The following steps show examples that add, set options, check the status, and
remove the authorization event.

1. To add the authorization program, access SAFECOM and enter the ADD statement
as shown in the following example.

>SAFECOM
=ADD EVENT-EXIT-PROCESS OPENCHECK PROG $DATA1.GGS.SFGEXIT, PNAME $ZSEEP, ENABLE-
AUTHORIZATION-EVENT ON, ENABLE ON, PARAM-TEXT DETAIL

2. The INFO command can be used to verify the addition, check the location of the
program, check the status of the event, and review the PARAM-TEXT options:

Chapter 6
Change Synchronization for Non-TMF Applications

6-10

=INFO EVENT-EXIT-PROCESS OPENCHECK
EVENT-EXIT-PROCESSOPENCHECK
ENABLED = ON
RESPONSE-TIMEOUT =5 SECONDS
ENABLE-AUTHORIZATION-EVENT= ON
ENABLE-PASSWORD-EVENT = OFF
PROG= $DATA1.GGS.SFGEXIT
LIB = * NONE *
PNAME = $ZSEEP
SWAP= * NONE *
CPU =2
PRI =155
PARAM-TEXT = DETAIL

3. To remove the OPENCHECK event, you must first turn off the activation with the
ENABLE OFF.

=ALTER EVENT-EXIT-PROCESS OPENCHECK, ENABLE OFF
=DELETE EVENT-EXIT-PROCESS OPENCHECK

4. To exit SAFECOM:

=EXIT

Using Different PARAM-TEXT Options
Other examples of setting options when adding the authorization event are shown
below.

1. The following adds an OPENCHECK event that will issue a warning each time the
application opens a file that does not have the intercept library bound. It also issue
warnings for each open for programs that are run from $SYSTEM.SYSTEM
and $SYSTEM.SYSnn.

=ADD EVENT-EXIT-PROCESS OPENCHECK PROG $DATA1.GGS.SFGEXIT, PARAM-TEXT DETAIL,
OSOPENSDETAIL

2. The following adds an OPENCHECK event that will issue only one warning for each file
without an intercept library, evaluate only files listed in the audit configuration
file $DATA1.GGS.AUDCFG, and not include programs that are run from $SYSTEM.SYSTEM
and $SYSTEM.SYSnn.

=ADD EVENT-EXIT-PROCESS OPENCHECK PROG $DATA1.GGS.SFGEXIT, PARAM-TEXT
AUDCFG $DATA1.GGS.AUDCFG

Getting the Current Status of the Authorization Event
Additional examples of monitoring the process are shown below.

1. The following SEND process GETSTATS command retrieves statistics from a running
authorization event.

GGSCI (\NY) 2445> SEND $ZSEEP, GETSTATS

\NY.$ZSEEP Stats at 2013-08-15 15:14:01.770337
Started 2013-08-15 15:07:47.444913 CPUTime 0:00:00.007707 (PerOp 31)
Audcfg \NY.$data01.zlogdat.audc fgModtime 2013-08-05 12:10:00.845007
PoolGets 7 PoolPuts 0
GGSRequests 10 Other 0
 SFGRequests 205 Total 245
 Access 205 RemoteNode 0
 NonDisk 50 SQL 0

Chapter 6
Change Synchronization for Non-TMF Applications

6-11

 Open 154 Readonly 129
 Audcfg Check 2 Found 2 Excluded 0
 Diskfiles 154 Unstruct 0
 TMF Audited 0 SQL Tables 0
 ProcessInfo 0 Cached 0 Errors 0
 FileInfo 2 Cached 0 Errors 2
 GGSProgs 0 SystemProgs 0
 Reported 0 OpensDenied 0
Hash Stats
 Buckets 7919
 Entries 2 Lookups 2
 Collisions 2 Depth 0

2. The following SEND process PROCESSINFO command retrieves information on the
process.

GGSCI (\NY)> SEND $zseep, PROCESSINFO 3,1192

3,1192 \NY.$QA01.BV95014.REPLICAT GGS Code Has Lib

3. The following example errors were retrieved by the SEND process GETERRORLIST
command.

2013-08-15 15:12:49.911382
 FILE_GETINFOLISTBYNAME_ error 11 on \NY.$SYSTEM.SYS07.INSPLOG
2013-08-15 15:13:52.254180
 FILE_GETINFOLISTBYNAME_ error 11 on \NY.$DATA01.QA.TESTFILE

Working with Parameter Files
Parameters give you complete control over all aspects of Oracle GoldenGate, such as:

• Data selection, mapping, and transformation

• Replication

• Error resolution

• Logging

• Status and error reporting

• System resource usage

• Startup and run-time activities

There can be only one active parameter file for each Manager, Extract, or Replicat.
There are two types of parameters: global and file-specific.

• Global parameters apply to all tables specified in the parameter file for
synchronization. Some global parameters affect processing while others affect
such things as memory utilization.

• File or table-specific parameters control processing for tables specified with a FILE,
TABLE or MAP statement. Table-specific parameters enable you to designate one set
of processing rules for some tables, while designating other rules for other tables.
There are two implementations for file-specific parameters:

– Toggling the parameter on and off around one or more FILE, TABLE or MAP
statements.

– Adding the parameter within MAP statement so it applies only to that table or
file.

Chapter 6
Working with Parameter Files

6-12

Some parameters, such as HANDLECOLLISIONS/NOHANDLECOLLISIONS can be included in a
MAP statement or toggled ON and OFF. Others can be implemented using only one of the
methods. For further details, see Oracle GoldenGate Parameters.

The ordering of parameters in a parameter file can be important.

• A global parameter can appear anywhere in the parameter file, and it should only
be listed in the file once. When listed more than once, only the last instance of the
parameter is active. All other instances are ignored.

• Table-specific parameters take effect in the order that each parameter is listed in
the file.

Table 6-1 Basic Extract and Replicat Parameter Files

Sample Extract parameter file Sample Replicat parameter file

EXTRACT NYTOLA
DISCARDFILE =DISCARD_FILE, PURGE
EXTTRAIL $DATA1.EXTDAT.XX
FILE $DATA2.FINANCE.ACCOUNTS;

REPLICAT NYTOLA
DISCARDFILE =$DATA.GGSDISC.NYTOLA, PURGE
ASSUMETARGETDEFS
MAP $DATA2.FINANCE.ACCOUNT,
TARGET $BACK.FINANCE.ACCOUNTS;

Creating a Parameter File
From the subvolume where Oracle GoldenGate is installed, create a parameter file
using the NonStop text editor. The name of the parameter file is usually the same as
the process group name. For example, if you created the Extract group ADD EXTRACT
NYTOLA, you would create your parameter file by entering TEDIT PARAMS NYTOLA.

To create a parameter file through GGSCI

1. From the Oracle GoldenGate installation location, run the GGSCI command-line
user interface.

2. In GGSCI, issue the following command to open the default text editor.

GGSCI> EDIT PARAMS group_name

Where:

group_name is either MGRPARM (for the Manager process), LOGPARM, or the name of
the Extract or Replicat group for which the file is being created. The name of an
Extract or Replicat parameter file must match that of its process group.

Examples:

• The following creates or edits the parameter file for an Extract group named
EXTORA.

GGSCI> EDIT PARAMS EXTORA

• The following creates or edits the parameter file for the Manager process.

GGSCI> EDIT PARAMS MGRPARM

• The following creates or edits the parameter file for the Manager process.

GGSCI> EDIT PARAMS LOGPARM

Chapter 6
Working with Parameter Files

6-13

3. Using the editing functions of the editor, enter as many comment lines as you want
to describe this file, making certain that each line is commented out by two
hyphens (--). As an alternative, you can use the COMMENT parameter, which causes
everything on the same line as the COMMENT parameter to be ignored. The syntax
for COMMENT is:

COMMENT comment_text

Note:

Do not put a dash or pound symbol before the COMMENT keyword. Do not
use COMMENT if any column names in the tables contain the word
“comment." Instead, use double hyphens (--).

4. On non-commented lines, enter the parameters for your synchronization
configuration, starting a new line for each parameter statement.

For parameters that accept table names, you can use an asterisk (*) wildcard to
match any number of characters.

Parameters have the following general syntax:

parameter argument [, option] [&]

Where:

• parameter is the parameter name.

• argument is a required argument for the parameter. Some parameters take
arguments, while others do not. Separate all arguments with commas, as in
the following example:

USERID ggs, PASSWORD ggs123
RMTHOST sysb, MGRPORT 8040
RMTFILE $DATA05.GGSDAT.C1, PURGE

Note:

Use a maximum of six characters to name any volume that identifies
files or tables in parameter files. $DATA05 is supported, but $DATA011 is
not.

• option is an optional argument.

• & enables you to continue a parameter's arguments on another line. Place it at
the end of the line to be continued.

Chapter 6
Working with Parameter Files

6-14

Note:

Ampersands (&) are not always required to span more than one line,
but it is a good practice to use ampersands when:

– A parameter is not terminated by a semicolon and the line
extends beyond 79 characters

– A line for any of the options used for the parameter extend
beyond 79 characters.

• Save and close the file.

Storing Parameter Files
By default, parameter files are stored in the GGSPARM subvolume. If you are not going to
use the default location, create the new location before starting Oracle GoldenGate.
You can change this default location using an ADD DEFINE parameter in the GLOBALS
parameter file, such as the one in the following example.

TACL> ADD DEFINE =GGS_PARAMS, CLASS DEFAULTS, VOLUME $VOL.SUBVOL

Once paired with a process, a parameter file must remain in its original location for
Oracle GoldenGate to operate properly.

Viewing a Parameter File
You can view a parameter file by issuing the GGSCI VIEW PARAMS command.

VIEW PARAMS filename

VIEW PARAMS displays the file.

Table 6-2 summarizes the various ways in which you can scroll through its contents.

Table 6-2 Parameter File Scrolling Commands

Command Description

return, n
Next page

/string
Search for next occurrence of string in file

number
Go to line indicated by number

l
Go to last page of file

b
Go backwards one page in file

q
Quit display

Chapter 6
Working with Parameter Files

6-15

Table 6-2 (Cont.) Parameter File Scrolling Commands

Command Description

h
Help

Reference for Oracle GoldenGate on HP NonStop Guardian has a complete list of
commands.

Changing a Parameter File
You make changes to an Oracle GoldenGate NonStop process parameter file by
editing it using the NonStop text editor or some other compatible editor.

To ensure that all changes you make to the Manager parameter file are activated you
must stop and restart the Manager process. To change an Extract or Replicat
parameter file, make your changes, then verify them with the CHECKPARAMS parameter as
described in "Verifying a Parameter File".

Using OBEY and Macros in Parameters
You can leverage existing parameter files through the Oracle GoldenGate macros and
the OBEY command. To simplify the process, you can use Oracle GoldenGate macros
for a variety of operations, including implementing multiple uses of a statement,
consolidating multiple commands, or invoking other macros. You also can use OBEY to
direct Oracle GoldenGate to retrieve parameter settings from another parameter file.
Upon encountering OBEY, Oracle GoldenGate processes the parameters from the other
file and then returns to the current file to process any remaining instructions.

See "Configuring Custom Operations" for more information about using macros and
OBEY files.

Verifying a Parameter File
Use the following procedure to confirm that the syntax in an Extract or Replicat
parameter file is correct:

1. Include CHECKPARAMS in the parameter file.

2. Start the associated process.

3. Oracle GoldenGate audits the syntax and writes the results to the report file or
screen. View the report by issuing the following:

GGSCI> INFO process_type group_name

For example:

GGSCI> INFO REPLICAT REPCUST

• If the syntax is correct, remove the CHECKPARAMS parameter and start the
process again to begin processing.

• If the syntax is wrong, edit the file to correct the syntax based on the report's
findings, and then start the process again.

Chapter 6
Working with Parameter Files

6-16

Substituting a Parameter
It is possible to assign different values to a parameter within a parameter file. One-off
change synchronization runs that require specific parameters can process with the
same parameter file as your default change synchronization routine; any difference in
parameter requirements is handled by parameter substitution. This minimizes your
need for multiple parameter files.

To include a run-time parameter within the parameter file, precede any intended
parameter name with a question mark. Then, before running the Extract process, use
the TACL PARAMS command to pass the value.

When you are ready to run your special data run, specify the following from your TACL
prompt:

TACL> PARAM EXTFILE $DATA2.GGS.EXTFILE
TACL> PARAM TABNAME $DATA3.MYDB.ACCOUNTS
TACL> PARAM REGION EAST
TACL> RUN EXTRACT /IN PARMFL/

Extract will interpret the parameter as follows:

SOURCEISFILE
EXTFILE $DATA2.GGS.EXTFILE
TABLE $DATA3.MYDB.ACCOUNTS, WHERE (REGION = "EAST");

Note:

A question mark can also be used as a wildcard so care should be exercised
in using PARAMS and wildcards together. The program will process parameter
substitutions first, before evaluating wildcards. It cannot distinguish, however,
between ?DATA as a parameter and ?DATA as a wildcard, so it is important that
the user selects parameter names that are never used as part of an actual
file name.

Example 6-3 Parameter File Contents

SOURCEISFILE
EXTFILE ?extfile
TABLE ?tabname, WHERE (REGION = "?region");

Chapter 6
Working with Parameter Files

6-17

7
Configuring Custom Operations

You can use the custom operations to manipulate Oracle GoldenGate to your specific
organization requirements.

You can write C or COBOL routines and call them with Oracle GoldenGate user exits.
You can also save frequently used Oracle GoldenGate routines as macros then call
the macros from within Extract or Replicat parameter files. You can use OBEY files to
access frequently used Oracle GoldenGate parameters.

This topic includes the following:

User Exits
User exits allow you to extend and customize the functionality of Extract and Replicat.
At different points during Extract and Replicat processing, you can call COBOL, C or
TAL routines to perform an unlimited number of functions. You can also easily add
functions to the application and respond to database events almost as soon as they
occur without altering production programs. For example, user exits can:

• Perform arithmetic operations, special date conversions or table lookups while
mapping from one file format to another.

• Implement record archival functions off-line.

• Respond to unusual database events in custom ways, for example, by sending a
formatted e-mail message or paging a supervisor based on some field value.

• Accumulate totals and gather statistics.

• Clean up invalid data.

• Determine the net difference in a record before and after an update.

• Accept or reject records based on complex criteria.

• Normalize a database during conversion.

• Eliminate indexes that exist to identify recently changed records.

Record Formats for User Exits
User exits expect records to have a specific format. For example, user exits expect:

• Deletes, inserts, and updates to appear in the buffer as full record images

• Non-compressed data to have no offset or length preceding data

• Compressed Enscribe and SQL updates to both have the following format:

(offset)(length)(value)(offset)(length)(value)(. . .)

where

• (offset) is the offset into the Enscribe record of the data fragment that changed.

7-1

• (length) is the length of the fragment.

• (value) is the data. Fragments can span field boundaries, so full fields are not
always retrieved (unless compression is off or FETCHCOMPS is used).

• Enscribe has an I/O type of 11; SQL has an I/O type of 15. All other I/O types for
deletes, inserts, and updates are in non-compressed format.

Note:

The above record formats only apply to data sourced from an HP
NonStop system.

Creating User Exits
Create user by performing the following process.

To implement user exits:

1. Create a user exit shell routine in C, TAL or COBOL. The user shell routine is the
communication point between Extract or Replicat and your routines.

• C shell routines. Shell routines written in C must be named CUSEREXIT and
must accept the EXIT-CALL-TYPE, EXIT-CALL-RESULT, EXIT-PARAMS, and EXIT-REC-
BUF parameters. These parameters are supplied by Oracle GoldenGate in the
XLIBC include file.

• COBOL shell routines. Shell routines written in COBOL must specify the ENV
COMMON directive, and the PROGRAM-ID of one of the modules must be named
COBOLUSEREXIT. The COBOLUSEREXIT program must have a linkage section that
contains EXIT-CALL-TYPE, EXIT-CALL-RESULT, EXIT-PARAMS, and EXIT-REC-BUF
parameters. These parameters are supplied by Oracle GoldenGate in the
XLIBCOB copy library.

• TAL shell routines. Shell routines written in TAL must be named TALUSEREXIT
and must accept the EXIT-CALL-TYPE, EXIT-CALL-RESULT, EXIT-PARAMS, and EXIT-
REC-BUF parameters. These parameters are supplied by Oracle GoldenGate in
the XLIBTAL include file.

See COBOLUSEREXIT for details about COBOL and C programming language
routines.

2. Include Calling Environment Functions to retrieve information such as record
buffers and transaction contexts, if necessary. If the user exit is written in C, you
must include the USRDECS file. If the exit is written in COBOL, you must furnish a
CONSULT directive to either Extract or Replicat. If the exit is written in TAL, you must
source the USRDECT file.

3. In any language, create routines to respond to each type of event generated by
Extract and Replicat.

4. Compile and bind the shell routine and the routines that respond to individual
events, creating the user exit module.

5. Bind the user exit module with Extract or Replicat by running the BINDEXIT macro
and creating a custom Extract or Replicat module with a different name. For
further information, see "Binding the User Exit".

Chapter 7
User Exits

7-2

6. Include the CUSEREXIT, COBOLUSEREXIT or TALUSEREXIT parameter in your Extract or
Replicat parameter file.

7. Run the custom Extract or Replicat module.

Binding the User Exit
BINDEXIT is an interactive macro that creates a new object file to combine Extract or
Replicat with user exit routines. BINDEXIT syntax is similar to:

TACL> RUN $vol.subvol.BINDEXIT [options] [object_type]

The following information can be entered as options or BINDEXIT will prompt you for it.

Options Description

USEROBJ
The name of the user exit object file.

NEWOBJ
The name of the new object file that will contain the exit routines and the
Extract or Replicat module. The file must not yet exist, and will be created
in the same subvolume as the Extract/Replicat module.

GGSUBVOL
The fully defined location of the Oracle GoldenGate environment.

AXCEL | NOAXCEL
AXCEL runs the NonStop Accelerator program to accelerate the TNS
object files. This is the default, but it can be bypassed with NOAXCEL.

CATALOG
The SQL Catalog for the SQLCOMP of the program. This information is
not required if your database is Enscribe.

SHOWCMD
Displays additional information on the BINDEXIT commands during the
session.

HELP
Display BINDEXIT Help text.

Argument Description

object_type
The type of file to create, either Extract or Replicat.

BINDEXIT binds your code with the Extract or Replicat code, creating the new object file.
BINDEXIT ensures that you included either a CUSEREXIT or COBOLUSEREXIT routine, and
that no conflicts exist between your code and the Extract or Replicat module (such as
having the same names for different functions). Once the new object file is created,
run that file rather than Extract or Replicat.

Example 7-1 BINDEXIT Help

TACL> RUN BINDEXIT Help
Usage: RUN BINDEXIT [options ...] [object_type]
options are
USEROBJ NEWOBJ GGSUBVOL AXCEL CATALOG SHOWCMD HELP
object_type [EXTRACT | REPLICAT]

Chapter 7
User Exits

7-3

Binding User Exits in Native Mode
If you are running your NonStop environment in native mode, you must bind your
native exits using NLDEXIT instead of BINDEXIT. NLDEXIT runs just as BINDEXIT does, and
prompts you for the same and some additional information.

TACL >RUN $vol.subvol.NLDEXIT
[options] [object_type]

Options Description

USEROBJ
The name of the user exit object file.

NEWOBJ
The name of the new object file that will contain the exit routines
and the Extract or Replicat module. The file must not yet exist, and
will be created in the same subvolume as the Extract/Replicat
module.

GGSUBVOL
The fully defined location of the Oracle GoldenGate environment.

