
Oracle® Database
Oracle GoldenGate Microservices
Documentation

(19c)
G17497-01
January 2025

Oracle Database Oracle GoldenGate Microservices Documentation, (19c)

G17497-01

Copyright © 2024, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiv

Documentation Accessibility xiv

Related Information xiv

Conventions xiv

1 Concepts

Oracle GoldenGate 1-1

Why Do You Need Oracle GoldenGate? 1-1

When Do You Use Oracle GoldenGate? 1-2

Topologies for Oracle GoldenGate 1-2

Oracle GoldenGate Product Family 1-3

Oracle GoldenGate Microservices Architecture 1-4

Features of Oracle GoldenGate Microservices Architecture 1-4

Access Points for Oracle GoldenGate Microservices 1-5

Admin Client 1-6

REST API 1-6

Components of Oracle GoldenGate Microservices Architecture 1-6

Directories and Variables in Microservices Architecture 1-6

About Deployments 1-9

What is a Deployment? 1-9

Secure Deployment 1-9

Non-Secure Deployment 1-9

Local and Remote Deployments 1-9

About Service Manager 1-10

About Administration Server 1-10

About Distribution Server 1-11

About Receiver Server 1-12

About Target-Initiated Distribution Path 1-13

About Performance Metrics Server 1-13

Components of Data Replication in Oracle GoldenGate 1-14

Types of Data Replication Configurations 1-14

Oracle GoldenGate Processes 1-14

iii

Extract 1-14

Replicat 1-14

Distribution Paths for Data Transport 1-15

Oracle GoldenGate Objects 1-15

Trail Files 1-15

Parameter Files 1-16

Checkpoint Files 1-17

2 Install and Patch

Download Oracle GoldenGate Software 2-1

Verify Certification and System Requirements 2-1

Operating System Requirements 2-2

Memory Requirements 2-2

Disk Requirements 2-3

Disk Requirements for Oracle GoldenGate Installation Files 2-3

Temporary Disk Requirements 2-3

Other Disk Space Considerations 2-4

Network 2-4

Operating System Privileges 2-5

Security and Other Considerations 2-5

Windows Console Character Sets 2-6

Other Operating System Requirements 2-6

Prerequisites 2-7

Setting TNS_ADMIN 2-7

Specifying Oracle Variables on UNIX and Linux Systems 2-7

Specifying Oracle Variables on Windows Systems 2-8

What are the Key Microservices Architecture Directories and Variables? 2-9

Installing Oracle GoldenGate 2-12

Installing Oracle GoldenGate Microservices Architecture 2-12

Performing an Interactive Installation with OUI for MA 2-13

Performing a Silent Installation with OUI 2-14

Integrating Oracle GoldenGate Microservices Architecture into a Cluster 2-15

Post-installation Tasks 2-15

Software Installation Directories and Programs for Oracle GoldenGate 2-15

Installing Patches for Oracle GoldenGate Microservices Architecture 2-17

Downloading Patches for Oracle GoldenGate 2-17

Patching Oracle GoldenGate Microservices Architecture Using OPatch 2-18

Uninstalling the Patch for Oracle and Non-Oracle Databases Using OPatch 2-21

Uninstalling Oracle GoldenGate Microservices Architecture 2-21

Removing Deployments and Service Manager 2-21

iv

Removing Deployments and Service Manager Using Oracle GoldenGate
Configuration Assistant 2-21

Using Oracle GoldenGate Configuration Assistant - Silent 2-22

Files to be Removed Manually 2-22

Uninstalling Microservices Architecture with Oracle Universal Installer 2-23

3 Deploy

Add a Deployment 3-1

Using OGGCA Wizard for Deployment 3-1

Start the OGGCA Wizard 3-1

Select Service Manager Options 3-2

Configuration Options 3-3

Deployment Details 3-3

Select Deployment Directories 3-3

Specify Environment Variables 3-4

Service Manager Administrator Account 3-6

Specify Security Options 3-7

Advanced Security Settings 3-8

Sharding Options 3-9

Port Settings 3-9

Replication Settings 3-9

Summary 3-10

Configure Deployment 3-11

Finish 3-12

Add a Deployment to an Existing Service Manager 3-12

Add a Deployment in Silent Mode using OGGCA 3-13

First Access to the Deployment from the Service Manager 3-13

Add Deployment Users from the Service Manager 3-13

Add Deployment Users from the Administration Server 3-15

Manage Deployments from the Service Manager 3-16

Quick Tour of the Service Manager 3-16

How to Start and Stop the Service Manager 3-17

How to Change Deployment Details and Configuration 3-18

How to Interpret the Log Information 3-18

How to Enable and Use Debug Logging 3-18

How to Start and Stop Service Manager and Deployments 3-19

Using Scripts to Start and Stop a Deployment 3-19

Remove a Deployment 3-20

Before Removing the Deployment 3-20

Start OGGCA to Remove Deployment 3-20

Remove the Service Manager 3-21

v

Start OGGCA to Remove the Service Manager 3-21

Files to be Removed Manually After Removing Deployment 3-21

View and Edit Services Configuration 3-22

4 Prepare

Prepare Oracle Database 4-1

Prepare Database Users and Privileges for Oracle 4-1

Grant User Privileges for Oracle Database 21c and Lower 4-1

Privileges for Capturing from Oracle Data Vault 4-5

Configuring Connections for Integrated Processes 4-6

Configuring Logging Properties 4-6

Enabling Minimum Database-level Supplemental Logging 4-8

Enabling Schema-level Supplemental Logging 4-9

Enabling Table-level Supplemental Logging 4-10

Enabling Oracle GoldenGate in the Database 4-12

Configuring Oracle GoldenGate in a Multitenant Container Database 4-12

Using the Root Container Extract from PDB 4-12

Applying to Pluggable Databases 4-13

Excluding Objects from the Configuration 4-14

Requirements for Configuring Container Databases for Oracle GoldenGate 4-14

Setting Flashback Query 4-15

Managing Server Resources 4-17

Ensuring Row Uniqueness in Source and Target Tables 4-17

Oracle: Supported Data Types, Objects, and Operations for DDL and DML 4-18

Details of Support for Oracle Database Editions 4-18

Details of Support for Oracle Data Types and Objects 4-19

Details of Support for Objects and Operations in Oracle DML 4-23

Details of Support for Objects and Operations in Oracle DDL 4-27

Prepare Oracle GoldenGate 4-31

Oracle GoldenGate Users 4-31

Configure Secure Database Connections from Oracle GoldenGate 4-31

Assigning Credentials to Oracle GoldenGate 4-33

Securing the Oracle GoldenGate Credentials 4-33

Add and Alter Database Credentials 4-34

Before Adding Extract and Replicat Processes 4-34

Add TRANDATA 4-34

Add a Checkpoint Table 4-35

Add Heartbeat Table 4-35

vi

5 Extract

Quick Tour of the Administration Service Overview Page 5-1

About Extract 5-1

Add an Extract 5-2

Using Extract Actions 5-6

Downstream Extract for Downstream Database Mining 5-7

Configure Extract for a Downstream Deployment 5-8

Evaluate Extract Options for a Downstream Deployment 5-8

Prepare the Source Database for the Downstream Deployment 5-8

Prepare the Downstream Mining Database to Receive Online Redo Logs 5-12

Enable Downstream Extract to Work with ADG 5-15

Use Cases for Downstream Mining Configuration 5-17

Case 1: Capture from One Source Database in Real-time Mode 5-17

Case 2: Capture from Multiple Sources in Archive-log-only Mode 5-20

Case 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only
Mode 5-22

Positioning Extract to a Specific Start Point 5-27

6 Distribute

About Distribution Service and Distribution Path 6-1

Distribution Path Streaming Protocols 6-2

Add a Distribution Path 6-2

Add a Target-Initiated Distribution Path 6-7

Manage Distribution Paths 6-13

Manage Distribution Paths 6-13

Reposition a Path 6-13

Change the Path Filtering 6-14

Review the Distribution Path Information 6-17

7 Replicat

Quick Tour of the Administration Service Overview Page 7-1

About Replicat 7-1

Types of Replicat 7-2

About Classic or Non-Integrated Replicat 7-2

About Coordinated Replicat 7-3

About Barrier Transactions 7-4

How Barrier Transactions are Processed 7-4

About Integrated Replicat 7-5

Benefits of Integrated Replicat 7-7

Integrated Replicat Requirements 7-7

vii

About Parallel Replicat 7-7

Benefits of Parallel Replicat 7-8

Parallel Replication Architecture 7-9

Basic Parameters for Parallel Replicat 7-9

Select a Replicat Type for the Deployment 7-10

Add a Replicat 7-15

Basic Parameters for Parallel Replicat 7-17

Additional Parameters for Integrated Replicat 7-18

Example: Add a Nonintegrated Parallel Replicat Using Admin Client 7-20

Using Replicat Actions 7-20

Review Critical Events 7-21

8 Instantiate

About Instantiating with Initial Load Extract 8-1

Add Initial Load Extract Using the Admin Client 8-2

Step 1: Create a Primary Extract 8-2

Step 2: Determine the Instantiation SCN 8-4

Step 3: Create and Start the Initial Load Replicat 8-5

Step 4: Create and start the Initial Load Extract 8-6

Step 5: Create the Distribution Paths 8-7

Step 6: Create the Primary Replicat 8-8

9 Administer

Data Management 9-1

Oracle: DDL Replication 9-1

Prerequisites for Configuring DDL 9-1

Overview of DDL Synchronization 9-1

Limitations of Oracle GoldenGate DDL Support 9-2

Guidelines for Configuring DDL Replication for Oracle 9-4

Understanding DDL Scopes 9-6

Correctly Identifying Unqualified Object Names in DDL 9-8

Enabling DDL Support 9-9

Filtering DDL Replication 9-9

Special Filter Cases 9-11

How Oracle GoldenGate Handles Derived Object Names 9-11

Using DDL String Substitution 9-14

Controlling the Propagation of DDL to Support Different Topologies 9-15

Add Supplemental Log Groups Automatically 9-17

Removing Comments from Replicated DDL 9-17

Replicating an IDENTIFIED BY Password 9-17

viii

How DDL is Evaluated for Processing 9-18

Viewing DDL Report Information 9-19

Tracing DDL Processing 9-21

Procedural Replication 9-21

About Procedural Replication 9-21

Procedural Replication Process Overview 9-22

Determining Whether Procedural Replication Is On 9-22

Enabling and Disabling Supplemental Logging 9-23

Filtering Features for Procedural Replication 9-24

Handling Procedural Replication Errors 9-25

Listing the Procedures Supported for Oracle GoldenGate Procedural Replication 9-25

Monitoring Oracle GoldenGate Procedural Replication 9-26

Execute Commands, Stored Procedures, and Queries with SQLEXEC 9-27

Performing Processing with SQLEXEC 9-27

Using SQLEXEC 9-27

Apply SQLEXEC as a Standalone Statement 9-27

Apply SQLEXEC within a TABLE or MAP Statement 9-28

Using Input and Output Parameters 9-30

Handling SQLEXEC Errors 9-32

Additional SQLEXEC Guidelines 9-33

Set up and Use the Master Keys and Encryption Keys 9-34

Access the Parameter Files 9-34

Configure an Encryption Profile 9-35

Access Extract and Replicat Log Information 9-36

Mapping and Manipulating Data 9-36

Guidelines for Using Self-describing Trails 9-37

Parameters that Control Mapping and Data Integration 9-37

Mapping between Dissimilar Databases 9-37

Globalization Considerations when Mapping Data 9-38

Mapping Columns Using TABLE and MAP 9-41

Configuring Global Column Mapping with COLMATCH 9-44

Understanding Default Column Mapping 9-46

Data Type Conversions 9-47

Selecting and Filtering Rows 9-48

Retrieving Before and After Values 9-53

Selecting Columns 9-54

Selecting and Converting SQL Operations 9-54

Using Transaction History 9-55

Testing and Transforming Data 9-56

Using Tokens 9-62

Bi-Directional Replication 9-63

Prerequisites for Bidirectional Replication 9-64

ix

MySQL: Bi-Directional Replication 9-69

PostgreSQL: Bi-Directional Replication 9-70

Preparing DBFS for an Active-Active Configuration 9-70

Using Edition-Based Redefinition 9-75

Error Management 9-76

Automatic Conflict Detection and Resolution 9-76

About Automatic Conflict Detection and Resolution 9-77

Configuring Delta Conflict Detection and Resolution 9-86

Managing Automatic Conflict Detection and Resolution 9-89

Monitoring Automatic Conflict Detection and Resolution 9-92

Manual Conflict Detection and Resolution 9-95

Overview of the Oracle GoldenGate CDR Feature 9-96

Configuring the Oracle GoldenGate Parameter Files for Error Handling 9-96

Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution 9-101

Making the Required Column Values Available to Extract 9-101

Viewing CDR Statistics 9-102

CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD 9-103

CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX 9-109

CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE 9-111

Error Handling 9-114

Overview of Oracle GoldenGate Error Handling 9-114

Handling Extract Errors 9-114

Handling Replicat Errors during DML Operations 9-115

Handling Replicat Errors during DDL Operations 9-118

Handling TCP/IP Errors 9-118

Maintaining Updated Error Messages 9-119

Resolving Oracle GoldenGate Errors 9-119

Trail File Management 9-119

Manage Trail Files 9-119

Assign Storage for Oracle GoldenGate Trails 9-119

Estimate Space for the Trails 9-120

Add a Trail 9-120

Automate Maintenance Tasks 9-121

Admin Client Command Line Interface for Oracle GoldenGate Microservices 9-122

About Admin Client 9-122

Using Wildcards in Command Arguments 9-125

Using Command History 9-125

Storing and Calling Frequently Used Command Sequences 9-125

Controlling Extract and Replicat 9-126

Deleting Extract and Replicat 9-127

Specifying Object Names in Oracle GoldenGate Input 9-128

Specifying Filesystem Path Names in Parameter Files on Windows Systems 9-128

x

Supported Database Object Names 9-128

Specifying Names that Contain Slashes 9-130

Qualifying Database Object Names 9-130

Specifying Case-Sensitive Database Object Names 9-132

Using Wildcards in Database Object Names 9-133

Differentiating Case-Sensitive Column Names from Literals 9-135

Creating a Parameter File Using Admin Client 9-135

Creating a Parameter File with a Text Editor 9-137

Simplifying the Creation of Parameter Files 9-137

Using Wildcards 9-137

Using OBEY 9-137

Using Macros 9-138

Using Parameter Substitution 9-138

Validating a Parameter File 9-138

Simplify and Automate Work with Oracle GoldenGate Macros 9-139

Define a Macro 9-140

Call a Macro 9-141

Call a Macro that Contains Parameters 9-142

Call a Macro without Input Parameters 9-144

Calling Other Macros from a Macro 9-145

Create Macro Libraries 9-146

Tracing Macro Expansion 9-147

Using User Exits to Extend Oracle GoldenGate Capabilities 9-147

When to Implement User Exits 9-148

Making Oracle GoldenGate Record Information Available to the Routine 9-148

Creating User Exits 9-149

Supporting Character-set Conversion in User Exits 9-150

Using Macros to Check Name Metadata 9-151

Describing the Character Format 9-151

Upgrading User Exits 9-153

Viewing Examples of How to Use the User Exit Functions 9-153

10

Performance

Monitor 10-1

Commands Used for Monitoring 10-1

Monitor Processes from the Performance Metrics Service 10-4

Review Messages from Messages Tab 10-4

Review Status Changes 10-5

Purge Datastore 10-5

Protocols for Performance Monitoring for Different Operating Systems 10-6

Monitor an Extract Recovery 10-6

xi

Monitor Lag 10-6

About Lag 10-6

Monitor Lag Using Automatic Heartbeat Tables 10-7

Db2 z/OS: Interpret Statistics for Update Operations 10-17

Monitor Processing Volume 10-17

Use the Error Log 10-18

Use the Process Report 10-18

Scheduling Runtime Statistics in the Process Report 10-19

Viewing Record Counts in the Process Report 10-19

Prevent SQL Errors from Filling the Replicat Report File 10-19

Use the Discard File 10-20

Maintain Discard and Report Files 10-20

Parameters Used to Interpret Synchronization Lag 10-21

Tuning 10-21

Tuning the Performance of Oracle GoldenGate 10-21

11

Autonomous Database

About Capturing and Replicating Data Using Autonomous Databases 11-1

Details of Support When Using Oracle GoldenGate with Autonomous Databases 11-1

Configure Extract to Capture from an Autonomous Database 11-3

Establishing Oracle GoldenGate Credentials 11-3

Prerequisites for Configuring Oracle GoldenGate Extract to Capture from Autonomous
Databases 11-3

Configure Extract to Capture from an Autonomous Database 11-4

Configure Replicat to Apply to an Oracle Autonomous Database 11-8

Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous Database 11-8

Configure Oracle GoldenGate for an Autonomous Database 11-9

Obtain the Autonomous Database Client Credentials 11-9

Configure Replicat to Apply to an Autonomous Database 11-10

12

Upgrade

Obtaining the Oracle GoldenGate Distribution 12-1

Prerequisites 12-1

Oracle GoldenGate Upgrade Considerations 12-1

Extract Upgrade Considerations 12-2

Replicat Upgrade Considerations 12-2

Upgrading Oracle GoldenGate Microservices – GUI Based 12-2

Upgrading Oracle GoldenGate Microservices Using REST APIs 12-3

xii

13

Appendix

Using the LogDump Utility to Access Trail File Records 13-1

Trail Recovery Mode 13-1

Trail Record Format 13-1

Trail File Header Record 13-2

Tokens Area 13-8

Oracle GoldenGate Operation Types 13-8

Checkpoint Tables Additional Details 13-14

Internal Checkpoint Information 13-16

INFO EXTRACT SHOWCH Command: Checkpoint Information 13-17

INFO REPLICAT, SHOWCH: Checkpoint Information 13-19

Supported Character Sets 13-19

Supported Character Sets - Oracle 13-20

Supported Character Sets - Non-Oracle 13-27

Supported Locales 13-35

Commit Sequence Number (CSN) 13-40

Using the Commit Sequence Number 13-41

Connecting Microservices and Classic Architectures 13-43

Connect Oracle GoldenGate Classic Architecture to Microservices Architecture 13-43

Connect Oracle GoldenGate Microservices Architecture to Classic Architecture 13-45

xiii

Preface

The Oracle GoldenGate Microservices Documentation contains the Oracle GoldenGate
Microservices concepts, tasks, advance tasks, security, and other reference information.

Audience
This guide is intended for system administrators and database users to learn about Oracle
GoldenGate. It is assumed that readers are familiar with web technologies and have a general
understanding of Windows and UNIX platforms.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Information
• Oracle GoldenGate Documentation

• Oracle GoldenGate Veridata

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, such as "From the File menu, select Save." Boldface also is used for
terms defined in text or in the glossary.

italic

italic
Italic type indicates placeholder variables for which you supply particular
values, such as in the parameter statement: TABLE table_name. Italic type
also is used for book titles and emphasis.

monospace
MONOSPACE

Monospace type indicates code components such as user exits and scripts;
the names of files and database objects; URL paths; and input and output text
that appears on the screen. Uppercase monospace type is generally used to
represent the names of Oracle GoldenGate parameters, commands, and user-
configurable functions, as well as SQL commands and keywords.

Preface

xiv

https://www.oracle.com/corporate/accessibility/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/goldengate/index.html
https://docs.oracle.com/en/middleware/goldengate/veridata/index.html

Convention Meaning

UPPERCASE Uppercase in the regular text font indicates the name of a process or utility
unless the name is intended to be a specific case. Keywords in upper case
(ADD EXTRACT, ADD EXTTRAIL, FORMAT RELEASE).

LOWERCASE Names of processes to be written in lower case. Examples: ADD EXTRACT
exte, ADD EXTRAIL ea.

{ } Braces within syntax enclose a set of options that are separated by pipe
symbols, one of which must be selected, for example: {option1 | option2 |
option3}.

[] Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group_name [,
SAVE count]. Multiple options within an optional element are separated by a
pipe symbol, for example: [option1 | option2].

Sample Locations Compass directions such as east, west, north, south to be used for
demonstrating Extract and Replicat locations.

Datacenters names to use the standard similar to dc1, dc2.

Group names Prefixes for each process, as follows:
• Extract: ext. Usage with location: extn, where n indicates 'north' compass

direction.
• Replicat: rep. Usage with location: repn, where n indicates 'north'

compass direction.
• Distribution Path: dp. Usage with location: dpn, where n indicates 'north'

compass direction.
• Checkpoint table: ggs_checkpointtable
• Trail file names: e or d depending on whether the trail file is for the Extract

or distribution path. Suffix derived in alphabetical order. Usage for an
Extract trail file: ea, eb, ec.

• Trail file subdirectory: The name will use compass directions to refer to the
trail subdirectories. Example for trail subdirectory name would be /
east, /west, /north, /south.

Preface

xv

1
Concepts

Learn about the concepts of Oracle GoldenGate, its components, and Microservices
Architecture.

Oracle GoldenGate
Oracle GoldenGate is an application that provides real-time data integration, data replication,
transactional change data capture, data transformations, high availability solutions, and
verification between operational and analytical enterprise systems.

With Oracle GoldenGate, you can move committed transactions across multiple systems in
your enterprise over a secure or non-secure configuration. It supports a wide range of
databases and data sources, providing replication between same types or between different
databases.

For example, you could replicate between an Oracle Autonomous Database instance and an
Oracle Database instance, or between two Oracle Database instances set up as source and
target, or a two-way replication between MySQL database and Oracle Database instances. In
addition, you can replicate to Java Messaging Queues, flat files, and to Big Data in
combination with Oracle GoldenGate for Big Data.

To learn more about Oracle GoldenGate products, see https://www.oracle.com/integration/
goldengate/.

Why Do You Need Oracle GoldenGate?
Enterprise data is typically distributed across the enterprise in heterogeneous databases. To
get data between different data sources, you can use Oracle GoldenGate to load, distribute,
and filter transactions within your enterprise in real-time and enable migrations between
different databases in near zero-downtime.

To do this, you need a means to effectively move data from one system to another in real-time
and with zero-downtime. Oracle GoldenGate is Oracle’s solution to replicate and integrate
data.

In a data replication environment, Oracle GoldenGate performs the following functions:

• Data movement in real-time, reducing latency.

• Only committed transactions are moved, to leverage consistency and improved
performance.

• REST-based microservices to handle different types of data replication environments.

• High performance with minimal overhead on the underlying databases and infrastructure.

• Integration with a wide range of databases providing complete support for replication
across different data types, database objects and other requirements.

• Security configurations at different levels and different topologies for a customized secure
configuration.

1-1

https://www.oracle.com/integration/goldengate/
https://www.oracle.com/integration/goldengate/

When Do You Use Oracle GoldenGate?
Oracle GoldenGate meets almost any data movement requirement. Some of the most common
use cases include:

Business Continuity and High Availability

Business Continuity is the ability of an enterprise to provide its functions and services without
any lapse in its operations. High Availability is the highest possible level of fault tolerance. To
achieve business continuity, systems are designed with multiple servers, multiple storage, and
multiple data centers to provide high availability that supports business continuity in true sense.
To establish and maintain such an environment, data needs to be moved between these
multiple servers and data centers, which is easily done using Oracle GoldenGate.

Consider a scenario where you are working in a multinational bank that has its headquarters in
London, UK. You work in one of the banks’ branches in Bangalore, India. This bank uses a
specific account for its financial application that is used globally at all the branches. You have
been asked by your manager to daily synchronize the transactions that have happened for this
account in the database in the Bangalore branch with the centralized database situated at the
UK. The volume of transactions is massive, and even the slightest delay can greatly impact the
business. This same process is required at multiple destinations for every database in all the
branches of the bank worldwide. This process has to be monitored continuously, preferably
through some sort of GUI-based tool for the ease of management. Additionally, the bank has
several other, non-critical applications used at all the branches. These applications are based
on heterogeneous databases, such as MySQL, but the transactions done over these
databases also must be loaded into an Oracle Database located at the headquarters. The
replication technology used must support both Oracle and heterogeneous databases so that
they can talk to each other. Oracle GoldenGate is an apt solution in such a scenario.

Initial Load and Database Migration

Initial load is a process of extracting data records from a source database and loading those
records onto a target database. Initial load is a data migration process that is performed only
once. Oracle GoldenGate allows you to perform initial load data migrations without taking your
systems offline.

Data Integration

Data integration involves combining data from several disparate sources, which are stored
using various technologies, and provide a unified view of the data. Oracle GoldenGate
provides real-time data integration.

Topologies for Oracle GoldenGate
After installation, Oracle GoldenGate can be configured to meet your organization's business
requirements.

Oracle GoldenGate can be configured in different topologies, ranging from simple
unidirectional topology to more complex peer-to-peer. Supported topologies depend on the
underlying database requirements and its supported configurations.

Chapter 1
Oracle GoldenGate

1-2

Oracle GoldenGate Product Family
There are a wide range of products in the Oracle GoldenGate product family.

• Oracle GoldenGate for Oracle Database: Oracle GoldenGate Microservices for Oracle
database provides all the data replication features of Oracle GoldenGate with the features
of Oracle Database.

• Oracle GoldenGate for Non-Oracle Databases: Oracle GoldenGate Microservices for
Oracle database provides all the data replication features of Oracle GoldenGate with all
the supported databases including Db2 for i, Db2 z/OS, Db2 LUW, MySQL, PostgreSQL,
SQL Server, Sybase, Oracle TimesTen, Teradata.

• OCI GoldenGate: Oracle Cloud Infrastructure GoldenGate is a fully managed, native cloud
service that moves data in real-time, at scale. OCI GoldenGate processes data as it moves
from one or more data management systems to target databases. You can also design,
run, orchestrate, and monitor data replication tasks without having to allocate or manage
any compute environments.

• Oracle GoldenGate Free: Oracle GoldenGate Free provides all the features of the
licensed Oracle GoldenGate product, as well as a recipe-driven user interface to easily
create and manage replication pipelines. GoldenGate Free deploys from a Docker
container onto laptops, on-premises, or any cloud, for free.

• Oracle GoldenGate Microservices for Marketplace: Oracle GoldenGate Microservices
on Marketplace allows you to deploy Oracle GoldenGate in an off-box architecture, which
means you can run and manage your Oracle GoldenGate deployment from a single
location.

• Oracle GoldenGate for HP NonStop (Guardian): Oracle GoldenGate for HP NonStop
enables you to manage business data at a transactional level by extracting and replicating
selected data records and transactional changes across a variety of heterogeneous
applications and platforms.

Chapter 1
Oracle GoldenGate

1-3

• Oracle GoldenGate Veridata: Oracle GoldenGate Veridata compares one set of data to
another and identifies data that is out-of-sync, and allows you to repair any out-of-sync
data.

• Oracle GoldenGate for Distributed Applications and Analytics: Oracle GoldenGate for
Distributed Applications and Analytics includes Oracle Transaction Manager for
Microservices Enterprise Edition, GoldenGate handlers for Big Data, NoSQL, Messaging,
Data Warehouse and Data Lakehouse.

• Oracle GoldenGate Plug-in for EMCC: The Enterprise Manager Plug-in for Oracle
GoldenGate extends the Oracle Enterprise Manager Cloud Control and provides visual
support for monitoring and managing Oracle GoldenGate processes.

Oracle GoldenGate Microservices Architecture
Oracle GoldenGate Microservices Architecture (MA) allows you to configure and manage data
replication over homogeneous or heterogeneous database environments using RESTful
services. These microservices can be accessed using various interfaces including a web
interface, command line interface, REST API, or any other service that allows accessing
REST-based microservices.

The following diagram illustrates the replication process cycle within a secure (HTTPS) or non-
secure (HTTP) environment.

Features of Oracle GoldenGate Microservices Architecture
Oracle GoldenGate Microservices Architecture handles different tasks performed at different
stages of the data replication cycle. Some of the product features include the following:

• Oracle GoldenGate Microservices Architecture is bundled with utilities required to
configure microservices associated with each deployment. See Components of Oracle
GoldenGate Microservices Architecture.

Chapter 1
Oracle GoldenGate Microservices Architecture

1-4

• It is designed with the industry-standard HTTPS communication protocol and the
JavaScript Object Notation (JSON) data interchange format.

• The architecture provides options to secure the data replication environment with a variety
of security strategies including securing data at rest and in motion, TLS encryption, OAuth
2.0 authentication and authorization, integration with external user authentication services
among others.

Access Points for Oracle GoldenGate Microservices
Oracle GoldenGate microservices are accessible from a variety of clients or service interfaces.
You can use these service interfaces to connect or log in to the microservices and set up data
replication tasks, manage and monitor processes using statistical data, tune performance,
configure security options, and many other associated tasks.

The Oracle GoldenGate Microservices Architecture is bundled with the following service
interfaces:

• Admin Client: Provides access to microservices from the command line.

• Browser-based user interface for a GUI-based experience

• REST API service endpoints

The following diagram shows a variety of clients (Oracle products, command line interface,
browsers, and programmatic REST API interfaces) that you can use to access and manage
deployments, microservices, and all other Oracle GoldenGate processes.

Microservices Architecture includes an HTML5 based web interface to administer, manage,
monitor, and secure deployments. You can access this web interface with the help of URLs
specific to each microservice and the Service Manager. The web interface includes the Service

Chapter 1
Oracle GoldenGate Microservices Architecture

1-5

Manager, Administration Service, Distribution Service, Receiver Service, and the Performance
Monitoring Service.

You can use these web interface access points to create and run all Extract, Replicat, and
Distribution path processes. Along with this, you can set up database credentials, add users
that can access the deployment after defining roles for them, and monitor the performance of
processes.

See About Extract and About Replicat.

The REST API provides service endpoints to manage Oracle GoldenGate deployments and
replication services. See REST API Documentation.

You can use any of these options to work with your Oracle GoldenGate Microservices
Architecture setup.

Admin Client
The Admin Client is a command line utility (similar to the classic GGSCI utility). You can use it
to issue the complete range of commands that configure, control, and monitor Oracle
GoldenGate. See About Admin Client.

Admin Client is used to create, modify, and remove processes, instead of using the MA web
user interface. The Admin Client program is located in the $OGG_HOME/bin directory,
where $OGG_HOME is the Oracle GoldenGate home directory. If you need to automate the Admin
Client connection with the deployment, you can use an Oracle Wallet to store the user
credentials. The credentials stored must have the following characteristics:

• Single user name (account) and password

• Local to the environment where the Admin Client runs

• Available only to the currently logged user

• Managed by the Admin Client

• Referenced using a credential name

• Available for Oracle GoldenGate deployments and proxy connections.

REST API
The REST API for Oracle GoldenGate provides service endpoints that you use to perform
various data replication tasks directly from the REST API interface. This is an alternative to
using the web interface or the command line to set up data replication processes and tasks.

See REST API Documentation.

Components of Oracle GoldenGate Microservices Architecture

Directories and Variables in Microservices Architecture
The Microservices Architecture is designed with a simplified installation and deployment
directory structure.

This directory structure is based on the Linux Foundation Filesystem Hierarchy Standard.
Additional flexibility has been added to allow parts of the deployment subdirectories to be
placed at other locations in the file system or on other devices, including shared network
devices. The design comprises a read-only Oracle GoldenGate home directory where Oracle

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-6

https://docs.oracle.com/en/middleware/goldengate/core/21.1/oggra/index.html
https://docs.oracle.com/en/middleware/goldengate/core/21.3/oggra/

GoldenGate Microservices Architecture is installed and custom deployment specific directories
are created as follows:

• bin
• cfgtoollogs
• deinstall
• diagnostics
• include
• install
• inventory
• jdk
• jlib
• lib

– instantclient
– sql
– utl

• OPatch
• oraInst.loc
• oui
• srvm
The following figure shows the files and directories under the Services Manager (srvm)
directory:

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-7

The following table describes the key MA directories and the variables that are used when
referring to those directories during an Oracle GoldenGate installation. When you see these
variables in an example or procedure, replace the variable with the full path to the
corresponding directory path in your enterprise topology.

Directory Name Variable Description Default Directory Path

Oracle GoldenGate
home

OGG_HOME The Oracle GoldenGate
home that is created on
a host computer is the
directory that you
choose to install the
product. This read-only
directory contains binary,
executable, and library
files for the product.

/
ogg_install_loca
tion

Deployment etc home OGG_ETC_HOME The location where your
deployment
configuration files are
stored including
parameter files.

/
ogg_deployment_l
ocation/etc

Deployment
configuration home

OGG_CONF_HOME The location where each
deployment information
and configuration
artifacts are stored.

/
ogg_deployment_l
ocation/etc/conf

Deployment security
home

OGG_SSL_HOME The location where each
deployment security
artifacts (certificates,
wallets) are stored.

/
ogg_deployment_l
ocation/etc/ssl

Deployment variable
home

OGG_VAR_HOME The location where each
deployment logging and
reporting processing
artifacts are stored.

/
ogg_deployment_l
ocation/var

Deployment data home OGG_DATA_HOME The location where each
deployment data
artifacts (trail files) are
stored.

/
ogg_deployment_l
ocation/var/lib/
data

You can change the default location of all of these to customize where you want to store these
files.

In a configuration where the OGG_VAR_HOME is a local directory and the OGG_HOME is a shared
read-only remote directory, many deployments with local OGG_VAR_HOME can share one read-
only shared OGG_HOME.

This directory design facilitates a simple manual upgrade. To upgrade, you stop the services
and then set the OGG_HOME in the web interface (or via a REST command) and then restart the
processes. On restart, Oracle GoldenGate picks up the updated environment variables. You
simply switch a deployment to use a new Oracle GoldenGate release by changing the Oracle
GoldenGate home directory path in the Service Manager to a new Oracle GoldenGate home
directory, which completes the upgrade. Restart the microservices, Extract and Replicat
processes.

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-8

About Deployments
A deployment is a configuration to set up for Oracle GoldenGate Microservices to allow
creating users, choose if you want to create a secure SSL environment, define the host and
port for various microservices offered with Oracle GoldenGate Microservices Architecture.
When you add a deployment for the first time, you can set up a new Service Manager and then
add more deployments to the existing Service Manager.

What is a Deployment?
A deployment is a configuration package to set up Oracle GoldenGate Microservices for your
choice of database. Deployments can be setup to be secure or non-secure and are added to a
Service Manager.

Oracle GoldenGate Configuration Wizard (OGGCA) is a utility that allows you to configure your
deployments. See the Add a Deployment topic to learn more about using OGGCA to configure
various options associated with a deployment.

When you start the deployment configuration for the first time on the host server:

• Decide if you need a secure or non-secure deployment. This is because you cannot
change from secure to non-secure or non-secure to secure deployments after
configuration.

• Configure a new Service Manager on your host server. After the first time configuration, all
new deployments should be added to the existing Service Manager available on the host
server.

Note:

Oracle recommends that you have a single Service Manager per host server, to avoid
redundant upgrade and maintenance tasks with Oracle GoldenGate releases.

Secure Deployment
If you decide to set up a secure deployment, then the deployment configuration provides you
options to set up a secure SSL/TLS connection, using server and client certificates.

A secure deployment uses RESTful API calls over an SSL/TLS connection to transmit trail data
between the Distribution Service and Receiver Service.

See Specify Security Options in the Add a Deployment topic, to learn about configuring
security for source and target deployments.

Non-Secure Deployment
For a non-secure deployment, you don't need to apply server and client side certificates for the
deployment. RESTful API calls occur over plain-text HTTP over the network.

Local and Remote Deployments
• Local deployment: For a local deployment, the source database and Oracle GoldenGate

are installed on the same server. No extra consideration is needed for local deployments.

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-9

• Remote deployment: For a remote deployment, the source database and Oracle
GoldenGate are installed on separate servers.

About Service Manager
A Service Manager acts as a watchdog for other services available with Microservices
Architecture.

A Service Manager allows you to manage one or multiple Oracle GoldenGate deployments on
a local host. A Service Manager has a one to many relationship with the Administration
Service. Each Oracle GoldenGate installation has a single Service Manager that is responsible
for multiple deployments.

Optionally, Service Manager may run as a system service and maintains inventory and
configuration information about your deployments and allows you to maintain multiple local
deployments. Using Service Manager, you can start and stop instances, and query
deployments and the other services.

See Manage Deployments from the Service Manager.

About Administration Server
The Administration Server supervises, administers, manages, and monitors processes within
an Oracle GoldenGate deployment.

The Administration Server operates as the central control entity for managing the replication
components in your Oracle GoldenGate deployments. You use it to create and manage your
local Extract and Replicat processes without the need to access the server where Oracle
GoldenGate is installed. The key feature of the Administration Server is the REST API service
Interface that can be accessed from any HTTP or HTTPS client, such as the Microservices
Architecture service interfaces or other clients like Perl and Python.

In addition, the Admin Client can be used to make REST API calls to communicate directly with
the Administration Server. See Admin Client for details.

The Administration Server is responsible for coordinating and orchestrating Extracts, Replicats,
and paths to support greater automation and operational managements. Its operation and
behavior is controlled through published query and service interfaces. These interfaces allow
clients to issue commands and control instructions to the Administration Server using REST
JSON-RPC invocations that support REST API interfaces.

The Administration Server includes an embedded web application that you can use directly
with any web browser and does not require any client software installation.

Use the Administration Server to create and manage:

• Extract and Replicat processes

– Add, alter, and delete

– Register and unregister

– Start and stop

– Review process information, statistics, reports, and status including LAG and
checkpoints

– Retrieve the report and discard files

• Configuration (parameter) files

• Checkpoint, trace, and heartbeat tables

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-10

• Supplemental logging for procedural replication, schema, and tables

• Tasks both custom and standard, such as auto-restart and purge trails

• Credential stores

• Encryption keys (MASTERKEY)

• Add users and assign their roles

About Distribution Server
Distribution Server functions as a networked data distribution agent in support of conveying
and processing data and commands in a distributed deployment. It is a high performance
application that is able to handle multiple commands and data streams from multiple source
trail files, concurrently.

Distribution Server replaces the classic multiple source-side data pumps with a single instance
service. This service distributes one or more trails to one or more destinations and provides
lightweight filtering only (no transformations).

Multiple communication protocols can be used, which provide you the ability to tune network
parameters on a per path basis. These protocols include:

• Oracle GoldenGate protocol for communication between the Distribution Server and the
Collector in a non services-based (classic) target. It is used for inter-operability.

Note:

TCP encryption does not work in a mixed environment of Classic and
Microservices architecture. The Distribution Server in Microservices Architecture
cannot be configured to use the TCP encryption to communicate with the Server
Collector in Classic Architecture running in a deployment. Also, the Receiver
Service in Microservices Architecture cannot accept a connection request from a
data pump in Classic Architecture configured with RMTHOST ... ENCRYPT
parameter running in a deployment.

• WebSockets for HTTPS-based streaming, which relies on SSL security.

• UDP protocols.

• Proxy support for cloud environments:

– SOCKS5 for any network protocol.

– HTTP for HTTP-type protocols only, including WebSocket.

• Passive Distribution Server to initiate path creation from a remote site. Paths are source-
to-destination replication configurations though are not included in this release.

Note:

Distribution Server cannot filter data in the trail. A distribution path will send all
trail data from source to target based on the specified target authentication
protocol.

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-11

About Receiver Server
A Receiver Server is the central control service that handles all incoming trail files. It
interoperates with the Distribution Service and it replaces multiple discrete target-side
Collectors with a single instance service.

Use Receiver Server to:

• Monitor path events

• Add target-initiated paths

• Query the status of incoming paths

• View the statistics of incoming paths

• Diagnose path issues

WebSockets (ws) is the default HTTPS initiated full-duplex streaming protocol used by the
Receiver Server. It enables you to fully secure your data using SSL security. The Receiver
Server seamlessly traverses through HTTP forward and reverse proxy servers.

Additionally, the Receiver Server supports the following protocols:

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-12

• UDP-based protocol for wide area networks: For more information, see http://
udt.sourceforge.net/.

• Classic Oracle GoldenGate protocol for classic deployments so that the Distribution
Service communicates with the Collector and the Data Pump communicates with the
Receiver Server.

Note:

TCP encryption does not work in a mixed environment of Classic and Microservices
architecture. The Distribution Service in Microservices Architecture cannot be
configured to use the TCP encryption to communicate with the Server Collector in
Classic Architecture running in a deployment. Also, the Receiver Server in
Microservices Architecture cannot accept a connection request from a data pump in
Classic Architecture configured with RMTHOST ... ENCRYPT parameter running in a
deployment.

:

About Target-Initiated Distribution Path
Target-initiated paths for microservices enable the Receiver Service to initiate a path to the
Distribution Service on the target deployment and pull trail files. This feature allows the
Receiver Service to create a target initiated path for environments such as Demilitarized Zone
Paths (DMZ) or Cloud to on-premise, where the Distribution Service in the source Oracle
GoldenGate deployment cannot open network connections in the target environment to the
Receiver Service due to network security policies.

If the Distribution Service cannot initiate connections to the Receiver Service, but Receiver
Service can initiate a connection to the machine running the Distribution Service, then the
Receiver Service establishes a secure or non-secure target initiated path to the Distribution
Service through a firewall or Demilitarized (DMZ) zone using Oracle GoldenGate and pull the
requested trail files.

The Receiver Service endpoints display that the retrieval of the trail files was initiated by the
Receiver Service.

About Performance Metrics Server
All Oracle GoldenGate processes send metrics to the Performance Metrics Server, which
enables you to monitor the performance of all processes from a single interface.

The Performance Metrics Server uses metrics to collect and store instance deployment
performance results. This metrics collection and repository is separate from the administration
layer information collection. You can monitor performance metrics using other embedded web
applications and use the data to tune your deployments for maximum performance.

Use the Performance Metrics Server to:

• Query for various metrics and receive responses in the services JSON format or the
classic XML format

• Integrate third party metrics tools

• View error logs

Chapter 1
Components of Oracle GoldenGate Microservices Architecture

1-13

https://udt.sourceforge.io/
https://udt.sourceforge.io/

• View active process status

• Monitor system resource utilization

Components of Data Replication in Oracle GoldenGate

Types of Data Replication Configurations
Oracle GoldenGate can be configured for the following purposes:

• A static extraction of data records from one database and loading of those records to
another database or data source.

• Continuous extraction and replication of transactional Data Manipulation Language (DML)
operations and Data Definition Language (DDL) changes (for supported databases) to
keep source and target data consistent.

• Data extraction from supported database sources and replication to Big Data and file
targets using Oracle GoldenGate Distributed Applications and Analytics.

Oracle GoldenGate Processes

Extract
The Extract process is configured to run on the source endpoint from where the committed
database transactions need to be captured. This process is the extraction or the data capture
mechanism of Oracle GoldenGate.

You can configure the Extract process to capture data from the following types of data sources:

• Source tables: This source type is used for initial loads.

• Database recovery logs or transaction logs: While capturing from the logs, the actual
method varies depending on the database type. An example of this source type is the
Oracle database redo logs.

See About Extract to learn more.

Replicat
The Replicat process applies the updates from the trail files to the target database. It reads the
trail file on the target database, reconstructs the DML or DDL operations, and applies them to
the target database.

The Replicat process uses dynamic SQL to compile a SQL statement once and then executes
it many times with different bind variables. You can configure the Replicat process so that it
waits a specific amount of time before applying the replicated operations to the target
database.

For example, a delay may be desirable to prevent the propagation of errant SQL, to control
data arrival across different time zones, or to allow time for other planned events to occur.

For the two common uses cases of Oracle GoldenGate, Replicat functions as follows:

• Initial Loads: When you set up Oracle GoldenGate for initial loads, the Replicat process
applies a static data copy to target objects or routes the data to a high-speed bulk-load
utility.

Chapter 1
Components of Data Replication in Oracle GoldenGate

1-14

• Change Synchronization: When you set up Oracle GoldenGate to keep the target
database synchronized with the source database, the Replicat process applies the source
operations to the target objects using a native database interface or ODBC, depending on
the database type.

You can configure multiple Replicat processes with one or more Extract processes in parallel to
increase throughput. To preserve data integrity, each set of process handles a different set of
objects. To differentiate among Replicat processes, you can create Replicat groups with a
unique group name.

See About Replicat to learn about different types of Replicats modes.

Distribution Paths for Data Transport
A distribution path or DISTPATH defines the path of trail file between endpoints. The
distribution path is configured from the Distribution Service. See Distribution Service to learn
more.

A target-initiated distribution path, which is also called the receiver path or RECVPATH defines
the path of the trail, from the Receiver Service to the Distribution Service in environments with
secure target endpoints. See Add a Target-Initiated Distribution Path.

Oracle GoldenGate Objects

Trail Files
A trail is a series of files on disk where Oracle GoldenGate stores the captured changes to
support the continuous extraction and replication of database changes.

A trail can exist on the source system, an intermediary system, the target system, or any
combination of these systems, depending on how you configure Oracle GoldenGate. On the
local system, it is known as an Extract trail (or local trail). On a remote system, it is known as a
remote trail. By using a trail for storage, Oracle GoldenGate supports data accuracy and fault
tolerance. The use of a trail also allows extraction and replication activities to occur
independently of each other. With these processes separated, you have more choices for how
data is processed and delivered. For example, instead of extracting and replicating changes
continuously, you could extract changes continuously and store them in the trail for replication
to the target later, whenever the target application needs them.

In addition, trails allow Oracle database to operate in heterogeneous environment. The data is
stored in a trail file in a consistent format, so it can be read by the Replicat process for all
supported databases.

Processes that Write to the Trail File
Oracle GoldenGate Extract writes to the trail file. All local trails must have different full-path
names though you can use the same trail names in different paths.

In Oracle GoldenGate MA, distribution paths and receiver paths are used to distribute remote
trails. The Distribution Service and Receive Service are used to configure distribution path and
receiver path, respectively. Distribution path transfers the trail over a network, to defined
targets. The trail may contain data from multiple Extracts, which transferred to a remote
system.

Chapter 1
Components of Data Replication in Oracle GoldenGate

1-15

Processes that Read from the Trail File
The Replicat processes, and the Distribution Path read from the trail files. Extract captures
DML and DDL operations using a local trail, performs further processing if needed, and
transfers the data to a trail that is read by the next Oracle GoldenGate process, which is the
Replicat.

In case of distributed deployment, a Distribution Service process will read the remote trail file
and send it across the network to a waiting Receiver Service process.

The Replicat process reads the trail and applies the replicated DML and DDL operations to the
target database.

Trail File Creation and Maintenance
The trail files are created as needed during processing. You specify a two-character name for
the trail when you add it to the Oracle GoldenGate configuration with the ADD RMTTRAIL or ADD
EXTTRAIL command. By default, trails are stored in the dirdat sub-directory of the Oracle
GoldenGate directory. You can specify a six or nine digit sequence number using the
TRAIL_SEQLEN_9D | TRAIL_SEQLEN_6D GLOBALS parameter; TRAIL_SEQLEN_9D is set by default.
It is recommended to use the 9-digit sequence number when possible.

As each new file is created, it inherits the two-character trail name appended with a unique
nine digit sequence number from 000000000 through 999999999 (for example
c:\ggs\dirdat\tr000000001). When the sequence number reaches 999,999,999 or 999,999
(depending on the prior setting) the Extract process will abend.

Trail files can be purged on a routine basis by using the Manager parameter
PURGEOLDEXTRACTS.

You can create more than one trail to separate the data from different objects or applications.
To maximize throughput, and to minimize I/O load on the system, extracted data is sent into
and out of a trail in large blocks. The transactional order of the trail file or the trail sequence is
preserved.

Parameter Files
Most Oracle GoldenGate functionality is controlled by means of parameters specified in
parameter files. A parameter file is a plain text file that is read by an associated Oracle
GoldenGate process.

Oracle GoldenGate Microservices Architecture uses the following runtime parameters:

• Global runtime parameters: These are different from the GLOBALS parameter. They
apply to all database objects that are specified in a parameter file. Some global runtime
parameters affect process behavior, while others affect such things as memory utilization.
USERIDALIAS is an example of a global runtime parameter. A global parameter should be
listed only once in the file. When listed more than once, only the last instance is active, and
all other instances are ignored.

• Object-specific parameter: These parameters enable you to apply different processing
rules for different sets of database objects. GETINSERTS and IGNOREINSERTS are examples
of object-specific parameters. Each precedes a MAP statement that specifies the objects to
be affected. Object-specific parameters take effect in the order of their listing in the file.

Runtime parameters allow controlling various aspects of Oracle GoldenGate synchronization,
such as:

Chapter 1
Components of Data Replication in Oracle GoldenGate

1-16

• Data selection, mapping, transformation, and replication

• DDL and sequence selection, mapping, and replication (where supported)

• Error resolution

• Logging

• Status and error reporting

• System resource usage

• Startup and runtime behavior

Although you can have multiple Extracts and Replicats running in a single deployment, each
one can only be associated with a single parameter file. Extracts and Replicats are identified
by their case-insensitive name. For example, an Extract called exte, would have 1 associated
parameter file called exte.prm.

See Working with Parameter Files to learn more.

Checkpoint Files
When database checkpoints are used, Oracle GoldenGate creates a checkpoint table with a
user-defined name in the database, using Oracle GoldenGate commands. These checkpoint
tables are created for Extract and Replicat processes. For Extract, there are read and write
checkpoints set up at data source. For Replicat, the checkpoint is set up in the trail file.

See Checkpoint Tables Additional Details .

Chapter 1
Components of Data Replication in Oracle GoldenGate

1-17

2
Install and Patch

Learn about installation prerequisites for Oracle GoldenGate, steps to install Oracle
GoldenGate for different databases, post-installation tasks, installing patches, and uninstalling
Oracle GoldenGate.

Download Oracle GoldenGate Software
You can download Oracle GoldenGate from the Oracle GoldenGate Downloads page at https://
www.oracle.com/middleware/technologies/goldengate-downloads.html and from the Oracle
Software Delivery Cloud site, at https://edelivery.oracle.com/osdc/faces/SoftwareDelivery.

Verify Certification and System Requirements
Ensure that Oracle GoldenGate is installed on supported hardware and operating systems. For
more information, see the Certification Matrix for the release.

Oracle tests and verifies the performance of your product on all certified systems and
environments. As new certifications occur, they are added to the proper certification document.
New certifications can occur at any time, and for this reason the certification documents are
kept outside of the documentation libraries and are available on Oracle Technology Network.

Here are some additional details about the supported platforms:

• Cross Endian Support: Most Oracle GoldenGate products support cross endian replication,
which means that the source and target database can be a different platform (or even
endian) than the actual server where Oracle GoldenGate is installed.

• Fully Certified Criteria: Oracle GoldenGate certifications are often phased in, for a
particular new release of the product. Oracle typically supports Oracle databases first and
then the various non-Oracle and Big Data technologies. In some cases, Oracle
GoldenGate may support the data store you are looking for, but you may need to check the
certification matrix for a previous release. Platforms that are in the certification matrix are
platforms where either full regression testing is done or where basic validation is performed
for continuity purposes.

• Fully Supported by Inference: There are other technologies that are supported for Oracle
GoldenGate that may not be explicitly listed in the certification matrix. For example, Oracle
certify its technologies based on a combination of Chipset, Operating System, Data Store
Type, and Data Store Version. As long as these four criteria are met, support is available.

• Fully Supported through Open Source Compatibility: There are a number of Open Source
technologies that Oracle GoldenGate is certified with such as Big Data and non-Oracle
databases. Sometimes, users may have open source environments and need Oracle
GoldenGate to provide support with such unique infrastructures, such as Apache HBase
on Azure Data Lake. In such cases, Oracle GoldenGate does support any unique open
source environment if the Chipset, Operating System, Open Source Framework and
Framework Version are certified by Oracle GoldenGate. For example, in case of Apache
HBase, Oracle GoldenGate support needs to check the version of Apache HBase, for
which Oracle GoldenGate is certified, and if that version happens to be running on some
Cloud, then Oracle GoldenGate will be supported. In each of these Open Source examples

2-1

https://www.oracle.com/middleware/technologies/goldengate-downloads.html
https://www.oracle.com/middleware/technologies/goldengate-downloads.html
https://edelivery.oracle.com/osdc/faces/SoftwareDelivery.
https://www.oracle.com/integration/goldengate/certifications/

(that are not explicitly certified), Oracle GoldenGate support is available using the base
open source configurations, such as Apache on certified hardware. However, Oracle may
not be obligated to support each possible infrastructure combination that users may select.

• Java JDBC Support: Many SQL, NoSQL and Big Data technologies support Java JDBC
capabilities. Oracle GoldenGate for Distributed Applications and Analytics enables
replication of transactions into any JDBC compliant drivers. Individual drivers may vary in
terms of performance and metadata coverage, so there is no specific guarantee that
Oracle GoldenGate JDBC support will work with every JDBC driver, but most common
JDBC drivers and commercial implementations usually work with Oracle GoldenGate
JDBC and these are supported. If you don’t find your technology in the certification matrix,
but you know that there is a JDBC drive available, then it could be that you may have both
technical compatibility and a supported configuration.

• Managed and Unmanaged Data Stores: With the advent of managed Cloud services such
as native cloud services, many data stores are now available with automated lifecycle,
patching, and other conveniences. In many cases, managed data stores are fully
compatible and consistent with Oracle GoldenGate certifications and support. However, in
some cases, a cloud vendor may turn-off or restrict access to features that Oracle
GoldenGate requires for full features compatibility, particularly with Oracle GoldenGate
Extract capabilities. If you have a question about a third party cloud managed service for a
data store that Oracle GoldenGate may usually support, but you do not see that managed
service listed in the Oracle GoldenGate certification matrix, directly contact Oracle
GoldenGate product management.

Operating System Requirements
This section outlines the operating system resources that are necessary to support Oracle
GoldenGate.

Topics:

Memory Requirements
All Platforms

The amount of memory that is required for Oracle GoldenGate depends on the amount of data
being processed, the number of Oracle GoldenGate processes running, the amount of RAM
available to Oracle GoldenGate, and the amount of disk space that is available to Oracle
GoldenGate for storing pages of RAM temporarily on disk when the operating system needs to
free up RAM (typically when a low watermark is reached). This temporary storage of RAM to
disk is commonly known as swapping or paging (herein referred to as swapping). Depending
on the platform, the term swap space can be a swap partition, a swap file, a page file
(Windows) or a shared memory segment (IBM for i).

Modern servers have sufficient RAM combined with sufficient swap space and memory
management systems to run Oracle GoldenGate. However, increasing the amount of RAM
available to Oracle GoldenGate may significantly improve its performance, as well as that of
the system in general.

Typical Oracle GoldenGate installations provide RAM in multiples of gigabytes to prevent
excessive swapping of RAM pages to disk. The more contention there is for RAM the more
swap space that is used.

Excessive swapping to disk causes performance issues for the Extract process in particular,
because it must store data from each open transaction until a commit record is received. If

Chapter 2
Operating System Requirements

2-2

Oracle GoldenGate runs on the same system as the database, then the amount of RAM that is
available becomes critical to the performance of both.

RAM and swap usage are controlled by the operating system, not the Oracle GoldenGate
processes. The Oracle GoldenGate cache manager takes advantage of the memory
management functions of the operating system to ensure that the Oracle GoldenGate
processes work in a sustained and efficient manner. In most cases, users need not change the
default Oracle GoldenGate memory management configuration.

For more information about evaluating Oracle GoldenGate memory requirements, see the
CACHEMGR parameter in the Parameters and Functions Reference for Oracle GoldenGate. Also,
see Tuning the Performance of Oracle GoldenGate in Administering Oracle GoldenGate.

Windows Platforms

For Windows Server environments, the number of process groups that can be run are tightly
coupled to the non-interactive Windows desktop heap memory settings. The default settings
for Windows desktop heap may be enough to run very small numbers of process groups. As
you approach larger amounts of process groups, more than 60 or so, you have two choices:

• Adjust the non-interactive value of the SharedSection field in the registry based on
information from Microsoft (Windows desktop heap memory).

• Increase the number of Oracle GoldenGate homes and spread the total number of desired
process groups across these homes.

For more information on modifying the Windows Desktop Heap memory, review the following
Oracle Knowledge Base document (Doc ID 2056225.1).

Disk Requirements
Disk space requirements vary based on the platform, database, and Oracle GoldenGate
architecture to be installed.

Disk Requirements for Oracle GoldenGate Installation Files
The disk space requirements for a Oracle GoldenGate installation vary based on your
operating system and database. Ensure that you have adequate disk space for the
downloaded file, expanded files, and installed files, which can be up to 2GB.

Temporary Disk Requirements
When total cached transaction data exceeds the CACHESIZE setting of the CACHEMGR parameter,
Extract begins writing cache data to temporary files located in the Oracle GoldenGate
installation directory. For Classic Architecture, this is in the installation's dirtmp folder, and for
Microservices Architecture, it is the /var/temp folder for that deployment.

The cache manager assumes that all of the free space on the file system is available. These
directories can fill up quickly if there are many transactions with large transaction sizes. To
prevent I/O contention and possible disk-related Extract failures, dedicate a disk to this
directory. You can assign a name to this directory with the CACHEDIRECTORY option of the
CACHEMGR parameter.

Chapter 2
Operating System Requirements

2-3

Note:

CACHEMGR is an internally self-configuring and self-adjusting parameter. It is rare that
this parameter requires modification. Doing so unnecessarily may result in
performance degradation. It is best to acquire empirical evidence before opening an
Oracle Service Request and consulting with Oracle Support.

It is typically more efficient for the operating system to swap to disk than it is for Extract to write
temporary files. The default CACHESIZE setting assumes this. Thus, there should be sufficient
disk space to account for this, because only after the value for CACHESIZE is exceeded will
Extract write transaction cached data to temporary files in the file system name space. If
multiple Extract processes are running on a system, the disk requirements can multiply. Oracle
GoldenGate writes to disk when there is not enough memory to store an open transaction.
Once the transaction has been committed or rolled back, committed data is written to trail files
and the data are released from memory and Oracle GoldenGate no longer keeps track of that
transaction. There are no minimum disk requirements because when transactions are
committed after every single operation these transactions are never written to disk.

Note:

Oracle recommends that you do not change the CACHESIZE because performance
can be adversely effected depending on your environment.

Other Disk Space Considerations
In addition to the disk space required for the files and binaries that are installed by Oracle
GoldenGate, allow additional disk space to hold the Oracle GoldenGate trails. Trails can be
created up to 2GB in size, with a default of 500MB. The space required depends upon the
selected size of the trails, the amount of data being captured for replication, and how long the
consumed trails are kept on the disk. The recommended minimum disk allocated for Trails may
be computed as:

((transaction log size * 0.33) * number of log switches per day) * number of days to
retain trails

Based on this equation, if the transaction logs are 1GB in size and there is an average of 10
log switches per day, it means that Oracle GoldenGate will capture 3.3GB data per day. To be
able to retain trails for 7 days, the minimum amount of disk space needed to hold the trails is
23GB.

A trail is a set of self-aging files that contain the working data at rest and during processing.
You may need more or less than this amount, because the space that is consumed by the trails
depends on the volume of data that will be processed.

Network
The following network resources must be available to support Oracle GoldenGate:

• Use the fastest network possible and install redundancies at all points of failure for optimal
performance and reliability, especially in maintaining low latency on the target.

Chapter 2
Operating System Requirements

2-4

• You can configure Oracle GoldenGate Microservices Architecture to use a reverse proxy.
Oracle GoldenGate MA includes a script called ReverseProxySettings that generates
configuration file for only the NGINX reverse proxy server.

See Reverse Proxy Support in Oracle GoldenGate Security Guide.

• Configure the system to use both TCP and UDP services, including DNS. Oracle
GoldenGate supports IPv4 and IPv6 and can operate in a system that supports one or both
of these protocols.

• Configure the network with the host names or IP addresses of all systems that will be
hosting Oracle GoldenGate processes and to which Oracle GoldenGate will be connecting.

• Oracle GoldenGate requires some unreserved and unrestricted TCP/IP network ports, the
number of which depends on the number and types of processes in your configuration.
See Administering Oracle GoldenGate for details on how to configure the Manager
process to handle the required ports.

• Keep a record of the ports that you assigned to Oracle GoldenGate processes. You specify
them with parameters when configuring deployments for the Microservices Architecture
and for the Manager and pumps with the Classic Architecture.

• Configure your firewalls to accept connections through the Oracle GoldenGate ports.

Operating System Privileges
The following are the privileges in the operating system that are required to install Oracle
GoldenGate and to run the processes:

• The person who installs Oracle GoldenGate must be granted read and write privileges on
the Oracle GoldenGate software home directory.

• To install on Windows, the person who installs Oracle GoldenGate must log in as an
Administrator.

• The Oracle GoldenGate Extract, Replicat, and Manager processes, and configuring
deployments using the oggca.sh script must operate as an operating system user that has
read, write, and delete privileges on files and subdirectories in the Oracle GoldenGate
directory.

• For Extract processes that read from transaction logs and backups, it must operate as an
operating system user that has read access to the logs and backup files.

• Oracle recommends that you dedicate the Extract and Replicat operating system users to
Oracle GoldenGate. Sensitive information might be available to anyone who runs an
Oracle GoldenGate process, depending on how database authentication is configured.

Security and Other Considerations
An Oracle GoldenGate Microservices deployment can be installed with various security
features. When setting up a secure deployment, some information is required for proper
configuration depending on whether self-signed certificates are used or provided.

Oracle GoldenGate fully supports virtual machine environments created with any virtualization
software on any platform unless otherwise noted. When installing Oracle GoldenGate into a
virtual machine environment, select a build that matches the database and the operating
system of the virtual machine, not the host system.

Chapter 2
Operating System Requirements

2-5

Note:

Oracle customers with an active support contract and running supported versions of
Oracle products (including Oracle GoldenGate) receive assistance from Oracle when
running those products on VMware virtualized environments.

If Oracle identifies the underlying issue is not caused by Oracle’s products or is being
run in a computing environment not supported by Oracle, Oracle will refer customers
to VMware for further assistance and Oracle will provide assistance to VMware as
applicable in resolving the issue.

This support policy does not affect Oracle or VMware licensing policies.

Windows Console Character Sets
The operating system and the command console must have the same character sets.
Mismatches occur on Microsoft Windows systems, where the operating system is set to one
character set, but the DOS command prompt uses a different, older DOS character set. Oracle
GoldenGate uses the character set of the operating system to send information to GGSCI
command output; therefore a non-matching console character set causes characters not to
display correctly. You can set the character set of the console before opening a GGSCI session
by using the following DOS command:

chcp codepagenumber

For example, chcp 437.

For a code page overview, see https://msdn.microsoft.com/en-us/library/windows/desktop/
dd317752(v=vs.85).aspx and the list of code page identifiers https://msdn.microsoft.com/en-us/
library/windows/desktop/dd317756(v=vs.85).aspx.

Other Operating System Requirements
The following additional features of the operating system must be available to support Oracle
GoldenGate.

• To use Oracle GoldenGate user exits, install the C/C++ Compiler, which creates the
programs in the required shared object or DLL.

• Gzip to decompress the Oracle GoldenGate installation files. Otherwise, you must unzip
the installation on a PC by using a Windows-based product, and then FTP it to the AIX,
DB2 for i, or DB2 z/OS platforms.

• For best results on DB2 platforms, apply high impact (HIPER) maintenance on a regular
basis staying within one year of the current maintenance release. The HIPER process
identifies defects that could affect data availability or integrity. IBM provides Program
Temporary Fixes (PTF) to correct defects found in DB2 for i and DB2 z/OS.

• Oracle GoldenGate for SQL Server when installed on Linux requires the libnsl and
unixODBC packages to be installed prior to launching GGSCI.

• Before installing Oracle GoldenGate on a Windows system, install the Microsoft Visual C +
+ 2013 Redistributable Package and the Microsoft Visual C++ 2017 Redistributable
Package. These packages install runtime components of Visual C++ Libraries that are
required for Oracle GoldenGate processes.

Download and install the x64 version of Visual C++ 2013 package from :

Chapter 2
Operating System Requirements

2-6

https://msdn.microsoft.com/en-us/library/windows/desktop/dd317752(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317752(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317756(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd317756(v=vs.85).aspx

https://support.microsoft.com/en-us/help/4032938/update-for-visual-c-2013-redistributable-
package

Download and install the x64 version of Visual C++ 2017 package from

https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads

• For Oracle GoldenGate for Oracle to be installed on a remote hub server, download and
install the Oracle Database 19c client for the operating system platform where Oracle
GoldenGate will be installed and ensure that you install the Administrator version of the
client.

Prerequisites
Learn about what you need to do before installing.

Topics:

Setting TNS_ADMIN
The TNS_ADMIN environment variable contains the path to the TNS files.

It is recommended (but not required) to set the environment variable TNS_ADMIN. If this
environment variable is not set, then Oracle GoldenGate looks for the $HOME/.tnsnames.ora
or /etc/tnsnames.ora file. In addition, the environment variable must be set before starting the
Admin Client or GGSCI. Otherwise, this variable is not detected.

If you are not using TNS_ADMIN, then you can use connection qualifiers such as
(DESCRIPTION=(ADDRESS=(...)), with TNS aliases.

A preferred technique for configuring database connections is using the EZconnect syntax. You
need the username, password, hostname, port number, and service name connection
information to use the EZConnect syntax.

Syntax that you need to specify in the User ID field: username@hostname:port/service_name
Here's an example for setting the User ID with EZConnect:
c##ggadmin@dc.example.com:1521/dc1.example.com

Specifying Oracle Variables on UNIX and Linux Systems
If there is one instance of Oracle Database on the system, then set the ORACLE_HOME and
ORACLE_SID environment variables at the system level. If you cannot set them that way, then
use the following SETENV statements in the parameter file of every Extract and Replicat group
that will be connecting to the instance. The SETENV parameters override the system settings
and allow the Oracle GoldenGate process to set the variables at the session level when it
connects to the database.

SETENV (ORACLE_HOME = path_to_Oracle_home_location)

SETENV (ORACLE_SID = SID)

If there are multiple Oracle instances on the system with Extract and Replicat processes
connecting to them, then you must use a SETENV statement in the parameter file of each
process group. As input to the SETENV parameter, use the ORACLE_HOME and ORACLE_SID
environment variables to point Oracle GoldenGate to the correct Oracle instance. For example,
the following parameter file excerpts shows two Extract groups, each capturing from a different
Oracle instance.

Chapter 2
Prerequisites

2-7

https://support.microsoft.com/en-us/help/4032938/update-for-visual-c-2013-redistributable-package
https://support.microsoft.com/en-us/help/4032938/update-for-visual-c-2013-redistributable-package
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads

Group 1:

EXTRACT edbaa
SETENV (ORACLE_HOME = "/home/oracle/ora/product")
SETENV (ORACLE_SID = "oraa")
USERIDALIAS tiger1
RMTHOST sysb
RMTTRAIL /home/ggs/dirdat/rt
TABLE hr.emp;
TABLE hr.salary;

Group 2:

EXTRACT orab
SETENV (ORACLE_HOME = "/home/oracle/ora/product")
SETENV (ORACLE_SID = "orab")
USERIDALIAS tiger1
RMTHOST sysb
RMTTRAIL /home/ggs/dirdat/st
TABLE fin.sales;
TABLE fin.cust;

Specifying Oracle Variables on Windows Systems
If there is one instance of Oracle on the system, then the Registry settings for ORACLE_HOME
and ORACLE_SID should be sufficient for Oracle GoldenGate. If those settings are incorrect in
the Registry and cannot be changed, then you can set an override as follows:

1. On the Desktop or Start menu, right-click My Computer, and then select Properties.

2. In Properties, click the Advanced tab.

3. Click Environment Variables.

4. Under System Variables, click New.

5. For the Variable Name, enter ORACLE_HOME.

6. For the Variable Value, enter the path to the Oracle binaries.

7. Click OK.

8. Click New again.

9. For the Variable Name, enter ORACLE_SID.

10. For the Variable Value, enter the instance name.

11. Click OK.

If there are multiple Oracle instances on the system with Extract and Replicat processes
connecting to them, then use these steps:

1. Use the preceding procedure (single Oracle instance on system) to set the ORACLE_HOME
and ORACLE_SID system variables to the first Oracle instance.

2. Start all of the Oracle GoldenGate processes that will connect to that instance.

3. Edit the existing ORACLE_HOME and ORACLE_SID variables to specify the new information.,
then repeat the procedure for the next Oracle instance.

4. Start the Oracle GoldenGate processes that will connect to that instance.

5. Repeat the edit and startup procedure for the rest of the Oracle instances.

Chapter 2
Prerequisites

2-8

What are the Key Microservices Architecture Directories and Variables?
The Microservices Architecture is designed with a simplified installation and deployment
directory structure.

This directory structure is based on the Linux Foundation Filesystem Hierarchy Standard.
Additional flexibility has been added to allow parts of the deployment subdirectories to be
placed at other locations in the file system or on other devices, including shared network
devices. The design comprises a read-only Oracle GoldenGate home directory where Oracle
GoldenGate Microservices Architecture is installed and custom deployment specific directories
are created as follows:

• bin
• cfgtoollogs
• deinstall
• diagnostics
• include
• install
• inventory
• jdk
• jlib
• lib

– instantclient
– sql
– utl

• OPatch
• oraInst.loc
• oui
• srvm
The following figure shows the files and directories under the Services Manager (srvm)
directory:

Chapter 2
Prerequisites

2-9

The following table describes the key MA directories and the variables that are used when
referring to those directories during an Oracle GoldenGate installation. When you see these
variables in an example or procedure, replace the variable with the full path to the
corresponding directory path in your enterprise topology.

Directory Name Variable Description Default Directory Path

Oracle GoldenGate
home

OGG_HOME The Oracle GoldenGate
home that is created on
a host computer is the
directory that you
choose to install the
product. This read-only
directory contains binary,
executable, and library
files for the product.

/
ogg_install_locatio
n

Deployment
configuration home

OGG_CONF_HOME The location where each
deployment information
and configuration
artifacts are stored.

/
ogg_deployment_loca
tion/etc/conf

Deployment security
home

OGG_SSL_HOME The location where each
deployment security
artifacts (certificates,
wallets) are stored.

/
ogg_deployment_loca
tion/etc/ssl

Deployment data home OGG_DATA_HOME The location where each
deployment data
artifacts (trail files) are
stored.

/
ogg_deployment_loca
tion/var/lib/data

Deployment variable
home

OGG_VAR_HOME The location where each
deployment logging and
reporting processing
artifacts are stored.

/
ogg_deployment_loca
tion/var

Chapter 2
Prerequisites

2-10

Directory Name Variable Description Default Directory Path

Deployment etc home OGG_ETC_HOME The location where your
deployment
configuration files are
stored including
parameter files.

/
ogg_deployment_loca
tion/etc

You can change the default location of all of these to customize where you want to store these
files.

In a configuration where the OGG_VAR_HOME is a local directory and the OGG_HOME is a shared
read-only remote directory, many deployments with local OGG_VAR_HOME can share one read-
only shared OGG_HOME.

This directory design facilitates a simple manual upgrade. To upgrade, you stop the services
and then set the OGG_HOME in the web interface (or via a REST command) and then restart the
processes. On restart, Oracle GoldenGate picks up the updated environment variables. You
simply switch a deployment to use a new Oracle GoldenGate release by changing the
OGG_HOME directory path in the Service Manager to a new Oracle GoldenGate home directory,
which completes the upgrade. Restart the microservices, Extract and Replicat processes.

The following table describes the programs and utilities exclusive to the MA. You should also
set the $OGG_HOME/lib/instantclient (among other libraries that are used for the database
connectivity)

Name Description Default Directory

adminclient The Admin Client is a standalone
command line interface used to
create processes, rather than
using the MA UI.

$OGG_HOME/bin

adminsrvr The Administration Service
supervises, administers,
manages, and monitors
processes operating within an
Oracle GoldenGate deployment
for both active and inactive
processes.

$OGG_HOME/bin

distsrvr A Distribution Service is a service
that functions as a networked
data distribution agent in support
of conveying and processing data
and commands in a distributed
deployment.

$OGG_HOME/bin

extract Extract data process. $OGG_HOME/bin
oggca.sh The MA Configuration Assistant. $OGG_HOME/bin
orapki Utility to manage public key

infrastructure elements, such as
wallets and certificate revocation
lists,

$OGG_HOME/bin

pmsrvr The Performance Metrics Server
uses the metrics service to collect
and store instance deployment
performance results.

$OGG_HOME/bin

Chapter 2
Prerequisites

2-11

Name Description Default Directory

recvsrvr A Receiver Service is the central
control service that handles all
incoming trail files.

$OGG_HOME/bin

replicat Replicat data process. $OGG_HOME/bin
ServiceManager A Service Manager acts as a

watchdog for other services
available with the MA.

$OGG_HOME/bin

crypto $OGG_HOME/lib
htdocs The MA HTML pages for all

services.
$OGG_HOME/lib

info The various help files that
support the MA HTML pages for
all services.

$OGG_HOME/lib

sql An SQL directory that contains
the healthcheck, legacy, and
sharding utilities.

$OGG_HOME/lib

SQLPLUS The utility to run various
commands.

$OGG_HOME/lib

utl A utility directory that contains the
install, logging,
reverseproxy, and sharding
utilities.

$OGG_HOME/lib

Installing Oracle GoldenGate
Learn about the steps for installing Oracle GoldenGate Microservices Architecture for the first
time and includes instructions to download the base release of a new version of Oracle
GoldenGate.

To download and install subsequent patches to the base release, go to the Patches and
Updates tab of My Oracle Support at:

https://support.oracle.com

Also see Installing Patches for Oracle GoldenGate Microservices Architecture.

Installing Oracle GoldenGate Microservices Architecture
The steps for installing Oracle GoldenGate Microservices Architecture for Oracle and Non-
Oracle databases are the same. However, there are some prerequisites before you begin the
installation.

Verify that you meet the operating system and required database configuration before
beginning the installation. See:

• Operating System Requirements

• Prepare Databases

The Oracle GoldenGate Microservices Architecture (MA) installation involves the following
steps:

Chapter 2
Installing Oracle GoldenGate

2-12

http://support.oracle.com/

1. Install the Oracle GoldenGate software. See Performing an Interactive Installation with OUI
for MA and Performing a Silent Installation with OUI.

2. Set the necessary environment variables for your database, if required.

Note:

(Oracle only) From the Oracle GoldenGate 21c release onward, ORACLE_HOME
and LD_LIBRARY_PATH do not point to any database directories. With the unified
build feature, these environment variables now point to the OGG_HOME
(sub)directories as the Oracle Database Client Software is embedded in Oracle
GoldenGate.

3. Run the Oracle GoldenGate Configuration Assistant (oggca) wizard to add a deployment
for the Oracle GoldenGate installation. For steps to run the OGGCA utility, see Add a
Deployment.

The installer registers the Oracle GoldenGate home directory ($OGG_HOME) with the central
inventory that is associated with the selected database. The inventory stores information about
all Oracle software products installed on a host if the product was installed using OUI.

Disk space is also required for the Oracle GoldenGate Bounded Recovery feature. Bounded
Recovery is a component of the general Extract checkpointing facility. It caches long-running
open transactions to disk at specific intervals to enable fast recovery upon a restart of Extract.
At each bounded recovery interval (controlled by the BRINTERVAL option of the BR parameter)
the disk required is as follows: for each transaction with cached data, the disk space required
is usually 64k plus the size of the cached data rounded up to 64k. Not every long-running
transaction is persisted to disk.

For complete information about Bounded Recovery, see the BR parameter in Parameters and
Functions Reference for Oracle GoldenGate.

Performing an Interactive Installation with OUI for MA
Interactive installation provides a graphical user interface that prompts for the required
installation information.

These instructions apply to new installations and upgrades.

1. Create a temporary staging directory into which you will install Oracle GoldenGate. For
example, mkdir /u01/stage/oggsc.

2. Extract the installation ZIP file into the temporary staging directory. For example:

unzip ./fbo_ggs_Linux_x64_services.zip -d ./temp directory
3. From the expanded directory, run the fbo_ggs_Linux_x64_services_shophome/Disk1/

runInstaller program on UNIX or Linux.

The OUI Install Wizard is started.

4. On the Select Installation Option page, select the Oracle Database version for your
environment, then click Next.

5. On the Specify Installation Details page, specify the following:

• For Software Location, specify the location where Oracle GoldenGate software is to
be installed. This will be your Oracle GoldenGate Home (OGG_HOME) after the
installation is complete. If you have the $OGG_HOME environment variable set, this

Chapter 2
Installing Oracle GoldenGate

2-13

should be the path displayed. The specified directory cannot be a registered home in
the Oracle Central Inventory.

• Click Next.

6. On the Summary page, confirm that there is enough space for the installation and that the
installation selections are correct.

• (Optional) Click Save Response File to save the installation information to a response
file. You can run the installer from the command line with this file as input to duplicate
the results of a successful installation on other systems. You can edit this file or create
a new one from a template.

• Click Install to begin the installation or Back to go back and change any input
specifications. When upgrading an existing Oracle GoldenGate installation, OUI
notifies you that the software location has files or directories. Click Yes to continue.

• If you created a central inventory directory, you are prompted to run the
INVENTORY_LOCATION/orainstRoot.sh script. This script must be executed as the root
operating system user. This script establishes the inventory data and creates
subdirectories for each installed Oracle product (in this case, Oracle GoldenGate).

You are notified when the installation is finished.

7. Click Close to complete the installation.

Performing a Silent Installation with OUI
Silent installation from the command line interface can be performed if your system does not
have an X-Windows or graphical interface or you want to perform the installation in an
automated way.

Silent installations ensure that multiple users in your organization use the same installation
options when installing Oracle products.

Silent installations are driven by using a response file. Response files can be saved by
selecting the Save Response File option during an interactive Oracle Universal Installer
session or by editing the oggcore.rsp template located in the response directory after
unzipping the Oracle GoldenGate binaries.

Editing the Default Response File

• INSTALL_OPTION - The valid values are ORA11g, ORA12c, ORA18c, and ORA19c. Set the value
based on the database version for the specific Oracle GoldenGate build to be installed.

Example:

INSTALL_OPTION=ORA19c
• SOFTWARE_LOCATION - Absolute path to where Oracle GoldenGate will be installed. Do not

use spaces in the path and ensure that the directory has been created and is empty.

Example:

SOFTWARE_LOCATION==/u01/userhome/oracle/ogg19c_ora
• INVENTORY_LOCATION - Location of the Oracle Inventory files. This is optional for Windows

installations.

Example:

INVENTORY_LOCATION=/u01/app/oraInventory
• UNIX_GROUP - The Unix group to be set for the inventory directory. Not valid for Windows

installations.

Chapter 2
Installing Oracle GoldenGate

2-14

Example:

UNIX_GROUP=oinstall
Installing Oracle GoldenGate

To perform a silent installation using a response file, perform the following steps:

1. Run the following command to unzip the folder that contains the Oracle GoldenGate
installation program.

cd unzipped_directory/[fbo_]ggs_OS_database_services_shiphome/Disk1

2. Run the following command to launch the installer program.

./runInstaller -silent -nowait -responseFile absolute_path_to_response_file

Integrating Oracle GoldenGate Microservices Architecture into a Cluster
If you installed Oracle GoldenGate in a cluster, take the following steps to integrate Oracle
GoldenGate within the cluster solution.

Oracle GoldenGate Microservices Architecture provides REST-enabled services with features
including remote configuration, administration, and monitoring through HTML5 web pages,
command line interfaces, and APIs.

For more information about installing and using Oracle GoldenGate in a cluster, see the Oracle
GoldenGate Microservices Architecture with Oracle Real Application Clusters Configuration
Best Practices technical brief.

Post-installation Tasks
Learn about any post-installation tasks that may be required after installing Oracle GoldenGate
Microservices Architecture for your database.

Topics:

Software Installation Directories and Programs for Oracle
GoldenGate

The following table describes the major directories of an Oracle GoldenGate Microservices
installation.

Table 2-1 Directories in an Oracle GoldenGate MA installation

Directory Description

bin Sub-directory for most of the Oracle GoldenGate
executable files.

lib Contains libraries, utility files, and scripts.

jdk Java Developer Kit directory

oui Oracle Universal Installer directory

Chapter 2
Post-installation Tasks

2-15

https://www.oracle.com/a/tech/docs/maa-ggmicroservices-on-rac.pdf
https://www.oracle.com/a/tech/docs/maa-ggmicroservices-on-rac.pdf
https://www.oracle.com/a/tech/docs/maa-ggmicroservices-on-rac.pdf

Table 2-1 (Cont.) Directories in an Oracle GoldenGate MA installation

Directory Description

OPatch Location of Oracle Patch Utility directory to install
patches (opatch).

deinstall Location of deinstall.sh, which is the software
deinstallation script.

The following table describes the programs and utilities exclusively available with MA.

Name Description Default Directory

adminclient Command line interface for
Oracle GoldenGate
Microservices Architecture.

$OGG_HOME/bin

adminsrvr The Administration Service
supervises, administers,
manages, and monitors
processes operating within an
Oracle GoldenGate deployment
for both active and inactive
processes.

$OGG_HOME/bin

chkptdump Utility to dump contents from the
checkpoint files.

$OGG_HOME/bin

distsrvr A Distribution Service is a service
that functions as a networked
data distribution agent in support
of conveying and processing data
and commands in a distributed
deployment.

$OGG_HOME/bin

extract Extract data process. $OGG_HOME/bin
logdump Utility to open files, control the

display, navigate through a file,
and search, filter, view, and save
data that's stored in a trail or
Extract file.

$OGG_HOME/bin

oggca.sh The Oracle GoldenGate
Microservices Configuration
Assistant.

$OGG_HOME/bin

oggerr Retrieves a detailed explanation
for an Oracle GoldenGate
message.

$OGG_HOME/bin

orapki Utility to manage public key
infrastructure elements, such as
wallets and certificate revocation
lists.

$OGG_HOME/bin

pmsrvr The Performance Metrics Service
uses the metrics service to collect
and store instance deployment
performance results.

$OGG_HOME/bin

recvsrvr A Receiver Service is the central
control service that handles all
incoming trail files.

$OGG_HOME/bin

Chapter 2
Software Installation Directories and Programs for Oracle GoldenGate

2-16

Name Description Default Directory

replicat Replicat data process. $OGG_HOME/bin
ServiceManager A Service Manager acts as a

watchdog for other microservices
in Oracle GoldenGate.

$OGG_HOME/bin

trailscan Utility that scans transaction from
trail files.

$OGG_HOME/bin

sqlplus An interactive tool with a
command-line user interface
used to connect to the Oracle
Database Server.

$OGG_HOME/lib/
instantclient

sql An SQL directory that contains
the healthcheck, legacy, and
sharding utilities.

$OGG_HOME/lib

utl A utility directory that contains the
install, logging,
reverseproxy, and sharding
utilities.

$OGG_HOME/lib

Installing Patches for Oracle GoldenGate Microservices
Architecture

Patching for Oracle GoldenGate refers to applying interim one-off software fixes as well as
cumulative software bundle patches to an existing, lower version of the software, yet one that
is in the same release label as the patch to be applied. Cumulative and one-off patches for
Oracle GoldenGate can be applied on top of a base release or previously patched release, or
they may be a one-off patch that should be applied to a specific Oracle GoldenGate version.

Patches for Oracle GoldenGate can be found on My Oracle Support when available, and are
located under the Patches & Updates section of MOS.

Note:

When patching multiple installations that already have Deployments and a shared
Service Manager configured, the Service Manager will only be patched when the
Oracle GoldenGate installation where the Service Manager was first created from,
gets patched.

Downloading Patches for Oracle GoldenGate
Download the appropriate patches for the Oracle GoldenGate build for each system that will be
part of the Oracle GoldenGate configuration.

1. Using a browser, navigate to https://support.oracle.com.

2. Log in with your Oracle ID and password.

3. Select the Patches & Updates tab.

4. On the Search tab, click Product or Family.

Chapter 2
Installing Patches for Oracle GoldenGate Microservices Architecture

2-17

https://support.oracle.com
http://support.oracle.com

5. In the Product field, type Oracle GoldenGate.

6. From the Release drop-down list, select the patch version that you want to download.

7. Optionally, to limit the number of patches listed in the search results, select the required
platform from the Platform drop-down list.

8. Click Search.

9. In the Patch Advanced Search Results list, select the patch that best meets your criteria.

When you select a patch, a dialog box pops up under the build description, and then you
are advanced to the patch details page.

10. Click the Download link for the patch and save the file to your system.

Note:

Before installing the patch, see Release Notes for Oracle Database for any new
features, parameter changes, patching requirements, known issues, or bug fixes that
affect your current configuration.

Patching Oracle GoldenGate Microservices Architecture Using OPatch
After you download the patch, set up the following prerequisites before installing the patch:

1. Download and install the most recent release of OPatch, and keep a note of the installation
directory where you installed the latest release of OPatch.

Details from where to download OPatch are available at: How To Download And Install The
Latest OPatch(6880880) Version (Doc ID 274526.1)

2. Download the Oracle GoldenGate patch and maintain a location for storing the contents of
the patch ZIP file. This location or the absolute path is referred to as patch_top_dir in the
subsequent steps.

3. Navigate to the patch_top_dir directory and run the following command to extract the
contents of the patch ZIP file to the location you created previously.

cd patch_top_dir
unzip patch_number_version_platform.zip

4. Navigate to the unzipped patch directory:

cd patch_top_dir/patch_number_dir
5. Set the ORACLE_HOME environment variable to the Oracle GoldenGate installation directory

that is to be patched:

For Linux: $ export ORACLE_HOME=GoldenGate_Installation_Path
For Windows: > set ORACLE_HOME=GoldenGate_Installation_Path

6. Set the PATH environment variable to include the locations of the ORACLE_HOME and OPatch
directories.

For Linux: $ export PATH=$PATH:$ORACLE_HOME:/OPatch
For Windows: >set PATH=%PATH%;%ORACLE_HOME%;C:\OPatch

Chapter 2
Installing Patches for Oracle GoldenGate Microservices Architecture

2-18

https://docs.oracle.com/en/middleware/goldengate/core/21.3/release-notes/#Oracle%C2%AE-Database
https://support.oracle.com/knowledge/Oracle%20Database%20Products/274526_1.html
https://support.oracle.com/knowledge/Oracle%20Database%20Products/274526_1.html

7. Verify the Oracle inventory, which OPatch accesses to install the patches. To verify the
inventory, run the following command:

opatch lsinventory

If the command displays any errors, contact Oracle Support to resolve the issue.

8. Run the OPatch prerequisites check and verify that it passes.

opatch prereq CheckConflictAgainstOHWithDetail -ph ./

If any errors are displayed, identify the error type. OPatch categorizes conflicts in the
following types:

• Conflicts with a patch already applied to the ORACLE_HOME: In this case, stop the patch
installation and contact Oracle Support Services.

• Conflicts with a patch already applied to the ORACLE_HOME that is a subset of the patch
you are trying to apply: In this case, continue with the patch installation because the
new patch contains all the fixes from the existing patch in the ORACLE_HOME. The subset
patch will automatically be rolled back prior to the installation of the new patch.

9. Before patching Oracle GoldenGate, if you have any deployments for the installation,
ensure that you shut down all processes such as Extracts, Replicats, and Distribution
paths, and stop all services for the deployments.

This can be done in the Administration Service’s and Service Manager’s WebUI, or in the
Admin Client.

If using the Admin Client, perform the following steps to connect to each deployment and
stop all processes.

10. If using the Admin Client, connect to each deployment and stop all processes.

a. Start the Admin Client and connect to the deployment.

/GoldenGate_Installation_Path/bin/adminclient
OGG (not connected) 1>CONNECT https://host:srv_mgrport
DEPLOYMENT <deployment-name> AS <user> PASSWORD <password>

b. Stop the Extract and Replicat processes and the Distribution Paths.

STOP ER *
STOP DISTPATH ALL

c. Stop the services for the deployment and verify that they are all stopped:

STOP SERVICE *
STATUS SERVICE *

d. Exit the Admin Client and stop the Service Manager:

OGG (https://host:port deployment-name) exit
##Command for Service Manager not registered as a service/daemon
export OGG_VAR_HOME=OGG_SRVMGR_DIRECTORY/var
export OGG_ETC_HOME=OGG_SRVMGR_DIRECTORY/etc
OGG_SRVMGR_DIRECTORY/bin/stopSM.sh

Chapter 2
Installing Patches for Oracle GoldenGate Microservices Architecture

2-19

##Command for Service Manager registered as a service/daemon
For Linux: $ sudo systemctl stop OracleGoldenGate
For Windows: To stop the Service Manager for Windows, use the Windows
Services applet (services.msc) and stop the Oracle GoldenGate Service
Manager service.

11. Disconnect all user sessions to the deployment as well as close all running Oracle
GoldenGate programs, including Admin Client.

Perform the following steps to install the patch:

12. Install the patch by running the following command:

opatch apply

When the OPatch command starts, it validates the patch and ensures that there are no
conflicts with the software already installed in ORACLE_HOME of the Oracle GoldenGate
release.

13. After the patch installation completes, run the following command to verify that the Oracle
inventory contains the installed patch:

opatch lsinventory

Note:

For Oracle GoldenGate for PostgreSQL installations patched to release version
21.8.0.0.2 and later, prior to restarting the Extracts and Replicats, update the
DSN entries in the odbc.ini file to take advantage of the new driver version.

14. After the patch installation completes, start the Service Manager, the services, and Oracle
GoldenGate processes.

a. Start the Service Manager:

For Linux:

##Command for Service Manager not registered as a service/daemon
$ export OGG_VAR_HOME=OGG_SRVMGR_DIRECTORY/var
$ export OGG_ETC_HOME=OGG_SRVMGR_DIRECTORY/etc
$ OGG_SRVMGR_DIRECTORY/bin/startSM.sh
##Command for Service Manager registered as a service/daemon
$ sudo systemctl start OracleGoldenGate
For Windows: Use the Windows Services applet (services.msc) and start the
Oracle GoldenGate Service Manager service.

b. Start the Admin Client and connect to the deployment.

/GoldenGate_Installation_Path/bin/adminclient
OGG (not connected) 1>CONNECT https://host:srvmgr_port DEPLOYMENT
deployment-name AS user PASSWORD password

Chapter 2
Installing Patches for Oracle GoldenGate Microservices Architecture

2-20

c. Start services for the deployment and verify that they are all running:

START SERVICE *
STATUS SERVICE *

d. Start the Extract, Replicat and Distribution paths:

START ER *
START DISTPATH ALL

Uninstalling the Patch for Oracle and Non-Oracle Databases Using OPatch
To uninstall the patch, follow these steps:

1. Install the latest OPatch version, set the required environment variables, and stop the
Oracle GoldenGate processes and services. The patch installation steps are documented
in the previous topic.

2. Navigate to the patch_top_dir/patch_number directory:

$ cd patch_top_dir/patch_number

3. Uninstall the patch by running the following command:

$ opatch rollback -id patch_number

4. Start the services from the Oracle GoldenGate home.

Uninstalling Oracle GoldenGate Microservices Architecture
Learn about uninstallling Oracle GoldenGate Microservices Architecture processes and files
from the host in Linux, UNIX, and Windows environments.

It is assumed that you no longer need the data in the Oracle GoldenGate trails, and that you no
longer need to preserve the current Oracle GoldenGate environment. To preserve your current
environment and data, make a backup of the Oracle GoldenGate directory and all
subdirectories before starting this procedure.

Before uninstalling Oracle GoldenGate Microservices Architecture, you must stop the Service
Manager and all the deployments.

Removing Deployments and Service Manager
Learn how to remove a deployment using OGGCA.

Removing Deployments and Service Manager Using Oracle GoldenGate
Configuration Assistant

To remove a deployment using Oracle GoldenGate Configuration Assistant (OGGCA), perform
the following steps:

1. Connect to the Administration Server of all deployments to be removed, and stop any
running Extracts and Replicats.

Chapter 2
Uninstalling Oracle GoldenGate Microservices Architecture

2-21

2. Perform the following step for Linux and Windows systems:

• In Linux systems, run the command ./oggca.sh from the $OGG_HOME/bin directory to
launch the Oracle GoldenGate Configuration Assistant (OGGCA).

• In Windows systems, right-click the oggca.bat file and select Run as administrator.
This file is located in the OGG_HOME\bin directory.

3. Select the Existing Service Manager option and click Next.

4. Select Remove Existing Oracle GoldenGate deployment and click Next.

5. Follow the steps in the OGGCA wizard to remove the deployment.

6. Repeat the steps to remove multiple deployments and the Service Manager.

Using Oracle GoldenGate Configuration Assistant - Silent
To run the Configuration Assistant in silent mode, execute it with the -silent -responseFile
fullPathToResponseFile flags.

The properties expected to be set in the response file for removing a deployment are:

CONFIGURATION_OPTION,
DEPLOYMENT_NAME,
ADMINISTRATOR_USER,
ADMINISTRATOR_PASSWORD,
HOST_SERVICEMANAGER,
PORT_SERVICEMANAGER,
SECURITY_ENABLED,
REMOVE_DEPLOYMENT_FROM_DISK

Files to be Removed Manually

Operating System Files to be Removed Manually to Unregister an
Existing Service Manager

Linux 6

Note:

Linux 6 is not certified
for Oracle
GoldenGate 21c
(21.3.0). This
information may be
required when trying
to perform upgrades
or downgrades.

• /etc/init.d/OracleGoldenGate
• /etc/rc.d/*OracleGoldenGate
• /etc/rc*.d/*OracleGoldenGate
• /etc/oggInst.loc

Linux 7 and Linux 8 /etc/systemd/system/
OracleGoldenGate.service

Chapter 2
Uninstalling Oracle GoldenGate Microservices Architecture

2-22

Uninstalling Microservices Architecture with Oracle Universal Installer

Note:

It's important to remove all deployments prior to uninstalling Oracle GoldenGate
home directory.

To uninstall Oracle GoldenGate Microservices Architecture with Oracle Universal Installer:

1. Navigate to the following directory:

/$OGG_HOME/deinstall/
2. Run the command:

On UNIX and Linux: ./deinstall.sh
On Windows: \deinstall.bat

See Files to be Removed Manually for steps that you may need to perform manually.

Silent Uninstallation

If you want peform a silent uninstallation, use the command:

deinstall.sh -silent
Make sure that you've set the OGG_HOME variable correctly as the uninstallation is silent so you
will not be prompted.

See the following example for a silent uninstalltaion:

OS> ./deinstall.sh
ALERT: Ensure all the processes running from the current Oracle Home are
shutdown prior to running this software uninstallation script.Proceed with
removing Oracle GoldenGate home:
/net/xyz02/scratch/scott/view_storage/scott_x19200x/local/ggtest/
install_200714
 (yes/no)? [no] yes
Starting Oracle Universal Installer...
Checking swap space: must be greater than 500 MB.
Actual 11648 MB
PassedPreparing to launch Oracle Universal Installer from /tmp/
OraInstall2020-08-19_10-52-30AM.
 Please wait ...
Oracle Universal Installer, Version 12.2.0.1.4 ProductionCopyright (C) 1999,
2016, Oracle. All rights reserved.Starting deinstallDeinstall in progress
(Wednesday, August 19, 2020 10:52:33 AM
PDT)... 100%
Done.Deinstall successful
 OS> ./deinstall.sh -silentALERT:
Ensure all the processes running from the current Oracle Home are shutdown
prior to running this software uninstallation script. Starting Oracle
Universal Installer... Checking swap space: must be greater than 500 MB.
Actual 11647 MB
 Passed Preparing to launch Oracle Universal Installer from /tmp/

Chapter 2
Uninstalling Oracle GoldenGate Microservices Architecture

2-23

OraInstall2020-08-19_10-43-25AM.
Please wait ...
Oracle Universal Installer, Version 12.2.0.1.4 Production Copyright (C) 1999,
2016, Oracle. All rights reserved.
Starting deinstall
Deinstall in progress (Wednesday, August 19, 2020 10:43:29 AM PDT)
 100% Done.
Deinstall successful

Chapter 2
Uninstalling Oracle GoldenGate Microservices Architecture

2-24

3
Deploy

Learn about the OGGCA utility and accessing the Service Manager and Deployment
configurations for the first time, using the login credentials for Oracle GoldenGate.

Deployments are created after Oracle GoldenGate software is installed. The Oracle
GoldenGate Configuration Assistant (OGGCA) utility is used to create deployments and the
Service Manager process on a host machine.

The OGGCA utility has many functions, which can be performed by running this program from
the /bin folder of the Oracle GoldenGate software installation directory ($OGG_HOME/bin).
You can use OGGCA to perform the following tasks:

• Add the Service Manager to a host machine after completing the Oracle GoldenGate
installation.

• Add or remove deployments from a Service Manager.

• Create users for accessing the Service Manager and user deployments and enable a
strong password policy.

