
Oracle® GoldenGate
Oracle GoldenGate for Distributed
Applications and Analytics

21c (21.1.0.0.0)
F26378-23
March 2025

Oracle GoldenGate Oracle GoldenGate for Distributed Applications and Analytics, 21c (21.1.0.0.0)

F26378-23

Copyright © 2015, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiv

Documentation Accessibility xiv

Conventions xiv

Related Information xv

1 Overview

1.1 Understanding Oracle GoldenGate for Distributed Applications and Analytics 1-1

1.1.1 Understanding Oracle GoldenGate for Distributed Applications and Analytics 1-1

1.1.1.1 Oracle GoldenGate VAM Message Capture 1-2

1.1.1.2 Oracle GoldenGate Java Delivery 1-3

1.1.1.3 Delivery Configuration Options 1-4

1.1.1.4 Adapter Integration Options 1-5

1.1.1.5 Using Oracle GoldenGate Java Adapter Properties 1-6

1.1.1.6 Monitoring Performance 1-8

1.2 What’s Supported in Oracle GoldenGate for Distributed Applications and Analytics 1-8

1.2.1 Verifying Certification and System Requirements 1-8

1.2.2 Understanding Handler Compatibility 1-9

1.2.3 What are the Additional Support Considerations? 1-9

1.3 Dependency Downloader 1-10

1.3.1 Dependency Downloader Setup 1-10

1.3.2 Running the Dependency Downloader Scripts 1-11

1.3.3 Dependency Downloader Scripts 1-12

2 Get Started

2.1 Getting Started with Oracle GoldenGate for Distributed Applications and Analytics 2-1

2.1.1 Working With Deployments 2-1

2.1.2 About Oracle GoldenGate Properties Files 2-2

2.1.2.1 Parameter Files 2-2

2.1.3 Using the Admin Client 2-2

2.1.4 Controlling Oracle GoldenGate (Microservices Architecture) Processes 2-2

iii

3 Prepare

3.1 Preparing for Installation 3-1

3.1.1 Downloading Oracle GoldenGate for Distributed Applications and Analytics 3-1

3.1.2 Installation Overview 3-2

3.1.2.1 Contents of the Installation ZIP File 3-2

3.1.2.2 Using the Generic Build of Oracle GoldenGate 3-3

3.1.2.3 Considerations for Using a Custom Build for a GoldenGate for Distributed
Applications and Analytics Instance of Oracle GoldenGate 3-3

3.1.2.4 Installing to a Non-Generic Instance of Oracle GoldenGate 3-3

3.1.3 Directories and Variables in Microservices Architecture 3-4

3.1.4 Setting up Environmental Variables 3-6

3.1.4.1 Java on Linux/UNIX 3-7

3.1.4.2 Java on Windows 3-7

4 Install

4.1 Setting up Oracle GoldenGate for Distributed Applications and Analytics in a High
Availability Environment 4-1

4.1.1 Running GG for DAA from a Single Instance 4-1

4.1.2 Running GG for DAA on a Cluster of Servers 4-1

4.1.3 Shared Storage 4-2

4.2 Installing Oracle GoldenGate for Distributed Applications and Analytics 4-2

4.2.1 Installing Oracle GoldenGate MA for Distributed Applications and Analytics
Using the UI 4-3

4.2.2 Silent Installation 4-4

4.2.3 Setting Up Secure or Non-Secure Deployments 4-4

4.2.3.1 How to Add Secure or Non-Secure Deployments 4-5

4.2.3.2 How to Remove a Deployment 4-10

5 Upgrade

5.1 Upgrading Oracle GoldenGate for Distributed Applications and Analytics 5-1

5.1.1 Obtaining the Oracle GoldenGate Distribution 5-1

5.1.2 Scope of Upgrade 5-2

5.1.2.1 Replicat Upgrade Considerations 5-2

5.1.3 Upgrading Oracle GoldenGate for Distributed Applications and Analytics – GUI
Based 5-2

6 Configure

6.1 Configuring Oracle GoldenGate for Distributed Applications and Analytics 6-1

6.1.1 Running with Replicat 6-1

6.1.1.1 Replicat Grouping 6-2

iv

6.1.1.2 About Replicat Checkpointing 6-2

6.1.1.3 About Initial Load Support 6-2

6.1.1.4 About the Unsupported Replicat Features 6-2

6.1.1.5 How the Mapping Functionality Works 6-2

6.1.2 About Schema Evolution and Metadata Change Events 6-2

6.1.3 About Configuration Property CDATA[] Wrapping 6-3

6.1.4 Using Regular Expression Search and Replace 6-3

6.1.4.1 Using Schema Data Replace 6-4

6.1.4.2 Using Content Data Replace 6-4

6.1.5 Scaling Oracle GoldenGate for Distributed Applications and Analytics Delivery 6-5

6.1.6 Configuring Cluster High Availability 6-8

6.1.7 Using Identities in Oracle GoldenGate Credential Store 6-9

6.1.7.1 Creating a Credential Store 6-9

6.1.7.2 Adding Users to a Credential Store 6-9

6.1.7.3 Configuring Properties to Access the Credential Store 6-10

6.2 Logging 6-11

6.2.1 About Replicat Process Logging 6-11

6.2.2 About Java Layer Logging 6-11

6.3 Configuring Logging 6-12

6.3.1 Oracle GoldenGate Java Adapter Default Logging 6-12

6.3.1.1 Default Logging Setup 6-12

6.3.1.2 Log File Name 6-13

6.3.1.3 Changing Logging Level 6-13

6.3.2 Recommended Logging Settings 6-13

6.3.2.1 Changing to the Recommended Logging Type 6-13

7 Quickstarts

7.1 QuickStarts: Prerequisites 7-1

7.2 Google Cloud Platform Big Query Stage and Merge Replication 7-1

7.2.1 Prerequisites: Google Cloud Platform BigQuery Stage and Merge Replicat And
Google Cloud Storage Replication 7-2

7.2.2 Install Dependency Files 7-2

7.2.3 Create a Replicat in Oracle GoldenGate for Big Data 7-3

7.3 Google Cloud Storage Replication 7-6

7.3.1 Install Dependency Files 7-7

7.3.2 Create a Replicat in Oracle GoldenGate for Big Data 7-7

7.4 Realtime Replication into Oracle Cloud Infrastructure (OCI) Streaming with GG for
DAA 7-11

7.4.1 Install Dependency Files 7-11

7.4.2 Create Kafka Producer Properties File 7-11

7.4.3 Create a Replicat in Oracle GoldenGate for Big Data 7-12

v

7.5 Realtime Parquet Ingestion into AWS S3 Buckets with Oracle GoldenGate for
Distributed Applications and Analytics 7-15

7.5.1 Install Dependency Files 7-15

7.5.2 Create a Replicat in Oracle GoldenGate for Big Data 7-16

7.6 Realtime Data Ingestion into Kafka with Oracle GoldenGate for Distributed
Applications and Analytics 7-20

7.6.1 Install Dependency Files 7-20

7.6.2 Create Kafka Producer Properties File 7-21

7.6.3 Create a Replicat in Oracle GoldenGate for Big Data 7-21

7.7 Realtime Message Streaming to AWS Kinesis 7-24

7.7.1 Install Dependency Files 7-24

7.7.2 Create a Replicat in Oracle GoldenGate for Distributed Applications and
Analytics 7-25

8 Replicate Data

8.1 Source 8-1

8.1.1 Amazon MSK 8-2

8.1.2 Apache Cassandra 8-2

8.1.2.1 Overview 8-3

8.1.2.2 Setting Up Cassandra Extract Change Data Capture 8-3

8.1.2.3 Deduplication 8-6

8.1.2.4 Topology Changes 8-6

8.1.2.5 Data Availability in the CDC Logs 8-6

8.1.2.6 Using Initial Load Extract 8-6

8.1.2.7 Using Change Data Capture Extract 8-6

8.1.2.8 Replicating to RDMBS Targets 8-9

8.1.2.9 Partition Update or Insert of Static Columns 8-9

8.1.2.10 Partition Delete 8-10

8.1.2.11 Security and Authentication 8-10

8.1.2.12 Cleanup of CDC Commit Log Files 8-12

8.1.2.13 Multiple Extract Support 8-17

8.1.2.14 CDC Configuration Reference 8-17

8.1.2.15 Troubleshooting 8-31

8.1.2.16 Cassandra Capture Client Dependencies 8-35

8.1.3 Apache Kafka 8-35

8.1.3.1 Overview 8-35

8.1.3.2 Prerequisites 8-36

8.1.3.3 General Terms and Functionality of Kafka Capture 8-36

8.1.3.4 Generic Mutation Builder 8-42

8.1.3.5 Kafka Connect Mutation Builder 8-43

8.1.3.6 Example Configuration Files 8-46

8.1.4 Azure Event Hubs 8-46

vi

8.1.5 Confluent Kafka 8-46

8.1.6 DataStax 8-47

8.1.7 Java Message Service (JMS) 8-47

8.1.7.1 Prerequisites 8-47

8.1.7.2 Configuring Message Capture 8-47

8.1.8 MongoDB 8-50

8.1.8.1 Overview 8-50

8.1.8.2 Prerequisites to Setting up MongoDB 8-50

8.1.8.3 MongoDB Database Operations 8-52

8.1.8.4 Using Extract Initial Load 8-52

8.1.8.5 Using Change Data Capture Extract 8-53

8.1.8.6 Positioning the Extract 8-53

8.1.8.7 Security and Authentication 8-54

8.1.8.8 MongoDB Bidirectional Replication 8-57

8.1.8.9 Mongo DB Configuration Reference 8-60

8.1.8.10 Columns in Trail File 8-69

8.1.8.11 Update Operation Behavior 8-70

8.1.8.12 Oplog Size Recommendations 8-72

8.1.8.13 Troubleshooting 8-72

8.1.8.14 MongoDB Capture Client Dependencies 8-73

8.1.9 OCI Streaming 8-75

8.2 Target 8-75

8.2.1 Amazon Kinesis 8-77

8.2.1.1 Overview 8-77

8.2.1.2 Detailed Functionality 8-77

8.2.1.3 Setting Up and Running the Kinesis Streams Handler 8-78

8.2.1.4 Kinesis Handler Performance Considerations 8-88

8.2.1.5 Troubleshooting 8-89

8.2.2 Amazon MSK 8-90

8.2.3 Amazon Redshift 8-90

8.2.3.1 Detailed Functionality 8-91

8.2.3.2 Operation Aggregation 8-91

8.2.3.3 Unsupported Operations and Limitations 8-92

8.2.3.4 Uncompressed UPDATE records 8-92

8.2.3.5 Error During the Data Load Proces 8-92

8.2.3.6 Troubleshooting and Diagnostics 8-92

8.2.3.7 Classpath 8-93

8.2.3.8 Configuration 8-94

8.2.3.9 INSERTALLRECORDS Support 8-103

8.2.3.10 Redshift COPY SQL Authorization 8-103

8.2.3.11 Co-ordinated Apply Support 8-105

8.2.3.12 Support for Mixed Case Identifiers 8-105

vii

8.2.4 Amazon S3 8-105

8.2.4.1 Overview 8-105

8.2.4.2 Detailing Functionality 8-105

8.2.4.3 Configuring the S3 Event Handler 8-107

8.2.5 Apache Cassandra 8-111

8.2.5.1 Overview 8-112

8.2.5.2 Detailing the Functionality 8-112

8.2.5.3 Setting Up and Running the Cassandra Handler 8-117

8.2.5.4 About Automated DDL Handling 8-123

8.2.5.5 Performance Considerations 8-124

8.2.5.6 Additional Considerations 8-124

8.2.5.7 Troubleshooting 8-125

8.2.5.8 Cassandra Handler Client Dependencies 8-126

8.2.6 Apache HBase 8-128

8.2.6.1 Overview 8-128

8.2.6.2 Detailed Functionality 8-128

8.2.6.3 Setting Up and Running the HBase Handler 8-129

8.2.6.4 Security 8-133

8.2.6.5 Metadata Change Events 8-134

8.2.6.6 Additional Considerations 8-134

8.2.6.7 Troubleshooting the HBase Handler 8-134

8.2.6.8 HBase Handler Client Dependencies 8-136

8.2.7 Apache HDFS 8-147

8.2.7.1 Overview 8-148

8.2.7.2 Writing into HDFS in SequenceFile Format 8-148

8.2.7.3 Setting Up and Running the HDFS Handler 8-149

8.2.7.4 Writing in HDFS in Avro Object Container File Format 8-155

8.2.7.5 Generating HDFS File Names Using Template Strings 8-156

8.2.7.6 Metadata Change Events 8-156

8.2.7.7 Partitioning 8-157

8.2.7.8 HDFS Additional Considerations 8-158

8.2.7.9 Best Practices 8-159

8.2.7.10 Troubleshooting the HDFS Handler 8-159

8.2.7.11 HDFS Handler Client Dependencies 8-161

8.2.8 Apache Kafka 8-177

8.2.8.1 Apache Kafka 8-177

8.2.8.2 Apache Kafka Connect Handler 8-192

8.2.8.3 Apache Kafka REST Proxy 8-219

8.2.9 Apache Hive 8-231

8.2.10 Azure Blob Storage 8-231

8.2.10.1 Overview 8-232

8.2.10.2 Prerequisites 8-232

viii

8.2.10.3 Storage Account, Container, and Objects 8-232

8.2.10.4 Configuration 8-232

8.2.10.5 Troubleshooting and Diagnostics 8-237

8.2.11 Azure Data Lake Storage 8-237

8.2.11.1 Azure Data Lake Gen1 (ADLS Gen1) 8-237

8.2.11.2 Azure Data Lake Gen2 using Hadoop Client and ABFS 8-238

8.2.11.3 Azure Data Lake Gen2 using BLOB endpoint 8-241

8.2.12 Azure Event Hubs 8-241

8.2.13 Azure Synapse Analytics Data Warehouse 8-242

8.2.13.1 Detailed Functionality 8-242

8.2.13.2 Configuration 8-243

8.2.13.3 Troubleshooting and Diagnostics 8-250

8.2.14 Confluent Kafka 8-251

8.2.15 DataStax 8-251

8.2.16 Elasticsearch 8-252

8.2.16.1 Elasticsearch with Elasticsearch 7x and 6x 8-252

8.2.16.2 Elasticsearch 8x 8-268

8.2.17 Flat Files 8-278

8.2.17.1 File Writer Handler 8-279

8.2.17.2 Optimized Row Columnar (ORC) 8-294

8.2.17.3 Parquet 8-299

8.2.18 Google BigQuery 8-304

8.2.18.1 Using Streaming API 8-304

8.2.18.2 Google BigQuery Stage and Merge 8-313

8.2.19 Google Cloud Storage 8-330

8.2.19.1 Overview 8-330

8.2.19.2 Prerequisites 8-330

8.2.19.3 Buckets and Objects 8-331

8.2.19.4 Authentication and Authorization 8-331

8.2.19.5 Configuration 8-332

8.2.20 Java Message Service (JMS) 8-344

8.2.20.1 Overview 8-344

8.2.20.2 Setting Up and Running the JMS Handler 8-345

8.2.20.3 JMS Dependencies 8-351

8.2.21 Java Database Connectivity 8-352

8.2.21.1 Overview 8-352

8.2.21.2 Detailed Functionality 8-352

8.2.21.3 Setting Up and Running the JDBC Handler 8-354

8.2.21.4 Sample Configurations 8-357

8.2.22 Map(R) 8-359

8.2.23 MongoDB 8-359

8.2.23.1 Overview 8-360

ix

8.2.23.2 MongoDB Wire Protocol 8-360

8.2.23.3 Supported Target Types 8-360

8.2.23.4 Detailed Functionality 8-360

8.2.23.5 Setting Up and Running the MongoDB Handler 8-361

8.2.23.6 Security and Authentication 8-364

8.2.23.7 Reviewing Sample Configurations 8-367

8.2.23.8 MongoDB to AJD/ATP Migration 8-368

8.2.23.9 Configuring an Initial Synchronization of Extract for a MongoDB Source
Database using Precise Instantiation 8-370

8.2.23.10 MongoDB Handler Client Dependencies 8-375

8.2.24 Netezza 8-376

8.2.25 OCI Streaming 8-376

8.2.26 Oracle NoSQL 8-379

8.2.26.1 Overview 8-380

8.2.26.2 On-Premise Connectivity 8-380

8.2.26.3 OCI Cloud Connectivity 8-381

8.2.26.4 Oracle NoSQL Types 8-382

8.2.26.5 Oracle NoSQL Handler Configuration 8-383

8.2.26.6 Performance Considerations 8-386

8.2.26.7 Operation Processing Support 8-386

8.2.26.8 Column Processing 8-387

8.2.26.9 Table Check and Reconciliation Process 8-387

8.2.26.10 Oracle NoSQL SDK Dependencies 8-388

8.2.27 OCI Autonomous Data Warehouse 8-388

8.2.27.1 Detailed Functionality 8-389

8.2.27.2 ADW Database Credential to Access OCI ObjectStore File 8-389

8.2.27.3 ADW Database User Privileges 8-389

8.2.27.4 Unsupported Operations/ Limitations 8-390

8.2.27.5 Troubleshooting and Diagnostics 8-390

8.2.27.6 Classpath 8-393

8.2.27.7 Configuration 8-393

8.2.28 Oracle Cloud Infrastructure Object Storage 8-397

8.2.28.1 Overview 8-397

8.2.28.2 Detailing the Functionality 8-398

8.2.28.3 Configuration 8-398

8.2.28.4 Configuring Credentials for Oracle Cloud Infrastructure 8-403

8.2.28.5 Troubleshooting 8-404

8.2.28.6 OCI Dependencies 8-405

8.2.29 Redis 8-407

8.2.29.1 Data Structures Supported by the Redis Handler 8-407

8.2.29.2 Redis Handler Configuration Properties 8-411

8.2.29.3 Security 8-415

x

8.2.29.4 Authentication Using Credentials 8-415

8.2.29.5 SSL Basic Auth 8-415

8.2.29.6 SSL Mutual Auth 8-416

8.2.29.7 Redis Handler Dependencies 8-416

8.2.29.8 Redis Handler Client Dependencies 8-417

8.2.30 Snowflake 8-417

8.2.30.1 Overview 8-417

8.2.30.2 Detailed Functionality 8-417

8.2.30.3 Configuration 8-418

8.2.30.4 Troubleshooting and Diagnostics 8-434

8.2.31 Additional Details 8-436

8.2.31.1 Command Event Handler 8-437

8.2.31.2 HDFS Event Handler 8-439

8.2.31.3 Metacolumn Keywords 8-441

8.2.31.4 Metadata Providers 8-444

8.2.31.5 Pluggable Formatters 8-465

8.2.31.6 Stage and Merge Data Warehouse Replication 8-540

8.2.31.7 Template Keywords 8-546

8.2.31.8 Velocity Dependencies 8-553

9 Administer

9.1 Automatic Heartbeat for Oracle GoldenGate for Distributed Applications and Analytics 9-1

9.1.1 Overview 9-1

9.1.2 Automatic Heartbeat Tables 9-2

9.1.2.1 ADD HEARTBEATTABLE 9-2

9.1.2.2 ALTER HEARTBEAT TABLE 9-3

9.1.2.3 INFO HEARTBEATTABLE 9-3

9.1.2.4 LAG 9-3

9.1.2.5 DELETE HEARTBEATTABLE 9-4

9.2 Parsing the Message 9-4

9.2.1 Parsing Overview 9-4

9.2.1.1 Parser Types 9-4

9.2.1.2 Source and Target Data Definitions 9-5

9.2.1.3 Required Data 9-5

9.2.1.4 Optional Data 9-7

9.2.2 Fixed Width Parsing 9-7

9.2.2.1 Header 9-8

9.2.2.2 Header and Record Data Type Translation 9-9

9.2.2.3 Key identification 9-10

9.2.2.4 Using a Source Definition File 9-10

9.2.3 Delimited Parsing 9-11

xi

9.2.3.1 Metadata Columns 9-12

9.2.3.2 Parsing Properties 9-12

9.2.3.3 Parsing Steps 9-13

9.2.4 XML Parsing 9-13

9.2.4.1 Styles of XML 9-14

9.2.4.2 XML Parsing Rules 9-14

9.2.4.3 XPath Expressions 9-15

9.2.4.4 Other Value Expressions 9-17

9.2.4.5 Transaction Rules 9-17

9.2.4.6 Operation Rules 9-18

9.2.4.7 Column Rules 9-19

9.2.4.8 Overall Rules Example 9-20

9.2.5 Source Definitions Generation Utility 9-21

9.3 Message Capture Properties 9-21

9.3.1 Logging and Connection Properties 9-21

9.3.1.1 Logging Properties 9-21

9.3.1.2 JMS Connection Properties 9-22

9.3.1.3 JNDI Properties 9-25

9.3.2 Parser Properties 9-25

9.3.2.1 Setting the Type of Parser 9-25

9.3.2.2 Fixed Parser Properties 9-26

9.3.2.3 Delimited Parser Properties 9-31

9.3.2.4 XML Parser Properties 9-40

9.4 Oracle GoldenGate Java Delivery 9-50

9.4.1 Configuring Java Delivery 9-50

9.4.1.1 Configuring the JRE in the Properties File 9-50

9.4.1.2 Configuring Oracle GoldenGate for Java Delivery 9-51

9.4.1.3 Configuring the Java Handlers 9-52

9.4.2 Running Java Delivery 9-53

9.4.2.1 Starting the Application 9-53

9.4.2.2 Restarting the Java Delivery 9-54

9.4.3 Java Delivery Properties 9-55

9.4.3.1 Common Properties 9-55

9.4.3.2 Delivery Properties 9-57

9.4.3.3 Java Application Properties 9-59

9.4.4 Developing Custom Filters, Formatters, and Handlers 9-70

9.4.4.1 Filtering Events 9-70

9.4.4.2 Custom Formatting 9-70

9.4.4.3 Coding a Custom Handler in Java 9-73

9.4.4.4 Additional Resources 9-75

9.4.5 Configuring Data Transforms 9-76

9.4.5.1 Built-in Regex Based Data Transforms 9-76

xii

9.4.5.2 Developing Custom Data Transforms 9-78

9.4.5.3 Troubleshooting and Diagnostics 9-79

10

Troubleshoot

10.1 Troubleshooting the Java Adapters 10-1

10.1.1 Checking for Errors 10-1

10.1.2 Reporting Issues 10-2

xiii

Preface

This Article contains information about configuring, and running Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) to extend the capabilities of Oracle
GoldenGate instances. Learn about Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) concepts and features, including how to setup and configure both the
Classic as well as Microservices environments, and use the Handlers supported.

• Audience

• Documentation Accessibility

• Conventions

• Related Information

Audience
This guide is intended for system administrators who are configuring and running Oracle
GoldenGate for Distributed Applications and Analytics (GG for DAA).

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Information
• Oracle GoldenGate Product Documentation Libraries

• Oracle GoldenGate for Distributed Applications and Analytics

Preface

xv

https://docs.oracle.com/en/middleware/goldengate/index.html
https://docs.oracle.com/en/middleware/goldengate/big-data/23/index.html

1
Overview

• Understanding Oracle GoldenGate for Distributed Applications and Analytics

• What’s Supported in Oracle GoldenGate for Distributed Applications and Analytics

• Dependency Downloader
Utility scripts are located in the {GGforDAA install}/DependencyDownloader directory to
download client dependency jars for the various supported Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) integrations.

1.1 Understanding Oracle GoldenGate for Distributed
Applications and Analytics

This section describes the concepts and basic structure of the Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA).

Watch this video for an introduction to Oracle GoldenGate Microservices: Introduction to
GoldenGate Microservices

• Understanding Oracle GoldenGate for Distributed Applications and Analytics

1.1.1 Understanding Oracle GoldenGate for Distributed Applications and
Analytics

The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) integrates with
Oracle GoldenGate instances.

The Oracle GoldenGate product enables you to:

• Capture transactional changes from a source database.

• Sends and queues these changes as a set of database-independent files called the Oracle
GoldenGate trail.

• Optionally alters the source data using mapping parameters and functions.

• Applies the transactions in the trail to a target system database.

Oracle GoldenGate performs this capture and apply in near real-time across heterogeneous
databases, platforms, and operating systems.

• Oracle GoldenGate VAM Message Capture

• Oracle GoldenGate Java Delivery

• Delivery Configuration Options

• Adapter Integration Options

• Using Oracle GoldenGate Java Adapter Properties

• Monitoring Performance

1-1

https://youtu.be/aekcNiAYC7k
https://youtu.be/aekcNiAYC7k

1.1.1.1 Oracle GoldenGate VAM Message Capture
Oracle GoldenGate VAM Message Capture only works with the Oracle GoldenGate Extract
process. Oracle GoldenGate message capture connects to JMS messaging to parse
messages and send them through a VAM interface to an Oracle GoldenGate Extract process
that builds an Oracle GoldenGate trail of message data. This allows JMS messages to be
delivered to an Oracle GoldenGate system running for a target database. Java 8 is a required
dependency for Oracle GoldenGate VAM Message Capture.

Using Oracle GoldenGate JMS message capture requires the dynamically linked shared VAM
library that is attached to the Oracle GoldenGate Extract process.

• Message Capture Configuration Options

• Typical Configuration

1.1.1.1.1 Message Capture Configuration Options
The options for configuring the three parts of message capture are:

• Message connectivity: Values in the property file set connection properties such as the
Java classpath for the JMS client, the JMS source destination name, JNDI connection
properties, and security information.

• Parsing: Values in the property file set parsing rules for fixed width, comma delimited, or
XML messages. This includes settings such as the delimiter to be used, values for the
beginning and end of transactions and the date format.

• VAM interface: Parameters that identify the VAM, dll, or so library and a property file are
set for the Oracle GoldenGate core Extract process.

1.1.1.1.2 Typical Configuration
The following diagram shows a typical configuration for capturing JMS messages.

Chapter 1
Understanding Oracle GoldenGate for Distributed Applications and Analytics

1-2

Figure 1-1 Configuration for JMS Message Capture

In this configuration, JMS messages are picked up by the Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) JMS Handler and transferred using the adapter's
message capture VAM to an Extract process. The Extract writes the data to a trail which is sent
over the network by a Data Pump Extract to an Oracle GoldenGate target instance. The target
Replicat then uses the trail to update the target database.

1.1.1.2 Oracle GoldenGate Java Delivery
Through the Oracle GoldenGate Java API, transactional data captured by Oracle GoldenGate
can be delivered to targets other than a relational database, such as a JMS (Java Message
Service), files written to disk, streaming data to a Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) application, or integration with a custom application
Java API. Oracle GoldenGate Java Delivery can work with either an Extract or Replicat
process. Using the Oracle GoldenGate Replicat process is considered the best practice.
Oracle GoldenGate Java Delivery requires Java 8 as a dependency.

Oracle GoldenGate for Java provides the ability to execute Java code from the Oracle
GoldenGate Replicat process. Using Oracle GoldenGate for Java requires the following
conditions to be met:

• A dynamically linked or shared library, implemented in C/C++, integrating an extension
module of Oracle GoldenGate Replicat process.

• A set of Java libraries (JARs), which comprise the Oracle GoldenGate Java API. This Java
framework communicates with the Replicat through the Java Native Interface (JNI).

• Java 8 must be installed and accessible on the machine hosting the Oracle GoldenGate
Java Delivery process or processes. Environmental variables must be correctly set to
resolve Java and its associated libraries.

Chapter 1
Understanding Oracle GoldenGate for Distributed Applications and Analytics

1-3

Figure 1-2 Configuration for Delivering JMS Messages

1.1.1.3 Delivery Configuration Options
The Java delivery module is loaded by the GoldenGate Replicat process, which is configured
using the Replicat parameter file. Upon loading, the Java Delivery module is subsequently
configured based on the configuration present in the Adapter Properties file. Application
behavior can be customized by:

• Editing the property files; for example to:

– Set target types, host names, port numbers, output file names, JMS connection
settings;

– Turn on/off debug-level logging, and so on.

– Identify which message format should be used.

• Records can be custom formatted by:

– Setting properties for the pre-existing format process (for fixed-length or field-delimited
message formats, XML, JSON, or Avro formats);

– Customizing message templates, using the Velocity template macro language;

– (Optional) Writing custom Java code.

• (Optional) Writing custom Java code to provide custom handling of transactions and
operations, do filtering, or implementing custom message formats.

There are existing implementations (handlers) for sending messages using JMS and for writing
out files to disk. For Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA) targets, there are built in integration handlers to write to supported databases.

Chapter 1
Understanding Oracle GoldenGate for Distributed Applications and Analytics

1-4

There are several predefined message formats for sending the messages (for example, XML
or field-delimited); or custom formats can be implemented using templates. Each handler has
documentation that describes its configuration properties; for example, a file name can be
specified for a file writer, and a JMS queue name can be specified for the JMS handler. Some
properties apply to more than one handler; for example, the same message format can be
used for JMS and files.

1.1.1.4 Adapter Integration Options
There are two major products which are based on the Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) architecture:

• The Oracle GoldenGate Java Adapter is the overall framework. This product allows you to
implement custom code to handle Oracle GoldenGate trail records according to their
specific requirements. It comes built-in with Oracle GoldenGate File Writer module that can
be used for flat file integration purposes.

• GG for DAA. The GG for DAA product contains built-in support to write operation data from
Oracle GoldenGate trail records into various GG for DAA targets (such as, HDFS, HBase,
Kafka, Flume, JDBC, Cassandra, and MongoDB). You do not need to write custom code to
integrate with GG for DAA applications. The functionality is separated into handlers that
integrate with third party applications and formatters, which transform the data into various
formats, such as Avro, JSON, delimited text, and XML. In certain instances, the integration
to a third-party tool is proprietary, like the HBase API. In these instances, the formatter
exists without an associated handler.

The Oracle GoldenGate Java Adapter and the GG for DAA products have some crossover in
functionality so the handler exists without an associated formatter. The following list details the
major areas of functionality and in which product or products the functionality is included:

• Read JMS messages and deliver them as an Oracle GoldenGate trail. This feature is
included in GG for DAA.

• Read an Oracle GoldenGate trail and deliver transactions to a JMS provider or other
messaging system or custom application. This feature is included in GG for DAA products.

• Read an Oracle GoldenGate trail and write transactions to a file that can be used by other
applications. This feature is only included in GG for DAA.

• Read an Oracle GoldenGate trail and write transactions to a GG for DAA targets. The GG
for DAA integration features are only included in GG for DAA product.

• Capturing Transactions to a Trail

• Applying Transactions from a Trail

1.1.1.4.1 Capturing Transactions to a Trail
Oracle GoldenGate message capture can be used to read messages from a queue and
communicate with an Oracle GoldenGate Extract process to generate a trail containing the
processed data.

The message capture processing is implemented as a Vendor Access Module (VAM) plug-in to
a generic Extract process. A set of properties, rules and external files provide messaging
connectivity information and define how messages are parsed and mapped to records in the
target Oracle GoldenGate trail.

Currently this adapter supports capturing JMS text messages.

Chapter 1
Understanding Oracle GoldenGate for Distributed Applications and Analytics

1-5

1.1.1.4.2 Applying Transactions from a Trail
Oracle GoldenGate Java Adapter delivery can be used to apply transactional changes to
targets other than a relational database: for example, ETL tools (DataStage, Ab Initio,
Informatica), JMS messaging, Oracle GoldenGate for Distributed Applications and Analytics
(GG for DAA) Applications, or custom APIs. There are a variety of options for integration with
Oracle GoldenGate:

• Flat file integration: predominantly for ETL, proprietary or legacy applications, Oracle
GoldenGate File Writer can write micro batches to disk to be consumed by tools that
expect batch file input. The data is formatted to the specifications of the target application
such as delimiter separated values, length delimited values, or binary. Near real-time feeds
to these systems are accomplished by decreasing the time window for batch file rollover to
minutes or even seconds.

• Messaging: transactions or operations can be published as messages (for example, in
XML) to JMS. The JMS provider is configurable to work with multiple JMS implementation;
examples include ActiveMQ, JBoss Messaging, TIBCO, Oracle WebLogic JMS,
WebSphere MQ, and others.

• Java API: custom handlers can be written in Java to process the transaction, operation and
metadata changes captured by Oracle GoldenGate on the source system. These custom
Java handlers can apply these changes to a third-party Java API exposed by the target
system.

• GG for DAA integration: writing transaction data from the source trail files into various GG
for DAA targets can be achieved by means of setting configuration properties. The GG for
DAA product contains built in GG for DAA handlers to write to HDFS, HBase, Kafka, and
Flume targets.

All four options have been implemented as extensions to the core Oracle GoldenGate product.

• For Java integration using either JMS or the Java API, use Oracle GoldenGate for Java.

• For GG for DAA integration, you can configure Oracle GoldenGate Replicat to integrate
with the GG for DAA module. Writing to GG for DAA targets in various formats can be
configured using a set of properties with no programming required.

1.1.1.5 Using Oracle GoldenGate Java Adapter Properties
The Oracle GoldenGate Java Adapters, GoldenGate for Distributed Applications and Analytics
(GG for DAA) Handlers, and formatters are configured through predefined properties. These
properties are stored in a separate properties file called the Adapter Properties file. Oracle
GoldenGate functionality requires that the Replicat process configuration files must be in the
dirprm directory and that configuration files must adhere to the following naming conventions:

Replicat process name.prm
It is considered to be a best practice that the Adapter Properties files are also located in the
dirprm directory and that the Adapter Properties files adhere to one of the following naming
conventions:

Replicat process name.props
or

Replicat process name.properties
• Values in Property Files

Chapter 1
Understanding Oracle GoldenGate for Distributed Applications and Analytics

1-6

• Location of Property Files

• Using Comments in the Property File

• Variables in Property Names

1.1.1.5.1 Values in Property Files
All properties in GG for DAA property files are of the form:

property.name=value

1.1.1.5.2 Location of Property Files
Sample GG for DAA properties files are installed to the AdapterExamples subdirectory of the
installation directory. These files should be copied, renamed, and the contents modified as
needed and then moved to the dirprm subdirectory.

You must specify each of these property files through parameters or environmental variables
as explained below. These settings allow you to change the name or location, but it is
recommended that you follow the best practice for naming and location.

The following sample files are included:

• ffwriter.properties
This stores the properties for the file writer. It is set with the CUSEREXIT parameter.

• jmsvam.properties
This stores properties for the JMS message capture VAM. This is set with the Extract VAM
parameter.

• javaue.properties
This stores properties for the Java application used for message delivery. It is set through
the environmental variable:

The name and location of the Adapter properties file is resolved by configuration in the
Replicat process properties file.

The following explains how to resolve the name and location of the Adapter Properties file
in the Replicat process.

TARGETDB LIBFILE libggjava.so SET property=dirprm/javaue.properties

1.1.1.5.3 Using Comments in the Property File
Comments can be entered in the properties file with the # prefix at the beginning of the line.
For example:

This is a property comment
some.property=value

Properties themselves can also be commented. This allows testing configurations without
losing previous property settings.

1.1.1.5.4 Variables in Property Names
Some properties have a variable in the property name. This allows identification of properties
that are to be applied only in certain instances.

Chapter 1
Understanding Oracle GoldenGate for Distributed Applications and Analytics

1-7

For example, you can declare more than one file writer using
goldengate.flatfilewriter.writers property and then use the name of the file writer to set
the properties differently:

1. Declare two file writers named writer and writer2:

goldengate.flatfilewriter.writers=writer,writer2
2. Specify the properties for each of the file writers:

writer.mode=dsv
writer.files.onepertable=true
writer2.mode=ldv
writer2.files.onpertable=false

1.1.1.6 Monitoring Performance

For more information about monitoring the performance, see Monitor Performance from the
Performance Metrics Service in Using Oracle GoldenGate Microservices Architecture.

1.2 What’s Supported in Oracle GoldenGate for Distributed
Applications and Analytics

• Verifying Certification and System Requirements
Oracle recommends that you use the certification matrix and system requirements
documents with each other to verify that your environment meets the requirements for
installation.

• Understanding Handler Compatibility

• What are the Additional Support Considerations?

1.2.1 Verifying Certification and System Requirements
Oracle recommends that you use the certification matrix and system requirements documents
with each other to verify that your environment meets the requirements for installation.

1. Verifying that your environment meets certification requirements:
Make sure that you install your product on a supported hardware and software
configuration. See the certification matrix for more details: GoldenGate Certifications.

Oracle has tested and verified the performance of your product on all certified systems and
environments. Whenever new certifications are released, they are added to the certification
document right away. New certifications can be released at any time. Therefore, the
certification documents are kept outside the documentation libraries and are available on
Oracle Technology Network.

2. Using the system requirements document to verify certification:
Oracle recommends that you use the Oracle Fusion Middleware Supported System
Configuration document to verify that the certification requirements are met. For example,
if the certification document indicates that your product is certified for installation on 64-Bit
Oracle Linux 6.5, use this document to verify that your system meets the required
minimum specifications. These include disk space, available memory, specific platform
packages and patches, and other operating system-specific requirements. System
requirements can change in the future. Therefore, the system requirement documents are
kept outside of the documentation libraries and are available on Oracle Technology
Network.

Chapter 1
What’s Supported in Oracle GoldenGate for Distributed Applications and Analytics

1-8

https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/monitor-performance-performance-metrics-service.html#GUID-FC807565-C797-4202-A1C3-E788AEB689C5
https://docs.oracle.com/en/middleware/goldengate/core/21.3/ggmas/monitor-performance-performance-metrics-service.html#GUID-FC807565-C797-4202-A1C3-E788AEB689C5
https://www.oracle.com/in/integration/goldengate/certifications/
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

3. Verifying interoperability among multiple products:
To learn how to install and run multiple Fusion Middleware products from the same release
or mixed releases with each other, see Oracle Fusion Middleware Supported System
Configuration in Oracle Fusion Middleware Understanding Interoperability and
Compatibility.

The compatibility of the GG for DAA handlers with the various data collections, including
distributions, database releases, and drivers is included in the certification document.

1.2.2 Understanding Handler Compatibility
For more information, see the Certification Matrix.

1.2.3 What are the Additional Support Considerations?
This section describes additional Oracle GoldenGate for Distributed Applications and Analytics
(GG for DAA) additional support considerations.

Pluggable Formatters—Support
The handlers support the Pluggable Formatters as follows:

• The File Writer Handler supports all of the pluggable formatters.

• The HDFS Handler supports all of the pluggable formatters.

• Pluggable formatters are not applicable to the HBase Handler. Data is streamed to HBase
using the proprietary HBase client interface.

• The Kafka Handler supports all of the pluggable formatters.

• The Kafka Connect Handler does not support pluggable formatters. You can convert data
to JSON or Avro using Kafka Connect data converters.

• The Kinesis Streams Handler supports all of the pluggable formatters described in the
Using the Pluggable Formatters.

• The Cassandra, MongoDB, and JDBC Handlers do not use a pluggable formatter.

Java Delivery Using Extract
Java Delivery using Extract is not supported. Support for Java Delivery is only supported using
the Replicat process. Replicat provides better performance, better support for checkpointing,
and better control of transaction grouping.

MongoDB Handler—Support

• The handler can only replicate unique rows from source table. If a source table has no
primary key defined and has duplicate rows, replicating the duplicate rows to the
MongoDB target results in a duplicate key error and the Replicat process abends.

• Missed updates and deletes are undetected so are ignored.

• Untested with sharded collections.

• Only supports date and time data types with millisecond precision. These values from a
trail with microseconds or nanoseconds precision are truncated to millisecond precision.

• The datetime data type with timezone in the trail is not supported.

• A maximum BSON document size of 16 MB. If the trail record size exceeds this limit, the
handler cannot replicate the record.

Chapter 1
What’s Supported in Oracle GoldenGate for Distributed Applications and Analytics

1-9

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

• No DDL propagation.

• No truncate operation.

JDBC Handler—Support

• The JDBC handler uses the generic JDBC API, which means any target database with a
JDBC driver implementation should be able to use this handler. There are a myriad of
different databases that support the JDBC API and Oracle cannot certify the JDBC
Handler for all targets.

• The handler supports Replicat using the REPERROR and HANDLECOLLISIONS parameters,
see Reference for Oracle GoldenGate.

• DDL operations are ignored by default and are logged with a WARN level.

• Coordinated Replicat is a multithreaded process that applies transactions in parallel
instead of serially. Each thread handles all of the filtering, mapping, conversion, SQL
construction, and error handling for its assigned workload. A coordinator thread
coordinates transactions across threads to account for dependencies. It ensures that DML
is applied in a synchronized manner preventing certain DMLs from occurring on the same
object at the same time due to row locking, block locking, or table locking issues based on
database specific rules. If there are database locking issue, then Coordinated Replicat
performance can be extremely slow or pauses.

DDL Event Handling
Only the TRUNCATE TABLE DDL statement is supported. All other DDL statements, suh as
CREATE TABLE, CREATE INDEX, and DROP TABLE are ignored.
You can use the TRUNCATE statements one of these ways:

• In a DDL statement, TRUNCATE TABLE, ALTER TABLE TRUNCATE PARTITION, and other DDL
TRUNCATE statements. This uses the DDL parameter.

• Standalone TRUNCATE support, which just has TRUNCATE TABLE. This uses the
GETTRUNCATES parameter.

1.3 Dependency Downloader
Utility scripts are located in the {GGforDAA install}/DependencyDownloader directory to
download client dependency jars for the various supported Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) integrations.

Topics:

• Dependency Downloader Setup

• Running the Dependency Downloader Scripts

• Dependency Downloader Scripts

1.3.1 Dependency Downloader Setup
To complete the Dependency Downloader setup:

1. To verify that Java is installed, execute the following from the command line: java -
version.

Chapter 1
Dependency Downloader

1-10

Note:

The Dependency Downloader utility scripts require Java to run. Ensure that
Oracle Java is downloaded and is available in the PATH on the machine where
the scripts are installed.

2. Configure the proxy settings in the following script: {GGforDAA install}/
DependencyDownloader/config_proxy.sh. Following are the 2 entries in this file:

• #export PROXY_SERVER_HOST=www-proxy-hqdc.us.oracle.com
• #export PROXY_SERVER_PORT=80
To configure the proxy settings:

a. Uncomment the configuration settings. (remove the # at beginning of the lines).

b. Change the host name and port number to your correct proxy server settings.

Note:

Most companies maintain a private network which in turn has a network firewall
to shield it from the public Internet. Additionally, most companies maintain a
forwarding proxy server which serves as a gateway between the customer’s
private network and the public Internet. The Dependency Downloader utilities
must access Maven repositories, which are available on the Internet. Therefore,
you need to supply configuration for HTTP proxy settings in order to download
dependency libraries. Proxy servers are identified by host name and port. If you
do not know whether your company employs a proxy server or the settings, then
contact your IT or network administrators.

The Dependency Downloader uses Bash scripts in order to invoke Maven and download
dependencies. The Bash shell is not supported natively from the Windows Command Prompt.
You can run the Dependency Downloader scripts on Windows, but it requires the installation of
a Unix emulator. A Unix emulator provides a Unix style command line on Windows and
supports various flavors of the Unix shells including Bash. An option for Unix emulators is
Cygwin, which is available free of charge. After Cygwin is installed, the setup process is the
same. Setup and running of the scripts should be done through the Cygwin64 Terminal. See
https://www.cygwin.com/.

1.3.2 Running the Dependency Downloader Scripts
To run the dependency downloader scripts:

1. Use a Unix terminal interface navigate to the following directory: {GGforDAA install}/
DependencyDownloader.

2. Execute the following to run the scripts: ./{the dependency script} {version of the
dependencies to download}
For example: ./aws.sh 1.11.893
Dependency libraries get downloaded to the following directory:

{GGforDAA install}/DependencyDownloader/dependencies/{the dependency
name}_{the_dependency_version}.

Chapter 1
Dependency Downloader

1-11

https://www.cygwin.com/

For example: {GGforDAA install}/DependencyDownloader/dependencies/
aws_sdk_1.11.893.

Ensure that the version string exactly matches the version string of the dependency which is
being downloaded. If a dependency version doesn't exist in the public Maven repository,then it
is not possible to download the dependency and running the script results in an error. Most
public Maven repositories support a web-based GUI whereby you can browse the supported
versions of various dependencies. The exception is the Confluent Maven repository does not
support a web-based GUI. This makes downloading dependencies challenging, because the
version string is not independently verifiable through a web interface.

After the dependencies are successfully downloaded, you must configure the gg.classpath
variable in the Java Adapter properties file to include the dependencies for the corresponding
replicat process.

Note:

Best Practices

1. Whenever possible, use the exact version of the client libraries to the server/
application integration to which you are connecting.

2. Prior to running the Dependency Downloader scripts, independently verify that
the version string exists in the repository through the web GUI.

1.3.3 Dependency Downloader Scripts

Table 1-1 Relevant Handlers/Capture

Client Script Description Relevant Handlers/
Capture

Versions
Supported

Dependen
cy Link

Amazon Web Services
SDK

aws.sh This script
downloads
the Amazon
Web Services
(AWS) SDK,
which
provides client
libraries for
connectivity to
the AWS
cloud.

Kinesis Handler
S3 Event Handler

1.12.x https://
search.mav
en.org/
artifact/
com.amazo
naws/aws-
java-sdk

Google BigQuery bigquery.sh This script
downloads
the required
client libraries
for Google
BigQuery.

BigQuery Handler 2.x https://
search.mav
en.org/
artifact/
com.google
.cloud/
google-
cloud-
bigquery

Chapter 1
Dependency Downloader

1-12

https://search.maven.org/artifact/com.amazonaws/aws-java-sdk
https://search.maven.org/artifact/com.amazonaws/aws-java-sdk
https://search.maven.org/artifact/com.amazonaws/aws-java-sdk
https://search.maven.org/artifact/com.amazonaws/aws-java-sdk
https://search.maven.org/artifact/com.amazonaws/aws-java-sdk
https://search.maven.org/artifact/com.amazonaws/aws-java-sdk
https://search.maven.org/artifact/com.amazonaws/aws-java-sdk
https://search.maven.org/artifact/com.google.cloud/google-cloud-bigquery
https://search.maven.org/artifact/com.google.cloud/google-cloud-bigquery
https://search.maven.org/artifact/com.google.cloud/google-cloud-bigquery
https://search.maven.org/artifact/com.google.cloud/google-cloud-bigquery
https://search.maven.org/artifact/com.google.cloud/google-cloud-bigquery
https://search.maven.org/artifact/com.google.cloud/google-cloud-bigquery
https://search.maven.org/artifact/com.google.cloud/google-cloud-bigquery
https://search.maven.org/artifact/com.google.cloud/google-cloud-bigquery
https://search.maven.org/artifact/com.google.cloud/google-cloud-bigquery

Table 1-1 (Cont.) Relevant Handlers/Capture

Client Script Description Relevant Handlers/
Capture

Versions
Supported

Dependen
cy Link

Cassandra DSE
(Datastax Enterprise)
Client

cassandra_d
se.sh

This script
downloads
the
Cassandra
DSE client.
Cassandra
DSE is the
for-purchase
version of
Cassandra
available from
Datastax.

Cassandra Handler 2.0.0 and higher https://
search.mav
en.org/
artifact/
com.datast
ax.dse/dse-
java-driver-
core

Apache Cassandra
Client

cassandra.s
h

This script
downloads
the Apache
Cassandra
client.

Cassandra Handler 4.0.0 and higher https://
search.mav
en.org/
artifact/
com.datast
ax.oss/java-
driver-core

Cassandra Capture 3x
Client

cassandra_c
apture_3x.s
h

This script
downloads all
the client
libraries
needed for
Capture from
Cassandra
3.x versions.

Cassandra Capture 3x 3.3.1 (used by default) https://
mvnreposit
ory.com/
artifact/
com.datast
ax.cassand
ra/
cassandra-
driver-core/
3.3.1

Cassandra Capture 4x
Client

cassandra_c
apture_4x.s
h

This script
downloads all
the client
libraries
needed for
Capture from
Cassandra
4.x versions.

Cassandra Capture 4x 4.14.1 (used by default) https://
mvnreposit
ory.com/
artifact/
com.datast
ax.oss/java-
driver-core/
4.14.1

Cassandra Capture DSE
Client

cassandra_c
apture_dse.
sh

This script
downloads all
the client
libraries
needed for
Capture from
DSE
Cassandra
6.x versions.

Cassandra Capture DSE 4.14.1 (used by default) https://
mvnreposit
ory.com/
artifact/
com.datast
ax.oss/java-
driver-core/
4.14.1

Elasticsearch Java Client elasticsear
ch_java.sh

This script
downloads
the
Elasticsearch
Java Client.

Elasticsearch Handler 7.x and 8.x https://
search.mav
en.org/
artifact/
co.elastic.cl
ients/
elasticsearc
h-java

Chapter 1
Dependency Downloader

1-13

https://search.maven.org/artifact/com.datastax.dse/dse-java-driver-core
https://search.maven.org/artifact/com.datastax.dse/dse-java-driver-core
https://search.maven.org/artifact/com.datastax.dse/dse-java-driver-core
https://search.maven.org/artifact/com.datastax.dse/dse-java-driver-core
https://search.maven.org/artifact/com.datastax.dse/dse-java-driver-core
https://search.maven.org/artifact/com.datastax.dse/dse-java-driver-core
https://search.maven.org/artifact/com.datastax.dse/dse-java-driver-core
https://search.maven.org/artifact/com.datastax.dse/dse-java-driver-core
https://search.maven.org/artifact/com.datastax.oss/java-driver-core
https://search.maven.org/artifact/com.datastax.oss/java-driver-core
https://search.maven.org/artifact/com.datastax.oss/java-driver-core
https://search.maven.org/artifact/com.datastax.oss/java-driver-core
https://search.maven.org/artifact/com.datastax.oss/java-driver-core
https://search.maven.org/artifact/com.datastax.oss/java-driver-core
https://search.maven.org/artifact/com.datastax.oss/java-driver-core
https://mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/3.3.1
https://mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/3.3.1
https://mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/3.3.1
https://mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/3.3.1
https://mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/3.3.1
https://mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/3.3.1
https://mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/3.3.1
https://mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/3.3.1
https://mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/3.3.1
https://mvnrepository.com/artifact/com.datastax.cassandra/cassandra-driver-core/3.3.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://mvnrepository.com/artifact/com.datastax.oss/java-driver-core/4.14.1
https://search.maven.org/artifact/co.elastic.clients/elasticsearch-java
https://search.maven.org/artifact/co.elastic.clients/elasticsearch-java
https://search.maven.org/artifact/co.elastic.clients/elasticsearch-java
https://search.maven.org/artifact/co.elastic.clients/elasticsearch-java
https://search.maven.org/artifact/co.elastic.clients/elasticsearch-java
https://search.maven.org/artifact/co.elastic.clients/elasticsearch-java
https://search.maven.org/artifact/co.elastic.clients/elasticsearch-java
https://search.maven.org/artifact/co.elastic.clients/elasticsearch-java

Table 1-1 (Cont.) Relevant Handlers/Capture

Client Script Description Relevant Handlers/
Capture

Versions
Supported

Dependen
cy Link

Hadoop Azure Client
from Cloudera

hadoop_azur
e_cloudera.
sh

This script
downloads
the Hadoop
Azure client
libraries
provided by
Cloudera. The
Hadoop Azure
client libraries
cannot be
loaded along
with the
Hadoop client
because in
Cloudera, the
version
numbers
between the
two
components
do not line up
perfectly.

• HDFS Handler
• HDFS Event

Handler
• ORC Event Handler
• Parquet Event

Handler

3.x https://
repository.cl
oudera.com
/service/
rest/
repository/
browse/
cloudera-
repos/org/
apache/
hadoop/
hadoop-
azure/

Hadoop Client from
Cloudera

hadoop_clou
dera.sh

This script
downloads
the Hadoop
client libraries
provided by
Cloudera.

• HDFS Handler
• HDFS Event

Handler
• ORC Event Handler
• Parquet Event

Handler

3.x https://
repository.cl
oudera.com
/service/
rest/
repository/
browse/
cloudera-
repos/org/
apache/
hadoop/
hadoop-
client/

Hadoop Client from
Hortonworks

hadoop_hort
onworks.sh

The Hadoop
client
including the
libraries for
connectivity to
Azure Data
Lake available
from
Hortonworks.

• HDFS Handler
• HDFS Event

Handler
• ORC Event Handler
• Parquet Event

Handler

3.x https://
repo.horton
works.com/
service/
rest/
repository/
browse/
public/org/
apache/
hadoop/
hadoop-
client/

Apache Hadoop Client
Plus Required Libraries
for Azure Connectivity

hadoop.sh The Hadoop
client
including the
libraries for
connectivity to
Azure Data
Lake.

• HDFS Handler
• HDFS Event

Handler
• ORC Event Handler
• Parquet Event

Handler

3.x https://
search.mav
en.org/
artifact/
org.apache.
hadoop/
hadoop-
azure

Chapter 1
Dependency Downloader

1-14

https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hadoop/hadoop-azure/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hadoop/hadoop-client/
https://search.maven.org/artifact/org.apache.hadoop/hadoop-azure
https://search.maven.org/artifact/org.apache.hadoop/hadoop-azure
https://search.maven.org/artifact/org.apache.hadoop/hadoop-azure
https://search.maven.org/artifact/org.apache.hadoop/hadoop-azure
https://search.maven.org/artifact/org.apache.hadoop/hadoop-azure
https://search.maven.org/artifact/org.apache.hadoop/hadoop-azure
https://search.maven.org/artifact/org.apache.hadoop/hadoop-azure
https://search.maven.org/artifact/org.apache.hadoop/hadoop-azure

Table 1-1 (Cont.) Relevant Handlers/Capture

Client Script Description Relevant Handlers/
Capture

Versions
Supported

Dependen
cy Link

HBase Client Provided
by Cloudera

hbase_cloud
era.sh

The HBase
client libraries
provided by
Cloudera.

HBase Handler 2.x https://
repository.cl
oudera.com
/service/
rest/
repository/
browse/
cloudera-
repos/org/
apache/
hbase/
hbase-
client/

HBase Client Provided
by Hortonworks

hbase_horto
nworks.sh

The HBase
client libraries
provided by
Hortonworks.

HBase Handler 2.x https://
repo.horton
works.com/
service/
rest/
repository/
browse/
public/org/
apache/
hbase/
hbase-
client/

Apache HBase Client hbase.sh The HBase
client.

HBase Handler 2.x https://
search.mav
en.org/
artifact/
org.apache.
hbase/
hbase-
client

Apache Kafka Client plus
Kafka Connect
Framework and JSON
Converter from Cloudera

kafka_cloud
era.sh

The Kafka
Client plus
libraries for
the Kafka
Connect
framework
and the Kafka
Connect
JSON
Converter
provided by
Cloudera.

• Kafka Handler
• Kafka Connect

Handler
• Kafka Capture

0.9.x to current https://
repository.cl
oudera.com
/service/
rest/
repository/
browse/
cloudera-
repos/org/
apache/
kafka/
kafka-
clients/

Chapter 1
Dependency Downloader

1-15

https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/hbase/hbase-client/
https://search.maven.org/artifact/org.apache.hbase/hbase-client
https://search.maven.org/artifact/org.apache.hbase/hbase-client
https://search.maven.org/artifact/org.apache.hbase/hbase-client
https://search.maven.org/artifact/org.apache.hbase/hbase-client
https://search.maven.org/artifact/org.apache.hbase/hbase-client
https://search.maven.org/artifact/org.apache.hbase/hbase-client
https://search.maven.org/artifact/org.apache.hbase/hbase-client
https://search.maven.org/artifact/org.apache.hbase/hbase-client
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/
https://repository.cloudera.com/service/rest/repository/browse/cloudera-repos/org/apache/kafka/kafka-clients/

Table 1-1 (Cont.) Relevant Handlers/Capture

Client Script Description Relevant Handlers/
Capture

Versions
Supported

Dependen
cy Link

Apache Kafka Client plus
Kafka Connect
Framework and JSON
Converter from
Hortonworks

kafka_horto
nworks.sh

The Kafka
Client plus
libraries for
the Kafka
Connect
framework
and the Kafka
Connect
JSON
Converter
provided by
Hortonworks.

• Kafka Handler
• Kafka Connect

Handler
• Kafka Capture

0.9.x to current https://
repo.horton
works.com/
service/
rest/
repository/
browse/
public/org/
apache/
kafka/
kafka-
clients/

Apache Kafka Client plus
Kafka Connect
Framework and JSON
Converter

kafka.sh The Kafka
Client plus
libraries for
the Kafka
Connect
framework
and the Kafka
Connect
JSON
Converter.

• Kafka Handler
• Kafka Connect

Handler
• Kafka Capture

0.9.x to current https://
search.mav
en.org/
artifact/
org.apache.
kafka/
kafka-
clients

Confluent Kafka Client
plus Kafka Connect
Framework and JSON
and Avro Converters

kafka_confl
uent.sh

The Kafka
Client plus
libraries for
the Kafka
Connect
framework
and the Kafka
Connect
JSON
Converter and
the Kafka
Connect Avro
Converter
available from
Confluent.

• Kafka Handler
• Kafka Connect

Handler
• Kafka Capture

Confluent platform 4.1.0
and higher.

See https://
packages.c
onfluent.io/
maven/io/
confluent/
kafka-
connect-
avro-
converter/

MapR Kafka Client kafka_mapr.
sh

The MapR
Kafka Client
libraries.

Kafka Handler 0.x, 1.x, and 2.x https://
repository.
mapr.com/
nexus/
content/
groups/
mapr-
public/org/
apache/
kafka/
kafka-
clients/

Chapter 1
Dependency Downloader

1-16

https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://repo.hortonworks.com/service/rest/repository/browse/public/org/apache/kafka/kafka-clients/
https://search.maven.org/artifact/org.apache.kafka/kafka-clients
https://search.maven.org/artifact/org.apache.kafka/kafka-clients
https://search.maven.org/artifact/org.apache.kafka/kafka-clients
https://search.maven.org/artifact/org.apache.kafka/kafka-clients
https://search.maven.org/artifact/org.apache.kafka/kafka-clients
https://search.maven.org/artifact/org.apache.kafka/kafka-clients
https://search.maven.org/artifact/org.apache.kafka/kafka-clients
https://search.maven.org/artifact/org.apache.kafka/kafka-clients
https://packages.confluent.io/maven/io/confluent/kafka-connect-avro-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-avro-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-avro-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-avro-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-avro-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-avro-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-avro-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-avro-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-avro-converter/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/
https://repository.mapr.com/nexus/content/groups/mapr-public/org/apache/kafka/kafka-clients/

Table 1-1 (Cont.) Relevant Handlers/Capture

Client Script Description Relevant Handlers/
Capture

Versions
Supported

Dependen
cy Link

Confluent Kafka Client
plus Kafka Connect
Framework and Protobuf
Converter

kafka_confl
uent_protob
uf.sh

The Kafka
Client plus
libraries for
the Kafka
Connect
framework
and the Kafka
Connect
Protobuf
converter
available from
Confluent.

• Kafka Handler
• Kafka Connect

Handler

Confluent 5.x and higher See https://
packages.c
onfluent.io/
maven/io/
confluent/
kafka-
connect-
protobuf-
converter/

MongoDB Client mongodb.sh The
MongoDB
client libraries.

MongoDB Handler 5.x https://
mvnreposit
ory.com/
artifact/
org.mongod
b/mongodb-
driver-
legacy

Oracle NoSQL SDK
Client

oracle_nosq
l_sdk.sh

The Oracle
NoSQL client
libraries.

Oracle NoSQL Handler 5.x https://
search.mav
en.org/
artifact/
com.oracle.
nosql.sdk/
nosqldriver

Oracle OCI Client oracle_oci.
sh

The Oracle
OCI client
libraries.

Oracle OCI Event
Handler

3.x https://
search.mav
en.org/
artifact/
com.oracle.
oci.sdk/oci-
java-sdk-
objectstora
ge

Apache ORC (Optimized
Row Columnar) Client

orc.sh The Apache
ORC client
libraries. ORC
is built on top
of the Hadoop
client so the
ORC Event
Handler
needs the
Hadoop client
in order to
run. The
Hadoop client
needs to be
downloaded
separately.

ORC Event Handler 1.x https://
search.mav
en.org/
artifact/
org.apache.
orc/orc-core

Chapter 1
Dependency Downloader

1-17

https://packages.confluent.io/maven/io/confluent/kafka-connect-protobuf-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-protobuf-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-protobuf-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-protobuf-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-protobuf-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-protobuf-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-protobuf-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-protobuf-converter/
https://packages.confluent.io/maven/io/confluent/kafka-connect-protobuf-converter/
https://mvnrepository.com/artifact/org.mongodb/mongodb-driver-legacy
https://mvnrepository.com/artifact/org.mongodb/mongodb-driver-legacy
https://mvnrepository.com/artifact/org.mongodb/mongodb-driver-legacy
https://mvnrepository.com/artifact/org.mongodb/mongodb-driver-legacy
https://mvnrepository.com/artifact/org.mongodb/mongodb-driver-legacy
https://mvnrepository.com/artifact/org.mongodb/mongodb-driver-legacy
https://mvnrepository.com/artifact/org.mongodb/mongodb-driver-legacy
https://mvnrepository.com/artifact/org.mongodb/mongodb-driver-legacy
https://search.maven.org/artifact/com.oracle.nosql.sdk/nosqldriver
https://search.maven.org/artifact/com.oracle.nosql.sdk/nosqldriver
https://search.maven.org/artifact/com.oracle.nosql.sdk/nosqldriver
https://search.maven.org/artifact/com.oracle.nosql.sdk/nosqldriver
https://search.maven.org/artifact/com.oracle.nosql.sdk/nosqldriver
https://search.maven.org/artifact/com.oracle.nosql.sdk/nosqldriver
https://search.maven.org/artifact/com.oracle.nosql.sdk/nosqldriver
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-objectstorage
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-objectstorage
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-objectstorage
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-objectstorage
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-objectstorage
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-objectstorage
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-objectstorage
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-objectstorage
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-objectstorage
https://search.maven.org/artifact/org.apache.orc/orc-core
https://search.maven.org/artifact/org.apache.orc/orc-core
https://search.maven.org/artifact/org.apache.orc/orc-core
https://search.maven.org/artifact/org.apache.orc/orc-core
https://search.maven.org/artifact/org.apache.orc/orc-core
https://search.maven.org/artifact/org.apache.orc/orc-core

Table 1-1 (Cont.) Relevant Handlers/Capture

Client Script Description Relevant Handlers/
Capture

Versions
Supported

Dependen
cy Link

Apache Parquet Client parquet.sh The Apache
Parquet client
libraries.
Parquet is
built on top of
the Hadoop
client, so the
Parquet Event
Handler
needs the
Hadoop client
in order to
run. The
Hadoop client
needs to be
downloaded
separately.

Parquet Event Handler 1.x https://
search.mav
en.org/
artifact/
org.apache.
parquet/
parquet-
hadoop

Apache Velocity velocity.sh The Velocity
libraries were
removed from
the Oracle
GoldenGate
for Distributed
Applications
and Analytics
(GG for DAA)
installation
starting from
the 21.1
release. This
script
downloads
the libraries
required for
formatting
using Velocity.

Velocity Formatter 1.x https://
search.mav
en.org/
artifact/
org.apache.
velocity/
velocity

Google Cloud Storage
Java SDK

gcs.sh This script
downloads
the required
client libraries
for Google
Cloud
Storage.

GCS Event Handler 2.x https://
search.mav
en.org/
artifact/
com.google
.cloud/
google-
cloud-
storage

MongoDB Capture mongodb_cap
ture.sh

This script
downloads
the required
client libraries
for MongoDB
capture.

MongoDB Capture 5.x https://
search.mav
en.org/
artifact/
org.mongod
b/mongodb-
driver-
reactivestre
ams

Chapter 1
Dependency Downloader

1-18

https://search.maven.org/artifact/org.apache.parquet/parquet-hadoop
https://search.maven.org/artifact/org.apache.parquet/parquet-hadoop
https://search.maven.org/artifact/org.apache.parquet/parquet-hadoop
https://search.maven.org/artifact/org.apache.parquet/parquet-hadoop
https://search.maven.org/artifact/org.apache.parquet/parquet-hadoop
https://search.maven.org/artifact/org.apache.parquet/parquet-hadoop
https://search.maven.org/artifact/org.apache.parquet/parquet-hadoop
https://search.maven.org/artifact/org.apache.parquet/parquet-hadoop
https://search.maven.org/artifact/org.apache.velocity/velocity
https://search.maven.org/artifact/org.apache.velocity/velocity
https://search.maven.org/artifact/org.apache.velocity/velocity
https://search.maven.org/artifact/org.apache.velocity/velocity
https://search.maven.org/artifact/org.apache.velocity/velocity
https://search.maven.org/artifact/org.apache.velocity/velocity
https://search.maven.org/artifact/org.apache.velocity/velocity
https://search.maven.org/artifact/com.google.cloud/google-cloud-storage
https://search.maven.org/artifact/com.google.cloud/google-cloud-storage
https://search.maven.org/artifact/com.google.cloud/google-cloud-storage
https://search.maven.org/artifact/com.google.cloud/google-cloud-storage
https://search.maven.org/artifact/com.google.cloud/google-cloud-storage
https://search.maven.org/artifact/com.google.cloud/google-cloud-storage
https://search.maven.org/artifact/com.google.cloud/google-cloud-storage
https://search.maven.org/artifact/com.google.cloud/google-cloud-storage
https://search.maven.org/artifact/com.google.cloud/google-cloud-storage
https://search.maven.org/artifact/org.mongodb/mongodb-driver-reactivestreams
https://search.maven.org/artifact/org.mongodb/mongodb-driver-reactivestreams
https://search.maven.org/artifact/org.mongodb/mongodb-driver-reactivestreams
https://search.maven.org/artifact/org.mongodb/mongodb-driver-reactivestreams
https://search.maven.org/artifact/org.mongodb/mongodb-driver-reactivestreams
https://search.maven.org/artifact/org.mongodb/mongodb-driver-reactivestreams
https://search.maven.org/artifact/org.mongodb/mongodb-driver-reactivestreams
https://search.maven.org/artifact/org.mongodb/mongodb-driver-reactivestreams
https://search.maven.org/artifact/org.mongodb/mongodb-driver-reactivestreams

Table 1-1 (Cont.) Relevant Handlers/Capture

Client Script Description Relevant Handlers/
Capture

Versions
Supported

Dependen
cy Link

Synapse JDBC Driver synapse.sh This script
downloads
the Synapse
JDBC driver.
Additionally,
the Hadoop
client is also
required to
stage data to
Azure Data
Lake.

Synapse Stage and
Merge

12.6.1jre8 https://
mvnreposit
ory.com/
artifact/
com.micros
oft.sqlserve
r/mssql-
jdbc/
12.6.1.jre8

Snowflake JDBC Driver snowflake.s
h

This script
downloads
the Snowflake
JDBC driver.
Other client
libraries are
likely required
for staging the
data to AWS
or Azure
cloud.

Snowflake Stage and
Merge

3.15.1 https://
search.mav
en.org/
artifact/
net.snowfla
ke/
snowflake-
jdbc/
3.15.1/jar

Jedis client for Redis redis.sh This script
downloads
Jedis which is
a Redis client.

Redis Handler 4.x https://
search.mav
en.org/
artifact/
redis.clients
/jedis

Google Pub/Sub Client googlepubsu
b.sh

This script
downloads
the Java client
for Google
Pub/Sub
Messaging.

Google Pub/Sub Handler 1.x https://
search.mav
en.org/
artifact/
com.google
.cloud/
google-
cloud-
pubsub

Databricks JDBC Driver databricks.
sh

This script
downloads
the Databricks
JDBC driver.

Databricks Stage and
Merge

2.6.36 https://
mvnreposit
ory.com/
artifact/
com.databri
cks/
databricks-
jdbc/2.6.36

Azure Blob Storage
Client

azure_blob_
storage.sh

This script
downloads
the Microsoft
Azure Blob
Storage
Client.

Azure Blob Storage
Event Handler

Data Warehouse Stage
and Merge
implementations can use
this as well to upload to
Azure Data Lake.

12.25.3 https://
search.mav
en.org/
artifact/
com.azure/
azure-
storage-
blob

Chapter 1
Dependency Downloader

1-19

https://mvnrepository.com/artifact/com.microsoft.sqlserver/mssql-jdbc/12.6.1.jre8
https://mvnrepository.com/artifact/com.microsoft.sqlserver/mssql-jdbc/12.6.1.jre8
https://mvnrepository.com/artifact/com.microsoft.sqlserver/mssql-jdbc/12.6.1.jre8
https://mvnrepository.com/artifact/com.microsoft.sqlserver/mssql-jdbc/12.6.1.jre8
https://mvnrepository.com/artifact/com.microsoft.sqlserver/mssql-jdbc/12.6.1.jre8
https://mvnrepository.com/artifact/com.microsoft.sqlserver/mssql-jdbc/12.6.1.jre8
https://mvnrepository.com/artifact/com.microsoft.sqlserver/mssql-jdbc/12.6.1.jre8
https://mvnrepository.com/artifact/com.microsoft.sqlserver/mssql-jdbc/12.6.1.jre8
https://mvnrepository.com/artifact/com.microsoft.sqlserver/mssql-jdbc/12.6.1.jre8
https://search.maven.org/artifact/net.snowflake/snowflake-jdbc/3.15.1/jar
https://search.maven.org/artifact/net.snowflake/snowflake-jdbc/3.15.1/jar
https://search.maven.org/artifact/net.snowflake/snowflake-jdbc/3.15.1/jar
https://search.maven.org/artifact/net.snowflake/snowflake-jdbc/3.15.1/jar
https://search.maven.org/artifact/net.snowflake/snowflake-jdbc/3.15.1/jar
https://search.maven.org/artifact/net.snowflake/snowflake-jdbc/3.15.1/jar
https://search.maven.org/artifact/net.snowflake/snowflake-jdbc/3.15.1/jar
https://search.maven.org/artifact/net.snowflake/snowflake-jdbc/3.15.1/jar
https://search.maven.org/artifact/net.snowflake/snowflake-jdbc/3.15.1/jar
https://search.maven.org/artifact/redis.clients/jedis
https://search.maven.org/artifact/redis.clients/jedis
https://search.maven.org/artifact/redis.clients/jedis
https://search.maven.org/artifact/redis.clients/jedis
https://search.maven.org/artifact/redis.clients/jedis
https://search.maven.org/artifact/redis.clients/jedis
https://search.maven.org/artifact/com.google.cloud/google-cloud-pubsub
https://search.maven.org/artifact/com.google.cloud/google-cloud-pubsub
https://search.maven.org/artifact/com.google.cloud/google-cloud-pubsub
https://search.maven.org/artifact/com.google.cloud/google-cloud-pubsub
https://search.maven.org/artifact/com.google.cloud/google-cloud-pubsub
https://search.maven.org/artifact/com.google.cloud/google-cloud-pubsub
https://search.maven.org/artifact/com.google.cloud/google-cloud-pubsub
https://search.maven.org/artifact/com.google.cloud/google-cloud-pubsub
https://search.maven.org/artifact/com.google.cloud/google-cloud-pubsub
https://mvnrepository.com/artifact/com.databricks/databricks-jdbc/2.6.36
https://mvnrepository.com/artifact/com.databricks/databricks-jdbc/2.6.36
https://mvnrepository.com/artifact/com.databricks/databricks-jdbc/2.6.36
https://mvnrepository.com/artifact/com.databricks/databricks-jdbc/2.6.36
https://mvnrepository.com/artifact/com.databricks/databricks-jdbc/2.6.36
https://mvnrepository.com/artifact/com.databricks/databricks-jdbc/2.6.36
https://mvnrepository.com/artifact/com.databricks/databricks-jdbc/2.6.36
https://mvnrepository.com/artifact/com.databricks/databricks-jdbc/2.6.36
https://search.maven.org/artifact/com.azure/azure-storage-blob
https://search.maven.org/artifact/com.azure/azure-storage-blob
https://search.maven.org/artifact/com.azure/azure-storage-blob
https://search.maven.org/artifact/com.azure/azure-storage-blob
https://search.maven.org/artifact/com.azure/azure-storage-blob
https://search.maven.org/artifact/com.azure/azure-storage-blob
https://search.maven.org/artifact/com.azure/azure-storage-blob
https://search.maven.org/artifact/com.azure/azure-storage-blob

Table 1-1 (Cont.) Relevant Handlers/Capture

Client Script Description Relevant Handlers/
Capture

Versions
Supported

Dependen
cy Link

Snowflake Streaming snowflakest
reaming.sh

This script
can be
downloaded
using the
Dependency
Downloader
script.

NA NA The script
can be
found in
following
location :<O
GGDIR>/
Dependenc
yDownload
er/
snowflake
streaming
.sh

Chapter 1
Dependency Downloader

1-20

2
Get Started

• Getting Started with Oracle GoldenGate for Distributed Applications and Analytics
You can use Oracle GoldenGate for Distributed Applications and Analytics Microservices
Architecture (MA) to configure and manage your data replication using an HTML user
interface. The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
MA comprises the following components: Service Manager, Administration Service,
Distribution Service, Receiver Service, Performance Metrics Service, and Admin Client.

2.1 Getting Started with Oracle GoldenGate for Distributed
Applications and Analytics

You can use Oracle GoldenGate for Distributed Applications and Analytics Microservices
Architecture (MA) to configure and manage your data replication using an HTML user
interface. The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) MA
comprises the following components: Service Manager, Administration Service, Distribution
Service, Receiver Service, Performance Metrics Service, and Admin Client.

For more information about the Oracle GoldenGate MA components, see Components of
Oracle GoldenGate Microservices Architecture.
This topic lists the various tasks that you need to preform to set up GG for DAA integrations
with cloud storage, message streaming, cloud warehouse, NoSQL and caching technologies.

• Working With Deployments
Adding deployments is the first task in the process of setting up a data replication platform.
Deployments are managed from the Service Manager.

• About Oracle GoldenGate Properties Files

• Using the Admin Client
Admin Client is a command line utility (similar to the classic GGSCI utility). It uses the
REST API published by the Microservices Servers to accomplish control and configuration
tasks in an Oracle GoldenGate deployment.

• Controlling Oracle GoldenGate (Microservices Architecture) Processes
The standard way to control Oracle GoldenGate (MA) processes is through the Admin
Client.

2.1.1 Working With Deployments
Adding deployments is the first task in the process of setting up a data replication platform.
Deployments are managed from the Service Manager.

For more information about installing and deploying Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA), see Installing Oracle GoldenGate for Distributed
Applications and Analytics and Analytics.

After you log into your Service Manager instance, you can create deployments or edit existing
ones. You can work with multiple deployments from a single Service Manager instance. For
more information about working with deployments, see Working with Service Manager in
Oracle GoldenGate Microservices Architecture Documentation guide.

2-1

https://docs.oracle.com/en/middleware/goldengate/core/21.1/understanding/getting-started-oracle-goldengate.html#GUID-5DB7A5A1-EF00-4709-A14E-FF0ADC18E842
https://docs.oracle.com/en/middleware/goldengate/core/21.1/understanding/getting-started-oracle-goldengate.html#GUID-5DB7A5A1-EF00-4709-A14E-FF0ADC18E842
https://docs.oracle.com/en/middleware/goldengate/core/21.1/ggmas/working-deployments-and-services.html#GUID-B46ACDD2-B547-4B00-9696-1E295532A8BA

2.1.2 About Oracle GoldenGate Properties Files
There are two Oracle GoldenGate properties files required to run the Oracle GoldenGate Java
Deliver user exit (alternatively called the Oracle GoldenGate Java Adapter). It is the Oracle
GoldenGate Java Delivery that hosts Java integrations including the Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) integrations. A Replicat properties file is
required in order to run either process. The required naming convention for the Replicat file
name is the process_name.prm. The exit syntax in the Replicat properties file provides the
name and location of the Java Adapter properties file. It is the Java Adapter properties file that
contains the configuration properties for the Java adapter include GG for DAA integrations.
The Replicat and Java Adapters properties files are required to run GG for DAA integrations.

Alternatively the Java Adapters properties can be resolved using the default syntax,
process_name.properties. It you use the default naming for the Java Adapter properties file
then the name of the Java Adapter properties file can be omitted from the Replicat properties
file.

Samples of the properties files for Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) integrations can be found in the subdirectories of the following
directory:

GoldenGate_install_dir/AdapterExamples/big-data
• Parameter Files

Most of the Oracle GoldenGate functionality is controlled by the parameters specified in
parameter files. A parameter file is a plain text file that is read by an associated Oracle
GoldenGate process. Oracle GoldenGate uses two types of parameter files: a GLOBALS file
and runtime parameter files.

2.1.2.1 Parameter Files
Most of the Oracle GoldenGate functionality is controlled by the parameters specified in
parameter files. A parameter file is a plain text file that is read by an associated Oracle
GoldenGate process. Oracle GoldenGate uses two types of parameter files: a GLOBALS file and
runtime parameter files.

For more information about working with Parameter Files, see Using Oracle GoldenGate
Parameter Files in the Administering Oracle GoldenGate guide.

2.1.3 Using the Admin Client
Admin Client is a command line utility (similar to the classic GGSCI utility). It uses the REST
API published by the Microservices Servers to accomplish control and configuration tasks in an
Oracle GoldenGate deployment.

For more information about working with the Admin Client, see Using the Admin Clientin the
Administering Oracle GoldenGate guide.

2.1.4 Controlling Oracle GoldenGate (Microservices Architecture)
Processes

The standard way to control Oracle GoldenGate (MA) processes is through the Admin Client.

Typically, the first time that Oracle GoldenGate processes are started in a production setting is
during the initial synchronization process (also called instantiation process). However, you

Chapter 2
Getting Started with Oracle GoldenGate for Distributed Applications and Analytics

2-2

https://docs.oracle.com/en/middleware/goldengate/core/21.1/admin/getting-started-oracle-goldengate-process-interfaces.html#GUID-84B33389-0594-4449-BF1A-A496FB1EDB29

need to stop and start the processes at various points as needed to perform maintenance,
upgrades, troubleshooting, or other tasks. For more information, see Controlling Oracle
GoldenGate Processes in the Administering Oracle GoldenGate guide.

Chapter 2
Getting Started with Oracle GoldenGate for Distributed Applications and Analytics

2-3

3
Prepare

• Preparing for Installation

3.1 Preparing for Installation
Prepare your Java environment by ensuring that you have the correct version of Java installed,
and that the environmental variables have been set up and configured correctly.

• Downloading Oracle GoldenGate for Distributed Applications and Analytics

• Installation Overview

• Directories and Variables in Microservices Architecture

• Setting up Environmental Variables

3.1.1 Downloading Oracle GoldenGate for Distributed Applications and
Analytics

Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) are available for
Windows, Linux, and UNIX. To download, first visit the Oracle support site to see if there is a
patch available for your operating system and architecture. See also, GoldenGate Certification
Matrix.

Note:

If you are not planning to use the generic build included in the installation, ensure
that the major release of the GG for DAA build you download matches (or is known to
be compatible with) the major release of the Oracle GoldenGate instance that will be
used with it.

1. Navigate to http://support.oracle.com.

2. Sign in with your Oracle ID and password.

3. Select the Patches and Upgrades tab.

4. On the Search tab, click Product or Family.

5. In the Product field, type Oracle GoldenGate for Distributed Applications and
Analytics.

6. From the Release drop-down list, select the release version that you want to download.

7. Make sure Platform is displayed as the default in the next field, and then select the
platform from the drop-down list.

8. Leave the last field blank.

9. Click Search.

3-1

https://www.oracle.com/in/integration/goldengate/certifications/
https://www.oracle.com/in/integration/goldengate/certifications/
http://support.oracle.com

10. In the Advanced Patch Search Results list, select the available builds that satisfy the
criteria that you supplied.

11. In the file Download dialog box, click the ZIP file to begin the download.

If patches are not available on the support site, go to the Oracle delivery site for the release
download.

1. Navigate to http://edelivery.oracle.com.

2. Sign in with your Oracle ID and password.

3. On the Terms and Restrictions page:

• Accept the Trial License Agreement (even if you have a permanent license).

• Accept the Export Restrictions.

• Click Continue.

4. On the Media Pack Search page:

• Select the Oracle Fusion Middleware Product Pack.

• Select the platform on which you will be installing the software.

• Click Go.

5. In the Results list:

• Select the Oracle GoldenGate for Distributed Applications and Analytics.

• Click Continue.

6. On the Download page:

• View the Readme file.

• Click Download for each component that you want. Follow the automatic download
process to transfer the zip file to your system.

3.1.2 Installation Overview
This section provides an overview of the installation contents and the Oracle GoldenGate
instances used with the Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA).

• Contents of the Installation ZIP File

• Using the Generic Build of Oracle GoldenGate

• Considerations for Using a Custom Build for a GoldenGate for Distributed Applications and
Analytics Instance of Oracle GoldenGate

• Installing to a Non-Generic Instance of Oracle GoldenGate

3.1.2.1 Contents of the Installation ZIP File
The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) installation
ZIP file contains:

• Oracle GoldenGate Java Adapter

• A version of Oracle GoldenGate designed to stream data to supported targets. This
version is labeled generic because it is not specific to any database, but it is platform
dependent. For more information, see GoldenGate Certification Matrix.

Chapter 3
Preparing for Installation

3-2

http://edelivery.oracle.com
https://www.oracle.com/in/integration/goldengate/certifications/

3.1.2.2 Using the Generic Build of Oracle GoldenGate
For JMS capture, the Java Adapter must run in the generic build of Oracle GoldenGate.
However, the generic build is not required when using the adapter for delivery of trail data to a
target; in this case, the Java Adapter can be used with any database version of Oracle
GoldenGate.

3.1.2.3 Considerations for Using a Custom Build for a GoldenGate for Distributed
Applications and Analytics Instance of Oracle GoldenGate

There are both advantages and disadvantages to installing a custom build for an Oracle
GoldenGate instance. Also, there are limitations in the releases of Oracle GoldenGate that are
compatible with releases of the GG for DAA.

Advantages

• The non-generic instance allows you to configure Extract to login to the database for
metadata. This removes the need to use a source definitions file that must be
synchronized your the source database DDL.

• There is no need to manage two separate versions of Oracle GoldenGate when doing
database capture and JMS delivery on the same server.

Disadvantages

• If you need to patch Oracle GoldenGate core instance, you must also copy GG for DAA
into the new patched installation of Oracle GoldenGate.

• The GG for DAA is only tested and certified with the generic version of Oracle GoldenGate
core. New patches of the core can trigger incompatibilities.

Limitations

• The Replicat module to write to GG for DAA targets is only available in the Generic Oracle
GoldenGate distribution.

• The generic build must be used with JMS capture, as this is the only version of Extract that
is capable of loading the VAM.

• A DEFGEN utility is not included with GG for DAA. To generate source definitions, you will
need a version of Oracle GoldenGate that is built specifically for your database type.

3.1.2.4 Installing to a Non-Generic Instance of Oracle GoldenGate
If you decide to install the Java user exit to a non-generic instance of Oracle GoldenGate,
unzip to a temporary location first and then copy the adapter files to your Oracle GoldenGate
installation location.

To install the Java user exit to a non-generic instance of Oracle GoldenGate:

1. Navigate to the Oracle GoldenGate installation directory, for example C:/ggs.

2. Create a temporary directory, and extract the Java user exit ZIP file into this into sub
directory within it, for example ggjava.

3. Copy or move the files from the ggjava sub directory and shared libraries into the Oracle
GoldenGate installation directory (C:/ggs).

Chapter 3
Preparing for Installation

3-3

Note:

You need not copy the shared library ggjava_vam because, it only works with the
generic build.

3.1.3 Directories and Variables in Microservices Architecture
The Microservices Architecture is designed with a simplified installation and deployment
directory structure.

This directory structure is based on the Linux Foundation Filesystem Hierarchy Standard.
Additional flexibility has been added to allow parts of the deployment subdirectories to be
placed at other locations in the file system or on other devices, including shared network
devices. The design comprises a read-only Oracle GoldenGate home directory where Oracle
GoldenGate Microservices Architecture is installed and custom deployment specific directories
are created as follows:

• bin
• cfgtoollogs
• deinstall
• diagnostics
• include
• install
• inventory
• jdk
• jlib
• lib

– instantclient
– sql
– utl

• OPatch
• oraInst.loc
• oui
• srvm
The following figure shows the files and directories under the Services Manager (srvm)
directory:

Chapter 3
Preparing for Installation

3-4

Figure 3-1 GoldenGate MA Directory Structure

The following table describes the key MA directories and the variables that are used when
referring to those directories during an Oracle GoldenGate installation. When you see these
variables in an example or procedure, replace the variable with the full path to the
corresponding directory path in your enterprise topology.

Directory Name Variable Description Default Directory Path

Oracle GoldenGate
home

OGG_HOME The Oracle GoldenGate
home that is created on
a host computer is the
directory that you
choose to install the
product, here
GoldenGate for
Distributed Applications
and Analytics (GG for
DAA). This read-only
directory contains binary,
executable, and library
files for GG for DAA.

/
ogg_install_loca
tion

Deployment etc home OGG_ETC_HOME The location where your
deployment
configuration files are
stored including
parameter files.

/
ogg_deployment_l
ocation/etc

Deployment
configuration home

OGG_CONF_HOME The location where each
deployment information
and configuration
artifacts are stored.

/
ogg_deployment_l
ocation/etc/conf

Chapter 3
Preparing for Installation

3-5

Directory Name Variable Description Default Directory Path

Deployment security
home

OGG_SSL_HOME The location where each
deployment security
artifacts (certificates,
wallets) are stored.

/
ogg_deployment_l
ocation/etc/ssl

Deployment variable
home

OGG_VAR_HOME The location where each
deployment logging and
reporting processing
artifacts are stored.

/
ogg_deployment_l
ocation/var

Deployment data home OGG_DATA_HOME The location where each
deployment data
artifacts (trail files) are
stored.

/
ogg_deployment_l
ocation/var/lib/
data

You can change the default location of all of these to customize where you want to store these
files.

In a configuration where the OGG_VAR_HOME is a local directory and the OGG_HOME is a shared
read-only remote directory, many deployments with local OGG_VAR_HOME can share one read-
only shared OGG_HOME.

This directory design facilitates a simple manual upgrade. To upgrade, you stop the services
and then set the OGG_HOME in the web interface (or via a REST command) and then restart the
processes. On restart, Oracle GoldenGate picks up the updated environment variables. You
simply switch a deployment to use a new Oracle GoldenGate release by changing the Oracle
GoldenGate home directory path in the Service Manager to a new Oracle GoldenGate home
directory, which completes the upgrade. Restart the microservices, Extract and Replicat
processes.

3.1.4 Setting up Environmental Variables
To configure your Java environment for Oracle GoldenGate for Java:

• The PATH environmental variable should be configured to find your Java Runtime

• The shared (dynamically linked) Java virtual machine (JVM) library must also be found.

On Windows, these environmental variables should be set as system variables; on Linux/
UNIX, they should be set globally or for the user running the Oracle GoldenGate processes.
Examples of setting these environmental variables for Windows, UNIX, and Linux are in the
following sections.

Note:

There may be two versions of the JAVA_HOME/.../client, and another in
JAVA_HOME/.../server. For improved performance, use the server version, if it is
available. On Windows, only the client JVM may be there if only the JRE was
installed (and not the JDK).

• Java on Linux/UNIX

• Java on Windows

Chapter 3
Preparing for Installation

3-6

3.1.4.1 Java on Linux/UNIX
Configure the environment to find the JRE in the PATH, and the JVM shared library, using the
appropriate environmental variable for your system. For example, on Linux (and Solaris), set
LD_LIBRARY_PATH to include the directory containing the JVM shared library as follows (for
sh/ksh/bash):

Note:

On AIX platforms, you set LIBPATH=. On HP-UX IA64, you set SHLIB_PATH=.

Example 3-1 Configuring path for Java on Linux

export JAVA_HOME=/opt/jdk1.8
export PATH=$JAVA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$JAVA_HOME/jre/lib/amd64/server:$LD_LIBRARY_PATH

In this example, the directory $JAVA_HOME/jre/lib/i386/server should contain the
libjvm.so and libjsig.so files. The actual directory containing the JVM library depends on
the operating system and if the 64-bit JVM is being used.

Verify the environment settings by opening a command prompt and checking the Java version
as in this example:

$ java -version
java version "1.8.0_92"
Java(TM) SE Runtime Environment (build 1.8.0_92-b14)

3.1.4.2 Java on Windows
After Java is installed, configure the PATH to find the JRE and JVM DLL (jvm.dll):

Example 3-2 Configuring Path for Java on Windows

set JAVA_HOME=C:\Program Files\Java\jdk1.8.0
set PATH=%JAVA_HOME%\bin;%PATH%
set PATH=%JAVA_HOME%\jre\bin\server;%PATH%

In the example above, the directory %JAVA_HOME%\jre\bin\server should contain the file
jvm.dll.
Verify the environment settings by opening a command prompt and checking the Java version
as in this example:

C:\> java -version
java version "1.8.0_92" Java(TM) SE Runtime Environment (build 1.8.0_92-b14))

Chapter 3
Preparing for Installation

3-7

4
Install

• Setting up Oracle GoldenGate for Distributed Applications and Analytics in a High
Availability Environment

• Installing Oracle GoldenGate for Distributed Applications and Analytics
The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) is installed
using OUI. You can also use a command line silent installation using OUI.

4.1 Setting up Oracle GoldenGate for Distributed Applications
and Analytics in a High Availability Environment

This topic describes the best practices of achieving high availability of Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) processes.

Topics:

• Running GG for DAA from a Single Instance

• Running GG for DAA on a Cluster of Servers

• Shared Storage
Most shared storage solutions, including general purpose cluster file systems, can be used
to install Oracle GoldenGate or to store the files that Oracle GoldenGate needs to recover.

4.1.1 Running GG for DAA from a Single Instance
To configure the single server high availability, you need to configure the manager process with
AUTOSTART and AUTORESTART parameters. These parameters ensure that the manager process
always gets the extract or replicat group to be started back up from an inactive state.

4.1.2 Running GG for DAA on a Cluster of Servers
Depending on which cluster manager software that is being used, you need to configure it to
ensure the following:

• There is exactly one active node that is running Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA). It is assumed that the cluster manager can
detect that a compute node is down and subsequently spawn another node to be the
active.

• Install GG for DAA in shared file system and have that shared file system mounted in the
same location for all the nodes participating in the High Availability (HA) configuration. For
more information about installing Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA), see Installing Oracle GoldenGate for Distributed Applications and
Analytics . Most of the state files, including the Input and Output Trail files, Configuration
files, and Checkpoint files described in the next point are stored in sub-directories of the
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) install. The GG
for DAA installation directory is the same across all managed nodes. This helps the
administrator to leverage the exact content of entry point script to bring up GG for DAA as

4-1

part of its workflow to spawn a new active node. An example of the content of the entry
point script is a command to start the Oracle GoldenGate manager process.

• Oracle GoldenGate artifacts are stored in one or more shared file systems or volumes
accessible from all nodes. For more information about these files, see Directories and
Variables in Microservices Architecture:

– Input and Output Trail files: Typically these files are located in the gg_install_dir/
dirdat directory, where gg_install_dir is the Oracle GoldenGate installation
directory, such as C:/ggs on Windows or /home/user/ggs on UNIX. These files are
configurable.

– Configuration files: The configuration files are located in the gg_install_dir/dirprm
directory.

– Checkpoint files: These files are stored in an internal subdirectory, such as the
gg_install_dir/dirchk directory.

– When using File Writer features, for example, File Writer handler, ADW, or Redshift
integration, the file writer output files and the state files must be on shared volumes.

For more information about configuring cluster high availability for handlers, see Configuring
Cluster High Availability .

4.1.3 Shared Storage
Most shared storage solutions, including general purpose cluster file systems, can be used to
install Oracle GoldenGate or to store the files that Oracle GoldenGate needs to recover.

The following options are available from Oracle:

• Oracle Cluster File System (OCFS2) –available only on Linux: OCFS2 can also be
used for Oracle Database storage, although Oracle recommends the use of Oracle
Automatic Storage Management (ASM) starting with Oracle Database 10g. For more
information, see http://oss.oracle.com/projects/ocfs2/.

• Oracle Automatic Storage Management (ASM) Cluster File System (ACFS): For more
information about the Oracle Database 11g Release 2 ACFS, see Oracle Database
Automatic Storage Administrator's Guide as part of the Oracle Database 11g Release 2
documentation set: https://docs.oracle.com/cd/E11882_01/server.112/e18951/
asmfs_util001.htm#OSTMG91000.

• Oracle Database File System (DBFS): For more information about DBFS, its restrictions
as well as how to configure a DBFS, see Oracle Database Secure File and Large Objects
Developer's Guide from the Oracle Database 11g Release 2 documentation set: https://
docs.oracle.com/cd/E11882_01/appdev.112/e18294/adlob_fs.htm#BABDHGGJ.

• Oracle ACFS with Oracle Database 11g Release 2

4.2 Installing Oracle GoldenGate for Distributed Applications and
Analytics

The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) is installed
using OUI. You can also use a command line silent installation using OUI.

This chapter describes how to install a new instance of GG for DAA. The Installation is a three-
step process:

• Install the GG for DAA Microservices Architecture (MA).

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-2

http://oss.oracle.com/projects/ocfs2/
https://docs.oracle.com/cd/E11882_01/server.112/e18951/asmfs_util001.htm#OSTMG91000
https://docs.oracle.com/cd/E11882_01/server.112/e18951/asmfs_util001.htm#OSTMG91000
https://docs.oracle.com/cd/E11882_01/appdev.112/e18294/adlob_fs.htm#BABDHGGJ
https://docs.oracle.com/cd/E11882_01/appdev.112/e18294/adlob_fs.htm#BABDHGGJ

• Set the necessary environment variables.

• Deploy an Oracle GoldenGate instance using the configuration assistant.

The installer registers the Oracle GoldenGate home directory with the central inventory that is
associated with the selected database. The inventory stores information about all Oracle
software products installed on a host if the product was installed using OUI.

Disk space is also required for the Oracle GoldenGate Bounded Recovery feature. Bounded
Recovery is a component of the general Extract checkpointing facility. It caches long-running
open transactions to disk at specific intervals to enable fast recovery upon a restart of Extract.
At each bounded recovery interval (controlled by the BRINTERVAL option of the BR parameter)
the disk required is as follows: for each transaction with cached data, the disk space required
is usually 64k plus the size of the cached data rounded up to 64k. Not every long-running
transaction is persisted to disk.

Watch this video for a demo on installing and configuring Install and Configure GoldenGate
Microservices 21c.

Topics:

• Installing Oracle GoldenGate MA for Distributed Applications and Analytics Using the UI
Interactive installation provides a graphical user interface that prompts for the required
installation information. These instructions apply to new installations and upgrades.

• Silent Installation
Silent installation from the command line interface can be performed if your system does
not have an X-Windows or graphical interface or you want to perform the installation in an
automated way. Silent installations ensure that multiple users in your organization use the
same installation options when installing Oracle products.

• Setting Up Secure or Non-Secure Deployments
You can choose to set up a secure or non-secure deployment.

4.2.1 Installing Oracle GoldenGate MA for Distributed Applications and
Analytics Using the UI

Interactive installation provides a graphical user interface that prompts for the required
installation information. These instructions apply to new installations and upgrades.

To install Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) using the
UI:

1. Create a temporary staging directory into which you will install Oracle GoldenGate. For
example, mkdir /u01/stage/oggsc.

2. Extract the installation ZIP file into the temporary staging directory. For example: unzip
ggs_Linux_x64_BigData_64bit_services.zip -d ./temp directory

3. From the expanded directory, run the ggs_Linux_x64_BigData_64bit_services/Disk1/
runInstaller program on UNIX or Linux to display the Installation Wizard.

4. On the Select Installation Option page, select the Oracle Database version for your
environment, then click Next.

5. If you are on Windows and running Manager as a service, set the system variable PATH to
include jvm.dll, then delete the Manager service and re-add it.

6. On the Specify Installation Details page, ensure that the following environment variable
is set:

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-3

https://youtu.be/wNUlCTCPwpQ
https://youtu.be/wNUlCTCPwpQ

• OGG_HOME
7. Click Next to display the Summary page.

8. Confirm that there is enough space for the installation and that the installation selections
are correct.

• (Optional) Click Save Response File to save the installation information to a response
file. You can run the installer from the command line with this file as input to duplicate
the results of a successful installation on other systems. You can edit this file or create
a new one from a template.

• Click Install to begin the installation or Back to go back and change any input
specifications. When upgrading an existing Oracle GoldenGate installation, OUI
notifies you that the software location has files or directories. Click Yes to continue.

• If you created a central inventory directory, then you are prompted to run the
INVENTORY_LOCATION/orainstRoot.sh script. This script must be executed as the root
operating system user. This script establishes the inventory data and creates
subdirectories for each installed Oracle product (in this case, Oracle GoldenGate).

You are notified when the installation is completed.

9. Click Close to complete the installation.

Watch this video on installing GoldenGate Microservices.

4.2.2 Silent Installation
Silent installation from the command line interface can be performed if your system does not
have an X-Windows or graphical interface or you want to perform the installation in an
automated way. Silent installations ensure that multiple users in your organization use the
same installation options when installing Oracle products.

Silent installations are driven by using a response file. Response files can be saved by
selecting the Save Response File option during an interactive Oracle Universal Installer
session or by editing the oggcore.rsp template located in the response directory after
unzipping the binaries.

The Oracle GoldenGate response file contains a standard set of Oracle configuration
parameters in addition to parameters that are specific to Oracle GoldenGate. These
parameters correspond to the fields in the interactive session. The response file location is

unzipped_directory/ggs_Linux_x64_BigData_64bit_services/Disk1/response

To perform the installation using a response file, issue the following command:

unzipped_directory/ggs_Linux_x64_BigData_64bit_services.zip/Disk1/runInstaller -silent -
nowait -responseFile absolute_path_to_response_file

4.2.3 Setting Up Secure or Non-Secure Deployments
You can choose to set up a secure or non-secure deployment.

A secure deployment involves making RESTful API calls and conveying trail data between the
Distribution Server and Receiver Server, over SSL/TLS. You can use your own existing
business cerificate from your Certificate Authority (CA) or you might create your own
certificates. When first creating the SSL/TLS security certificates, you must ensure that the
SSL/TLS security environment variables.

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-4

https://youtu.be/9P92WBujPKw?si=-p5xcz0neZ2zXzEa&t=4

For a non-secure deployment, the RESTful API calls occur over plain-text HTTP and
conveyance between Distribution Server and Receiver Server is performed using the wss, ogg,
and ws protocols.

This section describes the steps to configure a non-secure deployment and prerequisites and
tasks to configure a secure deployment.

• How to Add Secure or Non-Secure Deployments
Adding deployments is the first task in the process of setting up a data replication platform.
Deployments are managed from the Service Manager.

• How to Remove a Deployment
You can remove a deployment using OGGCA or in silent mode.

4.2.3.1 How to Add Secure or Non-Secure Deployments
Adding deployments is the first task in the process of setting up a data replication platform.
Deployments are managed from the Service Manager.

After completing the Oracle GoldenGate Microservices installation, you can add initial and
subsequent deployments using the Configuration Assistant (OGGCA) wizard.

Note:

Oracle recommends that you have a single Service Manager per host, to avoid
redundant upgrade and maintenance tasks with Oracle GoldenGate releases.

Use OGGCA to add multiple deployments to a Service Manager. This allows you to upgrade
the same Service Manager with new releases or patches. The source and target deployments
serve as endpoints for setting up the distribution path for data replication.

1. From the OGG_HOME directory, run the $OGG_HOME/bin/oggca.sh program on UNIX or Linux.

The Oracle GoldenGate Configuration Assistant (oggca) is started. Run this program, each
time you want to add a deployment.

2. In the Select Service Manager Options step:

a. Select whether you want to use an existing Service Manager or create a new one. In
most configurations, you only have one Service Manager that is responsible for
multiple deployments.

b. For a new Service Manager, enter or browse to the directory that you want to use for
your deployment. Oracle recommends that you create a ServiceManager directory
within the deployment sub-directory structure to store the Service Manager files.

c. Enter the hostname or IP Address of the server.

d. Enter a unique port number that the Service Manager will listen on, or choose the port
already in use if selecting an existing Service Manager.

e. (Optional) You can register the Service Manager to run as a service so as to avoid
manually starting and stopping it.

You can choose to run one Service Manager as a service (daemon). If there is an
existing Service Manager registered as a service and you select a new Service
Manager to register as a service, an alert is displayed indicating that you cannot
register the new one as a service. All other Service Managers are started and stopped

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-5

using scripts installed in the bin directory of the deployment. You cannot register an
existing Service Manager as a service.

3. In the Configuration Options step, you can add or remove deployments.

You can only add or remove one deployment for one Service Manager at a time.

Note:

Ensure that your Service Manager is up and running prior to launching OGGCA.

4. In the Deployment Details step:

a. Enter the deployment name using these conventions:

• Must begin with a letter.

• Can be a standard ASCII alphanumeric string not exceeding 32 characters.

• Cannot include extended ASCII characters.

• Special characters that are allowed include underscore (‘_’), hyphen (‘/’), dash (‘-’),
period (‘.’). The name before the / symbol should be "slash" or "forward slash".

• Cannot be “ServiceManager”.

b. Enter or select the Oracle GoldenGate installation directory. If you have set
the $OGG_HOME environment variable, the directory is automatically populated.
Otherwise, the parent directory of the oggca.sh (Linux) or oggca.bat (Windows) script
is used.

c. Click Next.

5. On the Select Deployment Directories page:

a. Enter or select a deployment directory where you want to store the deployment registry
and configuration files. When you enter the deployment directory name, it is created if
it doesn’t exist. Oracle recommends that you do not locate your deployment directory
inside your $OGG_HOME and that you create a separate directory for easier upgrades.
The additional fields are automatically populated based on the specified deployment
directory.

Note:

The deployment directory name (user deployment directory) needs to be
different than the directory name chosen in the first screen (Service Manager
deployment directory).

b. You can customize the deployment directories so that they are named and located
differently from the default.

c. Enter or select different directories for the various deployment elements.

d. Click Next.

6. On the Environment Variables page:

Enter the requested values for the environment variables. Double-click in the field to edit it.
You can copy and paste values in the environment variable fields. Make sure that you tab
or click outside of the field after entering each value, otherwise it’s not saved. If you have
set any of these environment variables, the directory is automatically populated.

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-6

OGG_HOME
The directory where you installed Oracle GoldenGate. This variable is fixed and cannot be
changed.

Note:

On a Windows platform, ensure that there's no space in the OGG_HOME directory
path otherwise OGGCA will not run.

LD_LIBRARY_PATH
This variable is used to specify the path to search for libraries on UNIX and Linux. It may
have a different name on some operating systems, such as LIBPATH on IBM AIX on
POWER Systems (64-Bit), and SHLIB_PATH on HP-UX. This path points to the Oracle
GoldenGate installation directory and the underlying instant client directory by default. It
might be extended if USER EXITS are in use.

You can add additional environment variables to customize your deployment or remove
variables. For instance, you can enter the following variable to default to another
international charset: ENV_LC_ALL=zh_CN.UTF-8
Click Next.

7. On the Administrator Account page:

a. Enter a user name and password that you want to use to sign in to the Oracle
GoldenGate Microservices Service Manager and the other servers. This user is the
security user for this deployment. Select the Enable strong password policy in the
new deployment checkbox to ensure setting a highly secure password for your user
account. The strong password policy has the following requirements:

• At least one lowercase character [a...z]

• At least one upposercase character [A...Z]

• At least one digit [0...9]

• At least one special character [- ! @ % & * . #]

• The length should be between 8 and 30 characters.

If you are using an existing Service Manager, you must enter the same log in
credentials that were used when adding the first deployment.

b. Select the check box that allows you to enable a strong password policy for your new
deployment. If you select this option, then the password must adhere to restrictions,
otherwise an error occurs, which requires you to specify a stronger password.

c. Click Next.

8. On the Security Options page:

a. You can choose whether or not you want to secure your deployment. Oracle
recommends that you enable SSL/TLS security. If you do not want to use security for
your deployment, deselect the check box.

This operation exposes the option This non-secure deployment will be used to
send trail data to a secure deployment. Select this check box if the non-secure
target deployment is meant to communicate with a secure source deployment.

However, you must enable security if configuring for Oracle GoldenGate sharding
support.

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-7

b. Also see: About Target-Initiated Paths in Step by Step Data Replication Using Oracle
GoldenGate Microservices Architecture Guide.

c. (Optional) You can specify a client wallet location so that you can send trail data to a
secure deployment. This option is useful when Distribution Server from the source
deployment is unsecured whereas the Receiver Server on the target deployment is
secured. So, the sender may be configured for public access while the Receiver
Server requires authentication and authorization, which is established using PKI before
the incoming data is applied. For more information, see Creating a Self Signed
Certificate and Creating a Client Certificate Certificate in Oracle GoldenGate Security
Guide.

d. For your Server, select one of the options, and then provide the required file locations.
When using an existing wallet, it must have the appropriate certificates already
imported into it. If you choose to use a certificate, enter the corresponding pass
phrase.
When using a self-signed certificate, a new Oracle Wallet is created in the new
deployment and these certificates are imported into it. For certificates, enter the
location of the private key file and the pass phrase. The private key files must be in the
PKCS#8 format.

e. For your Client, select one of the options, and then provide the required information as
you did for your server.

f. Click Next.

9. (If Security is enabled) On the Advanced Security Settings page, the TLS 1.1 and TLS
1.2 options are available. TLS 1.2 is selected by default.

When you open the Advanced Security Settings for the first time with TLS 1.2, the
following cipher suites are listed:

TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384

a. Use the arrows to add or remove cipher suites.

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-8

https://docs.oracle.com/en/middleware/goldengate/core/21.1/ggmas/overview-target-initiated-paths.html
https://docs.oracle.com/en/middleware/goldengate/core/21.1/ggmas/setting-secure-and-non-secure-deployments.html#GUID-82A80C30-13BD-48B3-9D84-C8EB729B2895
https://docs.oracle.com/en/middleware/goldengate/core/21.1/ggmas/setting-secure-and-non-secure-deployments.html#GUID-82A80C30-13BD-48B3-9D84-C8EB729B2895
https://docs.oracle.com/en/middleware/goldengate/core/21.1/ggmas/setting-secure-and-non-secure-deployments.html#GUID-09D79621-1C60-4D14-825C-57D04CEE4E2A

b. Use Up and Down to reorder how the cipher suites are applied

c. Click Next.

Note:

For more information on TCP/IP encryption options with RMTHOST, see
RMTHOST in Reference for Oracle GoldenGate.

10. (If Sharding is enabled) On the Sharding Options page:

a. Locate and import your Oracle GoldenGate Sharding Certificate. Enter the
distinguished name from the certificate that will be used by the database sharding
code to identify itself when making REST API calls to the Oracle GoldenGate MA
services.

b. Enter a unique name for the certificate.

c. Click Next.