CATALOG
The SQL Catalog for the SQLCOMP of the program. This
information is not required if your database is Enscribe.

C++VERSION
If there were any C++ modules used, the version of the C++
compiler; 2 or 3.

CEXITWITHCOBOL
Y or N to indicate whether any COBOL modules were used.

SHOWCMD
Displays additional information on the NLDEXIT commands during
the session.

HELP
Display NLDEXIT Help text.

Example 7-2 Some Additional Information Displayed with NLDEXIT and
SHOWCMD

-o $DATA1.GGSSRC.TESTREP
$DATA2.TSPAK.XSKLCON $DATA2.TEST.REPR
$DATA2.TSSOBJ.USRESQL
-nostdfiles
-allow_duplicate_procs
-set runnamed on
-set highpin on
-set highrequesters on
-set saveabend on
-set libname $DATA1.GGSSRC.PRIVLIB
$system.system.crtlmain
-obey $system.system.libcobey
NLD - NATIVE MODE LINKER - T6017D45. . .
(C)1993 Tandem (C)2004 Hewlett-Packard Development Company, L.P.
NLD's command line was:
 \LA.$system.system.nld -stdin
**** INFORMATIONAL MESSAGE **** [20022]:
 The SRL name or archive name specified as 'zcresrl' in a -l, -lib, or
 -import flag was resolved to the SRL named
 '\LA.$SYSTEM.SYS04.zcresrl'.
.

Chapter 7
User Exits

7-4

.

. (11 informational messages omitted from this sample)
NLD reported 0 errors.
NLD reported 0 warnings.
NLD reported 12 informational messages.
NLD created the following type of object file:
 \TRILL.$DATA1.GGSSRC.TESTREP (ELF, executable)
NLD Timestamp: 15DEC2010 15:07:30
Elapsed Time: 00:00:06

The following example creates a new native user exit in Extract

Example 7-3 Creating a New Native User Exit

TACL> RUN $vol.subvol.NLDEXIT
Creates a new Native Extract or Replicat object file linked with a USEREXIT module.
Enter X at any prompt to quit.

Enter type of GGS object to create Extract or Replicat:
GGS Object type: extract_name
Enter $Vol.Subvol for Extract relinkable installation_location
Enter location of userexit object: your_native_compiled_C_object
Enter name for new object file: new_native_extract

Does your C User Exit contain C++ modules (Y/N): Y
What version compiler was used for C++ (2/3): number
Does your C User Exit contain Cobol modules (Y/N)? Y
New Extract file $vol.subvol.extractname.filename created with user exits.

SQL Catalog for SQLCOMP (or N to avoid SQL compile): SQL_catalog_subvol

Debugging Replicat User Exits
Once you have bound your user exit into Replicat to create a new object, you will want
to debug your new code. If your Replicat is in TNS mode, use the following command:

TACL> RUN replicat_name/in $vol.subvol.parameter_name, name $xxxx, lib/

This decouples your Replicat from our licensed PRIVLIB and prevents errors.

If you are running the native form of Replicat, you may debug as usual.

Sample User Exits
Two sample user exits are supplied with Oracle GoldenGate: DEMOXCOB (written in
COBOL) and DEMOXC (written in C programming language). You can use these exits as
skeletons for your own routines.

DEMOXCOB illustrates several applications of user exits. DEMOXCOB responds to Extract
events and performs several tasks, including:

• Mapping data from Enscribe to SQL formats

• Writing a record to an attention log file under certain conditions

• Rejecting records with invalid codes

• Accumulating and outputting order totals

• Writing archive records when delete records are encountered

Chapter 7
User Exits

7-5

DEMOXC provides an example of how to write a user exit that responds to Replicat
events. DEMOXC maps records from a source to a target layout and creates a summary
transaction record for each delivered transaction.

Using Oracle GoldenGate Macros
By using Oracle GoldenGate macros in parameter files you can easily configure and
reuse parameters, commands, and functions. You can use macros for a variety of
operations, including:

• Enabling easier and more efficient building of parameters

• Writing once and using many times

• Consolidating multiple statements

• Eliminating redundant column specifications

• Calling other macros

• Creating Macro libraries to share across parameter files.

Oracle GoldenGate macros work with Extract and Replicat parameter files.

Creating a Macro
Create an Oracle GoldenGate macro with the MACRO statement.

MACRO #macro_name
PARAMS ([param1] [, param2] [...])
BEGIN
macro_body

END;

Argument Description

MACRO #macro_name
Defines an Oracle GoldenGate macro. macro_name must begin with
the # character, as in #macro1.

If the # macro character is used elsewhere in the parameter file, such
as in a table name, you can change it to something else with the
MACROCHAR parameter. See "Changing the Macro Character" for more
information. Macro names are not case-sensitive.

PARAMS ([param1] [,
param2] [...])

Optional. Used to describe parameters to the macro. Each parameter
used in the macro must be declared in the PARAMS statement. See
"Creating Macro Parameters" for details about this option.

BEGIN
Indicates the beginning of the body of the macro. Must be specified
before the macro body.

Chapter 7
Using Oracle GoldenGate Macros

7-6

Argument Description

macro_body
Represents one or more statements to be used as parameter file
input. macro_body can include simple parameter statements, such as

COL1 = COL2

or more complex statements that include parameters, such as

COL1 = #val2

In addition, macro_body may include invocations of other macros. For
example:

#colmap(COL1, #sourcecol)

END;
Ends the macro definition.

Creating Macro Parameters
When you specify the optional PARAMS statement in a macro, the macro processor
reads through the macro body looking for instances of the parameter names you
defined in the PARAMS statement. For each occurrence of a parameter name, you must
specify a corresponding value, which is substituted for the parameter name during
invocation.

For example, to convert a proprietary date format, the following macro defines the
#year, #month, and #day parameters.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
 @DATE("YYYY-MM-DD", "CC", @IF(#year < 50, 20, 19),
 "YY", #year, "MM", #month, "DD", #day)
END;

Parameter values are substituted within the macro body according to the following
rules.

1. Parameter names must begin with the # macro character, such as #param1. (You
can define a different macro character. See "Changing the Macro Character" for
details.) When the macro is run, the invocation must include a parameter value for
each parameter named in the PARAMS statement. Parameter names are not case-
sensitive.

When the macro processor encounters a parameter with the # prefix that is not in
the parameter list, the processor determines whether it is an invocation of another
macro. Invocations of other macros also begin with the # character, followed by
parentheses enclosing a list of parameter values that are separated by commas.

2. Besides the leading # character, valid parameter characters are alphanumeric and
can include the underscore character (_).

3. If a parameter name or macro is encountered within quotation marks, it is treated
as text and ignored.

Chapter 7
Using Oracle GoldenGate Macros

7-7

Changing the Macro Character
Anything in the parameter file that begins with the # macro character is assumed to be
either a macro or macro parameter. This rule does not apply to text within quotation
marks; quoted text is ignored.

If the macro character conflicts with a specification in the parameter file, such as table
names that include the # character, you specify a different macro character with the
MACROCHAR parameter. In the following example, $ is defined as the macro character,
rather than #.

MACROCHAR $
MACRO $mymac
PARAMS ($p1)
BEGIN
col = $p1
END;

The MACROCHAR can only be specified once, and must be specified before any macros
are defined.

Running the Macro
To run a macro, place the run statement in the parameter file at every place you want
the process to occur.

[target =] #macro_name ([value1] [, value2] [, . . .])

Argument Description

target =
An optional target to which the results of the macro processing are
assigned, such as:

DATECOL1 = #make_date(YR1, MO1, DAY1)

#macro_name
The name of the macro, such as #assign_date.

([value1] [, value2]
[, . . .])

The parameter values to be substituted inside the macro, such as
#custdate (#year, #month, #day). If the optional PARAMS
statement is omitted, the parentheses are still required. See the
section on invoking macros without parameters on "Invoking a
Macro Without Parameters" for more information.

Valid parameter values include plain text, quoted text, and
invocations of other macros. Some examples of valid parameter
values are:

my_col_1
"your text here"
#mycalc (col2, 100)
#custdate (#year, #month, #day)
#custdate (#getyyyy (#yy), #month, #day)

Chapter 7
Using Oracle GoldenGate Macros

7-8

Invoking a Macro Without Parameters
If the macro does not specify parameters, the parameter value list is empty, but the
parentheses are still required. For example:

#no_params_macro ()

Sample Macros
This section shows you sample macros for implementing multiple uses of a statement
and invoking another macro.

Implementing Multiple Uses of a Statement
You can use macros to implement multiple uses of a statement, and eliminate the
need for entering one statement several times.

The following example illustrates how mapping can be improved with a macro. In this
example, a proprietary date format must be converted and the process is used several
times. For such a scenario, you could implement a date format conversion in a macro
similar to the following:

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE("YYYY-MM-DD", "CC", @IF(#year < 50, 20, 19),
"YY", #year, "MM", #month, "DD", #day)
END;

To run the macro

1. Place the run statements at the appropriate location, similar to:

MAP $DATA.PROD.ACCOUNT, TARGET $DATA.BACK.ACCOUNT,
COLMAP (
TARGCOL1 = SOURCECOL1,
DATECOL1 = #make_date(YR1,MO1,DAY1),
DATECOL2 = #make_date(YR2,MO2,DAY2)
);

2. Upon invocation, the macro expands to:

MAP $DATA.PROD.ACCOUNT, TARGET $DATA.BACK.ACCOUNT,
COLMAP(
TARGCOL1 = SOURCECOL1,
DATECOL1 = @DATE("YYYY-MM-DD", "CC", @IF(YR1 < 50, 20, 19),
"YY", YR1, "MM", MO1, "DD", DAY1)
DATECOL2 = @DATE("YYYY-MM-DD", "CC", @IF(YR2 < 50, 20, 19),
"YY", YR2, "MM", MO2, "DD", DAY2)
);

Consolidating Multiple Commands
In addition, frequently used sets of commands can be specified in a macro, as in this
example of the macro #option_defaults.

MACRO #option_defaults
BEGIN

Chapter 7
Using Oracle GoldenGate Macros

7-9

 GETINSERTS
 GETUPDATES
 GETDELETES
 INSERTDELETES
END;

Invoking the macro:

#option_defaults ()
IGNOREUPDATES
MAP $DATA.PROD.TCUSTMER, TARGET $DATA.BACK.TCUSTMER;

expands to:

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
IGNOREUPDATES
MAP $DATA.PROD.TCUSTMER, TARGET $DATA.BACK.TCUSTMER;

Invoking the macro:

#option_defaults ()
MAP $DATA.PROD.TCUSTORD, TARGET $DATA.BACK.TCUSTORD

expands to:

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
MAP $DATA.PROD.TCUSTORD, TARGET $DATA.BACK.TCUSTORD;

Macro Libraries
You can create libraries of macros to be included in different parameter files.

To create a macro library:

1. Create the macros using a text editor, saving them to a file name with the
format $DATA.GGSMACR.filename, where filename is the name of the file.

Note:

A macro library file can contain multiple macros.

2. Store your macro library files in $DATA.GGSMACR.

3. Specify the INCLUDE parameter in your parameter file to include the macro library.

Sample Macro Libraries
These samples show:

1. The macro library $DATA.GGSMACR.DATELIB that contains #make_date and #assign_date
macros for date conversions

Chapter 7
Using Oracle GoldenGate Macros

7-10

2. The $DATA.GGSMACR.MAINLIB macro library containing the macro with multiple
commands

3. A sample parameter file calling a macro library that shows the include statement,
and invocation statements for one of the macros from the library

The Extract parameter file is using the DATELIB macro library, and the #assign_date
macro.

Example 7-4 The $DATA.GGSMACR.DATELIB Macro Library

--
-- Date macro library
--
MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE("YYYY-MM-DD", "CC", @IF(#year < 50, 20, 19),
"YY", #year, "MM", #month, "DD", #day)
END;
MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

Example 7-5 The $DATA.GGSMACR.MAINLIB Macro Library

--
-- Main macro library
--
INCLUDE $DATA.GGSMACR.DATELIB
MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

Example 7-6 Sample Extract Parameter File

-- Parameter file for EXTRACT EXT1
--
INCLUDE $DATA.GGSMACR.DATELIB
EXTRACT EXT1
...
MAP $DATA.PROD.ACCOUNT, TARGET $DATA.BACK.ACCOUNT,
COLMAP (
TARGCOL1 = SOURCECOL1,
#assign_date(DATECOL1,YR1,MO1,DAY1),
#assign_date(DATECOL2,YR1,MO1,DAY1)
);
...

The parameter file processes the macro as follows:

• The INCLUDE statement pointing to DATELIB is specified at the beginning of the
parameter file.

• The #assign_date macro is called when needed.

Chapter 7
Using Oracle GoldenGate Macros

7-11

Suppressing Report File Listing
When including long, standard macro libraries, you may want to suppress listing each
macro in the report file. Listing can be turned off and on by placing the LIST and NOLIST
commands anywhere within the parameter file or within the included library.

For example, in the following, NOLIST suppresses listing each macro in HUGELIB.
Specifying LIST after the INCLUDE statement restores listing to the report file.

NOLIST
INCLUDE $DATA.GGSMACR.HUGELIB
LIST
EXTRACT EXT1
.
.
.

Tracing Parameter Expansion
You can trace macro expansion with the CMDTRACE parameter. When CMDTRACE is
enabled, the macro processor displays macro expansion steps in the process's report
file.

The syntax is:

CMDTRACE [ON | OFF | DETAIL]

Argument Description

ON
Enables tracing.

OFF
Disables tracing. This is the default setting.

Tracing is enabled before #testmac is called, then disabled after the macro runs, as
shown in the following example:

EXTRACT EXT1
MACRO #testmac
BEGIN
COL1 = COL2,
COL3 = COL4
END;
.
.
.
CMDTRACE ON
MAP $DATA.TEST.TEST1, TARGET $DATA.TEST.TEST2,
COLMAP
(
#testmac
);
CMDTRACE OFF
.
.
.

Chapter 7
Using Oracle GoldenGate Macros

7-12

Using OBEY Files
With OBEY files, you can direct Oracle GoldenGate to parameters stored in a different
file, then return processing to the current parameter file. OBEY files are useful for
frequently used parameter statements, or parameters that are used by multiple
parameter files.

OBEY filename

To use an OBEY file:

1. Use the NonStop editor to create a file and enter the desired parameters.

2. Edit the file where you want to place an OBEY parameter.

3. Enter the OBEY parameter, specifying the name of the file as filename.

OBEY filename

For example:

OBEY $DATA03.GGS.FINANCE

Creating High Pin Processes
Use the PCREATE library to intercept the C run-time creation of new processes to create
high pin processes.

Note:

The PCREATE intercept is only available for native mode on the operating
systems.

Replicat
For Replicat PCREATE must be combined with the relinkable PRIVLIB to build a combined
library that will include intercepts to create a high pin TACL.

The following example combines the PCREATE intercept object, PCREATEO, with the
relinkable (R) native mode (N) PRIVLIB to create a new user library named PRIVLIBX.

eld -ul -o PRIVLIBX PRIVLIBR PCREATEO -set interpose_user_library on
FUP LICENSE PRIVLIBX
eld -change libname $DATA.GGS1000.PRIVLIBX REPLICAT

In the last step the new PRIVLIBX is assigned as Replicat's library. The library name
must be fully qualified as shown in the example.

Extract and GGSCI
Extract and GGSCI can use a combined library, such as created in the above
example, or PCREATE can be linked into a user library, such as the PCREATEL in the
example below.

Chapter 7
Using OBEY Files

7-13

eld -ul -o PCREATEL PCREATEO -set interpose_user_library_on

TACL DEFINE
Enter the DEFINE for TACL, =GGS_TACL_PROGRAM, in GLOBALS if it is to be the same for all
Extract, Replicat, and GGSCI programs for that Oracle GoldenGate instance. If it is
more specific, include it in the Extract or Replicat parameter file. Alternatively it can
also be added to TACLLOC or to TACLCSTM.

The following example DEFINE assumes you first FUP DUP $SYSTEM.SYSnn.TACL
to $SYSTEM.SYSnn.TACLHP, turn HighPin ON, then add the DEFINE.

ADD DEFINE =GGS_TACL_PROGRAM, CLASS MAP, FILE $SYSTEM.SYSnn.TACLHP

Chapter 7
Creating High Pin Processes

7-14

8
Integrating Data

You can integrate only the data you require by using parameters, clauses, column
mapping, and functions.
This topic includes the following sections:

Selecting Records
You can select specific records to extract or replicate using the FILTER and WHERE
clauses of the TABLE or MAP parameters. FILTER is the more powerful tool, letting you
filter records on a variety of criteria. You may specify multiple filters in one FILE, TABLE,
or MAP statement. However, WHERE is a quick, simple way to select a record that
matches a single criteria. You may only have one WHERE clause per statement.

Selecting Records with FILTER
Use the FILTER clause of FILE, TABLE, or MAP to select specific records within a file or
table for Extract or Replicat. FILTER uses the Oracle GoldenGate field conversion
functions to evaluate whether to process a record. For example, the following
statement extracts records in which the price multiplied by the amount exceeds 10000:

TABLE $DATA.MASTER.CUSTOMER, FILTER ((PRODUCT_PRICE*PRODUCT_AMOUNT)>10000);

In another example, the following extracts records containing a string JOE:

TABLE $DATA.MASTER.CUSTOMER, FILTER (@STRFIND(NAME, "JOE")>0);

Selecting Records with WHERE
Use the WHERE clause in TABLE or MAP to select specific records within a table to be
extracted or replicated.

The WHERE clause consists of the following elements and must be enclosed in
parentheses.

Element Example

Columns from the row PRODUCT_AMT

Numeric values
-123, 5500.123

Literal strings enclosed in
quotation marks

 "AUTO", "Ca"

Column tests @NULL, @PRESENT, @ABSENT (column is null, present or
absent in the record)

Comparison operators
 =, <>, >, <, >=, <=

8-1

Element Example

Conjunctive operators
AND, OR

Grouping parentheses open and close parentheses () for logical grouping

Arithmetic operators and floating point data types are not supported. To perform more
complex selection conditions, use FILTER.

Comparing Fields
Ensure that the variable and value you specify in a comparison match appropriately.
Compare:

• Characters with literal string

• Numeric fields with numeric values, which can include a sign and decimal point

• SQL datetime types to literal strings, using the format in which the field is retrieved
by a program

Compressed Update Considerations
When a compressed update record is encountered for a table, only part of the record
image is available for the condition evaluation. By default, when a column required by
the condition evaluation is missing, the record is ignored and output to the discard file,
and a warning is issued.

• Use only columns that appear in the primary key of the record, since key fields are
always present in compressed records.

• Test for a column's presence first, then for the column's value.

To test for a column's presence, use the following syntax:

field [= | <>] [@PRESENT | @ABSENT]

The following example returns all records when the AMOUNT field is over 10000 and does
not cause a record to be discarded when AMOUNT is absent.

WHERE (AMOUNT = @PRESENT AND AMOUNT > 10000)

Testing for NULL Values
Evaluate SQL columns for NULL values with the @NULL clause.

The following test returns TRUE if the column is NULL, and FALSE for all other cases
(including a column missing from the record).

WHERE (AMOUNT = @NULL)

The following test returns TRUE only if the column is present in the record and not NULL.

WHERE (AMOUNT = @PRESENT AND AMOUNT <> @NULL)

Chapter 8
Selecting Records

8-2

Column Mapping
Oracle GoldenGate provides the capability to transform data between two dissimilarly
structured database tables or files. These features are implemented with the COLMAP
clause in the TABLE or MAP parameters described in this chapter.