• Integrate with XAG when using Oracle GoldenGate with Oracle Grid Infrastructure.

• Save the OGGCA response file that contains the configuration details of the Service
Manager and deployment.

• Configure environment variables.

• Enable security and upload client, service, and trusted root CA certificates for the Service
Manager and deployment.

• Enable the Configuration Service to store configuration data to a specified filesystem or
Oracle databsae server.

• Enable and configure the StatsD server to send performance data.

Add a Deployment
Follow the instructions on this page to add a deployment using the OGGCA wizard.

Using OGGCA Wizard for Deployment
This section discusses using the OGGCA wizard for deployment.

Start the OGGCA Wizard
Adding deployments is the first task in the process of setting up a data replication platform.
Deployments are managed from the Service Manager. After completing the Oracle
GoldenGate MA installation, you can add initial and subsequent deployments using the Oracle
GoldenGate Configuration Assistant (OGGCA) wizard.

3-1

Note:

Oracle recommends that you maintain a single Service Manager per host, to avoid
redundant upgrade and maintenance tasks with Oracle GoldenGate releases.

To start the OGGCA wizard:

1. Navigate to the $OGG_HOME/bin directory to access the Oracle GoldenGate
Configuration Assistant (oggca) utility.

2. Run the oggca.sh program on UNIX or oggca.bat on Windows.

The Oracle GoldenGate Configuration Assistant (oggca) wizard is displayed.

The following topics provide details on the configuration that you can set on each of the
OGGCA screens.

Select Service Manager Options

1. Select the Create a New Service Manager option if you are running OGGCA for the first
time. When you run OGGCA for the first time, the Existing Service Manager option is
disabled. If it's not the first time, then you can choose the Existing Service Manager
option, which would load the Service Manager port and other settings as configured for the
existing Service Manager. The deployment would be added to this Service Manager. In
most configurations, there is only one Service Manager to manage multiple deployments.

2. For a new Service Manager, browse and enter the directory that you want to use for your
deployment in the Service Manager Deployment Home text box. Oracle recommends
that you create a ServiceManager directory within the deployment sub-directory structure
to store the Service Manager files.

3. Enter the connection details for the Service Manager:

a. Listening hostname/address: Enter a hostname such as localhost or the IP address
of the server where Service Manager will run.

b. Listening Port: Enter a unique port number that the Service Manager will listen on, or
choose the port already in use if selecting an existing Service Manager.

4. (Optional) Select the option Register the Service Manager as a system service
(daemon) to avoid manually starting and stopping it if the machine is rebooted. If there is
an existing Service Manager registered as a service and you select a new Service
Manager to register as a service, an alert is displayed indicating that you cannot register
the new one as a system service. All other Service Managers are started and stopped
using scripts installed in the bin directory of the deployment.

You cannot register an existing Service Manager as a system service. Enter a unique port
number that the Service Manager will listen on, or choose the port already in use, if
selecting an existing Service Manager.

5. (Optional) Select the Integrate with XAG option to integrate your deployment with an
Oracle Grid Infrastructure for Oracle Database. This is only available for Oracle database
in a cluster environment. This option cannot be used when running your Service Manager
as a system service.

6. Click Next.

Chapter 3
Add a Deployment

3-2

Configuration Options

In the Configuration Options step, you can add or remove deployments.

You can only add or remove one deployment for one Service Manager at a time.

Note:

Ensure that your Service Manager is up and running prior to launching OGGCA.

Deployment Details

Deployment Details

1. Enter the deployment name using these conventions:

• Must begin with a letter.

• Can be a standard ASCII alphanumeric string not exceeding 32 characters.

• Cannot include extended ASCII characters.

• Special characters that are allowed include underscore (‘_’), forward slash (‘/’), dash
(‘-’), period (‘.’).

• Cannot be “ServiceManager”.

2. Select the Enable FIPS check box to enable Oracle GoldenGate services to use FIPS-
compliant libraries.

3. (Oracle Database only) Select Enable Sharding to use the database sharding feature in
your deployment. The schema must be ggadmin.

4. Enter or select the Oracle GoldenGate installation directory. If you have set the $OGG_HOME
environment variable, the directory is automatically populated. Otherwise, the parent
directory of the oggca.sh (Linux) or oggca.bat (Windows) script is used.

5. Click Next.

Select Deployment Directories

Select Deployment Directories

1. Enter or select a deployment directory where you want to store the deployment registry
and configuration files. When you enter the deployment directory name, it is created if it
doesn’t exist. Oracle recommends that you do not locate your deployment directory inside
your $OGG_HOME and that you create a separate directory for easier upgrades. The
additional fields are automatically populated based on the specified deployment directory.

Chapter 3
Add a Deployment

3-3

Note:

The deployment directory name (user deployment directory) needs to be different
than the directory name chosen in the first screen (Service Manager deployment
directory).

2. You can customize the deployment directories so that they are named and located
differently from the default.

3. Enter or select different directories for the various deployment elements.

4. Click Next.

Specify Environment Variables

Environment Variables

Enter the requested values for the environment variables. Double-click in the field to edit it. You
can copy and paste values in the environment variable fields. Make sure that you tab or click
outside of the field after entering each value, otherwise it’s not saved. If you have set any of
these environment variables, the directory is automatically populated.

OGG_HOME
The directory where you installed Oracle GoldenGate. This variable is fixed and cannot be
changed.

Note:

On a Windows platform, ensure that there's no space in the OGG_HOME directory path
otherwise OGGCA will not run.

IBMCLIDRIVER
Valid for DB2 z/OS.

Specifies the location where the IBM Data Server Driver for ODBC and CLI (IBMCLIDRIVER)
software is installed.

LD_LIBRARY_PATH
This variable is used to specify the path to search for libraries on UNIX and Linux. It may have
a different name on some operating systems, such as LIBPATH on IBM AIX on POWER
Systems (64-Bit), and SHLIB_PATH on HP-UX. This path points to the Oracle GoldenGate
installation directory and the underlying instant client directory by default.
If you are using User Exits, then append the LD_LIBRARY_PATH variable with the path to the
additional shared libraries of the User Exit.

TNS_ADMIN
Valid for Oracle database.
This variable is recommended and points to the directory location containing tnsnames.ora,
which has the database connection details. If this variable is not set, Oracle GoldenGate looks
for $HOME/.tnsnames.ora or /etc/tnsnames.ora You need to create the tnsnames.ora file

Chapter 3
Add a Deployment

3-4

with the connection data and place it in the $OGG_HOME/etc. Here's a sample structure of the
file:

tnsnames.ora Network Configuration File:
Generated by Oracle configuration tools.

LISTENER_ORCL19 =
 (ADDRESS = (PROTOCOL = TCP)(HOST = eastdb.us.oracle.com)(PORT = 1521))

ORCL =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = eastdb.oracle.com)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orcl.us.oracle.com)
)
)

For example: TNS_ADMIN=/u01/app/oracle/network/admin

STREAMS_POOL_SIZE
For Oracle Database Sharding only. This variable is mandatory for sharded databases. Use
the default or set your pool size value that is at least 1200MB.

TZ
Valid for MySQL.
Use the following query to determine the timezeone of the MySQL database:

SELECT @@global.time_zone;mysql> select
@@global.time_zone;+--------------------+| @@global.time_zone |
+--------------------+| SYSTEM |+--------------------+1 row in set (0.00 sec)2

If it returns the timezone as SYSTEM, then it indicates that the database timezone is the same
as the system timezone.
To know the system timezone, you can run the following query on your MySQL database:

mysql> select @@system_time_zone;+--------------------+| @@system_time_zone |
+--------------------+| UTC |+--------------------+1 row in set (0.00 sec)3

Make sure that the database timezone and the timezone of the system where the Oracle
GoldenGate instance is running are the same.
Alternatively, you can set the TZ variable for the deployment to the same value as the
database timezeone. Use the following command to check the TZ variable on the shell where
you are going to invoke TZ:

linux# echo $TZa

Chapter 3
Add a Deployment

3-5

Use the following command to set TZ on the shell where you start your Oracle GoldenGate
command line (Admin Client or GGSCI) from:

linux# export TZ UTC

ODBCINI
Valid for Oracle GoldenGate installed on Linux for PostgreSQL databases.
Specifies the full path of the ODBC file used to store Data Source Names (DSN) for
connectivity to a PostgreSQL database. For example, ODBCINI=/etc/odbc.ini

JAVA_HOME
If this variable is present during deployment creation, it will automatically be populated,
otherwise you can set it to be:

export JAVA_HOME=$OGG_HOME/jdk

You can add additional environment variables to customize your deployment or remove
variables.

Click Next.

Service Manager Administrator Account

Administrator Account

To choose between Identity Cloud Service (IDCS) or local credential setup, define your Service
Manager administrator user.

Note:

The option to set up IDCS-enabled administrator account is not applicable when you
run OGGCA for the first time. Only after creating and enabling the Authorization
Profile, you can set up the Administrator Account for accessing IDCS. See Enabling
Authorization Profile.

1. Enter a user name and password that you want to use to sign in to the Oracle GoldenGate
MA Service Manager and the other services. This user is the security user for this
deployment.

If you are adding a deployment to an exisiting Service Manager and intend to use IDCS (as
your external Identity Provider) for user authentication, then specify the user credentials for
the IDCS server. As a prerequisite to providing the credentials for accessing the IDCS
server, you need to enable the Authorization Profile from the Service Manager deployment.

Note:

For Administrator Account, you must enter a user and password for a provisioned
external IDP identity that is mapped to the SECURITY group previously
configured for the Service Manager deployment.

Select the Enable strong password policy in the new deployment checkbox to ensure
setting a highly secure password for your user account. This password policy applies for

Chapter 3
Add a Deployment

3-6

your localCredentialStore only but not for IDCS default settings. See Manage Oracle
Identity Cloud Service Password Policies in Administering Oracle Identity Cloud Service
guide.

The strong password policy for localCredentialStore has the following requirements:

• At least one lowercase character [a...z]

• At least one upposercase character [A...Z]

• At least one digit [0...9]

• At least one special character [- ! @ % & * . #]

• The length should be between 8 and 30 characters.

For details on the different types of users, see How to Add Users. If you are using an
existing Service Manager, you must enter the same log in credentials that were used when
adding the first deployment.

2. Select the check box that allows you to enable a strong password policy for your new
deployment. If you select this option, then the password must adhere to restrictions,
otherwise an error occurs, which requires you to specify a stronger password.

3. Click Next.

Local Administrator Account Credentials

On this screen, enter the user credentials for the local administrator for the new deployment. If
you want to enable IDCS for this new deployment, you can do so by enabling the authorization
profile.

Note:

If Service Manager is enabled for IDCS, it can continue to manage the new
deployment, which uses local administrator credentials, even if the new deployment
is not enabled for IDCS.

Specify Security Options

Security Options

1. You can choose whether or not you want to secure your deployment. Oracle recommends
that you enable SSL/TLS security.

If you do not want to use security option on the source endpoint, deselect the check box.

2. When you deselect the SSL/TLS check box, the option This non-secure deployment will
be used to send trail data to a secure deployment stays enabled. Select this check box
to set up a secure target deployment to communicate with a non-secure source
deployment. In this case, certificates are required for the client only.

However, you must enable security if configuring for Oracle GoldenGate sharding support
for Oracle Database.

3. For the Server (wallet or certificate), select the option to use a Wallet or Certificate. Provide
the location of the wallet directory and if you are using an existing wallet, it must have the
appropriate certificates already imported into it. If you choose to use a certificate, enter the
corresponding pass phrase.

Chapter 3
Add a Deployment

3-7

When using a self-signed certificate, a new Oracle Wallet is created in the new deployment
and these certificates are imported into it. For certificates, enter the location of the private
key file and the pass phrase. The private key files must be in the PKCS#8 format.

4. For the Client side, select either the wallet directory or certificate. Provide the wallet
directory on the client side or the certificate details for the client. If you select the This non-
secure deployment will be used to send trail data to a secure deployment, then you
only need to specify the client side details (wallet or certificate of the target deployment).
This option is useful when the Distribution Service from the source deployment is
unsecured whereas the Receiver Service on the target deployment is secured. So, the
sender may be configured for public access while the Receiver Service requires
authentication and authorization, which is established using PKI before the incoming data
is applied.

For more information, see Creating a Self-Signed Root Certificate .

Also see: Add a Target-Initiated Distribution Path.

5. Click Next.

Advanced Security Settings
If security is enabled, then this screen is displayed with the encryption options TLS 1.1 and
TLS 1.2. TLS 1.2 is selected by default. When you open the Advanced Security Settings for
the first time with TLS 1.2, the available cipher suites are listed.

1. Use the arrows to add or remove cipher suites.

2. Use Up and Down to reorder how the cipher suites are applied and click Next.

Advanced Security Settings

(If Security is enabled) On the page, the encryption options TLS 1.1 and TLS 1.2 are available.
TLS 1.2 is selected by default.

When you open the Advanced Security Settings for the first time with TLS 1.2, the following
cipher suites are listed:

TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256

Chapter 3
Add a Deployment

3-8

TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384

1. Use the arrows to add or remove cipher suites or the Up and Down to reorder how the
cipher suites will be applied.

2. Click Next.

Sharding Options

Sharding Options

If Sharding was enabled in the previous step, then you can configure the sharding options on
this screen.

1. Locate and import your Oracle GoldenGate Sharding Certificate. Enter the distinguished
name from the certificate that will be used by the database sharding code to identify itself
when making REST API calls to the Oracle GoldenGate MA services.

2. Enter a unique name for the certificate.

3. Click Next.

Port Settings

Port Settings

1. Enter the Administration Server port number, and then when you leave the field the other
port numbers are populated in ascending numbers. Optionally, you can enter unique ports
for each of the services.

2. Select Enable Monitoring to use the Performance Metrics Server.

3. Click inside the Performance Metrics Server port fields to populate or enter the ports you
want to use. Ensure that you choose available ports for TCP. See Protocols for
Performance Monitoring on Different Operating Systems.

You can change the TCP port from the Service Manager console after the deployment is
done. For more information on PMSRVR, see ENABLEMONITORING.

4. Select the type of datastore that you want the Performance Metrics Server to use, the
default Berkeley Database (BDB) data store or Open LDAP Lightning Memory-Mapped
Database (LMDB). You can also designate the Performance Monitor as a Critical Service if
integrating the Service Manager with XAG.

For BDB informtion, see Oracle Berkeley DB 12c Release 1. For LMDB information, see
http://www.lmdb.tech/doc/.

5. Select the location of your datastore. BDB and LMDB are in-memory and disk-resident
databases. The Performance Metrics Server uses the datastore to store all performance
metrics information.

6. Click Next.

Replication Settings

Chapter 3
Add a Deployment

3-9

http://docs.oracle.com/cd/E17076_05/html/index.html
http://www.lmdb.tech/doc/

1. Enter the Oracle GoldenGate default schema that you want to use to store the replication
objects such as checkpoint and heartbeat tables.

Note:

OGGCA doesn't connect to the database, so it cannot validate the schema. The
schema specified in OGGCA is written to the GLOBALS file as a default schema.
When creating an Extract, if you do not specify a replication schema, Extract will
use this schema.

2. Click Next.

Summary

1. Review the detailed configuration settings of the deployment before you continue, as
shown in the following image.

Chapter 3
Add a Deployment

3-10

2. (Optional) You can save the configuration information to a response file. Oracle
recommends that you save the response file. You can run the installer from the command
line using this file as an input to duplicate the results of a successful configuration on other
systems. You can edit this file or a new one from the provided template.

Note:

When saving to a response file, the administrator password is not saved for
security reasons. You must edit the response file and enter the password if you
want to reuse the response file for use on other systems.

3. Click Finish and then click Next.

Configure Deployment
This screen displays the progress of the deployment creation and configuration. There could
be some notifications during the progress if the Service Manager is registered as a service.

A pop-up appears that directs you how to run the script to register the service. The
Configuration Assistant verifies that these scripts have been run. If you did not run them, you
are queried if you want to continue. When you click Yes, the configuration completes
successfully. When you click No, a temporary failed status is set and you click Retry to run the
scripts.

Click Ok after you run the script to continue.

After the creation and configuration process completes, you'll see a message that the
deployment is added successfully. Click Next.

Chapter 3
Add a Deployment

3-11

Finish
On the Finish screen, click Close to exist OGGCA.

Add a Deployment to an Existing Service Manager
To add a deployment to an existing Service Manager, run the OGGCA utility using the following
commands:

cd $OGG_HOME/bin
./oggca.sh

Use the following steps to add a deployment to the existing Service Manager:

1. The OGGCA configuration wizard is displayed. The Existing Service Manager option is
preselected in the Service Manager Deployment screen and the Service Manager
Connection details are displayed. Click Next.

2. On the Select Configuration Options screen, the Add new GoldenGate deployment
option is preselected. Click Next.

3. On the Specify Deployment Details screen, enter a name of the deployment, enable
Sharding (if required), and specify the home directory where Oracle GoldenGate is
installed. Click Next.

4. On the Specify Deployment Directories screen, enter a deployment directory where you
want to store the deployment registry and configuration files. When you enter the
deployment directory name, it is created if it doesn’t exist. Oracle recommends that you do
not locate your deployment directory inside your $OGG_HOME and that you create a separate
directory for easier upgrades. The additional fields are automatically populated based on
the specified deployment directory.

Note:

The deployment directory name (user deployment directory) needs to be different
than the directory name chosen in the first screen (Service Manager deployment
directory).

You can customize the deployment directories so that they are named and located
differently from the default.

5. Specify different directories for the various deployment components and click Next.

6. Specify the environment variables in the same way as you would do for a new deployment.
See Specify Environment Variables.

7. Specify the Administrator Account details, which would be used to log in to the
deployment. See Service Manager Administrator Account.

8. On the Specify Security Options screen, select the options to use SSL/TLS and the client,
server certificate details. See Specify Security Options and Advanced Security Settings.

9. On the Specify Port Settings screen, provide the port numbers for the Microservices. Also
select the Performance Monitoring check box if you want to monitor process performance
for Oracle GoldenGate processes. See Port Settings.

Chapter 3
Add a Deployment to an Existing Service Manager

3-12

10. On the Specify OGG Replication Settings screen, enter the name of the replication schema
to be used with the deployment.

11. Review the settings on the Summary screen and click Next. You can save the response file
at this stage.

12. After the deployment is added successfully, click Finish to exit from the OGGCA wizard.

Add a Deployment in Silent Mode using OGGCA
To add a deployment in the silent mode, perform the following steps:

• Open the Deployment response file template with extension .rsp, available at this location
in Oracle GoldenGate:

ogg-home/inventory/response
• Follow the instructions specified in the file to edit and then save the file with a different

name, such as oggca.rsp.

• Create the Deployment by running the following command:

ogg-home/bin/oggca.sh -silent -responseFile path/oggca.rsp
Example:

/u01/app/ogg/bin/oggca.sh -silent -responseFile /u01/app/ogg/inventory/response/
oggca.rsp

First Access to the Deployment from the Service Manager
To start using your Oracle GoldenGate Microservices deployment, you have to connect to the
Service Manager:

Note:

When you log into the Service Manager for the first time, it is recommended to
change the password.

1. Open a web browser and connect to the Service Manager that you created with Oracle
GoldenGate Configuration Assistant. The URL is similar to http://localhost:9001, where
9001 is the port where you have deployed your Service Manager instance. For a secure
deployment, the URL is similar to https://localhost:9001.

2. Enter the user name and password you created during deployment and sign in.

In the Service Manager, you can check if the Service Manager and all the other
microservices are up and running. Use the links to connect you to their specific interfaces,
review details, and administer your deployments.

For more information on setting up the Service Manager as a daemon service, see Select
Service Manager Options

Add Deployment Users from the Service Manager

Chapter 3
Add a Deployment in Silent Mode using OGGCA

3-13

Each deployment has its own set of users with specific roles. The administrator account user,
which is created when the Service Manager is created for a host using OGGCA, can log into
the Service Manager and other microservices. This user can also create users with specific
roles to access or operate Oracle GoldenGate processes. This administrator account user can
access all deployments that are added to this existing Service Manager.

However, all subsequent users created from either the Service Manager or Administration
Service are associated with the specific deployment. These users are not available with other
deployments on the same host server.

The other users are specific to the MA deployment and the security user needs to create users
to every MA deployment individually.

You can create users from the Service Manager or the Administration Service. See Add
Deployment Users from the Administration Server for steps to create users.

For Oracle database, see Granting the Appropriate User Privileges to learn about specifying
database privileges for Oracle GoldenGate.

For non-Oracle databases, see the user privileges section for DB2 z/OS, MySQL, PostgreSQL,
SQL Server.

You can create users for that deployment by performing the following steps:

1. Log in to the Administration Service.

2. From the left navigation pane, select User Administration.

3. Click Users (+) to add users.

4. Enter the following details for the user:

• Authenticated By: User authentication can be done with a user ID and password
method or by using certificates. Select the type of authentication for the user from the
drop down.

• Role: User roles include Administrator, Security, User, and Operator. Select the user
role based on the functions that the user needs to be perform. The following table
describes these user roles:

Role ID Privilege Level

User Allows information-only service requests,
which do not alter or effect the operation of
either the MA. Examples of Query/Read-Only
information include performance metric
information and resource status and
monitoring information.

Operator Allows users to perform only operational
actions, such as creating, starting and
stopping resources. Operators cannot alter the
operational parameters or profiles of the MA
service.

Administrator Grants full access to the user, including the
ability to alter general, non-security related
operational parameters and profiles of the
service.

Security Grants administration of security related
objects and invoke security related service
requests. This role has full privileges.

Chapter 3
Add Deployment Users from the Service Manager

3-14

• If you selected the Password option from the Authenticated By drop down, then
specify the user ID and password for the Oracle GoldenGate user.

• If you selected the Certificate option from the Authenticated By drop down, then click
Upload to upload the related Certificate or paste it in the text box. This certificate is
validated for user authentication when connecting remote deployments. This type of
user authernticates itself by presenting a client certificate to the target deployment to
allow connectivity. The common name (in the certificate that will be presented such as
CN="certuser") is used when setting up the DISTPATH (target authentication method)
to connect different source and target deployments.

Note:

The certificate is associate with the user and not saved by the Oracle
GoldenGate service. When presented for autherntication, the Oracle
GoldenGate deployment service first authenticates that the certificate
presented can be trusted and then checks to see that the common name in
the certificate has been registered as a valid user. If yes, it will assign the
appropriate user role.

If the user needs to set up a trusted CA certificate, then in the CA Certificates section,
you can click Enter and paste the CA certificate in the text box. You can also click
Upload to upload the CA certificate file.

5. Click Submit. The new user shows in the list of Users in the Users table.

6. You can also edit or delete a user from the Action column of the Users table.

You can switch the User Type from Basic to Certificate or the other way around. You can
also change the password for the user, if required.

Click Submit to confirm the modifications to the user attributes.

Users cannot be changed. You must delete a user, and then add it again. However, you can
modify or edit a user's attributes, by clicking the Edit User (pencil) in the Action column of the
Users table.

You can switch the authenticated by option from Password to Certificate or the other way
around.

You can also change the password for the user, if required.

Click Submit to confirm the modifications to the user attributes.

Add Deployment Users from the Administration Server
Oracle GoldenGate MAusers can be created from the Administration Server, once you log in
using the credentials created at the time of configuring the deployment.

This is an optional step with which you can easily identify if replication (setup) is working or not.
To create a user, perform the following tasks:

1. Click Administrator from the left navigation pane of the Administration Server.

2. Click + to add a user.

3. Enter the required credentials in the fields.

Chapter 3
Add Deployment Users from the Administration Server

3-15

4. Make sure that you select a role from the Role drop-down list. The available roles are:
Administrator, Security, User, and Operator.

5. Click Submit.

The new user is listed in the Users table including the role and information that you
supplied.

Manage Deployments from the Service Manager

The ServiceManager can be configured in three different modes:

• Manually

• As a Daemon

• Integrated with XAG agent

Note:

If the Service Manager is registered as a system daemon, then the Service Manager,
Administration Server (AS), Distribution Server (DS), Receiver Server (RS), and the
Performance Metrics Server are automatically started when the host is (re)started.

Oracle recommends the usage of a secure configuration within Oracle GoldenGate MA. There
are two options for setting up a secure MA deployment:

• Run MA on loopback address and front it with an HTTPS reverse proxy (nginx). See
Reverse Proxy Support.

– Interoperability between Oracle GoldenGate Classic andOracle GoldenGate MA is
configured through the ogg protocol using data pump Extract from Oracle GoldenGate
Classic with SOCKSPROXY.

• Run Oracle GoldenGate MA with TLS version 1.2 enabled on all services.

For more information on setting up the Service Manager as a daemon service, see Select
Service Manager Options

Quick Tour of the Service Manager
When you complete the Oracle GoldenGate MA installation, the Service Manager opens up at
the specified URL. This page acts as an access point for performing deployment, configuring
the Administration Server, Distribution Server, Receiver Server, Performance Metrics Server,
and the Admin Client.

The Service Manager home page is a dashboard where you can see the services that have
been deployed and access inventory and configuration information pertaining to your
deployments. You can also view the status of your deployments, and start and stop services.

Now, that you have an overview of the Service Manager, let’s go through some of the actions
you can perform using the Service Manager home page.

Action Task

View the service status Review Status Changes

Chapter 3
Manage Deployments from the Service Manager

3-16

Action Task

Start and stop deployments Starting and Stopping Deployments and Services

Access various servers You can click the respective links to access the
following:

• Administration Server to add, modify, and
delete Extracts and Replicats.

• Distribution Server to add, modify, and delete
Paths

• Performance Metrics Server to Review
Messages and Review Status Changes

• Receiver Server to view details of the path,
including path network statistics and file I/O
statistics.

Access details for Administration Server,
Distribution Server, Performance Metrics Server,
and Receiver Server

Click Details for the server for which you need to
see the details. See View and Edit Services
Configuration

Application Navigation pane Click the icon to expand and access the Service
Manager or the Diagnosis home pages.

How to Start and Stop the Service Manager
The start and stop process of the Service Manager within Oracle GoldenGate Microservices
Architecture is different based on how the Service Manager is configured within your
environment.

The following provide context on how the start and stop processes can be done for the Service
Manager:

• If the Service Manager is configured in manual mode then there are scripts in
the $DEPLOYMENT_BASE/ServiceManager/bin directory that can be run to start or stop the
Service Manager.

Run the scripts to start or stop the Service Manager from the following locations:

– To start the Service Manager: OGG_Deployment_Home/bin/startSM.sh
– To stop the Service Manager: OGG_Deployment_Home/bin/stopSM.sh

• If the Service Manager is configured as a daemon, the scripts required to start or stop for
manual interaction are not created. The operating system is responsible for starting or
stopping the Service Manager.

For OEL 6:

stop/start/status for Service Manager
/etc/init.d/OracleGoldenGate start
/etc/init.d/OracleGoldenGate stop
/etc/init.d/OracleGoldenGate status
For OEL 7:

systemctl start OracleGoldenGate
systemctl status OracleGoldenGate
systemctl stop OracleGoldenGate

Chapter 3
Manage Deployments from the Service Manager

3-17

• If the Service Manager is configured to run with the XAG agent in an Oracle Cluster Ready
Service (CRS); then the start and stop process is handled by the CRS stack.

How to Change Deployment Details and Configuration
You can review and change the selected service (server) configuration.

Details Tab

Use to review the selected deployment configuration. All the deployment directories that you
configured with the Configuration Assistant are displayed. For Oracle database, the only
directory that you can edit is the Oracle GoldenGate home (OGG_HOME). This allows you to use
a different installation than the one you originally configured.

Configuration Tab

Use to review and change the selected deployment environment variables. The environment
variables that you configured for your deployment are displayed. You can add new variables,
modify existing variables, and delete selected variables.

When using Oracle GoldenGate Microservices on an AIX operating with Oracle database
RU11 and higher, the AIXTHREAD_STK value needs to be set to atleast 1048576 (1 MB). You
can set the AIXTHREAD_STK value from this tab, as follows:

Add an environment variable for AIXTHREAD_STK for the deployment.

Restart the deployment.

Check the Extract report file to these updates.

The Extract thread IXAsyncTrans is set to a minimum size of 2M.

The default stack size on AIX is 196,608 bytes for 64-bit applications.

Certificates

Use this tab to manage certificates for client and CA certificates. See Securing Deployments in
the Oracle GoldenGate Security Guide for details.

How to Interpret the Log Information
You can review all of the messages logged for your Service Manager with this page.

Using the Table

An updated log of Extract and Replicat server messages is displayed. You can sort the list by
date or severity by clicking on the adjacent arrow. Also, you can refresh this log and choose
how many pages you want to view.

To search, you select Date, Severity, or Message, and then select the appropriate options to
construct your search.

Notice the Notifications tab at the bottom of the page. It displays server messages, which are
not updated in the log due to transaction errors. For example, failure to log in to the database
using the database credentials.

How to Enable and Use Debug Logging
You can enable debug logging and download debug log files from this page.

Chapter 3
Manage Deployments from the Service Manager

3-18

Enabling Debug Logging:

To enable debug logging:

1. Click the Debug Log option from the Navigation Pane of the Service Manager page.

2. Click the Enable Debug Log option to start logging debug information.

Using the Debug Log

You can use the access and use the debug log file from this page:

1. Click the Download Log File option to save a local copy of the debug log

2. Click the Load Debug Log File option to view the debug log on this page.

3. Search for specific entries in the debug log using the Search By box, if required. You can
click Refresh to get the latest log information, if it doesn't get refreshed automatically.

.

How to Start and Stop Service Manager and Deployments
The Service Manager is the central hub from where you can start and stop deployments and
other microservices such as Administration Server, Distribution Server, Performance Metrics
Server, and Receiver Server.

Using Service Manager Start or Stop a Deployment

Note:

If Oracle GoldenGate Service Manager is registered as a system daemon, then the
Service Manager along with the other servers, are automatically started when the
host is (re)started.

Using Scripts to Start and Stop a Deployment
The Service Manager deployment include startup and shutdown scripts (startSM.sh and
stopSM.sh) for starting and stopping the deployment locally from the command line.

Here are the steps to access and run the scripts:

1. Ensure that your environment variables, mainly the ETC_HOME and the VAR_HOME, are set up
correctly. See Add a Deployment for environment variable setup.

2. Navigate to DEPLOYMENT_HOME/bin directory for the Service Manager.

Note:

If you selected to run the Service Manager as a system daemon, then these
script files will not be in this location. Instead, the bin directory would contain the
file, oggInst.loc, which is used to register the Service Manager as a daemon.

Chapter 3
Manage Deployments from the Service Manager

3-19

3. Run the following command to stop the Service Manager:

./stopSM.sh

4. Run the folloiwng command, to start or restart the Service Manager:

./startSM.sh

Remove a Deployment
Learn about removing a deployment.

Before Removing the Deployment
Removing a deployment is not the same as removing a Service Manager. When you remove a
deployment, it doesn't imply that the Service Manager would also need to be removed as there
could be multiple deployments added to the same Service Manager.

You can remove a deployment using the Oracle GoldenGate Configuration Assistant (OGGCA)
wizard.

Note:

When you remove a deployment or uninstall Oracle GoldenGate MA, the system
does not automatically stop processes. As a result, you may have to stop processes
associated with the deployment and you must clean files manually.

Before removing a deployment, stop the deployment, its associated microservices, and ER
processes.

Start OGGCA to Remove Deployment
To start the deployment removal process, follow these steps:

1. Run the OGGCA wizard from the following location:

cd $OGG_HOME/bin

./OGGCA.sh

2. Select Existing Service Manager from the Select Service Manager Options screen.
Click Next.

3. Select Remove Existing Oracle GoldenGate Deployment from the Configuration
Options screen. Click Next.

4. Select the deployment you need to remove from the Deployment Name list box.

5. Select the Delete Deployment Files from Disk check box if you want to remove all the
deployment files (including configuration files) from the host server. These configuration
files are usually located in the /etc and /conf directories.

6. Enter the Administration account user name and password for the Service Manaager
administrator.

Chapter 3
Remove a Deployment

3-20

7. Enter the Administration account user name and password for the Deployment
administrator click Next.

8. On the Summary page, see the list of settings that would be deleted with the deployment
and click Finish.

Remove the Service Manager
Learn about removing the Service Manager.

Start OGGCA to Remove the Service Manager
The option to remove the Service Manager is available in OGGCA, only if there are no
available deployments to remove. To remove the Service Manager:

1. Run the OGGCA wizard from the /bin directory of Oracle GoldenGate home:

cd $OGG_HOME/bin
./oggca.sh

2. Select Existing Service Manager from the Select Service Manager Options screen.
Click Next.

3. Select the Service Manager from the drop down list.

4. Select Remove Service Manager Deployment from the Configuration Options screen.

5. Click Finish to remove the Service Manager.

Files to be Removed Manually After Removing Deployment
It’s mandatory to delete some files manually only in case there's a Service Manager registered
but you have to unregister it and register a new one. To remove files manually, you must have
root or sudo privileges. The files to be deleted include:

Operating System Files to be Removed Manually to Unregister an
Existing Service Manager

Linux 6 • /etc/init.d/OracleGoldenGate
• /etc/rc.d/*OracleGoldenGate
• /etc/rc*.d/*OracleGoldenGate
• /etc/oggInst.loc

Linux 7 /etc/systemd/system/
OracleGoldenGate.service

The following commands are executed to stop the Service Manager:

systemctl stop OracleGoldenGate
systemctl disable OracleGoldenGate *

Chapter 3
Remove the Service Manager

3-21

Note:

If the Service Manager is not registered as a service (with or without the integration
with XAG), OGGCA stops the Service Manager deployment, otherwise, a script
called unregisterServiceManager is created. When executed by the user, it runs the
systemctl commands and deletes the mentioned files.

View and Edit Services Configuration
The services configuration and restart options for Administration Server, Distribution Server,
Performance Metrics Server, and Receiver Server can be viewed and edited from the Services
Manager.

You can access the services configuration for each of the servers, from the Service Manager
home page. Click the Details button for the server that you need to check the service
configuration for. The Service Configuration page is displayed. This page allows you to view
and edit the service configuration and the restart options for the corresponding server. The
configuration and restart options for all the servers are the same.

The following table explains the Service Configuration and Restart Options on the Services
Configuration page.

Service Configuration
Options

Description

Port Port Number for the corresponding server

Enable Legacy Protocol Enables legacy communication for services that are compatible.

Enabled Async Operation Enables asynchronous RESTful API method execution

Default Sync Wait The default time a service will wait before responding with an
asynchronous REST API response

Enabled Task Manager Enable task management for services that provide it.

U-Mask File mode creation mask

Quiet Starts the service in quiet mode.

Enabled Indicates that the service is managed by Service Manager.

Status Indicates that the service is running.

Restart Options Description

Enabled If set to true, then it restart a task if it gets terminated.

On Success If set to false, then the task is only restarted if it fails.

Delay The time (in minutes) to pause between discovering that a
process is terminated abruptly and restarting it.

Retries The maximum number of trials to restart the service, before
aborting the retry effort.

Chapter 3
View and Edit Services Configuration

3-22

Window The time interval in which the retries are counted. The default is
120 minutes.

Disable on Failure If set to true, the task is disabled after it fails all execution
attempts in an execution window.

Chapter 3
View and Edit Services Configuration

3-23

4
Prepare

Learn about the tasks for preparing databases for Oracle GoldenGate and prerequisites for
connecting Oracle GoldenGate to databases before beginning the configuration of Extract and
Replicat processes.

Prepare Oracle Database
Prepare Oracle database for Oracle GoldenGate by enabling Oracle GoldenGate on the
database side, enabling supplemental logging, configuring database connections for
mutitenant container databases, managing server resources, and various other tasks, as
required.

Prepare Database Users and Privileges for Oracle
Learn about creating database users and assigning privileges for Oracle GoldenGate for
Oracle.

Grant User Privileges for Oracle Database 21c and Lower
The user privileges that are required for connecting to Oracle database from Oracle
GoldenGate depend on the type of user.

Privileges should be granted depending on the actions that the user needs to perform as the
GoldenGate Administrator User on the source and target databases. For example, to grant
DML operation privileges to insert, update, and delete transactions to a user, use the GRANT
ANY INSERT/UPDATE/DELETE privileges and to further allow users to work with tables and
indexes as part of DML operations, use the GRANT CREATE/DROP/ALTER ANY TABLE/INDEX
privileges.

If the GoldenGate Administrator user has the DBA role, additional object privileges are not
needed. However, there might be security constraints granting the DBA role to the GoldenGate
Administration user. The DBA role is not necessarily required for Oracle GoldenGate.

If there are many objects being replicated, you might consider using the ANY privilege for DML
and DDL operations. This simplifies the provision of privileges to the GoldenGate Administrator
users, as you only need to grant a few privileges depending on the database operations.

The following table describes some of the essential privileges for GoldenGate Administrator
user for Oracle database. For explanation purposes, the table uses c##ggadmin as an example
of a common user for a multitenant container database and ggadmin as the pluggable
database (PDB) user. PDBEAST and PDBWEST are used as examples of PDB names.

The following table describes the essential privileges for GoldenGate Administrator user for
using Oracle GoldenGate with on source and target Oracle databases:

4-1

Privilege Extract Replicat All
Modes

Purpose

RESOURCE Yes Yes Required to create objects

In Oracle Database 12cR1 and
later, instead of RESOURCE, grant
the following privilege:

ALTER USER user QUOTA
{size | UNLIMITED} ON
tablespace;

CONNECT Yes Yes Common user SYSTEM connects to
the root container. This privilege is
essential when the DBA role is not
assigned to the user.

See an example of Permissions
granted to an Oracle mutitenant
database common user.

CREATE PROCEDURE Yes Yes Required to add heartbeat tables.

CREATE SESSION Yes Yes Required to connect to the
database.

CREATE VIEW Yes Yes Required to add the heartbeat table
view.

If you want to be specific to each
object, you can also provide the
privileges for each object
individually. You may consider
creating a specific database role to
maintain such privileges.

ALTER SYSTEM Yes Yes Perform administrative changes,
such as enabling logging.

ALTER USER Yes Yes Required for multitenant
architecture and GGADMIN should
be a valid Oracle GoldenGate
administrator schema.

EXEC
DBMS_GOLDENGATE_AUTH.GRANT_
ADMIN_PRIVILEGE ('REPUSER',
CONTAINER=>'PDBEAST');

Yes Yes • Required for Autonomous
Databases (ATP and ADW)
Extract and Replicat. Extracts
in the root container
(CDB$ROOT)) might require a
value of ALL or a specific PDB
(example: pdbeast).

• Grant privileges for Extract and
Replicat users. See Example:
Grant privileges using the
DBMS_GOLDENGATE_AUTH
.GRANT_ADMIN_PRIVILEGE
package

• Grant privileges to capture
from Virtual Private Database

• Grants privileges to capture
redacted data

Chapter 4
Prepare Oracle Database

4-2

Privilege Extract Replicat All
Modes

Purpose

Grant DV_GOLDENGATE_ADMIN and
DV_GOLDENGATE_REDO_ACCESS
privileges connected as SYS user to
the Extract and the Replicat user.

Yes Yes Capture from Data Vault. See
Privileges for Capturing from
Oracle Data Vault.

Grant Replicat privileges in
DBMS_MACADM.ADD_AUTH_TO_REA
LM if applying to a realm.

NA Yes Capture from Data Vault. See
Privileges for Capturing from
Oracle Data Vault.

INSERT, UPDATE, DELETE on target
tables

NA Yes Apply replicated DML to target
objects. See Details of Support for
Objects and Operations in Oracle
DML

GRANT INSERT ANY TO...

GRANT UPDATE ANY TO...

GRANT DELETE ANY TO...

NA Yes Grant these privileges to the
Replicat user, instead of granting
INSERT, UPDATE, DELETE to every
table, if replicating every table.

If DDL replication is performed,
grant the following as Database
Vault owner:

EXECUTE
DBMS_MACADM.AUTHORIZE_DD
L(‘GGADMIN USER',
‘SCHEMA FOR DDL’);

No No Capture from Data Vault. See
Privileges for Capturing from
Oracle Data Vault.

DDL privileges on target objects (if
using DDL support)

NA Yes Issue replicated DDL on target
objects. See Details of Support for
Objects and Operations in Oracle
DDL.

GRANT [CREATE|ALTER|DROP]
ANY [TABLE|INDEX|VIEW|
PROCEDURE] to GGADMIN;

Yes Yes Grants privileges for DDL
Replication for tables.

CREATE ANY TABLE Yes Yes Grants privileges for creating table
in any schema. To allow creating
tables only in a specific schema,
use the CREATE TABLE privilege.

CREATE ANY VIEW Yes Yes Grants privileges to create view in
any database schema. To allow
creating views in a specific
schema, use the CREATE VIEW
privilege.

SELECT ANY DICTIONARY
Yes Yes Allow all privileges to work properly

on dictionary tables.

Chapter 4
Prepare Oracle Database

4-3

Example: Permissions granted for the Oracle database common user

Privileges granted for the Oracle database common user, which is c##ggadmin in the following
example:

CREATE USER c##ggadmin IDENTIFIED BY passw0rd CONTAINER=all DEFAULT
TABLESPACE GG_DATA TEMPORARY TABLESPACE temp;
GRANT RESOURCE to c##ggadmin;
GRANT CREATE SESSION to c##ggadmin;
GRANT CREATE VIEW to c##ggadmin;
GRANT CREATE TABLE to c##ggadmin;
GRANT CONNECT to c##ggadmin CONTAINER=all;
GRANT DV_GOLDENGATE_ADMIN; –-- for data vault user
GRANT DV_GOLDENGATE_REDO_ACCESS; –-- for data vault user
GRANT ALTER SYSTEM to c##ggadmin;
GRANT ALTER USER to c##ggadmin;
ALTER USER c##ggadmin SET CONTAINER_DATA=all CONTAINER=current;
ALTER USER c##ggadmin QUOTA unlimited ON GG_DATA;
GRANT SELECT ANY DICTIONARY to c##ggadmin;
GRANT SELECT ANY TRANSACTION to c##ggadmin;
EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('c##ggadmin');

In this example, DBA privilege is not provided. If privileges are missing, then the DBA has to
grant necessary privileges additionally.

Privileges granted for PDB user ggadmin are provided in the following example:

ALTER SESSION SET CONTAINER=dbwest;
CREATE USER ggadmin IDENTIFIED BY PASSWORD CONTAINER=CURRENT;
GRANT CONNECT, RESOURCE, DBA TO ggadmin CONTAINER=CURRENT;
GRANT CREATE SESSION TO ggadmin CONTAINER=CURRENT;
EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('ggadmin');

Note:

Granting DBA role is not mandatory for every user. Privileges should be granted
depending on the actions that the user needs to perform on the database. For
example, to grant DML operation privileges to insert, update, and delete transactions
to ggadmin, use the GRANT ANY INSERT/UPDATE/DELETE privileges and to further
allow users to work with tables and indexes as part of DML operations, use the GRANT
CREATE/DROP/ALTER ANY TABLE/INDEX privileges.

Example: Grant privileges using the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE package

This procedure grants the privileges needed by a user to be an Oracle GoldenGate
administrator The following example grants explicit privileges for Extract on Oracle multitenant
database:

BEGIN
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE
(GRANTEE => 'c##ggadmin', PRIVILEGE_TYPE => 'CAPTURE',

Chapter 4
Prepare Oracle Database

4-4

 GRANT_SELECT_PRIVILEGES => TRUE, DO_GRANTS => TRUE, CONTAINER => 'ALL');
END;

See DBMS_GOLDENGATE_AUTH in Oracle Database PL/SQL Packages and Types Reference for
more information.

About the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE Package
Most of the privileges that are needed for Extract and Replicat to operate are granted through
the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE package.

The first example is the default, which grants to both Extract and Replicat. The second shows
how to explicitly grant to either Extract or Replicat (in this case, Extract).

GRANT_ADMIN_PRIVILEGE ('ggadmin')
GRANT_ADMIN_PRIVILEGE ('ggadmin','exte');

The following example shows Extract on Oracle 12c multitenant database:

BEGIN
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE
(GRANTEE => 'c##ggadmin', PRIVILEGE_TYPE => 'CAPTURE',
 GRANT_SELECT_PRIVILEGES => TRUE, DO_GRANTS => TRUE, CONTAINER => 'ALL');
END;

Optional Grants for dbms_goldengate_auth.grant_admin_privilege

This procedure grants the privileges needed by a user to be a Oracle GoldenGate
administrator. See DBMS_GOLDENGATE_AUTH in Oracle Database PL/SQL Packages and Types
Reference for more information.

Optional Grants for dbms_goldengate_auth.grant_admin_privilege

Privileges for Capturing from Oracle Data Vault
Grant the following privileges connected as SYS user in Oracle database. These privileges are
set for Extract and Replicat user credentials:

• EXEC DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE ('userID','*',
GRANT_OPTIONAL_PRIVILEGES=>'*');
GRANT DV_GOLDENGATE_ADMIN, DV_GOLDENGATE_REDO_ACCESS to userID;

• Grant Replicat the privileges in DBMS_MACADM.ADD_AUTH_TO_REALM if applying to a realm.

Connect as Database Vault owner and execute the following scripts:

BEGIN
DVSYS.DBMS_MACADM.ADD_AUTH_TO_REALM(
REALM_NAME => 'Oracle Default Component Protection Realm',GRANTEE =>
'userID',AUTH_OPTIONS => 1) ;
END ;

Chapter 4
Prepare Oracle Database

4-5

/
EXECUTE_DBMS_MACADM.AUTHORIZE_DDL('SYS', 'SYSTEM');

• For DDL replication, grant the following as the Database Vault owner:

EXECUTE DBMS_MACADM.AUTHORIZE_DDL
(‘userID', ‘SCHEMA FOR DDL’);

Configuring Connections for Integrated Processes
If you will be using integrated capture and integrated Replicat, each requires a dedicated
server connection in the tnsnames.ora file.

You direct the processes to use these connections with the USERID or USERIDALIAS parameter
in the Extract and Replicat parameter files when you configure those processes.

The following is an example of the dedicated connection required for integrated capture
(Extract) and integrated Replicat.

TEST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = test2)(PORT = 1521))
)
(CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = test)
)
)

The following are the security options for specifying the connection string in the Extract or
Replicat parameter file.

Password encryption method:

USERID intext@test, PASSWORD mypassword

Credential store method:

USERIDALIAS ext

In the case of USERIDALIAS, the alias ext is stored in the Oracle GoldenGate credential store
with the actual connection string, as in the following example:

AdminClient INFO CREDENTIALSTORE DOMAIN support
Domain: Support
 Alias: ext
 Userid: intext@test

Configuring Logging Properties
Oracle GoldenGate relies on the redo logs to capture the data that it needs to replicate source
transactions. The Oracle redo logs on the source system must be configured properly before
you start Oracle GoldenGate processing.

This section addresses the following logging levels that apply to Oracle GoldenGate. Which
logging level that you use is dependent on the Oracle GoldenGate feature or features that you
are using.

Chapter 4
Prepare Oracle Database

4-6

Note:

Redo volume is increased as the result of this required logging. You can wait until
you are ready to start Oracle GoldenGate processing to enable the logging.

This table shows the Oracle GoldenGate use cases for the different logging properties.

Logging option GGSCI command What it does Use case

Forced logging mode ALTER DATABASE
FORCE LOGGING;

Forces the logging of all
transactions and loads.

Strongly recommended
for all Oracle
GoldenGate use cases.
FORCE LOGGING
overrides any table-level
NOLOGGING settings.

Minimum database-level
supplemental logging

ALTER DATABASE ADD
SUPPLEMENTAL LOG
DATA

Enables minimal
supplemental logging to
add row-chaining
information to the redo
log.

Required for all Oracle
GoldenGate use cases

Schema-level
supplemental logging,
default setting

See Enabling Schema-
level Supplemental
Logging.

ADD SCHEMATRANDATA Enables unconditional
supplemental logging of
the primary key and
conditional supplemental
logging of unique key(s)
and foreign key(s) of all
tables in a schema. All of
these keys together are
known as the scheduling
columns.

Enables the logging for
all current and future
tables in the schema. If
the primary key, unique
key, and foreign key
columns are not identical
at both source and
target, use ALLCOLS.

Schema-level
supplemental logging
with unconditional
logging for all supported
columns. (See Enabling
Schema-level
Supplemental Logging
for non-supported
column types.)

ADD SCHEMATRANDATA
with ALLCOLS option

Enables unconditional
supplemental logging of
all of the columns in a
table, for all of the tables
in a schema.

Used for bidirectional
and active-active
configurations where all
column values are
checked, not just the
changed columns, when
attempting to perform an
update or delete. This
takes more resources
though allows for the
highest level of real-time
data validation and thus
conflict detection.

This method should also
be used if they are going
to be using the
HANDLECOLLISIONS
parameter for initial
loads.

Schema-level
supplemental logging,
minimal setting

ADD SCHEMATRANDATA
with
NOSCHEDULINGCOLS
option

Enables unconditional
supplemental logging of
the primary key and all
valid unique indexes of
all tables in a schema.

Use only for
nonintegrated Replicat.
This is the minimum
required schema-level
logging.

Chapter 4
Prepare Oracle Database

4-7

Logging option GGSCI command What it does Use case

Table-level supplemental
logging with built-in
support for integrated
Replicat

See Enabling Table-level
Supplemental Logging

ADD TRANDATA Enables unconditional
supplemental logging of
the primary key and
conditional supplemental
logging of unique key(s)
and foreign key(s) of a
table. All of these keys
together are known as
the scheduling columns.

Required for all Oracle
GoldenGate use cases
unless schema-level
supplemental logging is
used. If the primary key,
unique key, and foreign
key columns are not
identical at both source
and target, use
ALLCOLS.

Table-level supplemental
logging with
unconditional logging for
all supported columns.
(See Enabling Table-
level Supplemental
Logging for non-
supported column
types.)

ADD TRANDATA with
ALLCOLS option

Enables unconditional
supplemental logging of
all of the columns of the
table.

Used for bidirectional
and active-active
configurations where all
column values are
checked, not just the
changed columns, when
attempting to perform an
update or delete. This
takes more resources
though allows for the
highest level of real-time
data validation and thus
conflict detection.

It can also be used when
the source and target
primary, unique, and
foreign keys are not the
same or are constantly
changing between
source and target.

Table-level supplemental
logging, minimal setting

ADD TRANDATA with
NOSCHEDULINGCOLS
option

Enables unconditional
supplemental logging of
the primary key and all
valid unique indexes of a
table.

Use for nonintegrated
Replicat and non-parallel
Replicat. This is the
minimum required table-
level logging.

Note:

Oracle Databases must be in ARCHIVELOG mode so that Extract can process the log
files.

Enabling Minimum Database-level Supplemental Logging
Oracle strongly recommends putting the Oracle source database into forced logging mode.
Forced logging mode forces the logging of all transactions and loads, overriding any user or
storage settings to the contrary. This ensures that no source data in the Extract configuration
gets missed.

In addition, minimal supplemental logging, a database-level option, is required for an Oracle
source database when using Oracle GoldenGate. This adds row chaining information, if any
exists, to the redo log for update operations.

Chapter 4
Prepare Oracle Database

4-8

Note:

Database-level primary key (PK) and unique index (UI) logging is only discouraged if
you are replicating a subset of tables. You can use it with Live Standby, or if Oracle
GoldenGate is going to replicate all tables, like to reduce the downtime for a
migration or upgrade.

Perform the following steps to verify and enable, if necessary, minimal supplemental logging
and forced logging.

1. Log in to SQL*Plus as a user with ALTER SYSTEM privilege.

2. Issue the following command to determine whether the database is in supplemental
logging mode and in forced logging mode. If the result is YES for both queries, the database
meets the Oracle GoldenGate requirement.

SELECT supplemental_log_data_min, force_logging FROM v$database;
3. If the result is NO for either or both properties, continue with these steps to enable them as

needed:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
SQL> ALTER DATABASE FORCE LOGGING;

4. Issue the following command to verify that these properties are now enabled.

SELECT supplemental_log_data_min, force_logging FROM v$database;

The output of the query must be YES for both properties.

5. Switch the log files.

SQL> ALTER SYSTEM SWITCH LOGFILE;

Enabling Schema-level Supplemental Logging
Oracle GoldenGate supports schema-level supplemental logging. Schema-level logging is
required for an Oracle source database when using the Oracle GoldenGate DDL replication
feature. In all other use cases, it is optional, but then you must use table-level logging instead
(see Enabling Table-level Supplemental Logging).

By default, schema-level logging automatically enables unconditional supplemental logging of
the primary key and conditional supplemental logging of unique key(s) and foreign key(s) of all
tables in a schema. Options enable you to alter the logging as needed.

Note:

Oracle strongly recommends using schema-level logging rather than table-level
logging, because it ensures that any new tables added to a schema are captured if
they satisfy wildcard specifications. This method is also recommended because any
changes to key columns are automatically reflected in the supplemental log data too.
For example, if a key changes, there is no need to issue ADD TRANDATA.

Perform the following steps on the source system to enable schema-level supplemental
logging.

Chapter 4
Prepare Oracle Database

4-9

1. Start the command line on the source system.

2. Issue the DBLOGIN command with the alias of a user in the credential store who has
privilege to enable schema-level supplemental logging.

DBLOGIN USERIDALIAS alias

See USERIDALIAS in Parameters and Functions Reference for Oracle GoldenGate for more
information about USERIDALIAS and additional options.

3. When using ADD SCHEMATRANDATA or ADD TRANDATA on a multitenant database, you can
either log directly into the PDB and perform the command. Alternately, if you are logging in
at the root level (using a C## user), then you must include the PDB. Issue the ADD
SCHEMATRANDATA command for each schema for which you want to capture data changes
with Oracle GoldenGate.

ADD SCHEMATRANDATA pdb.schema [ALLCOLS | NOSCHEDULINGCOLS]

Where:

• Without options, ADD SCHEMATRANDATA schema enables the unconditional supplemental
logging on the source system of the primary key and the conditional supplemental
logging of all unique key(s) and foreign key(s) of all current and future tables in the
given schema. Unconditional logging forces the primary key values to the log whether
or not the key was changed in the current operation. Conditional logging logs all of the
column values of a foreign or unique key if at least one of them was changed in the
current operation. The default is optional to support nonintegrated Replicat but is
required to support integrated Replicat because primary key, unique keys, and foreign
keys must all be available to the inbound server to compute dependencies. For more
information about integrated Replicat, see Types of Replicat.

• ALLCOLS can be used to enable the unconditional supplemental logging of all of the
columns of a table and applies to all current and future tables in the given schema.
Use to support integrated Replicat when the source and target tables have different
scheduling columns. (Scheduling columns are the primary key, the unique key, and the
foreign key.)

• NOSCHEDULINGCOLS logs only the values of the primary key and all valid unique indexes
for existing tables in the schema and new tables added later. This is the minimal
required level of schema-level logging and is valid only for Replicat in nonintegrated
mode.

In the following example, the command enables default supplemental logging for the hr
schema.

ADD SCHEMATRANDATA pdbeast.hr ALLCOLS

In the following example, the command enables the supplemental logging only for the
primary key and valid unique indexes for the HR schema.

ADD SCHEMATRANDATA pdbeast.hr NOSCHEDULINGCOLS

Enabling Table-level Supplemental Logging
Enable table-level supplemental logging on the source system in the following cases:

Chapter 4
Prepare Oracle Database

4-10

• To enable the required level of logging when not using schema-level logging (see Enabling
Table-level Supplemental LoggingEnabling Schema-level Supplemental Logging). Either
schema-level or table-level logging must be used. By default, table-level logging
automatically enables unconditional supplemental logging of the primary key and
conditional supplemental logging of unique key(s) and foreign key(s) of a table. Options
enable you to alter the logging as needed.

• To prevent the logging of the primary key for any given table.

• To log non-key column values at the table level to support specific Oracle GoldenGate
features, such as filtering and conflict detection and resolution logic.

• If the key columns change on a table that only has table-level supplemental logging, you
must perform ADD TRANDATA on the table prior to allowing any DML activity on the table.

Perform the following steps on the source system to enable table-level supplemental logging or
use the optional features of the command.

1. Run the command line on the source system.

2. Issue the DBLOGIN command using the alias of a user in the credential store who has
privilege to enable table-level supplemental logging.

DBLOGIN USERIDALIAS alias

See USERIDALIAS in Parameters and Functions Reference for Oracle GoldenGatefor more
information about DBLOGIN and additional options.

3. Issue the ADD TRANDATA command.

ADD TRANDATA [PDB.]schema.table [, COLS (columns)] [, NOKEY] [, ALLCOLS |
NOSCHEDULINGCOLS]

Where:

• PDB is the name of the root container or pluggable database if the table is in a
multitenant container database.

• schema is the source schema that contains the table.

• table is the name of the table. See Specifying Object Names in Oracle GoldenGate
Input in Administering Oracle GoldenGate for instructions for specifying object names.

• ADD TRANDATA without other options automatically enables unconditional supplemental
logging of the primary key and conditional supplemental logging of unique key(s) and
foreign key(s) of the table. Unconditional logging forces the primary key values to the
log whether or not the key was changed in the current operation. Conditional logging
logs all of the column values of a foreign or unique key if at least one of them was
changed in the current operation. The default is optional to support nonintegrated
Replicat (see also NOSCHEDULINGCOLS) but is required to support integrated Replicat
because primary key, unique keys, and foreign keys must all be available to the
inbound server to compute dependencies. For more information about integrated
Replicat, see Types of Replicat.

• ALLCOLS enables the unconditional supplemental logging of all of the columns of the
table. Use to support integrated Replicat when the source and target tables have
different scheduling columns. (Scheduling columns are the primary key, the unique
key, and the foreign key.)

Chapter 4
Prepare Oracle Database

4-11

• NOSCHEDULINGCOLS is valid for Replicat in nonintegrated mode only. It issues an ALTER
TABLE command with an ADD SUPPLEMENTAL LOG DATA ALWAYS clause that is
appropriate for the type of unique constraint that is defined for the table, or all columns
in the absence of a unique constraint. This command satisfies the basic table-level
logging requirements of Oracle GoldenGate when schema-level logging will not be
used. See Ensuring Row Uniqueness in Source and Target Tables for how Oracle
GoldenGate selects a key or index.

• COLS columns logs non-key columns that are required for a KEYCOLS clause or for
filtering and manipulation. The parentheses are required. These columns will be
logged in addition to the primary key unless the NOKEY option is also present.

• NOKEY prevents the logging of the primary key or unique key. Requires a KEYCOLS
clause in the TABLE and MAP parameters and a COLS clause in the ADD TRANDATA
command to log the alternate KEYCOLS columns.

4. If using ADD TRANDATA with the COLS option, create a unique index for those columns on the
target to optimize row retrieval. If you are logging those columns as a substitute key for a
KEYCOLS clause, make a note to add the KEYCOLS clause to the TABLE and MAP statements
when you configure the Oracle GoldenGate processes.

Enabling Oracle GoldenGate in the Database
The database services required to support Oracle GoldenGate capture and apply must be
enabled explicitly for all Oracle database versions. This is required for Extract and all Replicat
modes.

To enable Oracle GoldenGate, set the following database initialization parameter. All instances
in Oracle RAC must have the same setting.

ENABLE_GOLDENGATE_REPLICATION=true

This parameter alters the DBA_FEATURE_USAGE_STATISTICS view. For more information about
this parameter, see Initialization Parameters.

Configuring Oracle GoldenGate in a Multitenant Container Database
This chapter contains additional configuration instructions when configuring Oracle
GoldenGate in a multitenant container database (CDB).

Using the Root Container Extract from PDB
To capture from a multitenant database, you must use an Extract that is configured at the root
level using a c## account. To apply data into a multitenant database, a separate Replicat is
needed for each PDB, because a Replicat connects at the PDB level and doesn't have access
to objects outside of that PDB

One Extract group can capture from multiple pluggable databases to a single trail. In the
parameter file, source objects must be specified in TABLE and SEQUENCE statements with their
fully qualified three-part names in the format of container.schema.object.

As an alternative to specifying three-part names, you can specify a default pluggable database
with the SOURCECATALOG parameter, and then specify only the schema.object in subsequent
TABLE or SEQUENCE parameters. You can use multiple instances of this configuration to handle
multiple source pluggable databases. For example:

Chapter 4
Prepare Oracle Database

4-12

SOURCECATALOG pdb1
TABLE phoenix.tab;
SEQUENCE phoenix.seq;
SOURCECATALOG pdb2
TABLE dallas.tab;
SEQUENCE dallas.seq;

Applying to Pluggable Databases
Replicat can only connect and apply to one pluggable database. To specify the correct one,
use a SQL*Net connect string for the database user that you specify with the USERID or
USERIDALIAS parameter. For example: GGADMIN@FINANCE. In the parameter file, specify only the
schema.object in the TARGET portion of the MAP statements. In the MAP portion, identify source
objects captured from more than one pluggable database with their three-part names or use
the SOURCECATALOG parameter with two-part names. The following is an example of this
configuration.

SOURCECATALOG pdb1
MAP schema_1.tab, TARGET 1;
MAP schema_1.seq, TARGET 1;
SOURCECATALOG pdb2
MAP schema_2.tab, TARGET 2;
MAP schema_2.seq, TARGET 2;

The following is an example without the use of SOURCECATALOG to identify the source pluggable
database. In this case, the source objects are specified with their three-part names.

MAP pdb1.schema_1.tab, TARGET 1;
MAP pdb1.schema_1.seq, TARGET 1;

To configure replication from multiple source pluggable databases to multiple target pluggable
databases, you can configure parallel Extract and Replicat streams, each handling data for one
pluggable database. Alternatively, you can configure one Extract capturing from multiple
source pluggable databases, which writes to one trail that is read by multiple Replicat groups,
each applying to a different target pluggable database. Yet another alternative is to use one
Extract writing to multiple trails, each trail read by a Replicat assigned to a specific target
pluggable database :

Chapter 4
Prepare Oracle Database

4-13

Excluding Objects from the Configuration
To exclude pluggable databases, schemas, and objects from the configuration, you can use
the CATALOGEXCLUDE, SCHEMAEXCLUDE, TABLEEXCLUDE, MAPEXCLUDE, and
EXCLUDEWILDCARDOBJECTSONLY parameters.

Requirements for Configuring Container Databases for Oracle GoldenGate
This topic describes the special requirements that apply to replication to and from multitenant
container databases.

The requirements are:

• The different pluggable databases in the multitenant container database can have different
character sets. Oracle GoldenGate captures data from any multitenant database with
different character sets into one trail file and replicates the data without corruption due to
using different character sets.

• Extract must operate in integrated capture mode. See Deciding Which Capture Method to
Use for more information about Extract capture modes. Replicat can operate in any of its
modes.

• Extract must connect to the root container (cdb$root) as a common user in order to
interact with the logmining server. To specify the root container, use the appropriate
SQL*Net connect string for the database user that you specify with the USERID or
USERIDALIAS parameter. For example: C##GGADMIN@FINANCE. See Establishing Oracle
GoldenGate Credentials for how to create a user for the Oracle GoldenGate processes
and grant the correct privileges.

• To support source CDB 12.2, Extract must specify the trail format as release 12.3. Due to
changes in the redo logs, to capture from a multitenant database that is Oracle 12.2 or
higher, the trail format release must be 12.3 or higher.

• The dbms_goldengate_auth.grant_admin_privilege package grants the appropriate
privileges for capture and apply within a multitenant container database. This includes the
container parameter, which must be set to ALL, as shown in the following example:

exec dbms_goldengate_auth.grant_admin_privilege('C##GGADMIN',container=>'all')
• DDL replication works as a normal replication for multitenant databases. However, DDL on

the root container should not be replicated because Replicats must not connect to the root
container, only to PDBs.

FLUSH SEQUENCE for Multitenant Database

FLUSH SEQUENCE must be issued at the PDB level, so the user will need to create an Oracle
GoldenGate user in each PDB that they wish to do sequence replication for, and then use
DBLOGIN to log into that PDB, and then perform the FLUSH SEQUENCE command.

It is recommended that you use the same schema in each PDB, so that it works with the
GGSCHEMA GLOBALS parameter file. Here is an example:

Environment Information OGG 18.1 Oracle 12c to Oracle 12c Replication,
Integrated Extract, Parallel Replicat
Source: CDB GOLD, PDB CERTMISSN
Target: CDB PLAT, PDB CERTDSQ
Source OGG Configuration
 Container User: C##GGADMIN

Chapter 4
Prepare Oracle Database

4-14

 PDB User for Sequences: GGATE
sqlplus / as sysdbao
SQL> alter session set container=CERTMISSN;
SQL> create user ggate identified by password default tablespace users
temporary tablespace temp quota unlimited on users container=current;

Run @sequence
sqlplus / as sysdba
SQL> alter session set container=CERTMISSN;
SQL> @sequence

When prompted enter

GGATE GLOBALS
GGSCHEMA GGATE

FLUSH SEQUENCE:

GGSCI> DBLOGIN USERIDALIAS GGADMIN DOMAIN GOLD_QC_CDB$ROOT

GGSCI> FLUSH SEQUENCE CERTMISSN.SRCSCHEMA1.*

Target Oracle GoldenGate Configuration:

 PDB User: GGATE
Run @sequence
sqlplus / as sysdba
SQL> alter session set container=CERTDSQ;
SQL> @sequence

When prompted enter GGATE.

This also applies to the @sequence.sql script, which must also be run at each PDB that you
are going to capture from.

Setting Flashback Query
To process certain update records, Extract fetches additional row data from the source
database.

Oracle GoldenGate fetches data for the following:

• User-defined types

• Nested tables

• XMLType objects

By default, Oracle GoldenGate uses Flashback Query to fetch the values from the undo
(rollback) tablespaces. That way, Oracle GoldenGate can reconstruct a read-consistent row
image as of a specific time or SCN to match the redo record.

For best fetch results, configure the source database as follows:

Chapter 4
Prepare Oracle Database

4-15

1. Set a sufficient amount of redo retention by setting the Oracle initialization parameters
UNDO_MANAGEMENT and UNDO_RETENTION as follows (in seconds).

UNDO_MANAGEMENT=AUTO

UNDO_RETENTION=86400

UNDO_RETENTION can be adjusted upward in high-volume environments.
2. Calculate the space that is required in the undo tablespace by using the following formula.

undo_space = UNDO_RETENTION * UPS + overhead

Where:

• undo_space is the number of undo blocks.

• UNDO_RETENTION is the value of the UNDO_RETENTION parameter (in seconds).

• UPS is the number of undo blocks for each second.

• overhead is the minimal overhead for metadata (transaction tables, etc.).

Use the system view V$UNDOSTAT to estimate UPS and overhead.

3. For tables that contain LOBs, do one of the following:

• Set the LOB storage clause to RETENTION. This is the default for tables that are created
when UNDO_MANAGEMENT is set to AUTO.

• If using PCTVERSION instead of RETENTION, set PCTVERSION to an initial value of 25. You
can adjust it based on the fetch statistics that are reported with the STATS EXTRACT
command. If the value of the STAT_OPER_ROWFETCH CURRENTBYROWID or
STAT_OPER_ROWFETCH_CURRENTBYKEY field in these statistics is high, increase
PCTVERSION in increments of 10 until the statistics show low values.

4. Grant either of the following privileges to the Oracle GoldenGate Extract user:

GRANT FLASHBACK ANY TABLE TO db_user

GRANT FLASHBACK ON schema.table TO db_user
Oracle GoldenGate provides the following parameters to manage fetching.

Parameter or Command Description

STATS EXTRACT command
with REPORTFETCH option

Shows Extract fetch statistics on demand.

STATOPTIONS parameter
with REPORTFETCH option

Sets the STATS EXTRACT command so that it always shows fetch
statistics.

MAXFETCHSTATEMENTS
parameter

Controls the number of open cursors for prepared queries that Extract
maintains in the source database, and also for SQLEXEC operations.

MAXFETCHSTATEMENTS
parameter

Controls the default fetch behavior of Extract: whether Extract performs a
flashback query or fetches the current image from the table.

FETCHOPTIONS parameter
with the
USELATESTVERSION or
NOUSELATESTVERSION
option

Handles the failure of an Extract flashback query, such as if the undo
retention expired or the structure of a table changed. Extract can fetch the
current image from the table or ignore the failure.

REPFETCHEDCOLOPTIONS
parameter

Controls the response by Replicat when it processes trail records that
include fetched data or column-missing conditions.

Chapter 4
Prepare Oracle Database

4-16

Managing Server Resources
Extract interacts with an underlying logmining server in the source database and Replicat
interacts with an inbound server in the target database. This section provides guidelines for
managing the shared memory consumed by the these servers.

The shared memory that is used by the servers comes from the Streams pool portion of the
System Global Area (SGA) in the database. Therefore, you must set the database initialization
parameter STREAMS_POOL_SIZE high enough to keep enough memory available for the number
of Extract and Replicat processes that you expect to run in integrated mode. Note that Streams
pool is also used by other components of the database (like Oracle Streams, Advanced
Queuing, and Datapump export/import), so make certain to take them into account while sizing
the Streams pool for Oracle GoldenGate.

By default, one Extract requests the logmining server to run with MAX_SGA_SIZE of 1GB. Thus, if
you are running three Extracts in the same database instance, you need at least 3 GB of
memory allocated to the Streams pool. As a best practice, keep 25 percent of the Streams pool
available. For example, if there are 3 Extracts, set STREAMS_POOL_SIZE for the database to the
following value:

3 GB * 1.25 = 3.75 GB

Ensuring Row Uniqueness in Source and Target Tables
Oracle GoldenGate requires a unique row identifier on the source and target tables to locate
the correct target rows for replicated updates and deletes.

Unless a KEYCOLS clause is used in the TABLE or MAP statement, Oracle GoldenGate selects a
row identifier to use in the following order of priority, depending on the number and type of
constraints that were logged (see Configuring Logging Properties).

1. Primary key if it does not contain any extended (32K) VARCHAR2/NVARCHAR2 columns.
Primary key without invisible columns.

2. Unique key: Unique key without invisible columns.

In the case of a non-integrated Replicat, the selection of the unique key is as follows:

• First unique key alphanumerically with no virtual columns, no UDTs, no function-based
columns, no nullable columns, and no extended (32K) VARCHAR2/NVARCHAR2 columns.
To support a key that contains columns that are part of an invisible index, you must
use the ALLOWINVISIBLEINDEXKEYS parameter in the Oracle GoldenGate GLOBALS file.

• First unique key alphanumerically with no virtual columns, no UDTs, no extended (32K)
VARCHAR2/NVARCHAR2 columns, or no function-based columns, but can include nullable
columns. To support a key that contains columns that are part of an invisible index, you
must use the ALLOWINVISIBLEINDEXKEYS parameter in the Oracle GoldenGate GLOBALS
file.

3. Not Nullable Unique keys: At least one column from one of the unique keys must be not
nullable. This is because NOALLOWNULLABLEKEYS is the default.

Note:

ALLOWNULLABLEKEYS is not valid for integrated Replicat.

Chapter 4
Prepare Oracle Database

4-17

4. Unique key: If the source key and the table key columns do not match and the following
criteria is true, then a unique index is chosen that matches with the source table key
columns:

• KEYCOLS parameter isn’t specified

• USEALLKEYCOLUMNS parameter isn’t specified

• ALLOWNULLABLEKEYS parameter isn’t specified

• Source and target key columns don’t match

• Unique index matches to source table key column exists

5. If none of the preceding key types exist (even though there might be other types of keys
defined on the table) Oracle GoldenGate constructs a pseudo key of all columns that the
database allows to be used in a unique key, excluding virtual columns, UDTs, function-
based columns, extended (32K) VARCHAR2/NVARCHAR2 columns, and any columns that are
explicitly excluded from the Oracle GoldenGate configuration by an Oracle GoldenGate
user.

Unless otherwise excluded due to the preceding restrictions, invisible columns are allowed
in the pseudo key.

Note:

If there are other, non-usable keys on a table or if there are no keys at all on the
table, Oracle GoldenGate logs an appropriate message to the report file.
Constructing a key from all of the columns impedes the performance of Oracle
GoldenGate on the source system. On the target, this key causes Replicat to use a
larger, less efficient WHERE clause.

If a table does not have an appropriate key, or if you prefer the existing key(s) not to be used,
you can define a substitute key if the table has columns that always contain unique values. You
define this substitute key by including a KEYCOLS clause within the Extract TABLE parameter and
the Replicat MAP parameter. The specified key will override any existing primary or unique key
that Oracle GoldenGate finds. For more information, see Parameters and Functions Reference
for Oracle GoldenGate.

Oracle: Supported Data Types, Objects, and Operations for DDL and DML
This chapter contains support information for Oracle GoldenGate on Oracle Database.

Details of Support for Oracle Database Editions

This topic describes the Database Editions from the Oracle Database Product Family
supported with the current Oracle GoldenGate release.

Oracle Database Express Edition (XE) is supported for delivery only and does not support any
of the integrated features such as integrated Replicat or parallel Replicat in integrated mode.

Oracle Database Standard Edition 2 (SE2) is supported, with the following limitation:

• Extract, integrated Replicat, and parallel Replicat in integrated mode are limited to a single
thread.

Chapter 4
Prepare Oracle Database

4-18

Oracle Database Enterprise Edition (EE) has full Oracle GoldenGate functionality.

Oracle Database Personal Edition (PE) is supported for delivery only, and does not support
any of the integrated features such as integrated or parallel Replicat in integrated mode.

Details of Support for Oracle Data Types and Objects
This topic describes data types, objects and operations that are supported by Oracle
GoldenGate.

Within the database, you can use the Dictionary view DBA_GOLDENGATE_SUPPORT_MODE to get
information about supported objects. There are different types for replication support:

• Support by Capturing from Redo

• Procedural Replication Support

Most data types are supported (SUPPORT_MODE=FULL), which implies that Oracle GoldenGate
captures the changes out of the redo. In some unique cases, the information cannot be
captured, but the information can be fetched with a connection to the database
(SUPPORT_MODE=ID KEY). Tables supported with ID KEY require a connection to the source
database or an ADG Standby database for fetching to support those tables. If using
downstream Integrated Extract, with NOUSERID a customer must specify a FETCHUSERID or
FETCHUSERIDALIAS connection.

Other changes can be replicated with Procedural Replication (SUPPORT_MODE=PLSQL) that
requires additional parameter setting of Extract. See About Procedural Replication for details.
In the unlikely case that there is no native support, no support by fetching and no procedural
replication support, there is no Oracle GoldenGate support.

To know more information about capture modes, see Deciding Which Capture Method to Use.

Besides the DBA_GOLDENGATE_SUPPORT_MODE at the source database you should
check the DBA_GOLDENGATE_NOT_UNIQUE dictionary view at the target side. If there are
tables without any uniqueness and unbounded data_types (BAD_COLUMN='Y'), the table
records cannot be uniquely identified and cannot be used for logical replication.

Detailed support information for Oracle data types, objects, and operations starts with Details
of Support for Objects and Operations in Oracle DML.

There might be a few cases where replication support exists, but there are limitations of
processing such as in case of using SQLEXEC. The following table lists these limitations:

Support Datatypes No Support

NUMBER, BINARY FLOAT, BINARY DOUBLE
UROWID

Special cases of:
• XML types
• UDTs
• Object tables
• Collections or nested tables

DATE and TIMESTAMP Tables with restricted uniqueness

(N)CHAR, (N) VARCHAR2 LONG, RAW, LONG RAW
(N)CLOB, CLOB, BLOB, SECUREFILE, BASICFILE
and BFILE

X

XML columns, XMLType X

UDTs X

ANYDATA X

Chapter 4
Prepare Oracle Database

4-19

Support Datatypes No Support

Hierarchy-enabled tables X

RET Types X

DICOM X

SDO_TOPO_GEOMETRY, SDO_GEORASTER X

Identity columns X

SDO_RDF_TRIPLE_S X

Note:

SECUREFILE LOBs updated using DBMS_LOG.FRAGMENT or SECUREFILE LOBs that are
set to NOLOGGING are fetched instead of read from the redo.

Supported Capture from Redo:

• NUMBER, BINARY FLOAT, BINARY DOUBLE, and (logical) UROWID
• DATE and TIMESTAMP
• CHAR, VARCHAR2, LONG, NCHAR, and NVARCHAR2
• RAW, LONG RAW, CLOB, NCLOB, BLOB, SECUREFILE, BASICFILE, and BFILE (LOB size limited to

4GB)

• XML columns stored as CLOB, Binary and Object-Relational (OR)

• XMLType columns and XMLType tables stored as XML CLOB, XML Object Relational, and XML
Binary

• UDTs (user-defined or abstract data types) on BYTE semantics with source database
compatibility 12.0.0.0.0 or higher

• ANYDATA data type with source database compatibility 12.0.0.0.0 or higher

• Hierarchy-enabled tables are managed by the Oracle XML database repository with source
database compatibility 12.2.0.0.0 or higher and enabled procedural replication

• REF types with source database compatibility 12.2.0.0.0 or higher

• DICOM with source database compatibility 12.0.0.0.0 or higher

• SDO _TOPO_GEOMETRY or SDO_GEORASTER with source database compatibility 12.2.0.0.0 or
higher and enabled procedural replication

• Identity columns with source database compatibility 18.1.0.0.0 or higher

• SDO_RDF_TRIPLE_S with source database compatibility 19.1.0.0.0 or higher

Supported (Fetch from database)

SECUREFILE LOBs

• Modified with DBMS_LOB.FRAGMENT_* procedures

• NOLOGGING LOBs

• Deduplicated LOBs with a source database release less than 12gR2

Chapter 4
Prepare Oracle Database

4-20

UDTs that contain following data types:

• TIMESTAMP WITH TIMEZONE, TIMESTAMP WITH LOCAL TIMEZONE, TIMESTAMP WITH TIMEZONE
with region ID

• INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND
• BINARY FLOAT, BINARY DOUBLE
• BFILE
Object tables contains the following attributes:

• Nested table

• SDO_TOP_GEOMETRY
• SDO_GEORASTER

Additional Considerations

• NUMBER can be up to the maximum size permitted by Oracle. The support of the range and
precision for floating-point numbers depends on the host machine. In general, the precision
is accurate to 16 significant digits, but you should review the database documentation to
determine the expected approximations. Oracle GoldenGate rounds or truncates values
that exceed the supported precision.

• Non-logical UROWID columns will be identified by Extract. A warning message is generated
in the report file. The column information is not part of the trail record. All other supported
datatypes of the record are part of the trail record and are replicated.

• TIMESTAMP WITH TIME ZONE as TZR (region ID) for initial loads, SQLEXEC or operations
where the column can only be fetched from the database. In those cases, the region ID is
converted to a time offset by the source database when the column is selected. Replicat
applies the timestamp as date and time data into the target database with a time offset
value.

• VARCHAR expansion from 4K to 32K (extended or long VARCHAR)

– 32K long columns cannot be used as row identifiers:

* Columns as part of a key or unique index

* Columns in a KEYCOLS clause of the TABLE or MAP parameter.

– 32K long columns as resolution columns in a CDR (conflict resolution and detection)

– If an extended VARCHAR column is part of unique index or constraint, then direct path
inserts to this table may cause Replicat to abend with a warning. Verify that the
extended VARCHAR caused the abend by checking ALL_INDEXES or ALL_IND_COLUMNS for
a unique index or ALL_CONS_COLUMNS or ALL_CONSTRAINTS for a unique constraint.
Once you determine that an extended VARCHAR, you can temporarily drop the index or
disable the constraint:

* Unique Index: DROP INDEX index_name;

* Unique Constraint: ALTER TABLE table_name MODIFY CONSTRAINT
constraint_name DISABLE;

• Oracle GoldenGate does not support the filtering, column mapping, or manipulation of
objects larger than 4K.

• BFILE column are replicating the locator. The file on the server file system outside of the
database and is not replicated.

Chapter 4
Prepare Oracle Database

4-21

• Multi-byte character data: The source and target databases must be logically identical in
terms of schema definition for the tables and sequences being replicated. Transformation,
filtering, and other manipulation cannot be used.

• The character sets between the two databases must be one of the following:

– Identical on the source and on the target

– Equivalent, which is not the same character set but containing the same set of
characters

– Target is a superset of the source

Multi-byte data can be used in any semantics: bytes or characters.

• The structure of the UDTs and Abstract Data Types (ADTs) itself must be the same on both
the source and target. UDTs can have different source and target schemas. UDTs, including
values inside object columns or rows, cannot be used within filtering criteria in TABLE or MAP
statements, or as input or output for the Oracle GoldenGate column-conversion functions,
SQLEXEC, or other built-in data manipulation tools. Support is only provided for like-to-like
Oracle source and targets.

To fully support object tables created using the CREATE TABLE as SELECT (CTAS)
statement, Integrated Extract must be configured to capture DML from the CTAS
statement. Oracle object table can be mapped to a non-Oracle object table in a supported
target database.

• XML column type cannot be used for filtering and manipulation. You can map the XML
representation of an object to a character column by means of a COLMAP clause in a TABLE
or MAP statement.

Oracle recommends the AL32UTF8 character set as the database character set when
working with XML data. This ensures the correct conversion by Oracle GoldenGate from
source to target. With DDL replication enabled, Oracle GoldenGate replicates the CTAS
statement and allows it to select the data from the underlying target tables. OIDs are
preserved if TRANSLOGOPTIONS GETCTASDML parameter is set. For XMLType tables, the row
object IDs must match between source and target.

Non-Supported Oracle Data Types
Oracle GoldenGate does not support the following data types.

• Time offset values outside the range of +12:00 and -12:00..Oracle GoldenGate supports
time offset values between +12:00 and -12:00.

• Tables that only contain a single column and that column one of the following:

– UDT

– LOB (CLOB, NCLOB, BLOB, BFILE)

– XMLType column

– VARCHAR2 (MAX) where the data is greater than 32KB

• Tables with LOB, UDT, XML, or XMLType column without one of the following:

– Primary Key

– Scalar columns with a unique constraint or unique index

Table where the combination of all scalar columns do not guarantee uniqueness are
unsupported.

• Tables with the following XML characteristics:

Chapter 4
Prepare Oracle Database

4-22

– Tables with a primary key constraint made up of XML attributes

– XMLType tables with a primary key based on an object identifier (PKOID).

– XMLType tables, where the row object identifiers (OID) do not match between source
and target

– XMLType tables created by an empty CTAS statement.

– XML schema-based XMLType tables and columns where changes are made to the
XML schema (XML schemas must be registered on source and target databases with
the dbms_xml package).

– The maximum length for the entire SET value of an update to an XMLType larger than
32K, including the new content plus other operators and XQuery bind values.

– SQL*Loader direct-path insert for XML-Binary and XML-OR.

• Tables with following UDT characteristics:

– UDTs that contain CFILE or OPAQUE (except of XMLType)

– UDTs with CHAR and VARCHAR attributes that contain binary or unprintable
characters

– UDTs using the RMTTASK parameter

• UDTs and nested tables with following condition:

– Nested table UDTs with CHAR, NVARCHAR2 or NCLOB attributes.

– Nested tables with CLOB, BLOB, extended (32k) VARCHAR2 or RAW attributes in
UDTs.

– Nested table columns/attributes that are part of any other UDT.

• When data in a nested table is updated, the row that contains the nested table must be
updated at the same time. Otherwise there is no support.

• When VARRAYS and nested tables are fetched, the entire contents of the column are
fetched each time, not just the changes. Otherwise there is no support.

• Object table contains the following attributes:

– Nested table

– SDO_TOPO_GEOMETRY

– SDO_GEORASTER

See additional exclusions in Details of Support for Oracle Data Types and Objects.

Details of Support for Objects and Operations in Oracle DML
This section outlines the Oracle objects and operations that Oracle GoldenGatesupports for
the capture and replication of DML operations.

Supported Objects and Operations in Oracle DML

Topics:

Multitenant Container Database
Oracle GoldenGate captures from, and delivers to, a multitenant container database. See
#unique_173.

Oracle GoldenGate does not support application container Root-Child end-to-end replication

Chapter 4
Prepare Oracle Database

4-23

Tables, Views, and Materialized Views
The following DML operations are supported for regular tables, index-organized tables,
clustered tables, and materialized views:

• INSERT
• UPDATE
• DELETE
• Associated transaction control operations

Tip:

You can use the DBA_GOLDENGATE_SUPPORT_MODE data dictionary view to display
information about the level of Oracle GoldenGate capture process support for the
tables in your database. The PLSQL value of DBA_GOLDENGATE_SUPPORT_MODE indicates
that the table is supported natively, but requires procedural supplemental logging.

Besides the DBA_GOLDENGATE_SUPPORT_MODE at the source database, you should
check the DBA_GOLDENGATE_NOT_UNIQUE dictionary view at the target side. If there are
tables without any uniqueness and unbounded data types (BAD_COLUMN='Y'), the
table records cannot be uniquely identified and cannot be used for logical replication.

For more information, see the DBA_GOLDENGATE_SUPPORT_MODE. If you need to display
all tables that have no primary and no non-null unique indexes, you can use the
DBA_GOLDENGATE_NOT_UNIQUE. For more information, see
DBA_GOLDENGATE_NOT_UNIQUE.

Limitations of Support for Regular Tables

These limitations apply to Extract.

• Oracle GoldenGate supports tables that contain any number of rows.

• A row can be up to 4 MB in length. If Oracle GoldenGate is configured to include both the
before and after image of a column in its processing scope, the 4 MB maximum length
applies to the total length of the full before image plus the length of the after image. For
example, if there are UPDATE operations on columns that are being used as a row identifier,
the before and after images are processed and cannot exceed 4 MB in total. Before and
after images are also required for columns that are not row identifiers but are used as
comparison columns in conflict detection and resolution (CDR). Character columns that
allow for more than 4 KB of data, such as a CLOB, only have the first 4 KB of data stored in-
row and contribute to the 4MB maximum row length. Binary columns that allow for more
than 4kb of data, such as a BLOB the first 8 KB of data is stored in-row and contributes to
the 4MB maximum row length.

• Oracle GoldenGate supports the maximum number of columns per table that is supported
by the database.

• Oracle GoldenGate supports the maximum column size that is supported by the database.

• Oracle GoldenGate supports tables that contain only one column, except when the column
contains one of the following data types:

– LOB

Chapter 4
Prepare Oracle Database

4-24

– LONG
– LONG VARCHAR
– Nested table
– User Defined Type (UDT)

– VARRAY
– XMLType

• Set DBOPTIONS ALLOWUNUSEDCOLUMN before you replicate from and to tables with unused
columns.

• Oracle GoldenGate supports tables with these partitioning attributes:

– Range partitioning

– Hash Partitioning Interval Partitioning

– Composite Partitioning

– Virtual Column-Based Partitioning

– Reference Partitioning

– List Partitioning

• Oracle GoldenGate supports tables with virtual columns, but does not capture change data
for these columns or apply change data to them: The database does not write virtual
columns to the transaction log, and the Oracle Database does not permit DML on virtual
columns. For the same reason, initial load data cannot be applied to a virtual column. You
can map the data from virtual columns to non-virtual target columns.

• Oracle GoldenGate will not consider unique/index with virtual columns.

• Oracle GoldenGate supports replication to and from Oracle Exadata. To support Exadata
Hybrid Columnar Compression, Extract must operate in integrated capture mode. To
support Exadata Hybrid Columnar Compression, the source database compatibility must
be set to 11.2.0.0.0 or higher.

• Oracle GoldenGate supports Transparent Data Encryption (TDE).

– Extract supports TDE column encryption and TDE table space encryption without
setup requirements in integrated capture mode.

• Oracle GoldenGate supports TRUNCATE statements as part of its DDL replication support, or
as standalone functionality that is independent of the DDL support.

• Oracle GoldenGate supports the capture of direct-load INSERT, with the exception of
SQL*Loader direct-path insert for XML Binary and XML Object Relational. Supplemental
logging must be enabled, and the database must be in archive log mode. The following
direct-load methods are supported.

– /*+ APPEND */ hint

– /*+ PARALLEL */ hint (Not supported for RAC in classic capture mode)

– SQLLDR with DIRECT=TRUE
• Oracle GoldenGate fully supports capture from compressed objects when Extract is in

integrated capture mode. Extract in classic capture mode does not support compressed
objects.

• Oracle GoldenGate supports XA and PDML distributed transactions in integrated capture
mode. Extract in classic capture mode does not support PDML or XA on RAC.

Chapter 4
Prepare Oracle Database

4-25

• Oracle GoldenGate supports DML operations on tables with FLASHBACK ARCHIVE enabled.
However, Oracle GoldenGate does not support DDL that creates tables with the FLASHBACK
ARCHIVE clause or DDL that creates, alters, or deletes the flashback data archive itself.

Limitations of Support for Views

These limitations apply to Extract.

• Oracle GoldenGate supports capture from a view when Extract is in initial-load mode
(capturing directly from the source view, not the redo log).

• Oracle GoldenGate does not capture change data from a view, but it supports capture from
the underlying tables of a view.

Limitations of Support for Materialized Views

Materialized views are supported by Extract with the following limitations.

• Materialized views created WITH ROWID are not supported.

• The materialized view log can be created WITH ROWID.

• The source table must have a primary key.

• Truncates of materialized views are not supported. You can use a DELETE FROM statement.

• DML (but not DDL) from a full refresh of a materialized view is supported. If DDL support
for this feature is required, open an Oracle GoldenGate support case.

• For Replicat the Create MV command must include the FOR UPDATE clause

• Either materialized views can be replicated or the underlying base table(s), but not both.

Limitations of Support for Clustered Tables

Indexed clusters are supported by Extract while hash clusters are not supported.

System Partitioning
System partitioning is an Oracle database feature that allows a table to be created with named
partitions. A system partitioned table is not maintained by the database. Each DML must
specify the partition where the row is to reside. Extract and all modes of Replicat support
system partitioning. Each trail file record header pertaining to a system partitioned table
includes the partition name.

See PARTITION | PARTITIONEXCLUDE in the Parameters and Functions Reference for Oracle
GoldenGate.

Sequences and Identity Columns
• Identity columns are supported from Oracle database 18c onward and requires Extract,

Parallel Replicat in Integrated mode, or Integrated Replicat.

• Oracle GoldenGate supports the replication of sequence values and identity columns in a
unidirectional and active-passive high-availability configuration.

• Oracle GoldenGate ensures that the target sequence values will always be higher than
those of the source (or equal to them, if the cache is zero).

Limitations of Support for Sequences

These limitations apply to Extract.

Chapter 4
Prepare Oracle Database

4-26

• Oracle GoldenGate does not support the replication of sequence values in an active-active
bi-directional configuration.

• The cache size and the increment interval of the source and target sequences must be
identical. The cache can be any size, including 0 (NOCACHE).

• The sequence can be set to cycle or not cycle, but the source and target databases must
be set the same way.

• Tables with default sequence columns are excluded from replication for Extract.

Non-supported Objects and Operations in Oracle DML
The following are additional Oracle objects or operations that are not supported by Extract:

• REF are supported natively for compatibility with Oracle Database 12.2 and higher, but not
primary-key based REFs (PKREFs)

• Sequence values in an active-active bi-directional configuration

• Database Replay

• Tables created as EXTERNAL

DML Auto Capture

Oracle GoldenGate supports the following DML operations with auto capture mode:

• TABLEEXCLUSION parameter is supported.

• TABLE parameter is supported.

• Extract writes the table DML records delivered by the database for auto capture to trail file.

Details of Support for Objects and Operations in Oracle DDL
This topic outlines the Oracle objects and operation types that Oracle GoldenGate supports for
the capture and replication of DDL operations.

Trigger-based capture is required for Oracle releases that are earlier than version 11.2.0.4. If
Extract will run in integrated mode against a version 11.2.0.4 or later of Oracle Database, then
the DDL trigger and supporting objects are not required.

Supported Objects and Operations in Oracle DDL
When the source database is Oracle 11.2.0.4 or later and Extract operates in integrated mode,
DDL capture support is integrated into the database logmining server and does not require the
use of a DDL trigger. You must set the database parameter compatibility to 11.2.0.4.0. Extract
supports DDL that includes password-based column encryption, such as:

• CREATE TABLE t1 (a number, b varchar2(32) ENCRYPT IDENTIFIED BY my_password);
• ALTER TABLE t1 ADD COLUMN c varchar2(64) ENCRYPT IDENTIFIED BY my_password;

Note:

Password-based column encryption in DDL is not supported in classic capture mode.

Chapter 4
Prepare Oracle Database

4-27

The following additional statements apply to Extract with respect to DDL support.

• All Oracle GoldenGate topology configurations are supported for Oracle DDL replication.

• Active-active (bi-directional) replication of Oracle DDL is supported between two (and only
two) databases that contain identical metadata.

• Oracle GoldenGate supports DDL on the following objects:

– clusters

– directories

– functions

– indexes

– packages

– procedure

– tables

– tablespaces

– roles

– sequences

– synonyms

– triggers

– types

– views

– materialized views

– users

– invisible columns

• Oracle Edition-Based Redefinition (EBR) database replication of Oracle DDL is supported
for integrated Extract for the following Oracle Database objects:

– functions

– library

– packages (specification and body)

– procedure

– synonyms

– types (specification and body)

– views

EBR does not support use of DDL triggers.

• Oracle GoldenGate supports DDL operations of up to 4 MB in size. Oracle GoldenGate
measures the size of DDL statement in bytes, not in characters. This size limitation
includes packages, procedures, and functions. The actual size limit of the DDL support is
approximate, because the size not only includes the statement text, but also Oracle
GoldenGate maintenance overhead that depends on the length of the object name, the
DDL type, and other characteristics of keeping a DDL record internally.

Chapter 4
Prepare Oracle Database

4-28

• Oracle GoldenGate supports Global Temporary Tables (GTT) DDL operations to be visible
to Extract so that they can be replicated. You must set the DDLOPTIONS parameter to enable
this operation because it is not set by default.

• Oracle GoldenGate supports Integrated Dictionary for use with NOUSERID and
TRANLOGOPTIONS GETCTASDML. This means that Extract will be obtaining object metadata
from the LogMiner dictionary instead of the DDL trigger and without querying the dictionary
objects. Oracle GoldenGate uses Integrated Dictionary automatically when the source
database compatibility parameter is greater than or equal to 11.2.0.4 and Integrated
Extract is used.

The Integrated Dictionary feature is not supported with classic Extract.

When using Integrated Dictionary and trail format in the Oracle GoldenGate release 12.2.x,
Integrated Capture requires the Logminer patch to be applied on the mining database if the
Oracle Database release is earlier than 12.1.0.2.

• Oracle GoldenGate supports replication of invisible columns in Integrated Capture mode.
Trail format release 12.2 is required. Replicat must specify the MAPINVISIBLECOLUMNS
parameter or explicitly map to invisible columns in the COLMAP clause of the MAP parameter.

If SOURCEDEFS or TARGETDEFS is used, the metadata format of a definition file for Oracle
tables must be compatible with the trail format. Metadata format 12.2 is compatible with
trail format 12.2, and metadata format earlier than 12.2 is compatible with trail format
earlier than 12.2. To specify the metadata format of a definition file, use the FORMAT
RELEASE option of the DEFSFILE parameter when the definition file is generated in
DEFGEN.

• DDL statements to create a namespace context (CREATE CONTEXT) are captured by Extract
and applied by Replicat.

• Extract in pump mode supports the following DDL options:

– DDL INCLUDE ALL
– DDL EXCLUDE ALL
– DDL EXCLUDE OBJNAME
The SOURCECATALOG and ALLCATALOG option of DDL EXCLUDE is also supported.

If no DDL parameter is specified, then all DDLs are written to trail. If DDL EXCLUDE OBJNAME
is specified and the object owner is does not match an exclusion rule, then it is written to
the trail.

Non-supported Objects and Operations in Oracle DDL
These statements apply to integrated and classic capture modes.

Excluded Objects

The following names or name prefixes are considered Oracle-reserved and must be excluded
from the Oracle GoldenGate DDL configuration. Oracle GoldenGate will ignore objects that
contain these names.