11. On the Port Settings page:

a. Enter the Administration Server port number, and then when you leave the field the
other port numbers are populated in ascending numbers. Optionally, you can enter
unique ports for each of the servers.

b. Select Enable Monitoring to use the Performance Metrics Server.

c. Click inside the Performance Metrics Server port fields to populate or enter the ports
you want to use. Ensure that you choose available ports for TCP.

Select the UDP port for performance monitoring. The option to select the UDP port is
displayed only with deployments on Windows and other operating systems that don't
support UDS communication with Performance Metric Server. See Supported
Operating Systems for UDS.

You can change the TCP port from the Service Manager console after the deployment
is done. For more information on PMSRVR, see ENABLEMONITORING.

d. Select the type of datastore that you want the Performance Metrics Server to use, the
default Berkeley Database (BDB) data store or Open LDAP Lightning Memory-Mapped
Database (LMDB). You can also designate the Performance Monitor as a Critical
Service if integrating the Service Manager with XAG.

For BDB informtion, see Oracle Berkeley DB 12c Release 1. For LMDB information,
see http://www.lmdb.tech/doc/.

e. Select the location of your datastore. BDB and LMDB are in-memory and disk-resident
databases. The Performance Metrics server uses the datastore to store all
performance metrics information.

f. Click Next.

Note:

The oggca utility validates whether or not the port you entered is currently in use
or not.

12. On the Summary page:

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-9

http://docs.oracle.com/cd/E17076_05/html/index.html
http://www.lmdb.tech/doc/

a. Review the detailed configuration settings of the deployment before you continue.

b. (Optional) You can save the configuration information to a response file. Oracle
recommends that you save the response file. You can run the installer from the
command line using this file as an input to duplicate the results of a successful
configuration on other systems. You can edit this file or a new one from the provided
template.

Note:

When saving to a response file, the administrator password is not saved for
security reasons. You must edit the response file and enter the password if
you want to reuse the response file for use on other systems.

c. Click Finish to the deployment.

d. Click Next.

13. On the Configure Deployment page:

Displays the progress of the deployment creation and configuration.

a. If the Service Manager is being registered as a service, a pop-up appears that directs
you how to run the script to register the service. The Configuration Assistant verifies
that these scripts have been run. If you did not run them, you are queried if you want to
continue. When you click Yes, the configuration completes successfully. When you
click No, a temporary failed status is set and you click Retry to run the scripts.

Click Ok after you run the script to continue.

b. Click Next.

14. On the Finish page:

Click Close to close the Configuration Assistant.

4.2.3.2 How to Remove a Deployment
You can remove a deployment using OGGCA or in silent mode.

Topics:

• How to Remove a Deployment: GUI
You can remove a deployment using the Oracle GoldenGate Configuration Assistant
wizard.

• How to Remove a Deployment: Silent Mode
You can remove a deployment silently using the Oracle GoldenGate Configuration
Assistant (oggca) from the Oracle GoldenGate Home bin directory.

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-10

4.2.3.2.1 How to Remove a Deployment: GUI
You can remove a deployment using the Oracle GoldenGate Configuration Assistant wizard.

To remove a deployment:

Note:

When you remove a deployment or uninstall Oracle GoldenGate Microservices, the
system does not automatically stop processes. As a result, you may have to stop
processes associated with the deployment and you must clean files manually.

1. Run the Oracle GoldenGate Configuration Assistant wizard:

$OGG_HOME/bin
2. Select Existing Service Manager from the Select Service Manager Options screen.

Click Next

3. Select Remove Existing Oracle GoldenGate Deployment from the Configuration
Options screen.

4. Select the deployment you need to remove from the Deployment Name list box. Also
select the Delete Deployment Files from Disk check box if you want to remove all the
deployment files (including configuration files) from the host.

5. Enter the Administration account user name and password and click Next.

6. See the list of settings that are deleted with the deployment and click Finish.

To remove a Service Manager:

1. Run Oracle GoldenGate Configuration Assistant wizard:

$OGG_HOME/bin
2. Select Existing Service Manager from the Select Service Manager Options screen.

Click Next.

3. If there are no other deployments to remove, then the option to remove the Service
Manager is available in the drop down. Select Remove Service Manager Deployment
from the Configuration Options screen.

4. Click Finish.

Files to be Removed Manually After Removing Deployment

It’s mandatory to delete some files manually only in case there's a Service Manager registered
but you have to unregister it and register a new one. To remove files manually, you must have
root or sudo privileges. The files to be deleted include:

Operating System Files to be Removed Manually to Unregister an
Existing Service Manager

Linux 6 • /etc/init.d/OracleGoldenGate
• /etc/rc.d/*OracleGoldenGate
• /etc/rc*.d/*OracleGoldenGate
• /etc/oggInst.loc

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-11

Operating System Files to be Removed Manually to Unregister an
Existing Service Manager

Linux 7 /etc/systemd/system/
OracleGoldenGate.service

The following commands are executed to stop the Service Manager:

systemctl stop OracleGoldenGate
systemctl disable OracleGoldenGate *

Note:

If the Service Manager is not registered as a service (with or without the integration
with XAG), OGGCA stops the Service Manager deployment, otherwise, a script
called unregisterServiceManager is created, and when executed by the user, it runs
the systemctl commands and deletes the mentioned files.

4.2.3.2.2 How to Remove a Deployment: Silent Mode
You can remove a deployment silently using the Oracle GoldenGate Configuration Assistant
(oggca) from the Oracle GoldenGate Home bin directory.

By removing a deployment, you can delete various components of the deployment, including,
Extracts, Replicats, paths, and configuration files. However, the Service Manager is not
deleted.

To remove a deployment silently:

Note:

If the Service Manager is registered as a system service, removing a deployment
silently will not unregister the service.

1. Ensure that you have a deployment response file. To get the deployment response file, run
the OGGCA and the save the response file.

2. Update the following lines within the deployment response file:

CONFIGURATION_OPTION=REMOVE
ADMINISTRATOR_PASSWORD=********
CREATE_NEW_SERVICEMANAGER=false
DEPLOYMENT_NAME=deployment_name
REMOVE_DEPLOYMENT_FROM_DISK=true

In case of multiple deployments, you must specify the deployment name using the
DEPLOYMENT_NAME field. You can use the REMOVE_DEPLOYMENT_FROM_DISK option to remove
physical files and folders associated with deployment.

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-12

3. Run the OGGCA program from the following location using the -silent and -
responseFile options. Providing the exact path to the deployment response is needed.

$OGG_HOME/bin/oggca.sh -silent -responseFile
path_to_response_file/response_file.rsp

Example:

$OGG_HOME/bin/oggca.sh -silent -responseFile
 /home/oracle/software/ogg_deployment.rsp

Chapter 4
Installing Oracle GoldenGate for Distributed Applications and Analytics

4-13

5
Upgrade

• Upgrading Oracle GoldenGate for Distributed Applications and Analytics
For Microservices, the earliest version that can be upgraded from is Oracle GoldenGate
23ai. As a best practice, perform a minimal upgrade first, so that you can troubleshoot
more easily in case of any issue. After the environment is upgraded successfully, you can
implement the new functionality.

5.1 Upgrading Oracle GoldenGate for Distributed Applications
and Analytics

For Microservices, the earliest version that can be upgraded from is Oracle GoldenGate 23ai.
As a best practice, perform a minimal upgrade first, so that you can troubleshoot more easily in
case of any issue. After the environment is upgraded successfully, you can implement the new
functionality.

This chapter describes how to upgrade Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) from the previous releases to the current release.

The pre-upgrade requirements are as follows:

• Stop all Oracle GoldenGate processes.

• Start Oracle GoldenGate.

Topics:

• Obtaining the Oracle GoldenGate Distribution

• Scope of Upgrade
Even though you may only upgrade the source or target, rather than both, all processes
are involved in upgrade. All processes must be stopped in the correct order for the
upgrade, regardless of which component you upgrade, and the trails must be processed
until empty.

• Upgrading Oracle GoldenGate for Distributed Applications and Analytics – GUI Based

5.1.1 Obtaining the Oracle GoldenGate Distribution
To obtain Oracle GoldenGate:

1. Go to edelivery.oracle.com. For more information, see My Oracle Support Banner Oracle
GoldenGate -- Oracle RDBMS Server Recommended Patches (Doc ID 1557031.1). To
access Oracle Technology Network (OTN), go to https://www.oracle.com/integration/
goldengate/

2. Find the Oracle GoldenGate 23ai release and download the ZIP file onto your system.

For more information about locating and downloading Oracle Fusion Middleware products, see
the Oracle® Fusion Middleware Download, Installation, and Configuration Readme Files on
OTN.

5-1

https://edelivery.oracle.com
https://support.oracle.com/knowledge/Oracle%20Cloud/1557031_1.html
https://support.oracle.com/knowledge/Oracle%20Cloud/1557031_1.html
https://www.oracle.com/integration/goldengate/
https://www.oracle.com/integration/goldengate/
https://docs.oracle.com/cd/E23104_01/download_readme.htm

5.1.2 Scope of Upgrade
Even though you may only upgrade the source or target, rather than both, all processes are
involved in upgrade. All processes must be stopped in the correct order for the upgrade,
regardless of which component you upgrade, and the trails must be processed until empty.

Before you start the upgrade, review the information about upgrading Extract and Replicat.

Oracle recommends that you begin your upgrade with the target rather than the source to
avoid the necessity of adjusting the trail file format.

• Replicat Upgrade Considerations
All Replicat installations should be upgraded at the same time. It is critical to ensure that all
trails leading to all Replicat groups on all target systems are processed until empty,
according to the upgrade instructions.

5.1.2.1 Replicat Upgrade Considerations
All Replicat installations should be upgraded at the same time. It is critical to ensure that all
trails leading to all Replicat groups on all target systems are processed until empty, according
to the upgrade instructions.

Before you start the upgrade, review the information about upgrading Extract and Replicat.

Oracle recommends that you begin your upgrade with the target rather than the source to
avoid the necessity of adjusting the trail file format.

5.1.3 Upgrading Oracle GoldenGate for Distributed Applications and
Analytics – GUI Based

To obtain the Oracle GoldenGate installation software and set up the directories for upgrade:

1. Download the Oracle GoldenGate DAA for 23ai software from the Oracle Technology
Network or eDelivery.

2. Upload the Oracle GoldenGate Microservices 21c software to a staging location on the
server where a previous release of Oracle GoldenGate Microservices exists.

3. Unzip Oracle GoldenGate Microservices 21c software in the staging location.

$ cd /tmp $ unzip
 ./fbo_ggs_Linux_x64_services_shiphome.zip

4. Untar the tar file that gets created after the unzip command: tar -xvf
ggs_Linux_x64_Oracle_64bit.tar

5. Move into the unzipped files and execute the runInstaller command.

$ cd ./fbo_ggs_Linux_x64_services_shiphome/Disk1
 $./runInstaller

6. For Software Location, specify where the new Oracle GoldenGate home is located. This is
not the same location as the current Oracle GoldenGate home. Click Next.

7. Click Install to begin installing the new GG for DAA. When the installation is done, click
Close.

At this point, you should have two GG for DAA home directories: one for your old home
(21c) and a new home (23ai).

Chapter 5
Upgrading Oracle GoldenGate for Distributed Applications and Analytics

5-2

8. Verify the current version of Oracle GoldenGate Home through Service Manager.

a. Login to the Service Manager:

http://host:servicemanager_port

b. Review the deployment section for your current Oracle GoldenGate home location.

9. Update the Service Manager and the deployments with the location of the new Oracle
GoldenGate home.

a. Click Service Manager, then Deployment name.

b. Next to the deployment details, click the pencil icon to display the dialog box to edit the
Oracle GoldenGate home.

c. Update the Oracle GoldenGate home with the complete path to the new Oracle
GoldenGate home. Also update the following, if required:

LD_LIBRARY_PATH

d. Click Apply.

e. Confirm that the Oracle GoldenGate home has been updated.

f. Stop all Extracts, Replicats, and Distribution paths.

g. Use the action button to restart Service Manager or Deployment.

Note:

You can confirm that the Oracle GoldenGate home was updated by looking
at the process from the operating system for Service Manager. The Service
Manager process should be running from the new Oracle GoldenGate home.

10. To upgrade the associated deployments, follow the same steps for Service Manager after
ensuring that all the Extract and Replicat processes in that deployment have been
stopped.

Chapter 5
Upgrading Oracle GoldenGate for Distributed Applications and Analytics

5-3

6
Configure

• Configuring Oracle GoldenGate for Distributed Applications and Analytics

• Logging
Logging is essential to troubleshooting Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) integrations with GG for DAA targets.

• Configuring Logging

6.1 Configuring Oracle GoldenGate for Distributed Applications
and Analytics

This topic describes how to configure GG for DAA handlers.

• Running with Replicat
You need to review before configuring a replicat process in Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA).

• About Schema Evolution and Metadata Change Events

• About Configuration Property CDATA[] Wrapping

• Using Regular Expression Search and Replace
You can perform more powerful search and replace operations of both schema data
(catalog names, schema names, table names, and column names) and column value data,
which are separately configured. Regular expressions (regex) are characters that
customize a search string through pattern matching.

• Scaling Oracle GoldenGate for Distributed Applications and Analytics Delivery

• Configuring Cluster High Availability
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) doesn't have
built-in high availability functionality. You need to use a standard cluster software's high
availability capability to provide the high availability functionality.

• Using Identities in Oracle GoldenGate Credential Store
The Oracle GoldenGate credential store manages user IDs and their encrypted passwords
(together known as credentials) that are used by Oracle GoldenGate processes to interact
with the local database. The credential store eliminates the need to specify user names
and clear-text passwords in the Oracle GoldenGate parameter files.

6.1.1 Running with Replicat
You need to review before configuring a replicat process in Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA).

This topic explains how to run the Java Adapter with the Oracle GoldenGate Replicat process.

• Replicat Grouping

• About Replicat Checkpointing

• About Initial Load Support

6-1

• About the Unsupported Replicat Features

• How the Mapping Functionality Works

6.1.1.1 Replicat Grouping
The Replicat process provides the Replicat configuration property, GROUPTRANSOPS, to control
transaction grouping. By default, the Replicat process implements transaction grouping of 1000
source transactions into a single target transaction. If you want to turn off transaction grouping
then the GROUPTRANSOPS Replicat property should be set to 1.

6.1.1.2 About Replicat Checkpointing
In addition to the Replicat checkpoint file ,.cpr, an additional checkpoint file, dirchk/
group.cpj, is created that contains information similar to CHECKPOINTTABLE in Replicat for the
database.

6.1.1.3 About Initial Load Support
Replicat can already read trail files that come from both the online capture and initial load
processes that write to a set of trail files. In addition, Replicat can also be configured to support
the delivery of the special run initial load process using RMTTASK specification in the Extract
parameter file. For more details about configuring the direct load, see Loading Data with an
Oracle GoldenGate Direct Load.

Note:

The SOURCEDB or DBLOGIN parameter specifications vary depending on your source
database.

6.1.1.4 About the Unsupported Replicat Features
The following Replicat features are not supported in this release:

• BATCHSQL
• SQLEXEC
• Stored procedure

• Conflict resolution and detection (CDR)

6.1.1.5 How the Mapping Functionality Works
The Oracle GoldenGate Replicat process supports mapping functionality to custom target
schemas. You must use the Metadata Provider functionality to define a target schema or
schemas, and then use the standard Replicat mapping syntax in the Replicat configuration file
to define the mapping. For more information about the Replicat mapping syntax in the
Replication configuration file, see Mapping and Manipulating Data.

6.1.2 About Schema Evolution and Metadata Change Events
The Metadata in trail is a feature that allows seamless runtime handling of metadata change
events by Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA),

Chapter 6
Configuring Oracle GoldenGate for Distributed Applications and Analytics

6-2

including schema evolution and schema propagation to GG for DAA target applications. The
NO_OBJECTDEFS is a sub-parameter of the Extract and Replicat EXTTRAIL and RMTTRAIL
parameters that lets you suppress the important metadata in trail feature and revert to using a
static metadata definition.

The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) Handlers and
Formatters provide functionality to take action when a metadata change event is encountered.
The ability to take action in the case of metadata change events depends on the metadata
change events being available in the source trail file. Oracle GoldenGate supports metadata in
trail and the propagation of DDL data from a source Oracle Database. If the source trail file
does not have metadata in trail and DDL data (metadata change events) then it is not possible
for GG for DAA to provide and metadata change event handling.

6.1.3 About Configuration Property CDATA[] Wrapping
The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) Handlers and
Formatters support the configuration of many parameters in the Java properties file, the value
of which may be interpreted as white space. The configuration handling of the Java Adapter
trims white space from configuration values from the Java configuration file. This behavior of
trimming whitespace may be desirable for some configuration values and undesirable for other
configuration values. Alternatively, you can wrap white space values inside of special syntax to
preserve the whites pace for selected configuration variables. GG for DAA borrows the XML
syntax of CDATA[] to preserve white space. Values that would be considered to be white space
can be wrapped inside of CDATA[].

The following is an example attempting to set a new-line delimiter for the Delimited Text
Formatter:

gg.handler.{name}.format.lineDelimiter=\n
This configuration will not be successful. The new-line character is interpreted as white space
and will be trimmed from the configuration value. Therefore the gg.handler setting effectively
results in the line delimiter being set to an empty string.

In order to preserve the configuration of the new-line character simply wrap the character in the
CDATA[] wrapper as follows:

gg.handler.{name}.format.lineDelimiter=CDATA[\n]
Configuring the property with the CDATA[] wrapping preserves the white space and the line
delimiter will then be a new-line character.

6.1.4 Using Regular Expression Search and Replace
You can perform more powerful search and replace operations of both schema data (catalog
names, schema names, table names, and column names) and column value data, which are
separately configured. Regular expressions (regex) are characters that customize a search
string through pattern matching.

You can match a string against a pattern or extract parts of the match. Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) uses the standard Oracle Java regular
expressions package, java.util.regex, see Regular Expressions in The Single UNIX
Specification, Version 4.

• Using Schema Data Replace

• Using Content Data Replace

Chapter 6
Configuring Oracle GoldenGate for Distributed Applications and Analytics

6-3

http://www.unix.org/version4/
http://www.unix.org/version4/

6.1.4.1 Using Schema Data Replace
You can replace schema data using the gg.schemareplaceregex and
gg.schemareplacestring properties. Use gg.schemareplaceregex to set a regular expression,
and then use it to search catalog names, schema names, table names, and column names for
corresponding matches. Matches are then replaced with the content of the
gg.schemareplacestring value. The default value of gg.schemareplacestring is an empty
string or "".

For example, some system table names start with a dollar sign like $mytable. You may want to
replicate these tables even though most technologies do not allow dollar signs in table names.
To remove the dollar sign, you could configure the following replace strings:

gg.schemareplaceregex=[$]
gg.schemareplacestring=

The resulting example of searched and replaced table name is mytable. These properties also
support CDATA[] wrapping to preserve whitespace in the value of configuration values. So the
equivalent of the preceding example using CDATA[] wrapping use is:

gg.schemareplaceregex=CDATA[[$]]
gg.schemareplacestring=CDATA[]

The schema search and replace functionality supports using multiple search regular
expressions and replacements strings using the following configuration syntax:

gg.schemareplaceregex=some_regex
gg.schemareplacestring=some_value
gg.schemareplaceregex1=some_regex
gg.schemareplacestring1=some_value
gg.schemareplaceregex2=some_regex
gg.schemareplacestring2=some_value

6.1.4.2 Using Content Data Replace
You can replace content data using the gg.contentreplaceregex and
gg.contentreplacestring properties to search the column values using the configured regular
expression and replace matches with the replacement string. For example, this is useful to
replace line feed characters in column values. If the delimited text formatter is used then line
feeds occurring in the data will be incorrectly interpreted as line delimiters by analytic tools.

You can configure n number of content replacement regex search values. The regex search
and replacements are done in the order of configuration. Configured values must follow a given
order as follows:

gg.contentreplaceregex=some_regex
gg.contentreplacestring=some_value
gg.contentreplaceregex1=some_regex
gg.contentreplacestring1=some_value
gg.contentreplaceregex2=some_regex
gg.contentreplacestring2=some_value

Chapter 6
Configuring Oracle GoldenGate for Distributed Applications and Analytics

6-4

Configuring a subscript of 3 without a subscript of 2 would cause the subscript 3 configuration
to be ignored.

NOT_SUPPORTED:

 Regular express searches and replacements require computer processing and can
reduce the performance of the Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) process.

To replace line feeds with a blank character you could use the following property
configurations:

gg.contentreplaceregex=[\n]
gg.contentreplacestring=CDATA[]

This changes the column value from:

this is
me

to :

this is me

Both values support CDATA wrapping. The second value must be wrapped in a CDATA[]
wrapper because a single blank space will be interpreted as whitespace and trimmed by the
GG for DAA configuration layer. In addition, you can configure multiple search a replace
strings. For example, you may also want to trim leading and trailing white space out of column
values in addition to trimming line feeds from:

^\\s+|\\s+$

gg.contentreplaceregex1=^\\s+|\\s+$
gg.contentreplacestring1=CDATA[]

6.1.5 Scaling Oracle GoldenGate for Distributed Applications and Analytics
Delivery

 Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) supports breaking
down the source trail files into either multiple Replicat processes or by using Coordinated
Delivery to instantiate multiple Java Adapter instances inside a single Replicat process to
improve throughput. This allows you to scale GG for DAA delivery.

There are some cases where the throughput to GG for DAA integration targets is not sufficient
to meet your service level agreements even after you have tuned your handler for maximum
performance. When this occurs, you can configure parallel processing and delivery to your
targets using one of the following methods:

Chapter 6
Configuring Oracle GoldenGate for Distributed Applications and Analytics

6-5

• Multiple Replicat processes can be configured to read data from the same source trail files.
Each of these Replicat processes are configured to process a subset of the data in the
source trail files so that all of the processes collectively process the source trail files in their
entirety. There is no coordination between the separate Replicat processes using this
solution.

• Oracle GoldenGate Coordinated Delivery can be used to parallelize processing the data
from the source trail files within a single Replicat process. This solution involves breaking
the trail files down into logical subsets for which each configured subset is processed by a
different delivery thread. For more information abour Co-ordinated Replicat, see About
Coordinated Replicat in the Oracle GoldenGate Microservices Architecture Documentation.

With either method, you can split the data into parallel processing for improved throughput.
Oracle recommends breaking the data down in one of the following two ways:

• Splitting Source Data By Source Table –Data is divided into subsections by source table.
For example, Replicat process 1 might handle source tables table1 and table 2, while
Replicat process 2 might handle data for source tables table3 and table2. Data is split for
source table and the individual table data is not subdivided.

• Splitting Source Table Data into Sub Streams – Data from source tables is split. For
example, Replicat process 1 might handle half of the range of data from source table1,
while Replicat process 2 might handler the other half of the data from source table1.

• If you are using Coordinated Replicat, please make sure that you add TARGETDB LIBFILE
libggjava.so SET property=path_to_deployment_home/etc/conf/ogg/
your_replicat_name.properties.

Additional limitations:

• Parallel apply is not supported.

• The BATCHSQL parameter not supported.

Example 6-1 Scaling Support for the Oracle GoldenGate for Distributed Applications
and Analytics Handlers

Handler Name Splitting Source Data By
Source Table

Splitting Source Table Data into
Sub Streams

Cassandra Supported Supported when:

• Required target tables in
Cassandra are pre-created.

• Metadata change events do not
occur.

Elastic Search Supported Supported

Chapter 6
Configuring Oracle GoldenGate for Distributed Applications and Analytics

6-6

https://docs.oracle.com/en/middleware/goldengate/core/23/coredoc/replicat-coordinated-replicat.html#GUID-6C7E7C08-4856-4907-99CC-7D4EF779F441
https://docs.oracle.com/en/middleware/goldengate/core/23/coredoc/replicat-coordinated-replicat.html#GUID-6C7E7C08-4856-4907-99CC-7D4EF779F441

Handler Name Splitting Source Data By
Source Table

Splitting Source Table Data into
Sub Streams

HBase Supported when all required
HBase namespaces are pre-
created in HBase.

Supported when:

• All required HBase
namespaces are pre-created in
HBase.

• All required HBase target tables
are pre-created in HBase.
Schema evolution is not an
issue because HBase tables
have no schema definitions so
a source metadata change
does not require any schema
change in HBase.

• The source data does not
contain any truncate
operations.

HDFS Supported Supported with some restrictions.

• You must select a naming
convention for generated HDFS
files wherethe file names do not
collide. Colliding HDFS file
names results in a Replicat
abend. When using coordinated
apply it is suggested that you
configure ${groupName} as
part of the configuration for the
gg.handler.name.fileName
MappingTemplate property .
The ${groupName} template
resolves to the Replicat name
concatenated with the Replicat
thread number, which provides
unique naming per Replicat
thread.

• Schema propagatation to
HDFS and Hive integration is
not currently supported.

JDBC Supported Supported

Kafka Supported Supported for formats that support
schema propagation, such as Avro.
This is less desirable due to multiple
instances feeding the same schema
information to the target.

Kafka Connect Supported Supported

Kinesis Streams Supported Supported

MongoDB Supported Supported

Chapter 6
Configuring Oracle GoldenGate for Distributed Applications and Analytics

6-7

Handler Name Splitting Source Data By
Source Table

Splitting Source Table Data into
Sub Streams

Java File Writer Supported Supported with the following
restrictions:
You must select a naming
convention for generated files where
the file names do not collide.
Colliding file names may results in a
Replicat abend and/or polluted data.
When using coordinated apply it is
suggested that you configure $
{groupName} as part of the
configuration for the
gg.handler.name.fileNameMapp
ingTemplate property . The $
{groupName} template resolves to
the Replicat name concatenated
with the Replicat thread number,
which provides unique naming per
Replicat thread.

6.1.6 Configuring Cluster High Availability
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) doesn't have built-
in high availability functionality. You need to use a standard cluster software's high availability
capability to provide the high availability functionality.

You can configure a high availability scenario on a cluster so that if the leader instance of (GG
for DAA) on machine fails, another GG for DAA instance could be started on another machine
to resume where the failed instance left off.

If you manually configure your instances to share common GG for DAA and Oracle
GoldenGate files using a shared disk architecture you can create a fail over situation. For a
cluster installation, these files would need to accessible from all machines and accessible in
the same location.

The configuration files that must be shared are:

• replicat.prm
• Handler properties file.

• Additional properties files required by the specific adapter. This depends on the target
handler in use. For example, Kafka would be a producer properties file.

• Additional schema files you've generated. For example, Avro schema files generated in the
dirdef directory.

• File Writer Handler generated files on your local file system at a configured path. Also, the
File Writer Handler state file in the dirsta directory.

• Any log4j.properties or logback.properties files in use.

Checkpoint files must be shared for the ability to resume processing:

• Your Replicat checkpoint file (*.cpr).

• Your adapter checkpoint file (*.cpj).

Chapter 6
Configuring Oracle GoldenGate for Distributed Applications and Analytics

6-8

6.1.7 Using Identities in Oracle GoldenGate Credential Store
The Oracle GoldenGate credential store manages user IDs and their encrypted passwords
(together known as credentials) that are used by Oracle GoldenGate processes to interact with
the local database. The credential store eliminates the need to specify user names and clear-
text passwords in the Oracle GoldenGate parameter files.

An optional alias can be used in the parameter file instead of the user ID to map to a userid
and password pair in the credential store. The credential store is implemented as an auto login
wallet within the Oracle Credential Store Framework (CSF). The use of an LDAP directory is
not supported for the Oracle GoldenGate credential store. The auto login wallet supports
automated restarts of Oracle GoldenGate processes without requiring human intervention to
supply the necessary passwords.

In Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA), you specify the
alias and domain in the property file not the actual user ID or password. User credentials are
maintained in secure wallet storage.

• Creating a Credential Store

• Adding Users to a Credential Store

• Configuring Properties to Access the Credential Store

6.1.7.1 Creating a Credential Store
You can create a credential store for your Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) environment.

Run the GGSCI ADD CREDENTIALSTORE command to create a file called cwallet.sso in the
dircrd/ subdirectory of your Oracle GoldenGate installation directory (the default).

You can the location of the credential store (cwallet.sso file by specifying the desired location
with the CREDENTIALSTORELOCATION parameter in the GLOBALS file.

For more information about credential store commands, see Reference for Oracle GoldenGate.

Note:

Only one credential store can be used for each Oracle GoldenGate instance.

6.1.7.2 Adding Users to a Credential Store
After you create a credential store for your Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) environment, you can added users to the store.

Run the GGSCI ALTER CREDENTIALSTORE ADD USER userid PASSWORD password [ALIAS
alias] [DOMAIN domain] command to create each user, where:

• userid is the user name. Only one instance of a user name can exist in the credential
store unless the ALIAS or DOMAIN option is used.

• password is the user's password. The password is echoed (not obfuscated) when this
option is used. If this option is omitted, the command prompts for the password, which is
obfuscated as it is typed (recommended because it is more secure).

Chapter 6
Configuring Oracle GoldenGate for Distributed Applications and Analytics

6-9

• alias is an alias for the user name. The alias substitutes for the credential in parameters
and commands where a login credential is required. If the ALIAS option is omitted, the alias
defaults to the user name.

For example:

ALTER CREDENTIALSTORE ADD USER scott PASSWORD tiger ALIAS scsm2 domain
ggadapters

For more information about credential store commands, see Reference for Oracle GoldenGate.

6.1.7.3 Configuring Properties to Access the Credential Store
The Oracle GoldenGate Java Adapter properties file requires specific syntax to resolve user
name and password entries in the Credential Store at runtime. For resolving a user name the
syntax is the following:

ORACLEWALLETUSERNAME[alias domain_name]

For resolving a password the syntax required is the following:

ORACLEWALLETPASSWORD[alias domain_name]

The following example illustrate how to configure a Credential Store entry with an alias of
myalias and a domain of mydomain.

Note:

With HDFS Hive JDBC the user name and password is encrypted.

Oracle Wallet integration only works for configuration properties which contain the string
username or password. For example:

gg.handler.hdfs.hiveJdbcUsername=ORACLEWALLETUSERNAME[myalias mydomain]
gg.handler.hdfs.hiveJdbcPassword=ORACLEWALLETPASSWORD[myalias mydomain]

ORACLEWALLETUSERNAME and ORACLEWALLETPASSWORD can be used in the Extract (similar to
Replicat) in JMS handler as well. For example:

gg.handler.<name>.user=ORACLEWALLETUSERNAME[JMS_USR JMS_PWD]

gg.handler.<name>.password=ORACLEWALLETPASSWORD[JMS_USR JMS_PWD]

Consider the user name and password entries as accessible values in the Credential Store.
Any configuration property resolved in the Java Adapter layer (not accessed in the C user exit
layer) can be resolved from the Credential Store. This allows you more flexibility to be creative
in how you protect sensitive configuration entries.

Chapter 6
Configuring Oracle GoldenGate for Distributed Applications and Analytics

6-10

6.2 Logging
Logging is essential to troubleshooting Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) integrations with GG for DAA targets.

This topic details how GG for DAA integration log and the best practices for logging.

• About Replicat Process Logging

• About Java Layer Logging

6.2.1 About Replicat Process Logging
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) integrations
leverage the Java Delivery functionality described in the Delivering Java Messages. In this
setup, either a Oracle GoldenGate Replicat process loads a user exit shared library. This
shared library then loads a Java virtual machine to thereby interface with targets providing a
Java interface. So the flow of data is as follows:

Replicat Process —>User Exit—> Java Layer

It is important that all layers log correctly so that users can review the logs to troubleshoot new
installations and integrations. Additionally, if you have a problem that requires contacting
Oracle Support, the log files are a key piece of information to be provided to Oracle Support so
that the problem can be efficiently resolved.

A running Replicat process creates or appends log files into the GoldenGate_Home/dirrpt
directory that adheres to the following naming convention: process_name.rpt. If a problem is
encountered when deploying a new Oracle GoldenGate process, this is likely the first log file to
examine for problems. The Java layer is critical for integrations with GG for DAA applications.

6.2.2 About Java Layer Logging
The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) product
provides flexibility for logging from the Java layer. The recommended best practice is to use
Log4j logging to log from the Java layer. Enabling simple Log4j logging requires the setting of
two configuration values in the Java Adapters configuration file.

gg.log=log4j
gg.log.level=INFO

These gg.log settings will result in a Log4j file to be created in the GoldenGate_Home/dirrpt
directory that adheres to this naming convention, {GROUPNAME}.log. The supported Log4j log
levels are in the following list in order of increasing logging granularity.

• OFF
• FATAL
• ERROR
• WARN
• INFO
• DEBUG
• TRACE

Chapter 6
Logging

6-11

Selection of a logging level will include all of the coarser logging levels as well (that is,
selection of WARN means that log messages of FATAL, ERROR and WARN will be written to the log
file). The Log4j logging can additionally be controlled by separate Log4j properties files. These
separate Log4j properties files can be enabled by editing the bootoptions property in the Java
Adapter Properties file. These three example Log4j properties files are included with the
installation and are included in the classpath:

log4j-default.properties
log4j-debug.properites
log4j-trace.properties

You can modify the bootoptions in any of the files as follows:

javawriter.bootoptions=-Xmx512m -Xms64m -Djava.class.path=.:ggjava/ggjava.jar -
Dlog4j.configurationFile=samplelog4j.properties
You can use your own customized Log4j properties file to control logging. The customized
Log4j properties file must be available in the Java classpath so that it can be located and
loaded by the JVM. The contents of a sample custom Log4j properties file is the following:

Root logger option
log4j.rootLogger=INFO, file

Direct log messages to a log file
log4j.appender.file=org.apache.log4j.RollingFileAppender

log4j.appender.file.File=sample.log
log4j.appender.file.MaxFileSize=1GB
log4j.appender.file.MaxBackupIndex=10
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n
There are two important requirements when you use a custom Log4j properties file. First,
the path to the custom Log4j properties file must be included in the
javawriter.bootoptions property. Logging initializes immediately when the JVM is
initialized while the contents of the gg.classpath property is actually appended to
the classloader after the logging is initialized. Second, the classpath to correctly
load a properties file must be the directory containing the properties file without
wildcards appended.

6.3 Configuring Logging
• Oracle GoldenGate Java Adapter Default Logging

• Recommended Logging Settings

6.3.1 Oracle GoldenGate Java Adapter Default Logging
• Default Logging Setup

• Log File Name

• Changing Logging Level

6.3.1.1 Default Logging Setup
Logging is enabled by default for the Oracle GoldenGate for BigData. The logging
implementation is log4j. By default, logging is enabled at the info level.

Chapter 6
Configuring Logging

6-12

6.3.1.2 Log File Name
The log output file is created in the standard report directory. The name of the log file includes
the replicat group name and has an extension of log.

If the Oracle GoldenGate Replicat process group name is JAVAUE, then the log file name in the
report directory is: JAVAUE.log.

6.3.1.3 Changing Logging Level
To change the recommended log4j logging level, add the configuration shown in the following
example to the Java Adapter Properties file:

gg.log.level=error

You can set the gg.log.level to none, error, warn, info, debug, or trace. The default log
level is info. Oracle recommends the debug and trace log levels only for troubleshooting as
these settings can adversely impact the performance.

6.3.2 Recommended Logging Settings
Oracle recommends that you use log4j logging instead of the JDK default for unified logging for
the Java user exit. Using log4j provides unified logging for the Java module when running with
the Oracle GoldenGate Replicat process.

• Changing to the Recommended Logging Type

6.3.2.1 Changing to the Recommended Logging Type
To change the recommended log4j logging implementation, add the configuration shown in the
following example to the Java Adapter Properties file.

gg.log=log4j
gg.log.level=info

The gg.log level can be set to none, error, warn, info, debug, or trace. The default log level
is info. The debug and trace log levels are only recommended for troubleshooting as these
settings can adversely affect performance.

The result is that a log file for the Java module will be created in the dirrpt directory with the
following naming convention:

<process name>_<log level>log4j.log
Therefore if the Oracle GoldenGate Replicat process is called javaue, and the gg.log.level is
set to debug, the resulting log file name is:

javaue_debug_log4j.log

Chapter 6
Configuring Logging

6-13

7
Quickstarts

This article will get help you in quickly getting started with the following tasks in Oracle
GoldenGate for Distributed Applications and Analytics (GG for DAA).

• QuickStarts: Prerequisites

• Google Cloud Platform Big Query Stage and Merge Replication

• Google Cloud Storage Replication

• Realtime Replication into Oracle Cloud Infrastructure (OCI) Streaming with GG for DAA

• Realtime Parquet Ingestion into AWS S3 Buckets with Oracle GoldenGate for Distributed
Applications and Analytics

• Realtime Data Ingestion into Kafka with Oracle GoldenGate for Distributed Applications
and Analytics

• Realtime Message Streaming to AWS Kinesis

7.1 QuickStarts: Prerequisites
• It is assumed that you’ve installed Oracle GoldenGate for Distributed Applications and

Analytics (GG for DAA) in your environment or from Oracle Cloud Infrastructure
Marketplace. See Installing Oracle GoldenGate MA for Distributed Applications and
Analytics Using the UI.

• It is assumed that you have configured an Oracle GoldenGate extract, which is up and
running and the trails are being sent to GG for DAA Deployment. See Add Extracts in
Oracle GoldenGate Microservices Documentation.

• Get familiar with Oracle GoldenGate Microservices by watching this video: Introduction to
Oracle GoldenGate Microservices.

7.2 Google Cloud Platform Big Query Stage and Merge
Replication

BigQuery is Google Cloud’s fully managed, petabyte-scale, and cost-effective analytics data
warehouse that lets you run analytics over vast amounts of data in near real time.

The BigQuery Event handler uses the stage and merge data flow.

The change data is staged in a temporary location in microbatches and eventually merged into
to the target table. Google Cloud Storage (GCS) is used as the staging area for change data.
GoldenGate for Big Data loads files generated by the File Writer Handler into Google Cloud
Storage and runs BigQuery Query jobs to execute MERGE SQL. The SQL operations are
performed in batches providing better throughput.

These processes are automatically handled by the Oracle GoldenGate for Big Data Big Query
replicat process. See Google BigQuery Stage and Merge

7-1

https://docs.oracle.com/en/middleware/goldengate/core/21.3/coredoc/extract-add-extract.html#GUID-089AB1B1-E377-4D6D-83B8-46934CB580E0
https://www.youtube.com/watch?v=aekcNiAYC7k
https://www.youtube.com/watch?v=aekcNiAYC7k

This topic covers a step-by-step process on how to configure and run a replicat targeting GCP
Big Query.

• Prerequisites: Google Cloud Platform BigQuery Stage and Merge Replicat And Google
Cloud Storage Replication

• Install Dependency Files

• Create a Replicat in Oracle GoldenGate for Big Data

7.2.1 Prerequisites: Google Cloud Platform BigQuery Stage and Merge
Replicat And Google Cloud Storage Replication

Apart from the prerequisites listed in the above section, the following are the prerequisites
specific to Google Cloud Platform Big Query Stage and Merge Replication and Google Cloud
Storage Replication Quickstarts.

• Google Cloud Platform (GCP) account set up.

• A Google Cloud Platform (GCP) service account key with relevant permissions. Copy your
GCP service account key to a directory on your GoldenGate for Big Data Server.

• A Google Cloud Storage bucket with relevant BigQuery Permissions (Google Cloud
Platform BigQuery Stage and Merge Replicat) In case of Google Cloud Storage
Replication, a Google Cloud Storage bucket with relevant Bucket Permissions must be set.
Ensure that the GCS bucket and the BigQuery dataset exist in the same location/region.

• Target BigQuery tables can be created before configuring the replicat. If necessary
permissions are provided, then Oracle GoldenGate for Big Data can auto create the target
BigQuery tables.

7.2.2 Install Dependency Files
Oracle GoldenGate for Big Data uses client libraries in the replication process. You need to
download these libraries by using the Dependency Downloader utility available in Oracle
GoldenGate for Big Data before setting up the replication process. Dependency downloader is
a set of shell scripts that downloads dependency jar files from Maven and other repositories.

To install the required dependency files:

1. Go to installation location of Dependency Downloader: GG_HOME/opt/
DependencyDownloader/.

2. Run gcs.sh and bigquery.sh with the required version.

Figure 7-1 Run gcs.sh and bigquery.sh with the required versions

2 directories are created in GG_HOME/opt/DependencyDownloader/dependencies. For
example, /u01/app/ogg/opt/DependencyDownloader/dependencies/bigquery_1.111.10
and /u01/app/ogg/opt/DependencyDownloader/dependencies/gcs_1.113.9

Chapter 7
Google Cloud Platform Big Query Stage and Merge Replication

7-2

https://cloud.google.com/iam/docs/keys-create-delete
https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/gadbd/using-google-bigquery-event-handler.html#GUID-8CD78EDB-2BC1-430C-A322-A008021B8DBD
https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/gbdig/dependency-downloader.html#GUID-6252EAFA-D76A-4A83-BB16-41BCCCC46194

7.2.3 Create a Replicat in Oracle GoldenGate for Big Data
To create a replicat in Oracle GoldenGate for Big Data:

1. In the Oracle GoldenGate for Big Data UI, in the Administration Service tab, click the +
sign to add a replicat.

Figure 7-2 Click + sign to add a replicat

2. Select the Replicat Type and click Next.
There are two different Replicat types here: Classic and Coordinated. Classic Replicat is a
single threaded process whereas Coordinated Replicat is a multithreaded one that applies
transactions in parallel.

Figure 7-3 Select the Replicat Type and click Next.

3. Enter the basic information, and click Next:

a. Process Name: Name of the Replicat

b. Trail Name: Name of the required trail file

c. Target: Google BigQuery Stage and Merge

Chapter 7
Google Cloud Platform Big Query Stage and Merge Replication

7-3

Figure 7-4 Process Name, Trail Name, and Target Names

4. Enter Parameter File details and click Next. In the Parameter File, you can either specify
source to target mapping or leave it as-is with a wildcard selection. If Co-ordinated
Replicat is selected as the Replicat Type, then you need to provide an additional
parameter: TARGETDB LIBFILE libggjava.so SET property=<ggbd-
deployment_home>/etc/conf/ogg/your_replicat_name.properties
Oracle GoldenGate for Big Data can be used to replicate into multiple GCP projects with
the same replicat. For more information, see BigQuery Dataset and GCP ProjectId
Mapping.

Oracle GoldenGate for Big Data maps the table schema name to the BigQuery dataset.
The table catalog name is mapped to the GCP projectId.

Figure 7-5 Provide Parameter File details and click Next.

5. In the next screen, update the properties only tagged as TODO. They are as follows:

Provide your GCS bucket name:

#TODO: Edit the GCS bucket name
gg.eventhandler.gcs.bucketMappingTemplate=<gcs-bucket-name>

Provide path to your GCP service account key:

#TODO: Edit the GCS credentialsFile
gg.eventhandler.gcs.credentialsFile=/path/to/gcp/credentialsFile

Provide path to dependency jar files that you downloaded in prerequisites:

Chapter 7
Google Cloud Platform Big Query Stage and Merge Replication

7-4

#TODO: Edit to include the GCS Java SDK and BQ Java SDK.
gg.classpath=/path/to/gcs-deps/*:/path/to/bq-deps/*

For more information, see Google BigQuery Stage and Merge

Figure 7-6 Update the properties tagged as “TODO”.

6. If replicat starts successfully, then it will be in running state. Go to action/details/statistics
to see the replication statistics:

Figure 7-7 Replication Statistics

Figure 7-8 Replication Statistics Table

7. Go to GCP Big Query console and check the tables. It may take a short while for tables to
be created and loaded.

Chapter 7
Google Cloud Platform Big Query Stage and Merge Replication

7-5

Figure 7-9 Query Results

Note:

• You can run an initial load with Big Query replicat. See INSERTALLRECORDS
Support.

• DDL replication is not supported, GGBD can only auto-create target GCP Big
Query tables. In case of DDL, replicat will abend.

7.3 Google Cloud Storage Replication
Google Cloud Storage (GCS) is a service for storing objects in Google Cloud Platform.

You can use GoldenGate for Big Data to ingest different file formats into GCS. Oracle
GoldenGate for Big Data supports the following file formats:

• delimited-text.json
• json
• json_row
• json_op
• avro_row
• avro_op
• avro_row_ocf
• avro_op_ocf
• parquet
Oracle GoldenGate for Big Data uses a two-step process in GCS replication. First, it creates
the files locally in a directory on the server by using the File Writer Handler and then loads
these files into GCS.
Ensure that the files are in a closed state to load them to GCS. For more information about
how to control the File Writer behaviour, see the File Writer Behaviour blog.

This quick start will load using the default settings.

• Install Dependency Files

Chapter 7
Google Cloud Storage Replication

7-6

https://blogs.oracle.com/dataintegration/post/goldengate-for-big-data-file-writer-handler-behaviour

• Create a Replicat in Oracle GoldenGate for Big Data

7.3.1 Install Dependency Files
Oracle GoldenGate for Big Data uses client libraries in the replication process. You need to
download these libraries by using the Dependency Downloader utility available in Oracle
GoldenGate for Big Data before setting up the replication process. Dependency downloader is
a set of shell scripts that downloads dependency jar files from Maven and other repositories.

To install the required dependency files:

1. Go to installation location of Dependency Downloader: GG_HOME/opt/
DependencyDownloader/.

2. Run gcs.sh and bigquery.sh with the required version.

Figure 7-10 Run gcs.sh and bigquery.sh with the required versions

A directory is created in GG_HOME/opt/DependencyDownloader/dependencies. For
example, /u01/app/ogg/opt/DependencyDownloader/dependencies/gcs_1.113.9

7.3.2 Create a Replicat in Oracle GoldenGate for Big Data
To create a replicat in Oracle GoldenGate for Big Data:

1. In the Oracle GoldenGate for Big Data UI, in the Administration Service tab, click the +
sign to add a replicat.

Figure 7-11 Click + in the Administration Service tab.

Figure 7-12 Click + sign to add a replicat

2. Select the Replicat Type and click Next.
There are two different Replicat types here: Classic and Coordinated. Classic Replicat is a
single-threaded process whereas Coordinated Replicat is a multithreaded one that applies
transactions in parallel.

Chapter 7
Google Cloud Storage Replication

7-7

https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/gbdig/dependency-downloader.html#GUID-6252EAFA-D76A-4A83-BB16-41BCCCC46194

Figure 7-13 Select the Replicat Type and click Next.

3. Enter the basic information, and click Next:

a. Process Name: Name of the Replicat

b. Trail Name: Name of the required trail file. You can use the sample trail file tr which is
shipped with Oracle GoldenGate for Big Data.

c. Trail Subdirectory: Sets the path to trail file. Sample trail file tr is located at
OGG_HOME/opt/AdapterExamples/trail.

d. Target: Google Cloud Storage

Figure 7-14 Process Name, Trail Name, and Target Names

4. Enter Parameter File details and click Next. In the Parameter File, you can either specify
source to target mapping or leave it as-is with a wildcard selection. If Co-ordinated
Replicat is selected as the Replicat Type, then you need to provide an additional
parameter: TARGETDB LIBFILE libggjava.so SET property=<ggbd-
deployment_home>/etc/conf/ogg/your_replicat_name.properties

Chapter 7
Google Cloud Storage Replication

7-8

Figure 7-15 Provide Parameter File details and click Next.

5. In the next screen, update the properties only tagged as TODO. They are as follows:

Provide your GCS bucket name:

#TODO: Edit the GCS bucket name
gg.eventhandler.gcs.bucketMappingTemplate=<gcs-bucket-name>

Provide path to your GCP service account key:

#TODO: Edit the GCS credentialsFile
gg.eventhandler.gcs.credentialsFile=/path/to/gcp/credentialsFile

Provide path to dependency jar files that you downloaded in prerequisites:

#TODO: Edit to include the GCS Java SDK and BQ Java SDK.
gg.classpath=/path/to/gcs-deps/*:/path/to/bq-deps/*

Without these properties, your replicat will fail. There are also some optional properties that
you can modify:

gg.handler.filewriter.formatcontrols the format of the output files. By default, it is set to
avro_row_ocf. You can change into json, delimitedtext or one of the other Configuring the
File Writer Handler.

gg.handler.filewriter.fileRollInterval and
gg.handler.filewriter.inactivityRollInterval controls the file behaviour. A file
should be in a closed state to be loaded into GCS buckets.

fileRollInterval starts a timer when file is created and when it is reached, file will be moved
to a closed state and moved to GCS bucket. In replicat properties, it is set to 0 which
means that it is off. You can set it to 5s(5 seconds) for this quick start.

inactivityRollIntervaltracks the inactivity period. Here, inactivity means there are no
operations coming from the source system. You can set it to 5s (5 seconds) for this quick
start.

Chapter 7
Google Cloud Storage Replication

7-9

https://blogs.oracle.com/dataintegration/post/goldengate-for-big-data-pluggable-formatters-json-formatter
https://blogs.oracle.com/dataintegration/post/goldengate-for-big-data-pluggable-formatters-delimitedtext-formatter

Figure 7-16 Add Replicat

6. If replicat starts successfully, then it will be in running state. Go to action/details/statistics
to see the replication statistics:

Figure 7-17 Replication Statistics

7. Go to GCP Cloud Storage bucket and check the table.

Figure 7-18 Bucket Details

Chapter 7
Google Cloud Storage Replication

7-10

7.4 Realtime Replication into Oracle Cloud Infrastructure (OCI)
Streaming with GG for DAA

This topic covers a step-by-step process on how to ingest messages into OCI Streaming in
real-time with Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA).

• Install Dependency Files

• Create Kafka Producer Properties File

• Create a Replicat in Oracle GoldenGate for Big Data

7.4.1 Install Dependency Files
Oracle GoldenGate for Big Data uses client libraries in the replication process. You need to
download these libraries by using the Dependency Downloader utility available in Oracle
GoldenGate for Big Data before setting up the replication process. Dependency downloader is
a set of shell scripts that downloads dependency jar files from Maven and other repositories.

To install the required dependency files:

1. Go to installation location of Dependency Downloader: GG_HOME/opt/
DependencyDownloader/.

2. Execute kafka.sh with the required version.

Figure 7-19 Executing kafka.sh with the required versions

A directory is created in GG_HOME/opt/DependencyDownloader/dependencies. For
example, /u01/app/ogg/opt/DependencyDownloader/dependencies/kafka_2.7.0.

7.4.2 Create Kafka Producer Properties File
Oracle GoldenGate for Big Data must access a Kafka producer configuration file to publish
messages to OCI Streaming. The Kafka producer configuration file contains kafka connection
settings provided by OCI Streaming. To get OCI Streaming Kafka connection settings, go to
Analytics&AI/Streaming/Stream Pools/Stream Pool Details/Kafka Connection Settings. You
also need to create an AUTH_TOKEN.

To create a Kafka producer configuration file:

1. In the Oracle GoldenGate for Big Data, go to GGBD_Deployment_Home/etc/conf/ogg.

Chapter 7
Realtime Replication into Oracle Cloud Infrastructure (OCI) Streaming with GG for DAA

7-11

https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/gbdig/dependency-downloader.html#GUID-6252EAFA-D76A-4A83-BB16-41BCCCC46194
https://central.sonatype.com/artifact/org.apache.kafka/kafka-clients/3.4.0
https://docs.oracle.com/en-us/iaas/Content/Registry/Tasks/registrygettingauthtoken.htm

2. Create a Kafka producer config file for OCI Streaming. Sample configuration file:

bootstrap.servers=cell-1.streaming.us-phoenix-1.oci.oraclecloud.com:9092
security.protocol=SASL_SSL
sasl.mechanism=PLAIN
value.serializer=org.apache.kafka.common.serialization.ByteArraySerializer
key.serializer=org.apache.kafka.common.serialization.ByteArraySerializer
sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required
username="paasdevgg/oracleidentitycloudservice/user.name@oracle.com/
ocid1.streampool.oc1.phx.amaaaaaa3p5c3vqa4hfyl7uv465pay4audmoajughhxlsgj7afc2an5u3xaq
" password="YOUR-AUTH-TOKEN";

7.4.3 Create a Replicat in Oracle GoldenGate for Big Data
To create a replicat in Oracle GoldenGate for Big Data:

1. In the Oracle GoldenGate for Big Data UI, in the Administration Service tab, click the +
sign to add a replicat.

Figure 7-20 Click + in the Administration Service tab.

2. Select the Replicat Type and click Next.
There are two different Replicat types here: Classic and Coordinated. Classic Replicat is a
single threaded process whereas Coordinated Replicat is a multithreaded one that applies
transactions in parallel.

For KafKa, Oracle recommends Classic replicat as sending messages in multiple threats
may result in data consistency problems.

Figure 7-21 Select the Replicat Type and click Next.

3. Enter the basic information, and click Next:

a. Process Name: Name of the Replicat

b. Trail Name: Name of the required trail file

Chapter 7
Realtime Replication into Oracle Cloud Infrastructure (OCI) Streaming with GG for DAA

7-12

c. Target: Kafka

Figure 7-22 Process Name, Trail Name, and Target Names

4. Enter Parameter File details and click Next. In the Parameter File, you can either specify
source to target mapping or leave it as is with a wildcard selection.

Figure 7-23 Provide Parameter File details and click Next.

5. Oracle GoldenGate for Big Data populates the properties file automatically. Update the
following fields:

• gg.handler.kafkahandler.kafkaProducerConfigFile=name of the oci streaming
producer file created in Create Kafka Producer Properties File

• gg.handler.kafkahandler.topicMappingTemplate=name of the target topic
gg.classpath=path to dependency files downloaded in Install Dependency Files

6. Click Create and Run.

Chapter 7
Realtime Replication into Oracle Cloud Infrastructure (OCI) Streaming with GG for DAA

7-13

Figure 7-24 Properties file updates.

7. If replicat starts successfully, then the replicat is in running state. You can go to action/
details/statistics to see the replication statistics.

Figure 7-25 Replication Statistics

Note:

• If target Kafka topic does not exist, then it will be auto created by Oracle
GoldenGate for Big Data if you have selected auto topic create in OCI
streaming Kafka connection settings. See Template Keywords.

• For improving the performance of the OCI Streaming replication, see the blog:
How to Improve Kafka Handler Performance in Oracle GoldenGate for Big Data

• Oracle GoldenGate for Big Data supports SSL and kerberos authentication into
Kafka. For more information, see Schema Propagation.

• For Kafka connection issues, Oracle Support.

Chapter 7
Realtime Replication into Oracle Cloud Infrastructure (OCI) Streaming with GG for DAA

7-14

https://blogs.oracle.com/dataintegration/post/how-to-improve-kafka-handler-performance-in-oracle-goldengate-for-big-data
https://support.oracle.com/portal/

7.5 Realtime Parquet Ingestion into AWS S3 Buckets with Oracle
GoldenGate for Distributed Applications and Analytics

This topic covers a step-by-step process that shows how to ingest parquet files into AWS S3
buckets in real-time with Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA).

• Install Dependency Files

• Create a Replicat in Oracle GoldenGate for Big Data

7.5.1 Install Dependency Files
Oracle GoldenGate for Big Data uses client libraries in the replication process. You need to
download these libraries by using the Dependency Downloader utility available in Oracle
GoldenGate for Big Data before setting up the replication process. Dependency downloader is
a set of shell scripts that downloads dependency jar files from Maven and other repositories.

Oracle GoldenGate for Big Data uses a 3-step process to ingest parquet into S3 buckets:

• Generating local files from trail files (these local files are not accessible in OCI
GoldenGate)

• Converting local files to Parquet format

• Loading files into AWS S3 buckets

For generating local parquet files with Oracle GoldenGate for Big Data, replicat uses File Writer
Handler (see Flat Files) and Parquet Event Handler (see Parquet). To load the parquet files
into AWS S3, Oracle GoldenGate for Big Data uses S3 Event Handler (see Amazon S3) in
conjunction with File Writer and Parquet Event Handler.
Oracle GoldenGate for Big Data uses 3 different set of client libraries to create parquet files
and loading into AWS S3.

To install the required dependency files:

1. Go to installation location of Dependency Downloader: GG_HOME/opt/
DependencyDownloader/.

2. Execute parquet.sh (see Parquet), hadoop.sh (see HDFS Event Handler, and aws.sh with
the required versions.
A directory is created in GG_HOME/opt/DependencyDownloader/dependencies. For
example,/u01/app/ogg/opt/DependencyDownloader/dependencies/aws_sdk_1.12.30.

Figure 7-26 Executing parquet.sh, hadoop.sh, and aws.sha with the required
versions.

Chapter 7
Realtime Parquet Ingestion into AWS S3 Buckets with Oracle GoldenGate for Distributed Applications and Analytics

7-15

https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/gbdig/dependency-downloader.html#GUID-6252EAFA-D76A-4A83-BB16-41BCCCC46194
https://aws.amazon.com/sdk-for-java/

The following directories are created in GG_HOME/opt/DependencyDownloader/
dependencies:

• /u01/app/ogg/opt/DependencyDownloader/dependencies/aws_sdk_1.12.309
• /u01/app/ogg/opt/DependencyDownloader/dependencies/hadoop_3.3.0
• /u01/app/ogg/opt/DependencyDownloader/dependencies/parquet_1.12.3

Figure 7-27 S3 Directories

7.5.2 Create a Replicat in Oracle GoldenGate for Big Data
To create a replicat in Oracle GoldenGate for Big Data:

1. In the Oracle GoldenGate for Big Data UI, in the Administration Service tab, click the +
sign to add a replicat.

Figure 7-28 Click + in the Administration Service tab.

2. Select the Replicat Type and click Next.
There are two different Replicat types here: Classic and Coordinated. Classic Replicat is a
single threaded process whereas Coordinated Replicat is a multithreaded one that applies
transactions in parallel.

Chapter 7
Realtime Parquet Ingestion into AWS S3 Buckets with Oracle GoldenGate for Distributed Applications and Analytics

7-16

Figure 7-29 Select the Replicat Type and click Next.

3. Enter the basic information, and click Next:

a. Process Name: Name of the Replicat

b. Trail Name: Name of the required trail file

c. Target: Do not fill this field.

Figure 7-30 Process Name, Trail Name, and Target Names

4. Enter Parameter File details and click Next. In the Parameter File, you can either specify
source to target mapping or leave it as is with a wildcard selection. If you select
Coordinated Replicat as the Replicat Type, then provide the following additional
parameter: TARGETDB LIBFILE libggjava.so SET property=<ggbd-
deployment_home>/etc/conf/ogg/your_replicat_name.properties

Chapter 7
Realtime Parquet Ingestion into AWS S3 Buckets with Oracle GoldenGate for Distributed Applications and Analytics

7-17

Figure 7-31 Provide Parameter File details and click Next.

5. Copy and paste the following property list into the properties file, update as needed, and
click Create and Run.

#The File Writer Handler – no need to change
gg.handlerlist=filewriter
gg.handler.filewriter.type=filewriter
gg.handler.filewriter.mode=op
gg.handler.filewriter.pathMappingTemplate=./dirout
gg.handler.filewriter.stateFileDirectory=./dirsta
gg.handler.filewriter.fileRollInterval=7m
gg.handler.filewriter.inactivityRollInterval=30s
gg.handler.filewriter.fileWriteActiveSuffix=.tmp
gg.handler.filewriter.finalizeAction=delete

Avro OCF – no need to change
gg.handler.filewriter.format=avro_row_ocf
gg.handler.filewriter.fileNameMappingTemplate=${groupName}_$
{fullyQualifiedTableName}_${currentTimestamp}.avro
gg.handler.filewriter.format.pkUpdateHandling=delete-insert
gg.handler.filewriter.format.metaColumnsTemplate=${optype},${position}
gg.handler.filewriter.format.iso8601Format=false
gg.handler.filewriter.partitionByTable=true
gg.handler.filewriter.rollOnShutdown=true

#The Parquet Event Handler – no need to change
gg.handler.filewriter.eventHandler=parquet
gg.eventhandler.parquet.type=parquet
gg.eventhandler.parquet.pathMappingTemplate=./dirparquet
gg.eventhandler.parquet.fileNameMappingTemplate=${groupName}_$
{fullyQualifiedTableName}_${currentTimestamp}.parquet
gg.eventhandler.parquet.writeToHDFS=false
gg.eventhandler.parquet.finalizeAction=delete

#TODO Select S3 Event Handler – no need to change
gg.eventhandler.parquet.eventHandler=s3

#TODO Set S3 Event Handler- please update as needed
gg.eventhandler.s3.type=s3
gg.eventhandler.s3.region=your-aws-region
gg.eventhandler.s3.bucketMappingTemplate=target s3 bucketname
gg.eventhandler.s3.pathMappingTemplate=ogg/data/${fullyQualifiedTableName}
gg.eventhandler.s3.accessKeyId=XXXXXXXXX

Chapter 7
Realtime Parquet Ingestion into AWS S3 Buckets with Oracle GoldenGate for Distributed Applications and Analytics

7-18

gg.eventhandler.s3.secretKey=XXXXXXXX

#TODO Set the classpath to the Parquet client libries and the Hadoop client with the
path you noted in step1
gg.classpath=
jvm.bootoptions=-Xmx512m -Xms32m

6. If replicat starts successfully, then the replicat is in running state. You can go to action/
details/statistics to see the replication statistics.

Figure 7-32 Replication Statistics

7. Go to the AWS S3 console and check the bucket.

Figure 7-33 S3 Bucket

Chapter 7
Realtime Parquet Ingestion into AWS S3 Buckets with Oracle GoldenGate for Distributed Applications and Analytics

7-19

Note:

• If target S3 bucket does not exist, then it will be auto created by Oracle
GoldenGate for Big Data. Use Template Keywords to dynamically assign S3
bucket names.

• S3 Event Handler can be configured for the Proxy server. For more information,
see Amazon S3.

• You can use different properties to control the behaviour of file writing. You can
set file sizes, inactivity periods, and more. For more information, see the
blog:Oracle GoldenGate for Big Data File Writer Handler Behavior.

• For Kafka connection issues, see Oracle Support.

7.6 Realtime Data Ingestion into Kafka with Oracle GoldenGate
for Distributed Applications and Analytics

This topic covers a step-by-step process on how to ingest messages into Kafka in real-time
with Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA).

• Install Dependency Files

• Create Kafka Producer Properties File

• Create a Replicat in Oracle GoldenGate for Big Data

7.6.1 Install Dependency Files
Oracle GoldenGate for Big Data uses client libraries in the replication process. You need to
download these libraries by using the Dependency Downloader utility available in Oracle
GoldenGate for Big Data before setting up the replication process. Dependency downloader is
a set of shell scripts that downloads dependency jar files from Maven and other repositories.

To install the required dependency files:

1. Go to installation location of Dependency Downloader: GG_HOME/opt/
DependencyDownloader/.

2. Execute kafka.sh with the required version.

Figure 7-34 Executing kafka.sh with the required versions

Chapter 7
Realtime Data Ingestion into Kafka with Oracle GoldenGate for Distributed Applications and Analytics

7-20

https://blogs.oracle.com/dataintegration/post/goldengate-for-big-data-file-writer-handler-behaviour
https://support.oracle.com/portal/
https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/gbdig/dependency-downloader.html#GUID-6252EAFA-D76A-4A83-BB16-41BCCCC46194
https://central.sonatype.com/artifact/org.apache.kafka/kafka-clients/3.4.0

A directory is created in GG_HOME/opt/DependencyDownloader/dependencies. For
example, /u01/app/ogg/opt/DependencyDownloader/dependencies/kafka_2.7.0.

7.6.2 Create Kafka Producer Properties File
Oracle GoldenGate for Big Data must access a Kafka producer configuration file to publish
messages to Kafka. The Kafka producer configuration file contains Kafka proprietary
properties.

To create a Kafka producer configuration file:

1. In the Oracle GoldenGate for Big Data, go to GGBD_Deployment_Home/etc/conf/ogg.

2. Create a Kafka producer config file for OCI Streaming. Sample configuration file:

bootstrap.servers=localhost:9092
acks = 1
compression.type = gzip
reconnect.backoff.ms = 1000

value.serializer = org.apache.kafka.common.serialization.ByteArraySerializer
key.serializer = org.apache.kafka.common.serialization.ByteArraySerializer

7.6.3 Create a Replicat in Oracle GoldenGate for Big Data
To create a replicat in Oracle GoldenGate for Big Data:

1. In the Oracle GoldenGate for Big Data UI, in the Administration Service tab, click the +
sign to add a replicat.

Figure 7-35 Click + in the Administration Service tab.

2. Select the Replicat Type and click Next.
There are two different Replicat types here: Classic and Coordinated. Classic Replicat is a
single threaded process whereas Coordinated Replicat is a multithreaded one that applies
transactions in parallel.

For KafKa, Oracle recommends Classic replicat as sending messages in multiple threats
may result in data consistency problems.

Chapter 7
Realtime Data Ingestion into Kafka with Oracle GoldenGate for Distributed Applications and Analytics

7-21

Figure 7-36 Select the Replicat Type and click Next.

3. Enter the basic information, and click Next:

a. Process Name: Name of the Replicat

b. Trail Name: Name of the required trail file

c. Target: Kafka

Figure 7-37 Process Name, Trail Name, and Target Names

4. Enter Parameter File details and click Next. In the Parameter File, you can either specify
source to target mapping or leave it as is with a wildcard selection.

Chapter 7
Realtime Data Ingestion into Kafka with Oracle GoldenGate for Distributed Applications and Analytics

7-22

Figure 7-38 Provide Parameter File details and click Next.

5. Oracle GoldenGate for Big Data populates the properties file automatically. Update the
following fields:

• gg.handler.kafkahandler.kafkaProducerConfigFile=name of the Kafka producer
file created in Create Kafka Producer Properties File.

• gg.handler.kafkahandler.topicMappingTemplate=name of the target topic
gg.classpath=path to dependency files downloaded in Install Dependency Files.

6. Click Create and Run.

Figure 7-39 Properties file updates.

7. If replicat starts successfully, then the replicat is in running state. You can go to action/
details/statistics to see the replication statistics:

Chapter 7
Realtime Data Ingestion into Kafka with Oracle GoldenGate for Distributed Applications and Analytics

7-23

Figure 7-40 Replication Statistics

Note:

• If target Kafka topic does not exist, then it will be auto created by Oracle
GoldenGate for Big Data. See Template Keywords to dynamically assign topic
names.

• For improving the performance of Kafka replication, refer the blog: How to
Improve Kafka Handler Performance in Oracle GoldenGate for Big Data.

• Oracle GoldenGate for Big Data supports SSL and kerberos authentication into
Kafka. For more information, see Schema Propagation.

• For Kafka connection issues, see Oracle Support.

7.7 Realtime Message Streaming to AWS Kinesis
This topic covers a step-by-step process that shows how to ingest parquet files into AWS
Kinesis in real-time with Oracle GoldenGate for Big Data.

• Install Dependency Files

• Create a Replicat in Oracle GoldenGate for Distributed Applications and Analytics

7.7.1 Install Dependency Files
Oracle GoldenGate for Big Data uses client libraries in the replication process. You need to
download these libraries by using the Dependency Downloader utility available in Oracle
GoldenGate for Big Data before setting up the replication process. Dependency downloader is
a set of shell scripts that downloads dependency jar files from Maven and other repositories.

Oracle GoldenGate for Big Data uses AWS Kinesis Java SDK to push data to Amazon Kinesis.

Chapter 7
Realtime Message Streaming to AWS Kinesis

7-24

https://blogs.oracle.com/dataintegration/post/how-to-improve-kafka-handler-performance-in-oracle-goldengate-for-big-data
https://blogs.oracle.com/dataintegration/post/how-to-improve-kafka-handler-performance-in-oracle-goldengate-for-big-data
https://support.oracle.com/portal/
https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/gbdig/dependency-downloader.html#GUID-6252EAFA-D76A-4A83-BB16-41BCCCC46194

Note:

Oracle GoldenGate for Big Data does not ship with the AWS Kinesis Java SDK.

To install the required dependency files:

1. Go to installation location of Dependency Downloader: GG_HOME/opt/
DependencyDownloader/.

2. Execute aws.sh with the required version.

Figure 7-41 Executing aws.sh with the required version

A directory is created in GG_HOME/opt/DependencyDownloader/dependencies. For
example,/u01/app/ogg/opt/DependencyDownloader/dependencies/aws_sdk_1.12.30.

7.7.2 Create a Replicat in Oracle GoldenGate for Distributed Applications
and Analytics

To create a replicat in Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA):

1. In the GG for DAA UI, in the Administration Service tab, click the + sign to add a replicat.

Figure 7-42 Click + in the Administration Service tab.

2. Select the Classic Replicat Replicat Type and click Next.

Chapter 7
Realtime Message Streaming to AWS Kinesis

7-25

https://aws.amazon.com/sdk-for-java/

Figure 7-43 Select the Replicat Type and click Next.

3. Enter the basic information, and click Next:

a. Process Name: Name of the Replicat

b. Trail Name: Name of the required trail file

c. Target: AWS Kinesis

Figure 7-44 Enter the Basic information and click Next.

4. Enter Parameter File details and click Next. In the Parameter File, you can either specify
source to target mapping or leave it as is with a wildcard selection.

Chapter 7
Realtime Message Streaming to AWS Kinesis

7-26

Figure 7-45 Provide Parameter File details and click Next.

5. Enter the required properties:

Properties file for Replicat Kinesis
#Kinesis Streams Handler Template
gg.handlerlist=kinesis
gg.handler.kinesis.type=kinesis_streams
gg.handler.kinesis.mode=op
gg.handler.kinesis.format=json
#TODO: Set the region name for the connection.
gg.handler.kinesis.region=<name_of_aws_region>
#TODO: Set the template to resolve the Kinesis stream name.
gg.handler.kinesis.streamMappingTemplate=<kinesis_stream_name>
#TODO: Set the template to resolve the message key
gg.handler.kinesis.partitionMappingTemplate=${primaryKeys}
#TODO: Set the access key and secret key credentials. If unset it will fall back to
the AWS default credentials provider chain.
gg.handler.kinesis.accessKeyId=<access_ley>
gg.handler.kinesis.secretKey=<secret>
#TODO: Set the path to the AWS SDK. (refer to step 1 of this document)
gg.classpath=/u01/app/ogg/opt/DependencyDownloader/dependencies/aws_sdk_1.12.30/*
jvm.bootoptions=-Xmx512m -Xms32m

Note:

If target AWS Kinesis Data Streams does not exist, then it will be auto created by
GG for DAA. You can also use Template Keywords to dynamically assign kinesis
data stream names.

6. If replicat starts successfully, then it will be in running state. You can go to action/details/
statistics to see the replication statistics.

Chapter 7
Realtime Message Streaming to AWS Kinesis

7-27

Figure 7-46 If replicat starts successfully, it will be in running state. You can go to
action/details/statistics to see the replication statistics.

Figure 7-47 Replication Statistics

7. Go to AWS Kinesis console and check the data streams:

Figure 7-48 In the AWS Kinesis console check the data streams.

Note:

• AWS Kinesis Event Handler can be configured for proxy server. For more
information, see Configuring the Proxy Server for Kinesis Streams Handler.

• For more information about AWS Kinesis performance considerations, see
Kinesis Handler Performance Considerations.

• For more information about AWS Kinesis input limitations, see Kinesis Streams
Input Limits.

Chapter 7
Realtime Message Streaming to AWS Kinesis

7-28

8
Replicate Data

Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) supports specific
configurations - the handlers (which are compatible with clearly defined software versions) for
replicating data.

Handlers in GG for DAA are components that manage the data flow between various sources
and targets. They are responsible for reading data from sources such as databases, log files,
or message queues, and writing the data to a wide range of target systems. GG for DAA uses
handlers to perform various tasks, such as data ingestion, data transformation, and data
integration. Handlers are essential for enabling real-time data movement and data replication
across technologies.

This article describes the following Soures and Target Handlers in GG for DAA:

• Source

• Target

8.1 Source
The Extract process is configured to run against the source technology, capturing data
generated in the true source tecnology located somewhere else. This process is the extraction
or the data capture mechanism of GG for DAA.

You can configure an Extract for the following use cases:

• Initial Load Extract: When you set up GG for DAA for initial loads, the Extract process
captures the current, static set of data directly from the source objects. This configuration
of Extract process uses source source to capture data.

• Change Data Capture Extract: When you set up GG for DAA to keep the source data
synchronized with another set of data, the Extract process captures the DML and (if
supported) DDL operations performed on the configured objects after the initial
synchronization has taken place. It stores these operations until it receives commit records
or rollbacks for the transactions that contain them. If it receives a rollback, it discards the
operations for that transaction. If it receives a commit, it persists the transaction to disk in a
series of files called a trail, where it is queued for propagation to the target system. All the
operations in each transaction are written to the trail and are in the order in which they
were committed to the source technology. This design ensures both speed and data
integrity. The format of the data written to trail files depends on the source technology.

• Amazon MSK

• Apache Cassandra
The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) capture
(Extract) for Cassandra Extract is used to get changes from Apache Cassandra databases.

• Apache Kafka
The Oracle GoldenGate capture (Extract) for Kafka is used to read messages from a Kafka
topic or topics and convert data into logical change records written to GoldenGate trail
files. This section explains how to use Oracle GoldenGate capture for Kafka.

• Azure Event Hubs

8-1

• Confluent Kafka

• DataStax

• Java Message Service (JMS)

• MongoDB
The Oracle GoldenGate capture (Extract) for MongoDB is used to get changes from
MongoDB databases.

• OCI Streaming

8.1.1 Amazon MSK
To capture messages from Amazon MSK and parse into logical change records with Oracle
GoldenGate for Distributed Applications and Analytics (GG for DAA), you can use Kafka
Extract. For more information, see Apache Kafka as source.

8.1.2 Apache Cassandra
The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) capture
(Extract) for Cassandra Extract is used to get changes from Apache Cassandra databases.

You can select Extract starting positions from UI from Extract Options, under Begin. You can
either select Now or define a Custom Time.

This chapter describes how to use the GG for DAA Capture for Cassandra Extract.

• Overview

• Setting Up Cassandra Extract Change Data Capture

• Deduplication

• Topology Changes

• Data Availability in the CDC Logs

• Using Initial Load Extract

• Using Change Data Capture Extract

• Replicating to RDMBS Targets

• Partition Update or Insert of Static Columns

• Partition Delete

• Security and Authentication

• Cleanup of CDC Commit Log Files
You can use the Cassandra CDC commit log purger program to purge the CDC commit log
files that are not in use.

• Multiple Extract Support

• CDC Configuration Reference

• Troubleshooting

• Cassandra Capture Client Dependencies
What are the dependencies for the Cassandra Capture (Extract) to connect to Apache
Cassandra databases?

Chapter 8
Source

8-2

8.1.2.1 Overview
Apache Cassandra is a NoSQL Database Management System designed to store large
amounts of data. A Cassandra cluster configuration provides horizontal scaling and replication
of data across multiple machines. It can provide high availability and eliminate a single point of
failure by replicating data to multiple nodes within a Cassandra cluster. Apache Cassandra is
open source and designed to run on low-cost commodity hardware.

Cassandra relaxes the axioms of a traditional relational database management systems
(RDBMS) regarding atomicity, consistency, isolation, and durability. When considering
implementing Cassandra, it is important to understand its differences from a traditional RDBMS
and how those differences affect your specific use case.

Cassandra provides eventual consistency. Under the eventual consistency model, accessing
the state of data for a specific row eventually returns the latest state of the data for that row as
defined by the most recent change. However, there may be a latency period between the
creation and modification of the state of a row and what is returned when the state of that row
is queried. The benefit of eventual consistency is that the latency period is predicted based on
your Cassandra configuration and the level of work load that your Cassandra cluster is
currently under, see http://cassandra.apache.org/.

Review the data type support, see About the Cassandra Data Types.

8.1.2.2 Setting Up Cassandra Extract Change Data Capture

Prerequisites

• Apache Cassandra cluster must have at least one node up and running.

• Read and write access to CDC commit log files on every live node in the cluster is done
through SFTP or NFS. For more information, see Setup SSH Connection to the Cassandra
Nodes.

• Every node in the Cassandra cluster must have the cdc_enabled parameter set to true in
the cassandra.yaml configuration file.

• Virtual nodes must be enabled on every Cassandra node by setting the num_tokens
parameter in cassandra.yaml .

• You must download the third party libraries using Dependency downloader scripts. For
more information, see Cassandra Capture Client Dependencies.

• New tables can be created with Change Data Capture (CDC) enabled using the WITH
CDC=true clause in the CREATE TABLE command. For example:

CREATE TABLE ks_demo_rep1.mytable (col1 int, col2 text, col3 text, col4 text,
PRIMARY KEY (col1)) WITH cdc=true;

You can enable CDC on existing tables as follows:

ALTER TABLE ks_demo_rep1.mytable WITH cdc=true;

• Setup SSH Connection to the Cassandra Nodes
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) transfers
Cassandra commit log files from all the Cassandra nodes. To allow Oracle GoldenGate to
transfer commit log files using secure shell protocol (SFTP), generate a known_hosts SSH
file.

• Data Types

Chapter 8
Source

8-3

http://cassandra.apache.org/

• Cassandra Database Operations

• Set up Credential Store Entry to Detect Source Type

8.1.2.2.1 Setup SSH Connection to the Cassandra Nodes
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) transfers
Cassandra commit log files from all the Cassandra nodes. To allow Oracle GoldenGate to
transfer commit log files using secure shell protocol (SFTP), generate a known_hosts SSH file.

To generate a known_hosts SSH file:

1. Create a text file with all the Cassandra node addresses, one per line. For example:

cat nodes.tx
10.1.1.1
10.1.1.2
10.1.1.3

2. Generate the known_hosts file as follows: ssh-keyscan -t rsa -f nodes.txt >>
known_hosts

3. Edit the extract parameter file to include this configuration: TRANLOGOPTIONS SFTP
KNOWNHOSTSFILE /path/to/ssh/known_hosts.

8.1.2.2.2 Data Types

Supported Cassandra Source Data Types

The following are the supported source data types:

• ASCII
• BIGINT
• BLOB
• BOOLEAN
• DATE
• DECIMAL
• DOUBLE
• DURATION
• FLOAT
• INET
• INT
• SMALLINT
• TEXT
• TIME
• TIMESTAMP
• TIMEUUID
• TINYINT
• UUID

Chapter 8
Source

8-4

• VARCHAR
• VARINT

Unsupported Source Data Types

The following are the unsupported source data types:

• COUNTER
• MAP
• SET
• LIST
• UDT (user defined type)

• TUPLE
• CUSTOM_TYPE

8.1.2.2.3 Cassandra Database Operations

Supported Operations

The following are the supported operations:

• INSERT
• UPDATE (Captured as INSERT)

• DELETE

Unsupported Operations

The TRUNCATE DDL (CREATE, ALTER, and DROP) operation is not supported. Because the
Cassandra commit log files do not record any before images for the UPDATE or DELETE
operations. The result is that the captured operations can never have a before image. Oracle
GoldenGate features that rely on before image records, such as Conflict Detection and
Resolution, are not available.

8.1.2.2.4 Set up Credential Store Entry to Detect Source Type
The database type for capture is based on the prefix in the database credential userid. The
generic format for userid is as follows: <dbtype>://<db-user>@<comma separated list of
server addresses>:<port>
The userid can have multiple server/nodes addresses.

More than one node address can be configured in the userid.
In the Administration Service, you can create the credential store entry under DB Connections.
To add Trandata, go to DB Connections in Administration Service, connect to your database
from credential entry and Add Trandata.

Example

alter credentialstore add user cassandra://db-user@127.0.0.1,127.0.0.2:9042 password db-
passwd alias cass

Chapter 8
Source

8-5

8.1.2.3 Deduplication
One of the features of a Cassandra cluster is its high availability. To support high availability,
multiple redundant copies of table data are stored on different nodes in the cluster. Oracle
GoldenGate for Distributed Applications and Analytics (GG for DAA) Cassandra Capture
automatically filters out duplicate rows (deduplicate). Deduplication is active by default. Oracle
recommends using it if your data is captured and applied to targets where duplicate records
are discouraged (for example RDBMS targets).

8.1.2.4 Topology Changes
Cassandra nodes can change their status (topology change) and the cluster can still be alive.
GG for DAA Cassandra Capture can detect the node status changes and react to these
changes when applicable. The Cassandra capture process can detect the following events
happening in the cluster:

• Node shutdown and boot.

• Node decommission and commission.

• New keyspace and table created.

Due to topology changes, if the capture process detects that an active producer node goes
down, it tries to recover any missing rows from an available replica node. During this process,
there is a possibility of data duplication for some rows. This is a transient data duplication due
to the topology change. For more details about reacting to changes in topology, see
Troubleshooting.

8.1.2.5 Data Availability in the CDC Logs
The Cassandra CDC API can only read data from commit log files in the CDC directory. There
is a latency for the data in the active commit log directory to be archived (moved) to the CDC
commit log directory.

The input data source for the Cassandra capture process is the CDC commit log directory.
There could be delays for the data to be captured mainly due to the commit log files not yet
visible to the capture process.

On a production cluster with a lot of activity, this latency is very minimal as the data is archived
from the active commit log directory to the CDC commit log directory in the order of
microseconds.

8.1.2.6 Using Initial Load Extract
Cassandra Extract supports the standard initial load capability to extract source table data to
GG for DAA trail files.

Initial load for Cassandra can be performed to synchronize tables, either as a prerequisite step
to replicating changes or as a standalone function.

Direct loading from a source Cassandra table to any target table is not supported.

8.1.2.7 Using Change Data Capture Extract
Review the example .prm files from GG for DAA installation directory under $HOME/
AdapterExamples/big-data/cassandracapture.

Chapter 8
Source

8-6

1. In Administration Service, click Add Extract.

2. Enter a Process Name, select Source as Cassandra and select Change Data Capture
Extract.

3. Provide a name for Extract Trail and select Source Credentials you created for
Cassandra.

4. Update Managed Options if necessary.

5. In the Parameter File, update the fields marked as TODO.

6. Create & Run.

7. Configure the Extract parameter file:

Apache Cassandra 4x SDK, compatible with Apache Cassandra 4.0 version
Extract parameter file:

-- ggsci> alter credentialstore add user cassandra://db-user@127.0.0.1 password db-
passwd alias cass
EXTRACT groupname

JVMOPTIONS CLASSPATH ggjava/ggjava.jar:DependencyDownloader/dependencies/
cassandra_capture_4x/*
JVMOPTIONS BOOTOPTIONS -Dcassandra.config=file://{/path/to/apache-cassandra-4.x}/
config/casandra.yaml -Dcassandra.datacenter={datacenter-name}

TRANLOGOPTIONS CDCREADERSDKVERSION 4x
TRANLOGOPTIONS CDCLOGDIRTEMPLATE /path/to/data/cdc_raw
SOURCEDB USERIDALIAS cass
EXTTRAIL trailprefix
TABLE source.*;

a. Provide the cassandra.yaml file path using JVMOPTIONS BOOTOPTIONS.

JVMOPTIONS BOOTOPTIONS -Dcassandra.config=file://{/path/to/apache-
cassandra-4.x}/config/casandra.yaml -Dcassandra.datacenter={datacenter-name}

Note:

For a remote capture (when the Cassandra server is not on the same
machine as Oracle GoldenGate), you need to copy a sample
cassandra.yaml for your Apache Cassandra version onto your GoldenGate
Machine and use this path for this cassandra.yaml file path configuration.

b. Configure cassandra datacenter name under JVMOPTIONS BOOTOPTIONS. If you do not
provide a value, then by default, datacenter1 is considered.

Apache Cassandra 3x SDK, compatible with Apache Cassandra 3.9, 3.10, 3.11
Extract parameter file:

 -- ggsci> alter credentialstore add user cassandra://db-user@127.0.0.1 password db-
passwd alias cass
JVMOPTIONS CLASSPATH ggjava/ggjava.jar:DependencyDownloader/dependencies/
cassandra_capture_3x/*
TRANLOGOPTIONS CDCREADERSDKVERSION 3x
TRANLOGOPTIONS CDCLOGDIRTEMPLATE /path/to/data/cdc_raw
SOURCEDB USERIDALIAS cass

Chapter 8
Source

8-7

EXTTRAIL trailprefix
TABLE source.*;

DSE Cassandra SDK, compatible with DSE Cassandra 6.x versions
Extract parameter file

 -- ggsci> alter credentialstore add user cassandra://db-user@127.0.0.1 password
db-passwd alias cass
 EXTRACT groupname
 JVMOPTIONS CLASSPATH ggjava/ggjava.jar:{/path/to/dse-6.x}/resources/
cassandra/lib/*:{/path/to/dse-6.x}/lib/*:{/path/to/dse-6.x}/resources/dse/lib/
:DependencyDownloader/dependencies/cassandra_capture_dse/
 JVMOPTIONS BOOTOPTIONS -Dcassandra.config=file://{/path/to/dse-6.x}/resources/
cassandra/conf/casandra.yaml -Dcassandra.datacenter={datacenter-name}
 TRANLOGOPTIONS CDCREADERSDKVERSION dse
 TRANLOGOPTIONS CDCLOGDIRTEMPLATE /path/to/data/cdc_raw
 SOURCEDB USERIDALIAS cass
 EXTTRAIL trailprefix
 TABLE source.*;

a. Provide the cassandra.yaml file path using JVMOPTIONS BOOTOPTIONS:

JVMOPTIONS BOOTOPTIONS -Dcassandra.config=file://{/path/to/dse-6.x}/resources/
cassandra/conf/casandra.yaml -Dcassandra.datacenter={datacenter-name}

Note:

For a remote capture (when the Cassandra server is not on the same
machine as Oracle GoldenGate), you need to copy a sample
cassandra.yaml for your DSE version onto your GoldenGate Machine and
use this path for this cassandra.yaml file path configuration.

b. Configure cassandra datacenter name under JVMOPTIONS BOOTOPTIONS. If you do not
provide a value, then by default, Cassandra is considered.

Note:

For DSE 5.x version, configure the extract with Apache 3x SDK as explained in
the Apache 3x section.

• Handling Schema Evolution

8.1.2.7.1 Handling Schema Evolution
Syntax

TRANLOGOPTIONS TRACKSCHEMACHANGES

This will enable extract to capture table level DDL changes from the source at runtime.

Enable this to ensure that the table metadata within the trail stays in sync with the source
without any downtime.

When TRACKSCHEMACHANGES is disabled, the capture process will ABEND if a DDL change is
detected at the source table.

Chapter 8
Source

8-8

Note:

This feature is disabled by default. To enable, update the extract prm file as shown in
the syntax above.

8.1.2.8 Replicating to RDMBS Targets
You must take additional care when replicating source UPDATE operations from Cassandra trail
files to RDMBS targets. Any source UPDATE operation appears as an INSERT record in the
Oracle GoldenGate trail file. Replicat may abend when a source UPDATE operation is applied as
an INSERT operation on the target database.

You have these options:

• OVERRIDEDUPS: If you expect that the source database is to contain mostly INSERT
operations and very few UPDATE operations, then OVERRIDEDUPS is the recommended
option. Replicat can recover from duplicate key errors while replicating the small number of
the source UPDATE operations. See OVERRIDEDUPS \ NOOVERRIDEDUPS

• UPDATEINSERTS and INSERTMISSINGUPDATES: Use this configuration if the source database
is expected to contain mostly UPDATE operations and very few INSERT operations. With this
configuration, Replicat has fewer missing row errors to recover, which leads to better
throughput. See UPDATEINSERTS | NOUPDATEINSERTS and INSERTMISSINGUPDATES |
NOINSERTMISSINGUPDATES.

• No additional configuration is required if the target table can accept duplicate rows or you
want to abend Replicat on duplicate rows.

If you configure Replicat to use BATCHSQL, there may be duplicate row or missing row errors in
batch mode. Although there is a reduction in the Replicat throughput due to these errors,
Replicat automatically recovers from these errors. If the source operations are mostly INSERTS,
then BATCHSQL is a good option.

8.1.2.9 Partition Update or Insert of Static Columns
When the source Cassandra table has static columns, the static column values can be
modified by skipping any clustering key columns that are in the table.

For example:

create table ks_demo_rep1.nls_staticcol
(
 teamname text,
 manager text static,
 location text static,
 membername text,
 nationality text,
 position text,
 PRIMARY KEY ((teamname), membername)
)
WITH cdc=true;
insert into ks_demo_rep1.nls_staticcol (teamname, manager, location) VALUES
('Red Bull', 'Christian Horner', '<unknown>

The insert CQL is missing the clustering key membername. Such an operation is a partition insert.

Chapter 8
Source

8-9

Similarly, you could also update a static column with just the partition keys in the WHERE clause
of the CQL that is a partition update operation. Cassandra Extract cannot write a INSERT or
UPDATE operation into the trail with missing key columns. It abends on detecting a partition
INSERT or UPDATE operation.

8.1.2.10 Partition Delete
A Cassandra table may have a primary key composed on one or more partition key columns
and clustering key columns. When a DELETE operation is performed on a Cassandra table by
skipping the clustering key columns from the WHERE clause, it results in a partition delete
operation.

For example:

create table ks_demo_rep1.table1
(
 col1 ascii, col2 bigint, col3 boolean, col4 int,
 PRIMARY KEY((col1, col2), col4)
) with cdc=true;

delete from ks_demo_rep1.table1 where col1 = 'asciival' and col2 =
9876543210; /** skipped clustering key column col4 **/

Cassandra Extract cannot write a DELETE operation into the trail with missing key columns and
abends on detecting a partition DELETE operation.

8.1.2.11 Security and Authentication
• Cassandra Extract can connect to a Cassandra cluster using username and password

based authentication and SSL authentication.

• Connection to Kerberos enabled Cassandra clusters is not supported in this release.

• Configuring SSL

8.1.2.11.1 Configuring SSL
To enable SSL, add the SSL parameter to your GLOBALS file or Extract parameter file.
Additionally, a separate configuration is required for the Java and CPP drivers, see CDC
Configuration Reference.

SSL configuration for Java driver (GLOBALS file)

JVMBOOTOPTIONS -Djavax.net.ssl.trustStore=/path/to/SSL/truststore.file
-Djavax.net.ssl.trustStorePassword=password
-Djavax.net.ssl.keyStore=/path/to/SSL/keystore.file
-Djavax.net.ssl.keyStorePassword=password

SSL configuration for Java driver (Extract parameter file)

You can also configure the SSL parameters in the Extract parameter file as follows:

JVMOPTIONS BOOTOPTIONS -Djavax.net.ssl.trustStore=/path/to/SSL/truststore.file
-Djavax.net.ssl.trustStorePassword=password
-Djavax.net.ssl.keyStore=/path/to/SSL/keystore.file
-Djavax.net.ssl.keyStorePassword=password

Chapter 8
Source

8-10

Note:

The Extract parameter file configuration has a higher precedence.

The keystore and truststore certificates can be generated using these instructions:

https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureSSLIntro.html

Using Apache Cassandra 4x SDK / DSE Cassandra SDK

To configure SSL while capturing from Apache Cassandra 4.x versions or DSE Cassandra 6.x
versions, do the following:

1. Create the application.conf file with the following properties and override with
appropriate values :

datastax-java-driver {
 advanced.ssl-engine-factory {
 class = DefaultSslEngineFactory

 # Whether or not to require validation that the hostname of the server
certificate's common
 # name matches the hostname of the server being connected to. If not set,
defaults to true.
 hostname-validation = false

 # The locations and passwords used to access truststore and keystore contents.
 # These properties are optional. If either truststore-path or keystore-path are
specified,
 # the driver builds an SSLContext from these files. If neither option is
specified, the
 # default SSLContext is used, which is based on system property configuration.
 truststore-path = {path to truststore file}
 truststore-password = password
 keystore-path = {path to keystore file}
 keystore-password = cassandra
 }
}

2. Provide path of the directory containing the application.conf file under JVMCLASSPATH as
follows:

JVMCLASSPATH
ggjava/ggjava.jar:DependencyDownloader/dependencies/cassandra_capture_4x/*:/path/to/
driver/config

Note:

This is valid only in case of the GLOBALS file.

You can also configure the SSL parameters in the Extract parameter file as follows:

JVMOPTIONS CLASSPATH
ggjava/ggjava.jar:DependencyDownloader/dependencies/cassandra_capture_4x/*:/path/to/
driver/config/

For more information, see https://github.com/datastax/java-driver/blob/4.x/core/src/main/
resources/reference.conf.

Chapter 8
Source

8-11

https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureSSLIntro.html
https://github.com/datastax/java-driver/blob/4.x/core/src/main/resources/reference.conf
https://github.com/datastax/java-driver/blob/4.x/core/src/main/resources/reference.conf

SSL configuration for Cassandra CPP driver

To operate with an SSL configuration, you have to add the following parameter in the Oracle
GoldenGate GLOBALS file or Extract parameter file:

CPPDRIVEROPTIONS SSL PEMPUBLICKEYFILE /path/to/PEM/formatted/public/key/file/
cassandra.pem CPPDRIVEROPTIONS SSL PEERCERTVERIFICATIONFLAG 0

This configuration is required to connect to a Cassandra cluster with SSL enabled. Additionally,
you need to add these settings to your cassandra.yaml file:

client_encryption_options:
 enabled: true
 # If enabled and optional is set to true encrypted and unencrypted connections are
handled.
 optional: false
 keystore: /path/to/keystore
 keystore_password: password
 require_client_auth: false

The PEM formatted certificates can be generated using these instructions:

https://docs.datastax.com/en/developer/cpp-driver/2.8/topics/security/ssl/

8.1.2.12 Cleanup of CDC Commit Log Files
You can use the Cassandra CDC commit log purger program to purge the CDC commit log
files that are not in use.

For more information, see How to Run the Purge Utility.

• Cassandra CDC Commit Log Purger
A purge utility for Cassandra Handler to purge the staged CDC commit log files.
Cassandra Extract moves the CDC commit log files (located at $CASSANDRA/data/cdc_raw)
on each node to a staging directory for processing.

8.1.2.12.1 Cassandra CDC Commit Log Purger
A purge utility for Cassandra Handler to purge the staged CDC commit log files. Cassandra
Extract moves the CDC commit log files (located at $CASSANDRA/data/cdc_raw) on each node
to a staging directory for processing.

For example, if the cdc_raw commit log directory is /path/to/cassandra/home/data/cdc_raw,
the staging directory is /path/to/cassandra/home/data/cdc_raw/../cdc_raw_staged. The
CDC commit log purger purges those files, which are inside cdc_raw_staged based on
following logic.
The Purge program scans the oggdir directory for all the following JSON checkpoint files under
dirchk/<EXTGRP>_casschk.json. The sample JSON file under dirchk looks similar to the
following:

{
"start_timestamp": -1,
"sequence_id": 34010434,
"updated_datetime": "2018-04-19 23:24:57.164-0700",
"nodes": [
{ "address": "10.247.136.146", "offset": 0, "id": 0 }
,
{ "address": "10.247.136.142", "file": "CommitLog-6-1524110205398.log",

Chapter 8
Source

8-12

https://docs.datastax.com/en/developer/cpp-driver/2.8/topics/security/ssl/

"offset": 33554405, "id": 1524110205398 }
,
{ "address": "10.248.10.24", "file": "CommitLog-6-1524110205399.log",
"offset": 33554406, "id": 1524110205399 }
]
}

For each node address in JSON checkpoint file, the purge program captures the CDC file
name and ID. For each ID obtained from the JSON checkpoint file, the purge program looks
into the staged CDC commit log directory and purges the commit log files with the id that are
lesser then the id captured in JSON file of checkpoint.

Example:

In JSON file, we had ID as 1524110205398.

In CDC Staging directory, we have files as CommitLog-6-1524110205396.log,
CommitLog-6-1524110205397.log, and CommitLog-6-1524110205398.log.

The ids derived from CDC staging directory are 1524110205396, 1524110205397 and
1524110205398. The purge utility purges the files in CDC staging directory whose IDs are less
than the ID read in JSON file, which is 1524110205398. The files associated with the ID
1524110205396 are 524110205397 are purged.

• How to Run the Purge Utility

• Sample config.properties for Local File System

• Argument cassCommitLogPurgerConfFile

• Argument purgeInterval
Setting the optional argument purgeInterval helps in configuring the process to run as a
daemon.

• Argument cassUnProcessedFilesPurgeInterval
Setting the optional argument cassUnProcessedFilesPurgeInterval helps in purging
historical commit logs for all the nodes that do not have a last processed file.

8.1.2.12.1.1 How to Run the Purge Utility

• Third Party Libraries Needed to Run this Program

• Command to Run the Program

• Runtime Arguments

8.1.2.12.1.1.1 Third Party Libraries Needed to Run this Program

<dependency>
<groupId>com.jcraft</groupId>
<artifactId>jsch</artifactId>
<version>0.1.54</version>
<scope>provided</scope>
</dependency>

8.1.2.12.1.1.2 Command to Run the Program

java -Dlog4j.configurationFile=log4j-purge.properties -Dgg.log.level=INFO -cp <OGG_HOME>/
ggjava/resources/lib/*:<OGG_HOME>/thirdparty/cass/jsch-0.1.54.jar
oracle.goldengate.cassandra.commitlogpurger.CassandraCommitLogPurger
--cassCommitLogPurgerConfFile <OGG_HOME>/cassandraPurgeUtil/commitlogpurger.properties
--purgeInterval 1 --cassUnProcessedFilesPurgeInterval 3

Chapter 8
Source

8-13

Where:

• <OGG_HOME>/ggjava/resources/lib/* is the directory where the purger utility is located.

• <OGG_HOME>/thirdparty/cass/jsch-0.1.54.jar is the dependent jar to execute the
purger program.

• ---cassCommitLogPurgerConfFile , --purgeInterval and --
cassUnProcessedFilesPurgeInterval are run time arguments.

Sample script to run the commit log purger utility:

#!/bin/bash
echo "fileSystemType=remote" > commitlogpurger.properties
echo "chkDir=dirchk" >> commitlogpurger.properties
echo "cdcStagingDir=data/cdc_raw_staged" >> commitlogpurger.properties
echo "userName=username" >> commitlogpurger.properties
echo "password=password" >> commitlogpurger.properties
java -cp ogghome/ggjava/resources/lib/*:ogghome/thirdparty/cass/jsch-0.1.54.jar
oracle.goldengate.cassandra.commitlogpurger.CassandraCommitLogPurger
--cassCommitLogPurgerConfFile commitlogpurger.properties
--purgeInterval 1
--cassUnProcessedFilesPurgeInterval 3

8.1.2.12.1.1.3 Runtime Arguments
To execute, the utility class CassandraCommitLogPurger requires a mandatory run-time
argument cassCommitLogPurgerConfFile.

Available Runtime arguments to CassandraCommitLogPurger class are:

[required] --cassCommitLogPurgerConfFile path to config.properties
[optional] --purgeInterval
[optional] --cassUnProcessedFilesPurgeInterval

8.1.2.12.1.2 Sample config.properties for Local File System

fileSystemType=local
chkDir=apache-cassandra-3.11.2/data/chkdir/
cdcStagingDir=apache-cassandra-3.11.2/data/$nodeAddress/commitlog/

8.1.2.12.1.3 Argument cassCommitLogPurgerConfFile

The required cassCommitLogPurgerConfFile argument takes the config file with following
mandate fields.

Table 8-1 Argument cassCommitLogPurgerConfFile

Parameters Description

fileSystemType Default: local
Mandatory: Yes

Legal Values: remote/ local

Description: In every live node in the cluster, CDC
Staged Commit logs can be accessed through
SFTP or NFS. If the fileSystemType is Remote
(SFTP) then we need to supply the Host with Port,
username, and password/privateKey (with or
without passPhase) to connect and do the
operations on remote CDC staging directory.

Chapter 8
Source

8-14

Table 8-1 (Cont.) Argument cassCommitLogPurgerConfFile

Parameters Description

chkDir Default: None
Mandatory: Yes

Legal Values: checkpoint directory path
Description: Location of Cassandra checkpoint
directory where _casschk.json file is located (for
example, dirchk/<EXTGRP>_casschk.json).

cdcStagingDir Default: None
Mandatory: Yes

Legal Values: staging directory path
Description: Location of Cassandra staging
directory where CDC commit logs are present. For
example, $CASSANDRA/data/cdc_raw_staged/
CommitLog-6-1524110205396.log).

userName Default: None
Mandatory: No

Legal Values: Valid SFTP auth username
Description: SFTP User name to connect to the
server.

password Default: None
Mandatory: No

Legal Values: Valid SFTP auth password
Description: SFTP password to connect to the
server.

port Default: 22
Mandatory: No

Legal Values: Valid SFTP auth port
Description: SFTP port number

privateKey Default: None

Mandatory: No

Legal Values: valid path to the privateKey file
Description: The private key is used to perform the
authentication, allowing you to log in without having
to specify a password. Providing the privateKey
file path allows the purger program to access the
nodes with out password.

passPhase Default: None

Mandatory: No

Legal Values: valid password for privateKey
Description: The private key is typically password
protected. If it is provided, then the passPhase
with privateKey and passPhase are required to
be passed with the password that helps the purger
program to successfully access the nodes.

• Sample config.properties for Local File System

• Sample config.properties for Remote File System

Chapter 8
Source

8-15

8.1.2.12.1.3.1 Sample config.properties for Local File System

fileSystemType=local
chkDir=apache-cassandra-3.11.2/data/chkdir/
cdcStagingDir=apache-cassandra-3.11.2/data/$nodeAddress/commitlog/

8.1.2.12.1.3.2 Sample config.properties for Remote File System

fileSystemType=remote
chkDir=apache-cassandra-3.11.2/data/chkdir/
cdcStagingDir=apache-cassandra-3.11.2/data/$nodeAddress/commitlog/
username=username
password=@@@@@
port=22

8.1.2.12.1.4 Argument purgeInterval

Setting the optional argument purgeInterval helps in configuring the process to run as a
daemon.

This argument is an integer value representing the time period of clean-up to happen. For
example, if purgeInterval is set to 1, then the process runs every day on the time the process
started.

8.1.2.12.1.5 Argument cassUnProcessedFilesPurgeInterval

Setting the optional argument cassUnProcessedFilesPurgeInterval helps in purging historical
commit logs for all the nodes that do not have a last processed file.

If cassUnProcessedFilesPurgeInterval is not set, then the default value is configured to 2
days; the files older than 2 days or as per the configured value days, and the commit log files
are purged. The CassandraCommitLogPurger Utility can't purge files that are older than a day. It
should be either the default 2 days or more than that.
The following is an example of checkpoint file:

{
"start_timestamp": -1,
"sequence_id": 34010434,
"updated_datetime": "2018-04-19 23:24:57.164-0700",
"nodes": [
{ "address": "10.247.136.146", "offset": 0, "id": 0 }

,
{ "address": "10.247.136.142", "file": "CommitLog-6-1524110205398.log", "offset":
33554405, "id": 1524110205398 }

,
{ "address": "10.248.10.24", "file": "CommitLog-6-1524110205399.log", "offset":
33554406, "id": 1524110205399 }

,
{ "address": "10.248.10.25", "offset": 0, "id": 0 }

,
{ "address": "10.248.10.26", "offset": 0, "id": 0 }

]
}

Chapter 8
Source

8-16

In this example, the Cassandra nodes addresses 10.248.10.25 and 10.248.10.26 do not
have a last processed file. The commit log files in those nodes will be purged as per the
configured days of cassUnProcessedFilesPurgeInterval argument value.

Note:

The last processing file may not be available due to the following reasons:

• A new node was added into the cluster and no commit log files were processed
through Cassandra extract yet.

• All the commit log files processed from this node does not contain operation data
as per the table wildcard match.

• All the commit log files processed from this node contain operation records that
were not written to the trail file due to de-duplication.

8.1.2.13 Multiple Extract Support
Multiple Extract groups in a single Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) installation can be configured to connect to the same Cassandra
cluster.

To run multiple Extract groups:

1. One (and only one) Extract group can be configured to move the commit log files in the
cdc_raw directory on the Cassandra nodes to a staging directory. The
movecommitlogstostagingdir parameter is enabled by default and no additional
configuration is required for this Extract group.

2. All the other Extract groups should be configured with the nomovecommitlogstostagingdir
parameter in the Extract parameter (.prm) file.

8.1.2.14 CDC Configuration Reference
The following properties are used with Cassandra change data capture.

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

DBOPTIONS
ENABLE_CPP_DRIVE
R_TRACE true

Optio
nal

Extract
paramet
er
(.prm)
file.

false Use only during initial load process.

When set to true, the Cassandra driver logs all the
API calls to a driver.log file. This file is created in
the Oracle GoldenGate for Big Data installation
directory. This is useful for debugging.

Chapter 8
Source

8-17

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

DBOPTIONS
FETCHBATCHSIZE
number

Optio
nal

Extract
paramet
er
(.prm)
file.

1000
Minimum
is 1
Maximu
m is
100000

Use only during initial load process.

Specifies the number of rows of data the driver
attempts to fetch on each request submitted to the
database server.

The parameter value should be lower than the
database configuration parameter,
tombstone_warn_threshold, in the database
configuration file, cassandra.yaml. Otherwise the
initial load process might fail.

Oracle recommends that you set this parameter value
to 5000 for initial load Extract optimum performance.

TRANLOGOPTIONS
CDCLOGDIRTEMPLAT
E path

Requ
ired

Extract
paramet
er
(.prm)
file.

None The CDC commit log directory path template. The
template can optionally have the $nodeAddress meta
field that is resolved to the respective node address.

TRANLOGOPTIONS
SFTP options

Optio
nal

Extract
paramet
er
(.prm)
file.

None The secure file transfer protocol (SFTP) connection
details to pull and transfer the commit log files. You
can use one or more of these options:

USER user
The SFTP user name.

PASSWORD password
The SFTP password.

KNOWNHOSTSFILE file
The location of the Secure Shell (SSH)known hosts
file.

LANDINGDIR dir
The SFTP landing directory for the commit log files on
the local machine.

PRIVATEKEY file
The SSH private key file.

PASSPHRASE password
The SSH private key pass phrase.

PORTNUMBER portnumber
The SSH port number.

Chapter 8
Source

8-18

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

CLUSTERCONTACTPO
INTS nodes

Optio
nal

GLOBA
LS file

N

o

t

e

:

S
t
a
r
t
i
n
g
f
r
o
m
O
r
a
c
l
e
G
o
l
d
e
n
G
a
t
e
f
o
r
B
i
g
D
a
t
a
r
e

127.0.0
.1

A comma separated list of nodes to be used for a
connection to the Cassandra cluster. You should
provide at least one node address. The parameter
options are:

PORT <port number
No default
Optional
The port to use when connecting to the database.

Chapter 8
Source

8-19

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

l
e
a
s
e
2
3
.
1
.
0
.
0
.
0
,
t
h
i
s
p
a
r
a
m
e
t
e
r
w
i
l
l
b
e
d
e
p
r
e
c
a
t
e
d
.