Mapping Between Different Database Structures
Using Oracle GoldenGate, you can transform data to accommodate differences in
source and target database structures.

For example:

• The source is a NonStop Enscribe file (ACCTFL), while the target is a SQL table
(ACCTTAB).

• 75 fields exist in ACCTFL, while ACCTTAB contains only nine columns.

• Five columns in ACCTTAB have corresponding field names in the ACCTFL (ADDRESS,
CITY, STATE, ZIPCODE, SOCIAL_SECURITY_NO).

• A ten digit phone number field in ACCTFL corresponds to separate area code, prefix,
and phone number columns in ACCTTAB.

• A date column in ACCTTAB is computed from year, month and day fields in ACCTFL.

In this scenario, you can design a column map in a Replicat parameter file MAP
statement on NonStop. For example:

MAP $DATA.MASTER.ACCTFL, DEF ACCOUNT-REC,
TARGET $DATA.MASTER.ACCTTAB,
COLMAP (
 USEDEFAULTS,
 NAME = CUST-NAME,
 TRANSACTION_DATE = @DATE ("YYYY-MM-DD",
 "YY", TRDATE.YEAR,
 "MM", TRDATE.MONTH,
 "DD", TRDATE.DAY),
 AREA_CODE = @STREXT (PHONE, 1, 3),
 PHONE_PREFIX = @STREXT (PHONE, 4, 6),
 PHONE_NUMBER = @STREXT (PHONE, 7, 10)
);

This statement is composed of the following elements:

1. The source file (ACCTFL) and corresponding DDL definition for ACCOUNT-REC.

2. The target table name (ACCTTAB). No definition is required for the SQL table since it
is retrieved automatically from a catalog.

3. The COLMAP parameter.

4. USEDEFAULTS, which directs Replicat to move all fields in ACCTFL that have matching
columns in ACCTTAB into the ACCTTAB table. Data translation between different data
types is automatic.

5. An explicit assignment of the CUST-NAME field to the NAME column. This is required
because the names are different.

6. A date calculation for TRANSACTION_DATE based on three fields in ACCTFL.

Chapter 8
Column Mapping

8-3

7. Extracting parts of PHONE-NO into AREA_CODE, PHONE_PREFIX and PHONE_NUMBER.

Data Type Conversions
Numeric fields are converted from one type and scale to match the type and scale of
the target. If the scale of the source is larger than that of the target, the number is
truncated on the right. If the target scale is larger than the source, the number is
padded with zeros.

Varchar and character columns can accept other character, varchar, group, and
datetime columns, or string literals enclosed in quotation marks. If the target character
column is smaller than that of the source, the character column is truncated on the
right.

Date-time fields can accept datetime and character columns, as well as string literals.
If you attempt to map a character into a datetime column, make sure it conforms to the
Oracle GoldenGate external SQL format (YYYY-MM-DD:HH:MI:SS.FFFFFF). Required
precision varies according to data type and target platform. Datetime columns are
truncated on the right as necessary. If the source column is not as long as the target,
the column is extended on the right with the values for the current date and time.

Oracle GoldenGate User Tokens
Oracle GoldenGate user tokens let you capture data and values for use in data
integration. User tokens are composed of alphanumeric data from your source system,
database, transactions, and/or records. They can also transfer values into other user
tokens generated by queries, procedures, or other called functions.

Note:

The user token area is limited to 2000 bytes of information. Token names,
data length, and the data itself are all used to calculate the user token area
size.

User tokens are stored in each record's trail header, and retrieved by the appropriate
Oracle GoldenGate component.

The following tables outline types of data that appear in user tokens.

Table 8-1 Sample Environmental Data for User Tokens

Environmental Detail Description

GROUPNAME
Extract or Replicat group name.

HOSTNAME
Host name running the Extract or Replicat.

OSUSERNAME
The user name that started Extract or Replicat.

Chapter 8
Column Mapping

8-4

Table 8-2 Sample Header Details and Their Description

Header Detail Description

BEFOREAFTERINDICATOR
Before/after indicator

COMMITTIMESTAMP
Commit timestamp

LOGPOSITION
Log position

LOGRBA
Log RBA

TABLENAME
Table name

OPTYPE
Operation type

RECORDLENGTH
Record length

TRANSACTIONINDICATOR
Transaction indicator

Populating User Tokens in the Trail Header
To populate user tokens in the trail header, you must include a TOKEN clause on the
FILE or TABLE parameter in the Extract parameter file. To do so, complete the following
procedure:

1. Edit the Extract parameter file.

GGSCI> TEDIT PARAMS EXTDEMO

2. Specify a table name

TABLE $DATA.MASTER.PRODUCT,

3. Enter the desired tokens. The @GETENV function, quotation marks and comma
delimiter are required.

TOKENS
 (
 TKN-GROUP-NAME =@GETENV ("GGENVIRONMENT", "GROUPNAME"),
 TKN-HOST-NAME =@GETENV ("GGENVIRONMENT", "HOSTNAME"),
 TKN-OS-USER =@GETENV ("GGENVIRONMENT", "OSUSERNAME"),
 TKN-BA =@GETENV ("GGHEADER", "BEFOREAFTERINDICATOR"),
 TKN-COMMIT-TS =@GETENV ("GGHEADER", "COMMITTIMESTAMP"),
 TKN-LOG-POSITION =@GETENV ("GGHEADER", "LOGPOSITION"),
 TKN-LOG-RBA =@GETENV ("GGHEADER", "LOGRBA"),
 TKN-TABLE =@GETENV ("GGHEADER", "TABLENAME"),
 TKN-OP-TYPE =@GETENV ("GGHEADER", "OPTYPE"),
 TKN-REC-LEN =@GETENV ("GGHEADER", "RECORDLENGTH"),
 TKN-TRNS-IND =@GETENV ("GGHEADER", "TRANSACTION INDICATOR"),
);

4. Exit the parameter file.

Chapter 8
Column Mapping

8-5

Retrieving Values
To retrieve values, you must include a MAP parameter and a COLMAP clause in the
Replicat parameter file, then use the @TOKEN function to specify the values to retrieve.

MAP $DATA.MASTER.PRODUCT, TARGET $DATA.MASTER.PRODUCT_CHANGES,
 COLMAP (USEDEFAULTS,
 SOURCE_GROUP =@TOKEN ("TKN-GROUP-NAME"),
 SOURCE_HOST =@TOKEN ("TKN-HOST-NAME"),
 SOURCE_USER =@TOKEN ("TKN-OS-USER"),
 BEFORE_AFTER_IND =@TOKEN ("TKN-BA"),
 TIMESTAMP =@TOKEN ("TKN-COMMIT-TS"),
 SOURCE_TABLE =@TOKEN ("TKN-TABLE"),
 IO_TYPE =@TOKEN ("TKN-OP-TYPE"));

The @TOKEN function requires quotation marks.

Default Mapping
When you specify COLMAP USEDEFAULTS, Extract maps columns in the source table to
columns in the target with the same name. At startup, Extract outputs column names
that match and will map to each other.

The USEDEFAULTS parameter allows matching columns to be mapped, plus additional
columns. This can be useful when the source and target definitions are similar but not
identical.

If you set up global column mapping rules with COLMATCH parameters, you can map
columns with different names to each other using default mapping. See the Extract
and Replicat COLMATCH parameter for more details.

When unspecified or no match is found in a default map, a target field defaults to one
of the following:

Column Value

Numeric Zero

Character or varchar Spaces

Datetime Current date and time

Columns that can take a NULL value NULL

If the target table contains names corresponding to the transactional columns
described above, the special column values are mapped to the target record format.

Mapping Examples
The following is the source Enscribe DDL for the examples in this section.

RECORD PRODUCT-REC.
FILE IS PRODDAT KEY-SEQUENCED AUDIT.
05 PROD-KEY.
 10 CODE1 PIC X(2).
 10 CODE2 PIC 9(2).
05 PROD-INDEX1.
 10 PRICE PIC 9(7)V9(2) COMP.
 10 CODE1 PIC X(2).

Chapter 8
Column Mapping

8-6

 10 CODE2 PIC 9(2).
05 PROD-INDEX2.
 10 INVENTORY PIC 9(5).
 10 CODE1 PIC X(2).
 10 CODE2 PIC 9(2).
05 DESC PIC X(40).
KEY IS PROD-KEY.
END.

The following is the target SQL DDL for the examples in this section.

Target SQL DDL
CREATE TABLE PRODTAB
(
CODE CHAR(4) NOT NULL
, PRICE NUMERIC (8,2) NOT NULL
, INVENTORY DECIMAL (6)
, MANAGER CHAR (20) NOT NULL
, DESC VARCHAR (30)
, UPDATE_TIME DATETIME YEAR TO SECOND NOT NULL
, PRIMARY KEY (CODE)
);

Legal Column Mapping
Note that one can move a group level (PROD-KEY) to a character field. This is feasible
since CODE2 is a DISPLAY field, not a COMP. Also, the user does not have to qualify PRICE,
INVENTORY or DESC since they are all unique in the source definition. UPDATE_TIME will
default to the time at which EXTRACT processes the record. PRICE may be truncated
since it has one more significant digit in the source field than in the target.

FILE $DAT11.OLDAPP.PRODFL,
DEF PRODUCT-REC,
TARGET $DATA6.NEWAPP.PRODTAB,
COLMAP
 (CODE = PROD-KEY,
 PRICE = PROD-INDEX1.PRICE,
 INVENTORY = INVENTORY,
 MANAGER = "Jack Smith",
 DESC = DESC);

Dangerous Mapping if AUDITCOMPRESS Used on Source File
Since this mapping takes the primary key value from a non-primary key source, it
discards the result whenever a source record is updated without updating the price. In
the following example, even if AUDITCOMPRESS is used, updates can be delivered since
the primary key is always present.

FILE $DAT11.OLDAPP.PRODFL,
DEF PRODUCT-REC,
TARGET $DATA6.NEWAPP.PRODTAB,
COLMAP
 (CODE = PROD-INDEX1.CD1,
 PRICE = PROD-INDEX1.PRICE,
 INVENTORY = INVENTORY,
 MANAGER = "Unknown",
 DESC = DESC);

Chapter 8
Column Mapping

8-7

Using Constants, Taking Default Values.
This mapping sets PRICE to zero and Manager to spaces since they are not null fields,
and sets INVENTORY and DESC to NULL since they can take null values.

TABLE $DAT11.OLDAPP.PRODFL,
DEF PRODUCT-REC,
TARGET $DATA6.NEWAPP.PRODTAB,
COLMAP
 (CODE = PROD-KEY,
 UPDATE_TIME = "2009-01-01:08:00:00");

Field Conversion Functions
Using field conversion functions, you can manipulate numbers, strings and source
column or field values into the appropriate format for target columns.

See Field Conversion Functions for more information about column conversion
functions.

Function Arguments
Column conversion functions can take one or more of the following parameters.

Parameter Example

A numeric constant
 123

A string constant
"ABCD"

A column or field from the source
table or file

PHONE-NO.AREA-CODE or COLUMN_3

An arithmetic expression
COL2 * 100

A comparison expression
COL3 > 100 AND COL4 > 0

A field conversion function its own parameters

Note:

Argument checking at run-time is not always strict and errors in argument
passing are sometimes not detected until records are processed.

Arithmetic Expressions
Arithmetic expressions can be combinations of the following elements.

• Numbers

Chapter 8
Field Conversion Functions

8-8

• Columns that contain numbers

• Functions that return numbers

• Arithmetic operators: + (plus), - (minus), * (multiply), / (divide), \ (remainder)

• Comparison operators: > (greater than), >= (greater than or equal), < (less than), <=
(less than or equal), = (equal), <> (not equal)

• Parentheses (for grouping results in the expression)

• Conjunction operators: AND, OR

To return the result of an arithmetic expression to a column, use the COMPUTE function.

The COMPUTE function is not required when an expression is passed as an argument, as
in @STRNUM (AMOUNT1 + AMOUNT2, RIGHT).

@STRNUM (@COMPUTE(AMOUNT1 + AMOUNT2), RIGHT) would return the same result.

Arithmetic results derived from comparisons are zero (indicating FALSE) or non-zero
(indicating TRUE).

When conjunction operators are involved in an expression, only the necessary part of
the expression is evaluated. Once a statement is FALSE, the rest of the expression is
ignored. This can be valuable when evaluating fields that may be missing or null.

For example, assume the value of COL1 is 25 and the value of COL2 is 10:

@COMPUTE (COL1 > 0 AND COL2 < 3) returns 0
@COMPUTE (COL1 < 0 AND COL2 < 3) returns 0 (and COL2 < 3 is never evaluated)
@COMPUTE ((COL1 + COL2)/5) returns 7

See Field Conversion Functions for details about the functions.

Null, Invalid, and Missing Columns and Fields
One problem encountered when calculating column values is that some data may be
missing from the expression.

Table 8-3 summarizes the status conditions that the source columns or fields may
assume.

Table 8-3 Explanation of Null, Invalid, and Missing Columns and field

Column Status Description

Missing Frequently, data is missing in compressed update records. Compressed
update records contain only those source columns that changed, plus the
key of the source file or table.

Null A source column may contain a null value, which makes a calculation
difficult.

Invalid The source data is invalid.

When one of these conditions occurs, by default the condition is returned as the result
of the function.

For example, if BALANCE is 1000, but AMOUNT is NULL, the following expression returns
NULL.

Chapter 8
Field Conversion Functions

8-9

NEW_BALANCE = @COMPUTE (BALANCE + AMOUNT)

As another example, the AMOUNT field is defined as PIC 9(5)V99 in an Enscribe record
definition, but contains spaces. In that case, the above expression returns INVALID, and
the record is discarded.

If AMOUNT, but not BALANCE, is present in the update record, the field is not mapped.

Overriding Exceptional Conditions
The IF, COLSTAT and COLTEST functions recognize null, invalid, or missing columns and
can compute alternative values.

For example:

NEW_BALANCE = @IF (@COLTEST (BALANCE, NULL, INVALID) OR
 @COLTEST (AMOUNT, NULL, INVALID),
 @COLSTAT (NULL),
 BALANCE + AMOUNT)

This returns one of the following:

• NULL when BALANCE or AMOUNT is NULL or INVALID

• MISSING when either column is missing

• The sum of the columns

Retrieving Before Values
For update operations, it can be advantageous to retrieve the before values of source
columns: the values before the update occurred. These values are stored in the trail
and can be used in Filters, SQLEXEC, EventActions, and column mapping. For
example, you can:

• Retrieve the before image of a row as part of a column-mapping specification in an
exceptions MAP statement, and map those values to an exceptions table for use
in testing or troubleshooting.

• Perform delta calculations. For example, if a table has a Balance column, you can
calculate the net result of a particular transaction by subtracting the original
balance from the new balance, as in the following example:

MAP $VOL.SUBVOL.TABLE, TARGET $VOL.SUBVOL.TABLE,
COLMAP (PK1 = PK1, delta = balance – @GETVAL(BEFORE.balance));

To Reference the Before Value

1. Use the BEFORE keyword, then a dot (.), then the name of the column for which you
want a before value, then wrapping the entire clause in a valid @function such as:

@GETVAL(BEFORE.<column_name>)

2. Use the GETUPDATEBEFORES parameter in the Extract parameter file to capture before
images from the transaction record, or use it in the Replicat parameter file to use
the before image in a column mapping or filter. If the database uses compressed
updates, using the BEFORE prefix results in a “column missing” condition and the
column map is executed as if the column were not in the record. To ensure that
column values are available, see "Compressed Update Considerations.

Chapter 8
Retrieving Before Values

8-10

9
Managing and Monitoring

Learn how to manage tasks and trails, and how to monitor processes, which includes
analyzing the process report, viewing record counts, and handling errors.
This topic includes the following:

Managing Tasks
Tasks are processes that are special runs, such as a one-time data synchronization,
or direct file extraction. Tasks are useful in managing Oracle GoldenGate, because
they allow you to load data that may have been missed due to a variety of system
errors. You can define a task with the GGSCI commands:

GGSCI> ADD EXTRACT group_name, SOURCEISTABLE
GGSCI> ADD REPLICAT group_name, SPECIALRUN

When you define a task, you must include the task type parameter in the parameter
file. For the Extract parameter file, include SOURCEISTABLE or SOURCEISFILE. For the
Replicat parameter file include SPECIALRUN.

Manager can purge tasks. To purge tasks enter parameters such as:

PURGEOLDTASKS EXTRACT wildcard_spec, AFTER number HOURS, USESTOPSTATUS
PURGEOLDTASKS REPLICAT wildcard_spec, AFTER number DAYS, USESTOPSTATUS
PURGEOLDTASKS ER wildcard_spec, AFTER number HOURS, USESTOPSTATUS

Getting Information on Tasks
You can retrieve information about a task using the INFO and STATUS commands with
the TASKS or ALLPROCESSES options:

GGSCI> INFO EXTRACT *, TASKS
GGSCI> INFO REPLICAT *, ALLPROCESSES
GGSCI> STATUS ER *, ALLPROCESSES

TASKS reports on SPECIALRUN or SOURCEISFILE tasks. ALLPROCESSES reports on all
processes.

Managing Tasks Using the Process Name
Tasks defined with SPECIALRUN, SOURCEISFILE, or SOURCEISTABLE do not require a group
name. Even without this name, it is possible to communicate with these running tasks
by using the SEND PROCESS command. The syntax for this uses the process name
instead of a group name as shown below.

GGSCI> SEND PROCESS process_name {text | WAKE | BREAK}

The text option can be any one of the subset of GGSCI commands that are
recognized by the receiving process.

See SEND PROCESS for more details.

9-1

Managing Oracle GoldenGate Trails
Oracle GoldenGate trails can be managed by allocating optimal storage for the trail
files and setting parameters for cleaning up trail files that are no longer needed.

Initial Allocation of Storage for Trails
To prevent trail activity from interfering with business applications, use a separate disk
managed by a disk process different than that of the application.

To ensure there is enough disk space for the trail files, follow these guidelines:

• For trails on the source system, there should be enough space to handle data
accumulation if the network connection fails. In a failure, reading from a trail
terminates but the primary Extract group reading from logs or audit file continues
extracting data. It is not good practice to stop the primary Extract group to prevent
further accumulation. The logs could recycle or the audit files could be off-loaded.

• For trails on the target system, data will accumulate because data is extracted and
transferred across the network faster than it can be applied to the target database.

To estimate the required trail space
1. Estimate the longest time that you think the network can be unavailable.

2. Estimate how much transaction log volume you generate in one hour.

3. Use the following formula:

trail disk space =
transaction log volume in 1 hour x number of hours down x .4

Note:

The equation uses a multiplier of 40 percent because Oracle
GoldenGate estimates that only 40 percent of the data in the transaction
logs is written to the trail.

A more exact estimate can be derived by either:

4. Configuring Extract and allowing it to run for a set time period, such as an hour, to
determine the growth. This growth factor can then be applied to the maximum
down time.

5. Using MEASFLS and MEASRPT to collect and report on statistics over a full
business cycle and using this data to determine the volume over the maximum
down time.

Plan to store enough data to withstand the longest anticipated outage possible
because you will need to re-synchronize the source and target data should the outage
outlast the disk capacity.

Chapter 9
Managing Oracle GoldenGate Trails

9-2

Ongoing Trail Management
Oracle GoldenGate provides options that let you manage your trails in two ways.

• Based on the number and size of the files.

The MEGABYTES, MAXFILES, and EXTENTS options specify how large each trail file may
become, and how many files may exist before Extract stops with an error.