Excluded schemas:

 "ANONYMOUS", // HTTP access to XDB
 "APPQOSSYS", // QOS system user
 "AUDSYS", // audit super user
 "BI", // Business Intelligence
 "CTXSYS", // Text
 "DBSNMP", // SNMP agent for OEM

Chapter 4
Prepare Oracle Database

4-29

 "DIP", // Directory Integration Platform
 "DMSYS", // Data Mining
 "DVF", // Database Vault
 "DVSYS", // Database Vault
 "EXDSYS", // External ODCI System User
 "EXFSYS", // Expression Filter
 "GSMADMIN_INTERNAL", // Global Service Manager
 "GSMCATUSER", // Global Service Manager
 "GSMUSER", // Global Service Manager
 "LBACSYS", // Label Security
 "MDSYS", // Spatial
 "MGMT_VIEW", // OEM Database Control
 "MDDATA",
 "MTSSYS", // MS Transaction Server
 "ODM", // Data Mining
 "ODM_MTR", // Data Mining Repository
 "OJVMSYS", // Java Policy SRO Schema
 "OLAPSYS", // OLAP catalogs
 "ORACLE_OCM", // Oracle Configuration Manager User
 "ORDDATA", // Intermedia
 "ORDPLUGINS", // Intermedia
 "ORDSYS", // Intermedia
 "OUTLN", // Outlines (Plan Stability)
 "SI_INFORMTN_SCHEMA", // SQL/MM Still Image
 "SPATIAL_CSW_ADMIN", // Spatial Catalog Services for Web
 "SPATIAL_CSW_ADMIN_USR",
 "SPATIAL_WFS_ADMIN", // Spatial Web Feature Service
 "SPATIAL_WFS_ADMIN_USR",
 "SYS",
 "SYSBACKUP",
 "SYSDG",
 "SYSKM",
 "SYSMAN", // Adminstrator OEM
 "SYSTEM",
 "TSMSYS", // Transparent Session Migration
 "WKPROXY", // Ultrasearch
 "WKSYS", // Ultrasearch
 "WK_TEST",
 "WMSYS", // Workspace Manager
 "XDB", // XML DB
 "XS$NULL",
 "XTISYS", // Time Index

Special schemas:

 "AURORAJISUTILITY$", // JSERV
 "AURORAORBUNAUTHENTICATED", // JSERV
 "DSSYS", // Dynamic Services Secured Web Service
 "OSE$HTTP$ADMIN", // JSERV
 "PERFSTAT", // STATSPACK
 "REPADMIN",
 "TRACESVR" // Trace server for OEM

Excluded tables (the * wildcard indicates any schema or any character):

 "*.AQ$*", // advanced queues
 "*.DR$*$*", // oracle text
 "*.M*_*$$", // Spatial index
 "*.MLOG$*", // materialized views
 "*.OGGQT$*",
 "*.OGG$*", // AQ OGG queue table
 "*.ET$*", // Data Pump external tables
 "*.RUPD$*", // materialized views

Chapter 4
Prepare Oracle Database

4-30

 "*.SYS_C*", // constraints
 "*.MDR*_*$", // Spatial Sequence and Table
 "*.SYS_IMPORT_TABLE*",
 "*.CMP*$*", // space management, rdbms >= 12.1
 "*.DBMS_TABCOMP_TEMP_*", // space management, rdbms < 12.1
 "*.MDXT_*$*" // Spatial extended statistics tables

Other Non-supported DDL

Oracle GoldenGate does not support the following:

• DDL on nested tables.

• DDL on identity columns.

• ALTER DATABASE and ALTER SYSTEM (these are not considered to be DDL) Using dictionary,
you can replicate ALTER DATABASE DEFAULT EDITION and ALTER PLUGGABLE DATABASE
DEFAULT EDITION. All other ALTER [PLUGABLE] DATABASE commands are ignored.

• DDL on a standby database.

• Database link DDL.

• DDL that creates tables with the FLASHBACK ARCHIVE clause and DDL that creates, alters,
or deletes the flashback data archive itself. DML on tables with FLASHBACK ARCHIVE is
supported.

• Some DDL will generate system generated object names. The names of system generated
objects may not always be the same between two different databases. So, DDL operations
on objects with system generated names should only be done if the name is exactly the
same on the target.

Prepare Oracle GoldenGate
Learn about the prerequisite tasks to be completed before beginning to add Extract and
Replicat processes for Oracle GoldenGate deployments.

Oracle GoldenGate Users
A user needs to be created in the source database, if you are using Oracle GoldenGate DDL
support. This user performs maintenance on the Oracle GoldenGate database objects that
support DDL capture.

A user is required in either the source or target database for the DEFGEN utility. The location
depends on where the data definition file is being generated. This user performs local
metadata queries to build a data-definitions file that supplies the metadata to remote Oracle
GoldenGate instances.

Configure Secure Database Connections from Oracle GoldenGate
To specify a database connection string in a secure manner while configuring Oracle
GoldenGate connections to any of the supported databases, the following options are
available:

• Include the USERIDALIAS option in the Extract and Replicat parameter files

• Set up a connection using TCP or Bequeath protocols

Chapter 4
Prepare Oracle GoldenGate

4-31

Important:

For Oracle database, it is recommended that you use the TCP or Bequeath protocols
with Oracle GoldenGate to be able to use features such as efficient DDL notification.
Avoid using the IPC protocol as there are intermittent issues with using this protocol.
For details, see Table DDL Change Notification in the Oracle Database Development
Guide

Security Options for Specifying the Connection String in the Extract and Replicat
Parameter Files

The following are the security options for specifying the connection string in the Extract or
Replicat parameter file.

Credential store method:

USERIDALIAS ggeast

In the case of USERIDALIAS, the alias ggeast is stored in the Oracle GoldenGate credential
store with the actual connection string. The following example uses the INFO CREDENTIALSTORE
command to display the details of the credentials configured in Oracle GoldenGate:

INFO CREDENTIALSTORE DOMAIN OracleGoldenGate

Output:

Domain: OracleGoldenGate
 Alias: ggeast
 Userid: ggadmin@dc1.example.com:1521/DBEAST.example.com

Setting up a Bequeath connection

Valid for Oracle database.

Oracle GoldenGate can connect to a database instance without using the network listener if a
Bequeath connect descriptor is added in the tnsnames.ora.

The following example shows the configuration for connecting to a database using Bequeath
connect descriptor:

dbbeq = (DESCRIPTION=
 (ADDRESS=(PROTOCOL=beq)
 (ENVS='ORACLE_SID=sales,ORACLE_HOME=/app/db_home/
oracle,LD_LIBRARY_PATH=/app/db_home/oracle/lib')
 (PROGRAM=/app/db_home/oracle/bin/oracle)
 (ARGV0=oraclesales)
 (ARGS='(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))'))
 (CONNECT_DATA=(SID=sales)))

In this example:

/app/db_home is the target Oracle database installation directory

sales is the database service name

Chapter 4
Prepare Oracle GoldenGate

4-32

https://docs.oracle.com/en/database/oracle/oracle-database/23/adfns/using-table-ddl-change-notification.html

The ORACLE_SID, ORACLE_HOME, and LD_LIBRARY_PATH in the ENVS parameter refers to the
target.

Note:

Make sure that there is no white space between these environment variable settings.

Setting up a TCP connection

For Oracle database, you can configure connect description in the tnsnames.ora file for setting
up a TCP connection and save it in the credentials store in Oracle GoldenGate. The following
example shows the tnsnames.ora file with the TCP connect descriptor:

##tnsnames.ora file sample for database host DBEAST
cdb23_root = (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=DBEAST)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=rdbms.oracle.com)))
cdb23_pdb0 = (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=DBEAST)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=cdb1_pdb0.rdbms.oracle.com)))
cdb23_pdbeast = (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=DBEAST)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=cdb1_pdbeast.rdbms.oracle.com)))
cdb23_pdbwest = (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=DBEAST)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=cdb1_pdbwest.rdbms.oracle.com)))

To configure additional security options using sqlnet.ora, see Connecting to a Database
Using Strong Authentication

Assigning Credentials to Oracle GoldenGate
The Oracle GoldenGate processes require one or more database credentials with the correct
database privileges for the database version, database configuration, and Oracle GoldenGate
features that you are using.

Create users for the source and target database instances, each one dedicated to Oracle
GoldenGate. The assigned user can be the same user for all the Oracle GoldenGate
processes that must connect to a source or target Oracle Database.

See ALTER CREDENTIALSTORE command usage to manage credentials in a credential store for
Oracle GoldenGate users.

Securing the Oracle GoldenGate Credentials
To preserve the security of your data, and to monitor Oracle GoldenGate processing
accurately, do not permit other users, applications, or processes to log on as, or operate as, an
Oracle GoldenGate database user.

Oracle GoldenGate provides different options for securing the log-in credentials assigned to
Oracle GoldenGate processes. The recommended option is to use a credential store. You can
create one credential store and store it in a shared location where all installations of Oracle
GoldenGate can access it, or you can create a separate one on each system where Oracle
GoldenGate is installed.

The credential store stores the user name and password for each of the assigned Oracle
GoldenGate users. A user ID is associated with one or more aliases, and it is the alias that is
supplied in commands and parameter files, not the actual user name or password. The

Chapter 4
Prepare Oracle GoldenGate

4-33

credential file can be partitioned into domains, allowing a standard set of aliases to be used for
the processes, while allowing the administrator on each system to manage credentials locally.

See Creating and Populating the Credential Store in Oracle GoldenGate Security Guide for
more information about creating a credential store and adding user credentials.

Add and Alter Database Credentials
To create and run Extract and Replicat processes, you need to set up database credentials.

1. Launch the Administration Server interface and log in.

2. Click Configuration from the Application Navigation pane.

3. Click the + sign next to Credentials, and set up your new credential alias, then click
Submit.

4. Click the Login icon to verify that the new alias can correctly log in to the database.

If an error occurs, click the Alter Credential icon to correct the credential information, and
then test the log in.

You can edit existing credentials to change the user name and password. Delete a credential
by clicking the trash icon.

When you successfully log into your database, you can add and manage checkpoint tables,
transaction information, and heartbeat tables. All of the tables can be searched using the
various search fields. As you type, the table is filtered and you can use the search button with
the search text.

Before Adding Extract and Replicat Processes
Learn about the prerequisite configurations required before creating Extract and Replicat
processes for an Oracle GoldenGate deployment.

Add TRANDATA
Valid for Db2 i, Db2 LUW, Db2 z/OS, Oracle, PostgreSQL, SQL Server, and Sybase.

Depending on the source database, supplemental logging must be enabled to capture DML
operations and can be enabled through the Trandata menu of a database connection in the
web interface, or in the Admin Client by issuing ADD TRANDATA or ADD SCHEMATRANDATA (for
Oracle only).

Adding TRANDATA is not required on a source database for an initial load Extract. However, if
both initial load Extract and change data capture (CDC) Extract will be used in conjunction, for
an online instantiation, then TRANDATA should be added prior to starting the initial load Extract.

Enable TRANDATA or SCHEMATRANDATA for Oracle Database
This can be done at the table, schema, or global (database) level.

To enable supplemental logging, connect to the database from the DB Connections page,
select the Trandata menu, then perform the following steps:

1. Select the Table or Schema option as required and click plus sign to add.

2. Enter the name of the table for which you need to set up supplemental logging. Make sure
to enter the full table name with schema name, such as, HR.EMP. You can also use wildcard
instead of specific table name.

Chapter 4
Prepare Oracle GoldenGate

4-34

3. Click Submit.

You can skip ADD TRANDATA in case of initial load without CDC.

You can also use the commands ADD TRANDATA and ADD SCHEMATRANDATA for setting up
trandata and schema level trandata. For details, see ADD TRANDATA and ADD SCHEMATRANDATA
in Command Line Interface Reference for Oracle GoldenGate.

Note:

Before you run the ADD TRANDATA command, you need to first connect to the
database where the Extract will be added, using the DBLOGIN command. In addition,
run the ADD TRANDATA or ADD SCHEMATRANDATA commands before adding the Extract.

Add a Checkpoint Table
A checkpoint table is required for all non-parallel Replicats and must be created in the
database prior to adding a Replicat. You can view the checkpoint table within the checkpoint
section. To add a checkpoint table, connect to the target database from the DB Connections
page, select Checkpoint, then follow the steps below.

1. Click the plus sign to enable adding a checkpoint table.

2. Add the checkpoint table name in the format

table.checkpoint_table_name

.

3. Click Submit. After the checkpoint is created, you'll be able to see in the list of checkpoint
tables.

To perform this task from the command line, see ADD CHECKPOINTTABLE in the Command Line
Interface Reference for Oracle GoldenGate.

Add Heartbeat Table
Heartbeat tables are used to monitor lag throughout the data replication cycle. Automatic
heartbeats are sent from each source database into the replication streams, by updating the
records in a heartbeat seed table and a heartbeat table, and constructing a heartbeat history
record.

Each process in the replication stream updates the heartbeat record with tracking information
which is then updated in the heartbeat table of the target database. These heartbeat records
are inserted or updated into the heartbeat table at the target databases.

Note:

Creating the heartbeat table is optional but is recommended.

To add a heartbeat table, connect to each source and target database from the DB
Connections page, select the Heartbeat menu, then perform the following steps:

1. Click the plus (+) sign next to add a heartbeat table.

Chapter 4
Prepare Oracle GoldenGate

4-35

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/ggmas&id=GCLIR-GUID-D3FD004B-81E4-4185-92D3-812834A5DEFC
https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/ggmas&id=GCLIR-GUID-5DA7C3DC-5D87-4A8B-AD23-6EF587A5CF41
https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/ggmas&id=GCLIR-GUID-870D65C1-A18E-4B2D-8257-F58E9A808197

2. Accept the default settings or modify the available values as needed.

Note:

For databases that have an option for Target Only, select this option if that
database is only going to be used as a target database in the replication stream,
to avoid creating unnecessary jobs that would be associated with a source
database.

3. Click Submit.

To perform this task from the command line and review important database specific limitations,,
see ADD HEARTBEATTABLE in Command Line Interface Reference for Oracle GoldenGate.

The following steps describe the commands to set up the heartbeat table.

1. Launch the Admin Client from the command line.

2. Connect to the deployment from the Admin Client.

CONNECT https://remotehost:srvmgrport DEPLOYMENT deployment_name AS
deployment_user PASSWORD deployment_password

Here's an example:

CONNECT https://remotehost:16000 DEPLOYMENT ggdep_postgres AS ggadmin
PASSWORD P@ssWord

3. Connect to the source and target databases using the DBLOGIN USERIDALIAS command.
The following example shows the connection to the source database with credential alias
ggeast:

(https://remotehost:16000 ggdep_postgres)> DBLOGIN USERIDALIAS ggeast

4. Add the heartbeat table:

(https://remotehost:16000 ggdep_postgres)> ADD HEARTBEATTABLE

Optionally, for a target only database, one that is used for unidirectional replication only, you
can include the TARGETONLY option which will not create a heartbeat record update function.

See ADD HEARTBEATTABLE for details about command options.

Chapter 4
Prepare Oracle GoldenGate

4-36

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/ggmas&id=GCLIR-GUID-126E30A2-DC7A-4C93-93EC-0EB8BA7C13CB

5
Extract

Learn about different types of Extract and how to add and manage Extracts.

Quick Tour of the Administration Service Overview Page
When you click the Administrator Server link on the Service Manager home page, the login
page for the Administration Server is displayed. After logging in, you can configure Extract and
Replicat processes from this Web UI.

The Administration Server home page is used to add Extracts and Replicats. The table on the
home page displays the severity of critical events. You can also use the left-navigation pane to
access various configuration details, a list of severity issues with their diagnosis, and a list of
administrators.

Now, that you have an overview of the Administration Server home page, let’s understand
some of the key actions that you can perform from this page.

Action Description

View the home page in tabular format Use the Table Layout swivel to turn the tabular
format on and off.

View Extracts and Replicats The statistical representation the home page
displays current state of Extracts and Replicats
(Starting, Running, Stopped, Abended, Killed)

Add an Extract See How to Add an Extract for a Deployment

Create a Replicat See How to Add a Replicat

Stop and start Extracts Using Extract Actions

Stop and start Replicats See Using Replicat Actions

View and search critical events Monitor severity of events using the Critical Events
table and also search for specific events, if
required.

About Extract
The Extract process is configured to run against the source database, capturing data
generated in the true source database located somewhere else. This process is the extraction
or the data capture mechanism of Oracle GoldenGate.

You can configure an Extract for the following use cases:

• Initial Loads: When you set up Oracle GoldenGate for initial loads, the Extract process
captures the current, static set of data directly from the source objects. This configuration
of Extract process uses source tables as the source to capture data. See Add Initial Load
Extract Using the Admin Client.

• Online Extract (Change Synchronization): When you set up Oracle GoldenGate to keep
the source data synchronized with another set of data, the Extract process captures the

5-1

DML and DDL operations performed on the configured objects after the initial
synchronization has taken place. Extracts can run locally (upstream) on the same server
as the database or on another server using the downstream integrated Extract (in case of
Oracle database) for reduced overhead. It stores these operations until it receives commit
records or rollbacks for the transactions that contain them. If it receives a rollback, it
discards the operations for that transaction. If it receives a commit, it persists the
transaction to disk in a series of files called a trail, where it is queued for propagation to the
target system. All the operations in each transaction are written to the trail as a
sequentially organized transaction unit and are in the order in which they were committed
to the database (commit sequence order). This design ensures both speed and data
integrity. This configuration of the Extract process uses database recovery logs or
transaction logs as the data source. While capturing from the logs, the actual method
varies depending on the database type. An example of this source type is the Oracle
database redo logs, which are used for supplemental logging.

Note:

Extract ignores operations on objects that are not in the Extract configuration, even
though a transaction may also include operations on objects that are in the Extract
configuration.

For a remote deployment, the source database and Oracle GoldenGate are installed on
separate servers. Remote deployments are the only option available for supporting cloud
databases, such as Azure for PostgreSQL or Amazon Aurora PostgreSQL.

For remote deployments, operating system endianness between the database server and
Oracle GoldenGate server need to be the same.

Server time and time zones of the Oracle GoldenGate server should be synchronized with that
of the database server. If this is not possible, then positioning of an Extract when creating or
altering one will need to be done by LSN.

In remote capture use cases, using SQLEXEC may introduce additional latency, as the SQLEXEC
operation must be done serially for each record that the Extract processes. If special filtering
that would require a SQLEXEC is done by a remote hub Extract and the performance impact is
too severe, it may become necessary to move the Extract process closer to the source
database.

With remote deployments, low network latency is important, and it is recommended that the
network latency between the Oracle GoldenGate server and the source database server be
less than 1 millisecond.

Add an Extract
Set up database credentials to create and run Extracts using the steps in Add and Alter
Database Credentials.

1. Log in to the Administration Server using the Oracle GoldenGate user credentials.

2. From the Overview page of the Administration Server, click the + sign next to Extract.

3. Choose the type of Extract to create and click Next. The types of Extract are:

• Integrated Extract

• Classic Extract

Chapter 5
Add an Extract

5-2

• Initial Load Extract

Note:

An Initial Load Extract cannot be started from a secure deployment. You can only
start it in a non-secure deployment.

4. Enter and select the required information, which is designated with an asterisk (*). For all
Extracts the Process Name, Credential Domain, and Credential Alias are required. A
description is optional. The Create new credential option is common to all Extracts.

You can configure the following additional required and optional details based on the type
of Extract you selected to create:

Options Description
Description

Database

Basic Information

Process Name Name of the Extract process.
The name of the Extract
process can be up to 8
characters.

All databases

Description Description of the Extract
process being created.

All databases

Intent Describes the purpose of
creating the Extract. The default
option is Unidirectional. Other
options are High Availability,
Disaster Recovery, N-Way,
which are informational only.

All databases

Begin Used to set the beginning
location in the redo or
transaction log from which the
Extract will start to capture data.
Available options are Now,
Custom Time, CSN or Position
in Log, and EOF depending on
the supported database.

All databases

Trail Name A two character trail name. All databases

Trail Subdirectory, Size,
Sequence, and Offset

You can further configure the
trail details.

All databases

Remote Enable this option if the Extract
trail is remote.

For Oracle databases, enable
this option if the Extract trail is
to be written directly to a remote
Oracle GoldenGate Classic
installation.

For MySQL, setting this option
enables the TRANLOGOPTIONS
ALTLOGDEST REMOTE
parameter to support a remote
Extract, and is not related to
trails.

Oracle, MySQL

Registration Information

Chapter 5
Add an Extract

5-3

Options Description
Description

Database

CSN Commit Sequence Number
(CSN) value

Oracle

Share Choose the method to share the
LogMiner data dictionary.
Options are:
• Automatic: This option

allows the system to
choose the method for
sharing the dictionary .

• None: Choosing this option,
will not allow the dictionary
to be shared.

• Extract: Choose this option
to allow sharing the
logminer dictionary for
specific Extract.

Oracle

Optimized Enable this option to optimize
the Extract registration.

Oracle

Downstream Capture Enable this option to set up a
downstream Extract for log
mining.

Oracle

Register Only Use this option to just register
the Extract and not add the
Extract. The registration creates
the replication slot when you
register the Extract or use the
Register Only option.

PostgreSQL

Source Database Credential

Create new credential If you haven't set up your
database login credentials, you
can create and save the
database login credentials from
here.

All

Credential Domain Create a domain for the
database.

All

Credential Alias Specifiy a credential for the
database login.

All

User ID Specify a user name for logging
into the database.

All

Password, Verify Password Enter the password used to
login to the database and
reenter the password to verify.

All

Credential Domain Saves the credential user under
the specified domain name.
Enables the same alias to be
used by multiple Oracle
GoldenGate installations that
use the same credential store.
The default domain is Oracle
GoldenGate.

All databases

Chapter 5
Add an Extract

5-4

Options Description
Description

Database

Credential Alias Specifies an alias for the user
name. Use this option if you do
not want the user name to be in
a parameter file or command. If
ALIAS is not used, the alias
defaults to the user name, which
then must be used in parameter
files and commands where a
login is required. You can create
multiple entries for a user, each
with a different alias, by using
the ADD USER option with
ALIAS.

All databases

Downstream Mining

Mining Credential Domain Domain name of the
downstream mining database.

Oracle

Mining Credential Alias Alias for the mining downstream
database.

Oracle

No UserID Enable this option if there is no
source database connection.
Selecting this option enables
the ADG fetch options.

Oracle

ADG Fetch Credential Domain Domain name for the ADG fetch
database.

Oracle

ADG Fetch Credential Alias Domain alias for the ADG fetch
database.

Oracle

You must enter the options for Managed Processes while creating all types of Extract
processes. The following table provides these options:

Option Description

Profile Name Provides the name of the autostart and
autorestart profile. You can select the default or
custom options.

If you have already created a profile, then you
can select that profile also. If you select the
Custom option, then you can set up a new profile
from this section itself.

Critical to deployment health (Oracle only) Enable this option if the profile is
critical for the deployment health. This option can
be enabled for High Availability environments.

Note:

This option only appears while
creating the Extract or Replicat and
not when you set up the managed
processes in the Profiles page.

Auto Start Enables autostart for the process.

Chapter 5
Add an Extract

5-5

Option Description

Startup Delay Time to wait in seconds before starting the
process

Auto Restart Configures how to restart the process if it
terminates

Max Retries Specify the maximum number of retries to try to
start the process

Retry Delay Delay time in trying to start the process

Retries Window The duration interval to try to start the process

Restart on Failure only If true the task is only restarted if it failes

Disable Task After Retries Exhausted If true then the task is disabled after exhausting
all attempts to restart the process.

5. Click Next.

6. You can edit the parameter file in the text area to list the table details that you are
interested in capturing. For example, table source.table1;
You can select Register Extract in the background to register the Extract in the
background asynchronously.

7. You can select Register Extract in the background to register the Extract in the background
asynchronously.

8. Click Create and Run to create and start the Extract. If you select Create, the Extract is
created but you need to start it using the Extract drop-down on the Overview page.

You are returned to the Overview page of the Administration Server. Select the Action list if
you want to look at the Extract details such as process information, checkpoint, statistics,
parameters, and report.

Using Extract Actions
Once you create an Extract, you can monitor various details associated with the Extract from
the Administration Server home page.

You can change the status of the Extract process using the Action button to:

Chapter 5
Using Extract Actions

5-6

Action Result

Details Displays the following tabs:

• Process Information:

The status of the selected process including
the type, credentials, and trail.

• Checkpoint:

The checkpoint log name, path, timestamp,
sequence, and offset value. You can monitor
the input details, such as when starting, at
recovery, and the current state. The checkpoint
output values display the current checkpoint
details.

• Statistics:

The active replication maps along with
replication statistics based on the process
type. You sort the lost to view the entire
statistical data, daily, or hourly basis.

• Parameters:

The parameters configured when the process
was added. You can edit the parameters by
clicking the pencil icon. Make sure that you
apply your changes.

• Report:

A detailed report of the process including
parameter settings and a log of the
transactions. You could copy the report text
and save it to a file so that you can share or
archive it.

Start/Stop The Extract starts or stops immediately.

Start/Stop (in the background) The Extract is started or stopped using a
background process.

Start with Options Allows you to change the Extract CSN options,
then starts the Extract.

Alter This option is available only when the Extract is
stopped. Allows you to change when the Extract
begins, the description, and the intent. It does not
start the Extract.

Delete This option displays only when the Extract is
stopped. Deletes the Extract if you confirm the
deletion.

When you change the status, the list options change accordingly. As status are changing, the
icons change to indicate the current and final status. The events are added to the Critical
Events table. Additionally, progress pop-up notifications appear at the bottom of the page.

Downstream Extract for Downstream Database Mining
Learn about configuring downstream database mining with Oracle GoldenGate Extract and
cascaded downstream database mining using Active Data Guard (ADG).

Chapter 5
Downstream Extract for Downstream Database Mining

5-7

Configure Extract for a Downstream Deployment

A downstream Oracle GoldenGate deployment allows you to offload the source database redo
logs to a downstream mining database. A downstream mining database can accept both
archived logs and online redo logs from a source database.

This workflow shows the source multitenant container database (CDBNORTH) offloading redo
logs to the downstream database (CDBSOUTH) through the logmining server.

Note:

Configuring Extract for a downstream deployment is only applicable to Oracle
database.

important for any Data Guard or downstream environment is the setup of the Redo Transport
which with the parameter settings of

Topics:

Evaluate Extract Options for a Downstream Deployment
To configure an Extract on the downstream mining database, consider the following guidelines:

• Multiple source databases can send their redo data to a single downstream database;
however the downstream mining database can accept online redo logs from only one of
those source databases. The rest of the source databases must ship archived logs.

• When online logs are shipped to the downstream database, real-time capture by Extract is
possible. Changes are captured as though Extract is reading from the source logs. In order
to accept online redo logs from a source database, the downstream mining database must
have standby redo logs configured.

• When using a downstream mining configuration, the source database and mining database
must be the same endian and same bit size, which is 64 bits. For example, if the source
database was on Linux 64-bit, you can have the mining database run on Windows 64-bit,
because they have the same endian and bit size.

• The initialization parameter db_block_size must be same between source database and
mining database.

Prepare the Source Database for the Downstream Deployment
There must be an Extract user on the source database. Extract uses the credentials of this
user to do metadata queries and to fetch column values as needed from the source database.

Chapter 5
Downstream Extract for Downstream Database Mining

5-8

Add the credentials for connecting Extract to the source database from the Microservices
Architecture web interface.

Topics:

Add Database Credentials to Connect to the Source Database
To create and run Extract and Replicat processes, you need to set up database credentials to
connect Extract/Replicat users to the respective source or target databases.

1. Launch the Administration Service interface and log in.

2. Click Configuration from the Application Navigation pane.

3. Click the plus sign (+) sign next to Credentials.

4. Enter the following details in the displayed fields:

Database Credential Options Description

Credential Domain Specify a domain name to which the database
credential is associated. For example,
"OracleGoldenGate" is the default domain name,
incase you don't specify a domain name.

Credential Alias This is the alias for your database credential.

User ID This is the username of the database user.

For Oracle database, if you use the EZconnect
syntax to connect to the database, then you can
specify the value in this field in the following
manner:

dbusername@hostname:port/service_name
dbusername is the database user name.
hostname or IP address of the server where the
database is running.
port is the port number for connecting to the
database server. Usually, this value is 1521.

service_name is the name of the service
provided in the tnsnames.ora file for the
database connection.

Password Password used by database user to log in to the
database.

5. Click Submit.

6. Click the Connect to database icon to test that the connection is working correctly. If the
connection is successful, the Connect to database icon turns blue.

When you successfully log into your database, you can add and manage checkpoint tables,
transaction information (TRANDATA), and heartbeat tables. All of the tables can be searched
using the various search fields. As you type, the table is filtered and you can use the search
button with the search text.

Configure Redo Transport from Source Database to Downstream Mining Database
To set up the transfer of redo log files from a source database to the downstream mining
database, and to prepare the downstream mining database to accept these redo log files,
perform the steps given in this topic.

The following summarizes the rules for supporting multiple sources sending redo to a single
downstream mining database:

Chapter 5
Downstream Extract for Downstream Database Mining

5-9

• Only one source database can be configured to send online redo to the standby redo logs
at the downstream mining database. The log_archive_dest_n setting for this source
database should not have a TEMPLATE clause.

• Source databases that are not sending online redo to the standby redo logs of the
downstream mining database must have a TEMPLATE clause specified in the
log_archive_dest_n parameter.

• Each of the source databases that sends redo to the downstream mining database must
have a unique DBID. You can select the DBID column from the v$database view of these
source databases to ensure that the DBIDs are unique.

• The FAL_SERVER value must be set to the downstream mining database. FAL_SERVER
specifies the FAL (fetch archive log) server for a standby database. The value is a list of
Oracle Net service names, which are assumed to be configured properly on the standby
database system to point to the desired FAL servers. The list contains the net service
name of any database that can potentially ship redo to the downstream database.

• When using redo transport, there could be a delay in processing redo due to network
latency. For Extract, this latency is monitored by measuring the delay between LCRs
received from source database and reporting it. If the latency exceeds a threshold, a
warning message appears in the report file and a subsequent information message
appears when the lag drops to normal values. The default value for the threshold is 10
seconds.

Chapter 5
Downstream Extract for Downstream Database Mining

5-10

Note:

The archived logs shipped from the source databases are called foreign archived
logs. You must not use the recovery area at the downstream mining database to
store foreign archived logs. Such a configuration is not supported by Extract. Foreign
archived logs stored in the Flash Recovery Area (FRA) are not automatically deleted
by RMAN jobs. These archived logs must be manually purged.
These instructions take into account the requirements to ship redo from multiple
sources, if required. You must configure an Extract process for each of those
sources.

To configure redo transport:

1. Configure database connection to connect the source database with the mining
database.

2. Configure authentication at each source database and at the downstream mining
database to support the transfer of redo data. Redo transport sessions are
authenticated using either the Secure Sockets Layer (SSL) protocol or a remote
login password file. If a source database has a remote login password file, copy it
to the appropriate directory of the mining database system. The password file
must be the same at all source databases, and at the mining database.

3. At each source database, configure one LOG_ARCHIVE_DEST_n initialization
parameter to transmit redo data to the downstream mining database. Set the
attributes of this parameter as shown in one of the following examples,
depending on whether real-time or archived-log-only capture mode is to be used.

• Example for real-time capture at the downstream logmining server, where the
source database sends its online redo logs to the downstream database:

ALTER SYSTEM
SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap'

• Example for archived-log-only capture at the downstream logmining server:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DMBSCAP.EXAMPLE.COM ASYNC
NOREGISTER VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
TEMPLATE=/usr/oracle/log_for_dbms1/dbms1_arch_%t_%s_%r.log
DB_UNIQUE_NAME=dbmscap'

Note:

When using an archived-log-only downstream mining database, you
must specify a value for the TEMPLATE attribute. Oracle also
recommends that you use the TEMPLATE clause in the source databases
so that the log files from all remote source databases are kept
separated from the local database log files, and from each other.

4. At the source database, set a value of ENABLE for the LOG_ARCHIVE_DEST_STATE_n
initialization parameter that corresponds with the LOG_ARCHIVE_DEST_n parameter
that corresponds to the destination for the downstream mining database, as
shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

Chapter 5
Downstream Extract for Downstream Database Mining

5-11

5. At the source database, and at the downstream mining database, set the
DG_CONFIG attribute of the LOG_ARCHIVE_CONFIG initialization parameter to include
the DB_UNIQUE_NAME of the source database and the downstream database, as
shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)'

Prepare the Downstream Mining Database to Receive Online Redo Logs
A downstream mining database can accept both archived logs and online redo logs from a
source database.

Topics:

Creating the Downstream Mining User Account
When using a downstream mining configuration, there must be an Extract mining user on the
downstream database. The mining Extract process uses the credentials of this user to interact
with the downstream logmining server.

The downstream mining user is specified by the TRANLOGOPTIONS parameter with the
MININGUSERALIAS option.

See Add Database Credentials to Connect to the Source Database to assign the correct
credentials for the version of your database.

Configure the Mining Database to Archive Local Redo Log Files

This procedure configures the downstream mining database to archive redo data in its online
redo logs. These are redo logs that are generated at the downstream mining database.

Archiving must be enabled at the downstream mining database if you want to run Extract in
real-time integrated capture mode, but it is also recommended for archive-log-only capture.
Extract in integrated capture mode writes state information in the database. Archiving and
regular backups will enable you to recover this state information in case there are disk failures
or corruption at the downstream mining database.

To Archive Local Redo Log Files:

1. Alter the downstream mining database to be in archive log mode. You can do this by
issuing the following

 DDL.STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set the first archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example:

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE,PRIMARY_ROLE)'

Alternatively, you can use a command like this example:

Chapter 5
Downstream Extract for Downstream Database Mining

5-12

ALTER SYSTEM SET
LOG_ARCHIVE_DEST_1='LOCATION='USE_DB_RECOVERY_FILE_DEST'
valid_for=(ONLINE_LOGFILE,PRIMARY_ROLE)'

Note:

The online redo logs generated by the downstream mining database can be
archived to a recovery area. However, you must not use the recovery area of the
downstream mining database to stage foreign archived logs or to archive standby
redo logs. For information about configuring a fast recovery area, see the Oracle
Database Backup and Recovery User’s Guide.

3. Enable the local archive destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Configure the Wallet for the Downstream Mining Database
When TDE is enabled on source database and downstream database, then the source wallet
or keys should be the same on the downstream mining database and the source database.

Follow these steps to copy the wallet directory from the source database to the downstream
mining database:

1. Shutdown the downstream database using the shutdown immediate command.

2. Remove the wallet directory in the downstream database: rm $OGG_DS_HOME/wallet/*
3. Copy the $OGG_DS_HOME/wallet/* from the source database view to the downstream

database view.

4. Restart the downstream database.

5. Run checksum on the source database view and downstream database view to ensure
that it matches:

cksum $OGG_DS_HOME/wallet/*

Prepare a Downstream Mining Database for Real-time Capture
This procedure is only required if you want to use real-time capture at a downstream mining
database. It is not required to use archived-log-only capture mode. To use real-time capture, it
is assumed that the downstream database has already been configured to archive its local
redo data as shown in Configuring the Mining Database to Archive Local Redo Log Files.
Topics:

Create the Standby Redo Log Files

The following steps outline the procedure for adding standby redo log files to the downstream
mining database. The following summarizes the rules for creating the standby redo logs:

• Each standby redo log file must be at least as large as the largest redo log file of the redo
source database. For administrative ease, Oracle recommends that all redo log files at
source database and the standby redo log files at the downstream mining database be of
the same size.

• The standby redo log must have at least one more redo log group than the redo log at the
source database, for each redo thread at the source database.

Chapter 5
Downstream Extract for Downstream Database Mining

5-13

The specific steps and SQL statements that are required to add standby redo log files depend
on your environment. See Oracle Data Guard Concepts and Administration Guide for detailed
instructions about adding standby redo log files to a database.

Note:

If there are multiple source databases sending redo to a single downstream mining
database, only one of those sources can send redo to the standby redo logs of the
mining database. An Extract process that mines the redo from this source database
can run in real-time mode. All other source databases must send only their archived
logs to the downstream mining database, and the Extracts that read this data must
be configured to run in archived-log-only mode.

To create the standby redo log files:

1. In SQL*Plus, connect to the source database as an administrative user.

2. Determine the size of the source log file. Make note of the results.

SELECT BYTES FROM V$LOG;

3. Determine the number of online log file groups that are configured on the source database.
Make note of the results.

 SELECT COUNT(GROUP#) FROM V$LOG;

4. Connect to the downstream mining database as an administrative user.

5. Add the standby log file groups to the mining database. The standby log file size must be
at least the size of the source log file size. The number of standby log file groups must be
at least one more than the number of source online log file groups. This applies to each
instance (thread) in a RAC installation. So if you have "n" threads at the source database,
each having "m" redo log groups, you should configure n*(m+1) redo log groups at the
downstream mining database.

The following example shows three standby log groups.

ALTER DATABASE ADD STANDBY LOGFILE GROUP 3
('/oracle/dbs/slog3a.rdo', '/oracle/dbs/slog3b.rdo')
SIZE 500M; ALTER DATABASE ADD STANDBY LOGFILE
GROUP 4 ('/oracle/dbs/slog4.rdo', '/oracle/dbs/slog4b.rdo')
SIZE 500M; ALTER DATABASE ADD STANDBY LOGFILE GROUP 5 ('/oracle/dbs/slog5.rdo', '/
oracle/dbs/slog5b.rdo') SIZE 500M;

6. Confirm that the standby log file groups were added successfully.

SELECT GROUP#, THREAD#, SEQUENCE#, ARCHIVED, STATUS FROM V$STANDBY_LOG;

The output should be similar to the following:

GROUP# THREAD# SEQUENCE# ARC STATUS ---------- ---------- ---------- --- ----------
3 0 0
YES UNASSIGNED 4 0 0 YES UNASSIGNED 5 0 0 YES UNASSIGNED

7. Ensure that log files from the source database are appearing in the location that is
specified in the

LOCATION

Chapter 5
Downstream Extract for Downstream Database Mining

5-14

attribute of the local

LOG_ARCHIVE_DEST_n

that you set. You might need to switch the log file at the source database to see files in the
directory.

Configure the Database to Archive Standby Redo Log Files Locally

This procedure configures the downstream mining database to archive the standby redo logs
that receive redo data from the online redo logs of the source database. Keep in mind that
foreign archived logs should not be archived in the recovery area of the downstream mining
database.

To Archive Standby Redo Logs Locally:

1. At the downstream mining database, set the second archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms1
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

Oracle recommends that foreign archived logs (logs from remote source databases) be
kept separate from local mining database log files, and from each other. You must not use
the recovery area of the downstream mining database to stage foreign archived logs.

2. Enable the LOG_ARCHIVE_DEST_2 parameter you set in the previous step as shown in the
following example.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

Enable Downstream Extract to Work with ADG
In a cascaded downstream capture environment, the downstream database does not connect
directly to the source database. It uses the Active Data Guard (ADG) as a reference.

Extract must be started using the sourceless option so that it does not connect to the source
database and instead connects to ADG using FETCHUSERID or FETCHUSERIDALIAS when it
needs to fetch any non-native datatypes. For example, FETCH operations are processed on
the ADG database as this instance is open in read-only mode. Other operations that cannot be
processed on the ADG instance, such as creating the dictionary build, are redirected from the
ADG to the source database.

When registering a downstream Extract, Oracle GoldenGate connects to ADG as source
database instead of the database where the redo originates. ADG redirection is supported for
the following commands and parameters:

• SCHEMATRANDATA
• TRANDATA
• FLUSH SEQUENCE
• TRACETABLE
• HEARTBEATTABLE
• REGISTER EXTRACT

Chapter 5
Downstream Extract for Downstream Database Mining

5-15

Note:

SCHEMATRANDATA and TRANDATA, even though the command is executed on the
standby redo log, the actual log groups are created and maintained on the primary
database where the actual DML operations take place.

ADG Redirection is available with Oracle Database 21c and higher. It also supports wildcard
registration. The following example shows the Extract parameter file for the downstream
Extract, when using ADG:

EXTRACT EXTDSC
NOUSERID
TRANLOGOPTIONS MININGUSERALIAS cgg_cdbDSC_src DOMAIN OracleGoldenGate
TRANLOGOPTIONS INTEGRATEDPARAMS (DOWNSTREAM_REAL_TIME_MINE Y)
FETCHUSERIDALIAS cgg_cdbADG_src DOMAIN OracleGoldenGate

EXTTRAIL cascade/ea
SOURCECATALOG CDBNORTH_PDB01
DDL INCLUDE MAPPED
TABLE HR.*;

Here are the steps to enable downstream Extract to work with ADG Standby:

1. Add an additional LOG_ARCHIVE_DESTINATION_N (LAD) on the ADG standby, as shown in
the following example:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_3='service=mining_db_service_name ASYNC
NOREGISTER VALID_FOR(STANDBY_LOGFILES,STANDBY_ROLES)
DB_UNIQUE_NAME=3rd_db_unique_name' scope=both

This step transports and generates the standby_logfiles for an ADG standby.

2. Set the LOG_ARCHIVE_CONFIG on the ADG standby to ship the logs to the mining database,
as shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='dg_config' scope=both;

db_config is the database unique name of the first, second, and third databases.

3. On the mining database, set up the location to store the incoming standby_logfiles on
the mining database:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='location= DB_RECOVERY_FILE_DEST
VALID_FOR=(STANDBY_LOGFILE,ALL_ROLES)' scope=both

The location is the database recovery file destination.

4. Run LOG_ARCHIVE_CONFIG on the mining database, so that the Extract process is able to
read them on the mining database, as shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='dg_config' scope=both

Chapter 5
Downstream Extract for Downstream Database Mining

5-16

Here, db_config is the database unique name of the first, second, and third databases.

5. For a downstream Extract, you need to ensure that the database connections are
appropriately configured. When registering the Extract, make sure that DBLOGIN connection
is made to the ADG Standby, that is open for read-only activity.

6. To add the Extract and register it, use the following command:

DBLOGIN USERID ggadmin@cdbADG_src, PASSWORD ggadmin
MININGDBLOGIN USERID ggadmin@cgg_cdbDSC, password ggadmin

cdbADG_src is the ADG not primary.

cgg_cdbDSC is the mining database.

7. Now, register an Extract that uses the NOUSERID parameter:

ADD EXTRACT exte, INTEGRATED TRANLOG, BEGIN NOW REGISTER EXTRACT exte
DATABASE

8. After the Extract is registered, you can use this Extract to mine data and start the Extract
normally.

Use Cases for Downstream Mining Configuration
Read about the different downstream mining configuration use cases.

Topics:

Case 1: Capture from One Source Database in Real-time Mode
This example captures changes from source database DBMS1 by deploying an Extract at a
downstream mining database DBMSCAP.

The example assumes that you created the necessary standby redo log files as shown in
Configure Extract for a Downstream Deployment.

This assumes that the following users exist:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and metadata from
DBMS1. This user has the alias of ggadm1 in the Oracle GoldenGate credential store and
logs in as ggadm1@dbms1. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the source database.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve logical change
records from the logmining server at the downstream mining database DBMSCAP. This user
has the alias of ggadmcap in the Oracle GoldenGate credential store and logs in as
ggadmcap@dbmscap. It is assumed that the
DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the mining database.

Topics:

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

Chapter 5
Downstream Extract for Downstream Database Mining

5-17

1. The downstream mining database must be in archive log mode. You can do this by issuing
the following DDL:

STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local redo:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Prepare the Mining Database to Archive Redo Received in Standby Redo Logs from the Source
Database

To prepare the mining database to archive the redo received in standby redo logs from the
source database:

1. At the downstream mining database, set log_archive_dest_2 as shown in the following
example:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms1
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

2. Enable log_archive_dest_2 as shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

3. Set DG_CONFIG at the downstream mining database:

 ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)'

Prepare the Source Database to Send Redo to the Mining Database
To prepare the source database to send redo to the mining database::

1. Make sure that the source database is running with the required compatibility:

select name, value from v$parameter where name = 'compatible';

The minimum compatibility setting required from integrated capture is 11.1.0.0.0.

2. Set DG_CONFIG at the source database:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbmscap)';

Chapter 5
Downstream Extract for Downstream Database Mining

5-18

3. Set up redo transport at the source database..

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
OPTIONAL NOREGISTER
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Set up Extract (ext1) on DBMSCAP
To set up Extract (ext1) on DBMSCAP:

1. Register Extract with the downstream mining database. In the credential store, the alias
name of ggadm1 is linked to a user connect string of ggadm1@dbms1. The alias name of
ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

DBLOGIN USERIDALIAS ggadm1

MININGDBLOGIN USERIDALIAS ggadmcap

REGISTER EXTRACT ext1 DATABASE

2. Create Extract at the downstream mining database:

ADD EXTRACT ext1 INTEGRATED TRANLOG BEGIN NOW

3. Edit Extract parameter file ext1.prm. The following lines must be present to take
advantage of real-time capture. In the credential store, the alias name of ggadm1 is linked
to a user connect string of ggadm1@dbms1. The alias name of ggadmcap is linked to a user
connect string of ggadmcap@dbmscap.

USERIDALIAS ggadm1 TRANLOGOPTIONS MININGUSERALIAS ggadmcap TRANLOGOPTIONS
INTEGRATEDPARAMS (downstream_real_time_mine Y)

4. Start Extract.

START EXTRACT ext1

Note:

You can create multiple Extracts running in real-time Extract mode in the downstream
mining database, as long as they all are capturing data from the same source
database, such as capturing changes for database DBMS1 in the preceding
example.

Chapter 5
Downstream Extract for Downstream Database Mining

5-19

Case 2: Capture from Multiple Sources in Archive-log-only Mode
The following example captures changes from database DBMS1 and DBMS2 by deploying an
Extract at a downstream mining database DBMSCAP.

It assumes the following users:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and metadata from
DBMS1. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS1.

• User GGADM2 in DBMS2 whose credentials Extract will use to fetch data and metadata from
DBMS2. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS2.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve logical change
records from the logmining server at the downstream mining database. It is assumed that
the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the downstream mining database DBMSCAP.

This procedure also assumes that the downstream mining database is configured in archive
log mode.

Topics:

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by issuing
the following DDL.

STARTUP MOUNT; ALTER DATABASE ARCHIVELOG; ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local redo.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

4. Start Extract.

START EXTRACT ext1

Note:

You can create multiple Extracts running in real-time Extract mode in the downstream
mining database, as long as they all are capturing data from the same source
database, such as capturing changes for database DBMS1 in the preceding
example.

Chapter 5
Downstream Extract for Downstream Database Mining

5-20

Prepare the Mining Database to Archive Redo from the Source Database
Set DG_CONFIG at the downstream mining database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1,dbms2, dbmscap)'

Topics:

Prepare the First Source Database to Send Redo to the Mining Database

To prepare the first source database to send redo to the mining database:

1. Make certain that DBMS1 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible'; NAME VALUE
 --------- --------------------- compatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS1 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbmscap)';

3. Set up redo transport at DBMS1 source database. The TEMPLATE clause is mandatory if
you want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
OPTIONAL NOREGISTER TEMPLATE='/usr/orcl/arc_dest/dbms1/
dbms1_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Note:

You can create multiple Extracts running in real-time Extract mode in the downstream
mining database, as long as they all are capturing data from the same source
database, such as capturing changes for database DBMS1 in the preceding
example.

Prepare the Second Source Database to Send Redo to the Mining Database

To prepare the second source database to send redo to the mining database:

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible'; NAME VALUE
 --------- --------------------- compatible 11.1.0.0.0

Chapter 5
Downstream Extract for Downstream Database Mining

5-21

The minimum compatibility setting required from capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS2 source database.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';

3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is mandatory if
you want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
OPTIONAL NOREGISTER TEMPLATE='/usr/orcl/arc_dest/dbms2/
dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Note:

You can create multiple Extracts running in real-time Extract mode in the downstream
mining database, as long as they all are capturing data from the same source
database, such as capturing changes for database DBMS1 in the preceding
example.

Set up Extracts at Downstream Mining Database

These steps set up Extract at the downstream database to capture from the archived logs sent
by DBMS1 and DBMS2.

Case 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only
Mode

The following example captures changes from database DBMS1, DBMS2 and DBMS3 by
deploying an Extract at a downstream mining database DBMSCAP.

Note:

This example assumes that you created the necessary standby redo log files as
shown in Prepare the Downstream Mining Database to Receive Online Redo Logs.
It assumes the following users:

• User GGADM1 in DBMS1 whose credentials Extract will use to fetch data and metadata from
DBMS1. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS1.

• User GGADM2 in DBMS2 whose credentials Extract will use to fetch data and metadata from
DBMS2. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS2.

Chapter 5
Downstream Extract for Downstream Database Mining

5-22

• User GGADM3 in DBMS3 whose credentials Extract will use to fetch data and metadata from
DBMS3. It is assumed that the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE()
procedure was called to grant appropriate privileges to this user at DBMS3.

• User GGADMCAP in DBMSCAP whose credentials Extract will use to retrieve logical change
records from the logmining server at the downstream mining database. It is assumed that
the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE() procedure was called to grant
appropriate privileges to this user at the downstream mining database DBMSCAP.

This procedure also assumes that the downstream mining database is configured in archive
log mode.

In this example, the redo sent by DBMS3 will be mined in real time mode, whereas the redo data
sent from DBMS1 and DBMS2 will be mined in archive-log-only mode.

Topics:

Prepare the Mining Database to Archive its Local Redo
To prepare the mining database to archive its local redo:

1. The downstream mining database must be in archive log mode. You can do this by issuing
the following DDL:

STARTUP MOUNT;
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

2. At the downstream mining database, set log_archive_dest_1 to archive local redo.:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=/home/arc_dest/local
VALID_FOR=(ONLINE_LOGFILE, PRIMARY_ROLE)'

3. Enable log_archive_dest_1.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1=ENABLE

Prepare the Mining Database to Accept Redo from the Source Databases
Because redo data is being accepted in the standby redo logs of the downstream mining
database, the appropriate number of correctly sized standby redo logs must exist. If you did
not configure the standby logs, see Create the Standby Redo Log Files.

1. At the downstream mining database, set the second archive log destination in the
LOG_ARCHIVE_DEST_n initialization parameter as shown in the following example. This is
needed to handle archive standby redo logs.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbms3
VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'

2. Enable the LOG_ARCHIVE_DEST_STATE_2 initialization parameter that corresponds with the
LOG_ARCHIVE_DEST_2 parameter as shown in the following example:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE

Chapter 5
Downstream Extract for Downstream Database Mining

5-23

3. Set DG_CONFIG at the downstream mining database to accept redo data from all of the
source databases.

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbms2, dbms3,
dbmscap)'

Prepare the First Source Database to Send Redo to the Mining Database
To prepare the first source database to send redo to the mining database:

1. Make certain that DBMS1 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

2. Set DG_CONFIG at DBMS1 source database:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms1, dbmscap)';

3. Set up redo transport at DBMS1 source database. The TEMPLATE clause is mandatory if you
want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
OPTIONAL NOREGISTER TEMPLATE='/usr/orcl/arc_dest/dbms1/
dbms1_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Second Source Database to Send Redo to the Mining Database
To prepare the second source database to send redo to the mining database::

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

2. Set DG_CONFIG at DBMS2 source database:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';

3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is mandatory if you
want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
OPTIONAL NOREGISTER TEMPLATE='/usr/orcl/arc_dest/dbms2/
dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

Chapter 5
Downstream Extract for Downstream Database Mining

5-24

4. Enable the downstream destination:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Second Source Database to Send Redo to the Mining Database
To prepare the second source database to send redo to the mining database::

1. Make sure that DBMS2 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible';

2. Set DG_CONFIG at DBMS2 source database:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms2, dbmscap)';

3. Set up redo transport at DBMS2 source database. The TEMPLATE clause is mandatory if you
want to send redo data directly to foreign archived logs at the downstream mining
database.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
OPTIONAL NOREGISTER TEMPLATE='/usr/orcl/arc_dest/dbms2/
dbms2_arch_%t_%s_%r.log
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

4. Enable the downstream destination:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Prepare the Third Source Database to Send Redo to the Mining Database
To prepare the third source database to send redo to the mining database:

1. Make sure that DBMS3 source database is running with the required compatibility.

select name, value from v$parameter where name = 'compatible'; NAME VALUE
 --------- --------------------- compatible 11.1.0.0.0

The minimum compatibility setting required from capture is 11.1.0.0.0.

2. Set DG_CONFIG at DBMS3 source database:

ALTER SYSTEM SET LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbms3, dbmscap)';

3. Set up redo transport at DBMS3 source database. Because DBMS3 is the source that will
send its online redo logs to the standby redo logs at the downstream mining database, do
not specify a TEMPLATE clause.

ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=DBMSCAP.EXAMPLE.COM ASYNC
 OPTIONAL NOREGISTER
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=dbmscap';

Chapter 5
Downstream Extract for Downstream Database Mining

5-25

4. Enable the downstream destination:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Topics:

Set up Extracts at Downstream Mining Database

These steps set up Extract at the downstream database to capture from the archived logs sent
by DBMS1 and DBMS2.

Topics:

Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1
Perform the following steps on the DBMSCAP downstream mining database:

1. Register Extract with DBMSCAP for the DBMS1 source database. In the credential store, the
alias name of ggadm1 is linked to a user connect string of ggadm1@dbms1.The alias name of
ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

DBLOGIN USERIDALIAS ggadm1
MININGDBLOGIN
USERIDALIAS ggadmcap
REGISTER EXTRACT ext1 DATABASE

2. Add Extract at the mining database DBMSCAP:

ADD EXTRACT ext1 INTEGRATED TRANLOG BEGIN NOW

3. Edit the Extract parameter file ext1.prm. In the credential store, the alias name of ggadm1
is linked to a user connect string of ggadm1@dbms1. The alias name of ggadmcap is linked to
a user connect string of ggadmcap@dbmscap:

USERIDALIAS ggadm1 TRANLOGOPTIONS MININGUSERALIAS
ggadmcap TRANLOGOPTIONS INTEGRATEDPARAMS (downstream_real_time_mine N)

4. Start Extract:

START EXTRACT ext1

Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2
Perform the following steps on the DBMSCAP downstream mining database:

1. Register Extract with the mining database for source database DBMS2. In the credential
store, the alias name of ggadm2 is linked to a user connect string of ggadm2@dbms2.The alias
name of ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

DBLOGIN USERIDALIAS ggadm2
MININGDBLOGIN USERIDALIAS ggadmcap
REGISTER EXTRACT ext2 DATABASE

2. Create Extract at the mining database:

ADD EXTRACT ext2 INTEGRATED TRANLOG, BEGIN NOW

Chapter 5
Downstream Extract for Downstream Database Mining

5-26

3. Edit the Extract parameter file ext2.prm. In the credential store, the alias name of ggadm2
is linked to a user connect string of ggadm2@dbms2. The alias name of ggadmcap is linked to
a user connect string of ggadmcap@dbmscap:

USERIDALIAS ggadm2 TRANLOGOPTIONS MININGUSERALIAS ggadmcap TRANLOGOPTIONS
INTEGRATEDPARAMS (downstream_real_time_mine N)

4. Start Extract:

START EXTRACT ext2

Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs Sent by DBMS3
Perform the following steps on the DBMSCAP downstream mining database:

1. Register Extract with the mining database for source database DBMS3. In the credential
store, the alias name of ggadm3 is linked to a user connect string of ggadm3@dbms3.The alias
name of ggadmcap is linked to a user connect string of ggadmcap@dbmscap.

DBLOGIN USERID ggadm3
MININGDBLOGIN USERID ggadmcap
REGISTER EXTRACT ext3 DATABASE

2. Create Extract at the mining database:

ADD EXTRACT ext3 INTEGRATED TRANLOG, BEGIN NOW

3. Edit the Extract parameter file ext3.prm. In the credential store, the alias name of ggadm3
is linked to a user connect string of ggadm3@dbms3. The alias name of ggadmcap is linked to
a user connect string of ggadmcap@dbmscap:

USERIDALIAS ggadm3
TRANLOGOPTIONS MININGUSERALIAS ggadmcap TRANLOGOPTIONS
INTEGRATEDPARAMS (downstream_real_time_mine N)

4. Start Extract:

START EXTRACT ext3

Note:

You can create multiple Extracts running in real-time integrated capture mode in the
downstream mining database, as long as they all are capturing data from the same
source database, such as all capturing for database DBMS3 in the preceding
example.

Positioning Extract to a Specific Start Point
You can position the Extract to a specific start point in the transaction logs using the ADD/ALTER
EXTRACT commands:

{ADD | ALTER EXTRACT} group, LOGNUM log_num, LOGPOS log_pos

Chapter 5
Positioning Extract to a Specific Start Point

5-27

• group is the name of the Oracle GoldenGate Extract group for which the start position is
required.

• LOGNUM is the log file number. For example, if the required log file name is test.000034, the
LOGNUM value is 34. Extract will search for this log file. TheADD EXTRACT command will fail if
the LOGNUM value contains zeroes preceding the value. For example, ADD EXTRACT ext1,
TRANLOG, LOGNUM 000001, LOGPOS 0 will fail. Instead, set LOGNUM to 1 for this example to
succeed.

• LOGPOS is an event offset value within the log file that identifies a specific transaction
record. Event offset values are stored in the header section of a log record. To position at
the beginning of a binlog file, set the LOGPOS as 0.

In MySQL logs, an event offset value can be unique only within a given binary file. The
combination of the position value and a log number will uniquely identify a transaction record.
Maximum Log number length is 8 bytes unsigned integer and Maximum Log offset length is 8
bytes unsigned integer. Log number and Log offset are separated by a pipe (‘|’) delimiter.
Transactional records available after this position within the specified log will be captured by
Extract. In addition, you can position an Extract using a timestamp.

Chapter 5
Positioning Extract to a Specific Start Point

5-28

6
Distribute

Learn about the Distribution Service, how to add a distribution path, how to add a target-
initiated distribution paths, and managing distribution paths.

About Distribution Service and Distribution Path
The Distribution Service is accessible from the Service Manager home page or you can directly
specify the URL in a web browser.

Log in to the Distribution Service for the associated deployment. From the Distribution Service
home page you can see a dashboard that displays the path connecting the Extract and
Replicat processes. You can add a distribution path or data streams from this interface.

Use the dashboard to perform the following operations.

Action Reference

• Add distribution paths
• Add data streams
• View path details
• Start or Stop the path
• Reposition the path
• Enable sharding using filters
• Set or customize the DML filtering
• Set the DDL filtering
• Set or customize Procedure filtering
• Customize Tag filtering
• Delete a Path

See:

Add a Distribution Path

Using the Path Actions

Manage Distribution Paths

Also see:

ALTER DISTPATH command options.

About Distribution Paths

A path is used to send trail data between two data endpoints of a deployment. You can add,
monitor, reposition, and manage these paths using the Distribution Service. This topic
discusses the steps to create a distribution path (DISTPATHS).

A distribution path defines the route for the trail to send and receive data for different
topologies. Oracle GoldenGate uses the target authentication method to define the method
for connecting source and target deployments. The options for setting up the target
authentication method are as follows:

• USER ID ALIAS target authentication: On the target deployment, a user with Operator
role is created and then the credentials of this user are added as credentials in the source
Oracle GoldenGate deployment. When using the USERIDALIAS method, while creating
the Distribution Path, the value of target authentication method is set to Password. The
WSS (secure web socket) protocol is used for this type of distribution path.

• Certificate target authentication: In this case, the distribution path uses trusted CA
certificates to access the target deployment. The target authentication method that is set
up which creating the Distribution Path is Certificate. The WSS (secure web socket)
protocol is used for this type of distribution path.

6-1

• OAuth target authentication: In this case, the Oracle GoldenGate user authentication is
outsourced to an OAuth service such as IDCS and IAM as cloud-based identity providers
and OAM as an on-premise identity provider.

Distribution Path Streaming Protocols
You will need to configure a protocol for the Distribution Path to transfer trail files over the
network. This configuration is done when you create a Distribution Path in the Distribution
Service.

For details about selecting the streaming protocol, see Add a Distribution Path.

While setting up the Distribution Path, if you select USERIDALIAS as the target authentication
method, then you can select from one of the following protocols that would be used for
streaming trail data over the network:

• Secure Web Socket (wss): Secure and recommended protocol.

• Web Sockets (ws): Unsecure deployments.

• Oracle GoldenGate protocol (ogg): Provides interoperability with a non-microservices
deployment.

The following matrix provides the combinations of streaming protocols used with Oracle
GoldenGate Microservices:

Source/Target MA Non-Secure MA Non-Secure
with NGINX

MA Secure Classic
Architecture

MA Non-secure Distribution path
with ws protocol

Distribution path
with wss protocol

Distribution path
with wss protocol

Distribution Path
with ogg protocol

MA Non-secure
with NGINX

Distribution path
with ws protocol

Distribution path
with wss protocol

Distribution path
with wss protocol

Distribution Path
with ogg protocol

MA Secure Distribution path
with ws protocol

Distribution path
with wss protocol

Distribution path
with wss protocol

Distribution Path
with ogg protocol

Classic
Architecture

Oracle GoldenGate
pump Extract,
connect to the
Receiver Service
port

Need expose target
Receiver Service
port, then use
Oracle GoldenGate
pump Extract to
connect to the
Receiver port.
directly

NA Regular Oracle
GoldenGate pump
Extract

Also see, Configure Reverse Proxy with NGINX to Access OGGMA.

Add a Distribution Path
A path is created to send the transaction of data from the Extract to the Replicat. You can
create a new path from the Distribution Service.

To add a path to set the trail for the source deployment:

1. Log in to the Distribution Service.

2. Click the plus (+) sign next to Path on the Distribution Service home page.

The Add Path page is displayed.

3. Enter the details as follows:

Chapter 6
Add a Distribution Path

6-2

Options Description

Path Name Select a name for the path.

Description Provide a description. For example, the name of
the Extract and Replicat names.

Reverse proxy enabled? Select to use reverse proxy. To know more about
configuring you reverser proxy servers, see
Reverse Proxy Support in Oracle GoldenGate
Security Guide

Use Basic Authentication Select to add a credential to the target URI
creating basic MA authentication.

Use Digest Authorization Select this option to set the Distribution Service
to use digest authorization to communicate with
the Receiver Service.

Note:

Both the Distribution Service and
Receiver Service must have Digest
Authorization for the path, otherwise
the path is killed.

Source: Trail Name Select the Extract name from the drop-down list,
which populates the trail name automatically. If it
doesn’t, enter the trail name that you provided
while adding the Extract.

Generated Source URI: A URI is automatically generated for the trail
based on the Extract information you provided.
You can edit this URI by clicking the pencil, then
modifying the source. Typically, you will need to
edit the URI if you want to use reverse proxy.

Target Authentication Method Select the authentication method for the target
URI.

Authentication options are OAuth, Certificate,
UserID Alias.

Use the OAuth if the source and target
deployments are IDCS-enabled. This option uses
the client credentials for authentication from the
Distribution Service to the Receiver Service.

Chapter 6
Add a Distribution Path

6-3

Options Description

Target Enter the target endpoint of the path.

From the drop-down list, select your data transfer
protocol. The default option is wss (secure web
socket). Specify the following details when you
select this option:

• Target Host: Enter the URL of the target
host, for example, localhost, if the target is
on the same system.

• Port Number: You may enter the port
number of the Receiver Service and the trail
name of the Replicat you created earlier.
However, it’s not mandatory. The port is the
Manager port number for Classic
Architecture.

• Trail Name: Path takes the source trail and
sends the date to a target trail given here,
which can be consumed by any Replicats
created later.

• Domain: Name of the target domain.
• Alias: User alias of the target domain.
You can also choose ogg or ws (web socket)
protocol.

For the ogg protocol, you need to specify only
the target host, port number, and trail file name.

For the ws protocol, the options are the same as
the wss protocol.

Generated Target URI A target URI is automatically generated for the
trail based on the target authentication method
and target you provided. You can edit this URI by
clicking the pencil, then modifying the target.

Target Encryption Algorithm Select the encryption algorithm for the target
trail. Options include NONE, AES128, AES192,
AES256.

Target Encryption Keyname Specify a logical name for the encryption key
based on the specified type of target encryption
algorithm.

Enable Network Compression Set the compression threshold value if you
enable this option.

Compression Threshold Option appears when you enable the network
compression. Specify the compresion threshold
value.

Sequence Length The length of the trail sequence number.

Trail Size (MB) The maximum size of a file in a trail.

Encryption Profile Name of the encryption profile associated with
the path.

Configure Trail Format Toggle this switch to enable and configure the
trail file format.

Type Select one of these types of trail file formats:
• Plain Text
• XML
• SQL

Chapter 6
Add a Distribution Path

6-4

Options Description

Compatible With Select the utility that is compatible with the trail
file. Options are:
• BCP
• SQLLOADER
• COMCAST

Timestamp Precision Specify the timestamp precision value for the trail
file.

Extra Columns Includes placeholders for additional columns at
the end of each record. Use this option when a
target table has more columns than the source
table.

Specify a value between 1 and 9.

Include SYSKEY Select this option incase your Replicat
configuration includes tables with SYSKEY.

Quote Style Select the quote style depending on the
database requirements.

Include Column Name? Enable this option to include column names in
the trail file.

Null Is Space? Select this option to indicate that any null values
in the trail file is a space.

Include Place Holder? Outputs a placeholder for missing columns.

Include Header Fields? Select to include header fields in the trail file.

Delimiter An alternative delimiter character.

Use Qualified Name? Select to use the fully qualified name of the
parameter file.

Include Transaction Info? Enable to to include transaction information.

Encryption Profile Section

Begin Select the point from where you need to log data.
You can select the following options from the
drop-down list:

• Now
• Custom Time
• Position is Log (default)

Source Sequence Number Select the sequence number of the trail from
source deployment Extract.

Source RBA Offset This setting provides the Relative Byte Address
(RBA) offset value which is the point in the trail
file (in bytes) from where you want the process to
start.

Critical The default value is false. If set to true, this
indicates that the distribution path is critical to the
deployment.

Auto Restart The default value is false. If set to true, the
distribution path restarts automatically if it's
terminated.

Auto Restart Options Section

Retries The number of times to try an restart the task
(path process).

Delay The duration interval to wait between retries.

Chapter 6
Add a Distribution Path

6-5

Rule Configuration Description

Enable filtering If you enable filtering by selecting it from the
toggle button and click the Add Rule button,
you’ll see the Rule Definition dialog box.

• Rule Name
• Rule Action: Select either Exclude or

Include
• Filter Type: Select from the following

list of options:

– Object Type: Select from three
object types: DML, DDL, and
Procedure

– Object Names: Select this option
to provide an existing object name. A 3–
part naming convention depends on
whether you are using CDB. With CDB,
you need to use a 3–part naming
convention, otherwise a 2–part
convention is mandatory. 3–part
convention includes container, schema,
object. 2–part convention includes
schema, object name.

– Procedure Feature Name:
Select this option to filter, based on
existing procedure feature name.

– Column Based: If you select this
option, you are presented with the
option to enter the table and column
name to which the rule applies. You can
filter out using column value with LT,
GT, EQ, LE, GE, NE conditions. You can
also specify if you want to have before
image or after image in filtered data.

– Tag: Select this option to set the filter
based on tags.

– Chunk ID: Displays the configuration
details of database shards, however, the
details can’t be edited.

• Negate: Select this check box if you need
to negate any existing rule.

You can also see the JSON script for the rule by
clicking the JSON tab.

Additional Options Description

Eof Delay (cent sec) You can specify the Eof Delay in centiseconds.
On Linux platforms, the default settings can be
retained. However, on non-Linux platforms, you
may need to adjust this setting for high
bandwidth, high latency networks, or for
networks that have Quality of Service (QoS)
settings (DSCP and Time of Service (ToS)).

Checkpoint Frequency Frequency of the path that is taking the
checkpoint (in seconds).

TCP Flush Bytes Enter the TCP flush size in bytes.

TCP Flush Seconds Enter the TCP flush interval in seconds.

Chapter 6
Add a Distribution Path

6-6

Additional Options Description

TCP Options Section

DSCP Select the Differentiated Services Code Point
(DSCP) value from the drop-down list, or search
for it from the list.

TOS Select the Type of service (TOS) value from the
drop-down list.

TCP_NODELAY Enable this option to prevent delay when using
the Nagle’s option.

Quick ACK Enable this option to send quick
acknowledgment after receiving data.

TCP_CORK Enable this option to allow using the Nagle’s
algorithm cork option.

System Send Buffer Size You can set the value for the send buffer size for
flow control.

System Receive Buffer Size You can set the value for the receive buffer size
for flow control.

Keep Alive Timeout for keep-alive.

4. Click Create Path or Create and Run, as required. Select Cancel if you need to get out of
the Add Path page without adding a path.

Once the path is created, you’ll be able to see the new path in the Overview page of the
Distribution Service.

Add a Target-Initiated Distribution Path
To know more about target-initiated distribution paths, see Using Target-Initiated Distribution
Paths in MA.

To create a target-initiated distribution path, perform the following steps:

1. Log in to the Receiver Server.

2. Click the + sign on the home page to start adding a path.

3. The following table lists the options to set up the path:

Options Description

Path Name Select a name for the path.

Description Provide a description. For example, the name of
the Extract and Replicat names.

Reverse proxy enabled? Select to use reverse proxy. To know more about
configuring you reverser proxy servers, see
Reverse Proxy Support in Oracle GoldenGate
Security Guide

Use Basic Authentication Select to add a credential to the target URI creating
basic MA authentication.

Chapter 6
Add a Target-Initiated Distribution Path

6-7

Options Description

Use Digest Authorization Select this option to set the Distribution Service to
use digest authorization to communicate with the
Receiver Service.

Note:

Both the Distribution
Service and Receiver
Service must have
Digest Authorization
for the path,
otherwise the path is
killed.

Source: Trail Name Select the Extract name from the drop-down list,
which populates the trail name automatically. If it
doesn’t, enter the trail name that you provided
while adding the Extract.

Generated Source URI: A URI is automatically generated for the trail based
on the Extract information you provided. You can
edit this URI by clicking the pencil, then modifying
the source. Typically, you will need to edit the URI if
you want to use reverse proxy.

Target Authentication Method Select the authentication method for the target URI.

Authentication options are OAuth, Certificate,
UserID Alias.

Use the OAuth if the source and target
deployments are IDCS-enabled. This option uses
the client credentials for authentication from the
Distribution Service to the Receiver Service.

Chapter 6
Add a Target-Initiated Distribution Path

6-8

Options Description

Target Enter the target endpoint of the path.

From the drop-down list, select your data transfer
protocol. The default option is wss (secure web
socket). Specify the following details when you
select this option:

• Target Host: Enter the URL of the target host,
for example, localhost, if the target is on the
same system.

• Port Number: You may enter the port number
of the Receiver Service and the trail name of
the Replicat you created earlier. However, it’s
not mandatory. The port is the Manager port
number for Classic Architecture.

• Trail Name: Path takes the source trail and
sends the date to a target trail given here,
which can be consumed by any Replicats
created later.

• Domain: Name of the target domain.
• Alias: User alias of the target domain.
You can also choose ogg or ws (web socket)
protocol.

For the ogg protocol, you need to specify only the
target host, port number, and trail file name.

For the ws protocol, the options are the same as
the wss protocol.

Generated Target URI A target URI is automatically generated for the trail
based on the target authentication method and
target you provided. You can edit this URI by
clicking the pencil, then modifying the target.

Target Encryption Algorithm Select the encryption algorithm for the target trail.
Options include NONE, AES128, AES192,
AES256.

Target Encryption Keyname Specify a logical name for the encryption key based
on the specified type of target encryption algorithm.

Enable Network Compression Set the compression threshold value if you enable
this option.

Compression Threshold Option appears when you enable the network
compression. Specify the compresion threshold
value.

Sequence Length The length of the trail sequence number.

Trail Size (MB) The maximum size of a file in a trail.

Encryption Profile Name of the encryption profile associated with the
path.

Configure Trail Format Toggle this switch to enable and configure the trail
file format.

Type Select one of these types of trail file formats:
• Plain Text
• XML
• SQL

Chapter 6
Add a Target-Initiated Distribution Path

6-9

Options Description

Compatible With Select the utility that is compatible with the trail file.
Options are:
• BCP
• SQLLOADER
• COMCAST

Timestamp Precision Specify the timestamp precision value for the trail
file.

Extra Columns Includes placeholders for additional columns at the
end of each record. Use this option when a target
table has more columns than the source table.

Specify a value between 1 and 9.

Include SYSKEY Select this option incase your Replicat
configuration includes tables with SYSKEY.

Quote Style Select the quote style depending on the database
requirements.

Include Column Name? Enable this option to include column names in the
trail file.

Null Is Space? Select this option to indicate that any null values in
the trail file is a space.

Include Place Holder? Outputs a placeholder for missing columns.

Include Header Fields? Select to include header fields in the trail file.

Delimiter An alternative delimiter character.

Use Qualified Name? Select to use the fully qualified name of the
parameter file.

Include Transaction Info? Enable to to include transaction information.

Encryption Profile Section

Begin Select the point from where you need to log data.
You can select the following options from the drop-
down list:

• Now
• Custom Time
• Position is Log (default)

Source Sequence Number Select the sequence number of the trail from
source deployment Extract.

Source RBA Offset This setting provides the Relative Byte Address
(RBA) offset value which is the point in the trail file
(in bytes) from where you want the process to start.

Critical The default value is false. If set to true, this
indicates that the distribution path is critical to the
deployment.

Auto Restart The default value is false. If set to true, the
distribution path restarts automatically if it's
terminated.

Auto Restart Options Section

Retries The number of times to try an restart the task (path
process).

Delay The duration interval to wait between retries.

Chapter 6
Add a Target-Initiated Distribution Path

6-10

Rule Configuration Description

Enable filtering If you enable filtering by selecting it from the toggle
button and click the Add Rule button, you’ll see
the Rule Definition dialog box.

• Rule Name
• Rule Action: Select either Exclude or

Include
• Filter Type: Select from the following list

of options:

– Object Type: Select from three object
types: DML, DDL, and Procedure

– Object Names: Select this option to
provide an existing object name. A 3–part
naming convention depends on whether
you are using CDB. With CDB, you need
to use a 3–part naming convention,
otherwise a 2–part convention is
mandatory. 3–part convention includes
container, schema, object. 2–part
convention includes schema, object
name.

– Procedure Feature Name: Select
this option to filter, based on existing
procedure feature name.

– Column Based: If you select this
option, you are presented with the option
to enter the table and column name to
which the rule applies. You can filter out
using column value with LT, GT, EQ, LE,
GE, NE conditions. You can also specify if
you want to have before image or after
image in filtered data.

– Tag: Select this option to set the filter
based on tags.

– Chunk ID: Displays the configuration
details of database shards, however, the
details can’t be edited.

• Negate: Select this check box if you need to
negate any existing rule.

You can also see the JSON script for the rule by
clicking the JSON tab.

Additional Options Description

Eof Delay (cent sec) You can specify the Eof Delay in centiseconds. On
Linux platforms, the default settings can be
retained. However, on non-Linux platforms, you
may need to adjust this setting for high bandwidth,
high latency networks, or for networks that have
Quality of Service (QoS) settings (DSCP and Time
of Service (ToS)).

Checkpoint Frequency Frequency of the path that is taking the checkpoint
(in seconds).

TCP Flush Bytes Enter the TCP flush size in bytes.

Chapter 6
Add a Target-Initiated Distribution Path

6-11

Additional Options Description

TCP Flush Seconds Enter the TCP flush interval in seconds.

TCP Options Section

DSCP Select the Differentiated Services Code Point
(DSCP) value from the drop-down list, or search for
it from the list.

TOS Select the Type of service (TOS) value from the
drop-down list.

TCP_NODELAY Enable this option to prevent delay when using the
Nagle’s option.

Quick ACK Enable this option to send quick acknowledgment
after receiving data.

TCP_CORK Enable this option to allow using the Nagle’s
algorithm cork option.

System Send Buffer Size You can set the value for the send buffer size for
flow control.

System Receive Buffer Size You can set the value for the receive buffer size for
flow control.

Keep Alive Timeout for keep-alive.

Note:

The the protocol options in Use Basic Authentication are wss and ws only for target-
initiated distribution paths, unlike regular distribution paths, which provide ogg and
udt options.

For target-initiated distribution paths, the use case for the ws and wss protocols is explained in
the following table:

X Target Deployment (Non-
Secure)

Target Deployment (Secure)

Source Deployment (Non-secure) ws ws
Source Deployment (Secure) wss wss

The wss protocol must be specified whenever the source deployment (Distribution Server host)
has been configured with security enabled. The secured communication channel can be
created using an SSL certificate in a client Wallet, even if the target deployment (Receiver
Server host) has disabled security.

Limitations

Here are the limitations when working with target-initiated paths:

• There is no support for interaction between legacy and secure deployments using this
mode of operation.

• No support for ogg nor udt protocols. Only ws and wss protocols are supported.

• It is possible to only get information and stop a target-initiated distribution path on
Distribution Server and after the path stops, it is not be visible on the Distribution Server.

Chapter 6
Add a Target-Initiated Distribution Path

6-12

You can also set up target-initiated distribution paths using the Admin Client. For command
options, see the Admin Client commands ADD RECVPATH, ALTER RECVPATH, INFO RECVPATH,
DELETE RECVPATH, START RECVPATH in Admin Client Command Line Interface Commands.

Manage Distribution Paths
Learn about managing distribution paths.

Manage Distribution Paths
Once a new path is added, you can perform actions such as stop or pause a path, view reports
and statistics, reposition the path, change its filtering, and delete a path, if required.

On the Overview page of the Distribution Server, click the Action button adjacent to the path.
From the drop-down list, use the following path actions:

• Details: Use this option to view details of the path. You can view the path information
including the source and target. You can also edit the description of the path. Statistical
data is also displayed including LCR Read from Trails, LCR Sent, LCR Filtered, DDL,
Procedure, DML inserts, updates, and deletes, and so on. You can also update the App
Options and TCP Options.

• Stop: Use this option to stop a path. If the path isn’t started, the Start option is displayed
rather than the Stop option. You can stop a target-initiated distribution path only from the
Distribution Server. Once you stop the path, it'll not be avaiable on the Distrbution Server.

• Stop (in the background): This option stops the path in the background, without engaging
the interface. For this option also, the Start (in background) option is displayed incase the
path isn’t started.

• Delete: Use this option to delete a path. Click Yes on the confirmation screen to complete
path deletion.

• Reposition: Use this option to change the Source Sequence Number and Source RBA
Offset

• Change Filtering: Use this option to enter sharding, DML filtering, DDL filtering, Procedure
filtering, and Tag filtering options.

Depending on the action you select, you can see the change in status at the bottom of the
Overview page.

Reposition a Path

You can reposition a path as required. To reposition a distribution path or target-initiated
distribution path:

1. From the Distribution Service home page, click Distribution Path to open the Distribution
Paths page.

2. Click the Action button for the path and select Reposition from the drop-down list. The
Reposition dialog box is displayed.

3. Specify the source trail Sequence Number and the Source RBA Offset.

4. Click Apply.

Chapter 6
Manage Distribution Paths

6-13

Change the Path Filtering

If you want to change the filter settings for an existing path, the steps are mostly the same as
those for creating the filtering for a new path.

From the left navigation pane of the Distribution Service home page, click Distribution Path.

For the specific distribution path, click Action. From the drop-down list, click Change Filtering.

Rule Cofiguration Task

Add paths If you enable filtering by selecting it from the toggle
button and click Add Rule , you’ll see the Rule
Definition dialog box.

• Rule Name
• Rule Action: Select either Exclude or

Include
• Filter Type: Select from the following list of

options:
– Object Type: Select from three object

types: DML, DDL, and Procedure
– Object Names: Select this option to

provide an existing object name. A 3–part
naming convention depends on whether
you are using CDB. With CDB, you need
to use a 3–part naming convention,
otherwise a 2–part convention is
mandatory. 3–part convention includes
container, schema, object. 2–part
convention includes schema, object
name.

– Procedure Feature Name: Select this
option to filter, based on existing
procedure feature name.

– Column Based: If you select this option,
you are presented with the option to enter
the table and column name to which the
rule applies. You can filter out using
column value with LT, GT, EQ, LE, GE, NE
conditions. You can also specify if you
want to have before image or after image
in filtered data.

– Tag: Select this option to set the filter
based on tags.

– Chunk ID: Displays the configuration
details of database shards, however, the
details can’t be edited.

• Negate: Select this check box if you need to
negate any existing rule.

You can also see the JSON script for the rule by
clicking the JSON tab.

After you add a rule, it is listed in Inclusion Rules. You can delete rules or edit them. When you
edit a rule, you have the same options as adding a rule with the following added filters:

Chapter 6
Manage Distribution Paths

6-14

Options Description

OR AND Select one logical operator.

Chunk ID Edit or delete the database shard settings if
sharding is used.

Object Type: Edit or delete the type of object for the rule.

If you want to change the filter settings for an existing path, the steps are mostly the same as
those for creating the filtering for a new path.

On the Distribution Service home page, click Action for the path. From the drop-down list, click
Change Filtering.

Chapter 6
Manage Distribution Paths

6-15

Rule Cofiguration Task

Add paths If you enable filtering by selecting it from the toggle
button and click Add Rule , you’ll see the Rule
Definition dialog box.

• Rule Name
• Rule Action: Select either Exclude or

Include
• Filter Type: Select from the following list of

options:

– Object Type: Select from three object
types: DML, DDL, and Procedure

– Object Names: Select this option to
provide an existing object name. A 3–part
naming convention depends on whether
you are using CDB. With CDB, you need
to use a 3–part naming convention,
otherwise a 2–part convention is
mandatory. 3–part convention includes
container, schema, object. 2–part
convention includes schema, object
name.

Note:

Starting with Oracle
GoldenGate 23ai, CDBs are
only used with Downstream
Extracts.

– Procedure Feature Name: Select this
option to filter, based on existing
procedure feature name.

– Column Based: If you select this option,
you are presented with the option to enter
the table and column name to which the
rule applies. You can filter out using
column value with LT, GT, EQ, LE, GE, NE
conditions. You can also specify if you
want to have before image or after image
in filtered data.

– Tag: Select this option to set the filter
based on tags.

– Chunk ID: Displays the configuration
details of database shards, however, the
details can’t be edited.

• Negate: Select this check box if you need to
negate any existing rule.

You can also see the JSON script for the rule by
clicking the JSON tab.

After you add a rule, it is listed in Inclusion Rules. You can delete rules or edit them. When you
edit a rule, you have the same options as adding a rule with the following added filters:

Chapter 6
Manage Distribution Paths

6-16

Options Description

OR AND Select one logical operator.

Chunk ID Edit or delete the database shard settings if
sharding is used.

Object Type: Edit or delete the type of object for the rule.

For setting up the filtering options in a Distribution path or the Receiver path, see the ALTER
DISTPATH and ALTER RECVPATH in the Command Line Interface Reference for Oracle
GoldenGate.

Review the Distribution Path Information

You can constantly monitor the activity of the path on the Distribution path information page. To
access the Distribution Path information page, click Distribution Paths, select the distribution
path name that you need to view. The Basic Information of the distribution path is displayed.
You can also click the Path Information option under the distribution path name in the left
navigation pane.

This page displays all details of the associated path and allows you to edit or modify various
options. The editable options have a pencil icon available with it. The information displayed
includes:

• From the basic information, you can change the Target Encryption Algorithm, , Trail Size,
configure trail format, enable or disable the Critical option depending on whether the path
is considered critical to the deployment, change Auto Restart value.

• From the Encryption section, you can edit the encryption profile name, and apply a new
master key if required.

• The Advanced Options including Enable Network Compression, EOF delay, flush, and
TCP that you configured. You can change any or all of these options, then apply to the
path.

Chapter 6
Manage Distribution Paths

6-17

7
Replicat

Learn about the Replicat process, its types, and steps to add a replicat, and other tasks
associated with Replicat.

Quick Tour of the Administration Service Overview Page
When you click the Administrator Server link on the Service Manager home page, the login
page for the Administration Server is displayed. After logging in, you can configure Extract and
Replicat processes from this Web UI.

The Administration Server home page is used to add Extracts and Replicats. The table on the
home page displays the severity of critical events. You can also use the left-navigation pane to
access various configuration details, a list of severity issues with their diagnosis, and a list of
administrators.

Now, that you have an overview of the Administration Server home page, let’s understand
some of the key actions that you can perform from this page.

Action Description

View the home page in tabular format Use the Table Layout swivel to turn the tabular
format on and off.

View Extracts and Replicats The statistical representation the home page
displays current state of Extracts and Replicats
(Starting, Running, Stopped, Abended, Killed)

Add an Extract See How to Add an Extract for a Deployment

Create a Replicat See How to Add a Replicat

Stop and start Extracts Using Extract Actions

Stop and start Replicats See Using Replicat Actions

View and search critical events Monitor severity of events using the Critical Events
table and also search for specific events, if
required.

About Replicat
Replicat is a process that delivers data to a target system. It reads the trail file on the target
database, reconstructs the DML or DDL operations, and applies them to the target database.

The Replicat process uses SQL to compile a SQL statement once and then executes it many
times with different bind variables. You can configure the Replicat process so that it waits a
specific amount of time before applying the replicated operations to the target database. For
example, a delay may be desirable to prevent the propagation of errant SQL, to control data
arrival across different time zones, or to allow time for other planned events to occur.

For the following two common uses cases of Oracle GoldenGate, the function of the Replicat
process is as follows:

7-1

• Initial Loads: When you set up Oracle GoldenGate for initial loads, the Replicat process
applies a static data copy to target objects or routes the data to a high-speed bulk-load
utility.

• Change Synchronization: When you set up Oracle GoldenGate to keep the target
database synchronized with the source database, the Replicat process applies the source
operations to the target objects using a native database interface or ODBC, depending on
the database type.

You can configure multiple Replicat processes with one or more Extract processes to increase
the throughput. To preserve data integrity, each set of processes handles a different set of
objects. To differentiate among Replicat processes, you assign each one a group name.

Types of Replicat
The Replicat process can be configured in the following three modes (also referred to as
Replicat types):

• Classic Replicat: In classic mode, Replicat is a single-threaded process that uses
standard SQL to apply data to the target tables. See Classic Replicat for more details.

• Coordinated Replicat: In this mode, the Replicat process is threaded. One coordinator
thread spawns and coordinates one or more threads that execute replicated SQL
operations in parallel. A coordinated Replicat process uses one parameter file and is
monitored and managed as one unit. See Coordinated Replicat for more details.

• Integrated Replicat: In this mode, the Replicat process leverages the apply processing
functionality that is available within the Oracle Database. Within a single Replicat
configuration, multiple inbound server child processes known as apply servers apply
transactions in parallel while preserving the original transaction atomicity. See About
Integrated Replicat for more details.

• Parallel Replicat: Is a new variant of Replicat that applies transactions in parallel to
improve performance. Parallel Replicat only supports replicating data from trails with full
metadata, which requires the classic trail format. It takes into account dependencies
between transactions, similar to Integrated Replicat. See Parallel Replicat for more details.
Parallel Replicat is available in non-integrated (classic) and integrated mode.

• Initial Load Replicat: In this mode, when you set up Oracle GoldenGate for initial loads,
the Replicat process applies a static data copy to target objects or routes the data to a
high-speed bulk-load utility. See Add Initial Load Extract Using the Admin Client for more
details.

About Classic or Non-Integrated Replicat
In classic mode, Replicat is a single-threaded process that uses standard SQL to apply data to
the target tables. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs SQL statements that represent source database DML or DDL transactions (in
committed order).

• Applies the SQL to the target through the SQL interface that is supported for the given
target database, such as ODBC or the native database interface.

Chapter 7
Types of Replicat

7-2

As shown in this figure, you can apply transactions in parallel with a Classic Replicat, but only
by partitioning the workload across multiple Replicat processes. A parameter file must be
created for each Replicat.

To determine whether to use classic mode for any objects, you must determine whether the
objects in one Replicat group will ever have dependencies on objects in any other Replicat
group, transactional or otherwise. Not all workloads can be partitioned across multiple Replicat
groups and still preserve the original transaction atomicity. For example, tables for which the
workload routinely updates the primary key cannot easily be partitioned in this manner. DDL
replication (if supported for the database) is not viable in this mode, nor is the use of some
SQLEXEC or EVENTACTIONS features that base their actions on a specific record.

If your tables do not have any foreign key dependencies or updates to primary keys, classic
mode may be suitable. Classic mode requires less overhead than coordinated mode.

About Coordinated Replicat
In coordinated mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Performs data filtering, mapping, and conversion.

• Applies the SQL to the target through the SQL interface that is supported for the given
target database, such as ODBC or the native database interface.

The difference between classic mode and coordinated mode is that Replicat is multi-threaded
in coordinated mode. Within a single Replicat instance, multiple threads read the trail
independently and apply transactions in parallel. Each thread handles the filtering, mapping,
conversion, SQL construction, and error handling for its assigned workload. A coordinator
thread coordinates the transactions across threads to account for dependencies among the
threads.

The source transactions could be split across CR processes such that the integrity of the total
source transaction is not maintained. The portion of the transaction processed by a CR
process is done in committed order but the whole transaction across all CR processes is not.

Coordinated Replicat allows for user-defined partitioning of the workload so as to apply high
volume transactions concurrently. In addition, it automatically coordinates the execution of
transactions that require coordination, such as DDL, and primary key updates with
THREADRANGE partitioning. Such a transaction is executed as one transaction in the target with
full synchronization: it waits until all prior transactions are applied first, and all transactions after
this barrier transaction have to wait until this barrier transaction is applied.

Only one parameter file is required for a coordinated Replicat, regardless of the number of
threads. You use the THREAD or THREADRANGE option in the MAP statement to specify which
threads process the transactions for those objects, and you specify the maximum number of
threads when you create the Replicat group.

This figure illustrates the architecture of Coordinated Replicat.

Chapter 7
Types of Replicat

7-3

As shown in this figure, the Coordinated Replicat includes the following two processes:

About Barrier Transactions
Barrier transactions are managed automatically in a coordinated Replicat configuration. Barrier
transactions are transactions that require coordination across threads. Examples include DDL
statements, transactions that include updates to primary keys, and certain EVENTACTIONS
actions.

Optionally, you can force other transactions to be treated like a barrier transaction through the
use of the COORDINATED keyword in a MAP statement. One use case for this would be force a
SQLEXEC to be executed in a manner similar to a serial execution. This could be beneficial if the
results can become ambiguous unless the state of the target is consistent across all
transactions.

Note:

Coordinated Replicat doesn't do dependency calculations for non-barrier transactions
when a mapped table is partitioned based on THREADRANGE. It relies on specified
THREADRANGE columns to compute a hash value. It partitions the incoming data based
on the hash value and sends all the records that match this hash value to same
thread.

How Barrier Transactions are Processed
All threads converge and wait at the start of a barrier transaction. The barrier transaction is
suspended until the other threads reach its start position. If any threads were already
processing part of the barrier transaction, those threads perform a rollback. Grouped
transactions, such as those controlled by the BATCHSQL or GROUPTRANSOPS parameters, are also
rolled back and then reapplied until they reach the start of the barrier transaction.

Chapter 7
Types of Replicat

7-4

All of the threads converge and wait at the start of the next transaction after the barrier
transaction as well. The two synchronization points, before and after the barrier transaction,
ensure that metadata operations and EVENTACTIONS actions all occur in the proper order
relevant to the data operations.

Once the threads are synchronized at the start of the barrier transaction, the barrier transaction
is processed serially by the thread that has the lowest thread ID among all of the threads
specified in the MAP statements, and then parallel processing across threads is resumed. You
can force barrier transactions to be processed through a specific thread, which is always
thread 0, by specifying the USEDEDICATEDCOORDINATIONTHREAD parameter in the Replicat
parameter file.

About Integrated Replicat
In integrated mode, Replicat leverages the apply processing functionality that is available
within the target Oracle database. In this mode, Replicat reads the trail, constructs logical
change records that represent source DML or DDL transactions, and transmits these records
to an inbound server in the Oracle target database. The inbound server applies the data to the
target database.

Note:

Integrated Replicat is an online process only. Do not use it to perform initial loads.

In integrated mode, the Replicat process leverages the apply processing functionality that is
available within the Oracle Database. In this mode, Replicat operates as follows:

• Reads the Oracle GoldenGate trail.

• Performs data filtering, mapping, and conversion.

• Constructs logical change records (LCR) that represent source database DML transactions
(in committed order). DDL is applied directly by Replicat.

• Attaches to a background process in the target database known as a database inbound
server by means of a lightweight streaming interface.

• Transmits the LCRs to the inbound server, which applies the data to the target database.

Within a single Replicat configuration, multiple inbound server child processes known as apply
servers apply transactions in parallel while preserving the original transaction atomicity. You
can increase this parallelism as much as your target system will support when you configure
the Replicat process or dynamically as needed. The following diagram illustrates integrated
Replicat configured with two parallel apply servers.

Chapter 7
Types of Replicat

7-5

In the above diagram, Integrated Replicat applies transactions asynchronously. Transactions
that do not have interdependencies can be safely executed and committed out of order to
achieve fast throughput. Transactions with dependencies are guaranteed to be applied in the
same order as on the source.

A reader process in the inbound server computes the dependencies among the transactions in
the workload based on the constraints defined at the target database (primary key, unique,
foreign key). Barrier transactions and DDL operations are managed automatically, as well. A
coordinator process coordinates multiple transactions and maintains order among the apply
servers.

If the inbound server does not support a configured feature or column type, Replicat
disengages from the inbound server, waits for the inbound server to complete transactions in
its queue, and then applies the transaction to the database in direct apply mode through OCI.
Replicat resumes processing in integrated mode after applying the direct transaction.

The following features are applied in direct mode by Replicat:

• DDL operations

• Sequence operations

• SQLEXEC parameter within a TABLE or MAP parameter

• EVENTACTIONS processing

Because transactions are applied serially, heavy use of such operations may reduce the
performance of the integrated Replicat mode. Integrated Replicat performs best when most of
the apply processing can be performed in integrated mode.

Note:

User exits are executed in integrated mode. However, user exit may produce
unexpected results, if the exit code depends on data in the replication stream.

Note:

Integrated Replicat requires that any foreign key columns are indexed.

Chapter 7
Types of Replicat

7-6

Benefits of Integrated Replicat
The following are the benefits of using integrated Replicat versus non-integrated Replicat.

• Integrated Replicat enables heavy workloads to be partitioned automatically among
parallel apply processes that apply multiple transactions concurrently, while preserving the
integrity and atomicity of the source transaction. Both a minimum and maximum number of
apply processes can be configured with the PARALLELISM and MAX_PARALLELISM
parameters. Replicat automatically adds additional servers when the workload increases,
and then adjusts downward again when the workload lightens.

• Integrated Replicat requires minimal work to configure. All work is configured within one
Replicat parameter file, without configuring range partitions.

• High-performance apply streaming is enabled for integrated Replicat by means of a
lightweight application programming interface (API) between Replicat and the inbound
server.

• Barrier transactions are coordinated by integrated Replicat among multiple server apply
processes.

• DDL operations are processed as direct transactions that force a barrier by waiting for
server processing to complete before the DDL execution.

• Transient duplicate primary key updates are handled by integrated Replicat in a seamless
manner.

Integrated Replicat Requirements
To use integrated Replicat, the following must be true.

• Supplemental logging must be enabled on the source database to support the computation
of dependencies among tables and scheduling of concurrent transactions on the target.
Instructions for enabling the required logging are in Configuring Logging Properties. This
logging can be enabled at any time up to, but before you start the Oracle GoldenGate
processes.

• Integrated Parallel Replicat is supported on Oracle Database 12.2.0.1 and greater.

About Parallel Replicat
Parallel Replicat is another variant of Replicat that applies transactions in parallel to improve
performance.

It takes into account dependencies between transactions, similar to Integrated Replicat. The
dependency computation, parallelism of the mapping and apply is performed outside the
database so can be off-loaded to another server. The transaction integrity is maintained in this
process. In addition, parallel Replicat supports the parallel apply of large transactions by
splitting a large transaction into chunks and applying them in parallel.

Parallel Replicat supports the following two modes: Integrated and Non-integrated. Only Oracle
database supports parallel Replicat and integrated parallel Replicat. However, parallel Replicat
supports all databases when using the non-integrated option.

To use parallel Replicat, you need to ensure that you have the following values, which are also
the default values:

• Metadata in the trail (which means you can't use parallel Replicat if your trails are
formatted below 12.1).

Chapter 7
Types of Replicat

7-7

• You must have scheduling columns in your trail file.

• You must use UPDATERCORDFORMAT COMPACT.

With integrated parallel Replicat, the Replicat sends the LCRs to the inbound server, which
applies the data to the target database, and in regular parallel Replicat, Oracle GoldenGate
applies the LCR as a SQL statement directly to the database, similar to how the other non-
integrated Replicats work.

Note:

For best performance for an OLTP workload, parallel Replicat in non-integrated mode
is recommended.

The components of parallel Replicat are:

• Mappers operate in parallel to read the trail, map trail records, convert the mapped records
to the Integrated Replicat LCR format, and send the LCRs to the Merger for further
processing. While one Mapper maps one set of transactions, the next Mapper maps the
next set of transactions. The trail information is split and the trail file is untouched because
it orders trail information in order.