TRANLOGOPTIONS
CDCREADERSDKVERS
ION version

Optio
nal

Extract
paramet
er
(.prm)
file.

3.11 The SDK Version for the CDC reader capture API.

Chapter 8
Source

8-20

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

ABENDONMISSEDREC
ORD |
NOABENDONMISSEDR
ECORD

Optio
nal

Extract
paramet
er
(.prm)
file.

true When set to true and the possibility of a missing
record is found, the process stops with the diagnostic
information. This is generally detected when a node
goes down and the CDC reader doesn't find a replica
node with a matching last record from the dead node.
You can set this parameter to false to continue
processing. A warning message is logged about the
scenario.

TRANLOGOPTIONS
CLEANUPCDCCOMMIT
LOGS

Optio
nal

Extract
paramet
er
(.prm)
file.

false Purge CDC commit log files post extract processing.
When the value is set to false, the CDC commit log
files are moved to the staging directory for the commit
log files.

JVMOPTIONS
[CLASSPATH
<classpath> |
BOOTOPTIONS
<options>]

Man
dator
y

Extract
paramet
er
(.prm)
file.

None • CLASSPATH: The classpath for the Java Virtual
Machine. You can include an asterisk (*) wildcard
to match all JAR files in any directory. Multiple
paths should be delimited with a colon (:)
character.

• BOOTOPTIONS: The boot options for the Java
Virtual Machine. Multiple options are delimited by
a space character.

Chapter 8
Source

8-21

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

JVMBOOTOPTIONS
jvm_options

Optio
nal

GLOBA
LS file

N

o

t

e

:

S
t
a
r
t
i
n
g
f
r
o
m
O
r
a
c
l
e
G
o
l
d
e
n
G
a
t
e
f
o
r
B
i
g
D
a
t
a
r
e

None The boot options for the Java Virtual Machine. Multiple
options are delimited by a space character.

Chapter 8
Source

8-22

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

l
e
a
s
e
2
3
.
1
.
0
.
0
.
0
,
t
h
i
s
p
a
r
a
m
e
t
e
r
w
i
l
l
b
e
d
e
p
r
e
c
a
t
e
d
.

Chapter 8
Source

8-23

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

JVMCLASSPATH
classpath

Requ
ired

GLOBA
LS file

N

o

t

e

:

S
t
a
r
t
i
n
g
f
r
o
m
O
r
a
c
l
e
G
o
l
d
e
n
G
a
t
e
f
o
r
B
i
g
D
a
t
a
r
e

None The classpath for the Java Virtual Machine. You can
include an asterisk (*) wildcard to match all JAR files
in any directory. Multiple paths should be delimited
with a colon (:) character.

Chapter 8
Source

8-24

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

l
e
a
s
e
2
3
.
1
.
0
.
0
.
0
,
t
h
i
s
p
a
r
a
m
e
t
e
r
w
i
l
l
b
e
d
e
p
r
e
c
a
t
e
d
.

Chapter 8
Source

8-25

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

OGGSOURCE source Requ
ired

GLOBA
LS file

N

o

t

e

:

S
t
a
r
t
i
n
g
f
r
o
m
O
r
a
c
l
e
G
o
l
d
e
n
G
a
t
e
f
o
r
B
i
g
D
a
t
a
r
e

None The source database for CDC capture or database
queries. The valid value is CASSANDRA.

Chapter 8
Source

8-26

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

l
e
a
s
e
2
3
.
1
.
0
.
0
.
0
,
t
h
i
s
p
a
r
a
m
e
t
e
r
w
i
l
l
b
e
d
e
p
r
e
c
a
t
e
d
.

Chapter 8
Source

8-27

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

SOURCEDB
nodeaddress
USERID dbuser
PASSWORD
dbpassword

Requ
ired

Extract
paramet
er
(.prm)
file.

None A single Cassandra node address that is used for a
connection to the Cassandra cluster and to query the
metadata for the captured tables.

USER dbuser
No default
Optional
The user name to use when connecting to the
database.

PASSWORD dbpassword
No default
Required when USER is used.
The user password to use when connecting to the
database.

ABENDONUPDATEREC
ORDWITHMISSINGKE
YS |
NOABENDONUPDATER
ECORDWITHMISSING
KEYS

Optio
nal

Extract
paramet
er
(.prm)
file.

true If this value is true, anytime an UPDATE operation
record with missing key columns is found, the process
stops with the diagnostic information. You can set this
property to false to continue processing and write
this record to the trail file. A warning message is
logged about the scenario. This operation is a partition
update, see Partition Update or Insert of Static
Columns.

ABENDONDELETEREC
ORDWITHMISSINGKE
YS |
NOABENDONDELETER
ECORDWITHMISSING
KEYS

Optio
nal

Extract
paramet
er
(.prm)
file.

true If this value is true, anytime an DELETE operation
record with missing key columns is found, the process
stops with the diagnostic information. You can set this
property to false to continue processing and write
this record to the trail file. A warning message is
logged about the scenario. This operation is a partition
update, see Partition Delete.

MOVECOMMITLOGSTO
STAGINGDIR |
NOMOVECOMMITLOGS
TOSTAGINGDIR

Optio
nal

Extract
paramet
er
(.prm)
file.

true Enabled by default and this instructs the Extract group
to move the commit log files in the cdc_raw directory
on the Cassandra nodes to a staging directory for the
commit log files. Only one Extract group can have
movecommitlogstostagingdir enabled, and all the
other Extract groups disable this by specifying
nomovecommitlogstostagingdir.

Chapter 8
Source

8-28

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

SSL Optio
nal

GLOBA
LS or
Extract
paramet
er
(.prm)
file.

false Use for basic SSL support during connection.
Additional JSSE configuration through Java System
properties is expected when enabling this.

Note:

The following SSL
properties are in
CPPDRIVEROPTIONS
SSL so this keyword
must be added to any
other SSL property to
work.

CPPDRIVEROPTIONS
SSL
PEMPUBLICKEYFILE
cassadra.pem

Optio
nal

GLOBA
LS or
Extract
paramet
er
(.prm)
file.

String
that
indicate
s the
absolut
e path
with
fully
qualified
name.
This file
is must
for the
SSL
connecti
on.

None,
unless
the
PEMPUBL
ICKEYFI
LE
property
is
specified
, then
you must
specify a
value.

Indicates that it is PEM formatted public key file used
to verify the peer's certificate. This property is needed
for one-way handshake or basic SSL connection.

CPPDRIVEROPTIONS
SSL
ENABLECLIENTAUTH
|
DISABLECLIENTAUT
H

Optio
nal

GLOBA
LS or
Extract
paramet
er
(.prm)
file.

false Enabled indicates a two-way SSL encryption between
client and server. It is required to authenticate both the
client and the server through PEM formatted
certificates. This property also needs the
pemclientpublickeyfile and
pemclientprivatekeyfile properties to be set.
The pemclientprivatekeypasswd property must be
configured if the client private key is password
protected. Setting this property to false disables
client authentication for two-way handshake.

Chapter 8
Source

8-29

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

CPPDRIVEROPTIONS
SSL
PEMCLIENTPUBLICK
EYFILE
public.pem

Optio
nal

GLOBA
LS or
Extract
paramet
er
(.prm)
file.

String
that
indicate
s the
absolut
e path
with
fully
qualified
name.
This file
is must
for the
SSL
connecti
on.

None,
unless
the
PEMCLIE
NTPUBLI
CKEYFIL
E
property
is
specified
, then
you must
specify a
value.

Use for a PEM formatted public key file name used to
verify the client's certificate. This is must if you are
using CPPDRIVEROPTIONS SSL ENABLECLIENTAUTH
or for two-way handshake.

CPPDRIVEROPTIONS
SSL
PEMCLIENTPRIVATE
KEYFILE
public.pem

Optio
nal

GLOBA
LS or
Extract
paramet
er
(.prm)
file.

String
that
indicate
s the
absolut
e path
with
fully
qualified
name.
This file
is must
for the
SSL
connecti
on.

None,
unless
the
PEMCLIE
NTPRIVA
TEKEYFI
LE
property
is
specified
, then
you must
specify a
value.

Use for a PEM formatted private key file name used to
verify the client's certificate. This is must if you are
using CPPDRIVEROPTIONS SSL ENABLECLIENTAUTH
or for two-way handshake.

Chapter 8
Source

8-30

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

CPPDRIVEROPTIONS
SSL
PEMCLIENTPRIVATE
KEYPASSWD
privateKeyPasswd

Optio
nal

GLOBA
LS or
Extract
paramet
er
(.prm)
file.

A string

None,
unless
the
PEMCLIE
NTPRIVA
TEKEYPA
SSWD
property
is
specified
, then
you must
specify a
value.

Sets the password for the PEM formatted private key
file used to verify the client's certificate. This is must if
the private key file is protected with the password.

CPPDRIVEROPTIONS
SSL
PEERCERTVERIFICA
TIONFLAG value

Optio
nal

GLOBA
LS or
Extract
paramet
er
(.prm)
file.

An
integer

0 Sets the verification required on the peer's certificate.
The range is 0–4:

0–Disable certificate identity verification.

1–Verify the peer certificate

2–Verify the peer identity

3– Not used so it is similar to disable certificate
identity verification.

4 –Verify the peer identity by its domain name

CPPDRIVEROPTIONS
SSL
ENABLEREVERSEDNS

Optio
nal

GLOBA
LS or
Extract
paramet
er
(.prm)
file.

false Enables retrieving host name for IP addresses using
reverse IP lookup.

TRANLOGOPTIONS
TRACKSCHEMACHANG
ES

Optio
nal

Extract
paramet
er
(.prm)
file.

By
default,
the
property
is
disabled.

This will enable extract to capture table level DDL
changes from the source at runtime.

Enable this to ensure that the table metadata within
the trail stays in sync with the source without any
downtime. When TRACKSCHEMACHANGES is disabled,
the capture process will ABEND if a DDL change is
detected at the source table.

8.1.2.15 Troubleshooting

No data captured by the Cassandra Extract process.

• The Cassandra database has not flushed the data from the active commit log files to the
CDC commit log files. The flush is dependent on the load of the Cassandra cluster.

• The Cassandra Extract captures data from the CDC commit log files only.

• Check the CDC property of the source table. The CDC property of the source table should
be set to true.

Chapter 8
Source

8-31

• Data is not captured if the TRANLOGOPTIONS CDCREADERSDKVERSION 3.9 parameter is in use
and the JVMCLASSPATH is configured to point to Cassandra 3.10 or 3.11 JAR files.

Error: OGG-01115 Function getInstance not implemented.

• The following line is missing from the GLOBALS file.

OGGSOURCE CASSANDRA

Error: Unable to connect to Cassandra cluster, Exception:
com.datastax.driver.core.exceptions.NoHostAvailableException

This indicates that the connection to the Cassandra cluster was unsuccessful.

Check the following parameters:

CLUSTERCONTACTPOINTS

Error: Exception in thread "main" java.lang.NoClassDefFoundError: oracle/goldengate/
capture/cassandra/CassandraCDCProcessManager

Check the JVMOPTIONS CLASSPATH parameter in the GLOBALS file.

Error: oracle.goldengate.util.Util - Unable to invoke method while constructing object.
Unable to create object of class
"oracle.goldengate.capture.cassandracapture311.SchemaLoader3DOT11" Caused by:
java.lang.NoSuchMethodError:
org.apache.cassandra.config.DatabaseDescriptor.clientInitialization()V

There is a mismatch in the Cassandra SDK version configuration. The TRANLOGOPTIONS
CDCREADERSDKVERSION 3.11 parameter is in use and the JVMCLASSPATH may have the
Cassandra 3.9 JAR file path.

Error: OGG-25171 Trail file '/path/to/trail/gg' is remote. Only local trail allowed for this
extract.

A Cassandra Extract should only be configured to write to local trail files. When adding trail
files for Cassandra Extract, use the EXTTRAIL option. For example:

ADD EXTTRAIL ./dirdat/z1, EXTRACT cass

Errors: OGG-868 error message or OGG-4510 error message

The cause could be any of the following:

• Unknown user or invalid password

• Unknown node address

• Insufficient memory

Another cause could be that the connection to the Cassandra database is broken. The error
message indicates the database error that has occurred.

Error: OGG-251712 Keyspace keyspacename does not exist in the database.

The issue could be due to these conditions:

• During the Extract initial load process, you may have deleted the KEYSPACE keyspacename
from the Cassandra database.

• The KEYSPACE keyspacename does not exist in the Cassandra database.

Chapter 8
Source

8-32

Error: OGG-25175 Unexpected error while fetching row.

This can occur if the connection to the Cassandra database is broken during initial load
process.

Error: “Server-side warning: Read 915936 live rows and 12823104 tombstone cells for
query SELECT * FROM keyspace.table(see tombstone_warn_threshold)”.

When the value of the initial load DBOPTIONS FETCHBATCHSIZE parameter is greater than the
Cassandra database configuration parameter,tombstone_warn_threshold, this is likely to
occur.

Increase the value of tombstone_warn_threshold or reduce the DBOPTIONS FETCHBATCHSIZE
value to get around this issue.

Duplicate records in the Cassandra Extract trail.

Internal tests on a multi-node Cassandra cluster have revealed that there is a possibility of
duplicate records in the Cassandra CDC commit log files. The duplication in the Cassandra
commit log files is more common when there is heavy write parallelism, write errors on nodes,
and multiple retry attempts on the Cassandra nodes. In these cases, it is expected that
Cassandra trail file will have duplicate records.

JSchException or SftpException in the Extract Report File

Verify that the SFTP credentials (user, password, and privatekey) are correct. Check that the
SFTP user has read and write permissions for the cdc_raw directory on each of the nodes in
the Cassandra cluster.

ERROR o.g.c.c.CassandraCDCProcessManager - Exception during creation of CDC
staging directory [{}]java.nio.file.AccessDeniedException

The Extract process does not have permission to create CDC commit log staging directory. For
example, if the cdc_raw commit log directory is /path/to/cassandra/home/data/cdc_raw, then
the staging directory would be /path/to/cassandra/home/data/cdc_raw/../cdc_raw_staged.

Extract report file shows a lot of DEBUG log statements

On production system, you do not need to enable debug logging. To use INFO level logging,
make sure that the Extract parameter file include this

JVMBOOTOPTIONS -Dlogback.configurationFile=AdapterExamples/big-data/cassandracapture/
logback.xml

To enable SSL in Oracle Golden Gate Cassandra Extract you have to enable SSL in the
GLOBALS file or in the Extract Parameter file.

If SSL Keyword is missing, then Extract assumes that you wanted to connect without SSL. So
if the Cassandra.yaml file has an SSL configuration entry, then the connection fails.

SSL is enabled and it is one-way handshake

You must specify the CPPDRIVEROPTIONS SSL PEMPUBLICKEYFILE /scratch/testcassandra/
testssl/ssl/cassandra.pem property.

If this property is missing, then Extract generates this error:.

2018-06-09 01:55:37 ERROR OGG-25180 The PEM formatted public key file used to verify the
peer's certificate is missing.

Chapter 8
Source

8-33

If SSL is enabled, then it is must to set PEMPUBLICKEYFILE in your Oracle GoldenGate
GLOBALS file or in Extract parameter file

SSL is enabled and it is two-way handshake

You must specify these properties for SSL two-way handshake:

CPPDRIVEROPTIONS SSL ENABLECLIENTAUTH
CPPDRIVEROPTIONS SSL PEMCLIENTPUBLICKEYFILE /scratch/testcassandra/testssl/ssl/datastax-
cppdriver.pem
CPPDRIVEROPTIONS SSL PEMCLIENTPRIVATEKEYFILE /scratch/testcassandra/testssl/ssl/datastax-
cppdriver-private.pem
CPPDRIVEROPTIONS SSL PEMCLIENTPRIVATEKEYPASSWD cassandra

Additionally, consider the following:

• If ENABLECLIENTAUTH is missing then Extract assumes that it is one-way handshake so it
ignores PEMCLIENTPRIVATEKEYFILE and PEMCLIENTPRIVATEKEYFILE. The following error
occurs because the cassandra.yaml file should have require_client_auth set to true.

2018-06-09 02:00:35 ERROR OGG-00868 No hosts available for the control
connection.

• If ENABLECLIENTAUTH is used and PEMCLIENTPRIVATEKEYFILE is missing, then this error
occurs:

2018-06-09 02:04:46 ERROR OGG-25178 The PEM formatted private key file used to
verify the client's certificate is missing. For two way handshake or if
ENABLECLIENTAUTH is set, then it is mandatory to set PEMCLIENTPRIVATEKEYFILE in your
Oracle GoldenGate GLOBALS file or in Extract parameter file.

• If ENABLECLIENTAUTH is use and PEMCLIENTPUBLICKEYFILE is missing, then this error
occurs:

2018-06-09 02:06:20 ERROR OGG-25179 The PEM formatted public key file used to
verify the client's certificate is missing. For two way handshake or if
ENABLECLIENTAUTH is set, then it is mandatory to set PEMCLIENTPUBLICKEYFILE in your
Oracle GoldenGate GLOBALS file or in Extract parameter file.

• If the password is set while generating the client private key file then you must add
PEMCLIENTPRIVATEKEYPASSWD to avoid this error:

2018-06-09 02:09:48 ERROR OGG-25177 The SSL certificate: /scratch/jitiwari/
testcassandra/testssl/ssl/datastax-cppdriver-private.pem can not be loaded. Unable
to load private key.

• If any of the PEM file is missing from the specified absolute path, then this error occurs:

2018-06-09 02:12:39 ERROR OGG-25176 Can not open the SSL certificate: /scratch/
jitiwari/testcassandra/testssl/ssl/cassandra.pem.

com.jcraft.jsch.JSchException: UnknownHostKey

If the extract process ABENDs with this issue, then it is likely that some or all the Cassandra
node addresses are missing in the SSH known-hosts file. For more information, see Setup
SSH Connection to the Cassandra Nodes.

General SSL Errors

Consider these general errors:

• The SSL connection may fail if you have enabled all SSL required parameters in Extract or
GLOBALS file and the SSL is not configured in the cassandra.yaml file.

Chapter 8
Source

8-34

• The absolute path or the qualified name of the PEM file may not correct. There could be
access issue on the PEM file stored location.

• The password added during generating the client private key file may not be correct or you
may not have enabled it in the Extract parameter or GLOBALS file.

8.1.2.16 Cassandra Capture Client Dependencies
What are the dependencies for the Cassandra Capture (Extract) to connect to Apache
Cassandra databases?

The following third party libraries are needed to run Cassandra Change Data Capture.

Capturing from Apache Cassandra 3.x versions:

• cassandra-driver-core (com.datastax.cassandra) version 3.3.1

• cassandra-all (org.apache.cassandra) version 3.11.0

• gson (com.google.code.gson) version 2.8.0

• jsch (com.jcraft) version 0.1.54

Capturing from Apache Cassandra 4.x versions:

• java-driver-core (com.datastax.oss) version 4.14.1

• cassandra-all (org.apache.cassandra) version 4.0.5

• gson (com.google.code.gson) version 2.8.0

• jsch (com.jcraft) version 0.1.54

You can use the Dependency Downloader scripts to download the Datastax Java Driver and its
associated dependencies. For more information, see Dependency Downloader.

8.1.3 Apache Kafka
The Oracle GoldenGate capture (Extract) for Kafka is used to read messages from a Kafka
topic or topics and convert data into logical change records written to GoldenGate trail files.
This section explains how to use Oracle GoldenGate capture for Kafka.

• Overview

• Prerequisites

• General Terms and Functionality of Kafka Capture

• Generic Mutation Builder

• Kafka Connect Mutation Builder

• Example Configuration Files

8.1.3.1 Overview
Kafka has gained market traction in recent years and become a leader in the enterprise
messaging space. Kafka is a cluster-based messaging system that provides high availability,
fail over, data integrity through redundancy, and high performance. Kafka is now the leading
application for implementations of the Enterprise Service Bus architecture. Kafka Capture
extract process reads messages from Kafka and transforms those messages into logical
change records which are written to Oracle GoldenGate trail files. The generated trail files can
then be used to propagate the data in the trail file to various RDBMS implementations or other
integrations supported by Oracle GoldenGate replicat processes.

Chapter 8
Source

8-35

8.1.3.2 Prerequisites
• Set up Credential Store Entry to Detect Source Type

8.1.3.2.1 Set up Credential Store Entry to Detect Source Type
The database type for capture is based on the prefix in the database credential userid. The
generic format for userid is as follows: <dbtype>://<db-user>@<comma separated list of
server addresses>:<port>
The userid value for Kafka capture should be any value with the prefix kafka://. You can set
up Credential Store Entry in Administration Service/ DB Connections.

Example

alter credentialstore add user kafka:// password somepass alias kafka

Note:

You can specify a dummy Password for Kafka while setting up the credentials.

8.1.3.3 General Terms and Functionality of Kafka Capture

• Kafka Streams

• Kafka Message Order

• Kafka Message Timestamps

• Kafka Message Coordinates

• Start Extract Modes

• General Configuration Overview

• OGGSOURCE parameter

• The Extract Parameter File

• Kafka Consumer Properties File

8.1.3.3.1 Kafka Streams
As a Kafka consumer, you can read from one or more topics. Additionally, each topic can be
divided into one or more partitions. Each discrete topic/partition combination is a Kafka stream.
This topic discusses Kafka streams extensively and it is important to clearly define the term
here.

The following is an example of five Kafka streams:

• Topic: TEST1 Partition: 0

• Topic: TEST1 Partition: 1

• Topic: TEST2 Partition: 0

• Topic: TEST2 Partition: 1

• Topic: TEST2 Partition: 2

Chapter 8
Source

8-36

8.1.3.3.2 Kafka Message Order
Messages received from the KafkaConsumer for an individual stream should be in the order as
stored in the Kafka commit log. However, Kafka streams move independently from one another
and the order in which messages are received from different streams is nondeterministic.

For example, Kafka Capture is consuming messages from two streams:

• Stream 1: Topic TEST1, partition 0

• Stream 2: Topic TEST1, partition 1

Stream 1 in Topic|partition|offset|timestamp format total of 5 messages.

TEST1|0|0|1588888086210
TEST1|0|1|1588888086220
TEST1|0|2|1588888086230
TEST1|0|3|1588888086240
TEST1|0|4|1588888086250

Stream 2 to Topic|partition|offset|timestamp format total of 5 messages.

TEST1|1|0|1588888086215
TEST1|1|1|1588888086225
TEST1|1|2|1588888086235
TEST1|1|3|1588888086245
TEST1|1|4|1588888086255

The Kafka Consumer could deliver the messages in the following order on run 1.

TEST1|1|0|1588888086215
TEST1|1|1|1588888086225
TEST1|0|0|1588888086210
TEST1|0|1|1588888086220
TEST1|0|2|1588888086230
TEST1|0|3|1588888086240
TEST1|0|4|1588888086250
TEST1|1|2|1588888086235
TEST1|1|3|1588888086245
TEST1|1|4|1588888086255

On a secondary run messages could be delivered in the following order.

TEST1|0|0|1588888086210
TEST1|0|1|1588888086220
TEST1|1|0|1588888086215
TEST1|1|1|1588888086225
TEST1|0|2|1588888086230
TEST1|0|3|1588888086240
TEST1|0|4|1588888086250
TEST1|1|2|1588888086235
TEST1|1|3|1588888086245
TEST1|1|4|1588888086255

Note:

In the two runs that the messages belonging to the same Kafka stream are delivered
in order as they occur in that stream. However, messages from different streams are
interlaced in a nondeterministic manner.

Chapter 8
Source

8-37

8.1.3.3.3 Kafka Message Timestamps
Each Kafka message has a timestamp associated with it. The timestamp on the Kafka
message maps to the operation timestamp for the record in the generated trail file. Timestamps
on Kafka messages are not guaranteed to be monotonically increasing even in the case where
extract is reading from only one stream (single topic and partition). Kafka has no requirement
that Kafka message timestamps are monotonically increasing even within a stream. The Kafka
Producer provides an API whereby the message timestamp can be explicitly set on messages.
This means a Kafka Producer can set the Kafka message timestamp to any value.

When reading from multiple topics and/or a topic with multiple partitions it is almost certain that
trail files generated by Kafka capture will not have operation timestamps that are monotonically
increasing. Kafka streams move independently from one another and there is no guarantee of
delivery order for messages received from different streams. Messages from different streams
can interlace in any random order when the Kafka Consumer is reading them from a Kafka
cluster.

8.1.3.3.4 Kafka Message Coordinates
Kafka Capture performs message gap checking to ensure message consistency withing the
context of a message stream. For every Kafka stream from which Kafka capture is consuming
messages, there should be no gap in the Kafka message offset sequence.

If a gap is found in the message offset sequence, then the Kafka capture logs an error and the
Kafka Capture extract process will abend.

Message gap checking can be disabled by setting the following in the parameter file.

SETENV (PERFORMMESSAGEGAPCHECK = "false").

8.1.3.3.5 Start Extract Modes
Extract can be configured to start replication from two distinct points. You can select Extract
starting positions from the UI in the Extract Options step, under the Begin section. You can
either click Now or define a Custom Time.

• Start Earliest

• Start Timestamp

8.1.3.3.5.1 Start Earliest

Start Kafka Capture from the oldest available message in Kafka.

ggsci> ADD EXTRACT kafka, TRANLOG
ggsci> ADD EXTRAIL dirdat/kc, extract kafka
ggsci> START EXTRACT kafka

8.1.3.3.5.2 Start Timestamp

Start Kafka Capture from the oldest available message in Kafka.

ggsci> ADD EXTRACT kafka, TRANLOG BEGIN 2019-03-27 23:05:05.123456
ggsci> ADD EXTRAIL dirdat/kc, extract kafka
ggsci> START EXTRACT kafka

Or alternatively, start now as now is a point in time.

Chapter 8
Source

8-38

ggsci> ADD EXTRACT kafka, TRANLOG BEGIN NOW
ggsci> ADD EXTRAIL dirdat/kc, extract kafka
ggsci> START EXTRACT kafka

Note:

Note on starting from a point in time. Kafka Capture will start from the first available
record in the stream which fits the criteria (time equal to or greater than the
configured time). Replicat will continue from that first message regardless of the
timestamps of subsequent messages. As previously discussed, there is no guarantee
or requirement that Kafka message timestamps are monotonically increasing.

Alter Extract

Alter Timestamp

ggsci> STOP EXTRACT kafka
ggsci> ALTER EXTRACT kafka BEGIN {Timestamp}
ggsci> START EXTRACT kafka

Alter Now

ggsci> STOP EXTRACT kafka
ggsci> ALTER EXTRACT kafka BEGIN NOW
ggsci> START EXTRACT kafka

8.1.3.3.6 General Configuration Overview

8.1.3.3.7 OGGSOURCE parameter
To enable Kafka extract replication, the GLOBALS parameter file must be configured as
follows:

OGGSOURCE KAFKA
JVMCLASSPATH ggjava/ggjava.jar:/kafka/client/path/*:dirprm
JVMBOOTOPTIONS -Xmx512m -Dlog4j.configurationFile=log4j-default.properties -
Dgg.log.level=INFO

OGGSOURCE KAFKA: The first line indicates that the source of replication is Kafka.

JVMCLASSPATH ggjava/ggjava.jar:/kafka/client/path/*:dirprm: The second line sets the
Java JVM classpath. The Java classpath provides the pathing to load all the required Oracle
GoldenGate for Distributed Applications and Analytics (GG for DAA) and Kafka client libraries.
The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) library should
be first in the list (ggjava.jar). The Kafka client libraries, the Kafka Connect framework, and
the Kafka Connect converters are not included with the Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) installation. These libraries must be obtained
independently. Oracle recommends you to use the same version of the Kafka client as the
version of the Kafka broker to which you are connecting. The Dependency Downloading tool
can be used to download the dependency libraries. Alternately, the pathing can be set to a
Kafka installation. For more information about Dependency Downloader, see Dependency
Downloader.

JVMBOOTOPTIONS -Xmx512m -Dlog4j.configurationFile=log4j-default.properties -
Dgg.log.level=INFO: The third line is the JVM boot options. Use this to configure the
maximum Java heap size (-Xmx512m) and the log4j logging parameters to generate the .log
file (-Dlog4j.configurationFile=log4j-default.properties -Dgg.log.level=INFO)

Chapter 8
Source

8-39

Note:

Starting from Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA) release 23c, this parameter will be deprecated.

8.1.3.3.8 The Extract Parameter File
The extract process configured is configured via a .prm file. The format for the naming of the
parameter file is <extract name>.prm. For example, the extract parameter file for the extract
process kc would be kc.prm.

EXTRACT KC
-- alter credentialstore add user kafka:// password <somepass> alias kafka
SOURCEDB USERIDALIAS kafka
JVMOPTIONS CLASSPATH ggjava/ggjava.jar:/kafka/client/path/*
JVMOPTIONS BOOTOPTIONS -Xmx512m -Dlog4j.configurationFile=log4j-default.properties -
Dgg.log.level=INFO
TRANLOGOPTIONS GETMETADATAFROMVAM
TRANLOGOPTIONS KAFKACONSUMERPROPERTIES kafka_consumer.properties
EXTTRAIL dirdat/kc
TABLE QASOURCE.TOPIC1;

EXTRACT KC: The first line sets the name of the extract process.

TRANLOGOPTIONS KAFKACONSUMERPROPERTIES kafka_consumer.properties: This line sets the
name and location of the Kafka Consumer properties file. The Kafka Consumer properties is a
file containing the Kafka specific configuration which configures connectivity and security to the
Kafka cluster. Documentation on the Kafka Consumer properties can be found in: Kafka
Documentation.

EXTTRAIL dirdat/kc: The fourth line sets the location and prefix of the trail files to be
generated.
TABLE QASOURCE.TOPIC1;: The fifth line is the extract TABLE statement. There can be one or
more TABLE statements. The schema name in the example is QASOURCE. The schema name is
an OGG artifact and it is required. It can be set to any legal string. The schema name cannot
be wildcarded. Each extact process only supports one schema name. The configured table
name maps to the Kafka topic name. The table configuration does support wildcards. Legal
Kafka topic names can have the following characters.

• a-z (lowercase a to z)

• A-Z (uppercase A to Z)

• 0-9 (digits 0 to 9)

• . (period)

• _ (underscore)

• - (hyphen)

If the topic name contains a period, underscore, or hyphen, please include the table name in
quotes in the configuration. Topic names are case sensitive so the topic MYTOPIC1 and
MyTopic1 are different Kafka topics.

Examples of legal extract table statements:

TABLE TESTSCHEMA.TEST*;
TABLE TESTSCHEMA.MyTopic1;
TABLE TESTSCHEMA.”My.Topic1”;

Chapter 8
Source

8-40

https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#consumerconfigs

Examples of illegal configuration - multiple schema names are used:

TABLE QASOURCE.TEST*;
TABLE TESTSCHEMA.MYTOPIC1;

Example of illegal configuration – Table with special characters not quoted.

TABLE QASOURE.My.Topic1;

Example of illegal configuration – Schema name is a wildcard.

TABLE *.*;

Optional .prm configuration.

Kafka Capture performs message gap checking to ensure message continuity. To disable
message gap checking set:

SETENV (PERFORMMESSAGEGAPCHECK = "false")

8.1.3.3.9 Kafka Consumer Properties File
The Kafka Consumer properties file contains the properties to configure the Kafka Consumer
including how to connect to the Kafka cluster and security parameters.

Example:

#Kafka Properties
bootstrap.servers=den02box:9092
group.id=mygroupid
key.deserializer=org.apache.kafka.common.serialization.ByteArrayDeserializer
value.deserializer=org.apache.kafka.common.serialization.ByteArrayDeserializer

• Encrypt Kafka Producer Properties

8.1.3.3.9.1 Encrypt Kafka Producer Properties

The sensitive properties within the Kafka Producer Configuration File can be encrypted using
the Oracle GoldenGate Credential Store.
For more information about how to use Credential Store, see Using Identities in Oracle
GoldenGate Credential Store.

For example, the following kafka property:

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule
required
username="alice" password="alice";

can be replaced with:

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule
required
username=ORACLEWALLETUSERNAME[alias domain_name]
password=ORACLEWALLETPASSWORD[alias
domain_name];

Chapter 8
Source

8-41

8.1.3.4 Generic Mutation Builder
The default mode is to use the Generic Mutation Builder to transform Kafka messages into trail
file operations. Kafka messages are comprised of data in any format. Kafka messages can be
delimited text, JSON, Avro, XML, text, etc. This makes the mapping of data from a Kafka
message into a logical change record challenging. However, Kafka message keys and payload
values are at their fundamental form just byte arrays. The Generic Kafka Replication simply
propagates the Kafka message key and Kafka message value as byte arrays. Generic Kafka
Replication transforms the data into operations of three fields. The three fields are as follows:

• id: This is the primary key for the table. It is typed as a string. The value is the coordinates
of the message in Kafka in the following format: topic name:partition number:offset. For
example, the value for topic TEST, partition 1, and offset 245 would be TEST:1:245.

• key: This is the message key field from the source Kafka message. The field is typed as
binary. The value of the field is the key from the source Kafka message propagated as
bytes.

• payload: This is the message payload or value from the source Kafka message. The field
is typed as binary. The value of the field is the payload from the source Kafka message
propagated as bytes.

Features of the Generic Mutation Builder

• All records are propagated as insert operations.

• Each Kafka message creates an operation in its own transaction.

Logdump 2666 >n

Hdr-Ind : E (x45) Partition : . (x00)
UndoFlag : . (x00) BeforeAfter: A (x41)
RecLength : 196 (x00c4) IO Time : 2021/07/22 14:57:25.085.436
IOType : 170 (xaa) OrigNode : 2 (x02)
TransInd : . (x03) FormatType : R (x52)
SyskeyLen : 0 (x00) Incomplete : . (x00)
DDR/TDR index: (001, 001) AuditPos : 0
Continued : N (x00) RecCount : 1 (x01)

2021/07/22 14:57:25.085.436 Metadata Len 196 RBA 1335
Table Name: QASOURCE.TOPIC1
*
 1)Name 2)Data Type 3)External Length 4)Fetch Offset
5)Scale 6)Level
 7)Null 8)Bump if Odd 9)Internal Length 10)Binary Length 11)Table
Length 12)Most Sig DT
13)Least Sig DT 14)High Precision 15)Low Precision 16)Elementary Item
17)Occurs 18)Key Column
19)Sub DataType 20)Native DataType 21)Character Set 22)Character Length 23)LOB
Type 24)Partial Type
25)Remarks
*
TDR version: 11
Definition for table QASOURCE.TOPIC1
Record Length: 20016
Columns: 3
id 64 8000 0 0 0 0 0 8000 8000 0 0 0 0 0 1 0 1 0
12 -1 0 0 0
key 64 16000 8005 0 0 1 0 8000 8000 0 0 0 0 0 1 0 0 4
-3 -1 0 0 0
payload 64 8000 16010 0 0 1 0 4000 4000 0 0 0 0 0 1 0 0 4

Chapter 8
Source

8-42

-4 -1 0 1 0
End of definition

8.1.3.5 Kafka Connect Mutation Builder
The Kafka Connect Mutation Builder parses Kafka Connect messages into logical change
records and that are then written to Oracle GoldenGate trail files.

• Functionality and Limitations of the Kafka Connect Mutation Builder

• Primary Key

• Kafka Message Key

• Kafka Connect Supported Types

• How to Enable the Kafka Connect Mutation Builder

8.1.3.5.1 Functionality and Limitations of the Kafka Connect Mutation Builder
• All records are propagated as insert operations.

• Each Kafka message creates an operation in its own transaction.

• The Kafka message key must be a Kafka Connect primitive type or logical type.

• The Kafka message value must be either a primitive type/logical type or a record
containing only primitive types, logical types, and container types. A record cannot contain
another record as nested records are not currently supported.

• Kafka Connect array data types are mapped into binary fields. The content of the binary
field will be the source array converted into a serialized JSON array.

• Kafka Connect map data types are mapped into binary fields. The contents of the binary
field will be the source map converted into a serialized JSON.

• The source Kafka messages must be Kafka Connect messages.

• Kafka Connect Protobuf messages are not currently supported. (The current Kafka
Capture functionality only supports primitive or logical types for the Kafka message key.
The Kafka Connect Protobuf Converter does not support stand only primitives or logical
types.)

• Each source topic must contain messages which conform to the same schema. Interlacing
messages in the same Kafka topic which conform to different Kafka Connect schema is not
currently supported.

• Schema changes are not currently supported.

8.1.3.5.2 Primary Key
A primary key field is created in the output as a column named gg_id. The value of this field is
the concatentated topic name, partition, and offset delimited by the : character. For example:
TOPIC1:0:1001.

8.1.3.5.3 Kafka Message Key
The message key is mapped into a called named gg_key.

8.1.3.5.4 Kafka Connect Supported Types
Supported Primitive Types

Chapter 8
Source

8-43

• String

• 8 bit Integer

• 16 bit Integer

• 32 bit Integer

• 64 bit Integer

• Boolean

• 32 bit Float

• 64 bit Float

• Bytes (binary)

Supported Logical Types

• Decimal

• Timestamp

• Date

• Time

Supported Container Types

• Array – Only arrays of primitive or logical types are supported. Data is mapped as a binary
field the value of which is a JSON array document containing the contents of the source
array.

• List – Only lists of primitive or logical types are supported. Data is mapped as a binary field
the value of which is a JSON document containing the contents of the source list.

8.1.3.5.5 How to Enable the Kafka Connect Mutation Builder
The Kafka Connect Mutation Builder is enabled by configuration of the Kafka Connect key and
value converters in the Kafka Producer properties file.

For the Kafka Connect JSON Converter

key.converter=org.apache.kafka.connect.json.JsonConverter
value.converter=org.apache.kafka.connect.json.JsonConverter

For the Kafka Connect Avro Converter

key.converter=io.confluent.connect.avro.AvroConverter
value.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter.schema.registry.url=http://localhost:8081

The Kafka Capture functionality reads the Kafka producer properties file. If the Kafka Connect
converters are configured, then the Kafka Connect mutation builder is invoked.

Sample metadata from the trail file using logdump

2021/08/03 09:06:05.243.881 Metadata Len 1951 RBA 1335
Table Name: TEST.KC
*
 1)Name 2)Data Type 3)External Length 4)Fetch Offset
5)Scale 6)Level
 7)Null 8)Bump if Odd 9)Internal Length 10)Binary Length 11)Table
Length 12)Most Sig DT
13)Least Sig DT 14)High Precision 15)Low Precision 16)Elementary Item

Chapter 8
Source

8-44

17)Occurs 18)Key Column
19)Sub DataType 20)Native DataType 21)Character Set 22)Character Length 23)LOB
Type 24)Partial Type
25)Remarks
*
TDR version: 11
Definition for table TEST.KC
Record Length: 36422
Columns: 30
gg_id 64 8000 0 0 0 0 0 8000 8000 0 0 0 0 0 1 0
1 0 12 -1 0 0 0
gg_key 64 4000 8005 0 0 1 0 4000 4000 0 0 0 0 0 1 0
0 0 -1 -1 0 1 0
string_required 64 4000 12010 0 0 1 0 4000 4000 0 0 0 0 0 1 0
0 0 -1 -1 0 1 0
string_optional 64 4000 16015 0 0 1 0 4000 4000 0 0 0 0 0 1 0
0 0 -1 -1 0 1 0
byte_required 134 23 20020 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 4 -1 0 0 0
byte_optional 134 23 20031 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 4 -1 0 0 0
short_required 134 23 20042 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 4 -1 0 0 0
short_optional 134 23 20053 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 4 -1 0 0 0
integer_required 134 23 20064 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 4 -1 0 0 0
integer_optional 134 23 20075 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 4 -1 0 0 0
long_required 134 23 20086 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 -5 -1 0 0 0
long_optional 134 23 20097 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 -5 -1 0 0 0
boolean_required 0 2 20108 0 0 1 0 1 1 0 0 0 0 0 1 0
0 4 -2 -1 0 0 0
boolean_optional 0 2 20112 0 0 1 0 1 1 0 0 0 0 0 1 0
0 4 -2 -1 0 0 0
float_required 141 50 20116 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 6 -1 0 0 0
float_optional 141 50 20127 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 6 -1 0 0 0
double_required 141 50 20138 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 8 -1 0 0 0
double_optional 141 50 20149 0 0 1 0 8 8 8 0 0 0 0 1 0
0 0 8 -1 0 0 0
bytes_required 64 8000 20160 0 0 1 0 4000 4000 0 0 0 0 0 1 0
0 4 -4 -1 0 1 0
bytes_optional 64 8000 24165 0 0 1 0 4000 4000 0 0 0 0 0 1 0
0 4 -4 -1 0 1 0
decimal_required 64 50 28170 0 0 1 0 50 50 0 0 0 0 0 1 0
0 0 12 -1 0 0 0
decimal_optional 64 50 28225 0 0 1 0 50 50 0 0 0 0 0 1 0
0 0 12 -1 0 0 0
timestamp_required 192 29 28280 0 0 1 0 29 29 29 0 6 0 0 1 0
0 0 11 -1 0 0 0
timestamp_optional 192 29 28312 0 0 1 0 29 29 29 0 6 0 0 1 0
0 0 11 -1 0 0 0
date_required 192 10 28344 0 0 1 0 10 10 10 0 2 0 0 1 0
0 0 9 -1 0 0 0
date_optional 192 10 28357 0 0 1 0 10 10 10 0 2 0 0 1 0
0 0 9 -1 0 0 0
time_required 192 18 28370 0 0 1 0 18 18 18 3 6 0 0 1 0

Chapter 8
Source

8-45

0 0 10 -1 0 0 0
time_optional 192 18 28391 0 0 1 0 18 18 18 3 6 0 0 1 0
0 0 10 -1 0 0 0
array_optional 64 8000 28412 0 0 1 0 4000 4000 0 0 0 0 0 1 0
0 4 -4 -1 0 1 0
map_optional 64 8000 32417 0 0 1 0 4000 4000 0 0 0 0 0 1 0
0 4 -4 -1 0 1 0
End of definition

8.1.3.6 Example Configuration Files
• Example kc.prm file

• Example Kafka Consumer Properties File

8.1.3.6.1 Example kc.prm file
EXTRACT KC
OGGSOURCE KAFKA
JVMOOPTIONS CLASSPATH ggjava/ggjava.jar:/path/to/kafka/libs/*
TRANLOGOPTIONS GETMETADATAFROMVAM
--Uncomment the following line to disable Kafka message gap checking.
--SETENV (PERFORMMESSAGEGAPCHECK = "false")
TRANLOGOPTIONS KAFKACONSUMERPROPERTIES kafka_consumer.properties
EXTTRAIL dirdat/kc
TABLE TEST.KC;

8.1.3.6.2 Example Kafka Consumer Properties File
#Kafka Properties
bootstrap.servers=localhost:9092
group.id=someuniquevalue
key.deserializer=org.apache.kafka.common.serialization.ByteArrayDeserializer
value.deserializer=org.apache.kafka.common.serialization.ByteArrayDeserializer

#JSON Converter Settings
#Uncomment to use the Kafka Connect Mutation Builder with JSON Kafka Connect Messages
#key.converter=org.apache.kafka.connect.json.JsonConverter
#value.converter=org.apache.kafka.connect.json.JsonConverter

#Avro Converter Settings
#Uncomment to use the Kafka Connect Mutation Builder with Avro Kafka Connect Messages
#key.converter=io.confluent.connect.avro.AvroConverter
#value.converter=io.confluent.connect.avro.AvroConverter
#key.converter.schema.registry.url=http://localhost:8081
#value.converter.schema.registry.url=http://localhost:8081

8.1.4 Azure Event Hubs
To capture messages from Azure Event Hubs and parse into logical change records with
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA), you can use
Kafka Extract. For more information, see Apache Kafka as source.

8.1.5 Confluent Kafka
To capture Kafka Connect messages from Confluent Kafka and parse into logical change
records with Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA), you
can use Kafka Connect Mutation Builder. For more information, see Kafka Connect Mutation
Builder.

Chapter 8
Source

8-46

8.1.6 DataStax
Datastax Enterprise is a NoSQL database built on Apache Cassandra. For more information,
see Apache Cassandra for configuring change data capture from Datastax Enterprise.

8.1.7 Java Message Service (JMS)
This article explains using the Oracle GoldenGate for Distributed Applications and Analytics
(GG for DAA) to capture Java Message Service (JMS) messages to be written to an Oracle
GoldenGate trail.

• Prerequisites

• Configuring Message Capture

8.1.7.1 Prerequisites
• Set up Credential Store Entry to Detect Source Type

8.1.7.1.1 Set up Credential Store Entry to Detect Source Type

JMS Capture

Similar to Kafka, for the sake of detecting the source type, user can create a credential store
entry with the prefix: jms://.

Note:

You can set up Credential Store Entry in Administration Service/ DB Connections.

Example

alter credentialstore add user jms:// password <anypassword> alias jms

If the extract parameter file does not specify SOURCEDB parameter with USERIDALIAS option,
then the source type will be assumed to be JMS, and a warning message will be logged to
indicate this.

8.1.7.2 Configuring Message Capture
This chapter explains how to configure the VAM Extract to capture JMS messages.

• Configuring the VAM Extract

• Connecting and Retrieving the Messages

8.1.7.2.1 Configuring the VAM Extract
JMS Capture only works with the Oracle GoldenGate Extract process. To run the Java
message capture application you need the following:

• Oracle GoldenGate for Java Adapter

• Extract process

Chapter 8
Source

8-47

• Extract parameter file configured for message capture

• Description of the incoming data format, such as a source definitions file.

• Java 8 installed on the host machine

• Adding the Extract

• Configuring the Extract Parameters

• Configuring Message Capture

8.1.7.2.1.1 Adding the Extract

To add the message capture VAM to the Oracle GoldenGate installation, add an Extract and
the trail that it will create using GGSCI commands:

ADD EXTRACT jmsvam, VAM
ADD EXTTRAIL dirdat/id, EXTRACT jmsvam, MEGABYTES 100

The process name (jmsvam) can be replaced with any process name that is no more than 8
characters. The trail identifier (id) can be any two characters.

Note:

Commands to position the Extract, such as BEGIN or EXTRBA, are not supported for
message capture. The Extract will always resume by reading messages from the end
of the message queue.

8.1.7.2.1.2 Configuring the Extract Parameters

The Extract parameter file contains the parameters needed to define and invoke the VAM.
Sample Extract parameters for communicating with the VAM are shown in the table.

Parameter Description

EXTRACT jmsvam The name of the Extract process.

VAM ggjava_vam.dll,
PARAMS dirprm/jmsvam.properties

Specifies the name of the VAM library and the location of
the properties file. The VAM properties should be in the
dirprm directory of the Oracle GoldenGate installation
location.

TRANLOGOPTIONS VAMCOMPATIBILITY 1 Specifies the original (1) implementation of the VAM is to be
used.

TRANLOGOPTIONS GETMETADATAFROMVAM Specifies that metadata will be sent by the VAM.

EXTTRAIL dirdat/id Specifies the identifier of the target trail Extract creates.

8.1.7.2.1.3 Configuring Message Capture

Message capture is configured by the properties in the VAM properties file (Adapter Properties
file. This file is identified by the PARAMS option of the Extract VAM parameter and used to
determine logging characteristics, parser mappings and JMS connection settings.

Chapter 8
Source

8-48

8.1.7.2.2 Connecting and Retrieving the Messages
To process JMS messages you must configure the connection to the JMS interface, retrieve
and parse the messages in a transaction, write each message to a trail, commit the
transaction, and remove its messages from the queue.

• Connecting to JMS

• Retrieving Messages

• Completing the Transaction

8.1.7.2.2.1 Connecting to JMS

Connectivity to JMS is through a generic JMS interface. Properties can be set to configure the
following characteristics of the connection:

• Java classpath for the JMS client

• Name of the JMS queue or topic source destination

• Java Naming and Directory Interface (JNDI) connection properties

– Connection properties for Initial Context

– Connection factory name

– Destination name

• Security information

– JNDI authentication credentials

– JMS user name and password

The Extract process that is configured to work with the VAM (such as the jmsvam in the
example) will connect to the message system. when it starts up.

Note:

The Extract may be included in the Manger's AUTORESTART list so it will automatically
be restarted if there are connection problems during processing.

Currently the Oracle GoldenGate for Java message capture adapter supports only JMS text
messages.

8.1.7.2.2.2 Retrieving Messages

The connection processing performs the following steps when asked for the next message:

• Start a local JMS transaction if one is not already started.

• Read a message from the message queue.

• If the read fails because no message exists, return an end-of-file message.

• Otherwise return the contents of the message.

Chapter 8
Source

8-49

8.1.7.2.2.3 Completing the Transaction

Once all of the messages that make up a transaction have been successfully retrieved, parsed,
and written to the Oracle GoldenGate trail, the local JMS transaction is committed and the
messages removed from the queue or topic. If there is an error then the local transaction is
rolled back leaving the messages in the JMS queue.

8.1.8 MongoDB
The Oracle GoldenGate capture (Extract) for MongoDB is used to get changes from MongoDB
databases.

This chapter describes how to use the Oracle GoldenGate Capture for MongoDB.

• Overview

• Prerequisites to Setting up MongoDB

• MongoDB Database Operations

• Using Extract Initial Load

• Using Change Data Capture Extract

• Positioning the Extract

• Security and Authentication

• MongoDB Bidirectional Replication

• Mongo DB Configuration Reference

• Columns in Trail File

• Update Operation Behavior

• Oplog Size Recommendations

• Troubleshooting

• MongoDB Capture Client Dependencies
What are the dependencies for the MongoDB Capture to connect to MongoDB databases?

8.1.8.1 Overview
MongoDB is a document-oriented NoSQL database used for high volume data storage and
which provides high performance and scalability along with data modelling and data
management of huge sets of data in an enterprise application. MongoDB provides:

• High availability through built-in replication and failover

• Horizontal scalability with native sharding

• End-to-end security and many more

8.1.8.2 Prerequisites to Setting up MongoDB

• MongoDB cluster or a MongoDB node must have a replica set. The minimum
recommended configuration for a replica set is a three member replica set with three data-
bearing members: one primary and two secondary members.

Chapter 8
Source

8-50

Create mongod instance with the replica set as follows:

bin/mongod --bind_ip localhost --port 27017 --replSet rs0 --dbpath ../
data/d1/
bin/mongod --bind_ip localhost --port 27018 --replSet rs0 --dbpath ../
data/d2/
bin/mongod --bind_ip localhost --port 27019 --replSet rs0 --dbpath ../
data/d3/

bin/mongod --host localhost --port 27017

Adding a replica set:

rs.initiate({
 _id : "rs0",
 members: [
 { _id: 0, host: "localhost:27017" },
 { _id: 1, host: "localhost:27018" },
 { _id: 2, host: "localhost:27019" }
]
})

• Replica Set Oplog
MongoDB capture uses oplog to read the CDC records. The operations log (oplog) is a
capped collection that keeps a rolling record of all operations that modify the data stored in
your databases.

The MongoDB only removes an oplog entry in the following cases: the oplog has reached
the maximum configured size, and the oplog entry is older than the configured number of
hours based on the host system clock.

You can control the retention of oplog entries using: oplogMinRetentionHours and
replSetResizeOplog.

For more information about oplog, see Oplog Size Recommendations.

• You must download and provide the third party libraries of MongoDB clients having version
5.0.0 and forward. See MongoDB Capture Client Dependencies: Reactive Streams Java
Driver 4.4.1 .

Note:

MongoDB client version less than 5.0.0 is not supported.

• Set up Credential Store Entry to Detect Source Type

8.1.8.2.1 Set up Credential Store Entry to Detect Source Type
The database type for capture is based on the prefix in the database credential userid. The
generic format for userid is as follows: <dbtype>://<db-user>@<comma separated list of
server addresses>:<port> . The userid
value for MongoDB is any valid MongoDB clientURI without the password.

MongoDB Capture

Example:

Chapter 8
Source

8-51

alter credentialstore add user "mongodb+srv://user@127.0.0.1:27017" password
db-passwd alias mongo

Note:

Ensure that the userid value is in double quotes.

MongoDB Atlas

Example:

alter credentialstore add user "mongodb+srv://user@127.0.0.1:27017" password
db-passwd alias mongo

8.1.8.3 MongoDB Database Operations
Supported Operations

• INSERT

• UPDATE

• DELETE

Unsupported Operations

The following MongoDB source DDL operations are not supported:

• CREATE collection

• RENAME collection

• DROP collection

On detecting these unsupported operations, extract can be configured to either ABEND or skip
these operations and continue processing the next operation.

8.1.8.4 Using Extract Initial Load
MongoDB Extract supports the standard initial load capability to extract source table data to
Oracle GoldenGate trail files.

Initial load for MongoDB can be performed to synchronize tables, either as a prerequisite step
to replicating changes or as a standalone function.

Configuring the Initial Load

Initial Load Parameter file:

-- ggsci> alter credentialstore add user mongodb://db-user@localhost:27017/
admin password db-passwd alias mongo

EXTRACT LOAD
JVMOPTIONS CLASSPATH ggjava/ggjava.jar:/path/to/mongo-capture/libs/*
SOURCEISTABLE
SOURCEDB USERIDALIAS mongo
TABLE database.collection;

Chapter 8
Source

8-52

Run these commands in AdminClient to add extract for initial load:

adminclient> ADD EXTRACT load, SOURCEISTABLE
adminclient> START EXTRACT load

8.1.8.5 Using Change Data Capture Extract
Review the example .prm files from Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) installation directory here: AdapterExamples/big-data/
mongodbcapture.

When adding the MongoDB Extract trail, you need to use EXTTRAIL to create a local trail file.

The MongoDB Extract trail file should not be configured with the RMTTRAIL option.

adminclient> ADD EXTRACT groupname, TRANLOG
adminclient> ADD EXTTRAIL trailprefix, EXTRACT groupname

Example:

adminclient> ADD EXTRACT mongo, TRANLOG
adminclient> ADD EXTTRAIL ./dirdat/z1, EXTRACT mongo

8.1.8.6 Positioning the Extract
MongoDB extract process allows us to position from EARLIEST, TIMESTAMP, EOF and LSN.

EARLIEST: Positions to the start of the Oplog for a given collection.

Syntax:

ADD EXTRACT groupname, TRANLOG, EARLIEST

TIMESTAMP: Positions to a given time stamp. Token BEGIN can use either NOW to start from
present time or with a given timestamp.

BEGIN {NOW | yyyy-mm-dd[hh:mi:[ss[.cccccc]]]}
Syntax

ADD EXTRACT groupname, TRANLOG, BEGIN NOW
ADD EXTRACT groupname, TRANLOG, BEGIN ‘yyyy-mm-dd hh:mm:ss’

EOF: Positions to end of oplog.

Syntax

ADD EXTRACT groupname, TRANLOG, EOF

LSN: Positions to a given LSN.

In MongoDB Capture, the Log Sequence Number (LSN) corresponds to the Operation Time in
the oplog, which is unique for each entry. This Operation Time can be represented in two
formats: as a timestamp with an increment (in the t.i format) or as a 20-digit numerical value.

Chapter 8
Source

8-53

For example, if the oplog's Operation Time is "ts": {"$timestamp": {"t": 1733328879,
"i": 2}}, the corresponding LSN can be expressed as 1733328879.2 or
07444590848517341186.
The syntax for adding an extract is as follows:

For the timestamp.increment format:

ADD EXTRACT groupname, TRANLOG, LSN
 "1733328879.2"

For the 20-digit LSN format:

ADD EXTRACT groupname, TRANLOG, LSN "07444590848517341186"

8.1.8.7 Security and Authentication
MongoDB capture uses Oracle GoldenGate credential store to manage user IDs and their
encrypted passwords (together known as credentials) that are used by Oracle GoldenGate
processes to interact with the MongoDB database. The credential store eliminates the need to
specify user names and clear-text passwords in the Oracle GoldenGate parameter files.

An optional alias can be used in the parameter file instead of the user ID to map to a userid
and password pair in the credential store.

In Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA), you specify the
alias and domain in the property file and not the actual user ID or password. User credentials
are maintained in secure wallet storage.

To add CREDENTIAL STORE and DBLOGIN run the following commands in the adminclient:

adminclient> add credentialstore
adminclient> alter credentialstore add user "<userid>" password <pwd> alias
mongo

Example value of userid:

mongodb://myUserAdmin@localhost:27017/admin?replicaSet=rs0

Note:

Ensure that the userid value is in double quotes.

adminclient > dblogin useridalias mongo

To test DBLOGIN, run the following command

adminclient> list tables tcust*

On successful add of authentication to credential store, add the alias in the parameter file of
extract.

Chapter 8
Source

8-54

Example:

SOURCEDB USERIDALIAS mongo

MongoDB Capture uses connection URI to connect to a MongoDB deployment. Authentication
and Security is passed as query string as part of connection URI. See SSL Configuration
Setup to configure SSL.

To specify access control use userid:

mongodb://<user>@<hostname1>:<port>,<hostname2>:<port>,<hostname3>:<port>/?
replicaSet=<replicatName>

To specify TLS/SSL:

Using connection string prefix of “+srv” as mongodb+srv automatically sets the tls option to
true.

 mongodb+srv://server.example.com/

To disable TLS add tls=false in the query string.

mongodb:// >@<hostname1>:<port>/?replicaSet=<replicatName>&tls=false

To specify Authentication:

authSource:

mongodb://<user>@<hostname1>:<port>,<hostname2>:<port>,<hostname3>:<port>/?
replicaSet=<replicatName>&authSource=admin

authMechanism:

mongodb://<user>@<hostname1>:<port>,<hostname2>:<port>,<hostname3>:<port>/?
replicaSet=<replicatName>&authSource=admin&authMechanism=GSSAPI

For more information about Security and Authentication using Connection URL, see Mongo DB
Documentation

• SSL Configuration Setup

8.1.8.7.1 SSL Configuration Setup
To configure SSL between the MongoDB instance and Oracle GoldenGate for Distributed
Applications and Analytics MongoDB Capture, do the following:

Create certificate authority (CA)

openssl req -passout pass:password -new -x509 -days 3650 -extensions v3_ca -
keyout
ca_private.pem -out ca.pem -subj
"/CN=CA/OU=GOLDENGATE/O=ORACLE/L=BANGALORE/ST=KA/C=IN"

Chapter 8
Source

8-55

https://docs.mongodb.com/manual/reference/connection-string/
https://docs.mongodb.com/manual/reference/connection-string/

Create key and certificate signing requests (CSR) for client and all server nodes

openssl req -newkey rsa:4096 -nodes -out client.csr -keyout client.key -subj
'/CN=certName/OU=OGGBDCLIENT/O=ORACLE/L=BANGALORE/ST=AP/C=IN'
openssl req -newkey rsa:4096 -nodes -out server.csr -keyout server.key -subj
'/CN=slc13auo.us.oracle.com/OU=GOLDENGATE/O=ORACLE/L=BANGALORE/ST=TN/C=IN'

Sign the certificate signing requests with CA

openssl x509 -passin pass:password -sha256 -req -days 365 -in client.csr -CA
ca.pem -CAkey
ca_private.pem -CAcreateserial -out client-signed.crtopenssl x509 -passin
pass:password -sha256 -req -days 365 -in server.csr -CA ca.pem -CAkey
ca_private.pem -CAcreateserial -out server-signed.crt -extensions v3_req -
extfile
 <(cat << EOF[v3_req]subjectAltName = @alt_names
[alt_names]
DNS.1 = 127.0.0.1
DNS.2 = localhost
DNS.3 = hostname
EOF)

Create the privacy enhanced mail (PEM) file for mongod

cat client-signed.crt client.key > client.pem
cat server-signed.crt server.key > server.pem

Create trust store and keystore

openssl pkcs12 -export -out server.pkcs12 -in server.pem
openssl pkcs12 -export -out client.pkcs12 -in client.pem

bash-4.2$ ls
ca.pem ca_private.pem client.csr client.pem server-signed.crt
server.key server.pkcs12
ca.srl client-signed.crt client.key client.pkcs12 server.csr
server.pem

Start instances of mongod with the following options:

--tlsMode requireTLS --tlsCertificateKeyFile ../opensslKeys/server.pem --
tlsCAFile
 ../opensslKeys/ca.pem

credentialstore connectionString

alter credentialstore add user
 mongodb://myUserAdmin@localhost:27017/admin?
ssl=true&tlsCertificateKeyFile=../mcopensslkeys/
client.pem&tlsCertificateKeyFilePassword=password&tlsCAFile=../mcopensslkeys/
ca.pem
 password root alias mongo

Chapter 8
Source

8-56

Note:

The Length of connectionString should not exceed 256.

For CDC Extract, add the key store and trust store as part of the JVM options.

JVM options

-Xms512m -Xmx4024m -Xss32m -Djavax.net.ssl.trustStore=../mcopensslkeys /
server.pkcs12
 -Djavax.net.ssl.trustStorePassword=password
 -Djavax.net.ssl.keyStore =../mcopensslkeys/client.pkcs12
 -Djavax.net.ssl.keyStorePassword=password

8.1.8.8 MongoDB Bidirectional Replication

Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) has integration to
capture changes from a MongoDB source database, and also apply the changes to a
MongoDB target database. In bidirectional replication, Changes that are made to one source
collection are replicated to target collection, and changes that are made to the second copy are
replicated back to the first copy.

This topic explains the design to support bidirectional replication for MongoDB.

Note:

MongoDB Version 6 or above is required to support bi-directional replication. With
versions before 6.0, MongoDB bi-directional is not supported and it fails with the
following error message: MONGODB-000XX MongoDB version should be 6 or
greater to support bi-directional replication.

• Enabling Trandata

• Enabling MongoDB Bi-directional Replication

• Extracting from Target Replicat which is Bidirectionally Processed

Chapter 8
Source

8-57

• Troubleshooting

8.1.8.8.1 Enabling Trandata

Before starting the replicat process with bidirectional enabled, one should enable the trandata
for the collection where the data is been replicated. By enabling the trandata on the collection
before the start of the replicat process, will capture the before image of the operation with
which an Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) extract
process can identify if the document is processed by the GG for DAA or not.

Extract abends if trandata is not enabled on the collection that been used in the bidirectional
enabled replicat process.

Command to Enable Trandata

Dblogin useridalias <aliasname>
 “add trandata <schema>.<collectionname>”

Note:

The target collection should be available before the replicat process when executed
with bidirectionally enabled.

8.1.8.8.2 Enabling MongoDB Bi-directional Replication

To enable MongoDB bi-directional replication, set gg.handler.mongodb.bidirectional to true
(gg.handler.mongodb.bidirectional=true) in replicat properties.

When gg.handler.mongodb.bidirectional property is set to true, replicat process adds
filterAttribute and filterAttributeValue key value pair to the document. filterAttribute and
filterAttributeValue is needed for loop-detection. Ensure that the filterAttributeValue
contain only ASCII characters [A-Za-z] and numbers [0-9] with a Maximum length of 256
characters. If the document has the key-value pair of filterAttribute and
filterAttributeValue, then it shows that the document is processed by Oracle GoldenGate
for Distributed Applications and Analytics (GG for DAA) replicat process.

When gg.handler.mongodb.bidirectional property is set to true, replicat ingests the default
value of filterAttribute as oggApply and the default filterAttributeValue as true if not
specified explicitly. You can enable MongoDB bi-directional replication with default settings. For
example: gg.handler.mongodb.bidirectional=true

{ "_id" : ObjectId("65544aa60b0a066d021ba508"), "CUST_CODE" : "test65",
"name" : "hello
 world", "cost" : 3000, "oggApply":"true"}

You can also define the key-value pair of filterAttribute and filterAttributeValue. For
example:

gg.handler.mongodb.bidirectional=true
gg.handler.mongodb.filterAttribute=region
gg.handler.mongodb.filterAttributeValue=westcentral

Chapter 8
Source

8-58

Sample insert doc with custom key-value pair:

{ "_id" : ObjectId("65544aa60b0a066d021ba508"), "CUST_CODE" : "test65",
"name" : "hello world", "cost" : 3000, "region":"westcentral"}

8.1.8.8.3 Extracting from Target Replicat which is Bidirectionally Processed

TRANLOGOPTIONS EXCLUDEFILTERATTRIBUTE can be used in extract parameters to filter source
MongoDB operations. TRANLOGOPTIONS EXCLUDEFILTERATTRIBUTE is a value/ key pair. Default
EXCLUDEFILTERATTRIBUTE attribute name and value is oggApply and true. Optionally, name and
value can be set by user. User can mention multiple TRANLOGOPTIONS
EXCLUDEFILTERATTRIBUTE options with different key value pairs.

This option may be used to avoid data looping in a bidirectional configuration of MongoDB
capture by specifying EXCLUDEFILTERATTRIBUTE name with the value that was used by
MongoDB Replicat.

Example 1

TRANLOGOPTIONS EXCLUDEFILTERATTRIBUTE filters attribute with oggApply and value with true.
If the source document contains the specified EXCLUDEFILTERATTRIBUTE, the document will be
filtered and will not be extracted.

TRANLOGOPTIONS EXCLUDEFILTERATTRIBUTE
Filtered Sample Message:

{ "_id" : ObjectId("65544aa60b0a066d021ba508"), "CUST_CODE" : "test65",
"name" : "hello world", "cost" : 3000, "oggApply":"true"}

TRANLOGOPTIONS EXCLUDEFILTERATTRIBUTE parameter value should be in line with source
replicat's FILTERATTRIBUTE and FILTERATTRIBUTEVALUE to defect the loop or decide to process/
filter the operations. If the source document contains the specified FILTERATTRIBUTE, the
document is identified as a replicated operation.

Example 2

**

The following extract parameter filters the replicated operations marked with attribute region
and value westcentral. And captures the application operations. Also, if there are other
operations marked with a different attribute value, they will be extracted.

TRANLOGOPTIONS EXCLUDEFILTERATTRIBUTE region=westcentral
Filtered sample message:

{ "_id" : ObjectId("65544aa60b0a066d021ba508"), "CUST_CODE" : "test65", "name" :
"hello world", "cost" : 3000, "region":"westcentral"}
Extracted sample message:

 { "_id" : ObjectId("1881aa60bMKA66d021b1938"), "CUST_CODE" : "test38",
"name" : "hello world", "cost" : 2000 }

**

Chapter 8
Source

8-59

Note:

From version 23.4 onwards, the extract parameter FILTERATTRIBUTE is renamed to
EXCLUDEFILTERATTRIBUTE, the parameters GETREPLICATES/IGNOREREPLICATE and
GETAPPLOPS/IGNOREAPPLOPS are deprecated. Usage of these parameters results in
abend of the extract process.

8.1.8.8.4 Troubleshooting

1. In bidirectional replication, If no before image is available for the delete document then
abend the process and error out.
Sample error

MONGODB-000XX No before image is available for collection [<collection
name>] with the document [<document>].

2. If MongoDB version used is less than 6, then MONGODB-000XX MongoDB version should be
6 or greater to support bi-directional replication.

8.1.8.9 Mongo DB Configuration Reference
The following properties are used with MongoDB change data capture.

Chapter 8
Source

8-60

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

OGGSOURCE
<source>

Requ
ired

GLOBA
LS file

N

o

t

e

:

S
t
a
r
t
i
n
g
f
r
o
m
O
r
a
c
l
e
G
o
l
d
e
n
G
a
t
e
f
o
r
D
i
s
t
r
i
b
u
t

None The source database for CDC capture or database
queries. The valid value is MONGODB.

Chapter 8
Source

8-61

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

e
d
A
p
p
l
i
c
a
t
i
o
n
s
a
n
d
A
n
a
l
y
t
i
c
s
(
G
G
f
o
r
D
A
A
)
r
e
l
e
a
s
e
2
3
.
4
.
0
.
0
.

Chapter 8
Source

8-62

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

0
,
t
h
i
s
p
a
r
a
m
e
t
e
r
w
i
l
l
b
e
d
e
p
r
e
c
a
t
e
d
.

JVMOPTIONS
[CLASSPATH
<classpath> |
BOOTOPTIONS
<options>]

Optio
nal

Extract
Paramet
er file

None CLASSPATH: The classpath for the Java Virtual
Machine. You can include an asterisk (*) wildcard to
match all JAR files in any directory. Multiple paths
should be delimited with a colon (:) character.
BOOTOPTIONS: The boot options for the Java Virtual
Machine. Multiple options are delimited by a space
character.

Chapter 8
Source

8-63

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

JVMBOOTOPTIONS
jvm_options

Optio
nal

GLOBA
LS file

N

o

t

e

:

S
t
a
r
t
i
n
g
f
r
o
m
G
G
f
o
r
D
A
A
r
e
l
e
a
s
e
2
3
.
4
.
0
.
0
.
0
,
t
h

None The boot options for the Java Virtual Machine. Multiple
options are delimited by a space character.

Chapter 8
Source

8-64

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

i
s
p
a
r
a
m
e
t
e
r
w
i
l
l
b
e
d
e
p
r
e
c
a
t
e
d
.

Chapter 8
Source

8-65

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

JVMCLASSPATH
<classpath>

Requ
ired

GLOBA
LS file

N

o

t

e

:

S
t
a
r
t
i
n
g
f
r
o
m
G
G
f
o
r
D
A
A
r
e
l
e
a
s
e
2
3
.
.
0
,
0
.
0
.
0
,
t

None The classpath for the Java Virtual Machine. You can
include an asterisk (*) wildcard to match all JAR files
in any directory. Multiple paths should be delimited
with a colon (:) character. Example:

JVMCLASSPATH
ggjava/ggjava.jar:/path/to/
mongodb_client_dependencyjars/*

Chapter 8
Source

8-66

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

h
i
s
p
a
r
a
m
e
t
e
r
w
i
l
l
b
e
d
e
p
r
e
c
a
t
e
d
.

SOURCEDB
USERIDALIAS
<alias name>

Requ
ired

Extract
paramet
er
(.prm)
file

None This parameter is used by the extract process for
authentication in to the source MongoDB database.
The alias name refers to the alias that should exist in
Oracle Wallet. See Security and Authentication.

ABEND_ON_DDL Optio
nal

CDC
Extract
paramet
er
(.prm)
file

None This is a default behaviour of MongoDB Capture
extract. On detection of CREATE collection, RENAME
collection, and DROP collection, extract process will be
abended.

NO_ABEND_ON_DDL Optio
nal

CDC
Extract
paramet
er
(.prm)
file

None On detection of CREATE collection, RENAME collection,
and DROP collection, extract process skips these
operations and continue processing the next
operation.

Chapter 8
Source

8-67

Properties Req
uire
d/
Opti
onal

Locatio
n

Default Explanation

ABEND_ON_DROP_DA
TABASE

Optio
nal

CDC
Extract
paramet
er
(.prm)
file

None This is a default behaviour of MongoDB Capture
extract. On detection of Drop Database operation,
extract process will be abended.

NO_ABEND_ON_DROP
_DATABASE

Optio
nal

CDC
Extract
paramet
er
(.prm)
file.

None On detection of Drop Database operation, extract
process will skip these operations and continue
processing the next operation.

BINARY_JSON_FORM
AT

Optio
nal

prm None When configured BINARY_JSON_FORMAT, MongoDB
Capture process represents documents in BSON
format, and using BINARY_JSON_FORMAT is more
performance efficient. If BINARY_JSON_FORMAT is not
specified, then documents are represented in
Extended JSON format which is human-readable and
less performance efficient compared to using
BINARY_JSON_FORMAT.

When using BINARY_JSON_FORMAT - in the generated
trail file, the column metadata has data_type as 64,
sub_data_type as 4, and Remarks as JSON.

When BINARY_JSON_FORMAT is not specified - in the
generated trail file, the column metadata has
data_type as 64, sub_data_type as 0, and Remarks
as JSON.

For more information, see Table Metadata.

TRANLOGOPTIONS
FETCHPARTIALJSON

Optio
nal

CDC
Extract
paramet
er
(.prm)
file

None On configuring tranlogoptions FETCHPARTIALJSON,
the extract process does a DB lookup and fetches the
full document for the given update operation. See
MongoDB Bidirectional Replication.

Table Metadata

When BINARY_JSON_FORMAT is configured, the column metadata should have data_type as 64,
sub_data_type as 4, and JSON as the Remarks.

Example:

2021/11/11 06:45:06.311.849 Metadata Len 143 RBA 1533
Table Name: MYTEST.TEST
*
 1)Name 2)Data Type 3)External Length 4)Fetch Offset
5)Scale 6)Level
 7)Null 8)Bump if Odd 9)Internal Length 10)Binary Length 11)Table
Length 12)Most Sig DT
13)Least Sig DT 14)High Precision 15)Low Precision 16)Elementary Item
17)Occurs 18)Key Column
19)Sub DataType 20)Native DataType 21)Character Set 22)Character Length 23)LOB

Chapter 8
Source

8-68

Type 24)Partial Type
25)Remarks
*
TDR version: 11
Definition for table MYTEST.TEST
Record Length: 16010
Columns: 2
id 64 8000 0 0 0 0 0 8000 8000 0 0 0 0 0 1 0 1 4
-4 -1 0 0 0 JSON
payload 64 8000 8005 0 0 1 0 8000 8000 0 0 0 0 0 1 0 0 4
-4 -1 0 1 0 JSON
End of definition
s

When BINARY_JSON_FORMAT is not configured, the column metadata should have data_type as
64, sub_data_type as 0, and JSON as the Remarks.

Example

2021/11/11 06:45:06.311.849 Metadata Len 143 RBA 1533
Table Name: MYTEST.TEST
*
 1)Name 2)Data Type 3)External Length 4)Fetch Offset
5)Scale 6)Level
 7)Null 8)Bump if Odd 9)Internal Length 10)Binary Length 11)Table
Length 12)Most Sig DT
13)Least Sig DT 14)High Precision 15)Low Precision 16)Elementary Item
17)Occurs 18)Key Column
19)Sub DataType 20)Native DataType 21)Character Set 22)Character Length 23)LOB
Type 24)Partial Type
25)Remarks
*
TDR version: 11
Definition for table MYTEST.TEST
Record Length: 16010
Columns: 2
id 64 8000 0 0 0 0 0 8000 8000 0 0 0 0 0 1 0 1 0
-4 -1 0 0 0 JSON
payload 64 8000 8005 0 0 1 0 8000 8000 0 0 0 0 0 1 0 0 0
-4 -1 0 1 0 JSON
End of definition

8.1.8.10 Columns in Trail File

Each trail records will have two columns:

• Column 0 as ‘_id’, which identifies a document in a collection.

• Column 1 as ‘payload’, which holds all the columns (fields of a collection).

Based on property BINARY_JSON_FORMAT, columns are presented as a BSON format or
Extended JSON format. When BINARY_JSON_FORMAT is configured, the captured documents are
represented in the BSON format as follows.

2021/10/26 06:21:33.000.000 Insert Len 329 RBA 1921
Name: MYTEST.TEST (TDR Index: 1)
After Image: Partition x0c G s
 0000 1a00 0000 1600 1600 0000 075f 6964 0061 7800 |ax.
 ddc2 d894 d2f5 fca4 9e00 0100 2701 0000 2301 2301 |'...#.#.
 0000 075f 6964 0061 7800 ddc2 d894 d2f5 fca4 9e02 | ..._id.ax...........
 4355 5354 5f43 4f44 4500 0500 0000 7361 6162 0002 | CUST_CODE.....saab..
 6e61 6d65 0005 0000 006a 6f68 6e00 026c 6173 746e | name.....john..lastn

Chapter 8
Source

8-69

 616d 6500 0500 0000 7769 6c6c 0003 6164 6472 6573 | ame.....will..addres
 7365 7300 8300 0000 0373 7472 6565 7464 6574 6169 | ses......streetdetai
Column 0 (0x0000), Length 26 (0x001a) id.
 0000 1600 1600 0000 075f 6964 0061 7800 ddc2 d894 |ax.....
 d2f5 fca4 9e00 |
Column 1 (0x0001), Length 295 (0x0127) payload.
 0000 2301 2301 0000 075f 6964 0061 7800 ddc2 d894 | ..#.#.....ax.....
 d2f5 fca4 9e02 4355 5354 5f43 4f44 4500 0500 0000 |CUST_CODE.....
 7361 6162 0002 6e61 6d65 0005 0000 006a 6f68 6e00 | saab..name.....john.
 026c 6173 746e 616d 6500 0500 0000 7769 6c6c 0003 | .lastname.....will..
 6164 6472 6573 7365 7300 8300 0000 0373 7472 6565 | addresses......stree
 7464 6574 6169 6c73 006f 0000 0003 6172 6561 0020 | tdetails.o....area.
 0000 0003 5374 7265 6574 0013 0000 0001 6c61 6e65 |Street......lane
 0000 0000 0000 005e 4000 0003 666c 6174 6465 7461 |^@...flatdeta
 696c 7300 3700 0000 0166 6c61 746e 6f00 0000 0000 | ils.7....flatno.....
 0040 6940 0270 6c6f 746e 6f00 0300 0000 3262 0002 | .@i@.plotno.....2b..
 6c61 6e65 0009 0000 0032 6e64 7068 6173 6500 0000 | lane.....2ndphase...
 0003 7072 6f76 6973 696f 6e00 3000 0000 0373 7461 | ..provision.0....sta
 7465 0024 0000 0003 6b61 001b 0000 0002 6b61 726e | te.$....ka......karn
 6174 616b 6100 0700 0000 3537 3031 3032 0000 0000 | ataka.....570102....
 0263 6974 7900 0400 0000 626c 7200 00 | .city.....blr..

When BINARY_JSON_FORMAT is not configured, the captured documents are represented in the
JSON format as follows:

 2021/10/01 01:09:35.000.000 Insert Len 366 RBA 1711
Name: MYTEST.testarr (TDR Index: 1)
After Image: Partition x0c G s
 0000 2700 0000 2300 7b22 246f 6964 223a 2236 3135 | ..'...#.{"$oid":"615
 3663 3233 6633 3466 3061 3965 3661 3735 3536 3930 | 6c23f34f0a9e6a755690
 6422 7d01 003f 0100 003b 017b 225f 6964 223a 207b | d"}..?...;.{"_id": {
 2224 6f69 6422 3a20 2236 3135 3663 3233 6633 3466 | "$oid": "6156c23f34f
 3061 3965 3661 3735 3536 3930 6422 7d2c 2022 4355 | 0a9e6a755690d"}, "CU
 5354 5f43 4f44 4522 3a20 2265 6d70 3122 2c20 226e | ST_CODE": "emp1", "n
 616d 6522 3a20 226a 6f68 6e22 2c20 226c 6173 746e | ame": "john", "lastn
Column 0 (0x0000), Length 39 (0x0027).
 0000 2300 7b22 246f 6964 223a 2236 3135 3663 3233 | ..#.{"$oid":"6156c23
 6633 3466 3061 3965 3661 3735 3536 3930 6422 7d | f34f0a9e6a755690d"}
Column 1 (0x0001), Length 319 (0x013f).
 0000 3b01 7b22 5f69 6422 3a20 7b22 246f 6964 223a | ..;.{"_id": {"$oid":
 2022 3631 3536 6332 3366 3334 6630 6139 6536 6137 | "6156c23f34f0a9e6a7
 3535 3639 3064 227d 2c20 2243 5553 545f 434f 4445 | 55690d"}, "CUST_CODE
 223a 2022 656d 7031 222c 2022 6e61 6d65 223a 2022 | ": "emp1", "name": "
 6a6f 686e 222c 2022 6c61 7374 6e61 6d65 223a 2022 | john", "lastname": "
 7769 6c6c 222c 2022 6164 6472 6573 7365 7322 3a20 | will", "addresses":
 7b22 7374 7265 6574 6465 7461 696c 7322 3a20 7b22 | {"streetdetails": {"
 6172 6561 223a 207b 2253 7472 6565 7422 3a20 7b22 | area": {"Street": {"
 6c61 6e65 223a 2031 3230 2e30 7d7d 2c20 2266 6c61 | lane": 120.0}}, "fla
 7464 6574 6169 6c73 223a 207b 2266 6c61 746e 6f22 | tdetails": {"flatno"
 3a20 3230 322e 302c 2022 706c 6f74 6e6f 223a 2022 | : 202.0, "plotno": "
 3262 222c 2022 6c61 6e65 223a 2022 326e 6470 6861 | 2b", "lane": "2ndpha
 7365 227d 7d7d 2c20 2270 726f 7669 7369 6f6e 223a | se"}}}, "provision":
 207b 2273 7461 7465 223a 207b 226b 6122 3a20 7b22 | {"state": {"ka": {"
 6b61 726e 6174 616b 6122 3a20 2235 3730 3130 3222 | karnataka": "570102"
 7d7d 7d2c 2022 6369 7479 223a 2022 626c 7222 7d | }}}, "city": "blr"}

8.1.8.11 Update Operation Behavior

MongoDB Capture extract reads change records from the capped collection oplog.rs. For
Update operations, the collection contains information on the modified fields only. Thus the

Chapter 8
Source

8-70

MongoDB Capture extract will write only the modified fields in trail on Update operation as
MongoDB native $set and $unset documents.

Example trail record:

2022/02/22 01:26:52.000.000 FieldComp Len 243 RBA 1711
Name: lobt.MNGUPSRT (TDR Index: 1)
Min. Replicat version: 21.5, Min. GENERIC version: 0.0, Incompatible Replicat: Abend
Column 0 (0x0000), Length 55 (0x0037) id.
 0000 3300 7b20 225f 6964 2220 3a20 7b20 2224 6f69 | ..3.{ "_id" : { "$oi
 6422 203a 2022 3632 3133 3633 3064 3931 3561 6631 | d" : "6213630d915af1
 3633 3265 6264 6461 3766 2220 7d20 7d | 632ebdda7f" } }
Column 1 (0x0001), Length 180 (0x00b4) payload.
 0000 b000 7b22 2476 223a 207b 2224 6e75 6d62 6572 |{"$v": {"$number
 496e 7422 3a20 2231 227d 2c20 2224 7365 7422 3a20 | Int": "1"}, "$set":
 7b22 6c61 7374 4d6f 6469 6669 6564 223a 207b 2224 | {"lastModified": {"$
 6461 7465 223a 207b 2224 6e75 6d62 6572 4c6f 6e67 | date": {"$numberLong
 223a 2022 3136 3435 3532 3230 3132 3238 3522 7d7d | ": "1645522012285"}}
 2c20 2273 697a 652e 756f 6d22 3a20 2263 6d22 2c20 | , "size.uom": "cm",
 2273 7461 7475 7322 3a20 2250 227d 2c20 225f 6964 | "status": "P"}, "_id
 223a 207b 2224 6f69 6422 3a20 2236 3231 3336 3330 | ": {"$oid": "6213630
 6439 3135 6166 3136 3332 6562 6464 6137 6622 7d7d | d915af1632ebdda7f"}}

GGS tokens:
TokenID x50 'P' COLPROPERTY Info x01 Length 6
 Column: 1, Property: 0x02, Remarks: Partial
TokenID x74 't' ORATAG Info x01 Length 0
TokenID x4c 'L' LOGCSN Info x00 Length 20
 3037 3036 3734 3633 3232 3633 3838 3131 3935 3533 | 07067463226388119553
TokenID x36 '6' TRANID Info x00 Length 19
 3730 3637 3436 3332 3236 3338 3831 3139 3535 33 | 7067463226388119553

Here The GGS token x50 with Remarks as Partial indicates that this record is a partial record.

On configuring tranlogoptions FETCHPARTIALJSON, the extract process does a database lookup
and fetches the full document for the given update operation.

Example

2022/02/22 01:26:59.000.000 FieldComp Len 377 RBA 2564
Name: lobt.MNGUPSRT (TDR Index: 1)
Column 0 (0x0000), Length 55 (0x0037) id.
 0000 3300 7b20 225f 6964 2220 3a20 7b20 2224 6f69 | ..3.{ "_id" : { "$oi
 6422 203a 2022 3632 3133 3633 3064 3931 3561 6631 | d" : "6213630d915af1
 3633 3265 6264 6461 3764 2220 7d20 7d | 632ebdda7d" } }
Column 1 (0x0001), Length 314 (0x013a) payload.
 0000 3601 7b20 225f 6964 2220 3a20 7b20 2224 6f69 | ..6.{ "_id" : { "$oi
 6422 203a 2022 3632 3133 3633 3064 3931 3561 6631 | d" : "6213630d915af1
 3633 3265 6264 6461 3764 2220 7d2c 2022 6974 656d | 632ebdda7d" }, "item
 2220 3a20 226d 6f75 7365 7061 6422 2c20 2271 7479 | " : "mousepad", "qty
 2220 3a20 7b20 2224 6e75 6d62 6572 446f 7562 6c65 | " : { "$numberDouble
 2220 3a20 2232 352e 3022 207d 2c20 2273 697a 6522 | " : "25.0" }, "size"
 203a 207b 2022 6822 203a 207b 2022 246e 756d 6265 | : { "h" : { "$numbe
 7244 6f75 626c 6522 203a 2022 3139 2e30 2220 7d2c | rDouble" : "19.0" },
 2022 7722 203a 207b 2022 246e 756d 6265 7244 6f75 | "w" : { "$numberDou
 626c 6522 203a 2022 3232 2e38 3530 3030 3030 3030 | ble" : "22.850000000
 3030 3030 3031 3432 3122 207d 2c20 2275 6f6d 2220 | 000001421" }, "uom"
 3a20 2269 6e22 207d 2c20 2273 7461 7475 7322 203a | : "in" }, "status" :
 2022 5022 2c20 226c 6173 744d 6f64 6966 6965 6422 | "P", "lastModified"
 203a 207b 2022 2464 6174 6522 203a 207b 2022 246e | : { "$date" : { "$n
 756d 6265 724c 6f6e 6722 203a 2022 3136 3435 3532 | umberLong" : "164552
 3230 3139 3936 3122 207d 207d 207d | 2019961" } } }

Chapter 8
Source

8-71

GGS tokens:
TokenID x46 'F' FETCHEDDATA Info x01 Length 1
6 | Current by key
TokenID x4c 'L' LOGCSN Info x00 Length 20
 3037 3036 3734 3633 3235 3634 3532 3839 3036 3236 | 07067463256452890626
TokenID x36 '6' TRANID Info x00 Length 19
 3730 3637 3436 3332 3536 3435 3238 3930 3632 36 | 7067463256452890626

Here The GGS token x46 FETCHEDDATA indicates that this record is full image for the update
operation.

8.1.8.12 Oplog Size Recommendations
By default, MongoDB uses 5% of disk space as oplog size.

Oplog should be long enough to hold all transactions for the longest downtime you expect on a
secondary. At a minimum, an oplog should be able to hold minimum 72 hours of operations or
even a week’s work of operations.

Before mongod creates an oplog, you can specify its size with the --oplogSize option.

After you have started a replica set member for the first time, use the replSetResizeOplog
administrative command to change the oplog size. replSetResizeOplog enables you to resize
the oplog dynamically without restarting the mongod process.

Workloads Requiring Larger Oplog Size

If you can predict your replica set's workload to resemble one of the following patterns, then
you might want to create an oplog that is larger than the default. Conversely, if your application
predominantly performs reads with a minimal amount of write operations, a smaller oplog may
be sufficient.

The following workloads might require a larger oplog size.

Updates to Multiple Documents at Once

The oplog must translate multi-updates into individual operations in order to maintain
idempotency. This can use a great deal of oplog space without a corresponding increase in
data size or disk use.

Deletions Equal the Same Amount of Data as Inserts

If you delete roughly the same amount of data as you insert, then the database doesn't grow
significantly in disk use, but the size of the operation log can be quite large.

Significant Number of In-Place Updates

If a significant portion of the workload is updates that do not increase the size of the
documents, then the database records a large number of operations but does not change the
quantity of data on disk.

8.1.8.13 Troubleshooting
• Error : com.mongodb.MongoQueryException: Query failed with error code 11600

and error message 'interrupted at shutdown' on server localhost:27018.
The MongoDB server is killed or closed. Restart the Mongod instances and MongoDB
capture.

• Error: java.lang.IllegalStateException: state should be: open.

Chapter 8
Source

8-72

The active session is closed due to the session's idle time-out value getting exceeded.
Increase the mongod instance's logicalSessionTimeoutMinutes paramater value and
restart the Mongod instances and MongoDB capture.

• Error:Exception in thread "main" com.mongodb.MongoQueryException: Query
failed with error code 136 and error message 'CollectionScan died due to position in
capped collection being deleted. Last seen record id:
RecordId(6850088381712443337)' on server localhost:27018 at
com.mongodb.internal.operation.QueryHelper.translateCommandException(QueryH
elper.java:29)
This Exception happens when we have Fast writes to mongod and insufficient oplog size.
See Oplog Size Recommendations.

• Error: not authorized on DB to execute command
This error occurs due to insufficient privileges for the user. The user must be authenticated
to run the specified command.

• Error: com.mongodb.MongoClientException: Sessions are not supported by the
MongoDB cluster to which this client is connected.
Ensure that the Replica Set is available and accessible. In case of MongoDB instance
migration from a different version, set the property FeatureCompatibilityVersion as
follows:

db.adminCommand({ setFeatureCompatibilityVersion: "3.6" }){_}

8.1.8.14 MongoDB Capture Client Dependencies
What are the dependencies for the MongoDB Capture to connect to MongoDB databases?

Oracle GoldenGate requires that you use the 5.x MongoDB reactive streams or higher
integration with MongoDB. You can download this driver from: https://search.maven.org/
artifact/org.mongodb/mongodb-driver-reactivestream

• MongoDB Capture Client Dependencies: Reactive Streams Java Driver 4.4.1

• MongoDB Reactive Streams Java Driver 4.4.1

8.1.8.14.1 MongoDB Capture Client Dependencies: Reactive Streams Java Driver 4.4.1

The required dependent client libraries are: bson.jar, mongodb-driver-core.jar, mongodb-
driver-reactivestreams.jar, and reactive-streams.jar and reactor-core.jar
You must include the path to the MongoDB reactivestreams Java driver in the gg.classpath
property. To automatically download the Java driver from the Maven central repository, add the
following Maven coordinates of these third party libraries that are needed to run MongoDB
Change Data Capture in the pom.xml file:

<dependency>
 <groupId>org.mongodb</groupId>
 <artifactId>mongodb-driver-reactivestreams</artifactId>
 <version>4.4.1</version>
</dependency>
<dependency>
 <groupId>org.mongodb</groupId>
 <artifactId>bson</artifactId>
 <version>4.4.1</version>
</dependency>
<dependency>

Chapter 8
Source

8-73

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/big-data/21.1/gadbd&id=mongo-java
https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/big-data/21.1/gadbd&id=mongo-java

 <groupId>org.mongodb</groupId>
 <artifactId>mongodb-driver-core</artifactId>
 <version>4.4.1</version>
</dependency>
<dependency>
 <groupId>org.reactivestreams</groupId>
 <artifactId>reactive-streams</artifactId>
 <version>1.0.3</version>
</dependency>

<dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-core</artifactId>
</dependency>

Example

Download version 4.4.1 from Maven central at: https://mvnrepository.com/artifact/org.mongodb/
mongodb-driver-reactivestreams.

8.1.8.14.2 MongoDB Reactive Streams Java Driver 4.4.1
You must include the path to the MongoDB reactivestreams Java driver in the gg.classpath
property. To automatically download the Java driver from the Maven central repository, add the
following lines in the pom.xml file, substituting your correct information:

<!-- https://search.maven.org/artifact/org.mongodb/mongodb-driver-reactivestreams -->
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>mongodb-driver-reactivestreams</artifactId>
<version>4.4.1</version>
</dependency>

<dependency>
<groupId>org.mongodb</groupId>
<artifactId>bson</artifactId>
<version>4.4.1</version>
</dependency>

<dependency>
<groupId>org.mongodb</groupId>
<artifactId>mongodb-driver-core</artifactId>
<version>4.4.1</version>
</dependency>

<dependency>
<groupId>org.reactivestreams</groupId>
<artifactId>reactive-streams</artifactId>
<version>1.0.3</version>
</dependency>

<dependency>
<groupId>io.projectreactor</groupId>
<artifactId>reactor-core</artifactId>
</dependency>

Chapter 8
Source

8-74

https://mvnrepository.com/artifact/org.mongodb/mongodb-driver-reactivestreams
https://mvnrepository.com/artifact/org.mongodb/mongodb-driver-reactivestreams

8.1.9 OCI Streaming
To capture messages from OCI Streaming and parse into logical change records with Oracle
GoldenGate for Distributed Applications and Analytics (GG for DAA), you can use Kafka
Extract. For more information, see Apache Kafka as source.

8.2 Target
GoldenGate for Distributed Applications and Analytics (GG for DAA) supports the following
technologies as source. GG for DAA change data replication is managed by a replicat process.
About Replicat
Replicat is a process that delivers data to a target system. It reads the source trail file,
reconstructs the DML or DDL operations, and applies them to the target system.

For the following two common uses cases of GG for DAA, the function of the Replicat process
is as follows:

• Initial Loads: When you set up GG for DAA for initial loads, the Replicat process applies a
static data copy to target objects or routes the data to a high-speed bulk-load utility

• Change Synchronization: When you set up GG for DAA to keep the target system
synchronized with the source, the Replicat process applies the source operations to the
target objects.

You can configure multiple Replicat processes with one or more Extract processes to increase
the throughput. To preserve data integrity, each set of processes handles a different set of
objects. To differentiate among Replicat processes, you assign each one a group name.

• Amazon Kinesis
The Kinesis Streams Handler streams data to applications hosted on the Amazon Cloud or
in your environment.

• Amazon MSK

• Amazon Redshift
Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud.
The purpose of the Redshift Event Handler is to apply operations into Redshift tables.

• Amazon S3
Learn how to use the S3 Event Handler, which provides the interface to Amazon S3 web
services.

• Apache Cassandra
The Cassandra Handler provides the interface to Apache Cassandra databases.

• Apache HBase
The HBase Handler is used to populate HBase tables from existing Oracle GoldenGate
supported sources.

• Apache HDFS
The HDFS Handler is designed to stream change capture data into the Hadoop Distributed
File System (HDFS).

• Apache Kafka
The Kafka Handler is designed to stream change capture data from an Oracle GoldenGate
trail to a Kafka topic.

• Apache Hive

• Azure Blob Storage

Chapter 8
Target

8-75

• Azure Data Lake Storage

• Azure Event Hubs
Kafka handler supports connectivity to Microsoft Azure Event Hubs.

• Azure Synapse Analytics Data Warehouse
Microsoft Azure Synapse Analytics is a limitless analytics service that brings together data
integration, enterprise data warehousing and Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) analytics.

• Confluent Kafka

• DataStax

• Elasticsearch

• Flat Files

• Google BigQuery

• Google Cloud Storage

• Java Message Service (JMS)
The Java Message Service (JMS) Handler allows operations from a trail file to be
formatted in messages, and then published to JMS providers like Oracle Weblogic Server,
Websphere, and ActiveMQ.

• Java Database Connectivity
Learn how to use the Java Database Connectivity (JDBC) Handler, which can replicate
source transactional data to a target or database.

• Map(R)

• MongoDB
Learn how to use the MongoDB Handler, which can replicate transactional data from
Oracle GoldenGate to a target MongoDB and Autonomous JSON databases (AJD and
ATP) .

• Netezza

• OCI Streaming
Oracle Cloud Infrastructure Streaming (OCI Streaming) supports putting messages to and
receiving messages using the Kafka client. Therefore, Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) can be used to publish change data capture
operation messages to OCI Streaming.

• Oracle NoSQL
The Oracle NoSQL Handler can replicate transactional data from Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) to a target Oracle NoSQL Database.

• OCI Autonomous Data Warehouse
Oracle Autonomous Data Warehouse (ADW) is a fully managed database tuned and
optimized for data warehouse workloads with the market-leading performance of Oracle
Database.

• Oracle Cloud Infrastructure Object Storage
The Oracle Cloud Infrastructure Event Handler is used to load files generated by the File
Writer Handler into an Oracle Cloud Infrastructure Object Store.

• Redis
Redis is an in-memory data structure store which supports optional durability. Redis is
simply a key/value data store where a unique key identifies the data structure stored. The
value is the data structure that is stored.

• Snowflake

Chapter 8
Target

8-76

• Additional Details

8.2.1 Amazon Kinesis
The Kinesis Streams Handler streams data to applications hosted on the Amazon Cloud or in
your environment.

This chapter describes how to use the Kinesis Streams Handler.

• Overview

• Detailed Functionality

• Setting Up and Running the Kinesis Streams Handler

• Kinesis Handler Performance Considerations

• Troubleshooting

8.2.1.1 Overview
Amazon Kinesis is a messaging system that is hosted in the Amazon Cloud. Kinesis streams
can be used to stream data to other Amazon Cloud applications such as Amazon S3 and
Amazon Redshift. Using the Kinesis Streams Handler, you can also stream data to applications
hosted on the Amazon Cloud or at your site. Amazon Kinesis streams provides functionality
similar to Apache Kafka.

The logical concepts map is as follows:

• Kafka Topics = Kinesis Streams

• Kafka Partitions = Kinesis Shards

A Kinesis stream must have at least one shard.

8.2.1.2 Detailed Functionality
• Amazon Kinesis Java SDK

• Kinesis Streams Input Limits

8.2.1.2.1 Amazon Kinesis Java SDK
The Oracle GoldenGate Kinesis Streams Handler uses the AWS Kinesis Java SDK to push
data to Amazon Kinesis, see Amazon Kinesis Streams Developer Guide at:

http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html.

The Kinesis Steams Handler was designed and tested with the latest AWS Kinesis Java SDK
version 2.28.11. These are the dependencies:

• Group ID: software.amazon.awssdk
• Artifact ID: kinesis
• Version: 2.28.11
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) does not ship with
the AWS Kinesis Java SDK. Oracle recommends that you use the AWS Kinesis Java SDK
identified in the Certification Matrix, see GoldenGate Certifications.

Chapter 8
Target

8-77

http://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html
https://www.oracle.com/in/integration/goldengate/certifications/

Note:

It is assumed by moving to the latest AWS Kinesis Java SDK that there are no
changes to the interface, which can break compatibility with the Kinesis Streams
Handler.

You can download the AWS Java SDK, including Kinesis from:

https://aws.amazon.com/sdk-for-java/

8.2.1.2.2 Kinesis Streams Input Limits
The upper input limit for a Kinesis stream with a single shard is 1000 messages per second up
to a total data size of 1MB per second. Adding streams or shards can increase the potential
throughput such as the following:

• 1 stream with 2 shards = 2000 messages per second up to a total data size of 2MB per
second

• 3 streams of 1 shard each = 3000 messages per second up to a total data size of 3MB per
second

The scaling that you can achieve with the Kinesis Streams Handler depends on how you
configure the handler. Kinesis stream names are resolved at runtime based on the
configuration of the Kinesis Streams Handler.

Shards are selected by the hash the partition key. The partition key for a Kinesis message
cannot be null or an empty string (""). A null or empty string partition key results in a Kinesis
error that results in an abend of the Replicat process.

Maximizing throughput requires that the Kinesis Streams Handler configuration evenly
distributes messages across streams and shards.

To achieve the best distribution across shards in a Kinesis stream, select a partitioning key
which rapidly changes. You can select ${primaryKeys} as it is unique per row in the source
database. Additionally, operations for the same row are sent to the same Kinesis stream and
shard. When the DEBUG logging is enabled, the Kinesis stream name, sequence number, and
the shard number are logged to the log file for successfully sent messages.

8.2.1.3 Setting Up and Running the Kinesis Streams Handler
Instructions for configuring the Kinesis Streams Handler components and running the handler
are described in the following sections.

Use the following steps to set up the Kinesis Streams Handler:

1. Create an Amazon AWS account at https://aws.amazon.com/.

2. Log into Amazon AWS.

3. From the main page, select Kinesis (under the Analytics subsection).

4. Select Amazon Kinesis Streams Go to Streams to create Amazon Kinesis streams and
shards within streams.

5. Create a client ID and secret to access Kinesis.
The Kinesis Streams Handler requires these credentials at runtime to successfully connect
to Kinesis.

6. Create the client ID and secret:

Chapter 8
Target

8-78

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/

a. Select your name in AWS (upper right), and then in the list select My Security
Credentials.

b. Select Access Keys to create and manage access keys.
Note your client ID and secret upon creation.

The client ID and secret can only be accessed upon creation. If lost, you have to
delete the access key, and then recreate it.

• Set the Classpath in Kinesis Streams Handler

• Kinesis Streams Handler Configuration

• Using Templates to Resolve the Stream Name and Partition Name

• Resolving AWS Credentials

• Configuring the Proxy Server for Kinesis Streams Handler

• Configuring Security in Kinesis Streams Handler

8.2.1.3.1 Set the Classpath in Kinesis Streams Handler
You must configure the gg.classpath property in the Java Adapter properties file to specify the
JARs for the AWS Kinesis Java SDK as follows:

gg.classpath= {download_dir}/aws-java-sdk-2.28.11/lib/*:{download_dir} /aws-java-
sdk-2.28.11/third-party/lib/*

8.2.1.3.2 Kinesis Streams Handler Configuration
You configure the Kinesis Streams Handler operation using the properties file. These
properties are located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the Kinesis Streams Handler, you must first configure the handler
type by specifying gg.handler.name.type=kinesis_streams and the other Kinesis Streams
properties as follows:

Table 8-2 Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.type

Required kinesis_streams None Selects the Kinesis
Streams Handler
for streaming
change data
capture into
Kinesis.

gg.handler.name
.mode

Optional op or tx op Choose the
operating mode.

gg.handler.name
.region

Required The Amazon region
name which is
hosting your
Kinesis instance.

None Setting of the
Amazon AWS
region name is
required.

Chapter 8
Target

8-79

Table 8-2 (Cont.) Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.proxyServer

Optional The host name of
the proxy server.

None Set the host name
of the proxy server
if connectivity to
AWS is required to
go through a proxy
server.

gg.handler.name
.proxyPort

Optional The port number of
the proxy server.

None Set the port name
of the proxy server
if connectivity to
AWS is required to
go through a proxy
server.

gg.handler.name
.proxyUsername

Optional The username of
the proxy server (if
credentials are
required).

None Set the username
of the proxy server
if connectivity to
AWS is required to
go through a proxy
server and the
proxy server
requires
credentials.

gg.handler.name
.proxyPassword

Optional The password of
the proxy server (if
credentials are
required).

None Set the password
of the proxy server
if connectivity to
AWS is required to
go through a proxy
server and the
proxy server
requires
credentials.

gg.handler.name
.deferFlushAtTx
Commit

Optional true | false false When set to false,
the Kinesis
Streams Handler
will flush data to
Kinesis at
transaction commit
for write durability.
However, it may be
preferable to defer
the flush beyond
the transaction
commit for
performance
purposes, see
Kinesis Handler
Performance
Considerations.

Chapter 8
Target

8-80

Table 8-2 (Cont.) Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.deferFlushOpCo
unt

Optional Integer None Only applicable if
gg.handler.name
.deferFlushAtTx
Commit is set to
true. This
parameter marks
the minimum
number of
operations that
must be received
before triggering a
flush to Kinesis.
Once this number
of operations are
received, a flush
will occur on the
next transaction
commit and all
outstanding
operations will be
moved from the
Kinesis Streams
Handler to AWS
Kinesis.

gg.handler.name
.formatPerOp

Optional true | false true When set to true,
it will send
messages to
Kinesis, once per
operation (insert,
delete, update).
When set to false,
operations
messages will be
concatenated for all
the operations and
a single message
will be sent at the
transaction level.
Kinesis has a
limitation of 1MB
max massage size.
If 1MB is exceeded
then transaction
level message will
be broken up into
multiple messages.

Chapter 8
Target

8-81

Table 8-2 (Cont.) Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.customMessageG
rouper

Optional oracle.goldenga
te.handler.kine
sis.KinesisJson
TxMessageGroupe
r

None This configuration
parameter provides
the ability to group
Kinesis messages
using custom logic.
Only one
implementation is
included in the
distribution at this
time. The
oracle.goldenga
te.handler.kine
sis.KinesisJson
TxMessageGroupe
ris a custom
message which
groups JSON
operation
messages
representing
operations into a
wrapper JSON
message that
encompasses the
transaction. Setting
of this value
overrides the
setting of the
gg.handler.form
atPerOp setting.
Using this feature
assumes that the
customer is using
the JSON formatter
(that is
gg.handler.name
.format=json).

gg.handler.name
.streamMappingT
emplate

Required A template string
value to resolve the
Kinesis message
partition key
(message key) at
runtime.

None See Using
Templates to
Resolve the Stream
Name and Partition
Name for more
information.

gg.handler.name
.partitionMappi
ngTemplate

Required A template string
value to resolve the
Kinesis message
partition key
(message key) at
runtime.

None See Using
Templates to
Resolve the Stream
Name and Partition
Name for more
information.

Chapter 8
Target

8-82

Table 8-2 (Cont.) Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.hander.name.
format

Required Any supported
pluggable
formatter.

delimitedtext |
json | json_row
| xml |
avro_row |
avro_opt

Selects the
operations
message formatter.
JSON is likely the
best fit for Kinesis.

gg.hander.name.
enableStreamCre
ation

Optional true true | false By default, the
Kinesis Handler
automatically
creates Kinesis
streams if they do
not already exist.
Set to false to
disable to
automatic creation
of Kinesis streams.

gg.hander.name.
shardCount

Optional Positive integer. 1 A Kinesis stream
contains one or
more shards.
Controls the
number of shards
on Kinesis streams
that the Kinesis
Handler creates.
Multiple shards can
help improve the
ingest performance
to a Kinesis stream.
Use only when
gg.handler.name
.enableStreamCr
eation is set to
true.

gg.hander.name.
proxyProtocol

Optional HTTP | HTTPS HTTP Sets the proxy
protocol connection
to the proxy server
for additional level
of security. The
client first performs
an SSL handshake
with the proxy
server, and then an
SSL handshake
with Amazon AWS.
This feature was
added into the
Amazon SDK in
version 1.11.396 so
you must use at
least that version to
use this property.

Chapter 8
Target

8-83

Table 8-2 (Cont.) Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.enableSTS

Optional true | false false Set to true, to
enable the Kinesis
Handler to access
Kinesis credentials
from the AWS
Security Token
Service. Ensure
that the AWS
Security Token
Service is enabled
if you set this
property to true.

gg.handler.name
.STSRegion

Optional Any legal AWS
region specifier.

The region is
obtained from the
gg.handler.name
.region property.

Use to resolve the
region for the STS
call. It's only valid if
the
gg.handler.name
.enableSTS
property is set to
true. You can set
a different AWS
region for resolving
credentials from
STS than the
configured Kinesis
region.

gg.handler.name
.kinesis.access
KeyId

Optional A valid AWS
access key.