• With the PURGEOLDEXTRACTS parameter.

This lets you purge old extracted data you no longer need. This can be based on
rules you set up.

– The MINKEEPHOURS, MINKEEPDAYS options set the time to keep files. MINKEEPFILES
sets the minimum number of files to keep.

– In the Manager only, the USECHECKPOINTS option uses checkpoints to determine
whether processing is complete. You can also set the CHECKMINUTES parameter
to control how often the process checks the parameters to determine if
anything must be purged.

Setting the Size of the Trail
Two options for managing trail size are MEGABYES and MAXFILES. MEGABYTES lets you
specify how large your trail file gets before your data rolls to another trail file. It is
useful if you want to equally distribute data between your files. The default size is 134
megabytes and the largest size supported is two gigabytes. MAXFILES lets you specify
the number of trail files Oracle GoldenGate creates. The default is 100 files. Allowing
multiple files lets data roll over when one file is full, which prevents errors. The syntax
for using MEGABYTES and MAXFILES is:

GGSCI> ADD EXTTRAIL trail_name, EXTRACT group_name, MEGABYTES num, MAXFILES num

Trails that either reside on the local node or on a node that is connected by Expand
are considered local for NonStop. For these trails, you can also control size by setting
the files' primary, secondary and maximum number of extents. The syntax for this is:

GGSCI> ADD EXTTRAIL trail_name, EXTRACT group_name
[, EXTENTS (primary, secondary, max)]

The defaults for EXTENTS are (64, 128, 512).

From GGSCI, an INFO of the trail will show the current trail settings.

Example 9-1 Showing Trail Settings

GGSCI> INFO EXTTRAIL GGSDAT.ET
Extract file: \NY.$DATA04.GGSDAT.ET
 Extract group: EXTSQL
 Owner: 150,110
 Security: NUNU
 Current seqno: 0
 Current rba: 2280
 Primary extent: 64
 Secondary extent: 128
 Max extents: 512
 Max files: 100

Chapter 9
Managing Oracle GoldenGate Trails

9-3

Setting the PURGEOLDEXTRACTS rules
You can set PURGEOLDEXTRACT in the Manager, Extract, or Replicat, but only Manager
has options.

In the Manager

You can set options for purging trails with the PURGEOLDEXTRACTS in the Manager's
parameter file.

• Use USECHECKPOINTS to purge when all processes are finished with a file as
indicated by checkpoints. This is the default, but it can be turned off with the
NOUSECHECKPOINTS option.

• MINKEEPHOURS or MINKEEPDAYS to keep files n hours or days. MINKEEPFILES to keep at
least n files including the active file. The default is 1.

Only one of the three MINKEEP options should be set. If more than one is entered the
system will select one based on the following:

• If both MINKEEPHOURS and MINKEEPDAYS are specified, only the last setting will be used
and the other will be ignored.

• If both MINKEEP{HOURS|DAYS} and MINKEEPFILES are specified MINKEEP{HOURS|DAYS} will
be used and MINKEEPFILES will be ignored.

In Extract or Replicat

You cannot set any options for the Extract and Replicat PURGEOLDEXTRACTS parameter.
In this case the trail is purged as soon as the process moves to the next trail.

Manager Purge Trail Processing
If PURGEOLDEXTRACTS is set in the Manager parameter file, when the Manager reaches
CHECKMINUTES the purge rules are evaluated as explained below.

1. USECHECKPOINTS only

If there are no minimum rules set with the USECHECKPOINTS option, MINKEEPFILES
defaults to 1. If checkpoints indicate that a trail file has been processed, it will be
purged unless it would fall below this one file minimum.

2. USECHECKPOINTS with MINKEEP rules

If checkpoints indicate that a trail file has been processed, it will be purged unless
doing so would violate the applicable MINKEEP{HOURS|DAYS} or MINKEEPFILES rules.
These PURGEOLDEXTRACTS minimum rules are set as explained in Setting the
PURGEOLDEXTRACTS rules.

3. NOUSECHECKPOINTS only

If there are no minimum rules and checkpoints are not to be considered, the file
will be purged, unless doing so will violate the default MINKEEPFILES of 1.

4. NOUSECHECKPOINTS with MINKEEP rules

The file will be purged unless doing so will violate applicable MINKEEP{HOURS|DAYS}
or MINKEEPFILES rules. Refer to Setting the PURGEOLDEXTRACTS rules for
information on setting these PURGEOLDEXTRACTS minimum rules.

Chapter 9
Managing Oracle GoldenGate Trails

9-4

Example 9-2 Purge Processing Examples

• Trail files AA000000, AA000001, and AA000002 exist. The Replicat has been down for
four hours and has not completed processing any of the files

The Manager parameters include:

PURGEOLDEXTRACTS $DATA1.DB.AA*, USECHECKPOINTS, MINKEEPHOURS 2

Result: The time files that are not accessed must be retained has been exceeded.
No files will be purged, however, because checkpoints indicate that the files have
not been fully processed by Replicat.

• Trail files AA000000, AA000001, and AA000002 exist. The Replicat has been down for
four hours and has not completed processing.

The Manager parameters include:

PURGEOLDEXTRACTS $DATA1.DB.AA*, NOUSECHECKPOINTS, MINKEEPHOURS 2

Result: All trail files will be purged since the minimums have been met.

• The following is an example of why only one of the MINKEEP options should be set

Replicat and Extract have completed processing. There has been no access to the
trail files for the last five hours. Trail files AA000000, AA000001, and AA000002 exist.

The Manager parameters include:

PURGEOLDEXTRACTS $DATA1.DB.AA*, USECHECKPOINTS, MINKEEPHOURS 4, MINKEEPFILES 4

Result: USECHECKPOINTS requirements have been met so the minimum rules will be
considered when deciding whether to purge AA000002.

There will only be two files if AA000002 is purged, which will violate the
MINKEEPFILES parameter. Since both MINKEEPFILES and MINKEEPHOURS have been
entered, however, MINKEEPFILES is ignored. The file will be purged because it has
not been modified for 5 hours, which meets the MINKEEPHOURS requirement of 4
hours.

The Manager process determines which files to purge based on the Extract
processes configured on the local system. If at least one Extract process reads the
trail file, Manager applies the specified rules.

For more information see, PURGEOLDEXTRACTS for Extract and Replicat and
ADD EXTTRAIL.

Recommendations for Managing Trail Purges
Consider the following recommendations for managing Oracle GoldenGate trails.

• For setting the purge rules, it is recommended that: you

– Specify PURGEOLDEXTRACTS in the Manager parameter file so you manage your
trails from a single location.

– Purge trail files through Extract or Replicat only when one process is
processing the trail, such as a data pump. Use Manager to purge trail files that
are being processed by both Extract and Replicat.

– Use USECHECKPOINTS to ensure that the checkpoints of both Extract and Replicat
are considered and reduce the chance of data loss.

Chapter 9
Managing Oracle GoldenGate Trails

9-5

– Be aware that PURGEOLDEXTRACTS in Extract or Replicat can remove trails still
needed by the Coordinator. If you use the Coordinator, specify
PURGEOLDEXTRACTS in the Manager to manage the Coordinator checkpoints.

• The rules should be assigned to the process that resides where the trail must be
cleaned.

For example, if there are three nodes: \A where the Extract is running and
extracting the data; \B where a subset of the data is replicated and \C where
another part of the data is replicated, it is the Manager on \A that should be
assigned the parameters that define how to manage the trails.

For USECHECKPOINTS, this Manager will need to know the location of the checkpoint
files on \B and \C, but this can be accomplished with REMOTECHKPT as shown below.

GGSCI> ADD REMOTECHKPT \node.$volume.subvolume.REPCTXT

Oracle GoldenGate Self Describing Trail Files
The default behavior is to store and forward metadata from the source to the target
and encapsulates it in each of the trail files.

Metadata records are as follows:

• Database Definition Record (DDR)

A DDR provides information about the specific database, such as character set
and time zone. Extract writes a DDR to the trail following the file header to store
the database metadata for the source database.

• Table Definition Record (TDR)

A TDR provides details about the definition about a table and the columns that it
contains. The content of this record is similar, though not identical, to a record in a
sourcedef file that was created using DEFGEN. Extract writes a new TDR when the
output trail rolls over to a new file or the source table definition has changed.

The metadata records in a self-describing trail file format operate as follows:

The metadata records in a self-describing trail file format operate as follows:

Chapter 9
Oracle GoldenGate Self Describing Trail Files

9-6

Using self-described trail files eliminates the need for SOURCEDEFS and ASSUMETARGETDEFS
so parameter files are simpler and it is easier to configure. This feature also provides:

• A reduction in trail file size due to object name compression.

• No necessity to create and maintain source definitions files.

• Replicating OpenSys databases to HP-NonStop no longer requires TARGETDEFS and
the mapping of column names, as well as mapping ANSI names to three part
Tandem names.

• No necessity to create and maintain source definitions files.

Understanding the Self-Describing Trail Behavior
OpenSys (Non Enscribe or SQL/MP) source databases

When performing table maintenance on objects that are part of an extract group only
after the remote Extract has completely output all the data change records to the trail
and the Extract process is stopped. Then after both the source and target changes are
completed, restart the Extract. There is no need to regenerate TARGETDEFS using DEFGEN
on NSK and moving them to OpenSys, this assumes that since it is not required to
map the OpenSys table names to NSK (Tandem) names or colmap individual
columns, that all of it was already removed from the Extract parameter file. In the case
of adding a new table, if the parameter files already wildcards this name, simply create
the target table and then the source.

SQL/MP to SQL/MP

Chapter 9
Oracle GoldenGate Self Describing Trail Files

9-7

If replicating new columns, then no action is required to update metadata. For Drop
and Create table statements, you must perform those database actions on the target
and then the source outside of Oracle GoldenGate replication, but no other action is
required. This assumes that the qualified table names are either, already in the
parameter file, or fit a wildcard specification.

Enscribe to Enscribe

Logger Capture
The logger process has not been changed and will continue write trails without a file
header or metadata this is equivalent to format release 9.5. There is no means to
change this; therefore, Oracle recommends that if you are not already using Extract to
pump logger trails, you should start using them. The Extract pump needs the source
DICTIONARY and each file statement needs a DEF or TARGETDEF option on the FILE
parameter to create metadata.

TMF Extract Capture
The TMF based Extract writes the metadata based on a provided DICTIONARY and
specific DEF or TARGETDEF option on the FILE parameter.
If you have not provided the record DEF for a file, then a fabricated metadata record is
generated. There is an info message in Extract as follows:

2018-08-07 04:44:50 OGG INFO 103 No columns loaded for \NODE.$DISK.SUBVOL.FILE,
fabricating metadata TDR record.

Regardless of the method of capture, you can only use fabricated Enscribe metadata,
when Extract or Replicat has No Colmaps, Filters, @functions(), or anything else that
requires a real column information. Typically, you should use the fabricated metadata
only when the source and target are the same files and no DEF or TARGETDEFS is used.
Otherwise attempting to do so causes an abend.

In the following example, the source metadata was fabricated, while the target has a
TARGETDEFS, it abends attempting to colmap default names.

MAP \NODE.$DISK.SUBVOL1.FILE, target \NODE.$DISK.SUBVOL2.FILE, targetdef REC-DEF;
Metadata loaded from trail for file \NODE.$DISK.SUBVOL1.FILE
Building Map ID 1 for \NODE.$DISK.SUBVOL1.FILE
2018-08-07 04:44:49 OGG WARNING 101 Source metadata found in trail for
\NODE.$DISK.SUBVOL1.FILE was fabricated and may not match the target
\NODE.$DISK.SUBVOL2.FILE.
Error with default mapping. No matching fields found in source and target
2018-08-07 04:44:50 OGG ERROR 101 Error in COLMAP clause from compile_map.
2018-08-07 04:44:50 OGG ERROR 191 REPLICAT abending.

Managing Log Trails
Unlike trails that are created externally, if a trail created by Logger runs out of space
there are no audit records to be reprocessed once the problem is fixed. This can
cause data loss, so it is important to have adequate space available for log trails. The
following steps help do this.

• Include adequate trail space when the Logger process is added.

Log trail files are pre-allocated during ADD LOGGER so this ensures that the space is
available before the logging process begins.

• Monitor and adjust the trail space as needed.

Chapter 9
Managing Log Trails

9-8

During processing, adjust the number and size of each log trail as needed by
editing the Logger parameter file with the command EDIT PARAM LOGPARM. Then the
number of files can be increased or decreased by changing the NUMFILES option,
and the size of each trail file can be adjusted by changing the MEGABYTES or EXTENTS.
The changes will be activated when an ALTER LOGGER command is issued.

• Monitor the impact of the trail space on your system.

Manage creates the next log trail file if it is not available when it is time to rollover.
This helps ensure that data will not be lost, but it also means that you may have
more log trail files than specified in the NUMFILES of LOGPARM.

Monitoring Processing
You can monitor the state of Oracle GoldenGate processing with the following tools.

Tool Description

The event log The event log, named LOGGGS, shows processing events, messages, errors,
and warnings generated by Oracle GoldenGate. You can view the event log
from GGSCI using the VIEW GGSEVT command.

Process reports Oracle GoldenGate generates a report for Extract, Replicat, and Manager at
the end of each run. The report provides information about run-time
parameters and statistics, including process events and operations that were
performed.

N/A The name of a process report is either Manager for the Manager process, or
for Extract and Replicat, is the same as the group name. For example, a
report for an Extract group EXTORD would have a report named
GGSRPT.EXTORD. You can view the process report, save and store it, and use it
for generating run-time statistics.

Record counts You can produce record counts at designated times during processing by
using the REPORTCOUNT parameter in the Extract and Replicat parameter files.
Results are printed to the process report file and to the screen.

Discard files The discard file logs information about operations that failed. To generate
discard files, use the DISCARDFILE parameter in the Extract or Replicat
parameter file.

The SQL formatted discard file logs information and SQLCI formatted
statements for operations that failed replication to SQL/MP. To generate, use
the SQLFORMATDISCARDFILE parameter in the Replicat parameter file.

To control how discard files are generated, use the DISCARDROLLOVER
parameter in the Extract or Replicat parameter file or the
SQLFORMATDISCARDROLLOVER in the Replicat parameter file. These parameters
have provisions for specifying when new files are created.

GGSCI INFO
commands

Using the GGSCI commands INFO, SEND, STATUS, and STATS, you can
retrieve information on Oracle GoldenGate processes.

Each of these tools is discussed in greater detail below.

Error Handling
There are several error handling parameters available in Oracle GoldenGate. In
addition, Oracle GoldenGate provides error-handling options for Replicat and TCP/IP
processing.

Chapter 9
Monitoring Processing

9-9

Error Handling Parameters
Error handling parameters let you insert missing records, prevent duplicate records
from being loaded. For a complete list, see Oracle GoldenGate Parameters.

Handling Replicat Errors
To control the way that Replicat responds to errors, use the REPERROR parameter in the
Replicat parameter file. This parameter handles most errors in a default fashion (for
example, to cease processing), and you can specify REPERROR options to handle other
errors in a specific manner, or to ignore them altogether.

REPERROR provides the following options:

Option Description

ABEND
Roll back the Replicat transaction and terminate processing. This is the default.

DISCARD
Log the error to the discard file but continue processing the transaction and
subsequent transactions.

EXCEPTION
Treat the error as an exception. To handle an exception, create an entry with the
MAP parameter that runs after the error. For example, you can map a failed
update statement to an exceptions table dedicated to missing updates.

FILEOP
Set the error handling for a particular I/O type.

IGNORE
Ignore the error.

RESET
Remove all REPERROR settings made at the root level of the parameter file above
the RESET parameter.

RETRYOP
Retry the operation. Use the MAXRETRIES argument with RETRYOP to specify the
number of times to retry an operation. To control the interval between retries, use
the RETRYDELAY parameter.

RETRYOPEN
Retry a file open error.

TRANSABORT
Abort the current target transaction and then retry it.

TCP/IP Error Handling
The TCPERRS file in the Oracle GoldenGate installation location contains preset TCP/IP
errors and instructions for how Oracle GoldenGate generally reacts to them. If a
response is not explicitly defined in this file, Oracle GoldenGate responds to TCP/IP
errors by exiting.

Chapter 9
Error Handling

9-10

Note:

The Manager process is an exception. When Manager has an IP error it
retries every 60 seconds and does not abend. It does not use the TCPERRS file
to determine the number of retries or the delay.

Example 9-3 Sample of the TCPERRS File

#
TCP/IP error handling parameters
Default error response is abend
#
error Response Delay (csecs) Max Retries
ECONNABORTED RETRY 1000 10
ECONNREFUSED RETRY 1000 12
ECONNRESET RETRY 500 10
ENETDOWN RETRY 3000 50
ENETRESET RETRY 1000 10
ENOBUFS RETRY 100 60
ENOTCONN RETRY 100 10
EPIPE RETRY 500 10
ESHUTDOWN RETRY 1000 10
ETIMEDOUT RETRY 1000 10
NODYNPORTS RETRY 100 10

Altering TCP/IP Error Handling Parameters
To alter the instructions or add instructions for new errors, open the file in a text editor
and change any of the values in the following columns:

• Error column: Specifies a TCP/IP error for which you are defining a response.

• Response column: Controls whether Oracle GoldenGate tries to connect again
after the defined error.

• Delay column: Controls how long Oracle GoldenGate waits before attempting to
connect again.

• Max Retries column: Controls the number of times that Oracle GoldenGate
attempts to connect again before aborting.

See Oracle GoldenGate Parameters for details about the TCP/IP error messages,
their causes, effects, and recovery.

Using Discard Files
Two types of discard files are available with Oracle GoldenGate for HP NonStop:

• Discard files identify a record and operation that failed., providing information to
help troubleshoot the error.

• SQL discard files provide SQLCI formatted input to process the operation to an
SQL/MP database once the error is corrected.

Chapter 9
Error Handling

9-11

Using the Discard File
The discard file logs information about operations that failed. Extract discard records
have a header and a data portion; the discard file is entry-sequenced. Replicat
produces discard records in an external, easy-to-understand format

Full record images are provided when IO-TYPE is Delete, Insert or Update. Each record
has the same format as if retrieved from a program reading the original file or table
directly. For SQL tables, datetime fields, nulls and other fields are output exactly as a
program would SELECT them into an application buffer. Even though datetime fields are
represented internally as an eight byte timestamp, their external form can be up to 26
bytes expressed as a string. Enscribe records are retrieved as they exist in the original
file.

Full record images are output unless the original file has the AUDITCOMPRESS attribute set
to ON. When AUDITCOMPRESS is ON, compressed update records are generated whenever
the original file receives an update operation. (A full image can be retrieved by Extract
using the FETCHCOMPS parameter.)

When the operation type is Insert or Update, the image is the contents of the record
after the change is made. When the operation type is Delete, the image is the contents
of the record before the change.

To control how discard files are generated, use the DISCARDROLLOVER parameter in the
Extract or Replicat parameter file. The parameter has provisions for specifying when
new files are created.

Generating Discard Files

To generate a discard file, use the DISCARDFILE parameter in the Extract or Replicat
parameter file.

If there is no DISCARDFILE parameter for Replicat, a discard file is created by default
when Replicat is started from GGSCI (as opposed to when it is run from the TACL
prompt.) The default discard file will have the following characteristics:

• The file name is derived by appending a D to up to 7 characters of the Replicat
group name. For example, the Replicat GROUPA will create discard file GROUPAD and
Replicat GROUPAB will create discard file GROUPABD. If the Replicat group name is
more than 7 characters, the process name is used instead. Replicat GROUPABC with
process name $ABR00 will create discard file ABR00D.