• Master processes have two threads, Collater and Scheduler. The Collater receives
mapped transactions from the Mappers and puts them back into trail order for dependency
calculation. The Scheduler calculates dependencies between transactions, groups
transactions into independent batches, and sends the batches to the Appliers to be applied
to the target database.

• Appliers reorder records within a batch for array execution. It applies the batch to the target
database and performs error handling. It also tracks applied transactions in checkpoint
tables.

Note:

Parallel Replicat requires that any foreign key columns are indexed.

Benefits of Parallel Replicat
The following are the benefits of using parallel Replicat:

• Integrated Parallel Replicat enables heavy workloads to be partitioned automatically
among parallel apply processes that apply multiple transactions concurrently, while
preserving the integrity and atomicity of the source transaction. Both a minimum and
maximum number of apply processes can be configured with the PARALLELISM and
MAX_PARALLELISM parameters. Replicat automatically adds additional servers when the
workload increases, and then adjusts downward again when the workload lightens.

• Integrated Parallel Replicat requires minimal work to configure. All work is configured
within one Replicat parameter file, without configuring range partitions.

• High-performance apply streaming is enabled for integrated parallel Replicat by means of
a lightweight application programming interface (API) between Replicat and the inbound
server.

Chapter 7
Types of Replicat

7-8

• Barrier transactions are coordinated by integrated parallel Replicat among multiple server
apply processes.

• DDL operations are processed as direct transactions that force a barrier by waiting for
server processing to complete before the DDL execution.

• Transient duplicate primary key updates are handled by integrated parallel Replicat in a
seamless manner.

• Parallel Replicat can break a single large transaction into smaller chunks and apply those
chunks in parallel. See SPLIT_TRANS_RECS for details.

Parallel Replication Architecture
Parallel replication processes leverage the apply processing functionality that is available
within the Oracle Database in integrated mode. Within a single Replicat configuration, multiple
inbound server child processes, known as apply servers, apply transactions in parallel while
preserving the original transaction atomicity.

The following architecture diagram depicts the flow of change records through the various
processes of a parallel replication from the trail files to the target database, for a non-integrated
parallel Replicat.

The following is the description of the architecture diagram given above:

• The Mappers read the trail file and map records, forward the mapped records to the
Master. The batches are sent to the Appliers where they are applied to the target
database.

• The Master process consists of two separate threads, Collater and Scheduler. The Collater
is responsible for managing and communicating with the Mappers, along with receiving the
mapped transactions and reordering them into a single in-order stream. The Scheduler is
responsible for managing and communicating with the Appliers, along with reading
transactions from the Collater, batching them, and scheduling them to Appliers.

• The Scheduler controller communicates with the Scheduler to gather any necessary
information (such as, the current low watermark position). The Scheduler controller is
required for CDB mode for Oracle Database because it is responsible for aggregating
information pertaining to the different target PDBs and reporting a unified picture. The
Scheduler controller is created for simplicity and uniformity of implementation, even when
not in CDB mode. Every process reads the parameter file and shares a single checkpoint
file.

Basic Parameters for Parallel Replicat
The following table lists the basic parallel Replicat parameters and their description.

Chapter 7
Types of Replicat

7-9

Parameter Description

MAP_PARALLELISM Configures number of mappers. This controls the
number of threads used to read the trail file. The
minimum value is 1, maximum value is 100 and the
default value is 2.

APPLY_PARALLELISM Configures number of appliers. This controls the
number of connections in the target database used
to apply the changes. The default value is four.

MIN_APPLY_PARALLELISM
MAX_APPLY_PARALLELISM

The Apply parallelism is auto-tuned. You can set a
minimum and maximum value to define the ranges
in which the Replicat automatically adjusts its
parallelism. There are no defaults. Do not use with
APPLY_PARALLELISM at same time.

SPLIT_TRANS_REC Specifies that large transactions should be broken
into pieces of specified size and applied in parallel.
Dependencies between pieces are still honored.
Disabled by default.

COMMIT_SERIALIZATION Enables commit FULL serialization mode, which
forces transactions to be committed in trail order.

Advanced Parameters

LOOK_AHEAD_TRANSACTIONS Controls how far ahead the Scheduler looks when
batching transactions. The default value is 10000.

CHUNK_SIZE Controls how large a transaction must be for
parallel Replicat to consider it as large. When
parallel Replicat encounters a transaction larger
than this size, it will serialize it, resulting in
decreased performance. However, increasing this
value will also increase the amount of memory
consumed by parallel Replicat.

Example Parameter File

REPLICAT repe USERID ggadmin, password ***
MAP_PARALLELISM 3
MIN_APPLY_PARALLELISM 2
MAX_APPLY_PARALLELISM 10
SPLIT_TRANS_RECS 60000
MAP *.*, TARGET *.*;

Select a Replicat Type for the Deployment
Replicat is responsible for applying trail data to the target database. Although you can choose
from different types of Replicat modes, Oracle recommends that you use the parallel
nonintegrated Replicat, unless a specific feature requires a different type of Replicat. Parallel
Replicat is available for both Oracle and non-Oracle databases.

The following table lists the features supported by the respective Replicats.

Feature Parallel Replicat Integrated
Replicat

Coordinated
Replicat

Classic Replicat

Batch Processing Yes Yes Yes Yes

Chapter 7
Select a Replicat Type for the Deployment

7-10

Feature Parallel Replicat Integrated
Replicat

Coordinated
Replicat

Classic Replicat

Barrier
Transactions

Yes Yes Yes No

Dependency
Computation

Yes Yes No No

Chapter 7
Select a Replicat Type for the Deployment

7-11

Feature Parallel Replicat Integrated
Replicat

Coordinated
Replicat

Classic Replicat

Auto-parallelism

N

o

t

e

:

A
u
t
o
-
p
a
r
a
l
l
e
l
i
s
m
i
s
d
i
s
a
b
l
e
d
,
b
y
d
e
f
a
u
l
t
.
O
n
l
y
f
o
u

Yes Yes No No

Chapter 7
Select a Replicat Type for the Deployment

7-12

Feature Parallel Replicat Integrated
Replicat

Coordinated
Replicat

Classic Replicat

r
t
h
r
e
a
d
s
a
r
e
u
s
e
d
i
n
t
h
e
d
e
f
a
u
l
t
s
e
t
t
i
n
g
s
.
I
f
y
o
u
w
a
n
t
t
o
c
h
a
n
g
e
R
e

Chapter 7
Select a Replicat Type for the Deployment

7-13

Feature Parallel Replicat Integrated
Replicat

Coordinated
Replicat

Classic Replicat

p
l
i
c
a
t
t
o
u
s
e
M
I
N
_
P
A
R
A
L
L
E
L
I
S
M
a
n
d

M
A
X
_
P
A
R
A
L
L
E
L
I
S
M
,
t
h
e
n
a
u
t

Chapter 7
Select a Replicat Type for the Deployment

7-14

Feature Parallel Replicat Integrated
Replicat

Coordinated
Replicat

Classic Replicat

o
-
p
a
r
a
l
l
e
l
i
s
m
i
s
u
s
e
d
.

DML Handler Yes, Integrated
mode

Yes No No

Procedural
Replication

Yes, used for
integrated Parallel
Replicat (iPR)

Yes No No

Auto CDR Yes, used by iPR
only

Yes No No

Dependency-aware
Transaction Split

Yes No No No

Cross-RAC-node
Processing

Yes No Yes No

ALLOWDUPTARGETM
AP
See
ALLOWDUPTARG
ETMAP |
NOALLOWDUPTA
RGETMAP

No. Oracle
Database with iPR

No, Oracle
Database

Yes Yes

Add a Replicat
Use the Administration Server to add Replicats. Before adding a Replicat, make sure that you
have completed created the checkpoint and heartbeat tables. See Before Adding Extract and
Replicat Processes.

The following steps describe the creation of a non-integrated Parallel Replicat. You can choose
to set up a different type of Replicat using the same steps, however, the Replicat parameters
may differ.

Chapter 7
Add a Replicat

7-15

1. Click the + sign next to Replicats on the Administration Server home page.

The Add Replicat page is displayed.

2. Select a Replicat type and click Next.

The types of Replicat are:

• Integrated Replicat

• Nonintegrated Replicat

• Coordinated Replicat

• Parallel Replicat: If you select this option, then select an integrated or nonintegrated
parallel Replicat.

3. Enter the required Replicat options on the Replicat Options page and click Next. To know
more about the Replicat options, see the online help.

4. Enter the required information making sure that you complete the Credential Domain and
Credential Alias fields before completing the Checkpoint Table field, and then select your
newly created Checkpoint Table from the list.

5. For managed processes, the options to enter are:

Option Description Extract Type

Intent What you want the Extract to be
used for, such as High
Availability or the Unidirectional
default.

Classic, Integrated, and Initial
Load

Begin How you want the Extract to
start. At a custom time that you
select, a database CSN, or the
Now default.

Classic and Integrated

Trail Name A two character trail name. Classic and Integrated

Trail Subdirectory, Size,
Sequence, and Offset

You can further configure the
trail details.

Classic and Integrated

Remote Set if the trail is not on the same
server.

Classic and Integrated

Thread Number Set to a specific redo log
number. The default is 1.

Classic

Encryption Profile Provide the name of the
encryption profile for the
Extract. If no encryption profile
is created, then the default
encryption profile is selected, by
default

Classic, Integrated, and Initial
Load.

Encryption Profile Type Provide the type of Key
Management Service being
used. Oracle Key Vault is
selected by default.

Classic, Integrated, and Initial
Load.

Managed Options X X

Profile Name Provides the name of the
autostart and autorestart profile.
You can select the default or
custom options.

Classic, Integrated, and Initial
Load.

Chapter 7
Add a Replicat

7-16

Option Description Extract Type

Critical to deployment health Enable this option if the profile
is critical for the deployment
health.

Classic, Integrated, and Initial
Load.

Auto Start Enables autostart for the
process.

Enables autostart for the
process.

Max Retries Specify the maximum number of
retries to try to start the process

Classic, Integrated, and Initial
Load.

Retry Delay Delay time in trying to start the
process

Classic, Integrated, and Initial
Load.

Retries Window The duration interval to try to
start the process

Classic, Integrated, and Initial
Load.

Restart on Failure only If true the task is only restarted
if it failes

Classic, Integrated, and Initial
Load.

Disable Task After Retries
Exhausted

If true then the task is disabled
after exhausting all attempts to
restart the process.

Classic, Integrated, and Initial
Load.

6. Click Create and Run to create and run the Replicat.

Basic Parameters for Parallel Replicat
The following table lists the basic parallel Replicat parameters and their description.

Parameter Description

MAP_PARALLELISM Configures number of mappers. This controls the
number of threads used to read the trail file. The
minimum value is 1, maximum value is 100 and the
default value is 2.

APPLY_PARALLELISM Configures number of appliers. This controls the
number of connections in the target database used
to apply the changes. The default value is 4.

MIN_APPLY_PARALLELISM
MAX_APPLY_PARALLELISM

The Apply parallelism is auto-tuned. You can set a
minimum and maximum value to define the ranges
in which the Replicat automatically adjusts its
parallelism. There are no defaults. Do not use with
APPLY_PARALLELISM at the same time.

SPLIT_TRANS_REC Specifies that large transactions should be broken
into pieces of specified size and applied in parallel.
Dependencies between pieces are still honored.
Disabled by default.

COMMIT_SERIALIZATION Enables commit FULL serialization mode, which
forces transactions to be committed in trail order.

Advanced Parameters

LOOK_AHEAD_TRANSACTIONS Controls how far ahead the Scheduler looks when
batching transactions. The default value is 10000.

Chapter 7
Add a Replicat

7-17

Parameter Description

CHUNK_SIZE Controls how large a transaction must be for
parallel Replicat to consider it as large. When
parallel Replicat encounters a transaction larger
than this size, it will serialize it, resulting in
decreased performance. However, increasing this
value will also increase the amount of memory
consumed by parallel Replicat.

Example Parameter File

replicat repA
userid ggadmin, password ***
MAP_PARALLELISM 3
MIN_APPLY_PARALLELISM 2
MAX_APPLY_PARALLELISM 10
SPLIT_TRANS_RECS 1000
map *.*, target *.*;

Additional Parameters for Integrated Replicat

You can set these parameters by using the DBOPTIONS parameter with the INTEGRATEDPARAMS
option or dynamically by issuing the SEND REPLICAT command with the INTEGRATEDPARAMS
option from the command line.
The default Replicat configuration should be sufficient. However, if needed, you can set the
following inbound server parameters to support specific requirements.

Note:

For detailed information and usage guidance for these parameters, see the
DBMS_APPLY_ADMsection in Oracle Database PL/SQL Packages and Types Reference.

See Parameters and Functions Reference for Oracle GoldenGate for more
information about the DBOPTIONS parameter.

• COMMIT_SERIALIZATION: Controls the order in which applied transactions are committed
and has 2 modes, DEPENDENT_TRANSACTIONS and FULL. The default mode for Oracle
GoldenGate is DEPENDENT_TRANSACTIONS where dependent transactions are applied in the
correct order though may not necessarily be applied in source commit order. In FULL mode,
the source commit order is enforced when applying transactions.

• BATCHSQL_MODE: Controls the batch execution scheduling mode including pending
dependencies. A pending dependency is a dependency on another transaction that has
already been scheduled, but not completely executed. The default is DEPENDENT. You can
use following three modes:

DEPENDENT
Dependency aware scheduling without an early start. Batched transactions are scheduled
when there are no pending dependencies.

Chapter 7
Add a Replicat

7-18

DEPENDENT_EAGER
Dependency aware batching with early start. Batched transactions are scheduled
irrespective of pending dependencies.

SEQUENTIAL
Sequential batching. Transactions are batched by grouping the transactions sequentially
based on the original commit order.

• DISABLE_ON_ERROR: Determines whether the apply server is disabled or continues on an
unresolved error. The default for Oracle GoldenGate is N (continue on errors), however,
you can set the option to Y if you need to disable the apply server when an error occurs.

• EAGER_SIZE: Sets a threshold for the size of a transaction (in number of LCRs) after which
Oracle GoldenGate starts applying data before the commit record is received. The default
for Oracle GoldenGate is 15100.

• ENABLE_XSTREAM_TABLE_STATS: Controls whether statistics on applied transactions are
recorded in the V$GOLDENGATE_TABLE_STATS view or not collected at all. The default for
Oracle GoldenGate is Y (collect statistics).

• MAX_PARALLELISM: Limits the number of apply servers that can be used when the load is
heavy. This number is reduced again when the workload subsides. The automatic tuning of
the number of apply servers is effective only if PARALLELISM is greater than 1 and
MAX_PARALLELISM is greater than PARALLELISM. If PARALLELISM is equal to
MAX_PARALLELISM, the number of apply servers remains constant during the workload. The
default for Oracle GoldenGate is 50.

• MAX_SGA_SIZE: Controls the amount of shared memory used by the inbound server. The
shared memory is obtained from the streams pool of the SGA. The default for Oracle
GoldenGate is INFINITE.

• MESSAGE_TRACKING_FREQUENCY: Controls how often LCRs are marked for high-level LCR
tracing through the apply processing. The default value is 2000000, meaning that every 2
millionth LCR is traced. A value of zero (0) disables LCR tracing.

• PARALLELISM: Sets a minimum number of apply servers that can be used under normal
conditions. Setting PARALLELISM to 1 disables apply parallelism, and transactions are
applied with a single apply server process. The default for Oracle GoldenGate is 4. For
Oracle Standard Edition, this must be set to 1.

• PARALLELISM_INTERVAL: Sets the interval in seconds at which the current workload activity
is computed. Replicat calculates the mean throughput every 5 X PARALLELISM_INTERVAL
seconds. After each calculation, the apply component can increase or decrease the
number of apply servers to try to improve throughput. If throughput is improved, the apply
component keeps the new number of apply servers. The parallelism interval is used only if
PARALLELISM is set to a value greater than one and the MAX_PARALLELISM value is greater
than the PARALLELISM value. The default is 5 seconds.

• PRESERVE_ENCRYPTION: Controls whether to preserve encryption for columns encrypted
using Transparent Data Encryption. The default for Oracle GoldenGate is N (do not apply
the data in encrypted form).

• OPTIMIZE_PROGRESS_TABLE: Integrated Delivery uses this table to track the transactions
that have been applied. It is used for duplicate avoidance in the event of failure or restart. If
it is set to N (the default), then the progress table is updated synchronously with the apply
of each replicated transaction. When set to Y, rather than populating the progress table
synchronously, markers are dropped into the redo stream so when the apply process starts
up, it mines the redo logs for these markers, and then updates the progress table for the
previously applied transactions.

Chapter 7
Add a Replicat

7-19

• TRACE_LEVEL: Controls the level of tracing for the Replicat inbound server. For use only
with guidance from Oracle Support. The default for Oracle GoldenGate is 0 (no tracing).

• WRITE_ALERT_LOG: Controls whether the Replicat inbound server writes messages to the
Oracle alert log. The default for Oracle GoldenGate is Y (yes).

Example: Add a Nonintegrated Parallel Replicat Using Admin Client
You can create a parallel Replicat from the user interface or the command line interface.

Before you start creating the parallel Replicat, make sure that you've select the checkpoint
table.

1. Go the bin directory of your Oracle GoldenGatehome directory.

cd $OGG_HOME/bin
2. Start the Admin Client.

adminclient

The Admin Client command prompt is displayed.

OGG (not connected) 12>
3. Connect to the Service Manager deployment source:

connect https://localhost:9500 deployment Target1 as oggadmin password welcome1

You must use http or https in the connection string; this example is a non-SSL connection.

4. Add the Parallel Replicat, which may take a few minutes to complete:

add replicat R1, parallel, exttrail bb checkpointtable ggadmin.ggcheckpoint

You could use just the two character trail name as part of the ADD REPLICAT or you can use
the full path, such as /u01/oggdeployments/target1/var/lib/data/bb.

5. Verify that the Replicat is running:

info replicat R1

Messages similar to the following are displayed:

REPLICAT R1 Initialized 2016-12-20 13:56 Status RUNNING
NONINTEGRATED
Parallel
Checkpoint Lag 00:00:00 (updated 00:00:22 ago)
Process ID 30007
Log Read
Checkpoint File ./ra000000000First Record RBA 0

Using Replicat Actions
Various Replicat actions can be performed from the Administration Server Overview page.

You can change the status of the Replicat process using the Actions button to:

Chapter 7
Using Replicat Actions

7-20

Action Result

Details Displays the Process Information page that has the
following details:

• Statistics: Displays the active replication
maps along with replication statistics based on
the type of Replicat.

• Parameters: Displays the parameters
configured when the Replicat was added. You
can change these parameters to adjust your
Replicat.

• Report: Displays the details about the Replicat
including the parameters with which the
replicat is running, and run time messages.

• Checkpoint: Displays the checkpoint log
name, path, timestamp, sequence, and offset
value. You can click the Checkpoint Detail icon
to view elaborate information about the
checkpoint.

Start/Stop The Replicat starts or stops immediately.

Start/Stop (in the background) The Replicat is started or stopped using a
background process.

Start with Options Allows you to change the Replicat start point, CSN,
filter duplicates, and threads options, then starts
the Replicat.

Force Stop The Replicat is immediately, forcibly stopped.

Alter Allows you to change when the Replicat begins, the
description, and the intent. It does not start the
Replicat.

Delete Deletes the Replicat if you confirm the deletion.

When you change the status, the list options change accordingly. As status are changing, the
icons change to indicate the current and final status. The events are added to the Critical
Events table. Additionally, progress pop-up messages appear in the bottom of your browser.

Review Critical Events
You can review and search for critical events from the Administration Server home page, once
you set up the distribution path.

Once you set up the Extracts and Replicats along with the Distribution path, you are able to
see the critical events associated with them.

Search for Critical Events from the Review Critical Events Table

The Review Critical Events table displays the severity, error code, and error messages for
critical events. You can view 20 error messages on a single page and you can also search for
specific events.

Additionally, you can examine events in depth from the Performance Metrics Server. For details
see Monitor Processes from the Performance Metrics Server

Chapter 7
Review Critical Events

7-21

8
Instantiate

This section lists details about instantiating with Initial Load Extract and adding the Initial Load
Extract using the Admin Client.

About Instantiating with Initial Load Extract
Using the initial load Extract for instantiation, you can replicate data precisely from a source to
a target database with zero data loss. To configure this Extract, you'll require a combination of
file-based initial load and change data capture (CDC) processes.

In Microservices Architecture, the process of instantiation includes the following tasks:

• Add and configure an Initial Load Extract: This Extract is used to copy the existing contents
of one or more tables from the source to the target database.

• Configure Change Data Capture: Used to copy transactional changes from the source to
the target database.

Note:

MA doesn’t support loading data with an Oracle GoldenGate direct load.

File-based initial load process is the preferred method for performing data replication in MA. It’s
key components are:

• Initial Load Extract and Replicat: Replicates the existing content of the database tables.

• Primary Extract and Replicat: Replicates change data from the database tables.

• Distribution Paths: Transfers trail files to the target system.

8-1

Before you begin, make sure that the database credential alias is created.

You can use the Oracle GoldenGate web interface, Admin Client, or cURL commands to set up
this configuration.

Add Initial Load Extract Using the Admin Client
Learn about adding the Initial Load Extract using the Admin Client.

Step 1: Create a Primary Extract
Precise instantiation is used to replicate database resources correctly from the source to the
target database. The primary Extract is started first to initiate change data capture early.
Precise instantiation is based on the following assumptions:

Note:

For precise instantiation to work, the instantiation SCN must come after the
registration SCN.

• The primary Extract is started. It is responsible for change data capture and noting it’s
registration SCN.

• The database is monitored. The database waits for the oldest open transaction’s SCN to
come after the registration SCN. This is the instantiation SCN.

• The instantiation SCN is used when creating the initial load Extract and Replicat
processes.

• The instantiation SCN is used to create the primary Replicat, once the initial load
replication is complete.

• For MySQL, precise instantiation is applicable only for MySQL source and target
databases, and is implemented using the Dump utility of the MySQL shell. For more
information on the Dump utility, see MySQL Dump Utility.

To begin, create and start the primary Extract EXTPRIM from the AdminClient, as shown in the
following example:

Command:

OGG (not connected) 1> CONNECT https://oggdep.example.com:9100 as oggadmin
password oggadmin !
Output:

Using default deployment 'OGGDEP'
Command:

OGG (https://oggdep.example.com:9100 OGGDEP) 2> DBLOGIN USERIDALIAS oggadmin
Output:

Successfully logged into database.
Command:

Chapter 8
Add Initial Load Extract Using the Admin Client

8-2

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html

OGG (https://oggdep.example.com:9100 OGGDEP) 3> ADD EXTRACT extprim INTEGRATED
TRANLOG BEGIN NOW
Output:

2018-03-16T13:37:07Z INFO OGG-08100 EXTRACT (Integrated) added.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 4> REGISTER EXTRACT
extprim DATABASE
Output:

2018-03-16T13:37:30Z INFO OGG-02003 Extract EXTPRIM successfully registered with
database at SCN 1608891.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 5> EDIT PARAMS extprim
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 6> VIEW PARAMS extprim
Output:

--
-- E X T P R I M . p r m
-- Primary Extract Parameter File
--
Extract EXTPRIM
UseridAlias oggadmin
ExtTrail AA
Table user01.*;

Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 7> ADD EXTTRAIL aa
EXTRACT extprim
Output:

2018-03-16T13:37:55Z INFO OGG-08100 EXTTRAIL added.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 8> START EXTRACT extprim
Output:

2018-03-16T13:38:02Z INFO OGG-00975 EXTRACT EXTPRIM starting
2018-03-16T13:38:02Z INFO OGG-15426 EXTRACT EXTPRIM started

In this example, oggadmin is the database credential alias.

After creating the primary Extract, retrieve the SCN registration number. Run the REGISTER
EXTRACT command in the AdminClient. The following example retrieves an SCN value of
1608891.

Chapter 8
Add Initial Load Extract Using the Admin Client

8-3

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 4> REGISTER EXTRACT
extprim DATABASE
Output:

2018-03-16T13:37:30Z INFO OGG-02003 Extract EXTPRIM successfully registered with
database at SCN 1608891.

Step 2: Determine the Instantiation SCN
The Administration Service in Oracle GoldenGate Microservices Architecture, provides an
endpoint for retrieving information about open database transactions. This information can be
used to identify the SCN to use when instantiating the initial load Extract.

In the following example, the instantiation SCN is 1609723, which is the oldest SCN of all open
transactions that is also past the registration SCN of 1608891, identified in the previous step.

-- Query for active transactions
--
SELECT T.START_SCN, T.STATUS TSTATUS, T.START_DATE,
 S.SID, S.SERIAL#, S.INST_ID, S.USERNAME, S.OSUSER, S.STATUS SSTATUS,
S.LOGON_TIME
 FROM gv$transaction T
 INNER JOIN gv$session S
 ON s.saddr = t.ses_addr

UNION ALL

--
-- Query for current status
--
SELECT CURRENT_SCN, 'CURRENT', CURRENT_DATE,
 NULL, NULL, NULL, 'SYS', NULL, NULL, NULL
 from v$database

ORDER BY 1;

The results of this query can be used to determine the instantiation SCN. The results for this
specific query are:

1538916 ACTIVE 2018-03-16 18:10:31.0 3865 9176 1 OGGADMIN oracle INACTIVE
2018-03-16 18:10:26.0 1540555 CURRENT 2018-03-16 18:21:50.0 SYS
The SCN used to instantiate the initial load Extract is obtained using SQL*Plus. In the following
example, the SQL query uses the instantiation SCN value as 1624963, which is the oldest SCN
of all open transactions that are also past the registration SCN of 1608891.

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 14> SHELL ECHO
'SELECT MIN(START_SCN) FROM gv$transaction;' | ${ORACLE_HOME}/bin/sqlplus -
S / as sysdba

MIN(START_SCN)

 1624963

Chapter 8
Add Initial Load Extract Using the Admin Client

8-4

If there are no open transactions, then this SQL query returns an empty result. A detailed
query that takes into account the situation where there are no open transactions is:

SELECT MIN(SCN) as INSTANTIATION_SCN
 FROM (SELECT MIN(START_SCN) as SCN
 FROM gv$transaction
 UNION ALL
 SELECT CURRENT_SCN
 FROM gv$database);

Step 3: Create and Start the Initial Load Replicat
Before you begin this step, make sure that the checkpoint table oggadmin.checkpoints,
already exists on the target system. The initial load Replicat is responsible for populating the
target database. Run the following command on the AdminClient to create and start the initial
load Replicat (REPINIT):

Command:

OGG (not connected) 1> CONNECT https://oggdep.example.com:9100 as oggadmin
password oggadmin !
Output:

Using default deployment 'OGGDEP'
Command:

OGG (https://oggdep.example.com:9100 OGGDEP) 2> DBLOGIN USERIDALIAS oggadmin
Output:

Successfully logged into database.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 3> ADD CHECKPOINTTABLE
oggadmin.checkpoints
Output:

ADD "oggadmin.checkpoints" succeeded.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 4> ADD REPLICAT repinit
EXTTRAIL dd CHECKPOINTTABLE oggadmin.checkpoints
Output:

2018-03-16T13:56:41Z INFO OGG-08100 REPLICAT added.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 5> EDIT PARAMS repinit
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 6> VIEW PARAMS repinit

Chapter 8
Add Initial Load Extract Using the Admin Client

8-5

Output:

--
-- R E P I N I T . p r m
-- File-Based Initial Load Replicat Parameter File
--
Replicat REPINIT
UseridAlias oggadmin
Map user01.*
 Target user01.*;

Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 7> START REPLICAT
repinit
Output:

2018-03-16T13:58:21Z INFO OGG-00975 REPLICAT REPINIT starting
2018-03-16T13:58:21Z INFO OGG-15426 REPLICAT REPINIT started

Step 4: Create and start the Initial Load Extract
Using the instantiation SCN that you retrieved (1624963), the initial load Extract is created to
write contents of the database tables to the trail. Create and start the initial load extract,
EXTINIT.

Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 15> ADD EXTRACT extinit
SOURCEISTABLE sourceistable
Output:

2018-03-16T14:08:38Z INFO OGG-08100 EXTRACT added.
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 16> EDIT PARAMS extinit
Command:

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 17> VIEW PARAMS extinit
Output:

--
-- E X T I N I T . p r m
-- File-Based Initial Load Extract Parameter File
--
Extract EXTINIT
UseridAlias oggadmin
ExtFile CC Megabytes 2000 Purge
Table user01.*, SQLPredicate "As Of SCN 1609723";

Command:

Chapter 8
Add Initial Load Extract Using the Admin Client

8-6

OGG (https://oggdep.example.com:9100 OGGDEP as oggadmin) 18> START EXTRACT
extinit
Output:

2018-03-16T14:13:42Z INFO OGG-00975 EXTRACT EXTINIT starting
2018-03-16T14:13:42Z INFO OGG-15426 EXTRACT EXTINIT started

Step 5: Create the Distribution Paths
Create two distribution paths (AABB and CCDD) for copying the local trails to the remote host
from the Admin Client:

Command:

OGG (https://oggdep.example.com:9100 oggdep) 15> ADD DISTPATH aabb SOURCE
TRAIL://oggdep.example.com:9102/services/v2/sources?trail=AA target wss://
dallas.oggdevops.us:9103/services/v2/targets?trail=BB
Output:

2018-03-16T17:28:27Z INFO OGG-08511 The path 'AABB' has been added.
Command:

OGG (https://oggdep.oggdevops.us:9100 oggdep) 16> ADD DISTPATH ccdd SOURCE
TRAIL://oggdep.example.com:9102/services/v2/sources?trail=CC target wss://
dallas.oggdevops.us:9103/services/v2/targets?trail=DD
Output:

2018-03-16T17:28:35Z INFO OGG-08511 The path 'CCDD' has been added.
Command:

OGG (https://oggdep.example:9100 oggdep) 17> START DISTPATH aabb
Output:

2018-03-16T17:28:42Z INFO OGG-08513 The path 'AABB' has been started.
Command:

OGG (https://oggdep.example.com:9100 oggdep) 18> START DISTPATH ccdd
Output:

2018-03-16T17:28:47Z INFO OGG-08513 The path 'CCDD' has been started.
If you use the ogg protocol instead of wss, then you must use the TARGETTYPE option. The
syntax in that case would be:

ADD DISTPATH path-name SOURCE source-uri TARGET target-uri [TARGETTYPE (MANAGER
| COLLECTOR | RECVSRVR)]
TARGETTYPE specifies the target type in case the distribution path uses the legacy protocol. This
argument is only valid if the target URI schema is ogg.

Chapter 8
Add Initial Load Extract Using the Admin Client

8-7

Step 6: Create the Primary Replicat
Once the initial load Extract and Replicat complete, they can be deleted. Then, the primary
Replicat process is created on the remote host for applying change data to the target
database.

Use the AdminClient to create the primary Replicat process.

Note:

The primary Replicat is started at the instantiation SCN.

Command:

OGG (https://oggdep.example.com:9100 oggdep as oggadmin) 12> ADD REPLICAT repprim
EXTTRAIL bb CHECKPOINTTABLE oggadmin.checkpoints
Output:

2018-03-16T17:37:46Z INFO OGG-08100 REPLICAT added.
Command: EDIT PARAMS

OGG (https://oggdep.example.com:9100 oggdep as oggadmin) 13> EDIT PARAMS repprim
Command:

OGG (https://oggdep.example.com:9100 oggdep as oggadmin) 14> VIEW PARAMS repprim
Output:

--
-- R E P P R I M . p r m
-- Replicat Parameter File
--
Replicat REPPRIM
USERIDALIAS oggadmin
Map user01.*
 Target user01.*;

Command:

OGG (https://oggdep.example.com:9100 oggdep as oggadmin) 15> START REPLICAT
repprim ATCSN 1624963
Output:

2018-03-16T17:38:10Z INFO OGG-00975 REPLICAT REPPRIM starting
2018-03-16T17:38:10Z INFO OGG-15426 REPLICAT REPPRIM started

Chapter 8
Add Initial Load Extract Using the Admin Client

8-8

9
Administer

Learn about Microservices command line interface, parameters files, bi-directional
configuration, procedural replication, automatic and manual conflict detection and resolution,
mapping and manipulating data, and handling processing errors.

Data Management
Learn about various aspects of data management in Oracle GoldenGate, including DDL and
DML replication, requirements and steps for configuring procedural replication, using
SQLEXEC, Event Actions, and User Exits.

Oracle: DDL Replication
Learn about DDL replication in Oracle.

Extract supports the DDL capture method for Oracle 11.2.0.4 or later. An Extract can capture
DDL operations from a source Oracle database natively through the Oracle logmining server.

Prerequisites for Configuring DDL
Oracle databases that have the COMPATIBLE parameter set to 11.2.0.4 or higher support DDL
capture through the database logmining server. This method is known as native DDL capture.
Native DDL capture is the only supported method for capturing DDL from a multitenant
container database.

For downstream mining, the source database must also have database COMPATIBLE set to
11.2.0.4 or higher to support DDL capture through the database logmining server.

Overview of DDL Synchronization
Oracle GoldenGate supports the synchronization of DDL operations from one database to
another.

DDL synchronization can be active when:

• business applications are actively accessing and updating the source and target objects.

• Oracle GoldenGate transactional data synchronization is active.

The components that support the replication of DDL and the replication of transactional data
changes (DML) are independent of each other. Therefore, you can synchronize:

• DDL changes

• DML changes

• DDL and DML

For a list of supported objects and operations for DDL support for Oracle, see Details of
Support for Objects and Operations in Oracle DDL.

9-1

Limitations of Oracle GoldenGate DDL Support
Here are the limitations of Oracle GoldenGate DDL support.

For any additional details that were included after this documentation was published, see the
Release Notes for Oracle GoldenGate.

DDL Statement Length
Oracle GoldenGate measures the length of a DDL statement in bytes, not in characters. The
supported length is approximately 4 MB, allowing for some internal overhead that can vary in
size depending on the name of the affected object and its DDL type, among other
characteristics. If the DDL is longer than the supported size, Extract will issue a warning and
ignore the DDL operation.

If Extract is capturing DDL by means of the DDL trigger, the ignored DDL is saved in the
marker table. You can capture Oracle DDL statements that are ignored, as well as any other
Oracle DDL statement, by using the ddl_ddl2file.sql script, which saves the DDL operation
to a text file in the USER_DUMP_DEST directory of Oracle. The script prompts for the following
input:

• The name of the schema that contains the Oracle GoldenGate DDL objects, which is
specified in the GLOBALS file.

• The Oracle GoldenGate marker sequence number, which is recorded in the Extract report
file when DDLOPTIONS with the REPORT option is used in the Extract parameter file.

• A name for the output file.

Supported Topologies
Oracle GoldenGate supports DDL synchronization only in a like-to-like configuration. The
source and target object definitions must be identical.

DDL replication is only supported for Oracle to Oracle replication. It is not supported between
different databases, like Oracle to Teradata, or SQL Server to Oracle. Oracle GoldenGate does
not support DDL on a standby database. Oracle GoldenGate supports DDL replication in all
supported unidirectional configurations, and in bidirectional configurations between two, and
only two, systems.

Filtering, Mapping, and Transformation
DDL operations cannot be transformed by any Oracle GoldenGate process. However, source
DDL can be mapped and filtered to a different target object by a primary Extract or a Replicat
process using DDL INCLUDE and EXCLUDE options in the Extract and Replicat parameter files.

For details about using DDL filtering, mapping, and transformation, see DDL.

Renames
RENAME operations on tables are converted to the equivalent ALTER TABLE RENAME so that a
schema name can be included in the target DDL statement. For example RENAME EMP TO
EMPLOYEES could be changed to ALTER TABLE hr.EMP RENAME TO hr.EMPLOYEES.

The conversion is reported in the Replicat process report file.

Chapter 9
Data Management

9-2

Interactions Between Fetches from a Table and DDL
Oracle GoldenGate supports some data types by identifying the modified row from the redo
stream and then querying the underlying table to fetch the changed columns. For instance,
partial updates on LOBs are supported by identifying the modified row and the LOB column
from the redo log, and then querying for the LOB column value for the row from the base table.
A similar technique is employed to support UDT.

Note:

Extract only requires fetch for UDT when not using native object support.

Such fetch-based support is implemented by issuing a flashback query to the database based
on the SCN (System Change Number) at which the transaction committed. The flashback
query feature has certain limitations. Certain DDL operations act as barriers such that
flashback queries to get data prior to these DDLs do not succeed. Examples of such DDL are
ALTER TABLE MODIFY COLUMN and ALTER TABLE DROP COLUMN.

Thus, in cases where there is Extract capture lag, an intervening DDL may cause fetch
requests for data prior to the DDL to fail. In such cases, Extract falls back and fetches the
current snapshot of the data for the modified column. There are several limitations to this
approach: First, the DDL could have modified the column that Extract needs to fetch (for
example, suppose the intervening DDL added a new attribute to the UDT that is being
captured). Second, the DDL could have modified one of the columns that Extract uses as a
logical row identifier. Third, the table could have been renamed before Extract had a chance to
fetch the data.

To prevent fetch-related inconsistencies such as these, take the following precautions while
modifying columns.

1. Pause all DML to the table.

2. Wait for Extract to finish capturing all remaining redo, and wait for Replicat to finish
processing the captured data from trail. To determine whether Replicat is finished, issue
the following command until you see a message that there is no more data to process.

INFO REPLICAT group

3. Execute the DDL on the source.

4. Resume source DML operations.

Comments in SQL
If a source DDL statement contains a comment in the middle of an object name, that comment
will appear at the end of the object name in the target DDL statement. For example:

Source:

CREATE TABLE hr./*comment*/emp ...

Target:

CREATE TABLE hr.emp /*comment*/ ...

Chapter 9
Data Management

9-3

This does not affect the integrity of DDL synchronization. Comments in any other area of a
DDL statement remain in place when replicated.

Compilation Errors
If a CREATE operation on a trigger, procedure, function, or package results in compilation errors,
Oracle GoldenGate executes the DDL operation on the target anyway. Technically, the DDL
operations themselves completed successfully and should be propagated to allow
dependencies to be executed on the target. For example in recursive procedures.

Interval Partitioning
DDL replication is unaffected by interval partitioning, because the DDL is implicit. However, this
is system generated name so Replicat cannot convert this to the target.I believe this is
expected behavior. You must drop the partition on the source. For example:

ALTER TABLE employees DROP PARTITION FOR (20);

DML or DDL Performed Inside a DDL Trigger
DML or DDL operations performed from within a DDL trigger are not captured.

LogMiner Data Dictionary Maintenance
Oracle recommends that you gather dictionary statistics after the Extract is registered
(logminer session) and the logminer dictionary is loaded, or after any significant DDL activity
on the database.

Guidelines for Configuring DDL Replication for Oracle
Here are the guidelines for configuring Oracle GoldenGate processes to support DDL
replication.

Database Privileges
See Grant User Privileges for Oracle Database 21c and Lower.

Parallel Processing
If using parallel Extract and/or Replicat processes, keep related DDL and DML together in the
same process stream to ensure data integrity. Configure the processes so that:

• all DDL and DML for any given object are processed by the same Extract group and by the
same Replicat group.

• all objects that are relational to one another are processed by the same process group.

For example, if repe processes DML for EMPLOYEES, then it should also process the DDL for
EMPLOYEES. If APPRAISAL has a foreign key to EMPLOYEES, then its DML and DDL operations also
should be processed by repe.

If an Extract group writes to multiple trails that are read by different Replicat groups, Extract
sends all of the DDL to all of the trails. Use each Replicat group to filter the DDL by using the
filter options of the DDL parameter in the Replicat parameter file.

Chapter 9
Data Management

9-4

Object Names
Oracle GoldenGate preserves the database-defined object name, case, and character set.
This support preserves single-byte and multibyte names, symbols, and accent characters at all
levels of the database hierarchy.

Object names must be fully qualified with their two-part or three-part names when supplied as
input to any parameters that support DDL synchronization. You can use the question mark (?)
and asterisk (*) wildcards to specify object names in configuration parameters that support
DDL synchronization, but the wildcard specification also must be fully qualified as a two-part or
three-part name. To process wildcards correctly, the WILDCARDRESOLVE parameter is set to
DYNAMIC by default. If WILDCARDRESOLVE is set to anything else, the Oracle GoldenGate process
that is processing DDL operations will abend and write the error to the process report.

Data Definitions
Because DDL support requires a like-to-like configuration, the ASSUMETARGETDEFS parameter
must be used in the Replicat parameter file. Replicat will abend if objects are configured for
DDL support and the SOURCEDEFS parameter is being used.

For more information, see ASSUMETARGETDEFS.

Truncates
TRUNCATE statements can be supported as follows:

• As part of the Oracle GoldenGate full DDL support, which supports TRUNCATE TABLE, ALTER
TABLE TRUNCATE PARTITION, and other DDL. This is controlled by the DDL parameter (see
Enabling DDL Support .)

• As standalone TRUNCATE support. This support enables you to replicate TRUNCATE TABLE,
but no other DDL. The GETTRUNCATES parameter controls the standalone TRUNCATE feature.
For more information, see Parameters and Functions Reference for Oracle GoldenGate.

To avoid errors from duplicate operations, only one of these features can be active at the same
time.

Initial Synchronization
To configure DDL replication, start with a target database that is synchronized with the source
database. DDL support is compatible with the Replicat initial load method.

Before executing an initial load, disable DDL extraction and replication. DDL processing is
controlled by the DDL parameter in the Extract and Replicat parameter files.

After initial synchronization of the source and target data, use all of the source sequence
values at least once with NEXTVAL before you run the source applications. You can use a script
that selects NEXTVAL from every sequence in the system. This must be done while Extract is
running.

Data Continuity After CREATE or RENAME
To replicate DML operations on new Oracle tables resulting from a CREATE or RENAME operation,
the names of the new tables must be specified in TABLE and MAP statements in the parameter
files. You can use wildcards to make certain that they are included.

Chapter 9
Data Management

9-5

To create a new user with CREATE USER and then move new or renamed tables into that
schema, the new user name must be specified in TABLE and MAP statements. To create a user
HR and move new or renamed tables into that schema, the parameter statements could look as
follows, depending on whether you want the HR objects mapped to the same, or different,
schema on the target:

Extract:

TABLE HR.*;

Replicat:

MAP HR.*, TARGET different_schema.*;

Understanding DDL Scopes
Database objects are classified into scopes. A scope is a category that defines how DDL
operations on an object are handled by Oracle GoldenGate.

The scopes are:

• MAPPED
• UNMAPPED
• OTHER
The use of scopes enables granular control over the filtering of DDL operations, string
substitutions, and error handling.

Mapped Scope
Objects that are specified in TABLE and MAP statements are of MAPPED scope. Extraction and
replication instructions in those statements apply to both data (DML) and DDL on the specified
objects, unless override rules are applied.

For objects in TABLE and MAP statements, the DDL operations listed in the following table are
supported.

Operations On any of these Objects1

CREATE
ALTER
DROP
RENAME
COMMENT ON2

TABLE3

INDEX
TRIGGER
SEQUENCE
MATERIALIZED VIEW
VIEW
FUNCTION
PACKAGE
PROCEDURE
SYNONYM
PUBLIC SYNONYM4

Chapter 9
Data Management

9-6

Operations On any of these Objects1

GRANT
REVOKE

TABLE
SEQUENCE
MATERIALIZED VIEW

ANALYZE TABLE
INDEX
CLUSTER

1 TABLE and MAP do not support some special characters that could be used in an object name affected by these
operations. Objects with non-supported special characters are supported by the scopes of UNMAPPED and OTHER.

2 Applies to COMMENT ON TABLE, COMMENT ON COLUMN
3 Includes AS SELECT
4 Table name must be qualified with schema name.

For Extract, MAPPED scope marks an object for DDL capture according to the instructions in the
TABLE statement. For Replicat, MAPPED scope marks DDL for replication and maps it to the
object specified by the schema and name in the TARGET clause of the MAP statement. To
perform this mapping, Replicat issues ALTER SESSION to set the schema of the Replicat
session to the schema that is specified in the TARGET clause. If the DDL contains unqualified
objects, the schema that is assigned on the target depends on circumstances described in
Understanding DDL Scopes.

Assume the following TABLE and MAP statements:

Extract (source)

TABLE hr.employees;
TABLE hr.emp*;

Replicat (target)

MAP hr.employees, TARGET hr2.employees2;
MAP hr.emp*, TARGET hrEMPLOYEES.bak_*;

Also assume a source DDL statement of:

ALTER TABLE hr.employees ADD notes varchar2(100);

In this example, because the source table fin.expen is in a MAP statement with a TARGET
clause that maps to a different schema and table name, the target DDL statement becomes:

ALTER TABLE hr2.employees2 ADD notes varchar2(100);

Likewise, the following source and target DDL statements are possible for the second set of
TABLE and MAP statements in the example:

Source:

CREATE TABLE hr.tabPayables ... ;

Chapter 9
Data Management

9-7

Target:

CREATE TABLE hrBackup.bak_tabPayables ...;

When objects are of MAPPED scope, you can omit their names from the DDL configuration
parameters, unless you want to refine their DDL support further. If you ever need to change the
object names in TABLE and MAP statements, the changes will apply automatically to the DDL on
those objects.

If you include an object in a TABLE statement, but not in a MAP statement, the DDL for that
object is MAPPED in scope on the source but UNMAPPED in scope on the target.

Unmapped Scope
If a DDL operation is supported for use in a TABLE or MAP statement, but its base object name is
not included in one of those parameters, it is of UNMAPPED scope.

An object name can be of UNMAPPED scope on the source (not in an Extract TABLE statement),
but of MAPPED scope on the target (in a Replicat MAP statement), or the other way around. When
Oracle DDL is of UNMAPPED scope in the Replicat configuration, Replicat will by default do the
following:

1. Set the current schema of the Replicat session to the schema of the source DDL object.

2. Execute the DDL as that schema.

3. Restore Replicat as the current schema of the Replicat session.

Other Scope
DDL operations that cannot be mapped are of OTHER scope. When DDL is of OTHER scope in
the Replicat configuration, it is applied to the target with the same schema and object name as
in the source DDL.

An example of OTHER scope is a DDL operation that makes a system-specific reference, such
as DDL that operates on data file names.

Some other examples of OTHER scope:

CREATE USER joe IDENTIFIED by joe;
CREATE ROLE ggs_gguser_role IDENTIFIED GLOBALLY;
ALTER TABLESPACE gg_user TABLESPACE GROUP gg_grp_user;

Correctly Identifying Unqualified Object Names in DDL
Extract captures the current schema (also called session schema) that is in effect when a DDL
operation is executed. The current container is also captured if the source is a multitenant
container database.

The container and schema are used to resolve unqualified object names in the DDL.

Consider the following example:

CONNECT ggadmin/PASSWORD
CREATE TABLE EMPLOYEES (X NUMBER);
CREATE TABLE EAST.FINANCE(X NUMBER) AS SELECT * FROM EMPLOYEES;

Chapter 9
Data Management

9-8

In both of those DDL statements, the unqualified table TAB1 is resolved as SCOTT.TAB1 based
on the current schema SCOTT that is in effect during the DDL execution.

There is another way of setting the current schema, which is to set the current_schema for the
session, as in the following example:

CONNECT ggadmin/PASSWORD
ALTER SESSION SET CURRENT_SCHEMA=SRC;
CREATE TABLE EMPLOYEES (X NUMBER);
CREATE TABLE HR.FINANCE(X NUMBER) AS SELECT * FROM EMPLOYEES;

In both of those DDL statements, the unqualified table EMPLOYEES is resolved as HR.EMPLOYEES
based on the current schema HR that is in effect during the DDL execution.

Extract captures the current schema that is in effect during DDL execution, and it resolves the
unqualified object names (if any) by using the current schema. As a result, MAP statements
specified for Replicat, work correctly for DDL with unqualified object names.

You can also map a source session schema to a different target session schema, if that is
required for the DDL to succeed on the target. This mapping is global and overrides any other
mappings that involve the same schema names. To map session schemas, use the
DDLOPTIONS parameter with the MAPSESSIONSCHEMA option.

If the default or mapped session schema mapping fails, you can handle the error with the
following DDLERROR parameter statement, where error 1435 means that the schema does not
exist.

DDLERROR 1435 IGNORE INCLUDE OPTYPE ALTER OBJTYPE SESSION

Enabling DDL Support
Data Definition Language (DDL) is useful in dynamic environments which change constantly.

By default, the status of DDL replication support is as follows:

• On the source, Oracle GoldenGate DDL support is disabled by default. You must configure
Extract to capture DDL by using the DDL parameter.

• On the target, DDL support is enabled by default, to maintain the integrity of transactional
data that is replicated. By default, Replicat will process all DDL operations that the trail
contains. If needed, you can use the DDL parameter to configure Replicat to ignore or filter
DDL operations.

Filtering DDL Replication
By default, all DDL is passed to Extract.

You can use the filtering with DDL parameter method to filter DDL operations so that specific
(or all) DDL is applied to the target database according to your requirements. Valid for native
DDL capture. This is the preferred method of filtering and is performed within Oracle
GoldenGate, and both Extract and Replicat can execute filter criteria. Extract can perform
filtering, or it can send the entire DDL to a trail, and then Replicat can perform the filtering.
Alternatively, you can filter in a combination of different locations. The DDL parameter gives you
control over where the filtering is performed, and it also offers more filtering options, including
the ability to filter collectively based on the DDL scope (for example, include all MAPPED scope).

Chapter 9
Data Management

9-9

Note:

If a DDL operation fails in the middle of a TRANSACTION, it forces a commit, which
means that the transaction spanning the DDL is split into two. The first half is
committed and the second half can be restarted. If a recovery occurs, the second half
of the transaction cannot be filtered since the information contained in the header of
the transaction is no longer there.

Filtering with the DDL Parameter
The DDL parameter is the main Oracle GoldenGate parameter for filtering DDL within the
Extract and Replicat processes.

When used without options, the DDL parameter performs no filtering, and it causes all DDL
operations to be propagated as follows:

• As an Extract parameter, it captures all supported DDL operations that are generated on all
supported database objects and sends them to the trail.

• As a Replicat parameter, it replicates all DDL operations from the Oracle GoldenGate trail
and applies them to the target. This is the same as the default behavior without this
parameter.

When used with options, the DDL parameter acts as a filtering agent to include or exclude DDL
operations based on:

• scope

• object type

• operation type

• object name

• strings in the DDL command syntax or comments, or both

Only one DDL parameter can be used in a parameter file, but you can combine multiple
inclusion and exclusion options, along with other options, to filter the DDL to the required level.

• DDL filtering options are valid for a primary Extract that captures from the transaction
source.

• When combined, multiple filter option specifications are linked logically as AND statements.

• All filter criteria specified with multiple options must be satisfied for a DDL statement to be
replicated.

• When using complex DDL filtering criteria, it is recommended that you test your
configuration in a test environment before using it in production.

See DDL parameter syntax and additional usage guidelines in the Parameters and Functions
Reference for Oracle GoldenGate.

Note:

Before you configure DDL support, it might help to review How DDL is Evaluated for
Processing.

Chapter 9
Data Management

9-10

Special Filter Cases
This topic describes the special cases that you must consider before creating your DDL filters.

The following are the special cases for creating filter conditions.

DDL EXCLUDE ALL
DDL EXCLUDE ALL is a special processing option that is intended primarily for Extract. DDL
EXCLUDE ALL blocks the replication of DDL operations, but ensures that Oracle GoldenGate
continues to keep the object metadata current. When Extract receives DDL directly from the
logmining server (triggerless DDL capture mode), current metadata is always maintained.

You can use DDL EXCLUDE ALL when using a method other than Oracle GoldenGate to apply
DDL to the target and you want Oracle GoldenGate to replicate data changes to the target
objects. It provides the current metadata to Oracle GoldenGate as objects change, thus
preventing the need to stop and start the Oracle GoldenGate processes. The following special
conditions apply to DDL EXCLUDE ALL:

• DDL EXCLUDE ALL does not require the use of an INCLUDE clause.

• When using DDL EXCLUDE ALL, you can set the WILDCARDRESOLVE parameter to IMMEDIATE
to allow immediate DML resolution if required.

To prevent all DDL metadata and operations from being replicated, omit the DDL parameter
entirely.

Implicit DDL
User-generated DDL operations can generate implicit DDL operations. For example, the
following statement generates two distinct DDL operations.

CREATE TABLE customers (custID number, name varchar2(50), address
varchar2(75), address2 varchar2(75), city varchar2(50), state (varchar2(2),
zip number, contact varchar2(50), areacode number(3), phone number(7),
primary key (custID));

The first (explicit) DDL operation is the CREATE TABLE statement itself.

The second DDL operation is an implicit CREATE UNIQUE INDEX statement that creates the
index for the primary key. This operation is generated by the database engine, not a user
application.

How Oracle GoldenGate Handles Derived Object Names
DDL operations can contain a base object name and also a derived object name.

A base object is an object that contains data. A derived object is an object that inherits some
attributes of the base object to perform a function related to that object. DDL statements that
have both base and derived objects are:

• RENAME and ALTER RENAME
• CREATE and DROP on an index, synonym, or trigger

Chapter 9
Data Management

9-11

Consider the following DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

In this case, the table is the base object. Its name (hr.tabPayroll) is the base name and is
subject to mapping with TABLE or MAP under the MAPPED scope. The derived object is the index,
and its name (hr.indexPayrollDate) is the derived name.

You can map a derived name in its own TABLE or MAP statement, separately from that of the
base object. Or, you can use one MAP statement to handle both. In the case of MAP, the
conversion of derived object names on the target works as follows:

MAP Exists for Base and Derived Objects
If there is a MAP statement for the base object and also one for the derived object, the result is
an explicit mapping. Assuming the DDL statement includes MAPPED, Replicat converts the
schema and name of each object according to its own TARGET clause. For example, assume
the following:

Extract (source)

TABLE hr.tab*; TABLE hr.index*;

Replicat (target)

MAP hr.tab*, TARGET hrBackup.*;MAP hr.index*, TARGET hrIndex.*;

Assume the following source DDL statement:

CREATE INDEX hr.indexPayrollDate ON TABLE hr.tabPayroll (payDate);

The CREATE INDEX statement is executed by Replicat on the target as follows:

CREATE INDEX hrIndex.indexPayrollDate ON TABLE hrBackup.tabPayroll (payDate);

Use an explicit mapping when the index on the target must be owned by a different schema
from that of the base object, or when the name on the target must be different from that of the
source.

MAP Exists for Derived Object, But Not Base Object
If there is a MAP statement for the derived object, but not for the base object, Replicat does not
perform any name conversion for either object. The target DDL statement is the same as that
of the source. To map a derived object, the choices are:

• Use an explicit MAP statement for the base object.

• If names permit, map both base and derived objects in the same MAP statement by means
of a wildcard.

• Create a MAP statement for each object, depending on how you want the names converted.

Chapter 9
Data Management

9-12

New Tables as Derived Objects
The following explains how Oracle GoldenGate handles new tables that are created from:

• RENAME and ALTER RENAME
• CREATE TABLE AS SELECT

Prerequisites for Configuring DDL

The CREATE TABLE AS SELECT (CTAS) statements include SELECT statements and INSERT
statements that reference any number of underlying objects. By default, Oracle GoldenGate
obtains the data for the AS SELECT clause from the target database. You can force the CTAS
operation to preserve the original inserts using this parameter.

Note:

For this reason, Oracle XMLType tables created from a CTAS (CREATE TABLE AS
SELECT) statement cannot be supported. For XMLType tables, the row object IDs must
match between source and target, which cannot be maintained in this scenario.
XMLType tables created by an empty CTAS statement (that does not insert data in the
new table) can be maintained correctly.

In addition, you could use the GETCTASDML parameter that allows CTAS to replay the
inserts of the CTAS thus preserving OIDs during replication. This parameter is only
supported with Integrated Dictionary and any downstream Replicat must be 12.1.2.1
or greater to consume the trail otherwise, there may be divergence.

The objects in the AS SELECT clause must exist in the target database, and their names must
be identical to the ones on the source.

In a MAP statement, Oracle GoldenGate only maps the name of the new table (CREATE TABLE
name) to the TARGET specification, but does not map the names of the underlying objects from
the AS SELECT clause. There could be dependencies on those objects that could cause data
inconsistencies if the names were converted to the TARGET specification.

The following shows an example of a CREATE TABLE AS SELECT statement on the source and
how it would be replicated to the target by Oracle GoldenGate.

CREATE TABLE a.tab1 AS SELECT * FROM a.tab2;

The MAP statement for Replicat is as follows:

MAP a.tab*, TARGET a.x*;

The target DDL statement that is applied by Replicat is the following:

CREATE TABLE a.xtab1 AS SELECT * FROM a.tab2;

The name of the table in the AS SELECT * FROM clause remains as it was on the source: tab2
(rather than xtab2).

Chapter 9
Data Management

9-13

To keep the data in the underlying objects consistent on source and target, you can configure
them for data replication by Oracle GoldenGate. In the preceding example, you could use the
following statements to accommodate this requirement:

Source

TABLE a.tab*;

Target

MAPEXCLUDE a.tab2
MAP a.tab*, TARGET a.x*;
MAP a.tab2, TARGET a.tab2;

See Correctly Identifying Unqualified Object Names in DDL.

RENAME and ALTER TABLE RENAME

In RENAME and ALTER TABLE RENAME operations, the base object is always the new table name.
In the following example, the base object name is considered to be index_paydate.

ALTER TABLE hr.indexPayrollDate RENAME TO index_paydate;

or...

RENAME hr.indexPayrollDate TO index_paydate;

The derived object name is hr.indexPayrollDate.

Disabling the Mapping of Derived Objects
Use the DDLOPTIONS parameter with the NOMAPDERIVED option to prevent the conversion of the
name of a derived object according to a TARGET clause of a MAP statement that includes it.
NOMAPDERIVED overrides any explicit MAP statements that contain the name of the base or
derived object. Source DDL that contains derived objects is replicated to the target with the
same schema and object names as on the source.

The following table shows the results of MAPDERIVED compared to NOMAPDERIVED, based on
whether there is a MAP statement just for the base object, just for the derived object, or for both.

Using DDL String Substitution
This feature provides a convenience for changing and mapping directory names, comments,
and other things that are not directly related to data structures. For example, you could
substitute one tablespace name for another, or substitute a string within comments. String
substitution is controlled by the DDLSUBST parameter. For more information, see Parameters
and Functions Reference for Oracle GoldenGate.

Chapter 9
Data Management

9-14

Note:

Before you create a DDLSUBST parameter statement, it might help to review How DDL
is Evaluated for Processing.

Controlling the Propagation of DDL to Support Different Topologies
To support bidirectional and cascading replication configurations, it is important for Extract to
be able to identify the DDL that is performed by Oracle GoldenGate and by other applications,
such as the local business applications.

Depending on the configuration that you want to deploy, it might be appropriate to capture one
or both of these sources of DDL on the local system.

Note:

Oracle GoldenGate DDL consists of ALTER TABLE statements performed by Extract to
create log groups and the DDL that is performed by Replicat to replicate source DDL
changes.

The following options of the DDLOPTIONS parameter control whether DDL on the local system is
captured by Extract and then sent to a remote system, assuming Oracle GoldenGate DDL
support is configured and enabled:

• The GETREPLICATES and IGNOREREPLICATES options control whether Extract captures or
ignores the DDL that is generated by Oracle GoldenGate. The default is
IGNOREREPLICATES, which does not propagate the DDL that is generated by Oracle
GoldenGate. To identify the DDL operations that are performed by Oracle GoldenGate, the
following comment is part of each Extract and Replicat DDL statement:

/* GOLDENGATE_DDL_REPLICATION */

• The GETAPPLOPS and IGNOREAPPLOPS options control whether Extract captures or ignores
the DDL that is generated by applications other than Oracle GoldenGate. The default is
GETAPPLOPS, which propagates the DDL from local applications (other than Oracle
GoldenGate).

The result of these default settings is that Extract ignores its own DDL and the DDL that is
applied to the local database by a local Replicat, so that the DDL is not sent back to its source,
and Extract captures all other DDL that is configured for replication. The following is the default
DDLOPTIONS configuration.

DDLOPTIONS GETAPPLOPS, IGNOREREPLICATES

This behavior can be modified. See the following topics:

Chapter 9
Data Management

9-15

Propagating DDL in Active-Active (Bidirectional) Configurations
Oracle GoldenGate supports active-active DDL replication between two systems. For an
active-active bidirectional replication, the following must be configured in the Oracle
GoldenGate processes:

1. DDL that is performed by a business application on one system must be replicated to the
other system to maintain synchronization. To satisfy this requirement, include the
GETAPPLOPS option in the DDLOPTIONS statement in the Extract parameter files on both
systems.

2. DDL that is applied by Replicat on one system must be captured by the local Extract and
sent back to the other system. To satisfy this requirement, use the GETREPLICATES option in
the DDLOPTIONS statement in the Extract parameter files on both systems.

Note:

An internal Oracle GoldenGate token will cause the actual Replicat DDL
statement itself to be ignored to prevent loopback. The purpose of propagating
Replicat DDL back to the original system is so that the Replicat on that system
can update its object metadata cache, in preparation to receive incoming DML,
which will have the new metadata.

3. Each Replicat must be configured to update its object metadata cache whenever the
remote Extract sends over a captured Replicat DDL statement. To satisfy this requirement,
use the UPDATEMETADATA option in the DDLOPTIONS statement in the Replicat parameter files
on both systems.

The resultant DDLOPTIONS statements should look as follows:

Extract (primary and secondary)

DDLOPTIONS GETREPLICATES, GETAPPLOPS

Replicat (primary and secondary)

DDLOPTIONS UPDATEMETADATA

WARNING:

Before you allow new DDL or DML to be issued for the same object(s) as the original
DDL, allow time for the original DDL to be replicated to the remote system and then
captured again by the Extract on that system. This will ensure that the operations
arrive in correct order to the Replicat on the original system, to prevent DML errors
caused by metadata inconsistencies. See the following diagram for more information.

For more information, see Parameters and Functions Reference for Oracle GoldenGate.

Chapter 9
Data Management

9-16

Prerequisites for Configuring DDL
In a cascading configuration, use the following setting for DDLOPTIONS in the Extract parameter
file on each intermediary system. This configuration forces Extract to capture the DDL from
Replicat on an intermediary system and cascade it to the next system downstream.

DDLOPTIONS GETREPLICATES, IGNOREAPPLOPS

For more information about DDLOPTIONS, see DDLOPTIONS.

Add Supplemental Log Groups Automatically
Use the DDLOPTIONS parameter with the ADDTRANDATA option for performing tasks described in
this topic.

You can perform the following tasks using the DDLOPTIONS:

• Enable Oracle's supplemental logging automatically for new tables created with a CREATE
TABLE.

• Update Oracle's supplemental logging for tables affected by an ALTER TABLE to add or drop
columns.

• Update Oracle's supplemental logging for tables that are renamed.

• Update Oracle's supplemental logging for tables where unique or primary keys are added
or dropped.

To use DDLOPTIONS ADDSCHEMATRANDATA, the ADD SCHEMATRANDATA command must be issued
on the Admin Client to enable schema-level supplemental logging.

DDLOPTIONS ADDTRANDATA is not supported for multitenant container databases, see
Configuring Logging Properties for more information.

Removing Comments from Replicated DDL
You can use the DDLOPTIONS parameter with the REMOVECOMMENTS BEFORE and REMOVECOMMENTS
AFTER options to prevent comments that were used in the source DDL from being included in
the target DDL.

By default, comments are not removed, so that they can be used for string substitution.

Replicating an IDENTIFIED BY Password
Use the DDLOPTIONS parameter with the DEFAULTUSERPASSWORDALIAS and REPLICATEPASSWORD
| NOREPLICATEPASSWORD options to control how the password of a replicated {CREATE |
ALTER} USER name IDENTIFIED BY password statement is handled. These options must be
used together.

See the USEPASSWORDVERIFIERLEVEL option of DDLOPTIONS for important information about
specifying the password verifier when Replicat operates against an Oracle 10g or 11g
database.

Chapter 9
Data Management

9-17

Note:

Replication of CREATE | ALTER PROFILE will fail as the profile/password verification
function must exist in the SYS schema. To replicate these DDLs successfully,
password verification function must be created manually on both source/target(s)
since DDL to SYS schema is excluded.

How DDL is Evaluated for Processing
Learn about the order in which different criteria in the Oracle GoldenGate parameters are
processed, and the differences between how Extract and Replicat each process the DDL.

Extract

1. Extract captures a DDL statement.

2. Extract separates comments, if any, from the main statement.

3. Extract searches for the DDL parameter. (This example assumes it exists.)

4. Extract searches for the IGNOREREPLICATES parameter. If it is present, and if Replicat
produced this DDL on this system, Extract ignores the DDL statement. (This example
assumes no Replicat operations on this system.)

5. Extract determines whether the DDL statement is a RENAME. If so, the rename is flagged
internally.

6. Extract gets the base object name and, if present, the derived object name.

7. If the statement is a RENAME, Extract changes it to ALTER TABLE RENAME.

8. Extract searches for the DDLOPTIONS REMOVECOMMENTS BEFORE parameter. If it is present,
Extract removes the comments from the DDL statement, but stores them in case there is a
DDL INCLUDE or DDL EXCLUDE clause that uses INSTR or INSTRCOMMENTS.

9. Extract determines the DDL scope: MAPPED, UNMAPPED or OTHER:

• It is MAPPED if the operation and object types are supported for mapping, and the base
object name and/or derived object name (if RENAME) is in a TABLE parameter.

• It is UNMAPPED if the operation and object types are not supported for mapping, and the
base object name and/or derived object name (if RENAME) is not in a TABLE parameter.

• Otherwise the operation is identified as OTHER.

10. Extract checks the DDL parameter for INCLUDE and EXCLUDE clauses, and it evaluates the
DDL parameter criteria in those clauses. All options must evaluate to TRUE in order for the
INCLUDE or EXCLUDE to evaluate to TRUE. The following occurs:

• If an EXCLUDE clause evaluates to TRUE, Extract discards the DDL statement and
evaluates another DDL statement. In this case, the processing steps start over.

• If an INCLUDE clause evaluates to TRUE, or if the DDL parameter does not have any
INCLUDE or EXCLUDE clauses, Extract includes the DDL statement, and the processing
logic continues.

11. Extract searches for a DDLSUBST parameter and evaluates the INCLUDE and EXCLUDE
clauses. If the criteria in those clauses add up to TRUE, Extract performs string substitution.
Extract evaluates the DDL statement against each DDLSUBST parameter in the parameter

Chapter 9
Data Management

9-18

file. For all true DDLSUBST specifications, Extract performs string substitution in the order
that the DDLSUBST parameters are listed in the file.

12. Now that DDLSUBT has been processed, Extract searches for the REMOVECOMMENTS AFTER
parameter. If it is present, Extract removes the comments from the DDL statement.

13. Extract searches for DDLOPTIONS ADDTRANDATA. If it is present, and if the operation is
CREATE TABLE, Extract issues the ALTER TABLE name ADD SUPPLEMENTAL LOG GROUP
command on the table.

14. Extract writes the DDL statement to the trail.

Viewing DDL Report Information
By default, Oracle GoldenGate shows basic statistics about DDL at the end of the Extract and
Replicat reports.

To enable expanded DDL reporting, use the DDLOPTIONS parameter with the REPORT option.
Expanded reporting includes the following information about DDL processing:

• A step-by-step history of the DDL operations that were processed by Oracle GoldenGate.

• The DDL filtering and processing parameters that are being used.

Expanded DDL report information increases the size of the report file, but it might be useful in
certain situations, such as for troubleshooting or to determine when an ADD TRANDATA to add
supplemental logging was applied.

To view a report, use the VIEW REPORT command.

VIEW REPORT group

Viewing DDL Reporting in Replicat
The Replicat report lists:

• The entire syntax and source Oracle GoldenGate SCN of each DDL operation that
Replicat processed from the trail. You can use the source SCN for tracking purposes,
especially when there are restores from backup and Replicat is positioned backward in the
trail.

• A subsequent entry that shows the scope of the operation (MAPPED, UNMAPPED, OTHER) and
how object names were mapped in the target DDL statement, if applicable.

• Another entry that shows how processing criteria was applied.

• Additional entries that show whether the operation succeeded or failed, and whether or not
Replicat applied error handling rules.

The following excerpt from a Replicat report illustrates a sequence of steps, including error
handling:

2023-09-06 18:50:13 INFO OGG-01487 DDL found, operation [create table
hr.employees(a int primary key, b int) (size 45)], start SCN [3344441],
commit SCN [3344461] instance [(1)], DDL seqno [0], marker seqno [0].
2023-09-06 18:50:13 INFO OGG-10451 DDL operation included [INCLUDE MAPPED],
optype [CREATE], objtype [TABLE], catalog "CDBA_PDB01", objowner "HR",
objname "EMPLOYEES".
2023-09-06 18:50:13 INFO OGG-01487 DDL found, operation [create table
HR.EMPLOYEES_BAK (a int primary key, b int) (size 45)], start SCN [3344467],

Chapter 9
Data Management

9-19

commit SCN [3344486] instance [(1)], DDL seqno [0], marker seqno [0].
2023-09-06 18:50:13 INFO OGG-10452 DDL operation excluded [EXCLUDE OBJNAME
HR.EMPLOYEES_BAK], optype [CREATE], objtype [EMPLOYEES_BAK], catalog
"CDBA_PDB01", objowner "HR", objname "EMPLOYEES_BAK".

Viewing DDL Reporting in Extract
The Extract report lists the following:

• The entire syntax of each captured DDL operation, the start and end SCN, the Oracle
instance, the DDL sequence number (from the SEQNO column of the history table), and the
size of the operation in bytes.

• A subsequent entry that shows how processing criteria was applied to the operation, for
example string substitution or INCLUDE and EXCLUDE filtering.

• Another entry showing whether the operation was written to the trail or excluded.

The following excerpt, taken from an Extract report, shows an included operation and an
excluded operation. There is a report message for the included operation, but not for the
excluded one.

2011-01-20 15:11:41 GGS INFO
2100 DDL found, operation
 [create table hr.employees
 (empId number (10) not null,
 Phone Number number,
 Designation varchar2(100),
 Date date,
 primary key (empId))],
 start SCN [1186754], commit SCN [1186772] instance [test11g (1)], DDL seqno
[4134].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation included [INCLUDE
OBJNAME employees*], optype [CREATE], objtype [TABLE], objname
[QATEST1.EMPLOYEES].

2011-01-20 15:11:41 GGS INFO 2100 DDL operation written to extract
trail file.

2011-01-20 15:11:42 GGS INFO 2100 Successfully added TRANDATA for table
with the key, table [QATEST1.EMPLOYEES], operation [ALTER TABLE
"QATEST1"."EMPLOYEES" ADD SUPPLEMENTAL LOG GROUP "GGS_EMPLOYEES_53475" (MYID)
ALWAYS /* GOLDENGATE_DDL_REPLICATION */].

2011-01-20 15:11:43 GGS INFO 2100 DDL found, operation [create table
EMPLOYEESTemp (
 vid varchar2(100),
 someDate date,
 primary key (vid))],
start SCN [1186777], commit SCN [1186795] instance [test11g (1)], DDL seqno
[4137].

2011-01-20 15:11:43 GGS INFO 2100 DDL operation excluded [EXCLUDE
OBJNAME EMPLOYEESTemp OPTYPE CREATE], optype [CREATE], objtype [TABLE],
objname [QATEST1.EMPLOYEESTEMP].

Chapter 9
Data Management

9-20

Statistics in the Process Reports
You can send current statistics for DDL processing to the Extract and Replicat reports by using
the SEND command in Admin Client.

SEND {EXTRACT | REPLICAT} group REPORT

The statistics show totals for:

• All DDL operations

• Operations that are MAPPED in scope

• Operations that are UNMAPPED in scope

• Operations that are OTHER in scope

• Operations that were excluded (number of operations minus included ones)

• Errors (Replicat only)

• Retried errors (Replicat only)

• Discarded errors (Replicat only)

• Ignored operations (Replicat only)

Tracing DDL Processing
If you open a support case with Oracle GoldenGate Technical Support, you might be asked to
turn on tracing. TRACE and TRACE2 control DDL tracing.

Procedural Replication

Learn about procedural replication and how to configure it.

About Procedural Replication

Procedural replication is available with Oracle database only. Oracle GoldenGate uses
procedural replication to replicate Oracle Database supplied PL/SQL procedures avoiding the
shipping and applying of high volume records usually generated by these operations.
Procedural replication implements dictionary changes that control user and session behavior
and the swapping of objects in dictionary.

Procedural replication is not related to the replication of the CREATE, ALTER, and DROP
statements (or DDL), rather it is the replication of a procedure call like:

CALL procedure_name(arg1, arg2, ...);

As opposed to:

exec procedure_name(arg1, arg2, ...)

After you enable procedural replication, calls to procedures in Oracle Database supplied
packages at one database are replicated to one or more other databases and then executed at
those databases. For example, a call to subprograms in the DBMS_REDEFINITION package can
perform an online redefinition of a table. If the table is replicated at several databases, and if

Chapter 9
Data Management

9-21

you want the same online redefinition to be performed on the table at each database, then you
can make the calls to the subprograms in the DBMS_REDEFINITION package at one database,
and Oracle GoldenGate can replicate those calls to the other databases.

To support procedural replication, your Oracle Database should be configured to identify
procedures that are enabled for this optimization.

To use procedural replication, the following prerequisites must be met:

• Oracle GoldenGate with Extract and Replicat.

• System supplied packages are only working in combination with DML and DDL.

Procedural Replication Process Overview
Procedural replication uses a trail record to ensure that sufficient information is encapsulated
with the record.

To use Oracle GoldenGate procedural replication, you need to enable it. Your Oracle Database
must have a built in mechanism to identify the procedures that are enabled for this
optimization.

PL/SQL pragmas are used to indicate which procedures can be replicated. When the pragma
is specified, a callback is made to Logminer on entry and exit from the routine. The callback
provides the name of the procedure call and arguments and indicates if the procedure exited
successfully or with an error. Logminer augments the redo stream with the information from the
callbacks. For supported procedures, the normal redo generated by the procedure is
suppressed, and only the procedure call is replicated.

A new trail record is generated to identify procedural replication. This trail record leverages
existing trail column data format for arguments passed to PL/SQL procedures. For LOBs, data
is passed in chunks similar to existing trail format for LOBs. This trail record has sufficient
information to replay the procedure as-is on the target.

When you enable procedural replication, it prevents writing of individual records impacted by
the procedure to the trail file.

If an error is encountered when applying a PL/SQL procedure, Replicat can replay the entire
PL/SQL procedure.

Determining Whether Procedural Replication Is On
Use the GG_PROCEDURE_REPLICATION_ON function in the DBMS_GOLDENGATE_ADM package to
determine whether Oracle GoldenGate procedural replication is on or off.

If you want to use Oracle GoldenGate in an Oracle Database Vault environment with
procedural replication, then you must set the appropriate privileges. See Oracle Database
Vault Administrator’s Guide.

To enable procedural replication:

1. Connect to the database as sys (sqlplus, sqlcl, sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Run the GG_PROCEDURE_REPLICATION_ON function.

Example 9-1 Running the GG_PROCEDURE_REPLICATION_ON Function

SET SERVEROUTPUT ON
DECLARE
 on_or_off NUMBER;

Chapter 9
Data Management

9-22

BEGIN
 on_or_off := DBMS_GOLDENGATE_ADM.GG_PROCEDURE_REPLICATION_ON;
 IF on_or_off=1 THEN
 DBMS_OUTPUT.PUT_LINE('Oracle GoldenGate procedural replication is ON.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Oracle GoldenGate procedural replication is OFF.');
 END IF;
END;
/

Enabling and Disabling Supplemental Logging

Oracle GoldenGate provides commands to allow you to enable or disable procedural
supplemental logging.

To enable supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with DBLOGIN.

CONNECT https://localhost:9000 DEPLOYMENT demo AS ggadmin PASSWORD adminpw

DBLOGIN USERIDALIAS ggeast DOMAIN OracleGoldenGate

2. Add supplemental logging for procedural replication.

ADD PROCEDURETRANDATA

The output shows:

INFO OGG-13005 PROCEDURETRANDATA supplemental logging has been enabled.

Supplemental logging is enabled for procedure replication.

To disable supplemental logging:

1. Connect to the source database as the Oracle GoldenGate administrator with dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS ggadmin PASSWORD adminpw

DBLOGIN USERIDALIAS ggeast DOMAIN OracleGoldenGate

2. Remove supplemental logging for procedure replication.

DELETE PROCEDURETRANDATA

Supplemental logging is disabled for procedure replication.

To view information about supplemental logging:

Chapter 9
Data Management

9-23

1. Connect to the source database as the Oracle GoldenGate administrator with dblogin.

CONNECT https://localhost:9000 DEPLOYMENT demo AS ggadmin PASSWORD adminpw

DBLOGIN USERIDALIAS ggeast DOMAIN OracleGoldenGate

2. Display supplemental logging information for procedure replication.

INFO PROCEDURETRANDATA

Supplemental logging information for procedure replication is displayed.

Filtering Features for Procedural Replication
You can specify which procedures and packages you want to include or exclude for procedure
replication.

You group supported packages and procedures using feature groups. You use the procedure
parameter with the INCLUDE or EXCLUDE keyword to filter features for procedure replication.

In the procedure parameter, INCLUDE or EXCLUDE specify the beginning of a filtering clause.
They specify the procedures to replicate (INCLUDE) or filter out (EXCLUDE). The filtering clause
must consist of the INCLUDE ALL_SUPPORTED or EXCLUDE ALL_SUPPORTED keyword followed by
any valid combination of the other filtering options of the procedure parameter. The EXCLUDE
filter takes precedence over any INCLUDE filters that contain the same criteria.

Note:

When replicating Oracle Streams Advanced Queuing (AQ) procedures, you must use
the RULE option in your parameter file as follows:

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED
or

PROCEDURE INCLUDE FEATURE AQ, RULE
Do not use PROCEDURE INCLUDE FEATURE AQ without the RULE option.

Including all system supplied packages at Extract:

1. Connect to Extract in the source database.

EXTRACT edba
USERIDALIAS admin_dbA DOMAIN ORADEV

2. Create a new trail file.

EXTTRAIL ea
3. Enable procedure replication, if not already done.

TRANLOGOPTIONS INTEGRATEDPARAMS (ENABLE_PROCEDURAL_REPLICATION Y)
4. Include filter for procedure replication.

PROCEDURE INCLUDE FEATURE ALL_SUPPORTED

Chapter 9
Data Management

9-24

You have successfully included all system supplied packages for procedure replication.

Excluding specific packages at Replicat:

1. Connect to Replicat in the target database.

REPLICAT rdba
USERIDALIAS admin_dbBDOMAIN ORADEV

2. Include filter for procedure replication.

PROCEDURE EXCLUDE FEATURE RLS
You have successfully excluded specific packages for procedure replication.

Handling Procedural Replication Errors
Procedural replication uses REPERROR parameter to configure the behavior of Replicat when an
procedural error occurs.

By default, Replicat will abend when a procedural replication occurs so using the following
steps sets up error handling:

1. Connect to Replicat in the target database.

REPLICAT rdba
USERIDALIAS admin_dbBDOMAIN ORADEV

2. Include filter for procedure replication.

PROCEDURE EXCLUDE FEATURE RLS
3. Specify error handling parameter, see REPERROR in Parameters and Functions

Reference for Oracle GoldenGate for other options.

REPERROR (PROCEDURE, DISCARD)
You have successfully handled errors for procedural replication.

Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
The DBA_GG_SUPPORTED_PROCEDURES view displays information about the supported packages
for Oracle GoldenGate procedural replication.

When a procedure is supported and Oracle GoldenGate procedural replication is on, calls to
the procedure are replicated, unless the procedure is excluded specifically.

1. Connect to the database as sys (sqlplus, sqlcl, sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Query the DBA_GG_SUPPORTED_PROCEDURES view.

Example 9-2 Displaying Information About the Packages Supported for Oracle
GoldenGate Procedural Replication

This query displays the following information about the packages:

• The owner of each package

• The name of each package

• The name of each procedure

• The minimum database release from which the procedure is supported

Chapter 9
Data Management

9-25

• Whether there is an exclusion rule that prevents the procedure from being replicated for
some database objects

COLUMN OWNER FORMAT A10
COLUMN PACKAGE_NAME FORMAT A15
COLUMN PROCEDURE_NAME FORMAT A15
COLUMN MIN_DB_VERSION FORMAT A14
COLUMN EXCLUSION_RULE_EXISTS FORMAT A14

SELECT OWNER,
 PACKAGE_NAME,
 PROCEDURE_NAME,
 MIN_DB_VERSION,
 EXCLUSION_RULE_EXISTS
 FROM DBA_GG_SUPPORTED_PROCEDURES;

Your output looks similar to the following:

OWNER PACKAGE_NAME PROCEDURE_NAME MIN_DB_VERSION EXCLUSION_RULE
---------- --------------- --------------- -------------- --------------
XDB DBMS_XDB_CONFIG ADDTRUSTMAPPING 12.2 NO
CTXSYS CTX_DDL ALTER_INDEX 12.2 NO
SYS DBMS_FGA DROP_POLICY 12.2 NO
SYS XS_ACL DELETE_ACL 12.2 NO
.
.
.

Monitoring Oracle GoldenGate Procedural Replication
A set of data dictionary views enable you to monitor Oracle GoldenGate procedural replication.

You can use the following views to monitor Oracle GoldenGate procedural replication:

View Description

DBA_GG_SUPPORTED_PACKAGES Provides details about supported packages for
Oracle GoldenGate procedural replication.

When a package is supported and Oracle
GoldenGate procedural replication is on, calls to
subprograms in the package are replicated.

DBA_GG_SUPPORTED_PROCEDURES Provides details about the procedures that are
supported for Oracle GoldenGate procedural
replication.

DBA_GG_PROC_OBJECT_EXCLUSION Provides details about all database objects that are
on the exclusion list for Oracle GoldenGate
procedural replication.

A database object is added to the exclusion list
using the INSERT_PROCREP_EXCLUSION_OBJ
procedure in the DBMS_GOLDENGATE_ADM package.
When a database object is on the exclusion list,
execution of a subprogram n the package is not
replicated if the subprogram operates on the
excluded object.

Chapter 9
Data Management

9-26

1. Connect to the database as sys (sqlplus, sqlcl, or sqldeveloper) not as an Oracle
GoldenGate administrator.

2. Query the views related to Oracle GoldenGate procedural replication.

Execute Commands, Stored Procedures, and Queries with SQLEXEC
The SQLEXEC parameter of Oracle GoldenGate enables Extract and Replicat to communicate
with the database to do the following:

• Execute a database command, stored procedure, or SQL query to perform a database
function, return results (SELECT statements) or perform DML (INSERT, UPDATE, DELETE)
operations.

• Retrieve output parameters from a procedure for input to a FILTER or COLMAP clause.

Note:

SQLEXEC provides minimal globalization support. To use SQLEXEC in the capture
parameter file of the source capture, make sure that the client character set in the
source .prm file is either the same or a superset of the source database character
set.

Performing Processing with SQLEXEC
SQLEXEC extends the functionality of both Oracle GoldenGate and the database by allowing
Oracle GoldenGate to use the native SQL of the database to execute custom processing
instructions.

• Stored procedures and queries can be used to select or insert data into the database, to
aggregate data, to denormalize or normalize data, or to perform any other function that
requires database operations as input. Oracle GoldenGate supports stored procedures
that accept input and those that produce output.

• Database commands can be issued to perform database functions required to facilitate
Oracle GoldenGate processing, such as disabling triggers on target tables and then
enabling them again.

Using SQLEXEC
The SQLEXEC parameter can be used as follows:

• as a clause of a TABLE or MAP statement

• as a standalone parameter at the root level of the Extract or Replicat parameter file.

Apply SQLEXEC as a Standalone Statement
When used as a standalone parameter statement in the Extract or Replicat parameter file,
SQLEXEC can execute a stored procedure, query, or database command. As such, it need not
be tied to any specific table and can be used to perform general SQL operations.

For example, if the Oracle GoldenGate database user account is configured to time-out when
idle, you could use SQLEXEC to execute a query at a defined interval, so that Oracle
GoldenGate does not appear idle. As another example, you could use SQLEXEC to issue an

Chapter 9
Data Management

9-27

essential database command, such as to disable target triggers. A standalone SQLEXEC
statement cannot accept input parameters or return output parameters.

Parameter syntax Purpose

SQLEXEC 'call procedure_name()'
Execute a stored procedure

SQLEXEC 'sql_query'
Execute a query

SQLEXEC 'database_command'
Execute a database command

Argument Description

'call
procedure_name ()'

Specifies the name of a stored procedure to execute. The statement must
be enclosed within single quotes.

Example:

SQLEXEC 'call prc_job_count ()'

'sql_query'
Specifies the name of a query to execute. The query must be contained all
on one line and enclosed within single quotes.

Specify case-sensitive object names the way they are stored in the
database, such as within double quotes for Oracle object names that are
case-sensitive.

SQLEXEC 'SELECT "col1" from "schema"."table"'

'database_command'
Specifies a database command to execute. Must be a valid command for
the database.

SQLEXEC provides options to control processing behavior, memory usage, and error handling.
For more information, see SQLEXEC in the Parameters and Functions Reference for Oracle
GoldenGate.

Apply SQLEXEC within a TABLE or MAP Statement
When used within a TABLE or MAP statement, SQLEXEC can pass and accept parameters. It can
be used for procedures and queries, but not for database commands.

Syntax

This syntax executes a procedure within a TABLE or MAP statement.

SQLEXEC (SPNAME sp_name,
[ID logical_name,]
{PARAMS param_spec | NOPARAMS})

Chapter 9
Data Management

9-28

Argument Description

SPNAME
Required keyword that begins a clause to execute a stored procedure.

sp_name
Specifies the name of the stored procedure to execute.

ID logical_name
Defines a logical name for the procedure. Use this option to execute
the procedure multiple times within a TABLE or MAP statement. Not
required when executing a procedure only once.

PARAMS param_spec |
NOPARAMS

Specifies whether or not the procedure accepts parameters. One of
these options must be used (see Using Input and Output Parameters).

Syntax

This syntax executes a query within a TABLE or MAP statement.

SQLEXEC (ID logical_name, QUERY ' query ',
{PARAMS param_spec | NOPARAMS})

Argument Description

ID logical_name
Defines a logical name for the query. A logical name is required in
order to extract values from the query results. ID logical_name
references the column values returned by the query.

QUERY ' sql_query '
Specifies the SQL query syntax to execute against the database. It can
either return results with a SELECT statement or change the database
with an INSERT, UPDATE, or DELETE statement. The query must be
within single quotes and must be contained all on one line. Specify
case-sensitive object names the way they are stored in the database,
such as within quotes for Oracle case-sensitive names.

SQLEXEC 'SELECT "col1" from "schema"."table"'

PARAMS param_spec |
NOPARAMS

Defines whether or not the query accepts parameters. One of these
options must be used (see Using Input and Output Parameters).

If you want to execute a query on a table residing on a different database than the current
database, then the different database name has to be specified with the table. The delimiter
between the database name and the tablename should be a colon (:).

The following are some example use cases:

select col1 from db1:tab1
select col2 from db2:schema2.tab2

Chapter 9
Data Management

9-29

select col3 from tab3
select col3 from schema4.tab4

Using Input and Output Parameters
Oracle GoldenGate provides options for passing input and output values to and from a
procedure or query that is executed with SQLEXEC within a TABLE or MAP statement.

Passing Values to Input Parameters
To pass data values to input parameters within a stored procedure or query, use the PARAMS
option of SQLEXEC.

Syntax

PARAMS ([OPTIONAL | REQUIRED] param = {source_column | function}
[, ...])

Where:

• OPTIONAL indicates that a parameter value is not required for the SQL to execute. If a
required source column is missing from the database operation, or if a column-conversion
function cannot complete successfully because a source column is missing, the SQL
executes anyway.

• REQUIRED indicates that a parameter value must be present. If the parameter value is not
present, the SQL will not be executed.

• param is one of the following:

– For a stored procedure, it is the name of any parameter in the procedure that can
accept input, such as a column in a lookup table.

– For an Oracle query, it is the name of any input parameter in the query excluding the
leading colon. For example, :param1 would be specified as param1 in the PARAMS
clause.

– For a non-Oracle query, it is pn, where n is the number of the parameter within the
statement, starting from 1. For example, in a query with two parameters, the param
entries are p1 and p2.

• {source_column | function} is the column or Oracle GoldenGate conversion function that
provides input to the procedure.

Passing Values to Output Parameters
To pass values from a stored procedure or query as input to a FILTER or COLMAP clause, use
the following syntax:

Syntax

{procedure_name | logical_name}.parameter

Where:

• procedure_name is the actual name of the stored procedure. Use this argument only if
executing a procedure one time during the life of the current Oracle GoldenGate process.

• logical_name is the logical name specified with the ID option of SQLEXEC. Use this
argument if executing a query or a stored procedure that will be executed multiple times.

Chapter 9
Data Management

9-30

• parameter is either the name of the parameter or RETURN_VALUE, if extracting returned
values.

SQLEXEC Examples Using Parameters
These examples use stored procedures and queries with input and output parameters.

Note:

Additional SQLEXEC options are available for use when a procedure or query includes
parameters. See SQLEXEC in the Parameters and Functions Reference for Oracle
GoldenGate.

Example 9-3 SQLEXEC with a Stored Procedure

This example uses SQLEXEC to run a stored procedure named LOOKUP that performs a query to
return a description based on a code. It then maps the results to a target column named
NEWACCT_VAL.

CREATE OR REPLACE PROCEDURE LOOKUP
(CODE_PARAM IN VARCHAR2, DESC_PARAM OUT VARCHAR2)
BEGIN
 SELECT DESC_COL
 INTO DESC_PARAM
 FROM LOOKUP_TABLE
 WHERE CODE_COL = CODE_PARAM
END;

Contents of MAP statement:

MAP sales.account, TARGET sales.newacct, &
 SQLEXEC (SPNAME lookup, PARAMS (code_param = account_code)), &
 COLMAP (newacct_id = account_id, newacct_val = lookup.desc_param);

SQLEXEC executes the LOOKUP stored procedure. Within the SQLEXEC clause, the PARAMS
(code_param = account_code) statement identifies code_param as the procedure parameter to
accept input from the account_code column in the account table.

Replicat executes the LOOKUP stored procedure prior to executing the column map, so that the
COLMAP clause can extract and map the results to the newacct_val column.

Example 9-4 SQLEXEC with a Query

This example implements the same logic as used in the previous example, but it executes a
SQL query instead of a stored procedure and uses the @GETVAL function in the column map.

A query must be on one line. To split an Oracle GoldenGate parameter statement into multiple
lines, an ampersand (&) line terminator is required.

Query for an Oracle database:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &

Chapter 9
Data Management

9-31

QUERY 'select desc_col desc_param from lookup_table where code_col
= :code_param', &
PARAMS (code_param = account_code)), &
COLMAP (newacct_id = account_id, newacct_val = &
@getval (lookup.desc_param));

Query for a non-Oracle database:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &
QUERY 'select desc_col desc_param from lookup_table where code_col = ?', &
PARAMS (p1 = account_code)), &
COLMAP (newacct_id = account_id, newacct_val = &
@getval (lookup.desc_param));

Handling SQLEXEC Errors
There are two types of error conditions to consider when implementing SQLEXEC:

• The column map requires a column that is missing from the source database operation.
This can occur for an update operation if the database only logs the values of columns that
changed, rather than all of the column values. By default, when a required column is
missing, or when an Oracle GoldenGate column-conversion function results in a "column
missing" condition, the stored procedure does not execute. Subsequent attempts to extract
an output parameter from the stored procedure results in a "column missing condition" in
the COLMAP or FILTER clause.

• The database generates an error.

Handling Database Errors
Use the ERROR option in the SQLEXEC clause to direct Oracle GoldenGate to respond in one of
the following ways:

Table 9-1 ERROR Options

Action Description

IGNORE Causes Oracle GoldenGate to ignore all errors associated with the stored procedure or
query and continue processing. Any resulting parameter extraction results in a "column
missing" condition. This is the default.

REPORT Ensures that all errors associated with the stored procedure or query are reported to
the discard file. The report is useful for tracing the cause of the error. It includes both
an error description and the value of the parameters passed to and from the procedure
or query. Oracle GoldenGate continues processing after reporting the error.

RAISE Handles errors according to rules set by a REPERROR parameter specified in the
Replicat parameter file. Oracle GoldenGate continues processing other stored
procedures or queries associated with the current TABLE or MAP statement before
processing the error.

FINAL Performs in a similar way to RAISE except that when an error associated with a
procedure or query is encountered, any remaining stored procedures and queries are
bypassed. Error processing is called immediately after the error.

FATAL Causes Oracle GoldenGate to abend immediately upon encountering an error
associated with a procedure or query.

Chapter 9
Data Management

9-32

Handling Missing Column Values
Use the @COLTEST function to test the results of the parameter that was passed, and then map
an alternative value for the column to compensate for missing values, if desired. Otherwise, to
ensure that column values are available, you can use the FETCHCOLS or FETCHCOLSEXCEPT
option of the TABLE parameter to fetch the values from the database if they are not present in
the log. As an alternative to fetching columns, you can enable supplemental logging for those
columns.

Additional SQLEXEC Guidelines
Observe the following SQLEXEC guidelines:

• Up to 20 stored procedures or queries can be executed per TABLE or MAP entry. They
execute in the order listed in the parameter statement.

• A database login by the Oracle GoldenGate user must precede the SQLEXEC clause. Use
the SOURCEDB and USERIDALIAS parameter in the Extract parameter file or the TARGETDB and
USERIDALIAS parameter in the Replicat parameter file, as needed for the database type
and configured authentication method.

• The SQL is executed by the Oracle GoldenGate user. This user must have the privilege to
execute stored procedures and call RDBM-supplied procedures.

• Database operations within a stored procedure or query are committed in same context as
the original transaction.

• Do not use SQLEXEC to update the value of a primary key column. If SQLEXEC is used to
update the value of a key column, then the Replicat process will not be able to perform a
subsequent update or delete operation, because the original key value will be unavailable.
If a key value must be changed, you can map the original key value to another column and
then specify that column with the KEYCOLS option of the TABLE or MAP parameter.

• For Db2, Oracle GoldenGate uses the ODBC SQLExecDirect function to execute a SQL
statement dynamically. This means that the connected database server must be able to
prepare the statement dynamically. ODBC prepares the SQL statement every time it is
executed (at the requested interval). Typically, this does not present a problem to Oracle
GoldenGate users. See the IBM Db2 documentation for more information.

• All object names in a SQLEXEC statement must be fully qualified with their two-part or three-
part names, as appropriate for the database.

• All objects that are affected by a SQLEXEC stored procedure or query must exist with the
correct structures prior to the execution of the SQL. Consequently, DDL on these objects
that affects structure (such as CREATE or ALTER) must happen before SQLEXEC executes.

• All objects affected by a standalone SQLEXEC statement must exist before the Oracle
GoldenGate processes start. Because of this, DDL support must be disabled for those
objects; otherwise, DDL operations could change the structure or delete the object before
the SQLEXEC procedure or query executes on it.

Chapter 9
Data Management

9-33

Set up and Use the Master Keys and Encryption Keys
You can set the master keys and encryption keys using the Key Management tab in the
Configuration page of the Administration Server.

Using Master Keys

If you want to encrypt your data, then create a Master Key by clicking the + sign in the Master
Key section. The master key is generated automatically.

You can change the status of the key to Available or Unavailable, by clicking the edit icon in the
Master Key table. You can also delete the Master Key from the table by clicking the delete
icon.

For details on the Master Key concept, see Encrypting Data with the Master Key and Wallet
Method. .

Using the Encryption Keys

To use this method of data encryption, you configure Oracle GoldenGate to generate an
encryption key and store the key in a local ENCKEYS file. The ENCKEYS file must be secured
through the normal method of assigning file permissions in the operating system. This
procedure generates an AES encryption key and provides instructions for storing it in the
ENCKEYS file.

To generate the ENCKEYS files, click the + sign in the Encryption Keys section. The
Encryption Keys is generated.

For details on the Encryption Keys concept, see the Encrypting the Data with the ENCKEYS
Method.

Access the Parameter Files
The Global parameters, Extract, Replicat parameter files are available in the Parameter Files
section of the Administration Server.

You use the Administration Server Configuration page and Parameter Files tab to work with
your various parameter files.