None Set this parameter
to explicitly set the
access key for
AWS. This
parameter has no
effect if
gg.handler.name
.enableSTS is set
to true. If unset,
credentials
resolution falls back
to the AWS default
credentials provider
chain. Optionally,
you can configure
the session token
(gg.handler.kin
esis.sessionTok
en), which
indicates temporary
credentials. The
access key and
secret key MUST
be set for the
session token
configuration to be
valid.

Chapter 8
Target

8-84

Table 8-2 (Cont.) Kinesis Streams Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.kinesis.secret
Key

Optional A valid AWS secret
key.

None Set this parameter
to explicitly set the
secret key for AWS.
This parameter has
no effect if
gg.handler.name
.enableSTS is set
to true. If unset,
credentials
resolution falls back
to the AWS default
credentials provider
chain. Optionally,
you can configure
the session token
(gg.handler.kin
esis.sessionTok
en), which
indicates temporary
credentials. The
access key and
secret key MUST
be set for the
session token
configuration to be
valid.

8.2.1.3.3 Using Templates to Resolve the Stream Name and Partition Name
The Kinesis Streams Handler provides the functionality to resolve the stream name and the
partition key at runtime using a template configuration value. Templates allow you to configure
static values and keywords. Keywords are used to dynamically replace the keyword with the
context of the current processing. Templates are applicable to the following configuration
parameters:

gg.handler.name.streamMappingTemplate
gg.handler.name.partitionMappingTemplate

Source database transactions are made up of 1 or more individual operations which are the
individual inserts, updates, and deletes. The Kinesis Handler can be configured to send one
message per operation (insert, update, delete, Alternatively, it can be configured to group
operations into messages at the transaction level. Many of the template keywords resolve data
based on the context of an individual source database operation. Therefore, many of the
keywords do not work when sending messages at the transaction level. For example $
{fullyQualifiedTableName} does not work when sending messages at the transaction level.
The ${fullyQualifiedTableName} property resolves to the qualified source table name for an
operation. Transactions can contain multiple operations for many source tables. Resolving the
fully-qualified table name for messages at the transaction level is non-deterministic and so
abends at runtime.

For more information about the Template Keywords, see Template Keywords.

Chapter 8
Target

8-85

Example Templates

The following describes example template configuration values and the resolved values.

Example Template Resolved Value

${groupName}_${fullyQualifiedTableName} KINESIS001_DBO.TABLE1
prefix_${schemaName}_$
{tableName}_suffix

prefix_DBO_TABLE1_suffix

${currentTimestamp[yyyy-mm-dd
hh:MM:ss.SSS]}

2017-05-17 11:45:34.254

8.2.1.3.4 Resolving AWS Credentials

• AWS Kinesis Client Authentication
The Kinesis Handler is a client connection to the AWS Kinesis cloud service. The AWS
cloud must be able to successfully authenticate the AWS client in order in order to
successfully interface with Kinesis.

8.2.1.3.4.1 AWS Kinesis Client Authentication

The Kinesis Handler is a client connection to the AWS Kinesis cloud service. The AWS cloud
must be able to successfully authenticate the AWS client in order in order to successfully
interface with Kinesis.

The AWS client authentication has become increasingly complicated as more authentication
options have been added to the Kinesis Stream Handler. This topic explores the different use
cases for AWS client authentication.

• Explicit Configuration of the Client ID and Secret
A client ID and secret are generally the required credentials for the Kinesis Handler to
interact with Amazon Kinesis. A client ID and secret are generated using the Amazon AWS
website.

• Use of the AWS Default Credentials Provider Chain
If the gg.eventhandler.name.accessKeyId and gg.eventhandler.name.secretKey are
unset, then credentials resolution reverts to the AWS default credentials provider chain.
The AWS default credentials provider chain provides various ways by which the AWS
credentials can be resolved.

• AWS Federated Login
The use case is when you have your on-premise system login integrated with AWS. This
means that when you log into an on-premise machine, you are also logged into AWS.

8.2.1.3.4.1.1 Explicit Configuration of the Client ID and Secret
A client ID and secret are generally the required credentials for the Kinesis Handler to interact
with Amazon Kinesis. A client ID and secret are generated using the Amazon AWS website.

These credentials can be explicitly configured in the Java Adapter Properties file as follows:

gg.handler.name.accessKeyId=
gg.handler.name.secretKey=

Furthermore, the Oracle Wallet functionality can be used to encrypt these credentials.

8.2.1.3.4.1.2 Use of the AWS Default Credentials Provider Chain

Chapter 8
Target

8-86

If the gg.eventhandler.name.accessKeyId and gg.eventhandler.name.secretKey are unset,
then credentials resolution reverts to the AWS default credentials provider chain. The AWS
default credentials provider chain provides various ways by which the AWS credentials can be
resolved.

For more information about the default credential provider chain and order of operations for
AWS credentials resolution, see Working with AWS Credentials.
When Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) runs on an
AWS Elastic Compute Cloud (EC2) instance, the general use case is to resolve the credentials
from the EC2 metadata service. The AWS default credentials provider chain provides
resolution of credentials from the EC2 metadata service as one of the options.

8.2.1.3.4.1.3 AWS Federated Login
The use case is when you have your on-premise system login integrated with AWS. This
means that when you log into an on-premise machine, you are also logged into AWS.

In this use case:

• You may not want to generate client IDs and secrets. (Some users disable this feature in
the AWS portal).

• The client AWS applications need to interact with the AWS Security Token Service (STS)
to obtain an authentication token for programmatic calls made to Kinesis.

This feature is enabled by setting the following: gg.eventhandler.name.enableSTS=true.

8.2.1.3.5 Configuring the Proxy Server for Kinesis Streams Handler
Oracle GoldenGate can be used with a proxy server using the following parameters to enable
the proxy server:

gg.handler.name.proxyServer=
gg.handler.name.proxyPort=80
gg.handler.name.proxyUsername=username
gg.handler.name.proxyPassword=password

Sample configurations:

gg.handlerlist=kinesis
gg.handler.kinesis.type=kinesis_streams
gg.handler.kinesis.mode=op
gg.handler.kinesis.format=json
gg.handler.kinesis.region=us-west-2
gg.handler.kinesis.partitionMappingTemplate=TestPartitionName
gg.handler.kinesis.streamMappingTemplate=TestStream
gg.handler.kinesis.deferFlushAtTxCommit=true
gg.handler.kinesis.deferFlushOpCount=1000
gg.handler.kinesis.formatPerOp=true
#gg.handler.kinesis.customMessageGrouper=oracle.goldengate.handler.kinesis.Kin
esisJsonTxMessageGrouper
gg.handler.kinesis.proxyServer=www-proxy.myhost.com
gg.handler.kinesis.proxyPort=80

8.2.1.3.6 Configuring Security in Kinesis Streams Handler
The Amazon Web Services (AWS) Kinesis Java SDK uses HTTPS to communicate with
Kinesis. Mutual authentication is enabled. The AWS server passes a Certificate Authority (CA)
signed certificate to the AWS client which allow the client to authenticate the server. The AWS

Chapter 8
Target

8-87

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html

client passes credentials (client ID and secret) to the AWS server which allows the server to
authenticate the client.

8.2.1.4 Kinesis Handler Performance Considerations
• Kinesis Streams Input Limitations

• Transaction Batching

• Deferring Flush at Transaction Commit

8.2.1.4.1 Kinesis Streams Input Limitations
The maximum write rate to a Kinesis stream with a single shard to be 1000 messages per
second up to a maximum of 1MB of data per second. You can scale input to Kinesis by adding
additional Kinesis streams or adding shards to streams. Both adding streams and adding
shards can linearly increase the Kinesis input capacity and thereby improve performance of the
Oracle GoldenGate Kinesis Streams Handler.

Adding streams or shards can linearly increase the potential throughput such as follows:

• 1 stream with 2 shards = 2000 messages per second up to a total data size of 2MB per
second.

• 3 streams of 1 shard each = 3000 messages per second up to a total data size of 3MB per
second.

To fully take advantage of streams and shards, you must configure the Oracle GoldenGate
Kinesis Streams Handler to distribute messages as evenly as possible across streams and
shards.

Adding additional Kinesis streams or shards does nothing to scale Kinesis input if all data is
sent to using a static partition key into a single Kinesis stream. Kinesis streams are resolved at
runtime using the selected mapping methodology. For example, mapping the source table
name as the Kinesis stream name may provide good distribution of messages across Kinesis
streams if operations from the source trail file are evenly distributed across tables. Shards are
selected by a hash of the partition key. Partition keys are resolved at runtime using the
selected mapping methodology. Therefore, it is best to choose a mapping methodology to a
partition key that rapidly changes to ensure a good distribution of messages across shards.

8.2.1.4.2 Transaction Batching
The Oracle GoldenGate Kinesis Streams Handler receives messages and then batches
together messages by Kinesis stream before sending them via synchronous HTTPS calls to
Kinesis. At transaction commit all outstanding messages are flushed to Kinesis. The flush call
to Kinesis impacts performance. Therefore, deferring the flush call can dramatically improve
performance.

The recommended way to defer the flush call is to use the GROUPTRANSOPS configuration in the
replicat configuration. The GROUPTRANSOPS groups multiple small transactions into a single
larger transaction deferring the transaction commit call until the larger transaction is completed.
The GROUPTRANSOPS parameter works by counting the database operations (inserts, updates,
and deletes) and only commits the transaction group when the number of operations equals or
exceeds the GROUPTRANSOPS configuration setting. The default GROUPTRANSOPS setting for
replicat is 1000.

Interim flushes to Kinesis may be required with the GROUPTRANSOPS setting set to a large
amount. An individual call to send batch messages for a Kinesis stream cannot exceed 500

Chapter 8
Target

8-88

individual messages or 5MB. If the count of pending messages exceeds 500 messages or
5MB on a per stream basis then the Kinesis Handler is required to perform an interim flush.

8.2.1.4.3 Deferring Flush at Transaction Commit
The messages are by default flushed to Kinesis at transaction commit to ensure write
durability. However, it is possible to defer the flush beyond transaction commit. This is only
advisable when messages are being grouped and sent to Kinesis at the transaction level (that
is one transaction = one Kinesis message or chunked into a small number of Kinesis
messages), when the user is trying to capture the transaction as a single messaging unit.

This may require setting the GROUPTRANSOPS replication parameter to 1 so as not to group
multiple smaller transactions from the source trail file into a larger output transaction. This can
impact performance as only one or few messages are sent per transaction and then the
transaction commit call is invoked which in turn triggers the flush call to Kinesis.

In order to maintain good performance the Oracle GoldenGate Kinesis Streams Handler allows
the user to defer the Kinesis flush call beyond the transaction commit call. The Oracle
GoldenGate replicat process maintains the checkpoint in the .cpr file in the {GoldenGate
Home}/dirchk directory. The Java Adapter also maintains a checkpoint file in this directory
named .cpj. The Replicat checkpoint is moved beyond the checkpoint for which the Oracle
GoldenGate Kinesis Handler can guarantee message loss will not occur. However, in this
mode of operation the GoldenGate Kinesis Streams Handler maintains the correct checkpoint
in the .cpj file. Running in this mode will not result in message loss even with a crash as on
restart the checkpoint in the .cpj file is parsed if it is before the checkpoint in the .cpr file.

8.2.1.5 Troubleshooting
• Java Classpath

• Kinesis Handler Connectivity Issues

• Logging

8.2.1.5.1 Java Classpath
The most common initial error is an incorrect classpath to include all the required AWS Kinesis
Java SDK client libraries and creates a ClassNotFound exception in the log file.

You can troubleshoot by setting the Java Adapter logging to DEBUG, and then rerun the process.
At the debug level, the logging includes information about which JARs were added to the
classpath from the gg.classpath configuration variable.

The gg.classpath variable supports the wildcard asterisk (*) character to select all JARs in a
configured directory. For example, /usr/kinesis/sdk/*, see Setting Up and Running the
Kinesis Streams Handler.

8.2.1.5.2 Kinesis Handler Connectivity Issues
If the Kinesis Streams Handler is unable to connect to Kinesis when running on premise, the
problem can be the connectivity to the public Internet is protected by a proxy server. Proxy
servers act a gateway between the private network of a company and the public Internet.
Contact your network administrator to get the URLs of your proxy server, and then follow the
directions in Configuring the Proxy Server for Kinesis Streams Handler.

Chapter 8
Target

8-89

8.2.1.5.3 Logging
The Kinesis Streams Handler logs the state of its configuration to the Java log file.

This is helpful because you can review the configuration values for the handler. Following is a
sample of the logging of the state of the configuration:

**** Begin Kinesis Streams Handler - Configuration Summary ****
Mode of operation is set to op.
 The AWS region name is set to [us-west-2].
 A proxy server has been set to [www-proxy.us.oracle.com] using port [80].
 The Kinesis Streams Handler will flush to Kinesis at transaction commit.
 Messages from the GoldenGate source trail file will be sent at the operation level.
 One operation = One Kinesis Message
The stream mapping template of [${fullyQualifiedTableName}] resolves to [fully qualified
table name].
 The partition mapping template of [${primaryKeys}] resolves to [primary keys].
**** End Kinesis Streams Handler - Configuration Summary ****

8.2.2 Amazon MSK
Amazon MSK is a fully managed, secure, and a highly available Apache Kafka service. You
can use Apache Kafka to replicate to Amazon MSK.

8.2.3 Amazon Redshift
Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. The
purpose of the Redshift Event Handler is to apply operations into Redshift tables.

See Flat Files.

• Detailed Functionality
Ensure to use the Redshift Event handler as a downstream Event handler connected to the
output of the S3 Event handler. The S3 Event handler loads files generated by the File
Writer Handler into Amazon S3.

• Operation Aggregation

• Unsupported Operations and Limitations

• Uncompressed UPDATE records
It is mandatory that the trail files used to apply to Redshift contain uncompressed UPDATE
operation records, which means that the UPDATE operations contain full image of the row
being updated.

• Error During the Data Load Proces
Staging operation data from AWS S3 onto temporary staging tables and updating the
target table occurs inside a single transaction. In case of any error(s), the entire transaction
is rolled back and the replicat process will ABEND.

• Troubleshooting and Diagnostics

• Classpath
Redshift apply relies on the upstream File Writer handler and the S3 Event handler.

• Configuration

• INSERTALLRECORDS Support

Chapter 8
Target

8-90

• Redshift COPY SQL Authorization
The Redshift event handler uses COPY SQL to read staged files in Amazon Web Services
(AWS) S3 buckets. The COPY SQL query may need authorization credentials to access files
in AWS S3.

• Co-ordinated Apply Support

• Support for Mixed Case Identifiers

8.2.3.1 Detailed Functionality
Ensure to use the Redshift Event handler as a downstream Event handler connected to the
output of the S3 Event handler. The S3 Event handler loads files generated by the File Writer
Handler into Amazon S3.

Redshift Event handler uses the COPY SQL to bulk load operation data available in S3 into
temporary Redshift staging tables. The staging table data is then used to update the target
table. All the SQL operations are performed in batches providing better throughput.

8.2.3.2 Operation Aggregation
• In-Memory Operation Aggregation

• Aggregation using SQL post loading data into the staging table
In this aggregation operation, the in-memory operation aggregation need not be
performed. The operation data loaded into the temporary staging table is aggregated using
SQL queries, such that the staging table contains just one row per key.

8.2.3.2.1 In-Memory Operation Aggregation

• Operation records are aggregated in-memory by default.

• The gg.aggregate.operations.flush.interval property has been deprecated and is no
longer supported. If the gg.aggregate.operations.flush.interval is used in GG for
DAA 23ai, then replicat will run; but add a warning to log file about the property being
deprecated and not supported.
To control the time window for aggregation, use the
gg.handler.snowflake.fileRollInterval property. By default, it is set to 3 minutes.
Longer intervals will increase latency, and may increase memory usage. Shorter intervals
will increase overhead in Oracle GoldenGate and the target database.

• Operation aggregation in-memory requires additional JVM memory configuration.

Chapter 8
Target

8-91

8.2.3.2.2 Aggregation using SQL post loading data into the staging table
In this aggregation operation, the in-memory operation aggregation need not be performed.
The operation data loaded into the temporary staging table is aggregated using SQL queries,
such that the staging table contains just one row per key.

Table 8-3 Configuration Properties

Properties Required/ Optional Legal Values Default Explanation

gg.eventhandler
.name.aggregate
StagingTableRow
s

Optional True| False False Use SQL to
aggregate staging
table data before
updating the target
table.

8.2.3.3 Unsupported Operations and Limitations
The following operations are not supported by the Redshift Handler:

• DDL changes are not supported.

• Timestamp and Timestamp with Time zone data types: The maximum precision supported
is up to microseconds, the nanoseconds portion will be truncated. This is a limitation we
have observed with the Redshift COPY SQL.

• Redshift COPY SQL has a limitation on the maximum size of a single input row from any
source is 4MB.

8.2.3.4 Uncompressed UPDATE records
It is mandatory that the trail files used to apply to Redshift contain uncompressed UPDATE
operation records, which means that the UPDATE operations contain full image of the row being
updated.

If UPDATE records have missing columns, then such columns are updated in the target as null.
By setting the parameter gg.abend.on.missing.columns=true, replicat can fail fast on
detecting a compressed update trail record. This is the recommended setting.

8.2.3.5 Error During the Data Load Proces
Staging operation data from AWS S3 onto temporary staging tables and updating the target
table occurs inside a single transaction. In case of any error(s), the entire transaction is rolled
back and the replicat process will ABEND.

If there are errors with the COPY SQL, then the Redshift system table stl_load_errors is also
queried and the error traces are made available in the handler log file.

8.2.3.6 Troubleshooting and Diagnostics

• Connectivity issues to Redshift

– Validate JDBC connection URL, user name and password.

– Check if http/https proxy is enabled. Generally, Redshift endpoints cannot be accessed
via proxy.

Chapter 8
Target

8-92

• DDL and Truncate operations not applied on the target table: The Redshift handler will
ignore DDL and truncate records in the source trail file.

• Target table existence: It is expected that the Redshift target table exists before starting the
apply process. Target tables need to be designed with primary keys, sort keys, partition
distribution key columns. Approximations based on the column metadata in the trail file
may not be always correct. Therefore, Redshift apply will ABEND if the target table is
missing.

• Operation aggregation in-memory (gg.aggregagte.operations=true) is memory intensive
where as operation aggregation using
SQL(gg.eventhandler.name.aggregateStagingTableRows=true) requires more SQL
processing on the Redshift database. These configurations are mutually exclusive and only
one of them should be enabled at a time. Tests within Oracle have revealed that operation
aggregation in memory delivers better apply rate. This may not always be the case on all
the customer deployments.

• Diagnostic information on the apply process is logged onto the handler log file.

– Operation aggregation time (in milli-seconds) in-memory:

INFO 2018-10-22 02:53:57.000980 [pool-5-thread-1] - Merge statistics
********START*********************************
INFO 2018-10-22 02:53:57.000980 [pool-5-thread-1] - Number of update
operations merged into an existing update operation: [232653]
INFO 2018-10-22 02:53:57.000980 [pool-5-thread-1] - Time spent aggregating
operations : [22064]
INFO 2018-10-22 02:53:57.000980 [pool-5-thread-1] - Time spent flushing
aggregated operations : [36382]
INFO 2018-10-22 02:53:57.000980 [pool-5-thread-1] - Merge statistics
********END***********************************

• Stage and load processing time (in milli-seconds) for SQL queries

INFO 2018-10-22 02:54:19.000338 [pool-4-thread-1] - Stage and load statistics
********START*********************************
INFO 2018-10-22 02:54:19.000338 [pool-4-thread-1] - Time spent for staging
process [277093]
INFO 2018-10-22 02:54:19.000338 [pool-4-thread-1] - Time spent for load
process [32650]
INFO 2018-10-22 02:54:19.000338 [pool-4-thread-1] - Stage and load statistics
********END***********************************

• Stage time (in milli-seconds) will also include additional statistics if operation aggregation
using SQL is enabled.

• Co-existence of the components: The location/region of the machine where replicat
process is running, AWS S3 bucket region and the Redshift cluster region would impact
the overall throughput of the apply process. Data flow is as follows: GoldenGate => AWS
S3 => AWS Redshift. For best throughput, the components need to be located as close as
possible.

8.2.3.7 Classpath
Redshift apply relies on the upstream File Writer handler and the S3 Event handler.

Chapter 8
Target

8-93

Include the required jars needed to run the S3 Event handler in gg.classpath. See Amazon S3.
Redshift Event handler uses the Redshift JDBC driver. Ensure to include the jar file in
gg.classpath as shown in the following example:

gg.classpath=aws_sdk_2.28.11/lib/:aws_sdk_2.28.11/third-party/lib/:./redshift-
jdbc42-2.1.0.29.jar

8.2.3.8 Configuration

Automatic Configuration

AWS Redshift Data warehouse replication involves configuring of multiple components, such
as file writer handler, S3 event handler and Redshift event handler. The Automatic
Configuration feature auto configures these components so that you need to perform minimal
configurations. The properties modified by auto configuration will also be logged in the handler
log file.

To enable auto configuration to replicate to Redshift target, set the parameter:
gg.target=redshift

gg.target
Required
Legal Value: redshift
Default: None
Explanation: Enables replication to Redshift target

When replicating to Redshift target, the customization of S3 event hander name and Redshift
event handler name is not allowed.

File Writer Handler Configuration

File writer handler name is pre-set to the value redshift. The following is an example to edit a
property of file writer handler: gg.handler.redshift.pathMappingTemplate=./dirout

S3 Event Handler Configuration

S3 event handler name is pre-set to the value s3. The following is an example to edit a
property of the S3 event handler: gg.eventhandler.s3.bucketMappingTemplate=bucket1.

Redshift Event Handler Configuration

The Redshift event handler name is pre-set to the value redshift.

Chapter 8
Target

8-94

Table 8-4 Properties

Properties Required/Optional Legal Value Default Explanation

gg.eventhandler
.redshift.conne
ctionURL

Required Redshift JDBC
Connection URL

None Sets the Redshift
JDBC connection
URL.

Example:
jdbc:redshift:/
/aws-redshift-
instance.cjoaij
3df5if.us-
east-2.redshift
.amazonaws.com:
5439/mydb

gg.eventhandler
.redshift.UserN
ame

Required JDBC User Name None Sets the Redshift
database user
name.

gg.eventhandler
.redshift.Passw
ord

Required JDBC Password None Sets the Redshift
database
password.

gg.eventhandler
.redshift.awsIa
mRole

Optional AWS role ARN in
the format:
arn:aws:iam::<a
ws_account_id>:
role/
<role_name>

None AWS IAM role ARN
that the Redshift
cluster uses for
authentication and
authorization for
executing COPY
SQL to access
objects in AWS S3
buckets.

gg.eventhandler
.redshift.useAw
sSecurityTokenS
ervice

Optional true | false Value is set from
the configuration
property set in the
upstream s3 Event
handler
gg.eventhandler
.s3.enableSTS

Use AWS Security
Token Service for
authorization. For
more information,
see Redshift COPY
SQL Authorization.

gg.eventhandler
.redshift.awsST
SEndpoint

Optional A valid HTTPS
URL.

Value is set from
the configuration
property set in the
upstream s3 Event
handler
gg.eventhandler
.s3.stsURL.

The AWS STS
endpoint string. For
example: https://
sts.us-
east-1.amazonaws.
com. For more
information, see
Redshift COPY
SQL Authorization.

gg.eventhandler
.redshift.awsST
SRegion

Optional A valid AWS
region.

Value is set from
the configuration
property set in the
upstream s3 Event
handler
gg.eventhandler
.s3.stsRegion.

The AWS STS
region. For
example, us-
east-1. For more
information, see
Redshift COPY
SQL Authorization.

Chapter 8
Target

8-95

https://sts.us-east-1.amazonaws.com.
https://sts.us-east-1.amazonaws.com.
https://sts.us-east-1.amazonaws.com.
https://sts.us-east-1.amazonaws.com.

Table 8-4 (Cont.) Properties

Properties Required/Optional Legal Value Default Explanation

gg.initialLoad Optional true | false false If set to true, initial
load mode is
enabled. See
INSERTALLRECO
RDS Support.

gg.eventhandler
.redshift.conne
ctionRetryInter
valSeconds

Optional Integer Value 30 Specifies the delay
in seconds
between
connection retry
attempts.

gg.eventhandler
.redshift.conne
ctionRetries

Optional Integer Value 3 Specifies the
number of times
connections to the
target data
warehouse will be
retried.

Chapter 8
Target

8-96

Table 8-4 (Cont.) Properties

Properties Required/Optional Legal Value Default Explanation

gg.aggregate.op
erations.flush.
interval

Optional Integer 30000 The flush interval
parameter
determines how
often the data will
be merged into
ADW. The value is
set in milliseconds.

C

a

u

t

i

o

n

:

T
h
e
h
i
g
h
e
r
t
h
i
s
v
a
l
u
e
,
m
o
r
e
d
a
t
a
w
i
l
l

Chapter 8
Target

8-97

Table 8-4 (Cont.) Properties

Properties Required/Optional Legal Value Default Explanation

b
e
s
t
o
r
e
d
i
n
t
h
e
m
e
m
o
r
y
o
f
t
h
e
R
e
p
l
i
c
a
t
p
r
o
c
e
s
s
.

N

o

t

Chapter 8
Target

8-98

Table 8-4 (Cont.) Properties

Properties Required/Optional Legal Value Default Explanation

e

:

U
s
e
t
h
e
f
l
u
s
h
i
n
t
e
r
v
a
l
p
a
r
a
m
e
t
e
r
w
i
t
h
c
a
u
t
i
o
n
.
I
n
c
r
e
a
s
i
n
g

Chapter 8
Target

8-99

Table 8-4 (Cont.) Properties

Properties Required/Optional Legal Value Default Explanation

i
t
s
d
e
f
a
u
l
t
v
a
l
u
e
w
i
l
l
i
n
c
r
e
a
s
e
t
h
e
a
m
o
u
n
t
o
f
d
a
t
a
s
t
o
r
e
d
i
n
t
h
e
i

Chapter 8
Target

8-100

Table 8-4 (Cont.) Properties

Properties Required/Optional Legal Value Default Explanation

n
t
e
r
n
a
l
m
e
m
o
r
y
o
f
t
h
e
R
e
p
l
i
c
a
t
.
T
h
i
s
c
a
n
c
a
u
s
e
o
u
t
o
f
m
e
m
o
r
y
e
r
r
o

Chapter 8
Target

8-101

Table 8-4 (Cont.) Properties

Properties Required/Optional Legal Value Default Explanation

r
s
a
n
d
s
t
o
p
t
h
e
R
e
p
l
i
c
a
t
i
f
i
t
r
u
n
s
o
u
t
o
f
m
e
m
o
r
y
.

End-to-End Configuration

The following is an end-end configuration example which uses auto configuration for FW
handler, S3 and Redshift Event handlers.

The sample properties are available at the following location

• In an Oracle GoldenGate Classic install: <oggbd_install_dir>/AdapterExamples/big-
data/redshift-via-s3/rs.props

• In an Oracle GoldenGate Microservices install: <oggbd_install_dir>/opt/
AdapterExamples/big-data/redshift-via-s3/rs.props

Chapter 8
Target

8-102

Configuration to load GoldenGate trail operation records
into Amazon Redshift by chaining
File writer handler -> S3 Event handler -> Redshift Event handler.
Note: Recommended to only edit the configuration marked as TODO

gg.target=redshift
#The S3 Event Handler
#TODO: Edit the AWS region
gg.eventhandler.s3.region=<aws region>
#TODO: Edit the AWS S3 bucket
gg.eventhandler.s3.bucketMappingTemplate<s3bucket>

#The Redshift Event Handler
#TODO: Edit ConnectionUrl
gg.eventhandler.redshift.connectionURL=jdbc:redshift://aws-redshift-
instance.cjoaij3df5if.us-east-2.redshift.amazonaws.com:5439/mydb
#TODO: Edit Redshift user name
gg.eventhandler.redshift.UserName=<db user name>
#TODO: Edit Redshift password
gg.eventhandler.redshift.Password=<db password>
#TODO:Set the classpath to include AWS Java SDK and Redshift JDBC driver.
gg.classpath=aws_sdk_2.28.11/lib/:aws_sdk_2.28.11/third-party/lib/:./redshift-
jdbc42-2.1.0.29.ja

8.2.3.9 INSERTALLRECORDS Support
Stage and merge targets supports INSERTALLRECORDS parameter.

See INSERTALLRECORDS in Reference for Oracle GoldenGate. Set the INSERTALLRECORDS
parameter in the Replicat parameter file (.prm).

Setting this property directs the Replicat process to use bulk insert operations to load operation
data into the target table. You can tune the batch size of bulk inserts using the File Writer
property gg.handler.redshift.maxFileSize. The default value is set to 1GB. The frequency
of bulk inserts can be tuned using the File Writer property
gg.handler.redshift.fileRollInterval, the default value is set to 3m (three minutes).

Note:

8.2.3.10 Redshift COPY SQL Authorization
The Redshift event handler uses COPY SQL to read staged files in Amazon Web Services
(AWS) S3 buckets. The COPY SQL query may need authorization credentials to access files in
AWS S3.

Authorization can be provided by using an AWS Identity and Access Management (IAM) role
that is attached to the Redshift cluster or by providing a AWS access key and a secret for the
access key. As a security consideration, it is a best practise to use role-based access when
possible.

AWS Key-Based Authorization

With key-based access control, you provide the access key ID and secret access key for an
AWS IAM user that is authorized to access AWS S3. The access key id and secret access key
are retrieved by looking up the credentials as follows:

Chapter 8
Target

8-103

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/insertallrecords.html#GUID-A1019C40-97BE-437B-9D80-7C99A9A6DB8E

1. Environment variables - AWS_ACCESS_KEY/AWS_ACCESS_KEY_ID and AWS_SECRET_KEY/
AWS_SECRET_ACCESS_KEY.

2. Java System Properties - aws.accessKeyId and aws.secretAccessKey.

3. Credential profiles file at the default location (~/.aws/credentials).

4. Amazon Elastic Container Service (ECS) container credentials loaded from Amazon ECS if
the environment variable AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is set.

5. Instance profile credentials retrieved from Amazon Elastic Compute Cloud (EC2) metadata
service.

Running Replicat on an AWS EC2 Instance

If the replicat process is started on an AWS EC2 instance, then the access key ID and secret
access key are automatically retrieved by Oracle GoldenGate for BigData and no explicit user
configuration is required.

Temporary Security Credentials using AWS Security Token Service (STS)

If you use the key-based access control, then you can further limit the access users have to
your data by retrieving temporary security credentials using AWS Security Token Service. The
auto configure feature of the Redshift event handler automatically picks up the AWS Security
Token Service (STS) configuration from S3 event handler.

Table 8-5 S3 Event Handler Configuration and Redshift Event Handler Configuration

S3 Event Handler Configuration Redshift Event Handler Configuration

enableSTS useAwsSTS
stsURL awsSTSEndpoint
stsRegion awsSTSRegion

AWS IAM Role-based Authorization

With role-based authorization, Redshift cluster temporarily assumes an IAM role when
executing COPY SQL. You need to provide the role Amazon Resource Number (ARN) as a
configuration value as follows: gg.eventhandler.redshift.AwsIamRole. For example:
gg.eventhandler.redshift.AwsIamRole=arn:aws:iam::<aws_account_id>:role/
<role_name>. The role needs to be authorized to read the respective S3 bucket. Ensure that
the trust relationship of the role contains the AWS redshift service. Additionally, attach this role
to the Redshift cluster before starting the Redshift cluster. For example, AWS IAM policy that
can be used in the the trust relationship of the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "redshift.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Chapter 8
Target

8-104

If the role-based authorization is configured (gg.eventhandler.redshift.AwsIamRole), then it
is given priority over key-based authorization.

8.2.3.11 Co-ordinated Apply Support
To enable co-ordinated apply for Redshift, ensure that the Redshift database's isolation level is
set to SNAPSHOT. The Redshift SNAPSHOT ISOLATION option allows higher concurrency, where
concurrent modifications to different rows in the same table can complete successfully.

SQL Query to Alter the Database's Isolation Level

ALTER DATABASE <sampledb> ISOLATION LEVEL SNAPSHOT;

8.2.3.12 Support for Mixed Case Identifiers
Oracle GoldenGate Redshift Event handler now supports mixed case names in the Replicat
MAP statement. Mixed cases identifiers need to be enclosed inside doubles quotes as per the
following example:

MAP QASOURCE.TCUSTMER, TARGET "QaTarget"."TCustmer";

8.2.4 Amazon S3
Learn how to use the S3 Event Handler, which provides the interface to Amazon S3 web
services.

• Overview

• Detailing Functionality

• Configuring the S3 Event Handler

8.2.4.1 Overview
Amazon S3 is object storage hosted in the Amazon cloud. The purpose of the S3 Event
Handler is to load data files generated by the File Writer Handler into Amazon S3, see https://
aws.amazon.com/s3/.

You can use any format that the File Writer Handler, see Flat Files.

8.2.4.2 Detailing Functionality
The S3 Event Handler requires the Amazon Web Services (AWS) Java SDK to transfer files to
S3 object storage.Oracle GoldenGate for Big Data does not include the AWS Java SDK. 1.x
AWS Java SDK versions are no longer supported, it is recommended to use 2.28.11 or higher.
You have to download and install the AWS Java SDK from:

https://aws.amazon.com/sdk-for-java/

Then you have to configure the gg.classpath variable to include the JAR files in the AWS
Java SDK and are divided into two directories. Both directories must be in gg.classpath, for
example:

gg.classpath=/usr/var/aws_sdk_2.28.11/*:/usr/var/aws_sdk_2.28.11/third-party/lib/

• Resolving AWS Credentials

• About the AWS S3 Buckets

Chapter 8
Target

8-105

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/sdk-for-java/

• Troubleshooting

8.2.4.2.1 Resolving AWS Credentials

• Amazon Web Services Simple Storage Service Client Authentication
The S3 Event Handler is a client connection to the Amazon Web Services (AWS) Simple
Storage Service (S3) cloud service. The AWS cloud must be able to successfully
authenticate the AWS client in order in order to successfully interface with S3.

8.2.4.2.1.1 Amazon Web Services Simple Storage Service Client Authentication

The S3 Event Handler is a client connection to the Amazon Web Services (AWS) Simple
Storage Service (S3) cloud service. The AWS cloud must be able to successfully authenticate
the AWS client in order in order to successfully interface with S3.

The AWS client authentication has become increasingly complicated as more authentication
options have been added to the S3 Event Handler. This topic explores the different use cases
for AWS client authentication.

• Explicit Configuration of the Client ID and Secret
A client ID and secret are generally the required credentials for the S3 Event Handler to
interact with Amazon S3. A client ID and secret are generated using the Amazon AWS
website.

• Use of the AWS Default Credentials Provider Chain
If the gg.eventhandler.name.accessKeyId and gg.eventhandler.name.secretKey are
unset, then credentials resolution reverts to the AWS default credentials provider chain.
The AWS default credentials provider chain provides various ways by which the AWS
credentials can be resolved.

• AWS Federated Login
The use case is when you have your on-premise system login integrated with AWS. This
means that when you log into an on-premise machine, you are also logged into AWS.

8.2.4.2.1.1.1 Explicit Configuration of the Client ID and Secret
A client ID and secret are generally the required credentials for the S3 Event Handler to
interact with Amazon S3. A client ID and secret are generated using the Amazon AWS
website.

These credentials can be explicitly configured in the Java Adapter Properties file as follows:

gg.eventhandler.name.accessKeyId=
gg.eventhandler.name.secretKey=

Furthermore, the Oracle Wallet functionality can be used to encrypt these credentials.

8.2.4.2.1.1.2 Use of the AWS Default Credentials Provider Chain
If the gg.eventhandler.name.accessKeyId and gg.eventhandler.name.secretKey are unset,
then credentials resolution reverts to the AWS default credentials provider chain. The AWS
default credentials provider chain provides various ways by which the AWS credentials can be
resolved.

For more information about the default credential provider chain and order of operations for
AWS credentials resolution, see Working with AWS Credentials.
When Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) runs on an
AWS Elastic Compute Cloud (EC2) instance, the general use case is to resolve the credentials
from the EC2 metadata service. The AWS default credentials provider chain provides
resolution of credentials from the EC2 metadata service as one of the options.

Chapter 8
Target

8-106

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html

8.2.4.2.1.1.3 AWS Federated Login
The use case is when you have your on-premise system login integrated with AWS. This
means that when you log into an on-premise machine, you are also logged into AWS.

In this use case:

• You may not want to generate client IDs and secrets. (Some users disable this feature in
the AWS portal).

• The client AWS applications need to interact with the AWS Security Token Service (STS)
to obtain an authentication token for programmatic calls made to S3.

This feature is enabled by setting the following: gg.eventhandler.name.enableSTS=true.

8.2.4.2.2 About the AWS S3 Buckets
AWS divides S3 storage into separate file systems called buckets. The S3 Event Handler can
write to pre-created buckets. Alternatively, if the S3 bucket does not exist, the S3 Event
Handler attempts to create the specified S3 bucket. AWS requires that S3 bucket names are
lowercase. Amazon S3 bucket names must be globally unique. If you attempt to create an S3
bucket that already exists in any Amazon account, it causes the S3 Event Handler to abend.

8.2.4.2.3 Troubleshooting

Connectivity Issues

If the S3 Event Handler is unable to connect to the S3 object storage when running on
premise, it’s likely your connectivity to the public internet is protected by a proxy server. Proxy
servers act a gateway between the private network of a company and the public internet.
Contact your network administrator to get the URLs of your proxy server.

Oracle GoldenGate can be used with a proxy server using the following parameters to enable
the proxy server:

gg.handler.name.proxyServer=
gg.handler.name.proxyPort=80
gg.handler.name.proxyUsername=username
gg.handler.name.proxyPassword=password

Sample configuration:

gg.eventhandler.s3.type=s3
gg.eventhandler.s3.region=us-west-2
gg.eventhandler.s3.proxyServer=www-proxy.us.oracle.com
gg.eventhandler.s3.proxyPort=80
gg.eventhandler.s3.proxyProtocol=HTTP
gg.eventhandler.s3.bucketMappingTemplate=yourbucketname
gg.eventhandler.s3.pathMappingTemplate=thepath
gg.eventhandler.s3.finalizeAction=none

8.2.4.3 Configuring the S3 Event Handler
You can configure the S3 Event Handler operation using the properties file. These properties
are located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the S3 Event Handler, you must first configure the handler type by
specifying gg.eventhandler.name.type=s3 and the other S3 Event properties as follows:

Chapter 8
Target

8-107

Table 8-6 S3 Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.type

Required s3 None Selects the S3 Event Handler for use with
Replicat.

gg.eventhandler
.name.region

Required The AWS
region
name that
is hosting
your S3
instance.

None Setting the legal AWS region name is required.

gg.eventhandler
.name.cannedACL

Optional Accepts
one of the
following
values:
• private
• public-

read
• public-

read-
write

• aws-
exec-
read

• authent
icated-
read

• bucket-
owner-
read

• bucket-
owner-
full-
control

• log-
deliver
y-write

None Amazon S3 supports a set of predefined
grants, known as canned Access Control Lists.
Each canned ACL has a predefined set of
grantees and permissions. For more
information, see Managing access with ACLs

gg.eventhandler
.name.proxyServ
er

Optional The host
name of
your proxy
server.

None Sets the host name of your proxy server if
connectivity to AWS is required use a proxy
server.

gg.eventhandler
.name.proxyPort

Optional The port
number of
the proxy
server.

None Sets the port number of the proxy server if
connectivity to AWS is required use a proxy
server.

gg.eventhandler
.name.proxyUser
name

Optional The
username
of the proxy
server.

None Sets the user name of the proxy server if
connectivity to AWS is required use a proxy
server and the proxy server requires
credentials.

gg.eventhandler
.name.proxyPass
word

Optional The
password of
the proxy
server.

None Sets the password for the user name of the
proxy server if connectivity to AWS is required
use a proxy server and the proxy server
requires credentials.

Chapter 8
Target

8-108

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl_overview.html#canned-acl

Table 8-6 (Cont.) S3 Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.bucketMap
pingTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the path in
the S3
bucket to
write the
file.

None Use resolvable keywords and constants used
to dynamically generate the S3 bucket name at
runtime. The handler attempts to create the S3
bucket if it does not exist. AWS requires bucket
names to be all lowercase. A bucket name with
uppercase characters results in a runtime
exception. See Template Keywords.

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the path in
the S3
bucket to
write the
file.

None Use keywords interlaced with constants to
dynamically generate unique S3 path names at
runtime. Typically, path names follow the
format, ogg/data/${groupName}/$
{fullyQualifiedTableName} In S3, the
convention is not to begin the path with the
backslash (/) because it results in a root
directory of “”. See Template Keywords.

gg.eventhandler
.name.fileNameM
appingTemplate

Optional A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the S3 file
name at
runtime.

None Use resolvable keywords and constants used
to dynamically generate the S3 data file name
at runtime. If not set, the upstream file name is
used. See Template Keywords.

gg.eventhandler
.name.finalizeA
ction

Optional none |
delete

None Set to none to leave the S3 data file in place on
the finalize action. Set to delete if you want to
delete the S3 data file with the finalize action.

gg.eventhandler
.name.eventHand
ler

Optional A unique
string
identifier
cross
referencing
a child
event
handler.

No
event
handler
configur
ed.

Sets the event handler that is invoked on the
file roll event. Event handlers can do file roll
event actions like loading files to S3, converting
to Parquet or ORC format, or loading files to
HDFS.

Chapter 8
Target

8-109

Table 8-6 (Cont.) S3 Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.url

Optional
(unless
Dell ECS,
then
required)

A legal URL
to connect
to cloud
storage.

None Not required for Amazon AWS S3. Required for
Dell ECS. Sets the URL to connect to cloud
storage.

gg.eventhandler
.name.proxyProt
ocol

Optional HTTP |
HTTPS

HTTP Sets the proxy protocol connection to the proxy
server for additional level of security. The client
first performs an SSL handshake with the proxy
server, and then an SSL handshake with
Amazon AWS. This feature was added into the
Amazon SDK in version 1.11.396 so you must
use at least that version to use this property.

gg.eventhandler
.name.SSEAlgori
thm

Optional AES256 |
aws:kms

Empty Set only if you are enabling S3 server side
encryption. Use the parameters to set the
algorithm for server side encryption in S3.

gg.eventhandler
.name.AWSKmsKey
Id

Optional A legal
AWS key
manageme
nt system
server side
manageme
nt key or
the alias
that
represents
that key.

Empty Set only if you are enabling S3 server side
encryption and the S3 algorithm is aws:kms.
This is either the encryption key or the
encryption alias that you set in the AWS
Identity and Access Management web page.
Aliases are prepended with alias/.

gg.eventhandler
.name.enableSTS

Optional true |
false

false Set totrue, to enable the S3 Event Handler to
access S3 credentials from the AWS Security
Token Service. The AWS Security Token
Service must be enabled if you set this
property to true.

gg.eventhandler
.name.STSAssume
Role

Optional AWS user
and role in
the
following
format:
{user
arn}:role
/{role
name}

None Set configuration if you want to assume a
different user/role. Only valid with STS
enabled.

gg.eventhandler
.name.STSAssume
RoleSessionName

Optional Any string. Assume
RoleSe
ssion1

The assumed role requires a session name for
session logging. However this can be any
value. Only valid if both
gg.eventhandler.name.enableSTS=true
and
gg.eventhandler.name.STSAssumeRole
are configured.

Chapter 8
Target

8-110

Table 8-6 (Cont.) S3 Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.STSRegion

Optional Any legal
AWS region
specifier.

The
region is
obtained
from the
gg.eve
nthand
ler.na
me.reg
ion
property
.

Use to resolve the region for the STS call. It's
only valid if the
gg.eventhandler.name.enableSTS
property is set to true. You can set a different
AWS region for resolving credentials from STS
than the configured S3 region.

gg.eventhandler
.name.enableBuc
ketAdmin

Optional true |
false

true Set to false to disable checking if S3 buckets
exist and automatic creation of buckets, if they
do not exist. This feature requires S3 admin
privileges on S3 buckets which some
customers do not wish to grant.

gg.eventhandler
.name.accessKey
Id

Optional A valid
AWS
access key.

None Set this parameter to explicitly set the access
key for AWS. This parameter has no effect if
gg.eventhandler.name.enableSTS is set to
true. If this property is not set, then the
credentials resolution falls back to the AWS
default credentials provider chain.

gg.eventhandler
.name.secretKey

Optional A valid
AWS secret
key.

None Set this parameter to explicitly set the secret
key for AWS. This parameter has no effect if
gg.eventhandler.name.enableSTS is set to
true. If this property is not set, then
credentials resolution falls back to the AWS
default credentials provider chain.

gg.eventhandler
.s3.enableAccel
erateMode

Optional true |
false

false Enable/Disable Amazon S3 Transfer
Acceleration to transfer files quickly and
securely over long distances between your
client and an S3 bucket.

8.2.5 Apache Cassandra
The Cassandra Handler provides the interface to Apache Cassandra databases.

This chapter describes how to use the Cassandra Handler.

• Overview

• Detailing the Functionality

• Setting Up and Running the Cassandra Handler

• About Automated DDL Handling
The Cassandra Handler performs the table check and reconciliation process the first time
an operation for a source table is encountered. Additionally, a DDL event or a metadata
change event causes the table definition in the Cassandra Handler to be marked as not
suitable.

• Performance Considerations

• Additional Considerations

Chapter 8
Target

8-111

• Troubleshooting

• Cassandra Handler Client Dependencies
What are the dependencies for the Cassandra Handler to connect to Apache Cassandra
databases?

8.2.5.1 Overview
Apache Cassandra is a NoSQL Database Management System designed to store large
amounts of data. A Cassandra cluster configuration provides horizontal scaling and replication
of data across multiple machines. It can provide high availability and eliminate a single point of
failure by replicating data to multiple nodes within a Cassandra cluster. Apache Cassandra is
open source and designed to run on low-cost commodity hardware.

Cassandra relaxes the axioms of a traditional relational database management systems
(RDBMS) regarding atomicity, consistency, isolation, and durability. When considering
implementing Cassandra, it is important to understand its differences from a traditional RDBMS
and how those differences affect your specific use case.

Cassandra provides eventual consistency. Under the eventual consistency model, accessing
the state of data for a specific row eventually returns the latest state of the data for that row as
defined by the most recent change. However, there may be a latency period between the
creation and modification of the state of a row and what is returned when the state of that row
is queried. The benefit of eventual consistency is that the latency period is predicted based on
your Cassandra configuration and the level of work load that your Cassandra cluster is
currently under, see http://cassandra.apache.org/.

The Cassandra Handler provides some control over consistency with the configuration of the
gg.handler.name.consistencyLevel property in the Java Adapter properties file.

8.2.5.2 Detailing the Functionality
• About the Cassandra Data Types

• About Catalog, Schema, Table, and Column Name Mapping
Traditional RDBMSs separate structured data into tables. Related tables are included in
higher-level collections called databases. Cassandra contains both of these concepts.
Tables in an RDBMS are also tables in Cassandra, while database schemas in an RDBMS
are keyspaces in Cassandra.

• About DDL Functionality

• How Operations are Processed

• About Compressed Updates vs. Full Image Updates

• About Primary Key Updates

8.2.5.2.1 About the Cassandra Data Types
Cassandra provides a number of column data types and most of these data types are
supported by the Cassandra Handler.

Supported Cassandra Data Types
ASCII
BIGINT
BLOB
BOOLEAN

Chapter 8
Target

8-112

http://cassandra.apache.org/

DATE
DECIMAL
DOUBLE
DURATION
FLOAT
INET
INT
SMALLINT
TEXT
TIME
TIMESTAMP
TIMEUUID
TINYINT
UUID
VARCHAR
VARINT

Unsupported Cassandra Data Types
COUNTER
MAP
SET
LIST
UDT (user defined type)
TUPLE
CUSTOM_TYPE

Supported Database Operations
INSERT
UPDATE (captured as INSERT)
DELETE

The Cassandra commit log files do not record any before images for the UPDATE or DELETE
operations. So the captured operations never have a before image section. Oracle
GoldenGate features that rely on before image records, such as Conflict Detection and
Resolution, are not available.

Unsupported Database Operations
TRUNCATE
DDL (CREATE, ALTER, DROP)

The data type of the column value in the source trail file must be converted to the
corresponding Java type representing the Cassandra column type in the Cassandra Handler.
This data conversion introduces the risk of a runtime conversion error. A poorly mapped field
(such as varchar as the source containing alpha numeric data to a Cassandra int) may cause
a runtime error and cause the Cassandra Handler to abend. You can view the Cassandra Java
type mappings at:

DataStax Documentation

It is possible that the data may require specialized processing to get converted to the
corresponding Java type for intake into Cassandra. If this is the case, you have two options:

• Try to use the general regular expression search and replace functionality to format the
source column value data in a way that can be converted into the Java data type for use in
Cassandra.

Or

• Implement or extend the default data type conversion logic to override it with custom logic
for your use case. Contact Oracle Support for guidance.

Chapter 8
Target

8-113

https://docs.datastax.com/en/developer/java-driver/4.0/manual/core/

8.2.5.2.2 About Catalog, Schema, Table, and Column Name Mapping
Traditional RDBMSs separate structured data into tables. Related tables are included in
higher-level collections called databases. Cassandra contains both of these concepts. Tables
in an RDBMS are also tables in Cassandra, while database schemas in an RDBMS are
keyspaces in Cassandra.

It is important to understand how data maps from the metadata definition in the source trail file
are mapped to the corresponding keyspace and table in Cassandra. Source tables are
generally either two-part names defined as schema.table,or three-part names defined as
catalog.schema.table.

The following table explains how catalog, schema, and table names map into Cassandra.
Unless you use special syntax, Cassandra converts all keyspace, table names, and column
names to lower case.

Table Name in Source Trail File Cassandra Keyspace Name Cassandra Table Name

QASOURCE.TCUSTMER qasource tcustmer
dbo.mytable dbo mytable
GG.QASOURCE.TCUSTORD gg_qasource tcustord

8.2.5.2.3 About DDL Functionality
• About the Keyspaces

• About the Tables

• Adding Column Functionality

• Dropping Column Functionality

8.2.5.2.3.1 About the Keyspaces

The Cassandra Handler does not automatically create keyspaces in Cassandra. Keyspaces in
Cassandra define a replication factor, the replication strategy, and topology. The Cassandra
Handler does not have enough information to create the keyspaces, so you must manually
create them.

You can create keyspaces in Cassandra by using the CREATE KEYSPACE command from the
Cassandra shell.

8.2.5.2.3.2 About the Tables

The Cassandra Handler can automatically create tables in Cassandra if you configure it to do
so. The source table definition may be a poor source of information to create tables in
Cassandra. Primary keys in Cassandra are divided into:

• Partitioning keys that define how data for a table is separated into partitions in
Cassandra.

• Clustering keys that define the order of items within a partition.

In the default mapping for automated table creation, the first primary key is the partition key,
and any additional primary keys are mapped as clustering keys.

Chapter 8
Target

8-114

Automated table creation by the Cassandra Handler may be fine for proof of concept, but it
may result in data definitions that do not scale well. When the Cassandra Handler creates
tables with poorly constructed primary keys, the performance of ingest and retrieval may
decrease as the volume of data stored in Cassandra increases. Oracle recommends that you
analyze the metadata of your replicated tables, then manually create corresponding tables in
Cassandra that are properly partitioned and clustered for higher scalability.

Primary key definitions for tables in Cassandra are immutable after they are created. Changing
a Cassandra table primary key definition requires the following manual steps:

1. Create a staging table.

2. Populate the data in the staging table from original table.

3. Drop the original table.

4. Re-create the original table with the modified primary key definitions.

5. Populate the data in the original table from the staging table.

6. Drop the staging table.

8.2.5.2.3.3 Adding Column Functionality

You can configure the Cassandra Handler to add columns that exist in the source trail file table
definition but are missing in the Cassandra table definition. The Cassandra Handler can
accommodate metadata change events of this kind. A reconciliation process reconciles the
source table definition to the Cassandra table definition. When the Cassandra Handler is
configured to add columns, any columns found in the source table definition that do not exist in
the Cassandra table definition are added. The reconciliation process for a table occurs after
application startup the first time an operation for the table is encountered. The reconciliation
process reoccurs after a metadata change event on a source table, when the first operation for
the source table is encountered after the change event.

8.2.5.2.3.4 Dropping Column Functionality

You can configure the Cassandra Handler to drop columns that do not exist in the source trail
file definition but exist in the Cassandra table definition. The Cassandra Handler can
accommodate metadata change events of this kind. A reconciliation process reconciles the
source table definition to the Cassandra table definition. When the Cassandra Handler is
configured to drop, columns any columns found in the Cassandra table definition that are not in
the source table definition are dropped.

Caution:

Dropping a column permanently removes data from a Cassandra table. Carefully
consider your use case before you configure this mode.

Note:

Primary key columns cannot be dropped. Attempting to do so results in an abend.

Chapter 8
Target

8-115

Note:

Column name changes are not well-handled because there is no DDL is processed.
When a column name changes in the source database, the Cassandra Handler
interprets it as dropping an existing column and adding a new column.

8.2.5.2.4 How Operations are Processed
The Cassandra Handler pushes operations to Cassandra using either the asynchronous or
synchronous API. In asynchronous mode, operations are flushed at transaction commit
(grouped transaction commit using GROUPTRANSOPS) to ensure write durability. The Cassandra
Handler does not interface with Cassandra in a transactional way.

Supported Database Operations
INSERT
UPDATE (captured as INSERT)
DELETE

The Cassandra commit log files do not record any before images for the UPDATE or DELETE
operations. So the captured operations never have a before image section. Oracle
GoldenGate features that rely on before image records, such as Conflict Detection and
Resolution, are not available.

Unsupported Database Operations
TRUNCATE
DDL (CREATE, ALTER, DROP)

Insert, update, and delete operations are processed differently in Cassandra than a traditional
RDBMS. The following explains how insert, update, and delete operations are interpreted by
Cassandra:

• Inserts: If the row does not exist in Cassandra, then an insert operation is processed as an
insert. If the row already exists in Cassandra, then an insert operation is processed as an
update.

• Updates: If a row does not exist in Cassandra, then an update operation is processed as
an insert. If the row already exists in Cassandra, then an update operation is processed as
insert.

• Delete:If the row does not exist in Cassandra, then a delete operation has no effect. If the
row exists in Cassandra, then a delete operation is processed as a delete.

The state of the data in Cassandra is idempotent. You can replay the source trail files or replay
sections of the trail files. The state of the Cassandra database must be the same regardless of
the number of times that the trail data is written into Cassandra.

8.2.5.2.5 About Compressed Updates vs. Full Image Updates
Oracle GoldenGate allows you to control the data that is propagated to the source trail file in
the event of an update. The data for an update in the source trail file is either a compressed or
a full image of the update, and the column information is provided as follows:

Chapter 8
Target

8-116

Compressed
For the primary keys and the columns for which the value changed. Data for columns that
have not changed is not provided in the trail file.

Full Image
For all columns, including primary keys, columns for which the value has changed, and
columns for which the value has not changed.

The amount of information about an update is important to the Cassandra Handler. If the
source trail file contains full images of the change data, then the Cassandra Handler can use
prepared statements to perform row updates in Cassandra. Full images also allow the
Cassandra Handler to perform primary key updates for a row in Cassandra. In Cassandra,
primary keys are immutable, so an update that changes a primary key must be treated as a
delete and an insert. Conversely, when compressed updates are used, prepared statements
cannot be used for Cassandra row updates. Simple statements identifying the changing values
and primary keys must be dynamically created and then executed. With compressed updates,
primary key updates are not possible and as a result, the Cassandra Handler will abend.

You must set the control properties gg.handler.name.compressedUpdates and
gg.handler.name.compressedUpdatesfor so that the handler expects either compressed or
full image updates.

The default value, true, sets the Cassandra Handler to expect compressed updates. Prepared
statements are not be used for updates, and primary key updates cause the handler to abend.

When the value is false, prepared statements are used for updates and primary key updates
can be processed. A source trail file that does not contain full image data can lead to corrupted
data columns, which are considered null. As a result, the null value is pushed to Cassandra. If
you are not sure about whether the source trail files contains compressed or full image data,
set gg.handler.name.compressedUpdates to true.

CLOB and BLOB data types do not propagate LOB data in updates unless the LOB column
value changed. Therefore, if the source tables contain LOB data, set
gg.handler.name.compressedUpdates to true.

8.2.5.2.6 About Primary Key Updates
Primary key values for a row in Cassandra are immutable. An update operation that changes
any primary key value for a Cassandra row must be treated as a delete and insert. The
Cassandra Handler can process update operations that result in the change of a primary key in
Cassandra only as a delete and insert. To successfully process this operation, the source trail
file must contain the complete before and after change data images for all columns. The
gg.handler.name.compressed configuration property of the Cassandra Handler must be set to
false for primary key updates to be successfully processed.

8.2.5.3 Setting Up and Running the Cassandra Handler
Instructions for configuring the Cassandra Handler components and running the handler are
described in the following sections.

Before you run the Cassandra Handler, you must install the Datastax Driver for Cassandra and
set the gg.classpath configuration property.

Get the Driver Libraries

The Cassandra Handler has been updated to use the newer 4.x versions of the Datastax Java
Driver or 2.x versions of the Datastax Enterprise Java Driver. The Datastax Java Driver for

Chapter 8
Target

8-117

Cassandra does not ship with Oracle GoldenGate for Distributed Applications and Analytics
(GG for DAA). For more information, see

Datastax Java Driver for Apache Cassandra.

You can use the Dependency Downloader scripts to download the Datastax Java Driver and its
associated dependencies.

Set the Classpath

You must configure the gg.classpath configuration property in the Java Adapter properties file
to specify the JARs for the Datastax Java Driver for Cassandra. Ensure that this JAR is first in
the list.

gg.classpath=/path/to/4.x/cassandra-java-driver/*

• Understanding the Cassandra Handler Configuration

• Review a Sample Configuration

• Configuring Security

8.2.5.3.1 Understanding the Cassandra Handler Configuration
The following are the configurable values for the Cassandra Handler. These properties are
located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the Cassandra Handler, you must first configure the handler type by
specifying gg.handler.name.type=cassandra and the other Cassandra properties as follows:

Table 8-7 Cassandra Handler Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

gg.handlerlist Require
d

Any string None Provides a name for the Cassandra
Handler. The Cassandra Handler
name then becomes part of the
property names listed in this table.

gg.handler.name.type=
cassandra

Require
d

cassandr
a

None Selects the Cassandra Handler for
streaming change data capture into
name.

gg.handler.name.mode Optional op | tx op The default is recommended. In op
mode, operations are processed as
received. In tx mode, operations are
cached and processed at transaction
commit. The txmode is slower and
creates a larger memory footprint.

Chapter 8
Target

8-118

https://docs.datastax.com/en/developer/java-driver/4.9/

Table 8-7 (Cont.) Cassandra Handler Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

gg.handler.name.conta
ctPoints=

Optional A comma
separated
list of host
names
that the
Cassandr
a Handler
will
connect
to.

localhost A comma-separated list of the
Cassandra host machines for the
driver to establish an initial
connection to the Cassandra cluster.
This configuration property does not
need to include all the machines
enlisted in the Cassandra cluster. By
connecting to a single machine, the
driver can learn about other
machines in the Cassandra cluster
and establish connections to those
machines as required.

gg.handler.name.usern
ame

Optional A legal
username
string.

None A user name for the connection to
name. Required if Cassandra is
configured to require credentials.

gg.handler.name.passw
ord

Optional A legal
password
string.

None A password for the connection to
name. Required if Cassandra is
configured to require credentials.

gg.handler.name.compr
essedUpdates

Optional true |
false

true Sets the Cassandra Handler whether
to expect full image updates from the
source trail file. A value of true
means that updates in the source
trail file only contain column data for
the primary keys and for columns
that changed. The Cassandra
Handler executes updates as simple
statements updating only the
columns that changed.

A value of false means that
updates in the source trail file
contain column data for primary keys
and all columns regardless of
whether the column value has
changed. The Cassandra Handler is
able to use prepared statements for
updates, which can provide better
performance for streaming data to
name.

Chapter 8
Target

8-119

Table 8-7 (Cont.) Cassandra Handler Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

gg.handler.name.ddlHa
ndling

Optional CREATE |
ADD |
DROP in
any
combinati
on with
values
delimited
by a
comma

None Configures the Cassandra Handler
for the DDL functionality to provide.
Options include CREATE, ADD, and
DROP. These options can be set in
any combination delimited by
commas.

When CREATE is enabled, the
Cassandra Handler creates tables in
Cassandra if a corresponding table
does not exist.

When ADD is enabled, the
Cassandra Handler adds columns
that exist in the source table
definition that do not exist in the
corresponding Cassandra table
definition.

When DROP is enabled, the handler
drops columns that exist in the
Cassandra table definition that do
not exist in the corresponding source
table definition.

gg.handler.name.cassa
ndraMode

Optional async |
sync

async Sets the interaction between the
Cassandra Handler and name. Set
to async for asynchronous
interaction. Operations are sent to
Cassandra asynchronously and then
flushed at transaction commit to
ensure durability. Asynchronous
provides better performance.

Set to sync for synchronous
interaction. Operations are sent to
Cassandra synchronously.

gg.handler.name.consi
stencyLevel

Optional ALL | ANY
|
EACH_QUO
RUM |
LOCAL_ON
E |
LOCAL_QU
ORUM |
ONE |
QUORUM |
THREE |
TWO

The
Cassandra
default.

Sets the consistency level for
operations with name. It configures
the criteria that must be met for
storage on the Cassandra cluster
when an operation is executed.
Lower levels of consistency may
provide better performance, while
higher levels of consistency are
safer.

gg.handler.name.port Optional Integer 9042 Set to configure the port number that
the Cassandra Handler attempts to
connect to Cassandra server
instances. You can override the
default in the Cassandra YAML files.

Chapter 8
Target

8-120

Table 8-7 (Cont.) Cassandra Handler Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

gg.handler.name.batch
Type

Optional String unlogged Sets the type for Cassandra batch
processing.
• unlogged - Does not use

Cassandra's distributed batch
log.

• logged - Cassandra first writes
to its distributed batch log to
ensure atomicity of the batch.

• counter - Use if counter types
are updated in the batch.

gg.handler.name.abend
OnUnmappedColumns

Optional Boolean true Only applicable when
gg.handler.name.ddlHanding is
not configured with ADD. When set
to true, the replicat process will
abend if a column exists in the
source table, but does not exist in
the target Cassandra table. When
set to false, the replicat process
will not abend if a column exists in
the source table, but does not exist
in the target Cassandra table.
Instead, that column will not be
replicated.

gg.handler.name.Datas
taxJSSEConfigPath

Optional String None Set the path and file name of a
properties file containing the
Cassandra driver configuration. Use
when the Cassandra driver
configuration needs to be configured
for non-default values and potentially
SSL connectivity. For more
information, see Cassandra Driver
Configuration Documentation. You
need to follow the syntax of the
configuration file for the driver
version you are using. The suffix of
the Cassandra driver configuration
file must be .conf.

gg.handler.name.dataC
enter

Optional The
datacenter
name

datacenter
1

Set the datacenter name. If the
datacenter name does not match the
configured name on the server, then
it will not connect to the database.

8.2.5.3.2 Review a Sample Configuration
The following is a sample configuration for the Cassandra Handler from the Java Adapter
properties file:

gg.handlerlist=cassandra

#The handler properties
gg.handler.cassandra.type=cassandra

Chapter 8
Target

8-121

https://docs.datastax.com/en/developer/java-driver/4.13/manual/core/configuration/
https://docs.datastax.com/en/developer/java-driver/4.13/manual/core/configuration/

gg.handler.cassandra.mode=op
gg.handler.cassandra.contactPoints=localhost
gg.handler.cassandra.ddlHandling=CREATE,ADD,DROP
gg.handler.cassandra.compressedUpdates=true
gg.handler.cassandra.cassandraMode=async
gg.handler.cassandra.consistencyLevel=ONE

8.2.5.3.3 Configuring Security
The Cassandra Handler connection to the Cassandra Cluster can be secured using user name
and password credentials. These are set using the following configuration properties:

gg.handler.name.username
gg.handler.name.password

To configure SSL, the recommendation is to configure the SSL properties via the Datastax
Java Driver configuration file and point to the configuration file via the
gg.handler.name.DatastaxJSSEConfigPath property. See https://docs.datastax.com/en/
developer/java-driver/4.14/manual/core/ssl/ for the SSL settings instructions.

Sample configuration file is as follows. Uncomment the relevant parameters and change to
your required values.

datastax-java-driver {
 advanced.ssl-engine-factory {
 class = DefaultSslEngineFactory

 # This property is optional. If it is not present, the driver won't explicitly
enable cipher
 # suites on the engine, which according to the JDK documentations results in "a
minimum quality
 # of service".
 // cipher-suites = ["TLS_RSA_WITH_AES_128_CBC_SHA", "TLS_RSA_WITH_AES_256_CBC_SHA"]

 # Whether or not to require validation that the hostname of the server certificate's
common
 # name matches the hostname of the server being connected to. If not set, defaults
to true.
 // hostname-validation = true

 # The locations and passwords used to access truststore and keystore contents.
 # These properties are optional. If either truststore-path or keystore-path are
specified,
 # the driver builds an SSLContext from these files. If neither option is specified,
the
 # default SSLContext is used, which is based on system property configuration.
 // truststore-path = /path/to/client.truststore
 // truststore-password = password123
 // keystore-path = /path/to/client.keystore
 // keystore-password = password123
 }
}

Chapter 8
Target

8-122

https://docs.datastax.com/en/developer/java-driver/4.14/manual/core/ssl/
https://docs.datastax.com/en/developer/java-driver/4.14/manual/core/ssl/

8.2.5.4 About Automated DDL Handling
The Cassandra Handler performs the table check and reconciliation process the first time an
operation for a source table is encountered. Additionally, a DDL event or a metadata change
event causes the table definition in the Cassandra Handler to be marked as not suitable.

Therefore, the next time an operation for the table is encountered, the handler repeats the
table check, and reconciliation process as described in this topic.

• About the Table Check and Reconciliation Process

• Capturing New Change Data

8.2.5.4.1 About the Table Check and Reconciliation Process
The Cassandra Handler first interrogates the target Cassandra database to determine whether
the target Cassandra keyspace exists. If the target Cassandra keyspace does not exist, then
the Cassandra Handler abends. Keyspaces must be created by the user. The log file must
contain the error of the exact keyspace name that the Cassandra Handler is expecting.

Next, the Cassandra Handler interrogates the target Cassandra database for the table
definition. If the table does not exist, the Cassandra Handler either creates a table if
gg.handler.name.ddlHandling includes the CREATE option or abends the process. A message
is logged that shows you the table that does not exist in Cassandra.

If the table exists in Cassandra, then the Cassandra Handler reconciles the table definition
from the source trail file and the table definition in Cassandra. This reconciliation process
searches for columns that exist in the source table definition and not in the corresponding
Cassandra table definition. If it locates columns fitting this criteria and the
gg.handler.name.ddlHandling property includes ADD, then the Cassandra Handler adds the
columns to the target table in Cassandra. Otherwise, it ignores these columns.

Next, the Cassandra Handler searches for columns that exist in the target Cassandra table but
do not exist in the source table definition. If it locates columns that fit this criteria and the
gg.handler.name.ddlHandling property includes DROP, then the Cassandra Handler removes
these columns from the target table in Cassandra. Otherwise those columns are ignored.

Finally, the prepared statements are built.

8.2.5.4.2 Capturing New Change Data
You can capture all of the new change data into your Cassandra database, including the DDL
changes in the trail, for the target apply. Following is the acceptance criteria:

AC1: Support Cassandra as a bulk extract
AC2: Support Cassandra as a CDC source
AC4: All Cassandra supported data types are supported
AC5: Should be able to write into different tables based on any filter conditions, like
Updates to Update tables or based on primary keys
AC7: Support Parallel processing with multiple threads
AC8: Support Filtering based on keywords
AC9: Support for Metadata provider
AC10: Support for DDL handling on sources and target
AC11: Support for target creation and updating of metadata.
AC12: Support for error handling and extensive logging
AC13: Support for Conflict Detection and Resolution
AC14: Performance should be on par or better than HBase

Chapter 8
Target

8-123

8.2.5.5 Performance Considerations
Configuring the Cassandra Handler for async mode provides better performance than sync
mode. Set Replicat property GROUPTRANSOPS must be set to the default value of 1000.

Setting the consistency level directly affects performance. The higher the consistency level, the
more work must occur on the Cassandra cluster before the transmission of a given operation
can be considered complete. Select the minimum consistency level that still satisfies the
requirements of your use case.

The Cassandra Handler can work in either operation (op) or transaction (tx) mode. For the
best performance operation mode is recommended:

gg.handler.name.mode=op

8.2.5.6 Additional Considerations
• Cassandra database requires at least one primary key. The value of any primary key

cannot be null. Automated table creation fails for source tables that do not have a primary
key.

• When gg.handler.name.compressedUpdates=false is set, the Cassandra Handler expects
to update full before and after images of the data.

Note:

Using this property setting with a source trail file with partial image updates
results in null values being updated for columns for which the data is missing.
This configuration is incorrect and update operations pollute the target data with
null values in columns that did not change.

• The Cassandra Handler does not process DDL from the source database, even if the
source database provides DDL Instead, it reconciles between the source table definition
and the target Cassandra table definition. A DDL statement executed at the source
database that changes a column name appears to the Cassandra Handler as if a column is
dropped from the source table and a new column is added. This behavior depends on how
the gg.handler.name.ddlHandling property is configured.

gg.handler.name.ddlHandling
Configuration

Behavior

Not configured for ADD or DROP Old column name and data maintained in
Cassandra. New column is not created in
Cassandra, so no data is replicated for the new
column name from the DDL change forward.

Configured for ADD only Old column name and data maintained in
Cassandra. New column iscreated in Cassandra
and data replicated for the new column name
from the DDL change forward. Column mismatch
between the data is located before and after the
DDL change.

Configured for DROP only Old column name and data dropped in
Cassandra. New column is not created in
Cassandra, so no data replicated for the new
column name.

Chapter 8
Target

8-124

gg.handler.name.ddlHandling
Configuration

Behavior

Configured for ADD and DROP Old column name and data dropped in
Cassandra. New column is created in
Cassandra, and data is replicated for the new
column name from the DDL change forward.

8.2.5.7 Troubleshooting
This section contains information to help you troubleshoot various issues.

• Java Classpath

• Write Timeout Exception

• Datastax Driver Error

8.2.5.7.1 Java Classpath
When the classpath that is intended to include the required client libraries, a ClassNotFound
exception appears in the log file. To troubleshoot, set the Java Adapter logging to DEBUG, and
then run the process again. At the debug level, the log contains data about the JARs that were
added to the classpath from the gg.classpath configuration variable. The gg.classpath
variable selects the asterisk (*) wildcard character to select all JARs in a configured directory.
For example, /usr/cassandra/cassandra-java-driver4.9.0/*:/usr/cassandra/cassandra-
java-driver-4.9.0/lib/*.

For more information about setting the classpath, see Setting Up and Running the Cassandra
Handler and Cassandra Handler Client Dependencies.

8.2.5.7.2 Write Timeout Exception
When running the Cassandra handler, you may experience a
com.datastax.driver.core.exceptions.WriteTimeoutException exception that causes the
Replicat process to abend. It is likely to occur under some or all of the following conditions:

• The Cassandra Handler processes large numbers of operations, putting the Cassandra
cluster under a significant processing load.

• GROUPTRANSOPS is configured higher than the value of 1000 default.

• The Cassandra Handler is configured in asynchronous mode.

• The Cassandra Handler is configured with a consistency level higher than ONE.

When this problem occurs, the Cassandra Handler is streaming data faster than the
Cassandra cluster can process it. The write latency in the Cassandra cluster finally exceeds
the write request timeout period, which in turn results in the exception.

The following are potential solutions:

• Increase the write request timeout period. This is controlled with the
write_request_timeout_in_ms property in Cassandra and is located in the
cassandra.yaml file in the cassandra_install/conf directory. The default is 2000 (2
seconds). You can increase this value to move past the error, and then restart the
Cassandra node or nodes for the change to take effect.

Chapter 8
Target

8-125

• Decrease the GROUPTRANSOPS configuration value of the Replicat process. Typically,
decreasing the GROUPTRANSOPS configuration decreases the size of transactions processed
and reduces the likelihood that the Cassandra Handler can overtax the Cassandra cluster.

• Reduce the consistency level of the Cassandra Handler. This in turn reduces the amount
of work the Cassandra cluster has to complete for an operation to be considered as
written.

8.2.5.7.3 Datastax Driver Error
The Cassandra Handler has been changed to use the 4.x version of the Datastax Java Driver.
ClassNotFound exceptions can occur under either of the following conditions:

• The gg.classpath configuration is set to point at the old 3.x version of the Java Driver.

• The gg.classpath has not been configured to include the 4.x version of the Java Driver.

8.2.5.8 Cassandra Handler Client Dependencies
What are the dependencies for the Cassandra Handler to connect to Apache Cassandra
databases?

The following Maven dependencies are required for the Cassandra Handler:

Artifact: java-driver-core

GroupId: com.datastax.oss
AtifactId: java-driver-core
Version: 4.x

Artifact: java-driver-query-builder

GroupId: com.datastax.oss
Artifact ID: java-driver-query-builder
Version: 4.x
• Cassandra Datastax Java Driver 4.12.0

• Cassandra Datastax Java Driver 4.9.0

8.2.5.8.1 Cassandra Datastax Java Driver 4.12.0
asm-9.1.jar
asm-analysis-9.1.jar
asm-commons-9.1.jar
asm-tree-9.1.jar
asm-util-9.1.jar
config-1.4.1.jar
esri-geometry-api-1.2.1.jar
HdrHistogram-2.1.12.jar
jackson-annotations-2.12.2.jar
jackson-core-2.12.2.jar
jackson-core-asl-1.9.12.jar
jackson-databind-2.12.2.jar
java-driver-core-4.12.0.jar
java-driver-query-builder-4.12.0.jar
java-driver-shaded-guava-25.1-jre-graal-sub-1.jar

Chapter 8
Target

8-126

jcip-annotations-1.0-1.jar
jffi-1.3.1.jar
jffi-1.3.1-native.jar
jnr-a64asm-1.0.0.jar
jnr-constants-0.10.1.jar
jnr-ffi-2.2.2.jar
jnr-posix-3.1.5.jar
jnr-x86asm-1.0.2.jar
json-20090211.jar
jsr305-3.0.2.jar
metrics-core-4.1.18.jar
native-protocol-1.5.0.jar
netty-buffer-4.1.60.Final.jar
netty-codec-4.1.60.Final.jar
netty-common-4.1.60.Final.jar
netty-handler-4.1.60.Final.jar
netty-resolver-4.1.60.Final.jar
netty-transport-4.1.60.Final.jar
reactive-streams-1.0.3.jar
slf4j-api-1.7.26.jar
spotbugs-annotations-3.1.12.jar

8.2.5.8.2 Cassandra Datastax Java Driver 4.9.0
asm-7.1.jar
asm-analysis-7.1.jar
asm-commons-7.1.jar
asm-tree-7.1.jar
asm-util-7.1.jar
commons-collections-3.2.2.jar
commons-configuration-1.10.jar
commons-lang-2.6.jar
commons-lang3-3.8.1.jar
config-1.3.4.jar
esri-geometry-api-1.2.1.jar
gremlin-core-3.4.8.jar
gremlin-shaded-3.4.8.jar
HdrHistogram-2.1.11.jar
jackson-annotations-2.11.0.jar
jackson-core-2.11.0.jar
jackson-core-asl-1.9.12.jar
jackson-databind-2.11.0.jar
java-driver-core-4.9.0.jar
java-driver-query-builder-4.9.0.jar
java-driver-shaded-guava-25.1-jre-graal-sub-1.jar
javapoet-1.8.0.jar
javatuples-1.2.jar
jcip-annotations-1.0-1.jar
jcl-over-slf4j-1.7.25.jar
jffi-1.2.19.jar
jffi-1.2.19-native.jar
jnr-a64asm-1.0.0.jar
jnr-constants-0.9.12.jar
jnr-ffi-2.1.10.jar
jnr-posix-3.0.50.jar
jnr-x86asm-1.0.2.jar
json-20090211.jar
jsr305-3.0.2.jar
metrics-core-4.0.5.jar
native-protocol-1.4.11.jar
netty-buffer-4.1.51.Final.jar
netty-codec-4.1.51.Final.jar

Chapter 8
Target

8-127

netty-common-4.1.51.Final.jar
netty-handler-4.1.51.Final.jar
netty-resolver-4.1.51.Final.jar
netty-transport-4.1.51.Final.jar
reactive-streams-1.0.2.jar
slf4j-api-1.7.26.jar
spotbugs-annotations-3.1.12.jar
tinkergraph-gremlin-3.4.8.jar

8.2.6 Apache HBase
The HBase Handler is used to populate HBase tables from existing Oracle GoldenGate
supported sources.

This chapter describes how to use the HBase Handler.

• Overview

• Detailed Functionality

• Setting Up and Running the HBase Handler

• Security

• Metadata Change Events
The HBase Handler seamlessly accommodates metadata change events including adding
a column or dropping a column. The only requirement is that the source trail file contains
the metadata.

• Additional Considerations

• Troubleshooting the HBase Handler
Troubleshooting of the HBase Handler begins with the contents for the Java log4j file.
Follow the directions in the Java Logging Configuration to configure the runtime to correctly
generate the Java log4j log file.

• HBase Handler Client Dependencies
What are the dependencies for the HBase Handler to connect to Apache HBase
databases?

8.2.6.1 Overview
HBase is an open source Oracle GoldenGate for Distributed Applications and Analytics (GG
for DAA) application that emulates much of the functionality of a relational database
management system (RDBMS). Hadoop is specifically designed to store large amounts of
unstructured data. Conversely, data stored in databases and replicated through Oracle
GoldenGate is highly structured. HBase provides a way to maintain the important structure of
data while taking advantage of the horizontal scaling that is offered by the Hadoop Distributed
File System (HDFS).

8.2.6.2 Detailed Functionality
The HBase Handler takes operations from the source trail file and creates corresponding
tables in HBase, and then loads change capture data into those tables.

HBase Table Names

Table names created in an HBase map to the corresponding table name of the operation from
the source trail file. Table name is case-sensitive.

Chapter 8
Target

8-128

HBase Table Namespace

For two-part table names (schema name and table name), the schema name maps to the
HBase table namespace. For a three-part table name like Catalog.Schema.MyTable, the create
HBase namespace would be Catalog_Schema. HBase table namespaces are case sensitive. A
null schema name is supported and maps to the default HBase namespace.

HBase Row Key

HBase has a similar concept to the database primary keys, called the HBase row key. The
HBase row key is the unique identifier for a table row. HBase only supports a single row key
per row and it cannot be empty or null. The HBase Handler maps the primary key value into
the HBase row key value. If the source table has multiple primary keys, then the primary key
values are concatenated, separated by a pipe delimiter (|). You can configure the HBase row
key delimiter.

If there's no primary/unique keys at the source table, then Oracle GoldenGate behaves as
follows:

• If KEYCOLS is specified, then it constructs the key based on the specifications defined in the
KEYCOLS clause.

• If KEYCOLS is not specified, then it constructs a key based on the concatenation of all
eligible columns of the table.

The result is that the value of every column is concatenated to generate the HBase rowkey.
However, this is not a good practice.

Workaround: Use the replicat mapping statement to identify one or more primary key
columns. For example: MAP QASOURCE.TCUSTORD, TARGET QASOURCE.TCUSTORD, KEYCOLS
(CUST_CODE);

HBase Column Family

HBase has the concept of a column family. A column family is a way to group column data.
Only a single column family is supported. Every HBase column must belong to a single column
family. The HBase Handler provides a single column family per table that defaults to cf. You
can configure the column family name. However, after a table is created with a specific column
family name, you cannot reconfigure the column family name in the HBase example, without
first modifying or dropping the table results in an abend of the Oracle GoldenGateReplicat
processes.

8.2.6.3 Setting Up and Running the HBase Handler
HBase must run either collocated with the HBase Handler process or on a machine that can
connect from the network that is hosting the HBase Handler process. The underlying HDFS
single instance or clustered instance serving as the repository for HBase data must also run.

Instructions for configuring the HBase Handler components and running the handler are
described in this topic.

• Classpath Configuration

• HBase Handler Configuration

• Sample Configuration

• Performance Considerations

Chapter 8
Target

8-129

8.2.6.3.1 Classpath Configuration
For the HBase Handler to connect to HBase and stream data, the hbase-site.xml file and the
HBase client jars must be configured in gg.classpath variable. The HBase client jars must
match the version of HBase to which the HBase Handler is connecting. The HBase client jars
are not shipped with the Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA) product.

HBase Handler Client Dependencies lists the required HBase client jars by version.

The default location of the hbase-site.xml file is HBase_Home/conf.

The default location of the HBase client JARs is HBase_Home/lib/*.

If the HBase Handler is running on Windows, then follow the Windows classpathing syntax.

The gg.classpath must be configured exactly as described. The path to the hbase-site.xml
file must contain only the path with no wild card appended. The inclusion of the * wildcard in
the path to the hbase-site.xml file will cause it to be inaccessible. Conversely, the path to the
dependency jars must include the (*) wildcard character in order to include all the jar files in
that directory, in the associated classpath. Do not use *.jar. The following is an example of a
correctly configured gg.classpath variable:

gg.classpath=/var/lib/hbase/lib/*:/var/lib/hbase/conf

8.2.6.3.2 HBase Handler Configuration
The following are the configurable values for the HBase Handler. These properties are located
in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the HBase Handler, you must first configure the handler type by
specifying gg.handler.jdbc.type=hbase and the other HBase properties as follows:

Table 8-8 HBase Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handlerlist Required Any string. None Provides a name for the HBase Handler. The
HBase Handler name is then becomes part of the
property names listed in this table.

gg.handler.name.
type

Required hbase. None Selects the HBase Handler for streaming change
data capture into HBase.

gg.handler.name.
hBaseColumnFamil
yName

Optional Any string
legal for an
HBase
column
family
name.

cf Column family is a grouping mechanism for
columns in HBase. The HBase Handler only
supports a single column family.

gg.handler.name.
HBase20Compatibl
e

Optional true |
false

false
(HBas
e 1.0
compa
tible)

HBase 2.x removed methods and changed object
hierarchies. The result is that it broke the binary
compatibility with HBase 1.x. Set this property to
true to correctly interface with HBase 2.x,
otherwise HBase 1.x compatibility is used.

Chapter 8
Target

8-130

Table 8-8 (Cont.) HBase Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name.
includeTokens

Optional true |
false

false Using true indicates that token values are
included in the output to HBase. Using false
means token values are not to be included.

gg.handler.name.
keyValueDelimite
r

Optional Any string. = Provides a delimiter between key values in a
map. For example,
key=value,key1=value1,key2=value2.
Tokens are mapped values. Configuration value
supports CDATA[] wrapping.

gg.handler.name.
keyValuePairDeli
miter

Optional Any string. , Provides a delimiter between key value pairs in a
map. For example,
key=value,key1=value1,key2=value2key=v
alue,key1=value1,key2=value2. Tokens are
mapped values. Configuration value supports
CDATA[] wrapping.

gg.handler.name.
encoding

Optional Any
encoding
name or
alias
supported
by Java.1

For a list of
supported
options,
see
https://
docs.ora
cle.com/
javase/8
/docs/
technote
s/
guides/
intl/
encoding
.doc.htm
l.

The
native
system
encodi
ng of
the
machin
e
hosting
the
Oracle
Golden
Gate
proces
s

Determines the encoding of values written the
HBase. HBase values are written as bytes.

Chapter 8
Target

8-131

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

Table 8-8 (Cont.) HBase Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name.
pkUpdateHandling

Optional abend |
update |
delete-
insert

abend Provides configuration for how the HBase
Handler should handle update operations that
change a primary key. Primary key operations
can be problematic for the HBase Handler and
require special consideration by you.

• abend: indicates the process will end
abnormally.

• update: indicates the process will treat this
as a normal update

• delete-insert: indicates the process will
treat this as a delete and an insert. The full
before image is required for this feature to
work properly. This can be achieved by using
full supplemental logging in Oracle
Database. Without full before and after row
images the insert data will be incomplete.

gg.handler.name.
nullValueReprese
ntation

Optional Any string. NULL Allows you to configure what will be sent to
HBase in the case of a NULL column value. The
default is NULL. Configuration value supports
CDATA[] wrapping.

gg.handler.name.
authType

Optional kerberos None Setting this property to kerberos enables
Kerberos authentication.

gg.handler.name.
kerberosKeytabFi
le

Optional
(Require
d if
authTyp
e=kerbe
ros)

Relative or
absolute
path to a
Kerberos
keytab
file.

- The keytab file allows the HDFS Handler to
access a password to perform a kinit operation
for Kerberos security.

gg.handler.name.
kerberosPrincipa
l

Optional
(Require
d if
authTyp
e=kerbe
ros)

A legal
Kerberos
principal
name (for
example,
user/
FQDN@MY.
REALM)

- The Kerberos principal name for Kerberos
authentication.

gg.handler.name.
rowkeyDelimiter

Optional Any string/ | Configures the delimiter between primary key
values from the source table when generating the
HBase rowkey. This property supports CDATA[]
wrapping of the value to preserve whitespace if
the user wishes to delimit incoming primary key
values with a character or characters determined
to be whitespace.

Chapter 8
Target

8-132

Table 8-8 (Cont.) HBase Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name.
setHBaseOperatio
nTimestamp

Optional true |
false

true Set to true to set the timestamp for HBase
operations in the HBase Handler instead of
allowing HBase to assign the timestamps on the
server side. This property can be used to solve
the problem of a row delete followed by an
immediate reinsert of the row not showing up in
HBase, see HBase Handler Delete-Insert
Problem.

gg.handler.name.
omitNullValues

Optional true |
false

false Set to true to omit null fields from being written.

gg.handler.name.
metaColumnsTempl
ate

Optional A legal
string

None A legal string specifying the metaColumns to be
included. For more information, see Metacolumn
Keywords.

1 See Java Internalization Support at https://docs.oracle.com/javase/8/docs/technotes/guides/
intl/.

8.2.6.3.3 Sample Configuration
The following is a sample configuration for the HBase Handler from the Java Adapter
properties file:

gg.handlerlist=hbase
gg.handler.hbase.type=hbase
gg.handler.hbase.mode=tx
gg.handler.hbase.hBaseColumnFamilyName=cf
gg.handler.hbase.includeTokens=true
gg.handler.hbase.keyValueDelimiter=CDATA[=]
gg.handler.hbase.keyValuePairDelimiter=CDATA[,]
gg.handler.hbase.encoding=UTF-8
gg.handler.hbase.pkUpdateHandling=abend
gg.handler.hbase.nullValueRepresentation=CDATA[NULL]
gg.handler.hbase.authType=none

8.2.6.3.4 Performance Considerations
At each transaction commit, the HBase Handler performs a flush call to flush any buffered data
to the HBase region server. This must be done to maintain write durability. Flushing to the
HBase region server is an expensive call and performance can be greatly improved by using
the Replicat GROUPTRANSOPS parameter to group multiple smaller transactions in the source trail
file into a larger single transaction applied to HBase. You can use Replicat base-batching by
adding the configuration syntax in the Replicat configuration file.

Operations from multiple transactions are grouped together into a larger transaction, and it is
only at the end of the grouped transaction that transaction is committed.

8.2.6.4 Security
You can secure HBase connectivity using Kerberos authentication. Follow the associated
documentation for the HBase release to secure the HBase cluster. The HBase Handler can
connect to Kerberos secured clusters. The HBase hbase-site.xml must be in handlers

Chapter 8
Target

8-133

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/

classpath with the hbase.security.authentication property set to kerberos and
hbase.security.authorization property set to true.

You have to include the directory containing the HDFS core-site.xml file in the classpath.
Kerberos authentication is performed using the Hadoop UserGroupInformation class. This
class relies on the Hadoop configuration property hadoop.security.authentication being set
to kerberos to successfully perform the kinit command.

Additionally, you must set the following properties in the HBase Handler Java configuration file:

gg.handler.{name}.authType=kerberos
gg.handler.{name}.keberosPrincipalName={legal Kerberos principal name}
gg.handler.{name}.kerberosKeytabFile={path to a keytab file that contains the password
for the Kerberos principal so that the Oracle GoldenGate HDFS handler can
programmatically perform the Kerberos kinit operations to obtain a Kerberos ticket}.

You may encounter the inability to decrypt the Kerberos password from the keytab file. This
causes the Kerberos authentication to fall back to interactive mode which cannot work because
it is being invoked programmatically. The cause of this problem is that the Java Cryptography
Extension (JCE) is not installed in the Java Runtime Environment (JRE). Ensure that the JCE
is loaded in the JRE, see http://www.oracle.com/technetwork/java/javase/downloads/jce8-
download-2133166.html.

8.2.6.5 Metadata Change Events
The HBase Handler seamlessly accommodates metadata change events including adding a
column or dropping a column. The only requirement is that the source trail file contains the
metadata.

8.2.6.6 Additional Considerations
Classpath issues are common during the initial setup of the HBase Handler. The typical
indicators are occurrences of the ClassNotFoundException in the Java log4j log file. The
HBase client jars do not ship with Oracle GoldenGate for Big Data. You must resolve the
required HBase client jars. HBase Handler Client Dependencies includes a list of HBase client
jars for each supported version. Either the hbase-site.xml or one or more of the required
client JARS are not included in the classpath. For instructions on configuring the classpath of
the HBase Handler, see Classpath Configuration.

8.2.6.7 Troubleshooting the HBase Handler
Troubleshooting of the HBase Handler begins with the contents for the Java log4j file. Follow
the directions in the Java Logging Configuration to configure the runtime to correctly generate
the Java log4j log file.

• Java Classpath

• HBase Connection Properties

• Logging of Handler Configuration

• HBase Handler Delete-Insert Problem

8.2.6.7.1 Java Classpath
Issues with the Java classpath are common. A ClassNotFoundException in the Java log4j log
file indicates a classpath problem. You can use the Java log4j log file to troubleshoot this

Chapter 8
Target

8-134

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

issue. Setting the log level to DEBUG logs each of the jars referenced in the gg.classpath object
to the log file. You can make sure that all of the required dependency jars are resolved by
enabling DEBUG level logging, and then searching the log file for messages like the following:

2015-09-29 13:04:26 DEBUG ConfigClassPath:74 - ...adding to classpath:
 url="file:/ggwork/hbase/hbase-1.0.1.1/lib/hbase-server-1.0.1.1.jar"

8.2.6.7.2 HBase Connection Properties
The contents of the HDFS hbase-site.xml file (including default settings) are output to the
Java log4j log file when the logging level is set to DEBUG or TRACE. This file shows the
connection properties to HBase. Search for the following in the Java log4j log file.

2015-09-29 13:04:27 DEBUG HBaseWriter:449 - Begin - HBase configuration object contents
for connection troubleshooting.
Key: [hbase.auth.token.max.lifetime] Value: [604800000].

Commonly, for the hbase-site.xml file is not included in the classpath or the path to the
hbase-site.xml file is incorrect. In this case, the HBase Handler cannot establish a connection
to HBase, and the Oracle GoldenGate process abends. The following error is reported in the
Java log4j log.

2015-09-29 12:49:29 ERROR HBaseHandler:207 - Failed to initialize the HBase handler.
org.apache.hadoop.hbase.ZooKeeperConnectionException: Can't connect to ZooKeeper

Verify that the classpath correctly includes the hbase-site.xml file and that HBase is running.

8.2.6.7.3 Logging of Handler Configuration
The Java log4j log file contains information on the configuration state of the HBase Handler.
This information is output at the INFO log level. The following is a sample output:

2015-09-29 12:45:53 INFO HBaseHandler:194 - **** Begin HBase Handler - Configuration
Summary ****
 Mode of operation is set to tx.
 HBase data will be encoded using the native system encoding.
 In the event of a primary key update, the HBase Handler will ABEND.
 HBase column data will use the column family name [cf].
 The HBase Handler will not include tokens in the HBase data.
 The HBase Handler has been configured to use [=] as the delimiter between keys and
values.
 The HBase Handler has been configured to use [,] as the delimiter between key values
pairs.
 The HBase Handler has been configured to output [NULL] for null values.
Hbase Handler Authentication type has been configured to use [none]

8.2.6.7.4 HBase Handler Delete-Insert Problem
If you are using the HBase Handler with the
gg.handler.name.setHBaseOperationTimestamp=false configuration property, then the
source database may get out of sync with data in the HBase tables. This is caused by the
deletion of a row followed by the immediate reinsertion of the row. HBase creates a tombstone
marker for the delete that is identified by a specific timestamp. This tombstone marker marks
any row records in HBase with the same row key as deleted that have a timestamp before or
the same as the tombstone marker. This can occur when the deleted row is immediately
reinserted. The insert operation can inadvertently have the same timestamp as the delete
operation so the delete operation causes the subsequent insert operation to incorrectly appear
as deleted.

Chapter 8
Target

8-135

To work around this issue, you need to set the
gg.handler.name.setHbaseOperationTimestamp=true, which does two things:

• Sets the timestamp for row operations in the HBase Handler.

• Detection of a delete-insert operation that ensures that the insert operation has a
timestamp that is after the insert.

The default for gg.handler.name.setHbaseOperationTimestamp is true, which means that the
HBase server supplies the timestamp for a row. This prevents the HBase delete-reinsert out-of-
sync problem.

Setting the row operation timestamp in the HBase Handler can have these consequences:

1. Since the timestamp is set on the client side, this could create problems if multiple
applications are feeding data to the same HBase table.

2. If delete and reinsert is a common pattern in your use case, then the HBase Handler has to
increment the timestamp 1 millisecond each time this scenario is encountered.

Processing cannot be allowed to get too far into the future so the HBase Handler only allows
the timestamp to increment 100 milliseconds into the future before it attempts to wait the
process so that the client side HBase operation timestamp and real time are back in sync.
When a delete-insert is used instead of an update in the source database so this sync scenario
would be quite common. Processing speeds may be affected by not allowing the HBase
timestamp to go over 100 milliseconds into the future if this scenario is common.

8.2.6.8 HBase Handler Client Dependencies
What are the dependencies for the HBase Handler to connect to Apache HBase databases?

The maven central repository artifacts for HBase databases are:

• Maven groupId: org.apache.hbase
• Maven atifactId: hbase-client
• Maven version: the HBase version numbers listed for each section

The hbase-client-x.x.x.jar file is not distributed with Apache HBase, nor is it mandatory to
be in the classpath. The hbase-client-x.x.x.jar file is an empty Maven project whose
purpose of aggregating all of the HBase client dependencies.

• HBase 2.4.4

• HBase 2.3.3

• HBase 2.2.0

• HBase 2.1.5

• HBase 2.0.5

• HBase 1.4.10

• HBase 1.3.3

• HBase 1.2.5

• HBase 1.1.1

• HBase 1.0.1.1

Chapter 8
Target

8-136

8.2.6.8.1 HBase 2.4.4
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
audience-annotations-0.5.0.jar
avro-1.7.7.jar
commons-beanutils-1.9.4.jar
commons-cli-1.2.jar
commons-codec-1.13.jar
commons-collections-3.2.2.jar
commons-compress-1.19.jar
commons-configuration-1.6.jar
commons-crypto-1.0.0.jar
commons-digester-1.8.jar
commons-io-2.6.jar
commons-lang-2.6.jar
commons-lang3-3.9.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar
error_prone_annotations-2.3.4.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.10.0.jar
hadoop-auth-2.10.0.jar
hadoop-common-2.10.0.jar
hbase-client-2.4.4.jar
hbase-common-2.4.4.jar
hbase-hadoop2-compat-2.4.4.jar
hbase-hadoop-compat-2.4.4.jar
hbase-logging-2.4.4.jar
hbase-metrics-2.4.4.jar
hbase-metrics-api-2.4.4.jar
hbase-protocol-2.4.4.jar
hbase-protocol-shaded-2.4.4.jar
hbase-shaded-gson-3.4.1.jar
hbase-shaded-miscellaneous-3.4.1.jar
hbase-shaded-netty-3.4.1.jar
hbase-shaded-protobuf-3.4.1.jar
htrace-core4-4.2.0-incubating.jar
httpclient-4.5.2.jar
httpcore-4.4.4.jar
jackson-core-asl-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
javax.activation-api-1.2.0.jar
jcip-annotations-1.0-1.jar
jcodings-1.0.55.jar
jdk.tools-1.8.jar
jetty-sslengine-6.1.26.jar
joni-2.1.31.jar
jsch-0.1.54.jar
jsr305-3.0.0.jar
log4j-1.2.17.jar
metrics-core-3.2.6.jar
netty-buffer-4.1.45.Final.jar
netty-codec-4.1.45.Final.jar

Chapter 8
Target

8-137

netty-common-4.1.45.Final.jar
netty-handler-4.1.45.Final.jar
netty-resolver-4.1.45.Final.jar
netty-transport-4.1.45.Final.jar
netty-transport-native-epoll-4.1.45.Final.jar
netty-transport-native-unix-common-4.1.45.Final.jar
nimbus-jose-jwt-4.41.1.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.7.30.jar
slf4j-log4j12-1.7.25.jar
snappy-java-1.0.5.jar
stax2-api-3.1.4.jar
woodstox-core-5.0.3.jar
xmlenc-0.52.jar
zookeeper-3.5.7.jar
zookeeper-jute-3.5.7.jar

8.2.6.8.2 HBase 2.3.3
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
audience-annotations-0.5.0.jar
avro-1.7.7.jar
commons-beanutils-1.9.4.jar
commons-cli-1.2.jar
commons-codec-1.13.jar
commons-collections-3.2.2.jar
commons-compress-1.19.jar
commons-configuration-1.6.jar
commons-crypto-1.0.0.jar
commons-digester-1.8.jar
commons-io-2.6.jar
commons-lang-2.6.jar
commons-lang3-3.9.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar
error_prone_annotations-2.3.4.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.10.0.jar
hadoop-auth-2.10.0.jar
hadoop-common-2.10.0.jar
hbase-client-2.3.3.jar
hbase-common-2.3.3.jar
hbase-hadoop2-compat-2.3.3.jar
hbase-hadoop-compat-2.3.3.jar
hbase-logging-2.3.3.jar
hbase-metrics-2.3.3.jar
hbase-metrics-api-2.3.3.jar
hbase-protocol-2.3.3.jar
hbase-protocol-shaded-2.3.3.jar
hbase-shaded-gson-3.3.0.jar
hbase-shaded-miscellaneous-3.3.0.jar
hbase-shaded-netty-3.3.0.jar
hbase-shaded-protobuf-3.3.0.jar

Chapter 8
Target

8-138

htrace-core4-4.2.0-incubating.jar
httpclient-4.5.2.jar
httpcore-4.4.4.jar
jackson-core-asl-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
javax.activation-api-1.2.0.jar
jcip-annotations-1.0-1.jar
jcodings-1.0.18.jar
jdk.tools-1.8.jar

8.2.6.8.3 HBase 2.2.0
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
audience-annotations-0.5.0.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.10.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-crypto-1.0.0.jar
commons-digester-1.8.jar
commons-io-2.5.jar
commons-lang-2.6.jar
commons-lang3-3.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar
error_prone_annotations-2.3.3.jar
findbugs-annotations-1.3.9-1.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.8.5.jar
hadoop-auth-2.8.5.jar
hadoop-common-2.8.5.jar
hamcrest-core-1.3.jar
hbase-client-2.2.0.jar
hbase-common-2.2.0.jar
hbase-hadoop2-compat-2.2.0.jar
hbase-hadoop-compat-2.2.0.jar
hbase-metrics-2.2.0.jar
hbase-metrics-api-2.2.0.jar
hbase-protocol-2.2.0.jar
hbase-protocol-shaded-2.2.0.jar
hbase-shaded-miscellaneous-2.2.1.jar
hbase-shaded-netty-2.2.1.jar
hbase-shaded-protobuf-2.2.1.jar
htrace-core4-4.2.0-incubating.jar
httpclient-4.5.2.jar
httpcore-4.4.4.jar
jackson-core-asl-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jcip-annotations-1.0-1.jar
jcodings-1.0.18.jar

Chapter 8
Target

8-139

jdk.tools-1.8.jar
jetty-sslengine-6.1.26.jar
joni-2.1.11.jar
jsch-0.1.54.jar
jsr305-3.0.0.jar
junit-4.12.jar
log4j-1.2.17.jar
metrics-core-3.2.6.jar
nimbus-jose-jwt-4.41.1.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.7.25.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.0.4.1.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.10.jar

8.2.6.8.4 HBase 2.1.5
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
audience-annotations-0.5.0.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.10.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-crypto-1.0.0.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.5.jar
commons-lang-2.6.jar
commons-lang3-3.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar
findbugs-annotations-1.3.9-1.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.7.7.jar
hadoop-auth-2.7.7.jar
hadoop-common-2.7.7.jar
hamcrest-core-1.3.jar
hbase-client-2.1.5.jar
hbase-common-2.1.5.jar
hbase-hadoop2-compat-2.1.5.jar
hbase-hadoop-compat-2.1.5.jar
hbase-metrics-2.1.5.jar
hbase-metrics-api-2.1.5.jar
hbase-protocol-2.1.5.jar
hbase-protocol-shaded-2.1.5.jar
hbase-shaded-miscellaneous-2.1.0.jar
hbase-shaded-netty-2.1.0.jar

Chapter 8
Target

8-140

hbase-shaded-protobuf-2.1.0.jar
htrace-core-3.1.0-incubating.jar
htrace-core4-4.2.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-annotations-2.9.0.jar
jackson-core-2.9.2.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.9.2.jar
jackson-mapper-asl-1.9.13.jar
jcodings-1.0.18.jar
jdk.tools-1.8.jar
jetty-sslengine-6.1.26.jar
joni-2.1.11.jar
jsch-0.1.54.jar
jsr305-3.0.0.jar
junit-4.12.jar
log4j-1.2.17.jar
metrics-core-3.2.6.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.7.25.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.0.4.1.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.10.jar

8.2.6.8.5 HBase 2.0.5
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
audience-annotations-0.5.0.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.10.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-crypto-1.0.0.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.5.jar
commons-lang-2.6.jar
commons-lang3-3.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar
findbugs-annotations-1.3.9-1.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.7.7.jar
hadoop-auth-2.7.7.jar
hadoop-common-2.7.7.jar
hamcrest-core-1.3.jar

Chapter 8
Target

8-141

hbase-client-2.0.5.jar
hbase-common-2.0.5.jar
hbase-hadoop2-compat-2.0.5.jar
hbase-hadoop-compat-2.0.5.jar
hbase-metrics-2.0.5.jar
hbase-metrics-api-2.0.5.jar
hbase-protocol-2.0.5.jar
hbase-protocol-shaded-2.0.5.jar
hbase-shaded-miscellaneous-2.1.0.jar
hbase-shaded-netty-2.1.0.jar
hbase-shaded-protobuf-2.1.0.jar
htrace-core4-4.2.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-annotations-2.9.0.jar
jackson-core-2.9.2.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.9.2.jar
jackson-mapper-asl-1.9.13.jar
jcodings-1.0.18.jar
jdk.tools-1.8.jar
jetty-sslengine-6.1.26.jar
joni-2.1.11.jar
jsch-0.1.54.jar
jsr305-3.0.0.jar
junit-4.12.jar
log4j-1.2.17.jar
metrics-core-3.2.1.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.7.25.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.0.4.1.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.10.jar

8.2.6.8.6 HBase 1.4.10
activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.7.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.9.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.2.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar

Chapter 8
Target

8-142

findbugs-annotations-1.3.9-1.jar
gson-2.2.4.jar
guava-12.0.1.jar
hadoop-annotations-2.7.4.jar
hadoop-auth-2.7.4.jar
hadoop-common-2.7.4.jar
hadoop-mapreduce-client-core-2.7.4.jar
hadoop-yarn-api-2.7.4.jar
hadoop-yarn-common-2.7.4.jar
hamcrest-core-1.3.jar
hbase-annotations-1.4.10.jar
hbase-client-1.4.10.jar
hbase-common-1.4.10.jar
hbase-protocol-1.4.10.jar
htrace-core-3.1.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jaxb-api-2.2.2.jar
jcodings-1.0.8.jar
jdk.tools-1.8.jar
jetty-sslengine-6.1.26.jar
jetty-util-6.1.26.jar
joni-2.1.2.jar
jsch-0.1.54.jar
jsr305-3.0.0.jar
junit-4.12.jar
log4j-1.2.17.jar
metrics-core-2.2.0.jar
netty-3.6.2.Final.jar
netty-all-4.1.8.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.6.1.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.0.5.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.10.jar

8.2.6.8.7 HBase 1.3.3
activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.9.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-el-1.0.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar

Chapter 8
Target

8-143

commons-logging-1.2.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
findbugs-annotations-1.3.9-1.jar
guava-12.0.1.jar
hadoop-annotations-2.5.1.jar
hadoop-auth-2.5.1.jar
hadoop-common-2.5.1.jar
hadoop-mapreduce-client-core-2.5.1.jar
hadoop-yarn-api-2.5.1.jar
hadoop-yarn-common-2.5.1.jar
hamcrest-core-1.3.jar
hbase-annotations-1.3.3.jar
hbase-client-1.3.3.jar
hbase-common-1.3.3.jar
hbase-protocol-1.3.3.jar
htrace-core-3.1.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jaxb-api-2.2.2.jar
jcodings-1.0.8.jar
jdk.tools-1.6.jar
jetty-util-6.1.26.jar
joni-2.1.2.jar
jsch-0.1.42.jar
jsr305-1.3.9.jar
junit-4.12.jar
log4j-1.2.17.jar
metrics-core-2.2.0.jar
netty-3.6.2.Final.jar
netty-all-4.0.50.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.6.1.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

8.2.6.8.8 HBase 1.2.5
activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.9.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-el-1.0.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar

Chapter 8
Target

8-144

commons-lang-2.6.jar
commons-logging-1.2.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
findbugs-annotations-1.3.9-1.jar
guava-12.0.1.jar
hadoop-annotations-2.5.1.jar
hadoop-auth-2.5.1.jar
hadoop-common-2.5.1.jar
hadoop-mapreduce-client-core-2.5.1.jar
hadoop-yarn-api-2.5.1.jar
hadoop-yarn-common-2.5.1.jar
hamcrest-core-1.3.jar
hbase-annotations-1.2.5.jar
hbase-client-1.2.5.jar
hbase-common-1.2.5.jar
hbase-protocol-1.2.5.jar
htrace-core-3.1.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jaxb-api-2.2.2.jar
jcodings-1.0.8.jar
jdk.tools-1.6.jar
jetty-util-6.1.26.jar
joni-2.1.2.jar
jsch-0.1.42.jar
jsr305-1.3.9.jar
junit-4.12.jar
log4j-1.2.17.jar
metrics-core-2.2.0.jar
netty-3.6.2.Final.jar
netty-all-4.0.23.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.6.1.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

8.2.6.8.9 HBase 1.1.1
HBase 1.1.1 is effectively the same as HBase 1.1.0.1. You can substitute 1.1.0.1 in the
libraries that are versioned as 1.1.1.

activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.9.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar

Chapter 8
Target

8-145

commons-digester-1.8.jar
commons-el-1.0.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.2.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
findbugs-annotations-1.3.9-1.jar
guava-12.0.1.jar
hadoop-annotations-2.5.1.jar
hadoop-auth-2.5.1.jar
hadoop-common-2.5.1.jar
hadoop-mapreduce-client-core-2.5.1.jar
hadoop-yarn-api-2.5.1.jar
hadoop-yarn-common-2.5.1.jar
hamcrest-core-1.3.jar
hbase-annotations-1.1.1.jar
hbase-client-1.1.1.jar
hbase-common-1.1.1.jar
hbase-protocol-1.1.1.jar
htrace-core-3.1.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jaxb-api-2.2.2.jar
jcodings-1.0.8.jar
jdk.tools-1.7.jar
jetty-util-6.1.26.jar
joni-2.1.2.jar
jsch-0.1.42.jar
jsr305-1.3.9.jar
junit-4.11.jar
log4j-1.2.17.jar
netty-3.6.2.Final.jar
netty-all-4.0.23.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.6.1.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

8.2.6.8.10 HBase 1.0.1.1
activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.9.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar

Chapter 8
Target

8-146

commons-digester-1.8.jar
commons-el-1.0.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.2.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
findbugs-annotations-1.3.9-1.jar
guava-12.0.1.jar
hadoop-annotations-2.5.1.jar
hadoop-auth-2.5.1.jar
hadoop-common-2.5.1.jar
hadoop-mapreduce-client-core-2.5.1.jar
hadoop-yarn-api-2.5.1.jar
hadoop-yarn-common-2.5.1.jar
hamcrest-core-1.3.jar
hbase-annotations-1.0.1.1.jar
hbase-client-1.0.1.1.jar
hbase-common-1.0.1.1.jar
hbase-protocol-1.0.1.1.jar
htrace-core-3.1.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.8.8.jar
jackson-mapper-asl-1.8.8.jar
jaxb-api-2.2.2.jar
jcodings-1.0.8.jar
jdk.tools-1.7.jar
jetty-util-6.1.26.jar
joni-2.1.2.jar
jsch-0.1.42.jar
jsr305-1.3.9.jar
junit-4.11.jar
log4j-1.2.17.jar
netty-3.6.2.Final.jar
netty-all-4.0.23.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.6.1.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

8.2.7 Apache HDFS
The HDFS Handler is designed to stream change capture data into the Hadoop Distributed File
System (HDFS).