• The file is created in the report file location.

• The extents are set to (4, 4, 100)

Note:

Discard files that have been created by default cannot be rolled over.

To specify a non-default location or characteristic use the DISCARDFILE parameter in the
Replicat parameter file.

Chapter 9
Error Handling

9-12

Using the SQL Formatted Discard File
SQL discard files provide SQLCI formatted input for failed replication operations to a
target SQL/MP database. Specify SQLFORMATDISCARDFILE in the Replicat parameter file
to generate the SQL discard file.

To use the SQL formatted discard file the target must be SQL/MP. The source of the
operation can be any database and platform that Oracle GoldenGate supports.

The SQLCI formatted input will only process DML records once the original problem
has been corrected.

To control how SQL formatted discard files are generated, use the parameter
SQLFORMATDISCARDROLLOVER. This parameter specifies when new files are created.

SQL DIscard File Example

The following is an example of a section of a SQL formatted discard file record:

SET SESSION ERROR ABORT ON;
BEGIN WORK;
-- Problem with Insert Record, Seqno 0, RBA 1234 Error -8227
INSERT INTO \NY.$DATA2.SALES11.CUSTOMER & (CUST_CODE, NAME, CITY, STATE) VALUES &
(“A543", “Advantage Software ",&
“SEATTLE “, “WA");
COMMIT WORK;

The following is an example of the corresponding section from the discard file record:

*** ERROR from SQL [-8227]: The row being inserted or updated in underlying
*** table \NY.$DATA2.SALES11.CUSTOMER contains a key value that must be
*** unique but is already present in a row.
Error -82227, guardian 10 occurred with insert record (target format). . .
--- 2013-08-28 09:46:13.775946 ----
0, 4:CUST_CODE = ‘A543'
1, 12:NAME = ‘Advantage Software'
2, 46:CITY = ‘SEATTLE'
3, 70:STATE = ‘WA'
*--- End Discard Record --- *
Process Abending: 2013-08-28 09:46:14

Editing the SQL Discard File

The SQL discard file is an edit file that can be changed if needed. To change the file,
first do a rollover on the file to trigger Replicat to close it and begin to use a new one.
Then edit the file.

When you edit the SQL formatted discard file input, you must make sure your
statements are valid for SQLCI:

• Commands greater than 132 bytes must force a line break.

• Strings must be enclosed in quotation marks. If embedded quotes are part of the
data, the outermost set of quotation marks must be of the opposite type (single or
double.)

• Quoted strings longer than the maximum size must be broken into the 132 byte
segments surrounded by quotation marks and terminated by the (&) continuation
symbol. Note that the quotation marks and & symbol are all counted in the 132
byte limit.

Chapter 9
Error Handling

9-13

• The requirements for date-time and timestamp syntax are specific to the metadata.

Conflict Detection with SQLEXEC
SQLEXEC works on SQL for NonStop databases to call queries you specify. This lets you
leverage application rules to resolve conflicts between incoming source records. To do
this, add a SQLEXEC parameter in a MAP statement in the Replicat parameter file.

Some applications that support distributed processing provide their own methods for
handling conflicts. Such methods include IP persistent routers or application privileges
that prevent multiple users from modifying the same data. These rules can be
combined with the use of SQLEXEC procedures.

A SQLEXEC Example
The following is an example of basic conflict detection based on a timestamp. It raises
an exception based on a user-defined error number passed to Replicat and a SQL
query to check the value of the TIMESTAMP column. If the timestamp is newer than the
one on the existing record, the update is performed. Otherwise, the operation is
ignored (because the newer timestamp is considered more valid) and a message is
generated to the Replicat process report.

Example 9-4 REPLICAT Parameter File for Conflict Detection

REPERROR (9999, EXCEPTION)
MAP $DATA.MASTER.SRC, TARGET $DATA.MASTER.TAR,
SQLEXEC (ID check, QUERY " SELECT TIMESTAMP FROM TARGTAB"
WHERE PKCOL =?P1 ", ERROR IGNORE);
PARAMS (P1 = PKCOL)),
FILTER (CREATED_BY <> "DBA"),
FILTER (ON UPDATE, BEFORE.TIMESTAMP < CHECK.TIMESTAMP,
RAISEERROR 9999);

INSERTALLRECORDS
MAP $DATA.MASTER.SRC, TARGET $DATA.MASTER.TAREXEC,
EXCEPTIONSONLY,
COLMAP (USEDEFAULTS, ERRTYPE = "UPDATE FILTER FAILED.");

In the example, the query is run under the logical name of check. Values retrieved from
this query can be utilized anywhere in the MAP statement by referencing check.column
name.

The FILTER statements in the example parameter file are processed in the order that
they are written. If, in the first FILTER statement, the value of the CREATED_BY column in
the record being applied by Replicat is equal to the DBA account, the operation is
accepted for processing by the second FILTER statement. Otherwise, it is ignored.

In this example, SQLEXEC also detects database errors, but ignores them and continues
processing. This is the default action for ERROR.

SQLEXEC (ID check, QUERY " SELECT TIMESTAMP FROM TARGTAB"
WHERE PKCOL =?P1 ',ERROR IGNORE);

However, SQLEXEC could perform any of the following:

Chapter 9
Error Handling

9-14

Syntax Description

ERROR REPORT
Write the database error to a report.

ERROR RAISE
Enable the same error handling capabilities available for table
replication errors.

ERROR FINAL
Enable the same error handling capabilities as ERROR RAISE, but also
ignore any further queries left to process.

ERROR FATAL
Abend the process immediately.

In the second FILTER statement, the ON UPDATE clause directs the filter to run only for
update statements. It compares the value of BEFORE.TIMESTAMP (the timestamp of the
row that Replicat is attempting to apply) to CHECK.TIMESTAMP (the timestamp of the row
already in the database). If the row in the database is newer than the row being
applied, then the filter raises an error and the update is ignored.

In the example, the error correction was implemented with RAISEERROR in the SQLEXEC
clause in the first MAP statement, but it could have been implemented in the second MAP
statement by replacing the COLMAP clause with a SQLEXEC clause.

To handle specific issues, additional SQLEXEC statements could be performed after the
filter or even between the filter statements for increased control.

Using the Event Log
The Oracle GoldenGate event log shows processing events, messages, errors, and
warnings generated by Oracle GoldenGate. Although this information is also recorded
in the NonStop Event Management System (EMS), viewing the Oracle GoldenGate log
is sometimes more convenient. Use GGSCI VIEW GGSEVT command to view the event
log.

Using the Process Report
Oracle GoldenGate generates a report about Manager, Logger, Extract, Replicat, and
Syncfile at the end of each run. The report provides information about run-time
parameters and statistics, including process events, and operations that were
performed. The name of a process report is either MANAGER for the Manager process, or
it is the same as the group name for Extract and Replicat. By default, reports are
created in the subvolume GGSRPT. For example, a report for an Extract group EXTORD
would have a report named GGSRPT.EXTORD.

Generate process reports with the SEND EXTRACT group_name command and the following
options:

Chapter 9
Using the Event Log

9-15

Report Option Description

The end of an audit
trail

AUDITEND Queries Extract to determine whether all records
in the TMF audit trails have been processed. This
command indicates whether more Extract or
Replicat activity must occur before a scheduled
switch between databases. Until AUDITEND
returns "All audit processed," more data must be
processed before it can be assumed that
secondary databases are synchronized.

Processing status STATUS Returns a detailed status of the processing state,
including current position and activity.

Processing statistics REPORT Generates an interim statistical report to the
report file, including the number of inserts,
updates, and deletes since the last report
(default) or according to report options that can
be entered.

For more information, see Send Report.

TCP/IP statistics GETTCPSTATS

RESETTCPSTATS

Retrieves TCP/IP statistics, such as the quantity
and byte length of inbound and outbound
messages, the number of messages received
and sent, wait times, process CPU time, and byte
transmit averages. Time accumulates when
Extract is waiting on a socket send or receive
and all times are reported in microseconds.

Resets the TCP/IP statistics so the next report
displays fresh statistics

Note:

In Oracle GoldenGate for NonStop, several additional reporting options are
available. For specifics, see Report commands.

Example 9-5 Sample Report

RMTTRAIL $DATA10.LOGGER.R1000038, RBA 5348453
Session Index 1
Stats started 2011/01/10 11:46:18.804165 0:00:41.522086
Local address 192.0.2.2:1000 Remote address 192.0.2.2:1000
Inbound Msgs 199 Bytes 2337, 57 bytes/second
Outbound Msgs 200 Bytes 5389492, 131451 bytes/second
Recvs 199
Sends 200
Avg bytes per recv 11, per msg 11
Avg bytes per send 26947, per msg 26947
Recv Wait Time 17592208, per msg 88403, per recv 88403
Send Wait Time 774603, per msg 3873, per send 3873
Process CPU Time 0:00:07.715372

Chapter 9
Using the Process Report

9-16

Viewing Process Reports
To view a process report, view the file directly from the operating system's command
shell, or use the VIEW REPORT command in GGSCI. You also can view process reports
from the Activity Console by clicking More Info beneath the name of the process.

Storing Process Reports
By default, process reports are stored in the GGSRPT subvolume of the Oracle
GoldenGate installation volume. You can designate an alternative file name by using
the REPORT option of the ADD EXTRACT and ADD REPLICAT commands when you create the
group from the GGSCI interface. Specify the fully qualified file name.

Once paired with Extract or Replicat, the report file may remain in its original location,
or you may change its location with the ALTER command, such as:

ALTER EXTRACT group_name REPORT filename

Managing Process Reports
Whenever a process starts, a new report file is created, and a sequence number is
appended to the name of the old file. The naming sequence goes from no sequence
number (current), to 0 (the most recent) to 9 (the oldest), for
example: $DATA.GGSRPT.EXTORD, $DATA.GGSRPT.EXTORD0, $DATA.GGSRPT.EXTORD1 and so
forth. When the file number reaches nine, the oldest file is deleted to make room for a
new file, so there are never more than 11 files on the system at one time (the current
report plus the ten aged reports).

To prevent the size of the report file from becoming too large, use the REPORTROLLOVER
parameter in the Extract and Replicat parameter files. This parameter forces the report
files to age on a regular schedule. Options are available to age the current file on a
specific day and/or a specific time.

To minimize the impact of errors on the size of the Replicat report file, use the WARNRATE
parameter in the Replicat parameter file. This parameter conserves the size of the
report file and the event log by issuing a warning only after a specific number of errors
have been generated, instead of after each one. This parameter is useful if you expect
a certain number of errors and can tolerate them. The default for this parameter is to
warn after 100 errors.

Generating Run-time Statistics
Run-time statistics show the current state of processing. By default, run-time statistics
are written to the existing process report at the end of each run. To control when run-
time statistics are generated, use the REPORT parameter. This parameter has options for
controlling the day and time that statistics are generated.

To generate interim run-time statistics, use the SEND EXTRACT or SEND REPLICAT GGSCI
command with the REPORT option syntax as shown below.

GGSCI> SEND {EXTRACT|REPLICAT} group_name
REPORT [time_option [RESET | FILE filename | TABLE name]]

The time_option controls the time span covered by the report, such as since the start
of Extract or since the last report request. RESET sets the counters for that time_option

Chapter 9
Using the Process Report

9-17

to zero. FILE or TABLE limits the report to counts for name. For more information, see
SEND REPORT.

To generate run-time statistics and also cause the report file to roll over to a new one,
add the ROLLREPORT option to the command, for example:

GGSCI> SEND EXTRACT EXTORD, REPORT
GGSCI> SEND EXTRACT EXTORD, ROLLREPORT

Viewing Record Counts
You can produce record counts at designated times during processing by using the
REPORTCOUNT parameter in the Extract and Replicat parameter files. Results are printed
to the process report file and to screen.

The record count shows the number of records extracted and replicated since the
Extract or Replicat process started. Counts can be obtained at regular intervals or
each time a specific number of records is processed.

The STATS Command
To generate a statistical report for Extract or Replicat, specify the LAGSTATS parameter.
Oracle GoldenGate measures lag in bytes and time:

• Lag in bytes is the difference between the position of the Extract program in the
source at the time of the last checkpoint, and the current end-of-file. A lag value of
UNKNOWN indicates that the process may have recently started and hasn't yet
processed records, or that the source system's clock may be ahead of the target
system's clock due to a reason other than time zone differences.

• Time lag reflects the lag in seconds at the time the last checkpoint was written. For
example, if it is now 15:00:00, the last checkpoint was at 14:59:00 and the
timestamp of the last record processed by the Replicat program was 14:58:00, the
lag is reported as 00:01:00 (one minute, the difference between 14:58 and 14:59).

The report includes the following general performance categories:

• General statistics

• Lag statistics

• Extract's processing in the Oracle GoldenGate trail

• Audit trail reading statistics for Extract (when applicable)

• Output statistics for Extract only

The following table describes each item in the lag statistics report.

Item Description

Last Record Timestamp The timestamp of the source record (when the source record
was input or committed to the target database).

Configured Interval Determined by the LAGSTATS INTERVAL parameter.

Actual Duration The duration of time measured.

Records Processed Number of records output or replicated during the period.

Records per Second Records processed per second during the interval.

Chapter 9
Viewing Record Counts

9-18

Item Description

Source Records per Second The estimated rate of records read for either the TMF audit trails
or logger processes.

Last lag The time lag of the last record measured between (1) the
records update into the source database and (2) the actual
processing of the record by Extract or Replicat.

Min lag Smallest value of Last lag during the interval.

Average lag Average time lag calculated by adding the maximum lag during
the interval to the minimum lag and dividing the result by 2.

Peak lag Peak time lag during the interval for all records processed and
the timestamp of the peak.

Last est. record lag An estimate of the number of records the component is behind
the current record.

Pct Below Lag of
mi:ss:mmm

The percentage of times lag was below the time threshold you
specified. This is an optional statistic, which can occur up to five
times. To generate the statistic, specify the THRESHOLD option for
LAGSTATS.

Pct CPU Busy The amount of time the CPU in which Extract or Replicat was
running was busy during the interval.

PCT Process Busy The amount of time Extract or Replicat was busy during the
interval.

At EOF? Whether more data was available to process the last time more
data was requested by Extract or Replicat from the audit or
Oracle GoldenGate trails.

Trail Reads per Second When reading Oracle GoldenGate trails, the number of
attempted block reads per second.

Bytes per Trail Read When reading Oracle GoldenGate trails, the number of bytes
read per successful read.

Records per Block Read When reading Oracle GoldenGate trails, the number of records
read per successful read. This indicates the blocking factor on
input.

Wait per Block Read When reading Oracle GoldenGate trails, the amount of time
Extract or Replicat waits, on average, to complete the read.

Audit Bytes per Second The number of bytes of audit processed per second (TMF
Extract only).

Pct EOF Trail Reads For TMF Extract, the percentage of times Extract reached the
end of file, compared with the number of records processed. For
Replicat or Extract reading Oracle GoldenGate trails, the number
of times the process read at the end of file, compared with the
total number of blocks it attempted to read.

Transactions per Second For TMF Extract, the number of transactions processed per
second.

Transactions Aborted For TMF Extract, the number of transactions aborted during the
interval.

Audit positions The number of times during the interval that Extract requested
Audserv to position for read.

Audit position seconds The elapsed time in seconds required for Audserv to position for
read.

Audserv requests The number of data requests to Audserv during the interval.

Chapter 9
The STATS Command

9-19

Item Description

Audserv request wait
seconds

The elapsed time for the Audserv to fulfill data requests during
the interval.

Long transactions The number of long transactions during the interval.

Long transaction seconds The elapsed time for the long transactions that occurred during
the interval.

Output Bytes per Second For Extract, the bytes of data output to the extract trails per
second.

Output Blocks per Second For Extract, the number of blocks of data written to the Oracle
GoldenGate trails per second.

Records per Block Written For Extract, the average number of records in each block written.

Bytes per Block Written For Extract, the average number of bytes in each block written.

Wait per Block Written For Extract, the amount of time waiting for the last write or
TCP/IP send to complete before sending the next block of data.
This statistic can indicate whether the network might be
introducing a delay to Extract.

Average Record Flush
Delay

For Extract, the estimated average amount of time a record was
held in its buffers before flushing.

Pct Output/Input For Extract, the ratio of bytes output compared with input bytes
processed. Useful for estimating potential bandwidth required by
Extract based on amount of TMF audit generated.

Collecting Events from Other Systems
Event messages created by the Collector and Replicat on Windows and UNIX systems
can be captured and sent back to EMS on NonStop systems. This feature enables
centralized viewing of Oracle GoldenGate messages across platforms.

To collect events from other systems:

1. Run Collector on NonStop to collect and distribute EMS messages. For each
EMSCLNT process, run one Collector process. The following example runs
Collector and outputs its messages to $0.

TACL> ASSIGN STDERR, $0
TACL> RUN SERVER /NOWAIT/ –p 7880

2. Run the EMSCLNT utility on the remote target. EMSCLNT reads a designated
error log and runs indefinitely, waiting for more messages to send. When
EMSCLNT receives a message, it sends the message to a TCP/IP collector
process on NonStop. See the examples for running EMSCLNT on other operating
systems for syntax information.

Running EMSCLNT on Other Operating Systems
This Unix example reads the file ggslog.err for error messages. Error messages are
sent to the collector to the NonStop at IP address 192.0.2.2 listening on port 7850. The
Collector on NonStop writes formatted messages to EMS Collector $0.

> $emsclnt –h 192.0.2.2 –p 7850 –f ggserr.log –c $0

Chapter 9
Collecting Events from Other Systems

9-20

This Windows example (from the DOS prompt) reads the file d:\ggserrs\log.txt for
error messages. Error messages are sent to the Collector on host ggs2 listening on
port 9876. The Collector on NonStop writes formatted messages to EMS Collector $P0.

> emsclnt –h ggs2 –p 9876 –f c:\ggs\ggserr.log –c $P0

Argument Description

–h ggs2
The node on which the collector is being run. Can be a name or IP
address. This is a required parameter.

–p 9876
The port at which the collector is listening for messages. This is a
required parameter.

–f c:\ggs\ggserr.log
The error file from which EMSCLNT retrieves error messages. This is
a required parameter.

–c $P0
The collector to which EMS messages should be written on the
NonStop (default is $0).

Chapter 9
Collecting Events from Other Systems

9-21

10
Using Oracle GoldenGate Utilities

Oracle GoldenGate provides a number of utilities that support a variety of process
requirements, such as generating data definitions and DDL.
This topic includes the following:

Generating Data Definitions with DEFGEN
When capturing, transforming, and delivering data across disparate systems and
databases, you must understand both the source and target layouts. Understanding
column names and data types is instrumental to the data synchronization functions of
Oracle GoldenGate.

The DEFGEN utility produces a file defining the source files and tables' layouts. These
definitions are used by the Collector and by Replicat. In some cases, Extract also uses
a definition file containing the target layouts when transformation operations are
required on the source system.

The output definitions are written and saved to a text file and transferred to all target
systems in text format. When they start, Replicat and the Collector read the definitions
to interpret the data formats read from Oracle GoldenGate trails.

Note:

Do not modify the text file that is output from DEFGEN.

Once you have generated your definitions, you must specify their location in your
process' parameter file. Replicat uses the SOURCEDEFS parameter to indicate which
source definition file to use. Collector uses the –d argument at startup to specify which
source definition file to use.

Run DEFGEN interactively or using a batch obey script.