You use the different parameter file options:

1. Select the Configuration option from the Administration Server left-navigation pane.

2. Select the Parameter Files tab.

A list of existing parameter files is displayed along with the GLOBALS parameter file.

3. If you select any of the parameter files, you are presented with the option to edit or delete
the selected file. If you want to change the GLOBALS parameter file, you need to stop and
restart all of the services.

4. Click + add parameter files.

5. Enter the file name and the required parameters. Make sure to enter the file name with
the .prm extension.

6. Click Submit. The new parameter file is displayed in the list of parameter files.

The actual location of the parameter files on the disk can be determined using the following
step:

Chapter 9
Data Management

9-34

1. Identify the GoldenGate Deployment ETC Home:

a. Go to Service Manager Overview page.

b. Click the deployment from the Deployments section for which you need to find the
parameters file.

c. Under the Deployment Detail window, navigate to the Oracle GoldenGate
deployment /etc home directory.

d. Go into the /config/ogg directory where the parameter file is located.

The following example shows how to navigate to your parameter file location:

[oracle ~]$ cd /opt/app/oracle/gg_deployments/Atlanta/etc
[oracle etc]$ cd conf/ogg[oracle ogg]$ lsEXT_DEMO.prm GLOBALS REP_DEMO.prm

Configure an Encryption Profile
Oracle GoldenGate Administration Server provides options to set up profiles for managed
Extract and Replicat (ER) processes. These processes are assigned auto-start and auto-
restart properties to control their life cycles.

You can create profiles for managed processes using the Administration Server or the Admin
Client. To create a profile in the Administration Server, perform the following tasks:

1. Click Profile from the Administration Server navigation pane.

2. In the Managed Process Settings tab, you can click + sign to start creating a profile.
There's also a default profile preset on this page.

3. Enter the details for the profile options including the Profile Name, Description, Auto Start
and Auto Restart options. See the following table for Auto Start and Auto Restart options

Option Description Extract Type

Intent What you want the Extract to be
used for, such as High
Availability or the Unidirectional
default.

Classic, Integrated, and Initial
Load

Begin How you want the Extract to
start. At a custom time that you
select, a database CSN, or the
Now default.

Classic and Integrated

Trail Name A two character trail name. Classic and Integrated

Trail Subdirectory, Size,
Sequence, and Offset

You can further configure the
trail details.

Classic and Integrated

Remote Set if the trail is not on the same
server.

Classic and Integrated

Thread Number Set to a specific redo log
number. The default is 1.

Classic

Encryption Profile Provide the name of the
encryption profile for the
Extract. If no encryption profile
is created, then the default
encryption profile is selected, by
default

Classic, Integrated, and Initial
Load.

Chapter 9
Data Management

9-35

Option Description Extract Type

Encryption Profile Type Provide the type of Key
Management Service being
used. Oracle Key Vault is
selected by default.

Classic, Integrated, and Initial
Load.

Managed Options X X

Profile Name Provides the name of the
autostart and autorestart profile.
You can select the default or
custom options.

Classic, Integrated, and Initial
Load.

Critical to deployment health Enable this option if the profile
is critical for the deployment
health.

Classic, Integrated, and Initial
Load.

Auto Start Enables autostart for the
process.

Enables autostart for the
process.

Max Retries Specify the maximum number of
retries to try to start the process

Classic, Integrated, and Initial
Load.

Retry Delay Delay time in trying to start the
process

Classic, Integrated, and Initial
Load.

Retries Window The duration interval to try to
start the process

Classic, Integrated, and Initial
Load.

Restart on Failure only If true the task is only restarted
if it failes

Classic, Integrated, and Initial
Load.

Disable Task After Retries
Exhausted

If true then the task is disabled
after exhausting all attempts to
restart the process.

Classic, Integrated, and Initial
Load.

Access Extract and Replicat Log Information
The diagnosis of Extract and Replicat transactions provides information about the severity of a
transaction along with the timestamp. This information is helpful in case you need to determine
if and when a particular issue occurred including the cause of the issue.

The Extract and Replicat log information is available on the Diagnosis page of Administration
Server. To access the Diagnosis page, click the left navigation page of the Administration
Server and select Diagnosis.

Using the Table

An updated log of Extract and Replicat server messages is displayed. You can sort the list by
date or severity by clicking on the adjacent arrow. Also, you can refresh this log and choose
how many pages you want to view.

To search, you select Date, Severity, or Message, and then select the appropriate options to
construct your search.

Notice the Notifications tab at the bottom of the page. It displays server messages, which are
not updated in the log due to transaction errors. For example, failure to log in to the database
using the database credentials.

Mapping and Manipulating Data

Chapter 9
Data Management

9-36

Learn about tasks, functions, commands, and processes used for integrating data between
source and target tables.

Guidelines for Using Self-describing Trails
Self-describing trail files are the default trail file format. Oracle recommends that you use self-
describing trail files. You should only use SOURCEDEFS OVERRIDE and TARGETDEFS OVERRIDE for
backward compatibility with trail file formats lower than 12.2.

If using the self-describing trails, then the column names on the source are mapped to the
column names in the target table. Order of columns doesn't matter and if column names are
different, then they need to be explicitly mapped using COLMAP.

Parameters that Control Mapping and Data Integration
All data selection, mapping, and manipulation that Oracle GoldenGate performs is
accomplished by using one or more options of the TABLE and MAP parameters.

• Use TABLE in the Extract parameter file.

• Use MAP in the Replicat parameter file.

TABLE and MAP specify the database objects that are affected by the other parameters in the
parameter file. See Specifying Object Names in Oracle GoldenGate Input for instructions for
specifying object names in these parameters.

Mapping between Dissimilar Databases
Mapping and conversion between tables that have different data structures requires either a
source-definitions file, a target-definitions file, or in some cases both. Mapping between
dissimilar databases is controlled by the self-describing trails, and mapping is done by column
name, regardless of the data type for the source or target column.

If you don't want automatic mapping based on the self-describing trails or want backward
compatibility then you can use SOURCEDEFS or TARGETDEFS.

Mapping and Conversion on NonStop Systems
If you are mapping or converting data from a Windows or UNIX system to a NonStop Enscribe
target, the mapping or conversion must be performed on the Windows or UNIX source system.
Replicat for NonStop cannot convert three-part or two-part SQL table names and data types to
the three-part file names that are used for the Enscribe platform. Extract can format the trail
data with Enscribe names and target data types.

Mapping and Conversion on Windows and UNIX Systems
When Oracle GoldenGate is operating only on Windows-based and UNIX-based systems,
column mapping and conversion can be performed in the Extract process, or in the Replicat
process. To prevent the added overhead of this processing on the Extract process, you can
configure the mapping and conversion to be performed on the Replicat process or on an
intermediary system.

In the case where there are multiple sources and one target, it might be more efficient to
perform the mapping and conversion on the source.

Chapter 9
Data Management

9-37

Globalization Considerations when Mapping Data
When planning to map and convert data between databases and platforms, take into
consideration what is supported or not supported by Oracle GoldenGate in terms of
globalization.

Conversion between Character Sets
Oracle GoldenGate converts between source and target character sets if they are different, so
that object names and column data are compared, mapped, and manipulated properly from
one database to another. See Supported Character Sets, for a list of supported character sets.

To ensure accurate character representation from one database to another, the following must
be true:

• The character set of the target database must be a superset or equivalent of the character
set of the source database. Equivalent means not equal, but having the same set of
characters. For example, Shift-JIS and EUC-JP technically are not completely equal, but
have the same characters in most cases.

• If your client applications use different character sets, the database character set must also
be a superset or equivalent of the character sets of the client applications.

• In many databases, including Oracle, it is possible to force a character into a database that
is not part of the Character Set. Oracle GoldenGate considers this as an invalid value, and
may not map this character correctly when replicating data. For these types of situations
you can use the REPLACEBADCHAR parameter as described in the Parameters and Functions
Reference for Oracle GoldenGate.

In this configuration, every character is represented when converting from a client or source
character set to the local database character set.

A Replicat process can support conversion from one source character set to one target
character set.

Database Object Names

Oracle GoldenGate processes catalog, schema, table and column names in their native
language as determined by the character set encoding of the source and target databases.
This support preserves single-byte and multibyte names, symbols, accent characters, and
case-sensitivity with locale taken into account where available, at all levels of the database
hierarchy.

Column Data

Oracle GoldenGate supports the conversion of column data between character sets when the
data is contained in the following column types:

• Character-type columns: CHAR/VARCHAR/CLOB to CHAR/VARCHAR/CLOB of another character
set; and CHAR/VARCHAR/CLOB to and from NCHAR/NVARCHAR/NCLOB.

• Columns that contain string-based numbers and date-time data. Conversions of these
columns is performed between z/OS EBCDIC and non-z/OS ASCII data. Conversion is not
performed between ASCII and ASCII versions of this data, nor between EBCDIC and
EBCDIC versions, because the data are compatible in these cases.

Chapter 9
Data Management

9-38

Note:

Oracle GoldenGate supports timestamp data from 0001-01-03 00:00:00 to
9999-12-31 23:59:59. If a timestamp is converted from GMT to local time, these
limits also apply to the resulting timestamp. A value of zero month, zero day field,
or an all zero date value isn't supported. For example, values such as
0000-00-00 00:00:00, or any date value that includes a zero month or zero day
field isn't supported.

Character-set conversion for column data is limited to a direct mapping of a source column and
a target column in the COLMAP or USEDEFAULTS clauses of the Replicat MAP parameter. A direct
mapping is a name-to-name mapping without the use of a stored procedure or column-
conversion function. Replicat performs the character-set conversion. No conversion is
performed by Extract.

Preservation of Locale
Oracle GoldenGate takes the locale of the database into account when comparing case-
insensitive object names. See Supported Locales for a list of supported locales.

Support for Escape Sequences
Oracle GoldenGate supports the use of an escape sequence to represent a string column,
literal text, or object name in the parameter file. You can use an escape sequence if the
operating system does not support the required character, such as a control character, or for
any other purpose that requires a character that cannot be used in a parameter file.

An escape sequence can be used anywhere in the parameter file, but is particularly useful in
the following elements within a TABLE or MAP statement:

• An object name

• WHERE clause

• COLMAP clause to assign a Unicode character to a Unicode column, or to assign a native-
encoded character to a column.

• Oracle GoldenGate column conversion functions within a COLMAP clause.

Oracle GoldenGate supports the following types of escape sequence:

• \uFFFF Unicode escape sequence. Any UNICODE code point can be used except surrogate
pairs.

• \377 Octal escape sequence

• \xFF Hexadecimal escape sequence

The following rules apply:

• If used for mapping of an object name in TABLE or MAP, no restriction apply. For example,
the following TABLE specification is valid:

TABLE schema."\u3000ABC";
• If used with a column-mapping function, any code point can be used, but only for an

NCHAR/NVARCHAR column. For an CHAR/VARCHAR column, the code point is limited to the
equivalent of 7-bit ASCII.

• The source and target data types must be identical (for example, NCHAR to NCHAR).

Chapter 9
Data Management

9-39

• Begin each escape sequence with a reverse solidus (code point U+005C), followed by the
character code point. (A solidus is more commonly known as the backslash symbol.) Use
the escape sequence, instead of the actual character, within your input string in the
parameter statement or column-conversion function.

Note:

To specify an actual backslash in the parameter file, specify a double backslash. For
example, the following finds a backslash in COL1: @STRFIND (COL1, '\\').

To Use the \uFFFF Unicode Escape Sequence

• The \uFFFF Unicode escape sequence must begin with a lowercase u, followed by exactly
four hexadecimal digits.

• Supported ranges are as follows:

– 0 to 9 (U+0030 to U+0039)

– A to F (U+0041 to U+0046)

– a to f (U+0061 to U+0066)

\u20ac is the Unicode escape sequence for the Euro currency sign.

Note:

For reliable cross-platform support, use the Unicode escape sequence. Octal and
hexadecimal escape sequences are not standardized on different operating systems.

To Use the \377 Octal Escape Sequence

• Must contain exactly three octal digits.

• Supported ranges:

– Range for first digit is 0 to 3 (U+0030 to U+0033)

– Range for second and third digits is 0 to 7 (U+0030 to U+0037)

\200 is the octal escape sequence for the Euro currency sign on Microsoft Windows

To Use the \xFF Hexadecimal Escape Eequence

• Must begin with a lowercase x followed by exactly two hexadecimal digits.

• Supported ranges:

– 0 to 9 (U+0030 to U+0039)

– A to F (U+0041 to U+0046)

– a to f (U+0061 to U+0066)

\x80 is the hexadecimal escape sequence for the Euro currency sign on Microsoft Windows
1252 Latin1 code page.

Chapter 9
Data Management

9-40

Mapping Columns Using TABLE and MAP
Oracle GoldenGate provides for column mapping at the table level and at the global level.
Default column mapping is also provided in the absence of explicit column mapping rules.

This section contains the following guidelines for mapping columns:

Supporting Case and Special Characters in Column Names
By default, Oracle GoldenGate follows SQL-92 rules for specifying column names and literals.
In Oracle GoldenGate parameter files, conversion functions, user exits, and commands, case-
sensitive column names must be enclosed within double quotes if double quotes are required
by the database to enforce case-sensitivity. For other case-sensitive databases that do not
require quotes, case-sensitive column names must be specified as they are stored in the
database. Literals must be enclosed within single quotes. See Differentiating Case-Sensitive
Column Names from Literals for more information.

Configuring Table-level Column Mapping with COLMAP
If you are using self-describing trails then any column on the source object is mapped to the
same column name on the target object. You only need to manage column names that are
different between source and target or if you need to transform a column.

However, if not using self-describing trails then the default mapping is done by column order
and not the column name. So column 1 on the source will be mapped to column 1 on the
target, column 2 to column 2 and so on.

Use the COLMAP option of the MAP and TABLE parameters to:

• map individual source columns to target columns that have different names.

• specify default column mapping when an explicit column mapping is not needed.

• Provide instructions for selecting, mapping, translating, and moving data from a source
column into a target column.

Using USEDEFAULTS to Enable Default Column Mapping

You can use the USEDEFAULTS option of COLMAP to specify automatic default column mapping for
any corresponding source and target columns that have identical names. USEDEFAULTS can
save you time by eliminating the need to map every target column explicitly.

Default mapping causes Oracle GoldenGate to map those columns and, if required, translate
the data types based on the data-definitions file. Do not specify default mapping for columns
that are mapped already with an explicit mapping statement.

The following example of a column mapping illustrates the use of both default and explicit
column mapping for a source table ACCTBL and a target table ACCTTAB. Most columns are the
same in both tables, except for the following differences:

• The source table has a CUST_NAME column, whereas the target table has a NAME column.

• A ten-digit PHONE_NO column in the source table corresponds to separate AREA_CODE,
PHONE_PREFIX, and PHONE_NUMBER columns in the target table.

• Separate YY, MM, and DD columns in the source table correspond to a single
TRANSACTION_DATE column in the target table.

Chapter 9
Data Management

9-41

To address those differences, USEDEFAULTS is used to map the similar columns automatically,
while explicit mapping and conversion functions are used for dissimilar columns.

The following sample shows the column mapping using the COLMAP option of the MAP and TABLE
parameters. It describes the mapping of the source table ACCTBL to the target table ACCTTAB.

MAP SALES.ACCTBL, TARGET SALES.ACCTTAB,
 COLMAP (USEDEFAULTS,
 NAME = CUST_NAME,
 TRANSACTION_DATE = @DATE ('YYYY-MM-DD', 'YY',YEAR,
'MM', MONTH, 'DD', DAY),
 AREA_CODE = @STREXT (PHONE_NO, 1, 3),
 PHONE_PREFIX = @STREXT (PHONE_NO, 4, 6),
 PHONE_NUMBER = @STREXT (PHONE_NO, 7, 10)
)
;

Table 9-2 Sample Column Mapping

Parameter statement Description

COLMAP
Begins the COLMAP statement.

USEDEFAULTS,
Maps source columns as-is when the target column names are
identical.

NAME = CUST_NAME,
Maps the source column CUST_NAME to the target column NAME.

TRANSACTION_DATE =
@DATE ('YYYY-MM-DD', 'YY',
YEAR, 'MM', MONTH, 'DD',
DAY),

Converts the transaction date from the source date columns to
the target column TRANSACTION_DATE by using the @DATE
column conversion function.

AREA_CODE =
@STREXT (PHONE_NO, 1, 3),
PHONE_PREFIX =
@STREXT (PHONE_NO, 4, 6),
PHONE_NUMBER =
@STREXT (PHONE_NO, 7, 10))
;

Converts the source column PHONE_NO into the separate target
columns of AREA_CODE, PHONE_PREFIX, and PHONE_NUMBER by
using the @STREXT column conversion function.

See Understanding Default Column Mapping for more information about the rules followed by
Oracle GoldenGate for default column mapping.

Chapter 9
Data Management

9-42

Specifying the Columns to be Mapped in the COLMAP Clause

The COLMAP syntax is the following:

COLMAP ([USEDEFAULTS,] target_column = source_expression)

In this syntax, target_column is the name of the target column and source_expression. Some
examples of source_expressions are:

• The name of a source column, such as ORD_DATE.

• Numeric constant, such as 123.

• String constant enclosed within single quotes, such as 'ABCD'.

• An expression using an Oracle GoldenGate column-conversion function. Within a COLMAP
statement, you can use any of the Oracle GoldenGate column-conversion functions to
transform data for the mapped columns, for example:

@STREXT (COL1, 1, 3)

• Here's an example of using BEFORE column_name: BEFORE ORD_DATE
• Here's an example of using AFTER column_name : AFTER ORD_DATE. This is the default

option if a column name is listed.

If the column mapping involves case-sensitive columns from different database types, specify
each column as it is stored in the database.

• If the database requires double quotes to enforce case-sensitivity, specify the case-
sensitive column name within double quotes.

• If the database is case-sensitive without requiring double quotes, specify the column name
as it is stored in the database.

The following shows a mapping between a target column in an Oracle database and a source
column in a case-sensitive SQL Server database.

COLMAP ("ColA" = ColA)

See Specifying Object Names in Oracle GoldenGate Input for more information about
specifying names to Oracle GoldenGate.

See Globalization Considerations when Mapping Data for globalization considerations when
mapping source and target columns in databases that have different character sets and
locales.

Avoid using COLMAP to map a value to a key column (which causes the operation to become a
primary key update), The WHERE clause that Oracle GoldenGate uses to locate the target row
will not use the correct before image of the key column. Instead, it will use the after image. This
will cause errors if you are using any functions based on that key column, such as a SQLEXEC
statement.

Column Mapping Limitations

Here are the column mapping limitations:

Chapter 9
Data Management

9-43

• LOB columns cannot be used in FILTER, WHERE columns, or as a source_expression in a
COLMAP statement. LOB columns are BLOB, CLOB, NCLOB, XMLType, User-Defined Data Types,
Nested Tables, VARRAYs and other special data types.

• If the source column contains more than 4000 bytes, it cannot be used in transformation
routines, as the value is stored in the trail as an LOB record. For example a VARCHAR2(4000
CHAR) in Oracle and the Japanese character set is stored as 3 bytes for each character.
This implies that the column could be 12000 bytes long and Oracle GoldenGate would
store this value as an LOB field.

• The full SQL statement that Oracle GoldenGate would execute would exceed 4MB in size.
For example, if you have a table with thousands of VARCHAR2(4000) columns and you want
to put 4000 bytes in each one, this could cause the total SQL statement that Oracle
GoldenGate is going to execute to exceed the maximum size of 4MB.

Configuring Global Column Mapping with COLMATCH
Use the COLMATCH parameter to create global rules for column mapping. With COLMATCH, you
can map between similarly structured tables that have different column names for the same
sets of data. COLMATCH provides a more convenient way to map columns of this type than does
using table-level mapping with a COLMAP clause in individual TABLE or MAP statements.

Case-sensitivity is supported as follows:

• For MySQL, SQL Server if the database is case-sensitive, COLMATCH looks for an exact
case and name match regardless of whether or not a name is specified in quotes.

• For Oracle Database and Db2 databases, where names can be either case-sensitive or
case-insensitive in the same database and double quotes are required to show case-
sensitivity, COLMATCH requires an exact case and name match when a name is in quotes in
the database.

Syntax

COLMATCH
{NAMES target_column = source_column |
PREFIX prefix |
SUFFIX suffix |
RESET}

Chapter 9
Data Management

9-44

Argument Description

NAMES target_column = source_column
Maps based on column names.

Put double quotes around the column name if it is
case-sensitive and the database requires quotes to
enforce case-sensitivity. For these database types,
an unquoted column name is treated as case-
insensitive by Oracle GoldenGate.

For databases that support case-sensitivity without
requiring quotes, specify the column name as it is
stored in the database.

If the COLMATCH is between columns in different
database types, make certain the names reflect the
appropriate case representation for each one. For
example, the following specifies a case-sensitive
target column name "aBc" in an Oracle Database
and a case-sensitive source column name aBc in a
case-sensitive SQL Server database.

COLMATCH NAMES "aBc" = aBc

PREFIX prefix | SUFFIX suffix
Ignores the specified name prefix or suffix.

Put double quotes around the prefix or suffix if the
database requires quotes to enforce case-
sensitivity, for example "P_". For those database
types, an unquoted prefix or suffix is treated as
case-insensitive.

For databases that support case-sensitivity without
requiring quotes, specify the prefix or suffix as it is
stored in the database. For example, P_ specifies a
capital P prefix.

The following example specifies a case-insensitive
prefix to ignore. The target column name P_ABC is
mapped to source column name ABC, and target
column name P_abc is mapped to source column
name abc.

COLMATCH PREFIX p_

The following example specifies a case-sensitive
suffix to ignore. The target column name ABC_k
is mapped to the source column name ABC, and
the target column name "abc_k" is mapped to the
source column name "abc".

SUFFIX "_k"

RESET
Turns off previously defined COLMATCH rules for
subsequent TABLE or MAP statements.

The following example illustrates when to use COLMATCH. The source and target tables are
identical except for slightly different table and column names.The database is case-insensitive.

Chapter 9
Data Management

9-45

ACCT Table ORD Table

CUST_CODE
CUST_NAME
CUST_ADDR
PHONE
S_REP
S_REPCODE

CUST_CODE
CUST_NAME
ORDER_ID
ORDER_AMT
S_REP
S_REPCODE

ACCOUNT Table ORDER Table

CUSTOMER_CODE
CUSTOMER_NAME
CUSTOMER_ADDRESS
PHONE
REP
REPCODE

CUSTOMER_CODE
CUSTOMER_NAME
ORDER_ID
ORDER_AMT
REP
REPCODE

To map the source columns to the target columns in this example, as well as to handle
subsequent maps for other tables, the syntax is:

COLMATCH NAMES CUSTOMER_CODE = CUST_CODE
COLMATCH NAMES CUSTOMER_NAME = CUST_NAME
COLMATCH NAMES CUSTOMER_ADDRESS = CUST_ADDR
COLMATCH PREFIX S_
MAP SALES.ACCT, TARGET SALES.ACCOUNT, COLMAP (USEDEFAULTS);
MAP SALE.ORD, TARGET SALES.ORDER, COLMAP (USEDEFAULTS);
COLMATCH RESET
MAP SALES.REG, TARGET SALE.REG;
MAP SALES.PRICE, TARGET SALES.PRICE;

Based on the rules in the example, the following occurs:

• Data is mapped from the CUST_CODE columns in the source ACCT and ORD tables to the
CUSTOMER_CODE columns in the target ACCOUNT and ORDER tables.

• The S_ prefix will be ignored.

• Columns with the same names, such as the PHONE and ORDER_AMT columns, are
automatically mapped by means of USEDEFAULTS without requiring explicit rules. See
Understanding Default Column Mapping for more information.

• The previous global column mapping is turned off for the tables REG and PRICE. Source and
target columns in those tables are automatically mapped because all of the names are
identical.

Understanding Default Column Mapping
For self-describing trails, if an explicit column mapping does not exist, either by using COLMATCH
or COLMAP, Oracle GoldenGate maps source and target columns by default according to the
following rules.

Chapter 9
Data Management

9-46

This doesn't apply if you are using SOURCEDEFS or TARGETDEFS.

• If a source column is found whose name and case exactly match those of the target
column, the two are mapped.

• If no case match is found, fallback name mapping is used. Fallback mapping performs a
case-insensitive target table mapping to find a name match. Inexact column name
matching is applied using upper cased names. This behavior is controlled by the GLOBALS
parameter NAMEMATCHIGNORECASE. You can disable fallback name matching with the
NAMEMATCHEXACT parameter, or you can keep it enabled but with a warning message by
using the NAMEMATCHNOWARNING parameter.

• Target columns that do not correspond to any source column take default values
determined by the database.

If the default mapping cannot be performed, the target column defaults to one of the values
shown in the following table.

Column Type Value

Numeric Zero (0)

Character or VARCHAR Spaces

Date or Datetime Current date and time

Columns that can take a NULL value Null

Data Type Conversions
Learn about how Oracle GoldenGate maps data types.

Numeric Columns
Numeric columns are converted to match the type and scale of the target column. If the scale
of the target column is smaller than that of the source, the number is truncated on the right. If
the scale of the target column is larger than that of the source, the number is padded with
zeros on the right.

You can specify a substitution value for invalid numeric data encountered when mapping
number columns by using the REPLACEBADNUM parameter for more information.

Character-type Columns
Character-type columns can accept character-based data types such as VARCHAR, numeric in
string form, date and time in string form, and string literals. If the scale of the target column is
smaller than that of the source, the column is truncated on the right. If the scale of the target
column is larger than that of the source, the column is padded with spaces on the right.

Literals must be enclosed within single quotes.

You can control the response of the Oracle GoldenGate process when a valid code point does
not exist for either the source or target character set when mapping character columns by
using the REPLACEBADCHAR parameter for more information.

Datetime Columns
Datetime (DATE, TIME, and TIMESTAMP) columns can accept datetime and character columns,
as well as string literals. Literals must be enclosed within single quotes. To map a character

Chapter 9
Data Management

9-47

column to a datetime column, make certain it conforms to the Oracle GoldenGate external SQL
format of YYYY-MM-DD HH:MI:SS.FFFFFF.
Oracle GoldenGate supports timestamp data from 0001-01-03 00:00:00 to 9999-12-31
23:59:59. If a timestamp is converted from GMT to local time, these limits also apply to the
resulting timestamp. Depending on the timezone, conversion may add or subtract hours, which
can cause the timestamp to exceed the lower or upper supported limit.

Required precision varies according to the data type and target platform. If the scale of the
target column is smaller than that of the source, data is truncated on the right. If the scale of
the target column is larger than that of the source, the column is extended on the right with the
values for the current date and time.

Selecting and Filtering Rows
Filtering can only be performed on columns that are available to Oracle GoldenGate. In the
TRANLOG Extract Oracle GoldenGate has access to all columns that are present in the redo logs
and in the database. If the columns are not in the redo logs, they must be explicitly fetched
(using FETCHCOLS) to be able to filter them. In the Extract pump and in the Replicat, the
columns must be available in the trail file. Because of this, any column that you want to use in
a FILTER or WHERE clause must be explicitly logged using ADD TRANDATA COLS, and you have to
retain the default of LOGALLSUPCOLS.

To filter out or select rows for extraction or replication, use the FILTER and WHERE clauses of the
TABLE and MAP parameters.

The FILTER clause offers you more functionality than the WHERE clause because you can
employ any of the Oracle GoldenGate column conversion functions, whereas the WHERE clause
accepts basic WHERE operators.

Selecting Rows with a FILTER Clause
Use a FILTER clause to select rows based on a numeric value by using basic operators or one
or more Oracle GoldenGate column-conversion functions.

Note:

To filter a column based on a string, use one of the Oracle GoldenGate string
functions or use a WHERE clause.

The syntax for FILTER in a TABLE statement is as follows:

TABLE source_table,
, FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]
[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
, filter_clause);

The syntax for FILTER in a MAP statement is as follows and includes an error-handling option.

MAP source_table, TARGET target_table,
, FILTER (
[, ON INSERT | ON UPDATE| ON DELETE]

Chapter 9
Data Management

9-48

[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
[, RAISEERROR error_number]
, filter_clause);

Valid FILTER clause elements are the following:

• An Oracle GoldenGate column-conversion function. These functions are built into Oracle
GoldenGate so that you can perform tests, manipulate data, retrieve values, and so forth.
See Testing and Transforming Data for more information about Oracle GoldenGate
conversion functions.

• Numbers

• Columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

– + (plus)

– - (minus)

– * (multiply)

– / (divide)

– \ (remainder)

• Comparison operators:

– > (greater than)

– >= (greater than or equal)

– < (less than)

– <= (less than or equal)

– = (equal)

– <> (not equal)

– Results derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

• Parentheses (for grouping results in the expression)

• Conjunction operators: AND, OR
Use the following FILTER options to specify which SQL operations a filter clause affects. Any of
these options can be combined.

ON INSERT | ON UPDATE | ON DELETE IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE
Use the RAISEERROR option of FILTER in the MAP parameter to generate a user-defined error
when the filter fails. This option is useful when you need to trigger an event in response to the
failure.

Use the @RANGE function within a FILTER clause to distribute the processing workload among
multiple MAP or TABLE statements.

Here's a sample:

REPERROR (9999, EXCEPTION)
MAP OWNER.SRCTAB, TARGET OWNER.TARGTAB,

Chapter 9
Data Management

9-49

 SQLEXEC (ID CHECK, ON UPDATE, QUERY ' SELECT COUNT FROM
TARGTAB WHERE PKCOL = :P1 ', PARAMS (P1 = PKCOL)),
 FILTER (BALANCE > 15000),
 FILTER (ON UPDATE, @BEFORE (COUNT) = CHECK.COUNT)
;
MAP OWNER.SRCTAB, TARGET OWNER.TARGEXC,
EXCEPTIONSONLY,
COLMAP (USEDEFAULTS,
ERRTYPE = 'UPDATE FILTER FAILED'
)
;

Table 9-3 Using Multiple FILTER Statements

Parameter file Description

REPERROR (9999, EXCEPTION)
Raises an exception for the specified error.

MAP OWNER.SRCTAB,
TARGET OWNER.TARGTAB,

Starts the MAP statement.

SQLEXEC (ID CHECK, ON UPDATE,
QUERY ' SELECT COUNT FROM TARGTAB '
'WHERE PKCOL = :P1 ',
PARAMS (P1 = PKCOL)),

Performs a query to retrieve the present
value of the COUNT column whenever an
update is encountered. There is a
BEFOREFILTER option also that allows the
query or stored procedure to be executed
prior to processing the FILTER clause. This
allows values from the SQLEXEC portion to
be used inside the FILTER at runtime.

FILTER (BALANCE > 15000),
Uses a FILTER clause to select rows
where the balance is greater than 15000.

FILTER (ON UPDATE, @BEFORE (COUNT) =
CHECK.COUNT)

Uses another FILTER clause to ensure that
the value of the source COUNT column
before an update matches the value in the
target column before applying the target
update.

;
The semicolon concludes the MAP
statement.

MAP OWNER.SRCTAB,
TARGET OWNER.TARGEXC,
EXCEPTIONSONLY,
COLMAP (USEDEFAULTS,
ERRTYPE = 'UPDATE FILTER FAILED');

Designates an exceptions MAP statement.
The REPERROR clause for error 9999
ensures that the exceptions map to
TARGEXC will be executed.

Chapter 9
Data Management

9-50

Example 9-5 Calling the @COMPUTE Function

The following example calls the @COMPUTE function to extract records in which the price
multiplied by the amount exceeds 10,000.

MAP SALES.TCUSTORD, TARGET SALES.TORD,
FILTER (@COMPUTE (PRODUCT_PRICE * PRODUCT_AMOUNT) > 10000);

Example 9-6 Calling the @STREQ Function

The following uses the @STREQ function to extract records where the value of a character
column is 'JOE'.

TABLE ACCT.TCUSTORD, FILTER (@STREQ ("Name", 'joe') > 0);

Example 9-7 Selecting Records

The following selects records in which the AMOUNT column is greater than 50 and executes the
filter on UPDATE and DELETE operations.

TABLE ACT.TCUSTORD, FILTER (ON UPDATE, ON DELETE, AMOUNT > 50);

Example 9-8 Using the @RANGE Function

(Replicat group 1 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (1, 2, ID));

(Replicat group 2 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (@RANGE (2, 2, ID));

You can combine several FILTER clauses in one MAP or TABLE statement, as shown in
Table 9-3, which shows part of a Replicat parameter file. Oracle GoldenGate executes the
filters in the order listed, until one fails or until all are passed. If one filter fails, they all fail.

Selecting Rows with a WHERE Clause
Use any of the elements in Table 9-4 in a WHERE clause to select or exclude rows (or both)
based on a conditional statement. Each WHERE clause must be enclosed within parentheses.
Literals must be enclosed within single quotes.

Table 9-4 Permissible WHERE Operators

Element Examples

Column names
PRODUCT_AMT

Numeric values
-123, 5500.123

Chapter 9
Data Management

9-51

Table 9-4 (Cont.) Permissible WHERE Operators

Element Examples

Literal strings
'AUTO', 'Ca'

Built-in column tests @NULL, @PRESENT, @ABSENT (column is null, present or absent in the row).
These tests are built into Oracle GoldenGate. See Considerations for
Selecting Rows with FILTER and WHERE.

Comparison operators =, <>, >, <, >=, <=
Conjunctive operators

AND, OR

Grouping parentheses Use open and close parentheses () for logical grouping of multiple elements.

Oracle GoldenGate does not support FILTER for columns that have a multi-byte character set
or a character set that is incompatible with the character set of the local operating system.

Arithmetic operators and floating-point data types are not supported by WHERE. To use more
complex selection conditions, use a FILTER clause or a user exit routine.

The syntax for WHERE is identical in the TABLE and MAP statements:

TABLE table, WHERE (clause);

MAP source_table, TARGET target_table, WHERE (clause);

Considerations for Selecting Rows with FILTER and WHERE
The following suggestions can help you create a successful selection clause.

Note:

The examples in this section assume a case-insensitive database.

Ensuring Data Availability for Filters

If the database only logs values for changed columns to the transaction log, there can be
errors if any of the unchanged columns are referenced by selection criteria. Oracle
GoldenGate ignores such row operations, outputs them to the discard file, and issues a
warning.

To avoid missing-column errors, create your selection conditions as follows:

• Use only primary-key columns as selection criteria, if possible.

• Make required column values available by enabling supplemental logging for those
columns. Alternatively, you can use the FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE
parameter. These options are valid for all supported databases. They query the database

Chapter 9
Data Management

9-52

to fetch the values if they are not present in the log. To retrieve the values before the
FILTER or WHERE clause is executed, include the FETCHBEFOREFILTER option in the TABLE
statement before the FILTER or WHERE clause. For example:

TABLE DEMO.PEOPLE, FETCHBEFOREFILTER, FETCHCOLS (age), FILTER (age > 50);
• Test for a column's presence first, then for the column's value. To test for a column's

presence, use the following syntax.

column_name {= | <>} {@PRESENT | @ABSENT}

The following example returns all records when the amount column is over 10,000 and
does not cause a record to be discarded when amount is absent.

WHERE (amount = @PRESENT AND amount > 10000)

Comparing Column Values

To ensure that elements used in a comparison match, compare appropriate column types:

• Character columns to literal strings.

• Numeric columns to numeric values, which can include a sign and decimal point.

• Date and time columns to literal strings, using the format in which the column is retrieved
by the application.

Testing for NULL Values

To evaluate columns for NULL values, use the following syntax.

column {= | <>} @NULL

The following returns TRUE if the column value is NULL, and thereby replicates the row. It returns
FALSE for all other cases (including a column missing from the record).

WHERE (amount = @NULL)

The following returns TRUE only if the column is present in the record and is not NULL.

WHERE (amount = @PRESENT AND amount <> @NULL)

Note:

If a value in the trail contains more than 4000 bytes then the @NULL function will return
TRUE.

Retrieving Before and After Values
For update and delete operations, it can be useful to retrieve the BEFORE values of the source
columns (the values before the update occurred). For inserts, all column values are considered
AFTER images.

These values are stored in the trail and can be used in filters and column mappings. For
example, you can:

• Retrieve the before image of a row as part of a column-mapping specification in an
exceptions MAP statement, and map those values to an exceptions table for use in testing
or troubleshooting conflict resolution routines.

Chapter 9
Data Management

9-53

• Perform delta calculations. For example, if a table has a Balance column, you can
calculate the net result of a particular transaction by subtracting the original balance from
the new balance, as in the following example:

MAP "owner"."src", TARGET "owner"."targ",
COLMAP (PK1 = PK1, delta = balance – @BEFORE (balance));

Note:

The previous example indicates a case-sensitive database such as Oracle. The
table names are in quote marks to reflect case-sensitivity.

To Reference the Before Value

1. Use the @BEFORE column conversion function with the name of the column for which you
want a before value, as follows:

@BEFORE (column_name)

2. Use the GETUPDATEBEFORES parameter in the Extract parameter file to capture before
images from the transaction record, or use it in the Replicat parameter file to use the
before image in a column mapping or filter. If using the Conflict Resolution and Detection
(CDR) feature, you can use the GETBEFORECOLS option of TABLE. To use these parameters,
all columns must be present in the transaction log. If the database only logs the values of
columns that changed, using the @BEFORE function may result in a "column missing"
condition and the column map is executed as if the column were not in the record. See
Ensuring Data Availability for Filters to ensure that column values are available.

Oracle GoldenGate also provides the @AFTER function to retrieve after values when needed
for filtering, for use in conversion functions, or other purposes. See @BEFORE and @AFTER in
the Parameters and Functions Reference for Oracle GoldenGate.

Selecting Columns
To control which columns of a source table are extracted by Oracle GoldenGate, use the COLS
and COLSEXCEPT options of the TABLE parameter. Use COLS to select columns for extraction,
and use COLSEXCEPT to select all columns except those designated by COLSEXCEPT.

Restricting the columns that are extracted can be useful when a target table does not contain
the same columns as the source table, or when the columns contain sensitive information,
such as a personal identification number or other proprietary business information.

Selecting and Converting SQL Operations
By default, Oracle GoldenGate captures and applies INSERT, UPDATE, and DELETE operations.
You can use the following parameters in the Extract or Replicat parameter file to control which
kind of operations are processed, such as only inserts or only inserts and updates.

GETINSERTS | IGNOREINSERTS
GETUPDATES | IGNOREUPDATES
GETDELETES | IGNOREDELETES

Chapter 9
Data Management

9-54

You can convert one type of SQL operation to another by using the following parameters in the
Replicat parameter file:

• Use INSERTUPDATES to convert source update operations to inserts into the target table.
This is useful for maintaining a transaction history on that table. The transaction log record
must contain all of the column values of the table, not just changed values. Some
databases do not log full row values to their transaction log, but only values that changed.

• Use INSERTDELETES to convert all source delete operations to inserts into the target table.
This is useful for retaining a history of all records that were ever in the source database.

• Use UPDATEDELETES to convert source deletes to updates on the target.

Using Transaction History
Oracle GoldenGate enables you to retain a history of changes made to a target record and to
map information about the operation that caused each change. This history can be useful for
creating a transaction-based reporting system that contains a separate record for every
operation performed on a table, as opposed to containing only the most recent version of each
record.

For example, the following series of operations made to a target table named CUSTOMER would
leave no trace of the ID of Dave. The last operation deletes the record, so there is no way to
find out Dave's account history or his ending balance.

Table 9-5 Operation History for Table CUSTOMER

Sequence Operation ID BALANCE

1 Insert Dave 1000
2 Update Dave 900
3 Update Dave 1250
4 Delete Dave 1250

Retaining this history as a series of records can be useful in many ways. For example, you can
generate the net effect of transactions.

To Implement Transaction Reporting

1. To prepare Extract to capture before values, use the GETUPDATEBEFORES parameter in the
Extract parameter file. A before value (or before image) is the existing value of a column
before an update is performed. Before images enable Oracle GoldenGate to create the
transaction record.

2. To prepare Replicat to post all operations as inserts, use the INSERTALLRECORDS parameter
in the Replicat parameter file. Each operation on a table becomes a new record in that
table.

3. To map the transaction history, use the return values of the GGHEADER option of the @GETENV
column conversion function. Include the conversion function as the source expression in a
COLMAP statement in the TABLE or MAP parameter.

Using the sample series of transactions shown in Table 9-5 the following parameter
configurations can be created to generate a more transaction-oriented view of customers,
rather than the latest state of the database.

Chapter 9
Data Management

9-55

Process Parameter statements

Extract
GETUPDATEBEFORES
TABLE ACCOUNT.CUSTOMER;

Replicat
INSERTALLRECORDS
MAP SALES.CUSTOMER, TARGET SALES.CUSTHIST,
COLMAP (TS = @GETENV ('GGHEADER', 'COMMITTIMESTAMP'),
BEFORE_AFTER = @GETENV ('GGHEADER', 'BEFOREAFTERINDICATOR'),
OP_TYPE = @GETENV ('GGHEADER', 'OPTYPE'),
ID = ID,
BALANCE = BALANCE);

Note:

This is not representative of a complete parameter file for an Oracle GoldenGate
process. Also note that these examples represent a case-insensitive database.

This configuration makes possible queries such as the following, which returns the net sum of
each transaction along with the time of the transaction and the customer ID.

SELECT AFTER.ID, AFTER.TS, AFTER.BALANCE - BEFORE.BALANCE
FROM CUSTHIST AFTER, CUSTHIST BEFORE
WHERE AFTER.ID = BEFORE.ID AND AFTER.TS = BEFORE.TS AND
AFTER.BEFORE_AFTER = 'A' AND BEFORE.BEFORE_AFTER = 'B';

Testing and Transforming Data
Data testing and transformation can be performed by either Extract or Replicat and is
implemented by using the Oracle GoldenGate built-in column-conversion functions within a
COLMAP clause of a TABLE or MAP statement. With these conversion functions, you can:

• Transform dates.

• Test for the presence of column values.

• Perform arithmetic operations.

• Manipulate numbers and character strings.

• Handle null, invalid, and missing data.

• Perform tests.

If you need to use logic beyond that which is supplied by the Oracle GoldenGate functions, you
can call your own functions by implementing Oracle GoldenGate user exits.

Oracle GoldenGate conversion functions take the following general syntax:

Chapter 9
Data Management

9-56

Syntax

@function (argument)

Table 9-6 Conversion Function Syntax

Syntax element Description

@function
The Oracle GoldenGate function name. Function
names have the prefix @, as in @COMPUTE or @DATE.
A space between the function name and the open-
parenthesis before the input argument is optional.

argument A function argument.

Table 9-7 Function Arguments

Argument element Example

A numeric constant
123

A string literal enclosed within single quote marks
'ABCD'

The name of a source column
PHONE_NO or phone_no, or "Phone_No"
or Phone_no

Depends on whether the database is case-
insensitive, is case-sensitive and requires quote
marks to enforce the case, or is case-sensitive and
does not require quotes.

An arithmetic expression
COL2 * 100

A comparison expression
((COL3 > 100) AND (COL4 > 0))

Other Oracle GoldenGate functions
AMOUNT = @IF (@COLTEST (AMT,
MISSING, INVALID), 0, AMT)

Handling Column Names and Literals in Functions
By default, literal strings must be enclosed in single quotes in a column-conversion function.
Case-sensitive column names must be enclosed within double quotes if required by the
database, or otherwise entered in the case in which they are stored in the database.

Chapter 9
Data Management

9-57

Using the Appropriate Function
Use the appropriate function for the type of column that is being manipulated or evaluated. For
example, numeric functions can be used only to compare numeric values. To compare
character values, use one of the Oracle GoldenGate character-comparison functions. LOB
columns cannot be used in conversion functions.

This statement would fail because it uses @IF, which is a numerical function, to compare string
values.

@IF (SR_AREA = 'Help Desk', 'TRUE', 'FALSE')

The following statement would succeed because it compares a numeric value.

@IF (SR_AREA = 20, 'TRUE', 'FALSE')

See Manipulating Numbers and Character Strings for more information.

Note:

Errors in argument parsing sometimes are not detected until records are processed.
Verify syntax before starting processes.

Transforming Dates
Use the @DATE, @DATEDIF, and @DATENOW functions to retrieve dates and times, perform
computations on them, and convert them.

This example computes the time that an order is filled

Example 9-9 Computing Time

ORDER_FILLED = @DATE (
 'YYYY-MM-DD HH:MI:SS',
 'JTS',
 @DATE ('JTS',
 'YYMMDDHHMISS',
 ORDER_TAKEN_TIME) +
 ORDER_MINUTES * 60 * 1000000)

Performing Arithmetic Operations
To return the result of an arithmetic expression, use the @COMPUTE function. The value returned
from the function is in the form of a string. Arithmetic expressions can be combinations of the
following elements.

• Numbers

• The names of columns that contain numbers

• Functions that return numbers

• Arithmetic operators:

– + (plus)

Chapter 9
Data Management

9-58

– - (minus)

– * (multiply)

– / (divide)

– \ (remainder)

• Comparison operators:

– > (greater than)

– >= (greater than or equal)

– < (less than)

– <= (less than or equal)

– = (equal)

– <> (not equal)

Results that are derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

• Parentheses (for grouping results in the expression)

• The conjunction operators AND, OR. Oracle GoldenGate only evaluates the necessary part
of a conjunction expression. Once a statement is FALSE, the rest of the expression is
ignored. This can be valuable when evaluating fields that may be missing or null. For
example, if the value of COL1 is 25 and the value of COL2 is 10, then the following are
possible:

@COMPUTE ((COL1 > 0) AND (COL2 < 3)) returns 0.
@COMPUTE ((COL1 < 0) AND (COL2 < 3)) returns 0. COL2 < 3 is never evaluated.
@COMPUTE ((COL1 + COL2)/5) returns 7.

Omitting @COMPUTE

The @COMPUTE keyword is not required when an expression is passed as a function argument.

@STRNUM ((AMOUNT1 + AMOUNT2), LEFT)

The following expression returns the same result as the previous one:

@STRNUM ((@COMPUTE (AMOUNT1 + AMOUNT2), LEFT)

Manipulating Numbers and Character Strings
To convert numbers and character strings, Oracle GoldenGate supplies the following functions:

Table 9-8 Conversion Functions for Numbers and Characters

Purpose Conversion Function

Convert a binary or character string to a number. @NUMBIN
@NUMSTR

Convert a number to a string. @STRNUM
Compare strings. @STRCMP

@STRNCMP

Chapter 9
Data Management

9-59

Table 9-8 (Cont.) Conversion Functions for Numbers and Characters

Purpose Conversion Function

Concatenate strings. @STRCAT
@STRNCAT

Extract from a string. @STREXT
@STRFIND

Return the length of a string. @STRLEN
Substitute one string for another. @STRSUB
Convert a string to upper case. @STRUP
Trim leading or trailing spaces, or both. @STRLTRIM

@STRRTRIM
@STRTRIM

Handling Null, Invalid, and Missing Data
When column data is missing, invalid, or null, an Oracle GoldenGate conversion function
returns a corresponding value.

If BALANCE is 1000, but AMOUNT is NULL, the following expression returns NULL:

NEW_BALANCE = @COMPUTE (BALANCE + AMOUNT)

These exception conditions render the entire calculation invalid. To ensure a successful
conversion, use the @COLSTAT, @COLTEST and @IF functions to test for, and override, the
exception condition.

Using @COLSTAT

Use the @COLSTAT function to return an indicator to Extract or Replicat that a column is missing,
null, or invalid. The indicator can be used as part of a larger manipulation formula that uses
additional conversion functions.

The following example returns a NULL into target column ITEM.

ITEM = @COLSTAT (NULL)

The following @IF calculation uses @COLSTAT to return NULL to the target column if PRICE and
QUANTITY are less than zero.

ORDER_TOTAL = PRICE * QUANTITY, @IF ((PRICE < 0) AND (QUANTITY < 0), @COLSTAT (NULL))

Using @COLTEST

Use the @COLTEST function to check for the following conditions:

• PRESENT tests whether a column is present and not null.

• NULL tests whether a column is present and null.

• MISSING tests whether a column is not present.

• INVALID tests whether a column is present but contains invalid data.

Chapter 9
Data Management

9-60

The following example checks whether the AMOUNT column is present and NULL and whether it
is present but invalid.

@COLTEST (AMOUNT, NULL, INVALID)

Using @IF

Use the @IF function to return one of two values based on a condition. Use it with the @COLSTAT
and @COLTEST functions to begin a conditional argument that tests for one or more exception
conditions and then directs processing based on the results of the test.

NEW_BALANCE = @IF (@COLTEST (BALANCE, NULL, INVALID) OR
@COLTEST (AMOUNT, NULL, INVALID), @COLSTAT (NULL), BALANCE + AMOUNT)

This conversion returns one of the following:

• NULL when BALANCE or AMOUNT is NULL or INVALID
• MISSING when either column is missing

• The sum of the columns.

Performing Tests
The @CASE, @VALONEOF, and @EVAL functions provide additional methods for performing tests
on data before manipulating or mapping it.

Using @CASE

Use @CASE to select a value depending on a series of value tests.

@CASE (PRODUCT_CODE, 'CAR', 'A car', 'TRUCK', 'A truck')

This example returns the following:

• A car if PRODUCT_CODE is CAR
• A truck if PRODUCT_CODE is TRUCK
• A FIELD_MISSING indication if PRODUCT_CODE fits neither of the other conditions

Using @VALONEOF

Use @VALONEOF to compare a column or string to a list of values.

@IF (@VALONEOF (STATE, 'CA', 'NY'), 'COAST', 'MIDDLE')

In this example, if STATE is CA or NY, the expression returns COAST, which is the response
returned by @IF when the value is non-zero (meaning TRUE).

Using @EVAL

Use @EVAL to select a value based on a series of independent conditional tests.

@EVAL (AMOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high')

This example returns the following:

• high amount if AMOUNT is greater than 10000
• somewhat high if AMOUNT is greater than 5000, and less than or equal to 10000, (unless the

prior condition was satisfied)

Chapter 9
Data Management

9-61

• A FIELD_MISSING indication if neither condition is satisfied.

Using Tokens
You can capture and store data within the user token area of a trail record header. Token data
can be retrieved and used in many ways to customize the way that Oracle GoldenGate
delivers information.

For example, you can use token data in:

• Column maps

• Stored procedures called by a SQLEXEC statement

• User exits

• Macros

Defining Tokens
To use tokens, you define the token name and associate it with data. The data can be any valid
character data or values retrieved from Oracle GoldenGate column-conversion functions.

The token area in the record header permits up to 16,000 bytes of data. Token names, the
length of the data, and the data itself must fit into that space.

To define a token, use the TOKENS option of the TABLE parameter in the Extract parameter file.

Syntax

TABLE table_spec, TOKENS (token_name = token_data [, ...]);

Where:

• table_spec is the name of the source table. A container or catalog name, if applicable, and
an owner name must precede the table name.

• token_name is a name of your choice for the token. It can be any number of alphanumeric
characters and is not case-sensitive.

• token_data is a character string of up to 2000 bytes. The data can be either a string that is
enclosed within single quotes or the result of an Oracle GoldenGate column-conversion
function. The character set of token data is not converted. The token must be in the
character set of the source database for Extract and in the character set of the target
database for Replicat. In the trail file, user tokens are stored in UTF-8.

TABLE ora.oratest, TOKENS (
TK-OSUSER = @GETENV ('GGENVIRONMENT' , 'OSUSERNAME'),
TK-GROUP = @GETENV ('GGENVIRONMENT' , 'GROUPNAME')
TK-HOST = @GETENV('GGENVIRONMENT' , 'HOSTNAME'));

As shown in this example, the Oracle GoldenGate @GETENV function is an effective way to
populate token data. This function provides several options for capturing environment
information that can be mapped to tokens and then used on the target system for column
mapping.

Using Token Data in Target Tables
To map token data to a target table, use the @TOKEN column-conversion function in the source
expression of a COLMAP clause in a Replicat MAP statement. The @TOKEN function provides the
name of the token to map. The COLMAP syntax with @TOKEN is:

Chapter 9
Data Management

9-62

Syntax

COLMAP (target_column = @TOKEN ('token_name'))

The following MAP statement maps target columns host, gg_group, and so forth to tokens tk-
host, tk-group, and so forth. Note that the arguments must be enclosed within single quotes.

User tokens Values

tk-host :sysA

tk-group :extora

tk-osuser :jad

tk-domain :admin

tk-ba_ind :B

tk-commit_ts :2011-01-24 17:08:59.000000

tk-pos :3604496

tk-rba :4058

tk-table :oratest

tk-optype :insert

Example 9-10 MAP Statement

MAP ora.oratest, TARGET ora.rpt,
COLMAP (USEDEFAULTS,
host = @token ('tk-host'),
gg_group = @token ('tk-group'),
osuser= @token ('tk-osuser'),
domain = @token ('tk-domain'),
ba_ind= @token ('tk-ba_ind'),
commit_ts = @token ('tk-commit_ts'),
pos = @token ('tk-pos'),
rba = @token ('tk-rba'),
tablename = @token ('tk-table'),
optype = @token ('tk-optype'));

The tokens in this example will look similar to the following within the record header in the trail:

Bi-Directional Replication
In a bi-directional configuration, there are Extract and Replicat processes on both the source
and target systems to support the replication of transactional changes on each system to the
other system. To support this configuration, each Extract must be able to filter the transactions
applied by the local Replicat, so that they are not recaptured and sent back to their source in a

Chapter 9
Data Management

9-63

continuous loop. Additionally, AUTO_INCREMENT columns must be set so that there is no conflict
between the values on each system.

Prerequisites for Bidirectional Replication
Learn about the requirements that you must fulfill before you configure a bidirectional
replication.

Enable Bi-Directional Loop Detection
Loop detection is a requirement for bi-directional implementations of Oracle GoldenGate, so
that an Extract for one source database does not recapture transactions sent by a Replicat
from another source database.

With the CDC Extract capture method, by default, any transaction committed by a Replicat into
a database where an Extract is configured, will recapture that transaction from the Replicat as
long as supplemental logging is enabled for those tables that the Replicat is delivering to.

In order to ignore recapturing transactions that are applied by a Replicat, you must use the
TRANLOGOPTIONS EXCLUDEFILTERTABLE parameter for the CDC Extract. The table used as the
filtering table will be the Oracle GoldenGate checkpoint table that you must create for the
Replicat.

Note:

Only Classic and Coordinated Replicats support bi-directional and multi-directional
replication, parallel Replicat does not support this.

To create a filter table and enable supplemental logging:

1. On each source database, ensure that a checkpoint table for use by Replicats has been
created. For example:

ADD CHECKPOINTTABLE ggadmin.oggcheck
2. Enable supplemental logging for the the checkpoint table. For example:

ADD TRANDATA ggadmin.ggcheckpoint ALLCOLS
3. Ensure that the Replicat is created with the checkpoint table information.

ADD REPLICAT reptgt1, EXTTRAIL /north/e2, CHECKPOINTTABLE ggadmin.ggcheckpoint
4. Configure each Extract with the EXCLUDEFILTERTABLE parameter, using the Replicat’s

checkpoint table for the filtering table.

TRANLOGOPTIONS EXCLUDEFILTERTABLE ggadmin.ggcheckpoint

Note:

Oracle GoldenGate for PostgreSQL supports only one EXCLUDEFILTERTABLE
statement per Extract, so for multi-directional implementations, ensure each
Replicat uses the same checkpoint table in the database that they deliver to.

Chapter 9
Data Management

9-64

Considerations for an Active-Active Configuration
The following considerations apply in an active-active configuration. In addition, review the
Oracle GoldenGate installation and configuration document for your type of database to see if
there are any other limitations or requirements to support a bi-directional configuration.

Application Design

When using Active-Active replication, the time zones must be the same on both systems so
that timestamp-based conflict resolution and detection can operate.

Active-active replication is not recommended for use with commercially available packaged
business applications, unless the application is designed to support it. Among the obstacles
that these applications present are:

• Packaged applications might contain objects and data types that are not supported by
Oracle GoldenGate.

• They might perform automatic DML operations that you cannot control, but which will be
replicated by Oracle GoldenGate and cause conflicts when applied by Replicat.

• You probably cannot control the data structures to make modifications that are required for
active-active replication.

Keys

For accurate detection of conflicts, all records must have a unique, not-null identifier. If
possible, create a primary key. If that is not possible, use a unique key or create a substitute
key with a KEYCOLS option of the MAP and TABLE parameters. In the absence of a unique
identifier, Oracle GoldenGate uses all of the columns that are valid in a WHERE clause, but this
will degrade performance if the table contains numerous columns.

To maintain data integrity and prevent errors, the following must be true of the key that you use
for any given table:

• contain the same columns in all of the databases where that table resides.

• contain the same values in each set of corresponding rows across the databases.

Database-Generated Values

Do not replicate database-generated sequential values, such as Oracle sequences, in a bi-
directional configuration. The range of values must be different on each system, with no
chance of overlap. For example, in a two-database environment, you can have one server
generate even values, and the other odd. For an n-server environment, start each key at a
different value and increment the values by the number of servers in the environment. This
method may not be available to all types of applications or databases. If the application
permits, you can add a location identifier to the value to enforce uniqueness.

Database Configuration

One of the databases must be designated as the trusted source. This is the primary database
and its host system from which the other database is derived in the initial synchronization
phase and in any subsequent resynchronizations that become necessary. Maintain frequent
backups of the trusted source data.

Chapter 9
Data Management

9-65

Preventing Data Looping
In a bidirectional configuration, SQL changes that are replicated from one system to another
must be prevented from being replicated back to the first system. Otherwise, it moves back
and forth in an endless loop, as in this example:

1. A user application updates a row on system A.

2. Extract extracts the row on system A and sends it to system B.

3. Replicat updates the row on system B.

4. Extract extracts the row on system B and sends it back to system A.

5. The row is applied on system A (for the second time).

6. This loop continues endlessly.

To prevent data loopback, you may need to provide instructions that:

• prevent the capture of SQL operations that are generated by Replicat, but enable the
capture of SQL operations that are generated by business applications if they contain
objects that are specified in the Extract parameter file.

• identify local Replicat transactions, in order for the Extract process to ignore them.

Identifying Replicat Transactions

To configure Extract to identify Replicat transactions, follow the instructions for the database
from which Extract will capture data.

DB2 z/OS
Identify the Replicat user name by using the following parameter statement in the Extract
parameter file.

TRANLOGOPTIONS EXCLUDEUSER user

This parameter statement marks all DDL and DML transactions that are generated by this user
as Replicat transactions. The user name is included in the transaction record that is read by
Extract.

MySQL
Identify the name of the Replicat checkpoint table by using the following parameter statement
in the Extract parameter file.

TRANLOGOPTIONS EXCLUDEFILTERTABLE table_name

Replicat writes a checkpoint to the checkpoint table at the end of each of its transactions as
part of its checkpoint procedure. (This is the table that is created with the ADD
CHECKPOINTTABLE command.) Because every Replicat transaction includes a write to this table,
it can be used to identify Replicat transactions in a bidirectional configuration.
EXCLUDEFILTERTABLE identifies the name of the checkpoint table, so that Extract ignores
transactions that contain any operations on it.

PostgreSQL and SQL Server
Identify the name of the Replicat checkpoint table by using the following parameter statement
in the Extract parameter file and ensure that the Replicat checkpoint table has been enabled
for supplemental logging with the ADD TRANDATA command.

TRANLOGOPTIONS EXCLUDEFILTERTABLE table_name

Chapter 9
Data Management

9-66

Replicat writes a checkpoint to the checkpoint table at the end of each of its transactions as
part of its checkpoint procedure. (This is the table that is created with the ADD
CHECKPOINTTABLE command). Because every Replicat transaction includes a write to this table,
it can be used to identify Replicat transactions in a bi-directional configuration.
EXCLUDEFILTERTABLE identifies the name of the checkpoint table, so that Extract ignores
transactions that contain any operations on it.

Oracle
There are multiple ways to identify Replicat transaction in an Oracle environment. When
Replicat is in classic or integrated mode, you use the following parameters:

• Replicats set a tag of 00 by default. Use DBOPTIONS with the SETTAG option in the Replicat
parameter file to change the tag that Replicat sets. Replicat tags the transactions being
applied with the specified value, which identifies those transactions in the redo stream.
Valid values are a single TAG value consisting of hexadecimal digits.

• Use the TRANLOGOPTIONS parameter with the EXCLUDETAG option in the Extract parameter
file. The logmining server associated with that Extract excludes redo that is tagged with the
SETTAG value.

The following shows how SETTAG can be set in the Replicat parameter file:

DBOPTIONS SETTAG 0935

The following shows how EXCLUDETAG can be set in the Extract parameter file:

TRANLOGOPTIONS EXCLUDETAG 0935

If you are excluding multiple tags, each must have a separate TRANLOGOPTIONS
EXCLUDETAG statement specified.

You can also use the transaction name or USERID of the Replicat user to identify Replicat
transactions. You can choose which of these to ignore when you configure Extract.

Preventing the Capture of Replicat Operations
Depending on which database you are using, you may or may not need to provide explicit
instructions to prevent the capture of Replicat operations.

Oracle: Preventing the Capture of Replicat Transactions

To prevent the capture of SQL that is applied by Replicat to an Oracle database, use the
TRANLOGOPTIONS parameter with the EXCLUDETAG tag option. This parameter directs the Extract
process to ignore transactions that are tagged with the specified redo tag.

See Identifying Replicat Transactions to set the tag value. This is the recommended approach
for Oracle.

Non-Oracle Database: Preventing Capture of Replicat Transactions

To prevent the capture of SQL that is applied by Replicat to other database types, use the
following parameters:

• GETAPPLOPS | IGNOREAPPLOPS: Controls whether or not data operations (DML) produced
by business applications except Replicat are included in the content that Extract writes to a
specific trail or file.

• GETREPLICATES | IGNOREREPLICATES: Controls whether or not DML operations produced
by Replicat are included in the content that Extract writes to a specific trail or file.

Chapter 9
Data Management

9-67

Manage Conflicts

Uniform conflict-resolution procedures must be in place on all systems in an active-active
configuration. Conflicts should be identified immediately and handled with as much automation
as possible; however, different business applications will present their own unique set of
requirements in this area.

Because Oracle GoldenGate is an asynchronous solution, conflicts can occur when
modifications are made to identical sets of data on separate systems at (or almost at) the same
time. Conflicts occur when the timing of simultaneous changes results in one of these out-of-
sync conditions:

• A uniqueness conflict occurs when Replicat applies an insert or update operation that
violates a uniqueness integrity constraint, such as a PRIMARY KEY or UNIQUE constraint. An
example of this conflict type is when two transactions originate from two different
databases, and each one inserts a row into a table with the same primary key value.

• An update conflict occurs when Replicat applies an update that conflicts with another
update to the same row. Update conflicts happen when two transactions that originate from
different databases update the same row at nearly the same time. Replicat detects an
update conflict when there is a difference between the old values (the before values) that
are stored in the trail record and the current values of the same row in the target database.

• A delete conflict occurs when two transactions originate at different databases, and one
deletes a row while the other updates or deletes the same row. In this case, the row does
not exist to be either updated or deleted. Replicat cannot find the row because the primary
key does not exist.

For example, UserA on DatabaseA updates a row, and UserB on DatabaseB updates the
same row. If UserB's transaction occurs before UserA's transaction is synchronized to
DatabaseB, there will be a conflict on the replicated transaction.

A more complicated example involves three databases and illustrates a more complex ordering
conflict. Assume three databases A, B, and C. Suppose a user inserts a row at database A,
which is then replicated to database B. Another user then modifies the row at database B, and
the row modification is replicated to database C. If the row modification from B arrives at
database C before the row insert from database A, C will detect a conflict.

Where possible, try to minimize or eliminate any chance of conflict. Some ways to do so are:

• Configure the applications to restrict which columns can be modified in each database. For
example, you could limit access based on geographical area, such as by allowing different
sales regions to modify only the records of their own customers. As another example, you
could allow a customer service application on one database to modify only the NAME and
ADDRESS columns of a customer table, while allowing a financial application on another
database to modify only the BALANCE column. In each of those cases, there cannot be a
conflict caused by concurrent updates to the same record.

• Keep synchronization latency low. If UserA on DatabaseA and UserB on DatabaseB both
update the same rows at about the same time, and UserA's transaction gets replicated to
the target row before UserB's transaction is completed, conflict is avoided. See Managing
Conflicts for suggestions on improving the performance of the Oracle GoldenGate
processes.

To avoid conflicts, replication latency must be kept as low as possible. When conflicts are
unavoidable, they must be identified immediately and resolved with as much automation as
possible, either through the Oracle GoldenGate Conflict Detection and Resolution (CDR)
feature, or through methods developed on your own. Custom methods can be integrated into
Oracle GoldenGate processing through the SQLEXEC and user exit functionality. See Manual

Chapter 9
Data Management

9-68

Conflict Detection and Resolution for more information about using Oracle GoldenGate to
handle conflicts.

For Oracle database, the automatic Conflict Detection Resolution (CDR) feature exists. To
know more, see Automatic Conflict Detection and Resolution.

MySQL: Bi-Directional Replication
In a bidirectional configuration, there are Extract and Replicat processes on both the source
and target systems to support the replication of transactional changes on each system to the
other system. To supportf this configuration, each Extract must be able to filter the transactions
applied by the local Replicat, so that they are not recaptured and sent back to their source in a
continuous loop. Additionally, AUTO_INCREMENT columns must be set so that there is no conflict
between the values on each system.

1. To filter out Replicat operations in a bi-directional configuration so that the applied
operations are not captured and looped back to the source again, take the following steps
on each MySQL database:

• Configure each Replicat process to use a checkpoint table. Replicat writes a
checkpoint to this table at the end of each transaction. You can use one global
checkpoint table or one per Replicat process. See Checkpoint Tables Additional
Details .

• Specify the name of the checkpoint table with the EXCLUDEFILTERTABLE option of the
TRANLOGOPTIONS parameter in the Extract parameter file. The Extract process will
ignore transactions that end with an operation to the specified table, which should only
be those of Replicat.

Note:

Although optional for other supported databases as a means of enhancing
recovery, the use of a checkpoint table is required for MySQL when using
bidirectional replication (and likewise, will enhance recovery).

If using a parallel Replicat in a bidirectional replication, then multiple filter tables are
supported using the TRANLOGOPTIONS EXCLUDEFILTERTABLE option. Multiple filter tables
allow the TRANLOGOPTIONS EXCLUDEFILTERTABLE to be specified multiple times with
different table names or wildcards.

You can include single or multiple TRANLOGOPTIONS EXCLUDEFILTERTABLE entries in the
Extract parameter file. In the following example, multiple TRANLOGOPTIONS
EXCLUDEFILTERTABLEentries are included in the Extract parameter file with explicit
object names and wildcards.

TRANLOGOPTIONS EXCLUDEFILTERTABLE ggs.chkpt2
TRANLOGOPTIONS EXCLUDEFILTERTABLE ggs.chkpt_RABC_*

2. Edit the MySQL server configuration file to set the auto_increment_increment and
auto_increment_offset parameters to avoid discrepancies that could be caused by the bi-
directional operations. The following illustrates these parameters, assuming two servers:
ServerA and ServerB.

ServerA:

Chapter 9
Data Management

9-69

auto-increment-increment = 2
auto-increment-offset = 1

ServerB:

auto-increment-increment = 2
auto-increment-offset = 2

PostgreSQL: Bi-Directional Replication
In a bidirectional configuration, there are Extract and Replicat processes on both the source
and target systems to support the replication of transactional changes on each system to the
other system. To support this configuration, each Extract must be able to filter the transactions
applied by the local Replicat, so that they are not recaptured and sent back to their source in a
continuous loop.

1. Configure Oracle GoldenGate for high availability or active-active replication according to
the instructions in the Preparing DBFS for an Active-Active Configuration.

2. To filter out Replicat operations in a bi-directional configuration so that the applied
operations are not captured and looped back to the source again, take the following steps
on each PostgreSQL database:

• Configure each Replicat process to use a checkpoint table. Replicat writes a
checkpoint to this table at the end of each transaction. You can use one global
checkpoint table or one per Replicat process.

• Specify the name of the checkpoint table with the EXCLUDEFILTERTABLE option of the
TRANLOGOPTIONS parameter in the Extract parameter file. The Extract process will
ignore transactions that end with an operation to the specified table, which should only
be those of Replicat.

If using a parallel Replicat in a bidirectional replication, then multiple filter tables are
supported using the TRANLOGOPTIONS EXCLUDEFILTERTABLE option. Multiple filter tables
allow the TRANLOGOPTIONS EXCLUDEFILTERTABLE to be specified multiple times with
different table names or wildcards.

You can include single or multiple TRANLOGOPTIONS EXCLUDEFILTERTABLE entries in the
Extract parameter file. In the following example, multiple TRANLOGOPTIONS
EXCLUDEFILTERTABLEentries are included in the Extract parameter file with explicit
object names and wildcards.

TRANLOGOPTIONS EXCLUDEFILTERTABLE ggs.chkpt2
TRANLOGOPTIONS EXCLUDEFILTERTABLE ggs.chkpt_RABC_*

Preparing DBFS for an Active-Active Configuration
Learn the steps to configure Oracle GoldenGate to function within an active-active bidirectional
or multi-directional environment where Oracle Database File System (DBFS) is in use on both
(or all) systems.

Supported Operations and Prerequisites
This topic lists what is supported by Oracle GoldenGate for DBFS.

Oracle GoldenGate for DBFS supports the following:

• Supported DDL (like TRUNCATE or ALTER) on DBFS objects except for CREATE statements on
the DBFS objects. CREATE on DBFS must be excluded from the configuration, as must any

Chapter 9
Data Management

9-70

schemas that will hold the created DBFS objects. The reason to exclude CREATES is that
the metadata for DBFS must be properly populated in the SYS dictionary tables (which
itself is excluded from Oracle GoldenGate capture by default).

• Capture and replication of DML on the tables that underlie the DBFS file system.

Applying the Required Patch
Apply the Oracle DBFS patch for bug-9651229 on both databases.

To determine if the patch is installed, run the following query:

connect / as sysdba
select procedure_name
from dba_procedures
where object_name = 'DBMS_DBFS_SFS_ADMIN'
and procedure_name = 'PARTITION_SEQUENCE';

The query should return a single row. Anything else indicates that the proper patched version
of DBFS is not available on your database.

Examples Used in these Procedures
The following procedures assume two systems and configure the environment so that DBFS
users on both systems see the same DBFS files, directories, and contents that are kept in
synchronization with Oracle GoldenGate.

It is possible to extend these concepts to support three or more peer systems.

Partitioning the DBFS Sequence Numbers
DBFS uses an internal sequence-number generator to construct unique names and unique
IDs.

These steps partition the sequences into distinct ranges to ensure that there are no conflicts
across the databases. After this is done, further DBFS operations (both creation of new file
systems and subsequent file system operations) can be performed without conflicts of names,
primary keys, or IDs during DML propagation.

1. Connect to each database as sysdba.

Issue the following query on each database.

SELECT LAST_NUMBER
FROM DBA_SEQUENCES
WHERE SEQUENCE_OWNER = 'SYS'
AND SEQUENCE_NAME = 'DBFS_SFS_$FSSEQ'

2. From this query, choose the maximum value of LAST_NUMBER across both systems, or pick
a high value that is significantly larger than the current value of the sequence on either
system.

3. Substitute this value ("maxval" is used here as a placeholder) in both of the following
procedures. These procedures logically index each system as myid=0 and myid=1.

Chapter 9
Data Management

9-71

Node1

declare begin dbms_dbfs_sfs_admin.partition_sequence(nodes => 2, myid =>
0, newstart => :maxval);
commit; end; /

Node 2

DECLARE
BEGIN
DBMS_DBFS_SFS_ADMIN.PARTITION_SEQUENCE(NODES => 2, MYID => 0, NEWSTART
=> :MAXVAL);
COMMIT;
END;
/

Note:

Notice the difference in the value specified for the myid parameter. These are the
different index values.

For a multi-way configuration among three or more databases, you could make the
following alterations:

• Adjust the maximum value that is set for maxval upward appropriately, and use that
value on all nodes.

• Vary the value of myid in the procedure from 0 for the first node, 1 for the second node,
2 for the third one, and so on.

4. (Recommended) After (and only after) the DBFS sequence generator is partitioned, create
a new DBFS file system on each system, and use only these file systems for DML
propagation with Oracle GoldenGate. See Configuring the DBFS file system.

Note:

DBFS file systems that were created before the patch for bug-9651229 was applied
or before the DBFS sequence number was adjusted can be configured for
propagation, but that requires additional steps not described in this document. If you
must retain old file systems, open a service request with Oracle Support.

Configuring the DBFS file system
To replicate DBFS file system operations, use a configuration that is similar to the standard bi-
directional configuration for DML.

Some guidelines to follow while configuring Oracle GoldenGate for DBFS are:

• Use matched pairs of identically structured tables.

• Allow each database to have write privileges to opposite tables in a set, and set the other
one in the set to read-only. For example:

Chapter 9
Data Management

9-72

– Node1 writes to local table t1 and these changes are replicated to t1 on Node2.

– Node2 writes to local table t2 and these changes are replicated to t2 on Node1.

– On Node1, t2 is read-only. On Node2, t1 is read-only.

DBFS file systems make this kind of table pairing simple because:

• The tables that underlie the DBFS file systems have the same structure.

• These tables are modified by simple, conventional DML during higher-level file system
operations.

• The DBFS ContentAPI provides a way of unifying the namespace of the individual DBFS
stores by means of mount points that can be qualified as read-write or read-only.

The following steps create two DBFS file systems (in this case named FS1 and FS2) and set
them to be read-write or read, as appropriate.

1. Run the following procedure to create the two file systems. (Substitute your store names
for FS1 and FS2.)

2. Run the following procedure to give each file system the appropriate access rights.
(Substitute your store names for FS1 and FS2.)

In this example, note that on Node 1, store FS1 is read-write and store FS2 is read-only,
while on Node 2 the converse is true: store FS1 is read-only and store FS2 is read-write.

Note also that the read-write store is mounted as local and the read-only store is mounted
as remote. This provides users on each system with an identical namespace and identical
semantics for read and write operations. Local path names can be modified, but remote
path names cannot.

Example 9-11

DECLARE
DBMS_DBFS_SFS.CREATEFILE SYSTEM('FS1');
DBMS_DBFS_SFS.CREATEFILE SYSTEM('FS2');

DBMS_DBFS_CONTENT.REGISTERSTORE('FS1',
'POSIX', 'DBMS_DBFS_SFS');
DBMS_DBFS_CONTENT.REGISTERSTORE('FS2',
'POSIX', 'DBMS_DBFS_SFS');
COMMIT;
END;
/

Example 9-12 Node 1

DECLARE
DBMS_DBFS_CONTENT.MOUNTSTORE('FS1', 'LOCAL');
DBMS_DBFS_CONTENT.MOUNTSTORE('FS2', 'REMOTE',
READ_ONLY => TRUE);
COMMIT;
END;
/

Chapter 9
Data Management

9-73

Example 9-13 Node 2

DECLARE
DBMS_DBFS_CONTENT.MOUNTSTORE('FS1', 'REMOTE',
READ_ONLY => TRUE);
DBMS_DBFS_CONTENT.MOUNTSTORE('FS2', 'LOCAL');
COMMIT;
END;
/

Mapping Local and Remote Peers Correctly
The names of the tables that underlie the DBFS file systems are generated internally and
dynamically.

Continuing with the preceding example, there are:

• Two nodes (Node 1 and Node 2 in the example).

• Four stores: two on each node (FS1 and FS2 in the example).

• Eight underlying tables: two for each store (a table and a ptable). These tables must be
identified, specified in Extract TABLE statements, and mapped in Replicat MAP statements.

1. To identify the table names that back each file system, issue the following query.
(Substitute your store names for FS1 and FS2.)

The output looks like the following examples.

2. Identify the tables that are locally read-write to Extract by creating the following TABLE
statements in the Extract parameter files. (Substitute your pluggable database names,
schema names, and table names as applicable.)

3. Link changes on each remote file system to the corresponding local file system by creating
the following MAP statements in the Replicat parameter files. (Substitute your pluggable
database, schema and table names.)

This mapping captures and replicates local read-write source tables to remote read-only
peer tables:

• file system changes made to FS1 on Node 1 propagate to FS1 on Node 2.

• file system changes made to FS2 on Node 2 propagate to FS2 on Node1.

Changes to the file systems can be made through the DBFS ContentAPI (package
DBMS_DBFS_CONTENT) of the database or through dbfs_client mounts and conventional file
systems tools.

All changes are propagated in both directions.

• A user at the virtual root of the DBFS namespace on each system sees identical
content.

• For mutable operations, users use the /local sub-directory on each system.

• For read operations, users can use either of the /local or /remote sub-directories,
depending on whether they want to see local or remote content.

Example 9-14

select fs.store_name, tb.table_name, tb.ptable_name
from table(dbms_dbfs_sfs.listTables) tb,

Chapter 9
Data Management

9-74

table(dbms_dbfs_sfs.listfile systems) fs
where fs.schema_name = tb.schema_name
and fs.table_name = tb.table_name
and fs.store_name in ('FS1', 'FS2')
;

Example 9-15 Example output: Node 1 (Your Table Names Will Be Different.)

STORE NAME TABLE_NAME PTABLE_NAME
------------- ------------- -------------
FS1 SFS$_FST_100 SFS$_FSTP_100
FS2 SFS$_FST_118 SFS$_FSTP_118

Example 9-16 Example output: Node 2 (Your Table Names Will Be Different.)

STORE NAME TABLE_NAME PTABLE_NAME
------------- ------------- -------------
FS1 SFS$_FST_101 SFS$_FSTP_101
FS2 SFS$_FST_119 SFS$_FSTP_119

Example 9-17 Node1

TABLE [container.]schema.SFS$_FST_100
TABLE [container.]schema.SFS$_FSTP_100;

Example 9-18 Node2

TABLE [container.]schema.SFS$_FST_119
TABLE [container.]schema.SFS$_FSTP_119;

Example 9-19 Node1

MAP [container.]schema.SFS$_FST_119, TARGET [container.]schema.SFS$_FST_118;
MAP [container.]schema.SFS$_FSTP_119, TARGET [container.]schema.SFS$_FSTP_118

Example 9-20 Node2

MAP [container.]schema.SFS$_FST_100, TARGET [container.]schema.SFS$_FST_101;MAP
[container.]schema.SFS$_FSTP_100, TARGET [container.]schema.SFS$_FSTP_101;

Using Edition-Based Redefinition
Oracle GoldenGate supports the use of Edition-based Redefinition (EBR) with Oracle
Databases enabling you to upgrade the database component of an application while it is in
use, thereby minimizing or eliminating down time.

Editions are non-schema objects that Editioned objects belong to. Editions can be thought of
as owning editioned objects or as a namespace. Every database starts with one edition
named, ORA$BASE; this includes upgraded databases. More than one edition can exist in a
database and each can only have one child. For example, if you create three editions in
succession, edition1, edition2, edition3, then edition1 is the parent of edition2 which is the
parent of edition3. This is irrespective of the user or database session that creates them or
which edition was current when the new one is created. When you create an edition, it inherits
all the editioned objects of its parent. To use editions with Oracle GoldenGate, you must create
them.

An object is considered editioned if it is an editionable type, it is created with the EDITIONABLE
attribute, and the schema is enabled for editioning of that object type. When you create, alter,
or drop an editioned object, the redo log will contain the name of the edition in which it belongs.

Chapter 9
Data Management

9-75

In a container database, editions belong to the container and each container has its own
default edition.

The CREATE | DROP EDITION DDLs are captured for all Extract configurations. They fall into the
OTHER category and assigned an OBJTYPE option value of EDITION. The OBJTYPE option can be
used for filtering, for example:

DDL EXCLUDE OBJTYPE EDITION
DDL EXCLUDE OBJTYPE EDITION OPTYPE CREATE
DDL EXCLUDE OBJTYPE EDITION OPTYPE DROP
DDL EXCLUDE OBJTYPE EDITION OPTYPE DROP ALLOWEMPTYOWNER OBJNAME edition_name

You must use the following syntax to exclude an edition from Extract or Replicat:

EXCLUDE OBJTYPE EDITION, ALLOWEMPTYOWNER OBJNAME edition_name

Editions fall into the OTHER category so no mapping is performed on the edition name. When
applied, the USE permission is automatically granted to the Replicat user. Replicat will also
perform a grant use on edition name with grant option to the original creating user if that
user exists on the target database. Because editions are not mappable operations, they do not
have owners so the standard EXCLUDE statement does not work.

The DDLs used to create or alter editions do not enable the user for editions, rather they
enable the schema for editions. This is an important distinction because it means that the
Replicat user does not need to be enabled for editions to apply DDLs to editioned objects.
When Replicat applies a CREATE EDITION DDL, it grants the original creating user permission
to USE it, if the original user exists on the target database. For any unreplicated CREATE
EDITION statements, you must issue a USE WITH GRANT OPTION grant to the Replicat user.

Whether or not an editionable objects becomes editioned is controlled by the schema it is
applied in. Replicat switches its current session Edition before applying a DDL if the edition
name attribute exists in the trail file and it is not empty.

Container database environments are supported for both Extract and Replicat. No additional
configuration is necessary. The Replicat user's schema can not be enabled for editions if it is a
common user. The Replicat user's schema does not need to be enabled for editions when
applying DDLs to editioned objects in other schemas.

Error Management
Learn about configuring the Oracle GoldenGate processes to handle errors.

Oracle GoldenGate reports processing errors in several ways by means of its monitoring and
reporting tools.

Also see: Monitor.

Automatic Conflict Detection and Resolution
When Oracle GoldenGate replicates changes between Oracle databases, you can configure
and manage Oracle GoldenGate Automatic Conflict Detection and Resolution in the Oracle
databases.

Chapter 9
Error Management

9-76

Note:

The Automatic Conflict Detection and Resolution feature is available from Oracle
Database 12c Release 2 (12.2) and later and works with Oracle GoldenGate 12c
(12.3.0.1) and later releases. There is a manual conflict detection and resolution
feature, which is called Oracle GoldenGate conflict detection and resolution (CDR).
Oracle GoldenGate CDR is configured in the Replicat parameter file. To know more
about Oracle GoldenGate CDR, see Manual Conflict Detection and Resolution.

About Automatic Conflict Detection and Resolution

When Oracle GoldenGate replicates changes between Oracle databases, you can configure
and manage Oracle GoldenGate conflict detection and resolution automatically in these
databases.

This feature is intended for use with active-active configurations, where Oracle GoldenGate
must maintain data synchronization among multiple databases that contain the same data
sets.

Note:

Automatic conflict detection and resolution (ACDR) feature that is available only
when using Oracle GoldenGate with Oracle Database. For non-Oracle databases,
there is a manual conflict detection and resolution (CDR) feature available with
Oracle GoldenGate. Oracle GoldenGate CDR is configured in the Replicat parameter
file.

Automatic Conflict Detection and Resolution

You can configure automatic conflict detection and resolution in an Oracle GoldenGate
configuration that replicates tables between Oracle Databases. To configure conflict detection
and resolution for a table, call the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM
package.

When Oracle GoldenGate captures changes that originated at an Oracle Database, each
change is encapsulated in a row logical change record (LCR). A row LCR is a structured
representation of a DML row change. Each row LCR includes the operation type, old column
values, and new column values. Multiple row LCRs can be part of a single database
transaction.

When more than one replica of a table allows changes to the table, a conflict can occur when a
change is made to the same row in two different databases at nearly the same time. Oracle
GoldenGate replicates changes using the row LCRs. It detects a conflict by comparing the old
values in the row LCR for the initial change from the origin database with the current values of
the corresponding table row at the destination database identified by the key columns. If any
column value does not match, then there is a conflict.

After a conflict is detected, Oracle GoldenGate can resolve the conflict by overwriting values in
the row with some values from the row LCR, ignoring the values in the row LCR, or computing
a delta to update the row values.

Chapter 9
Error Management

9-77

Automatic conflict detection and resolution does not require application changes for the
following reasons:

• Oracle Database automatically creates and maintains invisible timestamp columns.

• Inserts, updates, and deletes use the delete tombstone log table to determine if a row was
deleted.

• LOB column conflicts can be detected.

• Oracle Database automatically configures supplemental logging on required columns.

Note:

If you use the classic Replicat on tables that have Automatic Change Detection and
Resolution enabled, the Extract might abend with the OGG-10461 Failed to retrieve
timestamp error. This is because the internal trigger that inserts the records into
tombstone tables, only fires on user DMLs. A classic Replicat suppresses all the
triggers from firing, which results in missing inserts on tombstone tables.

Requirements for Automatic Conflict Detection and Resolution

Supplemental logging is required to ensure that each row LCR has the information required to
detect and resolve a conflict. Supplemental logging places additional information in the redo
log for the columns of a table when a DML operation is performed on the table. When you
configure a table for Oracle GoldenGate conflict detection and resolution, supplemental logging
is configured automatically for all of the columns in the table. The additional information in the
redo log is placed in an LCR when a table change is replicated.

Extract must be used for capturing. Integrated Replicat or parallel Replicat in integrated mode
must be used on the apply side. LOGALLSUPCOLS should remain the default.

There is a hidden field KEYVER$$ of type timestamp that is optionally added to the DELETE
TOMBSTONE table. This field is required for EARLIEST TIMESTAMP, DELETE ALWAYS WINS, and SITE
PRIORITY resolution and it also exists in the base table. The existence of the field in the base
table needs to be provided in the trail file metadata as a flag or token.

Primary Key updates is also supported in the DELETE TOMBSTONE table. An entry is inserted into
the DELETE TOMBSTONE table for the row of the original key value (before image). The logic in
the Extract which matches inserts in the DELETE TOMBSTONE table to deletes also needs to be
matched to PK updates, or unique key (UK) with at least one non-nullable field, if there is no
PK.

Site priority needs support from the Replicat, both the parameters are implemented and the
setting is passed to the apply.

Compatibility and Migration

If the base table at the source database does not contain the KEYVER$$ column, but the target
base table has, DELETE and Primary Key Updates causes an error at the target database for
EARLIEST TIMESTAMP, DELETE ALWAYS WINS, and SITE PRIORITY resolutions.

When replicating from a base table, which has a KEYVER$$ to a target table, which does not,
the KEYVER$$ column is ignored.

Chapter 9
Error Management

9-78

Column Groups
A column group is a logical grouping of one or more columns in a replicated table. When you
add a column group, conflict detection and resolution is performed on the columns in the
column group separately from the other columns in the table.

When you configure a table for Oracle GoldenGate conflict detection and resolution with the
ADD_AUTO_CDR procedure, all of the scalar columns in the table are added to a default column
group. To define other column groups for the table, run the ADD_AUTO_CDR_COLUMN_GROUP
procedure. Any columns in the table that are not part of a user-defined column group remain in
the default column group for the table.

Column groups enable different databases to update different columns in the same row at
nearly the same time without causing a conflict. When column groups are configured for a
table, conflicts can be avoided even if different databases update the same row in the table. A
conflict is not detected if the updates change the values of columns in different column groups.

Figure 9-1 Column Groups

This example shows a row being replicated at database A and database B. The following two
column groups are configured for the replicated table at each database:

• One column group includes the Office column. The invisible timestamp column for this
column group is TS1.

• Another column group includes the Title and Salary columns. The invisible timestamp
column for this column group is TS2.

These column groups enable database A and database B to update the same row at nearly the
same time without causing a conflict. Specifically, the following changes are made:

• At database A, the value of Office was changed from 1080 to 1030.

• At database B, the value of Title was changed from MTS1 to MTS2.

Because the Office column and the Title column are in different column groups, the changes
are replicated without a conflict being detected. The result is that values in the row are same at
both databases after each change has been replicated.

Piecewise LOB Updates

A set of lob operations composed of LOB WRITE, LOB ERASE, and LOB TRIM is a piecewise LOB
update. When a table that contains LOB columns is configured for conflict detection and

Chapter 9
Error Management

9-79

resolution, each LOB column is placed in its own column group, and the column group has its
own hidden timestamp column. The timestamp column is updated on the first piecewise LOB
operation.

For a LOB column, a conflict is detected and resolved in the following ways:

• If the timestamp for the LOB’s column group is later than the corresponding LOB column
group in the row, then the piecewise LOB update is applied.

• If the timestamp for the LOB’s column group is earlier than the corresponding LOB column
group in the row, then the LOB in the table row is retained.

• If the row does not exist in the table, then an error is raised.

DELETE TOMBSTONE Table

DELETE TOMBSTONE table is a marker for a deleted record to distinguish it from a record, which
never existed. A DELETE TOMBSTONE table contains at minimum the key columns and operation
timestamp. This information is required for delete convergence because some incoming
updates and inserts may be delayed from another site and the incoming LCR needs to be
filtered against the tombstone operation timestamp to determine whether it should be applied.

Earliest Timestamp Conflict Detection and Resolution

Columns with names of the form CDRTS$ column group and CDRTS$ROW are used to contain
timestamps that reflect modification times for column groups and the row.

Note:

Tables with $ or $$ symbols are internal or hidden tables.

The DBMS_GOLDENGATE_ADM includes the following procedures for configuring earliest and latest
timestamp resolution:

• ADD_AUTO_CDR()
• ADD_AUTO_CDR_COLUMN_GROUP()
• REMOVE_AUTO_CDR()
• REMOVE_AUTO_CDR_COLUMN_GROUP()
• ALTER_AUTO_CDR()
• ALTER_AUTO_CDR_COLUMN_GROUP()
The field ADDITIONAL_OPTIONS in both ADD_AUTO_CDR() and ALTER_AUTO_CDR() turn on the use
of earliest timestamp. Turning on earliest timestamp automatically turn on versioning, which
adds a new hidden column KEYVER$$ (version number) of type timestamp. A new flag value is
added to indicate the earliest timestamp usage. This field is also added to the DELETE
TOMBSTONE table. Delete conflicts are the reason that version number is needed. With an
earliest timestamp resolution, delete conflicts, which can be transparent, might not only
incorrectly succeed, they might prevent new inserts of the row (new versions). With a version
timestamp, the delete can be correctly resolved against a row DML for the same row version.

The original insert of the row receives the current timestamp from its default value. The delete
of this row then inserts the version number and the time when this row was inserted, into the

Chapter 9
Error Management

9-80

tombstone table when there is a delete. On a new insert, by default, the version number
receives the current timestamp again, thereby avoiding a false conflict with the present delete
entries in the tombstone table.

Example

Assume that you have a table tab1 which is globally consistent between databases on site 1
and site 2. The table contains a (primary) key. ACDR is automatically maintaining a key version
(kv) and timestamp (ts) as columns for the base table (hidden) and the tombstone table. For
key version kv and timestamp ts
Database 1: insert tab1 key1 kv1 ts1
Database 2: delete tab1 key1 kv1 ts1
Insertion to DELETE TOMBSTONE table key1 kv1 ts1
Database 1: insert tab1 key1 kv2 ts2
Without using the key version, the insert would be ignored, the delete timestamp is earlier. As
the key version is used, you know that kv2 is not the version of the row that was deleted and
the insert succeeds.

Latest Timestamp Conflict Detection and Resolution

When you run the ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package to configure
a table for automatic Oracle GoldenGate conflict detection and resolution, a hidden timestamp
column is added to the table. This hidden timestamp column records the time of a row change,
and this information is used to detect and resolve conflicts.

When a row LCR is applied, a conflict can occur for an INSERT, UPDATE, or DELETE operation.
The following table describes each type of conflict and how it is resolved.

Operation Conflict Detection Conflict Resolution

INSERT A conflict is detected when the
table has the same value for a
key column as the new value in
the row LCR.

If the timestamp of the row LCR
is later than the timestamp in the
table row, then the values in the
row LCR replace the values in the
table.

If the timestamp of the row LCR
is earlier than the timestamp in
the table row, then the row LCR is
discarded, and the table values
are retained.

Chapter 9
Error Management

9-81

Operation Conflict Detection Conflict Resolution

UPDATE A conflict is detected in each of
the following cases:

• There is a mismatch
between the timestamp value
in the row LCR and the
timestamp value of the
corresponding row in the
table.

• There is a mismatch
between an old value in a
column group in the row LCR
does not match the column
value in the corresponding
table row. A column group is
a logical grouping of one or
more columns in a replicated
table.

• The table row does not exist.
If the row is in the tombstone
table, then this is referred to
as an update-delete conflict.

If there is a value mismatch and
the timestamp of the row LCR is
later than the timestamp in the
table row, then the values in the
row LCR replace the values in the
table.

If there is a value mismatch and
the timestamp of the row LCR is
earlier than the timestamp in the
table row, then the row LCR is
discarded, and the table values
are retained.

If the table row does not exist and
the timestamp of the row LCR is
later than the timestamp in the
tombstone table row, then the row
LCR is converted from an
UPDATE operation to an INSERT
operation and inserted into the
table.

If the table row does not exist and
the timestamp of the row LCR is
earlier than the timestamp in the
tombstone table row, then the row
LCR is discarded.

If the table row does not exist and
there is no corresponding row in
the tombstone table, then the row
LCR is converted from an
UPDATE operation to an INSERT
operation and inserted into the
table.

DELETE A conflict is detected in each of
the following cases:

• There is a mismatch
between the timestamp value
in the row LCR and the
timestamp value of the
corresponding row in the
table.

• The table row does not exist.

If the timestamp of the row LCR
is later than the timestamp in the
table, then delete the row from
the table.

If the timestamp of the row LCR
is earlier than the timestamp in
the table, then the row LCR is
discarded, and the table values
are retained.

If the delete is successful, then
log the row LCR by inserting it
into the tombstone table.

If the table row does not exist,
then log the row LCR by inserting
it into the tombstone table.

The following image displays the conflict resolution between database A and database B:

Chapter 9
Error Management

9-82

This example shows a row being replicated at database A and database B. The database
columns are Name, RowTS, Office, Title, and Salary. The RowTS column is the invisible column
in both databases. There is an update in the Office column in database A and at the same
time there is a update in the Title column in database B. This causes a conflict and the
resolution for this conflict is done applying the latest timestamp method.

• In database A, the value in the Office column gets updated from 1080 to 1103 and the
RowTS value changes from @TS10 to @TS20. A arrow indicates that this change is
replicated to database B.

• In database B, the value of the Title column changes from MTS1 to MTS2 and the
RowTS value changes from @TS10 to @TS22.

• To resolve this conflict, the latest timestamp which exists in database B wins. This implies
that the changes in database A are not applied. The final values applied to database A and
database B are Scott, @TS22, 1080, MTS2, 100.

Delete Always Wins Timestamp CDR

DELETE ALWAYS WINS is enabled through the field ADDITIONAL_OPTIONS in both
DBMS_GOLDENGATE_ADM procedures ADD_AUTO_CDR() and ALTER_AUTO_CDR(). This is again a
delete conflict resolution method, which is not using latest timestamp resolution, therefore,
versioning is needed. Turning on DELETE ALWAYS WINS automatically turns on versioning, which
adds a new hidden column KEYVER$$ (version number) of type timestamp. A new flag value is
also added to acdrflags_kqldtvc to indicate DELETE ALWAYS WINS usage. This field is also
added to the DELETE TOMBSTONE table. The same versioning issues exist as the EARLIEST
TIMESTAMP resolution.

Example:

Key Version kv and Timestamp ts
Database 1: insert tab1 key1 kv1 ts1
Database 2: delete tab1 key1 kv1 ts1
Insertion to DELETE TOMBSTONE table key1 kv1 ts1
Database 1: insert tab1 key1 kv2 ts2

Chapter 9
Error Management

9-83

Without using the key version, the insert would be ignored, the delete always wins. As the key
version is used, you know that kv2 is not the version of the row that was deleted and the insert
succeeds.

Delta Conflict Resolution
With delta conflict detection, a conflict occurs when a value in the old column list of the row
LCR differs from the value for the corresponding row in the table.

To configure delta conflict detection and resolution for a table, run the
ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package. The delta
resolution method does not depend on a timestamp or an extra resolution column. With delta
conflict resolution, the conflict is resolved by adding the difference between the new and old
values in the row LCR to the value in the table. This resolution method is generally used for
financial data such as an account balance. For example, if a bank balance is updated at two
sites concurrently, then the converged value accounts for all debits and credits.

The following figure provides an example that illustrates delta conflict detection and resolution.

Figure 9-2 Delta Conflict Detection and Resolution

This example shows a row being replicated at database A and database B. The Balance
column is designated as the column on which delta conflict resolution is performed, and the
RowTS column is the invisible timestamp column to track the time of each change to the
Balance column. A change is made to the Balance value in the row in both databases at nearly
the same time (@T20 in database A and @T22 in database B). These changes result in a conflict,
and delta conflict resolution is used to resolve the conflict in the following way:

• At database A, the value of Balance was changed from 1000 to 1750. Therefore, the value
was increased by 750.