This chapter describes how to use the HDFS Handler.

• Overview

• Writing into HDFS in SequenceFile Format
The HDFS SequenceFile is a flat file consisting of binary key and value pairs. You can
enable writing data in SequenceFile format by setting the gg.handler.name.format
property to sequencefile.

• Setting Up and Running the HDFS Handler

Chapter 8
Target

8-147

• Writing in HDFS in Avro Object Container File Format

• Generating HDFS File Names Using Template Strings

• Metadata Change Events

• Partitioning
The partitioning functionality uses the template mapper functionality to resolve partitioning
strings. The result is that the you have more control in how to partition source trail data.
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) 21c release,
all the keywords that are supported by the templating functionality are supported in HDFS
partitioning.

• HDFS Additional Considerations

• Best Practices

• Troubleshooting the HDFS Handler
Troubleshooting of the HDFS Handler begins with the contents for the Java log4j file.
Follow the directions in the Java Logging Configuration to configure the runtime to correctly
generate the Java log4j log file.

• HDFS Handler Client Dependencies

8.2.7.1 Overview
The HDFS is the primary file system for Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA). Hadoop is typically installed on multiple machines that work together
as a Hadoop cluster. Hadoop allows you to store very large amounts of data in the cluster that
is horizontally scaled across the machines in the cluster. You can then perform analytics on
that data using a variety of GG for DAA applications.

8.2.7.2 Writing into HDFS in SequenceFile Format
The HDFS SequenceFile is a flat file consisting of binary key and value pairs. You can enable
writing data in SequenceFile format by setting the gg.handler.name.format property to
sequencefile.

The key part of the record is set to null, and the actual data is set in the value part. For
information about Hadoop SequenceFile, see https://cwiki.apache.org/confluence/display/
HADOOP2/SequenceFile.

• Integrating with Hive

• Understanding the Data Format

8.2.7.2.1 Integrating with Hive
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) release does not
include a Hive storage handler because the HDFS Handler provides all of the necessary Hive
functionality.

You can create a Hive integration to create tables and update table definitions in case of DDL
events. This is limited to data formatted in Avro Object Container File format. For more
information, see Writing in HDFS in Avro Object Container File Format and HDFS Handler
Configuration.

Chapter 8
Target

8-148

https://cwiki.apache.org/confluence/display/HADOOP2/SequenceFile
https://cwiki.apache.org/confluence/display/HADOOP2/SequenceFile

For Hive to consume sequence files, the DDL creates Hive tables including STORED as
sequencefile . The following is a sample create table script:

CREATE EXTERNAL TABLE table_name (
 col1 string,
 ...
 ...
 col2 string)
ROW FORMAT DELIMITED
STORED as sequencefile
LOCATION '/path/to/hdfs/file';

Note:

If files are intended to be consumed by Hive, then the
gg.handler.name.partitionByTable property should be set to true.

8.2.7.2.2 Understanding the Data Format
The data written in the value part of each record and is in delimited text format. All of the
options described in the Using the Delimited Text Row Formatter section are applicable to
HDFS SequenceFile when writing data to it.

For example:

gg.handler.name.format=sequencefile
gg.handler.name.format.includeColumnNames=true
gg.handler.name.format.includeOpType=true
gg.handler.name.format.includeCurrentTimestamp=true
gg.handler.name.format.updateOpKey=U

8.2.7.3 Setting Up and Running the HDFS Handler
To run the HDFS Handler, a Hadoop single instance or Hadoop cluster must be installed,
running, and network-accessible from the machine running the HDFS Handler. Apache
Hadoop is open source and you can download it from:

http://hadoop.apache.org/
Follow the Getting Started links for information on how to install a single-node cluster (for
pseudo-distributed operation mode) or a clustered setup (for fully-distributed operation mode).

Instructions for configuring the HDFS Handler components and running the handler are
described in the following sections.

• Classpath Configuration

• HDFS Handler Configuration

• Review a Sample Configuration

• Performance Considerations

• Security

Chapter 8
Target

8-149

http://hadoop.apache.org/

8.2.7.3.1 Classpath Configuration
For the HDFS Handler to connect to HDFS and run, the HDFS core-site.xml file and the
HDFS client jars must be configured in gg.classpath variable. The HDFS client jars must
match the version of HDFS that the HDFS Handler is connecting. For a list of the required
client jar files by release, see HDFS Handler Client Dependencies.

The default location of the core-site.xml file is Hadoop_Home/etc/hadoop
The default locations of the HDFS client jars are the following directories:

Hadoop_Home/share/hadoop/common/lib/*
Hadoop_Home/share/hadoop/common/*
Hadoop_Home/share/hadoop/hdfs/lib/*

Hadoop_Home/share/hadoop/hdfs/*
The gg.classpath must be configured exactly as shown. The path to the core-site.xml file
must contain the path to the directory containing the core-site.xmlfile with no wildcard
appended. If you include a (*) wildcard in the path to the core-site.xml file, the file is not
picked up. Conversely, the path to the dependency jars must include the (*) wildcard character
in order to include all the jar files in that directory in the associated classpath. Do not use
*.jar.

The following is an example of a correctly configured gg.classpath variable:

gg.classpath=/ggwork/hadoop/hadoop-2.6.0/etc/hadoop:/ggwork/hadoop/hadoop-2.6.0/share/
hadoop/common/lib/*:/ggwork/hadoop/hadoop-2.6.0/share/hadoop/common/*:/ggwork/hadoop/
hadoop-2.6.0/share/hadoop/hdfs/*:/ggwork/hadoop/hadoop-2.6.0/share/hadoop/hdfs/lib/*

The HDFS configuration file hdfs-site.xml must also be in the classpath if Kerberos security
is enabled. By default, the hdfs-site.xml file is located in the Hadoop_Home/etc/hadoop
directory. If the HDFS Handler is not collocated with Hadoop, either or both files can be copied
to another machine.

8.2.7.3.2 HDFS Handler Configuration
The following are the configurable values for the HDFS Handler. These properties are located
in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the HDFS Handler, you must first configure the handler type by
specifying gg.handler.name.type=hdfs and the other HDFS properties as follows:

Property Optional
/
Required

Legal Values Default Explanation

gg.handlerlist Required Any string None Provides a name for the HDFS Handler. The
HDFS Handler name then becomes part of the
property names listed in this table.

gg.handler.name
.type

Required hdfs None Selects the HDFS Handler for streaming
change data capture into HDFS.

gg.handler.name
.mode

Optional tx | op op Selects operation (op) mode or transaction (tx)
mode for the handler. In almost all scenarios,
transaction mode results in better performance.

Chapter 8
Target

8-150

Property Optional
/
Required

Legal Values Default Explanation

gg.handler.name
.maxFileSize

Optional The default unit of measure
is bytes. You can use k, m,
or g to specify kilobytes,
megabytes, or gigabytes.
Examples of legal values
include 10000, 10k, 100m,
1.1g.

1g Selects the maximum file size of the created
HDFS files.

gg.handler.name
.pathMappingTem
plate

Optional Any legal templated string
to resolve the target write
directory in HDFS.
Templates can contain a
mix of constants and
keywords which are
dynamically resolved at
runtime to generate the
HDFS write directory.

/ogg/$
{toLowerC
ase[$
{fullyQua
lifiedTab
leName}]}

You can use keywords interlaced with
constants to dynamically generate the HDFS
write directory at runtime, see Generating
HDFS File Names Using Template Strings.

gg.handler.name
.fileRollInterv
al

Optional The default unit of measure
is milliseconds. You can
stipulate ms, s, m, h to
signify milliseconds,
seconds, minutes, or hours
respectively. Examples of
legal values include 10000,
10000ms, 10s, 10m, or
1.5h. Values of 0 or less
indicate that file rolling on
time is turned off.

File rolling
on time is
off.

The timer starts when an HDFS file is created.
If the file is still open when the interval elapses,
then the file is closed. A new file is not
immediately opened. New HDFS files are
created on a just-in-time basis.

gg.handler.name
.inactivityRoll
Interval

Optional The default unit of measure
is milliseconds. You can use
ms, s, m, h to specify
milliseconds, seconds,
minutes, or hours.
Examples of legal values
include 10000, 10000ms,
10s, 10, 5m, or 1h. Values
of 0 or less indicate that file
inactivity rolling on time is
turned off.

File
inactivity
rolling on
time is off.

The timer starts from the latest write to an
HDFS file. New writes to an HDFS file restart
the counter. If the file is still open when the
counter elapses, the HDFS file is closed. A new
file is not immediately opened. New HDFS files
are created on a just-in-time basis.

gg.handler.name
.fileNameMappin
gTemplate

Optional A string with resolvable
keywords and constants
used to dynamically
generate HDFS file names
at runtime.

$
{fullyQua
lifiedTab
leName}_$
{groupNam
e}_$
{currentT
imeStamp}
.txt

You can use keywords interlaced with
constants to dynamically generate unique
HDFS file names at runtime, see Generating
HDFS File Names Using Template Strings. File
names typically follow the format, $
{fullyQualifiedTableName}_$
{groupName}_${currentTimeStamp}
{.txt}.

Chapter 8
Target

8-151

Property Optional
/
Required

Legal Values Default Explanation

gg.handler.name
.partitionByTab
le

Optional true | false true (data
is
partitioned
by table)

Determines whether data written into HDFS
must be partitioned by table. If set to true,
then data for different tables are written to
different HDFS files. If set to false, then data
from different tables is interlaced in the same
HDFS file.

Must be set to true to use the Avro Object
Container File Formatter. If set to false, a
configuration exception occurs at initialization.

gg.handler.name
.rollOnMetadata
Change

Optional true | false true
(HDFS files
are rolled
on a
metadata
change
event)

Determines whether HDFS files are rolled in
the case of a metadata change. True means
the HDFS file is rolled, false means the HDFS
file is not rolled.

Must be set to true to use the Avro Object
Container File Formatter. If set to false, a
configuration exception occurs at initialization.

gg.handler.name
.format

Optional delimitedtext | json |
json_row | xml | avro_row
| avro_op | avro_row_ocf
| avro_op_ocf |
sequencefile

delimited
text

Selects the formatter for the HDFS Handler for
how output data is formatted.

• delimitedtext: Delimited text

• json: JSON

• json_row: JSON output modeling row
data

• xml: XML

• avro_row: Avro in row compact format

• avro_op: Avro in operation more verbose
format.

• avro_row_ocf: Avro in the row compact
format written into HDFS in the Avro
Object Container File (OCF) format.

• avro_op_ocf: Avro in the more verbose
format written into HDFS in the Avro
Object Container File format.

• sequencefile: Delimited text written in
sequence into HDFS is sequence file
format.

gg.handler.name
.includeTokens

Optional true | false false Set to true to include the tokens field and
tokens key/values in the output. Set to false to
suppress tokens output.

gg.handler.name
.partitioner.fu
lly_qualified_t
able_ name

Optional A mixture of templating
keywords and constants to
resolve a sub directory at
runtime to partition the data.

- The configuration resolves a sub directory or
sub directories, which are appended to the
resolved HDFS target path. These sub
directories are used to partition the data.
gg.handler.name.partitionByTable must
be set to true.

gg.handler.name
.authType

Optional kerberos none Setting this property to kerberos enables
Kerberos authentication.

Chapter 8
Target

8-152

Property Optional
/
Required

Legal Values Default Explanation

gg.handler.name
.kerberosKeytab
File

Optional
(Required
if
authType
=Kerbero
s)

Relative or absolute path to
a Kerberos keytab file.

- The keytab file allows the HDFS Handler to
access a password to perform a kinit
operation for Kerberos security.

gg.handler.name
.kerberosPrinci
pal

Optional
(Required
if
authType
=Kerbero
s)

A legal Kerberos principal
name like user/
FQDN@MY.REALM.

- The Kerberos principal name for Kerberos
authentication.

gg.handler.name
.schemaFilePath

Optional - null Set to a legal path in HDFS so that schemas (if
available) are written in that HDFS directory.
Schemas are currently only available for Avro
and JSON formatters. In the case of a
metadata change event, the schema is
overwritten to reflect the schema change.

gg.handler.name
.compressionTyp
e
Applicable to
Sequence File
Format only.

Optional block | none | record none Hadoop Sequence File Compression Type.
Applicable only if gg.handler.name.format
is set to sequencefile

gg.handler.name
.compressionCod
ec
Applicable to
Sequence File and
writing to HDFS is
Avro OCF formats
only.

Optional org.apache.hadoop.io.
compress.DefaultCodec
|
org.apache.hadoop.io.
compress. BZip2Codec
|
org.apache.hadoop.io.
compress.SnappyCodec
|
org.apache.hadoop.io.
compress. GzipCodec

org.apach
e.hadoop.
io.compre
ss.Defaul
tCodec

Hadoop Sequence File Compression Codec.
Applicable only if gg.handler.name.format
is set to sequencefile

gg.handler.name
.compressionCod
ec

Optional null | snappy | bzip2
| xz | deflate

null Avro OCF Formatter Compression Code. This
configuration controls the selection of the
compression library to be used for Avro OCF
files.

Snappy includes native binaries in the Snappy
JAR file and performs a Java-native traversal
when compressing or decompressing. Use of
Snappy may introduce runtime issues and
platform porting issues that you may not
experience when working with Java. You may
need to perform additional testing to ensure
that Snappy works on all of your required
platforms. Snappy is an open source library, so
Oracle cannot guarantee its ability to operate
on all of your required platforms.

Chapter 8
Target

8-153

Property Optional
/
Required

Legal Values Default Explanation

gg.handler.name
.openNextFileAt
Roll

Optional true | false false Applicable only to the HDFS Handler that is not
writing an Avro OCF or sequence file to
support extract, load, transform (ELT)
situations.

When set to true, this property creates a new
file immediately on the occurrence of a file roll.

File rolls can be triggered by any one of the
following:

• Metadata change
• File roll interval elapsed
• Inactivity interval elapsed
Data files are being loaded into HDFS and a
monitor program is monitoring the write
directories waiting to consume the data. The
monitoring programs use the appearance of a
new file as a trigger so that the previous file
can be consumed by the consuming
application.

gg.handler.name
.hsync

Optional true | false false Set to use an hflush call to ensure that data is
transferred from the HDFS Handler to the
HDFS cluster. When set to false, hflush is
called on open HDFS write streams at
transaction commit to ensure write durability.

Setting hsync to true calls hsync instead of
hflush at transaction commit. Using hsync
ensures that data has moved to the HDFS
cluster and that the data is written to disk. This
provides a higher level of write durability though
it adversely effects performance. Also, it does
not make the write data immediately available
to analytic tools.

For most applications setting this property to
false is appropriate.

8.2.7.3.3 Review a Sample Configuration
The following is a sample configuration for the HDFS Handler from the Java Adapter properties
file:

gg.handlerlist=hdfs
gg.handler.hdfs.type=hdfs
gg.handler.hdfs.mode=tx
gg.handler.hdfs.includeTokens=false
gg.handler.hdfs.maxFileSize=1g
gg.handler.hdfs.pathMappingTemplate=/ogg/${fullyQualifiedTableName}
gg.handler.hdfs.fileRollInterval=0
gg.handler.hdfs.inactivityRollInterval=0
gg.handler.hdfs.partitionByTable=true
gg.handler.hdfs.rollOnMetadataChange=true
gg.handler.hdfs.authType=none
gg.handler.hdfs.format=delimitedtext

Chapter 8
Target

8-154

8.2.7.3.4 Performance Considerations
The HDFS Handler calls the HDFS flush method on the HDFS write stream to flush data to the
HDFS data nodes at the end of each transaction in order to maintain write durability. This is an
expensive call and performance can adversely affect, especially in the case of transactions of
one or few operations that result in numerous HDFS flush calls.

Performance of the HDFS Handler can be greatly improved by batching multiple small
transactions into a single larger transaction. If you require high performance, configure
batching functionality for the Replicat process. For more information, see Replicat Grouping.

The HDFS client libraries spawn threads for every HDFS file stream opened by the HDFS
Handler. Therefore, the number of threads executing in the JMV grows proportionally to the
number of HDFS file streams that are open. Performance of the HDFS Handler may degrade
as more HDFS file streams are opened. Configuring the HDFS Handler to write to many HDFS
files (due to many source replication tables or extensive use of partitioning) may result in
degraded performance. If your use case requires writing to many tables, then Oracle
recommends that you enable the roll on time or roll on inactivity features to close HDFS file
streams. Closing an HDFS file stream causes the HDFS client threads to terminate, and the
associated resources can be reclaimed by the JVM.

8.2.7.3.5 Security
The HDFS cluster can be secured using Kerberos authentication. The HDFS Handler can
connect to Kerberos secured cluster. The HDFS core-site.xml should be in the handlers
classpath with the hadoop.security.authentication property set to kerberos and the
hadoop.security.authorization property set to true. Additionally, you must set the following
properties in the HDFS Handler Java configuration file:

gg.handler.name.authType=kerberos
gg.handler.name.kerberosPrincipalName=legal Kerberos principal name
gg.handler.name.kerberosKeytabFile=path to a keytab file that contains the password for
the Kerberos principal so that the HDFS Handler can programmatically perform the
Kerberos kinit operations to obtain a Kerberos ticket

You may encounter the inability to decrypt the Kerberos password from the keytab file. This
causes the Kerberos authentication to fall back to interactive mode which cannot work because
it is being invoked programmatically. The cause of this problem is that the Java Cryptography
Extension (JCE) is not installed in the Java Runtime Environment (JRE). Ensure that the JCE
is loaded in the JRE, see http://www.oracle.com/technetwork/java/javase/downloads/jce8-
download-2133166.html.

8.2.7.4 Writing in HDFS in Avro Object Container File Format
The HDFS Handler includes specialized functionality to write to HDFS in Avro Object Container
File (OCF) format. This Avro OCF is part of the Avro specification and is detailed in the Avro
documentation at:

https://avro.apache.org/docs/current/spec.html#Object+Container+Files

Avro OCF format may be a good choice because it:

• integrates with Apache Hive (Raw Avro written to HDFS is not supported by Hive.)

• provides good support for schema evolution.

Configure the following to enable writing to HDFS in Avro OCF format:

Chapter 8
Target

8-155

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://avro.apache.org/docs/current/spec.html#Object+Container+Files

To write row data to HDFS in Avro OCF format, configure the
gg.handler.name.format=avro_row_ocf property.

To write operation data to HDFS is Avro OCF format, configure the
gg.handler.name.format=avro_op_ocf property.

The HDFS and Avro OCF integration includes functionality to create the corresponding tables
in Hive and update the schema for metadata change events. The configuration section
provides information on the properties to enable integration with Hive. The Oracle GoldenGate
Hive integration accesses Hive using the JDBC interface, so the Hive JDBC server must be
running to enable this integration.

8.2.7.5 Generating HDFS File Names Using Template Strings
The HDFS Handler can dynamically generate HDFS file names using a template string. The
template string allows you to generate a combination of keywords that are dynamically
resolved at runtime with static strings to provide you more control of generated HDFS file
names. You can control the template file name using the
gg.handler.name.fileNameMappingTemplate configuration property. The default value for this
parameters is:

${fullyQualifiedTableName}_${groupName}_${currentTimestamp}.txt

See Template Keywords.

Following are examples of legal templates and the resolved strings:

Legal Template
Replacement

${schemaName}.${tableName}__${groupName}_${currentTimestamp}.txt
TEST.TABLE1__HDFS001_2017-07-05_04-31-23.123.txt

${fullyQualifiedTableName}--${currentTimestamp}.avro
ORACLE.TEST.TABLE1—2017-07-05_04-31-23.123.avro

${fullyQualifiedTableName}_${currentTimestamp[yyyy-MM-ddTHH-mm-ss.SSS]}.json
ORACLE.TEST.TABLE1_2017-07-05T04-31-23.123.json

Be aware of these restrictions when generating HDFS file names using templates:

• Generated HDFS file names must be legal HDFS file names.

• Oracle strongly recommends that you use ${groupName} as part of the HDFS file naming
template when using coordinated apply and breaking down source table data to different
Replicat threads. The group name provides uniqueness of generated HDFS names that $
{currentTimestamp} alone does not guarantee. HDFS file name collisions result in an
abend of the Replicat process.

8.2.7.6 Metadata Change Events
Metadata change events are now handled in the HDFS Handler. The default behavior of the
HDFS Handler is to roll the current relevant file in the event of a metadata change event. This
behavior allows for the results of metadata changes to at least be separated into different files.
File rolling on metadata change is configurable and can be turned off.

To support metadata change events, the process capturing changes in the source database
must support both DDL changes and metadata in trail. Oracle GoldenGatedoes not support
DDL replication for all database implementations. See the Oracle GoldenGateinstallation and

Chapter 8
Target

8-156

configuration guide for the appropriate database to determine whether DDL replication is
supported.

8.2.7.7 Partitioning
The partitioning functionality uses the template mapper functionality to resolve partitioning
strings. The result is that the you have more control in how to partition source trail data. Oracle
GoldenGate for Distributed Applications and Analytics (GG for DAA) 21c release, all the
keywords that are supported by the templating functionality are supported in HDFS partitioning.

For more information, see Template Keywords.
Precondition

To use the partitioning functionality, ensure that the data is partitioned by the table. You cannot
set the following configuration:

gg.handler.name.partitionByTable=false

Path Configuration

Assume that the path mapping template is configured as follows:

gg.handler.hdfs.pathMappingTemplate=/ogg/${fullyQualifiedTableName}

At runtime the path resolves as follows for the source table DBO.ORDERS:

/ogg/DBO.ORDERS

Partitioning Configuration

Configure the HDFS partitioning as follows; any of the keywords that are legal for templating
are now legal for partitioning:

gg.handler.name.partitioner.fully qualified table name=templating keywords
and/or
 constants

Example 1: The partitioning for the DBO.ORDERS table is set to the following:

gg.handler.hdfs.partitioner.DBO.ORDERS=par_sales_region=$
{columnValue[SALES_REGION]}

This example can result in the following breakdown of files in HDFS:

/ogg/DBO.ORDERS/par_sales_region=west/data files
/ogg/DBO.ORDERS/par_sales_region=east/data files
/ogg/DBO.ORDERS/par_sales_region=north/data files
/ogg/DBO.ORDERS/par_sales_region=south/data files

Chapter 8
Target

8-157

Example 2: The partitioning for the DBO.ORDERS table is set to the following:

gg.handler.hdfs.partitioner.DBO.ORDERS=par_sales_region=$
{columnValue[SALES_REGION]}/par_state=${columnValue[STATE]}

This example can result in the following breakdown of files in HDFS:

/ogg/DBO.ORDERS/par_sales_region=west/par_state=CA/data files
/ogg/DBO.ORDERS/par_sales_region=east/par_state=FL/data files
/ogg/DBO.ORDERS/par_sales_region=north/par_state=MN/data files
/ogg/DBO.ORDERS/par_sales_region=south/par_state=TX/data files

Ensure to be extra vigilant while configuring HDFS partitioning. If you choose partitioning
column values that have a very large range of data values, then it results in partitioning to a
proportional number of output data files. The HDFS client spawns multiple threads to service
each open HDFS write stream. Partitioning to very large numbers of HDFS files can result in
resource exhaustion of memory and/or threads.

Note:

Starting GG for DAA 21c, the Automated Hive integration has been removed with the
changes to support templating in control partitioning.

8.2.7.8 HDFS Additional Considerations
The Oracle HDFS Handler requires certain HDFS client libraries to be resolved in its classpath
as a prerequisite for streaming data to HDFS.

For a list of required client JAR files by version, see HDFS Handler Client Dependencies. The
HDFS client jars do not ship with the Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) product. The HDFS Handler supports multiple versions of HDFS, and
the HDFS client jars must be the same version as the HDFS version to which the HDFS
Handler is connecting. The HDFS client jars are open source and are freely available to
download from sites such as the Apache Hadoop site or the maven central repository.

In order to establish connectivity to HDFS, the HDFS core-site.xml file must be in the
classpath of the HDFS Handler. If the core-site.xml file is not in the classpath, the HDFS
client code defaults to a mode that attempts to write to the local file system. Writing to the local
file system instead of HDFS can be advantageous for troubleshooting, building a point of
contact (POC), or as a step in the process of building an HDFS integration.

Another common issue is that data streamed to HDFS using the HDFS Handler may not be
immediately available to GG for DAA analytic tools, such as Hive. This behavior commonly
occurs when the HDFS Handler is in possession of an open write stream to an HDFS file.
HDFS writes in blocks of 128 MB by default. HDFS blocks under construction are not always
visible to analytic tools. Additionally, inconsistencies between file sizes when using the -ls, -
cat, and -get commands in the HDFS shell may occur. This is an anomaly of HDFS streaming
and is discussed in the HDFS specification. This anomaly of HDFS leads to a potential 128 MB
per file blind spot in analytic data. This may not be an issue if you have a steady stream of
replication data and do not require low levels of latency for analytic data from HDFS. However,
this may be a problem in some use cases because closing the HDFS write stream finalizes the
block writing. Data is immediately visible to analytic tools, and file sizing metrics become

Chapter 8
Target

8-158

consistent again. Therefore, the new file rolling feature in the HDFS Handler can be used to
close HDFS writes streams, making all data visible.

Important:

The file rolling solution may present its own problems. Extensive use of file rolling can
result in many small files in HDFS. Many small files in HDFS may result in
performance issues in analytic tools.

You may also notice the HDFS inconsistency problem in the following scenarios.

• The HDFS Handler process crashes.

• A forced shutdown is called on the HDFS Handler process.

• A network outage or other issue causes the HDFS Handler process to abend.

In each of these scenarios, it is possible for the HDFS Handler to end without explicitly closing
the HDFS write stream and finalizing the writing block. HDFS in its internal process ultimately
recognizes that the write stream has been broken, so HDFS finalizes the write block. In this
scenario, you may experience a short term delay before the HDFS process finalizes the write
block.

8.2.7.9 Best Practices
It is considered a Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
best practice for the HDFS cluster to operate on dedicated servers called cluster nodes. Edge
nodes are server machines that host the applications to stream data to and retrieve data from
the HDFS cluster nodes. Because the HDFS cluster nodes and the edge nodes are different
servers, the following benefits are seen:

• The HDFS cluster nodes do not compete for resources with the applications interfacing
with the cluster.

• The requirements for the HDFS cluster nodes and edge nodes probably differ. This
physical topology allows the appropriate hardware to be tailored to specific needs.

It is a best practice for the HDFS Handler to be installed and running on an edge node and
streaming data to the HDFS cluster using network connection. The HDFS Handler can run on
any machine that has network visibility to the HDFS cluster. The installation of the HDFS
Handler on an edge node requires that the core-site.xml files, and the dependency jars are
copied to the edge node so that the HDFS Handler can access them. The HDFS Handler can
also run collocated on a HDFS cluster node if required.

8.2.7.10 Troubleshooting the HDFS Handler
Troubleshooting of the HDFS Handler begins with the contents for the Java log4j file. Follow
the directions in the Java Logging Configuration to configure the runtime to correctly generate
the Java log4j log file.

• Java Classpath

• Java Boot Options

• HDFS Connection Properties

• Handler and Formatter Configuration

Chapter 8
Target

8-159

8.2.7.10.1 Java Classpath
Problems with the Java classpath are common. The usual indication of a Java classpath
problem is a ClassNotFoundException in the Java log4j log file. The Java log4j log file can
be used to troubleshoot this issue. Setting the log level to DEBUG allows for logging of each of
the jars referenced in the gg.classpath object to be logged to the log file. In this way, you can
ensure that all of the required dependency jars are resolved by enabling DEBUG level logging
and search the log file for messages, as in the following:

2015-09-21 10:05:10 DEBUG ConfigClassPath:74 - ...adding to classpath: url="file:/ggwork/
hadoop/hadoop-2.6.0/share/hadoop/common/lib/guava-11.0.2.jar

8.2.7.10.2 Java Boot Options
When running HDFS replicat with JRE 11, StackOverflowError is thrown. You can fix this
issue by editing the bootoptions property in the Java Adapter Properties file as follows:

jvm.bootoptions=-Djdk.lang.processReaperUseDefaultStackSize=true

8.2.7.10.3 HDFS Connection Properties
The contents of the HDFS core-site.xml file (including default settings) are output to the Java
log4j log file when the logging level is set to DEBUG or TRACE. This output shows the connection
properties to HDFS. Search for the following in the Java log4j log file:

2015-09-21 10:05:11 DEBUG HDFSConfiguration:58 - Begin - HDFS configuration object
contents for connection troubleshooting.

If the fs.defaultFS property points to the local file system, then the core-site.xml file is not
properly set in the gg.classpath property.

 Key: [fs.defaultFS] Value: [file:///].

This shows to the fs.defaultFS property properly pointed at and HDFS host and port.

Key: [fs.defaultFS] Value: [hdfs://hdfshost:9000].

8.2.7.10.4 Handler and Formatter Configuration
The Java log4j log file contains information on the configuration state of the HDFS Handler
and the selected formatter. This information is output at the INFO log level. The output
resembles the following:

2015-09-21 10:05:11 INFO AvroRowFormatter:156 - **** Begin Avro Row Formatter -
 Configuration Summary ****
 Operation types are always included in the Avro formatter output.
 The key for insert operations is [I].
 The key for update operations is [U].
 The key for delete operations is [D].
 The key for truncate operations is [T].
 Column type mapping has been configured to map source column types to an
 appropriate corresponding Avro type.
 Created Avro schemas will be output to the directory [./dirdef].
 Created Avro schemas will be encoded using the [UTF-8] character set.
 In the event of a primary key update, the Avro Formatter will ABEND.
 Avro row messages will not be wrapped inside a generic Avro message.
 No delimiter will be inserted after each generated Avro message.
**** End Avro Row Formatter - Configuration Summary ****

Chapter 8
Target

8-160

2015-09-21 10:05:11 INFO HDFSHandler:207 - **** Begin HDFS Handler -
 Configuration Summary ****
 Mode of operation is set to tx.
 Data streamed to HDFS will be partitioned by table.
 Tokens will be included in the output.
 The HDFS root directory for writing is set to [/ogg].
 The maximum HDFS file size has been set to 1073741824 bytes.
 Rolling of HDFS files based on time is configured as off.
 Rolling of HDFS files based on write inactivity is configured as off.
 Rolling of HDFS files in the case of a metadata change event is enabled.
 HDFS partitioning information:
 The HDFS partitioning object contains no partitioning information.
HDFS Handler Authentication type has been configured to use [none]
**** End HDFS Handler - Configuration Summary ****

8.2.7.11 HDFS Handler Client Dependencies
This appendix lists the HDFS client dependencies for Apache Hadoop. The hadoop-client-
x.x.x.jar is not distributed with Apache Hadoop nor is it mandatory to be in the classpath.
The hadoop-client-x.x.x.jar is an empty maven project with the purpose of aggregating all
of the Hadoop client dependencies.

Maven groupId: org.apache.hadoop
Maven atifactId: hadoop-client
Maven version: the HDFS version numbers listed for each section

• Hadoop Client Dependencies

8.2.7.11.1 Hadoop Client Dependencies
This section lists the Hadoop client dependencies for each HDFS version.

• HDFS 3.3.0

• HDFS 3.2.0

• HDFS 3.1.4

• HDFS 3.0.3

• HDFS 2.9.2

• HDFS 2.8.5

• HDFS 2.7.7

• HDFS 2.6.0

• HDFS 2.5.2

• HDFS 2.4.1

• HDFS 2.3.0

• HDFS 2.2.0

8.2.7.11.1.1 HDFS 3.3.0

accessors-smart-1.2.jar
animal-sniffer-annotations-1.17.jar
asm-5.0.4.jar

Chapter 8
Target

8-161

avro-1.7.7.jar
azure-keyvault-core-1.0.0.jar
azure-storage-7.0.0.jar
checker-qual-2.5.2.jar
commons-beanutils-1.9.4.jar
commons-cli-1.2.jar
commons-codec-1.11.jar
commons-collections-3.2.2.jar
commons-compress-1.19.jar
commons-configuration2-2.1.1.jar
commons-io-2.5.jar
commons-lang3-3.7.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.6.jar
commons-text-1.4.jar
curator-client-4.2.0.jar
curator-framework-4.2.0.jar
curator-recipes-4.2.0.jar
dnsjava-2.1.7.jar
failureaccess-1.0.jar
gson-2.2.4.jar
guava-27.0-jre.jar
hadoop-annotations-3.3.0.jar
hadoop-auth-3.3.0.jar
hadoop-azure-3.3.0.jar
hadoop-client-3.3.0.jar
hadoop-common-3.3.0.jar
hadoop-hdfs-client-3.3.0.jar
hadoop-mapreduce-client-common-3.3.0.jar
hadoop-mapreduce-client-core-3.3.0.jar
hadoop-mapreduce-client-jobclient-3.3.0.jar
hadoop-shaded-protobuf_3_7-1.0.0.jar
hadoop-yarn-api-3.3.0.jar
hadoop-yarn-client-3.3.0.jar
hadoop-yarn-common-3.3.0.jar
htrace-core4-4.1.0-incubating.jar
httpclient-4.5.6.jar
httpcore-4.4.10.jar
j2objc-annotations-1.1.jar
jackson-annotations-2.10.3.jar
jackson-core-2.6.0.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.10.3.jar
jackson-jaxrs-base-2.10.3.jar
jackson-jaxrs-json-provider-2.10.3.jar
jackson-mapper-asl-1.9.13.jar
jackson-module-jaxb-annotations-2.10.3.jar
jakarta.activation-api-1.2.1.jar
jakarta.xml.bind-api-2.3.2.jar
javax.activation-api-1.2.0.jar
javax.servlet-api-3.1.0.jar
jaxb-api-2.2.11.jar
jcip-annotations-1.0-1.jar
jersey-client-1.19.jar
jersey-core-1.19.jar
jersey-servlet-1.19.jar
jetty-client-9.4.20.v20190813.jar
jetty-http-9.4.20.v20190813.jar
jetty-io-9.4.20.v20190813.jar
jetty-security-9.4.20.v20190813.jar
jetty-servlet-9.4.20.v20190813.jar

Chapter 8
Target

8-162

jetty-util-9.4.20.v20190813.jar
jetty-util-ajax-9.4.20.v20190813.jar
jetty-webapp-9.4.20.v20190813.jar
jetty-xml-9.4.20.v20190813.jar
jline-3.9.0.jar
json-smart-2.3.jar
jsp-api-2.1.jar
jsr305-3.0.2.jar
jsr311-api-1.1.1.jar
kerb-admin-1.0.1.jar
kerb-client-1.0.1.jar
kerb-common-1.0.1.jar
kerb-core-1.0.1.jar
kerb-crypto-1.0.1.jar
kerb-identity-1.0.1.jar
kerb-server-1.0.1.jar
kerb-simplekdc-1.0.1.jar
kerb-util-1.0.1.jar
kerby-asn1-1.0.1.jar
kerby-config-1.0.1.jar
kerby-pkix-1.0.1.jar
kerby-util-1.0.1.jar
kerby-xdr-1.0.1.jar
listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar
log4j-1.2.17.jar
nimbus-jose-jwt-7.9.jar
okhttp-2.7.5.jar
okio-1.6.0.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
re2j-1.1.jar
slf4j-api-1.7.25.jar
snappy-java-1.0.5.jar
stax2-api-3.1.4.jar
token-provider-1.0.1.jar
websocket-api-9.4.20.v20190813.jar
websocket-client-9.4.20.v20190813.jar
websocket-common-9.4.20.v20190813.jar
wildfly-openssl-1.0.7.Final.jar
woodstox-core-5.0.3.jar

8.2.7.11.1.2 HDFS 3.2.0

accessors-smart-1.2.jar
asm-5.0.4.jar
avro-1.7.7.jar
azure-keyvault-core-1.0.0.jar
azure-storage-7.0.0.jar
commons-beanutils-1.9.3.jar
commons-cli-1.2.jar
commons-codec-1.11.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration2-2.1.1.jar
commons-io-2.5.jar
commons-lang3-3.7.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.6.jar
commons-text-1.4.jar
curator-client-2.12.0.jar
curator-framework-2.12.0.jar

Chapter 8
Target

8-163

curator-recipes-2.12.0.jar
dnsjava-2.1.7.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-3.2.0.jar
hadoop-auth-3.2.0.jar
hadoop-azure-3.2.0.jar
hadoop-client-3.2.0.jar
hadoop-common-3.2.0.jar
hadoop-hdfs-client-3.2.0.jar
hadoop-mapreduce-client-common-3.2.0.jar
hadoop-mapreduce-client-core-3.2.0.jar
hadoop-mapreduce-client-jobclient-3.2.0.jar
hadoop-yarn-api-3.2.0.jar
hadoop-yarn-client-3.2.0.jar
hadoop-yarn-common-3.2.0.jar
htrace-core4-4.1.0-incubating.jar
httpclient-4.5.2.jar
httpcore-4.4.4.jar
jackson-annotations-2.9.5.jar
jackson-core-2.6.0.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.9.5.jar
jackson-jaxrs-base-2.9.5.jar
jackson-jaxrs-json-provider-2.9.5.jar
jackson-mapper-asl-1.9.13.jar
jackson-module-jaxb-annotations-2.9.5.jar
javax.servlet-api-3.1.0.jar
jaxb-api-2.2.11.jar
jcip-annotations-1.0-1.jar
jersey-client-1.19.jar
jersey-core-1.19.jar
jersey-servlet-1.19.jar
jetty-security-9.3.24.v20180605.jar
jetty-servlet-9.3.24.v20180605.jar
jetty-util-9.3.24.v20180605.jar
jetty-util-ajax-9.3.24.v20180605.jar
jetty-webapp-9.3.24.v20180605.jar
jetty-xml-9.3.24.v20180605.jar
json-smart-2.3.jar
jsp-api-2.1.jar
jsr305-3.0.0.jar
jsr311-api-1.1.1.jar
kerb-admin-1.0.1.jar
kerb-client-1.0.1.jar
kerb-common-1.0.1.jar
kerb-core-1.0.1.jar
kerb-crypto-1.0.1.jar
kerb-identity-1.0.1.jar
kerb-server-1.0.1.jar
kerb-simplekdc-1.0.1.jar
kerb-util-1.0.1.jar
kerby-asn1-1.0.1.jar
kerby-config-1.0.1.jar
kerby-pkix-1.0.1.jar
kerby-util-1.0.1.jar
kerby-xdr-1.0.1.jar
log4j-1.2.17.jar
nimbus-jose-jwt-4.41.1.jar
okhttp-2.7.5.jar
okio-1.6.0.jar
paranamer-2.3.jar

Chapter 8
Target

8-164

protobuf-java-2.5.0.jar
re2j-1.1.jar
slf4j-api-1.7.25.jar
snappy-java-1.0.5.jar
stax2-api-3.1.4.jar
token-provider-1.0.1.jar
wildfly-openssl-1.0.4.Final.jar
woodstox-core-5.0.3.jar
xz-1.0.jar

8.2.7.11.1.3 HDFS 3.1.4

accessors-smart-1.2.jar
animal-sniffer-annotations-1.17.jar
asm-5.0.4.jar
avro-1.7.7.jar
azure-keyvault-core-1.0.0.jar
azure-storage-7.0.0.jar
checker-qual-2.5.2.jar
commons-beanutils-1.9.4.jar
commons-cli-1.2.jar
commons-codec-1.11.jar
commons-collections-3.2.2.jar
commons-compress-1.19.jar
commons-configuration2-2.1.1.jar
commons-io-2.5.jar
commons-lang-2.6.jar
commons-lang3-3.4.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.6.jar
curator-client-2.13.0.jar
curator-framework-2.13.0.jar
curator-recipes-2.13.0.jar
error_prone_annotations-2.2.0.jar
failureaccess-1.0.jar
gson-2.2.4.jar
guava-27.0-jre.jar
hadoop-annotations-3.1.4.jar
hadoop-auth-3.1.4.jar
hadoop-azure-3.1.4.jar
hadoop-client-3.1.4.jar
hadoop-common-3.1.4.jar
hadoop-hdfs-client-3.1.4.jar
hadoop-mapreduce-client-common-3.1.4.jar
hadoop-mapreduce-client-core-3.1.4.jar
hadoop-mapreduce-client-jobclient-3.1.4.jar
hadoop-yarn-api-3.1.4.jar
hadoop-yarn-client-3.1.4.jar
hadoop-yarn-common-3.1.4.jar
htrace-core4-4.1.0-incubating.jar
httpclient-4.5.2.jar
httpcore-4.4.4.jar
j2objc-annotations-1.1.jar
jackson-annotations-2.9.10.jar
jackson-core-2.9.10.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.9.10.4.jar
jackson-jaxrs-base-2.9.10.jar
jackson-jaxrs-json-provider-2.9.10.jar
jackson-mapper-asl-1.9.13.jar
jackson-module-jaxb-annotations-2.9.10.jar

Chapter 8
Target

8-165

javax.servlet-api-3.1.0.jar
jaxb-api-2.2.11.jar
jcip-annotations-1.0-1.jar
jersey-client-1.19.jar
jersey-core-1.19.jar
jersey-servlet-1.19.jar
jetty-security-9.4.20.v20190813.jar
jetty-servlet-9.4.20.v20190813.jar
jetty-util-9.4.20.v20190813.jar
jetty-util-ajax-9.4.20.v20190813.jar
jetty-webapp-9.4.20.v20190813.jar
jetty-xml-9.4.20.v20190813.jar
json-smart-2.3.jar
jsp-api-2.1.jar
jsr305-3.0.2.jar
jsr311-api-1.1.1.jar
kerb-admin-1.0.1.jar
kerb-client-1.0.1.jar
kerb-common-1.0.1.jar
kerb-core-1.0.1.jar
kerb-crypto-1.0.1.jar
kerb-identity-1.0.1.jar
kerb-server-1.0.1.jar
kerb-simplekdc-1.0.1.jar
kerb-util-1.0.1.jar
kerby-asn1-1.0.1.jar
kerby-config-1.0.1.jar
kerby-pkix-1.0.1.jar
kerby-util-1.0.1.jar
kerby-xdr-1.0.1.jar
listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar
log4j-1.2.17.jar
nimbus-jose-jwt-7.9.jar
okhttp-2.7.5.jar
okio-1.6.0.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
re2j-1.1.jar
slf4j-api-1.7.25.jar
snappy-java-1.0.5.jar
stax2-api-3.1.4.jar
token-provider-1.0.1.jar
woodstox-core-5.0.3.jar

8.2.7.11.1.4 HDFS 3.0.3

accessors-smart-1.2.jar
asm-5.0.4.jar
avro-1.7.7.jar
azure-keyvault-core-0.8.0.jar
azure-storage-5.4.0.jar
commons-beanutils-1.9.3.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration2-2.1.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-lang3-3.4.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar

Chapter 8
Target

8-166

commons-net-3.6.jar
curator-client-2.12.0.jar
curator-framework-2.12.0.jar
curator-recipes-2.12.0.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-3.0.3.jar
hadoop-auth-3.0.3.jar
hadoop-azure-3.0.3.jar
hadoop-client-3.0.3.jar
hadoop-common-3.0.3.jar
hadoop-hdfs-client-3.0.3.jar
hadoop-mapreduce-client-common-3.0.3.jar
hadoop-mapreduce-client-core-3.0.3.jar
hadoop-mapreduce-client-jobclient-3.0.3.jar
hadoop-yarn-api-3.0.3.jar
hadoop-yarn-client-3.0.3.jar
hadoop-yarn-common-3.0.3.jar
htrace-core4-4.1.0-incubating.jar
httpclient-4.5.2.jar
httpcore-4.4.4.jar
jackson-annotations-2.7.8.jar
jackson-core-2.7.8.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.7.8.jar
jackson-jaxrs-base-2.7.8.jar
jackson-jaxrs-json-provider-2.7.8.jar
jackson-mapper-asl-1.9.13.jar
jackson-module-jaxb-annotations-2.7.8.jar
javax.servlet-api-3.1.0.jar
jaxb-api-2.2.11.jar
jcip-annotations-1.0-1.jar
jersey-client-1.19.jar
jersey-core-1.19.jar
jersey-servlet-1.19.jar
jetty-security-9.3.19.v20170502.jar
jetty-servlet-9.3.19.v20170502.jar
jetty-util-9.3.19.v20170502.jar
jetty-util-ajax-9.3.19.v20170502.jar
jetty-webapp-9.3.19.v20170502.jar
jetty-xml-9.3.19.v20170502.jar
json-smart-2.3.jar
jsp-api-2.1.jar
jsr305-3.0.0.jar
jsr311-api-1.1.1.jar
kerb-admin-1.0.1.jar
kerb-client-1.0.1.jar
kerb-common-1.0.1.jar
kerb-core-1.0.1.jar
kerb-crypto-1.0.1.jar
kerb-identity-1.0.1.jar
kerb-server-1.0.1.jar
kerb-simplekdc-1.0.1.jar
kerb-util-1.0.1.jar
kerby-asn1-1.0.1.jar
kerby-config-1.0.1.jar
kerby-pkix-1.0.1.jar
kerby-util-1.0.1.jar
kerby-xdr-1.0.1.jar
log4j-1.2.17.jar
nimbus-jose-jwt-4.41.1.jar
okhttp-2.7.5.jar

Chapter 8
Target

8-167

okio-1.6.0.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
re2j-1.1.jar
slf4j-api-1.7.25.jar
snappy-java-1.0.5.jar
stax2-api-3.1.4.jar
token-provider-1.0.1.jar
woodstox-core-5.0.3.jar
xz-1.0.jar

8.2.7.11.1.5 HDFS 2.9.2

accessors-smart-1.2.jar
activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
asm-5.0.4.jar
avro-1.7.7.jar
azure-keyvault-core-0.8.0.jar
azure-storage-5.4.0.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-lang3-3.4.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar
ehcache-3.3.1.jar
geronimo-jcache_1.0_spec-1.0-alpha-1.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.9.2.jar
hadoop-auth-2.9.2.jar
hadoop-azure-2.9.2.jar
hadoop-client-2.9.2.jar
hadoop-common-2.9.2.jar
hadoop-hdfs-client-2.9.2.jar
hadoop-mapreduce-client-app-2.9.2.jar
hadoop-mapreduce-client-common-2.9.2.jar
hadoop-mapreduce-client-core-2.9.2.jar
hadoop-mapreduce-client-jobclient-2.9.2.jar
hadoop-mapreduce-client-shuffle-2.9.2.jar
hadoop-yarn-api-2.9.2.jar
hadoop-yarn-client-2.9.2.jar
hadoop-yarn-common-2.9.2.jar
hadoop-yarn-registry-2.9.2.jar
hadoop-yarn-server-common-2.9.2.jar
HikariCP-java7-2.4.12.jar
htrace-core4-4.1.0-incubating.jar

Chapter 8
Target

8-168

httpclient-4.5.2.jar
httpcore-4.4.4.jar
jackson-annotations-2.4.0.jar
jackson-core-2.7.8.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.4.0.jar
jackson-jaxrs-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jackson-xc-1.9.13.jar
jaxb-api-2.2.2.jar
jcip-annotations-1.0-1.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jetty-sslengine-6.1.26.jar
jetty-util-6.1.26.jar
json-smart-2.3.jar
jsp-api-2.1.jar
jsr305-3.0.0.jar
leveldbjni-all-1.8.jar
log4j-1.2.17.jar
mssql-jdbc-6.2.1.jre7.jar
netty-3.7.0.Final.jar
nimbus-jose-jwt-4.41.1.jar
okhttp-2.7.5.jar
okio-1.6.0.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.25.jar
slf4j-log4j12-1.7.25.jar
snappy-java-1.0.5.jar
stax2-api-3.1.4.jar
stax-api-1.0-2.jar
woodstox-core-5.0.3.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

8.2.7.11.1.6 HDFS 2.8.5

accessors-smart-1.2.jar
activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
asm-5.0.4.jar
avro-1.7.4.jar
azure-storage-2.2.0.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-lang3-3.3.2.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar

Chapter 8
Target

8-169

commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.8.5.jar
hadoop-auth-2.8.5.jar
hadoop-azure-2.8.5.jar
hadoop-client-2.8.5.jar
hadoop-common-2.8.5.jar
hadoop-hdfs-client-2.8.5.jar
hadoop-mapreduce-client-app-2.8.5.jar
hadoop-mapreduce-client-common-2.8.5.jar
hadoop-mapreduce-client-core-2.8.5.jar
hadoop-mapreduce-client-jobclient-2.8.5.jar
hadoop-mapreduce-client-shuffle-2.8.5.jar
hadoop-yarn-api-2.8.5.jar
hadoop-yarn-client-2.8.5.jar
hadoop-yarn-common-2.8.5.jar
hadoop-yarn-server-common-2.8.5.jar
htrace-core4-4.0.1-incubating.jar
httpclient-4.5.2.jar
httpcore-4.4.4.jar
jackson-core-2.2.3.jar
jackson-core-asl-1.9.13.jar
jackson-jaxrs-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jackson-xc-1.9.13.jar
jaxb-api-2.2.2.jar
jcip-annotations-1.0-1.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jetty-sslengine-6.1.26.jar
jetty-util-6.1.26.jar
json-smart-2.3.jar
jsp-api-2.1.jar
jsr305-3.0.0.jar
leveldbjni-all-1.8.jar
log4j-1.2.17.jar
netty-3.7.0.Final.jar
nimbus-jose-jwt-4.41.1.jar
okhttp-2.4.0.jar
okio-1.4.0.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.10.jar
slf4j-log4j12-1.7.10.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

8.2.7.11.1.7 HDFS 2.7.7

HDFS 2.7.7 (HDFS 2.7.0 is effectively the same, simply substitute 2.7.0 on the libraries
versioned as 2.7.7)

activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar

Chapter 8
Target

8-170

apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
azure-storage-2.0.0.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-lang3-3.3.2.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.7.1.jar
curator-framework-2.7.1.jar
curator-recipes-2.7.1.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.7.7.jar
hadoop-auth-2.7.7.jar
hadoop-azure-2.7.7.jar
hadoop-client-2.7.7.jar
hadoop-common-2.7.7.jar
hadoop-hdfs-2.7.7.jar
hadoop-mapreduce-client-app-2.7.7.jar
hadoop-mapreduce-client-common-2.7.7.jar
hadoop-mapreduce-client-core-2.7.7.jar
hadoop-mapreduce-client-jobclient-2.7.7.jar
hadoop-mapreduce-client-shuffle-2.7.7.jar
hadoop-yarn-api-2.7.7.jar
hadoop-yarn-client-2.7.7.jar
hadoop-yarn-common-2.7.7.jar
hadoop-yarn-server-common-2.7.7.jar
htrace-core-3.1.0-incubating.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-2.2.3.jar
jackson-core-asl-1.9.13.jar
jackson-jaxrs-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jackson-xc-1.9.13.jar
jaxb-api-2.2.2.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jetty-sslengine-6.1.26.jar
jetty-util-6.1.26.jar
jsp-api-2.1.jar
jsr305-3.0.0.jar
leveldbjni-all-1.8.jar
log4j-1.2.17.jar
netty-3.6.2.Final.jar
netty-all-4.0.23.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar

Chapter 8
Target

8-171

slf4j-api-1.7.10.jar
slf4j-log4j12-1.7.10.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xercesImpl-2.9.1.jar
xml-apis-1.3.04.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

8.2.7.11.1.8 HDFS 2.6.0

activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.6.0.jar
curator-framework-2.6.0.jar
curator-recipes-2.6.0.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.6.0.jar
hadoop-auth-2.6.0.jar
hadoop-client-2.6.0.jar
hadoop-common-2.6.0.jar
hadoop-hdfs-2.6.0.jar
hadoop-mapreduce-client-app-2.6.0.jar
hadoop-mapreduce-client-common-2.6.0.jar
hadoop-mapreduce-client-core-2.6.0.jar
hadoop-mapreduce-client-jobclient-2.6.0.jar
hadoop-mapreduce-client-shuffle-2.6.0.jar
hadoop-yarn-api-2.6.0.jar
hadoop-yarn-client-2.6.0.jar
hadoop-yarn-common-2.6.0.jar
hadoop-yarn-server-common-2.6.0.jar
htrace-core-3.0.4.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jackson-jaxrs-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
jackson-xc-1.9.13.jar
jaxb-api-2.2.2.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jetty-util-6.1.26.jar

Chapter 8
Target

8-172

jsr305-1.3.9.jar
leveldbjni-all-1.8.jar
log4j-1.2.17.jar
netty-3.6.2.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xercesImpl-2.9.1.jar
xml-apis-1.3.04.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

8.2.7.11.1.9 HDFS 2.5.2

HDFS 2.5.2 (HDFS 2.5.1 and 2.5.0 are effectively the same, simply substitute 2.5.1 or 2.5.0 on
the libraries versioned as 2.5.2)

activation-1.1.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
guava-11.0.2.jar
hadoop-annotations-2.5.2.jar
adoop-auth-2.5.2.jar
hadoop-client-2.5.2.jar
hadoop-common-2.5.2.jar
hadoop-hdfs-2.5.2.jar
hadoop-mapreduce-client-app-2.5.2.jar
hadoop-mapreduce-client-common-2.5.2.jar
hadoop-mapreduce-client-core-2.5.2.jar
hadoop-mapreduce-client-jobclient-2.5.2.jar
hadoop-mapreduce-client-shuffle-2.5.2.jar
hadoop-yarn-api-2.5.2.jar
hadoop-yarn-client-2.5.2.jar
hadoop-yarn-common-2.5.2.jar
hadoop-yarn-server-common-2.5.2.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jackson-jaxrs-1.9.13.jar
jackson-mapper-asl-1.9.13.jar

Chapter 8
Target

8-173

jackson-xc-1.9.13.jar
jaxb-api-2.2.2.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jetty-util-6.1.26.jar
jsr305-1.3.9.jar
leveldbjni-all-1.8.jar
log4j-1.2.17.jar
netty-3.6.2.Final.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

8.2.7.11.1.10 HDFS 2.4.1

HDFS 2.4.1 (HDFS 2.4.0 is effectively the same, simply substitute 2.4.0 on the libraries
versioned as 2.4.1)

activation-1.1.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
guava-11.0.2.jar
hadoop-annotations-2.4.1.jar
hadoop-auth-2.4.1.jar
hadoop-client-2.4.1.jar
hadoop-hdfs-2.4.1.jar
hadoop-mapreduce-client-app-2.4.1.jar
hadoop-mapreduce-client-common-2.4.1.jar
hadoop-mapreduce-client-core-2.4.1.jar
hadoop-mapreduce-client-jobclient-2.4.1.jar
hadoop-mapreduce-client-shuffle-2.4.1.jar
hadoop-yarn-api-2.4.1.jar
hadoop-yarn-client-2.4.1.jar
hadoop-yarn-common-2.4.1.jar
hadoop-yarn-server-common-2.4.1.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.8.8.jar
jackson-mapper-asl-1.8.8.jar
jaxb-api-2.2.2.jar
jersey-client-1.9.jar
jersey-core-1.9.jar

Chapter 8
Target

8-174

jetty-util-6.1.26.jar
jsr305-1.3.9.jar
log4j-1.2.17.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.5.jar
hadoop-common-2.4.1.jar

8.2.7.11.1.11 HDFS 2.3.0

activation-1.1.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
guava-11.0.2.jar
hadoop-annotations-2.3.0.jar
hadoop-auth-2.3.0.jar
hadoop-client-2.3.0.jar
hadoop-common-2.3.0.jar
hadoop-hdfs-2.3.0.jar
hadoop-mapreduce-client-app-2.3.0.jar
hadoop-mapreduce-client-common-2.3.0.jar
hadoop-mapreduce-client-core-2.3.0.jar
hadoop-mapreduce-client-jobclient-2.3.0.jar
hadoop-mapreduce-client-shuffle-2.3.0.jar
hadoop-yarn-api-2.3.0.jar
hadoop-yarn-client-2.3.0.jar
hadoop-yarn-common-2.3.0.jar
hadoop-yarn-server-common-2.3.0.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.8.8.jar
jackson-mapper-asl-1.8.8.jar
jaxb-api-2.2.2.jar
jersey-core-1.9.jar
jetty-util-6.1.26.jar
jsr305-1.3.9.jar
log4j-1.2.17.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
servlet-api-2.5.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar

Chapter 8
Target

8-175

snappy-java-1.0.4.1.jar
stax-api-1.0-2.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.5.jar

8.2.7.11.1.12 HDFS 2.2.0

activation-1.1.jar
aopalliance-1.0.jar
asm-3.1.jar
avro-1.7.4.jar
commons-beanutils-1.7.0.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-digester-1.8.jar
commons-httpclient-3.1.jar
commons-io-2.1.jar
commons-lang-2.5.jar
commons-logging-1.1.1.jar
commons-math-2.1.jar
commons-net-3.1.jar
gmbal-api-only-3.0.0-b023.jar
grizzly-framework-2.1.2.jar
grizzly-http-2.1.2.jar
grizzly-http-server-2.1.2.jar
grizzly-http-servlet-2.1.2.jar
grizzly-rcm-2.1.2.jar
guava-11.0.2.jar
guice-3.0.jar
hadoop-annotations-2.2.0.jar
hadoop-auth-2.2.0.jar
hadoop-client-2.2.0.jar
hadoop-common-2.2.0.jar
hadoop-hdfs-2.2.0.jar
hadoop-mapreduce-client-app-2.2.0.jar
hadoop-mapreduce-client-common-2.2.0.jar
hadoop-mapreduce-client-core-2.2.0.jar
hadoop-mapreduce-client-jobclient-2.2.0.jar
hadoop-mapreduce-client-shuffle-2.2.0.jar
hadoop-yarn-api-2.2.0.jar
hadoop-yarn-client-2.2.0.jar
hadoop-yarn-common-2.2.0.jar
hadoop-yarn-server-common-2.2.0.jar
jackson-core-asl-1.8.8.jar
jackson-jaxrs-1.8.3.jar
jackson-mapper-asl-1.8.8.jar
jackson-xc-1.8.3.jar
javax.inject-1.jar
javax.servlet-3.1.jar
javax.servlet-api-3.0.1.jar
jaxb-api-2.2.2.jar
jaxb-impl-2.2.3-1.jar
jersey-client-1.9.jar
jersey-core-1.9.jar
jersey-grizzly2-1.9.jar
jersey-guice-1.9.jar
jersey-json-1.9.jar

Chapter 8
Target

8-176

jersey-server-1.9.jar
jersey-test-framework-core-1.9.jar
jersey-test-framework-grizzly2-1.9.jar
jettison-1.1.jar
jetty-util-6.1.26.jar
jsr305-1.3.9.jar
log4j-1.2.17.jar
management-api-3.0.0-b012.jar
paranamer-2.3.jar
protobuf-java-2.5.0.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
snappy-java-1.0.4.1.jar
stax-api-1.0.1.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.5.jar

8.2.8 Apache Kafka
The Kafka Handler is designed to stream change capture data from an Oracle GoldenGate trail
to a Kafka topic.

This chapter describes how to use the Kafka Handler.

• Apache Kafka
The Kafka Handler is designed to stream change capture data from an Oracle GoldenGate
trail to a Kafka topic.

• Apache Kafka Connect Handler
The Kafka Connect Handler is an extension of the standard Kafka messaging functionality.

• Apache Kafka REST Proxy
The Kafka REST Proxy Handler to stream messages to the Kafka REST Proxy distributed
by Confluent.

8.2.8.1 Apache Kafka
The Kafka Handler is designed to stream change capture data from an Oracle GoldenGate trail
to a Kafka topic.

This chapter describes how to use the Kafka Handler.

• Overview

• Detailed Functionality

• Setting Up and Running the Kafka Handler

• Schema Propagation

• Performance Considerations

• About Security

• Metadata Change Events

• Snappy Considerations

• Kafka Interceptor Support
The Kafka Producer client framework supports the use of Producer Interceptors. A
Producer Interceptor is simply a user exit from the Kafka Producer client whereby the

Chapter 8
Target

8-177

Interceptor object is instantiated and receives notifications of Kafka message send calls
and Kafka message send acknowledgement calls.

• Kafka Partition Selection
Kafka topics comprise one or more partitions. Distribution to multiple partitions is a good
way to improve Kafka ingest performance, because the Kafka client parallelizes message
sending to different topic/partition combinations. Partition selection is controlled by a
following calculation in the Kafka client.

• Troubleshooting

• Kafka Handler Client Dependencies
What are the dependencies for the Kafka Handler to connect to Apache Kafka databases?

8.2.8.1.1 Overview
The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) Kafka Handler
streams change capture data from an Oracle GoldenGate trail to a Kafka topic. Additionally,
the Kafka Handler provides functionality to publish messages to a separate schema topic.
Schema publication for Avro and JSON is supported.

Apache Kafka is an open source, distributed, partitioned, and replicated messaging service,
see http://kafka.apache.org/.

Kafka can be run as a single instance or as a cluster on multiple servers. Each Kafka server
instance is called a broker. A Kafka topic is a category or feed name to which messages are
published by the producers and retrieved by consumers.

In Kafka, when the topic name corresponds to the fully-qualified source table name, the Kafka
Handler implements a Kafka producer. The Kafka producer writes serialized change data
capture, from multiple source tables to either a single configured topic or separating source
operations, to different Kafka topics.

8.2.8.1.2 Detailed Functionality

Transaction Versus Operation Mode

The Kafka Handler sends instances of the Kafka ProducerRecord class to the Kafka producer
API, which in turn publishes the ProducerRecord to a Kafka topic. The Kafka ProducerRecord
effectively is the implementation of a Kafka message. The ProducerRecord has two
components: a key and a value. Both the key and value are represented as byte arrays by the
Kafka Handler. This section describes how the Kafka Handler publishes data.

Transaction Mode

The following configuration sets the Kafka Handler to transaction mode:

gg.handler.name.Mode=tx
In transaction mode, the serialized data is concatenated for every operation in a transaction
from the source Oracle GoldenGate trail files. The contents of the concatenated operation data
is the value of the Kafka ProducerRecord object. The key of the Kafka ProducerRecord object
is NULL. The result is that Kafka messages comprise data from 1 to N operations, where N is
the number of operations in the transaction.

For grouped transactions, all the data for all the operations are concatenated into a single
Kafka message. Therefore, grouped transactions may result in very large Kafka messages that
contain data for a large number of operations.

Chapter 8
Target

8-178

http://kafka.apache.org/

Operation Mode

The following configuration sets the Kafka Handler to operation mode:

gg.handler.name.Mode=op
In operation mode, the serialized data for each operation is placed into an individual
ProducerRecord object as the value. The ProducerRecord key is the fully qualified table name
of the source operation. The ProducerRecord is immediately sent using the Kafka Producer
API. This means that there is a 1 to 1 relationship between the incoming operations and the
number of Kafka messages produced.

Topic Name Selection

The topic is resolved at runtime using this configuration parameter:

gg.handler.topicMappingTemplate

You can configure a static string, keywords, or a combination of static strings and keywords to
dynamically resolve the topic name at runtime based on the context of the current operation,
see Using Templates to Resolve the Topic Name and Message Key.

Kafka Broker Settings

To configure topics to be created automatically, set the auto.create.topics.enable property
to true. This is the default setting.

If you set the auto.create.topics.enable property to false, then you must manually create
topics before you start the Replicat process.

Schema Propagation

The schema data for all tables is delivered to the schema topic that is configured with the
schemaTopicName property. For more information , see Schema Propagation.

8.2.8.1.3 Setting Up and Running the Kafka Handler
Instructions for configuring the Kafka Handler components and running the handler are
described in this section.

You must install and correctly configure Kafka either as a single node or a clustered instance,
see http://kafka.apache.org/documentation.html.

If you are using a Kafka distribution other than Apache Kafka, then consult the documentation
for your Kafka distribution for installation and configuration instructions.

Zookeeper, a prerequisite component for Kafka and Kafka broker (or brokers), must be up and
running.

Oracle recommends and considers it best practice that the data topic and the schema topic (if
applicable) are preconfigured on the running Kafka brokers. You can create Kafka topics
dynamically. However, this relies on the Kafka brokers being configured to allow dynamic
topics.

If the Kafka broker is not collocated with the Kafka Handler process, then the remote host port
must be reachable from the machine running the Kafka Handler.

• Classpath Configuration

Chapter 8
Target

8-179

http://kafka.apache.org/documentation.html

• Kafka Handler Configuration

• Java Adapter Properties File

• Kafka Producer Configuration File

• Using Templates to Resolve the Topic Name and Message Key
The Kafka Handler provides functionality to resolve the topic name and the message key
at runtime using a template configuration value. Templates allow you to configure static
values and keywords. Keywords are used to dynamically resolve content at runtime and
inject that resolved value into the resolved string.

• Kafka Configuring with Kerberos on a Hadoop Platform

• Kafka SSL Support
Kafka support SSL connectivity between Kafka clients and the Kafka cluster. SSL
connectivity provides both authentication and encryption of messages transported between
the client and the server.

8.2.8.1.3.1 Classpath Configuration

For the Kafka Handler to connect to Kafka and run, the Kafka Producer properties file and the
Kafka client JARs must be configured in the gg.classpath configuration variable. The Kafka
client JARs must match the version of Kafka that the Kafka Handler is connecting to. For a list
of the required client JAR files by version, see Kafka Handler Client Dependencies.

The recommended storage location for the Kafka Producer properties file is the Oracle
GoldenGate dirprm directory.

The default location of the Kafka client JARs is Kafka_Home/libs/*.
The gg.classpath must be configured precisely. The path of the Kafka Producer Properties file
must contain the path with no wildcard appended. If the * wildcard is included in the path to the
Kafka Producer Properties file, the file is not picked up. Conversely, path to the dependency
JARs must include the * wild card character in order to include all the JAR files in that directory
in the associated classpath. Do not use *.jar. The following is an example of the correctly
configured classpath:

gg.classpath={kafka install dir}/libs/*

8.2.8.1.3.2 Kafka Handler Configuration

The following are the configurable values for the Kafka Handler. These properties are located
in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the Kafka Handler, you must first configure the handler type by
specifying gg.handler.namr.type=kafka and the other Kafka properties as follows:

Table 8-9 Configuration Properties for Kafka Handler

Property Name Required /
Optional

Property Value Default Description

gg.handlerlist Required name (choice of any
name)

None List of handlers to be used.

gg.handler.name.
type

Required kafka None Type of handler to use.

Chapter 8
Target

8-180

Table 8-9 (Cont.) Configuration Properties for Kafka Handler

Property Name Required /
Optional

Property Value Default Description

gg.handler.name.
KafkaProducerCon
figFile

Optional Any custom file name kafka-producer-
default.propertie
s

Filename in classpath that holds
Apache Kafka properties to
configure the Apache Kafka
producer.

gg.handler.name.
Format

Optional Formatter class or
short code.

delimitedtext Formatter to use to format payload.
Can be one of xml,
delimitedtext, json, json_row,
avro_row, avro_op

gg.handler.name.
SchemaTopicName

Required when
schema
delivery is
required.

Name of the schema
topic.

None Topic name where schema data will
be delivered. If this property is not
set, schema will not be propagated.
Schemas will be propagated only for
Avro formatters.

gg.handler.name.
SchemaPrClassNam
e

Optional Fully qualified class
name of a custom
class that implements
Oracle GoldenGate for
Distributed
Applications and
Analytics (GG for
DAA) Kafka Handler's
CreateProducerRec
ord Java Interface.

Provided this
implementation class:
oracle.goldengate
.handler.kafka
ProducerRecord

Schema is also propagated as a
ProducerRecord. The default key
is the fully qualified table name. If
this needs to be changed for
schema records, the custom
implementation of the
CreateProducerRecord interface
needs to be created and this
property needs to be set to point to
the fully qualified name of the new
class.

gg.handler.name.
mode

Optional tx/op tx With Kafka Handler operation mode,
each change capture data record
(Insert, Update, Delete, and so on)
payload is represented as a Kafka
Producer Record and is flushed one
at a time. With Kafka Handler in
transaction mode, all operations
within a source transaction are
represented as a single Kafka
Producer record. This combined
byte payload is flushed on a
transaction Commit event.

gg.handler.name.
topicMappingTemp
late

Required A template string
value to resolve the
Kafka topic name at
runtime.

None See Using Templates to Resolve
the Topic Name and Message Key.

gg.handler.name.
keyMappingTempla
te

Required A template string
value to resolve the
Kafka message key at
runtime.

None See Using Templates to Resolve
the Topic Name and Message Key.

gg.hander.name.l
ogSuccessfullySe
ntMessages

Optional true | false true Set to true, the Kafka Handler will
log at the INFO level message that
have been successfully sent to
Kafka. Enabling this property has
negative impact on performance.

Chapter 8
Target

8-181

Table 8-9 (Cont.) Configuration Properties for Kafka Handler

Property Name Required /
Optional

Property Value Default Description

gg.handler.name.
metaHeadersTempl
ate

Optional Comma delimited list
of metacolumn
keywords.

None Allows the user to select
metacolumns to inject context-
based key value pairs into Kafka
message headers using the
metacolumn keyword syntax.

8.2.8.1.3.3 Java Adapter Properties File

The following is a sample configuration for the Kafka Handler from the Adapter properties file:

gg.handlerlist = kafkahandler
gg.handler.kafkahandler.Type = kafka
gg.handler.kafkahandler.KafkaProducerConfigFile = custom_kafka_producer.properties
gg.handler.kafkahandler.topicMappingTemplate=oggtopic
gg.handler.kafkahandler.keyMappingTemplate=${currentTimestamp}
gg.handler.kafkahandler.Format = avro_op
gg.handler.kafkahandler.SchemaTopicName = oggSchemaTopic
gg.handler.kafkahandler.SchemaPrClassName = com.company.kafkaProdRec.SchemaRecord
gg.handler.kafkahandler.Mode = tx

You can find a sample Replicat configuration and a Java Adapter Properties file for a Kafka
integration in the following directory:

GoldenGate_install_directory/AdapterExamples/big-data/kafka

8.2.8.1.3.4 Kafka Producer Configuration File

The Kafka Handler must access a Kafka producer configuration file in order to publish
messages to Kafka. The file name of the Kafka producer configuration file is controlled by the
following configuration in the Kafka Handler properties.

gg.handler.kafkahandler.KafkaProducerConfigFile=custom_kafka_producer.properties

The Kafka Handler attempts to locate and load the Kafka producer configuration file by using
the Java classpath. Therefore, the Java classpath must include the directory containing the
Kafka Producer Configuration File.

The Kafka producer configuration file contains Kafka proprietary properties. The Kafka
documentation provides configuration information for the 0.8.2.0 Kafka producer interface
properties. The Kafka Handler uses these properties to resolve the host and port of the Kafka
brokers, and properties in the Kafka producer configuration file control the behavior of the
interaction between the Kafka producer client and the Kafka brokers.

A sample of configuration file for the Kafka producer is as follows:

bootstrap.servers=localhost:9092
acks = 1
compression.type = gzip
reconnect.backoff.ms = 1000

value.serializer = org.apache.kafka.common.serialization.ByteArraySerializer
key.serializer = org.apache.kafka.common.serialization.ByteArraySerializer
100KB per partition
batch.size = 102400
linger.ms = 0

Chapter 8
Target

8-182

max.request.size = 1048576
send.buffer.bytes = 131072

• Encrypt Kafka Producer Properties

8.2.8.1.3.4.1 Encrypt Kafka Producer Properties
The sensitive properties within the Kafka Producer Configuration File can be encrypted using
the Oracle GoldenGate Credential Store.
For more information about how to use Credential Store, see Using Identities in Oracle
GoldenGate Credential Store.

For example, the following kafka property:

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule
required
username="alice" password="alice";

can be replaced with:

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule
required
username=ORACLEWALLETUSERNAME[alias domain_name]
password=ORACLEWALLETPASSWORD[alias
domain_name];

8.2.8.1.3.5 Using Templates to Resolve the Topic Name and Message Key

The Kafka Handler provides functionality to resolve the topic name and the message key at
runtime using a template configuration value. Templates allow you to configure static values
and keywords. Keywords are used to dynamically resolve content at runtime and inject that
resolved value into the resolved string.

The templates use the following configuration properties:

gg.handler.name.topicMappingTemplate
gg.handler.name.keyMappingTemplate

Template Modes

Source database transactions are made up of one or more individual operations that are the
individual inserts, updates, and deletes. The Kafka Handler can be configured to send one
message per operation (insert, update, delete), or alternatively can be configured to group
operations into messages at the transaction level. Many template keywords resolve data based
on the context of an individual source database operation. Therefore, many of the keywords do
not work when sending messages at the transaction level. For example, using $
{fullyQualifiedTableName} does not work when sending messages at the transaction level
rather it resolves to the qualified source table name for an operation. However, transactions
can contain multiple operations for many source tables. Resolving the fully qualified table
name for messages at the transaction level is non-deterministic so abends at runtime.

For more information about the Template Keywords, see Template Keywords.
See Example Templates.

Chapter 8
Target

8-183

8.2.8.1.3.6 Kafka Configuring with Kerberos on a Hadoop Platform

Use these steps to configure a Kafka Handler Replicat with Kerberos to enable a Cloudera
instance to process an Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA) trail to a Kafka topic:

1. In GGSCI, add a Kafka Replicat:

GGSCI> add replicat kafka, exttrail dirdat/gg
2. Configure a prm file with these properties:

replicat kafka
discardfile ./dirrpt/kafkax.dsc, purge
SETENV (TZ=PST8PDT)
GETTRUNCATES
GETUPDATEBEFORES
ReportCount Every 1000 Records, Rate
MAP qasource.*, target qatarget.*;

3. Configure a Replicat properties file as follows:

###KAFKA Properties file ###
gg.log=log4j
gg.log.level=info
gg.report.time=30sec

###Kafka Classpath settings ###
gg.classpath=/opt/cloudera/parcels/KAFKA-2.1.0-1.2.1.0.p0.115/lib/kafka/libs/*
jvm.bootoptions=-Xmx64m -Xms64m -Djava.class.path=./ggjava/ggjava.jar -
Dlog4j.configuration=log4j.properties -Djava.security.auth.login.config=/scratch/
ydama/ogg/v123211/dirprm/jaas.conf -Djava.security.krb5.conf=/etc/krb5.conf

Kafka handler properties
gg.handlerlist = kafkahandler
gg.handler.kafkahandler.type=kafka
gg.handler.kafkahandler.KafkaProducerConfigFile=kafka-producer.properties
gg.handler.kafkahandler.format=delimitedtext
gg.handler.kafkahandler.format.PkUpdateHandling=update
gg.handler.kafkahandler.mode=op
gg.handler.kafkahandler.format.includeCurrentTimestamp=false
gg.handler.kafkahandler.format.fieldDelimiter=|
gg.handler.kafkahandler.format.lineDelimiter=CDATA[\n]
gg.handler.kafkahandler.topicMappingTemplate=myoggtopic
gg.handler.kafkahandler.keyMappingTemplate=${position}

4. Configure a Kafka Producer file with these properties:

bootstrap.servers=10.245.172.52:9092
acks=1
#compression.type=snappy
reconnect.backoff.ms=1000
value.serializer=org.apache.kafka.common.serialization.ByteArraySerializer
key.serializer=org.apache.kafka.common.serialization.ByteArraySerializer
batch.size=1024
linger.ms=2000

security.protocol=SASL_PLAINTEXT

sasl.kerberos.service.name=kafka
sasl.mechanism=GSSAPI

5. Configure a jaas.conf file with these properties:

Chapter 8
Target

8-184

KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
storeKey=true
keyTab="/scratch/ydama/ogg/v123211/dirtmp/keytabs/slc06unm/kafka.keytab"
principal="kafka/slc06unm.us.oracle.com@HADOOPTEST.ORACLE.COM";
};

6. Ensure that you have the latest key.tab files from the Cloudera instance to connect
secured Kafka topics.

7. Start the Replicat from GGSCI and make sure that it is running with INFO ALL.

8. Review the Replicat report to see the total number of records processed. The report is
similar to:

Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)

Copyright (c) 2007, 2018. Oracle and/or its affiliates. All rights reserved

Built with Java 1.8.0_161 (class version: 52.0)

2018-08-05 22:15:28 INFO OGG-01815 Virtual Memory Facilities for: COM
anon alloc: mmap(MAP_ANON) anon free: munmap
file alloc: mmap(MAP_SHARED) file free: munmap
target directories:
/scratch/ydama/ogg/v123211/dirtmp.

Database Version:

Database Language and Character Set:

** Run Time Messages **

2018-08-05 22:15:28 INFO OGG-02243 Opened trail file /scratch/ydama/ogg/v123211/
dirdat/kfkCustR/gg000000 at 2018-08-05 22:15:28.258810.

2018-08-05 22:15:28 INFO OGG-03506 The source database character set, as determined
from the trail file, is UTF-8.

2018-08-05 22:15:28 INFO OGG-06506 Wildcard MAP resolved (entry qasource.*): MAP
"QASOURCE"."BDCUSTMER1", target qatarget."BDCUSTMER1".

2018-08-05 22:15:28 INFO OGG-02756 The definition for table QASOURCE.BDCUSTMER1 is
obtained from the trail file.

2018-08-05 22:15:28 INFO OGG-06511 Using following columns in default map by name:
CUST_CODE, NAME, CITY, STATE.

2018-08-05 22:15:28 INFO OGG-06510 Using the following key columns for target table
qatarget.BDCUSTMER1: CUST_CODE.

2018-08-05 22:15:29 INFO OGG-06506 Wildcard MAP resolved (entry qasource.*): MAP
"QASOURCE"."BDCUSTORD1", target qatarget."BDCUSTORD1".

2018-08-05 22:15:29 INFO OGG-02756 The definition for table QASOURCE.BDCUSTORD1 is
obtained from the trail file.

2018-08-05 22:15:29 INFO OGG-06511 Using following columns in default map by name:
CUST_CODE, ORDER_DATE, PRODUCT_CODE, ORDER_ID, PRODUCT_PRICE, PRODUCT_AMOUNT,

Chapter 8
Target

8-185

TRANSACTION_ID.

2018-08-05 22:15:29 INFO OGG-06510 Using the following key columns for target table
qatarget.BDCUSTORD1: CUST_CODE, ORDER_DATE, PRODUCT_CODE, ORDER_ID.

2018-08-05 22:15:33 INFO OGG-01021 Command received from GGSCI: STATS.

2018-08-05 22:16:03 INFO OGG-01971 The previous message, 'INFO OGG-01021', repeated
1 times.

2018-08-05 22:43:27 INFO OGG-01021 Command received from GGSCI: STOP.

* ** Run Time Statistics ** *

Last record for the last committed transaction is the following:

Trail name : /scratch/ydama/ogg/v123211/dirdat/kfkCustR/gg000000
Hdr-Ind : E (x45) Partition : . (x0c)
UndoFlag : . (x00) BeforeAfter: A (x41)
RecLength : 0 (x0000) IO Time : 2015-08-14 12:02:20.022027
IOType : 100 (x64) OrigNode : 255 (xff)
TransInd : . (x03) FormatType : R (x52)
SyskeyLen : 0 (x00) Incomplete : . (x00)
AuditRBA : 78233 AuditPos : 23968384
Continued : N (x00) RecCount : 1 (x01)

2015-08-14 12:02:20.022027 GGSPurgedata Len 0 RBA 6473
TDR Index: 2

Reading /scratch/ydama/ogg/v123211/dirdat/kfkCustR/gg000000, current RBA 6556, 20
records, m_file_seqno = 0, m_file_rba = 6556

Report at 2018-08-05 22:43:27 (activity since 2018-08-05 22:15:28)

From Table QASOURCE.BDCUSTMER1 to qatarget.BDCUSTMER1:
inserts: 5
updates: 1
deletes: 0
discards: 0
From Table QASOURCE.BDCUSTORD1 to qatarget.BDCUSTORD1:
inserts: 5
updates: 3
deletes: 5
truncates: 1
discards: 0

9. Ensure that the secure Kafka topic is created:

/kafka/bin/kafka-topics.sh --zookeeper slc06unm:2181 --list
myoggtopic

10. Review the contents of the secure Kafka topic:

a. Create a consumer.properties file containing:

security.protocol=SASL_PLAINTEXT
sasl.kerberos.service.name=kafka

b. Set this environment variable:

Chapter 8
Target

8-186

export KAFKA_OPTS="-Djava.security.auth.login.config="/scratch/ogg/v123211/
dirprm/jaas.conf"

c. Run the consumer utility to check the records:

/kafka/bin/kafka-console-consumer.sh --bootstrap-server sys06:9092 --topic
myoggtopic --new-consumer --consumer.config consumer.properties

8.2.8.1.3.7 Kafka SSL Support

Kafka support SSL connectivity between Kafka clients and the Kafka cluster. SSL connectivity
provides both authentication and encryption of messages transported between the client and
the server.

SSL can be configured for server authentication (client authenticates server) but is generally
configured for mutual authentication (both client and server authenticate each other). In an
SSL mutual authentication, each side of the connection retrieves a certificate from its keystore
and passes it to the other side of the connection, which verifies the certificate against the
certificate in its truststore.
When you set up SSL, see the Kafka documentation for more information about the specific
Kafka version that you are running. The Kafka documentation also provides information on
how to do the following:

• Set up the Kafka cluster for SSL

• Create self signed certificates in a keystore/truststore file

• Configure the Kafka clients for SSL

Oracle recommends you to implement the SSL connectivity using the Kafka producer and
consumer command line utilities before attempting to use it with Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA). The SSL connectivity should be
confirmed between the machine hosting GG for DAA and the Kafka cluster. This action proves
that SSL connectivity is correctly set up and working prior to introducing GG for DAA.
The following is an example of Kafka producer configuration with SSL mutual authentication:

bootstrap.servers=localhost:9092
acks=1
value.serializer=org.apache.kafka.common.serialization.ByteArraySerializer
key.serializer=org.apache.kafka.common.serialization.ByteArraySerializer
security.protocol=SSL
ssl.keystore.location=/var/private/ssl/server.keystore.jks
ssl.keystore.password=test1234
ssl.key.password=test1234
ssl.truststore.location=/var/private/ssl/server.truststore.jks
ssl.truststore.password=test1234

8.2.8.1.4 Schema Propagation
The Kafka Handler provides the ability to publish schemas to a schema topic. Currently, the
Avro Row and Operation formatters are the only formatters that are enabled for schema
publishing. If the Kafka Handler schemaTopicName property is set, then the schema is published
for the following events:

• The Avro schema for a specific table is published the first time an operation for that table is
encountered.

• If the Kafka Handler receives a metadata change event, the schema is flushed. The
regenerated Avro schema for a specific table is published the next time an operation for
that table is encountered.

Chapter 8
Target

8-187

https://kafka.apache.org/documentation/#security

• If the Avro wrapping functionality is enabled, then the generic wrapper Avro schema is
published the first time that any operation is encountered. To enable the generic wrapper,
Avro schema functionality is enabled in the Avro formatter configuration, see Avro Row
Formatter and The Avro Operation Formatter.

The Kafka ProducerRecord value is the schema, and the key is the fully qualified table name.

Because Avro messages directly depend on an Avro schema, user of Avro over Kafka may
encounter issues. Avro messages are not human readable because they are binary. To
deserialize an Avro message, the receiver must first have the correct Avro schema, but
because each table from the source database results in a separate Avro schema, this can be
difficult. The receiver of a Kafka message cannot determine which Avro schema to use to
deserialize individual messages when the source Oracle GoldenGate trail file includes
operations from multiple tables. To solve this problem, you can wrap the specialized Avro
messages in a generic Avro message wrapper. This generic Avro wrapper provides the fully-
qualified table name, the hashcode of the schema string, and the wrapped Avro message. The
receiver can use the fully-qualified table name and the hashcode of the schema string to
resolve the associated schema of the wrapped message, and then use that schema to
deserialize the wrapped message.

8.2.8.1.5 Performance Considerations
For the best performance, Oracle recommends that you send the Kafka Handler to operate in
operation mode.

gg.handler.name.mode = op

Additionally, Oracle recommends that you set the batch.size and linger.ms values in the
Kafka Producer properties file. These values are highly dependent upon the use case
scenario. Typically, higher values result in better throughput, but latency is increased. Smaller
values in these properties reduces latency but overall throughput decreases.

Use of the Replicat variable GROUPTRANSOPS also improves performance. The recommended
setting is 10000.

If the serialized operations from the source trail file must be delivered in individual Kafka
messages, then the Kafka Handler must be set to operation mode.

gg.handler.name.mode = op

8.2.8.1.6 About Security
Kafka version 0.9.0.0 introduced security through SSL/TLS and SASL (Kerberos). You can
secure the Kafka Handler using one or both of the SSL/TLS and SASL security offerings. The
Kafka producer client libraries provide an abstraction of security functionality from the
integrations that use those libraries. The Kafka Handler is effectively abstracted from security
functionality. Enabling security requires setting up security for the Kafka cluster, connecting
machines, and then configuring the Kafka producer properties file with the required security
properties. For detailed instructions about securing the Kafka cluster, see the Kafka
documentation at

You may encounter the inability to decrypt the Kerberos password from the keytab file. This
causes the Kerberos authentication to fall back to interactive mode which cannot work because
it is being invoked programmatically. The cause of this problem is that the Java Cryptography
Extension (JCE) is not installed in the Java Runtime Environment (JRE). Ensure that the JCE
is loaded in the JRE, see http://www.oracle.com/technetwork/java/javase/downloads/jce8-
download-2133166.html.

Chapter 8
Target

8-188

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

8.2.8.1.7 Metadata Change Events
Metadata change events are now handled in the Kafka Handler. This is relevant only if you
have configured a schema topic and the formatter used supports schema propagation
(currently Avro row and Avro Operation formatters). The next time an operation is encountered
for a table for which the schema has changed, the updated schema is published to the schema
topic.

To support metadata change events, the Oracle GoldenGate process capturing changes in the
source database must support the Oracle GoldenGate metadata in trail feature, which was
introduced in Oracle GoldenGate 12c (12.2).

8.2.8.1.8 Snappy Considerations
The Kafka Producer Configuration file supports the use of compression. One of the
configurable options is Snappy, an open source compression and decompression (codec)
library that provides better performance than other codec libraries. The Snappy JAR does not
run on all platforms. Snappy may work on Linux systems though may or may not work on other
UNIX and Windows implementations. If you want to use Snappy compression, test Snappy on
all required systems before implementing compression using Snappy. If Snappy does not port
to all required systems, then Oracle recommends using an alternate codec library.

8.2.8.1.9 Kafka Interceptor Support
The Kafka Producer client framework supports the use of Producer Interceptors. A Producer
Interceptor is simply a user exit from the Kafka Producer client whereby the Interceptor object
is instantiated and receives notifications of Kafka message send calls and Kafka message
send acknowledgement calls.

The typical use case for Interceptors is monitoring. Kafka Producer Interceptors must conform
to the interface org.apache.kafka.clients.producer.ProducerInterceptor. The Kafka
Handler supports Producer Interceptor usage.

The requirements to using Interceptors in the Handlers are as follows:

• The Kafka Producer configuration property "interceptor.classes" must be configured
with the class name of the Interceptor(s) to be invoked.

• In order to invoke the Interceptor(s), the jar files plus any dependency jars must be
available to the JVM. Therefore, the jar files containing the Interceptor(s) plus any
dependency jars must be added to the gg.classpath in the Handler configuration file.
For more information, see Kafka documentation.

8.2.8.1.10 Kafka Partition Selection
Kafka topics comprise one or more partitions. Distribution to multiple partitions is a good way to
improve Kafka ingest performance, because the Kafka client parallelizes message sending to
different topic/partition combinations. Partition selection is controlled by a following calculation
in the Kafka client.

(Hash of the Kafka message key) modulus (the number of partitions) = selected partition
number

The Kafka message key is selected by the following configuration value:

gg.handler.{your handler name}.keyMappingTemplate=

Chapter 8
Target

8-189

https://kafka.apache.org/documentation/

If this parameter is set to a value which generates a static key, all messages will go to the
same partition. The following is example of static keys:

gg.handler.{your handler name}.keyMappingTemplate=StaticValue

If this parameter is set to a value which generates a key that changes infrequently, partition
selection changes infrequently. In the following example the table name is used as the
message key. Every operation for a specific source table will have the same key and thereby
route to the same partition:

gg.handler.{your handler name}.keyMappingTemplate=${tableName}

A null Kafka message key distributes to the partitions on a round-robin basis. To do this, set
the following:

gg.handler.{your handler name}.keyMappingTemplate=${null}

The recommended setting for configuration of the mapping key is the following:

gg.handler.{your handler name}.keyMappingTemplate=${primaryKeys}

This generates a Kafka message key that is the concatenated and delimited primary key
values.

Operations for each row should have a unique primary key(s) thereby generating a unique
Kafka message key for each row. Another important consideration is Kafka messages sent to
different partitions are not guaranteed to be delivered to a Kafka consumer in the original order
sent. This is part of the Kafka specification. Order is only maintained within a partition. Using
primary keys as the Kafka message key means that operations for the same row, which have
the same primary key(s), generate the same Kafka message key, and therefore are sent to the
same Kafka partition. In this way, the order is maintained for operations for the same row.

At the DEBUG log level the Kafka message coordinates (topic, partition, and offset) are logged to
the .log file for successfully sent messages.

8.2.8.1.11 Troubleshooting
• Verify the Kafka Setup

• Classpath Issues

• Invalid Kafka Version

• Kafka Producer Properties File Not Found

• Kafka Connection Problem

8.2.8.1.11.1 Verify the Kafka Setup

You can use the command line Kafka producer to write dummy data to a Kafka topic, and you
can use a Kafka consumer to read this data from the Kafka topic. Use this method to verify the
setup and read/write permissions to Kafka topics on disk, see http://kafka.apache.org/
documentation.html#quickstart.

Chapter 8
Target

8-190

http://kafka.apache.org/documentation.html#quickstart
http://kafka.apache.org/documentation.html#quickstart

8.2.8.1.11.2 Classpath Issues

Java classpath problems are common. Such problems may include a
ClassNotFoundException problem in the log4j log file or may be an error resolving the
classpath because of a typographic error in the gg.classpath variable. The Kafka client
libraries do not ship with the Oracle GoldenGate for Distributed Applications and Analytics (GG
for DAA) product. You must obtain the correct version of the Kafka client libraries and properly
configure the gg.classpath property in the Java Adapter Properties file to correctly resolve the
Java the Kafka client libraries as described in Classpath Configuration.

8.2.8.1.11.3 Invalid Kafka Version

The Kafka Handler does not support Kafka versions 0.8.2.2 or older. If you run an unsupported
version of Kafka, a runtime Java exception, java.lang.NoSuchMethodError, occurs. It implies
that the org.apache.kafka.clients.producer.KafkaProducer.flush() method cannot be
found. If you encounter this error, migrate to Kafka version 0.9.0.0 or later.

8.2.8.1.11.4 Kafka Producer Properties File Not Found

This problem typically results in the following exception:

ERROR 2015-11-11 11:49:08,482 [main] Error loading the kafka producer properties

Check the gg.handler.kafkahandler.KafkaProducerConfigFile configuration variable to
ensure that the Kafka Producer Configuration file name is set correctly. Check the
gg.classpath variable to verify that the classpath includes the path to the Kafka Producer
properties file, and that the path to the properties file does not contain a * wildcard at the end.

8.2.8.1.11.5 Kafka Connection Problem

This problem occurs when the Kafka Handler is unable to connect to Kafka. You receive the
following warnings:

WARN 2015-11-11 11:25:50,784 [kafka-producer-network-thread | producer-1] WARN
(Selector.java:276) - Error in I/O with localhost/127.0.0.1
java.net.ConnectException: Connection refused

The connection retry interval expires, and the Kafka Handler process abends. Ensure that the
Kafka Broker is running and that the host and port provided in the Kafka Producer Properties
file are correct. You can use network shell commands (such as netstat -l) on the machine
hosting the Kafka broker to verify that Kafka is listening on the expected port.

8.2.8.1.12 Kafka Handler Client Dependencies
What are the dependencies for the Kafka Handler to connect to Apache Kafka databases?

The maven central repository artifacts for Kafka databases are:

Maven groupId: org.apache.kafka
Maven atifactId: kafka-clients
Maven version: the Kafka version numbers listed for each section

• Kafka 2.8.0

• Kafka 2.7.0

Chapter 8
Target

8-191

• Kafka 2.6.0

• Kafka 2.5.1

• Kafka 2.4.1

• Kafka 2.3.1

8.2.8.1.12.1 Kafka 2.8.0

kafka-clients-2.8.0.jar
lz4-java-1.7.1.jar
slf4j-api-1.7.30.jar
snappy-java-1.1.8.1.jar
zstd-jni-1.4.9-1.jar

8.2.8.1.12.2 Kafka 2.7.0

kafka-clients-2.7.0.jar
lz4-java-1.7.1.jar
slf4j-api-1.7.30.jar
snappy-java-1.1.7.7.jar
zstd-jni-1.4.5-6.jar

8.2.8.1.12.3 Kafka 2.6.0

kafka-clients-2.6.0.jar
lz4-java-1.7.1.jar
slf4j-api-1.7.30.jar
snappy-java-1.1.7.3.jar
zstd-jni-1.4.4-7.jar

8.2.8.1.12.4 Kafka 2.5.1

kafka-clients-2.5.1.jar
lz4-java-1.7.1.jar
slf4j-api-1.7.30.jar
snappy-java-1.1.7.3.jar
zstd-jni-1.4.4-7.jar

8.2.8.1.12.5 Kafka 2.4.1

kafka-clients-2.4.1.jar
lz4-java-1.6.0.jar
slf4j-api-1.7.28.jar
snappy-java-1.1.7.3.jar
zstd-jni-1.4.3-1.jarr

8.2.8.1.12.6 Kafka 2.3.1

kafka-clients-2.3.1.jar
lz4-java-1.6.0.jar
slf4j-api-1.7.26.jar
snappy-java-1.1.7.3.jar
zstd-jni-1.4.0-1.jar

8.2.8.2 Apache Kafka Connect Handler
The Kafka Connect Handler is an extension of the standard Kafka messaging functionality.

This chapter describes how to use the Kafka Connect Handler.

Chapter 8
Target

8-192

• Overview
The Oracle GoldenGate Kafka Connect is an extension of the standard Kafka messaging
functionality. Kafka Connect is a functional layer on top of the standard Kafka Producer
and Consumer interfaces. It provides standardization for messaging to make it easier to
add new source and target systems into your topology.

• Detailed Functionality

• Setting Up and Running the Kafka Connect Handler

• Connecting to a Secure Schema Registry

• Kafka Connect Handler Performance Considerations

• Kafka Interceptor Support
The Kafka Producer client framework supports the use of Producer Interceptors. A
Producer Interceptor is simply a user exit from the Kafka Producer client whereby the
Interceptor object is instantiated and receives notifications of Kafka message send calls
and Kafka message send acknowledgement calls.

• Kafka Partition Selection
Kafka topics comprise one or more partitions. Distribution to multiple partitions is a good
way to improve Kafka ingest performance, because the Kafka client parallelizes message
sending to different topic/partition combinations. Partition selection is controlled by a
following calculation in the Kafka client.

• Troubleshooting the Kafka Connect Handler

• Kafka Connect Handler Client Dependencies
What are the dependencies for the Kafka Connect Handler to connect to Apache Kafka
Connect databases?

8.2.8.2.1 Overview
The Oracle GoldenGate Kafka Connect is an extension of the standard Kafka messaging
functionality. Kafka Connect is a functional layer on top of the standard Kafka Producer and
Consumer interfaces. It provides standardization for messaging to make it easier to add new
source and target systems into your topology.

Confluent is a primary adopter of Kafka Connect and their Confluent Platform offering includes
extensions over the standard Kafka Connect functionality. This includes Avro serialization and
deserialization, and an Avro schema registry. Much of the Kafka Connect functionality is
available in Apache Kafka. A number of open source Kafka Connect integrations are found at:

https://www.confluent.io/product/connectors/

The Kafka Connect Handler is a Kafka Connect source connector. You can capture database
changes from any database supported by Oracle GoldenGate and stream that change of data
through the Kafka Connect layer to Kafka. You can also connect to Oracle Event Hub Cloud
Services (EHCS) with this handler.

Kafka Connect uses proprietary objects to define the schemas
(org.apache.kafka.connect.data.Schema) and the messages
(org.apache.kafka.connect.data.Struct). The Kafka Connect Handler can be configured to
manage what data is published and the structure of the published data.

The Kafka Connect Handler does not support any of the pluggable formatters that are
supported by the Kafka Handler.

Chapter 8
Target

8-193

https://www.confluent.io/product/connectors/

8.2.8.2.2 Detailed Functionality
The Kafka Connect framework provides converters to convert in-memory Kafka Connect
messages to a serialized format suitable for transmission over a network. These converters are
selected using configuration in the Kafka Producer properties file.

JSON Converter

Kafka Connect and the JSON converter is available as part of the Apache Kafka download.
The JSON Converter converts the Kafka keys and values to JSONs which are then sent to a
Kafka topic. You identify the JSON Converters with the following configuration in the Kafka
Producer properties file:

key.converter=org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable=true
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=true

The format of the messages is the message schema information followed by the payload
information. JSON is a self describing format so you should not include the schema information
in each message published to Kafka.

To omit the JSON schema information from the messages set the following:

key.converter.schemas.enable=false
value.converter.schemas.enable=false

Avro Converter

Confluent provides Kafka installations, support for Kafka, and extended functionality built on
top of Kafka to help realize the full potential of Kafka. Confluent provides both open source
versions of Kafka (Confluent Open Source) and an enterprise edition (Confluent Enterprise),
which is available for purchase.

A common Kafka use case is to send Avro messages over Kafka. This can create a problem
on the receiving end as there is a dependency for the Avro schema in order to deserialize an
Avro message. Schema evolution can increase the problem because received messages must
be matched up with the exact Avro schema used to generate the message on the producer
side. Deserializing Avro messages with an incorrect Avro schema can cause runtime failure,
incomplete data, or incorrect data. Confluent has solved this problem by using a schema
registry and the Confluent schema converters.

The following shows the configuration of the Kafka Producer properties file.

key.converter=io.confluent.connect.avro.AvroConverter
value.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter.schema.registry.url=http://localhost:8081

When messages are published to Kafka, the Avro schema is registered and stored in the
schema registry. When messages are consumed from Kafka, the exact Avro schema used to
create the message can be retrieved from the schema registry to deserialize the Avro
message. This creates matching of Avro messages to corresponding Avro schemas on the
receiving side, which solves this problem.

Chapter 8
Target

8-194

Following are the requirements to use the Avro Converters:

• This functionality is available in both versions of Confluent Kafka (open source or
enterprise).

• The Confluent schema registry service must be running.

• Source database tables must have an associated Avro schema. Messages associated with
different Avro schemas must be sent to different Kafka topics.

• The Confluent Avro converters and the schema registry client must be available in the
classpath.

The schema registry keeps track of Avro schemas by topic. Messages must be sent to a topic
that has the same schema or evolving versions of the same schema. Source messages have
Avro schemas based on the source database table schema so Avro schemas are unique for
each source table. Publishing messages to a single topic for multiple source tables will appear
to the schema registry that the schema is evolving every time the message sent from a source
table that is different from the previous message.

Protobuf Converter

The Protobuf Converter allows Kafka Connect messages to be formatted as Google Protocol
Buffers format. The Protobuf Converter integrates with the Confluent schema registry and this
functionality is available in both the open source and enterprise versions of Confluent.
Confluent added the Protobuf Converter starting in Confluent version 5.5.0.

The following shows the configuration to select the Protobuf Converter in the Kafka Producer
Properties file:

key.converter=io.confluent.connect.protobuf.ProtobufConverter
value.converter=io.confluent.connect.protobuf.ProtobufConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter.schema.registry.url=http://localhost:8081

The requirements to use the Protobuf Converter are as follows:

• This functionality is available in both versions of Confluent Kafka (open source or
enterprise) starting in 5.5.0.

• The Confluent schema registry service must be running.

• Messages with different schemas (source tables) should be sent to different Kafka topics.

• The Confluent Protobuf converter and the schema registry client must be available in the
classpath.

The schema registry keeps track of Protobuf schemas by topic. Messages must be sent to a
topic that has the same schema or evolving versions of the same schema. Source messages
have Protobuf schemas based on the source database table schema so Protobuf schemas are
unique for each source table. Publishing messages to a single topic for multiple source tables
will appear to the schema registry that the schema is evolving every time the message sent
from a source table that is different from the previous message.

8.2.8.2.3 Setting Up and Running the Kafka Connect Handler
Instructions for configuring the Kafka Connect Handler components and running the handler
are described in this section.

Classpath Configuration

Chapter 8
Target

8-195

Two things must be configured in the gg.classpath configuration variable so that the Kafka
Connect Handler can to connect to Kafka and run. The required items are the Kafka Producer
properties file and the Kafka client JARs. The Kafka client JARs must match the version of
Kafka that the Kafka Connect Handler is connecting to. For a listing of the required client JAR
files by version, see Kafka Handler Client Dependencies Kafka Connect Handler Client
Dependencies. The recommended storage location for the Kafka Producer properties file is the
Oracle GoldenGate dirprm directory.

The default location of the Kafka Connect client JARs is the Kafka_Home/libs/* directory.

The gg.classpath variable must be configured precisely. Pathing to the Kafka Producer
properties file should contain the path with no wildcard appended. The inclusion of the asterisk
(*) wildcard in the path to the Kafka Producer properties file causes it to be discarded. Pathing
to the dependency JARs should include the * wildcard character to include all of the JAR files
in that directory in the associated classpath. Do not use *.jar.

Following is an example of a correctly configured Apache Kafka classpath:

gg.classpath=dirprm:{kafka_install_dir}/libs/*

Following is an example of a correctly configured Confluent Kafka classpath:

gg.classpath={confluent_install_dir}/share/java/kafka-serde-tools/*:
{confluent_install_dir}/share/java/kafka/*:{confluent_install_dir}/share/java/confluent-
common/*

• Kafka Connect Handler Configuration
The automated output of meta-column fields in generated Kafka Connect messages has
been removed as of Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA) 21c release.

• Using Templates to Resolve the Topic Name and Message Key

• Configuring Security in the Kafka Connect Handler

8.2.8.2.3.1 Kafka Connect Handler Configuration

The automated output of meta-column fields in generated Kafka Connect messages has been
removed as of Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) 21c
release.

Meta-column fields can be configured as the following property:

gg.handler.name.metaColumnsTemplate
To output the metacolumns as in previous versions configure the following:

gg.handler.name.metaColumnsTemplate=${objectname[table]},${optype[op_type]},$
{timestamp[op_ts]},${currenttimestamp[current_ts]},${position[pos]}
To also include the primary key columns and the tokens configure as follows:

gg.handler.name.metaColumnsTemplate=${objectname[table]},${optype[op_type]},$
{timestamp[op_ts]},${currenttimestamp[current_ts]},${position[pos]},$
{primarykeycolumns[primary_keys]},${alltokens[tokens]}

For more information see the configuration property:

gg.handler.name.metaColumnsTemplate

Chapter 8
Target

8-196

Table 8-10 Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.type

Required kafkaconnect None The configuration
to select the Kafka
Connect Handler.

gg.handler.name
.kafkaProducerC
onfigFile

Required string None Name of the
properties file
containing the
properties of the
Kafka and Kafka
Connect
configuration
properties. This file
must be part of the
classpath
configured by the
gg.classpath
property.

gg.handler.name
.topicMappingTe
mplate

Required A template string
value to resolve the
Kafka topic name
at runtime.

None See Using
Templates to
Resolve the Topic
Name and
Message Key.

gg.handler.name
.keyMappingTemp
late

Required A template string
value to resolve the
Kafka message key
at runtime.

None See Using
Templates to
Resolve the Topic
Name and
Message Key.

gg.handler.name
.includeTokens

Optional true | false false Set to true to
include a map field
in output
messages. The key
is tokens and the
value is a map
where the keys and
values are the
token keys and
values from the
Oracle GoldenGate
source trail file.