TACL> RUN DEFGEN [/IN command_file/] [EXCLUDESYSTEM] [EXPANDDDL options]
[RECORDNAMEPROMPTING]

Option Description

IN command_file
If you have created and saved a parameter file using the NonStop
editor, enter the name of that file.

EXCLUDESYSTEM
Causes DEFGEN to omit the NonStop system name from the files
and tables for which definitions are being generated.

10-1

Option Description

EXPANDDDL options
Use the EXPANDDDL parameter to manipulate output for Enscribe
record definitions containing arrays and redundant field names.
This feature is primarily useful when mapping Enscribe files to SQL
tables. It can also be useful when generating SQL tables based on
Enscribe definitions using the DDLGEN utility. EXPANDDDL is not
necessary when the source database is NonStop SQL.

RECORDNAMEPROMPTING
Use RECORDNAMEPROMPTING to enter the name of an existing record
definition to use when generating a definition for a new table.

Use this parameter to point to the same definition for multiple tables
that have identical definitions made up of the same columns,
column order, and data types.

For more information, see DEFGEN Arguments.

Configuring DEFGEN Interactively
1. Run DEFGEN from TACL using the following syntax:

TACL> RUN DEFGEN EXPANDDDL EXPANDGROUPARRAYS RESOLVEDUPGROUP OMITREDEFS

2. In response to the prompts, enter information similar to the following example:

For the prompt: Enter:

Enter definitions file name (or Exit): $DATA1.GGSDEF.CUSTDEF

File/Table to create definition for (or Exit): $DATA1.GGSSOU.ECUSTMER

Include DDL record definition (Y/N)? Y

DDL dictionary: $DATA1.GGSDDL

DDL record definition name: ECUSTMER-REC

File/Table to create definition for (or Exit) EXIT

3. Transfer this file, as a text file, to the target system.

Configuring DEFGEN in Batch
1. Use the NonStop editor to create a parameter file.

2. Enter parameters similar to the following examples:

• For NonStop SQL

$DATA1.GGSDEF.CUSTDEF
$DATA1.GGSSOU.TCUSTMER
EXIT

• For NonStop Enscribe

Chapter 10
Generating Data Definitions with DEFGEN

10-2

$DATA1.GGSDEF.CUSTDEF
$DATA1.GGSSOU.ECUSTMER
Y
$DATA1.GGSDDL
ECUSTMER-DEF
EXIT
EXIT

3. Start DEFGEN from TACL using a syntax similar to:

TACL> RUN DEFGEN /IN GGSPARM.DEFGEN/

4. Transfer the generated definitions file, as a text file, to the target system.

A Sample Definitions File
Definition for table $DATA1.GGSSOU.TCUSTMER
Record length: 198
Syskey: 0
Columns: 13
TS 134 8 0 0 0 0 1 8 8 0 0 0 0 1 0 1
RECNUM 132 4 8 0 0 0 1 4 4 4 0 0 0 0 1 0 1
SYSNAME 1 8 12 0 0 0 0 8 8 8 0 0 0 0 1 0 0
TEXT 0 64 20 0 0 0 0 64 64 64 0 0 0 0 1 0 0
VAL1 134 8 84 0 0 0 1 8 8 8 0 0 0 0 1 0 0
VAL2 134 8 92 0 0 0 1 8 8 8 0 0 0 0 1 0 0
COL_COMPUTE 134 8 100 0 0 0 1 8 8 8 0 0 0 0 1 0 0
I16 130 2 108 0 0 0 1 2 2 2 0 0 0 0 1 0 0
I32 132 4 110 0 0 0 1 4 4 4 0 0 0 0 1 0 0
I64 134 8 114 0 0 0 1 8 8 8 0 0 0 0 1 0 0
I32_TOTAL 132 4 122 0 0 0 1 4 4 4 0 0 0 0 1 0 0
JTS 134 8 126 0 0 0 1 8 8 8 0 0 0 0 1 0 0
JTS_TEXT 0 64 134 0 0 0 0 64 64 64 0 0 0 0 1 0 0
End of definition

Running DEFGEN to Use Existing Definitions
Multiple tables that have the same structure (identical columns, column order, and
data types) can use the same definition. To run DEFGEN for these tables, use the
RECORDNAMEPROMPTING argument.

1. Run DEFGEN from TACL using the following syntax:

TACL> RUN DEFGEN RECORDNAMEPROMPTING

In response to the prompts, enter information similar to the following example:

For the prompt: Enter:

Enter definitions file name (or Exit):
$DATA1.GGSDEF.CUSTDEF

File/Table to create definition for (or Exit):
$DATA1.GGSSOU.ECUSTMER

Use record name for definition file (Y/N)?
Y

Record or definition name to be used:
CUSTOMER-DEF

Chapter 10
Generating Data Definitions with DEFGEN

10-3

For the prompt: Enter:

File/Table to create definition for (or Exit)
EXIT

Creating Target Database DDL
DDLGEN generates table definitions for target databases based on existing Enscribe and
NonStop SQL definitions. It can also use the output from the DEFGEN utility (see above).
DDLGEN reduces the work necessary to create databases on platforms such as UNIX or
Windows, and enables the creation of NonStop SQL databases based on Enscribe
definitions. Target templates are provided for NonStop SQL, Oracle, SQL Server, DB2,
and Sybase.

DDLGEN is run either interactively by supplying responses to user prompts, or in batch
mode by supplying an input file.When running interactively, the user is supplied
several prompts. For batch execution, the answers to the prompts are supplied in the
obey file. It is recommended that the user runs the process in interactive mode to
better understand the replies to specify in the obey file.

The result of running DDLGEN is a text file containing the create table statements.
Transfer this file, as a text file, to your target system.

For more information, see DDLGEN Arguments in the Reference for Oracle
GoldenGate on HP NonStop Guardian.

The DDLGEN syntax is:

TACL> RUN DDLGEN [/IN command_file/] [-d DEFGEN_output]

Argument Description

IN command_file
If you have created and saved a file of responses using the
NonStop editor, enter the name of that file. See the information
on configuring DDLGEN interactively in Configuring DDLGEN
Interactively for a list of the responses.

-d DEFGEN_output
Instructs DDLGEN to use the definitions file produced by DEFGEN.

Configuring DDLGEN Interactively
1. Start DDLGEN from TACL using a syntax similar to:

TACL> RUN DDLGEN

2. In response to the prompts, enter information similar to the following example:

For the prompt: Enter:

Output file for table DDL (or Exit): $DATA1.GGSDEF.CUSTDEF

Chapter 10
Creating Target Database DDL

10-4

For the prompt: Enter:

DDL template file name (or Exit): template_name

There are seven different templates prepackaged
with Oracle GoldenGate:

TMPLDB2 - DB2 for Windows and UNIX

TMPLDB2M - DB2 for the z/OS and OS/390

TMPLMSA - Microsoft Access

TMPLMSS - Microsoft SQL Server

TMPLORA - Oracle

TMPLSYB - Sybase

TMPLTDM - NonStop SQL/MP

Source File/Table (or Exit): $DATA1.GGSSOU.ECUSTMER

DDL dictionary: $DATA1.GGSDDL

DDL record definition name: ECUSTMER-REC

Source File/Table (or Exit): $DATA1.GGSSOU.TCUSTORD

Source File/Table (or Exit): EXIT

3. Transfer the definitions file, as a text file, to the target system.

Configuring DDLGEN in Batch
1. Use the NonStop editor to create a parameter file. For this example, the file name

is GGSPARM.DDLGEN.

2. Enter parameters similar to the following examples:

$DATA1.GGSDEF.CUSTDEF
TMPLORA
$DATA1.GGSSOU.ECUSTMER
$DATA1.GGSDDL
ECUSTMER-REC
$DATA1.GGSSOU.TCUSTORD
EXIT

3. Initiate DDLGEN:

TACL> RUN DDLGEN /IN GGSPARM.DDLGEN/ -d $DATA1.GGSDEF.CUSTDEF

In this step, you are instructing DDLGEN to use the DEFGEN definitions file that was
produced by a previous run of DEFGEN.

4. Transfer the generated definitions file, as a text file, to the target system.

Addressing Enscribe DDL Peculiarities
Enscribe record definitions often contain the following items that do not map directly to
SQL environments:

Chapter 10
Creating Target Database DDL

10-5

• OCCURS items

SQL columns cannot have multiple occurrences, while Enscribe fields can.

• Group level items

There is no grouping hierarchy in SQL, while an Enscribe record definition can
contain fields that are redundant until qualified at the group level. This means that
redundant column names can be created when mapping Enscribe definitions to
SQL. For example, an Enscribe record might contain the field YEAR twice, once
within the BEGIN-DATE group and once within the END-DATE group.

To get around these conditions, you can run the DEFGEN utility with various EXPANDDDL
options set, as described in Reference for Oracle GoldenGate on HP NonStop
Guardian. Use the -d parameter to specify the definitions file created by DEFGEN as
input to DDLGEN.

Understanding the Template File
Templates are provided with each version of Oracle GoldenGate. A template file
specifies how to generate the target definitions based on the source definitions. Each
template file contains the following items:

• Literal text to output for each table definition.

• Source to target data type conversion specifications.

• Column name substitution specifications.

• Miscellaneous run-time parameters.

• Section headers.

• Comments, which begin with a pound sign (#).

• Session parameters, which are resolved at run-time by user prompts and applied
during the entire DDLGEN session. Session parameters begin with a question mark
(?).

• Per-table parameters, which are input by the user for each table definition
generated. Per-table parameters begin with a percent sign (%).

• Calculated parameters, which include information determined by DDLGEN.
Calculated parameters include the following:

Calculated
Parameter

Description

?TABLE The file name portion of the source table or file.

?COLUMNS A list containing each column, its target data type, precision and
scale (if any), and null/not null syntax.

?KEYCOLUMNS A list containing each column in the primary key.

?MAXPAGES
?MAXMEGS
?CURPAGES
?CURMEGS

The maximum and current number of 2048-byte pages and
megabytes in the source table.

Chapter 10
Creating Target Database DDL

10-6

Sample Template File
This sample (TMPLORA), is a template file for converting HP NonStop DDL to Oracle
DDL.

The sections are:

• Table creation section specifying operations for creating and managing tables.
Note that in this section ?TABLE, ?COLUMNS and ?KEYCOLUMNS are resolved by DDLGEN. ?
TABLE_SPACE is prompted for once and will apply to every table, while %NEXT_SIZE is
prompted for on a per-table basis.

• Column name mapping section containing source NonStop and target Oracle
column names. This section maps the source column names to the target names.
In this example, any occurrences of ROWID in the NonStop database will be
changed to ROWID_ in the Oracle definition. If Oracle keywords appear in your
NonStop database definitions, add entries to this list.

• Miscellaneous parameters section. Specify instructions for column formatting.

• Column type mapping section. Determines how NonStop types are defined in
Oracle. Precision and Scale definitions can be YES, NO or a constant, positive value.

Note in this example, there are two entries for both CHAR and VARCHAR. Because Oracle
allows a maximum of 255 characters in a VARCHAR2, we specify that all instances of CHAR
and VARCHAR with length greater than 255 should become LONGS.

Table Creation Section
#
DROP TABLE ?TABLE;
CREATE TABLE ?TABLE
(
?COLUMNS
,CONSTRAINT PK_?TABLE
PRIMARY KEY
(
?KEYCOLUMNS
)
USING INDEX
TABLESPACE ?TABLE_SPACE
)
TABLESPACE ?TABLE_SPACE
STORAGE (INITIAL 50K NEXT %NEXT_SIZE);
#
Column Name Mapping Section
#
NonStop column name Oracle target name
#
ROWID ROWID_
SYSDATE SYSDATE_
#
Miscellaneous Parameters Section
#
INCLUDENULL
#
Column Type Mapping Section
Max Max
#NonStop Type Target DB Type Precision Scale Prec. Scale
#
CHAR VARCHAR2 Y N 255 N

Chapter 10
Creating Target Database DDL

10-7

CHAR LONG Y N N N
VARCHAR VARCHAR2 Y N 255 N
VARCHAR LONG N N N N
REAL NUMBER N N N N
DOUBLE NUMBER N N N N
NUMERIC NUMBER Y Y N N
SMALLINT NUMBER Y N N N
INTEGER NUMBER Y N N N
LARGEINT NUMBER Y N N N
DECIMAL NUMBER Y Y N N
DATE DATE N N N N
TIME DATE N N N N
TIMESTAMP DATE N N N N
DATETIME VARCHAR2 Y N N N
INTERVAL VARCHAR2 Y N N N

Sample NonStop SQL Table Definition
An example for creating Oracle table DDL is shown below.

CREATE TABLE TCUSTORD
(
 CUST_CODE CHAR (4) NOT NULL,
 ORDER_DATE DATETIME YEAR TO SECOND NOT NULL,
 PRODUCT_CODE CHAR (8) NOT NULL,
 ORDER_ID NUMERIC (18) NOT NULL,
 PRODUCT_PRICE DECIMAL (8,2),
 PRODUCT_AMOUNT DECIMAL (6,0),
 TRANSACTION_ID NUMERIC (18) NOT NULL,
 DESCRIPTION CHAR (400),
 PRIMARY KEY (CUST_CODE, ORDER_DATE, PRODUCT_CODE, ORDER_ID)
);

Modifying the Sample Template File
In this example, you can make three modifications:

1. Add a DATE_MODIFIED column to each table and to the primary key.

2. Calculate the NEXT value based on the table's current size. Note that any
parameter value that evaluates to a numeric value can be multiplied or divided.

3. Substitute the column name ORDER_NUM for instances of ORDER_ID.

The following is the template file, with modifications shown in bold.

#
Table Creation Section
#
DROP TABLE ?TABLE;
CREATE TABLE ?TABLE
(
?COLUMNS
, DATE_MODIFIEDDATE NOT NULL
, CONSTRAINT PK_?TABLE
 PRIMARY KEY
 (
?KEYCOLUMNS
, DATE_MODIFIED
)
 USING INDEX

Chapter 10
Creating Target Database DDL

10-8

 TABLESPACE ?TABLE_SPACE
)
TABLESPACE ?TABLE_SPACE
STORAGE (INITIAL 50K NEXT ?CURPAGES/5K);
#
Column Name Mapping Section
#
NonStop column name Oracle target name
#
ROWID ROWID_
SYSDATE SYSDATE_
ORDER_ID ORDER_NUM

Generating the Sample Definition
The following example generates an Oracle definition:

1> RUN DDLGEN
Output file for table DDL (or Exit): ORADDL
DDL template file name (or Exit): TMPLORA
Value for param TABLE_SPACE: USERS
Source File/Table (or Exit): $DATA1.SAMPLE.TCUSTORD
Source File/Table (or Exit): EXIT

The following is an example of the contents of ORADDL after DDLGEN is run.

DROP TABLE TCUSTORD;
CREATE TABLE TCUSTORD
(
 CUST_CODE VARCHAR2(4) NOT NULL
, ORDER_DATE DATE NOT NULL
, PRODUCT_CODE VARCHAR2(8) NOT NULL
, ORDER_NUM NUMBER(18) NOT NULL
, PRODUCT_PRICE NUMBER(8,2) NULL
, PRODUCT_AMOUNT NUMBER(6,0) NULL
, TRANSACTION_ID NUMBER(18) NULL
, DATE_MODIFIED DATE NOT NULL

, CONSTRAINT PK_TCUSTORD
 PRIMARY KEY
 (
 CUST_CODE
, ORDER_DATE
, PRODUCT_CODE
, ORDER_NUM
, DATE_MODIFIED
)
 USING INDEX
 TABLESPACE USERS
)
TABLESPACE USERS
STORAGE (INITIAL 50K NEXT 470K);

Using Syncfile
Syncfile manages non-database file duplication. For example, you may want to
replicate configuration files that are small and change infrequently. This is a common
requirement for maintaining a secondary system that has frequent database changes,
but infrequent configuration file changes.

Chapter 10
Using Syncfile

10-9

Syncfile can copy almost any type of file, making it suitable for other scenarios that
require only infrequent, off-hours copying. By default, Syncfile uses the NonStop FUP
DUP utility to perform file duplication; however, it can also run user-written TACL scripts
to perform more specialized file duplication, such as FTP over TCP/IP.

You implement Syncfile by defining its parameters. The two main parameters include a
file list to duplicate, and one to many schedules. A file set can be a file name, a
wildcarded file name, or a file exclude list. The schedules are events which can be as
frequent as you want, such as every day, every hour, or every ten minutes.

Syncfile options control the following:

• The files to duplicate

• The schedule for determining when files should be duplicated

• The method for duplication (FUP, FTP, etc.)

• Whether files should be always duplicated, or only when modified

A Syncfile parameter file can contain multiple schedules and file sets. In addition, you
can create multiple Syncfile processes to support duplication for different applications
or other requirements.

Syncfile processes are persistent. If a Syncfile process goes down unexpectedly,
Manager automatically restarts it.

Implementing Syncfile
1. Create a parameter file with the necessary Syncfile parameters. The parameter file

includes the names of the files to duplicate, the schedules, and other options.

Sample Syncfile parameter file:

EVENT DAILY, EVERY DAY AT 1:00, EXCLUDE FRIDAY, EXCLUDE AUGUST 2;
EVENT FREQUENT, EVERY 2 HOURS;
DUP $DATA1.SOURCE.*, TARGET \BKUP.$DATA2.*.*,
ALWAYS, EVENT DAILY;
DUP $DATA2.GGSPARM.*, TARGET \BKUP.$DATA3.*.*,
TACLCMD "RUN $DATA1.GGSTACL.SYNCTCL<source> <target>",
CHANGED, EVENT FREQUENT;

This parameter file specifies the following attributes and actions:

• Two events—daily and frequent. The daily event happens every day at 1:00
AM. However, the daily event is cancelled on all Fridays and August 2. The
frequent event occurs every two hours. There are two DUP specifications. The
first DUP specification indicates the file set $data1.source.*. Files satisfying that
description are duplicated according to the daily event schedule (every day at
1:00). These files are duplicated regardless of whether the data has changed
(the "always" option). Files are duplicated to \bkup.$data2 with the same
subvolume and file name as the corresponding source files.

• By default, the FUP DUP source, target, PURGE, SAVEALL command is used to
duplicate the files.

• The second DUP specification names everything from $data2.ggsparm to be
copied to \bkup.$data3 with the same subvolume and file names. Files are
duplicated on the frequent event schedule (every two hours). However, only
those files with a modification timestamp on the source greater than that of the

Chapter 10
Using Syncfile

10-10

target will be duplicated (the changed option). The changed option does not
have to be specified since it is the default option.

In this example TACLCMD is added as a clause to the DUP parameter. This will
cause Syncfile to run the TACL macro $data1.ggstacl.synctcl to duplicate the
file. The macro is responsible for determining how to move source files to the
target system, as well as any intermediate required steps.

In this instance, the <source> and <target> arguments should not be replaced
with any file name. They act as keywords to trigger Syncfile to use the
DUP $DATA2.GGSPARM.*, TARGET \BKUP.$DATA3.*.* statement to identify the
source and target parameters that will be passed to the macro.

If file names are entered in <source> and <target> they will be passed to the
macro instead. The following TACL macro and Syncfile parameters will pass
GGSPARM.FILE1 as %1% and GGSPARM.FILEB as %2% to cause it to duplicate
FILE1 to FILEB, not to $DATA3.GGSPARM.FILEA.

?TACLMACRO
FUP DUP %1%, %2%
DUP $DATA1.GGSPARM.FILE1, TARGET $DATA3.GGSPARM.FILEA,
TACLCMD "RUN $DATA1.GGSPARM.TACL1 GGSPARM.FILE1 GGSPARM.FILEB",
ALWAYS, EVENT DAILY 1330;

Note:

Leaving out the <source> and <target> arguments will cause Syncfile
to abend.