• At database B, the value of Balance was changed from 1000 to 950. Therefore, the value
was decreased by 50.

• To resolve the conflict at database A, the value of the difference between the new and old
values in the row LCR to the value in the table. The difference between the new and old
values in the LCR is (1000+750-50=1700). The current value in the table is increased by
700 so that the value after conflict resolution is 1700.

• To resolve the conflict at database B, the value of the difference between the new and old
values in the row LCR to the value in the table. The difference between the new and old
values in the LCR is 750 (1000 - 50 + 750)=1700. Therefore, the current value in the table
(950) is increased by 750 so that the value after conflict resolution is 1700.

Chapter 9
Error Management

9-84

After delta conflict resolution, the value of the Balance column is the same for the row at
database A and database B.

Site Priority CDR

Note:

SITE PRIORITY resolution takes precedence over all COLUMN GROUP resolution
settings.

Note:

If SITE PRIORITY Replicat parameter is not placed before applicable map statements
in the parameter file, it will not work. This parameter must be placed before the
applicable map statements.

Priority resolution is specified in Replicat parameter file between source and target for conflict
resolution.

SITE PRIORITY is enabled for a database or PDB in the Replicat parameter file with the
parameter ACDR SITE_PRIORITY {source_db_name}{OVERWRITE | IGNORE }, which is
specified to turn on SITE PRIORITY resolution for a table.

If the OVERWRITE option is specified, then the source table takes priority and conflicts are
resolved by OVERWRITE. Conversely, if the IGNORE option is specified, then the target table takes
priority and the source table changes are ignored in a conflict.

SITE PRIORITY resolution can be disabled by the field ADDITIONAL_OPTIONS in the
ADD_AUTO_CDR() procedure in DBMS_GOLDENGATE_ADM package, and ALTER_AUTO_CDR() by
setting IGNORE_SITE_PRIORITY.

Every Replicat source-target relationship can be set up differently, therefore, convergence is
dependent on user setup.

Track Primary Key Updates in Delete Tombstone

Full support of primary key (PK) updates requires handling conflicts on both the rows
represented by the before image of the key and the row represented by the after image of the
key. A PK update is an autonomous delete and insert, so, the PK update conflicts must be
supported as a delete for conflicts with the before image of the key and inserts with the after
image of the key (and row).

Supporting the PK update as a delete of the row represented by the before image of the key
means that it should insert into the delete tombstone table as a delete. An update internal
trigger is added to insert into the tombstone table when the PK is updated (actually the row
identifying key, either the PK if it exists or the chosen UK with at least one non-nullable
column). As a PK update may lead to two conflicts, up to two resolutions are attempted at the
row level, delete of the row with the original PK and the insert of the row with the new PK.

Example: Using latest timestamp resolution

Database 1: Update to tab1 key1 at ts1

Chapter 9
Error Management

9-85

Database 2: Update to tab1 key1 set key1 to key2 ts2
Database 3: Update to tab1 key2 ts3
In this scenario, it appears that at the row level tab1 row with key1 should be deleted and the
database 3 update should be the final modification of tab1 row key2. If instead the database 2
is at ts3 and database 3 is at ts3, then the PK update at database 2 would be the final
modification of tab1 row key2.

Now, consider a case where the database 1 was at ts3, database 2 at ts2 and database 3 at
ts1, then the update to tab1 row key1 on database 1 should succeed and the PK update from
database 2 on tab1 row key2 should succeed. At this point, it looks like the complete resolution
is that both the delete at the before image and the insert at the after image must be resolved
separately. This implies that they are not dependent on each other and a loss for one, is not a
loss for both.

Configuring Delta Conflict Detection and Resolution

The ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package configures
delta conflict detection and resolution.

With delta conflict resolution, you specify one column for which conflicts are detected and
resolved. The conflict is detected if the value of the column in the row LCR does not match the
corresponding value in the table. The conflict is resolved by adding the difference between the
new and old values in the row LCR to the value in the table.

You can configure an Oracle GoldenGate administrator using the GRANT_ADMIN_PRIVILEGE
procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest timestamp
conflict detection and resolution.

3. Run the ADD_AUTO_CDR_DELTA_RES procedure and specify the column on which delta
conflict detection and resolution is performed.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 9-21 Configuring Delta Conflict Detection and Resolution for a Table

This example configures delta conflict detection and resolution for the order_total column in
the oe.orders table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS');
END;
/

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_DELTA_RES(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS',
 COLUMN_NAME => 'ORDER_TOTAL');
END;
/

Chapter 9
Error Management

9-86

Configuring Latest Timestamp Conflict Detection and Resolution

The ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package configures latest
timestamp conflict detection and resolution. The ADD_AUTO_CDR_COLUMN_GROUP procedure adds
optional column groups.

For Oracle Database 23ai and higher, additional methods exist to manage and maintain ACDR
configured tables. You can retain the underlying AUTO-CDR-related columns as UNUSED columns
or drop them immediately after calling the REMOVE_AUTO_CDR procedure.

If you apply the ADD_AUTO_CDR procedure to a table, then by default, its internal columns are
marked as unused if AUTO_CDR is removed. After calling REMOVE_AUTO_CDR, the unused columns
could be manually deleted at a later stage or can be immediately removed using some
additional parameters. For details, see Removing Conflict Detection and Resolution From a
Table.

To know more, see ADD_AUTO_CDR Procedure in the Oracle Database PL/SQL Packages and
Types Reference

With latest timestamp conflict detection and resolution, a conflict is detected when the
timestamp column of the row LCR does not match the timestamp of the corresponding table
row. The row LCR is applied if its timestamp is later. Otherwise, the row LCR is discarded, and
the table row is not changed. When you run the ADD_AUTO_CDR procedure, it adds an invisible
timestamp column for each row in the specified table and configures timestamp conflict
detection and resolution. When you use the ADD_AUTO_CDR_COLUMN_GROUP procedure to add
one or more column groups, it adds a timestamp for the column group and configures
timestamp conflict detection and resolution for the column group.

You can configure an Oracle GoldenGate administrator using the GRANT_ADMIN_PRIVILEGE
procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as a Oracle GoldenGate administrator.

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest timestamp
conflict detection and resolution.

3. Run the ADD_AUTO_CDR_COLUMN_GROUP procedure and specify one or more column groups
in the table.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 9-22 Configuring the Latest Timestamp Conflict Detection and Resolution for
a Table

This example configures latest timestamp conflict detection and resolution for the
hr.employees table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES');
END;
/

Example 9-23 Configuring Column Groups

This example configures the following column groups for timestamp conflict resolution on the
HR.EMPLOYEES table:

Chapter 9
Error Management

9-87

• The JOB_IDENTIFIER_CG column group includes the JOB_ID, DEPARTMENT_ID, and
MANAGER_ID columns.

• The COMPENSATION_CG column group includes the SALARY and COMMISSION_PCT columns.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_COLUMN_GROUP(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 COLUMN_LIST => 'JOB_ID, DEPARTMENT_ID, MANAGER_ID',
 COLUMN_GROUP_NAME => 'JOB_IDENTIFIER_CG');
END;
/

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_COLUMN_GROUP(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 COLUMN_LIST => 'SALARY, COMMISSION_PCT',
 COLUMN_GROUP_NAME => 'COMPENSATION_CG');
END;
/

Configuring Delta Conflict Detection and Resolution

The ADD_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package configures
delta conflict detection and resolution.

With delta conflict resolution, you specify one column for which conflicts are detected and
resolved. The conflict is detected if the value of the column in the row LCR does not match the
corresponding value in the table. The conflict is resolved by adding the difference between the
new and old values in the row LCR to the value in the table.

You can configure an Oracle GoldenGate administrator using the GRANT_ADMIN_PRIVILEGE
procedure in the DBMS_GOLDENGATE_ADM package.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ADD_AUTO_CDR procedure and specify the table to configure for latest timestamp
conflict detection and resolution.

3. Run the ADD_AUTO_CDR_DELTA_RES procedure and specify the column on which delta
conflict detection and resolution is performed.

4. Repeat the previous steps in each Oracle Database that replicates the table.

Example 9-24 Configuring Delta Conflict Detection and Resolution for a Table

This example configures delta conflict detection and resolution for the order_total column in
the oe.orders table.

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS');
END;
/

Chapter 9
Error Management

9-88

BEGIN
 DBMS_GOLDENGATE_ADM.ADD_AUTO_CDR_DELTA_RES(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS',
 COLUMN_NAME => 'ORDER_TOTAL');
END;
/

Managing Automatic Conflict Detection and Resolution

You can manage Oracle GoldenGate automatic conflict detection and resolution in Oracle
Database with the DBMS_GOLDENGATE_ADM package.

Altering Conflict Detection and Resolution for a Table

The ALTER_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package alters conflict detection
and resolution for a table.

Oracle GoldenGate automatic conflict detection and resolution must be configured for the
table:

1. Connect to the inbound server database as the Oracle GoldenGate administrator.

2. Run the ALTER_AUTO_CDR procedure and specify the table to configure for latest timestamp
conflict detection and resolution.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 9-25 Altering Conflict Detection and Resolution for a Table

This example alters conflict detection and resolution for the HR.EMPLOYEES table to specify that
delete conflicts are tracked in a tombstone table.

BEGIN
 DBMS_GOLDENGATE_ADM.ALTER_AUTO_CDR(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 TOMBSTONE_DELETES => TRUE);
END;
/

Altering a Column Group
The ALTER_AUTO_CDR_COLUMN_GROUP procedure alters a column group.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the ALTER_AUTO_CDR_COLUMN_GROUP procedure and specify one or more column
groups in the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Chapter 9
Error Management

9-89

Example 9-26 Altering a Column Group

This example removes the MANAGER_ID column from the JOB_IDENTIFIER_CG column group for
the HR.EMPLOYEES table.

BEGIN
 DBMS_GOLDENGATE_ADM.ALTER_AUTO_CDR_COLUMN_GROUP(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 COLUMN_GROUP_NAME => 'JOB_IDENTIFIER_CG',
 REMOVE_COLUMN_LIST => 'MANAGER_ID');
END;
/

Note:

If there is more than one column, then use a comma-separated list.

Purging Tombstone Rows

The PURGE_TOMBSTONES procedure removes tombstone rows that were recorded before a
specified date and time. This procedure removes the tombstone rows for all tables configured
for conflict resolution in the database.

It might be necessary to purge tombstone rows periodically to keep the tombstone log from
growing too large over time.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the PURGE_TOMBSTONES procedure and specify the date and time.

Example 9-27 Purging Tombstone Rows

This example purges all tombstone rows recorded before 3:00 p.m. on December, 1, 2015
Eastern Standard Time. The timestamp must be entered in TIMESTAMP WITH TIME ZONE format.

EXEC DBMS_GOLDENGATE_ADM.PURGE_TOMBSTONES('2015-12-01 15:00:00.000000 EST');

Removing Conflict Detection and Resolution From a Table
With Oracle Database 23ai and higher, removing Automatic Conflict Detection and Resolution
(ACDR) entirely from the table has lesser impact on the table because the AUTO_CDR-related
columns are marked as UNUSED if AUTO_CDR is removed.

After calling the REMOVE_AUTO_CDR procedure, the unused columns can be manually deleted in
a maintenance window. This is useful for large tables where the ALTER TABLE ... DROP
COLUMN operation is resource intensive.

If you want to remove all AUTO_CDR internal columns immediately when calling the
REMOVE_AUTO_CDR procedure, you have to first mark the table using the additional_options
parameter REMOVE_HIDDEN_COLUMNS for the ADD_AUTO_CDR or ALTER_AUTO_CDR procedure.

Use the REMOVE_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package to tag a table as
UNUSED, which minimizes blocking. You can choose to drop a column or retain it at a later
stage.

Chapter 9
Error Management

9-90

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR procedure and specify the table.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 9-28 Removing Conflict Detection and Resolution for a Table

This example removes conflict detection and resolution for the HR.EMPLOYEES table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES');
END;
/

You can choose to drop columns by using the ADD_AUTO_CDR.REMOVE_HIDDEN_COLUMNS flag as
an additional_flags parameter in the ADD_AUTO_CDR procedure.

Here is an example that you can use to view hidden columns in a table.

The following query uses the DBA_UNUSED_COL_TABS package to determine if there unused
columns in the EMPLOYEES table.

SELECT OWNER, TABLE_NAME, COUNT
 FROM DBA_UNUSED_COL_TABS
 WHERE OWNER = 'HR'
 AND TABLE_NAME = 'EMPLOYEES'
 ORDER BY OWNER, TABLE_NAME;

The output displays as follows:

OWNER TABLE_NAME COUNT
-------- ------------ ----------
HR EMPLOYEES 1

The following query lists out the hidden columns that were tagged by the system when ACDR
was removed for the column group in the EMPLOYEES table.

SELECT OWNER, TABLE_NAME, COLUMN_ID, COLUMN_NAME, DATA_TYPE, HIDDEN_COLUMN
 FROM DBA_TAB_COLS
 WHERE OWNER = 'HR'
 AND TABLE_NAME = 'EMPLOYEES'
 AND HIDDEN_COLUMN = 'YES' AND USER_GENERATED= 'NO'
 ORDER BY OWNER, TABLE_NAME, COLUMN_ID;

The output displays as follows:

OWNER TABLE_NAME COLUMN_ID COLUMN_NAME DATA_TYPE
HIDDEN_COLUMN
------------ ------------ ---------- ------------- ------------

HR EMPLOYEES SYS_C00014_22092220:30:52$ TIMESTAMP(6) YES

Chapter 9
Error Management

9-91

Removing a Column Group
With Oracle Database 23ai and higher, removing Automatic Conflict Detection and Resolution
(ACDR) from column groups has lesser impact on the table because the ACDR related
columns are marked as UNUSED. You can also choose to drop a column or retain it at a later
stage.

Use the REMOVE_AUTO_CDR_COLUMN_GROUP procedure in the DBMS_GOLDENGATE_ADM package to
tag a table, which minimizes blocking. See the example in Removing Conflict Detection and
Resolution From a Table.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR_COLUMN_GROUP procedure and specify the name of the column
group.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 9-29 Removing a Column Group

This example removes the COMPENSATION_CG column group from the HR.EMPLOYEES table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR_COLUMN_GROUP(
 SCHEMA_NAME => 'HR',
 TABLE_NAME => 'EMPLOYEES',
 COLUMN_GROUP_NAME => 'COMPENSATION_CG');
END;
/

Removing Delta Conflict Detection and Resolution

The REMOVE_AUTO_CDR_DELTA_RES procedure in the DBMS_GOLDENGATE_ADM package removes
delta conflict detection and resolution for a column.

Delta conflict detection and resolution must be configured for the specified column.

1. Connect to the inbound server database as an Oracle GoldenGate administrator.

2. Run the REMOVE_AUTO_CDR_DELTA_RES procedure and specify the column.

3. Repeat all of the previous steps in each Oracle Database that replicates the table.

Example 9-30 Removing Delta Conflict Detection and Resolution for a Table

This example removes delta conflict detection and resolution for the ORDER_TOTAL column in
the OE.ORDERS table.

BEGIN
 DBMS_GOLDENGATE_ADM.REMOVE_AUTO_CDR_DELTA_RES(
 SCHEMA_NAME => 'OE',
 TABLE_NAME => 'ORDERS',
 COLUMN_NAME => 'ORDER_TOTAL');
END;
/

Monitoring Automatic Conflict Detection and Resolution

Chapter 9
Error Management

9-92

You can monitor Oracle GoldenGate automatic conflict detection and resolution in an Oracle
Database by querying data dictionary views.

Displaying Information About the Tables Configured for Conflicts
The ALL_GG_AUTO_CDR_TABLES view displays information about the tables configured for Oracle
GoldenGate automatic conflict detection and resolution.

1. Connect to the database.

2. Query the ALL_GG_AUTO_CDR_TABLES view.

Example 9-31 Displaying Information About the Tables Configured for Conflict
Detection and Resolution

This query displays the following information about the tables that are configured for conflict
detection and resolution:

• The table owner for each table.

• The table name for each table.

• The tombstone table used to store rows deleted for update-delete conflicts, if a tombstone
table is configured for the table.

• The hidden timestamp column used for conflict resolution for each table.

COLUMN TABLE_OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A15
COLUMN TOMBSTONE_TABLE FORMAT A15
COLUMN ROW_RESOLUTION_COLUMN FORMAT A25

SELECT TABLE_OWNER,
 TABLE_NAME,
 TOMBSTONE_TABLE,
 ROW_RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_TABLES
 ORDER BY TABLE_OWNER, TABLE_NAME;

Your output looks similar to the following:

TABLE_OWNER TABLE_NAME TOMBSTONE_TABLE ROW_RESOLUTION_COLUMN
--------------- --------------- --------------- -------------------------
HR EMPLOYEES DT$_EMPLOYEES CDRTS$ROW
OE ORDERS DT$_ORDERS CDRTS$ROW

Displaying Information About Conflict Resolution Columns
The ALL_GG_AUTO_CDR_COLUMNS view displays information about the columns configured for
Oracle GoldenGate automatic conflict detection and resolution.

The columns can be configured for row or column automatic conflict detection and resolution.
The columns can be configured for latest timestamp conflict resolution in a column group. In
addition, a column can be configured for delta conflict resolution.

1. Connect to the database as an Oracle GoldenGate administrator.

2. Query the ALL_GG_AUTO_CDR_COLUMNS view.

Chapter 9
Error Management

9-93

Example 9-32 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for conflict
detection and resolution:

• The table owner for each table.

• The table name for each table.

• If the column is in a column group, then the name of the column group.

• The column name.

• If the column is configured for latest timestamp conflict resolution, then the name of the
hidden timestamp column for the column.

COLUMN TABLE_OWNER FORMAT A10
COLUMN TABLE_NAME FORMAT A10
COLUMN COLUMN_GROUP_NAME FORMAT A17
COLUMN COLUMN_NAME FORMAT A15
COLUMN RESOLUTION_COLUMN FORMAT A23

SELECT TABLE_OWNER,
 TABLE_NAME,
 COLUMN_GROUP_NAME,
 COLUMN_NAME,
 RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_COLUMNS
 ORDER BY TABLE_OWNER, TABLE_NAME;

Your output looks similar to the following:

TABLE_OWNE TABLE_NAME COLUMN_GROUP_NAME COLUMN_NAME RESOLUTION_COLUMN
---------- ---------- ----------------- ---------------

HR EMPLOYEES COMPENSATION_CG COMMISSION_PCT CDRTS$COMPENSATION_CG
HR EMPLOYEES COMPENSATION_CG SALARY CDRTS$COMPENSATION_CG
HR EMPLOYEES JOB_IDENTIFIER_CG MANAGER_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES JOB_IDENTIFIER_CG JOB_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES JOB_IDENTIFIER_CG DEPARTMENT_ID
CDRTS$JOB_IDENTIFIER_CG
HR EMPLOYEES IMPLICIT_COLUMNS$ PHONE_NUMBER CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ LAST_NAME CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ HIRE_DATE CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ FIRST_NAME CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ EMAIL CDRTS$ROW
HR EMPLOYEES IMPLICIT_COLUMNS$ EMPLOYEE_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_MODE CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_DATE CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ CUSTOMER_ID CDRTS$ROW
OE ORDERS DELTA$ ORDER_TOTAL
OE ORDERS IMPLICIT_COLUMNS$ PROMOTION_ID CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ ORDER_STATUS CDRTS$ROW
OE ORDERS IMPLICIT_COLUMNS$ SALES_REP_ID CDRTS$ROW

Chapter 9
Error Management

9-94

In this example, the columns with IMPLICIT_COLUMNS$ for the column group name are
configured for row conflict detection and resolution, but they are not part of a column group.
The columns with DELTA$ for the column group name are configured for delta conflict detection
and resolution, and these columns do not have a resolution column.

Displaying Information About Column Groups

The ALL_GG_AUTO_CDR_COLUMN_GROUPS view displays information about the column groups
configured for Oracle GoldenGate automatic conflict detection and resolution.

You can configure Oracle GoldenGate automatic conflict detection and resolution using the
ADD_AUTO_CDR procedure in the DBMS_GOLDENGATE_ADM package. You can configure column
groups using the ADD_AUTO_CDR_COLUMN_GROUP procedure in the DBMS_GOLDENGATE_ADM
package.

1. Connect to the database as an Oracle GoldenGate administrator.

2. Query the ALL_GG_AUTO_CDR_COLUMN_GROUPS view.

Example 9-33 Displaying Information About Column Groups

This query displays the following information about the tables that are configured for conflict
detection and resolution:

• The table owner.

• The table name.

• The name of the column group.

• The hidden timestamp column used for conflict resolution for each column group.

COLUMN TABLE_OWNER FORMAT A15
COLUMN TABLE_NAME FORMAT A15
COLUMN COLUMN_GROUP_NAME FORMAT A20
COLUMN RESOLUTION_COLUMN FORMAT A25

SELECT TABLE_OWNER,
 TABLE_NAME,
 COLUMN_GROUP_NAME,
 RESOLUTION_COLUMN
 FROM ALL_GG_AUTO_CDR_COLUMN_GROUPS
 ORDER BY TABLE_OWNER, TABLE_NAME;

The output looks similar to the following:

TABLE_OWNER TABLE_NAME COLUMN_GROUP_NAME RESOLUTION_COLUMN
--------------- --------------- -------------------- -------------------------
HR EMPLOYEES COMPENSATION_CG CDRTS$COMPENSATION_CG
HR EMPLOYEES JOB_IDENTIFIER_CG CDRTS$JOB_IDENTIFIER_CG

Manual Conflict Detection and Resolution

Learn about manually configuring Conflict Detection and Resolution (CDR) using specific
parameters. Conflict detection and resolution is required in active-active configurations, where
Oracle GoldenGate must maintain data synchronization among multiple databases that contain
the same data sets.

Chapter 9
Error Management

9-95

Overview of the Oracle GoldenGate CDR Feature
Oracle GoldenGate Conflict Detection and Resolution (CDR) has two parts: Conflict Detection
and Conflict Resolution. Before starting with conflict resolution, it's important to investigate and
complete conflict detection.

Oracle GoldenGate Conflict Detection and Resolution (CDR) provides basic conflict resolution
routines that:

• Resolve a uniqueness conflict for an INSERT.

• Resolve a "no data found" conflict for an UPDATE when the row exists, but the before image
of one or more columns is different from the current value in the database.

• Resolve a "no data found" conflict for an UPDATE when the row does not exist.

• Resolve a "no data found" conflict for a DELETE when the row exists, but the before image
of one or more columns is different from the current value in the database.

• Resolve a "no data found" conflict for a DELETE when the row does not exist.

To use conflict detection and resolution (CDR), the target database must reside on a Windows,
Linux, or UNIX system. It is not supported for databases on the NonStop platform.

 CDR supports scalar data types such as:

• NUMERIC
• BOOLEAN
• DATE
• TIMESTAMP
• CHAR/NCHAR
• VARCHAR/ NVARCHAR
This means that these column types can be used with the COMPARECOLS parameter and as the
resolution column in the USEMIN and USEMAX options of the RESOLVECONFLICT parameter. Only
NUMERIC columns can be used for the USEDELTA option of RESOLVECONFLICT. For USEMAX,
USEMIN, only TIMESTAMP and NUMBER are supported.

Conflict resolution is not performed when Replicat operates in BATCHSQL mode. If a conflict
occurs in BATCHSQL mode, Replicat reverts to GROUPTRANSOPS mode, and then to single-
transaction mode. Conflict detection occurs in all three modes.

Configuring the Oracle GoldenGate Parameter Files for Error Handling
Manual CDR should be used in conjunction with error handling to capture errors that were
resolved and errors that CDR could not resolve.

1. Conflict resolution is performed before these other error-handling parameters:
HANDLECOLLSIONS, INSERTMISSINGUPDATES, and REPERROR. Use the REPERROR parameter to
assign rules for handling errors that cannot be resolved by CDR, or for errors that you do
not want to handle through CDR. It might be appropriate to have REPERROR handle some
errors, and CDR handle others; however, if REPERROR and CDR are configured to handle
the same conflict, CDR takes precedence. The INSERTMISSINGUPDATES and
HANDLECOLLISIONS parameters also can be used to handle some errors not handled by
CDR. See the Parameters and Functions Reference for Oracle GoldenGate for details
about these parameters.

Chapter 9
Error Management

9-96

2. (Optional) Create an exceptions table. When an exceptions table is used with an
exceptions MAP statment, Replicat sends every operation that generates a conflict
(resolved or not) to the exceptions MAP statement to be mapped to the exceptions table.
Omit a primary key on this table if Replicat is to process UPDATE and DELETE conflicts;
otherwise there can be integrity constraint errors.

At minimum, an exceptions table should contain the same columns as the target table.
These rows will contain each row image that Replicat applied to the target (or tried to
apply).

In addition, you can define additional columns to capture other information that helps put
the data in transactional context. Oracle GoldenGate provides tools to capture this
information through the exceptions MAP statement. Such columns can be, but are not
limited to, the following:

• The before image of the trail record. This is a duplicate set of the target columns with
names such as col1_before, col2_before, and so forth.

• The current values of the target columns. This also is a duplicate set of the target
columns with names such as col1_current, col2_current, and so forth.

• The name of the target table

• The timestamp of the conflict

• The operation type

• The database error number

• (Optional) The database error message

• Whether the conflict was resolved or not

3. Create an exceptions MAP statement to map the exceptions data to the exceptions table.
An exceptions MAP statement contains:

• (Required) The INSERTALLRECORDS option. This parameter converts all mapped
operations to INSERTs so that all column values are mapped to the exceptions table.

• (Required) The EXCEPTIONSONLY option. This parameter causes Replicat to map
operations that generate an error, but not those that were successful.

• (Optional) A COLMAP clause. If the names and definitions of the columns in the
exceptions table are identical to those of the source table, and the exceptions table
only contains those columns, no COLMAP is needed. However, if any names or
definitions differ, or if there are extra columns in the exceptions table that you want to
populate with additional data, use a COLMAP clause to map all columns.

Tools for Mapping Extra Data to the Exceptions Table
The following are some tools that you can use in the COLMAP clause to populate extra columns:

• If the names and definitions of the source columns are identical to those of the target
columns in the exceptions table, you can use the USEDEFAULTS keyword instead of explicitly
mapping names. Otherwise, you must map those columns in the COLMAP clause, for
example:

COLMAP (exceptions_col1 = col1, [...])

Chapter 9
Error Management

9-97

• To map the before image of the source row to columns in the exceptions table, use the
@BEFORE conversion function, which captures the before image of a column from the trail
record. This example shows the @BEFORE usage.

COLMAP (USEDEFAULTS, exceptions_col1 = @BEFORE (source_col1), &
exceptions_col2 = @BEFORE (source_col2), [...])

• To map the current image of the target row to columns in the exceptions table, use a
SQLEXEC query to capture the image, and then map the results of the query to the columns
in the exceptions table by using the 'queryID.column' syntax in the COLMAP clause, as in
the following example:

COLMAP (USEDEFAULTS, name_current = queryID.name, phone_current =
queryID.phone, [...])

• To map timestamps, database errors, and other environmental information, use the
appropriate Oracle GoldenGate column-conversion functions. For example, the following
maps the current timestamp at time of execution.

res_date = @DATENOW ()

See Sample Exceptions Mapping with Additional Columns in the Exceptions Table , for how to
combine these features in a COLMAP clause in the exceptions MAP statement to populate a
detailed exceptions table.

See Reference for Oracle GoldenGate for Windows and UNIX for the usage and syntax of the
parameters and column-conversion functions shown in these examples.

Sample Exceptions Mapping with Source and Target Columns Only
The following is a sample parameter file that shows error handling and simple exceptions
mapping for the source and target tables that are used in the CDR examples that begin. This
example maps source and target columns, but no extra columns. For the following reasons, a
COLMAP clause is not needed in the exceptions MAP statement in this example:

• The source and target exceptions columns are identical in name and definition.

• There are no other columns in the exceptions table.

Note:

This example intentionally leaves out other parameters that are required in a
Replicat parameter file, such as process name and login credentials, as well as
any optional parameters that may be required for a given database type. When
using line breaks to split a parameter statement into multiple lines, use an
ampersand (&) at the end of each line.

 -- REPERROR error handling: DEFAULT represents all error types. DISCARD
 -- writes operations that could not be processed to a discard file.
REPERROR (DEFAULT, DISCARD)
 -- Specifies a discard file.
DISCARDFILE /users/ogg/discards/discards.dsc, PURGE
 -- The regular MAP statement with the CDR parameters
MAP fin.src, TARGET fin.tgt, &
COMPARECOLS (ON UPDATE ALL, ON DELETE ALL), &

Chapter 9
Error Management

9-98

RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)), &
);
 -- Starts the exceptions MAP statement by mapping the source table to the
 -- exceptions table.
MAP fin.src, TARGET fin.exception, &
 -- directs Replicat only to map operations that caused the error specified
 -- in REPERROR.
EXCEPTIONSONLY, &
 -- directs Replicat to convert all the exceptions to inserts into the
 -- exceptions table. This is why there cannot be a primary key constraint
 -- on the exceptions table.
INSERTALLRECORDS
;

Sample Exceptions Mapping with Additional Columns in the Exceptions Table
The following is a sample parameter file that shows error handling and complex exceptions
mapping for the source and target tables that are used in the CDR examples that begin. In this
example, the exceptions table has the same rows as the source table, but it also has additional
columns to capture context data.

Note:

This example intentionally leaves out other parameters that are required in a Replicat
parameter file, such as process name and login credentials, as well as any optional
parameters that may be required for a given database type. When using line breaks
to split a parameter statement into multiple lines, use an ampersand (&) at the end of
each line.

 -- REPERROR error handling: DEFAULT represents all error types. DISCARD
 -- writes operations that could not be processed to a discard file.
REPERROR (DEFAULT, DISCARD)
 -- Specifies the discard file.
DISCARDFILE /users/ogg/discards/discards.dsc, PURGE
 -- The regular MAP statement with the CDR parameters
MAP fin.src, TARGET fin.tgt, &
COMPARECOLS (ON UPDATE ALL, ON DELETE ALL), &
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)), &
RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)), &
RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD))
);
 -- Starts the exceptions MAP statement by mapping the source table to the
-- exceptions table.
MAP fin.src, TARGET fin.exception, &
 -- directs Replicat only to map operations that caused the error specified
 -- in REPERROR.
EXCEPTIONSONLY, &
 -- directs Replicat to convert all the exceptions to inserts into the
 -- exceptions table. This is why there cannot be a primary key constraint

Chapter 9
Error Management

9-99

 -- on the exceptions table.
INSERTALLRECORDS &
 -- SQLEXEC query to select the values from the target record before the
 -- Replicat statement is applied. These are mapped to the *_target
 -- columns later.
SQLEXEC (id qry, query 'select name, phone, address, salary, balance, &
comment, last_mod_time from fin.tgt where name = :p1', PARAMS(p1 = name)), &
 -- Start of the column mapping, specifies use default column definitions.
COLMAP (&
 -- USEDEFAULTS maps the source columns to the target exceptions columns
 -- that receive the after image that Replicat applied or tried to apply.
 -- In this case, USEDEFAULTS can be used because the names and
definitions
 -- of the source and target exceptions columns are identical; otherwise
 -- the columns must be mapped explicitly in the COLMAP clause.
USEDEFAULTS, &
 -- captures the timestamp when the resolution was performed.
res_date = @DATENOW (), &
 -- captures and maps the DML operation type.
optype = @GETENV ('LASTERR', 'OPTYPE'), &
 -- captures and maps the database error number that was returned.
dberrnum = @GETENV ('LASTERR', 'DBERRNUM'), &
 -- captures and maps the database error that was returned.
dberrmsge = @GETENV ('LASTERR', 'DBERRMSG'), &
 -- captures and maps the name of the target table
tabname = @GETENV ('GGHEADER', 'TABLENAME'), &
 -- If the names and definitions of the source columns and the target
 -- exceptions columns were not identical, the columns would need to
 -- be mapped in the COLMAP clause instead of using USEDEFAULTS, as
 -- follows:
 -- name_after = name, &
 -- phone_after = phone, &
 -- address_after = address, &
 -- salary_after = salary, &
 -- balance_after = balance, &
 -- comment_after = comment, &
 -- last_mod_time_after = last_mod_time &
 -- maps the before image of each column from the trail to a column in the
 -- exceptions table.
name_before = @BEFORE (name), &
phone_before = @BEFORE (phone), &
address_before = @BEFORE (address), &
salary_before = @BEFORE (salary), &
balance_before = @BEFORE (balance), &
comment_before = @BEFORE (comment), &
last_mod_time_before = @BEFORE (last_mod_time), &
 -- maps the results of the SQLEXEC query to rows in the exceptions table
 -- to show the current image of the row in the target.
name_current = qry.name, &
phone_current = qry.phone, &
address_current = qry.address, &
salary_current = qry.salary, &
balance_current = qry.balance, &
comment_current = qry.comment, &
last_mod_time_current = qry.last_mod_time)
;

Chapter 9
Error Management

9-100

Once you are confident that your routines work as expected in all situations, you can reduce
the amount of data that is logged to the exceptions table to reduce the overhead of the
resolution routines.

Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution
The following parameters are required to support conflict detection and resolution.

1. Use the COMPARECOLS option of the MAP parameter in the Replicat parameter file to specify
columns that are to be used with before values in the Replicat WHERE clause. The before
values are compared with the current values in the target database to detect update and
delete conflicts. (By default, Replicat only uses the primary key in the WHERE clause; this
may not be enough for conflict detection).

2. Use the RESOLVECONFLICT option of the MAP parameter to specify conflict resolution routines
for different operations and conflict types. You can use RESOLVECONFLICT multiple times in
a MAP statement to specify different resolutions for different conflict types. However, you
cannot use RESOLVECONFLICT multiple times for the same type of conflict. Use identical
conflict-resolution procedures on all databases, so that the same conflict produces the
same end result. One conflict-resolution method might not work for every conflict that could
occur. You might need to create several routines that can be called in a logical order of
priority so that the risk of failure is minimized.

Note:

Additional consideration should be given when a table has a primary key and
additional unique indexes or unique keys. The automated routines provided with the
COMPARECOLS and RESOLVECONFLICT parameters require a consistent way to uniquely
identify each row. Failure to consistently identify a row will result in an error during
conflict resolution. In these situations the additional unique keys should be disabled
or you can use the SQLEXEC feature to handle the error thrown and resolve the
conflict.

For detailed information about these parameters, see Parameters and Functions Reference for
Oracle GoldenGate. See the examples starting on CDR Example 1: All Conflict Types with
USEMAX, OVERWRITE, DISCARD, for more information on these parameters.

Making the Required Column Values Available to Extract
To use CDR, the following column values must be logged so that Extract can write them to the
trail.

• The full before image of each record. Some databases do not provide a before image in
the log record, and must be configured to do so with supplemental logging. For most
supported databases, you can use the ADD TRANDATA command for this purpose.

• Use the LOGALLSUPCOLS parameter to ensure that the full before and after images of the
scheduling columns are written to the trail. Scheduling columns are primary key, unique
index, and foreign key columns. LOGALLSUPCOLS causes Extract to include in the trail record
the before image for UPDATE operations and the before image of all supplementally logged
columns for both UPDATE and DELETE operations.

For detailed information about these parameters and commands, see the Parameters and
Functions Reference for Oracle GoldenGate. See the examples starting on CDR Example 1:

Chapter 9
Error Management

9-101

All Conflict Types with USEMAX, OVERWRITE, DISCARD for more information on how these
parameters work with CDR.

Viewing CDR Statistics
The CDR feature provides the following methods for viewing the results of conflict resolution.

Here are different techniques you can use to view CDR statistics.

Report File

Replicat writes CDR statistics to the report file:

Total CDR conflicts 7
 CDR resolutions succeeded 6
 CDR resolutions failed 1
 CDR INSERTROWEXISTS conflicts 1
 CDR UPDATEROWEXISTS conflicts 4
 CDR UPDATEROWMISSING conflicts
 CDR DELETEROWEXISTS conflicts 1
 CDR DELETEROWMISSING conflicts 1

Command Line

You can view CDR statistics from the command line by using the STATS REPLICAT command
with the REPORTCDR option:

STATS REPLICAT group, REPORTCDR

Column-conversion Functions

The following CDR statistics can be retrieved and mapped to an exceptions table or used in
other Oracle GoldenGate parameters that accept input from column-conversion functions, as
appropriate.

• Number of conflicts that Replicat detected

• Number of resolutions that the Replicat resolved

• Number of resolutions that the Replicat could not resolve

To retrieve these statistics, use the @GETENV column-conversion function with the STATS or
DELTASTATS information type. The results are based on the current Replicat session. If Replicat
stops and restarts, it resets the statistics.

You can return these statistics for a specific table or set of wildcarded tables:

@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_CONFLICTS')
@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_RESOLUTIONS_SUCCEEDED')
@GETENV ('STATS','TABLE','SCHEMA.TABLNAME','CDR_RESOLUTIONS_FAILED')

Chapter 9
Error Management

9-102

You can return these statistics for all of the tables in all of the MAP statements in the Replicat
parameter file:

@GETENV ('STATS','CDR_CONFLICTS')
@GETENV ('STATS','CDR_RESOLUTIONS_SUCCEEDED')
@GETENV ('STATS','CDR_RESOLUTIONS_FAILED')

The 'STATS' information type in the preceding examples can be replaced by 'DELTASTATS' to
return the requested counts since the last execution of 'DELTASTATS'. For more information
about @GETENV, see @GETENV

CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD
This example resolves all conflict types by using the USEMAX, OVERWRITE, and DISCARD
resolutions.

Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE hr.emp_tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA hr.emp_src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

MAP Statement with Conflict Resolution Specifications
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS (ON UPDATE ALL, ON DELETE ALL),
 RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (last_mod_time)),
 RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)),
 RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)),
);

Description of MAP Statement
The following describes the MAP statement:

• Per COMPARECOLS, use the before image of all columns in the trail record in the Replicat
WHERE clause for updates and deletes.

• Per DEFAULT, use all columns as the column group for all conflict types; thus the resolution
applies to all columns.

• For an INSERTROWEXISTS conflict, use the USEMAX resolution: If the row exists during an
insert, use the last_mod_time column as the resolution column for deciding which is the
greater value: the value in the trail or the one in the database. If the value in the trail is

Chapter 9
Error Management

9-103

greater, apply the record but change the insert to an update. If the database value is
higher, ignore the record.

• For an UPDATEROWEXISTS conflict, use the USEMAX resolution: If the row exists during an
update, use the last_mod_time column as the resolution column: If the value in the trail is
greater, apply the update.

• If you use USEMIN or USEMAX, and the values are exactly the same, then RESOLVECONFLICT
isn't triggered and the incoming row is ignored. If you use USEMINEQ or USEMAXEQ, and the
values are exactly the same, then the resolution is triggered.

• For a DELETEROWEXISTS conflict, use the OVERWRITE resolution: If the row exists during a
delete operation, apply the delete.

• For an UPDATEROWMISSING conflict, use the OVERWRITE resolution: If the row does not exist
during an update, change the update to an insert and apply it.

• For a DELETROWMISSING conflict use the DISCARD resolution: If the row does not exist during
a delete operation, discard the trail record.

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply a >=
condition. For more information, see Parameters and Functions Reference for
Oracle GoldenGate.

INSERTROWEXISTS with the USEMAX Resolution
For this example, the USEMAX resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve an insert where
the row exists in the source and target, but some or all row values are different.

Table 9-9 INSERTROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Before image in trail None (row was inserted on the
source).

N/A

After image in trail name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the after
image of the resolution column. Since there is an
after image, this will be used to determine the
resolution.

Target database image name='Mary'
phone='111111'
address='Ralston'
salary=200
balance=500
comment='aaa'
last_mod_time='9/1/10 1:00'

last_mod_time='9/1/10 1:00 is the current
image of the resolution column in the target
against which the resolution column value in the
trail is compared.

Chapter 9
Error Management

9-104

Table 9-9 (Cont.) INSERTROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Initial INSERT applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Mary'
2)'1234567890'
3)'Oracle Pkwy'
4)100
5)100
6)NULL
7)'9/1/10 3:00'

This SQL returns a uniqueness conflict on 'Mary'.

UPDATE applied by Replicat to
resolve the conflict

SQL bind variables:

1)'1234567890'
2)'Oracle Pkwy'
3)100
4)100
5)NULL
6)'9/1/10 3:00'
7)'Mary'
8)'9/1/10 3:00'

Because USEMAX is specified for
INSERTROWEXISTS, Replicat converts the insert
to an update, and it compares the value of
last_mod_time in the trail record with the value
in the database. The value in the record is
greater, so the after images for columns in the
trail file are applied to the target.

UPDATEROWEXISTS with the USEMAX Resolution
For this example, the USEMAX resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve an update where
the row exists in the source and target, but some or all row values are different.

Table 9-10 UPDATEROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Before image in trail name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the
before image of the resolution column.

After image in trail phone='222222'
address='Holly'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the after
image of the resolution column. Since there
is an after image, this will be used to
determine the resolution.

Target database image name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=600
comment='com'
last_mod_time='9/1/10 6:00'

last_mod_time='9/1/10 6:00 is the
current image of the resolution column in the
target against which the resolution column
value in the trail is compared.

Chapter 9
Error Management

9-105

Table 9-10 (Cont.) UPDATEROWEXISTS Conflict with USEMAX Resolution

Image SQL Comments

Initial UPDATE applied by
Replicat that detects the conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)'9/1/10 5:00'
4)'Mary'
5)'1234567890'
6)'Oracle Pkwy'
7)100
8)100
9)NULL
10)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the balance,
comment, and last_mod_time are different
in the target.

All columns are used in the WHERE clause
because the COMPARECOLS statement is set
to ALL.

UPDATE applied by Replicat to
resolve the conflict

SQL bind variables:

1)'Mary'
2)'222222'
3)'Holly'
4)100
5)100
6)NULL
7)'9/1/10 5:00'
8)'Mary'
9)'9/1/10 5:00'

Because the after value of last_mod_time
in the trail record is less than the current
value in the database, the database value is
retained. Replicat applies the operation with
a WHERE clause that contains the primary key
plus a last_mod_time value set to less than
9/1/10 5:00. No rows match this criteria,
so the statement fails with a "data not found"
error, but Replicat ignores the error because
a USEMAX resolution is expected to fail if the
condition is not satisfied.

UPDATEROWMISSING with OVERWRITE Resolution
For this example, the OVERWRITE resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve the case where
the target row is missing. The logical resolution, and the one used, is to overwrite the row into
the target so that both databases are in sync again.

Table 9-11 UPDATEROWMISSING Conflict with OVERWRITE Resolution

Image SQL Comments

Before image in trail name='Jane'
phone='333'
address='Oracle Pkwy'
salary=200
balance=200
comment=NULL
last_mod_time='9/1/10 7:00'

N/A

After image in trail phone='4444'
address='Holly'
last_mod_time='9/1/10 8:00'

Target database image None (row for Jane is missing)

Chapter 9
Error Management

9-106

Table 9-11 (Cont.) UPDATEROWMISSING Conflict with OVERWRITE Resolution

Image SQL Comments

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'4444'
2)'Holly'
3)'9/1/10 8:00'
4)'Jane'
5)'333'
6)'Oracle Pkwy'
7)200
8)200
9)NULL
10)'9/1/10 7:00'

This SQL returns a no-data-found error. All
columns are used in the WHERE clause
because the COMPARECOLS statement is set
to ALL.

INSERT applied by Replicat to
resolve the conflict

SQL bind variables:

1)'Jane'
2)'4444'
3)'Holly'
4)200
5)200
6)NULL
7)'9/1/10 8:00'

The update is converted to an insert
because OVERWRITE is the resolution. The
after image of a column is used if available;
otherwise the before image is used.

DELETEROWEXISTS with OVERWRITE Resolution
For this example, the OVERWRITE resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve the case where
the source row was deleted but the target row exists. In this case, the OVERWRITE resolution
applies the delete to the target.

Table 9-12 DELETEROWEXISTS Conflict with OVERWRITE Resolution

Image SQL Comments

Before image in trail name='Mary'
phone='222222'
address='Holly'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 5:00'

N/A

After image in trail None N/A

Target database image name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=600
comment=com
last_mod_time='9/1/10 7:00'

The row exists on the target, but the phone,
address, balance, comment, and
last_mod_time columns are different from
the before image in the trail.

Chapter 9
Error Management

9-107

Table 9-12 (Cont.) DELETEROWEXISTS Conflict with OVERWRITE Resolution

Image SQL Comments

Initial DELETE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Mary'
2)'222222'
3)'Holly'
4)100
5)100d
6)NULL
7)'9/1/10 5:00'

All columns are used in the WHERE clause
because the COMPARECOLS statement is set
to ALL.

A no-data-found error occurs because of
the difference between the before and
current values.

DELETE applied by Replicat to
resolve the conflict

SQL bind variables:

1)'Mary'
Because OVERWRITE is the resolution. the
DELETE is applied using only the primary
key (to avoid an integrity error).

DELETEROWMISSING with DISCARD Resolution
For this example, the DISCARD resolution is illustrated with the applicable before and after
images for the record in the trail and in the database. It shows how to resolve the case where
the target row is missing. In the case of a delete on the source, it is acceptable for the target
row not to exist (it would need to be deleted anyway), so the resolution is to discard the DELETE
operation that is in the trail.

Table 9-13 DELETEROWMSING Conflict with DISCARD Resolution

Image SQL Comments

Before image in trail name='Jane'
phone='4444'
address='Holly'
salary=200
balance=200
comment=NULL
last_mod_time='9/1/10 8:00'

N/A

After image in trail None N/A

Target database image None (row missing) N/A

Initial DELETE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'Jane'
2)'4444'
3)'Holly'
4)200
5)200
6)NULL
7)'9/1/10 8:00'

This SQL returns a no-data-found error. All
columns are used in the WHERE clause
because the COMPARECOLS statement is set
to ALL.

SQL applied by Replicat to
resolve the conflict

None Because DISCARD is specified as the
resolution for DELETEROWMISSING, so the
delete from the trail goes to the discard file.

Chapter 9
Error Management

9-108

CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX
This example resolves the condition where a target row exists on UPDATE but non-key columns
are different, and it uses two different resolution types to handle this condition based on the
affected column.

Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

MAP Statement
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE KEYINCLUDING (address, phone, salary, last_mod_time),
 ON DELETE KEYINCLUDING (address, phone, salary, last_mod_time)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary)),
 (DEFAULT, USEMAX (last_mod_time)));

Description of MAP Statement
For an UPDATEROWEXISTS conflict, where a target row exists on UPDATE but non-key columns are
different, use two different resolutions depending on the column:

• Per the delta_res_method resolution, use the USEDELTA resolution logic for the salary
column so that the change in value will be added to the current value of the column.

• Per DEFAULT, use the USEMAX resolution logic for all other columns in the table (the default
column group), using the last_mod_time column as the resolution column. This column is
updated with the current time whenever the row is modified; the value of this column in the
trail is compared to the value in the target. If the value of last_mod_time in the trail record
is greater than the current value of last_mod_time in the target database, the changes to
name, phone, address, balance, comment and last_mod_time are applied to the target.

Per COMPARECOLS, use the primary key (name column) plus the address, phone, salary, and
last_mod_time columns as the comparison columns for conflict detection for UPDATE and
DELETE operations. (The balance and comment columns are not compared.)

Chapter 9
Error Management

9-109

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply a >=
condition. For more information, see Parameters and Functions Reference for Oracle
GoldenGate.

Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

Table 9-14 UPDATEROWEXISTS with USEDELTA and USEMAX

Image SQL Comments

Before image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00'

last_mod_time='9/1/10 3:00 is the
before image of the resolution column for
the USEMAX resolution.

salary=100 is the before image for the
USEDELTA resolution.

After image in trail
phone='222222'
address='Holly'
salary=200
comment='new'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column for
USEMAX. Since there is an after image, this
will be used to determine the resolution.

Target database image
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=600
balance=600
comment='com'
last_mod_time='9/1/10 4:00'

last_mod_time='9/1/10 4:00 is the
current image of the resolution column in
the target against which the resolution
column value in the trail is compared.

salary=600 is the current image of the
target column for the USEDELTA resolution.

Chapter 9
Error Management

9-110

Table 9-14 (Cont.) UPDATEROWEXISTS with USEDELTA and USEMAX

Image SQL Comments

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)200
4)'new'
5)'9/1/10 5:00'
6)'Mary'
7)'1234567890'
8)'Oracle Pkwy'
9)100
10)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the salary and
last_mod_time are different. (The values
for comment and balance are also
different, but these columns are not
compared.)

UPDATE applied by Replicat to
resolve the conflict for salary,
using USEDELTA.

SQL bind variables:

1)200
2)100
3)'Mary'

Per USEDELTA, the difference between the
after image of salary (200) in the trail and
the before image of salary (100) in the trail
is added to the current value of salary in
the target (600). The result is 700.

600 + (200 - 100) = 700

UPDATE applied by Replicat to
resolve the conflict for the
default columns, using
USEMAX.

SQL bind variables:

1)'222222'
2)'Holly'
3)'new'
4)'9/1/10 5:00'
5)'Mary'
6)'9/1/10 5:00'

Per USEMAX, because the after value of
last_mod_time in the trail record is
greater than the current value in the
database, the row is updated with the after
values from the trail record.

Note that the salary column is not set
here, because it is resolved with the UPDATE
from the USEDELTA resolution.

CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE
This example resolves the conflict where a target row exists on UPDATE but non-key columns
are different, and it uses three different resolution types to handle this condition based on the
affected column.

Table Used in this Example
The examples assume identical Oracle databases.

CREATE TABLE tgt(
 name varchar2(30) primary key,
 phone varchar2(10),
 address varchar2(100),
 salary number,
 balance number,
 comment varchar2(100),
 last_mod_time timestamp);

Chapter 9
Error Management

9-111

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, balance, comment,
last_mod_time);

MAP Statement
MAP fin.src, TARGET fin.tgt,
 COMPARECOLS
 (ON UPDATE ALLEXCLUDING (comment)),
 RESOLVECONFLICT (
 UPDATEROWEXISTS,
 (delta_res_method, USEDELTA, COLS (salary, balance)),
 (max_res_method, USEMAX (last_mod_time), COLS (address, last_mod_time)),
 (DEFAULT, IGNORE));

Description of MAP Statement
• For an UPDATEROWEXISTS conflict, where a target row exists on UPDATE but non-key columns

are different, use two different resolutions depending on the column:

– Per the delta_res_method resolution, use the USEDELTA resolution logic for the salary
and balance columns so that the change in each value will be added to the current
value of each column.

– Per the max_res_method resolution, use the USEMAX resolution logic for the address and
last_mod_time columns. The last_mod_time column is the resolution column. This
column is updated with the current time whenever the row is modified; the value of this
column in the trail is compared to the value in the target. If the value of last_mod_time
in the trail record is greater than the current value of last_mod_time in the target
database, the changes to address and last_mod_time are applied to the target;
otherwise, they are ignored in favor of the target values.

– Per DEFAULT, use the IGNORE resolution logic for the remaining columns (phone and
comment) in the table (the default column group). Changes to these columns will
always be ignored by Replicat.

• Per COMPARECOLS, use all columns except the comment column as the comparison columns
for conflict detection for UPDATE operations. Comment will not be used in the WHERE clause
for updates, but all other columns that have a before image in the trail record will be used.

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply a >=
condition. For more information, see Parameters and Functions Reference for
Oracle GoldenGate.

Error Handling
For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

Chapter 9
Error Management

9-112

Table 9-15 UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Image SQL Comments

Before image in trail
name='Mary'
phone='1234567890'
address='Oracle Pkwy'
salary=100
balance=100
comment=NULL
last_mod_time='9/1/10 3:00

last_mod_time='9/1/10 3:00 is the
before image of the resolution column for
the USEMAX resolution.

salary=100 and balance=100 are the
before images for the USEDELTA resolution.

After image in trail
phone='222222'
address='Holly'
salary=200
comment='new'
last_mod_time='9/1/10 5:00'

last_mod_time='9/1/10 5:00 is the
after image of the resolution column for
USEMAX. Since there is an after image, this
will be used to determine the resolution.

salary=200 is the only after image
available for the USEDELTA resolution. For
balance, the before image will be used in
the calculation.

Target database image
name='Mary'
phone='1234567890'
address='Ralston'
salary=600
balance=600
comment='com'
last_mod_time='9/1/10 4:00'

last_mod_time='9/1/10 4:00 is the
current image of the resolution column in
the target against which the resolution
column value in the trail is compared for
USEMAX.

salary=600 and balance=600 are the
current images of the target columns for
USEDELTA.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1)'222222'
2)'Holly'
3)200
4)'new'
5)'9/1/10 5:00'
6)'Mary'
7)'1234567890'
8)'Oracle Pkwy'
9)100
10)100
11)'9/1/10 3:00'

This SQL returns a no-data-found error
because the values for the address,
salary, balance and last_mod_time
columns are different.

UPDATE applied by Replicat to
resolve the conflict for salary,
using USEDELTA.

SQL bind variables:

1)200
2)100
3)'Mary'

For salary, there is a difference of 100, but
there was no change in value for balance,
so it is not needed in the update SQL. Per
USEDELTA, the difference (delta) between
the after (200) image and the before image
(100) of salary in the trail is added to the
current value of salary in the target (600).
The result is 700.

Chapter 9
Error Management

9-113

Table 9-15 (Cont.) UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Image SQL Comments

UPDATE applied by Replicat to
resolve the conflict for USEMAX.

SQL bind variables:

1)'Holly'
2)'9/1/10 5:00'
3)'Mary'
4)'9/1/10 5:00'

Because the after value of last_mod_time
in the trail record is greater than the current
value in the database, that column plus the
address column are updated with the after
values from the trail record.

Note that the salary column is not set
here, because it is resolved with the UPDATE
from the USEDELTA resolution.

UPDATE applied by Replicat for
IGNORE.

SQL bind variables:

1)'222222'
2)'new'
3)'Mary'

IGNORE is specified for the DEFAULT column
group (phone and comment), so no
resolution SQL is applied.

Error Handling
Topics:

Overview of Oracle GoldenGate Error Handling
Oracle GoldenGate provides error-handling options for:

• Extract

• Replicat

• TCP/IP

Handling Extract Errors
There is no specific parameter to handle Extract errors when DML operations are being
extracted, but Extract does provide a number of parameters that can be used to prevent
anticipated problems. These parameters handle anomalies that can occur during the
processing of DML operations, such as what to do when a row to be fetched cannot be
located, or what to do when the transaction log is not available. The following is a partial list of
these parameters.

• FETCHOPTIONS
• WARNLONGTRANS
• DBOPTIONS
• TRANLOGOPTIONS
To handle extraction errors that relate to DDL operations, use the DDLERROR parameter.

For a complete parameter list, see Parameters and Functions Reference for Oracle
GoldenGate.

Chapter 9
Error Management

9-114

Handling Replicat Errors during DML Operations
To control the way that Replicat responds to an error during one of its DML statements, use the
REPERROR parameter in the Replicat parameter file. You can use REPERROR as a global
parameter or as part of a MAP statement. You can handle most errors in a default fashion (for
example, to cease processing) with DEFAULT and DEFAULT2 options, and also handle other
errors in a specific manner.

The following comprise the range of REPERROR responses:

• ABEND: roll back the transaction and stop processing.

• DISCARD: log the error to the discard file and continue processing.

• EXCEPTION: send the error for exceptions processing.

• IGNORE: ignore the error and continue processing.

• RETRYOP [MAXRETRIES n]: retry the operation, optionally up to a specific number of times.

• TRANSABORT [, MAXRETRIES n] [, DELAY[C]SECS n]: abort the transaction and reposition
to the beginning, optionally up to a specific number of times at specific intervals.

• RESET: remove all previous REPERROR rules and restore the default of ABEND.

• TRANSDISCARD: discard the entire replicated source transaction if any operation within that
transaction, including the commit, causes a Replicat error that is listed in the error
specification. This option is useful when integrity constraint checking is disabled on the
target.

• TRANSEXCEPTION: perform exceptions mapping for every record in the replicated source
transaction, according to its exceptions-mapping statement, if any operation within that
transaction (including the commit) causes a Replicat error that is listed in the error
specification.

Most options operate on the individual record that generated an error, and Replicat processes
the other, successful operations in the transaction. The exceptions are TRANSDISCARD and
TRANSEXCEPTION: These options affect all records in a transaction if any record in that
transaction generates an error. (The ABEND option also applies to the entire transaction, but
does not apply error handling.)

See REPERROR for syntax and usage.

Handling Errors as Exceptions
When the action of REPERROR is EXCEPTION or TRANSEXCEPTION, you can map the values of
operations that generate errors to an exceptions table and, optionally, map other information
about the error that can be used to resolve the error. See About the Exceptions Table.

To map the exceptions to the exceptions table, use either of the following options of the MAP
parameter:

• MAP with EXCEPTIONSONLY
• MAP with MAPEXCEPTION

Using EXCEPTIONSONLY

EXCEPTIONSONLY is valid for one pair of source and target tables that are explicitly named and
mapped one-to-one in a MAP statement; that is, there cannot be wildcards. To use

Chapter 9
Error Management

9-115

EXCEPTIONSONLY, create two MAP statements for each source table that you want to use
EXCEPTIONSONLY for on the target:

• The first, a standard MAP statement, maps the source table to the actual target table.

• The second, an exceptions MAP statement, maps the source table to the exceptions table
(instead of to the target table). An exceptions MAP statement executes immediately after an
error on the source table to send the row values to the exceptions table.

To identify a MAP statement as an exceptions MAP statement, use the INSERTALLRECORDS
and EXCEPTIONSONLY options. The exceptions MAP statement must immediately follow the
regular MAP statement that contains the same source table. Use a COLMAP clause in the
exceptions MAP statement if the source and exceptions-table columns are not identical, or if
you want to map additional information to extra columns in the exceptions table, such as
information that is captured by means of column-conversion functions or SQLEXEC.

For more information about these parameters, see Parameters and Functions Reference for
Oracle GoldenGate.

• A regular MAP statement that maps the source table ggs.equip_account to its target table
equip_account2.

• An exceptions MAP statement that maps the same source table to the exceptions table
ggs.equip_account_exception.

In this case, four extra columns were created, in addition to the same columns that the table
itself contains:

DML_DATE
OPTYPE
DBERRNUM
DBERRMSG

To populate the DML_DATE column, the @DATENOW column-conversion function is used to get the
date and time of the failed operation, and the result is mapped to the column. To populate the
other extra columns, the @GETENV function is used to return the operation type, database error
number, and database error message.

The EXCEPTIONSONLY option of the exceptions MAP statement causes the statement to execute
only after a failed operation on the source table. It prevents every operation from being logged
to the exceptions table.

The INSERTALLRECORDS parameter causes all failed operations for the specified source table,
no matter what the operation type, to be logged to the exceptions table as inserts.

Note:

There can be no primary key or unique index restrictions on the exception table.
Uniqueness violations are possible in this scenario and would generate errors.

Example 9-34 EXCEPTIONSONLY
This example shows how to use REPERROR with EXCEPTIONSONLY and an exceptions MAP
statement. This example only shows the parameters that relate to REPERROR; other parameters
not related to error handling are also required for Replicat.

REPERROR (DEFAULT, EXCEPTION)
MAP ggs.equip_account, TARGET ggs.equip_account2,

Chapter 9
Error Management

9-116

COLMAP (USEDEFAULTS);
MAP ggs.equip_account, TARGET ggs.equip_account_exception,
EXCEPTIONSONLY,
INSERTALLRECORDS
COLMAP (USEDEFAULTS,
DML_DATE = @DATENOW (),
OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERRNUM = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG'));

In this example, the REPERROR parameter is set for DEFAULT error handling, and the EXCEPTION
option causes the Replicat process to treat failed operations as exceptions and continue
processing.

Using MAPEXCEPTION

MAPEXCEPTION is valid when the names of the source and target tables in the MAP statement are
wildcarded. Place the MAPEXCEPTION clause in the regular MAP statement, the same one where
you map the source tables to the target tables. Replicat maps all operations that generate
errors from all of the wildcarded tables to the same exceptions table; therefore, the exceptions
table should contain a superset of all of the columns in all of the wildcarded tables.

Because you cannot individually map columns in a wildcard configuration, use the COLMAP
clause with the USEDEFAULTS option to handle the column mapping for the wildcarded tables (or
use the COLMATCH parameter if appropriate), and use explicit column mappings to map any
additional information, such as that captured with column-conversion functions or SQLEXEC.

When using MAPEXCEPTION, include the INSERTALLRECORDS parameter in the MAPEXCEPTION
clause. INSERTALLRECORDS causes all operation types to be applied to the exceptions table as
INSERT operations. This is required to keep an accurate record of the exceptions and to
prevent integrity errors on the exceptions table.

For more information about these parameters, see Parameters and Functions Reference for
Oracle GoldenGate.

Example 9-35 MAPEXCEPTION

This is an example of how to use MAPEXCEPTION for exceptions mapping. The MAP and TARGET
clauses contain wildcarded source and target table names. Exceptions that occur when
processing any table with a name beginning with TRX are captured to the fin.trxexceptions
table using the designated mapping.

MAP src.trx*, TARGET trg.*,
MAPEXCEPTION (TARGET fin.trxexceptions,
INSERTALLRECORDS,
COLMAP (USEDEFAULTS,
ACCT_NO = ACCT_NO,
OPTYPE = @GETENV ('LASTERR', 'OPTYPE'),
DBERR = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = @GETENV ('LASTERR', 'DBERRMSG')
)
);

About the Exceptions Table

Use an exceptions table to capture information about an error that can be used for such
purposes as troubleshooting your applications or configuring them to handle the error. At
minimum, an exceptions table should contain enough columns to receive the entire row image
from the failed operation. You can define extra columns to contain other information that is
captured by means of column-conversion functions, SQLEXEC, or other external means.

Chapter 9
Error Management

9-117

To ensure that the trail record contains values for all of the columns that you map to the
exceptions table, you can use either the LOGALLSUPCOLS parameter or the following parameters
in the Extract parameter file:

• Use the NOCOMPRESSDELETES parameter so that all columns of a row are written to the trail
for DELETE operations.

• Use the GETUPDATEBEFORES parameter so that Extract captures the before image of a row
and writes them to the trail.

Handling Replicat Errors during DDL Operations
To control the way that Replicat responds to an error that occurs for a DDL operation on the
target, use the DDLERROR parameter in the Replicat parameter file.

For more information, see DDLERROR.

Handling TCP/IP Errors
To provide instructions for responding to TCP/IP errors, use the TCPERRS file. This file is in the
Oracle GoldenGate directory

Table 9-16 TCPERRS Columns

Column Description

Error
Specifies a TCP/IP error for which you are defining a response.

Response
Controls whether or not Oracle GoldenGate tries to connect again after the defined
error. Valid values are either RETRY or ABEND.

Delay
Controls how long Oracle GoldenGate waits before attempting to connect again.

Max Retries
Controls the number of times that Oracle GoldenGate attempts to connect again before
aborting.

If a response is not explicitly defined in the TCPERRS file, Oracle GoldenGate responds to
TCP/IP errors by abending.

Example 9-36 TCPERRS File

TCP/IP error handling parameters
Default error response is abend
#
Error Response Delay(csecs) Max Retries

ECONNABORTED RETRY 1000 10
ECONNREFUSED RETRY 1000 12
ECONNRESET RETRY 500 10
ENETDOWN RETRY 3000 50
ENETRESET RETRY 1000 10
ENOBUFS RETRY 100 60
ENOTCONN RETRY 100 10
EPIPE RETRY 500 10
ESHUTDOWN RETRY 1000 10
ETIMEDOUT RETRY 1000 10
NODYNPORTS RETRY 100 10

Chapter 9
Error Management

9-118

The TCPERRS file contains default responses to basic errors. To alter the instructions or add
instructions for new errors, open the file in a text editor and change any of the values in the
columns shown in Table 9-16.

Maintaining Updated Error Messages
The error, information, and warning messages that Oracle GoldenGate processes generate are
stored in a data file named ggmessage.dat in the Oracle GoldenGate installation directory. The
version of this file is checked upon process startup and must be identical to that of the process
in order for the process to operate.

Resolving Oracle GoldenGate Errors
To get help with specific troubleshooting issues, go to My Oracle Support at https://
support.oracle.com and search the Knowledge Base.

Trail File Management
The Extract process captures the changes from the transaction logs of the source system
(database) into trail files that are consumed by other Oracle GoldenGate processes.

Extract can write into one or multiple sets of trail files. A trail is a sequence of files that are
created and aged as needed. Processes that read a trail are:

• Replicat: Replicat reads the trail file received on the target deployment.

• Distribution Service: Extracts data from a local trail for further processing, if needed, and
transfers it to the target system.

• Receiver Service: Receives the trail and transfers to Replicat, which reads the trail and
applies change data to the target database.

You can create more than one trail to separate the data of different tables or applications, or to
satisfy the requirements of a specific replication topology, such as a cascading topology. You
link tables specified with a TABLE statement to a trail specified with an EXTTRAIL parameter
statement in the Extract parameter file.

• Assign Storage for Oracle GoldenGate Trails

• Estimate Space for the Trail

• Add a Trail

Also see Using the LogDump Utility to Access Trail File Records.

Manage Trail Files

Assign Storage for Oracle GoldenGate Trails
In a typical configuration, there is at least one trail on the source system and one on the target
system. Allocate enough disk space to allow for the following:

• The primary Extract process captures transactional data from the source database and
writes it to the local trail. There must be enough disk space to contain the data
accumulation, or the primary Extract will abend.

Chapter 9
Trail File Management

9-119

http://support.oracle.com
http://support.oracle.com

• For a trail at the target location, provide enough disk space to handle data accumulation
according to the purge rules set with the PURGEOLDEXTRACTS parameter. Even with
PURGEOLDEXTRACTS in use, data will always accumulate on the target because it is
transferred across the network faster than it can be applied to the target database.

To prevent trail activity from interfering with business applications, assign a separate disk or file
system to contain the trail files. Trail files can reside on drives that are local to the Oracle
GoldenGate installation, or they can reside on NAS or SAN devices. In an Oracle cluster, they
can reside on ASM or DBFS storage.

See Preparing DBFS for an Active-Active Configuration.

Estimate Space for the Trails
The following are guidelines for estimating the amount of disk space that will be required to
store Oracle GoldenGate trail data.

1. Estimate the longest time that the network could be unavailable. Plan to store enough data
to withstand the longest possible outage, because otherwise you will need to
resynchronize the source and target data if the outage outlasts disk capacity.

2. Estimate how much transaction log volume your business applications generate in one
hour.

3. Use the following formula to calculate the required disk space.

[source transaction log volume in one hour] x [number of hours downtime] x .4
= trail disk space
This equation uses a multiplier of 40 percent because only about 40 percent of the data in
a transaction log is needed by Oracle GoldenGate.

Note:

This formula is a conservative estimate, and you should run tests once you have
configured Oracle GoldenGate to determine exactly how much space you need.
As a general observation, in case of subset replication, the required trail disk
space might be much lower.

To prevent trail activity from interfering with business applications, assign a separate disk or file
system to contain the trail files. Trail files can resides on local storage, network-attached
storage (NAS, SAN), shared filesystem, or cluster file system (ACFS, DBFS).

Add a Trail
When you create, or add, a trail, you do not physically create any files on disk. The files are
created automatically by an Extract process. Rather, you specify the name of the trail and
associate it with the Extract group that writes to it.

You can add a trail, while you add an Extract from the Administration Service.

To add a trail from the command line interface, issue the following command on the source
system:

ADD {EXTTRAIL} pathname, EXTRACT group [, MEGABYTES n]

This syntax includes:

Chapter 9
Trail File Management

9-120

• EXTTRAIL: This parameter specifies a trail on the local system.

• pathname: This option is the relative or fully qualified name of the trail, including a two-
character name that can be any two alphanumeric characters, for example c:\ggs\ea.
Oracle GoldenGate appends a serial number to each trail file as it is created during
processing.

• EXTRACT: This option is the group name of the Extract that writes to this trail. Only one
Extract group can write to a trail.

• MEGABYTES n: This is an optional argument with which you can set the size, in megabytes,
of each trail file (default is 2000).

Example: Create a Local Trail

This example creates a local trail named /ggs/ea for Extract group exte.

ADD EXTTRAIL /ggs/ea, EXTRACT exte

You can also create a local trail using REST API. For more information, see Create Trail.

Automate Maintenance Tasks

Use the Tasks tab on the Configuration page, to set up the following automated tasks.

Purging Trails

The Purge Trail page works the same way as the Manager PURGEOLDEXTRACTS parameter in the
Classic Architecture. It allows you to purge trail files when Oracle GoldenGate has finished
processing them. Automating this task ensures that the trail files are periodically deleted to
avoid excessive consumption of disk space.

From the Tasks tab, when you select the Purge Trail page, it allows you to configure the
Administration Service purge trail process.

1. Add a Purge Trail task by clicking the + sign .

2. Enter the Operation Name of the Administration Service task. The operation name is case
sensitive. For example, you can create an operation with the name TASK1 and another
operation named task1.

3. Enter the trail path or trail name in the Trail field. The default trail file location
is $deployment_home/lib/data.

If non-default trail file locations are used for storing and retrieving trail files, then the full
path along with the trail name must be added. An example of the full path of the trail file
location would be: $deployment-home/lib/data/rep01/trail/et.

4. Click the + sign to add the trail to the Selected Trails list.

5. If you don’t need to use checkpoints, disable the option Use Checkpoints. However,
Oracle recommends using checkpoints. If you don't use checkpoints. the trail will be
purged whether or not it has been consumed if the keep rule is met.

6. Set the Keep Rule value to specify the maximum number of hours, days, or number of
files for which the Purge Trails task needs to be active.

7. Specify the number of hours or days when the purge trails task has to run, in the Purge
Frequency field and click Submit.

8. Use the Purge Trails task table to edit or delete the task, as required.

Chapter 9
Trail File Management

9-121

https://docs.oracle.com/en/middleware/goldengate/core/23/oggra/op-services-version-trails-trail-post.html

Also see PURGE EXTTRAIL.

Purging Tasks

You can automatically purge processes associated with an Administration Service.

From the Tasks tab, click Purge Tasks.

1. Enter the Operation Name that you need to set up for automatic purging.

2. Select the Extract or Replicat task (initial load process) Process Name for the operation.
The list contains all processes so ensure that you select the correct task.

3. Select the Extract or Replicat task (initial load) Process Type for the operation.

4. If you enable Use Stop Status, the status of the task is used to perform the purge task.

5. Enter the hours or days after which you need to purge the process and click Submit.

6. Edit or delete the purge process task using the relevant icon from the Purge Tasks table.

Reporting Lag

You can manage lag reports from the Lag Report tab. To do so:

1. From the Tasks tab, click Lag Report.

2. The Action column contains all the options to delete, alter, refresh, and view the lag report
task details.

3. Select the required option.

4. If you select the Alter Task option, you are presented with options to edit the lag report.
The options are:

• Enabled: To keep processing the lag report task.

• Check Every (in minutes): To set a time interval to check the lag report.

• Report: To log report for the task.

• If Exceeds: To specify a threshold after which a warning would be initiated.

• Warning: To allow a warning to be generated incase the lag threshold exceeds the
specified limit.

• When Exceeds: The lag threshold after which the warning is triggered.

5. Click Submit.

Admin Client Command Line Interface for Oracle GoldenGate
Microservices

To start the Admin Client, you need to change the current working directory to the Oracle
GoldenGate home directory (OGG_HOME).

For a complete list and description of commands available from the Admin Client, see About
the Command Line Interfaces in the Command Line Interface Reference for Oracle
GoldenGate.

About Admin Client

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-122

Admin Client is a command line utility. It uses the REST API published by the microservices to
accomplish control and configuration tasks in an Oracle GoldenGate deployment.

Admin Client is a command line utility that can be used to created, modify, and remove Oracle
GoldenGate processes and can be used in place of the MA web user interface. The Admin
Client program is located in the $OGG_HOME/bin directory, where $OGG_HOME is the Oracle
GoldenGate home directory.

If you need to automate the Admin Client connection with the deployment, you can use an
Oracle Wallet to store the user credentials. The credentials stored must have the following
characteristics:

• Single user name (account) and password

• Local to the environment where the Admin Client runs

• Available only to the currently logged user

• Managed by the Admin Client

• Referenced using a credential name

• Available for Oracle GoldenGate deployments and proxy connections.

To use the Admin Client for administration tasks, you need the user credentials that work with
both the Service Manager and Administration Service. Here are the configurations required for
working with the Admin Client:

1. Make sure that the bin directory of the Oracle Software is part of the PATH environment
variable:

export PATH=ogg_install_location/bin:$PATH

If you configure a secure deployment using SSL certificate files (.pem or .der), you must
add the OGG_CLIENT_TLS_CAPATH environment variable. This is required to be able to
connect to the deployment from Admin Client. This variable is used to specify the location
where the certificate files are located on the host. For clients only needing to validate
server certificates, the OGG_CLIENT_TLS_CAPATH environment variable should refer to a file
containing a trusted CA Certificate that is shared with the server to which the client is
expected to connect.

export OGG_CLIENT_TLS_CAPATH = deployment_rootCA_certificate_location

Note:

For Microsoft Windows, the default certificate file format is .der while all other
platforms use .pem as the default format.

2. Run the command:

[oracle]$ adminclient

The output displays the Oracle GoldenGate Admin Client prompt, where you can connect
to the deployment from the Admin Client:

OGG (not connected) 1>

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-123

3. Connect to a deployment or to a proxy server from the Admin Client as a security user.
This is the user you created while adding the deployment for your Oracle GoldenGate
instance using OGGCA.

CONNECT http(s)://localhost:port DEPLOYMENT deployment name AS security
role user PASSWORD password

Note:

If the password to connect to a secure or non-secure deployment from the Admin
Client has an exclamation mark (!) at the end, then you must enter the password
in double quotes when using the CONNECT command in a single line. Otherwise,
the password is not accepted and the connection fails. This is required for all
deployments with a strong password policy.

Syntax:

CONNECT server-url [DEPLOYMENT deployment-name]
 [((AS deployment-credentials-name
 | USER deployment-user-name)
 [PASSWORD deployment-password])
 | TOKEN [access-token]]
 [PROXY proxy-uri
 [(AS proxy-credentials-name
 | USER proxy-user-name)
 [PASSWORD proxy-password]]] [!]

See the CONNECT command in the Command Line Interface Reference for Oracle
GoldenGate to know more.

Note:

The deployment credentials cannot be stored as a USERIDALIAS in the credential
store because the Oracle wallet used for storing database credentials is
managed by the Administration Service. Instead, a separate Oracle wallet is
created for the Admin Client. The Oracle wallet is stored in the users home
directory.

The following example shows adding an Oracle GoldenGate deployment user to connect
to the deployment from the Admin Client:

ADD CREDENTIALS admin USER ggadmin PASSWORD *********

The password for the user is stored in the hidden GoldenGate directory $HOME.

Output:

2019-02-14T00:35:38Z INFO OGG-15114 Credential store altered.

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-124

The following example shows adding Oracle GoldenGate deployment proxy user to
connect to the deployment from the Admin Client:

ADD CREDENTIALS proxy USER proxyadmin PASSWORD ********

Here's an example of using the CONNECT command to access a deployment using the
Admin Client:

OGG (Not Connected)4> CONNECT http://www.example.com:12000 deployment EAST
PROXY http:111.1.1.1:3128 as proxyadmin password oggadmin-A2
Using default deployment 'Local'
OGG (http://www.example.com:12000 Local) 4>

4. You can view the full list of Admin Client commands using the HELP command. Use the
HELP SHOWSYNTAX command to view the syntax for specific commands.

Using Wildcards in Command Arguments
You can use wildcards with certain Oracle GoldenGate commands to control multiple Extract
and Replicat groups as a unit. The wildcard symbol that is supported by Oracle GoldenGate is
the asterisk (*). An asterisk represents any number of characters. For example, to start all
Extract groups whose names contain the letter X, issue the following command.

START EXTRACT *X*

Using Command History
The execution of multiple commands is made easier with the following tools:

• Use the HISTORY command to display a list of previously executed commands.

• Use the ! command to execute a previous command again without editing it.

• Use the FC command to edit a previous command and then execute it again.

Storing and Calling Frequently Used Command Sequences
You can automate a frequently-used series of commands by using an OBEY file and the OBEY
command. The OBEY file takes the character set of the local operating system. To specify a
character that is not compatible with that character set, use the Unicode notation.

To use OBEY

1. Create and save a text file that contains the commands, one command per line. This is
your OBEY file. The name can be anything supported by the operating system. You can nest
other OBEY files within an OBEY file.

2. Run the Admin Client.

3. (Optional) If using an OBEY file that contains nested OBEY files, issue the following
command. This command enables the use of nested OBEY files for the current session and
is required whenever using nested OBEY files.

ALLOWNESTED

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-125

4. Call the OBEY file by using the OBEY command from the Admin Client.

OBEY file_name

Where:

file_name is the relative or fully qualified name of the OBEY file.

Example 9-37 OBEY command file

ALTER CREDENTIALSTORE ADD USER c##ggadmin@cdb1 ALIAS cggwest DOMAIN
OracleGoldenGate PASSWORD ggadmin
DBLOGIN USERIDALIAS cggwest
ALTER CREDENTIALSTORE ADD USER ggadmin@pdbwest ALIAS ggwest DOMAIN
OracleGoldenGate PASSWORD Welcome2OGG

ADD SCHEMATRANDATA hr
ADD TRANDATA hr.employees
ADD HEARTBEATTABLE

ADD EXTRACT exte, INTEGRATED TRANLOG, BEGIN NOW
ADD EXTTRAIL east/ea, EXTRACT exte
START EXTRACT exte

INFO EXTRACT exte, DETAIL

See OBEY for more information in Parameters and Functions Reference for Oracle GoldenGate.

Controlling Extract and Replicat
Here are basic directions for controlling Extract and Replicat processes.

To Start Extract or Replicat

START {EXTRACT | REPLICAT} group_name

Where:

group_name is the name of the Extract or Replicat group or a wildcard set of groups (for
example, * or fin*).

To Stop Extract or Replicat Gracefully

STOP {EXTRACT | REPLICAT} group_name

Where:

group_name is the name of the Extract or Replicat group or a wildcard set of groups (for
example, * or fin*).

To Stop Replicat Forcefully

STOP REPLICAT group_name !

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-126

The current transaction is aborted and the process stops immediately. You cannot stop Extract
forcefully.

To End a Process that STOP Cannot Stop

KILL {EXTRACT | REPLICAT} group_name

Ending a process does not shut it down gracefully, and checkpoint information can be lost.

To Control Multiple Processes at Once

command ER wildcard specification

Where:

• command can be KILL, START, or STOP
• wildcard specification is a wildcard specification for the names of the process groups

that you want to affect with the command. The command affects every Extract and Replicat
group that satisfies the wildcard. Oracle GoldenGate supports up to 100,000 wildcard
entries.

Deleting Extract and Replicat
This section contains basic directions for deleting Extract and Replicat processes.

To Delete an Extract Group

1. Connect to the deployment from the Admin Client.

2. Issue the DBLOGIN command as the Extract database user (or a user with the same
privileges). You can use either of the following commands, depending on whether a local
credential store exists.

DBLOGIN [SOURCEDB dsn] {USERID user, PASSWORD password
[encryption_options] | USERIDALIAS alias [DOMAIN domain]}

3. Stop the Extract process.

STOP EXTRACT group_name

4. Issue the following command.

DELETE EXTRACT group_name

5. (Oracle) Unregister the Extract group from the database.

UNREGISTER EXTRACT group_name,database_name

To Delete a Replicat Group

1. Stop the Replicat process.

STOP REPLICAT group_name

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-127

2. Issue one of the following commands to log into the database.

DBLOGIN [SOURCEDB dsn] {USERID user, PASSWORD password
[encryption_options] | USERIDALIAS alias [DOMAIN domain]}

Where:

• SOURCEDB dsn supplies the data source name, if required as part of the connection
information.

• USERID user, PASSWORD password specifies an explicit database login credential.

• USERIDALIAS alias [DOMAIN domain] specifies an alias and optional domain of a
credential that is stored in a local credential store.

• encryption_options is one of the options that encrypt the password.

3. Issue the following command to delete the group.

DELETE REPLICAT group_name

Deleting a Replicat group preserves the checkpoints in the checkpoint table (if being used).
Deleting a process group also preserves the parameter file. You can create the same group
again, using the same parameter file, or you can delete the parameter file to remove the
group's configuration permanently.

Specifying Object Names in Oracle GoldenGate Input
The following rules apply when specifying object names in parameter files (such as in TABLE
and MAP statements), column-conversion functions, commands, and in other input.

Specifying Filesystem Path Names in Parameter Files on Windows Systems
On Windows systems, if the name of any directory in a filesystem path name begins with a
number, the path must be specified with forward slashes, not backward slashes, when listing
that path in Oracle GoldenGate input, such as parameter files or commands. This requirement
prevents Oracle GoldenGate from interpreting the name as an octal escape sequence. For
example, the following paths contain a directory named \2023 that will be interpreted as the
octal sequence \202:

C:\deployments\ea
C:\deployments\north\ea
C:\deployments\north\2023\ea

The preceding path can be used with forward slashes as follows:

C:/deployments/ea
C:/deployments/north/ea

For more information, see Support for Escape Sequences.

Supported Database Object Names
Object names in parameter files, command, and other input can be any length and in any
supported character set. For supported character sets, see Supported Character Sets.

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-128

Oracle GoldenGate supports most characters in object and column names. Specify object
names in double quote marks if they contain special characters such as white spaces or
symbols.

The following lists of supported and non-supported characters covers all databases supported
by Oracle GoldenGate; a given database platform may or may not support all listed characters.

Supported Special Characters
Oracle GoldenGate supports all characters that are supported by the database, including the
following special characters. Object names that contain these special characters must be
enclosed within double quotes in parameter files.

Character Description

/ Forward slash (See Specifying Names that Contain Slashes)

* Asterisk (Must be escaped by a backward slash when used in parameter file, as
in: *)

? Question mark (Must be escaped by a backward slash when used in parameter
file, as in: \?)

@ At symbol (Supported, but is often used as a resource locator by databases. May
cause problems in object names)

Pound symbol

$ Dollar symbol

% Percent symbol (Must be %% when used in parameter file)

^ Caret symbol

() Open and close parentheses

_ Underscore

- Dash

<space> Space

Non-supported Special Characters
The following characters are not supported in object names and non-key column names.

Character Description

\ Backward slash (Must be \\ when used in parameter file)

{ } Begin and end curly brackets (braces)

[] Begin and end brackets

= Equal symbol

+ Plus sign

! Exclamation point

~ Tilde

| Pipe

& Ampersand

: Colon

; Semi-colon

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-129

Character Description

, Comma

' ' Single quotes

" " Double quotes

' Accent mark (Diacritical mark)

. Period

< Less-than symbol (or beginning angle bracket)

> Greater-than symbol (or ending angle bracket)

Specifying Names that Contain Slashes
If a table name contains a forward-slash character (/) in any part of its name, that name
component must be enclosed within double quotes unless the object name is from an IBM i
platform . The following are some examples:

"c/d"
"/a".b
a."b/"

If the name contains a forward slash that is not enclosed within double quotes, Oracle
GoldenGate treats it as a name that originated on the IBM i platform (from a DB2 for i
database). The forward slash in the name is interpreted as a separator character.

Qualifying Database Object Names
Object names must be fully qualified in the parameter file. This means that every name
specification must be qualified, not only those supplied as input to Oracle GoldenGate
parameter syntax, but also names in a SQL procedure or query that is supplied as SQLEXEC
input, names in user exit input, and all other input supplied in the parameter file.

Oracle GoldenGate supports two-part and three-part object names, as appropriate for the
database.

Two-part Names
Most databases require only two-part names to be specified, in the following format:

owner.object

For example: HR.EMP
Where:

owner is a schema or database, depending on how the database defines a logical namespace
that contains database objects. object is a table or other supported database object.

The databases for which Oracle GoldenGate supports two-part names are as follows, shown
with their appropriate two-part naming convention:

• Db2 for i: schema.object and library/file(member)

• Db2 LUW: schema.object

• Db2 on z/OS: schema.object

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-130

• MySQL: database.object

• Oracle Database (non-CDB databases): schema.object

• SQL Server: schema.object

• Teradata: database.object

Three-part Names
Oracle GoldenGate supports three-part names for Oracle container database, only incase of
using downstream Extract. However, Oracle GoldenGate supports only per-PDB Extract for
Oracle database, in general.

Three-part names are required to capture from a source Oracle container database because
one Extract group can capture from more than one container. Thus, the name of the container,
as well as the schema, must be specified for each object or objects in an Extract TABLE
statement.

Specify a three-part Oracle CDB name as follows:

container.schema.object

For example: PDBEAST.HR.EMP

Applying Data from Multiple Containers or Catalogs
To apply data captured from multiple source containers or catalogs to a target Oracle container
database, both three- and two-part names are required. In the MAP portion of the MAP
statement, each source object must be associated with a container or catalog, just as it was in
the TABLE statement. This enables you (and Replicat) to properly map data from multiple
source containers or catalogs to the appropriate target objects. In the TARGET portion of the MAP
statement, however, only two-part names are required. This is because Replicat can connect
to only one target container or catalog at a time, and schema.owner is a sufficient qualifier.
Multiple Replicat groups are required to support multiple target containers or catalogs. Specify
the target container or catalog with the TARGETDB parameter.

Specifying a Default Container or Catalog
You can use the SOURCECATALOG parameter to specify a default catalog for any subsequent
TABLE, MAP, (or Oracle SEQUENCE) specifications in the parameter file.

The following example shows the use of SOURCECATALOG to specify the default Oracle PDB
named pdbeast for region and jobs objects, and the default PDB named pdbwest for
appraisal objects. The objects in pdbeast are specified with a fully qualified three-part name,
which does not require a default catalog to be specified.

TABLE pdbeast.hr.emp*;
SOURCECATALOG pdbeast
TABLE region.country*;
TABLE jobs.desg*;
SOURCECATALOG pdbwest
TABLE appraisal.sal*;

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-131

Specifying Case-Sensitive Database Object Names
Oracle GoldenGate supports case-sensitive names. Follow these rules when specifying case-
sensitive objects.

• Specify object names from a case-sensitive database in the same case that is used to
store them in the host database. Keep in mind that, in some database types, different
levels of the database can have different case-sensitivity, such as case-sensitive schema
but case-insensitive table. If the database requires quotes to enforce case-sensitivity, put
quotes around each object that is case-sensitive in the qualified name.

Correct: TABLE "Sales"."ACCOUNT"
Incorrect: TABLE "Sales.ACCOUNT"

• Oracle GoldenGate converts case-insensitive names to the case in which they are stored
when required for mapping purposes.

Table 9-17 provides an overview of the support for case-sensitivity in object names, per
supported database. Refer to the database documentation for details on this type of support.

Table 9-17 Case Sensitivity of Object Names Per Database

Database Requires quotes to
enforce case-
sensitivity?

Unquoted object name Quoted object name

DB2 Yes. Differentiates
between case-sensitive
and case-insensitive by
use of quotes.

Case-insensitive, stores
in upper case

Case-sensitive, stores in
mixed case

MySQL

(Case-sensitive
database)

No

• Always case-
sensitive, stores in
mixed case

• The names of
columns, triggers,
and procedures are
case-insensitive

No effect No effect

Oracle Database Yes. Differentiates
between case-sensitive
and case-insensitive by
use of quotes.

Case-insensitive, stores
in upper case

Case-sensitive, stores in
mixed case

SQL Server

(Database created as
case-sensitive)

No

Always case-sensitive,
stores in mixed case

No effect No effect

SQL Server

(Database created as
case-insensitive)

No

Always case-insensitive,
stores in mixed case

No effect No effect

Teradata No

Always case-insensitive,
stores in mixed case

No effect No effect

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-132

Note:

For all supported databases, passwords are always treated as case-sensitive
regardless of whether the associated object name is quoted or unquoted.

Using Wildcards in Database Object Names
You can use wildcards for any part of a fully qualified object name, if supported for the specific
database. These name parts can be the following: the container, database, or catalog name,
the owner (schema or database name), and table or sequence name. For specifics on how
object names and wildcards are supported, see the Oracle GoldenGate installation and
configuration guide for that database.

Where appropriate, Oracle GoldenGate parameters permit the use of two wildcard types to
specify multiple objects in one statement:

• A question mark (?) replaces one character. For example in a schema that contains tables
named TABn, where n is from 0 to 9, a wildcard specification of HQ.TAB? returns HQ.TAB0,
HQ.TAB1, HQ.TAB2, and so on, up to HQ.TAB9, but no others. This wildcard is not supported
for the DB2 LUW database nor for DEFGEN. This wildcard can only be used to specify
source objects in a TABLE or MAP parameter. It cannot be used to specify target objects in
the TARGET clause of TABLE or MAP.

• An asterisk (*) represents any number of characters (including zero sequence). For
example, the specification of HQ.T* could return such objects as HQ.TOTAL, HQ.T123, and
HQ.T. This wildcard is valid for all database types throughout all Oracle GoldenGate
commands and parameters where a wildcard is allowed.

• In TABLE and MAP statements, you can combine the asterisk and question-mark wildcard
characters in source object names only.

Rules for Using Wildcards for Source Objects
For source objects, you can use the asterisk alone or with a partial name. For example, the
following source specifications are valid:

• TABLE HQ.*;
• TABLE PDB*.HQ.*;
• MAP HQ.T_*;
• MAP HQ.T_*, TARGET HQ.*;
The TABLE, MAP and SEQUENCE parameters take the case-sensitivity and locale of the database
into account for wildcard resolution. For databases that are created as case-sensitive or case-
insensitive, the wildcard matches the exact name and case. For example, if the database is
case-sensitive, SCHEMA.TABLE is matched to SCHEMA.TABLE, Schema.Table is matched to
Schema.Table, and so forth. If the database is case-insensitive, the matching is not case-
sensitive.

For databases that can have both case-sensitive and case-insensitive object names in the
same database instance, with the use of quote marks to enforce case-sensitivity, the
wildcarding works differently. When used alone for a source name in a TABLE statement, an
asterisk wildcard matches any character, whether or not the asterisk is within quotes. The
following statements produce the same results:

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-133

TABLE hr.*;
TABLE hr."*";

Similarly, a question mark wildcard used alone matches any single character, whether or not it
is within quotes. The following produce the same results:

TABLE hr.?;
TABLE hr."?";

If a question mark or asterisk wildcard is used with other characters, case-sensitivity is applied
to the non-wildcard characters, but the wildcard matches both case-sensitive and case-
insensitive names.

• The following TABLE statements capture any table name that begins with lower-case abc.
The quoted name case is preserved and a case-sensitive match is applied. It captures
table names that include "abcA" and "abca" because the wildcard matches both case-
sensitive and case-insensitive characters.

TABLE hr."abc*";
TABLE hr."abc?";

• The following TABLE statements capture any table name that begins with upper-case ABC,
because the partial name is case-insensitive (no quotes) and is stored in upper case by
this database. However, because the wildcard matches both case-sensitive and case-
insensitive characters, this example captures table names that include ABCA and "ABCa".

TABLE hr.abc*;
TABLE hr.abc?;

Rules for Using Wildcards for Target Objects
When using wildcards in the TARGET clause of a MAP statement, the target objects must exist in
the target database. (The exception is when DDL replication is being used, which allows new
schemas and their objects to be replicated as they are created.)

For target objects, only an asterisk can be used. If an asterisk wildcard is used with a partial
name, Replicat replaces the wildcard with the entire name of the corresponding source object.
Therefore, specifications such as the following are incorrect:

TABLE HQ.T_*, TARGET RPT.T_*;
MAP HQ.T_*, TARGET RPT.T_*;

The preceding mappings produce incorrect results, because the wildcard in the target
specification is replaced with T_TEST (the name of a source object), making the whole target
name T_T_TESTn. The following illustrates the incorrect results:

• HQ.T_TEST1 maps to RPT.T_T_TEST1
• HQ.T_TEST2 maps to RPT.T_T_TEST2
• (The same pattern applies to all other HQ.T_TESTn mappings.)

The following examples show the correct use of asterisk wildcards.

MAP HQ.T_*, TARGET RPT.*;

The preceding example produces the following correct results:

• HQ.T_TEST1 maps to RPT.T_TEST1
• HQ.T_TEST2 maps to RPT.T_TEST2
• (The same pattern applies to all other HQ.T_TESTn mappings.)

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-134

Fallback Name Mapping
Oracle GoldenGate has a fallback mapping mechanism in the event that a source name
cannot be mapped to a target name. If an exact match cannot be found on the target for a
case-sensitive source object, Replicat tries to map the source name to the same name in
upper or lower case (depending on the database type) on the target. Fallback name mapping
is controlled by the NAMEMATCH parameters. For more information, see Parameters and
Functions Reference for Oracle GoldenGate.

Asterisks or Question Marks as Literals in Object Names
If the name of an object itself includes an asterisk or a question mark, the entire name must be
escaped and placed within double quotes, as in the following example:

TABLE HT."\?ABC";

How Wildcards are Resolved
By default, when an object name is wildcarded, the resolution for that object occurs when the
first row from the source object is processed. (By contrast, when the name of an object is
stated explicitly, its resolution occurs at process startup.) To change the rules for resolving
wildcards, use the WILDCARDRESOLVE parameter. The default is DYNAMIC.

Excluding Objects from a Wildcard Specification
You can combine the use of wildcard object selection with explicit object exclusion by using the
EXCLUDEWILDCARDOBJECTSONLY, CATALOGEXCLUDE, SCHEMAEXCLUDE, MAPEXCLUDE, and
TABLEEXCLUDE parameters.

Differentiating Case-Sensitive Column Names from Literals
By default, Oracle GoldenGate follows SQL-92 rules for specifying column names and literals.
In Oracle GoldenGate parameter files, conversion functions, user exits, and commands, case-
sensitive column names must be enclosed within double quotes if the database requires
quotes around a name to support case-sensitivity. For example:

"columnA"

Case-sensitive column names in databases that do not require quotes to enforce case-
sensitivity must be specified as they are stored in the database. For example:

ColumnA

Literals must be enclosed within single quotes. In the following example, Product_Code is a
case-sensitive column name in an Oracle database, and the other strings are literals.

@CASE ("Product_Code", 'CAR', 'A car', 'TRUCK', 'A truck')

Creating a Parameter File Using Admin Client
To create a parameter file, run the EDIT PARAMS command from the Admin Client. When you
create a parameter file with EDIT PARAMS, it is saved to the dirprm sub-directory of the Oracle
GoldenGate directory.
You can create a parameter file in a directory other than dirprm, but you also must specify the
full path name with the PARAMS option of the ADD EXTRACT or ADD REPLICAT command when you
create your process groups. After pairing with an Extract or Replicat group, a parameter file

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-135

must remain in its original location for Oracle GoldenGate to operate properly after processing
has started.
The EDIT PARAMS command launches the following text editors in Admin Client:

• Notepad on Microsoft Windows systems.

• The vi editor on UNIX and Linux systems. Db2 for i only supports vi when connected with
SSH or xterm. For more information, see Creating a Parameter File with a Text Editor.

Note:

You can change the default editor through Admin Client by using the SET EDITOR
command.

1. Run the Admin Client.

2. Connect to the Admin Client using the CONNECT command.

3. In Admin Client, issue the following command to open the default text editor:

EDIT PARAMS group_name

In this code snippet:
group_name is the name of the Extract or Replicat group for which the file is being created.
The name of an Extract or Replicat parameter file must match that of the process group.

The following creates or edits the parameter file for an Extract group named exte:

EDIT PARAMS exte

4. Using the editing functions of the text editor, enter as many comment lines as you want to
describe this file, making certain that each comment line is preceded with two hyphens (--).

5. On non-commented lines, enter the Oracle GoldenGate parameters, starting a new line for
each parameter statement.

Oracle GoldenGate parameters have the following syntax:

PARAMETER_NAME argument [,option] [&]

Where:

• PARAMETER_NAME is the name of the parameter.

• argument is a required argument for the parameter. Some parameters take arguments,
but others do not. Commas between arguments are optional.