Set to false to
suppress this field.

gg.handler.name
.messageFormatt
ing

Optional row | op row Controls how
output messages
are modeled.
Selecting row and
the output
messages will be
modeled as row.
Set to op and the
output messages
will be modeled as
operations
messages.

Chapter 8
Target

8-197

Table 8-10 (Cont.) Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.insertOpKey

Optional any string I The value of the
field op_type to
indicate an insert
operation.

gg.handler.name
.updateOpKey

Optional any string U The value of the
field op_type to
indicate an insert
operation.

gg.handler.name
.deleteOpKey

Optional any string D The value of the
field op_type to
indicate a delete
operation.

gg.handler.name
.truncateOpKey

Optional any string T The value of the
field op_type to
indicate a truncate
operation.

gg.handler.name
.treatAllColumn
sAsStrings

Optional true | false false Set to true to treat
all output fields as
strings. Set to false
and the Handler will
map the
corresponding field
type from the
source trail file to
the best
corresponding
Kafka Connect data
type.

gg.handler.name
.mapLargeNumber
sAsStrings

Optional true | false false Large numbers are
mapping to number
fields as Doubles. It
is possible to lose
precision in certain
scenarios.

If set to true these
fields will be
mapped as Strings
in order to preserve
precision.

Chapter 8
Target

8-198

Table 8-10 (Cont.) Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.pkUpdateHandli
ng

Optional abend | update
| delete-insert

abend Only applicable if
modeling row
messages
gg.handler.name
.messageFormatt
ing=row. Not
applicable if
modeling
operations
messages as the
before and after
images are
propagated to the
message in the
case of an update.

gg.handler.name
.metaColumnsTem
plate

Optional Any of the
metacolumns
keywords.

None A comma-delimited
string consisting of
one or more
templated values
that represent the
template, see
Metacolumn
Keywords.

gg.handler.name
.includeIsMissi
ngFields

Optional true|false true Set to true to
include an
extract{column_
name}.

Set this property for
each column to
allow downstream
applications to
differentiate if a null
value is actually
null in the source
trail file or if it is
missing in the
source trail file.

gg.handler.name
.enableDecimalL
ogicalType

Optional true|false false Set to true to
enable decimal
logical types in
Kafka Connect.
Decimal logical
types allow
numbers which will
not fit in a 64 bit
data type to be
represented.

Chapter 8
Target

8-199

Table 8-10 (Cont.) Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.oracleNumberSc
ale

Optional Positive Integer 38 Only applicable if
gg.handler.name
.enableDecimalL
ogicalType=true
. Some source data
types do not have a
fixed scale
associated with
them. Scale must
be set for Kafka
Connectdecimal
logical types. In the
case of source
types which do not
have a scalein the
metadata, the value
of this parameter is
used to set the
scale.

Chapter 8
Target

8-200

Table 8-10 (Cont.) Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.EnableTimestam
pLogicalType

Optional true|false false Set to true to
enable the Kafka
Connect timestamp
logical type. The
Kafka connect
timestamp logical
time is a integer
measurement
ofmilliseconds
since the Java
epoch. This means
precision greater
thanmilliseconds is
not possible if the
timestamp logica
type is used. Use of
this property
requires that the
gg.format.times
tamp property be
set. This property is
the timestamp
formatting string,
which is used to
determine the
output of
timestamps in
string format. For
example,
gg.format.times
tamp=yyyy-MM-dd
HH:mm:ss.SSS.
Ensure that the
goldengate.user
exit.timestamp
property is not set
in the configuration
file. Setting this
property prevents
parsing the input
timestamp into a
Java object which
is required for
logical timestamps.

Chapter 8
Target

8-201

Table 8-10 (Cont.) Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.metaHeadersTem
plate

Optional Comma delimited
list of metacolumn
keywords.

None Allows the user to
select
metacolumns to
inject context-
based key value
pairs into Kafka
message headers
using the
metacolumn
keyword syntax.
See Metacolumn
Keywords.

gg.handler.name
.schemaNamespac
e

Optional Any string without
characters which
violate the Kafka
Connector Avro
schema naming
requirements.

None Used to control the
generated Kafka
Connect schema
name. If it is not
set, then the
schema name is
the same as the
qualified source
table name. For
example, if the
source table is
QASOURCE.TCUSTM
ER, then the Kafka
Connect schema
name will be the
same.
This property
allows you to
control the
generated schema
name. For
example, if this
property is set to
com.example.com
pany, then the
generated Kafka
Connect schema
name for the table
QASOURCE.TCUSTM
ER is
com.example.com
pany.TCUSTMER.

Chapter 8
Target

8-202

Table 8-10 (Cont.) Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.enableNonnulla
ble

Optional true|false false The default
behavior is to set
all fields as nullable
in the generated
Kafka Connect
schema. Set this
parameter to true
to honor the
nullable value
configured in the
target metadata
provided by the
metadata provider.
Setting this
property to true
can have some
adverse side
effects.

1. Setting a field
to non-nullable
means the field
must have a
value to be
valid. If a field
is set as non-
nullable and
the value is
null or missing
in the source
trail file, a
runtime error
will result.

2. Setting a field
to non-nullable
means that
truncate
operations
cannot be
propagated.
Truncate
operations
have no field
values. The
result is that
the Kafka
Connect
converter
serialization
will field
because there
is no value for
the field.

Chapter 8
Target

8-203

Table 8-10 (Cont.) Kafka Connect Handler Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

3. A schema
change
resulting in the
addition of a
non-nullable
field will cause
a schema
backwards
compatibility
exception in
the Confluent
schema
registry. If this
occurs, users
will need to
adjust or
disable the
compatibility
configuration
of the
Confluent
schema
registry.

See Using Templates to Resolve the Stream Name and Partition Name for more information.

Review a Sample Configuration

gg.handlerlist=kafkaconnect
#The handler properties
gg.handler.kafkaconnect.type=kafkaconnect
gg.handler.kafkaconnect.kafkaProducerConfigFile=kafkaconnect.properties
gg.handler.kafkaconnect.mode=op
#The following selects the topic name based on the fully qualified table name
gg.handler.kafkaconnect.topicMappingTemplate=${fullyQualifiedTableName}
#The following selects the message key using the concatenated primary keys
gg.handler.kafkaconnect.keyMappingTemplate=${primaryKeys}
#The formatter properties
gg.handler.kafkaconnect.messageFormatting=row
gg.handler.kafkaconnect.insertOpKey=I
gg.handler.kafkaconnect.updateOpKey=U
gg.handler.kafkaconnect.deleteOpKey=D
gg.handler.kafkaconnect.truncateOpKey=T
gg.handler.kafkaconnect.treatAllColumnsAsStrings=false
gg.handler.kafkaconnect.pkUpdateHandling=abend

8.2.8.2.3.2 Using Templates to Resolve the Topic Name and Message Key

The Kafka Connect Handler provides functionality to resolve the topic name and the message
key at runtime using a template configuration value. Templates allow you to configure static

Chapter 8
Target

8-204

values and keywords. Keywords are used to dynamically replace the keyword with the context
of the current processing. Templates are applicable to the following configuration parameters:

gg.handler.name.topicMappingTemplate
gg.handler.name.keyMappingTemplate

Template Modes

The Kafka Connect Handler can only send operation messages. The Kafka Connect Handler
cannot group operation messages into a larger transaction message.

For more information about the Template Keywords, see Template Keywords.
For example templates, see Example Templates.

8.2.8.2.3.3 Configuring Security in the Kafka Connect Handler

Kafka version 0.9.0.0 introduced security through SSL/TLS or Kerberos. The Kafka Connect
Handler can be secured using SSL/TLS or Kerberos. The Kafka producer client libraries
provide an abstraction of security functionality from the integrations utilizing those libraries. The
Kafka Connect Handler is effectively abstracted from security functionality. Enabling security
requires setting up security for the Kafka cluster, connecting machines, and then configuring
the Kafka Producer properties file, that the Kafka Handler uses for processing, with the
required security properties.

You may encounter the inability to decrypt the Kerberos password from the keytab file. This
causes the Kerberos authentication to fall back to interactive mode which cannot work because
it is being invoked programmatically. The cause of this problem is that the Java Cryptography
Extension (JCE) is not installed in the Java Runtime Environment (JRE). Ensure that the JCE
is loaded in the JRE, see http://www.oracle.com/technetwork/java/javase/downloads/jce8-
download-2133166.html.

8.2.8.2.4 Connecting to a Secure Schema Registry
The customer topology for Kafka Connect may include a schema registry which is secured.
This topic shows how to set the Kafka producer properties configured for connectivity to a
secured schema registry.

SSL Mutual Auth

key.converter.schema.registry.ssl.truststore.location=
key.converter.schema.registry.ssl.truststore.password=
key.converter.schema.registry.ssl.keystore.location=
key.converter.schema.registry.ssl.keystore.password=
key.converter.schema.registry.ssl.key.password=
value.converter.schema.registry.ssl.truststore.location=
value.converter.schema.registry.ssl.truststore.password=
value.converter.schema.registry.ssl.keystore.location=
value.converter.schema.registry.ssl.keystore.password=
value.converter.schema.registry.ssl.key.password=

SSL Basic Auth

key.converter.basic.auth.credentials.source=USER_INFO
key.converter.basic.auth.user.info=username:password
key.converter.schema.registry.ssl.truststore.location=
key.converter.schema.registry.ssl.truststore.password=
value.converter.basic.auth.credentials.source=USER_INFO
value.converter.basic.auth.user.info=username:password

Chapter 8
Target

8-205

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

value.converter.schema.registry.ssl.truststore.location=
value.converter.schema.registry.ssl.truststore.password=

8.2.8.2.5 Kafka Connect Handler Performance Considerations
There are multiple configuration settings both for the Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) configuration and in the Kafka producer which affect
performance.

The Oracle GoldenGate parameter have the greatest affect on performance is the Replicat
GROUPTRANSOPS parameter. The GROUPTRANSOPS parameter allows Replicat to group multiple
source transactions into a single target transaction. At transaction commit, the Kafka Connect
Handler calls flush on the Kafka Producer to push the messages to Kafka for write durability
followed by a checkpoint. The flush call is an expensive call and setting the Replicat
GROUPTRANSOPS setting to larger amount allows the replicat to call the flush call less frequently
thereby improving performance.

The default setting for GROUPTRANSOPS is 1000 and performance improvements can be obtained
by increasing the value to 2500, 5000, or even 10000.

The Op mode gg.handler.kafkaconnect.mode=op parameter can also improve performance
than the Tx mode gg.handler.kafkaconnect.mode=tx.

A number of Kafka Producer properties can affect performance. The following are the
parameters with significant impact:

• linger.ms
• batch.size
• acks
• buffer.memory
• compression.type
Oracle recommends that you start with the default values for these parameters and perform
performance testing to obtain a base line for performance. Review the Kafka documentation for
each of these parameters to understand its role and adjust the parameters and perform
additional performance testing to ascertain the performance effect of each parameter.

8.2.8.2.6 Kafka Interceptor Support
The Kafka Producer client framework supports the use of Producer Interceptors. A Producer
Interceptor is simply a user exit from the Kafka Producer client whereby the Interceptor object
is instantiated and receives notifications of Kafka message send calls and Kafka message
send acknowledgement calls.

The typical use case for Interceptors is monitoring. Kafka Producer Interceptors must conform
to the interface org.apache.kafka.clients.producer.ProducerInterceptor. The Kafka
Connect Handler supports Producer Interceptor usage.

The requirements to using Interceptors in the Handlers are as follows:

• The Kafka Producer configuration property "interceptor.classes" must be configured
with the class name of the Interceptor(s) to be invoked.

• In order to invoke the Interceptor(s), the jar files plus any dependency jars must be
available to the JVM. Therefore, the jar files containing the Interceptor(s) plus any
dependency jars must be added to the gg.classpath in the Handler configuration file.
For more information, see Kafka documentation.

Chapter 8
Target

8-206

https://kafka.apache.org/documentation/

8.2.8.2.7 Kafka Partition Selection
Kafka topics comprise one or more partitions. Distribution to multiple partitions is a good way to
improve Kafka ingest performance, because the Kafka client parallelizes message sending to
different topic/partition combinations. Partition selection is controlled by a following calculation
in the Kafka client.

(Hash of the Kafka message key) modulus (the number of partitions) = selected partition
number

The Kafka message key is selected by the following configuration value:

gg.handler.{your handler name}.keyMappingTemplate=
If this parameter is set to a value which generates a static key, all messages will go to the
same partition. The following is example of static keys:

gg.handler.{your handler name}.keyMappingTemplate=StaticValue

If this parameter is set to a value which generates a key that changes infrequently, partition
selection changes infrequently. In the following example the table name is used as the
message key. Every operation for a specific source table will have the same key and thereby
route to the same partition:

gg.handler.{your handler name}.keyMappingTemplate=${tableName}

A null Kafka message key distributes to the partitions on a round-robin basis. To do this, set
the following:

gg.handler.{your handler name}.keyMappingTemplate=${null}

The recommended setting for configuration of the mapping key is the following:

gg.handler.{your handler name}.keyMappingTemplate=${primaryKeys}

This generates a Kafka message key that is the concatenated and delimited primary key
values.

Operations for each row should have a unique primary key(s) thereby generating a unique
Kafka message key for each row. Another important consideration is Kafka messages sent to
different partitions are not guaranteed to be delivered to a Kafka consumer in the original order
sent. This is part of the Kafka specification. Order is only maintained within a partition. Using
primary keys as the Kafka message key means that operations for the same row, which have
the same primary key(s), generate the same Kafka message key, and therefore are sent to the
same Kafka partition. In this way, the order is maintained for operations for the same row.

At the DEBUG log level the Kafka message coordinates (topic, partition, and offset) are logged to
the .log file for successfully sent messages.

8.2.8.2.8 Troubleshooting the Kafka Connect Handler
• Java Classpath for Kafka Connect Handler

• Invalid Kafka Version

Chapter 8
Target

8-207

• Kafka Producer Properties File Not Found

• Kafka Connection Problem

8.2.8.2.8.1 Java Classpath for Kafka Connect Handler

Issues with the Java classpath are one of the most common problems. The indication of a
classpath problem is a ClassNotFoundException in the Oracle GoldenGate Java log4j log file
or and error while resolving the classpath if there is a typographic error in the gg.classpath
variable.

The Kafka client libraries do not ship with the Oracle GoldenGate for Distributed Applications
and Analytics (GG for DAA) product. You are required to obtain the correct version of the Kafka
client libraries and to properly configure the gg.classpath property in the Java Adapter
Properties file to correctly resolve the Java the Kafka client libraries as described in Setting Up
and Running the Kafka Connect Handler.

8.2.8.2.8.2 Invalid Kafka Version

Kafka Connect was introduced in Kafka 0.9.0.0 version. The Kafka Connect Handler does not
work with Kafka versions 0.8.2.2 and older. Attempting to use Kafka Connect with Kafka
0.8.2.2 version typically results in a ClassNotFoundException error at runtime.

8.2.8.2.8.3 Kafka Producer Properties File Not Found

Typically, the following exception message occurs:

ERROR 2015-11-11 11:49:08,482 [main] Error loading the kafka producer
properties

Verify that the gg.handler.kafkahandler.KafkaProducerConfigFile configuration property for
the Kafka Producer Configuration file name is set correctly.

Ensure that the gg.classpath variable includes the path to the Kafka Producer properties file
and that the path to the properties file does not contain a * wildcard at the end.

8.2.8.2.8.4 Kafka Connection Problem

Typically, the following exception message appears:

WARN 2015-11-11 11:25:50,784 [kafka-producer-network-thread | producer-1]

WARN (Selector.java:276) - Error in I/O with localhost/127.0.0.1
java.net.ConnectException: Connection refused

When this occurs, the connection retry interval expires and the Kafka Connection Handler
process abends. Ensure that the Kafka Brokers are running and that the host and port
provided in the Kafka Producer properties file is correct.

Network shell commands (such as, netstat -l) can be used on the machine hosting the
Kafka broker to verify that Kafka is listening on the expected port.

8.2.8.2.9 Kafka Connect Handler Client Dependencies
What are the dependencies for the Kafka Connect Handler to connect to Apache Kafka
Connect databases?

The maven central repository artifacts for Kafka Connect databases are:

Chapter 8
Target

8-208

Maven groupId: org.apache.kafka
Maven artifactId: kafka-clients & connect-json
Maven version: the Kafka Connect version numbers listed for each section

• Kafka 2.8.0

• Kafka 2.7.1

• Kafka 2.6.0

• Kafka 2.5.1

• Kafka 2.4.1

• Kafka 2.3.1

• Kafka 2.2.1

• Kafka 2.1.1

• Kafka 2.0.1

• Kafka 1.1.1

• Kafka 1.0.2

• Kafka 0.11.0.0

• Kafka 0.10.2.0

• Kafka 0.10.2.0

• Kafka 0.10.0.0

• Kafka 0.9.0.1

8.2.8.2.9.1 Kafka 2.8.0

connect-api-2.8.0.jar
connect-json-2.8.0.jar
jackson-annotations-2.10.5.jar
jackson-core-2.10.5.jar
jackson-databind-2.10.5.1.jar
jackson-datatype-jdk8-2.10.5.jar
javax.ws.rs-api-2.1.1.jar
kafka-clients-2.8.0.jar
lz4-java-1.7.1.jar
slf4j-api-1.7.30.jar
snappy-java-1.1.8.1.jar
zstd-jni-1.4.9-1.jar

8.2.8.2.9.2 Kafka 2.7.1

connect-api-2.7.1.jar
connect-json-2.7.1.jar
jackson-annotations-2.10.5.jar
jackson-core-2.10.5.jar
jackson-databind-2.10.5.1.jar
jackson-datatype-jdk8-2.10.5.jar
javax.ws.rs-api-2.1.1.jar
kafka-clients-2.7.1.jar
lz4-java-1.7.1.jar
slf4j-api-1.7.30.jar
snappy-java-1.1.7.7.jar
zstd-jni-1.4.5-6.jar

Chapter 8
Target

8-209

8.2.8.2.9.3 Kafka 2.6.0

connect-api-2.6.0.jar
connect-json-2.6.0.jar
jackson-annotations-2.10.2.jar
jackson-core-2.10.2.jar
jackson-databind-2.10.2.jar
jackson-datatype-jdk8-2.10.2.jar
javax.ws.rs-api-2.1.1.jar
kafka-clients-2.6.0.jar
lz4-java-1.7.1.jar
slf4j-api-1.7.30.jar
snappy-java-1.1.7.3.jar
zstd-jni-1.4.4-7.jar

8.2.8.2.9.4 Kafka 2.5.1

connect-api-2.5.1.jar
connect-json-2.5.1.jar
jackson-annotations-2.10.2.jar
jackson-core-2.10.2.jar
jackson-databind-2.10.2.jar
jackson-datatype-jdk8-2.10.2.jar
javax.ws.rs-api-2.1.1.jar
kafka-clients-2.5.1.jar
lz4-java-1.7.1.jar
slf4j-api-1.7.30.jar
snappy-java-1.1.7.3.jar
zstd-jni-1.4.4-7.jar

8.2.8.2.9.5 Kafka 2.4.1

kafka-clients-2.4.1.jar
lz4-java-1.6.0.jar
slf4j-api-1.7.28.jar
snappy-java-1.1.7.3.jar
zstd-jni-1.4.3-1.jarr

8.2.8.2.9.6 Kafka 2.3.1

connect-api-2.3.1.jar
connect-json-2.3.1.jar
jackson-annotations-2.10.0.jar
jackson-core-2.10.0.jar
jackson-databind-2.10.0.jar
jackson-datatype-jdk8-2.10.0.jar
javax.ws.rs-api-2.1.1.jar
kafka-clients-2.3.1.jar
lz4-java-1.6.0.jar
slf4j-api-1.7.26.jar
snappy-java-1.1.7.3.jar
zstd-jni-1.4.0-1.jar

8.2.8.2.9.7 Kafka 2.2.1

kafka-clients-2.2.1.jar
lz4-java-1.5.0.jar
slf4j-api-1.7.25.jar
snappy-java-1.1.7.2.jar
zstd-jni-1.3.8-1.jar

Chapter 8
Target

8-210

8.2.8.2.9.8 Kafka 2.1.1

audience-annotations-0.5.0.jar
connect-api-2.1.1.jar
connect-json-2.1.1.jar
jackson-annotations-2.9.0.jar
jackson-core-2.9.8.jar
jackson-databind-2.9.8.jar
javax.ws.rs-api-2.1.1.jar
jopt-simple-5.0.4.jar
kafka_2.12-2.1.1.jar
kafka-clients-2.1.1.jar
lz4-java-1.5.0.jar
metrics-core-2.2.0.jar
scala-library-2.12.7.jar
scala-logging_2.12-3.9.0.jar
scala-reflect-2.12.7.jar
slf4j-api-1.7.25.jar
snappy-java-1.1.7.2.jar
zkclient-0.11.jar
zookeeper-3.4.13.jar
zstd-jni-1.3.7-1.jar

8.2.8.2.9.9 Kafka 2.0.1

audience-annotations-0.5.0.jar
connect-api-2.0.1.jar
connect-json-2.0.1.jar
jackson-annotations-2.9.0.jar
jackson-core-2.9.7.jar
jackson-databind-2.9.7.jar
javax.ws.rs-api-2.1.jar
jopt-simple-5.0.4.jar
kafka_2.12-2.0.1.jar
kafka-clients-2.0.1.jar
lz4-java-1.4.1.jar
metrics-core-2.2.0.jar
scala-library-2.12.6.jar
scala-logging_2.12-3.9.0.jar
scala-reflect-2.12.6.jar
slf4j-api-1.7.25.jar
snappy-java-1.1.7.1.jar
zkclient-0.10.jar
zookeeper-3.4.13.jar

8.2.8.2.9.10 Kafka 1.1.1

kafka-clients-1.1.1.jar
lz4-java-1.4.1.jar
slf4j-api-1.7.25.jar
snappy-java-1.1.7.1.jar

8.2.8.2.9.11 Kafka 1.0.2

kafka-clients-1.0.2.jar
lz4-java-1.4.jar
slf4j-api-1.7.25.jar
snappy-java-1.1.4.jar

Chapter 8
Target

8-211

8.2.8.2.9.12 Kafka 0.11.0.0

connect-api-0.11.0.0.jar
connect-json-0.11.0.0.jar
jackson-annotations-2.8.0.jar
jackson-core-2.8.5.jar
jackson-databind-2.8.5.jar
jopt-simple-5.0.3.jar
kafka_2.11-0.11.0.0.jar
kafka-clients-0.11.0.0.jar
log4j-1.2.17.jar
lz4-1.3.0.jar
metrics-core-2.2.0.jar
scala-library-2.11.11.jar
scala-parser-combinators_2.11-1.0.4.jar
slf4j-api-1.7.25.jar
slf4j-log4j12-1.7.25.jar
snappy-java-1.1.2.6.jar
zkclient-0.10.jar
zookeeper-3.4.10.jar

8.2.8.2.9.13 Kafka 0.10.2.0

connect-api-0.10.2.0.jar
connect-json-0.10.2.0.jar
jackson-annotations-2.8.0.jar
jackson-core-2.8.5.jar
jackson-databind-2.8.5.jar
jopt-simple-5.0.3.jar
kafka_2.11-0.10.2.0.jar
kafka-clients-0.10.2.0.jar
log4j-1.2.17.jar
lz4-1.3.0.jar
metrics-core-2.2.0.jar
scala-library-2.11.8.jar
scala-parser-combinators_2.11-1.0.4.jar
slf4j-api-1.7.21.jar
slf4j-log4j12-1.7.21.jar
snappy-java-1.1.2.6.jar
zkclient-0.10.jar
zookeeper-3.4.9.jar

8.2.8.2.9.14 Kafka 0.10.2.0

connect-api-0.10.1.1.jar
connect-json-0.10.1.1.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.3.jar
jackson-databind-2.6.3.jar
jline-0.9.94.jar
jopt-simple-4.9.jar
kafka_2.11-0.10.1.1.jar
kafka-clients-0.10.1.1.jar
log4j-1.2.17.jar
lz4-1.3.0.jar
metrics-core-2.2.0.jar
netty-3.7.0.Final.jar
scala-library-2.11.8.jar
scala-parser-combinators_2.11-1.0.4.jar
slf4j-api-1.7.21.jar
slf4j-log4j12-1.7.21.jar

Chapter 8
Target

8-212

snappy-java-1.1.2.6.jar
zkclient-0.9.jar
zookeeper-3.4.8.jar

8.2.8.2.9.15 Kafka 0.10.0.0

activation-1.1.jar
connect-api-0.10.0.0.jar
connect-json-0.10.0.0.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.3.jar
jackson-databind-2.6.3.jar
jline-0.9.94.jar
jopt-simple-4.9.jar
junit-3.8.1.jar
kafka_2.11-0.10.0.0.jar
kafka-clients-0.10.0.0.jar
log4j-1.2.15.jar
lz4-1.3.0.jar
mail-1.4.jar
metrics-core-2.2.0.jar
netty-3.7.0.Final.jar
scala-library-2.11.8.jar
scala-parser-combinators_2.11-1.0.4.jar
slf4j-api-1.7.21.jar
slf4j-log4j12-1.7.21.jar
snappy-java-1.1.2.4.jar
zkclient-0.8.jar
zookeeper-3.4.6.jar

8.2.8.2.9.16 Kafka 0.9.0.1

activation-1.1.jar
connect-api-0.9.0.1.jar
connect-json-0.9.0.1.jar
jackson-annotations-2.5.0.jar
jackson-core-2.5.4.jar
jackson-databind-2.5.4.jar
jline-0.9.94.jar
jopt-simple-3.2.jar
junit-3.8.1.jar
kafka_2.11-0.9.0.1.jar
kafka-clients-0.9.0.1.jar
log4j-1.2.15.jar
lz4-1.2.0.jar
mail-1.4.jar
metrics-core-2.2.0.jar
netty-3.7.0.Final.jar
scala-library-2.11.7.jar
scala-parser-combinators_2.11-1.0.4.jar
scala-xml_2.11-1.0.4.jar
slf4j-api-1.7.6.jar
slf4j-log4j12-1.7.6.jar
snappy-java-1.1.1.7.jar
zkclient-0.7.jar
zookeeper-3.4.6.jar

• Confluent Dependencies

8.2.8.2.9.16.1 Confluent Dependencies

Chapter 8
Target

8-213

Note:

The Confluent dependencies listed below are for the Kafka Connect Avro Converter
and the assocated Avro Schema Registry client. When integrated with Confluent
Kafka Connect, the below dependencies are required in addition to the Kafka
Connect dependencies for the corresponding Kafka version which are listed in the
previous sections.

• Confluent 6.2.0

• Confluent 6.1.0

• Confluent 6.0.0

• Confluent 5.5.0

• Confluent 5.4.0

• Confluent 5.3.0

• Confluent 5.2.1

• Confluent 5.1.3

• Confluent 5.0.3

• Confluent 4.1.2

8.2.8.2.9.16.1.1 Confluent 6.2.0

avro-1.10.1.jar
commons-compress-1.20.jar
common-utils-6.2.0.jar
connect-api-6.2.0-ccs.jar
connect-json-6.2.0-ccs.jar
jackson-annotations-2.10.5.jar
jackson-core-2.11.3.jar
jackson-databind-2.10.5.1.jar
jackson-datatype-jdk8-2.10.5.jar
jakarta.annotation-api-1.3.5.jar
jakarta.inject-2.6.1.jar
jakarta.ws.rs-api-2.1.6.jar
javax.ws.rs-api-2.1.1.jar
jersey-common-2.34.jar
kafka-avro-serializer-6.2.0.jar
kafka-clients-6.2.0-ccs.jar
kafka-connect-avro-converter-6.2.0.jar
kafka-connect-avro-data-6.2.0.jar
kafka-schema-registry-client-6.2.0.jar
kafka-schema-serializer-6.2.0.jar
lz4-java-1.7.1.jar
osgi-resource-locator-1.0.3.jar
slf4j-api-1.7.30.jar
snappy-java-1.1.8.1.jar
swagger-annotations-1.6.2.jar
zstd-jni-1.4.9-1.jar

8.2.8.2.9.16.1.2 Confluent 6.1.0

avro-1.9.2.jar
commons-compress-1.19.jar
common-utils-6.1.0.jar

Chapter 8
Target

8-214

connect-api-6.1.0-ccs.jar
connect-json-6.1.0-ccs.jar
jackson-annotations-2.10.5.jar
jackson-core-2.10.2.jar
jackson-databind-2.10.5.1.jar
jackson-datatype-jdk8-2.10.5.jar
jakarta.annotation-api-1.3.5.jar
jakarta.inject-2.6.1.jar
jakarta.ws.rs-api-2.1.6.jar
javax.ws.rs-api-2.1.1.jar
jersey-common-2.31.jar
kafka-avro-serializer-6.1.0.jar
kafka-clients-6.1.0-ccs.jar
kafka-connect-avro-converter-6.1.0.jar
kafka-connect-avro-data-6.1.0.jar
kafka-schema-registry-client-6.1.0.jar
kafka-schema-serializer-6.1.0.jar
lz4-java-1.7.1.jar
osgi-resource-locator-1.0.3.jar
slf4j-api-1.7.30.jar
snappy-java-1.1.7.7.jar
swagger-annotations-1.6.2.jar
zstd-jni-1.4.5-6.jar

8.2.8.2.9.16.1.3 Confluent 6.0.0

avro-1.9.2.jar
commons-compress-1.19.jar
common-utils-6.0.0.jar
connect-api-6.0.0-ccs.jar
connect-json-6.0.0-ccs.jar
jackson-annotations-2.10.5.jar
jackson-core-2.10.2.jar
jackson-databind-2.10.5.jar
jackson-datatype-jdk8-2.10.5.jar
jakarta.annotation-api-1.3.5.jar
jakarta.inject-2.6.1.jar
jakarta.ws.rs-api-2.1.6.jar
javax.ws.rs-api-2.1.1.jar
jersey-common-2.30.jar
kafka-avro-serializer-6.0.0.jar
kafka-clients-6.0.0-ccs.jar
kafka-connect-avro-converter-6.0.0.jar
kafka-connect-avro-data-6.0.0.jar
kafka-schema-registry-client-6.0.0.jar
kafka-schema-serializer-6.0.0.jar
lz4-java-1.7.1.jar
osgi-resource-locator-1.0.3.jar
slf4j-api-1.7.30.jar
snappy-java-1.1.7.3.jar
swagger-annotations-1.6.2.jar
zstd-jni-1.4.4-7.jar

8.2.8.2.9.16.1.4 Confluent 5.5.0

avro-1.9.2.jar
classmate-1.3.4.jar
common-config-5.5.0.jar
commons-compress-1.19.jar
commons-lang3-3.2.1.jar
common-utils-5.5.0.jar
connect-api-5.5.0-ccs.jar
connect-json-5.5.0-ccs.jar

Chapter 8
Target

8-215

guava-18.0.jar
hibernate-validator-6.0.17.Final.jar
jackson-annotations-2.10.2.jar
jackson-core-2.10.2.jar
jackson-databind-2.10.2.jar
jackson-dataformat-yaml-2.4.5.jar
jackson-datatype-jdk8-2.10.2.jar
jackson-datatype-joda-2.4.5.jar
jakarta.annotation-api-1.3.5.jar
jakarta.el-3.0.2.jar
jakarta.el-api-3.0.3.jar
jakarta.inject-2.6.1.jar
jakarta.validation-api-2.0.2.jar
jakarta.ws.rs-api-2.1.6.jar
javax.ws.rs-api-2.1.1.jar
jboss-logging-3.3.2.Final.jar
jersey-bean-validation-2.30.jar
jersey-client-2.30.jar
jersey-common-2.30.jar
jersey-media-jaxb-2.30.jar
jersey-server-2.30.jar
joda-time-2.2.jar
kafka-avro-serializer-5.5.0.jar
kafka-clients-5.5.0-ccs.jar
kafka-connect-avro-converter-5.5.0.jar
kafka-connect-avro-data-5.5.0.jar
kafka-schema-registry-client-5.5.0.jar
kafka-schema-serializer-5.5.0.jar
lz4-java-1.7.1.jar
osgi-resource-locator-1.0.3.jar
slf4j-api-1.7.30.jar
snakeyaml-1.12.jar
snappy-java-1.1.7.3.jar
swagger-annotations-1.5.22.jar
swagger-core-1.5.3.jar
swagger-models-1.5.3.jar
zstd-jni-1.4.4-7.jar

8.2.8.2.9.16.1.5 Confluent 5.4.0

avro-1.9.1.jar
common-config-5.4.0.jar
commons-compress-1.19.jar
commons-lang3-3.2.1.jar
common-utils-5.4.0.jar
connect-api-5.4.0-ccs.jar
connect-json-5.4.0-ccs.jar
guava-18.0.jar
jackson-annotations-2.9.10.jar
jackson-core-2.9.9.jar
jackson-databind-2.9.10.1.jar
jackson-dataformat-yaml-2.4.5.jar
jackson-datatype-jdk8-2.9.10.jar
jackson-datatype-joda-2.4.5.jar
javax.ws.rs-api-2.1.1.jar
joda-time-2.2.jar
kafka-avro-serializer-5.4.0.jar
kafka-clients-5.4.0-ccs.jar
kafka-connect-avro-converter-5.4.0.jar
kafka-schema-registry-client-5.4.0.jar
lz4-java-1.6.0.jar
slf4j-api-1.7.28.jar
snakeyaml-1.12.jar

Chapter 8
Target

8-216

snappy-java-1.1.7.3.jar
swagger-annotations-1.5.22.jar
swagger-core-1.5.3.jar
swagger-models-1.5.3.jar
zstd-jni-1.4.3-1.jar

8.2.8.2.9.16.1.6 Confluent 5.3.0

audience-annotations-0.5.0.jar
avro-1.8.1.jar
common-config-5.3.0.jar
commons-compress-1.8.1.jar
common-utils-5.3.0.jar
connect-api-5.3.0-ccs.jar
connect-json-5.3.0-ccs.jar
jackson-annotations-2.9.0.jar
jackson-core-2.9.9.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.9.9.jar
jackson-datatype-jdk8-2.9.9.jar
jackson-mapper-asl-1.9.13.jar
javax.ws.rs-api-2.1.1.jar
jline-0.9.94.jar
jsr305-3.0.2.jar
kafka-avro-serializer-5.3.0.jar
kafka-clients-5.3.0-ccs.jar
kafka-connect-avro-converter-5.3.0.jar
kafka-schema-registry-client-5.3.0.jar
lz4-java-1.6.0.jar
netty-3.10.6.Final.jar
paranamer-2.7.jar
slf4j-api-1.7.26.jar
snappy-java-1.1.1.3.jar
spotbugs-annotations-3.1.9.jar
xz-1.5.jar
zkclient-0.10.jar
zookeeper-3.4.14.jar
zstd-jni-1.4.0-1.jar

8.2.8.2.9.16.1.7 Confluent 5.2.1

audience-annotations-0.5.0.jar
avro-1.8.1.jar
common-config-5.2.1.jar
commons-compress-1.8.1.jar
common-utils-5.2.1.jar
connect-api-2.2.0-cp2.jar
connect-json-2.2.0-cp2.jar
jackson-annotations-2.9.0.jar
jackson-core-2.9.8.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.9.8.jar
jackson-datatype-jdk8-2.9.8.jar
jackson-mapper-asl-1.9.13.jar
javax.ws.rs-api-2.1.1.jar
jline-0.9.94.jar
kafka-avro-serializer-5.2.1.jar
kafka-clients-2.2.0-cp2.jar
kafka-connect-avro-converter-5.2.1.jar
kafka-schema-registry-client-5.2.1.jar
lz4-java-1.5.0.jar
netty-3.10.6.Final.jar
paranamer-2.7.jar

Chapter 8
Target

8-217

slf4j-api-1.7.25.jar
snappy-java-1.1.1.3.jar
xz-1.5.jar
zkclient-0.10.jar
zookeeper-3.4.13.jar
zstd-jni-1.3.8-1.jar

8.2.8.2.9.16.1.8 Confluent 5.1.3

audience-annotations-0.5.0.jar
avro-1.8.1.jar
common-config-5.1.3.jar
commons-compress-1.8.1.jar
common-utils-5.1.3.jar
connect-api-2.1.1-cp3.jar
connect-json-2.1.1-cp3.jar
jackson-annotations-2.9.0.jar
jackson-core-2.9.8.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.9.8.jar
jackson-mapper-asl-1.9.13.jar
javax.ws.rs-api-2.1.1.jar
jline-0.9.94.jar
kafka-avro-serializer-5.1.3.jar
kafka-clients-2.1.1-cp3.jar
kafka-connect-avro-converter-5.1.3.jar
kafka-schema-registry-client-5.1.3.jar
lz4-java-1.5.0.jar
netty-3.10.6.Final.jar
paranamer-2.7.jar
slf4j-api-1.7.25.jar
snappy-java-1.1.1.3.jar
xz-1.5.jar
zkclient-0.10.jar
zookeeper-3.4.13.jar
zstd-jni-1.3.7-1.jar

8.2.8.2.9.16.1.9 Confluent 5.0.3

audience-annotations-0.5.0.jar
avro-1.8.1.jar
common-config-5.0.3.jar
commons-compress-1.8.1.jar
common-utils-5.0.3.jar
connect-api-2.0.1-cp4.jar
connect-json-2.0.1-cp4.jar
jackson-annotations-2.9.0.jar
jackson-core-2.9.7.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.9.7.jar
jackson-mapper-asl-1.9.13.jar
javax.ws.rs-api-2.1.jar
jline-0.9.94.jar
kafka-avro-serializer-5.0.3.jar
kafka-clients-2.0.1-cp4.jar
kafka-connect-avro-converter-5.0.3.jar
kafka-schema-registry-client-5.0.3.jar
lz4-java-1.4.1.jar
netty-3.10.6.Final.jar
paranamer-2.7.jar
slf4j-api-1.7.25.jar
snappy-java-1.1.1.3.jar
xz-1.5.jar

Chapter 8
Target

8-218

zkclient-0.10.jar
zookeeper-3.4.13.jar

8.2.8.2.9.16.1.10 Confluent 4.1.2

avro-1.8.1.jar
common-config-4.1.2.jar
commons-compress-1.8.1.jar
common-utils-4.1.2.jar
connect-api-1.1.1-cp1.jar
connect-json-1.1.1-cp1.jar
jackson-annotations-2.9.0.jar
jackson-core-2.9.6.jar
jackson-core-asl-1.9.13.jar
jackson-databind-2.9.6.jar
jackson-mapper-asl-1.9.13.jar
jline-0.9.94.jar
kafka-avro-serializer-4.1.2.jar
kafka-clients-1.1.1-cp1.jar
kafka-connect-avro-converter-4.1.2.jar
kafka-schema-registry-client-4.1.2.jar
log4j-1.2.16.jar
lz4-java-1.4.1.jar
netty-3.10.5.Final.jar
paranamer-2.7.jar
slf4j-api-1.7.25.jar
slf4j-log4j12-1.6.1.jar
snappy-java-1.1.1.3.jar
xz-1.5.jar
zkclient-0.10.jar
zookeeper-3.4.10.jar

8.2.8.3 Apache Kafka REST Proxy
The Kafka REST Proxy Handler to stream messages to the Kafka REST Proxy distributed by
Confluent.

This chapter describes how to use the Kafka REST Proxy Handler.

• Overview

• Setting Up and Starting the Kafka REST Proxy Handler Services

• Consuming the Records

• Performance Considerations

• Kafka REST Proxy Handler Metacolumns Template Property

8.2.8.3.1 Overview
The Kafka REST Proxy Handler allows Kafka messages to be streamed using an HTTPS
protocol. The use case for this functionality is to stream Kafka messages from an Oracle
GoldenGate On Premises installation to cloud or alternately from cloud to cloud.

The Kafka REST proxy provides a RESTful interface to a Kafka cluster. It makes it easy for you
to:

• produce and consume messages,

• view the state of the cluster,

• and perform administrative actions without using the native Kafka protocol or clients.

Chapter 8
Target

8-219

Kafka REST Proxy is part of the Confluent Open Source and Confluent Enterprise
distributions. It is not available in the Apache Kafka distribution. To access Kafka through the
REST proxy, you have to install the Confluent Kafka version see https://docs.confluent.io/
current/kafka-rest/docs/index.html.

8.2.8.3.2 Setting Up and Starting the Kafka REST Proxy Handler Services
You have several installation formats to choose from including ZIP or tar archives, Docker, and
Packages.

• Using the Kafka REST Proxy Handler

• Downloading the Dependencies

• Classpath Configuration

• Kafka REST Proxy Handler Configuration

• Review a Sample Configuration

• Security

• Generating a Keystore or Truststore

• Using Templates to Resolve the Topic Name and Message Key

• Kafka REST Proxy Handler Formatter Properties

8.2.8.3.2.1 Using the Kafka REST Proxy Handler

You must download and install the Confluent Open Source or Confluent Enterprise Distribution
because the Kafka REST Proxy is not included in Apache, Cloudera, or Hortonworks. You
have several installation formats to choose from including ZIP or TAR archives, Docker, and
Packages.

The Kafka REST Proxy has dependency on ZooKeeper, Kafka, and the Schema Registry

8.2.8.3.2.2 Downloading the Dependencies

You can review and download the Jersey RESTful Web Services in Java client dependency
from:

https://eclipse-ee4j.github.io/jersey/.

You can review and download the Jersey Apache Connector dependencies from the maven
repository: https://mvnrepository.com/artifact/org.glassfish.jersey.connectors/jersey-apache-
connector

8.2.8.3.2.3 Classpath Configuration

The Kafka REST Proxy handler uses the Jersey project jersey-client version 2.27 and
jersey-connectors-apache version 2.27 to connect to Kafka. Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) does not include the required
dependencies so you must obtain them, see Downloading the Dependencies.

You have to configure these dependencies using the gg.classpath property in the Java
Adapter properties file. This is an example of a correctly configured classpath for the Kafka
REST Proxy Handler:

gg.classpath=dirprm:
{path_to_jersey_client_jars}/jaxrs-ri/lib/*:{path_to_jersey_client_jars}
/jaxrs-ri/api/*

Chapter 8
Target

8-220

https://docs.confluent.io/current/kafka-rest/docs/index.html
https://docs.confluent.io/current/kafka-rest/docs/index.html
https://eclipse-ee4j.github.io/jersey/
https://mvnrepository.com/artifact/org.glassfish.jersey.connectors/jersey-apache-connector
https://mvnrepository.com/artifact/org.glassfish.jersey.connectors/jersey-apache-connector

:{path_to_jersey_client_jars}/jaxrs-ri/ext/*:{path_to_jersey_client_jars}
/connector/*

8.2.8.3.2.4 Kafka REST Proxy Handler Configuration

The following are the configurable values for the Kafka REST Proxy Handler. Oracle
recommend that you store the Kafka REST Proxy properties file in the Oracle GoldenGate
dirprm directory.

To enable the selection of the Kafka REST Proxy Handler, you must first configure the handler
type by specifying gg.handler.name.type=kafkarestproxy and the other Kafka REST Proxy
Handler properties as follows:

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.type

Required kafkarestproxy None The configuration
to select the Kafka
REST Proxy
Handler.

gg.handler.name
.topicMappingTe
mplate

Required A template string
value to resolve the
Kafka topic name
at runtime.

None See Using
Templates to
Resolve the Topic
Name and
Message Key.

gg.handler.name
.keyMappingTemp
late

Required A template string
value to resolve the
Kafka message key
at runtime.

None See Using
Templates to
Resolve the Topic
Name and
Message Key.

gg.handler.name
.postDataUrl

Required The Listener
address of the Rest
Proxy.

None Set to the URL of
the Kafka REST
proxy.

gg.handler.name
.format

Required avro | json None Set to the REST
proxy payload data
format

gg.handler.name
.payloadsize

Optional A value
representing the
payload size in
mega bytes.

5MB Set to the
maximum size of
the payload of the
HTTP messages.

gg.handler.name
.apiVersion

Optional v1 | v2 v2 Sets the API
version to use.

gg.handler.name
.mode

Optional op | tx op Sets how
operations are
processed. In op
mode, operations
are processed as
they are received.
In tx mode,
operations are
cached and
processed at the
transaction commit.

Chapter 8
Target

8-221

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.trustStore

Optional Path to the
truststore.

None Path to the
truststore file that
holds certificates
from trusted
certificate
authorities (CA).
These CAs are
used to verify
certificates
presented by the
server during an
SSL connection,
see Generating a
Keystore or
Truststore.

gg.handler.name
.trustStorePass
word

Optional Password of the
truststore.

None The truststore
password.

gg.handler.name
.keyStore

Optional Path to the
keystore.

None Path to the
keystore file that
the private key and
identity certificate,
which are
presented to other
parties (server or
client) to verify its
identity, see
Generating a
Keystore or
Truststore.

gg.handler.name
.keyStorePasswo
rd

Optional Password of the
keystore.

None The keystore
password.

gg.handler.name
.proxy

Optional http://
host:port

None Proxy URL in the
following format:
http://
host:port

gg.handler.name
.proxyUserName

Optional Any string. None The proxy user
name.

gg.handler.name
.proxyPassword

Optional Any string. None The proxy
password.

gg.handler.name
.readTimeout

Optional Integer value. None The amount of time
allowed for the
server to respond.

gg.handler.name
.connectionTime
out

Optional Integer value. None The amount of time
to wait to establish
the connection to
the host.

Chapter 8
Target

8-222

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.format.metaCol
umnsTemplate

Optional ${alltokens}
| ${token} | $
{env} | ${sys}
| ${javaprop}
| ${optype} | $
{position} | $
{timestamp} | $
{catalog} | $
{schema} | $
{table} | $
{objectname}
| ${csn} | $
{xid} | $
{currenttimesta
mp} | $
{opseqno} | $
{timestampmicro
} | $
{currenttimesta
mpmicro} |

${txind}
| $
{primarykeycolu
mns}|$
{currenttimesta
mpiso8601}$
{static}$
{segno} | $
{rba}

None ${alltokens}
| ${token} | $
{env} | ${sys}
| ${javaprop}
| ${optype} | $
{position} | $
{timestamp} | $
{catalog} | $
{schema} | $
{table} | $
{objectname}
| ${csn} | $
{xid} | $
{currenttimesta
mp} | $
{opseqno} | $
{timestampmicro
} | $
{currenttimesta
mpmicro} |

${txind}
| $
{primarykeycolu
mns}|$
{currenttimesta
mpiso8601}$
{static}$
{segno} | $
{rba}
It is a comma-
delimited string
consisting of one or
more templated
values that
represent the
template. For more
information about
the Metacolumn
keywords, see
Metacolumn
Keywords. This is
an example that
would produce a
list of
metacolumns:

${optype}, $
{token.ROWID}, $
{sys.username},
$
{currenttimestam
p}

See Using Templates to Resolve the Stream Name and Partition Name for more information.

Chapter 8
Target

8-223

8.2.8.3.2.5 Review a Sample Configuration

The following is a sample configuration for the Kafka REST Proxy Handler from the Java
Adapter properties file:

gg.handlerlist=kafkarestproxy

#The handler properties
gg.handler.kafkarestproxy.type=kafkarestproxy
#The following selects the topic name based on the fully qualified table name
gg.handler.kafkarestproxy.topicMappingTemplate=${fullyQualifiedTableName}
#The following selects the message key using the concatenated primary keys
gg.handler.kafkarestproxy.keyMappingTemplate=${primaryKeys}
gg.handler.kafkarestproxy.postDataUrl=http://localhost:8083
gg.handler.kafkarestproxy.apiVersion=v1
gg.handler.kafkarestproxy.format=json
gg.handler.kafkarestproxy.payloadsize=1
gg.handler.kafkarestproxy.mode=tx

#Server auth properties
#gg.handler.kafkarestproxy.trustStore=/keys/truststore.jks
#gg.handler.kafkarestproxy.trustStorePassword=test1234
#Client auth properites
#gg.handler.kafkarestproxy.keyStore=/keys/keystore.jks
#gg.handler.kafkarestproxy.keyStorePassword=test1234

#Proxy properties
#gg.handler.kafkarestproxy.proxy=http://proxyurl:80
#gg.handler.kafkarestproxy.proxyUserName=username
#gg.handler.kafkarestproxy.proxyPassword=password

#The MetaColumnTemplate formatter properties
gg.handler.kafkarestproxy.format.metaColumnsTemplate=${optype},${timestampmicro},$
{currenttimestampmicro}

8.2.8.3.2.6 Security

Security is possible between the following:

• Kafka REST Proxy clients and the Kafka REST Proxy server. The Oracle GoldenGate
REST Proxy Handler is a Kafka REST Proxy client.

• The Kafka REST Proxy server and Kafka Brokers. Oracle recommends that you thoroughly
review the security documentation and configuration of the Kafka REST Proxy server, see
https://docs.confluent.io/current/kafka-rest/docs/index.html

REST Proxy supports SSL for securing communication between clients and the Kafka REST
Proxy Handler. To configure SSL:

1. Generate a keystore using the scripts, see Generating a Keystore or Truststore.

2. Update the Kafka REST Proxy server configuration in the kafka-rest.properties file
with these properties:

listeners=https://hostname:8083
confluent.rest.auth.propagate.method=SSL

Configuration Options for HTTPS
ssl.client.auth=true
ssl.keystore.location={keystore_file_path}/server.keystore.jks
ssl.keystore.password=test1234
ssl.key.password=test1234

Chapter 8
Target

8-224

https://docs.confluent.io/current/kafka-rest/docs/index.html

ssl.truststore.location={keystore_file_path}/server.truststore.jks
ssl.truststore.password=test1234
ssl.keystore.type=JKS
ssl.truststore.type=JKS
ssl.enabled.protocols=TLSv1.2,TLSv1.1,TLSv1

3. Restart your server.

To disable mutual authentication, you update the ssl.client.auth= property from true to
false.

8.2.8.3.2.7 Generating a Keystore or Truststore

Generating a Truststore

You execute this script to generate the ca-cert, ca-key, and truststore.jks truststore files.

#!/bin/bash
PASSWORD=password
CLIENT_PASSWORD=password
VALIDITY=365

Then you generate a CA as in this example:

openssl req -new -x509 -keyout ca-key -out ca-cert -days $VALIDITY -passin pass:$PASSWORD
 -passout pass:$PASSWORD -subj "/C=US/ST=CA/L=San Jose/O=Company/OU=Org/CN=FQDN"
 -nodes

Lastly, you add the CA to the server's truststore using keytool:

keytool -keystore truststore.jks -alias CARoot -import -file ca-cert -storepass $PASSWORD
 -keypass $PASSWORD

Generating a Keystore

You run this script and pass the fqdn as argument to generate the ca-cert.srl, cert-file,
cert-signed, and keystore.jks keystore files.

#!/bin/bash
PASSWORD=password
VALIDITY=365

if [$# -lt 1];
then
echo "`basename $0` host fqdn|user_name|app_name"
exit 1
fi

CNAME=$1
ALIAS=`echo $CNAME|cut -f1 -d"."`

Then you generate the keystore with keytool as in this example:

keytool -noprompt ¿keystore keystore.jks -alias $ALIAS -keyalg RSA -validity $VALIDITY
 -genkey -dname "CN=$CNAME,OU=BDP,O=Company,L=San Jose,S=CA,C=US" -
storepass $PASSWORD
 -keypass $PASSWORD

Next, you sign all the certificates in the keystore with the CA:

keytool -keystore keystore.jks -alias $ALIAS -certreq -file cert-file -storepass
 $PASSWORDopenssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out cert-

Chapter 8
Target

8-225

signed -days $VALIDITY
 -CAcreateserial -passin pass:$PASSWORD

Lastly, you import both the CA and the signed certificate into the keystore:

keytool -keystore keystore.jks -alias CARoot -import -file ca-cert -storepass
 $PASSWORDkeytool -keystore keystore.jks -alias $ALIAS -import -file cert-signed -
storepass
 $PASSWORD

8.2.8.3.2.8 Using Templates to Resolve the Topic Name and Message Key

The Kafka REST Proxy Handler provides functionality to resolve the topic name and the
message key at runtime using a template configuration value. Templates allow you to configure
static values and keywords. Keywords are used to dynamically replace the keyword with the
context of the current processing. The templates use the following configuration properties:

gg.handler.name.topicMappingTemplate
gg.handler.name.keyMappingTemplate

Template Modes

The Kafka REST Proxy Handler can be configured to send one message per operation (insert,
update, delete). Alternatively, it can be configured to group operations into messages at the
transaction level.

For more information about the Template Keywords, see Template Keywords.

Example Templates

The following describes example template configuration values and the resolved values.

Example Template Resolved Value

${groupName}_${fullyQualfiedTableName} KAFKA001_dbo.table1
prefix_${schemaName}_$
{tableName}_suffix

prefix_dbo_table1_suffix

${currentDate[yyyy-mm-dd hh:MM:ss.SSS]} 2017-05-17 11:45:34.254

8.2.8.3.2.9 Kafka REST Proxy Handler Formatter Properties

The following are the configurable values for the Kafka REST Proxy Handler Formatter.

Chapter 8
Target

8-226

Table 8-11 Kafka REST Proxy Handler Formatter Properties

Properties Optional/ Optional Legal Values Default Explanation

gg.handler.name
.format.include
OpType

Optional true | false true Set to true to
create a field in the
output messages
called op_ts. The
value is an
indicator of the type
of source database
operation (for
example, Ifor
insert, Ufor update,
Dfor delete).

Set to false to
omit this field in the
output.

gg.handler.name
.format.include
OpTimestamp

Optional true | false true Set to true to
create a field in the
output messages
called op_type.
The value is the
operation
timestamp (commit
timestamp) from
the source trail file.

Set to false to
omit this field in the
output.

gg.handler.name
.format.include
CurrentTimestam
p

Optional true | false true Set to true to
create a field in the
output messages
called
current_ts. The
value is the current
timestamp of when
the handler
processes the
operation.

Set to false to
omit this field in the
output.

gg.handler.name
.format.include
Position

Optional true | false true Set to true to
create a field in the
output messages
called pos. The
value is the position
(sequence number
+ offset) of the
operation from the
source trail file.

Set to false to
omit this field in the
output.

Chapter 8
Target

8-227

Table 8-11 (Cont.) Kafka REST Proxy Handler Formatter Properties

Properties Optional/ Optional Legal Values Default Explanation

gg.handler.name
.format.include
PrimaryKeys

Optional true | false true Set to true to
create a field in the
output messages
called
primary_keys.
The value is an
array of the column
names of the
primary key
columns.

Set to false to
omit this field in the
output.

gg.handler.name
.format.include
Tokens

Optional true | false true Set to true to
include a map field
in output
messages. The key
is tokens and the
value is a map
where the keys and
values are the
token keys and
values from the
Oracle GoldenGate
source trail file.

Set to false to
suppress this field.

gg.handler.name
.format.insertO
pKey

Optional Any string. I The value of the
field op_type that
indicates an insert
operation.

gg.handler.name
.format.updateO
pKey

Optional Any string. U The value of the
field op_type that
indicates an update
operation.

gg.handler.name
.format.deleteO
pKey

Optional Any string. D The value of the
field op_type that
indicates an delete
operation.

gg.handler.name
.format.truncat
eOpKey

Optional Any string. T The value of the
field op_type that
indicates an
truncate operation.

Chapter 8
Target

8-228

Table 8-11 (Cont.) Kafka REST Proxy Handler Formatter Properties

Properties Optional/ Optional Legal Values Default Explanation

gg.handler.name
.format.treatAl
lColumnsAsStrin
gs

Optional true | false false Set to true treat all
output fields as
strings.

Set to false and
the handler maps
the corresponding
field type from the
source trail file to
the best
corresponding
Kafka data type.

gg.handler.name
.format.mapLarg
eNumbersAsStrin
gs

Optional true | false false Set to true and
these fields are
mapped as strings
to preserve
precision. This
property is specific
to the Avro
Formatter; it cannot
be used with other
formatters.

gg.handler.name
.format.iso8601
Format

Optional true | false false Set to true to
output the current
date in the
ISO8601 format.

gg.handler.name
.format.pkUpdat
eHandling

Optional abend | update
| delete-insert

abend It is only applicable
if you are modeling
row messages with
the .
(gg.handler.nam
e.format.messag
eFormatting=row
property. It is not
applicable if you
are modeling
operations
messages as the
before and after
images are
propagated to the
message with an
update.

8.2.8.3.3 Consuming the Records
A simple way to consume data from Kafka topics using the Kafka REST Proxy Handler is Curl.

Consume JSON Data

1. Create a consumer for JSON data.

curl -k -X POST -H "Content-Type: application/vnd.kafka.v2+json"

https://localhost:8082/consumers/my_json_consumer

Chapter 8
Target

8-229

2. Subscribe to a topic.

curl -k -X POST -H "Content-Type: application/vnd.kafka.v2+json" --data
'{"topics":["topicname"]}' \

https://localhost:8082/consumers/my_json_consumer/instances/my_consumer_instance/
subscription

3. Consume records.

curl –k -X GET -H "Accept: application/vnd.kafka.json.v2+json" \

https://localhost:8082/consumers/my_json_consumer/instances/my_consumer_instance/
records

Consume Avro Data

1. Create a consumer for Avro data.

curl -k -X POST -H "Content-Type: application/vnd.kafka.v2+json" \
 --data '{"name": "my_consumer_instance", "format": "avro", "auto.offset.reset":
"earliest"}' \

https://localhost:8082/consumers/my_avro_consumer
2. Subscribe to a topic.

curl –k -X POST -H "Content-Type: application/vnd.kafka.v2+json" --data
'{"topics":["topicname"]}' \

https://localhost:8082/consumers/my_avro_consumer/instances/my_consumer_instance/
subscription

3. Consume records.

curl -X GET -H "Accept: application/vnd.kafka.avro.v2+json" \

https://localhost:8082/consumers/my_avro_consumer/instances/my_consumer_instance/
records

Note:

If you are using curl from the machine hosting the REST proxy, then unset the
http_proxy environmental variable before consuming the messages. If you are using
curl from the local machine to get messages from the Kafka REST Proxy, then
setting the http_proxy environmental variable may be required.

8.2.8.3.4 Performance Considerations
There are several configuration settings both for the Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) configuration and in the Kafka producer that affects
performance.

The Oracle GoldenGate parameter that has the greatest affect on performance is the Replicat
GROUPTRANSOPS parameter. It allows Replicat to group multiple source transactions into a single
target transaction. At transaction commit, the Kafka REST Proxy Handler POST’s the data to the
Kafka Producer.

Chapter 8
Target

8-230

Setting the Replicat GROUPTRANSOPS to a larger number allows the Replicat to call the POST less
frequently improving performance. The default value for GROUPTRANSOPS is 1000 and
performance can be improved by increasing the value to 2500, 5000, or even 10000.

8.2.8.3.5 Kafka REST Proxy Handler Metacolumns Template Property

Problems Starting Kafka REST Proxy server

The script to start the Kafka REST Proxy server appends its CLASSPATH to the environment
CLASSPATH variable. If set, the environment CLASSPATH can contain JAR files that conflict with
the correct execution of the Kafka REST Proxy server and may prevent it from starting. Oracle
recommends that you unset the CLASSPATH environmental variable before started your Kafka
REST Proxy server. Reset the CLASSPATH to “” to overcome the problem.

8.2.9 Apache Hive
Integrating with Hive

Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) release does not
include a Hive storage handler because the HDFS Handler provides all of the necessary Hive
functionality.

You can create a Hive integration to create tables and update table definitions in case of DDL
events. This is limited to data formatted in Avro Object Container File format. For more
information, see Writing in HDFS in Avro Object Container File Format and HDFS Handler
Configuration.

For Hive to consume sequence files, the DDL creates Hive tables including STORED as
sequencefile . The following is a sample create table script:

CREATE EXTERNAL TABLE table_name (
 col1 string,
 ...
 ...
 col2 string)
ROW FORMAT DELIMITED
STORED as sequencefile
LOCATION '/path/to/hdfs/file';

Note:

If files are intended to be consumed by Hive, then the
gg.handler.name.partitionByTable property should be set to true.

8.2.10 Azure Blob Storage

Topics:

• Overview

• Prerequisites

• Storage Account, Container, and Objects

Chapter 8
Target

8-231

• Configuration

• Troubleshooting and Diagnostics

8.2.10.1 Overview
Azure Blob Storage (ABS) is a service for storing objects in Azure cloud. It is highly scalable
and is a secure object storage for cloud-native workloads, archives, data lakes, high-
performance computing, and machine learning. You can use the Azure Blob Storage Event
handler to load files generated by the File Writer handler into ABS.

8.2.10.2 Prerequisites
Ensure that the following are set:

• Azure cloud account set up.

• Java Software Development Kit (SDK) for Azure Blob Storage.

8.2.10.3 Storage Account, Container, and Objects
• Storage Account: An Azure storage account contains all of your Azure Storage data

objects: blobs, file shares, queues, tables, and disks.

• Container: A container organizes a set of blobs, similar to a directory in a file system. A
storage account can include an unlimited number of containers, and a container can store
an unlimited number of blobs.

• Objects/blobs: Objects or blobs are the individual pieces of data that you store in a
storage account container.

8.2.10.4 Configuration
To enable the selection of the ABS Event Handler, you must first configure the Event Handler
type by specifying gg.eventhandler.name.type=abs and the following ABS properties:

Properties Required/Optional Legal Values Default Explanation

gg.eventhandler
.name.type

Required abs None Selects the ABS
Event Handler for
use with File Writer
handler.

gg.eventhandler
.name.bucketMap
pingTemplate

Required A string with
resolvable
keywords and
constants used to
dynamically
generate a Azure
storage account
container name.

None A container is
created by the ABS
Event handler if it
does not exist
using this name.
See https://
docs.microsoft.com
/en-us/rest/api/
storageservices/
naming-and-
referencing-
containers--blobs--
and-
metadata#containe
r-names. For
supported
keywords, see
Template Keywords

Chapter 8
Target

8-232

https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata#container-names
https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata#container-names
https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata#container-names
https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata#container-names
https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata#container-names
https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata#container-names
https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata#container-names
https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata#container-names
https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata#container-names
https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata#container-names

Properties Required/Optional Legal Values Default Explanation

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string with
resolvable
keywords and
constants used to
dynamically
generate the path
in the Azure
storage account
container to write
the file.

None Use keywords
interlaced with
constants to
dynamically
generate a unique
Azure storage
account container
path names at
runtime. Sample
path name: ogg/
data/$
{groupName}/$
{fullyQualified
TableName}. For
supported
keywords, see
Template Keywords

gg.eventhandler
.name.fileNameM
appingTemplate

Optional A string with
resolvable
keywords and
constants used to
dynamically
generate a file
name for the Azure
Blob object.

None Use resolvable
keywords and
constants used to
dynamically
generate the Azure
Blob object file
name. If not set,
the upstream file
name is used. For
supported
keywords, see
Template Keywords

gg.eventhandler
.name.finalizeA
ction

Optional none | delete none Set to none to
leave the Azure
Blob data file in
place on the
finalize action. Set
to delete if you
want to delete the
Azure Blob data file
with the finalize
action.

gg.eventhandler
.name.eventHand
ler

Optional A unique string
identifier cross
referencing a child
event handler.

No event handler
configured.

Sets the
downstream event
handler that is
invoked on the file
roll event.

gg.eventhandler
.name.accountNa
me

Required String None Azure storage
account name.

gg.eventhandler
.name.accountKe
y

Optional String None Azure storage
account key.

gg.eventhandler
.name.sasToken

Optional String None Sets a credential
that uses a shared
access signature
(SAS) to
authenticate to an
Azure Service.

Chapter 8
Target

8-233

Properties Required/Optional Legal Values Default Explanation

gg.eventhandler
.name.tenantId

Optional String None Sets the Azure
tenant ID of the
application.

gg.eventhandler
.name.clientId

Optional String None Sets the Azure
client ID of the
application.

gg.eventhandler
.name.clientSec
ret

Optional String None Sets the Azure
client secret for the
authentication.

gg.eventhandler
.name.accessTie
r

Optional Hot | Cool |
Archive

None Sets the tier on a
Azure blob/object.
Azure storage
offers different
access tiers,
allowing you to
store blob object
data in the most
cost-effective
manner. Available
access tiers include
Hot, Cool and
Archive. For more
information, see
https://
docs.microsoft.com
/en-us/azure/
storage/blobs/
storage-blob-
storage-tiers.

gg.eventhandler
.name.endpoint

Optional String https://
<accountName>.b
lob.core.window
s.net

Sets the Azure
Storage service
endpoint. See
Azure Government
Cloud
Configuration

• Classpath Configuration

• Dependencies

• Authentication

• Proxy Configuration

• Sample Configuration

• Azure Government Cloud Configuration

8.2.10.4.1 Classpath Configuration
The ABS Event handler uses the Java SDK for Azure Blob Storage.

Note:

Ensure that the classpath includes the path to the Azure Blob Storage Java SDK.

Chapter 8
Target

8-234

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-storage-tiers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-storage-tiers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-storage-tiers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-storage-tiers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-storage-tiers
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-storage-tiers

8.2.10.4.2 Dependencies
Download the SDK using the following maven co-ordinates:

<dependencies>
 <dependency>
 <groupId>com.azure</groupId>
 <artifactId>azure-storage-blob</artifactId>
 <version>12.13.0</version>
 </dependency>
 <dependency>
 <groupId>com.azure</groupId>
 <artifactId>azure-identity</artifactId>
 <version>1.3.3</version>
 </dependency>
</dependencies>

8.2.10.4.3 Authentication
You can authenticate the Azure Storage device by configuring one of the following:

• accountKey
• sasToken
• tenandId, clientID, and clientSecret
accounkKey has the highest precedence, followed by sasToken. If accountKey and sasToken
are not set, then the tuple tenantId, clientId, and clientSecret are used.

• Azure Tenant ID, Client ID, and Client Secret

8.2.10.4.3.1 Azure Tenant ID, Client ID, and Client Secret

You can authenticate the Azure Storage device by configuring one of the following:
To obtain your Azure tenant ID:

1. Go to the Microsoft Azure portal.

2. Select Azure Active Directory from the list on the left to view the Azure Active Directory
panel.

3. Select Properties in the Azure Active Directory panel to view the Azure Active Directory
properties.

The Azure tenant ID is the field marked as Directory ID.

To obtain your Azure client ID and client secret:

1. Go to the Microsoft Azure portal.

2. Select All Services from the list on the left to view the Azure Services Listing.

3. Enter App into the filter command box and select App Registrations from the listed
services.

4. Select the App Registration you created to access Azure Storage.

The Application Id displayed for the App Registration is the client ID. The client secret is the
generated key string when a new key is added. This generated key string is available only
once when the key is created. If you do not know the generated key string, then create another
key making sure you capture the generated key string.

Chapter 8
Target

8-235

8.2.10.4.4 Proxy Configuration
When the process is run behind a proxy server, the jvm.bootoptions property can be used to
set proxy server configuration using well-known Java proxy properties.

For example:

jvm.bootoptions=-Dhttps.proxyHost=some-proxy-address.com -Dhttps.proxyPort=80
-Djava.net.useSystemProxies=true

8.2.10.4.5 Sample Configuration
 #The ABS Event Handler
 gg.eventhandler.abs.type=abs
 gg.eventhandler.abs.pathMappingTemplate=${fullyQualifiedTableName}
 #TODO: Edit the Azure Blob Storage container name
 gg.eventhandler.abs.bucketMappingTemplate=<abs-container-name>
 gg.eventhandler.abs.finalizeAction=none
 #TODO: Edit the Azure storage account name.
 gg.eventhandler.abs.accountName=<storage-account-name>
 #TODO: Edit the Azure storage account key.
 #gg.eventhandler.abs.accountKey=<storage-account-key>
 #TODO: Edit the Azure shared access signature(SAS) to authenticate to an Azure
Service.
 #gg.eventhandler.abs.sasToken=<sas-token>
 #TODO: Edit the the tenant ID of the application.
 gg.eventhandler.abs.tenantId=<azure-tenant-id>
 #TODO: Edit the the client ID of the application.
 gg.eventhandler.abs.clientId=<azure-client-id>
 #TODO: Edit the the client secret for the authentication.
 gg.eventhandler.abs.clientSecret=<azure-client-secret>
 gg.classpath=/path/to/abs-deps/*
 #TODO: Edit the proxy configuration.
 #jvm.bootoptions=-Dhttps.proxyHost=some-proxy-address.com -Dhttps.proxyPort=80 -
Djava.net.useSystemProxies=true

8.2.10.4.6 Azure Government Cloud Configuration
Additional configuration is required if Oracle GoldenGate for BigData has to replicate data to
storage accounts that reside in Azure Government cloud.

Set the environment variables AZURE_AUTHORITY_HOST and gg.eventhandler.{name}.endpoint
as per the following table:

Government cloud AZURE_AUTHORITY_HOST gg.eventhandler.
{name}.endpoint

Azure US Government Cloud https://
login.microsoftonline.us.

https://<storage-account-
name>.blob.core.usgovcloud
api.net

Azure German Cloud https://
login.microsoftonline.de

https://<storage-account-
name>.blob.core.cloudapi.d
e

Azure China Cloud https://
login.chinacloudapi.cn

https://<storage-account-
name>.blob.core.chinacloud
api.cn

Chapter 8
Target

8-236

The environment variable can be set in the replicat prm file using the Oracle GoldenGate
setenv parameter.

Example:

setenv (AZURE_AUTHORITY_HOST = "https://login.microsoftonline.us")

8.2.10.5 Troubleshooting and Diagnostics
• Error: Confidential Client is not supported in Cross Cloud request.

This indicates that the target Azure storage account resides in one of the Azure
Government clouds. Set the required configuration as per Azure Government Cloud
Configuration.

8.2.11 Azure Data Lake Storage
• Azure Data Lake Gen1 (ADLS Gen1)

Microsoft Azure Data Lake supports streaming data through the Hadoop client. Therefore,
data files can be sent to Azure Data Lake using either the Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) Hadoop Distributed File System
(HDFS) Handler or the File Writer Handler in conjunction with the HDFS Event Handler.

• Azure Data Lake Gen2 using Hadoop Client and ABFS
Microsoft Azure Data Lake Gen 2 (using Hadoop Client and ABFS) supports streaming
data via the Hadoop client. Therefore, data files can be sent to Azure Data Lake Gen 2
using either the Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA) HDFS Handler or the File Writer Handler in conjunction with the HDFS Event
Handler.

• Azure Data Lake Gen2 using BLOB endpoint

8.2.11.1 Azure Data Lake Gen1 (ADLS Gen1)
Microsoft Azure Data Lake supports streaming data through the Hadoop client. Therefore, data
files can be sent to Azure Data Lake using either the Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) Hadoop Distributed File System (HDFS) Handler or
the File Writer Handler in conjunction with the HDFS Event Handler.

The preferred mechanism for ingest to Microsoft Azure Data Lake is the File Writer Handler in
conjunction with the HDFS Event Handler.

Use these steps to connect to Microsoft Azure Data Lake from GG for DAA.

1. Download Hadoop 2.9.1 from http://hadoop.apache.org/releases.html.

2. Unzip the file in a temporary directory. For example, /ggwork/hadoop/hadoop-2.9.

3. Edit the /ggwork/hadoop/hadoop-2.9/hadoop-env.sh file in the directory.

4. Add entries for the JAVA_HOME and HADOOP_CLASSPATH environment variables:

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64
export HADOOP_CLASSPATH=/ggwork/hadoop/hadoop-2.9.1/share/hadoop/tools/lib/
*:$HADOOP_CLASSPATH

This points to Java 8 and adds the share/hadoop/tools/lib to the Hadoop classpath. The
library path is not in the variable by default and the required Azure libraries are in this
directory.

Chapter 8
Target

8-237

http://hadoop.apache.org/releases.html

5. Edit the /ggwork/hadoop/hadoop-2.9.1/etc/hadoop/core-site.xml file and add:

<configuration>
<property>
<name>fs.adl.oauth2.access.token.provider.type</name>
<value>ClientCredential</value>
</property>
<property>
<name>fs.adl.oauth2.refresh.url</name>
<value>Insert the Azure https URL here to obtain the access token</value>
</property>
<property>
<name>fs.adl.oauth2.client.id</name>
<value>Insert the client id here</value>
</property>
<property>
<name>fs.adl.oauth2.credential</name>
<value>Insert the password here</value>
</property>
<property>
<name>fs.defaultFS</name>
<value>adl://Account Name.azuredatalakestore.net</value>
</property>
</configuration>

6. Open your firewall to connect to both the Azure URL to get the token and the Azure Data
Lake URL. Or disconnect from your network or VPN. Access to Azure Data Lake does not
currently support using a proxy server per the Apache Hadoop documentation.

7. Use the Hadoop shell commands to prove connectivity to Azure Data Lake. For example,
in the 2.9.1 Hadoop installation directory, execute this command to get a listing of the root
HDFS directory.

./bin/hadoop fs -ls /
8. Verify connectivity to Azure Data Lake.

9. Configure either the HDFS Handler or the File Writer Handler using the HDFS Event
Handler to push data to Azure Data Lake, see Flat Files. Oracle recommends that you use
the File Writer Handler with the HDFS Event Handler.
Setting the gg.classpath example:

gg.classpath=/ggwork/hadoop/hadoop-2.9.1/share/hadoop/common/:/ggwork/hadoop/hadoop-
2.9.1/share/hadoop/common/lib/:/ggwork/hadoop/hadoop-
2.9.1/share/hadoop/hdfs/:/ggwork/hadoop/hadoop-2.9.1/share/hadoop/hdfs/lib/:/ggwork/
hadoop/hadoop-
2.9.1/etc/hadoop:/ggwork/hadoop/hadoop-2.9.1/share/hadoop/tools/lib/*

See https://hadoop.apache.org/docs/current/hadoop-azure-datalake/index.html.

8.2.11.2 Azure Data Lake Gen2 using Hadoop Client and ABFS
Microsoft Azure Data Lake Gen 2 (using Hadoop Client and ABFS) supports streaming data
via the Hadoop client. Therefore, data files can be sent to Azure Data Lake Gen 2 using either
the Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) HDFS Handler
or the File Writer Handler in conjunction with the HDFS Event Handler.

Hadoop 3.3.0 (or higher) is recommended for connectivity to Azure Data Lake Gen 2. Hadoop
3.3.0 contains an important fix to correctly fire Azure events on file close using the "abfss"
scheme. For more information, see Hadoop Jira issue Hadoop-16182.

Use the File Writer Handler in conjunction with the HDFS Event Handler. This is the preferred
mechanism for ingest to Azure Data Lake Gen 2.

Chapter 8
Target

8-238

https://hadoop.apache.org/docs/current/hadoop-azure-datalake/index.html
https://issues.apache.org/jira/browse/HADOOP-16182

Prerequisites

Part 1:

1. Connectivity to Azure Data Lake Gen 2 assumes that the you have correctly provisioned
an Azure Data Lake Gen 2 account in the Azure portal.
From the Azure portal select Storage Accounts from the commands on the left to view/
create/delete storage accounts.

In the Azure Data Lake Gen 2 provisioning process, it is recommended that the
Hierarchical namespace is enabled in the Advanced tab.

It is not mandatory to enable Hierarchical namespace for Azure storage account.

2. Ensure that you have created a Web app/API App Registration to connect to the storage
account.
From the Azure portal select All services from the list of commands on the left, type app
into the filter command box and select App registrations from the filtered list of services.
Create an App registration of type Web app/API.

Add permissions to access Azure Storage. Assign the App registration to an Azure
account. Generate a Key for the App Registration as follows:

a. Navigate to the respective App registration page.

b. On the left pane, select Certificates & secrets.

c. Click + New client secret (This should show a new key under the column Value).

The generated key string is your client secret and is only available at the time the key is
created. Therefore, ensure you document the generated key string.

Part 2:

1. In the Azure Data Lake Gen 2 account, ensure that the App Registration is given access.
In the Azure portal, select Storage accounts from the left panel. Select the Azure Data
Lake Gen 2 account that you have created.

Select the Access Control (IAM) command to bring up the Access Control (IAM) panel.
Select the Role Assignments tab and add a roll assignment for the created App
Registration.

The app registration assigned to the storage account must be provided with read and write
access into the Azure storage account.

You can use either of the following roles: the built-in Azure role Storage Blob Data
Contributor or custom role with the required permissions.

2. Connectivity to Azure Data Lake Gen 2 can be routed through a proxy server.
Three parameters need to be set in the Java boot options to enable:

jvm.bootoptions=-Xmx512m -Xms32m -Djava.class.path=ggjava/ggjava.jar -DproxySet=true
-Dhttps.proxyHost={insert your proxy server} -Dhttps.proxyPort={insert your proxy
port}

3. Two connectivity schemes to Azure Data Lake Gen 2 are supported: abfs and abfss.
The preferred method is abfss since it employs HTTPS calls thereby providing security and
payload encryption.

Connecting to Microsoft Azure Data Lake 2

To connect to Microsoft Azure Data Lake 2 from GG for DAA:

1. Download Hadoop 3.3.0 from http://hadoop.apache.org/releases.html.

Chapter 8
Target

8-239

http://hadoop.apache.org/releases.html

2. Unzip the file in a temporary directory. For example, /usr/home/hadoop/hadoop-3.3.0.

3. Edit the {hadoop install dir}/etc/hadoop/hadoop-env.sh file to point to Java 8
and add the Azure Hadoop libraries to the Hadoop classpath. These are entries in the
hadoop-env.sh file:

export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_202
export HADOOP_OPTIONAL_TOOLS="hadoop-azure"

4. Private networks often require routing through a proxy server to access the public internet.
Therefore, you may have to configure proxy server settings for the hadoop command line
utility to test the connectivity to Azure. To configure proxy server settings, set the following
in the hadoop-env.sh file:

export HADOOP_CLIENT_OPTS="-Dhttps.proxyHost={insert your proxy server} -
Dhttps.proxyPort={insert your proxy port}"

Note:

These proxy settings only work for the hadoop command line utility. The proxy
server settings for GG for DAA connectivity to Azure are set in the
jvm.bootoptions as described in this point.

5. Edit the {hadoop install dir}/etc/hadoop/core-site.xml file and add the following
configuration:

<configuration>
<property>
 <name>fs.azure.account.auth.type</name>
 <value>OAuth</value>
</property>
<property>
 <name>fs.azure.account.oauth.provider.type</name>
 <value>org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider</value>
</property>
<property>
 <name>fs.azure.account.oauth2.client.endpoint</name>
 <value>https://login.microsoftonline.com/{insert the Azure Tenant id here}/oauth2/
token</value>
</property>
<property>
 <name>fs.azure.account.oauth2.client.id</name>
 <value>{insert your client id here}</value>
</property>
<property>
 <name>fs.azure.account.oauth2.client.secret</name>
 <value>{insert your client secret here}</value>
</property>
<property>
 <name>fs.defaultFS</name>
 <value>abfss://{insert your container name here}@{insert your ADL gen2 storage
account name here}.dfs.core.windows.net</value>
</property>
<property>
 <name>fs.azure.createRemoteFileSystemDuringInitialization</name>
 <value>true</value>
</property>
</configuration>

Chapter 8
Target

8-240

To obtain your Azure Tenant Id, go to the Microsoft Azure portal. Enter Azure Active
Directory in the Search bar and select Azure Active Directory from the list of services.
The Tenant Id is located in the center of the main Azure Active Directory service page.

To obtain your Azure Client Id and Client Secret go to the Microsoft Azure portal. Select All
Services from the list on the left to view the Azure Services Listing. Type App into the filter
command box and select App Registrations from the listed services. Select the App
Registration that you have created to access Azure Storage. The Application Id displayed
for the App Registration is the Client ID. The Client Secret is the generated key string when
a new key is added. This generated key string is available only once when the key is
created. If you do not know the generated key string, create another key making sure you
capture the generated key string.

The ADL gen2 account name is the account name you generated when you created the
Azure ADL gen2 account.

File systems are sub partitions within an Azure Data Lake Gen 2 storage account. You can
create and access new file systems on the fly but only if the following Hadoop configuration
is set:

<property>
 <name>fs.azure.createRemoteFileSystemDuringInitialization</name>
 <value>true</value>
</property>

6. Verify connectivity using Hadoop shell commands.

./bin/hadoop fs -ls /

./bin/hadoop fs -mkdir /tmp
7. Configure either the HDFS Handler or the File Writer Handler using the HDFS Event

Handler to push data to Azure Data Lake, see Flat Files. Oracle recommends that you use
the File Writer Handler with the HDFS Event Handler.

Setting the gg.classpath example:

gg.classpath=/ggwork/hadoop/hadoop-3.3.0/share/hadoop/common/*:/ggwork/hadoop/
hadoop-3.3.0/share/hadoop/common/lib/*:/ggwork/hadoop/hadoop-3.3.0/share/hadoop/
hdfs/*:
/ggwork/hadoop/hadoop-3.3.0/share/hadoop/hdfs/lib/*:/ggwork/hadoop/hadoop-3.3.0/etc/
hadoop/:/ggwork/hadoop/hadoop-3.3.0/share/hadoop/tools/lib/*

See https://hadoop.apache.org/docs/current/hadoop-azure-datalake/index.html.

8.2.11.3 Azure Data Lake Gen2 using BLOB endpoint
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) can connect to
ADLS Gen2 using BLOB endpoint. GG for DAA ADLS Gen2 replication using BLOB endpoint
does not require any Hadoop installation. For more information, see For more information, see
Azure Blob Storage.

8.2.12 Azure Event Hubs
Kafka handler supports connectivity to Microsoft Azure Event Hubs.

To connect to the Microsoft Azure Event Hubs:

1. For more information about connecting to Microsoft Azure Event Hubs, see Quickstart:
Data streaming with Event Hubs using the Kafka protocol.

Chapter 8
Target

8-241

https://hadoop.apache.org/docs/current/hadoop-azure-datalake/index.html
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-quickstart-kafka-enabled-event-hubs
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-quickstart-kafka-enabled-event-hubs

2. Update the Kafka Producer Configuration file as follows to connect to Micrososoft Azure
Event Hubs using Secure Sockets Layer (SSL)/Transport Layer Security (TLS) protocols:

bootstrap.servers=NAMESPACENAME.servicebus.windows.net:9093
security.protocol=SASL_SSL
sasl.mechanism=PLAIN
sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule
required username="$ConnectionString"
password="{YOUR.EVENTHUBS.CONNECTION.STRING}";

See Kafka Producer Configuration File.

Connectivity to the Azure Event Hubs cannot be routed through a proxy server. Therefore,
when you run Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) on
premise to push data to Azure Event Hubs, you need to open your firewall to allow connectivity.

8.2.13 Azure Synapse Analytics Data Warehouse
Microsoft Azure Synapse Analytics is a limitless analytics service that brings together data
integration, enterprise data warehousing and Oracle GoldenGate for Distributed Applications
and Analytics (GG for DAA) analytics.

• Detailed Functionality

• Configuration

• Troubleshooting and Diagnostics

8.2.13.1 Detailed Functionality
Replication to Synapse uses stage and merge data flow.

The change data is staged in a temporary location in micro-batches and eventually merged
into the target table.

Azure Data Lake Storage (ADLS) Gen 2 is used as the staging area for change data.

The Synapse Event handler is used as a downstream Event handler connected to the output of
the Parquet Event handler.

The Parquet Event handler loads files generated by the File Writer Handler into ADLS Gen2.

The Synapse Event handler executes SQL statements to merge the operation records staged
in ADLS Gen2.

The SQL operations are performed in batches providing better throughput.

Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) uses the MERGE
SQL statement or a combination of DELETE and INSERT SQL statements to perform the merge
operation.

• Database User Privileges

• Merge SQL Statement

• Prerequisites

8.2.13.1.1 Database User Privileges
Database user used for replication has to be granted the following privileges:

Chapter 8
Target

8-242

• INSERT, UPDATE, DELETE, and TRUNCATE on the target tables.

• CREATE and DROP Synapse external file format.

• CREATE and DROP Synapse external data source.

• CREATE and DROP Synapse external table.

8.2.13.1.2 Merge SQL Statement
The merge SQL statement for Azure Synapse Analytics was made generally available during
the later part of the year 2022 and therefore Oracle GoldenGate for Distributed Applications
and Analytics (GG for DAA) uses merge statement by default. To disable merge SQL, ensure
that a Java System property is set in the jvm.bootoptions parameter.

For example:

jvm.bootoptions=-Dsynapse.use.merge.sql=false

8.2.13.1.3 Prerequisites
The following are the prerequisites:

• Uncompressed UPDATE records: If Oracle GoldenGate is configured to not use merge
statement (see Merge SQL Statement), then it is mandatory that the trail files used to apply
to Synapse contain uncompressed UPDATE operation records, which means that the UPDATE
operations contain full image of the row being updated. If UPDATE records have missing
columns, then replicat will ABEND on detecting a compressed UPDATE trail record.

• If Oracle GoldenGate is configured to use merge statement (see Merge SQL Statement),
then the target table must be a hash distributed table.

• Target table existence: The target tables should exist on the Synapse database.

• Azure storage account: An Azure storage account and container should exist.
Oracle recommends co-locating the Azure Synapse workspace, and the Azure storage
account in the same azure region.

• If Oracle GoldenGate is configured to use merge statement, then the target table cannot
define IDENTITY columns because Synapse merge statement does not support inserting
data into IDENTITY columns. For more information about merging SQL statement, see
Merge SQL Statement.

8.2.13.2 Configuration
• Automatic Configuration

• Synapse Database Credentials

• Classpath Configuration

• INSERTALLRECORDS Support

• Large Object (LOB) Performance

• End-to-End Configuration

• Compressed Update Handling

8.2.13.2.1 Automatic Configuration
Synapse replication involves configuration of multiple components, such as File Writer handler,
Parquet Event handler, and Synapse Event handler.

Chapter 8
Target

8-243

The Automatic Configuration functionality helps to auto configure these components so that the
user configuration is minimal.

The properties modified by auto configuration will also be logged in the handler log file.

To enable auto-configuration to replicate to Synapse target we need to set the parameter as
follows: gg.target=synapse.

When replicating to Synapse target, customization of Parquet Event handler name and
Synapse Event handler name is not allowed.

• File Writer Handler Configuration

• Synapse Event Handler Configuration

8.2.13.2.1.1 File Writer Handler Configuration

File writer handler name is pre-set to the value synapse. The following is an example to edit a
property of File Writer handler:

gg.handler.synapse.pathMappingTemplate=./dirout

8.2.13.2.1.2 Synapse Event Handler Configuration

Synapse Event Handler name is pre-set to the value synapse.

Table 8-12 Synapse Event Handler Configuration

Properties Required/
Optional

Legal Values Default Explanation

gg.eventhan
dler.synaps
e.connectio
nURL

Required jdbc:sqlserver://<synapse-
workspace>.sql.azuresynapse.net:143
3;database=
<db-name>;encrypt=true;
trustServerCertificate=false;
hostNameInCertificate=*.sql.azuresy
napse.net;
loginTimeout=300;

None JDBC URL to
connect to
Synapse.

gg.eventhan
dler.synaps
e.UserName

Required Database username. None Synapse
database
user in the
Synapse
workspace.
The
username
has to be
qualified with
the Synapse
workspace
name.
Example:
sqladminuse
r@synapsewo
rkspace.

gg.eventhan
dler.synaps
e.Password

Required Supported database string. None Synapse
database
password.

Chapter 8
Target

8-244

Table 8-12 (Cont.) Synapse Event Handler Configuration

Properties Required/
Optional

Legal Values Default Explanation

gg.eventhan
dler.synaps
e.credentia
l

Required Credential name. None Synapse
database
credential
name to
access Azure
Data Lake
Gen2 files.
See Synapse
Database
Credentials
for steps to
create
credential.

gg.eventhan
dler.synaps
e.maxConnne
ctions

Optional Integer value 10 Use this
parameter to
control the
number of
concurrent
JDBC
database
connections
to the target
Synapse
database.

gg.eventhan
dler.synaps
e.dropStagi
ngTablesOnS
hutdown

Optional true or false false If set to true,
the temporary
staging tables
created by
GoldenGate
will be
dropped on
replicat
graceful stop.

gg.maxInlin
eLobSize

Optional Integer Value 16000 This
parameter
can be used
to set the
maximum
inline size of
large object
(LOB)
columns in
bytes. For
more
information,
see Large
Object (LOB)
Performance.

Chapter 8
Target

8-245

Table 8-12 (Cont.) Synapse Event Handler Configuration

Properties Required/
Optional

Legal Values Default Explanation

gg.aggregat
e.operation
s.flush.int
erval

Optional Integer 30000 The flush
interval
parameter
determines
how often the
data gets
merged into
Synapse. The
value is set in
milliseconds.
Use with
caution! The
higher the
value, larger
data will have
to be stored
in the
memory of
the Replicat
process.
Use the flush
interval
parameter
with caution.
Increasing its
default value
increases the
amount of
data stored in
the internal
memory of
the Replicat.
This can
cause out-of-
memory
errors and
stop the
Replicat if it
runs out of
memory.

Chapter 8
Target

8-246

Table 8-12 (Cont.) Synapse Event Handler Configuration

Properties Required/
Optional

Legal Values Default Explanation

gg.operatio
n.aggregato
r.validate.
keyupdate

Optional true or false false If set to true,
Operation
Aggregator
will validate
key update
operations
(optype 115)
and correct to
normal
update if no
key values
have
changed.
Compressed
key update
operations do
not qualify for
merge.

8.2.13.2.2 Synapse Database Credentials
To allow Synapse to access the data files in Azure Data Lake Gen2 storage account, follow the
steps to create a database credential:

1. Connect to the respective Synapse SQL dedicated pool using the Azure Web SQL console
(https://web.azuresynapse.net/en-us/).

2. Create a DB master key if one does not already exist, using your own password.

3. Create a database scoped credential. This credential allows Oracle GoldenGate replicat
process to access Azure Storage Account.
Provide the Azure Storage Account name and Access key when creating this credential.

Storage Account Access keys can be retrieved from the Azure cloud console.

For example:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Your own password' ;
CREATE DATABASE SCOPED CREDENTIAL OGGBD_ADLS_credential
WITH
-- IDENTITY = '<storage_account_name>' ,
 IDENTITY = 'sanavaccountuseast' ,
-- SECRET = '<storage_account_key>'
 SECRET = 'c8C0yR-this-is-a-fake-access-key-Gc9c5mENOJ1mLyxlO1vSRDlRG0/
Ke+tbAvi6xe73HAAhLtdMFZRA=='
;

8.2.13.2.3 Classpath Configuration
Synapse Event handler relies on the upstream File Writer handler and the Parquet Event
handler.

• Dependencies

• Classpath

Chapter 8
Target

8-247

8.2.13.2.3.1 Dependencies

• Microsoft SQLServer JDBC driver: The JDBC driver can be downloaded from Maven
central using the following co-ordinates.

 <dependency>
 <groupId>com.microsoft.sqlserver</groupId>
 <artifactId>mssql-jdbc</artifactId>
 <version>8.4.1.jre8</version>
 <scope>provided</scope>
 </dependency>

Alternatively, the JDBC driver can also be downloaded using the script <OGGDIR>/
DependencyDownloader/synapse.sh.

• Parquet Event handler dependencies: See #unique_540 to configure classpath to include
Parquet dependencies.

• Hadoop Depedencies: Hadoop dependencies can be downloaded using dependency
downloader <OGGDIR>/DependencyDownloader/hadoop.sh

• Azure Storage dependencies: Azure Storage dependencies can be downloaded from
Maven using the following co-ordinates.

<dependencies>
 <dependency>
 <groupId>com.azure</groupId>
 <artifactId>azure-storage-blob</artifactId>
 <version>12.13.0</version>
 </dependency>
 <dependency>
 <groupId>com.azure</groupId>
 <artifactId>azure-identity</artifactId>
 <version>1.3.3</version>
 </dependency>
</dependencies>

8.2.13.2.3.2 Classpath

Edit the gg.classpath configuration parameter to include the path to the Parquet Event
Handler, Synapse JDBC, Azure Storage and hadoop dependencies.
For example:

gg.classpath=/path/to/parquet-deps/*:/path/to/abs-deps/*:path/to/synapse-deps/mssql-
jdbc-8.4.1.jre8.jar:/path/to/hadoop-deps/*

8.2.13.2.4 INSERTALLRECORDS Support
Stage and merge targets supports INSERTALLRECORDS parameter.

See INSERTALLRECORDS in Reference for Oracle GoldenGate. Set the INSERTALLRECORDS
parameter in the Replicat parameter file (.prm). Set the INSERTALLRECORDS parameter in the
Replicat parameter file (.prm)

Setting this property directs the Replicat process to use bulk insert operations to load operation
data into the target table. You can tune the batch size of bulk inserts using the File Writer
property gg.handler.synapse.maxFileSize. The default value is set to 1GB. The frequency of
bulk inserts can be tuned using the File Writer property
gg.handler.synapse.fileRollInterval, the default value is set to 3m (three minutes).

Chapter 8
Target

8-248

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/insertallrecords.html#GUID-A1019C40-97BE-437B-9D80-7C99A9A6DB8E

Note:

• When using the Synapse internal stage, the staging files can be compressed by
setting gg.handler.synapse.putSQLAutoCompress to true.

8.2.13.2.5 Large Object (LOB) Performance
The presence of large object (LOB) columns can impact Replicat's apply performance. Any
LOB column changes that exceed the inline threshold gg.maxInlineLobSize does not qualify
for batch processing and such operations gets slower.
If the compute machine has sufficient RAM, you can increase this parameter to speed up
processing.

8.2.13.2.6 End-to-End Configuration
The following is an end-end configuration example which uses auto-configuration for FW
handler, Parquet and Synapse Event handlers.

This sample properties file can also be found in the directory AdapterExamples/big-data/
synapse/synapse.props:

Azure Synapse Analytics Data Warehouse Template
Configuration to load GoldenGate trail operation records into Azure Synapse Analytics
by chaining
File writer handler -> Parquet Event handler -> Synapse Event handler.
Note: Recommended to only edit the configuration marked as TODO

gg.target=synapse

#The Parquet Event Handler
No properties are required for the Parquet Event handler.
#gg.eventhandler.parquet.finalizeAction=delete

ADLS Gen 2 stage (Using Azure Blob SDK).
#Azure Blob Event handler
#TODO: Edit the Azure Blob Storage container name
gg.eventhandler.abs.bucketMappingTemplate=<abs-container-name>
#TODO: Edit the Azure storage.account name. gg.eventhandler.abs.accountName=<storage-
account-name>
#TODO: Edit the Azure storage account key.
gg.eventhandler.abs.accountKey=<storage-account-key>

#The Synapse Event Handler
#TODO: Edit JDBC ConnectionUrl
gg.eventhandler.synapse.connectionURL=jdbc:sqlserver://<synapse-
workspace>.sql.azuresynapse.net:1433;database=<db-
name>;encrypt=true;trustServerCertificate=false;hostNameInCertificate=*.sql.azuresynapse.
net;loginTimeout=300;
#TODO: Edit JDBC user name
gg.eventhandler.synapse.UserName=<db user name>@<synapse-workspace>
#TODO: Edit JDBC password
gg.eventhandler.synapse.Password=<db password>
#TODO: Edit Credential to access Azure storage.
gg.eventhandler.synapse.credential=OGGBD_ADLS_credential
#TODO: Edit the classpath to include dependencies for Parquet Event Handler, ABS Event
handler and the Synapse JDBC driver.
gg.classpath=/path/to/parquet-deps/:/path/to/abs-deps/:path/to/synapse-deps/mssql-

Chapter 8
Target

8-249

jdbc-8.4.1.jre8.jar:/path/to/hadoop-deps/*
#TODO: Provide sufficient memory (at least 8GB).
jvm.bootoptions=-Xmx8g -Xms8g -DSYNAPSE_STAGE=parquet,abs

8.2.13.2.7 Compressed Update Handling
A compressed update record contains values for the key columns and the modified columns.

An uncompressed update record contains values for all the columns.

Oracle GoldenGate trails may contain compressed or uncompressed update records. The
default extract configuration writes compressed updates to the trails.

The parameter gg.compressed.update can be set to true or false to indicate compressed/
uncompressed update records.

• MERGE Statement with Uncompressed Updates

8.2.13.2.7.1 MERGE Statement with Uncompressed Updates

In some use cases, if the trail contains uncompressed update records, then the MERGE SQL
statement can be optimized for better performance by setting gg.compressed.update=false.

Note:

If you want to use DELETE+INSERT SQL statements instead of a MERGE SQL statement,
then set gg.eventhandler.snowflake.deleteInsert=true.

8.2.13.3 Troubleshooting and Diagnostics
• Connectivity Issues to Synapse:

– Validate JDBC connection URL, username and password.

– Check if http/https proxy is enabled. Synapse does not support connections over
http(s) proxy.

• DDL not applied on the target table: Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) does not support DDL replication.

• Target table existence: It is expected that the Synapse target table exists before starting
the replicat process. replicat process will ABEND if the target table is missing.

• SQL Errors: In case there are any errors while executing any SQL, the entire SQL
statement along with the bind parameter values are logged into the GG for DAA handler
log file.

• Co-existence of the components: The location/region of the machine where replicat
process is running, Azure Data Lake Storage container region and the Synapse region
would impact the overall throughput of the apply process. Data flow is as follows: Oracle
GoldenGate -> Azure Data Lake Gen 2 -> Synapse. For best throughput, the components
need to located as close as possible.

• Replicat ABEND due to partial LOB records in the trail file: GG for DAA Synapse apply
does not support replication of partial LOB. The trail file needs to be regenerated by Oracle
Integrated capture using TRANLOGOPTIONS FETCHPARTIALLOB option in the extract
parameter file.

Chapter 8
Target

8-250

• Error:com.microsoft.sqlserver.jdbc.SQLServerException: Conversion failed when
converting date and/or time from character string:
This occurs when the source datetime column and target datetime column are
incompatible.

For example: A case where the source column is a timestamp type, and the target column
is Synapse time.

• If the Synapse table or column names contain double quotes, then GG for DAA replicat will
ABEND.

• Error: com.microsoft.sqlserver.jdbc.SQLServerException:
HdfsBridge::recordReaderFillBuffer. This indicates that the data in the external table
backed by Azure Data Lake file is not readable. Contact Oracle support.

• IDENTITY column in the target table: The Synapse MERGE statement does not support
inserting data into IDENTITY columns. Therefore, if MERGE statement is enabled using
jvm.bootoptions=-Dsynapse.use.merge.sql=true, then Replicat will ABEND with
following error message:
Exception:

com.microsoft.sqlserver.jdbc.SQLServerException: Cannot update identity
column 'ORDER_ID'

• Error: com.microsoft.sqlserver.jdbc.SQLServerException: Merge statements with a
WHEN NOT MATCHED [BY TARGET] clause must target a hash distributed table:
This indicates that merge SQL statement is on and Synapse target table is not a hash
distributed table. You need to create the target table with a hash distribution.

8.2.14 Confluent Kafka
• Confluent is a primary adopter of Kafka Connect and their Confluent Platform offering

includes extensions over the standard Kafka Connect functionality. This includes Avro
serialization and deserialization, and an Avro schema registry. Much of the Kafka Connect
functionality is available in Apache Kafka.

• You can use Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
Kafka Connect Handler to replicate to Confluent Kafka. The Kafka Connect Handler is a
Kafka Connect source connector. You can capture database changes from any database
supported by Oracle GoldenGate and stream that change of data through the Kafka
Connect layer to Kafka.

• Kafka Connect uses proprietary objects to define the schemas
(org.apache.kafka.connect.data.Schema) and the messages
(org.apache.kafka.connect.data.Struct). The Kafka Connect Handler can be
configured to manage what data is published and the structure of the published data.

• The Kafka Connect Handler does not support any of the pluggable formatters that are
supported by the Kafka Handler.

8.2.15 DataStax
Datastax Enterprise is a NoSQL database built on Apache Cassandra. For more information,
see Apache Cassandrafor configuring replication to Datastax Enterprise.

Chapter 8
Target

8-251

8.2.16 Elasticsearch
• Elasticsearch with Elasticsearch 7x and 6x

The Elasticsearch Handler allows you to store, search, and analyze large volumes of data
quickly and in near real time.

• Elasticsearch 8x
The Elasticsearch Handler allows you to store, search, and analyze large volumes of data
quickly and in near real time.

8.2.16.1 Elasticsearch with Elasticsearch 7x and 6x
The Elasticsearch Handler allows you to store, search, and analyze large volumes of data
quickly and in near real time.

This article describes how to use the Elasticsearch handler.

Note:

This section on the Elasticsearch Handler pertains to Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) versions 21.9.0.0.0 and before.
Starting with Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA) 21.10.0.0.0, the Elasticsearch client was changed in order to support
Elasticsearch 8.x.

• Overview

• Detailing the Functionality

• Setting Up and Running the Elasticsearch Handler

• Troubleshooting

• Performance Consideration

• About the Shield Plug-In Support

• About DDL Handling

• Known Issues in the Elasticsearch Handler

• Elasticsearch Handler Transport Client Dependencies
What are the dependencies for the Elasticsearch Handler to connect to Elasticsearch
databases?

• Elasticsearch High Level REST Client Dependencies

8.2.16.1.1 Overview

Elasticsearch is a highly scalable open-source full-text search and analytics engine.
Elasticsearch allows you to store, search, and analyze large volumes of data quickly and in
near real time. It is generally used as the underlying engine or technology that drives
applications with complex search features.

The Elasticsearch Handler uses the Elasticsearch Java client to connect and receive data into
Elasticsearch node, see https://www.elastic.co.

Chapter 8
Target

8-252

https://www.elastic.co

Note:

This section on the Elasticsearch Handler pertains to Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) versions 21.9.0.0.0 and before.
Starting with GG for DAA 21.10.0.0.0, the Elasticsearch client was changed in order
to support Elasticsearch 8.x.

8.2.16.1.2 Detailing the Functionality
This topic details the Elasticsearch Handler functionality.

• About the Elasticsearch Version Property

• About the Index and Type

• About the Document

• About the Primary Key Update

• About the Data Types

• Operation Mode

• Operation Processing Support

• About the Connection

8.2.16.1.2.1 About the Elasticsearch Version Property

The Elasticsearch Handler supports two different clients to communicate with the Elasticsearch
cluster: The Elasticsearch transport client and the Elasticsearch High Level REST client.

Elasticsearch Handler can also be configured for the two supported clients by specifying the
appropriate version of Elasticsearch handler properties file. Older version of Elasticsearch (6.x)
supports only Transport client and the Elasticsearch handler can be configured by setting the
configurable property version value to 6.x. For the latest version of Elasticsearch (7.x), both the
Transport client and the High Level REST client are supported. Therefore, in the latest version,
the Elasticsearch Handler can be configured for Transport client by setting the value of
configurable property version to 7.x and High Level REST client by setting the value to
Rest7.x.

The configurable parameters for each of them are as follows:

1. Set the gg.handler.name.version configuration value to 6.x or 7.x to connect to the
Elasticsearch cluster using the transport client using the respective version.

2. Set the gg.handler.name.version configuration value to REST7.0 to connect to the
Elasticseach cluster using the Elasticsearch High Level REST client. The REST client
support Elasticsearch versions 7.x.

8.2.16.1.2.2 About the Index and Type

An Elasticsearch index is a collection of documents with similar characteristics. An index can
only be created in lowercase. An Elasticsearch type is a logical group within an index. All the
documents within an index or type should have same number and type of fields.

The Elasticsearch Handler maps the source trail schema concatenated with source trail table
name to construct the index. For three-part table names in source trail, the index is constructed
by concatenating source catalog, schema, and table name.

Chapter 8
Target

8-253

The Elasticsearch Handler maps the source table name to the Elasticsearch type. The type
name is case-sensitive.

Note:

Elasticsearch field names are case sensitive. If the field name in the data to be either
updated or inserted are in uppercase and the existing fields in Elasticsearch server
are in lowercase, then they are treated as new fields and not updated as existing
fields. The workaround for this is using the parameter
gg.schema.normalize=lowercase, which will update the field name to lowercase,
thus resolving the issue.

Table 8-13 Elasticsearch Mapping

Source Trail Elasticsearch Index Elasticsearch Type

schema.tablename schema_tablename tablename
catalog.schema.tablename catalog_schema_tablename tablename

If an index does not already exist in the Elasticsearch cluster, a new index is created when
Elasticsearch Handler receives (INSERT or UPDATE operation in source trail) data.

8.2.16.1.2.3 About the Document

An Elasticsearch document is a basic unit of information that can be indexed. Within an index
or type, you can store as many documents as you want. Each document has an unique
identifier based on the _id field.

The Elasticsearch Handler maps the source trail primary key column value as the document
identifier.

8.2.16.1.2.4 About the Primary Key Update

The Elasticsearch document identifier is created based on the source table's primary key
column value. The document identifier cannot be modified. The Elasticsearch handler
processes a source primary key's update operation by performing a DELETE followed by an
INSERT. While performing the INSERT, there is a possibility that the new document may contain
fewer fields than required. For the INSERT operation to contain all the fields in the source table,
enable trail Extract to capture the full data before images for update operations or use
GETBEFORECOLS to write the required column’s before images.

8.2.16.1.2.5 About the Data Types

Elasticsearch supports the following data types:

• 32-bit integer
• 64-bit integer
• Double
• Date
• String
• Binary

Chapter 8
Target

8-254

8.2.16.1.2.6 Operation Mode

The Elasticsearch Handler uses the operation mode for better performance. The
gg.handler.name.mode property is not used by the handler.

8.2.16.1.2.7 Operation Processing Support

The Elasticsearch Handler maps the source table name to the Elasticsearch type. The type
name is case-sensitive.

For three-part table names in source trail, the index is constructed by concatenating source
catalog, schema, and table name.

INSERT
The Elasticsearch Handler creates a new index if the index does not exist, and then inserts a
new document.

UPDATE
If an Elasticsearch index or document exists, the document is updated. If an Elasticsearch
index or document does not exist, a new index is created and the column values in the UPDATE
operation are inserted as a new document.

DELETE
If an Elasticsearch index or document exists, the document is deleted. If Elasticsearch index
or document does not exist, a new index is created with zero fields.

The TRUNCATE operation is not supported.

8.2.16.1.2.8 About the Connection

A cluster is a collection of one or more nodes (servers) that holds the entire data. It provides
federated indexing and search capabilities across all nodes.

A node is a single server that is part of the cluster, stores the data, and participates in the
cluster’s indexing and searching.

The Elasticsearch Handler property gg.handler.name.ServerAddressList can be set to point
to the nodes available in the cluster.

8.2.16.1.3 Setting Up and Running the Elasticsearch Handler
You must ensure that the Elasticsearch cluster is setup correctly and the cluster is up and
running, see https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html.
Alternatively, you can use Kibana to verify the setup.