The two most important parameters for Syncfile are EVENT and DUP. At least one
EVENT and one DUP parameter are required for each Syncfile operation. Each
parameter entry must be terminated with a semi-colon (;).

2. Start GGSCI and add the Syncfile process.

TACL> RUN GGSCI
GGSCI> ADD SYNCFILE group_name
[, PARAMS parameter_file]
[, REPORT report_filename]
[, PROCESS process_name]
[, PROGRAM program_name]

Add options as desired.

3. Start the Syncfile process.

GGSCI> START SYNCFILE

See GGSCI Commands for details about the GGSCI Syncfile commands and the
Syncfile parameters.

Chapter 10
Using Syncfile

10-11

A
Oracle Oracle GoldenGate Components

Here we discuss components of Oracle GoldenGate code used for customer
implementations, such as programs, utilities, macros, libraries, and databases. There
are also templates, demos, and sample code.
This appendix includes the following:

Programs, Utilities, Macros, and Libraries

Program/Macro Description

AUDDUMP
A utility program to print the contents of the AUDCFG or GGSCPUxx segments.

AUDSERV
Reads audited database changes from TMF audit trails. Started by Extract
processes. Must be owned by SUPER group and must have a PROG ID and
license for other users to extract changed data from the audit trails.

BASELIB
The intercept library that is bound with programs to facilitate non-TMF based
database change logging. The TNS mode can be used with programs
written in TAL, and C.

BASELIBN
Native version of BASELIB that can be used with TAL, C, C++, and Java VM.
On the operating systems, this library can be also be used with native
COBOL programs.

BINDEXIT
TACL macro that merges Extract and Replicat with user exit routines.

BINDSKEL
TACL macro that merges BASELIB with the BASE24 SKELB library.

CHGNOTE
Notifies GGSLIB of configuration changes.

COMBLIB
A macro that combines the Oracle GoldenGate intercept library GGSLIB with
a User Library that intercepts the same calls as Oracle GoldenGate.

COORDINATOR
Tracks the status of distributed network transactions to coordinate the
processing across multiple nodes.

DBINIT
A macro that initializes the Oracle GoldenGate checkpoint and configuration
files.

DDLGEN
Generates target database table definitions based on NonStop DDL.

DEFGEN
Generates source table definitions for Replicat to use for the translation of
heterogeneous databases.

EMSDIST
Contains EMS messaging and tokens for Oracle GoldenGate messages.

EMSINST
A macro that installs EMS event message detail text.

A-1

Program/Macro Description

ENTRYLIB
A macro that combines the Oracle GoldenGate intercept library BASELIBE
with a User Library that intercepts the same calls as GGSLIB.

EVCXFUP
Contains the FUP scripts to create the EVENTCX file for custom EMS
messages.

EXTRACT
Performs database change extract; formats and outputs results.

EXTRACTN
Native version of Extract.

EXTRR
Native relinkable version of Extract. Use when you have a native user exit to
be linked into Extract. The NLDEXIT macro will reference this program.

FIXFLS
Adjusts alternate key pointers and turns auditing on proper Oracle
GoldenGate files (for example, after duplicating from another location).

FUPLOG
Contains the FUP scripts to create the Logger configuration file LOGCONF.

GGSCI
User interface to Oracle GoldenGate functions.

GGSDLL
The default name of the executable version of native BASELIB for
applications running on the operating systems. NLDLIB may combine
BASELIB with other relinkables when creating GGDLL.

GGSLIB
User library bound with application programs to facilitate non-TMF based
database change extract.

GGSLIBR
Native relinkable version of GGSLIB that can be combined with other code to
create a larger combined user library.

GGSUNPAK
A macro that performs the UNPAK against Oracle GoldenGate installation files
and runs the installation macro.

INSTALL
TACL macro that creates database files and performs other installation
tasks.

KEYGEN
Program used to generate random keys. Used for encryption.

LEANBIND
A macro that removes the several routines out of BASELIB and creates
LEANLIB. Use in place of BASELIB; however, you must contact Technical
Support at Oracle GoldenGate before proceeding.

LOGDUMP
A program that provides the ability to display or search for information stored
in log trails, extract trails, or extract flat files.

LOGGER
Writes non-TMF audited database changes to log trails.

MGR
Carries out resource management functions as configured by system
administrators.

MIGRATE
Moves checkpoint and other data from an old to a new Oracle GoldenGate
installation.

NLDEXIT
A macro used to combine a native version of the intercept libraries.

NLDLIB
A macro used to create a native version of the intercept libraries.

Appendix A
Programs, Utilities, Macros, and Libraries

A-2

Program/Macro Description

REPLICAT
Replicates selected database changes from a set of source Enscribe files
and SQL tables to a set of target files and tables.

REPR
A relinkable, native version of Replicat. Used when linking native user exits.

REVERSE
"Reverses" operations in an extract file so that Replicat can selectively back
out changes rather than replicate them.

SCANGRP
A utility used by the MIGRATE utility to scan and convert group records.

SEGDUMP
A utility program used to examine the contents of the private context
segment maintained by BASELIB. The context segment contains I/O buffers
and state information for all files being logged.

SERVER
Another name for the Collector that receives data over TCP/IP and writes
data to remote trails.

SFGEXIT
A program that can be activated within NonStop Safeguard to audit update
access file opens and issue a message if no Oracle GoldenGate intercept
program is bound in.

SQLCOMPS
List of SQLCOMP commands for Oracle GoldenGate programs.

SYNCFILE
Performs file replication of non-database files based on a user-set schedule.

TMFARLB2
A distributed TMF audit read library.

TMFARUL2
A distributed TMF audit read library.

Oracle GoldenGate Database
The Oracle GoldenGate database is created at installation time with the INSTALL
macro. Each database file and its function are listed in the next table.

Database File Description

AUDCFG
A dynamically created shared segment file used for GGSLIB configuration
retrieval.

AUDSPEC
Contains audit management configuration parameters set up with GGSCI
and read by Manager to perform audit management tasks.

CONTEXT
Contains Extract checkpoints to facilitate continuous processing of audit for
particular Extract groups. Used by Manager to determine whether particular
audit resources are still required.

EXTCTXT
Contains Extract checkpoints to track restart points within extract files in
case Extract halts prematurely. Also contains information about individual
extract trail dimensions and management.

EXTCTXT0
Alternate key file for EXTCTXT.

GROUP
Contains each distinct Extract processing group.

Appendix A
Oracle GoldenGate Database

A-3

Database File Description

LOGCONF
Stores logger configuration.

LOGGGS
Keeps log of critical events.

MRKRGGS
Audited file that accepts audit marker records.

REMCTXT
Contains the names of local and remote REPCTXT files to check before
deleting extract files.

REPCTXT
Contains Replicat checkpoints to facilitate continuous processing of extract
information. Used by Manager to determine whether particular extract file
resources are still required.

REPCTXT0
Alternate key file for REPCTXT.

REPGRP
Contains each distinct Replicat processing group.

RMTCTXT
Contains checkpoints for remote extract files.

SYNCGRP
Contains each distinct Syncfile processing group.

External Component Summary

Component Description

TMF Audit Trails Contain change data information for source file and table insert, update
and delete operations. Audit trails are read by Extract processes with
Audserv for relevant database changes. Each audit trail can be read
from one of four locations: the original location (on disk), from a disk
dump, restored to disk from tape, or from a duplicate created by
Manager.

Extract Files Created by Extract processes. Extract files contain formatted database
change records that can be input to Replicat processes, user-written
applications or utilities. Extract processes can write to a single extract
file, or a sequence of extract files known as extract trails. Manager
purges extract files.

SQL and Enscribe

Database Files

Database files that are the source of extract and target of delivery
activities.

Parameter Files Parameter files provide run-time parameters for all Oracle GoldenGate
processes. There is no facility for entering parameters interactively, so
parameter files are required.

Report Files Extract and Replicat generate reports detailing statistical highlights of
processing. Report files can be virtually any format, including spooler,
edit files or the home terminal.

Appendix A
External Component Summary

A-4

Component Description

DDL Dictionaries Dictionaries are an optional component of Extract and Replicat
processing. DDL dictionaries describe Enscribe records processed by
Extract and Replicat. This lets you describe record selection and
column mapping criteria for both Extract and Replicat activities. The
dictionaries must have been compiled using C30 or later DDL.

SQL Catalogs Provide the definition of extracted SQL database change records. You
need read access to the catalog associated with any source and target
SQL tables. The catalogs allow Extract and Replicat to decode audit
records and to build replicate SQL operations.

User Exit Routines Object files you create that are bound in with Extract or Replicat to
perform customized routines.

Error Console Extract and Replicat send errors and warnings to both the error console
and to the report file. The default error console is the home terminal.
You can change the error console with the statement PARAMS EMSLOG
EMS_collector before issuing the run command for either program.
filename can include EMS distributors, processes, disk or spooler files.

Templates, Demonstrations, and Sample Code

File Description

DDLEXIT
DDL for creating copy files for user exit and API routines.

DEMOCL
C include library for user exit demos.

DEMOCOBL
COBOL copy library for user exit demos.

DEMOEDDL
Sample DDL scripts for sample Enscribe files.

DEMOFUPS
Sample FUP scripts to create sample Enscribe source files.

DEMOFUPT
Sample FUP scripts to create sample Enscribe target files.

DEMOOLDE
Source code for the DEMOLEDO Enscribe demo program that performs
inserts and updates for sample files.

DEMOLDEO
Program used to generate insert and update operations for sample Enscribe
files.

DEMOLDS
Sample data for tables created by DEMOSQL.

DEMOSQL
SQL table creation DDL for sample TMF delivery User Tutorial example.

DEMOXC
An example user exit written in C.

DEMOXCOB
An example user exit written in COBOL.

Appendix A
Templates, Demonstrations, and Sample Code

A-5

File Description

HELP
Help file for GGSCI.

TCPERRS
Contains TCP/IP error handling parameters.

TMPLMSA
DDLGEN template file for Microsoft Access.

TMPLMSS
DDLGEN template file for Microsoft SQL Server.

TMPLORA
DDLGEN template file for Oracle.

TMPLTDM
DDLGEN template file for Non Stop NS SQL.

TMPLSYB
DDLGEN template file for Sybase.

TMPLDB2
DDLGEN template file for DB2 on Windows and UNIX.

TMPLDB2M
DDLGEN template file for DB2 on z/OS and OS/390.

USEREXC
Blank template that can be used as a starting point for C user exits.

USEREXT
Blank template that can be used as a starting point for TAL user exits.

XLIBC
Include library for writing C user exits and interfacing to API.

XLIBCOB
Copy library for writing COBOL user exits and interfacing to API.

Appendix A
Templates, Demonstrations, and Sample Code

A-6

B
Installing Event Detail Text

Event Text makes Oracle GoldenGate detailed text available to operators using the
Viewpoint event detail screen. Installing and working with Event Text is discussed
here.

This appendix includes the following:

Standard Installation
To install event text (assuming a default configuration of Viewpoint), issue the
following commands.

TACL> VOLUME installation_volume_subvolume
TACL> RUN EMSINST

The EMSINST macro performs the steps described in the following section.

Custom Installation
If your installation of Viewpoint differs from the default configuration, perform the
following steps (Substitute appropriately for PATHMON process names, and so on.)

1. From TACL, enter the following:

TACL> VOLUME GGS
TACL> FUP /IN EVCXFUP/
TACL> RUN EVCXLDO /IN EMSDTL/

2. Bring down the Viewpoint event detail server, as shown in these commands:

TACL> PATHCOM $ZVPT
=FREEZE SERVER ZVPT-EVNT-DETL
=STOP SERVER ZVPT-EVNT-DETL
=STOP SERVER ZVPT-EVNT-DETL

If this is the first time that custom messages will be used on your system also
perform the following assignment.

=ALTER SERVER ZVPT-EVNT-DETL, ASSIGN CUSTOM-DETAIL, \SYS.$SYSTEM.SYSTEM.EVENTCX
=EXIT

3. If $SYSTEM.SYSTEM.EVENTCX already exists, enter:

TACL> FUP COPY EVENTCX, $SYSTEM.SYSTEM.EVENTCX, SHARE

Otherwise, enter:

TACL> FUP DUP EVENTCX, $SYSTEM.SYSTEM.EVENTCX

4. Bring up the Viewpoint event detail server, as follows:

TACL> PATHCOM $ZVPT
=THAW SERVER ZVPT-EVNT-DETL

B-1

=START SERVER ZVPT-EVNT-DETL
=EXIT

Customizing Error Messages
You can customize message text by altering the event text within the EMSDTL file before
running the EVCXLDO or EMSINST programs.

Appendix B
Customizing Error Messages

B-2

Index

Symbols
@NULL function, 8-2
(pound) character in macros, 7-8

A
ABEND option, REPERROR, 9-10
Accelerator, running, 7-3
ACTIVE volume, adding or deleting, 2-9
ADD DEFINE command, 2-19
ADD EXTRACT command

direct bulk load, 3-5
direct load, 3-3
online change synchronization, 6-1
task, 9-1

ADD EXTTRAIL command, 3-11
ADD REPLICAT command

direct bulk load, 3-5
direct load, 3-3
online change synchronization, 6-2
task, 9-1

ADD RMTTRAIL command, 3-11
after-images, about, 1-8
architecture, Oracle GoldenGate, 1-3
arithmetic

in filters, 8-8
operators in selection clause, 8-2

AUDCFG file, A-3
AUDCFG option, SFGEXIT, 6-10
AUDDUMP program, A-1
audit compression

files, problems with, 2-15
update considerations, 2-5

audit trails,
managing for Extract availability, 2-2

AUDITCOMPRESS attribute, 2-5
AUDITEND option

SEND EXTRACT, 9-16
Audserv

about, 1-9
AUDSERV program, A-1
AUDSPEC file, A-3
authorization events

enabling, 6-9

AXCEL option
BINDEXIT, 7-3

B
BASE24 TLFX files, 1-12, 3-12
BASELIB library, 6-6, A-1
BASELIBN library, 6-8, A-1
BASELIBR library, 6-8
batch processing

about, 1-12
configuring, 3-12

before-images, about, 1-8
BEGIN option, MACRO, 7-6
bi-directional replication, configuring, 2-16
BINDEXIT macro, 7-3, A-1
BINDSKEL macro, A-1
Blowfish encryption, 4-1
BUILDMAC utility, 2-12
bulk I/O operations, support for, 2-10
bulk load, direct, 3-4

C
C Shell Routines in user exits, 7-2
C++VERSION option, NLDEXIT, 7-4
capacity planning, 2-18
CATALOG option

BINDEXIT, 7-3
NLDEXIT, 7-4

CEXITWITHCOBOL option, NLDEXIT, 7-4
change synchronization, configuring, 6-1
CHECKMINUTES parameter, 9-3
CHECKPARAMS parameter, 6-16
checkpoints

about, 1-6
CHGNOTE program, A-1
COBOL

shell routines in user exits, 7-2
supported operations, 2-10

Collector
about, 1-4
configuring, 5-4
events

reporting, 5-6

Index-1

Collector (continued)
port number, 5-5
security, 5-6

COLMAP clause, 2-15
columns,

added to source tables, 2-1, 2-17
comparing, 8-2
converting, 8-8
definitions, generating, 10-1
mapping

rules for, 8-3
COMBLIB macro, A-1
commands

GoldenGate (GGSCI), 1-12
security, 4-5

comments in parameter files, 6-14
compression, using, 2-4
COMPUTE function, 8-9
configuring

data security, 4-2, 4-3
conflicts

handling
with SQLEXEC, 9-14

in bi-directional configuration, 2-15
CONTEXT file, A-3
conversion, data, 8-8
Coordinator

about, 1-7, 1-10
adding, 2-7
process name, changing, 2-19

COORDINATOR program, A-1
CPU

primary and backup for log process, 6-4

D
data

capacity planning, 2-18
compression, 2-4
definitions

generating, 10-1
dividing into ranges, 2-15
encrypting, 4-1
filtering and mapping, 3-10, 8-1
initial synchronization, 3-1
integrity, 1-5, 1-6, 2-9
sources, 1-3
transforming, 8-8

data pump, using, 3-11
data types, converting, 8-4
database

events, triggering, 1-12
login password, encrypting, 4-2

datetime fields, converting, 8-4
DBINIT macro, A-1

DDL dictionaries, using, A-5
DDLEXIT file, A-5
DDLGEN

about, A-1
using, 10-4

DECRYPTTRAIL parameter, 4-2
default

column mapping, 8-6
trail configuration, 9-3

DEFGEN
description, A-1
using, 10-1

definitions file, generating, 10-1
DEMOCL library, A-5
DEMOCOBL library, A-5
DEMOEDDL script, A-5
DEMOFUPS scripts, A-5
DEMOFUPT scripts, A-5
DEMOLDEO program, A-5
DEMOLDS file, A-5
DEMOOLDE code, A-5
DEMOSQL table, A-5
DEMOXC, 7-5
DEMOXC user exit sample, A-5
DEMOXCOB user exit sample, 7-5, A-5
DES, replacement for, 4-1
DETAIL option, SFGEXIT, 6-10
direct bulk load, running, 3-4
direct file extraction, 3-11
direct load, running, 3-3
discard file, using, 9-9, 9-12
DISCARD option, REPERROR, 9-10
DISKTHRESHOLD parameter, 2-2
distributed network transactions, 1-10, 2-6

E
EMSCLNT utility, 5-7, 9-20
EMSDIST program, A-1
EMSINST macro, A-1
ENCRYPT option, RMTHOST, 4-3
ENCRYPT PASSWORD command, 4-2
encryption,database password, 4-2
ENCRYPTKEY option, ENCRYPT PASSWORD,

4-2
ENCRYPTTRAIL parameter, 4-2
END option, MACRO, 7-7
ENDKEY, limiting record range, 3-9
Enscribe

compression, 2-4
mapping to SQL, 10-5
record format, 2-4

entry-sequenced files
extracting from, 1-12, 3-11
replicating, 2-14

Index

Index-2

ENTRYSEQUPDATES parameter, 2-14
environment

functions, calling, 7-2
error console, changing, A-5
error messages

collecting from remote systems, 5-6, 9-20
customizing, B-2

errors, reporting and handling, 9-15
EVCXFUP scripts, A-2
event log, using, 9-15
Event Management System (EMS), 5-6
events

authorization
enabling, 6-9

Oracle GoldenGate, monitoring, 9-15
EXCEPTION option, REPERROR, 9-10
EXCLUDEGGSTRANSRECS parameter, 2-7
EXCLUDESYSTEM option, DEFGEN, 10-1
EXPANDDDL option, DEFGEN, 10-2
EXTCTXT file, A-3
EXTCTXT0 file, A-3
Extract

about, 1-4
batch configuration, 3-12
group, creating, 6-1
multiple instances, 2-15, 2-17
online configuration

non-TMF enabled applications, 2-9
TMF-enabled applications, 2-1

process name, changing, 2-19
process report, 9-9, 9-15

extract files, A-4
EXTRACT program, A-2
EXTRACTN program, A-2
EXTRR program, A-2

F
FASTUNLOAD option, SOURCEISFILE, 3-10
file

duplicating, 10-9
file to Replicat load, running, 3-2
file, data

columns, adding, 2-1
extracting from, 1-12, 3-11
types supported, 2-10

file, Oracle GoldenGate
discard, 9-9, 9-12
parameters, 6-12
report, 9-15

FILTER clause, using, 8-1
filtering,data for processing, 3-10, 8-1
FIXFLS program, A-2
full record images, using, 2-5