EXTRACT exte
 USERIDALIAS ggadmin
 ENCRYPT AES192 KEYNAME mykey ENCRYPTTRAIL AES 192
 EXTTRAIL /north/ea, PURGE CUSEREXIT userexit.dll MyUserExit,
INCLUDEUPDATEBEFORES, & PARAMS "init.properties"
 TABLE hr.employees;

• [,option] is an optional argument.

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-136

https://docs.oracle.com/en/middleware/goldengate/core/21.3/admin/using-oracle-goldengate-parameter-files.html#GUID-6A740567-3CEE-4715-837B-D316C47E9EF2

• [&] is required at the end of each line in a multi-line parameter statement, as in the
CUSEREXIT parameter statement in the previous example. The exceptions are the
following, which can accept, but do not require the ampersand because they terminate
with a semicolon:

– MAP
– TABLE
– SEQUENCE
– FILE
– QUERY

6. Save and close the file.

Creating a Parameter File with a Text Editor
You can create a parameter file outside Admin Client by using a text editor, but make certain
to:

• Save the parameter file with the name of the Extract or Replicat group that owns it. Use
the .prm file extension. For example: exte.prm.

• Save the parameter file in the dirprm directory of the Oracle GoldenGate home directory.

Simplifying the Creation of Parameter Files
You can reduce the number of times that a parameter must be specified by using the following
time-saving tools.

Using Wildcards
For parameters that accept object names, you can use asterisk (*) and question mark (?)
wildcards. The use of wildcards reduces the work of specifying numerous object names or all
objects within a given schema. For more information about using wildcards, see Using
Wildcards in Database Object Names.

Using OBEY
You can create a library of text files that contain frequently used parameter settings, and then
you can call any of those files from the active parameter file by means of the OBEY parameter.
The syntax for OBEY is:

OBEY file_name

Where:

file_name is the relative or full path name of the file.

Upon encountering an OBEY parameter in the active parameter file, Oracle GoldenGate
processes the parameters from the referenced file and then returns to the active file to process
any remaining parameters. OBEY is not supported for the GLOBALS parameter file.

If using the CHARSET parameter in a parameter file that includes an OBEY parameter, the
referenced parameter file does not inherit the CHARSET character set. The CHARSET character
set is used to read wildcarded object names in the referenced file, but you must use an escape
sequence (\uX) for all other multibyte specifications in the referenced file.

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-137

See Parameters and Functions Reference for Oracle GoldenGate for more information about
OBEY.

See Parameters and Functions Reference for Oracle GoldenGate for more information about
CHARSET.

Using Macros
You can use macros to automate multiple uses of a parameter statement. See Simplify and
Automate Work with Oracle GoldenGate Macros .

Using Parameter Substitution
You can use parameter substitution to assign values to Oracle GoldenGate parameters
automatically at run time, instead of assigning static values when you create the parameter file.
That way, if values change from run to run, you can avoid having to edit the parameter file or
maintain multiple files with different settings. You can simply export the required value at
runtime. Parameter substitution can be used for any Oracle GoldenGate process.

To Use Parameter Substitution

1. For each parameter for which substitution is to occur, declare a runtime parameter instead
of a value, and precede the runtime parameter name with a question mark (?) as shown in
the following example.

SOURCEISFILE
EXTFILE ?EXTFILE
MAP hr. ?TABNAME, TARGET hr. TABNAME;

2. Before starting the Oracle GoldenGate process, use the shell of the operating system to
pass the runtime values by means of an environment variable, as shown in the following
examples:

Example 9-38 Parameter substitution on Windows

C:\> set EXTFILE=C:\ggs\extfile
C:\> set TABNAME=PROD.ACCOUNTS
C:\> replicat paramfile c:\ggs\dirprm\parmfl

Example 9-39 Parameter substitution on UNIX (korn shell)

$ EXTFILE=/ggs/extfile
$ export EXTFILE
$ TABNAME=PROD.ACCOUNTS
$ export TABNAME
$ replicat paramfile ggs/dirprm/parmfl

Validating a Parameter File
You can validate the parameter file from the Administration Service web interface. You can
validate the Extract and Replicat parameters from the Reports tab. To access the Reports tab:

1. From Extract or Replicat section of the Administration Service Overview Page, click Action
and then click Details.

2. Click the Reports tab to view the report for Extract and Replicat parameters, error log, and
other information.

Chapter 9
Admin Client Command Line Interface for Oracle GoldenGate Microservices

9-138

See Access Extract Details to learn how to check and edit the Extract parameters. See Access
Replicat Details to learn about editing Replicat parameter files. Also see Additional Parameters
for Integrated Replicat

You can also use the checkprm validation native command is run from the command line and
give an assessment of the specified parameter file, with a configurable application and running
environment. It can provide either a simple PASS/FAIL or with additional details about how the
values of each parameter are stored and interpreted.

The CHECKPRM executable file can be found in the $OGG_HOME/bin directory of Microservices
Architecture. See checkprm in the Parameters and Functions Reference for Oracle
GoldenGate. The input to checkprm is case insensitive. If a value string contains spaces, it
does not need to be quoted because checkprm can recognize meaningful values. If no mode is
specified to checkprm, then all parameters applicable to any mode of the component will be
accepted.
The output of checkprm is assembled with four possible sections:

• help messages

• pre-validation error

• validation result

• parameter details

A pre-validation error is typically an error that prevents a normal parameter validation from
executing, such as missing options or an inaccessible parameter file. If an option value is
specified incorrectly, a list of possible inputs for that option is provided. If the result is FAIL,
each error is in the final result message. If the result is PASS, a message that some of the
parameters are subject to further runtime validation. The parameter detailed output contains
the validation context, and the specified parameters. The parameter and options are printed
with proper indentation to illustrate these relationships.

See CHECKPARAMS parameter.

Simplify and Automate Work with Oracle GoldenGate Macros
You can use Oracle GoldenGate macros in parameter files to configure and reuse parameters,
commands, and conversion functions. reducing the amount of text you must enter to do
common tasks. A macro is a built-in automation tool that enables you to call a stored set of
processing steps from within the Oracle GoldenGate parameter file. A macro can consist of a
simple set of frequently used parameter statements to a complex series of parameter
substitutions, calculations, or conversions. You can call other macros from a macro. You can
store commonly used macros in a library, and then call the library rather than call the macros
individually.

Oracle GoldenGate macros work with the following parameter files:

• DEFGEN

• Extract

• Replicat

There are two steps to using macros:

1. Defining a Macro

2. Calling a Macro

Chapter 9
Simplify and Automate Work with Oracle GoldenGate Macros

9-139

Define a Macro
To define an Oracle GoldenGate macro, use the MACRO parameter in the parameter file. MACRO
defines any input parameters that are needed and it defines the work that the macro performs.

Syntax

MACRO #macro_name
PARAMS (#p1, #p2 [, ...])
BEGIN
macro_body
END;

Table 9-18 Macro Definition Arguments

Argument Description

MACRO
Required. Indicates the start of an Oracle GoldenGate macro definition.

#macro_name
The name of the macro. Macro and parameter names must begin with
a macro character. The default macro character is the pound (#)
character, as in #macro1 and #param1.

A macro or parameter name can be one word consisting of letters and
numbers, or both. Special characters, such as the underscore
character (_) or hyphen (-), can be used. Some examples of macro
names are: #mymacro, #macro1, #macro_1, #macro-1, #macro$.
Some examples of parameter names are #sourcecol, #s, #col1, and
#col_1.

To avoid parsing errors, the macro character cannot be used as the first
character of a macro name. For example, ##macro is invalid. If
needed, you can change the macro character by using the MACROCHAR
parameter. See Reference for Oracle GoldenGate for Windows and
UNIX.

Macro and parameter names are not case-sensitive. Macro or
parameter names within quotation marks are ignored.

PARAMS (#p1, #p2) Optional definition of input parameters. Specify a comma-separated list
of parameter names and enclose it within parentheses. Each
parameter must be referenced in the macro body where you want input
values to be substituted. You can list each parameter on a separate line
to improve readability (making certain to use the open and close
parentheses to enclose the parameter list). See Call a Macro that
Contains Parameters for more information.

BEGIN Begins the macro body. Must be specified before the macro body.

Chapter 9
Simplify and Automate Work with Oracle GoldenGate Macros

9-140

Table 9-18 (Cont.) Macro Definition Arguments

Argument Description

macro_body The macro body. The body is a syntax statement that defines the
function that is to be performed by the macro. A macro body can
include any of the following types of statements.

• Simple parameter statements, as in:

COL1 = COL2
• Complex parameter statements with parameter substitution as in:

MAP #o.#t, TARGET #o.#t, KEYCOLS (#k), COLMAP
(USEDEFAULTS);

• Invocations of other macros, as in:

#colmap (COL1, #sourcecol)

END;
Ends the macro definition. The semicolon is required to complete the
definition.

The following is an example of a macro definition that includes parameters. In this case, the
macro simplifies the task of object and column mapping by supplying the base syntax of the
MAP statement with input parameters that resolve to the names of the owners, the tables, and
the KEYCOLS columns.

MACRO #macro1
PARAMS (#o, #t, #k)
BEGIN
MAP #o.#t, TARGET #o.#t, KEYCOLS (#k), COLMAP (USEDEFAULTS);
END;

The following is an example of a macro that does not define parameters. It executes a
frequently used set of parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

Call a Macro
To call a macro, use the following syntax where you want the macro to run within the
parameter file.

Chapter 9
Simplify and Automate Work with Oracle GoldenGate Macros

9-141

Syntax

[target =] macro_name (val[, ...])

[target =] macro_name (val | {val, val, ...}[, ...])

Table 9-19 Syntax Elements for Calling a Macro

Argument Description

target = Optional. Specifies the target to which the results of the macro are
assigned or mapped. For example, target can be used to specify a
target column in a COLMAP statement. In the following call to the
#make_date macro, the column DATECOL1 is the target and will be
mapped to the macro results.

DATECOL1 = #make_date (YR1, MO1, DAY1)

Without a target, the syntax to call #make_date is:

#make_date (YR1, MO1, DAY1)

macro_name The name of the macro that is being called, for example: #make_date.

(val[, ...]) The parameter input values. This component is required whether or not
the macro defines parameters. If the macro defines parameters,
specify a comma-separated list of input values, in the order that
corresponds to the parameter definitions in the MACRO parameter, and
enclose the list within parentheses. If the macro does not define
parameters, specify the open and close parentheses with nothing
between them ().

(val | {val,
val, ...})[, ...]

The parameter input values. This component is required whether or not
the macro defines parameters. If the macro defines parameters,
specify a comma-separated list of input values, in the order that
corresponds to the parameter definitions in the MACRO parameter, and
enclose the list within parentheses. To pass multiple values to one
parameter, separate them with commas and enclose the list within
curly brackets. If the macro does not define parameters, specify the
open and close parentheses with nothing between them ().

See the following topics to learn more about syntax for calling a macro:

Call a Macro that Contains Parameters
To call a macro that contains parameters, the call statement must supply the input values that
are to be substituted for those parameters when the macro runs.

Valid input for a macro parameter is any of the following, preceded by the macro character
(default is #):

• A single value in plain or quoted text, such as: #macro (#name, #address, #phone) or
#macro (#"name", #"address", #"phone").

Chapter 9
Simplify and Automate Work with Oracle GoldenGate Macros

9-142

• A comma-separated list of values enclosed within curly brackets, such as: #macro1
(SCOTT, DEPT, {DEPTNO1, DEPTNO2, DEPTNO3}). The ability to substitute a block of values
for any given parameter add flexibility to the macro definition and its usability in the Oracle
GoldenGate configuration.

• Calls to other macros, such as: #macro (#mycalc (col2, 100), #total). In this example,
the #mycalc macro is called with the input values of col2 and 100.

Oracle GoldenGate substitutes parameter values within the macro body according to the
following rules.

1. The macro processor reads through the macro body looking for instances of parameter
names specified in the PARAMS statement.

2. For each occurrence of the parameter name, the corresponding parameter value specified
during the call is substituted.

3. If a parameter name does not appear in the PARAMS statement, the macro processor
evaluates whether or not the item is, instead, a call to another macro. (See Calling Other
Macros from a Macro.) If the call succeeds, the nested macro is executed. If it fails, the
whole macro fails.

Example 9-40 Using Parameters to Populate a MAP Statement

The following macro definition specifies three parameter that must be resolved. The
parameters substitute for the names of the table owner (parameter #o), the table (parameter
#t), and the KEYCOLS columns (parameter #k) in a MAP statement.

MACRO #macro1 PARAMS (#o, #t, #k) BEGIN MAP #o.#t, TARGET #o.#t, KEYCOLS
(#k), COLMAP (USEDEFAULTS); END;

Assuming a table in the MAP statement requires only one KEYCOLS column, the following syntax
can be used to call #macro1. In this syntax, the #k parameter can be resolved with only one
value.

#macro1 (SCOTT, DEPT, DEPTNO1)

To call the macro for a table that requires two KEYCOLS columns, the curly brackets are used as
follows to enclose both of the required values for the column names:

#macro1 (SCOTT, DEPT, {DEPTNO1, DEPTNO2})

The DEPTNO1 and DEPTNO2 values are passed as one argument to resolve the #t parameter.
Tables with three or more KEYCOLS can also be handled in this manner, using additional values
inside the curly brackets.

Example 9-41 Using a Macro to Perform Conversion

In this example, a macro defines the parameters #year, #month, and #day to convert a
proprietary date format.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM',

Chapter 9
Simplify and Automate Work with Oracle GoldenGate Macros

9-143

#month, 'DD', #day)
END;

The macro is called in the COLMAP clause:

MAP sales.acct_tab, TARGET sales.account,
COLMAP
(
targcol1 = sourcecol1,
datecol1 = #make_date(YR1, MO1, DAY1),
datecol2 = #make_date(YR2, MO2, DAY2)
);

The macro expands as follows:

MAP sales.acct_tab, TARGET sales.account,
COLMAP
(
targcol1 = sourcecol1,
datecol1 = @DATE ('YYYY-MM-DD', 'CC', @IF (YR1 < 50, 20, 19),'YY', YR1, 'MM',
MO1, 'DD', DAY1),
datecol2 = @DATE ('YYYY-MM-DD', 'CC', @IF (YR2 < 50, 20, 19),'YY', YR2, 'MM',
MO2, 'DD', DAY2)
);

Call a Macro without Input Parameters
To call a macro without input parameters, the call statement must supply the open and close
parentheses, but without any input values: #macro ().

The following macro is defined without input parameters. The body contains frequently used
parameters.

MACRO #option_defaults
BEGIN
GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
END;

This macro is called as follows:

#option_defaults ()
IGNOREUPDATES
MAP owner.srctab, TARGET owner.targtab;

#option_defaults ()
MAP owner.srctab2, TARGET owner.targtab2;

Chapter 9
Simplify and Automate Work with Oracle GoldenGate Macros

9-144

The macro expands as follows:

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
IGNOREUPDATES
MAP owner.srctab, TARGET owner.targtab;

GETINSERTS
GETUPDATES
GETDELETES
INSERTDELETES
MAP owner.srctab2, TARGET owner.targtab2;

Calling Other Macros from a Macro
To call other macros from a macro, create a macro definition similar to the following. In this
example, the #make_date macro is nested within the #assign_date macro, and it is called
when #assign_date runs.

The nested macro must define all, or a subset of, the same parameters that are defined in the
base macro. In other words, the input values when the base macro is called must resolve to
the parameters in both macros.

The following defines #assign_date:

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

The following defines #make_date. This macro creates a date format that includes a four-digit
year, after first determining whether the two-digit input date should be prefixed with a century
value of 19 or 20. Notice that the PARAMS statement of #make_date contains a subset of the
parameters in the #assign_date macro.

MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM', #month, 'DD',
#day)
END;

The following syntax calls #assign_date:

#assign_date (COL1, YEAR, MONTH, DAY)

The macro expands to the following given the preceding input values and the embedded
#make_date macro:

COL1 = @DATE ('YYYY-MM-DD', 'CC', @IF (YEAR < 50, 20, 19),'YY', YEAR, 'MM', MONTH, 'DD',
DAY)

Chapter 9
Simplify and Automate Work with Oracle GoldenGate Macros

9-145

Create Macro Libraries
You can create a macro library that contains one or more macros. By using a macro library,
you can define a macro once and then use it within many parameter files.

To Create a Macro Library

1. Open a new file in a text editor.

2. Use commented lines to describe the library, if needed.

3. Use the following syntax to define each macro:

MACRO #macro_name
PARAMS (#p1, #p2 [, ...])
BEGIN
macro_body
END;

4. Save the file in the dirprm sub-directory of the Oracle GoldenGate directory as:

filename.mac

Where:

filename is the name of the file. The .mac extension defines the file as a macro library.

The following sample library named datelib contains two macros, #make_date and
#assign_date.

-- datelib macro library
--
MACRO #make_date
PARAMS (#year, #month, #day)
BEGIN
@DATE ('YYYY-MM-DD', 'CC', @IF (#year < 50, 20, 19), 'YY', #year, 'MM',
#month, 'DD', #day)
END;

MACRO #assign_date
PARAMS (#target_col, #year, #month, #day)
BEGIN
#target_col = #make_date (#year, #month, #day)
END;

To use a macro library, use the INCLUDE parameter at the beginning of a parameter file, as
shown in the following sample Replicat parameter file.

INCLUDE /ggs/dirprm/datelib.mac
REPLICAT rep
ASSUMETARGETDEFS
USERIDALIAS ogg
MAP fin.acct_tab, TARGET fin.account;

Chapter 9
Simplify and Automate Work with Oracle GoldenGate Macros

9-146

When including a long macro library in a parameter file, you can use the NOLIST parameter to
suppress the listing of each macro in the Extract or Replicat report file. Listing can be turned on
and off by placing the LIST and NOLIST parameters anywhere within the parameter file or within
the macro library file. In the following example, NOLIST suppresses the listing of each macro in
the hugelib macro library. Specifying LIST after the INCLUDE statement restores normal listing
to the report file.

NOLIST
INCLUDE /ggs/dirprm/hugelib.mac
LIST
INCLUDE /ggs/dirprm/mdatelib.mac
REPLICAT REP

Tracing Macro Expansion
You can trace macro expansion with the CMDTRACE parameter. With CMDTRACE enabled, macro
expansion steps are shown in the Extract or Replicat report file.

Syntax

CMDTRACE [ON | OFF | DETAIL]

Where:

• ON enables tracing.

• OFF disables tracing.

• DETAIL produces a verbose display of macro expansion.

In the following example, tracing is enabled before #testmac is called, then disabled after the
macro's execution.

REPLICAT REP
MACRO #testmac
BEGIN
COL1 = COL2,
COL3 = COL4,
END;
...
CMDTRACE ON
MAP test.table1, TARGET test.table2,
COLMAP (#testmac);
CMDTRACE OFF

Using User Exits to Extend Oracle GoldenGate Capabilities
User exits are custom routines that you write in C programming code and call during Extract or
Replicat processing. User exits extend and customize the functionality of the Extract and
Replicat processes with minimal complexity and risk. With user exits, you can respond to
database events when they occur, without altering production programs.

Chapter 9
Using User Exits to Extend Oracle GoldenGate Capabilities

9-147

Note:

If you use CUSEREXITS, the LD_LIBRARY_PATH environment variable needs to be
extended. By default, the $OGG_HOME/lib directory is part of the Oracle GoldenGate
software Home directory. It is separated from the Deployment directory by design. If
additional shared objects need to be added for User Exit functions, then it is
recommended that you do not use the $OGG_HOME/lib directory and choose a
different location. For CUSEREXITS, you must extend the LD_LIBRARY_PATH
environment variable to a different location.

When to Implement User Exits
You can employ user exits as an alternative to, or in conjunction with, the column-conversion
functions that are available within Oracle GoldenGate. User exits can be a better alternative to
the built-in functions because a user exit processes data only once (when the data is
extracted) rather than twice (once when the data is extracted and once to perform the
transformation).

The following are some ways in which you can implement user exits:

• Perform arithmetic operations, date conversions, or table lookups while mapping from one
table to another.

• Implement record archival functions offline.

• Respond to unusual database events in custom ways, for example by sending an e-mail
message or a page based on an output value.

• Accumulate totals and gather statistics.

• Manipulate a record.

• Repair invalid data.

• Calculate the net difference in a record before and after an update.

• Accept or reject records for extraction or replication based on complex criteria.

• Normalize a database during conversion.

Making Oracle GoldenGate Record Information Available to the Routine
The basis for most user exit processing is the EXIT_CALL_PROCESS_RECORD function. For
Extract, this function is called just before a record buffer is output to the trail. For Replicat, it is
called just before a record is applied to the target. If source-target mapping is specified in the
parameter file, the EXIT_CALL_PROCESS_RECORD event takes place after the mapping is
performed.

When EXIT_CALL_PROCESS_RECORD is called, the record buffer and other record information are
available to it through callback routines. The user exit can map, transform, clean, or perform
any other operation with the data record. When it is finished, the user exit can return a status
indicating whether the record should be processed or ignored by Extract or Replicat.

Chapter 9
Using User Exits to Extend Oracle GoldenGate Capabilities

9-148

Creating User Exits
The following instructions help you to create user exits on Windows and UNIX systems. For
more information about the parameters and functions that are described in these instructions,
see Reference for Oracle GoldenGate for Windows and UNIX.

Note:

User exits are case-sensitive for database object names. Names are returned exactly
as they are defined in the hosting database. Object names must be fully qualified.

To Create User Exits

1. In C code, create either a shared object (UNIX systems) or a DLL (Windows) and create or
export a routine to be called from Extract or Replicat. This routine is the communication
point between Oracle GoldenGate and your routines. Name the routine whatever you want.
The routine must accept the following Oracle GoldenGate user exit parameters:

• EXIT_CALL_TYPE: Indicates when, during processing, the routine is called.

• EXIT_CALL_RESULT: Provides a response to the routine.

• EXIT_PARAMS: Supplies information to the routine. This function enables you to use the
EXITPARAM option of the TABLE or MAP statement to pass a parameter that is a literal
string to the user exit. This is only valid during the exit call to process a specific record.
This function also enables you to pass parameters specified with the PARAMS option of
the CUSEREXIT parameter at the exit call startup.

2. In the source code, include the usrdecs.h file. The usrdecs.h file is the include file for the
user exit API. It contains type definitions, return status values, callback function codes, and
a number of other definitions. The usrdecs.h file is installed within the Oracle GoldenGate
directory. Do not modify this file.

3. Include Oracle GoldenGate callback routines in the user exit when applicable. Callback
routines retrieve record and application context information, and they modify the contents
of data records. To implement a callback routine, use the ERCALLBACK function in the
shared object. The user callback routine behaves differently based on the function code
that is passed to the callback routine.

ERCALLBACK (function_code, buffer, result_code);

Where:

• function_code is the function to be executed by the callback routine.

• buffer is a void pointer to a buffer containing a predefined structure associated with
the specified function code.

• result_code is the status of the function that is executed by the callback routine. The
result code that is returned by the callback routine indicates whether or not the
callback function was successful.

• On Windows systems, Extract and Replicat export the ERCALLBACK function that is to
be called from the user exit routine. The user exit must explicitly load the callback
function at run-time using the appropriate Windows API calls.

Chapter 9
Using User Exits to Extend Oracle GoldenGate Capabilities

9-149

4. Include the CUSEREXIT parameter in your Extract or Replicat parameter file. This parameter
accepts the name of the shared object or DLL and the name of the exported routine that is
to be called from Extract or Replicat. You can specify the full path of the shared object or
DLL or let the operating system's standard search strategy locate the shared object.

CUSEREXIT {DLL | shared_object} routine
[, INCLUDEUPDATEBEFORES]
[, PARAMS 'startup_string']

Where:

• DLL is a Windows DLL and shared_object is a UNIX shared object that contains the
user exit function.

• INCLUDEUPDATEBEFORES gets before images for UPDATE operations.

• PARAMS 'startup_string' supplies a startup string, such as a startup parameter.

Example 9-42 Example of Base Syntax, UNIX

CUSEREXIT eruserexit.so MyUserExit

Example 9-43 Example Base Syntax, Windows

CUSEREXIT eruserexit.dll MyUserExit

Supporting Character-set Conversion in User Exits
To maintain data integrity, a user exit needs to understand the character set of the character-
type data that it exchanges with an Oracle GoldenGate process. Oracle GoldenGate user exit
logic provides globalization support for:

• character-based database metadata, such as the names of catalogs, schemas, tables, and
columns

• the values of character-type columns, such as CHAR, VARCHAR2, CLOB, NCHAR, NVARCHAR2,
and NCLOB, as well as string-based numbers, date-time, and intervals.

Properly converting between character sets allows column data to be compared, manipulated,
converted, and mapped properly from one type of database and character set to another. Most
of this processing is performed when the EXIT_CALL_PROCESS_RECORD call type is called and
the record buffer and other record information is made available through callback routines.

The user exit has its own session character set. This is defined by the GET_SESSION_CHARSET
and SET_SESSION_CHARSET callback functions. The caller process provides conversion between
character sets if the character set of the user exit is different from the hosting context of the
process.

To enable this support in user exits, there is the GET_DATABASE_METADATA callback function
code. This function enables the user exit to get database metadata, such as the locale and the
character set of the character-type data that it exchanges with the process that calls it (Extract,
data pump, Replicat). It also returns how the database treats the case-sensitivity of object
names, how it treats quoted and unquoted names, and how it stores object names.

For more information about these components, see Reference for Oracle GoldenGate for
Windows and UNIX.

Chapter 9
Using User Exits to Extend Oracle GoldenGate Capabilities

9-150

Using Macros to Check Name Metadata
The object name that is passed by the user exit API is the exact name that is encoded in the
user-exit session character set, and exactly the same name that is retrieved from the
database. If the user exit compares the object name with a literal string, the user exit must
retrieve the database locale and then normalize the string so that it is compared with the object
name in the same encoding.

Oracle GoldenGate provides the following macros that can be called by the user exit to check
the metadata of database object names. For example, a macro can be used to check whether
a quoted table name is case-sensitive and whether it is stored as mixed-case in the database
server. These macros are defined in the usrdecs.h file.

Table 9-20 Macros for metadata checking

Macro What it verifies

supportsMixedCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats a mixed-case
unquoted name of a specified data type as case-
sensitive and stores the name in mixed case.

supportsMixedCaseQuotedIdentifiers(nam
eMeta, DBObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
sensitive and stores the name in mixed case.

storesLowerCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as case-
insensitive and stores the name in lower case.

storesLowerCaseQuotedIdentifiers(nameM
eta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in lower case.

storesMixedCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as case-
insensitive and stores the name in mixed case.

storesMixedCaseQuotedIdentifiers(nameM
eta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in mixed case.

storesUpperCaseIdentifiers(nameMeta,
DbObjType)

Whether the database treats the mixed-case
unquoted name of a specified data type as case-
insensitive and stores the name in upper case.

storesUpperCaseQuotedIdentifiers(nameM
eta, DbObjType)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in upper case.

Describing the Character Format
The input parameter column_value_mode describes the character format of the data that is
being processed and is used in several of the function codes. The following table describes the
meaning of the EXIT_FN_RAW_FORMAT, EXIT_FN_CHAR_FORMAT, and
EXIT_FN_CNVTED_SESS_FORMAT format codes, per data type.

Chapter 9
Using User Exits to Extend Oracle GoldenGate Capabilities

9-151

Table 9-21 column_value_mode_matrix Meanings

Data Type EXIT_FN_RAW_FORMAT EXIT_FN_CHAR_FORMAT EXIT_FN_CNVTED_SESS_FO
RMAT

CHAR
"abc"

2-byte null indicator +

2-byte length info

+ column value

0000 0004 61 62 63 20

"abc" encoded in ASCII or
EBCDIC.

NULL terminated.

Tailing spaces are trimmed.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

Tailing spaces are trimmed by
default unless the GLOBALS
parameter NOTRIMSPACES is
specified.

NCHAR
0061 0062 0063 0020

2-byte null indicator +

2-byte length info +

column value.

0000 0008 00 61 0062 0063
0020

"abc" (encoded in UTF8) or
truncated at the first byte,
depending on whether NCHAR is
treated as UTF-8.

NULL terminated.

Trailing spaces are trimmed.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

Tailing spaces are trimmed by
default unless the GLOBALS
parameter NOTRIMSPACES is
specified.

VARCHAR2
"abc"

2-byte null indicator +

2-byte length info +

column value

"abc" encoded in ASCII or
EBCDIC.

NULL terminated.

No trimming.

"abc" encoded in user exit
session character set.

NOT NULL terminated.

No trimming.

NVARCHAR2
0061 0062 0063 0020

2-byte null indicator +

2-byte length info +

column value

"abc" (encoded in UTF8) or
truncated at the first byte,
depending on whether
NVARCHAR2 is treated as
UTF-8.

NULL terminated.

No trimming.

"abc"encoded in user exit
session character set.

NOT NULL terminated.

No trimming.

CLOB 2-byte null indicator +

2-byte length info +

column value

Similar to VARCHAR2, but only
output up to 4K bytes.

NULL Terminated.

No trimming.

Similar to VARCHAR2, but only
output data requested in user
exit session character set.

NOT NULL terminated.

No trimming.

NCLOB 2-byte null indicator +

2-byte length info +

column value

Similar to NVARCHAR2, but only
output up to 4K bytes.

NULL terminated.

No trimming.

Similar to NVARCHAR2, but only
output data requested in user
exit session character set.

NOT NULL terminated.

No trimming.

NUMBER
123.89

2-byte null indicator +

2-byte length info +

column value

"123.89" encoded in ASCII or
EBCDIC.

NULL terminated.

"123.89" encoded in user exit
session character set.

NOT NULL terminated.

DATE
31-May-11

2-byte null indicator +

2-byte length info +

column value

"2011-05-31" encoded in
ASCII or EBCDIC.

NULL terminated.

"2011-05-31" encoded in user
exit session character set.

NOT NULL terminated.

TIMESTAMP
31-May-11 12.00.00
AM

2-byte null indicator +

2-byte length info +

column value

"2011-05-31 12.00.00 AM"
encoded in ASCII or EBCDIC.

NULL terminated.

"2011-05-31 12.00.00 AM"
encoded in user exit session
character set.

NOT NULL terminated.

Chapter 9
Using User Exits to Extend Oracle GoldenGate Capabilities

9-152

Table 9-21 (Cont.) column_value_mode_matrix Meanings

Data Type EXIT_FN_RAW_FORMAT EXIT_FN_CHAR_FORMAT EXIT_FN_CNVTED_SESS_FO
RMAT

Interval Year to
Month or Interval
Day to Second

2-byte null indicator +

2-byte length info +

column value

NA NA

RAW 2-byte null indicator +

2-byte length info +

column value

2-byte null indicator +

2-byte length info +

column value

2-byte null indicator +

2-byte length info +

column value

Upgrading User Exits
The usrdecs.h file is versioned to allow backward compatibility with existing user exits when
enhancements or upgrades, such as new functions or structural changes, are added to a new
Oracle GoldenGate release. The version of the usrdecs.h file is printed in the report file at the
startup of Replicat or Extract.

To use new user exit functionality, you must recompile your routines to include the new
usrdecs file. Routines that do not use new features do not need to be recompiled.

Viewing Examples of How to Use the User Exit Functions
Oracle GoldenGate installs the following sample user exit files into the UserExitExamples
directory of the Oracle GoldenGate installation directory:

• exitdemo.c shows how to initialize the user exit, issue callbacks at given exit points, and
modify data. It also demonstrates how to retrieve the fully qualified table name or a specific
metadata part, such as the name of the catalog or container, or the schema, or just the
unqualified table name. In addition, this demo shows how to process DDL data. The demo
is not specific to any database type.

• exitdemo_utf16.c shows how to use UTF16-encoded data (both metadata and column
data) in the callback structures for information exchanged between the user exit and the
caller process.

• exitdemo_more_recs.c shows an example of how to use the same input record multiple
times to generate several target records.

• exitdemo_lob.c shows an example of how to get read access to LOB data.

• exitdemo_pk_befores.c shows how to access the before and after image portions of a
primary key update record, as well as the before images of regular updates (non-key
updates). It also shows how to get target row values with SQLEXEC in the Replicat
parameter file as a means for conflict detection. The resulting fetched values from the
target are mapped as the target record when it enters the user exit.

Each directory contains the *.c files as well as makefiles and a readme.txt file.

Chapter 9
Using User Exits to Extend Oracle GoldenGate Capabilities

9-153

10
Performance

Learn about different techniques available with Oracle GoldenGate to carry out performance
monitoring and tuning activities.

Monitor
Learn about monitoring Oracle GoldenGate processes for performance and error handling.

Commands Used for Monitoring

You can view information about Extract and Replicat groups from the Oracle GoldenGate MA
web interface at various levels. Another alternative is to use the command line interface to
monitor various processes.

See Monitor Processes from the Performance Metrics Service.

To learn about command syntax, usage, and examples, see the Command Line Interface
Reference for Oracle GoldenGate.

Command What it Shows

INFO {EXTRACT | REPLICAT} group
[DETAIL]

Run status, checkpoints, approximate lag, and
environmental information.

INFO ALL
Displays the INFO output for all Oracle GoldenGate
processes on the system.

STATS {EXTRACT | REPLICAT} group
Displays statistics on processing volume, such as
number of operations performed.

STATUS {EXTRACT | REPLICAT} group
Displays the run status (starting, running, stopped,
abended) for Extract and Replicat processes.

LAG {EXTRACT | REPLICAT} group
Displays the latency between last record processed
and timestamp in the data source.

INFO {EXTTRAIL | RMTTRAIL } trail
Displays the name of associated process, position
of last data processed, maximum file size.

SEND {EXTRACT | REPLICAT } group
Depending on the process and selected options,
returns information about memory pool, lag, TCP
statistics, long-running transactions, process
status, recovery progress, and more.

10-1

Command What it Shows

VIEW REPORT group
Shows contents of the discard file or process
report.

VIEW GGSEVT
Shows contents of the Oracle GoldenGate error
log.

COMMAND ER wildcard
Information dependent on the COMMAND type:

INFO

LAG

SEND

STATS

STATUS

wildcard

is a wildcard specification for the process groups to
be affected, for example:

INFO ER ext*

STATS ER *

INFO PARAM
Queries for and displays static information.

GETPARAMINFO
Displays currently-running parameter values.

INFO DISTPATH
Returns information about distribution paths.
Before you run this command, ensure that the
Distribution Service is running for that deployment.

INFO EXTTRAIL
Retrieves configuration information for a local trail.
It shows the name of the trail, the Extract that
writes to it, the position of the last data processed,
and the assigned maximum file size.

Chapter 10
Monitor

10-2

Command What it Shows

INFO RMTTRAIL
Retrieves configuration information for a remote
trail. It shows the name of the trail, the Extract that
writes to it, the position of the last data processed,
and the assigned maximum file size.

INFO ER
Retrieves information on multiple Extract and
Replicat groups as a unit.

INFO CHECKPOINTTABLE
Confirms the existence of a checkpoint table and
view the date and time that it was created.

INFO CREDENTIALS
Retrieves a list of credentials.

INFO ENCRYPTIONPROFILE
Returns information about the encryption profiles
available with the Service Manager.

INFO HEARTBEATTABLE
Displays information about the heartbeat tables
configured in the database.

INFO AUTHORIZATIONPROFILE
Lists all the authorization profiles in a deployment
or information on a specific authorization profile for
a specific deployment.

INFO MASTERKEY
Displays the contents of a currently open master-
key wallet. If a wallet store does not exist, a new
wallet store file is created. This wallet store file is
then used to host different encrypted keys as they
are created.

INFO PROFILE
Returns information about managed process
profiles.

INFO RECVPATH
Returns information about a target-initiated
distribution path in the Receiver Service. Before
you run this command, ensure that the Receiver
Service is running.

INFO SCHEMATRANDATA
Valid for Oracle database only. Determine whether
Oracle schema-level supplemental logging is
enabled for the specified schema or if any
instantiation information is available. Use the
DBLOGIN command to establish a database
connection before using this command.

INFO TRACETABLE
Verifies the existence of the specified trace table in
the local instance of the database.

INFO TRANDATA
Displays different outputs depending on the
database.

Chapter 10
Monitor

10-3

Command What it Shows

STATS DISTPATH | RECVPATH
Get the statistics for the distribution path
(DISTPATH) or receiver path (RECVPATH).

STATS ER
Retrieve statistics on multiple Extract and Replicat
groups as a unit. Use it with wildcards to affect
every Extract and Replicat group that satisfies the
wildcard.

STATUS ER
Checks the status of multiple Extract and Replicat
groups as a unit.

STATUS DEPLOYMENT
View the status of the specified deployment.

STATUS PMSRVR
Status of Performance Service.

STATUS SERVICE
Displays the status of specified Oracle GoldenGate
service.

Monitor Processes from the Performance Metrics Service

The Performance Metrics Service uses the metrics service to collect and store instance
deployment performance results. When you arrive at the Performance Metrics Service
OVerview page, you see all the Oracle GoldenGate processes in their current state. You can
click a process to view its performance metrics. You can also access service messages and
status change details from this page.

Here’s a general overview of the tasks that you can perform from this page.

Task Description

Review Messages Review Messages from the Messages Overview
tab.

Review Status Changes Click the Review Status Changes tab to review
changes in status of a service.

Review Messages from Messages Tab

Messages from the Services are displayed in Performance Metrics Service Overview page.

To review the messages sent or received, do the following:

1. From the Service Manager, click Performance Metrics Service.

2. On the Performance Metrics Service home page, click the Messages Overview tab (if it’s
not already selected) to see a drill down into all the service messages.

Scroll through the list of messages or search for a specific message by entering the text in
the message.

Chapter 10
Monitor

10-4

3. Click Refresh to get a synchronized real-time list of messages before you start searching.
You can also change the page size to view more or fewer messages.

Review Status Changes

Real-time status changes to microservices can be monitored from the Performance Metrics
Service Status Changes Overview tab.

Status change messages show the date, process name, and its status, which could be
running, starting, stopped, or killed.

To view status changes, click Performance Metrics Service from the Service Manager home
page, and then click the Status Changes Overview tab. A list of status change messages
from the service appears.

If you are searching for specific messages, you can use the search but make sure you click
Refresh before you search to ensure that you get the updated status for services.

Note that the search messages appear in different colors to differentiate critical and
informational messages.

Purge Datastore

You can change the datastore retention and purge it from the Performance Metrics Service
Monitoring Commands tab, as shown in the following image:

To view status changes, click Performance Metrics Service from the Service Manager home
page, and then click the Monitoring Commands tab.

The current process retention (in days) is displayed.

You can enter the number of retention days or use the sliding icon to set the new period from 1
to 365 days, then Execute to activate the purge. The details of the purge are also displayed.

Chapter 10
Monitor

10-5

Protocols for Performance Monitoring for Different Operating Systems

Oracle GoldenGate uses Unix Domain Sockets (UDS) for UNIX-based and Named Pipes (for
Windows) techniques to send monitoring points from Extract, Replicat, and other processes to
the Performance Monitoring Service of the deployment.

For each deployment, the Performance Metrics Service is local to the host. This makes it more
secure to use the Unix Domain Sockets (UDS) protocol or Named Pipes technique in Windows
for Inter-process Communication (IPC) with the service and improve overall performance.
Named Pipes utilizes a unique file system called NPFS (Named Pipe filesystem) that allows
managing the security as any file subject using security checks for file access.

• UDS is available with Oracle and non-Oracle databases. The UDS file is located in
the $OGG_HOME/var/temp directory of the deployment.

• The standard location for named pipes in Windows is \\ServerName\pipe\PipeName (\
\ServerName\pipe\).

Monitor an Extract Recovery
If Extract abends when a long-running transaction is open, it can seem to take a long time to
recover when it is started again. To recover its processing state, Extract must search back
through the online and archived logs (if necessary) to find the first log record for that long-
running transaction. The farther back in time that the transaction started, the longer the
recovery takes, in general, and Extract can appear to be stalled.

To confirm that Extract is recovering properly, use the SEND EXTRACT command with the STATUS
option. One of the following status notations appears, and you can follow the progress as
Extract changes its log read position over the course of the recovery.

In recovery[1]
Extract is recovering to its checkpoint in the transaction log. This implies that it is reading from
either the BR checkpoint files and then archived/online logs, or reading from Recovery
Checkpoint in archived/online log.

In recovery[2]
Extract is recovering from its checkpoint to the end of the trail. This implies that a recovery
marker is appended to the output trail when the last transaction was not completely written
then rewriting the transaction.

Recovery complete
The recovery is finished, and normal processing will resume.

Monitor Lag
Lag statistics show you how well the Oracle GoldenGate processes are keeping pace with the
amount of data that is being generated by the business applications. With this information, you
can diagnose suspected problems and tune the performance of the Oracle GoldenGate
processes to minimize the latency between the source and target databases.

About Lag
For Extract, lag is the difference, in seconds, between the time that a record was processed by
Extract (based on the system clock) and the timestamp of that record in the data source.

Chapter 10
Monitor

10-6

For Replicat, lag is the difference, in seconds, between the time that the last record was
processed by Replicat (based on the system clock) and the timestamp of the record in the trail.

To view lag statistics, use either the LAG or SEND ER, SEND EXTRACT, SEND REPLICAT commands.

Note:

The INFO command also returns a lag statistic, but this statistic is taken from the last
record that was checkpointed, not the current record that is being processed. It is
less accurate than LAG or INFO.

Monitor Lag Using Automatic Heartbeat Tables
You can use the default automatic heartbeat table functionality to monitor end-to-end
replication lag. Automatic heartbeats are sent from each source database into the replication
streams, by updating the records in a heartbeat seed table and a heartbeat table, and
constructing a heartbeat history table. Each of the replication processes in the replication
path process these heartbeat records and update the information in them. These heartbeat
records are inserted or updated into the heartbeat table at the target databases.

The heartbeat tables contain the following information:

• Source database

• Destination database

• Information about the outgoing replication streams:

– Names of the Extract, Distribution Service, and or Replicat processes in the path

– Timestamps when heartbeat records were processed by the replication processes.

• Information about the incoming replication streams:

– Names of the Extract, Distribution Service, and or Replicat processes in the path

– Timestamps when heartbeat records were processed by the replication processes.

Using the information in the heartbeat table and the heartbeat history table, the current and
historical lags in each of the replication can be computed.

Replicat can track the current restart position of Extract with automatic heartbeat tables
(LOGBSN). This allows regenerating the trail files from the source database, if required and
minimizes the redo log retention period of the source database. Also, by tracking the most
recent Extract restart position, the tombstone tables for automatic Conflict Detection and
Resolution (ACDR) tables can be purged more frequently.

In a bidirectional configuration, the heartbeat table has as many entries as the number of
replication paths to neighbors that the database has and in a unidirectional setup, the table at
the source is empty. The outgoing columns have the timestamps and the outgoing path, the
local Extract and the downstream processes. The incoming columns have the timestamps and
path of the upstream processes and local Replicat.

In a unidirectional configuration, the target database will populate only the incoming columns in
the heartbeat table.

Chapter 10
Monitor

10-7

Note:

The Automatic Heartbeat functionality is not supported on MySQL version 5.5.

Monitor an Extract Recovery
If Extract abends when a long-running transaction is open, it can seem to take a long time to
recover when it is started again. To recover its processing state, Extract must search back
through the online and archived logs (if necessary) to find the first log record for that long-
running transaction. The farther back in time that the transaction started, the longer the
recovery takes, in general, and Extract can appear to be stalled.

To confirm that Extract is recovering properly, use the SEND EXTRACT command with the STATUS
option. One of the following status notations appears, and you can follow the progress as
Extract changes its log read position over the course of the recovery.

In recovery[1]
Extract is recovering to its checkpoint in the transaction log. This implies that it is reading from
either the BR checkpoint files and then archived/online logs, or reading from Recovery
Checkpoint in archived/online log.

In recovery[2]
Extract is recovering from its checkpoint to the end of the trail. This implies that a recovery
marker is appended to the output trail when the last transaction was not completely written
then rewriting the transaction.

Recovery complete
The recovery is finished, and normal processing will resume.

Heartbeat Table End-To-End Replication Flow
The end-to-end replication process for heartbeat tables relies on using the Oracle GoldenGate
trail format. The process is as follows:

Add a heartbeat table to each of your databases with the ADD HEARTBEATTABLE command. Add
the heartbeat table to all source and target instances and then restart existing Oracle
GoldenGate processes to enable heartbeat functionality. Depending on the database, you
may or may not be required to create or enable a job to populate the heartbeat table data.
See the following sample:

DBLOGIN USERIDALIAS alias [DOMAIN domain]|[SYSDBA | SQLID sqlid]
[SESSIONCHARSET character_set]}

ADD HEARTBEATTABLE

Chapter 10
Monitor

10-8

(Optional) For Oracle Databases, you must ensure that the Oracle DBMS_SCHEDULER is
operating correctly as the heartbeat update relies on it. You can query the DBMS_SCHEDULER by
issuing:

SELECT START_DATE, LAST_START_DATE, NEXT_RUN_DATE
FROM DBA_SCHEDULER_JOBS

Where job_name ='GG_UPDATE_HEARTBEATS';
Then look for valid entries for NEXT_RUN_DATE, which is the next time the scheduler will run. If
this is a timestamp in the past, then no job will run and you must correct it.
A common reason for the scheduler not working is when the parameter job_queue_processes
is set too low (typically zero). Increase the number of job_queue_processes configured in the
database with the ALTER SYSTEM SET JOB_QUEUE_PROCESSES = ##; command where ## is the
number of job queue processes.

Run an Extract, which on receiving the logical change records (LCR) checks the value in the
OUTGOING_EXTRACT column.

• If the Extract name matches this value, the OUTGOING_EXTRACT_TS column is updated and
the record is entered in the trail.

• If the Extract name does not match then the LCR is discarded.

• If the OUTGOING_EXTRACT value is NULL, it is populated along with OUTGOING_EXTRACT_TS
and the record is entered in the trail.

The Distribution Service on reading the record, checks the value in the
OUTGOING_ROUTING_PATH column. This column has a list of distribution paths.
If the value is NULL, then the column is updated with the current group name (and path if this is
a Distribution Service),"*", update the OUTGOING_ROUTING_TS column, and the record is written
into its target trail file.
If the value has a "*" in the list, then replace it with group name[:pathname],"*"', update the
OUTGOING_ROUTING_TS column, and the record is written into its target trail file. When the value
does not have a asterisk (*) in the list and the distribution path name is in the list, then the
record is sent to the path specified in the relevant group name[:pathname],"*"' pair in the
list. If the distribution path name is not in the list, then the record is discarded.
Run a Replicat, which on receiving the record checks the value in the OUTGOING_REPLICAT
column.

• If the Replicat name matches the value, the row in the heartbeat table is updated and the
record is inserted into the history table.

• If the Replicat name does not match, the record is discarded.

• If the value is NULL, the row in the heartbeat and heartbeat history tables are updated with
an implicit invocation of the Replicat column mapping.

Automatic Replicat Column Mapping:

REMOTE_DATABASE = LOCAL_DATABASE
INCOMING_EXTRACT = OUTGOING_EXTRACT
INCOMING_ROUTING_PATH = OUTGOING_ROUTING_PATH with "*" removed
INCOMING_REPLICAT = @GETENV ("GGENVIRONMENT", "GROUPNAME")

Chapter 10
Monitor

10-9

INCOMING_HEARTBEAT_TS = HEARTBEAT_TIMESTAMP
INCOMING_EXTRACT_TS = OUTGOING_EXTRACT_TS
INCOMING_ROUTING_TS = OUTGOING_ROUTING_TS
INCOMING_REPLICAT_TS = @DATE ('UYYYY-MM-DD
HH:MI:SS.FFFFFF','JTSLCT',@GETENV ('JULIANTIMESTAMP'))
LOCAL_DATABASE = REMOTE_DATABASE
OUTGOING_EXTRACT = INCOMING_EXTRACT
OUTGOING_ROUTING_PATH = INCOMING_ROUTING_PATH
OUTGOING_HEARTBEAT_TS = INCOMING_HEARTBEAT_TS
OUTGOING_REPLICAT = INCOMING_REPLICAT
OUTGOING_HEARTBEAT_TS = INCOMING_HEARTBEAT_TS

Additional Considerations:

Computing lags as the heartbeat flows through the system relies on the clocks of the source
and target systems to be set up correctly. It is possible that the lag can be negative if the target
system is ahead of the source system. The lag is shown as a negative number so that you are
aware of their clock discrepancy and can take actions to fix it.

The timestamp that flows through the system is in UTC. There is no time zone associated with
the timestamp so when viewing the heartbeat tables, the lag can be viewed quickly even if
different components are in different time zones. You can write any view you want on top of the
underlying tables; UTC is recommended.

All the heartbeat entries are written to the trail in UTF-8.

The outgoing and incoming paths together uniquely determine a row. Meaning that if you have
two rows with same outgoing path and a different incoming path, then it is considered two
unique entries.

Heartbeat Table Details

The GG_HEARTBEAT table displays timestamp information of the end-to-end replication time and
the timing information at the different components primary and secondary Extract and Replicat.

In a unidirectional environment, only the target database contains information about the
replication lag. That is the time when a record is generated at the source database and
becomes visible to clients at the target database.

Note:

The automatic heartbeat tables don’t populate the OUTGOING_% columns with data,
when both the source and remote databases have the same name. To change the
database name, use the utility DBNEWID. For details, see the DBNEWID Utility.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
replication time from the remote
database is measured.

HEARTBEAT_TIMESTAMP TIMESTAMP(6) The point in time when a
timestamp is generated at the
remote database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated

Chapter 10
Monitor

10-10

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/sutil/oracle-dbnewid-utility.html#GUID-D138A757-6A2A-41A2-B722-A98708C5F5AD

Column Data Type Description

INCOMING_EXTRACT VARCHAR2 Name of the primary Extract
(capture) at the remote database

INCOMING_ROUTING_PATH VARCHAR2 Name of the secondary Extract
(pump) at the remote database

INCOMING_REPLICAT VARCHAR2 Name of the Replicat on the local
database.

INCOMING_HEARTBEAT_TS TIMESTAMP(6) Final timestamp when the
information is inserted into the
GG_HEARTBEAT table at the local
database.

INCOMING_EXTRACT_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by the
primary Extract at the remote
database.

INCOMING_ROUTING_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by the
secondary Extract at the remote
database.

INCOMING_REPLICAT_TS TIMESTAMP(6) Timestamp of the generated
timestamp is processed by
Replicat at the local database.

OUTGOING_EXTRACT VARCHAR2 Bidirectional/N-way replication:
Name of the primary Extract on
the local database.

OUTGOING_ROUTING_PATH VARCHAR2 Bidirectional/N-way replication:
Name of the secondary Extract
on the local database.

OUTGOING_REPLICAT VARCHAR2 Bidirectional/N-way replication:
Name of the Replicat on the
remote database.

OUTGOING_HEARTBEAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Final timestamp when the
information is inserted into the
table at the remote database.

OUTGOING_EXTRACT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by the
primary Extract on the local
database.

OUTGOING_ROUTING_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by the
secondary Extract on the local
database.

OUTGOING_REPLICAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp of the generated
timestamp is processed by
Replicat on the remote database.

INCOMING_REPLICAT_LW_CSN VARCHAR2 -

INCOMING_EXTRACT_HEARTBEAT
_CSN

VARCHAR2 -

Chapter 10
Monitor

10-11

Column Data Type Description

INCOMING_EXTRACT_RESTART_C
SN

VARCHAR2 -

INCOMING_EXTRACT_RESTART_T
S

TIMESTAMP(6) -

The GG_HEARTBEAT_HISTORY table displays historical timestamp information of the end-to-end
replication time and the timing information at the different components primary and secondary
Extract and Replicat.

In a unidirectional environment, only the destination database contains information about the
replication lag.

Timestamps are managed in UTC time zone. That is the time when a record is generated at
the source database and becomes visible to clients at the target database.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the end-to-
end lag is measured.

HEARTBEAT_RECEIVED_TS TIMESTAMP(6) Point in time when a timestamp
from the remote database
receives at the local database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

INCOMING_EXTRACT VARCHAR2 Name of the primary Extract on
the remote database.

INCOMING_ROUTING_PATH VARCHAR2 Name of the secondary Extract of
the remote database.

INCOMING_REPLICAT VARCHAR2 Name of the Replicat on the local
database.

INCOMING_HEARTBEAT_TS TIMESTAMP(6) Final timestamp when the
information is inserted into the
GG_HEARTBEAT_HISTORY table
on the local database.

INCOMING_EXTRACT_TS TIMESTAMP(6) Timestamp when the generated
timestamp is processed by the
primary Extract on the remote
database.

INCOMING_ROUTING_TS TIMESTAMP(6) Timestamp when the generated
timestamp is processed by the
secondary Extract on the remote
database.

INCOMING_REPLICAT_TS TIMESTAMP(6) Timestamp when the generated
timestamp is processed by
Replicat on the local database.

OUTGOING_EXTRACT VARCHAR2 Bidirectional/N-way replication:
Name of the primary Extract from
the local database.

OUTGOING_ROUTING_PATH VARCHAR2 Bidirectional/N-way replication:
Name of the secondary Extract
from the local database.

Chapter 10
Monitor

10-12

Column Data Type Description

OUTGOING_REPLICAT VARCHAR2 Bidirectional/N-way replication:
Name of the Replicat on the
remote database.

OUTGOING_HEARTBEAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Final timestamp when the
information is persistently
inserted into the table of the
remote database.

OUTGOING_EXTRACT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the generated
timestamp is processed by the
primary Extract on the local
database.

OUTGOING_ROUTING_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the generated
timestamp is processed by the
secondary Extract on the local
database.

OUTGOING_REPLICAT_TS TIMESTAMP(6) Bidirectional/N-way replication:
Timestamp when the generated
timestamp is processed by
Replicat on the remote database.

REPLICAT_LOW_WATERMARK_CSN String This column is populated by
Replicat when it processes this
heartbeat record. It populates this
column with its current low
watermark (LWM) when it
processes this record. This allows
us to choose a LOGBSN from a
heartbeat record which is as of
the Replicat LWM.

SOURCE_EXTRACT_HEARTBEAT_C
SN

String This column is populated by
Extract and contains the source
commit SCN for the heartbeat
transaction in the source
database. The heartbeat job on
the source database cannot
populate this value as it will not
know the commit SCN apriori.

SOURCE_EXTRACT_RESTART_CSN String This column will be populated by
Extract and will contain the
current LOGBSN when Extract
processes this particular
heartbeat record. The heartbeat
job on the source database will
not populate this value.

SOURCE_EXTRACT_RESTART_CSN
_TS

TIMESTAMP This column will be populated by
Extract and will contain the redo
timestamp in UTC that
corresponds to the current
LOGBSN when Extract
processes this particular
heartbeat record. The heartbeat
job on the source database will
not populate this value.

Chapter 10
Monitor

10-13

The GG_LAG view displays information about the replication lag between the local and remote
databases.

In a unidirectional environment, only the destination database contains information about the
replication lag. The lag is measured in seconds.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the end-to-
end replication lag from the
remote database is measured.

CURRENT_LOCAL_TS TIMESTAMP(6) Current timestamp of the local
database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

INCOMING_HEARTBEAT_AGE NUMBER The age of the most recent
heartbeat received from the
remote database.

INCOMING_PATH VARCHAR2 Replication path from the remote
database to the local database
with Extract and Replicat
components.

INCOMING_LAG NUMBER Replication lag from the remote
database to the local database.
This is the time where the
heartbeat where generated at the
remote database minus the time
where the information was
persistently inserted into the table
at the local database.

OUTGOING_HEARTBEAT_AGE NUMBER The age of the most recent
heartbeat from the local database
to the remote database.

OUTGOING_PATH VARCHAR2 Replication Path from Local
database to the remote database
with Extract and Replicat
components

OUTGOING_LAG NUMBER Replication Lag from the local
database to the remote database.
This is the time where the
heartbeat where generated at the
local database minus the time
where the information was
persistently inserted into the table
at the remote database.

REMOTE_EXTRACT_RESTART_CSN String Source Extract restart position.

REMOTE_DATABASE
DB_UNIQUE_NAME

String Remote database unique name is
displayed. If no unique name
exists, then the DB_NAME value is
displayed.

REMOTE_EXTRACT_RESTART_CSN
_TIME

Timestamp Timestamp associated with
source Extract redo position.

Chapter 10
Monitor

10-14

Column Data Type Description

REMOTE_DB_OLDEST_OPEN_TXN_
AGE

Timestamp Age of the oldest open
transaction at the source
database that Extract is currently
processing. This column can be
calculated as SYSTIMESTAMP -
REMOTE_EXTRACT_RESTART_TIM
E.

LOCAL_REPLICAT_LWM_CSN String Low watermark CSN of the local
Replicat when it processed the
heartbeat.

The GG_LAG_HISTORY view displays the history information about the replication lag history
between the local and remote databases.

In a unidirectional environment, only the destination database contains information about the
replication lag.

The unit of the lag units is in seconds.

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the end-to-
end replication lag from the
remote database is measured.

HEARTBEAT_RECEIVED_TS TIMESTAMP(6) Point in time when a timestamp
from the remote database
receives on the local database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

DB_NAME String Remote database name.

DB_UNIQUE_NAME String Remote database unique name.
If the database unique name
doesn't exist, then the DB_NAME
and DB_UNIQUE_NAME will be
same.
In a switchover to standby
scenario, the db_unique_name
will change but the db_name and
replication path remain the same

INCOMING_HEARTBEAT_AGE NUMBER The age of the heartbeat table.

INCOMING_PATH VARCHAR2 Replication path from the remote
database to local database with
Extract and Replicat components.

INCOMING_LAG NUMBER Replication lag from the remote
database to the local database.
This is the time where the
heartbeat was generated at the
remote database minus the time
where the information was
persistently inserted into the table
on the local database.

OUTGOING_HEARTBEAT_AGE NUMBER

Chapter 10
Monitor

10-15

Column Data Type Description

OUTGOING_PATH VARCHAR2 Replication path from local
database to the remote database
with Extract and Replicat
components.

OUTGOING_LAG NUMBER Replication lag from the local
database to the remote database.
This is the time where the
heartbeat was generated at the
local database minus the time
where the information was
persistently inserted into the table
on the remote database.

REMOTE_EXTRACT_RESTART_CSN String Source Extract restart position.

REMOTE_EXTRACT_RESTART_CSN
_TIME

TIMESTAMP Timestamp associated with
source Extract redo position.

REMOTE_DB_OLDEST_OPEN_TXN_
AGE

TIMESTAMP Age of the oldest open
transaction at the source
database that Extract is currently
processing. This column can be
calculated as: SYSTIMESTAMP -
REMOTE_EXTRACT_RESTART_TIM
E

LOCAL_REPLICAT_LWM_CSN String Low watermark CSN of the local
Replicat when it processed the
heartbeat.

INCOMING_EXTRACT_LAG - -

INCOMING_ROUTINE_LAG - -

INCOMING_REPLICAT_READ_LAG - -

INCOMING_REPICAT_LAG - -

OUTGOING_EXTRACT_LAG - -

OUTGOING_ROUTINE_LAG - -

OUTGOING_REPLICAT_READ_LAG - -

OUTGOING_REPLICAT_LAG - -

Update Heartbeat Tables
The HEARTBEAT_TIMESTAMP column in the heartbeat seed table must be updated periodically by
a database job. The default heartbeat interval is 1 minute and this interval can be specified or
overridden using from the command line or the Administration Service web interface.

For Oracle Database, the database job is created automatically.

For all other supported databases, you must create background jobs to update the heartbeat
timestamp using the database specific scheduler functionality.

See ADD HEARTBEATTABLE, ALTER HEARTBEATTABLE for details on updating the heartbeat table.

Chapter 10
Monitor

10-16

Purge the Heartbeat History Tables
The heartbeat history table is purged periodically using a job. The default interval is 30 days
and this interval can be specified or overridden using a command line inteface such as Admin
Client or the Administration Service web interface.

For Oracle Database, the database job is created automatically.

For all other supported databases, you must create background jobs to purge the heartbeat
history table using the database specific scheduler functionality.

Best Practice
Oracle recommends that you:

• Use the same heartbeat frequency on all the databases to makes diagnosis easier.

• Adjust the retention period if space is an issue.

• Retain the default heartbeat table frequency; the frequency set to be 30 to 60 seconds
gives the best results for most workloads.

• Use lag history statistics to collect lag and age information.

Using the Automatic Heartbeat Commands
You can use the heartbeat table commands to control the Oracle GoldenGate automatic
heartbeat functionality as follows.

Command Description

ADD HEARTBEATTABLE Creates the heartbeat tables required for automatic heartbeat
functionality including the LOGBSN columns.

ALTER HEARTBEATTABLE Alters existing heartbeat objects.

ALTER HEARTBEATTABLE
UPGRADE

Alters the heartbeat tables to add the LOGBSN columns to the heartbeat
tables. This is optional.

DELETE HEARTBEATTABLE Deletes existing heartbeat objects.

DELETE HEARTBEATENTRY Deletes entries in the heartbeat table.

INFO HEARTBEATTABLE Displays heartbeat table information.

Db2 z/OS: Interpret Statistics for Update Operations

The actual number of DML operations that are executed on the Db2 database might not match
the number of extracted DML operations that are reported by Oracle GoldenGate. Db2 does
not log update statements if they do not physically change a row, so Oracle GoldenGate
cannot detect them or include them in statistics.

Monitor Processing Volume
The STATS commands show you the amount of data that is being processed by an Oracle
GoldenGate process, and how fast it is being moved through the Oracle GoldenGate system.
With this information, you can diagnose suspected problems and tune the performance of the
Oracle GoldenGate processes. These commands provide a variety of options to select and
filter the output.

Chapter 10
Monitor

10-17

The STATS commands are: STATS EXTRACT, STATS REPLICAT, or STATS ER command.

You can send interim statistics to the report file at any time with the SEND EXTRACT or SEND
REPLICAT command with the REPORT option.

Use the Error Log
Use the Oracle GoldenGate error log to view:

• a history of commands

• Oracle GoldenGate processes that started and stopped

• processing that was performed

• errors that occurred

• informational and warning messages

Because the error log shows events as they occurred in sequence, it is a good tool for
detecting the cause (or causes) of an error. For example, you might discover that:

• someone stopped a process

• a process failed to make a TCP/IP or database connection

• a process could not open a file

To view the error log, use any of the following:

• Standard shell command to view the ggserr.log file within the root Oracle GoldenGate
directory

• VIEW GGSEVT command.

You can control the ggserr.log file behavior to:

• Roll over the file when it reaches a maximum size, which is the default to avoid disk space
issues.

• All messages are appended to the file by all processes without regard to disk space.

• Disable the file.

• Route messages to another destination, such as the system log.

This behavior is controlled and described in the ogg-ggserr.xml file in one of the following
locations:

Microservices Architecture
$OGG_HOME/etc/conf/logging/

Use the Process Report
Use the process report to view (depending on the process):

• parameters in use

• table and column mapping

• database information

• runtime messages and errors

• runtime statistics for the number of operations processed

Chapter 10
Monitor

10-18

Every Extract, Replicat process generates a report file. The report can help you diagnose
problems that occurred during the run, such as invalid mapping syntax, SQL errors, and
connection errors.

To view a process report, use any of the following:

• standard shell command for viewing a text file

• Performance Metrics Service

• VIEW REPORT command.

• To view information if a process abends without generating a report, use the following
command to run the process from the command shell of the operating system (not Oracle
GoldenGate command line) to send the information to the terminal.

process paramfile path.prm

Where:

– The value for process is either extract or replicat.

– The value for path.prm is the fully qualified name of the parameter file, for example:

REPLICA PARAMFILE /ogg/dirdat/repora.prm

By default, reports have a file extension of .rpt, for example EXTORA.rpt. The default location
is the dirrpt sub-directory of the Oracle GoldenGate directory. However, these properties can
be changed when the group is created. Once created, a report file must remain in its original
location for Oracle GoldenGate to operate properly after processing has started.

To determine the name and location of a process report, use the INFO EXTRACT, or INFO
REPLICAT commands.

Scheduling Runtime Statistics in the Process Report
By default, runtime statistics are written to the report once, at the end of each run. For long or
continuous runs, you can use optional parameters to view these statistics on a regular basis,
without waiting for the end of the run.

To set a schedule for reporting runtime statistics, use the REPORT parameter in the Extract or
Replicat parameter file to specify a day and time to generate runtime statistics in the report.
See REPORT.

To send runtime statistics to the report on demand, use the SEND EXTRACT or SEND REPLICAT
command with the REPORT option to view current runtime statistics when needed.

Viewing Record Counts in the Process Report
Use the REPORTCOUNT parameter to report a count of transaction records that Extract or
Replicat processed since startup. Each transaction record represents a logical database
operation that was performed within a transaction that was captured by Oracle GoldenGate.
The record count is printed to the report file and to the screen.

Prevent SQL Errors from Filling the Replicat Report File
Use the WARNRATE parameter to set a threshold for the number of SQL errors that can be
tolerated on any target table before being reported to the process report and to the error log.

Chapter 10
Monitor

10-19

The errors are reported as a warning. If your environment can tolerate a large number of these
errors, increasing WARNRATE helps to minimize the size of those files.

Use the Discard File
By default, a discard file is generated whenever a process is started with the START command.
The discard file captures information about Oracle GoldenGate operations that failed. This
information can help you resolve data errors, such as those that involve invalid column
mapping.

The discard file reports such information as:

• The database error message

• The sequence number of the data source or trail file

• The relative byte address of the record in the data source or trail file

• The details of the discarded operation, such as column values of a DML statement or the
text of a DDL statement.

To view the discard file, use a text editor or use the VIEW REPORT command in Admin Client.

The default discard file has the following properties:

• The file is named after the process that creates it, with a default extension of .dsc.
Example: finance.dsc.

• The file is created in the dirrpt sub-directory of the Oracle GoldenGate installation
directory.

• The maximum file size is 50 megabytes.

• At startup, if a discard file exists, it is purged before new data is written.

You can change these properties by using the DISCARDFILE parameter. You can disable the
use of a discard file by using the NODISCARDFILE parameter.

If a process is started from the command line of the operating system, it does not generate a
discard file by default. You can use the DISCARDFILE parameter to specify the use of a discard
file and its properties.

Once created, a discard file must remain in its original location for Oracle GoldenGate to
operate properly after processing has started.

Maintain Discard and Report Files
By default, discard files and report files are aged the same way. A new discard or report file is
created at the start of a new process run. Old files are aged by appending a sequence number
from 0 (the most recent) to 9 (the oldest) to their names.

If the active report or discard file reaches its maximum file size before the end of a run (or over
a continuous run), the process abends unless there is an aging schedule in effect. Use the
DISCARDROLLOVER and REPORTROLLOVER parameters to set aging schedules for the discard and
report files respectively. These parameters set instructions for rolling over the files at regular
intervals, in addition to when the process starts. Not only does this control the size of the files
and prevent process outages, but it also provides a predictable set of archives that can be
included in your archiving routine. For more information, see the following documentation:

• DISCARDROLLOVER
• REPORTROLLOVER

Chapter 10
Monitor

10-20

No process ever has more than ten aged reports or discard files and one active report or
discard file. After the tenth aged file, the oldest is deleted when a new report is created. It is
recommended that you establish an archiving schedule for aged reports and discard files in
case they are needed to resolve a service request.

Table 10-1 Current Extract and Aged Reports

Permissions X Date Report

-rw-rw-rw- 1 ggs ggs 4384 Oct 5 14:02 TCUST.rpt

-rw-rw-rw- 1 ggs ggs 1011 Sep 27 14:10 TCUST0.rpt

-rw-rw-rw- 1 ggs ggs 3184 Sep 27 14:10 TCUST1.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:06 TCUST2.rpt

-rw-rw-rw- 1 ggs ggs 2655 Sep 27 14:04 TCUST3.rpt

-rw-rw-rw- 1 ggs ggs 2744 Sep 27 13:56 TCUST4.rpt

-rw-rw-rw- 1 ggs ggs 3571 Aug 29 14:27 TCUST5.rpt

Parameters Used to Interpret Synchronization Lag
The time differences between source and target systems is known as the synchronization lage.
To account for this lag, use the TCPSOURCETIMER | NOTCPSOURCETIMER parameter in the Extract
parameter file. This parameter adjusts the timestamps of replicated records for reporting
purposes, making it easier to interpret synchronization lag.

Tuning
Learn about tuning the performance of Oracle GoldenGate.

Topics:

Tuning the Performance of Oracle GoldenGate
See Tuning the Performance of Oracle GoldenGate in the Administering Oracle GoldenGate
guide.

Chapter 10
Tuning

10-21

11
Autonomous Database

This section provides details about configuring Oracle GoldenGate with Oracle Autonomous
Database, and using Extract and Replicat processes with Autonomous Database instances.

About Capturing and Replicating Data Using Autonomous
Databases

You can capture changes from the Oracle Autonomous Database instance and replicate to any
target database or platform that Oracle GoldenGate supports, including another Oracle
Autonomous Database instance.

Use Case: When Using Oracle GoldenGate with Autonomous Databases

Using Oracle GoldenGate in the Oracle Autonomous Database can be configured to support
the following scenarios:

• Scalable Active-Active architecture: Synchronize changes made across two or more
databases to scale out workloads, provide increase resilience and near instantaneous
failover across multiple data centers or regions.

• Real-Time Data Warehouse: Provide continuous, real-time capture and delivery of
changed data between Oracle Autonomous Database systems.

• Big Data Integration: With Oracle GoldenGate for Big Data you can replicate data from
the Oracle Autonomous Database to provide real-time streaming integration to all
platforms supported by Big Data targets.

• Real-Time Streaming Analytics: Oracle GoldenGate integrates seamlessly with Oracle
Stream Analytics to enable users to identify events of interest by executing queries against
event streams in real time. It allows creating custom operational dashboards that provide
real-time monitoring, transform streaming data, or raise alerts based on stream analysis.

• Hybrid Replication: Oracle GoldenGate replicates data from the Oracle Autonomous
Database instance back to on-premise or to another cloud database or platform.

The following features are not available with Always Free Autonomous Databases:

• Supplemental logging

• Oracle GoldenGate Extract

See Always Free Autonomous Database for details.

Details of Support When Using Oracle GoldenGate with
Autonomous Databases

Review the supported data types and limitations before replicating data to the Oracle
Autonomous Database instance.

Oracle GoldenGate is supported for any type of Oracle Autonomous Database.

11-1

Details of Support for coexistence of Oracle GoldenGate with Transient Logical Rolling
Upgrades
Coexistence of Oracle GoldenGate Extract and Replicat processes with Transient Logical
Rolling Upgrades is supported.

Limitations of Extract and Replicat during Transient Logical Rolling Upgrades

• Creation of new Extracts/Replicats are not supported during rolling upgrade.

• Existing Extracts/Replicats will continue to capture or apply changes. However, there
are restrictions on modifying the Extracts/Replicats to points before and after a rolling
upgrade. You cannot alter Extract to a point before rolling upgrade after switching to
the new primary.

Oracle GoldenGate Replicat Limitations for Autonomous Databases

These are the limitations of Oracle GoldenGate when replicating to or from the Oracle
Autonomous Database.

Supported Replicats
The following combinations of Replicats are supported in different modes when using Oracle
GoldenGate with Oracle Autonomous Database:

• Parallel Replicat in integrated mode is supported for Oracle Autonomous Database
Serverless.

• Classic and coordinated Replicats in integrated mode are not supported for Oracle
Autonomous Database.

• Classic, coordinated, and parallel Replicats in non-integrated mode are supported for
Oracle Autonomous Database.

Data Type Limitations for DDL and DML Replication
See the section Non-Supported Oracle Data Types.
Also see Data Types in the Autonomous Database on Dedicated Exadata Infrastructure
Documentation and Data Types in the Using Oracle Autonomous Database Serverless guide.
DDL replication is supported depending on the restrictions in the Autonomous Databases.

Details of Support for Archived Log Retention
The two types of Autonomous Databases, Oracle Autonomous Database Serverless and
Oracle Autonomous Database on Dedicated Exadata Infrastructure have different log
retention behavior.

• Oracle Autonomous Database Serverless: Archived log files are kept in Fast Recovery
Area (FRA) for up to 48 hours. After that, it is purged and the archived log files are moved
to NFS mount storage, which is accessible by logminer. Three copies are created. The
logminer should be able to access any of the copies. This is transparent to Oracle
GoldenGate Extract. After it reaches 7 days, the NFS mounted copy is permanently
removed. The Extract abends with the archived log unavailable error if the required
archived log file is older than 7 days.

• Oracle Autonomous Database on Dedicated Exadata Infrastructure: When Oracle
Autonomous Data Guard or Oracle GoldenGate is enabled, archived log files are kept in
Fast Recovery Area (FRA) for up to 7 days. After that, the files are purged. There is no
NFS mount location available for logminer to access archived log files that are older than
7 days. The Extract abends with the archived log unavailable error if the required
archived log file is older than 7 days.

Chapter 11
Details of Support When Using Oracle GoldenGate with Autonomous Databases

11-2

Note:

If the database instance is closed for more than 15 minutes, then the retention
time is set back to 3 days. This implies that retention of archived log files is
confirmed only for 3 days, regardless of whether the database instance is
closed. The files are retained for 7 days only if the database instance is not
closed.

Configure Extract to Capture from an Autonomous Database
Oracle Autonomous Database has a tight integration with Oracle GoldenGate. There are a
number of differences when setting up Extract for an Autonomous database instance
compared to a traditional Oracle Database.

Oracle Autonomous Database security has been enhanced to ensure that Extract is only able
to capture changes from the specific tenant it connected to. However, downstream Extract is
not supported.

Before You Begin

Before you start the process of capturing data from the Autonomous Database using Oracle
GoldenGate you must first:

1. Unlock the pre-created Oracle GoldenGate database user ggadmin in the Autonomous
Database.

2. Obtain the Autonomous Database client credentials to connect to the database instance.

Establishing Oracle GoldenGate Credentials
To capture from an Autonomous Database only the GGADMIN account is used. The GGADMIN
account is created inside the database when the Autonomous Database is provisioned. This
account is locked. It must be unlocked before it can be used with Oracle GoldenGate. This
account is the same account used for both Extracts and Replicats in the Autonomous
Database.

Run the ALTER USER command to unlock the ggadmin user and set the password for it. See
Creating Users with Autonomous Database with Client-Side Tools.

This ALTER USER command must be run by the admin account user for Autonomous
Databases.

ALTER USER ggadmin IDENTIFIED BY PASSWORD ACCOUNT UNLOCK;

Prerequisites for Configuring Oracle GoldenGate Extract to Capture from
Autonomous Databases

Prior to configuring and starting the Extract process to capture from the Autonomous
Database, make sure that the following requirements are met:

• Oracle Autonomous Database environment is provisioned and running.

Chapter 11
Configure Extract to Capture from an Autonomous Database

11-3

• Autonomous Database-level supplemental logging should be enabled by the ADMIN or
GGADMIN.

Configuring Autonomous Database Supplemental Logging for Extract

To add minimal supplemental logging to your Autonomous Database instance, log into the
instance as GGADMIN or ADMIN account and execute the following commands:

ALTER PLUGGABLE DATABASE ADD SUPPLEMENTAL LOG DATA;

To DROP Autonomous Database-level supplemental logging incase you decide to stop capturing
from that database instance:

ALTER PLUGGABLE DATABASE DROP SUPPLEMENTAL
 LOG DATA;

You can verify that the Autonomous Database-level supplemental logging is configured
properly by issuing this SQL statement:

SELECT MINIMAL FROM dba_supplemental_logging;

The output for this statement is:

MINIMAL

YES

The MINIMAL column will be YES if supplemental logging has been correctly set for this
Autonomous Database instance.

Configure Extract to Capture from an Autonomous Database
Following are the steps to configure an Extract to capture from an Oracle Autonomous
Database :

1. Install Oracle GoldenGate for your Oracle Autonomous Database instance.

2. Create a deployment for the Oracle GoldenGate environment. This is the deployment
where the Extract that captures data from the Oracle Autonomous Database instance will
be created. See Add a Deployment.

3. Obtain Oracle Autonomous Database Client Credentials.

To establish connection to your Oracle Autonomous Database instance, download the
client credentials file. To download client credentials, you can use the Oracle Cloud
Infrastructure Console or Database Actions Launchpad. See Downloading Client
Credentials (Wallets).

Note:

If you do not have administrator access to the Oracle Autonomous Database,
you should ask your service administrator to download and provide the
credentials files to you.

Chapter 11
Configure Extract to Capture from an Autonomous Database

11-4

The following steps use the Database Actions Launchpad to download the client
credentials.

a. Log in to your Oracle Autonomous Database account.

b. From the Database Instance page, click Database Actions. This launches the
Database Actions Launchpad. The Launchpad attempts to log you into the database
as ADMIN. If that is not successful, you will be prompted for your database ADMIN
username and password.

c. On the Database Actions Launchpad, under Administration, click Download Client
Credentials (Wallets).

d. Enter a password to secure your Client Credentials zip file and click Download.

Note:

The password you provide when you download the wallet protects the
downloaded Client Credentials wallet.

e. Save the credentials zip file to your local system.

The credentials zip file contains the following files:

• cwallet.sso
• ewallet.p12
• keystore.jks
• ojdbc.properties
• sqlnet.ora
• tnsnames.ora
• truststore.jks
• ewallet.pem
• README.txt
Refer and update (if required) the sqlnet.ora and tnsnames.ora files while configuring
Oracle GoldenGate to work with the Autonomous Database instance.

4. Configure the server where Oracle GoldenGate is running to connect to the Autonomous
Database instance.

a. Log in to the server where Oracle GoldenGate was installed.

b. Transfer the credentials zip file that you downloaded from Oracle Autonomous
database instance to the Oracle GoldenGate server.

c. In the Oracle GoldenGate server, unzip the credentials file into a new directory, for
example: /u02/data/adwc_credentials. This is your key directory.

d. To configure the connection details, open your tnsnames.ora file from the Oracle client
location in the Oracle GoldenGate instance.

e. Use the connection string with the LOW consumer group dbname_low, for example,
graphdb1_low, and move it to your local tnsnames.ora file.

See Local Naming Parameters in the tnsnames.ora File chapter in the Oracle
Database Net Services Reference guide.

Chapter 11
Configure Extract to Capture from an Autonomous Database

11-5

Note:

The tnsnames.ora file provided with the credentials file contains three
database service names identifiable as:

ADWC_Database_Name_low
ADWC_Database_Name_medium
ADWC_Database_Name_high

Oracle recommends that you use ADWC_Database_Name_low with Oracle
GoldenGate. See Predefined Database Service Names for Autonomous
Database in the Using Oracle Autonomous Database Serverless guide or
Predefined Database Service Names for Autonomous Databases for Oracle
Autonomous Database on Dedicated Exadata Infrastructure.

f. Edit the tnsnames.ora file in the Oracle GoldenGate instance to include the connection
details available in the tnsnames.ora file in your key directory (the directory where you
unzipped the credentials zip file downloaded from the Autonomous Database.

Sample Connection String
adw1_low. = (description=
 (retry_count=20)(retry_delay=3)
 (address=(protocol=tcps)(port=1522)(host=adb-
preprod.us-phoenix-1.oraclecloud.com))

(connect_data=(service_name=okd2ybgcz4mjx94_graphdb1_low.adb.oraclecloud
.com))
 (security=(ssl_server_cert_dn="CN=adwc-preprod.uscom-
east-1.oraclecloud.com,OU=Oracle BMCS US,O=Oracle Corporation,L=Redwood
City,ST=California,C=US"))
)

If the database is within a firewall protected environment, you might not have direct
access to the database. With an existing HTTP Proxy, you can pass the firewall with
the following modifications to the sqlnet.ora and tnsnames.ora:

• sqlnet parameters

• address modification of tns_alias

If Extract becomes unresponsive due to a network timeout or connection loss, then
you can add the following into the connection profile in the tnsnames.ora file:

(DESCRIPTION = (RECV_TIMEOUT=30) (ADDRESS_LIST =
 (LOAD_BALANCE=off)(FAILOVER=on)(CONNECT_TIMEOUT=3)(RETRY_COUNT=3)
(ADDRESS = (PROTOCOL = TCP)(HOST = adb-preprod.us-
phoenix-1.oraclecloud.com)(PORT = 1522))

Chapter 11
Configure Extract to Capture from an Autonomous Database

11-6

https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-predefined-generic.html#GUID-E49773B3-6C07-4F6F-906B-42705D237523
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-predefined-generic.html#GUID-E49773B3-6C07-4F6F-906B-42705D237523
https://docs.oracle.com/en-us/iaas/autonomous-database/doc/predefined-database-service-names.html

g. To configure the wallet, create a sqlnet.ora file in the Oracle client location in the
Oracle GoldenGate instance.

cd /u02/data/oci/network/admin
ls
sqlnet.ora tnsnames.ora

See Autonomous Database Client Credentials in Using Oracle GoldenGate on Oracle
Cloud Marketplace.

h. Edit this sqlnet.ora file to include your key directory.

WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA =
(DIRECTORY="/u02/data/adwc_credentials")))
SSL_SERVER_DN_MATCH=yes

5. Use Admin Client to log into the Oracle GoldenGate deployment, depending on whether
you are using Microservices.

6. Create a credential to store the GGADMIN user and password. This user will be used to
connect to the Autonomous Database from the command line, to perform commands that
require a database connection. It will also be used in the USERIDALIAS parameter for the
Extract database connection.

ALTER CREDENTIALSTORE ADD USER
ggadmin@dbgraph1_low PASSWORD complex_password alias adb_alias

7. Connect to the database using DBLOGIN. The DBLOGIN user should be the adb_alias
account user.

DBLOGIN USERIDALIAS adb_alias

8. Configure supplemental logging on the tables, which you want to capture using ADD
TRANDATA or ADD SCHEMATRANDATA. Remember that you are connected directly to the
database instance, so there is no need to include the database name in these commands.
Here's an exmaple:

ADD TRANDATA HR.EMP

or

ADD SCHEMATRANDATA HR

See Prerequisites for Configuring Oracle GoldenGate Extract to Capture from Autonomous
Databases.

9. Add heartbeat table.

ADD HEARTBEATTABLE

10. Add and configure an Extract to capture from the Oracle Autonomous Database instance.
See Add an Extract for steps to create an Extract.

Chapter 11
Configure Extract to Capture from an Autonomous Database

11-7

Oracle GoldenGate Extract is designed to work with the Oracle Autonomous Database
instance to ensure that it only captures from a specific database instance. This means that
the database instance name is not needed for any TABLE or MAP statements.

The following example creates an Extract (required for capturing from an Oracle
Autonomous Database) called exte, and instructs it to begin now.

ADD EXTRACT exte, INTEGRATED TRANLOG, BEGIN NOW

To capture specific tables, use the two part object names.. For example, to capture from
the table HR.EMP, in your Oracle Autonomous Database instance, use this entry in the
Extract parameter file.

TABLE HR.EMP;

If you want to replicate HR.EMP into COUNTRY.EMPLOYEE, then your map statement would
look like this:

MAP HR.EMP, TARGET COUNTRY.EMPLOYEE;

11. Register Extract with the Oracle Autonomous Database instance. For example, to register
an Extract named exte, use the following command:

REGISTER EXTRACT exte DATABASE

12. You can now start your Extract and perform data replication to the Oracle Autonomous
Database instance. Here's an example:

START EXTRACT exte

This completes the process of configuring an Extract for Oracle Autonomous Database
and you can use it like any other Extract process.

Configure Replicat to Apply to an Oracle Autonomous Database
You can replicate into the Autonomous Database from any source database or platform that is
supported by Oracle GoldenGate.

Prerequisites for Configuring Oracle GoldenGate Replicat to an
Autonomous Database

You should have the following details available with you:

• Your source database with Oracle GoldenGate Extract processes configured and writing
trails to where the Replicat is running to apply data to the Autonomous Database target.

• Oracle Autonomous Database is environment provisioned and running.

To deliver data to the Autonomous Database instance using Oracle GoldenGate, perform the
following tasks:

Chapter 11
Configure Replicat to Apply to an Oracle Autonomous Database

11-8

Configure Oracle GoldenGate for an Autonomous Database
Learn the steps to configure Oracle GoldenGate Replicat for an Autonomous Database.

Here are the steps to complete the configuration tasks:

Note:

Instructions are based on the assumption that the source environment is already
configured.

1. For Oracle GoldenGate on-premises, make sure that Oracle GoldenGate is installed.

2. (Microservices only) Create a deployment for your Oracle GoldenGate environment. This is
the deployment where the Replicat that applies data into the Autonomous Database (ADB)
will be created. See How to Create Deployments for steps to add a deployment.

3. The Autonomous Database has a pre-existing user created for Oracle GoldenGate on-
premise called ggadmin. The ggadmin user has been granted the required privileges for
Replicat to work. This is the user where any objects used for Oracle GoldenGate
processing will be stored, like the checkpoint table and heartbeat objects. By default, this
user is locked. To unlock the ggadmin user, connect to the Oracle Autonomous Database
instance as the ADMIN user using any SQL client tool. See Create Users on Autonomous
Database with Database Actions.

4. Run the ALTER USER command to unlock the ggadmin user and set the password for it. This
will be used in GGSCI or Admin Client for any DBLOGIN operations on the Autonomous
Database. It will be used in Replicat to allow Oracle GoldenGate to connect to the
Autonomous Database and apply data. See Create Users on Autonomous Database with
Database Actions.

ALTER USER ggadmin IDENTIFIED BY p0$$word ACCOUNT UNLOCK;

Obtain the Autonomous Database Client Credentials
To establish a connection with an Oracle Autonomous Database instance, you need to
download the client credentials files. There are two ways to download the client credentials
files: the Oracle Cloud Infrastructure Console or Database Actions Launchpad.

For details, see Downloading Client Credentials (Wallets).

Note:

If you do not have administrator access to the Oracle Autonomous Database, you
should ask your service administrator to download and provide the credentials files to
you.

The following steps use the Database Actions Launchpad to download the client credentials
files.

1. Log in to your Autonomous Database account.

Chapter 11
Configure Replicat to Apply to an Oracle Autonomous Database

11-9

2. From the Database Instance page, click Database Actions. This launches the Database
Actions Launchpad. The Launchpad attempts to log you into the database as ADMIN. If
that is not successful, you will be prompted for your database ADMIN username and
password.

3. On the Database Actions Launchpad, under Administration, click Download Client
Credentials (Wallets).

4. Enter a password to secure your Client Credentials zip file and click Download.

Note:

The password you provide when you download the wallet protects the
downloaded Client Credentials wallet.

5. Save the credentials zip file to your local system. The credentials zip file contains the
following files:

• cwallet.sso
• ewallet.p12
• keystore.jks
• ojdbc.properties
• sqlnet.ora
• tnsnames.ora
• truststore.jks
• ewallet.pem
• README.txt
Refer and update (if required) the sqlnet.ora and tnsnames.ora files while configuring
Oracle GoldenGate to work with the Oracle Autonomous Database instance.

Configure Replicat to Apply to an Autonomous Database
This section assumes that the source environment is already configured and provides the
steps required to establish replication in the Oracle Autonomous Database environment.

In the Oracle GoldenGate instance, you need to complete the following:

1. Follow the steps given in Prerequisites for Configuring Oracle GoldenGate Replicat to an
Autonomous Database.

2. Follow the steps given in Configure Oracle GoldenGate for an Autonomous Database.

3. Follow the steps given in Obtain the Autonomous Database Client Credentials.

4. Log in to the server where Oracle GoldenGate was installed.

5. Transfer the credentials zip file that you downloaded from Oracle Autonomous Database
to your Oracle GoldenGate instance.

6. In the Oracle GoldenGate instance, unzip the credentials file into a new directory /u02/
data/adwc_credentials. This is your key directory.

Chapter 11
Configure Replicat to Apply to an Oracle Autonomous Database

11-10

7. To configure the connection details, open your tnsnames.ora file from the Oracle client
location in the Oracle GoldenGate instance.

cd /u02/data/adwc_credentials
ls
tnsnames.ora

8. Edit the tnsnames.ora file in the Oracle GoldenGate instance to include the connection
details available in the tnsnames.ora file in your key directory (the directory where you
unzipped the credentials zip file downloaded from Oracle Autonomous Database).

Sample Connection String
graphdb1_low = (description=
 (retry_count=20)(retry_delay=3)(address=(protocol=tcps)
(port=1522)(host=adb-preprod.us-phoenix-1.oraclecloud.com))

(connect_data=(service_name=okd2ybgcz4mjx94_graphdb1_low.adb.oraclecloud.co
m))
 (security=(ssl_server_cert_dn="CN=adwc-preprod.uscom-
east-1.oraclecloud.com,OU=Oracle BMCS US,O=Oracle Corporation,L=Redwood
City,ST=California,C=US")))

If Replicat becomes unresponsive due to a network timeout or connection lost, then you
can add the following into the connection profile in the tnsnames.ora file:

(DESCRIPTION = (RECV_TIMEOUT=120) (ADDRESS_LIST =
 (LOAD_BALANCE=off)(FAILOVER=on)(CONNECT_TIMEOUT=3)(RETRY_COUNT=3)
 (ADDRESS = (PROTOCOL = TCP)(HOST = adb-preprod.us-
phoenix-1.oraclecloud.com)(PORT = 1522))

Note:

The tnsnames.ora file provided with the credentials file contains three database
service names identifiable as:

ADWC_Database_Name_low
ADWC_Database_Name_medium
ADWC_Database_Name_high

For Oracle GoldenGate replication, use ADWC_Database_Name_low.

9. To configure the wallet, create a sqlnet.ora file in the Oracle client location in the Oracle
GoldenGate instance.

cd /u02/data/oci/network/admin
ls
sqlnet.ora tnsnames.ora

Chapter 11
Configure Replicat to Apply to an Oracle Autonomous Database

11-11

10. Edit this sqlnet.ora file to include your key directory.

WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA =
(DIRECTORY="/u02/data/adwc_credentials")))
SSL_SERVER_DN_MATCH=yes

11. Use the Admin Client to log in to the Oracle GoldenGate deployment.

12. Create a credential to store the GGADMIN user and password for the Replicat to use. For
example:

ADD CREDENTIALSTORE ALTER CREDENTIALSTORE ADD USER
ggadmin@databasename_low PASSWORD complex_password alias adb_alias

13. Add and configure a Replicat to deliver to Oracle Autonomous Database. When creating
the Replicat, use the alias created in the previous step. For setting up your Replicat and
other processes, see Add a Replicat.

Note:

You can use classic Replicat, coordinated Replicat, and parallel Replicat in non-
integrated mode. Parallel Replicat in integrated mode is also supported for
Oracle Autonomous Database.

14. You can now start your Replicat and perform data replication to the Autonomous
Database.

Note:

Oracle Autonomous Database times out and disconnects the Replicat when it is
idle for more than 60 minutes. When Replicat tries to apply changes (when it gets
new changes) after being idle, it encounters a database error and abends. Oracle
recommends that you configure Oracle GoldenGate with the AUTORESTART profile
using managed processes (Microservices Architecture) to avoid having to
manually restart a Replicat when it times out.

Chapter 11
Configure Replicat to Apply to an Oracle Autonomous Database

11-12

12
Upgrade

Learn about the tasks required for upgrading Oracle GoldenGate Microservices Architecture.

Obtaining the Oracle GoldenGate Distribution
To obtain Oracle GoldenGate, follow these steps:

1. Go to edelivery: edelivery.oracle.com

Also see Oracle GoldenGate -- Oracle RDBMS Server Recommended Patches (Doc ID
1557031.1) for more information.

To access Oracle Technology Network, go to https://www.oracle.com/middleware/
technologies/goldengate.html

2. Find the Oracle GoldenGate 19c (19.1.0) release and download the ZIP file onto your
system.

For more information about locating and downloading Oracle Fusion Middleware products, see
the Oracle Fusion Middleware Download, Installation, and Configuration Readme Files on
Oracle Technology Network.

Prerequisites
Learn about the prerequisites of performing an upgrade for Oracle GoldenGate.

For Microservices, the earliest version that can be upgraded from is Oracle GoldenGate 12c
(12.3.0.1). As a best practice, perform a minimal upgrade first, so that you can troubleshoot
more easily in the event that any problems arise. Once you know your environment is
upgraded successfully, you can implement the new functionality.

The upgrade instructions also include the steps for upgrading the source or target database
and Oracle GoldenGate at the same time. Following are the pre-upgrade requirements:

• Stop all Oracle GoldenGate processes.

• Upgrade the database and then start it.

• Start Oracle GoldenGate.

• Disable the DDL trigger if there is no native DDL support.

Oracle GoldenGate Upgrade Considerations
Before you start the upgrade, review the information about upgrading Extract and Replicat.

Even though you may only be upgrading the source or target, rather than both, all processes
are involved in the upgrade. All processes must be stopped in the correct order for the
upgrade, regardless of which component you upgrade, and the trails must be processed until
empty.

12-1

http://edelivery.oracle.com
https://support.oracle.com/knowledge/Oracle%20Cloud/1557031_1.html
https://support.oracle.com/knowledge/Oracle%20Cloud/1557031_1.html
https://www.oracle.com/middleware/technologies/goldengate.html
https://www.oracle.com/middleware/technologies/goldengate.html
https://docs.oracle.com/cd/E23104_01/download_readme.htm

Oracle recommends that you begin your upgrade with the target rather than the source to
avoid the necessity of adjusting the trail file format.

Extract Upgrade Considerations
If you are using trigger-based DDL support, you must rebuild the DDL objects, even if you plan
to use the new triggerless DDL support in an integrated capture. After the upgrade, when
Oracle GoldenGate is running successfully again, you can remove the trigger and DDL objects.

The output trail file is automatically rolled over when the Extract restarts and the integrated
Extract version is upgraded.

Because the time zone is different, you may need to run the ALTER REPLICAT extseqno
command to synchronize with newer trail files after consuming the old trail file written by
Integrated Extract version 1.

After completing the upgrade, run the UPGRADE HEARTBEATTABLE command to add extra
columns for tables and lag views. These extra columns are used to track the Extract restart
position. See UPGRADE HEARTBEATTABLE to know more.

Replicat Upgrade Considerations
All Replicat installations should be upgraded at the same time. It is critical to ensure that all
trails leading to all Replicat groups on all target systems are processed until empty, according
to the upgrade instructions.

Caution:

The hash calculation used by the @RANGE function to partition data among Replicat
processes has been changed. This change is transparent, and no re-partitioning of
rows in the parameter files is required, so long as the upgrade is performed as
directed in these instructions. To ensure data continuity, make certain to allow all
Replicat processes on all systems to finish processing all of the data in their trails
before stopping those processes, according to the upgrade instructions. Note that if
the Replicat processes are not upgraded all at the same time, or the trails are not
cleaned out prior to the upgrade, rows may shift partitions as a result of the new hash
method, which may result in collision errors.

When upgrading from the 18c release of Oracle GoldenGate to the 19c (19.1.0) release,
ensure that you do not use the SOURCEDEF parameter in Replicat, otherwise the Replicat will
abend. However, if the trail file format is pre-12.2, then SOURCEDEF is still required because no
metadata exists in the trail file.

For PostgreSQL: When upgrading from 12.2.0.1 to 19c (19.1.0), you need to run the UPGRADE
HEARTBEATTABLE command from GGSCI to upgrade the heartbeattable to include the LOGBSN
columns

Upgrading Oracle GoldenGate Microservices – GUI Based
Learn the steps to upgrade Oracle GoldenGate Microservices using the GUI.

Follow these steps to obtain the Oracle GoldenGate installation software and set up the
directories for upgrade. Now, perform the following steps:

Chapter 12
Upgrading Oracle GoldenGate Microservices – GUI Based

12-2

1. Verify the current version of Oracle GoldenGate Home through Service Manager.

a. Login to the Service Manager: http://host:servicemanager_port
b. Review the deployment section for your current Oracle GoldenGate home location.

2. Update the Service Manager and the deployments with the location of the new Oracle
GoldenGate home.

a. Click Service Manager, then the Deployment name link.

b. Next to the deployment details, click the pencil icon. This opens the dialog box to edit
the Oracle GoldenGate home.

c. Update the Oracle GoldenGate home with the complete path to the new Oracle
GoldenGate home. Also update the LD_LIBRARY_PATH, if required.

d. Click Apply.

e. Confirm that the Oracle GoldenGate home has been updated.

f. Stop all Extracts, Replicats, and Distribution paths.

g. Use the action button to restart Service Manager or Deployment.

Note:

You can confirm that the Oracle GoldenGate home was updated by looking at the
process from the operating system for Service Manager. The Service Manager
process should be running from the new Oracle GoldenGate home.

3. To upgrade the associated deployments, follow the same steps for Service Manager after
ensuring that all the Extract and Replicat processes in that deployment have been
stopped.