Set the Classpath

The property gg.classpath must include all the jars required by the Java transport client. For a
listing of the required client JAR files by version, see Elasticsearch Handler Transport Client
Dependencies. For a listing of the required client JAR files for the Elatisticsearch High Level
REST client, see Elasticsearch High Level REST Client Dependencies.

The inclusion of the * wildcard in the path can include the * wildcard character in order to
include all of the JAR files in that directory in the associated classpath. Do not use *.jar.

The following is an example of the correctly configured classpath:

gg.classpath=Elasticsearch_Home/lib/*

Chapter 8
Target

8-255

https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

• Configuring the Elasticsearch Handler

8.2.16.1.3.1 Configuring the Elasticsearch Handler

Elasticsearch Handler can be configured for different version of Elasticsearch. For the latest
version (7.x), two types of clients are supported: the Transport client and High-level REST
client. When the configurable property version is set to the values 6.x or 7.x it uses
Elasticsearch Transport client for connecting and performing all other operations of handler to
Elasticsearch cluster. When the configurable property version is set to rest7.x, it uses
Elasticsearch High Level REST client for connecting and performing other operations of
handler to Elasticsearch 7.x cluster. The configurable parameters for each of them are
separately given below:

Table 8-14 Common Configurable Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handlerlist Required Name (Any name
of your choice for
handler)

None The list of handlers
to be used.

gg.handler.<nam
e>.type

Required elasticsearch None Type of handler to
use. For example,
Elasticsearch,
Kafka, or Flume.

gg.handler.name
.ServerAddressL
ist

Optional Server:Port[,
Server:Port …]

• localhost:9300
(for Transport
Client)

• localhost:9200
(for High-Level
REST Client)

Comma separated
list of contact points
of the nodes. The
allowed port for
version REST7.x is
9200. For other
version, it is 9300.

gg.handler.name
.version

Required 5.x|6.x|7.x|
REST7.x

7.x The version values
5.x, 6.x, and 7.x
indicate using the
Elasticsearch
Transport client to
communicate with
Elasticsearch
version 5.x, 6.x and
7.x respectively.
The version
REST7.x indicates
using the
Elasticsearch High
Level REST client
to communicate
with Elasticsearch
version 7.x.

Chapter 8
Target

8-256

Table 8-14 (Cont.) Common Configurable Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.version
gg.handler.name
.bulkWrite

Optional true | false false When this property
is true, the
Elasticsearch
Handler uses the
bulk write API to
ingest data into
Elasticsearch
cluster. The batch
size of bulk write
can be controlled
using the
MAXTRANSOPS
Replicat parameter.

gg.handler.name
.numberAsString

Optional true | false false When this property
is true, the
Elasticsearch
Handler receives all
the number column
values (Long,
Integer, or Double)
in the source trail
as strings into the
Elasticsearch
cluster.

gg.handler.elas
ticsearch.upser
t

Optional true | false true When this property
is true, a new
document is
inserted if the
document does not
already exist when
performing an
UPDATE operation.

Example 8-1 Sample Handler Properties file:

Sample Replicat configuration and a Java Adapter Properties files can be found at the
following directory:

GoldenGate_install_directory/AdapterExamples/big-data/elasticsearch
For Elasticsearch REST handler

gg.handlerlist=elasticsearch
gg.handler.elasticsearch.type=elasticsearch
gg.handler.elasticsearch.ServerAddressList=localhost:9300
gg.handler.elasticsearch.version=rest7.x
gg.classpath=/path/to/elasticsearch/lib/*:/path/to/elasticsearch/modules/reindex/*:/
path/to/elasticsearch/modules/lang-mustache/*:/path/to/elasticsearch/modules/rank-eval/*

• Common Configurable Properties

• Transport Client Configurable Properties

• Transport Client Setting Properties File

• Classpath Settings for Transport Client

Chapter 8
Target

8-257

• REST Client Configurable Properties

• Authentication for REST Client

• Classpath Settings for REST Client

8.2.16.1.3.1.1 Common Configurable Properties
The common configurable properties that are applicable for all the versions of Elasticsearch
and applicable for both Transport client as well as High Level REST client of Elasticsearch
handler are as shown in the following table:

Table 8-15 Common Configurable Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handlerlist Required Name (Any name
of your choice for
handler)

None The list of handlers
to be used.

gg.handler.<nam
e>.type

Required elasticsearch None Type of handler to
use. For example,
Elasticsearch,
Kafka, or Flume.

gg.handler.name
.ServerAddressL
ist

Optional Server:Port[,
Server:Port …]

• localhost:9300
(for Transport
Client)

• localhost:9200
(for High-Level
REST Client)

Comma separated
list of contact points
of the nodes. The
allowed port for
version REST7.x is
9200. For other
version, it is 9300.

gg.handler.name
.version

Required 6.x|7.x|REST7.x 7.x The version values
6.x, and 7.x
indicate using the
Elasticsearch
Transport client to
communicate with
Elasticsearch
version 6.x and 7.x
respectively. The
version REST7.x
indicates using the
Elasticsearch High
Level REST client
to communicate
with Elasticsearch
version 7.x.

gg.handler.name
.version
gg.handler.name
.bulkWrite

Optional true | false false When this property
is true, the
Elasticsearch
Handler uses the
bulk write API to
ingest data into
Elasticsearch
cluster. The batch
size of bulk write
can be controlled
using the
MAXTRANSOPS
Replicat parameter.

Chapter 8
Target

8-258

Table 8-15 (Cont.) Common Configurable Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.numberAsString

Optional true | false false When this property
is true, the
Elasticsearch
Handler receives all
the number column
values (Long,
Integer, or Double)
in the source trail
as strings into the
Elasticsearch
cluster.

gg.handler.elas
ticsearch.upser
t

Optional true | false true When this property
is true, a new
document is
inserted if the
document does not
already exist when
performing an
UPDATE operation.

8.2.16.1.3.1.2 Transport Client Configurable Properties
When the configurable property version is set to the value 6.x or 7.x, it uses Transport client to
communicate with the corresponding version of Elasticsearch cluster. The configurable
properties applicable when using Transport client only are as follows:

Table 8-16 Transport Client Configurable Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.clientSettings
File

Required Transport client
properties file.

None The filename in
classpath that
holds Elasticsearch
transport client
properties used by
the Elasticsearch
Handler.

Copygg.handlerlist=elasticsearch
gg.handler.elasticsearch.type=elasticsearch
gg.handler.elasticsearch.ServerAddressList=localhost:9300
gg.handler.elasticsearch.clientSettingsFile=client.properties
gg.handler.elasticsearch.version=[6.x | 7.x]
gg.classpath=/path/to/elastic/lib/*:/path/to/elastic/modules/transport-netty4/*:/path/to/
elastic/modules/reindex/*: /path/to/elastic/plugins/x-pack/*:

8.2.16.1.3.1.3 Transport Client Setting Properties File
The Elasticsearch Handler uses a Java Transport client to interact with Elasticsearch cluster.
The Elasticsearch cluster may have additional plug-ins like shield or x-pack, which may require
additional configuration.

The gg.handler.name.clientSettingsFile property should point to a file that has additional
client settings based on the version of Elasticsearch cluster.

Chapter 8
Target

8-259

The Elasticsearch Handler attempts to locate and load the client settings file using the Java
classpath. The Java classpath must include the directory containing the properties file.The
client properties file for Elasticsearch (without any plug-in) is:
cluster.name=Elasticsearch_cluster_name.

The Shield plug-in also supports additional capabilities like SSL and IP filtering. The properties
can be set in the client.properties file, see https://www.elastic.co/guide/en/shield/current/
_using_elasticsearch_java_clients_with_shield.html.

Example of client.properties file for Elasticsearch Handler with X-Pack plug-in:

Copycluster.name=Elasticsearch_cluster_name
xpack.security.user=x-pack_username:x-pack-password

The X-Pack plug-in also supports additional capabilities. The properties can be set in the
client.properties file, see

https://www.elastic.co/guide/en/elasticsearch/client/java-api/5.1/transport-client.html and
https://www.elastic.co/guide/en/x-pack/current/java-clients.html

8.2.16.1.3.1.4 Classpath Settings for Transport Client
The gg.classpath setting for Elasticsearch handler with Transport client should contain the
path to jars from library (lib) and modules (transport-netty4 and reindex modules) folder inside
Elasticsearch installation directory. If x-pack plugin is used for authentication purpose, then the
classpath should also include the jars inside the plugins (x-pack) folder inside Elasticsearch
installation directory. See the path for jars as follows:

.

1. [path/to/elastic/lib/*]
2. [/path/to/elastic/modules/transport-netty4/*]
3. [/path/to/elastic/modules/reindex/*]
4. [/path/to/elastic/plugins/x-pack/*] This needs to be added only if x-pack plugin
is configured in Elasticsearch

8.2.16.1.3.1.5 REST Client Configurable Properties
When the configurable property version is set to value rest7.x, the handler uses Elasticsearch
High Level REST client to connect to Elasticsearch 7.x cluster. The configurable properties that
are supported for REST client only are as follows:

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.elas
ticsearch.routi
ngTemplate

Optional $
{columnValue[ta
ble1=column1,ta
ble2=column2,…]

None The template to be
used for deciding
the routing
algorithm.

Chapter 8
Target

8-260

https://www.elastic.co/guide/en/shield/current/_using_elasticsearch_java_clients_with_shield.html
https://www.elastic.co/guide/en/shield/current/_using_elasticsearch_java_clients_with_shield.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api/5.1/transport-client.html
https://www.elastic.co/guide/en/x-pack/current/java-clients.html

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.authType

Optional none | basic |
ssl

None Controls the
authentication type
for the
Elasticsearch
REST client.
• none - No

authentication
• basic - Client

authentication
using
username and
password
without
message
encrytption.

• ssl - Mutual
authentication.
Client
authenticates
the server
using a trust-
store. Server
authentication
client using
username and
password.
Messages are
encrypted.

gg.handler.name
.authType
gg.handler.name
.basicAuthUsern
ame

Required (for auth-
type basic.)

A valid username None The username for
the server to
authenticate the
Elasticsearch
REST client. Must
be provided for
auth types basic.

gg.handler.name
.basicAuthPassw
ord

Required (for auth-
type basic.)

A valid password None The password for
the server to
authenticate the
Elasticsearch
REST client. Must
be provided for
auth types basic.

gg.handler.name
.trustStore

Required (for auth-
type SSL)

The fully qualified
name (path +
name) of trust-store
file

None The truststore for
the Elasticsearch
client to validate
the certificate
received from the
Elasticsearch
server. Must be
provided if the auth
type is set to ssl.
Valid only for the
Elasticsearch
REST client

Chapter 8
Target

8-261

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.trustStorePass
word

Required (for auth-
type SSL)

A valid trust-store
Password

None The password for
the truststore for
the Elasticsearch
REST client to
validate the
certificate received
from the
Elasticsearch
server. Must be
provided if the auth
type is set to ssl.

gg.handler.name
.maxConnectTime
out

Optional Positive integer Default value of
Apache HTTP
Components
framework.

Set the maximum
wait period for a
connection to be
established from
the Elasticsearch
REST client to the
Elasticsearch
server. Valid only
for the
Elasticsearch
REST client.

gg.handler.name
.maxSocketTimeo
ut

Optional Positive Integer Default value of
Apache HTTP
Components
framework.

Sets the maximum
wait period in
milliseconds to wait
for a response from
the service after
issuing a request.
May need to be
increased when
pushing large data
volumes. Valid only
for the
Elasticsearch
REST client.

gg.handler.name
.proxyUsername

Optional The proxy server
username

None If the connectivity
to the Elasticsearch
uses the REST
client and routing
through a proxy
server, then this
property sets the
username of your
proxy server. Most
proxy servers do
not require
credentials.

Chapter 8
Target

8-262

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name
.proxyPassword

Optional The proxy server
password

None If the connectivity
to the Elasticsearch
uses the REST
client and routing
through a proxy
server, then this
property sets the
password of your
proxy server. Most
proxy servers do
not require
credentials.

gg.handler.name
.proxyProtocol

Optional http | https None If the connectivity
to the Elasticsearch
uses the REST
client and routing
through a proxy
server, then this
property sets the
protocol of your
proxy server.

gg.handler.name
.proxyPort

Optional The port number of
your proxy server.

None If the connectivity
to the Elasticsearch
uses the REST
client and routing
through a proxy
server, then this
property sets the
port number of your
proxy server.

gg.handler.name
.proxyServer

Optional The host name of
your proxy server.

None If the connectivity
to the Elasticsearch
uses the REST
client and routing
through a proxy
server, then this
property sets the
host name of your
proxy server.

Sample Properties for Elasticsearch Handler using REST Client

gg.handlerlist=elasticsearch
gg.handler.elasticsearch.type=elasticsearch
gg.handler.elasticsearch.ServerAddressList=localhost:9200
gg.handler.elasticsearch.version=rest7.x
gg.classpath=/path/to/elasticsearch/lib/*:/path/to/elasticsearch/modules/reindex/*:/
path/to/elasticsearch/modules/lang-mustache/*:/path/to/elasticsearch/modules/rank-eval/*

8.2.16.1.3.1.6 Authentication for REST Client
The configurable property auth-type value SSL can be used to configure the SSL
authentication mechanism for communicating with Elasticsearch cluster. This property can also
be used to configure the basic authentication with SSL by providing configurable property basic
username/password along with the trust-store properties.

Chapter 8
Target

8-263

8.2.16.1.3.1.7 Classpath Settings for REST Client
The Classpath for High Level REST client must contain the jars from the library (lib) folder and
modules folders (reindex, lang-mustache and ran-eval) inside the Elasticsearch installation
directory. The REST client are dependent on these libraries and should be included in
gg.classpath for the handler to work. Following are the list of dependencies:

1. [/path/to/elasticsearch/lib/*]
2. [/path/to/elasticsearch/modules/reindex/*]
3. [/path/to/elasticsearch/modules/lang-mustache/*]
4. [/path/to/elasticsearch/modules/rank-eval/*]

8.2.16.1.4 Troubleshooting
This section contains information to help you troubleshoot various issues.

Transport Client Properties File Not Found

This is applicable for Transport Client only when the property version is set to 6.x or 7.x.

Error:

ERROR 2017-01-30 22:33:10,058 [main] Unable to establish connection. Check handler
properties
 and client settings configuration.

To resolve this exception, verify that the gg.handler.name.clientSettingsFile configuration
property is correctly setting the Elasticsearch transport client settings file name. Verify that the
gg.classpath variable includes the path to the correct file name and that the path to the
properties file does not contain an asterisk (*) wildcard at the end.

• Incorrect Java Classpath

• Elasticsearch Version Mismatch

• Transport Client Properties File Not Found

• Cluster Connection Problem

• Unsupported Truncate Operation

• Bulk Execute Errors

8.2.16.1.4.1 Incorrect Java Classpath

The most common initial error is an incorrect classpath to include all the required client
libraries and creates a ClassNotFound exception in the log4j log file.

Also, it may be due to an error resolving the classpath if there is a typographic error in the
gg.classpath variable.

The Elasticsearch transport client libraries do not ship with the Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) product. You should properly configure the
gg.classpath property in the Java Adapter Properties file to correctly resolve the client
libraries, see Setting Up and Running the Elasticsearch Handler.

8.2.16.1.4.2 Elasticsearch Version Mismatch

The Elasticsearch Handler gg.handler.name.version property must beset to one of the
following values: 6.x, 7.x or REST7.x to match the major version number of the Elasticsearch
cluster. For example, gg.handler.name.version=7.x.

The following errors may occur when there is a wrong version configuration:

Chapter 8
Target

8-264

Error: NoNodeAvailableException[None of the configured nodes are available:]

ERROR 2017-01-30 22:35:07,240 [main] Unable to establish connection. Check handler
properties and client settings configuration.

java.lang.IllegalArgumentException: unknown setting [shield.user]

Ensure that all required plug-ins are installed and review documentation changes for any
removed settings.

8.2.16.1.4.3 Transport Client Properties File Not Found

To resolve this exception:

ERROR 2017-01-30 22:33:10,058 [main] Unable to establish connection. Check
handler properties and client settings configuration.

Verify that the gg.handler.name.clientSettingsFile configuration property is correctly
setting the Elasticsearch transport client settings file name. Verify that the gg.classpath
variable includes the path to the correct file name and that the path to the properties file does
not contain an asterisk (*) wildcard at the end.

8.2.16.1.4.4 Cluster Connection Problem

This error occurs when the Elasticsearch Handler is unable to connect to the Elasticsearch
cluster:

Error: NoNodeAvailableException[None of the configured nodes are available:]

Use the following steps to debug the issue:

1. Ensure that the Elasticsearch server process is running.

2. Validate the cluster.name property in the client properties configuration file.

3. Validate the authentication credentials for the x-Pack or Shield plug-in in the client
properties file.

4. Validate the gg.handler.name.ServerAddressList handler property.

8.2.16.1.4.5 Unsupported Truncate Operation

The following error occurs when the Elasticsearch Handler finds a TRUNCATE operation in the
source trail:

oracle.goldengate.util.GGException: Elasticsearch Handler does not support
the operation: TRUNCATE

This exception error message is written to the handler log file before the RAeplicat process
abends. Removing the GETTRUNCATES parameter from the Replicat parameter file resolves this
error.

Chapter 8
Target

8-265

8.2.16.1.4.6 Bulk Execute Errors

""

DEBUG [main] (ElasticSearch5DOTX.java:130) - Bulk execute status: failures:
[true] buildFailureMessage:[failure in bulk execution: [0]: index
[cs2cat_s1sch_n1tab], type [N1TAB], id [83], message
[RemoteTransportException[[UOvac8l][127.0.0.1:9300][indices:data/write/bulk[s]
[p]]]; nested: EsRejectedExecutionException[rejected execution of
org.elasticsearch.transport.TransportService$7@43eddfb2 on
EsThreadPoolExecutor[bulk, queue capacity = 50,
org.elasticsearch.common.util.concurrent.EsThreadPoolExecutor@5ef5f412[Running
, pool size = 4, active threads = 4, queued tasks = 50, completed tasks =
84]]];]

It may be due to the Elasticsearch running out of resources to process the operation. You can
limit the Replicat batch size using MAXTRANSOPS to match the value of the
thread_pool.bulk.queue_size Elasticsearch configuration parameter.

Note:

Changes to the Elasticsearch parameter, thread_pool.bulk.queue_size, are
effective only after the Elasticsearch node is restarted.

8.2.16.1.5 Performance Consideration
The Elasticsearch Handler gg.handler.name.bulkWrite property is used to determine whether
the source trail records should be pushed to the Elasticsearch cluster one at a time or in bulk
using the bulk write API. When this property is true, the source trail operations are pushed to
the Elasticsearch cluster in batches whose size can be controlled by the MAXTRANSOPS
parameter in the generic Replicat parameter file. Using the bulk write API provides better
performance.

Elasticsearch uses different thread pools to improve how memory consumption of threads are
managed within a node. Many of these pools also have queues associated with them, which
allow pending requests to be held instead of discarded.

For bulk operations, the default queue size is 50 (in version 5.2) and 200 (in version 5.3).

To avoid bulk API errors, you must set the Replicat MAXTRANSOPS size to match the bulk thread
pool queue size at a minimum. The configuration thread_pool.bulk.queue_size property can
be modified in the elasticsearch.yaml file.

8.2.16.1.6 About the Shield Plug-In Support
Elasticsearch versions 6.x and 7.x (X-Pack plug-in for Elasticsearch 6.x and 7.x) support a
Shield plug-in which provides basic authentication, SSL and IP filtering. Similar capabilities
exist in the X-Pack plug-in for Elasticsearch 6.x and 7.x. The additional transport client settings
can be configured in the Elasticsearch Handler using the
gg.handler.name.clientSettingsFile property.

Chapter 8
Target

8-266

8.2.16.1.7 About DDL Handling
The Elasticsearch Handler does not react to any DDL records in the source trail. Any data
manipulation records for a new source table results in auto-creation of index or type in the
Elasticsearch cluster.

8.2.16.1.8 Known Issues in the Elasticsearch Handler

Elasticsearch: Trying to input very large number

Very large numbers result in inaccurate values with Elasticsearch document. For example,
9223372036854775807, -9223372036854775808. This is an issue with the Elasticsearch
server and not a limitation of the Elasticsearch Handler.

The workaround for this issue is to ingest all the number values as strings using the
gg.handler.name.numberAsString=true property.

Elasticsearch: Issue with index

The Elasticsearch Handler is not able to input data into the same index if there are more than
one table with similar column names and different column data types.

Index names are always lowercase though the catalog/schema/tablename in the trail may be
case-sensitive.

8.2.16.1.9 Elasticsearch Handler Transport Client Dependencies
What are the dependencies for the Elasticsearch Handler to connect to Elasticsearch
databases?

The maven central repository artifacts for Elasticsearch databases are:

Maven groupId: org.elasticsearch.client
Maven atifactId: transport

Maven groupId: org.elasticsearch.client
Maven atifactId: x-pack-transport

8.2.16.1.10 Elasticsearch High Level REST Client Dependencies
The maven coordinates for the Elasticsearch High Level REST client are:

Maven groupId: org.elasticsearch.client
Maven atifactId: elasticsearch-rest-high-level-client
Maven version: 7.13.3

Note:

Ensure not to mix the versions in the jar files dependency stack for the Elasticsearch
High Level REST Client. Mixing versions results in dependency conflicts.

Chapter 8
Target

8-267

8.2.16.2 Elasticsearch 8x
The Elasticsearch Handler allows you to store, search, and analyze large volumes of data
quickly and in near real time.

This article describes how to use the Elasticsearch handler (starting Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) 21.10.0.0.0). In Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) version 21.10.0.0, the Elasticsearch
handler was modified to support a new Elasticsearch client. The new client supports
Elasticsearch 8.x.

• Overview

• Detailing the Functionality

• About the Index

• About the Document

• About the Data Types

• About the Connection

• About Supported Operation

• About DDL Handling

• About the Primary Key Update

• About UPSERT

• About Bulk Write

• About Routing

• About Request Headers

• About Java API Client

• Setting Up the Elasticsearch Handler

• Elasticsearch Handler Configuration

• Enabling Security for Elasticsearch
The Elasticsearch cluster must be accessed in secured manner in production environment.
Security features must be first enabled in Elasticsearch cluster and those security
configurations must be added to Elasticsearch handler properties file

• Security Configuration for Elasticsearch Cluster
The latest version of Elasticsearch has the security auto-configured when it is installed and
started. The logs will print security details for auto-configured cluster as follows:

• Security Configuration for Elasticsearch Handler

• Troubleshooting

• Elasticsearch Handler Client Dependencies
What are the dependencies for the Elasticsearch Handler to connect to Elasticsearch
databases?

8.2.16.2.1 Overview

Elasticsearch is a highly scalable open-source full-text search and analytics engine.
Elasticsearch allows you to store, search, and analyze large volumes of data quickly and in

Chapter 8
Target

8-268

near real time. It is generally used as the underlying engine or technology that drives
applications with complex search features.

The Elasticsearch Handler uses the Elasticsearch Java client to connect and receive data into
Elasticsearch node, see https://www.elastic.co.

8.2.16.2.2 Detailing the Functionality
This topic details the Elasticsearch Handler functionality.

8.2.16.2.3 About the Index
An Elasticsearch index is a collection of documents with similar characteristics. An index can
only be created in lowercase. An Elasticsearch type is a logical group within an index. All the
documents within an index or type should have same number and type of fields. Index in
Elasticsearch is equivalent to table in RDBMS.

For three-part table names in source trail, the index is constructed by concatenating source
catalog, schema, and table name. The Elasticsearch Handler maps the source trail schema
concatenated with source trail table name to construct the index when there is no catalog in
source table.

Table 8-17 Elasticsearch Mapping

Source Trail Elasticsearch Index

schema.tablename schema_tablename
catalog.schema.tablename catalog_schema_tablename

If an index does not already exist in the Elasticsearch cluster, a new index is created when
Elasticsearch Handler receives (INSERT or UPDATE operation in source trail) data.

If Handler receives DELETE operation in source trail but the index does not exist in
Elasticsearch cluster, then the handler will ABEND.

8.2.16.2.4 About the Document
An Elasticsearch document is a basic unit of information that can be indexed. Within an index
or type, you can store as many documents as you want. Each document has an unique
identifier based on the _id field.

If Handler receives DELETE operation in source trail but the index does not exist in
Elasticsearch cluster, then the handler will ABEND.

8.2.16.2.5 About the Data Types
Elasticsearch supports the following data types:

• 32-bit integer
• 64-bit integer
• Double
• Date
• String
• Binary

Chapter 8
Target

8-269

https://www.elastic.co

8.2.16.2.6 About the Connection
A cluster is a collection of one or more nodes (servers) that holds the entire data. It provides
federated indexing and search capabilities across all nodes.

A node is a single server that is part of the cluster, stores the data, and participates in the
cluster’s indexing and searching.

The Elasticsearch Handler property gg.handler.name.ServerAddressList can be set to point
to the nodes available in the cluster.

Elasticsearch Handler uses the Java API client to connect to Elasticsearch cluster nodes
configured in above handler property via http/https protocol, even though the cluster nodes
internally communicate with each other using transport layer protocol.

Port for http/https must be configured in handler property (instead of transport port) for
connection via Elasticsearch client.

8.2.16.2.7 About Supported Operation
The Elasticsearch Handler supports the following operations for replication to Elasticsearch
cluster in the target.

INSERT
The Elasticsearch Handler creates a new index if the index does not exist, and then inserts a
new document. If the _id is already present, it overwrites (replaces) the existing record with
new record with same _id.

UPDATE
If an Elasticsearch index or document exists, the document is updated. If an Elasticsearch
index or document does not exist, then a new index is created and the column values in the
UPDATE operation are inserted as a new document.

DELETE
If an Elasticsearch index or _id of document exists, then the document is deleted. If _id of
document does not exist, then it continues without doing anything. If Elasticsearch index is
missing, then it will ABEND the handler.

The TRUNCATE operation is not supported.

8.2.16.2.8 About DDL Handling
The Elasticsearch Handler does not react to any DDL records in the source trail. Any data
manipulation records for a new source table results in auto-creation of index or type in the
Elasticsearch cluster.

8.2.16.2.9 About the Primary Key Update
The Elasticsearch document identifier is created based on the source table's primary key
column value. The document identifier cannot be modified.

The Elasticsearch handler processes a source primary key's update operation by performing a
DELETE followed by an INSERT. While performing the INSERT, there is a possibility that the new
document may contain fewer fields than required.

Chapter 8
Target

8-270

For the INSERT operation to contain all the fields in the source table, enable trail Extract to
capture the full data before images for update operations or use GETBEFORECOLS to write the
required column’s before images.

8.2.16.2.10 About UPSERT
The Elasticsearch handler supports UPSERT mode for UPDATE operations. This mode can be
enabled by setting the Elasticsearch handler property gg.handler.name.upsert as true. This
is enabled by default.

The UPSERT mode ensures that for an UPDATE operation from source trail, if the index or the _id
of document is missing from Elasticsearch cluster, it will create the index and convert the
operation to INSERT for adding it as a new record.

Elasticsearch Handler will ABEND for same scenario when UPSERT is false.

In future releases, this mechanism will be enhanced to be in line with HANDLECOLLISION mode
Oracle GoldenGate where:

• An insert collision should result in duplicate error.

• A missing update or delete should result in not found error.

The corresponding error codes will be returned back to replicat and handled by it as per Oracle
GoldenGate handle collision strategy.

8.2.16.2.11 About Bulk Write
The Elasticsearch handler supports bulk operation mode where multiple operations can be
grouped into a batch and whole batch can be applied to target Elasticsearch cluster in one
shot. This improves the performance.

Bulk mode can be enabled by setting the value of Elasticsearch handler property
gg.handler.name.bulkWrite as true. It is disabled by default.

Bulk mode has a few limitations. If there is any failure (exception thrown) for an operation in
bulk, it can result in inconsistent data at target. For example, a delete operation where the
index is missing from the target Elasticsearch cluster, it will result in exception. If such an
operation is part of a batch in bulk mode, then the batch is not applied after the failure of that
operation, resulting in inconsistency.

To avoid bulk API errors, you must set the handler MAXTRANSOPS size to match the bulk thread
pool queue size at a minimum.

The configuration thread_pool.bulk.queue_size property can be modified in the
elasticsearch.yaml file.

8.2.16.2.12 About Routing
A document is routed to a particular shard in an index using the _routing value. The default
_routing value is the document’s _id field. Custom routing patterns can be implemented by
specifying a custom routing value per document.

Elasticsearch Handler supports custom routing by specifying the mapping field key in the
property gg.handler.name.routingKeyMappingTemplate of Elasticsearch handler properties
file.

Chapter 8
Target

8-271

8.2.16.2.13 About Request Headers
Elasticsearch allows sending additional request headers (header name and value pair) along
with the http requests of REST calls. The Elasticsearch Handler supports sending additional
headers by specifying header name and value pairs in the Elasticsearch Handler property
gg.handler.name.headers in the properties file.

8.2.16.2.14 About Java API Client
Elasticsearch Handler now uses Java API Client to connect Elasticsearch cluster for
performing all operations of replication. It internally uses Elasticsearch Rest Client and
Transport Client to perform all the operations. The older clients like Rest High-Level Client and
Transport Client are deprecated and hence removed.

Supported Versions of Elasticsearch Cluster

To configure this handler, Elasticsearch cluster version 7.16.x or above must be configured and
running. To configure Elasticsearch cluster, see Get Elasticsearch up and running

8.2.16.2.15 Setting Up the Elasticsearch Handler
You must ensure that the Elasticsearch cluster is setup correctly and the cluster is up and
running. Supported versions of Elasticsearch cluster are 7.16.x and above. See https://
www.elastic.co/guide/en/elasticsearch/reference/current/index.html. Alternatively, you can use
Kibana to verify the setup.

8.2.16.2.16 Elasticsearch Handler Configuration
To configure the Elasticsearch Handler, the parameter file (res.prm) and the properties
(elasticsearch.props) file must be configured with valid values.

Parameter File:

Parameter file should point to the correct properties file for Elasticsearch Handler.

The following are the mandatory parameters for parameter file (res.prm) necessary for running
Elasticsearch Handler:

- REPLICAT replicat-name
- TARGETDB LIBFILE libggjava.so SET property=dirprm/elasticsearch.props
- MAP schema-name.table-name, TARGET schema-name.table-name

Properties File:

The following are the mandatory properties for properties file (elasticsearch.props), which is
necessary for running Elasticsearch handler:

- gg.handlerlist=elasticsearch
- gg.handler.elasticsearch.type=elasticsearch
- gg.handler.elasticsearch.ServerAddressList=127.0.0.1:9200

Chapter 8
Target

8-272

https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started-install.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

Table 8-18 Elasticsearch Handler Configuration Properties

Property Name Required
(Yes/No)

Legal Values (Default
value)

Explanation

gg.handler.name.Ser
verAddressList

Yes [<Hostname|
ip>:<port>,
<Hostname|
ip>:<port>, …]
[localhost:9200]

List of valid hostnames
(or IP) and port number
separated by ‘:’ of cluster
nodes of Elasticsearch
cluster.

gg.handler.name.Bul
kWrite

No [true | false]
Default [false]

If Bulk Write mode is
enabled (set true), the
operations of transaction
will be stored in batch
and applied to target ES
cluster in one shot for a
batch (transaction)
depending on batch size.

gg.handler.name.Ups
ert

No [true | false]
[true]

If upsert mode is
enabled (set to true), the
update operation will be
inserted as new
document when it’s
missing on target ES
cluster.

gg.handler.name.Num
berAsString

No [true | false]
[false]

Set if the number will be
stored as string.

gg.handler.name.Pro
xyServer

No [Proxy-Hostname |
Proxy-IP]

Proxy server hostname
(or IP) to connect to
Elasticsearch cluster.

gg.handler.name.Pro
xyPort

No [Port number] Port number of proxy
server. Required if proxy
is configured.

gg.handler.name.Pro
xyProtocol

No [http | https]
[http]

Protocol for Proxy server
connection.

gg.handler.name.Pro
xyUsername

No [Username of proxy
server]

Username for
connecting to Proxy
server.

gg.handler.name.Pro
xyPassword

No [Password of proxy
server]

Password for connecting
to Proxy server. This can
be encrypted using
ORACLEWALLET.

gg.handler.name.Aut
hType

No [basic | ssl |
none]
[none]

Authentication type to be
used for connecting to
Elasticsearch cluster.

gg.handler.name.Bas
icAuthUsername

No [username of ES cluster] Username credential for
basic authentication to
connect ES server. This
can be encrypted using
ORACLEWALLET.

gg.handler.name.Bas
icAuthPassword

No [password of ES cluster] Password credential for
basic authentication to
connect ES server. This
can be encrypted using
ORACLEWALLET.

Chapter 8
Target

8-273

Table 8-18 (Cont.) Elasticsearch Handler Configuration Properties

Property Name Required
(Yes/No)

Legal Values (Default
value)

Explanation

gg.handler.name.Fin
gerprint

No [fingerprint hash code] It is the hash of a
certificate calculated on
all certificate's data and
its signature. Applicable
for authentication type
SSL. This can be
encrypted using
ORACLEWALLET.

gg.handler.name.Cer
tFilePath

No [/path/to/
CA_certificate_file
.crt]

CA certificate file (.crt)
for SSL/TLS
authentication.

gg.handler.name.Tru
stStore

No [/Path/to/trust-
store-file]

Path to Trust-store file in
server for SSL / TLS
server authentication.
Applicable for
authentication type SSL.

gg.handler.name.Tru
stStorePassword

No [trust-store
password]

Password for Trust-store
file for SSL/TLS
authentication.
Applicable for
authentication type SSL.
This can be encrypted
using ORACLEWALLET.

gg.handler.name.Tru
stStoreType

No [jks | pkcs12]
[jks]

The key-store type for
SSL/TLS authentication.
Applicable if
authentication type is
SSL.

gg.handler.name.Rou
tingKeyMappingTempl
ate

No [Routing field-name] This defines the field-
name whose value will
be mapped for routing to
particular shard in an
index of ES cluster.

gg.handler.name.Hea
ders

No [<key>:<value>,
<key>:<value>, …]

List of name and value
pair of headers to be
sent with REST calls.

gg.handler.name.Max
ConnectTimeout

No Time in seconds Time in seconds that
request will wait for
connecting to
Elasticsearch server.

gg.handler.name.Max
SocketTimeout

No Time in seconds Time in seconds that
request will wait for
response to come from
Elasticsearch server.

gg.handler.name.IOT
hreadCount

No Count Count of thread to
handle IO requests.

Chapter 8
Target

8-274

Table 8-18 (Cont.) Elasticsearch Handler Configuration Properties

Property Name Required
(Yes/No)

Legal Values (Default
value)

Explanation

gg.handler.name.Nod
eSelector

No ANY |
SKIP_DEDICATED
_MASTERS | [Fully
qualified name of node
selector class]

[ANY]

Predefined strategy ANY
or
SKIP_DEDICATED_MAST
ERS. Or fully qualified
name of class that
implements custom
strategy (by
implementing
NodeSelector.java
interface).

Set the Classpath

The Elasticsearch handler property gg.classpath must include all the dependency jars
required by the Java API client. For a listing and downloading of the required client JAR files,
use the Dependency Downloader script elasticsearch_java.sh in OGG_HOME/
DependencyDownloader directory and pass the version 8.7.0 as argument. For more
information about Elasticsearch client dependencies, see Elasticsearch Handler Client
Dependencies.

It creates a directory OGG_HOME/DepedencyDownloader/dependencies/
elasticsearch_rest_8.7.0 and downloads all the dependency jars inside it. The client library
version 8.7.0 can be used for all supported Elasticsearch clusters.

This location can be configured in classpath as: gg.classpath=/path/to/OGG_HOME/
DepedencyDownloader/dependencies/elasticsearch_rest_8.7.0/*
The inclusion of the * wildcard character at the end of the path can be used in order to include
all of the JAR files in that directory in the associated classpath. Do not use *.jar.

Sample Configuration of Elasticsearch Handler:

For reference, to configure Elasticsearch handler, sample parameter (res.prm) and sample
properties file (elasticsearch.props) for Elasticsearch handler is available in directory:

OGG_HOME/AdapterExamples/big-data/elasticsearch

8.2.16.2.17 Enabling Security for Elasticsearch
The Elasticsearch cluster must be accessed in secured manner in production environment.
Security features must be first enabled in Elasticsearch cluster and those security
configurations must be added to Elasticsearch handler properties file

8.2.16.2.18 Security Configuration for Elasticsearch Cluster
The latest version of Elasticsearch has the security auto-configured when it is installed and
started. The logs will print security details for auto-configured cluster as follows:

- Elasticsearch security features have been automatically configured!
- Authentication is enabled and cluster connections are encrypted.
- Password for the elastic user (reset with `bin/elasticsearch-reset-

Chapter 8
Target

8-275

password -u elastic`): nnh0LWKZMLkw_QD5jxhE
- HTTP CA certificate SHA-256 fingerprint:
862e3f117c386a63f8f43db88760d463900e4c814590b8920e1c0e25f6db4df4
- Configure Kibana to use this cluster:
- Run Kibana and click the configuration link in the terminal when Kibana
starts.
- Copy the following enrollment token and paste it into Kibana in your
browser (valid for the next 30 minutes):
eyJ2ZXIiOiI4LjYuMiIsImFkciI6WyIxMDAuNzAuOTguNzM6OTIwMCJdLCJmZ3IiOiI4NjJlM2YxMT
djMzg2YTYzZjhmNDNkYjg4NzYwZDQ2MzkwMGU0YzgxNDU5MGI4OTIwZTFjMGUyNWY2ZGI0ZGY0Iiwi
a2V5IjoiUTVCVF9vWUJ2TnZDVXBSSkNTWEM6NkJNc3ZXanBUYWUwa0l6V1pDU1JPQSJ9

These security parameter values must be noted down and used to configure Elasticsearch
handler. All the auto-generated certificates are created inside ElasticSearch-install-
directory/config/cert folder.

If security is not auto-configured for older versions of Elasticsearch, we need to manually
enable the security features like basic and encrypted (SSL) authentication in below
configuration file of Elasticsearch cluster before running it.

Elasticsearch-installation-directory/config/elasticsearch.yml
Following parameters must be added to enable security features in elasticsearch.yml file and
restarting the Elasticsearch cluster.

#----------------------- BEGIN SECURITY AUTO CONFIGURATION ----------------
The following settings, TLS certificates and keys have been
configured for SSL/TLS authentication.

Enable security features
xpack.security.enabled: true
xpack.security.enrollment.enabled: true

Enable encryption for HTTP API client connections
xpack.security.http.ssl:
 enabled: true
 keystore.path: certs/http.p12

Enable encryption and mutual authentication between cluster nodes
xpack.security.transport.ssl:
 enabled: true
 verification_mode: certificate
 keystore.path: certs/transport.p12
 truststore.path: certs/transport.p12
Create a new cluster with the current node only
Additional nodes can still join the cluster later
cluster.initial_master_nodes: ["cluster-host-name"]

Allow HTTP API connections from anywhere
Connections are encrypted and require user authentication
http.host: 0.0.0.0
#----------------------- END SECURITY AUTO CONFIGURATION --------------

For more information about the security setting of Elasticsearch cluster, see https://
www.elastic.co/guide/en/elasticsearch/reference/current/manually-configure-security.html

Chapter 8
Target

8-276

https://www.elastic.co/guide/en/elasticsearch/reference/current/manually-configure-security.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/manually-configure-security.html

8.2.16.2.19 Security Configuration for Elasticsearch Handler

Elasticsearch handler supports three modes of security configuration which can be configured
using the Elasticsearch Handler property gg.handler.name.authType with following values:
Elasticsearch-installation-directory/config/elasticsearch.yml
1. None: This mode is used when no security feature is enabled in Elasticsearch stack. No

other configuration is required for this mode and Elasticsearch can be accessed directly
using http protocol.

2. Basic: This mode is used when only basic security feature is enabled for a user by setting
a username and password for the user. The basic authentication username and password
property must be provided in properties file in order to access the Elasticsearch cluster.

gg.handler.name.authType=basic
gg.handler.name.basicAuthUsername=elastic
gg.handler.name.basicAuthPassword=changeme

3. SSL: This mode mode is used when SSL/TLS authentication is configured for encryption in
Elasticsearch stack. User must provide either of CA fingerprint hash, path to CA certificate
file (.crt) OR path to trust-store file (along with trust-store type and trust-store password)
for handler to be able to connect to Elasticsearch cluster. This mode also supports
combination of SSL/TLS authentication and Basic authentication configured in
Elasticsearch stack. User must configure both basic authentication properties (username
and password) and SSL related properties (fingerprint or certificate file or trust-store), if
both are configured in Elasticsearch cluster.

gg.handler.name.authType=ssl

if basic authentication username and password is configured.
gg.handler.name.basicAuthUsername=username
gg.handler.name.basicAuthPassword=password

for SSL one of these three must be configured
gg.handler.name.certFilePath=/path/to/ESHome/config/certs/http_ca.crt
 OR
gg.handler.name.fingerprint=862e3f117c386a63f8f43db88760d463900e4c814590b89
20e1c0e25f6db4df4
 OR
gg.handler.name.trustStore=/path/to/http.p12
gg.handler.name.trustStoreType=pkcs12
gg.handler.name.trustStorePassword=pass

All the above security related properties that contains confidential information can be
configured to use Oracle Wallet for encrypting their confidential values in properties file.

8.2.16.2.20 Troubleshooting

1. Error: org.elasticsearch.ElasticsearchException[Index [index-name] is not
found] - This exception occurs when there is a delete operation and the corresponding
index of delete operation is not present in the Elasticsearch cluster. This can also occur for
the update operation if upsert=false and the index is missing.

Chapter 8
Target

8-277

2. Error: javax.net.ssl.SSLHandshakeException:[Connection failed] - This can
happen when properties for enabling authentication in the elasticsearch.yml file
mentioned above are missing for authentication type SSL.

3. Error: javax.net.ssl.SSLException: [Received fatal alert: bad_certificate] -
This issue comes when host validation fails. Check that certificates generated using cert-
utils in Elasticsearch contains the host information.

8.2.16.2.21 Elasticsearch Handler Client Dependencies
What are the dependencies for the Elasticsearch Handler to connect to Elasticsearch
databases?

The maven central repository artifacts for Elasticsearch databases are:

Maven groupId: co.elastic.clients
Maven atifactId: elasticsearch-java
Version: 8.7.0
• Elasticsearch 8.7.0

8.2.16.2.21.1 Elasticsearch 8.7.0

commons-codec-1.15.jar
commons-logging-1.2.jar
elasticsearch-java-8.7.0.jar
elasticsearch-rest-client-8.7.0.jar
httpasyncclient-4.1.5.jar
httpclient-4.5.13.jar
httpcore-4.4.13.jar
httpcore-nio-4.4.13.jar
jakarta.json-api-2.0.1.jar
jsr305-3.0.2.jar
parsson-1.0.0.jar

8.2.17 Flat Files
Oracle GoldenGate for Big Data supports writing data files to a local file system with File Writer
Handler.

Oracle GoldenGate for Big Data supports loading data files created by File Writer into Cloud
storage services. In these cases, File Writer Handler should be used with one of the following
cloud storage configurations:

• Amazon S3

• Azure Data Lake Storage

• File Writer Handler

• Google Cloud Storage

• Oracle Cloud Infrastructure Object Storage

• File Writer Handler
You can use the File Writer Handler and the event handlers to transform data.

• Optimized Row Columnar (ORC)
The Optimized Row Columnar (ORC) Event Handler to generate data files is in ORC
format.

Chapter 8
Target

8-278

• Parquet
Learn how to use the Parquet load files generated by the File Writer Handler into HDFS.

8.2.17.1 File Writer Handler
You can use the File Writer Handler and the event handlers to transform data.

The File Writer Handler supports generating data files in delimited text, XML, JSON, Avro, and
Avro Object Container File formats. It is intended to fulfill an extraction, load, and transform use
case. Data files are staged on your local file system. Then when writing to a data file is
complete, you can use a third party application to read the file to perform additional processing.

The File Writer Handler also supports the event handler framework. The event handler
framework allows data files generated by the File Writer Handler to be transformed into other
formats, such as Optimized Row Columnar (ORC) or Parquet. Data files can be loaded into
third party applications, such as HDFS or Amazon s3. The event handler framework is
extensible allowing more event handlers performing different transformations or loading to
different targets to be developed. Additionally, you can develop a custom event handler for
your Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) environment.

GG for DAA provides two handlers to write to HDFS. Oracle recommends that you use the
HDFS Handler or the File Writer Handler in the following situations:

The HDFS Handler is designed to stream data directly to HDFS.
Use when no post write processing is occurring in HDFS. The HDFS Handler does not change
the contents of the file, it simply uploads the existing file to HDFS.
Use when analytical tools are accessing data written to HDFS in real time including data in
files that are open and actively being written to.

The File Writer Handler is designed to stage data to the local file system and then to
load completed data files to HDFS when writing for a file is complete.
Analytic tools are not accessing data written to HDFS in real time.
Post write processing is occurring in HDFS to transform, reformat, merge, and move the data
to a final location.
You want to write data files to HDFS in ORC or Parquet format.

• Detailing the Functionality

• Configuring the File Writer Handler

• Stopping the File Writer Handler

• Review a Sample Configuration

• File Writer Handler Partitioning
Partitioning functionality had been added to the File Writer Handler in Oracle GoldenGate
for Distributed Applications and Analytics (GG for DAA) 21.1. The partitioning functionality
uses the template mapper functionality to resolve partitioning strings. The result is that you
are afforded control in how to partition source trail data.

8.2.17.1.1 Detailing the Functionality
• Using File Roll Events

• Automatic Directory Creation

• About the Active Write Suffix

• Maintenance of State

Chapter 8
Target

8-279

8.2.17.1.1.1 Using File Roll Events

A file roll event occurs when writing to a specific data file is completed. No more data is
written to that specific data file.

Finalize Action Operation

You can configure the finalize action operation to clean up a specific data file after a successful
file roll action using the finalizeaction parameter with the following options:

none
Leave the data file in place (removing any active write suffix, see About the Active Write
Suffix).

delete
Delete the data file (such as, if the data file has been converted to another format or loaded to
a third party application).

move
Maintain the file name (removing any active write suffix), but move the file to the directory
resolved using the movePathMappingTemplate property.

rename
Maintain the current directory, but rename the data file using the fileRenameMappingTemplate
property.

move-rename
Rename the file using the file name generated by the fileRenameMappingTemplate property
and move the file the file to the directory resolved using the movePathMappingTemplate
property.

Typically, event handlers offer a subset of these same actions.

A sample Configuration of a finalize action operation:

gg.handlerlist=filewriter
#The File Writer Handler
gg.handler.filewriter.type=filewriter
gg.handler.filewriter.mode=op
gg.handler.filewriter.pathMappingTemplate=./dirout/evActParamS3R
gg.handler.filewriter.stateFileDirectory=./dirsta
gg.handler.filewriter.fileNameMappingTemplate=${fullyQualifiedTableName}_$
{currentTimestamp}.txt
gg.handler.filewriter.fileRollInterval=7m
gg.handler.filewriter.finalizeAction=delete
gg.handler.filewriter.inactivityRollInterval=7m

File Rolling Actions

Any of the following actions trigger a file roll event.

• A metadata change event.

• The maximum configured file size is exceeded

• The file roll interval is exceeded (the current time minus the time of first file write is greater
than the file roll interval).

Chapter 8
Target

8-280

• The inactivity roll interval is exceeded (the current time minus the time of last file write is
greater than the file roll interval).

• The File Writer Handler is configured to roll on shutdown and the Replicat process is
stopped.

Operation Sequence

The file roll event triggers a sequence of operations to occur. It is important that you
understand the order of the operations that occur when an individual data file is rolled:

1. The active data file is switched to inactive, the data file is flushed, and state data file is
flushed.

2. The configured event handlers are called in the sequence that you specified.

3. The finalize action is executed on all the event handlers in the reverse order in which you
configured them. Any finalize action that you configured is executed.

4. The finalize action is executed on the data file and the state file. If all actions are
successful, the state file is removed. Any finalize action that you configured is executed.

For example, if you configured the File Writer Handler with the Parquet Event Handler and then
the S3 Event Handler, the order for a roll event is:

1. The active data file is switched to inactive, the data file is flushed, and state data file is
flushed.

2. The Parquet Event Handler is called to generate a Parquet file from the source data file.

3. The S3 Event Handler is called to load the generated Parquet file to S3.

4. The finalize action is executed on the S3 Parquet Event Handler. Any finalize action that
you configured is executed.

5. The finalize action is executed on the Parquet Event Handler. Any finalize action that you
configured is executed.

6. The finalize action is executed for the data file in the File Writer Handler

8.2.17.1.1.2 Automatic Directory Creation

You do not have to configure write directories before you execute the handler. The File Writer
Handler checks to see if the specified write directory exists before creating a file and
recursively creates directories as needed.

8.2.17.1.1.3 About the Active Write Suffix

A common use case is using a third party application to monitor the write directory to read data
files. Third party application can only read a data file when writing to that file has completed.
These applications need a way to determine if writing to a data file is active or complete. The
File Writer Handler allows you to configure an active write suffix using this property:

gg.handler.name.fileWriteActiveSuffix=.tmp

The value of this property is appended to the generated file name. When writing to the file is
complete, the data file is renamed and the active write suffix is removed from the file name.
You can set your third party application to monitor your data file names to identify when the
active write suffix is removed.

Chapter 8
Target

8-281

8.2.17.1.1.4 Maintenance of State

Previously, all Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
handlers have been stateless. These stateless handlers only maintain state in the context of
the Replicat process that it was running. If the Replicat process was stopped and restarted,
then all the state was lost. With a Replicat restart, the handler began writing with no contextual
knowledge of the previous run.

The File Writer Handler provides the ability of maintaining state between invocations of the
Replicat process. By default with a restart:

• the state saved files are read,

• the state is restored,

• and appending active data files continues where the previous run stopped.

You can change this default action to require all files be rolled on shutdown by setting this
property:

gg.handler.name.rollOnShutdown=true

8.2.17.1.2 Configuring the File Writer Handler
Lists the configurable values for the File Writer Handler. These properties are located in the
Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the File Writer Handler, you must first configure the handler type by
specifying gg.handler.name.type=filewriter and the other File Writer properties as follows:

Table 8-19 File Writer Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name
.type

Required filewrite
r

None Selects the File Writer Handler for use.

gg.handler.name
.maxFileSize

Optional Default unit
of measure
is bytes.
You can
stipulate k,
m, or g to
signify
kilobytes,
megabytes,
or
gigabytes
respectively
. Examples
of legal
values
include
10000,
10k, 100m,
1.1g.

1g Sets the maximum file size of files generated
by the File Writer Handler. When the file size is
exceeded, a roll event is triggered.

Chapter 8
Target

8-282

Table 8-19 (Cont.) File Writer Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name
.fileRollInterv
al

Optional The default
unit of
measure is
millisecond
s. You can
stipulate
ms, s, m, h
to signify
millisecond
s, seconds,
minutes, or
hours
respectively
. Examples
of legal
values
include
10000,
10000ms,
10s, 10m,
or 1.5h.
Values of 0
or less
indicate
that file
rolling on
time is
turned off.

File
rolling
on time
is off.

The timer starts when a file is created. If the file
is still open when the interval elapses then the
a file roll event will be triggered.

Chapter 8
Target

8-283

Table 8-19 (Cont.) File Writer Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name
.inactivityRoll
Interval

Optional The default
unit of
measure is
millisecond
s. You can
stipulate
ms, s, m, h
to signify
millisecond
s, seconds,
minutes, or
hours
respectively
. Examples
of legal
values
include
10000,
10000ms,
10s, 10m,
or 1.5h.
Values of 0
or less
indicate
that file
rolling on
time is
turned off.

File
inactivity
rolling is
turned
off.

The timer starts from the latest write to a
generated file. New writes to a generated file
restart the counter. If the file is still open when
the timer elapses a roll event is triggered..

gg.handler.name
.fileNameMappin
gTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
File Writer
Handler
data file
names at
runtime.

None Use keywords interlaced with constants to
dynamically generate unique file names at
runtime. Typically, file names follow the
format, /some/path/${tableName}_$
{groupName}_${currentTimestamp}.txt.
See Template Keywords.

Chapter 8
Target

8-284

Table 8-19 (Cont.) File Writer Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name
.pathMappingTem
plate

Required A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the
directory to
which a file
is written.

None Use keywords interlaced with constants to
dynamically generate unique path names at
runtime. Typically, path names follow the
format, /some/path/${tableName}. See
Template Keywords.

gg.handler.name
.fileWriteActiv
eSuffix

Optional A string. None An optional suffix that is appended to files
generated by the File Writer Handler to indicate
that writing to the file is active. At the finalize
action the suffix is removed.

gg.handler.name
.stateFileDirec
tory

Required A directory
on the local
machine to
store the
state files of
the File
Writer
Handler.

None Sets the directory on the local machine to store
the state files of the File Writer Handler. The
group name is appended to the directory to
ensure that the functionality works when
operating in a coordinated apply environment.

gg.handler.name
.rollOnShutdown

Optional true |
false

false Set to true, on normal shutdown of the
Replicat process all open files are closed and a
file roll event is triggered. If successful, the File
Writer Handler has no state to carry over to a
restart of the File Writer Handler.

Chapter 8
Target

8-285

Table 8-19 (Cont.) File Writer Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name
.finalizeAction

Optional none |
delete |
move |
rename |
move-
rename

none Indicates what the File Writer Handler should
do at the finalize action.

none
Leave the data file in place (removing any
active write suffix, see About the Active Write
Suffix).

delete
Delete the data file (such as, if the data file has
been converted to another format or loaded to
a third party application).

move
Maintain the file name (removing any active
write suffix), but move the file to the directory
resolved using the
movePathMappingTemplate property.

rename
Maintain the current directory, but rename the
data file using the
fileRenameMappingTemplate property.

move-rename
Rename the file using the file name generated
by the fileRenameMappingTemplate
property and move the file the file to the
directory resolved using the
movePathMappingTemplate property.

gg.handler.name
.partitionByTab
le

Optional true |
false

true Set to true so that data from different source
tables is partitioned into separate files. Set to
false to interlace operation data from all
source tables into a single output file. It cannot
be set to false if the file format is the Avro
OCF (Object Container File) format.

gg.handler.name
.eventHandler

Optional HDFS |
ORC |
PARQUET |
S3

No
event
handler
configur
ed.

A unique string identifier cross referencing an
event handler. The event handler will be
invoked on the file roll event. Event handlers
can do thing file roll event actions like loading
files to S3, converting to Parquet or ORC
format, or loading files to HDFS.

Chapter 8
Target

8-286

Table 8-19 (Cont.) File Writer Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name
.fileRenameMapp
ingTemplate

Required
if
gg.handl
er.name.
finalize
Action is
set to
rename or
move-
rename.

A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
File Writer
Handler
data file
names for
file
renaming in
the finalize
action.

None. Use keywords interlaced with constants to
dynamically generate unique file names at
runtime. Typically, file names follow the
format, ${fullyQualifiedTableName}_$
{groupName}_${currentTimestamp}.txt.
See Template Keywords.

gg.handler.name
.movePathMappin
gTemplate

Required
if
gg.handl
er.name.
finalize
Action is
set to
rename or
move-
rename.

A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the
directory to
which a file
is written.

None Use keywords interlaced with constants to
dynamically generate a unique path names at
runtime. Typically, path names typically follow
the format, /ogg/data/${groupName}/$
{fullyQualifiedTableName}. See Template
Keywords.

Chapter 8
Target

8-287

Table 8-19 (Cont.) File Writer Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name
.format

Required delimited
text |
json |
json_row
| xml |
avro_row
| avro_op
|
avro_row_
ocf |
avro_op_o
cf

delimi
tedtex
t

Selects the formatter for the HDFS Handler for
how output data will be formatted

delimitedtext
Delimited text.

json
JSON

json_row
JSON output modeling row data

xml
XML

avro_row
Avro in row compact format.

avro_op
Avro in operation more verbose format.

avro_row_ocf
Avro in the row compact format written into
HDFS in the Avro Object Container File (OCF)
format.

avro_op_ocf
Avro in the more verbose format written into
HDFS in the Avro OCF format.

If you want to use the Parquet or ORC Event
Handlers, then the selected format must be
avro_row_ocf or avro_op_ocf.

gg.handler.name
.bom

Optional An even
number of
hex
characters.

None Enter an even number of hex characters where
every two characters correspond to a single
byte in the byte order mark (BOM). For
example, the string efbbbf represents the 3-
byte BOM for UTF-8.

gg.handler.name
.createControlF
ile

Optional true |
false

false Set to true to create a control file. A control
file contains all of the completed file names
including the path separated by a delimiter. The
name of the control file is
{groupName}.control. For example, if the
Replicat process name is fw, then the control
file name is FW.control.

gg.handler.name
.controlFileDel
imiter

Optional Any string new line
(\n)

Allows you to control the delimiter separating
file names in the control file. You can
useCDATA[] wrapping with this property.

Chapter 8
Target

8-288

Table 8-19 (Cont.) File Writer Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name
.controlFileDir
ectory

Optional A path to a
directory to
hold the
control file.

A period
(.) or
the
Oracle
Golden
Gate
installati
on
director
y.

Set to specify where you want to write the
control file.

gg.handler.name
.createOwnerFil
e

Optional true |
false

false Set to true to create an owner file. The owner
file is created when the Replicat process starts
and is removed when it terminates normally.
The owner file allows other applications to
determine if the process is running. The owner
file remains in place when the Replicat process
ends abnormally. The name of the owner file is
the {groupName}.owner. For example, if the
replicat process is name fw, then the owner file
name is FW.owner. The file is create in the .
directory or the Oracle GoldenGate installation
directory.

gg.handler.name
.atTime

Optional One or
more times
to trigger a
roll action
of all open
files.

None Configure one or more trigger times in the
following format:

HH:MM,HH:MM,HH:MM

Entries are based on a 24 hour clock. For
example, an entry to configure rolled actions at
three discrete times of day is:

gg.handler.fw.atTime=03:30,21:00,23:51

gg.handler.name
.avroCodec

Optional null
no
compressio
n.

null |
bzip2
|
deflat
e |
snappy
| xz

Enables the corresponding compression
algorithm for generated Avro OCF files. The
corresponding compression library must be
added to the gg.classpath when
compression is enabled.

gg.handler.name
.bufferSize

Optional 1024 Positive
Integer
>= 512

Sets the size the BufferedOutputStream for
each active writestream. Setting to a larger
value may improve performance especially
when there are a few active write streams, but
a large number of operations are being written
to those streams. If there are a large number of
active write streams, increasing the value with
this property is likely undesirable and could
result in an out of memory exception by
exhausting the Java heap.

Chapter 8
Target

8-289

Table 8-19 (Cont.) File Writer Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name
.rollOnTruncate

Optional true |
false

false Controls whether the occurrence of truncate
operation causes a rollover of the
corresponding data file by the handler. The
default is false, which means the
corresponding data file is not rolled when a
truncate operation is presented. Set to true to
roll the data file on a truncate operation. To
propagate truncate operations, ensure to set
the replicat property GETTRUNCATES.

gg.handler.name
.logEventHandle
rStatus

Optional true |
false

false When set to true, it logs the status of
completed event handlers at the info logging
level. Can be used for debugging and
troubleshooting of the event handlers.

gg.handler.name
.eventHandlerTi
meoutMinutes

Optional Long
integer

120 The event handler thread timeout in minutes.
The event handler threads spawned by the file
writer handler are provided a max execution
time to complete their work. If the timeout value
is exceeded, then Replicat assumes that the
Event handler thread is hung and will ABEND.
For stage and merge use cases, Event handler
threads may take longer to complete their
work. The default value is set to 120 (2 hours).

gg.handler.name
.processBacklog
OnShutdown

Optional true |
false

false Set to true to force the replicat to process all
of the outstanding staged files through the
event handler framework. Recommend setting
to true for initial load replication to data
warehouse targets. Recommend setting to
true for simple data format conversion and/or
load to cloud storage scenarios. Recommend
setting to false for CDC replication to data
warehouse targets as merges can take long
periods of time.

8.2.17.1.3 Stopping the File Writer Handler

The replicat process running the File Writer Handler should only be stopped normally.

• Force stop should never be executed on the replicat process.

• The Unix kill command should never be used to kill the replicat process.

The File Writer is writing data files and using state files to track the progress and state. File
writing is not transactional. Abnormal ending of the replicat process means that the state of the
File Writer Handler can become inconsistent. The best practice is to stop the replicat process
normally.

An inconsistent state may mean that the replicat process will abend on startup and require
manual removal of state files.

The following is a typical error message for inconsistent state:

ERROR 2022-07-11 19:05:23.000367 [main]- Failed to
restore state for UUID [d35f117f-ffab-4e60-aa93-f7ef860bf280]

Chapter 8
Target

8-290

table name [QASOURCE.TCUSTORD]
data file name [QASOURCE.TCUSTORD_2022-07-11_19-04-27.900.txt]

The error means that the data file has been removed from the file system, but that the
corresponding .state file has not yet been removed. Three scenarios can generally cause this
problem:

• The replicat process was force stopped, was killed using the kill command, or crashed
while it was in the processing window between when the data file was removed and when
the associated .state file was removed.

• The user has manually removed the data file or files but left the associated .state file in
place.

• There are two instances of the same replicat process running. A lock file is created to
prevent this, but there is a window on replicat startup which allows multiple instances of a
replicat process to be started.

If this problem occurs, then you should manually determine whether or not the data file
associated with the .state file has been successfully processed. If the data has been
successfully processed, then you can manually remove the .state file and restart the replicat
process.

If data file associated with the problematic .state file has been determined not to have been
processed, then do the following:

1. Delete all the .state files.

2. Alter the seqno and rba of the replicat process to back it up to a period for which it was
known that processing successfully occurred.

3. Restart the replicat process to reprocess the data.

8.2.17.1.4 Review a Sample Configuration
This File Writer Handler configuration example is using the Parquet Event Handler to convert
data files to Parquet, and then for the S3 Event Handler to load Parquet files into S3:

gg.handlerlist=filewriter

#The handler properties
gg.handler.name.type=filewriter
gg.handler.name.mode=op
gg.handler.name.pathMappingTemplate=./dirout
gg.handler.name.stateFileDirectory=./dirsta
gg.handler.name.fileNameMappingTemplate=${fullyQualifiedTableName}_$
{currentTimestamp}.txt
gg.handler.name.fileRollInterval=7m
gg.handler.name.finalizeAction=delete
gg.handler.name.inactivityRollInterval=7m
gg.handler.name.format=avro_row_ocf
gg.includeggtokens=true
gg.handler.name.partitionByTable=true
gg.handler.name.eventHandler=parquet
gg.handler.name.rollOnShutdown=true

gg.eventhandler.parquet.type=parquet
gg.eventhandler.parquet.pathMappingTemplate=./dirparquet
gg.eventhandler.parquet.writeToHDFS=false
gg.eventhandler.parquet.finalizeAction=delete
gg.eventhandler.parquet.eventHandler=s3
gg.eventhandler.parquet.fileNameMappingTemplate=${tableName}_${currentTimestamp}.parquet

Chapter 8
Target

8-291

gg.handler.filewriter.eventHandler=s3
gg.eventhandler.s3.type=s3
gg.eventhandler.s3.region=us-west-2
gg.eventhandler.s3.proxyServer=www-proxy.us.oracle.com
gg.eventhandler.s3.proxyPort=80
gg.eventhandler.s3.bucketMappingTemplate=tomsfunbucket
gg.eventhandler.s3.pathMappingTemplate=thepath
gg.eventhandler.s3.finalizeAction=none

8.2.17.1.5 File Writer Handler Partitioning
Partitioning functionality had been added to the File Writer Handler in Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) 21.1. The partitioning functionality uses
the template mapper functionality to resolve partitioning strings. The result is that you are
afforded control in how to partition source trail data.

All of the keywords that are supported by the templating functionality are now supported in File
Writer Handler partitioning.

• File Writer Handler Partitioning Precondition
In order to use the partitioning functionality, data must first be partitioned by table. The
following configuration cannot be set: gg.handler.filewriter.partitionByTable=false.

• Path Configuration
Assume that the path mapping template is configured as follows:
gg.handler.filewriter.pathMappingTemplate=/ogg/${fullyQualifiedTableName}. At
runtime the path resolves as follows for the DBO.ORDERS source table: /ogg/DBO.ORDERS.

• Partitioning Configuration
Any of the keywords that are legal for templating are now legal for partitioning:
gg.handler.filewriter.partitioner.fully qualified table name=templating
keywords and/or constants.

• Partitioning Effect on Event Handler
The resolved partitioning path is carried forward to the corresponding Event Handlers as
well.

8.2.17.1.5.1 File Writer Handler Partitioning Precondition

In order to use the partitioning functionality, data must first be partitioned by table. The
following configuration cannot be set: gg.handler.filewriter.partitionByTable=false.

8.2.17.1.5.2 Path Configuration

Assume that the path mapping template is configured as follows:
gg.handler.filewriter.pathMappingTemplate=/ogg/${fullyQualifiedTableName}. At
runtime the path resolves as follows for the DBO.ORDERS source table: /ogg/DBO.ORDERS.

8.2.17.1.5.3 Partitioning Configuration

Any of the keywords that are legal for templating are now legal for partitioning:
gg.handler.filewriter.partitioner.fully qualified table name=templating keywords
and/or constants.

See Template Keywords.
Example 1

Chapter 8
Target

8-292

Partitioning for the DBO.ORDERS table is set to the following:

gg.handler.filewriter.partitioner.DBO.ORDERS=par_sales_region=$
{columnValue[SALES_REGION]}

This example can result in the following breakdown of files on the file system:

/ogg/DBO.ORDERS/par_sales_region=west/data files
/ogg/DBO.ORDERS/par_sales_region=east/data files
/ogg/DBO.ORDERS/par_sales_region=north/data files
/ogg/DBO.ORDERS/par_sales_region=south/data file

Example 2
Partitioning for the DBO.ORDERS table is set to the following:

gg.handler.filewriter.partitioner.DBO.ORDERS=par_sales_region=$
{columnValue[SALES_REGION]}/par_state=${columnValue[STATE]}

This example can result in the following breakdown of files on the file system:

/ogg/DBO.ORDERS/par_sales_region=west/par_state=CA/data files
/ogg/DBO.ORDERS/par_sales_region=east/par_state=FL/data files
/ogg/DBO.ORDERS/par_sales_region=north/par_state=MN/data files
/ogg/DBO.ORDERS/par_sales_region=south/par_state=TX/data files

Caution:

Ensure to be extra vigilant while configuring partitioning. Choosing partitioning
column values that have a very large range of data values result in partitioning to a
proportional number of output data files.

8.2.17.1.5.4 Partitioning Effect on Event Handler

The resolved partitioning path is carried forward to the corresponding Event Handlers as well.

Example 1
If partitioning is configured as follows:
gg.handler.filewriter.partitioner.DBO.ORDERS=par_sales_region=$
{columnValue[SALES_REGION]}, then the partition string might resolve to the following:

par_sales_region=west
par_sales_region=east
par_sales_region=north
par_sales_region=south

Example 2
If S3 Event handler is used, then the path mapping template of the S3 Event Handler is
configured as follows: gg.eventhandler.s3.pathMappingTemplate=output/dir. The target
directories in S3 are as follows:

output/dir/par_sales_region=west/data files
output/dir/par_sales_region=east/data files
output/dir/par_sales_region=north/data files
output/dir/par_sales_region=south/data files

Chapter 8
Target

8-293

8.2.17.2 Optimized Row Columnar (ORC)
The Optimized Row Columnar (ORC) Event Handler to generate data files is in ORC format.

This topic describes how to use the ORC Event Handler.

• Overview

• Detailing the Functionality

• Configuring the ORC Event Handler

• Optimized Row Columnar Event Handler Client Dependencies
What are the dependencies for the Optimized Row Columnar (OCR) Handler?

8.2.17.2.1 Overview
ORC is a row columnar format that can substantially improve data retrieval times and the
performance of Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
analytics. You can use the ORC Event Handler to write ORC files to either a local file system or
directly to HDFS. For information, see https://orc.apache.org/.

8.2.17.2.2 Detailing the Functionality
• About the Upstream Data Format

• About the Library Dependencies

• Requirements

8.2.17.2.2.1 About the Upstream Data Format

The ORC Event Handler can only convert Avro Object Container File (OCF) generated by the
File Writer Handler. The ORC Event Handler cannot convert other formats to ORC data files.
The format of the File Writer Handler must be avro_row_ocf or avro_op_ocf, see Flat Files.

8.2.17.2.2.2 About the Library Dependencies

Generating ORC files requires both the Apache ORC libraries and the HDFS client libraries,
see Optimized Row Columnar Event Handler Client Dependencies and HDFS Handler Client
Dependencies.

Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) does not include
the Apache ORC libraries nor does it include the HDFS client libraries. You must configure the
gg.classpath variable to include the dependent libraries.

8.2.17.2.2.3 Requirements

The ORC Event Handler can write ORC files directly to HDFS. You must set the writeToHDFS
property to true:

gg.eventhandler.orc.writeToHDFS=true

Ensure that the directory containing the HDFS core-site.xml file is in gg.classpath. This is
so the core-site.xml file can be read at runtime and the connectivity information to HDFS
can be resolved. For example:

gg.classpath=/{HDFS_install_directory}/etc/hadoop

Chapter 8
Target

8-294

https://orc.apache.org/

If you enable Kerberos authentication is on the HDFS cluster, you have to configure the
Kerberos principal and the location of the keytab file so that the password can be resolved at
runtime:

gg.eventHandler.name.kerberosPrincipal=principal
gg.eventHandler.name.kerberosKeytabFile=path_to_the_keytab_file

8.2.17.2.3 Configuring the ORC Event Handler
You configure the ORC Handler operation using the properties file. These properties are
located in the Java Adapter properties file (not in the Replicat properties file).

The ORC Event Handler works only in conjunction with the File Writer Handler.

To enable the selection of the ORC Handler, you must first configure the handler type by
specifying gg.eventhandler.name.type=orc and the other ORC properties as follows:

Table 8-20 ORC Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.type

Required ORC None Selects the ORC Event Handler.

gg.eventhandler
.name.writeToHD
FS

Optional true |
false

false The ORC framework allows direct writing to
HDFS. Set to false to write to the local file
system. Set to true to write directly to HDFS.

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the path in
the ORC
bucket to
write the
file.

None Use keywords interlaced with constants to
dynamically generate unique ORC path names
at runtime. Typically, path names follow the
format, /ogg/data/${groupName}/$
{fullyQualifiedTableName}. See Template
Keywords.

gg.eventhandler
.name.fileMappi
ngTemplate

Optional A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the ORC
file name at
runtime.

None Use resolvable keywords and constants used
to dynamically generate the ORC data file
name at runtime. If not set, the upstream file
name is used. See Template Keywords.

gg.eventhandler
.name.compressi
onCodec

Optional LZ4 | LZO
| NONE |
SNAPPY |
ZLIB

NONE Sets the compression codec of the generated
ORC file.

Chapter 8
Target

8-295

Table 8-20 (Cont.) ORC Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.finalizeA
ction

Optional none |
delete

none Set to none to leave the ORC data file in place
on the finalize action. Set to delete if you
want to delete the ORC data file with the
finalize action.

gg.eventhandler
.name.kerberosP
rincipal

Optional The
Kerberos
principal
name.

None Sets the Kerberos principal when writing
directly to HDFS and Kerberos authentication
is enabled.

gg.eventhandler
.name.kerberosK
eytabFile

Optional The path to
the Keberos
keytab file.

none Sets the path to the Kerberos keytab file with
writing directly to HDFS and Kerberos
authentication is enabled.

gg.eventhandler
.name.blockPadd
ing

Optional true |
false

true Set to true to enable block padding in
generated ORC files or false to disable.

gg.eventhandler
.name.blockSize

Optional long The
ORC
default.

Sets the block size of generated ORC files.

gg.eventhandler
.name.bufferSiz
e

Optional integer The
ORC
default.

Sets the buffer size of generated ORC files.

gg.eventhandler
.name.encodingS
trategy

Optional COMPRESSI
ON |
SPEED

The
ORC
default.

Set if the ORC encoding strategy is optimized
for compression or for speed..

gg.eventhandler
.name.paddingTo
lerance

Optional A
percentage
represented
as a
floating
point
number.

The
ORC
default.

Sets the percentage for padding tolerance of
generated ORC files.

gg.eventhandler
.name.rowIndexS
tride

Optional integer The
ORC
default.

Sets the row index stride of generated ORC
files.

gg.eventhandler
.name.stripeSiz
e

Optional integer The
ORC
default.

Sets the stripe size of generated ORC files.

gg.eventhandler
.name.eventHand
ler

Optional A unique
string
identifier
cross
referencing
a child
event
handler.

No
event
handler
configur
ed.

The event handler that is invoked on the file roll
event. Event handlers can do file roll event
actions like loading files to S3 or HDFS.

Chapter 8
Target

8-296

Table 8-20 (Cont.) ORC Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.bloomFilt
erFpp

Optional The false
positive
probability
must be
greater
than zero
and less
than one.
For
example, .
25 and .75
are both
legal
values, but
0 and 1 are
not.

The
Apache
ORC
default.

Sets the false positive probability of the
querying of a bloom filter index and the result
indicating that the value being searched for is
in the block, but the value is actually not in the
block.

needs to set which tables to set bloom filters
and on which columns. The user selects on
which tables and columns to set bloom filters
with the following configuration syntax:

gg.eventhandler.orc.bloomFilter.QASOURCE
.TCUSTMER=CUST_CODE
gg.eventhandler.orc.bloomFilter.QASOURCE
.TCUSTORD=CUST_CODE,ORDER_DATE

QASOURCE.TCUSTMER and
QASOURCE.TCUSTORD are the fully qualified
names of the source tables. The configured
values are one or more columns on which to
configure bloom filters. The columns names
are delimited by a comma.

gg.eventhandler
.name.bloomFilt
erVersion

Optional ORIGINAL
| UTF8

ORIGIN
AL

Sets the version of the ORC bloom filter.

8.2.17.2.4 Optimized Row Columnar Event Handler Client Dependencies
What are the dependencies for the Optimized Row Columnar (OCR) Handler?

The maven central repository artifacts for ORC are:

Maven groupId: org.apache.orc
Maven atifactId: orc-core
Maven version: 1.6.9

The Hadoop client dependencies are also required for the ORC Event Handler, see Hadoop
Client Dependencies.

• ORC Client 1.6.9

• ORC Client 1.5.5

• ORC Client 1.4.0

8.2.17.2.4.1 ORC Client 1.6.9

aircompressor-0.19.jar
annotations-17.0.0.jar
commons-lang-2.6.jar
commons-lang3-3.12.0.jar
hive-storage-api-2.7.1.jar
jaxb-api-2.2.11.jar
orc-core-1.6.9.jar

Chapter 8
Target

8-297

orc-shims-1.6.9.jar
protobuf-java-2.5.0.jar
slf4j-api-1.7.5.jar
threeten-extra-1.5.0.jar

8.2.17.2.4.2 ORC Client 1.5.5

aircompressor-0.10.jar
asm-3.1.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.1.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-httpclient-3.1.jar
commons-io-2.1.jar
commons-lang-2.6.jar
commons-logging-1.1.1.jar
commons-math-2.1.jar
commons-net-3.1.jar
guava-11.0.2.jar
hadoop-annotations-2.2.0.jar
hadoop-auth-2.2.0.jar
hadoop-common-2.2.0.jar
hadoop-hdfs-2.2.0.jar
hive-storage-api-2.6.0.jar
jackson-core-asl-1.8.8.jar
jackson-mapper-asl-1.8.8.jar
jaxb-api-2.2.11.jar
jersey-core-1.9.jar
jersey-server-1.9.jar
jsch-0.1.42.jar
log4j-1.2.17.jar
orc-core-1.5.5.jar
orc-shims-1.5.5.jar
protobuf-java-2.5.0.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
xmlenc-0.52.jar
zookeeper-3.4.5.jar

8.2.17.2.4.3 ORC Client 1.4.0

aircompressor-0.3.jar
apacheds-i18n-2.0.0-M15.jar
apacheds-kerberos-codec-2.0.0-M15.jar
api-asn1-api-1.0.0-M20.jar
api-util-1.0.0-M20.jar
asm-3.1.jar
commons-beanutils-core-1.8.0.jar
commons-cli-1.2.jar
commons-codec-1.4.jar
commons-collections-3.2.2.jar
commons-compress-1.4.1.jar
commons-configuration-1.6.jar
commons-httpclient-3.1.jar
commons-io-2.4.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar
commons-math3-3.1.1.jar
commons-net-3.1.jar
curator-client-2.6.0.jar

Chapter 8
Target

8-298

curator-framework-2.6.0.jar
gson-2.2.4.jar
guava-11.0.2.jar
hadoop-annotations-2.6.4.jar
hadoop-auth-2.6.4.jar
hadoop-common-2.6.4.jar
hive-storage-api-2.2.1.jar
htrace-core-3.0.4.jar
httpclient-4.2.5.jar
httpcore-4.2.4.jar
jackson-core-asl-1.9.13.jar
jdk.tools-1.6.jar
jersey-core-1.9.jar
jersey-server-1.9.jar
jsch-0.1.42.jar
log4j-1.2.17.jar
netty-3.7.0.Final.jar
orc-core-1.4.0.jar
protobuf-java-2.5.0.jar
slf4j-api-1.7.5.jar
slf4j-log4j12-1.7.5.jar
xmlenc-0.52.jar
xz-1.0.jar
zookeeper-3.4.6.jar

8.2.17.3 Parquet
Learn how to use the Parquet load files generated by the File Writer Handler into HDFS.

See Flat Files.

• Parquet Handler

• Detailing the Functionality

• Configuring the Parquet Event Handler

• Parquet Event Handler Client Dependencies
What are the dependencies for the Parquet Event Handler?

8.2.17.3.1 Parquet Handler
The Parquet Event Handler enables you to generate data files in Parquet format. Parquet files
can be written to either the local file system or directly to HDFS. Parquet is a columnar data
format that can substantially improve data retrieval times and improve the performance of
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) analytics, see
https://parquet.apache.org/.

8.2.17.3.2 Detailing the Functionality
• Configuring the Parquet Event Handler to Write to HDFS

• About the Upstream Data Format

8.2.17.3.2.1 Configuring the Parquet Event Handler to Write to HDFS

The Apache Parquet framework supports writing directly to HDFS. The Parquet Event Handler
can write Parquet files directly to HDFS. These additional configuration steps are required:

The Parquet Event Handler dependencies and considerations are the same as the HDFS
Handler, see HDFS Additional Considerations.

Chapter 8
Target

8-299

https://parquet.apache.org/

Set the writeToHDFS property to true:

gg.eventhandler.parquet.writeToHDFS=true

Ensure that gg.classpath includes the HDFS client libraries.

Ensure that the directory containing the HDFS core-site.xml file is in gg.classpath. This is
so the core-site.xml file can be read at runtime and the connectivity information to HDFS
can be resolved. For example:

gg.classpath=/{HDFS_install_directory}/etc/hadoop

If Kerberos authentication is enabled on the HDFS cluster, you have to configure the Kerberos
principal and the location of the keytab file so that the password can be resolved at runtime:

gg.eventHandler.name.kerberosPrincipal=principal
gg.eventHandler.name.kerberosKeytabFile=path_to_the_keytab_file

8.2.17.3.2.2 About the Upstream Data Format

The Parquet Event Handler can only convert Avro Object Container File (OCF) generated by
the File Writer Handler. The Parquet Event Handler cannot convert other formats to Parquet
data files. The format of the File Writer Handler must be avro_row_ocf or avro_op_ocf, see
Flat Files.

8.2.17.3.3 Configuring the Parquet Event Handler
You configure the Parquet Event Handler operation using the properties file. These properties
are located in the Java Adapter properties file (not in the Replicat properties file).

The Parquet Event Handler works only in conjunction with the File Writer Handler.

To enable the selection of the Parquet Event Handler, you must first configure the handler type
by specifying gg.eventhandler.name.type=parquet and the other Parquet Event properties as
follows:

Table 8-21 Parquet Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.type

Required parquet None Selects the Parquet Event Handler for use.

gg.eventhandler
.name.writeToHD
FS

Optional true |
false

false Set to false to write to the local file system.
Set to true to write directly to HDFS.

Chapter 8
Target

8-300

Table 8-21 (Cont.) Parquet Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the path to
write
generated
Parquet
files.

None Use keywords interlaced with constants to
dynamically generate unique path names at
runtime. Typically, path names follow the
format, /ogg/data/${groupName}/$
{fullyQualifiedTableName}. See Template
Keywords.

gg.eventhandler
.name.fileNameM
appingTemplate

Optional A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the Parquet
file name at
runtime

None Sets the Parquet file name. If not set, the
upstream file name is used. See Template
Keywords.

gg.eventhandler
.name.compressi
onCodec

Optional GZIP |
LZO |
SNAPPY |
UNCOMPRES
SED

UNCOMP
RESSED

Sets the compression codec of the generated
Parquet file.

gg.eventhandler
.name.finalizeA
ction

Optional none |
delete

none Indicates what the Parquet Event Handler
should do at the finalize action.

none
Leave the data file in place.

delete
Delete the data file (such as, if the data file has
been converted to another format or loaded to
a third party application).

gg.eventhandler
.name.dictionar
yEncoding

Optional true |
false

The
Parquet
default.

Set to true to enable Parquet dictionary
encoding.

gg.eventhandler
.name.validatio
n

Optional true |
false

The
Parquet
default.

Set to true to enable Parquet validation.

gg.eventhandler
.name.dictionar
yPageSize

Optional Integer The
Parquet
default.

Sets the Parquet dictionary page size.

Chapter 8
Target

8-301

Table 8-21 (Cont.) Parquet Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.maxPaddin
gSize

Optional Integer The
Parquet
default.

Sets the Parquet padding size.

gg.eventhandler
.name.pageSize

Optional Integer The
Parquet
default.

Sets the Parquet page size.

gg.eventhandler
.name.rowGroupS
ize

Optional Integer The
Parquet
default.

Sets the Parquet row group size.

gg.eventhandler
.name.kerberosP
rincipal

Optional The
Kerberos
principal
name.

None Set to the Kerberos principal when writing
directly to HDFS and Kerberos authentication
is enabled.

gg.eventhandler
.name.kerberosK
eytabFile

Optional The path to
the Keberos
keytab
file.

The
Parquet
default.

Set to the path to the Kerberos keytab file
with writing directly to HDFS and Kerberos
authentication is enabled.

gg.eventhandler
.name.eventHand
ler

Optional A unique
string
identifier
cross
referencing
a child
event
handler.

No
event
handler
configur
ed.

The event handler that is invoked on the file roll
event. Event handlers can do file roll event
actions like loading files to S3, converting to
Parquet or ORC format, or loading files to
HDFS.

gg.eventhandler
.name.writerVer
sion

Optional v1|v2 The
Parquet
library
default
which is
up
through
Parquet
version
1.11.0 is
v1.

Allows the ability to set the Parquet writer
version.

8.2.17.3.4 Parquet Event Handler Client Dependencies
What are the dependencies for the Parquet Event Handler?

The maven central repository artifacts for Parquet are:

Maven groupId: org.apache.parquet
Maven atifactId: parquet-avro
Maven version: 1.9.0

Maven groupId: org.apache.parquet

Chapter 8
Target

8-302

Maven atifactId: parquet-hadoop
Maven version: 1.9.0

The Hadoop client dependencies are also required for the Parquet Event Handler, see Hadoop
Client Dependencies.

• Parquet Client 1.12.0

• Parquet Client 1.11.1

• Parquet Client 1.10.1

• Parquet Client 1.9.0

8.2.17.3.4.1 Parquet Client 1.12.0

audience-annotations-0.12.0.jar
avro-1.10.1.jar
commons-compress-1.20.jar
commons-pool-1.6.jar
jackson-annotations-2.11.3.jar
jackson-core-2.11.3.jar
jackson-databind-2.11.3.jar
javax.annotation-api-1.3.2.jar
parquet-avro-1.12.0.jar
parquet-column-1.12.0.jar
parquet-common-1.12.0.jar
parquet-encoding-1.12.0.jar
parquet-format-structures-1.12.0.jar
parquet-hadoop-1.12.0.jar
parquet-jackson-1.12.0.jar
slf4j-api-1.7.22.jar
snappy-java-1.1.8.jar
zstd-jni-1.4.9-1.jar

8.2.17.3.4.2 Parquet Client 1.11.1

audience-annotations-0.11.0.jar
avro-1.9.2.jar
commons-compress-1.19.jar
commons-pool-1.6.jar
jackson-annotations-2.10.2.jar
jackson-core-2.10.2.jar
jackson-databind-2.10.2.jar
javax.annotation-api-1.3.2.jar
parquet-avro-1.11.1.jar
parquet-column-1.11.1.jar
parquet-common-1.11.1.jar
parquet-encoding-1.11.1.jar
parquet-format-structures-1.11.1.jar
parquet-hadoop-1.11.1.jar
parquet-jackson-1.11.1.jar
slf4j-api-1.7.22.jar
snappy-java-1.1.7.3.jar

8.2.17.3.4.3 Parquet Client 1.10.1

avro-1.8.2.jar
commons-codec-1.10.jar
commons-compress-1.8.1.jar
commons-pool-1.6.jar
fastutil-7.0.13.jar

Chapter 8
Target

8-303

jackson-core-asl-1.9.13.jar
jackson-mapper-asl-1.9.13.jar
paranamer-2.7.jar
parquet-avro-1.10.1.jar
parquet-column-1.10.1.jar
parquet-common-1.10.1.jar
parquet-encoding-1.10.1.jar
parquet-format-2.4.0.jar
parquet-hadoop-1.10.1.jar
parquet-jackson-1.10.1.jar
slf4j-api-1.7.2.jar
snappy-java-1.1.2.6.jar
xz-1.5.jar

8.2.17.3.4.4 Parquet Client 1.9.0

avro-1.8.0.jar
commons-codec-1.5.jar
commons-compress-1.8.1.jar
commons-pool-1.5.4.jar
fastutil-6.5.7.jar
jackson-core-asl-1.9.11.jar
jackson-mapper-asl-1.9.11.jar
paranamer-2.7.jar
parquet-avro-1.9.0.jar
parquet-column-1.9.0.jar
parquet-common-1.9.0.jar
parquet-encoding-1.9.0.jar
parquet-format-2.3.1.jar
parquet-hadoop-1.9.0.jar
parquet-jackson-1.9.0.jar
slf4j-api-1.7.7.jar
snappy-java-1.1.1.6.jar
xz-1.5.jar

8.2.18 Google BigQuery

Topics:

• Using Streaming API
Learn how to use the Google BigQuery Handler, which streams change data capture data
from source trail files into Google BigQuery.

• Google BigQuery Stage and Merge

8.2.18.1 Using Streaming API
Learn how to use the Google BigQuery Handler, which streams change data capture data from
source trail files into Google BigQuery.

BigQuery is a RESTful web service that enables interactive analysis of massively large
datasets working in conjunction with Google Storage, see https://cloud.google.com/bigquery/.

• Detailing the Functionality

• Setting Up and Running the BigQuery Handler
The Google BigQuery Handler uses the Java BigQuery client libraries to connect to Big
Query.

Chapter 8
Target

8-304

https://cloud.google.com/bigquery/

• Google BigQuery Dependencies
The Google BigQuery client libraries are required for integration with BigQuery.

8.2.18.1.1 Detailing the Functionality
• Data Types

• Metadata Support

• Operation Modes

• Operation Processing Support

• Proxy Settings

• Mapping to Google Datasets
A dataset is contained within a specific Google cloud project. Datasets are top-level
containers that are used to organize and control access to your tables and views.

8.2.18.1.1.1 Data Types

The BigQuery Handler supports the standard SQL data types and most of these data types are
supported by the BigQuery Handler. A data type conversion from the column value in the trail
file to the corresponding Java type representing the BigQuery column type in the BigQuery
Handler is required.

The following data types are supported:

BIGNUMERIC
BOOLEAN
BYTES
DATE
DATETIME
FLOAT
INTEGER
JSON
NUMERIC
STRING
TIME
TIMESTAMP

The BigQuery Handler does not support complex data types, such as ARRAY and STRUCT.

8.2.18.1.1.2 Metadata Support

The BigQuery Handler creates tables in BigQuery if the tables do not exist.

The BigQuery Handler alters tables to add columns which exist in the source metadata or
configured metacolumns which do not exist in the target metadata. The BigQuery Handler also
adds columns dynamically at runtime if it detects a metadata change.

The BigQuery Handler does not drop columns in the BigQuery table which do not exist into the
source table definition. BigQuery neither supports dropping existing columns, nor supports
changing the data type of existing columns. Once a column is created in BigQuery, it is
immutable.

Truncate operations are not supported.

Chapter 8
Target

8-305

8.2.18.1.1.3 Operation Modes

You can configure the BigQuery Handler in one of these two modes:

Audit Log Mode = true
gg.handler.name.auditLogMode=true
When the handler is configured to run with audit log mode true, the data is pushed into Google
BigQuery without a unique row identification key. As a result, Google BigQuery is not able to
merge different operations on the same row. For example, a source row with an insert
operation, two update operations, and then a delete operation would show up in BigQuery as
four rows, one for each operation.
Also, the order in which the audit log is displayed in the BigQuery data set is not deterministic.
To overcome these limitations, users should specify optype and postion in the meta columns
template for the handler. This adds two columns of the same names in the schema for the
table in Google BigQuery. For example: gg.handler.bigquery.metaColumnsTemplate = $
{optype}, ${position}
The optype is important to determine the operation type for the row in the audit log.
To view the audit log in order of the operations processed in the trail file, specify position which
can be used in the ORDER BY clause while querying the table in Google BigQuery. For
example:

SELECT * FROM [projectId:datasetId.tableId] ORDER BY position

auditLogMode = false
gg.handler.name.auditLogMode=false
When the handler is configured to run with audit log mode false, the data is pushed into
Google BigQuery using a unique row identification key. The Google BigQuery is able to merge
different operations for the same row. However, the behavior is complex. The Google
BigQuery maintains a finite deduplication period in which it will merge operations for a given
row. Therefore, the results can be somewhat non-deterministic.
The trail source needs to have a full image of the records in order to merge correctly.
Example 1
An insert operation is sent to BigQuery and before the deduplication period expires, an update
operation for the same row is sent to BigQuery. The resultant is a single row in BigQuery for
the update operation.
Example 2
An insert operation is sent to BigQuery and after the deduplication period expires, an update
operation for the same row is sent to BigQuery. The resultant is that both the insert and the
update operations show up in BigQuery.
This behavior has confounded many users, as this is the documented behavior when using
the BigQuery SDK and a feature as opposed to a defect. The documented length of the
deduplication period is at least one minute. However, Oracle testing has shown that the period
is significantly longer. Therefore, unless users can guarantee that all operations for a give row
occur within a very short period, it is likely there will be multiple entries for a given row in
BigQuery. It is therefore just as important for users to configure meta columns with the optype
and position so they can determine the latest state for a given row. To read more about audit
log mode read the following Google BigQuery documentation:Streaming data into BigQuery.

8.2.18.1.1.4 Operation Processing Support

The BigQuery Handler pushes operations to Google BigQuery using synchronous API. Insert,
update, and delete operations are processed differently in BigQuery than in a traditional
RDBMS.

Chapter 8
Target

8-306

https://cloud.google.com/bigquery/streaming-data-into-bigquery

The following explains how insert, update, and delete operations are interpreted by the handler
depending on the mode of operation:

auditLogMode = true
• insert – Inserts the record with optype as an insert operation in the BigQuery table.

• update –Inserts the record with optype as an update operation in the BigQuery table.

• delete – Inserts the record with optype as a delete operation in the BigQuery table.

• pkUpdate—When pkUpdateHandling property is configured as delete-insert, the
handler sends out a delete operation followed by an insert operation. Both these rows
have the same position in the BigQuery table, which helps to identify it as a primary key
operation and not a separate delete and insert operation.

auditLogMode = false
• insert – If the row does not already exist in Google BigQuery, then an insert operation is

processed as an insert. If the row already exists in Google BigQuery, then an insert
operation is processed as an update. The handler sets the deleted column to false.

• update – If a row does not exist in Google BigQuery, then an update operation is
processed as an insert. If the row already exists in Google BigQuery, then an update
operation is processed as update. The handler sets the deleted column to false.

• delete – If the row does not exist in Google BigQuery, then a delete operation is added. If
the row exists in Google BigQuery, then a delete operation is processed as a delete. The
handler sets the deleted column to true.

• pkUpdate—When pkUpdateHandling property is configured as delete-insert, the
handler sets the deleted column to true for the row whose primary key is updated. It is
followed by a separate insert operation with the new primary key and the deleted column
set to false for this row.

Do not toggle the audit log mode because it forces the BigQuery handler to abend as Google
BigQuery cannot alter schema of an existing table. The existing table needs to be deleted
before switching audit log modes.

Note:

The BigQuery Handler does not support the truncate operation. It abends when it
encounters a truncate operation.

8.2.18.1.1.5 Proxy Settings

To connect to BigQuery using a proxy server, you must configure the proxy host and the proxy
port in the properties file as follows:

jvm.bootoptions= -Dhttps.proxyHost=proxy_host_name -
Dhttps.proxyPort=proxy_port_number

Chapter 8
Target

8-307

8.2.18.1.1.6 Mapping to Google Datasets

A dataset is contained within a specific Google cloud project. Datasets are top-level containers
that are used to organize and control access to your tables and views.

A table or view must belong to a dataset, so you need to create at least one dataset before
loading data into BigQuery.

The BigQuery handler can use existing datasets or create datasets if not found.

The BigQuery handler maps the table's schema name to the dataset name. For three-part
table names, the dataset is constructed by concatenating catalog and schema.

8.2.18.1.2 Setting Up and Running the BigQuery Handler
The Google BigQuery Handler uses the Java BigQuery client libraries to connect to Big Query.

These client libraries are located using the following Maven coordinates:

• Group ID: com.google.cloud
• Artifact ID: google-cloud-bigquery

• Version: 2.7.1

The BigQuery Client libraries do not ship with Oracle GoldenGate for Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA). Additionally, Google appears to have
removed the link to download the BigQuery Client libraries. You can download the BigQuery
Client libraries using Maven and the Maven coordinates listed above. However, this requires
proficiency with Maven. The Google BigQuery client libraries can be downloaded using the
Dependency downloading scripts. For more information, see Google BigQuery Dependencies.

For more information about Dependency Downloader, see Dependency Downloader.

• Schema Mapping for BigQuery

• Understanding the BigQuery Handler Configuration

• Review a Sample Configuration

• Configuring Handler Authentication

8.2.18.1.2.1 Schema Mapping for BigQuery

The table schema name specified in the replicat map statement is mapped to the BigQuery
dataset name. For example: map QASOURCE.*, target "dataset_US".*;
This map statement replicates tables to the BigQuery dataset "dataset_US". Oracle
GoldenGate for Distributed Applications and Analytics (GG for DAA) normalizes schema and
table names to uppercase. Lowercase and mixed case dataset and table names are
supported, but need to be quoted in the Replicat mapping statement.

8.2.18.1.2.2 Understanding the BigQuery Handler Configuration

The following are the configurable values for the BigQuery Handler. These properties are
located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the BigQuery Handler, you must first configure the handler type by
specifying gg.handler.name.type=bigquery and the other BigQuery properties as follows:

Chapter 8
Target

8-308

Properties Required/
Optional

Legal
Values

Defaul
t

Explanation

gg.handlerlist Required Any
string

None Provides a name for the BigQuery Handler. The
BigQuery Handler name then becomes part of
the property names listed in this table.

gg.handler.name
.type=bigquery

Required bigqu
ery

None Selects the BigQuery Handler for streaming
change data capture into Google BigQuery.

gg.handler.name
.createDataset

Optional true |
false

true Set to true to automatically create the
BigQuery dataset if it does not exist.

gg.handler.name
.credentialsFil
e

Optional Relativ
e or
absolut
e path
to the
credent
ials file

None The credentials file downloaded from Google
BigQuery for authentication. If you do not
specify the path to the credentials file, you need
to set it as an environment variable, see
Configuring Handler Authentication.

gg.handler.name
.projectId

Required Any
string

None The name of the project in Google BigQuery.
The handler needs project ID to connect to
Google BigQuery store.

gg.handler.name
.batchSize

Optional Any
number

500 The maximum number of operations to be
batched together. This is applicable for all target
table batches.

gg.handler.name
.batchFlushFreq
uency

Optional Any
number

1000 The maximum amount of time in milliseconds to
wait before executing the next batch of
operations. This is applicable for all target table
batches.

gg.handler.name
.skipInvalidRow
s

Optional true |
false

false Sets whether to insert all valid rows of a
request, even if invalid rows exist. If not set, the
entire insert request fails if it contains an invalid
row.

gg.handler.name
.ignoreUnknownV
alues

Optional true |
false

false Sets whether to accept rows that contain values
that do not match the schema. If not set, rows
with unknown values are considered to be
invalid.

gg.handler.name
.connectionTime
out

Optional Positive
integer

20000 The maximum amount of time, in milliseconds,
to wait for the handler to establish a connection
with Google BigQuery.

gg.handler.name
.readTimeout

Optional Positive
integer

30000 The maximum amount of time in milliseconds to
wait for the handler to read data from an
established connection.

gg.handler.name
.metaColumnsTem
plate

Optional A legal
string

None A legal string specifying the metaColumns to be
included. If you set auditLogMode to true, it is
important that you set the
metaColumnsTemplate property to view the
operation type for the row inserted in the audit
log, see Metacolumn Keywords.

Chapter 8
Target

8-309

Properties Required/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.auditLogMode

Optional true |
false

false Set to true, the handler writes each record to
the target without any primary key. Everything is
processed as insert.

Set to false, the handler tries to merge
incoming records into the target table if they
have the same primary key. Primary keys are
needed for this property. The trail source
records need to have a full image updates to
merge correctly.

gg.handler.name
.pkUpdateHandli
ng

Optional abend |
delet
e-
inser
t

abend Sets how the handler handles update
operations that change a primary key. Primary
key operations can be problematic for the
BigQuery Handler and require special
consideration:

• abend- indicates the process abends.

• delete-insert- indicates the process
treats the operation as a delete and an
insert. The full before image is required for
this property to work correctly. Without full
before and after row images the insert data
are incomplete. Oracle recommends this
option.

gg.handler.name
.adjustScale

Optional true |
false

false The BigQuery numeric data type supports a
maximum scale of 9 digits. If a field is mapped
into a BigQuery numeric data type, then it fails if
the scale is larger than 9 digits. Set this
property to true to round fields mapped to
BigQuery numeric data types to a scale of 9
digits. Enabling this property results in a loss of
precision for source data values with a scale
larger than 9.

gg.handler.name
.includeDeleted
Column

Optional true |
false

false Set to true to include a boolean column in the
output called deleted. The value of this column
is set to false for insert and update operations,
and is set to true for delete operations.

gg.handler.name
.enableAlter

Optional true |
false

false Set to true to enable altering the target
BigQuery table. This will allow the BigQuery
Handler to add columns or metacolumns
configured on the source, which are not
currently in the target BigQuery table.

gg.handler.name
.clientId

Optional String None Use to set the client id if the configuration
property
gg.handler.name.credentialsFile to
resolve the Google BigQuery credentials is not
set. You may wish to use this property instead
of the credentials file in order to use Oracle
Wallet to secure credentials.

gg.handler.name
.clientEmail

Optional String None Use to set the client email if the configuration
property
gg.handler.name.credentialsFile to
resolve the Google BigQuery credentials is not
set. You may wish to use this property instead
of the credentials file inorder to use Oracle
Wallet to secure credentials.

Chapter 8
Target

8-310

Properties Required/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name
.privateKey

Optional String None Use to set the private key if the configuration
property
gg.handler.name.credentialsFile to
resolve the Google BigQuery credentials is not
set. You may wish to use this property instead
of the credentials file inorder to use Oracle
Wallet to secure credentials.

gg.handler.name
.privateKeyId

Optional String None Use to set the private key id if the configuration
property
gg.handler.name.credentialsFile to
resolve the Google BigQuery credentials is not
set. You may wish use this property instead of
the credentials file in order to use Oracle Wallet
to secure credentials.

gg.handler.name
.url

Optional A legal
URL to
connec
t to
BigQue
ry
includin
g
schem
e,
server
name
and
port (if
not the
default
port).
The
default
is
https://
www.g
ooglea
pis.com
.

https://
www.g
ooglea
pis.com

Allows the user to set a URL for a private
endpoint to connect to BigQuery.

To be able to connect GCS to the Google Cloud Service account, ensure that either of the
following is configured: the credentials file property with the relative or absolute path to
credentials JSON file or the properties for individual credentials keys. The configuration
property that is used to individually add google service account credential key enables them to
be encrypted using the Oracle wallet.

8.2.18.1.2.3 Review a Sample Configuration

The following is a sample configuration for the BigQuery Handler:

gg.handlerlist = bigquery

#The handler properties
gg.handler.bigquery.type = bigquery
gg.handler.bigquery.projectId = festive-athlete-201315
gg.handler.bigquery.credentialsFile = credentials.json
gg.handler.bigquery.auditLogMode = true

Chapter 8
Target

8-311

gg.handler.bigquery.pkUpdateHandling = delete-insert

gg.handler.bigquery.metaColumnsTemplate =${optype}, ${position}

8.2.18.1.2.4 Configuring Handler Authentication

You have to configure the BigQuery Handler authentication using the credentials in the JSON
file downloaded from Google BigQuery.

Download the credentials file:

1. Login into your Google account at cloud.google.com.

2. Click Console, and then to go to the Dashboard where you can select your project.

3. From the navigation menu, click APIs & Services then select Credentials.

4. From the Create Credentials menu, choose Service account key.

5. Choose the JSON key type to download the JSON credentials file for your system.

After you have the credentials file, you can authenticate the handler in one of the following
methods listed here:

• Specify the path to the credentials file in the properties file with the
gg.handler.name.credentialsFile configuration property.

The path of the credentials file must contain the path with no wildcard appended. If you
include the * wildcard in the path to the credentials file, the file is not recognized.

Or

• Set the credentials file keys (clientId, ClientEmail, privateKeyId, and privateKey) into
the corresponding handler properties.
Or

• Set the GOOGLE_APPLICATION_CREDENTIALS environment variable on your system. For
example:

export GOOGLE_APPLICATION_CREDENTIALS = credentials.json

Then restart the Oracle GoldenGate manager process.

8.2.18.1.3 Google BigQuery Dependencies
The Google BigQuery client libraries are required for integration with BigQuery.

The maven coordinates are as follows:

Maven groupId: com.google.cloud
Maven artifactId: google-cloud-bigquery
Version: 2.7.1
• BigQuery 2.7.1

8.2.18.1.3.1 BigQuery 2.7.1

The required BigQuery Client libraries for the 2.7.1 version are as follows:

api-common-2.1.3.jar
checker-compat-qual-2.5.5.jar

Chapter 8
Target

8-312

http://cloud.google.com

checker-qual-3.21.1.jar
commons-codec-1.15.jar
commons-logging-1.2.jar
error_prone_annotations-2.11.0.jar
failureaccess-1.0.1.jar
gax-2.11.0.jar
gax-httpjson-0.96.0.jar
google-api-client-1.33.1.jar
google-api-services-bigquery-v2-rev20211129-1.32.1.jar
google-auth-library-credentials-1.4.0.jar
google-auth-library-oauth2-http-1.4.0.jar
google-cloud-bigquery-2.7.1.jar
google-cloud-core-2.4.0.jar
google-cloud-core-http-2.4.0.jar
google-http-client-1.41.2.jar
google-http-client-apache-v2-1.41.2.jar
google-http-client-appengine-1.41.2.jar
google-http-client-gson-1.41.2.jar
google-http-client-jackson2-1.41.2.jar
google-oauth-client-1.33.0.jar
grpc-context-1.44.0.jar
gson-2.8.9.jar
guava-31.0.1-jre.jar
httpclient-4.5.13.jar
httpcore-4.4.15.jar
j2objc-annotations-1.3.jar
jackson-core-2.13.1.jar
javax.annotation-api-1.3.2.jar
jsr305-3.0.2.jar
listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar
opencensus-api-0.31.0.jar
opencensus-contrib-http-util-0.31.0.jar
protobuf-java-3.19.3.jar
protobuf-java-util-3.19.3.jar
proto-google-common-protos-2.7.2.jar
proto-google-iam-v1-1.2.1.jar

8.2.18.2 Google BigQuery Stage and Merge

Topics:

• Overview
BigQuery is Google Cloud’s fully managed, petabyte-scale, and cost-effective analytics
data warehouse that lets you run analytics over vast amounts of data in near real time.

• Detailed Functionality

• Prerequisites

• Differences between BigQuery Handler and Stage and Merge BigQuery Event Handler

• Authentication or Authorization

• Configuration

• Troubleshooting and Diagnostics

8.2.18.2.1 Overview
BigQuery is Google Cloud’s fully managed, petabyte-scale, and cost-effective analytics data
warehouse that lets you run analytics over vast amounts of data in near real time.

Chapter 8
Target

8-313

8.2.18.2.2 Detailed Functionality

The BigQuery Event handler uses the stage and merge data flow.

The change data is staged in a temporary location in microbatches and eventually merged into
to the target table. Google Cloud Storage (GCS) is used as the staging area for change data.

This Event handler is used as a downstream Event handler connected to the output of the
GCS Event handler.

The GCS Event handler loads files generated by the File Writer Handler into Google Cloud
Storage.

The Event handler runs BigQuery Query jobs to execute MERGE SQL. The SQL operations are
performed in batches providing better throughput.

Note:

The BigQuery Event handler doesn't use the Google BigQuery streaming API.

8.2.18.2.3 Prerequisites
Google Cloud Storage (GCS) bucket and dataset location: Ensure that the GCS bucket
and the BigQuery dataset exist in the same location/region.

8.2.18.2.4 Differences between BigQuery Handler and Stage and Merge BigQuery Event Handler

Table 8-22 BigQuery Handler v/s Stage and Merge BigQuery Event Handler

Feature/Limitation BigQuery Handler Stage And Merge BigQuery
Event Handler

Compressed update support Partially supported with
limitations.

YES

Audit log mode Process all the operations as
INSERT.

No need to enable audit log
mode.

GCP Quotas/Limits Maximum rows per second per
table: 100000. See Google
BigQuery Documentation.

Daily destination table update
limit — 1500 updates per table
per day. See Google BigQuery
Documentation.

Approximate pricing with 1TB
Storage (for exact pricing refer
GCP Pricing calculator)

Streaming Inserts for 1TB costs
~72.71 USD per month

Query job for 1TB costs ~20.28
USD per month.