FUP commands
ALTER BUFFERED, 2-16

FUPLOG file, A-2

G
GETERRORLIST option of SEND

ANGLEBRACKET_LEFTprocess
ANGLEBRACKET_right, 6-12

GETNEWCOLUMNS parameter, 2-17
GETPURGEDATAS, in bidirectional

configuration, 2-16
GETSTATS option of SEND

ANGLEBRACKETprocess
ANGLEBRACKET, 6-11

GETTCPSTATS option, SEND EXTRACT, 9-16
GGSCI

security, 4-5
using, 1-12

GGSCI program, A-2
GGSDLL library, 6-8, A-2
GGSLIB

about, 1-11
binding to application, 6-6, 6-7
building, 6-6
configuring, 6-5
memory requirement, 6-7

GGSLIB library, A-2
GGSLIBR library, 6-8, A-2
GGSUBVOL option

BINDEXIT, 7-3
NLDEXIT, 7-4

GGSUNPAK macro, A-2
GROUP file, A-3
groups, 1-6

about, 1-6
names, number of characters, 1-6

See also Extract or Replicat
Guardian

error 10, 2-16
function calls, 6-6

H
HANDLECOLLISIONS

with missing rows, 2-13
HELP file for GGSCI, A-6
HELP option

BINDEXIT, 7-3
NLDEXIT, 7-4

I
IDEA, replacement for, 4-1
IGNORE option, REPERROR, 2-15, 9-10

Index

3

IGNOREPURGEDATAS parameter, 2-16
IN option, DEFGEN, 10-1
initial load

See initial synchronization
initial synchronization,

about, 1-7
configuring, 3-1
restarting, 3-9

INITIALDATALOAD run-time parameter, 3-6
INSTALL macro (TACL), A-2
integrity, data, 1-5, 1-6, 2-9
intermediate trails, using, 3-11

K
key

encryption, 4-2
primary, Enscribe, 2-4

key-sequenced files, 2-10
KEYGEN utility, A-2

L
lag

about, 2-18
viewing, 9-18

LAGSTATS parameter, 9-18
latency, managing, 2-18
LEANBIND macro, A-2
libraries

macro, 7-10
Oracle GoldenGate, 6-8

load balancing, using, 2-14
log trails

about, 6-3
managing, 9-8

log, event, 9-15
LOGCONF file, A-4
LOGDUMP program file, A-2
Logger

about, 1-4, 6-3
configuring, 6-5
parameter file, 6-4
process name, changing, 2-19
process report, 9-15

LOGGER program file, A-2
LOGGGS event log, 9-9
LOGGGS file, A-4
LOGPARAM file, 6-4

M
MACRO parameter, 7-6
macros

about, 7-6

macros (continued)
character, changing, 7-8
creating, 7-6
library, creating, 7-10
parameters, using, 7-7
running, 7-8
samples, 7-9
suppressing from report, 7-12
using to

consolidate multiple commands, 7-9
map data, 7-9

mainlib.mac macro library, 7-10
Manager

about, 1-5
commands, 5-1
controlling, 5-3
overview, 5-1
parameters, 5-1
process name, changing, 2-19
process report, 9-9, 9-15

mapping
See columns

MEASFLS utility
estimating SQL update size, 2-5

MGR program, A-2
MIGRATE program, A-2
MRKRGGS file, A-4

N
native applications, libraries for, 6-8
network

data encryption, 4-3
outages, planning for, 2-3

NEWOBJ option
BINDEXIT, 7-3
NLDEXIT, 7-4

NLDEXIT macro, 7-4
NLDLIB macro, 2-12, A-2
NOAUDITREPS parameter, 2-17
NOENCRYPTTRAIL parameter, 4-2
non-TMF

direct file extraction, 3-12
extraction, planning, 2-9
processing flow, 1-11

NonStop text editor, 6-13
NOOSOPEN option, SFGEXIT, 6-10
notices, viewing, 9-15
NULL values, testing for, 8-2
numbers, converting, 8-4

O
Oracle GoldenGate

architecture, 1-3

Index

Index-4

Oracle GoldenGate (continued)
configuration options, 1-1
installation files, A-1
processing options, 1-1, 1-2, 1-7

Oracle tables, loading, 3-7
outages, planning for, 2-3

P
PARAM-TEXT option, SFGEXIT, 6-10
parameters, macro, 7-7
parameters, Oracle GoldenGate

changing, 6-16
DEFGEN, 10-1
file

comments, 6-14
creating, 6-13
name, changing, 2-19

frequently used, managing, 6-16, 7-13
order of, 6-13
overview, 1-7, 6-12
storing, 6-15
substitution, using, 6-17
Syncfile, 10-10
syntax, verifying, 6-16
viewing, 6-15

PARAMS option, MACRO, 7-6
password

database, encrypting, 4-2
in parameter files, 3-4, 3-5, 3-8

PCREATE intercept library, 7-13
primary key updates

in unaudited Enscribe, 2-13
received from open systems, 2-13
replicating, 2-13

primary key, Enscribe, 2-4
PRIVLIB library, 7-13

R
ranges, using, 2-15
Reader

about, 1-7
parameters, 2-6

record range, limiting with ENDKEY, 3-9
record range, limiting with STARTKEY, 3-9
RECORDNAMEPROMPTING option, DEFGEN,

10-2
records

full image format, 2-5, 9-12
selecting, 8-1

relative file operations, 2-10
relative files, replicating, 2-14
REMCTXT file, A-4
REPCTXT file, A-4

REPCTXT0 file, A-4
REPERROR parameter, 9-10
REPGRP file, A-4
Replicat

about, 1-5
bi-directional configuration, 2-16
error handling, 9-10
group, creating, 6-2
load balancing, 2-14
many-to-one configuration, 2-16
online change synchronization, 6-2
parallel processing, 2-17
planning considerations, 2-12
process name, changing, 2-19
process report, 9-9, 9-15

REPLICAT program, A-3
REPNEWCOLUMNS parameter, 2-17
report, process

about, 9-9, 9-15, A-4
aging, 9-17
alternate name for, 2-19

reporting
process events and errors, 9-15

REPR program, A-3
RESETTCPSTATS option, SEND EXTRACT,

9-16
RESTARTCHECKPOINTS option,

SOURCEISFILE, 3-9
RESTORE volume, adding or deleting, 2-9
RETRYOP option, REPERROR, 9-10
REVERSE program, A-3
RMTCTXT file, A-4

S
Safeguard, using with GoldenGate, 2-11
Safeguard, using with Oracle GoldenGate, 6-9
SCANGRP utility, A-3
security

database password, 4-2
GGSCI commands, 4-5
Safeguard, 2-11, 6-9

SEGDUMP utility, A-3
SERVER program, A-3
SFGEXIT module, adding to Safeguard, 2-11,

6-9
SFGEXIT program, A-3
shell routines for user exits, 7-2
SHOWCMD option

BINDEXIT, 7-3
NLDEXIT, 7-4

source definitions, generating, 10-1
SOURCEISFILE parameter, 3-2, 3-9

Index

5

SQL
catalog

about, A-5
definitions, updated, 2-1

datetime types, converting, 8-2
discards, viewing, 9-12
error -8227, 2-16
mapping from Enscribe, 10-5
new columns, replicating, 2-17
updates, compressed, 2-5
views, to filter columns, 3-11

SQL Server tables, loading, 3-7
SQLCOMPS list, A-3
SQLEXEC, using for conflict management, 9-14
stack space requirements, 2-11, 6-7
START EXTRACT command, 3-5
START MANAGER command, 5-3
STARTKEY, limiting record range, 3-9
statistics

processing, 9-18
STATUS option, SEND EXTRACT, 9-16
Syncfile

about, 1-6
process name, changing, 2-19
process report, 9-15
using, 10-9

SYNCFILE program, A-3
SYNCGRP file, A-4
syntax, verifying in parameter file, 6-16
system key

in compressed Enscribe record, 2-4

T
tables

columns, adding, 2-1
creating target based on source, 10-4
definitions, generating, 10-1
dissimilar, mapping, 8-3
non-key sequenced, 2-14
with system keys, replicating, 2-12

TAL Shell Routines in user exits, 7-2
TALUSEREXIT parameter, 7-3
tape restores

avoiding need for, 2-4
by Extract process, 2-3

target definitions
generating, 10-1

tasks, managing, 9-1
TCP/IP

channels, multiple, 3-6
Collector process, 1-4
data encryption, 4-3
error handling, 9-10
using for replication, 3-5

TCPERRS file, A-6
TCPIPPROCESSNAME parameter, 5-2
templates

DDLGEN, 10-5, 10-6
DEFGEN, 10-3

throughput, maximizing, 2-17
TMF

extraction, planning, 2-1
processing flow, 1-9

TMF audit trails
See audit trails

TMFARLB2 library, A-3
TMFARUL2 library, A-3
TMFCOM, 2-3, 2-9
TMPLDB2 file, A-6
TMPLMSA file, A-6
TMPLMSS file, A-6
TMPLORA file, A-6
TMPLSYB file, A-6
TMPLTDM file, A-6
tokens

user, using, 8-4
trail to database utility load, running, 3-5
trails

about, 1-4
creating, 6-2
data format, 1-5
encrypting, 4-2
information, viewing, 9-3
logSee log trails, 9-8
naming, 1-4
numbering, 1-4
purging, 9-4
sizing

initial, 9-2
ongoing maintenance, 9-3

TRANSABORT option, REPERROR, 9-10
transactions

context, retrieving, 7-2
distributed, 1-10, 2-6
grouping, 1-5
integrity of, 1-5

transformation, data, 8-8

U
unstructured file operations, 2-10
updates

before-images, returning, 1-9
compressed, 2-5
to entry-sequenced files, 2-14

user exits
using, 7-1

USEROBJ option
BINDEXIT, 7-3

Index

Index-6

USEROBJ option (continued)
NLDEXIT, 7-4

USRDECT file, 7-2
utilities

EMSCLNT, 5-7, 9-20
MEASFLS, 2-5
Syncfile, 10-9
system, monitoring, 2-11

V
VIEW GGSEVT command, 9-9

W
warnings

viewing, 9-15

WHERE clause, to filter data, 8-1
wildcards

about, 2-19
in command security file, 4-5
in global operations, 2-12
in initial loads, 3-4
in parameter file, 6-15

X
XLIBC library, A-6
XLIBCOB library, A-6

Index

7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Understanding Oracle GoldenGate for HP NonStop
	Oracle GoldenGate Overview
	Oracle GoldenGate Configuration
	Oracle GoldenGate Features

	Oracle GoldenGate Architecture
	Oracle GoldenGate Components
	Extract
	Logger
	Collector
	Trails
	Replicat
	Manager
	Syncfile
	Processing Groups
	Checkpoints
	Parameters
	Reader
	Coordinator

	Oracle GoldenGate Processing
	Initial Data Synchronization
	File to Replicat
	Direct Load
	Direct Bulk Load

	Capturing Data Changes from TMF Applications
	Capturing Changes for Distributed Network Transactions

	Capturing Data Changes from Non-TMF applications
	Using Extract for Data Distribution
	Batch Processing
	Capturing Directly from Files
	Custom Event Processing

	Oracle GoldenGate Commands
	To Start GGSCI

	2 Planning the Configuration
	Planning Overview
	Configuring TMF-Enabled Processing
	Adding Columns to a Source Table
	Ensuring All Audit is Processed
	Keeping Necessary Audit Available for Extract
	Ensuring TMF Cannot Purge Audit
	Copying the Audit to an Alternative Location
	Using Tape Dumps as an Alternative Location

	Minimizing Vulnerability to Outages
	Configuring FUP RELOAD Activity
	Data Compression
	Compressed Enscribe Records
	Compressed SQL Records
	DCOMPRESS File Attribute Not Supported
	AUDITCOMPRESS File Attribute Considerations

	Configuring for Distributed Network Transactions
	Re-configuring TMF

	Configuring Non-TMF-Enabled Processing
	Maintaining Data Integrity
	Supported File Types and Operations
	Authentication for Bound Programs
	System Utilities That Update Databases
	Private Memory and Stack Space
	Impact on Existing Application Performance

	Configuring Oracle Goldengate Global Operations
	GLOBALS Parameter File
	Changing the Default Location of AUDCFG

	Configuring Replication
	Replicating SQL Tables with System Keys
	Replicating Primary Key Updates
	Missing Row Errors
	Non-Audited Target
	Compressed Updates to Enscribe Targets

	Files and Tables Other Than Key-Sequenced
	Load Balancing and Performance Issues
	Potential Problems with Audit Compressed Files
	Conflicts with Updating the Target
	Many-to-One Replication
	Bi-Directional Replication
	Replicating Data to Non-TMF Enabled Databases
	Replicating New SQL Columns

	Configuring for Maximum Throughput
	Extraction
	TMF Extraction
	Non-TMF Data Extraction
	Replication
	Latency Issues
	Capacity Planning
	TMF Data Extraction
	Non-TMF Data Extraction
	Data Transfer into Oracle GoldenGate Trails
	Replicat Throughput

	Changing Default Component Names
	Using Wildcards
	Support for DDL and DDL2
	Specifying Internet Protocol Addresses

	3 Configuring Initial Data Synchronization
	Initial Data Synchronization
	Example Steps for Initial Data Load
	Configure and Run Extract
	Perform Initial Load Using the File to Replicat Method
	Configure and Run Replicat

	Direct Load
	To run direct load:
	Using Wildcards

	Direct Bulk Load
	To run direct bulk load:

	Synchronizing Nonstop Databases Using Database Utilities Through TCP/IP

	Controlling the IP Process for Replicat
	Loading Oracle, Microsoft, or Sybase SQL Server Tables
	Loading to Oracle or SQL Server
	Initial Sync Parameter File Examples
	Sample NonStop to Oracle Parameter Files
	Sample SQL Server Parameter Files

	Limiting the Enscribe Source Key Range for Initial Load
	Restarting an Initial Load
	Loading Initial Data from Windows and Unix
	Integrating Source and Target Data
	Distributing Extracted Data
	Direct File Extraction
	Batch Processing
	One-Time Database Extraction
	Trickle Batch Processing
	Determining the Next File
	When the Next File is Processed

	4 Configuring Oracle GoldenGate Security
	Using Encryption
	How Data is Encrypted
	Encrypting Trail or Extract Files
	Encrypting a Database Password
	Encrypting Data Sent Across TCP/IP

	Generating Encryption Keys
	Using Command Security
	Securing the CMDSEC File

	5 Configuring the Manager and Collector
	Introducing Manager
	Configuring and Starting Manager
	Creating and Configuring the Manager Parameter File
	A Sample Manager Parameter File

	Starting and Stopping Manager

	Configuring and Running the Collector
	Maintaining Ports for Remote Connections through Firewalls
	Configuring Collector
	Configuration Examples

	The TCP/IP Port
	Dynamic Method
	Explicit Method

	Monitoring Collector
	Security Considerations

	Collecting Between Open Systems and NonStop

	6 Configuring Change Synchronization
	Introduction
	Change Synchronization for TMF Applications
	Configuring Extract
	Configuring Trails
	Configuring Replicat

	Change Synchronization for Non-TMF Applications
	Creating the LOGPARM File
	Sample LOGPARM File

	Configuring Logger and GGSLIB
	Starting Logger
	Using Macros to Bind GGSLIB to a Non-TMF Application
	Building GGSLIB
	Private Memory and Stack Space

	Alternate Methods of Binding GGSLIB to an Application
	Using the ?Search Directive
	Non-Native Environments
	Native Mode Itanium Systems

	Libraries for Native Applications
	Running NLDLIB
	Removing a Library

	Activating Authorization of Bound Libraries
	Managing the Authorization Event
	Adding and Verifying the Authorization Event
	Using Different PARAM-TEXT Options
	Getting the Current Status of the Authorization Event

	Working with Parameter Files
	Creating a Parameter File
	Storing Parameter Files
	Viewing a Parameter File
	Changing a Parameter File
	Using OBEY and Macros in Parameters
	Verifying a Parameter File
	Substituting a Parameter

	7 Configuring Custom Operations
	User Exits
	Record Formats for User Exits
	Creating User Exits
	Binding the User Exit
	Binding User Exits in Native Mode

	Debugging Replicat User Exits
	Sample User Exits

	Using Oracle GoldenGate Macros
	Creating a Macro
	Creating Macro Parameters
	Changing the Macro Character
	Running the Macro
	Invoking a Macro Without Parameters
	Sample Macros
	Implementing Multiple Uses of a Statement
	Consolidating Multiple Commands

	Macro Libraries
	Sample Macro Libraries
	Suppressing Report File Listing
	Tracing Parameter Expansion

	Using OBEY Files
	Creating High Pin Processes
	Replicat
	Extract and GGSCI
	TACL DEFINE

	8 Integrating Data
	Selecting Records
	Selecting Records with FILTER
	Selecting Records with WHERE
	Comparing Fields
	Compressed Update Considerations
	Testing for NULL Values

	Column Mapping
	Mapping Between Different Database Structures
	Data Type Conversions
	Oracle GoldenGate User Tokens
	Populating User Tokens in the Trail Header
	Retrieving Values
	Default Mapping
	Mapping Examples
	Legal Column Mapping
	Dangerous Mapping if AUDITCOMPRESS Used on Source File
	Using Constants, Taking Default Values.

	Field Conversion Functions
	Function Arguments
	Arithmetic Expressions
	Null, Invalid, and Missing Columns and Fields
	Overriding Exceptional Conditions

	Retrieving Before Values

	9 Managing and Monitoring
	Managing Tasks
	Getting Information on Tasks
	Managing Tasks Using the Process Name

	Managing Oracle GoldenGate Trails
	Initial Allocation of Storage for Trails
	To estimate the required trail space

	Ongoing Trail Management
	Setting the Size of the Trail
	Setting the PURGEOLDEXTRACTS rules
	Manager Purge Trail Processing
	Recommendations for Managing Trail Purges

	Oracle GoldenGate Self Describing Trail Files
	Understanding the Self-Describing Trail Behavior

	Managing Log Trails
	Monitoring Processing
	Error Handling
	Error Handling Parameters
	Handling Replicat Errors
	TCP/IP Error Handling
	Altering TCP/IP Error Handling Parameters

	Using Discard Files
	Using the Discard File
	Using the SQL Formatted Discard File

	Conflict Detection with SQLEXEC
	A SQLEXEC Example

	Using the Event Log
	Using the Process Report
	Viewing Process Reports
	Storing Process Reports
	Managing Process Reports
	Generating Run-time Statistics

	Viewing Record Counts
	The STATS Command
	Collecting Events from Other Systems
	Running EMSCLNT on Other Operating Systems

	10 Using Oracle GoldenGate Utilities
	Generating Data Definitions with DEFGEN
	Configuring DEFGEN Interactively
	Configuring DEFGEN in Batch
	A Sample Definitions File
	Running DEFGEN to Use Existing Definitions

	Creating Target Database DDL
	Configuring DDLGEN Interactively
	Configuring DDLGEN in Batch
	Addressing Enscribe DDL Peculiarities
	Understanding the Template File
	Sample Template File
	Sample NonStop SQL Table Definition
	Modifying the Sample Template File
	Generating the Sample Definition

	Using Syncfile
	Implementing Syncfile

	A Oracle Oracle GoldenGate Components
	Programs, Utilities, Macros, and Libraries
	Oracle GoldenGate Database
	External Component Summary
	Templates, Demonstrations, and Sample Code

	B Installing Event Detail Text
	Standard Installation
	Custom Installation
	Customizing Error Messages

	Index