Upgrading Oracle GoldenGate Microservices Using REST APIs
Learn how to upgrade Oracle GoldenGate MA to Oracle GoldenGate MA 19c (19.1.0) using
REST APIs.

Follow these steps to perform the upgrade using REST APIs:

1. Download the latest Oracle GoldenGate MA 19c software from the Oracle Technology
Network or eDelivery.

2. Upload the Oracle GoldenGate MA 19c software to a staging location on the server where
a previous release of Oracle GoldenGate Microservices exists.

3. Unzip Oracle GoldenGate MA 19c software in the staging location.

$ cd /tmp
$ unzip ./fbo_ggs_Linux_x64_services_shiphome.zip

4. Untar the tar file that gets created after the unzip command:

tar -xvf ggs_Linux_x64_Oracle_64bit.tar
5. Move into the unzipped files and execute the runInstaller command.

$ cd ./fbo_ggs_Linux_x64_services_shiphome/Disk1
$./runInstaller

Chapter 12
Upgrading Oracle GoldenGate Microservices Using REST APIs

12-3

6. For Software Location, specify where the new Oracle GoldenGate home will be located.
This will not be the same location as the current Oracle GoldenGate home. Click Next.

7. Click Install to begin installing the new Oracle GoldenGate MA. When the installation is
done, click Close.

8. At this point, you should have two Oracle GoldenGate MA home directories: one for your
old home (12c or 18c) and a new home (19c).

Now, you are ready to update the Oracle GoldenGate MA home (OGG_HOME) for the Service
Manager or deployments using REST API.

Upgrade a Service Manager

To upgrade the Service Manager, the following cURL command can be used to update the
Oracle GoldenGate home:

curl -X PATCH \
 https://<hostname>:<port>/services/v2/deployments/ServiceManager \
 -H 'cache-control: no-cache' \
 -d '{"oggHome":"/opt/oracle/product/19.1.0/oggcore_1", "status":"restart"}'

Upgrade a Deployment

To upgrade a Deployment:

1. Stop all Extract and Replicats within the Administration Service.

2. Stop all Distribution Paths within the Distribution Service.

3. Run this simple cURL command to update the Oracle GoldenGate home:

curl -X PATCH \
 https:// ://<hostname>:<port>/services/v2/deployments/<deployment name> \
 -H 'cache-control: no-cache' \
 -d '{"oggHome":"/opt/app/oracle/product/19.1.0/oggcore_1",
 "status":"restart"}'

Note:

You can confirm that the Oracle GoldenGate home was updated by looking at the
process from the operating system for Service Manager. The Service Manager
process should be running from the new Oracle GoldenGate home.

4. Start all distribution paths within the Distribution Server.

5. Start all Extracts and Replicats within the Administration Server.

Once the Service Manager or Deployment restarts, you are upgraded to the next version.

Chapter 12
Upgrading Oracle GoldenGate Microservices Using REST APIs

12-4

13
Appendix

Learn about additional details required for supporting Oracle GoldenGate on different
databases.

Using the LogDump Utility to Access Trail File Records
Oracle GoldenGate trail information is required for troubleshooting and technical support. Use
the Logdump utility to view the Oracle GoldenGate trail records.

Trail Recovery Mode

By default, Extract operates in append mode, where if there is a process failure, a recovery
marker is written to the trail and Extract appends recovery data to the file so that a history of all
prior data is retained for recovery purposes.

In append mode, the Extract initialization determines the identity of the last complete
transaction that was written to the trail at startup time. With that information, Extract ends
recovery when the commit record for that transaction is encountered in the data source; then it
begins new data capture with the next committed transaction that qualifies for extraction and
begins appending the new data to the trail. A Replicat starts reading again from that recovery
point.

Overwrite mode is another version of Extract recovery that was used in versions of Oracle
GoldenGate prior to version 10.0. In these versions, Extract overwrites the existing transaction
data in the trail after the last write-checkpoint position, instead of appending the new data. The
first transaction that is written is the first one that qualifies for extraction after the last read
checkpoint position in the data source.

If the version of Oracle GoldenGate on the target is older than version 10, Extract will
automatically revert to overwrite mode to support backward compatibility. This behavior can be
controlled manually with the RECOVERYOPTIONS parameter.

Trail Record Format
Each change record written by Oracle GoldenGate to a trail or Extract file includes a header
area, a data area, and possibly a user token area. The record header contains information
about the transaction environment, and the data area contains the actual data values that were
extracted.

The token area contains information that is specified by Oracle GoldenGate users for use in
column mapping and conversion.

Oracle GoldenGate trail files are unstructured. You can view Oracle GoldenGate records with
the Logdump utility provided with the Oracle GoldenGate software. For more information, see
Viewing the First Record in the Logdump Reference for Oracle GoldenGate.

13-1

Note:

As enhancements are made to the Oracle GoldenGate software, the trail record
format is subject to changes that may not be reflected in this documentation. To view
the current structure, use the Logdump utility.

Trail File Header Record
Each file of a trail contains a file header record that is stored at the beginning of the file. The
file header contains information about the trail file itself. Previous versions of Oracle
GoldenGate do not contain this header.

The file header is stored as a record at the beginning of a trail file preceding the data records.
The information that is stored in the trail header provides enough information about the records
to enable an Oracle GoldenGate process to determine whether the records are in a format that
the current version of Oracle GoldenGate supports.

The trail header fields are stored as tokens, where the token format remains the same across
all versions of Oracle GoldenGate. If a version of Oracle GoldenGate does not support any
given token, that token is ignored. Depracated tokens are assigned a default value to preserve
compatibility with previous versions of Oracle GoldenGate.

To ensure forward and backward compatibility of files among different Oracle GoldenGate
process versions, the file header fields are written in a standardized token format. New tokens
that are created by new versions of a process can be ignored by older versions, so that
backward compatibility is maintained. Likewise, newer Oracle GoldenGate versions support
older tokens. Additionally, if a token is deprecated by a new process version, a default value is
assigned to the token so that older versions can still function properly. The token that specifies
the file version is COMPATIBILITY and can be viewed in the Logdump utility and also by
retrieving it with the GGFILEHEADER option of the @GETENV function.

A trail or Extract file must have a version that is equal to, or lower than, that of the process that
reads it. Otherwise the process will abend. Additionally, Oracle GoldenGate forces the output
trail to be the same version as that of its input trail or file. Upon restart, Extract rolls a trail to a
new file to ensure that each file is of only one version (unless the file is empty).

From Oracle GoldenGate 21c onward, for Oracle databases, you can specify a globally unique
name for the database using the DB_UNIQUE_NAME parameter. If this database parameter is not
set, then the DB_UNIQUE_NAME is the same as DB_NAME. This feature allows unique identification
of the source of the trail data by viewing the trail file header.

See GETENV parameter to know about the use of the DbUniqueName token.

The DbUniqueName token will be written to trail files with 19.1 compatibility level, however prior
Oracle GoldenGate releases supporting that compatibility level will ignore the new token. The
token belongs to the Database Information group. The field will be limited to 65536 bytes, to
allow fitting all possible values of DB_UNIQUE_NAME, limited to 30 characters.

Because the Oracle GoldenGate processes are decoupled and can be of different Oracle
GoldenGate versions, the file header of each trail file contains a version indicator. By default,
the version of a trail file is the current version of the process that created the file. If you need to
set the version of a trail, use the FORMAT option of the EXTTRAIL, EXTFILE, RMTTRAIL, or RMTFILE
parameter.

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-2

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/admin&id=GWURF-GUID-B84527F5-91BA-4E2E-BC37-92D1B6C35735

You can view the trail header with the FILEHEADER command in the Logdump utility. For more
information about the tokens in the file header, see Logdump Reference for Oracle
GoldenGate.

Partition Name Record in Trail File Header
Each DML record in the trail file header can contain an index to a partition name record (PNR).
Because the full partition name can be long, a PNR is created in each trail file for the first time
the partition is written. Each PNR, contains the partition name and partition object ID.

For primary Extract, PNR is generated only for partition matching and included by PARTITION
and PARTITIONEXCLUDE parameters. DML records from these partitions have an index to the
table definition record and another index to the partition name record. DML records from all
other tables such as non-partitioned tables or partitioned tables not matching or excluded by
the PARTITION or PARTITIONEXCLUDE parameters, only have an index to the table definition
record as done today. For the Distribution Service, the PNR is written if source trail record
contains a PNR index.

Viewing the Partition Name and PNR Index in Logdump
Use the Logdump utility to display the partition name record and the DML containing the PNR
index.

Here's an example that shows capturing the display in a file:

$ logdump > output.txt <<EOF
ghdr on
detail data
open ./dirdat/tr000000000
n 200
EOF

The output displays the PNR and the DML with the PNR index values, as shown in the
following example:

HDR-IND : E (X45) PARTITION : . (XFF80)
UNDOFLAG : . (X00) BEFOREAFTER: A (X41)
RECLENGTH : 0 (X0000) IO TIME : 2019/01/17 16:48:01.129.045
IOTYPE : 170 (XAA) ORIGNODE : 4 (X04)
TRANSIND : . (X03) FORMATTYPE : R (X52)
SYSKEYLEN : 0 (X00) INCOMPLETE : . (X00)
TDR/PNR IDX: (001, 002) AUDITPOS : 13287580
CONTINUED : N (X00) RECCOUNT : 1 (X01)

2019/01/17 16:48:01.129.045 METADATA LEN 0 RBA 3425
PARTITION NAME: P1 PARTITION ID: 75,234 FLAGS: X00000001

HDR-IND : E (X45) PARTITION : . (XFF8C)
UNDOFLAG : . (X00) BEFOREAFTER: A (X41)
RECLENGTH : 18 (X0012) IO TIME : 2019/01/17 16:47:58.000.000
IOTYPE : 5 (X05) ORIGNODE : 255 (XFF)
TRANSIND : . (X00) FORMATTYPE : R (X52)
SYSKEYLEN : 0 (X00) INCOMPLETE : . (X00)
AUDITRBA : 15 AUDITPOS : 13287580
CONTINUED : N (X00) RECCOUNT : 1 (X01)

2019/01/17 16:47:58.000.000 INSERT LEN 18 RBA 3486
NAME: TKGGU1.T1 (PARTITION: P1, TDR/PNR INDEX: 1/2)
AFTER IMAGE: PARTITION X8C G B
 0000 0500 0000 0100 3101 0005 0000 0001 0031 |1........1

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-3

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/admin&id=GLOGD-GUID-11F54047-D1D7-4348-B145-EB65B824A5C3
https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/core/21.3/admin&id=GLOGD-GUID-11F54047-D1D7-4348-B145-EB65B824A5C3

COLUMN 0 (X0000), LEN 5 (X0005)
 0000 0100 31 |1
COLUMN 1 (X0001), LEN 5 (X0005)
 0000 0100 31 |1

Example of an Oracle GoldenGate Record
The following illustrates an Oracle GoldenGate record as viewed with Logdump. The first
portion (the list of fields) is the header and the second portion is the data area. The record
looks similar to this on all platforms supported by Oracle GoldenGate.

Figure 13-1 Example of an Oracle GoldenGate Record

Record Header Area

The Oracle GoldenGate record header provides metadata of the data that is contained in the
record and includes the following information.

• The operation type, such as an insert, update, or delete

• The before or after indicator for updates

• Transaction information, such as the transaction group and commit timestamp

Description of Header Fields

The following describes the fields of the Oracle GoldenGate record header. Some fields apply
only to certain platforms.
Table: Oracle GoldenGate record header fields

Field Description

Hdr-Ind
Should always be a value of E, indicating that the
record was created by the Extract process. Any
other value indicates invalid data.

RecLength
The length, in bytes, of the record buffer.

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-4

Field Description

IOType
The type of operation represented by the record.
See Table G-2 - Oracle GoldenGate Operation
Types for a list of operation types.

TransInD
The place of the record within the current
transaction. Values are:

0 — first record in transaction

1 — neither first nor last record in transaction

2 — last record in the transaction

3 — only record in the transaction

AuditRBA
Identifies the transaction log identifier, such as the
Oracle redo log sequence number.

Continued
(Windows and UNIX) Identifies whether or not the
record is a segment of a larger piece of data that is
too large to fit within one record. LOBs, CLOBS,
and some VARCHARs are stored in segments.
Unified records that contain both before and after
images in a single record (due to the
UPDATERECORDFORMAT parameter) may exceed the
maximum length of a record and may also generate
segments.

Y — the record is a segment; indicates to Oracle
GoldenGate that this data continues to another
record.

N — there is no continuation of data to another
segment; could be the last in a series or a record
that is not a segment of larger data.

Partition
For Windows and UNIX records, this field will
always be a value of 4 (FieldComp compressed
record in internal format). For these platforms, the
term Partition does not indicate that the data
represents any particular logical or physical
partition within the database structure.

BeforeAfter
Identifies whether the record is a before (B) or after
(A) image of an update operation. Records that
combine both before and after images as the result
of the UPDATERECORDFORMAT parameter are
marked as after images. Inserts are always after
images, deletes are always before images.

IO Time
The time when the operation occurred, in local time
of the source system, in GMT format. This time
may be the same or different for every operation in
a transaction depending on when the operation
occurred.

FormatType
Identifies whether the data was read from the
transaction log or fetched from the database.

F — fetched from database
R — readable in transaction log

Incomplete
This field is obsolete.

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-5

Field Description

AuditPos
Identifies the position in the transaction log of the
data.

RecCount
(Windows and UNIX) Used for LOB data when it
must be split into chunks to be written to the Oracle
GoldenGate file. RecCount is used to reassemble
the chunks.

Using Header Data

Some of the data available in the Oracle GoldenGate record header can be used for mapping
by using the GGHEADER option of the @GETENV function or by using any of the following
transaction elements as the source expression in a COLMAP statement in the TABLE or MAP
parameter.

• GGS_TRANS_TIMESTAMP

• GGS_TRANS_RBA

• GGS_OP_TYPE

• GGS_BEFORE_AFTER_IND

Record Data Area
The data area of the Oracle GoldenGate trail record contains the following:

• The time that the change was written to the Oracle GoldenGate file

• The type of database operation

• The length of the record

• The relative byte address within the trail file

• The table name

• The data changes in hex format

The following explains the differences in record image formats used by Oracle GoldenGate on
Windows, UNIX, Linux, and NonStop systems.

Full Record Image Format (NonStop Sources)

A full record image contains the values of all of the columns of a processed row. Full record
image format is generated in the trail when the source system is HP NonStop, and only when
the IOType specified in the record header is one of the following:

3 — Delete 5 — Insert 10 — Update

Each full record image has the same format as if retrieved from a program reading the original
file or table directly. For SQL tables, datetime fields, nulls, and other data is written exactly as a
program would select it into an application buffer. Although datetime fields are represented

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-6

internally as an eight-byte timestamp, their external form can be up to 26 bytes expressed as a
string. Enscribe records are retrieved as they exist in the original file.

When the operation type is Insert or Update, the image contains the contents of the record
after the operation (the after image). When the operation type is Delete, the image contains
the contents of the record before the operation (the before image).

For records generated from an Enscribe database, full record images are output unless the
original file has the AUDITCOMPRESS attribute set to ON. When AUDITCOMPRESS is ON, compressed
update records are generated whenever the original file receives an update operation. (A full
image can be retrieved by the Extract process by using the FETCHCOMPS parameter.)

Compressed Record Image Format (Windows, UNIX, Linux Sources)

A compressed record image contains only the key (primary, unique, KEYCOLS) and the
columns that changed in the processed row. By default, trail records written by processes on
Windows and UNIX systems are always compressed.

The format of a compressed record is as follows:

column_index
 column_length
 column_data[...]

Where:

• column_index

is the ordinal index of the column within the source table (2 bytes).

• colum_length

is the length of the data (2 bytes).

• column_data

is the data, including

NULL

or

VARCHAR

length indicators.

Enscribe records written from the NonStop platform may be compressed. The format of a
compressed Enscribe record is as follows:

field_offset
 field_length field_value[...]

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-7

Where:

• field_offset

is the offset within the original record of the changed value (2 bytes).

• field_length

is the length of the data (2 bytes).

• field_value

is the data, including

NULL

or

VARCHAR

length indicators.

The first field in a compressed Enscribe record is the primary or system key.

Tokens Area
The trail record also can contain two areas for tokens. One is for internal use and is not
documented here, and the other is the user tokens area. User tokens are environment values
that are captured and stored in the trail record for replication to target columns or other
purposes. If used, these tokens follow the data portion of the record and appear similar to the
following when viewed with Logdump:

Parameter Value

TKN-HOST TKN-GROUP TKN-BA_IND TKN-
COMMIT_TS TKN-POS TKN-RBA TKN-TABLE
TKN-OPTYPE TKN-LENGTH TKN-TRAN_IND

: syshq : EXTORA : AFTER : 2011-01-24
17:08:59.000000 : 3604496 : 4058 :
SOURCE.CUSTOMER : INSERT : 57 : BEGIN

Oracle GoldenGate Operation Types
The following are some of the Oracle GoldenGate operation types. Types may be added as
new functionality is added to Oracle GoldenGate. For a more updated list, use the SHOW
RECTYPE command in the Logdump utility:

Type Description Platform

1-Abort A transaction aborted. NSK TMF

2-Commit A transaction committed. NSK TMF

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-8

Type Description Platform

3-Delete A record/row was deleted. A
Delete record usually contains a
full record image. However, if the
COMPRESSDELETES parameter
was used, then only key columns
will be present.

All

4-EndRollback A database rollback ended NSK TMF

5-Insert A record/row was inserted. An
Insert record contains a full
record image.

All

6-Prepared A networked transaction has
been prepared to commit.

NSK TMF

7-TMF-Shutdown A TMF shutdown occurred. NSK TMF

8-TransBegin No longer used. NSK TMF

9-TransRelease No longer used. NSK TMF

10-Update A record/row was updated. An
Update record contains a full
record image. Note: If the
partition indicator in the record
header is 4, then the record is in
FieldComp format (see below)
and the update is compressed.

All

11-UpdateComp A record/row in TMF AuditComp
format was updated. In this
format, only the changed bytes
are present. A 4-byte descriptor
in the format of 2-
byte_offset2-byte_length
precedes each data fragment.
The byte offset is the ordinal
index of the column within the
source table. The length is the
length of the data.

NSK TMF

12-FileAlter An attribute of a database file
was altered.

NSK

13-FileCreate A database file was created. NSK

14-FilePurge A database file was deleted. NSK

15-FieldComp A row in a SQL table was
updated. In this format, only the
changed bytes are present.
Before images of unchanged
columns are not logged by the
database. A 4-byte descriptor in
the format of 2-byte_offset2-
byte_length precedes each
data fragment. The byte offset is
the ordinal index of the column
within the source table. The
length is the length of the data. A
partition indicator of 4 in the
record header indicates
FieldComp format.

All

16-FileRename A file was renamed. NSK

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-9

Type Description Platform

17-AuxPointer Contains information about which
AUX trails have new data and the
location at which to read.

NSK TMF

18-NetworkCommit A networked transaction
committed.

NSK TMF

19-NetworkAbort A networked transaction was
aborted.

NSK TMF

90-(GGS)SQLCol A column or columns in a SQL
table were added, or an attribute
changed.

NSK

100-(GGS)Purgedata All data was removed from the file
(PURGEDATA).

NSK

101-(GGS)Purge(File) A file was purged. NSK non-TMF

102-(GGS)Create(File) A file was created. The Oracle
GoldenGate record contains the
file attributes.

NSK non-TMF

103-(GGS)Alter(File) A file was altered. The Oracle
GoldenGate record contains the
altered file attributes.

NSK non-TMF

104-(GGS)Rename(File) A file was renamed. The Oracle
GoldenGate record contains the
original and new names.

NSK non-TMF

105-(GGS)Setmode A SETMODE operation was
performed. The Oracle
GoldenGate record contains the
SETMODE information.

NSK non-TMF

106-GGSChangeLabel A CHANGELABEL operation was
performed. The Oracle
GoldenGate record contains the
CHANGELABEL information.

NSK non-TMF

107-(GGS)Control A CONTROL operation was
performed. The Oracle
GoldenGate record contains the
CONTROL information.

NSK non-TMF

115 and 117

(GGS)KeyFieldComp(32)

A primary key was updated. The
Oracle GoldenGate record
contains the before image of the
key and the after image of the key
and the row. The data is in
FieldComp format (compressed),
meaning that before images of
unchanged columns are not
logged by the database.

Windows and UNIX

116-LargeObject

116-LOB

Identifies a RAW, BLOB, CLOB, or
LOB column. Data of this type is
stored across multiple records.

Windows and UNIX

132-(GGS) SequenceOp Identifies an operation on a
sequence.

Windows and UNIX

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-10

Type Description Platform

134-UNIFIED UPDATE

135-UNIFIED PKUPDATE

Identifies a unified trail record that
contains both before and after
values in the same record. The
before image in a UNIFIED
UPDATE contains all of the
columns that are available in the
transaction record for both the
before and after images. The
before image in a UNIFIED
UPDATE contains all of the
columns that are available in the
transaction record, but the after
image is limited to the primary
key columns and the columns
that were modified in the UPDATE.

Windows and UNIX

160 - DDL_Op Identifies a DDL operation Windows and UNIX

161-

RecordFragment

Identifies part of a large row that
must be stored across multiple
records (more than just the base
record).

Windows and UNIX

200-GGSUnstructured Block

200-BulkIO

A BULKIO operation was
performed. The Oracle
GoldenGate record contains the
RAW DP2 block.

NSK non-TMF

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-11

Type Description Platform

201 through 204 These are different types of
NonStop trace records. Trace
records are used by Oracle
GoldenGate support analysts.
The following are descriptions.

• ARTYPE_FILECLOSE_GGS

201

— the source application
closed a file that was open
for unstructured I/O. Used by
Replicat

• ARTYPE_LOGGERTS_GGS
202

— Logger heartbeat record
• ARTYPE_EXTRACTERTS_GG

S 203

— unused
• ARTYPE_COLLECTORTS_GG

S

204

— unused

NSK non-TMF

205-GGSComment Indicates a comment record
created by the Logdump utility.
Comment records are created by
Logdump at the beginning and
end of data that is saved to a file
with Logdump's SAVE command.

All

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-12

Type Description Platform

249 through 254 These are different types of
NonStop trace records. Trace
records are used by Oracle
GoldenGate support analysts.
The following are descriptions.

• ARTYPE_LOGGER_ADDED_S
TATS

249

— a stats record created by
Logger when the source
application closes its open
on Logger (if

SENDERSTATS

is enabled and stats are
written to the logtrail)

• ARTYPE_LIBRARY_OPEN
250

— written by

BASELIB

to show that the application
opened a file

• ARTYPE_LIBRARY_CLOSE
251

— written by

BASELIB

to show that the application
closed a file.

• ARTYPE_LOGGER_ADDED_O
PEN 252

— unused
• ARTYPE_LOGGER_ADDED_C

LOSE

253 — unused

NSK non-TM

Chapter 13
Using the LogDump Utility to Access Trail File Records

13-13

Type Description Platform

• ARTYPE_LOGGER_ADDED_I
NFO

254

— written by Logger and
contains information about
the source application that
performed the I/O in the
subsequent record (if

SENDERSTATS

is enabled and stats are
written to the logtrail). The
file name in the trace record
is the object file of the
application. The trace data
has the application process
name and the name of the
library (if any) that it was
running with.

Checkpoint Tables Additional Details
When database checkpoints are being used, Oracle GoldenGate creates a checkpoint table
with a user-defined name in the database upon execution of the ADD CHECKPOINTTABLE
command, or a user can create the table by using the chkpt_db_create.sql script (where db
is an abbreviation of the type of database that the script supports).

There are two tables: the main checkpoint table and an auxiliary checkpoint table that is
created automatically. The auxiliary table, known as the transaction table, bears the name of
the primary checkpoint table appended with _lox. Each Replicat, or each thread of a
coordinated Replicat, uses one row in the checkpoint table to store its progress information.
At checkpoint time, there typically are some number of transactions (among the total n
transactions) that were applied, and the rest are still in process. For example, if Replicat is
processing a group of n transactions ranging from CSN1 to CSN3. CSN1 is the high watermark
and CSN3 is the low watermark. Any transaction with a CSN higher than the high watermark
has not been processed, and any transaction with a CSN lower than the low watermark has
already been processed. Completed transactions are stored in the LOG_CMPLT_XID column of
the checkpoint table. Any overflow of these transactions is stored in the transaction table
(auxiliary checkpoint table) in the LOG_CMPLT_XID column of that table.

Currently, Replicat (or each Replicat thread of a coordinated Replicat) applies transactions
serially (not in parallel); therefore, the high watermark (the LOG_CSN value in the table) is always
the same as the low watermark (the LOG_CMPLT_CSN value in the table), and there typically is
only one transaction ID in the LOG_CMPLT_XID column. The only exception is when there are
multiple transactions sharing the same CSN.

Do not change the names or attributes of the columns in these tables. You can change table
storage attributes as needed.

Chapter 13
Checkpoint Tables Additional Details

13-14

Column Description

LOG_BSN
The LOG_BSN provides information needed to set
Extract back in time to reprocess transactions.
Some filtering by Replicat is necessary because
Extract will likely re-generate a small amount of
data that was already applied by Replicat.

VERSION
The version of the checkpoint table format. Enables
future enhancements to be identified as version
numbers of the table.

AUDIT_TS
The timestamp of the commit of the source
transaction.

SEQNO
The sequence number of the input trail that
Replicat was reading at the time of the checkpoint.

RBA
The relative byte address that Replicat reached in
the trail identified by SEQNO. RBA + SEQNO provide
an absolute position in the trail that identifies the
progress of Replicat at the time of checkpoint.

GROUP_NAME (primary key)
The name of a Replicat group using this table for
checkpoints. There can be multiple Replicat groups
using the same table. This column is part of the
primary key.

LAST_UPDATE_TS
The date and time when the checkpoint table was
last updated.

CREATE_TS
The date and time when the checkpoint table was
created.

CURRENT_DIR
The current Oracle GoldenGate home directory or
folder.

LOG_CMPLT_XIDS
Stores the transactions between the high and low
watermarks that are already applied.

LOG_CMPLT_CSN
Stores the low watermark, or the lower boundary,
of the CSNs. Any transaction with a lower CSN
than this value has already been processed.

LOG_CSN
Stores the high watermark, or the upper boundary,
of the CSNs. Any transaction with a CSN higher
than this value has not been processed.

LOG_XID
Not used. Retained for backward compatibility.

Chapter 13
Checkpoint Tables Additional Details

13-15

Column Description

GROUP_KEY (primary key)
A unique identifier that, together with

GROUPNAME

, uniquely identifies a checkpoint regardless of how
many Replicat groups are writing to the same table.
This column is part of the primary key.

Column Description

GROUP_KEY
A unique identifier that, together with GROUPNAME,
uniquely identifies a checkpoint regardless of how
many Replicat groups are writing to the same table.
This column is part of the primary key of the
transaction table.

LOG_CMPLT_XIDS_SEQ
Creates unique rows in the event there are so
many overflow transactions that multiple rows are
required to store them all. This column is part of
the primary key of the transaction table.

LOG_CMPLT_XIDS
Stores the overflow of transactions between the
high and low watermarks that are already applied.

LOG_CMPLT_CSN
The foreign key that references the checkpoint
table. This column is part of the primary key of the
transaction table.

GROUP_NAME
The name of a Replicat group using this table for
checkpoints. There can be multiple Replicat groups
using the same table. This column is part of the
primary key of the transaction table.

Internal Checkpoint Information
The INFO command with the SHOWCH option not only displays current checkpoint entries, but it
also displays metadata information about the record itself. This information is not documented
and is for use by the Oracle GoldenGate processes and by support personnel when resolving
a support case.

The metadata is contained in the following entries in the SHOWCH output.

Header:

 Version = 2

 Record Source = A

 Type = 1

 # Input Checkpoints = 1

 # Output Checkpoints = 0

 File Information:

Chapter 13
Checkpoint Tables Additional Details

13-16

 Block Size = 2048

 Max Blocks = 100

 Record Length = 2048

 Current Offset = 0

 Configuration:

 Data Source = 0

 Transaction Integrity = -1

 Task Type = 0

 Status:

 Start Time = 2011-01-12 13:10:13

 Last Update Time = 2011-01-12 21:23:31

 Stop Status = A

 Last Result = 400

INFO EXTRACT SHOWCH Command: Checkpoint Information

The following sample presents the checkpoint information returned by the INFO EXTRACT
command with the SHOWCH option. In this case, the data source is an Oracle RAC database
cluster, so there is thread information included in the output. You can view past checkpoints by
specifying the number of them that you want to view after the SHOWCH argument.

EXTRACT JC108XT Last Started 2011-01-01 14:15 Status ABENDED
Checkpoint Lag 00:00:00 (updated 00:00:01 ago)
Log Read Checkpoint File /orarac/oradata/racq/redo01.log
 2011-01-01 14:16:45 Thread 1, Seqno 47, RBA 68748800
Log Read Checkpoint File /orarac/oradata/racq/redo04.log
 2011-01-01 14:16:19 Thread 2, Seqno 24, RBA 65657408
Current Checkpoint Detail:
Read Checkpoint #1
 Oracle RAC Redo Log
 Startup Checkpoint (starting position in data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68548112
 Timestamp: 2011-01-01 13:37:51.000000
 SCN: 0.8439720
 Redo File: /orarac/oradata/racq/redo01.log

Recovery Checkpoint (position of oldest unprocessed transaction in data
source):
 Thread #: 1

Chapter 13
Checkpoint Tables Additional Details

13-17

 Sequence #: 47
 RBA: 68748304
 Timestamp: 2011-01-01 14:16:45.000000
 SCN: 0.8440969
Redo File: /orarac/oradata/racq/redo01.log
 Current Checkpoint (position of last record read in the data source):
 Thread #: 1
 Sequence #: 47
 RBA: 68748800
 Timestamp: 2011-01-01 14:16:45.000000
 SCN: 0.8440969
 Redo File: /orarac/oradata/racq/redo01.log
Read Checkpoint #2
 Oracle RAC Redo Log
 Startup Checkpoint(starting position in data source):
 Sequence #: 24
 RBA: 60607504
 Timestamp: 2011-01-01 13:37:50.000000
 SCN: 0.8439719
 Redo File: /orarac/oradata/racq/redo04.log
Recovery Checkpoint (position of oldest unprocessed transaction in data
source):
 Thread #: 2
 Sequence #: 24
 RBA: 65657408
 Timestamp: 2011-01-01 14:16:19.000000
 SCN: 0.8440613
 Redo File: /orarac/oradata/racq/redo04.log
 Current Checkpoint (position of last record read in the data source):
 Thread #: 2
 Sequence #: 24
 RBA: 65657408
 Timestamp: 2011-01-01 14:16:19.000000
 SCN: 0.8440613
 Redo File: /orarac/oradata/racq/redo04.log
Write Checkpoint #1
 GGS Log Trail
 Current Checkpoint (current write position):
 Sequence #: 2
 RBA: 2142224
 Timestamp: 2011-01-01 14:16:50.567638
 Extract Trail: ./dirdat/eh
 Header:
 Version = 2
 Record Source = A
 Type = 6
 # Input Checkpoints = 2
 # Output Checkpoints = 1
 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0
Configuration:
 Data Source = 3
 Transaction Integrity = 1

Chapter 13
Checkpoint Tables Additional Details

13-18

 Task Type = 0
 Status:
 Start Time = 2011-01-01 14:15:14
 Last Update Time = 2011-01-01 14:16:50
 Stop Status = A
 Last Result = 400

INFO REPLICAT, SHOWCH: Checkpoint Information

The basic command shows current checkpoints. To view a specific number of previous
checkpoints, type the value after the SHOWCH argument.

REPLICAT JC108RP Last Started 2011-01-12 13:10 Status RUNNING
Checkpoint Lag 00:00:00 (updated 111:46:54 ago)
Log Read Checkpoint File ./dirdat/eh000000000
 First Record RBA 3702915
Current Checkpoint Detail:
 Read Checkpoint #1
 GGS Log Trail
 Startup Checkpoint(starting position in data source):
 Sequence #: 0
 RBA: 3702915
 Timestamp: Not Available
 Extract Trail: ./dirdat/eh
 Current Checkpoint (position of last record read in the data source):
 Sequence #: 0
 RBA: 3702915
 Timestamp: Not Available
 Extract Trail: ./dirdat/eh
 Header:
 Version = 2
 Record Source = A
 Type = 1
 # Input Checkpoints = 1
 # Output Checkpoints =
 File Information:
 Block Size = 2048
 Max Blocks = 100
 Record Length = 2048
 Current Offset = 0
 Configuration:
 Data Source = 0
 Transaction Integrity = -1
 Task Type = 0
 Status:
 Start Time = 2011-01-12 13:10:13
 Last Update Time = 2011-01-12 21:23:31
 Stop Status = A
 Last Result = 400

Supported Character Sets

Chapter 13
Supported Character Sets

13-19

Here's a list of character sets that Oracle GoldenGate supports when converting data from
source to target.

The identifiers that are shown should be used for Oracle GoldenGate parameters or
commands when a character set must be specified, instead of the actual character set name.
Currently Oracle GoldenGate does not provide a facility to specify the database-specific
character set.

Supported Character Sets - Oracle

Table 13-1 Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

al32utf8 Unicode 9.0 Universal Character Set (UCS), UTF-8 encoding scheme

ar8ados710t Arabic MS-DOS 710 8-bit Latin/Arabic

ar8ados710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic

ar8ados720t Arabic MS-DOS 720 8-bit Latin/Arabic

ar8ados720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic

ar8aptec715t APTEC 715 8-bit Latin/Arabic

ar8aptec715 APTEC 715 Server 8-bit Latin/Arabic

ar8arabicmacs Mac Server 8-bit Latin/Arabic

ar8arabicmact Mac 8-bit Latin/Arabic

ar8arabicmac Mac Client 8-bit Latin/Arabic

ar8asmo708plus ASMO 708 Plus 8-bit Latin/Arabic

ar8asmo8x ASMO Extended 708 8-bit Latin/Arabic

ar8ebcdic420s EBCDIC Code Page 420 Server 8-bit Latin/Arabic

ar8ebcdicx EBCDIC XBASIC Server 8-bit Latin/Arabic

ar8hparabic8t HP 8-bit Latin/Arabic

ar8iso8859p6 ISO 8859-6 Latin/Arabic

ar8mswin1256 MS Windows Code Page 1256 8-Bit Latin/Arabic

ar8mussad768t Mussa'd Alarabi/2 768 8-bit Latin/Arabic

ar8mussad768 Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic

ar8nafitha711t Nafitha International 711 Server 8-bit Latin/Arabic

ar8nafitha711 Nafitha Enhanced 711 Server 8-bit Latin/Arabic

ar8nafitha721t Nafitha International 721 8-bit Latin/Arabic

ar8nafitha721 Nafitha International 721 Server 8-bit Latin/Arabic

ar8sakhr706 SAKHR 706 Server 8-bit Latin/Arabic

ar8sakhr707t SAKHR 707 8-bit Latin/Arabic

ar8sakhr707 SAKHR 707 Server 8-bit Latin/Arabic

ar8xbasic XBASIC 8-bit Latin/Arabic

Chapter 13
Supported Character Sets

13-20

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

az8iso8859p9e ISO 8859-9 Azerbaijani

bg8mswin MS Windows 8-bit Bulgarian Cyrillic

bg8pc437s IBM-PC Code Page 437 8-bit (Bulgarian Modification)

blt8cp921 Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic

blt8ebcdic1112s EBCDIC Code Page 1112 8-bit Server Baltic Multilingual

blt8ebcdic1112 EBCDIC Code Page 1112 8-bit Baltic Multilingual

blt8iso8859p13 ISO 8859-13 Baltic

blt8mswin1257 MS Windows Code Page 1257 8-bit Baltic

blt8pc775 IBM-PC Code Page 775 8-bit Baltic

bn8bscii Bangladesh National Code 8-bit BSCII

cdn8pc863 IBM-PC Code Page 863 8-bit Canadian French

ce8bs2000 Siemens EBCDIC.DF.04-2 8-bit Central European

cel8iso8859p14 ISO 8859-13 Celtic

ch7dec DEC VT100 7-bit Swiss (German/French)

cl8bs2000 Siemens EBCDIC.EHC.LC 8-bit Latin/Cyrillic-1

cl8ebcdic1025c EBCDIC Code Page 1025 Client 8-bit Cyrillic

cl8ebcdic1025r EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl8ebcdic1025s EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl8ebcdic1025 EBCDIC Code Page 1025 8-bit Cyrillic

cl8ebcdic1025x EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic

cl8ebcdic1158r EBCDIC Code Page 1158 Server 8-bit Cyrillic

cl8ebcdic1158 EBCDIC Code Page 1158 8-bit Cyrillic

cl8iso8859p5 ISO 8859-5 Latin/Cyrillic

cl8isoir111 SOIR111 Cyrillic

cl8koi8r RELCOM Internet Standard 8-bit Latin/Cyrillic

cl8koi8u KOI8 Ukrainian Cyrillic

cl8maccyrillics Mac Server 8-bit Latin/Cyrillic

cl8maccyrillic Mac Client 8-bit Latin/Cyrillic

cl8mswin1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic

d7dec DEC VT100 7-bit German

d7siemens9780x Siemens 97801/97808 7-bit German

d8bs2000 Siemens 9750-62 EBCDIC 8-bit German

d8ebcdic1141 EBCDIC Code Page 1141 8-bit Austrian German

d8ebcdic273 EBCDIC Code Page 273/1 8-bit Austrian German

Chapter 13
Supported Character Sets

13-21

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

dk7siemens9780x Siemens 97801/97808 7-bit Danish

dk8bs2000 Siemens 9750-62 EBCDIC 8-bit Danish

dk8ebcdic1142 EBCDIC Code Page 1142 8-bit Danish

dk8ebcdic277 EBCDIC Code Page 277/1 8-bit Danish

e7dec DEC VT100 7-bit Spanish

e7siemens9780x Siemens 97801/97808 7-bit Spanish

e8bs2000 Siemens 9750-62 EBCDIC 8-bit Spanish

ee8bs2000 Siemens EBCDIC.EHC.L2 8-bit East European

ee8ebcdic870c EBCDIC Code Page 870 Client 8-bit East European

ee8ebcdic870s EBCDIC Code Page 870 Server 8-bit East European

ee8ebcdic870 EBCDIC Code Page 870 8-bit East European

ee8iso8859p2 ISO 8859-2 East European

ee8macces Mac Server 8-bit Central European

ee8macce Mac Client 8-bit Central European

ee8maccroatians Mac Server 8-bit Croatian

ee8maccroatian Mac Client 8-bit Croatian

ee8mswin1250 MS Windows Code Page 1250 8-bit East European

ee8pc852 IBM-PC Code Page 852 8-bit East European

eec8euroasci EEC Targon 35 ASCI West European/Greek

eec8europa3 EEC EUROPA3 8-bit West European/Greek

el8dec DEC 8-bit Latin/Greek

el8ebcdic423r IBM EBCDIC Code Page 423 for RDBMS server-side

el8ebcdic875r EBCDIC Code Page 875 Server 8-bit Greek

el8ebcdic875s EBCDIC Code Page 875 Server 8-bit Greek

el8ebcdic875 EBCDIC Code Page 875 8-bit Greek

el8gcos7 Bull EBCDIC GCOS7 8-bit Greek

el8iso8859p7 ISO 8859-7 Latin/Greek

el8macgreeks Mac Server 8-bit Greek

el8macgreek Mac Client 8-bit Greek

el8mswin1253 MS Windows Code Page 1253 8-bit Latin/Greek

el8pc437s IBM-PC Code Page 437 8-bit (Greek modification)

el8pc737 IBM-PC Code Page 737 8-bit Greek/Latin

el8pc851 IBM-PC Code Page 851 8-bit Greek/Latin

el8pc869 IBM-PC Code Page 869 8-bit Greek/Latin

Chapter 13
Supported Character Sets

13-22

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

et8mswin923 MS Windows Code Page 923 8-bit Estonian

f7dec DEC VT100 7-bit French

f7siemens9780x Siemens 97801/97808 7-bit French

f8bs2000 Siemens 9750-62 EBCDIC 8-bit French

f8ebcdic1147 EBCDIC Code Page 1147 8-bit French

f8ebcdic297 EBCDIC Code Page 297 8-bit French

hu8abmod Hungarian 8-bit Special AB Mod

hu8cwi2 Hungarian 8-bit CWI-2

i7dec DEC VT100 7-bit Italian

i7siemens9780x Siemens 97801/97808 7-bit Italian

i8ebcdic1144 EBCDIC Code Page 1144 8-bit Italian

i8ebcdic280 EBCDIC Code Page 280/1 8-bit Italian

in8iscii Multiple-Script Indian Standard 8-bit Latin/Indian

is8macicelandics Mac Server 8-bit Icelandic

is8macicelandic Mac Client 8-bit Icelandic

is8pc861 IBM-PC Code Page 861 8-bit Icelandic

iw7is960 Israeli Standard 960 7-bit Latin/Hebrew

iw8ebcdic1086 EBCDIC Code Page 1086 8-bit Hebrew

iw8ebcdic424s EBCDIC Code Page 424 Server 8-bit Latin/Hebrew

iw8ebcdic424 EBCDIC Code Page 424 8-bit Latin/Hebrew

iw8iso8859p8 ISO 8859-8 Latin/Hebrew

iw8machebrews Mac Server 8-bit Hebrew

iw8machebrew Mac Client 8-bit Hebrew

iw8mswin1255 MS Windows Code Page 1255 8-bit Latin/Hebrew

iw8pc1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew

ja16dbcs IBM EBCDIC 16-bit Japanese

ja16ebcdic930 IBM DBCS Code Page 290 16-bit Japanese

ja16euctilde Same as ja16euc except for the way that the wave dash and the tilde are
mapped to and from Unicode

ja16euc EUC 24-bit Japanese

ja16eucyen EUC 24-bit Japanese with '\' mapped to the Japanese yen character

ja16macsjis Mac client Shift-JIS 16-bit Japanese

ja16sjistilde Same as ja16sjis except for the way that the wave dash and the tilde are
mapped to and from Unicode.

ja16sjis Shift-JIS 16-bit Japanese

Chapter 13
Supported Character Sets

13-23

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

ja16sjisyen Shift-JIS 16-bit Japanese with '\' mapped to the Japanese yen character

ja16vms JVMS 16-bit Japanese

ko16dbcs IBM EBCDIC 16-bit Korean

ko16ksc5601 KSC5601 16-bit Korean

ko16ksccs KSCCS 16-bit Korean

ko16mswin949 MS Windows Code Page 949 Korean

la8iso6937 ISO 6937 8-bit Coded Character Set for Text Communication

la8passport German Government Printer 8-bit All-European Latin

lt8mswin921 MS Windows Code Page 921 8-bit Lithuanian

lt8pc772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic)

lt8pc774 IBM-PC Code Page 774 8-bit Lithuanian (Latin)

lv8pc1117 IBM-PC Code Page 1117 8-bit Latvian

lv8pc8lr Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic

lv8rst104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic)

n7siemens9780x Siemens 97801/97808 7-bit Norwegian

n8pc865 IBM-PC Code Page 865 8-bit Norwegian

ndk7dec DEC VT100 7-bit Norwegian/Danish

ne8iso8859p10 ISO 8859-10 North European

nee8iso8859p4 ISO 8859-4 North and North-East European

nl7dec DEC VT100 7-bit Dutch

ru8besta BESTA 8-bit Latin/Cyrillic

ru8pc855 IBM-PC Code Page 855 8-bit Latin/Cyrillic

ru8pc866 IBM-PC Code Page 866 8-bit Latin/Cyrillic

s7dec DEC VT100 7-bit Swedish

s7siemens9780x Siemens 97801/97808 7-bit Swedish

s8bs2000 Siemens 9750-62 EBCDIC 8-bit Swedish

s8ebcdic1143 EBCDIC Code Page 1143 8-bit Swedish

s8ebcdic278 EBCDIC Code Page 278/1 8-bit Swedish

se8iso8859p3 ISO 8859-3 South European

sf7ascii ASCII 7-bit Finnish

sf7dec DEC VT100 7-bit Finnish

th8macthais Mac Server 8-bit Latin/Thai

th8macthai Mac Client 8-bit Latin/Thai

th8tisascii Thai Industrial Standard 620-2533 - ASCII 8-bit

Chapter 13
Supported Character Sets

13-24

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

th8tisebcdics Thai Industrial Standard 620-2533 - EBCDIC Server 8-bit

th8tisebcdic Thai Industrial Standard 620-2533 - EBCDIC 8-bit

tr7dec DEC VT100 7-bit Turkish

tr8dec DEC 8-bit Turkish

tr8ebcdic1026s EBCDIC Code Page 1026 Server 8-bit Turkish

tr8ebcdic1026 EBCDIC Code Page 1026 8-bit Turkish

tr8macturkishs Mac Server 8-bit Turkish

tr8macturkish Mac Client 8-bit Turkish

tr8mswin1254 MS Windows Code Page 1254 8-bit Turkish

tr8pc857 IBM-PC Code Page 857 8-bit Turkish

us7ascii ASCII 7-bit American

us8bs2000 Siemens 9750-62 EBCDIC 8-bit American

us8icl ICL EBCDIC 8-bit American

us8pc437 IBM-PC Code Page 437 8-bit American

vn8mswin1258 MS Windows Code Page 1258 8-bit Vietnamese

vn8vn3 VN3 8-bit Vietnamese

we8bs2000e Siemens EBCDIC.DF.04-F 8-bit West European with Euro symbol

we8bs2000l5 Siemens EBCDIC.DF.04-9 8-bit WE & Turkish

we8bs2000 Siemens EBCDIC.DF.04-1 8-bit West European

we8dec DEC 8-bit West European

we8dg DG 8-bit West European

we8ebcdic1047e Latin 1/Open Systems 1047

we8ebcdic1047 EBCDIC Code Page 1047 8-bit West European

we8ebcdic1140c EBCDIC Code Page 1140 Client 8-bit West European

we8ebcdic1140 EBCDIC Code Page 1140 8-bit West European

we8ebcdic1145 EBCDIC Code Page 1145 8-bit West European

we8ebcdic1146 EBCDIC Code Page 1146 8-bit West European

we8ebcdic1148c EBCDIC Code Page 1148 Client 8-bit West European

we8ebcdic1148 EBCDIC Code Page 1148 8-bit West European

we8ebcdic284 EBCDIC Code Page 284 8-bit Latin American/Spanish

we8ebcdic285 EBCDIC Code Page 285 8-bit West European

we8ebcdic37c EBCDIC Code Page 37 8-bit Oracle/c

we8ebcdic37 EBCDIC Code Page 37 8-bit West European

we8ebcdic500c EBCDIC Code Page 500 8-bit Oracle/c

Chapter 13
Supported Character Sets

13-25

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

we8ebcdic500 EBCDIC Code Page 500 8-bit West European

we8ebcdic871 EBCDIC Code Page 871 8-bit Icelandic

we8ebcdic924 Latin 9 EBCDIC 924

we8gcos7 Bull EBCDIC GCOS7 8-bit West European

we8hp HP LaserJet 8-bit West European

we8icl ICL EBCDIC 8-bit West European

we8iso8859p15 ISO 8859-15 West European

we8iso8859p1 ISO 8859-1 West European

we8iso8859p9 ISO 8859-9 West European & Turkish

we8isoicluk ICL special version ISO8859-1

we8macroman8s Mac Server 8-bit Extended Roman8 West European

we8macroman8 Mac Client 8-bit Extended Roman8 West European

we8mswin1252 MS Windows Code Page 1252 8-bit West European

we8ncr4970 NCR 4970 8-bit West European

we8nextstep NeXTSTEP PostScript 8-bit West European

we8pc850 IBM-PC Code Page 850 8-bit West European

we8pc858 IBM-PC Code Page 858 8-bit West European

we8pc860 IBM-PC Code Page 860 8-bit West European

we8roman8 HP Roman8 8-bit West European

yug7ascii ASCII 7-bit Yugoslavian

zhs16cgb231280 CGB2312-80 16-bit Simplified Chinese

zhs16dbcs IBM EBCDIC 16-bit Simplified Chinese

zhs16gbk GBK 16-bit Simplified Chinese

zhs16maccgb231280 Mac client CGB2312-80 16-bit Simplified Chinese

zht16big5 BIG5 16-bit Traditional Chinese

zht16ccdc HP CCDC 16-bit Traditional Chinese

zht16dbcs IBM EBCDIC 16-bit Traditional Chinese

zht16dbt Taiwan Taxation 16-bit Traditional Chinese

zht16hkscs31 MS Windows Code Page 950 with Hong Kong Supplementary Character Set
HKSCS-2001 (character set conversion to and from Unicode is based on
Unicode 3.1)

zht16hkscs MS Windows Code Page 950 with Hong Kong Supplementary Character Set
HKSCS-2001 (character set conversion to and from Unicode is based on
Unicode 3.0)

zht16mswin950 MS Windows Code Page 950 Traditional Chinese

zht32euc EUC 32-bit Traditional Chinese

Chapter 13
Supported Character Sets

13-26

Table 13-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and
commands

Character Set

zht32sops SOPS 32-bit Traditional Chinese

zht32tris TRIS 32-bit Traditional Chinese

Supported Character Sets - Non-Oracle

Identifier to use in
parameter files and
commands

Character set

UTF-8 ISO-10646 UTF-8, surrogate pairs are 4 bytes per character

UTF-16 ISO-10646 UTF-16

UTF-16BE UTF-16 Big Endian

UTF-16LE UTF-16 Little Endian

UTF-32 ISO-10646 UTF-32

UTF-32BE UTF-32 Big Endian

UTF-32LE UTF-32 Little Endian

CESU-8 Similar to UTF-8, correspond to UCS-2 and surrogate pairs are 6 bytes per
character

US-ASCII US-ASCII, ANSI X34-1986

windows-1250 Windows Central Europe

windows-1251 Windows Cyrillic

windows-1252 Windows Latin-1

windows-1253 Windows Greek

windows-1254 Windows Turkish

windows-1255 Windows Hebrew

windows-1256 Windows Arabic

Chapter 13
Supported Character Sets

13-27

Identifier to use in
parameter files and
commands

Character set

windows-1257 Windows Baltic

windows-1258 Windows Vietnam

windows-874 Windows Thai

cp437 DOS Latin-1

ibm-720 DOS Arabic

cp737 DOS Greek

cp775 DOS Baltic

cp850 DOS multilingual

cp851 DOS Greek-1

cp852 DOS Latin-2

cp855 DOS Cyrillic

cp856 DOS Cyrillic / IBM

cp857 DOS Turkish

cp858 DOS Multilingual with Euro

cp860 DOS Portuguese

cp861 DOS Icelandic

cp862 DOS Hebrew

cp863 DOS French

cp864 DOS Arabic

cp865 DOS Nordic

cp866 DOS Cyrillic / GOST 19768-87

Chapter 13
Supported Character Sets

13-28

Identifier to use in
parameter files and
commands

Character set

ibm-867 DOS Hebrew / IBM

cp868 DOS Urdu

cp869 DOS Greek-2

ISO-8859-1 ISO-8859-1 Latin-1/Western Europe

ISO-8859-2 ISO-8859-2 Latin-2/Eastern Europe

ISO-8859-3 ISO-8859-3 Latin-3/South Europe

ISO-8859-4 ISO-8859-4 Latin-4/North Europe

ISO-8859-5 ISO-8859-5 Latin/Cyrillic

ISO-8859-6 ISO-8859-6 Latin/Arabic

ISO-8859-7 ISO-8859-7 Latin/Greek

ISO-8859-8 ISO-8859-8 Latin/Hebrew

ISO-8859-9 ISO-8859-9 Latin-5/Turkish

ISO-8859-10 ISO-8859-10 Latin-6/Nordic

ISO-8859-11 ISO-8859-11 Latin/Thai

ISO-8859-13 ISO-8859-13 Latin-7/Baltic Rim

ISO-8859-14 ISO-8859-14 Latin-8/Celtic

ISO-8859-15 ISO-8859-15 Latin-9/Western Europe

IBM037 IBM 037-1/697-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US, and
037/1175 Traditional Chinese

IBM01140 IBM 1140-1/695-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US, and
1140/1175 Traditional Chinese

IBM273 IBM 273-1/697-1 EBCDIC, Austria, Germany

IBM01141 IBM 1141-1/695-1 EBCDIC, Austria, Germany

Chapter 13
Supported Character Sets

13-29

Identifier to use in
parameter files and
commands

Character set

IBM277 IBM 277-1/697-1 EBCDIC, Denmark, Norway

IBM01142 IBM 1142-1/695-1 EBCIDC, Denmark, Norway

IBM278 IBM 278-1/697-1 EBCDIC, Finland, Sweden

IBM01143 IBM 1143-1/695-1 EBCDIC, Finland, Sweden

IBM280 IBM 280-1/697-1 EBCDIC, Italy

IBM01144 IBM 1144-1/695-1 EBCDIC, Italy

IBM284 IBM 284-1/697-1 EBCDIC, Latin America, Spain

IBM01145 IBM 1145-1/695-1 EBCDIC, Latin America, Spain

IBM285 IBM 285-1/697-1 EBCDIC, United Kingdom

IBM01146 IBM 1146-1/695-1 EBCDIC, United Kingdom

IBM290 IBM 290 EBCDIC, Japan (Katakana) Extended

IBM297 IBM 297-1/697-1 EBCDIC, France

IBM01147 IBM 1147-1/695-1 EBCDIC, France

IBM420 IBM 420 EBCDIC, Arabic Bilingual

IBM424 IBM 424/941 EBCDIC, Israel (Hebrew - Bulletin Code)

IBM500 IBM 500-1/697-1 EBCDIC, International

IBM01148 IBM 1148-1/695-1 EBCDIC International

IBM870 IBM 870/959 EBCDIC, Latin-2 Multilingual

IBM871 IBM 871-1/697-1 EBCDIC Iceland

IBM918 IBM EBCDIC code page 918, Arabic 2

IBM1149 IBM 1149-1/695-1, EBCDIC Iceland

Chapter 13
Supported Character Sets

13-30

Identifier to use in
parameter files and
commands

Character set

IBM1047 IBM 1047/103 EBCDIC, Latin-1 (Open Systems)

ibm-803 IBM 803 EBCDIC, Israel (Hebrew - Old Code)

IBM875 IBM 875 EBCDIC, Greece

ibm-924 IBM 924-1/1353-1 EBCDIC International

ibm-1153 IBM 1153/1375 EBCDIC, Latin-2 Multilingual

ibm-1122 IBM 1122/1037 EBCDIC, Estonia

ibm-1157 IBM 1157/1391 EBCDIC, Estonia

ibm-1112 IBM 1112/1035 EBCDIC, Latvia, Lithuania

ibm-1156 IBM 1156/1393 EBCDIC, Latvia, Lithuania

ibm-4899 IBM EBCDIC code page 4899, Hebrew with Euro

ibm-12712 IBM 12712 EBCDIC, Hebrew (max set including Euro)

ibm-1097 IBM 1097 EBCDIC, Farsi

ibm-1018 IBM 1018 EBCDIC, Finland Sweden (ISO-7)

ibm-1132 IBM 1132 EBCDIC, Laos

ibm-1137 IBM EBCDIC code page 1137, Devanagari

ibm-1025 IBM 1025/1150 EBCDIC, Cyrillic

ibm-1154 IBM EBCDIC code page 1154, Cyrillic with Euro

IBM1026 IBM 1026/1152 EBCDIC, Latin-5 Turkey

ibm-1155 IBM EBCDIC code page 1155, Turkish with Euro

ibm-1123 IBM 1123 EBCDIC, Ukraine

ibm-1158 IBM EBCDIC code page 1158, Ukranian with Euro

Chapter 13
Supported Character Sets

13-31

Identifier to use in
parameter files and
commands

Character set

IBM838 IBM 838/1173 EBCDIC, Thai

ibm-1160 IBM EBCDIC code page 1160, Thai with Euro

ibm-1130 IBM 1130 EBCDIC, Vietnam

ibm-1164 IBM EBCDIC code page 1164, Vietnamese with Euro

ibm-4517 IBM EBCDIC code page 4517, Arabic French

ibm-4971 IBM EBCDIC code page 4971, Greek

ibm-9067 IBM EBCDIC code page 9067, Greek 2005

ibm-16804 IBM EBCDIC code page 16804, Arabic

KOI8-R Russian and Cyrillic (KOI8-R)

KOI8-U Ukranian (KOI8-U)

eucTH EUC Thai

ibm-1162 Windows Thai with Euro

DEC-MCS DEC Multilingual

hp-roman8 HP Latin-1 Roman8

ibm-901 IBM Baltic ISO-8 CCSID 901

ibm-902 IBM Estonia ISO-8 with Euro CCSID 902

ibm-916 IBM ISO8859-8 CCSID

ibm-922 IBM Estonia ISO-8 CCSID 922

ibm-1006 IBM Urdu ISO-8 CCSID 1006

ibm-1098 IBM Farsi PC CCSID 1098

ibm-1124 Ukranian ISO-8 CCSID 1124

Chapter 13
Supported Character Sets

13-32

Identifier to use in
parameter files and
commands

Character set

ibm-1125 Ukranian without Euro CCSID 1125

ibm-1129 IBM Vietnamese without Euro CCSID 1129

ibm-1131 IBM Belarusi CCSID 1131

ibm-1133 IBM Lao CCSID 1133

ibm-4909 IBM Greek Latin ASCII CCSID 4909

JIS_X201 JIS X201 Japanese

windows-932 Windows Japanese

windows-936 Windows Simplified Chinese

ibm-942 IBM Windows Japanese

windows-949 Windows Korean

windows-950 Windows Traditional Chinese

eucjis EUC Japanese

EUC-JP IBM/MS EUC Japanese

EUC-CN EUC Simplified Chinese, GBK

EUC-KR EUC Korean

EUC-TW EUC Traditional Chinese

ibm-930 IBM 930/5026 Japanese

ibm-933 IBM 933 Korean

ibm-935 IBM 935 Simplified Chinese

ibm-937 IBM 937 Traditional Chinese

ibm-939 IBM 939/5035 Japanese

Chapter 13
Supported Character Sets

13-33

Identifier to use in
parameter files and
commands

Character set

ibm-1364 IBM 1364 Korean

ibm-1371 IBM 1371 Traditional Chinese

ibm-1388 IBM 1388 Simplified Chinese

ibm-1390 IBM 1390 Japanese

ibm-1399 IBM 1399 Japanese

ibm-5123 IBM CCSID 5123 Japanese

ibm-8482 IBM CCSID 8482 Japanese

ibm-13218 IBM CCSID 13218 Japanese

ibm-16684 IBM CCSID 16684 Japanese

shiftjis Japanese Shift JIS, Tilde 0x8160 mapped to U+301C

gb18030 GB-18030

GB2312 GB-2312-1980

GBK GBK

HZ HZ GB2312

Ibm-1381 IBM CCSID 1381 Simplified Chinese

Big5 Big5, Traditional Chinese

Big5-HKSCS Big5, HongKong ext.

Big5-HKSCS2001 Big5, HongKong ext. HKSCS-2001

ibm-950 IBM Big5, CCSID 950

ibm-949 CCSID 949 Korean

ibm-949C IBM CCSID 949 Korean, has backslash

Chapter 13
Supported Character Sets

13-34

Identifier to use in
parameter files and
commands

Character set

ibm-971 IBM CCSID 971 Korean EUC, KSC5601 1989

x-IBM1363 IBM CCSID 1363, Korean

Supported Locales

Here's a list of the locales that are supported by Oracle GoldenGate. The locale is used when
comparing case-insensitive object names.

af
af_NA
af_ZA
am
am_ET
ar
ar_AE
ar_BH
ar_DZ
ar_EG
ar_IQ
ar_JO
ar_KW
ar_LB
ar_LY
ar_MA
ar_OM
ar_QA
ar_SA
ar_SD
ar_SY
ar_TN
ar_YE
as
as_IN
az
az_Cyrl
az_Cyrl_AZ
az_Latn
az_Latn_AZ
be
be_BY
bg
bg_BG
bn

Chapter 13
Supported Locales

13-35

bn_BD
bn_IN
ca
ca_ES
cs
cs_CZ
cy
cy_GB
da
da_DK
de
de_AT
de_BE
de_CH
de_DE
de_LI
de_LU
el
el_CY
el_GR
en
en_AU
en_BE
en_BW
en_BZ
en_CA
en_GB
en_HK
en_IE
en_IN
en_JM
en_MH
en_MT
en_NA
en_NZ
en_PH
en_PK
en_SG
en_TT
en_US
en_US_POSIX
en_VI
en_ZA
en_ZW
eo
es
es_AR
es_BO
es_CL
es_CO

Chapter 13
Supported Locales

13-36

es_CR
es_DO
es_EC
es_ES
es_GT
es_HN
es_MX
es_NI
es_PA
es_PE
es_PR
es_PY
es_SV
es_US
es_UY
es_VE
et
et_EE
eu
eu_ES
fa
fa_AF
fa_IR
fi
fi_FI
fo
fo_FO
fr
fr_BE
fr_CA
fr_CH
fr_FR
fr_LU
fr_MC
ga
ga_IE
gl
gl_ES
gu
gu_IN
gv
gv_GB
haw
haw_US
he
he_IL
hi
hi_IN
hr
hr_HR

Chapter 13
Supported Locales

13-37

hu
hu_HU
hy
hy_AM
hy_AM_REVISED
id
id_ID
is
is_IS
it
it_CH
it_IT
ja
ja_JP
ka
ka_GE
kk
kk_KZ
kl
kl_GL
km
km_KH
kn
kn_IN
ko
ko_KR
kok
kok_IN
kw
kw_GB
lt
lt_LT
lv
lv_LV
mk
mk_MK
ml
ml_IN
mr
mr_IN
ms
ms_BN
ms_MY
mt
mt_MT
nb
nb_NO
nl
nl_BE
nl_NL

Chapter 13
Supported Locales

13-38

nn
nn_NO
om
om_ET
om_KE
or
or_IN
pa
pa_Guru
pa_Guru_IN
pl
pl_PL
ps
ps_AF
pt
pt_BR
pt_PT
ro
ro_RO
ru
ru_RU
ru_UA
sk
sk_SK
sl
sl_SI
so
so_DJ
so_ET
so_KE
so_SO
sq
sq_AL
sr
sr_Cyrl
sr_Cyrl_BA
sr_Cyrl_ME
sr_Cyrl_RS
sr_Latn
sr_Latn_BA
sr_Latn_ME
sr_Latn_RS
sv
sv_FI
sv_SE
sw
sw_KE
sw_TZ
ta
ta_IN

Chapter 13
Supported Locales

13-39

te
te_IN
th
th_TH
ti
ti_ER
ti_ET
tr
tr_TR
uk
uk_UA
ur
ur_IN
ur_PK
uz
uz_Arab
uz_Arab_AF
uz_Cyrl
uz_Cyrl_UZ
uz_Latn
uz_Latn_UZ
vi
vi_VN
zh
zh_Hans
zh_Hans_CN
zh_Hans_SG
zh_Hant
zh_Hant_HK
zh_Hant_MO
zh_Hant_TW

Commit Sequence Number (CSN)
When working with Oracle GoldenGate, you might need to refer to a Commit Sequence
Number (CSN). A CSN is an identifier that Oracle GoldenGate constructs to identify a
transaction for the purpose of maintaining transactional consistency and data integrity. It
uniquely identifies a point in time in which a transaction commits to the database.

The CSN can be required to position Extract in the transaction log, to reposition Replicat in the
trail, or for other purposes. It is returned by some conversion functions and is included in
reports and certain command output.

A CSN is a monotonically increasing identifier generated by Oracle GoldenGate that uniquely
identifies a point in time when a transaction commits to the database. It purpose is to ensure
transactional consistency and data integrity as transactions are replicated from source to
target. Each kind of database management system generates some kind of unique serial
number of its own at the completion of each transaction, which uniquely identifies the commit
of that transaction. For example, the Oracle RDBMS generates a System Change Number,
which is a monotonically increasing sequence number assigned to every event by Oracle
RDBMS. The CSN captures this same identifying information and represents it internally as a
series of bytes, but the CSN is processed in a platform-independent manner. A comparison of

Chapter 13
Commit Sequence Number (CSN)

13-40

any two CSN numbers, each of which is bound to a transaction-commit record in the same log
stream, reliably indicates the order in which the two transactions completed.

The CSN is cross-checked with the transaction ID (displayed as XID in Oracle GoldenGate
informational output). The XID-CSN combination uniquely identifies a transaction even in
cases where there are multiple transactions that commit at the same time, and thus have the
same CSN. For example, this can happen in an Oracle RAC environment, where there is
parallelism and high transaction concurrency.

The CSN value is stored as a token in any trail record that identifies the commit of a
transaction. This value can be retrieved with the @GETENV column conversion function and
viewed with the Logdump utility.

Using the Commit Sequence Number
This appendix contains information about using the Oracle GoldenGate Commit Sequence
Number (CSN) with Oracle and non-Oracle databases.

All database platforms except Oracle, Db2 LUW, and Db2 z/OS have fixed-length CSNs, which
are padded with leading zeroes as required to fill the fixed length. CSNs that contain multiple
fields can be padded within each field. For more information on CSN, see in Overview: Commit
Sequence Number (CSN) in the Oracle GoldenGate Microservices guide.

MySQL does not create a transaction ID as part of its event data, so Oracle GoldenGate
considers a unique transaction identifier to be a combination of the following:

• the log file number of the log file that contains the START TRANSACTION record for the
transaction that is being identified

• the record offset of that record

Table 13-2 Oracle GoldenGate CSN Values Per Database

Database CSN Value

Db2 for i sequence_number
Where:

• sequence_number is the fixed-length, 20 digit, decimal-based Db2 for i
journal sequence number.

Example:

12345678901234567890

Db2 LUW LRI
Where:

For version 10.1 and later, LRI is a period-separated pair of numbers for the Db2
log record identifier.

Example:

123455.34645

Chapter 13
Commit Sequence Number (CSN)

13-41

Table 13-2 (Cont.) Oracle GoldenGate CSN Values Per Database

Database CSN Value

Db2 z/OS
LSN

where:

• LSN is, up to 20 hexadecimal digit representation of the 10 byte LSN in the
transaction log.

Note:

Oracle GoldenGate uses LSN to represent both the non-data
sharing LSN and data sharing LRSN as the format is same.

Example:

0x1A3367F6BA12289

MySQL
LogNum:LogPosition

Where:
• LogNum is the the name of the log file that contains the START

TRANSACTION record for the transaction that is being identified.

• LogPosition is the event offset value of that record. Event offset values are
stored in the record header section of a log record.

For example, if the log number is 12 and the log position is 121, the CSN is:

000012:000000000000121

MySQL (Group
Replication) SeqNum:GTID

In the preceding syntax:
• SeqNum is the Oracle GoldenGate sequence number.

• GTID the MySQL global transaction identifier.

For example, if the sequence number is 00000000000000000001 and the GTID
is f77024f9-f4e3-11eb-a052-0021f6e03f10:0000000000000010654, then
the CSN value is:

00000000000000000001:f77024f9-f4e3-11eb-
a052-0021f6e03f10:0000000000000010654

Chapter 13
Commit Sequence Number (CSN)

13-42

Table 13-2 (Cont.) Oracle GoldenGate CSN Values Per Database

Database CSN Value

Oracle
system_change_number

Where:
• system_change number is the Oracle SCN value.

Example:

6488359

SQL Server Can be any of these, depending on how the database returns it:

• Colon separated hex string (8:8:4) padded with leading zeroes and 0X
prefix

• Colon separated decimal string (10:10:5) padded with leading zeroes

• Colon separated hex string with 0X prefix and without leading zeroes

• Colon separated decimal string without leading zeroes
• Decimal string
Where:
• The first value is the virtual log file number, the second is the segment

number within the virtual log, and the third is the entry number.
Examples:

0X00000d7e:0000036b:01bd
0000003454:0000000875:00445
0Xd7e:36b:1bd
3454:875:445
3454000000087500445

Connecting Microservices and Classic Architectures
This topic lists the steps to establish a connection between Oracle GoldenGate Microservices
and Classic architectures.

Connect Oracle GoldenGate Classic Architecture to Microservices
Architecture

Oracle GoldenGate Classic Architecture uses the data pump Extract in Admin Client and
GGSCI to connect to Microservices Architecture

Chapter 13
Connecting Microservices and Classic Architectures

13-43

Note:

Oracle GoldenGate Classic Architecture's pump Extract can only connect to an un-
secured Microservice Architecture deployment, of which the receiver server's port is
open for ingress traffic.

If the above requirement is a security concern, it is recommended to install
Microservices Architecture on the same target, along with Classic Architecture, and
use a reverse proxy server to allow wss distribution path between these two
Microservices Architecture deployments. After this distribution path is established, the
Classic Architecture deployment can pick up the trail from the same location on the
target.

To connect Oracle GoldenGate Classic Architecture and Microservices follow these steps:

Note:

To establish a connection between Oracle GoldenGate Classic Architecture and
Microservices, only non-secured MA deployments are supported. Secure
Microservices Architecture deployments are not supported.

Create a data pump Extract

Note:

To perform this task, an existing data pump Extract must be running in Classic
Architecture.

1. Log in to GGSCI.

2. Add a data pump Extract using the command:

ADD EXTRACT dp_name, EXTTRAILSOURCE ./dirdat/aa
This example uses, dp_name as the name of the data pump Extract.

3. Add the remote trail to the data pump Extract using the command:

ADD RMTTRAIL ab, EXTRACT dp_name, MEGABYTES 500

4. Edit the parameter file for the data pump Extract using the command:

EDIT PARAMS dp_name

Here is an example of the data pump Extract parameter file:

EXTRACT dp_name
RMTHOST hostname-or-IP-address, PORT receiver-service-port

Chapter 13
Connecting Microservices and Classic Architectures

13-44

RMTTRAIL ab
PASSTHRU
TABLE pdb.schema.table;

Start the data pump Extract
Use the following command to start the data pump Extract dp_name:

START EXTRACT dp_name

Once the data pump Extract has started, the Receiver Service establishes a path and begins
reading the remote trail file. The remote trail file appears in the $OGG_VAR_HOME/lib/data of
the associated deployment running the Receiver Service.

Connect Oracle GoldenGate Microservices Architecture to Classic
Architecture

To establish a connection to Classic Architecture from Microservices Architecture, the
Distribution Service in Oracle GoldenGate Microservices Architecture must know where to
place the remote trail file for reading.

To connect Oracle GoldenGate Microservices Architecture and Classic Architecture follow
these steps:

Note:

For this procedure to work only the ogg protocol is supported and an existing Extract
must be running in Microservices Architecture.

Task 1: Start Manager in Classic Architecture

1. Log in to GGSCI.

2. Use the command:

START MANAGER

For more information, see START MANAGER in Parameters and Functions Reference for
Oracle GoldenGate.

Task 2: Add a Distribution Path

1. Launch the Distribution Service web interface.

2. Click the plus (+) sign next to Path. The Add Path page is displayed.

3. Enter the following details on the Add Path page:

Options Description

Path Name Enter the name of the Distribution Path.

Description Enter the description of the Distribution Path.

Source Select Extract from the drop-down list.
Enter the Extract name in the text box below it.

Chapter 13
Connecting Microservices and Classic Architectures

13-45

Options Description

Generated Source URI Enter the location of the source trail file.

Target Select ogg as the target protocol from the drop-
down list.
Enter the following in the given order:

a. Target Hostname: Name of the target host
service to which the connection will be
established.

b. Target Manager Port: Port number of the
Oracle GoldenGate Classic Architecture
Manager port.

c. Target sub-directory for the trail file:
Name of the subdirectory where the trail file
is to be stored. For example, .dirdat.

d. Target trail file name: Name of the target
trail file, such as ea.

Generated Target URI The location of the target trail file is displayed.

Target Encryption Algorithm Select NONE from the drop-down list.
To encrypt the target trail file, select the
appropriate encryption algorithm from the drop-
down list.

Enable Network Compression Select this option if you want to enable network
compression.

Sequence Length Select the required value from the drop-down
list for target trail sequence length. The default
value is 9.

Trail Size (MB) Specify the value of the trail file size, as per your
requirements.

Configure Trail Format Select this option if you want the trail file in any
of the following formats:
• TEXT
• SQL
• XML

Encryption Profile This is the encryption profile that was used to
encrypt the trail file when it was generated.
However, certain encryption methods are only
available in Microservices Architecture and are
not supported by Classic Architecture, so use
this feature with caution.

Chapter 13
Connecting Microservices and Classic Architectures

13-46

Options Description

Target Type Select Manager as the target type. Alternatively,
you can select Collector or Receiver Service.
When connecting Microservices architecture
with other Microservices architecture, select the
Receiver Service option. When connecting
Microservices architecture with Classic
architecture, select either the Manager or
Collector option. If you select the Collector
option, you need to start a static collector
beforehand on the Classic architecture and use
that static collector port as the value of the
Target Manager Port field.

Begin Select the Position in Log option from the
drop-down list.

Source Sequence Number Enter the sequence value of the source trail.

Source RBA Offset Enter the value of the RBA offset of the source
trail if you want the path to start reading from a
specific RBA.

4. Click Create Path or Create and Run, as required. Select Cancel if you need to get
out of the Add Path page without adding a path.

After the path is created, you’ll be able to see the new path in the Distribution Service home
page.

Chapter 13
Connecting Microservices and Classic Architectures

13-47

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Concepts
	Oracle GoldenGate
	Why Do You Need Oracle GoldenGate?
	When Do You Use Oracle GoldenGate?
	Topologies for Oracle GoldenGate
	Oracle GoldenGate Product Family

	Oracle GoldenGate Microservices Architecture
	Features of Oracle GoldenGate Microservices Architecture
	Access Points for Oracle GoldenGate Microservices
	Admin Client
	REST API

	Components of Oracle GoldenGate Microservices Architecture
	Directories and Variables in Microservices Architecture
	About Deployments
	What is a Deployment?
	Secure Deployment
	Non-Secure Deployment
	Local and Remote Deployments

	About Service Manager
	About Administration Server
	About Distribution Server
	About Receiver Server
	About Target-Initiated Distribution Path

	About Performance Metrics Server

	Components of Data Replication in Oracle GoldenGate
	Types of Data Replication Configurations
	Oracle GoldenGate Processes
	Extract
	Replicat
	Distribution Paths for Data Transport

	Oracle GoldenGate Objects
	Trail Files
	Processes that Write to the Trail File
	Processes that Read from the Trail File
	Trail File Creation and Maintenance

	Parameter Files
	Checkpoint Files

	2 Install and Patch
	Download Oracle GoldenGate Software
	Verify Certification and System Requirements
	Operating System Requirements
	Memory Requirements
	Disk Requirements
	Disk Requirements for Oracle GoldenGate Installation Files
	Temporary Disk Requirements
	Other Disk Space Considerations

	Network
	Operating System Privileges
	Security and Other Considerations
	Windows Console Character Sets
	Other Operating System Requirements

	Prerequisites
	Setting TNS_ADMIN
	Specifying Oracle Variables on UNIX and Linux Systems
	Specifying Oracle Variables on Windows Systems

	What are the Key Microservices Architecture Directories and Variables?

	Installing Oracle GoldenGate
	Installing Oracle GoldenGate Microservices Architecture
	Performing an Interactive Installation with OUI for MA
	Performing a Silent Installation with OUI

	Integrating Oracle GoldenGate Microservices Architecture into a Cluster

	Post-installation Tasks
	Software Installation Directories and Programs for Oracle GoldenGate
	Installing Patches for Oracle GoldenGate Microservices Architecture
	Downloading Patches for Oracle GoldenGate
	Patching Oracle GoldenGate Microservices Architecture Using OPatch
	Uninstalling the Patch for Oracle and Non-Oracle Databases Using OPatch

	Uninstalling Oracle GoldenGate Microservices Architecture
	Removing Deployments and Service Manager
	Removing Deployments and Service Manager Using Oracle GoldenGate Configuration Assistant
	Using Oracle GoldenGate Configuration Assistant - Silent

	Files to be Removed Manually
	Uninstalling Microservices Architecture with Oracle Universal Installer

	3 Deploy
	Add a Deployment
	Using OGGCA Wizard for Deployment
	Start the OGGCA Wizard
	Select Service Manager Options
	Configuration Options
	Deployment Details
	Select Deployment Directories
	Specify Environment Variables
	Service Manager Administrator Account
	Specify Security Options
	Advanced Security Settings
	Sharding Options
	Port Settings
	Replication Settings
	Summary
	Configure Deployment
	Finish

	Add a Deployment to an Existing Service Manager
	Add a Deployment in Silent Mode using OGGCA
	First Access to the Deployment from the Service Manager
	Add Deployment Users from the Service Manager
	Add Deployment Users from the Administration Server
	Manage Deployments from the Service Manager
	Quick Tour of the Service Manager
	How to Start and Stop the Service Manager
	How to Change Deployment Details and Configuration
	How to Interpret the Log Information
	How to Enable and Use Debug Logging
	How to Start and Stop Service Manager and Deployments
	Using Scripts to Start and Stop a Deployment

	Remove a Deployment
	Before Removing the Deployment
	Start OGGCA to Remove Deployment

	Remove the Service Manager
	Start OGGCA to Remove the Service Manager
	Files to be Removed Manually After Removing Deployment

	View and Edit Services Configuration

	4 Prepare
	Prepare Oracle Database
	Prepare Database Users and Privileges for Oracle
	Grant User Privileges for Oracle Database 21c and Lower
	About the DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE Package
	Optional Grants for dbms_goldengate_auth.grant_admin_privilege

	Privileges for Capturing from Oracle Data Vault

	Configuring Connections for Integrated Processes
	Configuring Logging Properties
	Enabling Minimum Database-level Supplemental Logging
	Enabling Schema-level Supplemental Logging
	Enabling Table-level Supplemental Logging

	Enabling Oracle GoldenGate in the Database
	Configuring Oracle GoldenGate in a Multitenant Container Database
	Using the Root Container Extract from PDB
	Applying to Pluggable Databases
	Excluding Objects from the Configuration
	Requirements for Configuring Container Databases for Oracle GoldenGate

	Setting Flashback Query
	Managing Server Resources
	Ensuring Row Uniqueness in Source and Target Tables
	Oracle: Supported Data Types, Objects, and Operations for DDL and DML
	Details of Support for Oracle Database Editions
	Details of Support for Oracle Data Types and Objects
	Non-Supported Oracle Data Types

	Details of Support for Objects and Operations in Oracle DML
	Multitenant Container Database
	Tables, Views, and Materialized Views
	Limitations of Support for Regular Tables
	Limitations of Support for Views
	Limitations of Support for Materialized Views
	Limitations of Support for Clustered Tables

	System Partitioning
	Sequences and Identity Columns
	Limitations of Support for Sequences

	Non-supported Objects and Operations in Oracle DML
	DML Auto Capture

	Details of Support for Objects and Operations in Oracle DDL
	Supported Objects and Operations in Oracle DDL
	Non-supported Objects and Operations in Oracle DDL
	Excluded Objects
	Other Non-supported DDL

	Prepare Oracle GoldenGate
	Oracle GoldenGate Users
	Configure Secure Database Connections from Oracle GoldenGate
	Assigning Credentials to Oracle GoldenGate
	Securing the Oracle GoldenGate Credentials
	Add and Alter Database Credentials

	Before Adding Extract and Replicat Processes
	Add TRANDATA
	Enable TRANDATA or SCHEMATRANDATA for Oracle Database

	Add a Checkpoint Table
	Add Heartbeat Table

	5 Extract
	Quick Tour of the Administration Service Overview Page
	About Extract
	Add an Extract
	Using Extract Actions
	Downstream Extract for Downstream Database Mining
	Configure Extract for a Downstream Deployment
	Evaluate Extract Options for a Downstream Deployment
	Prepare the Source Database for the Downstream Deployment
	Add Database Credentials to Connect to the Source Database
	Configure Redo Transport from Source Database to Downstream Mining Database

	Prepare the Downstream Mining Database to Receive Online Redo Logs
	Creating the Downstream Mining User Account
	Configure the Mining Database to Archive Local Redo Log Files
	Configure the Wallet for the Downstream Mining Database
	Prepare a Downstream Mining Database for Real-time Capture
	Create the Standby Redo Log Files
	Configure the Database to Archive Standby Redo Log Files Locally

	Enable Downstream Extract to Work with ADG

	Use Cases for Downstream Mining Configuration
	Case 1: Capture from One Source Database in Real-time Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Archive Redo Received in Standby Redo Logs from the Source Database
	Prepare the Source Database to Send Redo to the Mining Database
	Set up Extract (ext1) on DBMSCAP

	Case 2: Capture from Multiple Sources in Archive-log-only Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Archive Redo from the Source Database
	Prepare the First Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Set up Extracts at Downstream Mining Database

	Case 3: Capturing from Multiple Sources with Mixed Real-time and Archive-log-only Mode
	Prepare the Mining Database to Archive its Local Redo
	Prepare the Mining Database to Accept Redo from the Source Databases
	Prepare the First Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Prepare the Second Source Database to Send Redo to the Mining Database
	Prepare the Third Source Database to Send Redo to the Mining Database
	Set up Extracts at Downstream Mining Database
	Set up Extract (ext1) to Capture Changes from Archived Logs Sent by DBMS1
	Set up Extract (ext2) to Capture Changes from Archived Logs Sent by DBMS2
	Set up Extract (ext3) to Capture Changes in Real-time Mode from Online Logs Sent by DBMS3

	Positioning Extract to a Specific Start Point

	6 Distribute
	About Distribution Service and Distribution Path
	Distribution Path Streaming Protocols

	Add a Distribution Path
	Add a Target-Initiated Distribution Path
	Manage Distribution Paths
	Manage Distribution Paths
	Reposition a Path
	Change the Path Filtering
	Review the Distribution Path Information

	7 Replicat
	Quick Tour of the Administration Service Overview Page
	About Replicat
	Types of Replicat
	About Classic or Non-Integrated Replicat
	About Coordinated Replicat
	About Barrier Transactions
	How Barrier Transactions are Processed

	About Integrated Replicat
	Benefits of Integrated Replicat
	Integrated Replicat Requirements

	About Parallel Replicat
	Benefits of Parallel Replicat
	Parallel Replication Architecture
	Basic Parameters for Parallel Replicat

	Select a Replicat Type for the Deployment
	Add a Replicat
	Basic Parameters for Parallel Replicat
	Additional Parameters for Integrated Replicat
	Example: Add a Nonintegrated Parallel Replicat Using Admin Client

	Using Replicat Actions
	Review Critical Events

	8 Instantiate
	About Instantiating with Initial Load Extract
	Add Initial Load Extract Using the Admin Client
	Step 1: Create a Primary Extract
	Step 2: Determine the Instantiation SCN
	Step 3: Create and Start the Initial Load Replicat
	Step 4: Create and start the Initial Load Extract
	Step 5: Create the Distribution Paths
	Step 6: Create the Primary Replicat

	9 Administer
	Data Management
	Oracle: DDL Replication
	Prerequisites for Configuring DDL
	Overview of DDL Synchronization
	Limitations of Oracle GoldenGate DDL Support
	DDL Statement Length
	Supported Topologies
	Filtering, Mapping, and Transformation
	Renames
	Interactions Between Fetches from a Table and DDL
	Comments in SQL
	Compilation Errors
	Interval Partitioning
	DML or DDL Performed Inside a DDL Trigger
	LogMiner Data Dictionary Maintenance

	Guidelines for Configuring DDL Replication for Oracle
	Database Privileges
	Parallel Processing
	Object Names
	Data Definitions
	Truncates
	Initial Synchronization
	Data Continuity After CREATE or RENAME

	Understanding DDL Scopes
	Mapped Scope
	Unmapped Scope
	Other Scope

	Correctly Identifying Unqualified Object Names in DDL
	Enabling DDL Support
	Filtering DDL Replication
	Filtering with the DDL Parameter

	Special Filter Cases
	DDL EXCLUDE ALL
	Implicit DDL

	How Oracle GoldenGate Handles Derived Object Names
	MAP Exists for Base and Derived Objects
	MAP Exists for Derived Object, But Not Base Object
	New Tables as Derived Objects
	Prerequisites for Configuring DDL
	RENAME and ALTER TABLE RENAME

	Disabling the Mapping of Derived Objects

	Using DDL String Substitution
	Controlling the Propagation of DDL to Support Different Topologies
	Propagating DDL in Active-Active (Bidirectional) Configurations
	Prerequisites for Configuring DDL

	Add Supplemental Log Groups Automatically
	Removing Comments from Replicated DDL
	Replicating an IDENTIFIED BY Password
	How DDL is Evaluated for Processing
	Viewing DDL Report Information
	Viewing DDL Reporting in Replicat
	Viewing DDL Reporting in Extract
	Statistics in the Process Reports

	Tracing DDL Processing

	Procedural Replication
	About Procedural Replication
	Procedural Replication Process Overview
	Determining Whether Procedural Replication Is On
	Enabling and Disabling Supplemental Logging
	Filtering Features for Procedural Replication
	Handling Procedural Replication Errors
	Listing the Procedures Supported for Oracle GoldenGate Procedural Replication
	Monitoring Oracle GoldenGate Procedural Replication

	Execute Commands, Stored Procedures, and Queries with SQLEXEC
	Performing Processing with SQLEXEC
	Using SQLEXEC
	Apply SQLEXEC as a Standalone Statement
	Apply SQLEXEC within a TABLE or MAP Statement
	Using Input and Output Parameters
	Passing Values to Input Parameters
	Passing Values to Output Parameters
	SQLEXEC Examples Using Parameters

	Handling SQLEXEC Errors
	Handling Database Errors
	Handling Missing Column Values

	Additional SQLEXEC Guidelines

	Set up and Use the Master Keys and Encryption Keys
	Access the Parameter Files
	Configure an Encryption Profile
	Access Extract and Replicat Log Information
	Mapping and Manipulating Data
	Guidelines for Using Self-describing Trails
	Parameters that Control Mapping and Data Integration
	Mapping between Dissimilar Databases
	Mapping and Conversion on NonStop Systems
	Mapping and Conversion on Windows and UNIX Systems

	Globalization Considerations when Mapping Data
	Conversion between Character Sets
	Database Object Names
	Column Data

	Preservation of Locale
	Support for Escape Sequences

	Mapping Columns Using TABLE and MAP
	Supporting Case and Special Characters in Column Names
	Configuring Table-level Column Mapping with COLMAP
	Using USEDEFAULTS to Enable Default Column Mapping
	Specifying the Columns to be Mapped in the COLMAP Clause

	Configuring Global Column Mapping with COLMATCH
	Understanding Default Column Mapping
	Data Type Conversions
	Numeric Columns
	Character-type Columns
	Datetime Columns

	Selecting and Filtering Rows
	Selecting Rows with a FILTER Clause
	Selecting Rows with a WHERE Clause
	Considerations for Selecting Rows with FILTER and WHERE
	Ensuring Data Availability for Filters
	Comparing Column Values
	Testing for NULL Values

	Retrieving Before and After Values
	Selecting Columns
	Selecting and Converting SQL Operations
	Using Transaction History
	Testing and Transforming Data
	Handling Column Names and Literals in Functions
	Using the Appropriate Function
	Transforming Dates
	Performing Arithmetic Operations
	Omitting @COMPUTE

	Manipulating Numbers and Character Strings
	Handling Null, Invalid, and Missing Data
	Using @COLSTAT
	Using @COLTEST
	Using @IF

	Performing Tests
	Using @CASE
	Using @VALONEOF
	Using @EVAL

	Using Tokens
	Defining Tokens
	Using Token Data in Target Tables

	Bi-Directional Replication
	Prerequisites for Bidirectional Replication
	Enable Bi-Directional Loop Detection
	Considerations for an Active-Active Configuration
	Application Design
	Keys
	Database-Generated Values
	Database Configuration

	Preventing Data Looping
	Identifying Replicat Transactions
	DB2 z/OS
	MySQL
	PostgreSQL and SQL Server
	Oracle

	Preventing the Capture of Replicat Operations
	Oracle: Preventing the Capture of Replicat Transactions
	Non-Oracle Database: Preventing Capture of Replicat Transactions
	Manage Conflicts

	MySQL: Bi-Directional Replication
	PostgreSQL: Bi-Directional Replication
	Preparing DBFS for an Active-Active Configuration
	Supported Operations and Prerequisites
	Applying the Required Patch
	Examples Used in these Procedures
	Partitioning the DBFS Sequence Numbers
	Configuring the DBFS file system
	Mapping Local and Remote Peers Correctly

	Using Edition-Based Redefinition

	Error Management
	Automatic Conflict Detection and Resolution
	About Automatic Conflict Detection and Resolution
	Automatic Conflict Detection and Resolution
	Requirements for Automatic Conflict Detection and Resolution
	Compatibility and Migration

	Column Groups
	DELETE TOMBSTONE Table
	Earliest Timestamp Conflict Detection and Resolution
	Latest Timestamp Conflict Detection and Resolution
	Delete Always Wins Timestamp CDR
	Delta Conflict Resolution
	Site Priority CDR
	Track Primary Key Updates in Delete Tombstone

	Configuring Delta Conflict Detection and Resolution
	Configuring Latest Timestamp Conflict Detection and Resolution
	Configuring Delta Conflict Detection and Resolution

	Managing Automatic Conflict Detection and Resolution
	Altering Conflict Detection and Resolution for a Table
	Altering a Column Group
	Purging Tombstone Rows
	Removing Conflict Detection and Resolution From a Table
	Removing a Column Group
	Removing Delta Conflict Detection and Resolution

	Monitoring Automatic Conflict Detection and Resolution
	Displaying Information About the Tables Configured for Conflicts
	Displaying Information About Conflict Resolution Columns
	Displaying Information About Column Groups

	Manual Conflict Detection and Resolution
	Overview of the Oracle GoldenGate CDR Feature
	Configuring the Oracle GoldenGate Parameter Files for Error Handling
	Tools for Mapping Extra Data to the Exceptions Table
	Sample Exceptions Mapping with Source and Target Columns Only
	Sample Exceptions Mapping with Additional Columns in the Exceptions Table

	Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution
	Making the Required Column Values Available to Extract
	Viewing CDR Statistics
	CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD
	Table Used in this Example
	MAP Statement with Conflict Resolution Specifications
	Description of MAP Statement
	INSERTROWEXISTS with the USEMAX Resolution
	UPDATEROWEXISTS with the USEMAX Resolution
	UPDATEROWMISSING with OVERWRITE Resolution
	DELETEROWEXISTS with OVERWRITE Resolution
	DELETEROWMISSING with DISCARD Resolution

	CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX
	Table Used in this Example
	MAP Statement
	Description of MAP Statement
	Error Handling

	CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE
	Table Used in this Example
	MAP Statement
	Description of MAP Statement
	Error Handling

	Error Handling
	Overview of Oracle GoldenGate Error Handling
	Handling Extract Errors
	Handling Replicat Errors during DML Operations
	Handling Errors as Exceptions
	Using EXCEPTIONSONLY
	Using MAPEXCEPTION
	About the Exceptions Table

	Handling Replicat Errors during DDL Operations
	Handling TCP/IP Errors
	Maintaining Updated Error Messages
	Resolving Oracle GoldenGate Errors

	Trail File Management
	Manage Trail Files
	Assign Storage for Oracle GoldenGate Trails
	Estimate Space for the Trails
	Add a Trail
	Automate Maintenance Tasks

	Admin Client Command Line Interface for Oracle GoldenGate Microservices
	About Admin Client
	Using Wildcards in Command Arguments
	Using Command History
	Storing and Calling Frequently Used Command Sequences
	Controlling Extract and Replicat
	Deleting Extract and Replicat
	Specifying Object Names in Oracle GoldenGate Input
	Specifying Filesystem Path Names in Parameter Files on Windows Systems
	Supported Database Object Names
	Supported Special Characters
	Non-supported Special Characters

	Specifying Names that Contain Slashes
	Qualifying Database Object Names
	Two-part Names
	Three-part Names
	Applying Data from Multiple Containers or Catalogs
	Specifying a Default Container or Catalog

	Specifying Case-Sensitive Database Object Names
	Using Wildcards in Database Object Names
	Rules for Using Wildcards for Source Objects
	Rules for Using Wildcards for Target Objects
	Fallback Name Mapping
	Asterisks or Question Marks as Literals in Object Names
	How Wildcards are Resolved
	Excluding Objects from a Wildcard Specification

	Differentiating Case-Sensitive Column Names from Literals

	Creating a Parameter File Using Admin Client
	Creating a Parameter File with a Text Editor

	Simplifying the Creation of Parameter Files
	Using Wildcards
	Using OBEY
	Using Macros
	Using Parameter Substitution

	Validating a Parameter File

	Simplify and Automate Work with Oracle GoldenGate Macros
	Define a Macro
	Call a Macro
	Call a Macro that Contains Parameters
	Call a Macro without Input Parameters

	Calling Other Macros from a Macro
	Create Macro Libraries
	Tracing Macro Expansion

	Using User Exits to Extend Oracle GoldenGate Capabilities
	When to Implement User Exits
	Making Oracle GoldenGate Record Information Available to the Routine
	Creating User Exits
	Supporting Character-set Conversion in User Exits
	Using Macros to Check Name Metadata
	Describing the Character Format
	Upgrading User Exits
	Viewing Examples of How to Use the User Exit Functions

	10 Performance
	Monitor
	Commands Used for Monitoring
	Monitor Processes from the Performance Metrics Service
	Review Messages from Messages Tab
	Review Status Changes
	Purge Datastore
	Protocols for Performance Monitoring for Different Operating Systems

	Monitor an Extract Recovery
	Monitor Lag
	About Lag
	Monitor Lag Using Automatic Heartbeat Tables
	Monitor an Extract Recovery
	Heartbeat Table End-To-End Replication Flow
	Update Heartbeat Tables
	Purge the Heartbeat History Tables
	Best Practice
	Using the Automatic Heartbeat Commands

	Db2 z/OS: Interpret Statistics for Update Operations
	Monitor Processing Volume
	Use the Error Log
	Use the Process Report
	Scheduling Runtime Statistics in the Process Report
	Viewing Record Counts in the Process Report
	Prevent SQL Errors from Filling the Replicat Report File

	Use the Discard File
	Maintain Discard and Report Files
	Parameters Used to Interpret Synchronization Lag

	Tuning
	Tuning the Performance of Oracle GoldenGate

	11 Autonomous Database
	About Capturing and Replicating Data Using Autonomous Databases
	Details of Support When Using Oracle GoldenGate with Autonomous Databases
	Configure Extract to Capture from an Autonomous Database
	Establishing Oracle GoldenGate Credentials
	Prerequisites for Configuring Oracle GoldenGate Extract to Capture from Autonomous Databases
	Configure Extract to Capture from an Autonomous Database

	Configure Replicat to Apply to an Oracle Autonomous Database
	Prerequisites for Configuring Oracle GoldenGate Replicat to an Autonomous Database
	Configure Oracle GoldenGate for an Autonomous Database
	Obtain the Autonomous Database Client Credentials

	Configure Replicat to Apply to an Autonomous Database

	12 Upgrade
	Obtaining the Oracle GoldenGate Distribution
	Prerequisites
	Oracle GoldenGate Upgrade Considerations
	Extract Upgrade Considerations
	Replicat Upgrade Considerations

	Upgrading Oracle GoldenGate Microservices – GUI Based
	Upgrading Oracle GoldenGate Microservices Using REST APIs

	13 Appendix
	Using the LogDump Utility to Access Trail File Records
	Trail Recovery Mode
	Trail Record Format
	Trail File Header Record
	Partition Name Record in Trail File Header
	Viewing the Partition Name and PNR Index in Logdump
	Example of an Oracle GoldenGate Record
	Record Header Area
	Description of Header Fields
	Using Header Data
	Record Data Area
	Full Record Image Format (NonStop Sources)

	Compressed Record Image Format (Windows, UNIX, Linux Sources)

	Tokens Area
	Oracle GoldenGate Operation Types

	Checkpoint Tables Additional Details
	Internal Checkpoint Information
	INFO EXTRACT SHOWCH Command: Checkpoint Information
	INFO REPLICAT, SHOWCH: Checkpoint Information

	Supported Character Sets
	Supported Character Sets - Oracle
	Supported Character Sets - Non-Oracle

	Supported Locales
	Commit Sequence Number (CSN)
	Using the Commit Sequence Number

	Connecting Microservices and Classic Architectures
	Connect Oracle GoldenGate Classic Architecture to Microservices Architecture
	Connect Oracle GoldenGate Microservices Architecture to Classic Architecture