Duplicate rows replicated to
BigQuery

YES NO

Replication of TRUNCATE
operation

Not supported Supported

API used BigQuery Streaming API BigQuery Query job

Chapter 8
Target

8-314

https://cloud.google.com/bigquery/quotas
https://cloud.google.com/bigquery/quotas
https://cloud.google.com/bigquery/quotas
https://cloud.google.com/bigquery/quotas

8.2.18.2.5 Authentication or Authorization
For more information about using the Google service account key, see Authentication and
Authorization in the Google Cloud Service (GCS) Event Handler topic. In addition to the
permissions needed to access GCS, the service account also needs permissions to access
BigQuery. You may choose to use a pre-defined IAM role, such as roles/
bigquery.dataEditor or roles/bigquery.dataOwner. When creating a custom role, the
following are the IAM permissions used to run BigQuery Event handler. For more information,
see Configuring Handler Authentication.

• BigQuery Permissions

8.2.18.2.5.1 BigQuery Permissions

Table 8-23 BigQuery Permissions

Permission Description

bigquery.connections.create Create new connections in a project.

bigquery.connections.delete Delete a connection.

bigquery.connections.get Gets connection metadata. Credentials are
excluded.

bigquery.connections.list List connections in a project.

bigquery.connections.update Update a connection and its credentials.

bigquery.connections.use Use a connection configuration to connect to a
remote data source.

bigquery.datasets.create Create new datasets.

bigquery.datasets.get Get metadata about a dataset.

bigquery.connections.export Export table data out of BigQuery.

bigquery.connections.get Get table metadata. To get table data, you need
bigquery.tables.getData.

bigquery.connections.list List connections in a project.

bigquery.connections.update Update a connection and its credentials.

bigquery.datasets.create Create new empty datasets.

bigquery.datasets.get Get metadata about a dataset.

bigquery.datasets.getIamPolicy Reserved for future use.

bigquery.datasets.update Update metadata for a dataset.

bigquery.datasets.updateTag Update tags for a dataset.

bigquery.jobs.create Run jobs (including queries) within the project.

bigquery.jobs.get Get data and metadata on any job.

bigquery.jobs.list List all jobs and retrieve metadata on any job
submitted by any user. For jobs submitted by other
users, details and metadata are redacted.

bigquery.jobs.listAll List all jobs and retrieve metadata on any job
submitted by any user.

bigquery.jobs.update Cancel any job.

bigquery.readsessions.create Create a new read session via the BigQuery
Storage API.

Chapter 8
Target

8-315

Table 8-23 (Cont.) BigQuery Permissions

Permission Description

bigquery.readsessions.getData Read data from a read session via the BigQuery
Storage API.

bigquery.readsessions.update Update a read session via the BigQuery Storage
API.

bigquery.reservations.create Create a reservation in a project.

bigquery.reservations.delete Delete a reservation.

bigquery.reservations.get Retrieve details about a reservation.

bigquery.reservations.list List all reservations in a project.

bigquery.reservations.update Update a reservation’s properties.

bigquery.reservationAssignments.create Create a reservation assignment. This permission
is required on the owner project and assignee
resource. To move a reservation assignment, you
need
bigquery.reservationAssignments.create
on the new owner project and assignee resource.

bigquery.reservationAssignments.delete Delete a reservation assignment. This permission
is required on the owner project and assignee
resource. To move a reservation assignment, you
need
bigquery.reservationAssignments.delete
on the old owner project and assignee resource.

bigquery.reservationAssignments.list List all reservation assignments in a project.

bigquery.reservationAssignments.search Search for a reservation assignment for a given
project, folder, or organization.

bigquery.routines.create Create new routines (functions and stored
procedures).

bigquery.routines.delete Delete routines.

bigquery.routines.list List routines and metadata on routines.

bigquery.routines.update Update routine definitions and metadata.

bigquery.savedqueries.create Create saved queries.

bigquery.savedqueries.delete Delete saved queries.

bigquery.savedqueries.get Get metadata on saved queries.

bigquery.savedqueries.list Lists saved queries.

bigquery.savedqueries.update Updates saved queries.

bigquery.tables.create Create new tables.

bigquery.tables.delete Delete tables

bigquery.tables.export Export table data out of BigQuery.

bigquery.tables.get Get table metadata. To get table data, you need
bigquery.tables.getData.

bigquery.tables.getData Get table data. This permission is required for
querying table data. To get table metadata, you
need bigquery.tables.get.

bigquery.tables.getIamPolicy Read a table’s IAM policy.

bigquery.tables.list List tables and metadata on tables.

bigquery.tables.setCategory Set policy tags in table schema.

Chapter 8
Target

8-316

Table 8-23 (Cont.) BigQuery Permissions

Permission Description

bigquery.tables.setIamPolicy Changes a table’s IAM policy.

bigquery.tables.update Update table metadata. To update table data, you
need bigquery.tables.updateData.

bigquery.tables.updateData Update table data. To update table metadata, you
need bigquery.tables.update.

bigquery.tables.updateTag Update tags for a table.

In addition to these permissions, ensure that resourcemanager.projects.get/list is always
granted as a pair.

8.2.18.2.6 Configuration

• Automatic Configuration

• Classpath Configuration
The GCS Event handler and the BigQuery Event handler use the Java SDK provided by
Google. Google does not provide a direct link to download the SDK.

• Proxy Configuration

• INSERTALLRECORDS Support

• BigQuery Dataset and GCP ProjectId Mapping

• End-to-End Configuration

• Recommended configuration when using Google BigQuery Stage and Merge Event
Handler as a Coordinated Apply Replicat

• Compressed Update Handling

8.2.18.2.6.1 Automatic Configuration

Replication to BigQuery involves configuring of multiple components, such as File Writer
handler, Google Cloud Storae (GCS) Event handler and BigQuery Event handler.

The Automatic Configuration functionality helps to auto configure these components so that the
user configuration is minimal.

The properties modified by auto configuration is also logged in the handler log file. To enable
auto configuration to replicate to BigQuery target, set the parameter gg.target=bq.

When replicating to BigQuery target, you cannot customize GCS Event handler name and
BigQuery Event handler name.

• File Writer Handler Configuration
File Writer handler name is preset to the value bq. The following is an example to edit a
property of File Writer handler: gg.handler.bq.pathMappingTemplate=./dirout.

• GCS Event Handler Configuration
The GCS Event handler name is preset to the value gcs. The following is an example to
edit a property of GCS Event handler: gg.eventhandler.gcs.concurrency=5.

Chapter 8
Target

8-317

• BigQuery Event Handler Configuration
BigQuery Event handler name is preset to the value bq. There are no mandatory
parameters required for BigQuery Event handler. Mostly, auto configure derives the
required parameters.

8.2.18.2.6.1.1 File Writer Handler Configuration
File Writer handler name is preset to the value bq. The following is an example to edit a
property of File Writer handler: gg.handler.bq.pathMappingTemplate=./dirout.

8.2.18.2.6.1.2 GCS Event Handler Configuration
The GCS Event handler name is preset to the value gcs. The following is an example to edit a
property of GCS Event handler: gg.eventhandler.gcs.concurrency=5.

8.2.18.2.6.1.3 BigQuery Event Handler Configuration
BigQuery Event handler name is preset to the value bq. There are no mandatory parameters
required for BigQuery Event handler. Mostly, auto configure derives the required parameters.

The following are the BigQuery Event handler configurations:

Properties Required/
Optional

Legal Values Default Explanation

gg.eventhandler
.bq.credentials
File

Optional Relative or
absolute path to the
service account key
file.

Value from property
gg.eventhandler
.gcs.credential
sFile

Sets the path to the
service account key
file. Autoconfigure
will automatically
configure this
property based on
the configuration
gg.eventhandler
.gcs.credential
sFile, unless the
user wants to use a
different service
account key file for
BigQuery access.
Alternatively, if the
environment
variable
GOOGLE_APPLICAT
ION_CREDENTIALS
is set to the path to
the service account
key file, this
parameter need not
be set.

gg.eventhandler
.bq.projectId

Optional The Google
project-id

project-id
associated with the
service account.

Sets the project-id
of the Google
Cloud project that
houses BigQuery.
Autoconfigure will
automatically
configure this
property by
accessing the
service account key
file unless user
wants to override
this explicitly.

Chapter 8
Target

8-318

Properties Required/
Optional

Legal Values Default Explanation

gg.eventhandler
.bq.kmsKey

Optional Key names in the
format: projects/
<PROJECT>/
locations/
<LOCATION>/
keyRings/
<RING_NAME>/
cryptoKeys/
<KEY_NAME>
• <PROJECT>:

Google
project-id

• <LOCATION>:
Location of the
BigQuery
dataset.

• <RING_NAME>:
Google Cloud
KMS key ring
name.

• <KEY_NAME>:
Google Cloud
KMS key
name.

Value from property
gg.eventhandler
.gcs.kmsKey

Set a customer
managed Cloud
KMS key to encrypt
data in BigQuery.
Autoconfigure will
automatically
configure this
property based on
the configuration
gg.eventhandler
.gcs.kmsKey.

gg.eventhandler
.bq.connectionT
imeout

Optional Positive integer. 20000 The maximum
amount of time, in
milliseconds, to
wait for the handler
to establish a
connection with
Google BigQuery.

gg.eventhandler
.bq.readTimeout

Optional Positive integer. 30000 The maximum
amount of time in
milliseconds to wait
for the handler to
read data from an
established
connection.

gg.eventhandler
.bq.totalTimeou
t

Optional Positive integer. 120000 The total timeout
parameter in
seconds. The
TotalTimeout
parameter has the
ultimate control
over how long the
logic should keep
trying the remote
call until it gives up
completely.

gg.eventhandler
.bq.retries

Optional Positive integer. 3 The maximum
number of retry
attempts to
perform.

Chapter 8
Target

8-319

Properties Required/
Optional

Legal Values Default Explanation

gg.eventhandler
.bq.createDatas
et

Optional true | false true Set to true to
automatically
create the
BigQuery dataset if
it does not exist.

gg.eventhandler
.bq.createTable

Optional true | false true Set to true to
automatically
create the
BigQuery target
table if it does not
exist.

Chapter 8
Target

8-320

Properties Required/
Optional

Legal Values Default Explanation

gg.aggregate.op
erations.flush.
interval

Optional Integer 30000 The flush interval
parameter
determines how
often the data will
be merged into
Snowflake. The
value is set in
milliseconds.

C

a

u

t

i

o

n

:

T
h
e
h
i
g
h
e
r
t
h
i
s
v
a
l
u
e
,
m
o
r
e
d
a
t
a
w
i
l
l

Chapter 8
Target

8-321

Properties Required/
Optional

Legal Values Default Explanation

b
e
s
t
o
r
e
d
i
n
t
h
e
m
e
m
o
r
y
o
f
t
h
e
R
e
p
l
i
c
a
t
p
r
o
c
e
s
s
.
.

N

o

t

e

:

U
s

Chapter 8
Target

8-322

Properties Required/
Optional

Legal Values Default Explanation

e
t
h
e
f
l
u
s
h
i
n
t
e
r
v
a
l
p
a
r
a
m
e
t
e
r
w
i
t
h
c
a
u
t
i
o
n
.
I
n
c
r
e
a
s
i
n
g
i
t
s
d
e
f
a

Chapter 8
Target

8-323

Properties Required/
Optional

Legal Values Default Explanation

u
l
t
v
a
l
u
e
w
i
l
l
i
n
c
r
e
a
s
e
t
h
e
a
m
o
u
n
t
o
f
d
a
t
a
s
t
o
r
e
d
i
n
t
h
e
i
n
t
e
r
n
a
l
m

Chapter 8
Target

8-324

Properties Required/
Optional

Legal Values Default Explanation

e
m
o
r
y
o
f
t
h
e
R
e
p
l
i
c
a
t
.
T
h
i
s
c
a
n
c
a
u
s
e
o
u
t
o
f
m
e
m
o
r
y
e
r
r
o
r
s
a
n
d
s
t
o
p

Chapter 8
Target

8-325

Properties Required/
Optional

Legal Values Default Explanation

t
h
e
R
e
p
l
i
c
a
t
i
f
i
t
r
u
n
s
o
u
t
o
f
m
e
m
o
r
y
.

gg.compressed.u
pdate

Optional true or false true If set the true,
then this indicates
that the source trail
files contain
compressed update
operations. If set to
true, then the
source trail files are
expected to contain
uncompressed
update operations.

gg.eventhandler
.bq.connectionR
etryIntervalSec
onds

Optional Integer Value 30 Specifies the delay
in seconds
between
connection retry
attempts.

gg.eventhandler
.bq.connectionR
etries

Optional Integer Value 3 Specifies the
number of times
connections to the
target data
warehouse will be
retried.

Chapter 8
Target

8-326

Properties Required/
Optional

Legal Values Default Explanation

gg.eventhandler
.bq.url

Optional An absolute URL to
connect to Google
BigQuery.

https://
googleapis.com

A legal URL to
connect to Google
BigQuery including
scheme, server
name and port (if
not the default
port). The default is
https://
googleapis.com.

8.2.18.2.6.2 Classpath Configuration

The GCS Event handler and the BigQuery Event handler use the Java SDK provided by
Google. Google does not provide a direct link to download the SDK.

You can download the SDKs using the following maven co-ordinates:

Google Cloud Storage

 <dependency>
 <groupId>com.google.cloud</groupId>
 <artifactId>google-cloud-storage</artifactId>
 <version>1.113.9</version>
 </dependency>

To download the GCS dependencies, execute the following script <OGGDIR>/
DependencyDownloader/gcs.sh.

BigQuery

 <dependency>
 <groupId>com.google.cloud</groupId>
 <artifactId>google-cloud-bigquery</artifactId>
 <version>1.111.1</version>
 </dependency>

To download the BigQuery dependencies, execute the following script <OGGDIR>/
DependencyDownloader/bigquery.sh. For more information, see gcs.sh in Dependency
Downloader Scripts.

Set the path to the GCS and BigQuery SDK in the gg.classpath configuration parameter. For
example: gg.classpath=./gcs-deps/*:./bq-deps/*.

For more information, see Dependency Downloader Scripts.

8.2.18.2.6.3 Proxy Configuration

When the replicat process is run behind a proxy server, you can use the jvm.bootoptions
property to set the proxy server configuration. For example: jvm.bootoptions=-
Dhttps.proxyHost=some-proxy-address.com -Dhttps.proxyPort=80.

8.2.18.2.6.4 INSERTALLRECORDS Support

Stage and merge targets supports INSERTALLRECORDS parameter.

Chapter 8
Target

8-327

See INSERTALLRECORDS in Reference for Oracle GoldenGate. Set the INSERTALLRECORDS
parameter in the Replicat parameter file (.prm). Set the INSERTALLRECORDS parameter in the
Replicat parameter file (.prm)

Setting this property directs the Replicat process to use bulk insert operations to load operation
data into the target table.

To process initial load trail files, set the INSERTALLRECORDS parameter in the Replicat parameter
file (.prm). Setting this property directs the Replicat process to use bulk insert operations to
load operation data into the target table. You can tune the batch size of bulk inserts using the
gg.handler.bq.maxFileSize File Writer property. The default value is set to 1GB.
The frequency of bulk inserts can be tuned using the File Writer
gg.handler.bq.fileRollInterval property, the default value is set to 3m (three minutes).

8.2.18.2.6.5 BigQuery Dataset and GCP ProjectId Mapping

The BigQuery Event handler maps the table schema name to the BigQuery dataset.

For three-part table names, the table catalog name is mapped to the GCP projectId.

If the tables use distinct catalog names, then the BigQuery datasets can reside in multiple GCP
projects. The GCP service account key should have the required privileges to create datasets
and tables in the respective

The table catalog name is mapped to the GCP projectId.

• Three-Part Table Names

• Mapping Table

8.2.18.2.6.5.1 Three-Part Table Names
If the tables use distinct catalog names, then the BigQuery datasets would reside in multiple
GCP projects. The GCP service account key should have the required privileges in the
respective GCP projects. See BigQuery Permissions.

8.2.18.2.6.5.2 Mapping Table

Table 8-24 Mapping Table

MAP statement in the Replicat
parameter file

BigQuery Dataset GCP ProjectId

MAP SCHEMA1.*, TARGET "bq-
project-1".*.*;

SCHEMA1 bq-project-1

MAP "bq-
project-2".SCHEMA2.*,
TARGET *.*.*;

SCHEMA2 bq-project-2

MAP SCHEMA3.*, TARGET *.*; SCHEMA3 The default projectId from the
GCP service account key file or
the configuration
gg.eventhandler.bq.project
Id.

8.2.18.2.6.6 End-to-End Configuration

The following is an end-end configuration example which uses auto configuration for File Writer
(FW) handler, GCS, and BigQuery Event handlers.

Chapter 8
Target

8-328

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/insertallrecords.html#GUID-A1019C40-97BE-437B-9D80-7C99A9A6DB8E

This sample properties file is located at: AdapterExamples/big-data/bigquery-via-gcs/
bq.props.

 # Configuration to load GoldenGate trail operation records
 # into Google Big Query by chaining
 # File writer handler -> GCS Event handler -> BQ Event handler.
 # Note: Recommended to only edit the configuration marked as TODO
 # The property gg.eventhandler.gcs.credentialsFile need not be set if
 # the GOOGLE_APPLICATION_CREDENTIALS environment variable is set.

 gg.target=bq

 ## The GCS Event handler
 #TODO: Edit the GCS bucket name
 gg.eventhandler.gcs.bucketMappingTemplate=<gcs-bucket-name>
 #TODO: Edit the GCS credentialsFile
 gg.eventhandler.gcs.credentialsFile=/path/to/gcp/credentialsFile

The BQ Event handler
No mandatory configuration required.

#TODO: Edit to include the GCS Java SDK and BQ Java SDK.
gg.classpath=/path/to/gcs-deps/*:/path/to/bq-deps/*
#TODO: Edit to provide sufficient memory (at least 8GB).
jvm.bootoptions=-Xmx8g -Xms8g
#TODO: If running OGGBD behind a proxy server.
#jvm.bootoptions=-Xmx8g -Xms512m -Dhttps.proxyHost=<ip-address> -Dhttps.proxyPort=<port>

8.2.18.2.6.7 Recommended configuration when using Google BigQuery Stage and Merge
Event Handler as a Coordinated Apply Replicat

The MERGE SQL is a mutating DML operation and Google BigQuery runs up to 2 of them
concurrently, after which up to 20 are queued as PENDING. Therefore, the recommended
configuration for maximum threads in a coordinated apply replicat is 2. Adding any more
threads will not improve the performance of the handler as they will be run serially rather than
concurrently.

This topic contains the following:

8.2.18.2.6.8 Compressed Update Handling

A compressed update record contains values for the key columns and the modified columns.

An uncompressed update record contains values for all the columns.

Oracle GoldenGate trails may contain compressed or uncompressed update records. The
default extract configuration writes compressed updates to the trails.

The parameter gg.compressed.update can be set to true or false to indicate compressed/
uncompressed update records.

• MERGE Statement with Uncompressed Updates

8.2.18.2.6.8.1 MERGE Statement with Uncompressed Updates
In some use cases, if the trail contains uncompressed update records, then the MERGE SQL
statement can be optimized for better performance by setting gg.compressed.update=false.

Chapter 8
Target

8-329

Note:

If you want to use DELETE+INSERT SQL statements instead of a MERGE SQL statement,
then set gg.eventhandler.snowflake.deleteInsert=true.

8.2.18.2.7 Troubleshooting and Diagnostics
• DDL not applied on the target table: Oracle GoldenGate for Distributed Applications and

Analytics (GG for DAA) does not support DDL replication.

• SQL Errors: In case there are any errors while executing any SQL, the entire SQL
statement along with the bind parameter values are logged into the GG for DAA handler
log file.

• Co-existence of the components: The location/region of the machine where Replicat
process is running and the BigQuery dataset/GCS bucket impacts the overall throughput of
the apply process.
Data flow is as follows: GoldenGate -> GCS bucket -> BigQuery. For best throughput,
ensure that the components are located as close as possible.

• com.google.cloud.bigquery.BigQueryException: Access Denied: Project <any-gcp-
project>: User does not have bigquery.datasets.create permission in project
<any-gcp-project>. The service account key used by GG for DAA does not have
permission to create datasets in this project. Grant the permission
bigquery.datasets.create and restart the Replicat process. The privileges are listed in
BigQuery Permissions.

8.2.19 Google Cloud Storage

Topics:

• Overview

• Prerequisites

• Buckets and Objects

• Authentication and Authorization

• Configuration

8.2.19.1 Overview
Google Cloud Storage (GCS) is a service for storing objects in Google Cloud Platform.
You can use the GCS Event handler to load files generated by the File Writer handler into
GCS.

8.2.19.2 Prerequisites
Ensure to have the following set up:

• Google Cloud Platform (GCP) account set up.

• Google service account key with the relevant permissions.

• GCS Java Software Developement Kit (SDK)

Chapter 8
Target

8-330

8.2.19.3 Buckets and Objects
Buckets are the basic containers in GCS that store data (objects).
Objects are the individual pieces of data that you store in the Cloud Storage bucket.

8.2.19.4 Authentication and Authorization
A Google Cloud Platform (GCP) service account is a special kind of account used by an
application, not by a person. Oracle GoldenGate for Distributed Applications and Analytics (GG
for DAA) uses a service account key for accessing GCS service.
You need to create a service account key with the relevant Identity and Access Management
(IAM) permissions.

Use the JSON key type to generate the service account key file.

You can either set the path to the service account key file in the environment variable
GOOGLE_APPLICATION_CREDENTIALS or in the GCS Event handler property
gg.eventhandler.name.credentialsFile. You can also specify the individual keys of
credentials file like clientId, clientEmail, privateKeyId and privateKey into corresponding
handler properties instead of specifying the credentials file path directly. This enables the
credential keys to be encrypted using Oracle wallet.

For more information about creating a service account key, see GCP documentation.
The following are the IAM permissions to be added into the service account used to run GCS
Event handler.

• Bucket Permissions

• Object Permissions

8.2.19.4.1 Bucket Permissions

Table 8-25 Bucket Permissions

Bucket
Permission Name

Description

storage.buckets
.create

Create new buckets
in a project.

storage.buckets
.delete

Delete buckets.

storage.buckets
.get

Read bucket
metadata,
excluding IAM
policies.

storage.buckets
.list

List buckets in a
project. Also read
bucket metadata,
excluding IAM
policies, when
listing.

storage.buckets
.update

Update bucket
metadata,
excluding IAM
policies.

Chapter 8
Target

8-331

https://cloud.google.com/iam/docs/creating-managing-service-account-keys

8.2.19.4.2 Object Permissions

Table 8-26 Object Permissions

Object
Permission Name

Description

storage.objects
.create

Add new objects to
a bucket.

storage.objects
.delete

Delete objects.

storage.objects
.get

Read object data
and metadata,
excluding ACLs.

storage.objects
.list

List objects in a
bucket. Also read
object metadata,
excluding ACLs,
when listing.

storage.objects
.update

Update object
metadata,
excluding ACLs.

8.2.19.5 Configuration

Table 8-27 Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

gg.event
handler.
name.typ
e

Required gcs None Selects
the GCS
Event
Handler
for use
with File
Writer
handler.

Chapter 8
Target

8-332

Table 8-27 (Cont.) Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

gg.event
handler.
name.loc
ation

Optional A valid
GCS
location.

None If the
GCS
bucket
does not
exist, a
new
bucket will
be
created in
this GCS
location. If
location is
not
specified,
new
bucket
creation
will fail.
GCS
location
reference:
GCS
locations.

gg.event
handler.
name.buc
ketMappi
ngTempla
te

Required A string
with
resolvable
keywords
and
constants
used to
dynamical
ly
generate
a GCS
bucket
name.

None A GCS
bucket is
created
by the
GCS
Event
handler if
it does not
exist
using this
name.
See
Bucket
Naming
Guideline
sFor more
informatio
n about
supported
keywords,
see
Template
Keywords
.

Chapter 8
Target

8-333

https://cloud.google.com/storage/docs/locations
https://cloud.google.com/storage/docs/locations
https://cloud.google.com/storage/docs/naming-buckets
https://cloud.google.com/storage/docs/naming-buckets
https://cloud.google.com/storage/docs/naming-buckets
https://cloud.google.com/storage/docs/naming-buckets

Table 8-27 (Cont.) Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

gg.event
handler.
name.pat
hMapping
Template

Required A string
with
resolvable
keywords
and
constants
used to
dynamical
ly
generate
the path
in the
GCS
bucket to
write the
file.

None Use
keywords
interlaced
with
constants
to
dynamical
ly
generate
a unique
GCS path
names at
runtime.
Example
path
name:
ogg/
data/$
{groupNa
me}/$
{fullyQu
alifiedT
ableName
}. For
more
informatio
n about
supported
keywords,
see
Template
Keywords
.

Chapter 8
Target

8-334

Table 8-27 (Cont.) Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

gg.event
handler.
name.fil
eNameMap
pingTemp
late

Optional A string
with
resolvable
keywords
and
constants
used to
dynamical
ly
generate
a file
name for
the GCS
object.

None Use
resolvable
keywords
and
constants
used to
dynamical
ly
generate
the GCS
object file
name. If
not set,
the
upstream
file name
is used.
For more
informatio
n about
supported
keywords,
see
Template
Keywords

gg.event
handler.
name.fin
alizeAct
ion

Optional A unique
string
identifier
cross
referencin
g a child
event
handler.

No event
handler
configure
d.

Sets the
downstrea
m event
handler
that is
invoked
on the file
roll event.
A typical
example
would be
use a
downstrea
m to load
the GCS
data into
Google
BigQuery
using the
BigQuery
Event
handler.

Chapter 8
Target

8-335

Table 8-27 (Cont.) Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

gg.event
handler.
name.cre
dentials
File

Optional Relative
or
absolute
path to
the
service
account
key file.

Noe Sets the
path to
the
service
account
key file.
Alternativ
ely, if the
environm
ent
variable
GOOGLE_A
PPLICATI
ON_CREDE
NTIALS is
set to the
path to
the
service
account
key file,
then you
need not
set this
parameter
.

Chapter 8
Target

8-336

Table 8-27 (Cont.) Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

gg.event
handler.
name.sto
rageClas
s

Optional STANDARD
|
NEARLINE
|
COLDLINE
|
ARCHIVE|
REGIONAL
|
MULTI_RE
GIONAL|
DURABLE_
REDUCED_
AVAILABI
LITY

None The
storage
class you
set for an
object
affects the
object’s
availability
and
pricing
model. If
this
property
is not set,
then the
storage
class for
the file is
set to the
default
storage
class for
the
respective
bucket. If
the bucket
does not
exist and
storage
class is
specified,
then a
new
bucket is
created
with this
storage
class as
its default.

Chapter 8
Target

8-337

Table 8-27 (Cont.) Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

gg.event
handler.
name.kms
Key

Optional Key
names in
the
format:
projects
/
<PROJECT
>/
location
s/
<LOCATIO
N>/
keyRings
/
<RING_NA
ME>/
cryptoKe
ys/
<KEY_NAM
E>.
<PROJECT
>: Google
project-id.
<LOCATIO
N>:
Location
of the
GCS
bucket.
<RING_NA
ME>:
Google
Cloud
KMS key
ring
name.
<KEY_NAM
E>:
Google
Cloud
KMS key
name.

None Google
Cloud
Storage
always
encrypts
your data
on the
server
side,
before it is
written to
disk using
Google-
managed
encryptio
n keys. As
an
additional
layer of
security,
customers
may
choose to
use keys
generated
by Google
Cloud Key
Managem
ent
Service
(KMS).
This
property
can be
used to
set a
customer
managed
Cloud
KMS key
to encrypt
GCS
objects.
When
using
customer
managed
keys, the
gg.event
handler.
name.con
currency
property
cannot be
set to a

Chapter 8
Target

8-338

Table 8-27 (Cont.) Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

value
greater
than one
because
with
customer
managed
keys GCP
does not
allow
multi-part
uploads
using
object
compositi
on.

Chapter 8
Target

8-339

Table 8-27 (Cont.) Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

gg.event
handler.
name.con
currency

Optional Any
number in
the range
1 to 32.

10 If
concurren
cy is set
to a value
greater
than one,
then the
GCS
Event
handler
performs
multi-part
uploads
using
compositi
on. The
multi-part
uploads
spawn
concurren
t threads
to upload
each part.
The
individual
parts are
uploaded
to the
following
directory
<bucketM
appingTe
mplate>/
oggtmp.
This
directory
is
reserved
for use by
Oracle
GoldenGa
te for
Distribute
d
Applicatio
ns and
Analytics
(GG for
DAA).
This
provides
better
throughpu
t rates for
uploading

Chapter 8
Target

8-340

Table 8-27 (Cont.) Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

large files.
Multi-part
uploads
are used
for files
with size
greater
than 10
mega
bytes.

gg.event
handler.
gcs.clie
ntId

Optional Valid Big
Query
Credential
s Client Id

NA Provides
the client
ID key
from the
credential
s file for
connectin
g to
Google
Big Query
service
account.

gg.event
handler.
gcs.clie
ntEmail

Optional Valid Big
Query
Credential
s Client
Email

NA Provides
the client
Email key
from the
credential
s file for
connectin
g to
Google
Big Query
service
account.

gg.event
handler.
gcs.priv
ateKeyId

Optional Valid Big
Query
Credential
s Client
Email

NA Provides
the client
Email key
from the
credential
s file for
connectin
g to
Google
Big Query
service
account.

Chapter 8
Target

8-341

Table 8-27 (Cont.) Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

gg.event
handler.
gcs.priv
ateKey

Optional Valid Big
Query
Credential
s Private
Key.

NA Provides
the
Private
Key from
the
credential
s file for
connectin
g to
Google
Big Query
service
account.

gg.event
handler.
name.pro
jectId

Optional The
Google
project-
id |
project-
id
associate
d with the
service
account.

NA Sets the
project-
id of the
Google
Cloud
project
that
houses
the
storage
bucket.
Auto
configure
will
automatic
ally
configure
this
property
by
accessing
the
service
account
key file
unless
user
wants to
override
this
explicitly.

Chapter 8
Target

8-342

Table 8-27 (Cont.) Object Permissions

Propertie
s

Required
/Optional

Legal
Values

Default Explanati
on

gg.event
handler.
name.url

Optional A legal
URL to
connect to
Google
Cloud
Storage
including
scheme,
server
name and
port (if not
the
default
port). The
default is
https://
storage.g
oogleapis.
com.

https://
storage.g
oogleapis.
com

Allows the
user to
set a URL
for a
private
endpoint
to connect
to GCS.

Note:

To be able to connect GCS to the Google Cloud Service account, ensure that either
of the following is configured: the credentials file property with the relative or absolute
path to credentials JSON file or the properties for individual credentials keys. The
configuration property to individually add google service account credential key
enables them to encrypt using the Oracle wallet.

• Classpath Configuration

• Proxy Configuration

• Sample Configuration

8.2.19.5.1 Classpath Configuration
The GCS Event handler uses the Java SDK for Google Cloud Storage. The classpath must
include the path to the GCS SDK.

• Dependencies

8.2.19.5.1.1 Dependencies

You can download the SDK using the following maven co-ordinates:

<dependency>
 <groupId>com.google.cloud</groupId>
 <artifactId>google-cloud-storage</artifactId>
 <version>1.113.9</version>
 </dependency>

Chapter 8
Target

8-343

Alternatively, you can download the GCS dependencies by running the script: <OGGDIR>/
DependencyDownloader/gcs.sh.

Edit the gg.classpath configuration parameter to include the path to the GCS SDK.

8.2.19.5.2 Proxy Configuration
When the Replicat process runs behind a proxy server, you can use the jvm.bootoptions
property to set proxy server configuration. For Example:

jvm.bootoptions=-Dhttps.proxyHost=some-proxy-address.com
-Dhttps.proxyPort=80

8.2.19.5.3 Sample Configuration
#The GCS Event handler
gg.eventhandler.gcs.type=gcs
gg.eventhandler.gcs.pathMappingTemplate=${fullyQualifiedTableName}
#TODO: Edit the GCS bucket name
gg.eventhandler.gcs.bucketMappingTemplate=<gcs-bucket-name>
#TODO: Edit the GCS credentialsFile
gg.eventhandler.gcs.credentialsFile=/path/to/gcs/credentials-file
gg.eventhandler.gcs.finalizeAction=none
gg.classpath=/path/to/gcs-deps/*
jvm.bootoptions=-Xmx8g -Xms8g

8.2.20 Java Message Service (JMS)
The Java Message Service (JMS) Handler allows operations from a trail file to be formatted in
messages, and then published to JMS providers like Oracle Weblogic Server, Websphere, and
ActiveMQ.

This chapter describes how to use the JMS Handler.

• Overview

• Setting Up and Running the JMS Handler

• JMS Dependencies

8.2.20.1 Overview
The Java Message Service is a Java API that allows applications to create, send, receive, and
read messages. The JMS API defines a common set of interfaces and associated semantics
that allow programs written in the Java programming language to communicate with other
messaging implementations.

The JMS Handler captures the Oracle GoldenGate trail and sends those messages to the
configured JMS providers.

Note:

The Java Message Service (JMS) Handler does not support DDL operations. In case
of DDL operations, replicat/extract is expected to fail.

Chapter 8
Target

8-344

8.2.20.2 Setting Up and Running the JMS Handler
The JMS Handler setup (JNDI configuration) depends on the JMS provider that you use.

The following sections provide instructions for configuring the JMS Handler components and
running the handler.

Runtime Prerequisites

The JMS provider should be up and running with the required ConnectionFactory and
QueueConnectionFactory and TopicConnectionFactory configured.

Security

Configure the SSL according to the JMS Provider used.

• Classpath Configuration
Oracle recommends that you store the JMS Handler properties file in the Oracle
GoldenGate dirprm directory.

• Java Naming and Directory Interface Configuration

• Handler Configuration

• Sample Configuration Using Oracle WebLogic Server

8.2.20.2.1 Classpath Configuration
Oracle recommends that you store the JMS Handler properties file in the Oracle GoldenGate
dirprm directory.

The JMS Handler requires the JMS Provider client JARs are in the classpath in order to
execute. Additionally, in Java 8, the Java EE Specification classes have been moved out of the
JDK to an independent project. JMS is a part of the Java EE Specification so the Java EE
Specification jar is an additional depdendency. For more information to download the jar, see
JMS Dependencies.
The location of the providers client JARs is similar to:

gg.classpath= path_to_the_providers_client_jars

8.2.20.2.2 Java Naming and Directory Interface Configuration
You configure the Java Naming and Directory Interface (JNDI) properties to connect to an
Initial Context to look up the connection factory and initial destination.

Table 8-28 JNDI Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

java.naming.pro
vider.url

Required Valid
provider
URL with
port

None Specifies the URL that the handler uses to look
up objects on the server. For example, t3://
localhost:7001 or if SSL is enabled t3s://
localhost:7002.

Chapter 8
Target

8-345

Table 8-28 (Cont.) JNDI Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

java.naming.fac
tory.initial

Required Initial
Context
factory
class
name

None Specifies which initial context factory to use
when creating a new initial context object. For
Oracle WebLogic Server, the value is
weblogic.jndi.WLInitialContextFactory
.

java.naming.sec
urity.principal

Required Valid user
name

None Specifies the user name to use.

java.naming.sec
urity.credentia
ls

Required Valid
password

None Specifies the password for the user.

8.2.20.2.3 Handler Configuration
You configure the JMS Handler operation using the properties file. These properties are
located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the JMS Handler, you must first configure the handler type by
specifying gg.handler.name.type=jms and the other JMS properties as follows:

Table 8-29 JMS Handler Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

gg.handler.name
.type

Required JMS None Set to jms to send transactions, operations, and
metadata as formatted text messages to a JMS
provider. Set to jms_map to send JMS map
messages.

gg.handler.name
.destination

Required Valid
queue or
topic
name

None Sets the queue or topic to which the message is
sent. This must be correctly configured on the
JMS server. For example, queue/A,
queue.Test, example.MyTopic.

gg.handler.name
.destinationTyp
e

Optional queue |
topic

queue Specifies whether the handler is sending to a
queue (a single receiver) or a topic (publish/
subscribe). The
gg.handler.name.queueOrTopic property is
an alias of this property. Set to queue removes
a message from the queue once it has been
read. Set to topic publishes messages and
can be delivered to multiple subscribers.

gg.handler.name
.connectionFact
ory

Required Valid
connectio
n factory
name

None Specifies the name of the connection factory to
lookup using JNDI. The
gg.handler.name.ConnectionFactoryJNDI
Name property is an alias of this property. .

Chapter 8
Target

8-346

Table 8-29 (Cont.) JMS Handler Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

gg.handler.name
.useJndi

Optional true |
false

true Set to false, then JNDI is not used to
configure the JMS client. Instead, factories and
connections are explicitly constructed.

gg.handler.name
.connectionUrl

Optional Valid
connectio
n URL

None Specify only when you are not using JNDI to
explicitly create the connection.

gg.handler.name
.connectionFact
oryClass

Optional Valid
connecti
onFactor
yClass

None Set to access a factory only when not using
JNDI. The value of this property is the Java
class name to instantiate, which constructs a
factory object explicitly.

gg.handler.name
.physicalDestin
ation

Optional Name of
the queue
or topic
object
obtained
through
the
Connecti
onFactor
y API
instead of
the JNDI
provider

None The physical destination is important when JMS
is configured to use JNDI. The
ConnectionFactory is resolved through a
JNDI lookup. Setting the physical destination
means that the queue or topic is resolved by
invoking a method on the ConnectionFactory
instead of invoking JNDI.

gg.handler.name
.user

Optional Valid user
name

None The user name to send messages to the JMS
server.

gg.handler.name
.password

Optional Valid
password

None The password to send messages to the JMS
server.

gg.handler.name
.sessionMode

Optional auto |
client |
dupsok

auto Sets the JMS session mode, these values
equate to the standard JMS values:

Session.AUTO_ACKNOWLEDGE
The session automatically acknowledges a
client's receipt of a message either when the
session has successfully returned from a call to
receive or when the message listener the
session has called to process the message
successfully returns.

Session.CLIENT_ACKNOWLEDGE
The client acknowledges a consumed message
by calling the message's acknowledge method.

Session.DUPS_OK_ACKNOWLEDGE
This acknowledgment mode instructs the
session to lazily acknowledge the delivery of
messages.

Chapter 8
Target

8-347

Table 8-29 (Cont.) JMS Handler Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

gg.handler.name
.localTX

Optional true |
false

true Sets whether local transactions are used when
sending messages. Local transactions are
enabled by default, unless sending and
committing single messages one at a time. Set
to false to disable local transactions.

gg.handler.name
.persistent

Optional true |
false

true Sets the delivery mode to persistent or not. If
you want the messages to be persistent, the
JMS provider must be configured to log the
message to stable storage as part of the client's
send operation.

gg.handler.name
.priority

Optional Valid
integer
between
0-10

4 The JMS server defines a 10 level priority value,
with 0 as the lowest and 9 as the highest.

gg.handler.name
.timeToLive

Optional Time in
millisecon
ds

0 Sets the length of time in milliseconds from its
dispatch time that a produced message is
retained by the message system. Set to zero
specifies that the time is unlimited.

gg.handler.name
.custom

Optional Class
names
implement
ing
oracle.g
oldengat
e.messag
ing.hand
ler.GGMe
ssageLif
eCycleLi
stener

None Configures a message listener allowing
properties to be set on the message before it is
delivered.

Chapter 8
Target

8-348

Table 8-29 (Cont.) JMS Handler Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

gg.handler.name
.format

Optional xml |
tx2ml |
xml2 |
minxml |
csv |
fixed |
text |
logdump |
json |
json_op |
json_row
|
delimite
dtext |
Velocity
template

delimite
dtext

Specifies the format used to transform
operations and transactions into messages sent
to the JMS server.

The velocity template should point to the
location of the template file. Samples are
available under: AdapterExamples/java-
delivery/sample-dirprm/.

Example: format_op2xml.vm

<$op.TableName
sqlType='$op.sqlType'
opType='$op.opType'
txInd='$op.txState'
ts='$op.Timestamp'
numCols='$op.NumColumns'
pos='$op.Position'>
#foreach($col in $op)
#if(! $col.isMissing())
 <$col.Name colIndex='$col.Index'>
#if($col.hasBefore())
#if($col.isBeforeNull())
<before><isNull/></before>
#else
<before><![CDATA[$col.before]]></
before>
#{end}## if col has 'before' value
#{end}## if col 'before' is null
#if($col.hasValue())
#if($col.isNull())
<after><isNull/></after>
#{else}
 <after><![CDATA[$col.value]]></
after>
#{end}## if col is null
#{end}## if col has value
</$col.Name>
#{end}## if column is not missing
#{end}## for loop over columns
 </$op.TableName>

Chapter 8
Target

8-349

Table 8-29 (Cont.) JMS Handler Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

gg.handler.name
.includeTables

Optional List of
valid table
names

None Specifies a list of tables the handler will include.

If the schema (or owner) of the table is
specified, then only that schema matches the
table name. Otherwise, the table name matches
any schema. A comma separated list of tables
can be specified. For example, to have the
handler only process tables foo.customer and
bar.orders.

If the catalog and schema (or owner) of the
table are specified, then only that catalog and
schema matches the table name. Otherwise,
the table name matches any catalog and
schema. A comma separated list of tables can
be specified. For example, to have the handler
only process tables dbo.foo.customer and
dbo.bar.orders.

If any table matches the include list of tables,
the transaction is included.

The list of table names specified are case
sensitive.

gg.handler.name
.excludeTables

Optional List of
valid table
names

None Specifies a list of tables the handler will
exclude.

To selectively process operations on a table by
table basis, the handler must be processing in
operation mode. If the handler is processing in
transaction mode, then when a single
transaction contains several operations
spanning several tables. If any table matches
the exclude list of tables, the transaction is
excluded.

The list of table names specified are case
sensitive.

gg.handler.name
.mode

Optional op | tx op Specifies whether to output one operation per
message (op) or one transaction per message
(tx).

gg.handler.name
.metaHeadersTem
plate

Optional Comma
delimited
list of
metacolu
mn
keywords.

None Allows you to select metacolumns to inject
context-based key value pairs into JMS
message header properties using the
metacolumn keyword syntax. JMS metacolumn
Headers are not supported in transactional
mode.
Example:

gg.handler.sample_jms.metaHeadersTemp
late=${primarykeys[JMSXGroupID]}

Chapter 8
Target

8-350

8.2.20.2.4 Sample Configuration Using Oracle WebLogic Server

 #JMS Handler Template
 gg.handlerlist=jms
 gg.handler.jms.type=jms
 #TODO: Set the message formatter type
 gg.handler.jms.format=
 #TODO: Set the destination for resolving the queue/topic name.
 gg.handler.jms.destination=

 #Start of JMS handler properties when JNDI is used.
 gg.handler.jms.useJndi=true
 #TODO: Set the connectionFactory for resolving the queue/topic name.
 gg.handler.jms.connectionFactory=
 #TODO: Set the standard JNDI properties url, initial factory name,
principal and credentials.
 java.naming.provider.url=
 java.naming.factory.initial=
 java.naming.security.principal=
 java.naming.security.credentials=
 End of JMS handler properties when JNDI is used.

 #Start of JMS handler properties when JNDI is not used.
 #TODO: Comment the above properties related to useJndi is true.
 #TODO: Uncomment the below properties to configure when useJndi is false.
 #gg.handler.jms.useJndi=false
 #TODO: Set connectionURL of MQ.
 #gg.handler.jms.connectionUrl=
 #TODO: Set the connection Factory Class of the MQ.
 #gg.handler.jms.connectionFactoryClass=

#TODO: Set the path the jms client library wlthint3client.jar
gg.classpath=
jvm.bootoptions=-Xmx512m -Xms32m

8.2.20.3 JMS Dependencies
The Java EE Specification APIs have moved out of the JDK in Java 8. JMS is a part of this
specification, and therefore this dependency is required.

Maven groupId: javax
Maven artifactId: javaee-api
Version: 8.0

You can download the jar from Maven Central Repository.

• JMS 8.0

8.2.20.3.1 JMS 8.0
javaee-api-8.0.jar

Chapter 8
Target

8-351

https://search.maven.org/artifact/javax/javaee-api/8.0/jar

8.2.21 Java Database Connectivity
Learn how to use the Java Database Connectivity (JDBC) Handler, which can replicate source
transactional data to a target or database.

This chapter describes how to use the JDBC Handler.

• Overview

• Detailed Functionality
The JDBC Handler replicates source transactional data to a target or database by using a
JDBC interface.

• Setting Up and Running the JDBC Handler
Use the JDBC Metadata Provider with the JDBC Handler to obtain column mapping
features, column function features, and better data type mapping.

• Sample Configurations

8.2.21.1 Overview
The Generic Java Database Connectivity (JDBC) Handler lets you replicate source
transactional data to a target system or database by using a JDBC interface. You can use it
with targets that support JDBC connectivity.

You can use the JDBC API to access virtually any data source, from relational databases to
spreadsheets and flat files. JDBC technology also provides a common base on which the
JDBC Handler was built. The JDBC handler with the JDBC metadata provider also lets you use
Replicat features such as column mapping and column functions. For more information about
using these features, see Metadata Providers

For more information about using the JDBC API, see http://docs.oracle.com/javase/8/docs/
technotes/guides/jdbc/index.html.

8.2.21.2 Detailed Functionality
The JDBC Handler replicates source transactional data to a target or database by using a
JDBC interface.

• Single Operation Mode

• Oracle Database Data Types

• MySQL Database Data Types

• Netezza Database Data Types

• Redshift Database Data Types

8.2.21.2.1 Single Operation Mode
The JDBC Handler performs SQL operations on every single trail record (row operation) when
the trail record is processed by the handler. The JDBC Handler does not use the BATCHSQL
feature of the JDBC API to batch operations.

8.2.21.2.2 Oracle Database Data Types
The following column data types are supported for Oracle Database targets:

Chapter 8
Target

8-352

http://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/index.html

NUMBER
DECIMAL
INTEGER
FLOAT
REAL
DATE
TIMESTAMP
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
CHAR
VARCHAR2
NCHAR
NVARCHAR2
RAW
CLOB
NCLOB
BLOB
TIMESTAMP WITH TIMEZONE1

TIME WITH TIMEZONE2

8.2.21.2.3 MySQL Database Data Types
The following column data types are supported for MySQL Database targets:

INT
REAL
FLOAT
DOUBLE
NUMERIC
DATE
DATETIME
TIMESTAMP
TINYINT
BOOLEAN
SMALLINT
BIGINT
MEDIUMINT
DECIMAL
BIT
YEAR
ENUM
CHAR
VARCHAR

8.2.21.2.4 Netezza Database Data Types
The following column data types are supported for Netezza database targets:

byteint

1 Time zone with a two-digit hour and a two-digit minimum offset.
2 Time zone with a two-digit hour and a two-digit minimum offset.

Chapter 8
Target

8-353

smallint
integer
bigint
numeric(p,s)
numeric(p)
float(p)
Real
double
char
varchar
nchar
nvarchar
date
time
Timestamp

8.2.21.2.5 Redshift Database Data Types
The following column data types are supported for Redshift database targets:

SMALLINT
INTEGER
BIGINT
DECIMAL
REAL
DOUBLE
CHAR
VARCHAR
DATE
TIMESTAMP

8.2.21.3 Setting Up and Running the JDBC Handler
Use the JDBC Metadata Provider with the JDBC Handler to obtain column mapping features,
column function features, and better data type mapping.

The following topics provide instructions for configuring the JDBC Handler components and
running the handler.

• Java Classpath

• Handler Configuration

• Statement Caching

• Setting Up Error Handling

8.2.21.3.1 Java Classpath
The JDBC Java Driver location must be included in the class path of the handler using the
gg.classpath property.

For example, the configuration for a MySQL database could be:

gg.classpath= /path/to/jdbc/driver/jar/mysql-connector-java-5.1.39-bin.jar

Chapter 8
Target

8-354

8.2.21.3.2 Handler Configuration
You configure the JDBC Handler operation using the properties file. These properties are
located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the JDBC Handler, you must first configure the handler type by
specifying gg.handler.name.type=jdbc and the other JDBC properties as follows:

Table 8-30 JDBC Handler Configuration Properties

Properties Require
d/
Optiona
l

Legal
Values

Default Explanation

gg.handler.name
.type

Required jdbc None Selects the JDBC Handler for streaming change
data capture into name.

gg.handler.name
.connectionURL

Required A valid
JDBC
connectio
n URL

None The target specific JDBC connection URL.

gg.handler.name
.DriverClass

Target
database
depende
nt.

The target
specific
JDBC
driver
class
name

None The target specific JDBC driver class name.

gg.handler.name
.userName

Target
database
depende
nt.

A valid
user name

None The user name used for the JDBC connection
to the target database.

gg.handler.name
.password

Target
database
depende
nt.

A valid
password

None The password used for the JDBC connection to
the target database.

gg.handler.name
.maxActiveState
ments

Optional Unsigned
integer

Target
database
dependen
t

If this property is not specified, the JDBC
Handler queries the target dependent database
metadata indicating maximum number of active
prepared SQL statements. Some targets do not
provide this metadata so then the default value
of 256 active SQL statements is used.

If this property is specified, the JDBC Handler
will not query the target database for such
metadata and use the property value provided
in the configuration.

In either case, when the JDBC handler finds
that the total number of active SQL statements
is about to be exceeded, the oldest SQL
statement is removed from the cache to add
one new SQL statement.

8.2.21.3.3 Statement Caching
To speed up DML operations, JDBC driver implementations typically allow multiple statements
to be cached. This configuration avoids repreparing a statement for operations that share the
same profile or template.

Chapter 8
Target

8-355

The JDBC Handler uses statement caching to speed up the process and caches as many
statements as the underlying JDBC driver supports. The cache is implemented by using an
LRU cache where the key is the profile of the operation (stored internally in the memory as an
instance of StatementCacheKey class), and the value is the PreparedStatement object itself.

A StatementCacheKey object contains the following information for the various DML profiles
that are supported in the JDBC Handler:

DML operation type StatementCacheKey contains a tuple of:

INSERT (table name, operation type, ordered after-image column indices)

UPDATE (table name, operation type, ordered after-image column indices)

DELETE (table name, operation type)

TRUNCATE (table name, operation type)

8.2.21.3.4 Setting Up Error Handling
The JDBC Handler supports using the REPERROR and HANDLECOLLISIONS Oracle GoldenGate
parameters. See Reference for Oracle GoldenGate.

You must configure the following properties in the handler properties file to define the mapping
of different error codes for the target database.

gg.error.duplicateErrorCodes
A comma-separated list of error codes defined in the target database that indicate a duplicate
key violation error. Most of the drivers of the JDBC drivers return a valid error code so,
REPERROR actions can be configured based on the error code. For example:

gg.error.duplicateErrorCodes=1062,1088,1092,1291,1330,1331,1332,1333

gg.error.notFoundErrorCodes
A comma-separated list of error codes that indicate missed DELETE or UPDATE operations on
the target database.
In some cases, the JDBC driver errors occur when an UPDATE or DELETE operation does not
modify any rows in the target database so, no additional handling is required by the JDBC
Handler.
Most JDBC drivers do not return an error when a DELETE or UPDATE is affecting zero rows so,
the JDBC Handler automatically detects a missed UPDATE or DELETE operation and triggers an
error to indicate a not-found error to the Replicat process. The Replicat process can then
execute the specified REPERROR action.
The default error code used by the handler is zero. When you configure this property to a non-
zero value, the configured error code value is used when the handler triggers a not-found
error. For example:

gg.error.notFoundErrorCodes=1222

gg.error.deadlockErrorCodes
A comma-separated list of error codes that indicate a deadlock error in the target database.
For example:

gg.error.deadlockErrorCodes=1213

Chapter 8
Target

8-356

Setting Codes
Oracle recommends that you set a non-zero error code for the
gg.error.duplicateErrorCodes, gg.error.notFoundErrorCodes, and
gg.error.deadlockErrorCodes properties because Replicat does not respond to REPERROR
and HANDLECOLLISIONS configuration when the error code is set to zero.

Sample Oracle Database Target Error Codes

gg.error.duplicateErrorCodes=1
gg.error.notFoundErrorCodes=0
gg.error.deadlockErrorCodes=60

Sample MySQL Database Target Error Codes

gg.error.duplicateErrorCodes=1022,1062
gg.error.notFoundErrorCodes=1329
gg.error.deadlockErrorCodes=1213,1614

8.2.21.4 Sample Configurations
The following topics contain sample configurations for the databases supported by the JDBC
Handler from the Java Adapter properties file.

• Sample Oracle Database Target

• Sample Oracle Database Target with JDBC Metadata Provider

• Sample MySQL Database Target

• Sample MySQL Database Target with JDBC Metadata Provider

8.2.21.4.1 Sample Oracle Database Target

gg.handlerlist=jdbcwriter
gg.handler.jdbcwriter.type=jdbc

#Handler properties for Oracle database target
gg.handler.jdbcwriter.DriverClass=oracle.jdbc.driver.OracleDriver
gg.handler.jdbcwriter.connectionURL=jdbc:oracle:thin:@<DBServer
address>:1521:<database name>
gg.handler.jdbcwriter.userName=<dbuser>
gg.handler.jdbcwriter.password=<dbpassword>
gg.classpath=/path/to/oracle/jdbc/driver/ojdbc5.jar
goldengate.userexit.timestamp=utc
goldengate.userexit.writers=javawriter
javawriter.stats.display=TRUE
javawriter.stats.full=TRUE
gg.log=log4j
gg.log.level=INFO
gg.report.time=30sec
javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/
ggjava.jar:./dirprm

Chapter 8
Target

8-357

8.2.21.4.2 Sample Oracle Database Target with JDBC Metadata Provider

gg.handlerlist=jdbcwriter
gg.handler.jdbcwriter.type=jdbc

#Handler properties for Oracle database target with JDBC Metadata provider
gg.handler.jdbcwriter.DriverClass=oracle.jdbc.driver.OracleDriver
gg.handler.jdbcwriter.connectionURL=jdbc:oracle:thin:@<DBServer
address>:1521:<database name>
gg.handler.jdbcwriter.userName=<dbuser>
gg.handler.jdbcwriter.password=<dbpassword>
gg.classpath=/path/to/oracle/jdbc/driver/ojdbc5.jar
#JDBC Metadata provider for Oracle target
gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:oracle:thin:@<DBServer address>:1521:<database name>
gg.mdp.DriverClassName=oracle.jdbc.driver.OracleDriver
gg.mdp.UserName=<dbuser>
gg.mdp.Password=<dbpassword>
goldengate.userexit.timestamp=utc
goldengate.userexit.writers=javawriter
javawriter.stats.display=TRUE
javawriter.stats.full=TRUE
gg.log=log4j
gg.log.level=INFO
gg.report.time=30sec
javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/
ggjava.jar:./dirprm

8.2.21.4.3 Sample MySQL Database Target

gg.handlerlist=jdbcwriter
gg.handler.jdbcwriter.type=jdbc

#Handler properties for MySQL database target
gg.handler.jdbcwriter.DriverClass=com.mysql.jdbc.Driver
gg.handler.jdbcwriter.connectionURL=jdbc:<a target="_blank"
href="mysql://">mysql://<DBServer address>:3306/<database name>
gg.handler.jdbcwriter.userName=<dbuser>
gg.handler.jdbcwriter.password=<dbpassword>
gg.classpath=/path/to/mysql/jdbc/driver//mysql-connector-java-5.1.39-bin.jar

goldengate.userexit.timestamp=utc
goldengate.userexit.writers=javawriter
javawriter.stats.display=TRUE
javawriter.stats.full=TRUE
gg.log=log4j
gg.log.level=INFO
gg.report.time=30sec
javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/
ggjava.jar:./dirprm

Chapter 8
Target

8-358

8.2.21.4.4 Sample MySQL Database Target with JDBC Metadata Provider

gg.handlerlist=jdbcwriter
gg.handler.jdbcwriter.type=jdbc

#Handler properties for MySQL database target with JDBC Metadata provider
gg.handler.jdbcwriter.DriverClass=com.mysql.jdbc.Driver
gg.handler.jdbcwriter.connectionURL=jdbc:mysql://<DBServer address>:3306/
<database name>
gg.handler.jdbcwriter.userName=<dbuser>
gg.handler.jdbcwriter.password=<dbpassword>
gg.classpath=/path/to/mysql/jdbc/driver//mysql-connector-java-5.1.39-bin.jar
#JDBC Metadata provider for MySQL target
gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:mysql://<DBServer address>:3306/<database name>
gg.mdp.DriverClassName=com.mysql.jdbc.Driver
gg.mdp.UserName=<dbuser>
gg.mdp.Password=<dbpassword>

goldengate.userexit.timestamp=utc
goldengate.userexit.writers=javawriter
javawriter.stats.display=TRUE
javawriter.stats.full=TRUE
gg.log=log4j
gg.log.level=INFO
gg.report.time=30sec
javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/
ggjava.jar:./dirprm

8.2.22 Map(R)
Oracle GoldenGate for Big Data supports MapR over HDFS handler. For more information, see
HDFS Event Handler

8.2.23 MongoDB
Learn how to use the MongoDB Handler, which can replicate transactional data from Oracle
GoldenGate to a target MongoDB and Autonomous JSON databases (AJD and ATP) .

• Overview

• MongoDB Wire Protocol

• Supported Target Types

• Detailed Functionality

• Setting Up and Running the MongoDB Handler

• Security and Authentication

• Reviewing Sample Configurations

• MongoDB to AJD/ATP Migration

• Configuring an Initial Synchronization of Extract for a MongoDB Source Database using
Precise Instantiation

Chapter 8
Target

8-359

• MongoDB Handler Client Dependencies
What are the dependencies for the MongoDB Handler to connect to MongoDB databases?

8.2.23.1 Overview
Mongodb Handler can used to replicate data from RDMS as well as document based
databases like Mongodb or Cassandra to the following target databases using MongoDB wire
protocol

8.2.23.2 MongoDB Wire Protocol
The MongoDB Wire Protocol is a simple socket-based, request-response style protocol.
Clients communicate with the database server through a regular TCP/IP socket, see https://
docs.mongodb.com/manual/reference/mongodb-wire-protocol/.

8.2.23.3 Supported Target Types
• MongoDB is an open-source document database that provides high performance, high

availability, and automatic scaling, see https://www.mongodb.com/.

• Oracle Autonomous JSON Database (AJD) is a cloud document database service that
makes it simple to develop JSON-centric applications, see Autonomous JSON Database |
Oracle.

• Autonomous Database for transaction processing and mixed workloads (ATP) is a fully
automated database service optimized to run transactional, analytical, and batch
workloads concurrently, see Autonomous Transaction Processing | Oracle.

• On-premises Oracle Database 21c with Database API for MongoDB is also a supported
target. See Installing Database API for MongoDB for any Oracle Database.

8.2.23.4 Detailed Functionality
The MongoDB Handler takes operations from the source trail file and creates corresponding
documents in the target MongoDB or Autonomous databases (AJD and ATP).

A record in MongoDB is a Binary JSON (BSON) document, which is a data structure
composed of field and value pairs. A BSON data structure is a binary representation of JSON
documents. MongoDB documents are similar to JSON objects. The values of fields may
include other documents, arrays, and arrays of documents.

A collection is a grouping of MongoDB or AJD/ATP documents and is the equivalent of an
RDBMS table. In MongoDB or AJD/ATP databases, a collection holds collection of documents.
Collections do not enforce a schema. MongoDB or AJD/ATP documents within a collection can
have different fields.

• Document Key Column

• Primary Key Update Operation

• MongoDB Trail Data Types

8.2.23.4.1 Document Key Column
MongoDB or AJD/ATP databases require every document (row) to have a column named _id
whose value should be unique in a collection (table). This is similar to a primary key for
RDBMS tables. If a document does not contain a top-level _id column during an insert, the
MongoDB driver adds this column.

Chapter 8
Target

8-360

https://docs.mongodb.com/manual/reference/mongodb-wire-protocol/
https://docs.mongodb.com/manual/reference/mongodb-wire-protocol/
https://www.mongodb.com/
https://www.oracle.com/autonomous-database/autonomous-json-database/
https://www.oracle.com/autonomous-database/autonomous-json-database/
https://www.oracle.com/autonomous-database/autonomous-transaction-processing/
https://blogs.oracle.com/database/post/installing-database-api-for-mongodb-for-any-oracle-database

The MongoDB Handler builds custom _id field values for every document based on the
primary key column values in the trail record. This custom _id is built using all the key column
values concatenated by a : (colon) separator. For example:

KeyColValue1:KeyColValue2:KeyColValue3

The MongoDB Handler enforces uniqueness based on these custom _id values. This means
that every record in the trail must be unique based on the primary key columns values.
Existence of non-unique records for the same table results in a MongoDB Handler failure and
in Replicat abending with a duplicate key error.

The behavior of the _id field is:

• By default, MongoDB creates a unique index on the column during the creation of a
collection.

• It is always the first column in a document.

• It may contain values of any BSON data type except an array.

8.2.23.4.2 Primary Key Update Operation
MongoDB or AJD/ATP databases do not allow the _id column to be modified. This means a
primary key update operation record in the trail needs special handling. The MongoDB Handler
converts a primary key update operation into a combination of a DELETE (with old key) and an
INSERT (with new key). To perform the INSERT, a complete before-image of the update
operation in trail is recommended. You can generate the trail to populate a complete before
image for update operations by enabling the Oracle GoldenGate GETUPDATEBEFORES and
NOCOMPRESSUPDATES parameters, see Reference for Oracle GoldenGate.

8.2.23.4.3 MongoDB Trail Data Types
The MongoDB Handler supports delivery to the BSON data types as follows:

• 32-bit integer

• 64-bit integer

• Double

• Date

• String

• Binary data

8.2.23.5 Setting Up and Running the MongoDB Handler
The following topics provide instructions for configuring the MongoDB Handler components
and running the handler.

• Classpath Configuration

• MongoDB Handler Configuration

• Using Bulk Write

• Using Write Concern

• Using Three-Part Table Names

• Using Undo Handling

Chapter 8
Target

8-361

8.2.23.5.1 Classpath Configuration
The MongoDB Java Driver is required for Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) to connect and stream data to MongoDB. If the GG for DAA version is
21.7.0.0.0 and below, then you need to use 3.x (MongoDB Java Driver 3.12.8). If the GG for
DAA version is 21.8.0.0.0 and above, then you need to use MongoDB Java Driver 4.6.0. The
MongoDB Java Driver is not included in the GG for DAA product. You must download the
driver from: mongo java driver.

Select mongo-java-driver and the version to download the recommended driver JAR file.

You must configure the gg.classpath variable to load the MongoDB Java Driver JAR at
runtime. For example: gg.classpath=/home/mongodb/mongo-java-driver-3.12.8.jar.

GG for DAA supports the MongoDB Decimal 128 data type that was added in MongoDB 3.4.
Use of a MongoDB Java Driver prior to 3.12.8 results in a ClassNotFound exception.

8.2.23.5.2 MongoDB Handler Configuration
You configure the MongoDB Handler operation using the properties file. These properties are
located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the MongoDB Handler, you must first configure the handler type by
specifying gg.handler.name.type=mongodb and the other MongoDB properties as follows:

Table 8-31 MongoDB Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name
.type

Required mongodb None Selects the MongoDB Handler for use with
Replicat.

gg.handler.name
.bulkWrite

Optional true |
false

true Set to true, the handler caches operations
until a commit transaction event is received.
When committing the transaction event, all the
cached operations are written out to the target
MongoDB, AJD and ATP databases, which
provides improved throughput.

Set to false, there is no caching within the
handler and operations are immediately written
to the MongoDB, AJD and ATP databases.

gg.handler.name
.WriteConcern

Optional {“w”:
“value” ,
“wtimeout
”:
“number”
}

None Sets the required write concern for all the
operations performed by the MongoDB
Handler.

The property value is in JSON format and can
only accept keys as w and wtimeout, see
https://docs.name.com/manual/reference/write-
concern/.

gg.handler.name
.clientURI

Optional Valid
MongoDB
client URI

None Sets the MongoDB client URI. A client URI can
also be used to set other MongoDB connection
properties, such as authentication and
WriteConcern.

Chapter 8
Target

8-362

https://repo1.maven.org/maven2/org/mongodb/mongo-java-driver/3.10.1/mongo-java-driver-3.10.1.jar
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/write-concern/

Table 8-31 (Cont.) MongoDB Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.handler.name
.CheckMaxRowSiz
eLimit

Optional true |
false

false When set to true, the handler verifies that the
size of the BSON document inserted or
modified is within the limits defined by the
MongoDB database. Calculating the size
involves the use of a default codec to generate
a RawBsonDocument, leading to a small
degradation in the throughput of the MongoDB
Handler.

If the size of the document exceeds the
MongoDB limit, an exception occurs and
Replicat abends.

gg.handler.name
.upsert

Optional true |
false

false Set to true, a new Mongo document is
inserted if there are no matches to the query
filter when performing an UPDATE operation.

gg.handler.name
.enableDecimal1
28

Optional true |
false

true MongoDB version 3.4 added support for a 128-
bit decimal data type called Decimal128. This
data type was needed since Oracle
GoldenGate for Distributed Applications and
Analytics (GG for DAA) supports both integer
and decimal data types that do not fit into a 64-
bit Long or Double. Setting this property to
true enables mapping into the Double128
data type for source data types that require it.
Set to false to process these source data
types as 64-bit Doubles.

gg.handler.name
.enableTransact
ions

Optional true |
false

false Set to true, to enable transactional processing
in MongoDB 4.0 and higher.

Note:

MongoDB added
support for
transactions in
MongoDB version
4.0. Additionally,
the minimum
version of the
MongoDB client
driver is 3.10.1.

8.2.23.5.3 Using Bulk Write
Bulk write is enabled by default. For better throughput, Oracle recommends that you use bulk
write.

You can also enable bulk write by using the BulkWrite handler property. To enable or disable
bulk write use the gg.handler.handler.BulkWrite=true | false. The MongoDB Handler
does not use the gg.handler.handler.mode=op | tx property that is used by Oracle
GoldenGate for Distributed Applications and Analytics (GG for DAA).

Chapter 8
Target

8-363

With bulk write, the MongoDB Handler uses the GROUPTRANSOPS parameter to retrieve the batch
size. The handler converts a batch of trail records to MongoDB documents, which are then
written to the database in one request.

8.2.23.5.4 Using Write Concern
Write concern describes the level of acknowledgement that is requested from MongoDB for
write operations to a standalone MongoDB, replica sets, and sharded-clusters. With sharded-
clusters, Mongo instances pass the write concern on to the shards, see https://
docs.mongodb.com/manual/reference/write-concern/.

Use the following configuration:

w: value
wtimeout: number

8.2.23.5.5 Using Three-Part Table Names
An Oracle GoldenGate trail may have data for sources that support three-part table names,
such as Catalog.Schema.Table. MongoDB only supports two-part names, such as
DBName.Collection. To support the mapping of source three-part names to MongoDB two-part
names, the source Catalog and Schema is concatenated with an underscore delimiter to
construct the Mongo DBName.

For example, Catalog.Schema.Table would become catalog1_schema1.table1.

8.2.23.5.6 Using Undo Handling
The MongoDB Handler can recover from bulk write errors using a lightweight undo engine.
This engine works differently from typical RDBMS undo engines, rather the best effort to assist
you in error recovery. Error recovery works well when there are primary violations or any other
bulk write error where the MongoDB database provides information about the point of failure
through BulkWriteException.

Table 8-32Table 1 lists the requirements to make the best use of this functionality.

Table 8-32 Undo Handling Requirements

Operation to Undo Require Full Before Image in the Trail?

INSERT No

DELETE Yes

UPDATE No (before image of fields in the SET clause.)

If there are errors during undo operations, it may be not possible to get the MongoDB
collections to a consistent state. In this case, you must manually reconcile the data.

8.2.23.6 Security and Authentication
MongoDB Handler uses Oracle GoldenGate credential store to manage user IDs and their
encrypted passwords (together known as credentials) that are used by Oracle GoldenGate
processes to interact with the MongoDB database. The credential store eliminates the need to
specify user names and clear-text passwords in the Oracle GoldenGate parameter files.

Chapter 8
Target

8-364

https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/write-concern/

An optional alias can be used in the parameter file instead of the user ID to map to a userid
and password pair in the credential store.

In Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA), you specify the
alias and domain in the property file and not the actual user ID or password. User credentials
are maintained in secure wallet storage.

To add CREDENTIAL STORE and DBLOGIN run the following commands in the adminclient:

adminclient> add credentialstore
adminclient> alter credentialstore add user <userid> password <pwd> alias
mongo

Example value of userid:

mongodb://myUserAdmin@localhost:27017/admin?replicaSet=rs0

adminclient > dblogin useridalias mongo

To test DBLOGIN, run the following command

adminclient> list tables tcust*

On successful add of authentication to credential store, add the alias in the parameter file of
extract.

Example:

SOURCEDB USERIDALIAS mongo

MongoDB Handler uses connection URI to connect to a MongoDB deployment. Authentication
and Security is passed as query string as part of connection URI. See SSL Configuration
Setup to configure SSL.

To specify access control use userid:

mongodb://<user>@<hostname1>:<port>,<hostname2>:<port>,<hostname3>:<port>/?
replicaSet=<replicatName>

To specify TLS/SSL:

Using connection string prefix of “+srv” as mongodb+srv automatically sets the tls option to
true.

 mongodb+srv://server.example.com/

To disable TLS add tls=false in the query string.

mongodb:// >@<hostname1>:<port>/?replicaSet=<replicatName>&tls=false

To specify Authentication:

Chapter 8
Target

8-365

authSource:

mongodb://<user>@<hostname1>:<port>,<hostname2>:<port>,<hostname3>:<port>/?
replicaSet=<replicatName>&authSource=admin

authMechanism:

mongodb://<user>@<hostname1>:<port>,<hostname2>:<port>,<hostname3>:<port>/?
replicaSet=<replicatName>&authSource=admin&authMechanism=GSSAPI

For more information about Security and Authentication using Connection URL, see Mongo DB
Documentation

• SSL Configuration Setup

8.2.23.6.1 SSL Configuration Setup
To configure SSL between the MongoDB instance and Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) MongoDB Handler, do the following:

Create certificate authority (CA)

openssl req -passout pass:password -new -x509 -days 3650 -extensions v3_ca -
keyout
ca_private.pem -out ca.pem -subj
"/CN=CA/OU=GOLDENGATE/O=ORACLE/L=BANGALORE/ST=KA/C=IN"

Create key and certificate signing requests (CSR) for client and all server nodes

openssl req -newkey rsa:4096 -nodes -out client.csr -keyout client.key -subj
'/CN=certName/OU=OGGBDCLIENT/O=ORACLE/L=BANGALORE/ST=AP/C=IN'
openssl req -newkey rsa:4096 -nodes -out server.csr -keyout server.key -subj
'/CN=slc13auo.us.oracle.com/OU=GOLDENGATE/O=ORACLE/L=BANGALORE/ST=TN/C=IN'

Sign the certificate signing requests with CA

openssl x509 -passin pass:password -sha256 -req -days 365 -in client.csr -CA
ca.pem -CAkey
ca_private.pem -CAcreateserial -out client-signed.crtopenssl x509 -passin
pass:password -sha256 -req -days 365 -in server.csr -CA ca.pem -CAkey
ca_private.pem -CAcreateserial -out server-signed.crt -extensions v3_req -
extfile
 <(cat << EOF[v3_req]subjectAltName = @alt_names
[alt_names]
DNS.1 = 127.0.0.1
DNS.2 = localhost
DNS.3 = hostname
EOF)

Create the privacy enhanced mail (PEM) file for mongod

cat client-signed.crt client.key > client.pem
cat server-signed.crt server.key > server.pem

Chapter 8
Target

8-366

https://docs.mongodb.com/manual/reference/connection-string/
https://docs.mongodb.com/manual/reference/connection-string/

Create trust store and keystore

openssl pkcs12 -export -out server.pkcs12 -in server.pem
openssl pkcs12 -export -out client.pkcs12 -in client.pem

bash-4.2$ ls
ca.pem ca_private.pem client.csr client.pem server-signed.crt
server.key server.pkcs12
ca.srl client-signed.crt client.key client.pkcs12 server.csr
server.pem

Start instances of mongod with the following options:

--tlsMode requireTLS --tlsCertificateKeyFile ../opensslKeys/server.pem --
tlsCAFile
 ../opensslKeys/ca.pem

credentialstore connectionString

alter credentialstore add user
 mongodb://myUserAdmin@localhost:27017/admin?
ssl=true&tlsCertificateKeyFile=../mcopensslkeys/
client.pem&tlsCertificateKeyFilePassword=password&tlsCAFile=../mcopensslkeys/
ca.pem
 password root alias mongo

Note:

The Length of connectionString should not exceed 256.

For CDC Extract, add the key store and trust store as part of the JVM options.

JVM options

-Xms512m -Xmx4024m -Xss32m -Djavax.net.ssl.trustStore=../mcopensslkeys /
server.pkcs12
 -Djavax.net.ssl.trustStorePassword=password
 -Djavax.net.ssl.keyStore =../mcopensslkeys/client.pkcs12
 -Djavax.net.ssl.keyStorePassword=password

8.2.23.7 Reviewing Sample Configurations

Basic Configuration

The following is a sample configuration for the MongoDB Handler from the Java adapter
properties file:

gg.handlerlist=mongodb
gg.handler.mongodb.type=mongodb

#The following handler properties are optional.
#Refer to the Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)

Chapter 8
Target

8-367

documentation
#for details about the configuration.
#gg.handler.mongodb.clientURI=mongodb://localhost:27017/
#gg.handler.mongodb.WriteConcern={w:value, wtimeout: number }
#gg.handler.mongodb.BulkWrite=false
#gg.handler.mongodb.CheckMaxRowSizeLimit=true

goldengate.userexit.timestamp=utc
goldengate.userexit.writers=javawriter
javawriter.stats.display=TRUE
javawriter.stats.full=TRUE
gg.log=log4j
gg.log.level=INFO
gg.report.time=30sec

#Path to MongoDB Java driver.
maven co-ordinates
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>mongo-java-driver</artifactId>
<version>3.10.1</version>
</dependency>
gg.classpath=/path/to/mongodb/java/driver/mongo-java-driver-3.10.1.jar
javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/ggjava.jar:./dirprm

Oracle or MongDB Database Source to MongoDB, AJD, and ATP Target

You can map an Oracle or MongDB Database source table name in uppercase to a table in
MongoDB that is in lowercase. This applies to both table names and schemas. There are two
methods that you can use:

Create a Data Pump
You can create a data pump before the Replicat, which translates names to lowercase. Then
you configure a MongoDB Replicat to use the output from the pump:

extract pmp
exttrail ./dirdat/le
map RAMOWER.EKKN, target "ram"."ekkn";

Convert When Replicating
You can convert table column names to lowercase when replicating to the MongoDB table by
adding this parameter to your MongoDB properties file:

gg.schema.normalize=lowercase

8.2.23.8 MongoDB to AJD/ATP Migration

• Overview

• Configuring MongoDB handler to Write to AJD/ATP

• Steps for Migration

• Best Practices

Chapter 8
Target

8-368

8.2.23.8.1 Overview
Oracle Autonomous JSON Database (AJD) and Autonomous Database for transaction
processing also uses wire protocol to connect. Wire protocol has the same MongoDB CRUD
APIs.

8.2.23.8.2 Configuring MongoDB handler to Write to AJD/ATP
Basic configuration remains the same including optional properties mentioned in this chapter.

The handler uses same protocol (mongodb wire protocol) and same driver jar for Autonomous
databases as that of mongodb for performing all operation in target agnostic manner for
performing the replication. The properties can also be used for any of the supported targets.

The following is a sample configuration for the MongoDB Handler for AJD/ATP from the Java
adapter properties file:

gg.handlerlist=mongodb
gg.handler.mongodb.type=mongodb
#URL mentioned below should be an AJD instance URL
gg.handler.mongodb.clientURI=mongodb://[username]:[password]@[url]?
authSource=$external&authMechanism=PLAIN&ssl=true
#Path to MongoDB Java driver. Maven co-ordinates
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>mongo-java-driver</artifactId>
<version>3.10.1</version>
</dependency>
gg.classpath=/path/to/mongodb/java/driver/mongo-java-driver-3.10.1.jar
javawriter.bootoptions=-Xmx512m -Xms32m -Djava.class.path=.:ggjava/ggjava.jar:./dirprm

8.2.23.8.3 Steps for Migration
To migrate from MongoDB to AJD, first it is required to run initial load. Initial load comprises
inserts operations only. After running initial load, start CDC which keeps the source and target
database synchronized.

1. Start CDC extract and generate trails. Do not start replicat to consume these trail files.

2. Start Initial load extract and wait for initial load to complete.

3. Create a new replicat to consume the initial load trails generated in Step 2. Wait for
completion and then stop replicat.

4. Create a new replicate to consume the CDC trails. Configure this replicat to use
HANDLECOLLISIONS and then start replicat.

5. Wait for the CDC replicat (Step 4) to consume all the trails, check replicat lag, and replicat
RBA to ensure that the CDC replicat has caught up. At this point, the source and target
databases should be in sync.

6. Stop the CDC replicat, remove HANDLECOLLISIONS parameter, and then restart the CDC
replicat.

8.2.23.8.4 Best Practices
For migration from mongoDB to Oracle Autonomous Database (AJD/ATP), following are the
best practices:

Chapter 8
Target

8-369

1. Before running CDC, ensure to run initial load, which loads the initial data using insert
operations.

2. Use bulk mode for running mongoDB handler in order to achieve better throughput.

3. Enable handle-collision while migration to allow replicat to handle any collision error
automatically.

4. In order to insert missing update, ensure to add the INSERTMISSINGUPDATES property in
the.prm file.

8.2.23.9 Configuring an Initial Synchronization of Extract for a MongoDB Source
Database using Precise Instantiation

Data synchronization from a source MongoDB database to a target MongoDB database can be
effectively achieved using the MongoDB dump utility through the method of precise
instantiation.

The method of precise instantiation eliminates the need for collision handling in the target
replicat, which is crucial for maintaining performance. Collision handling can negatively impact
performance due to the necessary conversion of records into appropriate operations to prevent
conflicts and ensure consistency.

This precise instantiation approach involves creating a database snapshot with the MongoDB
dump utility to capture the current data state from the source and transfer it to the target using
MongoDB Restore utility. The oplog dump’s first operation would be aligned as the initial
operation on the Extract side as the starting point of the Change Data Capture (CDC) process.
This alignment guarantees that there is no operational loss or duplication between the initially
dumped data and the CDC trail produced by the extract.

• Synchronization of MongoDB dump with Change Data Capture (CDC) Extract

• Steps with Example

8.2.23.9.1 Synchronization of MongoDB dump with Change Data Capture (CDC) Extract

The MongoDB dump utility enables the extraction of documents, metadata, and index
definitions from a specified collection within a designated database, saving them as a binary
archive file in a chosen directory. When the --oplog option is utilized, a noop entry is added at
the start of the dump. Any operations that take place while the dump is being executed are
recorded directly into the oplog.bson file located in the dump folder. This includes all
operations, such as the noop and any incoming actions that occur during the dump, each
accompanied by a timestamp and additional details. By analyzing the oplog.bson file, one can
determine the first operation that took place during the dump process, along with its timestamp,
provided at least one operation occurred. If no operations were recorded, the analysis will
reveal the first noop entry and its corresponding timestamp.

Once the dump completes, dumped records, metadata and index information can be applied to
the target MongoDB instance using MongoDB restore utility. This will apply all the dumped
data during the dump process.

When initiating the Change Data Capture (CDC) Extract, we will use the timestamp recorded in
the oplog.bson file as previously indicated. This process will begin capturing operations from
the first event that occurs after the completion of the dump process, as the noted timestamp
corresponds to the first operation recorded during the dump or indicates a no-operation (noop)
if no operations took place. This approach guarantees that there are no missing operations or
duplicates between the dumped data and the CDC trail file.

Chapter 8
Target

8-370

8.2.23.9.2 Steps with Example
1. Run the MongoDB dump utility by executing mongodump executable with ---oplog option

from bin folder of MongoDB tools as follows:

$./mongodump --uri="mongodb://localhost:27021" --oplog -v

Sample Output:

./bin/mongodump --uri="mongodb://localhost:27021" --oplog -v
2024-12-12T15:10:50.666+0000 getting most recent oplog timestamp
2024-12-12T15:10:50.694+0000 writing admin.system.version to dump/admin/
system.version.bson
2024-12-12T15:10:50.697+0000 done dumping admin.system.version (1 document)
2024-12-12T15:10:50.697+0000 dumping up to 4 collections in parallel
2024-12-12T15:10:50.698+0000 writing mydb.myColl2 to dump/mydb/myColl2.bson
2024-12-12T15:10:50.699+0000 writing mydb.myColl3 to dump/mydb/myColl3.bson
2024-12-12T15:10:50.699+0000 writing mydb.myColl0 to dump/mydb/myColl0.bson
2024-12-12T15:10:50.699+0000 writing mydb.myColl4 to dump/mydb/myColl4.bson
2024-12-12T15:10:50.739+0000 done dumping mydb.myColl3 (10000 documents)
2024-12-12T15:10:50.740+0000 done dumping mydb.myColl2 (10000 documents)
2024-12-12T15:10:50.741+0000 writing mydb.myColl6 to dump/mydb/myColl6.bson
2024-12-12T15:10:50.742+0000 writing mydb.myColl1 to dump/mydb/myColl1.bson
2024-12-12T15:10:50.748+0000 done dumping mydb.myColl0 (10000 documents)
2024-12-12T15:10:50.748+0000 done dumping mydb.myColl4 (10000 documents)
2024-12-12T15:10:50.748+0000 writing mydb.myColl8 to dump/mydb/myColl8.bson
2024-12-12T15:10:50.748+0000 writing mydb.myColl5 to dump/mydb/myColl5.bson
2024-12-12T15:10:50.770+0000 done dumping mydb.myColl1 (10000 documents)
2024-12-12T15:10:50.773+0000 writing mydb.myColl9 to dump/mydb/myColl9.bson
2024-12-12T15:10:50.786+0000 done dumping mydb.myColl6 (10000 documents)
2024-12-12T15:10:50.786+0000 writing mydb.myColl7 to dump/mydb/myColl7.bson
2024-12-12T15:10:50.793+0000 done dumping mydb.myColl8 (10000 documents)
2024-12-12T15:10:50.801+0000 done dumping mydb.myColl5 (10000 documents)
2024-12-12T15:10:50.806+0000 done dumping mydb.myColl9 (10000 documents)
2024-12-12T15:10:50.810+0000 done dumping mydb.myColl7 (10000 documents)
2024-12-12T15:10:50.811+0000 writing captured oplog to
2024-12-12T15:10:50.812+0000 dumped 1 oplog entry

This will create a dump directory containing binary archive data file and oplog.bson file for
all databases and collections. We can specify the database and collection name if we want
a specific database and collection. For more information, see https://www.mongodb.com/
docs/database-tools/mongodump/

Note:

We can use the option --numParallelCollections to specify the number of
collections to back up in parallel. Default value is 4.

For example:

$./mongodump --uri="mongodb://localhost:27021" --oplog -v
--numParallelCollections 8

2. To analyse the generated oplog.bson file, utilize the MongoDB bsondump utility to convert
it into a human-readable JSON format by executing the following command.

$./bsondump --pretty --outFile path/to/oplog.json path/to/oplog.bson

Chapter 8
Target

8-371

https://www.mongodb.com/docs/database-tools/mongodump/
https://www.mongodb.com/docs/database-tools/mongodump/

After the conversion, review the oplog.json file to carry out the next steps.

3. If no incoming operation occurred during dump process, the oplog.json file will have only
noop entry with timestamp. Note down the timestamp of no-op entry that can be used as
starting point of MongoDB CDC Extract.

{
 "op": "n",
 "ns": "",
 "o": {
 "msg": "periodic noop"
 },
 "ts": {
 "$timestamp": {
 "t": 1726486546,
 "i": 1
 }
 },
 "t": {
 "$numberLong": "1"
 },
 "v": {
 "$numberLong": "2"
 },
 "wall": {
 "$date": {
 "$numberLong": "1726486546549"
 }
 }
}

4. If there exists one or more incoming operation during the dump process, the oplog.json file
will contain the entries for all those incoming operations (with timestamp) along with no-op.
Note down the timestamp of first incoming operation logged in the oplog.json file that
would be used as starting position for MongoDB CDC Extract as follows:

{
 "lsid": {
 "id": {
 "$binary": {
 "base64": "teT9VByFTI2COKwsVbp8/g==",
 "subType": "04"
 }
 },
 "uid": {
 "$binary": {
 "base64": "47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=",
 "subType": "00"
 }
 }
 },
 "txnNumber": {
 "$numberLong": "1"
 },
 "op": "i",
 "ns": "mydb.myColl",
 "ui": {
 "$binary": {
 "base64": "BFAoef89RNC1kObCDV+8SA==",
 "subType": "04"
 }
 },
 "o": {

Chapter 8
Target

8-372

 "_id": {
 "$numberInt": "10000006"
 },
 "Name": "TEST DATA 006",
 "EmployeeID": {
 "$numberInt": "1006"
 },
 "Designation": "Sr. Software Engineer",
 "Level": "MGR",
 "Age": {
 "$numberInt": "75"
 },
 "Qualification": "Masters",
 "Address": {
 "Street": "Street_65",
 "City": "City_35",
 "Nationality": "German"
 }
 },
 "ts": {
 "$timestamp": {
 "t": 1726486553,
 "i": 2
 }
 },
 "t": {
 "$numberLong": "1"
 },
 "v": {
 "$numberLong": "2"
 },
 "wall": {
 "$date": {
 "$numberLong": "1726486553788"
 }
 },
 "stmtId": {
 "$numberInt": "1"
 },
 "prevOpTime": {
 "ts": {
 "$timestamp": {
 "t": 1726486553,
 "i": 1
 }
 },
 "t": {
 "$numberLong": "1"
 }
 }
}

5. Use MongoDB restore utility to restore data from a backup created with mongodump. Run
the MongoDB restore utility under the bin folder of mongo tools: $./mongorestore --
uri="mongodb://localhost:27021". This will dump all data along with metadata and index
definitions to target MongoDB instance as follows:

$./mongorestore --uri="mongodb://localhost:27021"

Sample outcome:
2024-12-12T15:17:56.593+0000 using write concern: &{majority <nil> 0s}
2024-12-12T15:17:56.598+0000 using default 'dump' directory

Chapter 8
Target

8-373

2024-12-12T15:17:56.598+0000 preparing collections to restore from
2024-12-12T15:17:56.598+0000 found collection admin.system.version bson to
restore to admin.system.version
2024-12-12T15:17:56.598+0000 found collection metadata from admin.system.version
to restore to admin.system.version
2024-12-12T15:17:56.598+0000 found collection mydb.myColl0 bson to restore to
mydb.myColl0
2024-12-12T15:17:56.598+0000 found collection metadata from mydb.myColl0 to
restore to mydb.myColl0
2024-12-12T15:17:56.598+0000 found collection mydb.myColl1 bson to restore to
mydb.myColl1
2024-12-12T15:17:56.598+0000 found collection metadata from mydb.myColl1 to
restore to mydb.myColl1
2024-12-12T15:17:56.598+0000 found collection mydb.myColl2 bson to restore to
mydb.myColl2
2024-12-12T15:17:56.598+0000 found collection metadata from mydb.myColl2 to
restore to mydb.myColl2
2024-12-12T15:17:56.598+0000 found collection mydb.myColl3 bson to restore to
mydb.myColl3
2024-12-12T15:17:56.598+0000 found collection metadata from mydb.myColl3 to
restore to mydb.myColl3
2024-12-12T15:17:56.598+0000 found collection mydb.myColl4 bson to restore to
mydb.myColl4
2024-12-12T15:17:56.598+0000 found collection metadata from mydb.myColl4 to
restore to mydb.myColl4
2024-12-12T15:17:56.598+0000 found collection mydb.myColl5 bson to restore to
mydb.myColl5
2024-12-12T15:17:56.598+0000 found collection metadata from mydb.myColl5 to
restore to mydb.myColl5
2024-12-12T15:17:56.598+0000 reading metadata for mydb.myColl0 from dump/mydb/
myColl0.metadata.json
2024-12-12T15:17:56.598+0000 reading metadata for mydb.myColl4 from dump/mydb/
myColl4.metadata.json
2024-12-12T15:17:56.598+0000 reading metadata for mydb.myColl3 from dump/mydb/
myColl3.metadata.json
2024-12-12T15:17:56.599+0000 reading metadata for mydb.myColl5 from
dump/mydb/myColl9.metadata.json
2024-12-12T15:17:56.599+0000 reading metadata for mydb.myColl1 from dump/mydb/
myColl1.metadata.json
2024-12-12T15:17:56.599+0000 reading metadata for mydb.myColl2 from dump/mydb/
myColl2.metadata.json
2024-12-12T15:17:56.605+0000 creating collection mydb.myColl3 with no metadata
2024-12-12T15:17:56.608+0000 creating collection mydb.myColl0 with no metadata
2024-12-12T15:17:56.656+0000 restoring mydb.myColl3 from dump/mydb/myColl3.bson
2024-12-12T15:17:56.667+0000 restoring mydb.myColl0 from dump/mydb/myColl0.bson
2024-12-12T15:17:56.885+0000 creating collection mydb.myColl2 with no metadata
2024-12-12T15:17:56.913+0000 restoring mydb.myColl2 from dump/mydb/myColl2.bson
2024-12-12T15:17:56.947+0000 finished restoring mydb.myColl0 (10000 documents, 0
failures)
2024-12-12T15:17:56.947+0000 creating collection mydb.myColl1 with no metadata
2024-12-12T15:17:56.949+0000 finished restoring mydb.myColl3 (10000 documents, 0
failures)
2024-12-12T15:17:56.949+0000 creating collection mydb.myColl4 with no metadata
2024-12-12T15:17:56.976+0000 restoring mydb.myColl1 from dump/mydb/myColl1.bson
2024-12-12T15:17:56.980+0000 restoring mydb.myColl4 from dump/mydb/myColl4.bson
2024-12-12T15:17:57.214+0000 creating collection mydb.myColl5 with no metadata
2024-12-12T15:17:57.229+0000 finished restoring mydb.myColl2 (10000 documents, 0
failures)
2024-12-12T15:17:57.230+0000 restoring mydb.myColl5 from dump/mydb/myColl5.bson
2024-12-12T15:17:57.269+0000 finished restoring mydb.myColl4 (10000 documents, 0
failures)
2024-12-12T15:17:57.269+0000 finished restoring mydb.myColl1 (10000 documents, 0

Chapter 8
Target

8-374

failures)
2024-12-12T15:17:57.445+0000 finished restoring mydb.myColl5 (10000 documents, 0
failures)
2024-12-12T15:17:57.474+0000 100000 document(s) restored successfully. 0
document(s) failed to restore.

6. After the MongoDB restored, the initial load is completed. After initial load is done,
configure MongoDB CDC Extract to begin with Position in Log with Log Sequence Number
(LSN): as the timestamp that has been captured in step 3 or step 4. For example: The first
timestamp captured from the oplog.json file is $timestamp:{ “t”:1726173148, “i”:1},
the format to be provided is t.i , which is 1726173148.1. This will make sure precise
initiation is configured so that it does not encounter duplicates or miss any of the
documents.

8.2.23.10 MongoDB Handler Client Dependencies
What are the dependencies for the MongoDB Handler to connect to MongoDB databases?

Oracle GoldenGate requires version 4.6.0 MongoDB reactive streams for integration with
MongoDB. You can download this driver from: https://search.maven.org/artifact/org.mongodb/
mongodb-driver-reactivestreams

Note:

If the Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
version is 21.7.0.0.0 and below, the driver version is MongoDB Java Driver 3.12.8.
For Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
versions 21.8.0.0.0 and above, the driver version is MongoDB Java Driver 4.6.0.

• MongoDB Java Driver 4.6.0

• MongoDB Java Driver 3.12.8

8.2.23.10.1 MongoDB Java Driver 4.6.0
The required dependent client libraries are:

• bson-4.6.0.jar
• bson-record-codec-4.6.0.jar
• mongodb-driver-core-4.6.0.jar
• mongodb-driver-legacy-4.6.0.jar
• mongodb-driver-legacy-4.6.0.jar
• mongodb-driver-sync-4.6.0.jar
The Maven coordinates of these third-party libraries that are needed to run MongoDB replicat
are:

<dependency>

 <groupId>org.mongodb</groupId>
 <artifactId>mongodb-driver-legacy</artifactId>
 <version>4.6.0</version>
 </dependency>

 <dependency>

Chapter 8
Target

8-375

https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/big-data/21.1/gadbd&id=mongo-java
https://docs.oracle.com/pls/topic/lookup?ctx=en/middleware/goldengate/big-data/21.1/gadbd&id=mongo-java

 <groupId>org.mongodb</groupId>
 <artifactId>mongodb-driver-sync</artifactId>
 <version>4.6.0</version>
</dependency>

Example

Download the latest version from Maven central at: https://central.sonatype.com/artifact/
org.mongodb/mongodb-driver-reactivestreams/4.6.0.

8.2.23.10.2 MongoDB Java Driver 3.12.8
You must include the path to the MongoDB Java driver in the gg.classpath property. To
automatically download the Java driver from the Maven central repository, add the following
lines in the pom.xml file, substituting your correct information:

<!-- https://mvnrepository.com/artifact/org.mongodb/mongo-java-driver -->
<dependency>
 <groupId>org.mongodb</groupId>
 <artifactId>mongo-java-driver</artifactId>
 <version>3.12.8</version>
</dependency>

8.2.24 Netezza
You can replicate to Netezza using Command event Handler in conjunction with Flat Files.

8.2.25 OCI Streaming
Oracle Cloud Infrastructure Streaming (OCI Streaming) supports putting messages to and
receiving messages using the Kafka client. Therefore, Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) can be used to publish change data capture operation
messages to OCI Streaming.

You can use either the Kafka Handler or the Kafka Connect Handler. The Kafka Connect
Handler only supports using the JSON Kafka Connect converter. The Kafka Connect Avro
converter is not supported because the Avro converter requires connectivity to a schema
registry.

Note:

The Oracle Streaming Service currently does not have a schema registry to which
the Kafka Connect Avro converter can connect. Streams to which the Kafka Handlers
or the Kafka Connect Handlers publish messages must be pre-created in Oracle
Cloud Infrastructure (OCI). Using the Kafka Handler to publish messages to a stream
in OSS which does not already exist results in a runtime exception.

• To create a stream in OCI, in the OCI console. select Analytics, click Streaming, and then
click Create Stream. Streams are created by default in the DefaultPool.

Chapter 8
Target

8-376

https://central.sonatype.com/artifact/org.mongodb/mongodb-driver-reactivestreams/4.6.0
https://central.sonatype.com/artifact/org.mongodb/mongodb-driver-reactivestreams/4.6.0

Figure 8-1 Example Image of Stream Creation

• The Kafka Producer client requires certain Kafka producer configuration properties to
connect to OSS streams. To obtain this connectivity information, click the pool name in the
OSS panel. If DefaultPool is used, then click DefaultPool in the OSS panel.

Figure 8-2 Example OSS Panel showing DefaultPool

Chapter 8
Target

8-377

Figure 8-3 Example DefaultPool Properties

• The Kafka Producer also requires an AUTH-TOKEN (password) to connect to OSS. To
obtain an AUTH-TOKEN go to the User Details page and generate an AUTH-TOKEN. AUTH-
TOKENs are only viewable at creation and are not subsequently viewable. Ensure that you
store the AUTH-TOKEN in a safe place.

Figure 8-4 Auth-Tokens

Once you have these configurations, you can publish messages to OSS.

For example, kafka.prm file:

replicat kafka
TARGETDB LIBFILE libggjava.so SET property=dirprm/kafka.properties
map *.*, target qatarget.*;

Example: kafka.properties file:

gg.log=log4j
gg.log.level=debug
gg.report.time=30sec
gg.handlerlist=kafkahandler
gg.handler.kafkahandler.type=kafka
gg.handler.kafkahandler.mode=op
gg.handler.kafkahandler.format=json
gg.handler.kafkahandler.kafkaProducerConfigFile=oci_kafka.properties
The following dictates how we'll map the workload to the target OSS streams
gg.handler.kafkahandler.topicMappingTemplate=OGGBD-191002
gg.handler.kafkahandler.keyMappingTemplate=${tableName}

Chapter 8
Target

8-378

gg.classpath=/home/opc/dependencyDownloader/dependencies/kafka_2.2.0/*
jvm.bootoptions=-Xmx512m -Xms32m -Djava.class.path=ggjava/ggjava.jar:dirprm

Example Kafka Producer Properties (oci_kafka.properties)

bootstrap.servers=cell-1.streaming.us-phoenix-1.oci.oraclecloud.com:9092
security.protocol=SASL_SSL
sasl.mechanism=PLAIN
value.serializer=org.apache.kafka.common.serialization.ByteArraySerializer
key.serializer=org.apache.kafka.common.serialization.ByteArraySerializer
sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required
username="paasdevgg/oracleidentitycloudservice/user.name@oracle.com/
ocid1.streampool.oc1.phx.amaaaaaa3p5c3vqa4hfyl7uv465pay4audmoajughhxlsgj7afc2an5u3xaq"
password="YOUR-AUTH-TOKEN";

To view the messages, click Load Messages in OSS.

Figure 8-5 Viewing the Messages

8.2.26 Oracle NoSQL
The Oracle NoSQL Handler can replicate transactional data from Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) to a target Oracle NoSQL Database.

This chapter describes how to use the Oracle NoSQL Handler.

• Overview

• On-Premise Connectivity

• OCI Cloud Connectivity

• Oracle NoSQL Types

Chapter 8
Target

8-379

• Oracle NoSQL Handler Configuration

• Performance Considerations

• Operation Processing Support

• Column Processing

• Table Check and Reconciliation Process

• Oracle NoSQL SDK Dependencies

8.2.26.1 Overview
Oracle NoSQL Database is a NoSQL-type distributed key-value database. It provides a
powerful and flexible transaction model that greatly simplifies the process of developing a
NoSQL-based application. It scales horizontally with high availability and transparent load
balancing even when dynamically adding new capacity.

Starting from the Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
23ai release, the Oracle NoSQL Handler has been changed to use the Oracle NoSQL Java
SDK to communicate with Oracle NoSQL. The Oracle NoSQL Java SDK supports both on-
premise and OCI cloud instances of Oracle NoSQL. Make sure to read the documentation
because connecting to on-premise verses OCI cloud instances of Oracle NoSQL both require
specialized configuration parameters and possibly some setup.

For more information about Oracle NoSQL Java SDK, see Oracle NoSQL SDK for Java.

8.2.26.2 On-Premise Connectivity
The Oracle NoSQL Java SDK requires that connectivity route through the Oracle NoSQL
Database Proxy. The Oracle NoSQL Database Proxy is a separate process which enables the
http/https interface of Oracle NoSQL. The Oracle NoSQL Java SDK uses the http/https
interface. Oracle GoldenGate effectively communicates with the on-premise Oracle NoSQL
instance through the Oracle NoSQL Database Proxy process.

For more information on the Oracle NoSQL Database Proxy including setup instructions, see
Connecting to the Oracle NoSQL Database On-premise.

Connectivity to the Oracle NoSQL Database Proxy requires mutual authentication whereby the
client authenticates the server and the server authenticates the client.

• Server Authentication

• Client Authentication

• Sample On-Premise Oracle NoSQL Configuration

8.2.26.2.1 Server Authentication
Upon initial connection, the Oracle NoSQL Database Proxy process passes a certificate to the
Oracle NoSQL Java SDK (Oracle NoSQL Handler). The Oracle NoSQL Java SDK then verifies
the certificate against a certificate in a configured trust store. After the certificate received from
the proxy has been verified against the trust store, the client has authenticated the server.

8.2.26.2.2 Client Authentication
Upon initial connection, the Oracle NoSQL Java SDK (Oracle NoSQL Handler) passes
credentials (username and password) to the Oracle NoSQL Database Proxy. These credentials
are used for the NoSQL On-Premise instance to client.

Chapter 8
Target

8-380

https://github.com/oracle/nosql-java-sdk
https://github.com/oracle/nosql-java-sdk#connecting-to-the-oracle-nosql-database-on-premise

8.2.26.2.3 Sample On-Premise Oracle NoSQL Configuration

gg.handlerlist=nosql
gg.handler.nosql.type=nosql
gg.handler.nosql.nosqlURL=https://localhost:5555
gg.handler.nosql.ddlHandling=CREATE,ADD,DROP
gg.handler.nosql.interactiveMode=false
#Client Credentials
gg.handler.nosql.username={your username}
gg.handler.nosql.password={your password}
gg.handler.nosql.mode=op
Set the gg.classpath to pick up the Oracle NoSQL Java SDK
gg.classpath=/path/to/the/SDK/*
Set the -D options in the bootoptions to resolve the trust store location
and password
jvm.bootoptions=-Xmx512m -Xms32m -Djavax.net.ssl.trustStore=/usr/nosql/
kv-20.3.17/USER/security/driver.trust -
Djavax.net.ssl.trustStorePassword={your trust store password}

8.2.26.3 OCI Cloud Connectivity
Connectivity to an OCI Cloud instance of Oracle NoSQL is easier as it does not require the
Oracle NoSQL Database Proxy required by the on-premise instance. Again, there is mutual
authentication whereby the client authenticates the server and the server authenticates the
client.

• Server Authentication

• Client Authentication

• Sample Cloud Oracle NoSQL Configuration

• Sample OCI Configuration file

8.2.26.3.1 Server Authentication
Upon initial connection, the Oracle NoSQL cloud instance passes a CA signed certificate to the
client. The client then authenticates this CA signed certificate with the Certificate Authority.
Once complete, the client has authenticated the server.

8.2.26.3.2 Client Authentication
Upon initial connection, the fingerprint, keyfile, and pass_phrase properties are used for
the server to authenticate the client.

8.2.26.3.3 Sample Cloud Oracle NoSQL Configuration

gg.handlerlist=nosql
gg.handler.nosql.type=nosqlNoSQLSdkHandler
#gg.handler.nosql.type=nosql
gg.handler.nosql.ddlHandling=CREATE,ADD,DROP
gg.handler.nosql.interactiveMode=false
gg.handler.nosql.region=us-sanjose-1
gg.handler.nosql.configFilePath=/path/to/the/OCI/conf/file/nosql.conf

Chapter 8
Target

8-381

gg.handler.nosql.compartmentId=ocid1.compartment.oc1..aaaaaaaae2aedhka4jlb3h6z
hpaonaoktmg53adwkhwjflvv6hihz5cvwfeq
gg.handler.nosql.storageGb=10
gg.handler.nosql.readUnits=50
gg.handler.nosql.writeUnits=50
gg.handler.nosql.mode=op
Set the gg.classpath to pick up the Oracle NoSQL Java SDK
gg.classpath=/path/to/the/SDK/*

8.2.26.3.4 Sample OCI Configuration file

[DEFAULT]
user=ocid1.user.oc1..aaaaaaaaammf6u5h4wsmiuk52us5vnqhnnyzexkn56cqijlyo4vaao2jz
i3a
fingerprint=77:53:2c:e5:31:81:48:c3:3d:af:60:cf:e0:42:5c:7f
tenancy=ocid1.tenancy.oc1..aaaaaaaattuxbj75pnn3nksvzyidshdbrfmmeflv4kkemajroz2
thvca4kba
region=us-sanjose-1
key_file=/home/username/OracleNoSQL/lastname.firstname-04-13-18-51.pem
openssl rsa -aes256 -in in.pem -out out.pem

tenancy
The Tenancy ID is displayed at the bottom of the Console page.

region
The region is displayed with the header session drop-down menu in the Console.

fingerprint
To generate the fingerprint, use the How to Get the Key's Fingerprint instructions at:
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm

key_file
You need to share the public and private key to establish a connection with Oracle Cloud
Infrastructure. To generate the keys, use the How to Generate an API Signing Keyat:
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm

pass_phrase
This is an optional property. It is used to configure the passphrase if the private key in the pem
file is protected with a passphase. The following openssl command can be used to take an
unprotected private key pem file and add a passphrase.
The following command prompts the user for the passphrase:

openssl rsa -aes256 -in in.pem -out out.pem

For more information, see Configuring Credentials for Oracle Cloud Infrastructure.

8.2.26.4 Oracle NoSQL Types
Oracle NoSQL provides a number of column data types and most of these data types are
supported by the Oracle NoSQL Handler. A data type conversion from the column value in the
trail file to the corresponding Java type representing the Oracle NoSQL column type in the
Oracle NoSQL Handler is required.

Chapter 8
Target

8-382

https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm

The Oracle NoSQL Handler does not support Array, Map and Record data types by default. To
support them, you can implement a custom data converter and override the default data type
conversion logic to override it with your own custom logic to support your use case. Contact
Oracle Support for guidance.

The following Oracle NoSQL data types are supported:

• Binary

• Boolen

• Double

• Integer

• Number

• String

• Timestamp

The following Oracle NoSQL data types are not supported:

• Array

• Map

8.2.26.5 Oracle NoSQL Handler Configuration

Properties Req
uire
d/
Opti
onal

Legal
Values

Default Explanation

gg.handler.name.
type

Requ
ired

nosql None Selects the Oracle NoSQL Handler.

gg.handler.name.
interactiveMode

Optio
nal

true|
false

true When set to true, the NoSQL handler will process
one operation at a time. When set to false, the
NoSQL Handler will process the batch perations at
transaction commit. Batching has limitations. Batched
operations must be separated by table and all batch
operations for a table must have a common shared
key(s).

gg.handler.name.
ddlHandling

Optio
nal

CREATE
, ADD,
DROP in
any
combin
ation
separat
ed by a
comma
delimite
r

None Configure the Oracle NoSQL Handler for the DDL
functionality to provide. Options include CREATE, ADD,
and DROP.
• When CREATE is enabled, the handler creates

tables in Oracle NoSQL if a corresponding table
does not exist.

• When ADD is enabled, the handler adds columns
that exist in the source table definition, but do not
exist in the corresponding target Oracle NoSQL
table definition.

• When DROP is enabled, the handler drops
columns that exist in the Oracle NoSQL table
definition, but do not exist in the corresponding
source table definition.

gg.handler.name.
retries

Optio
nal

Positive
Integer

3 The number of retries on any read or write exception
that the Oracle NoSQL Handler encounters.

Chapter 8
Target

8-383

Properties Req
uire
d/
Opti
onal

Legal
Values

Default Explanation

gg.handler.name.
requestTimeout

Optio
nal

Positive
Integer

30000 The maximum time in milliseconds for a NoSQL
request to wait for a response. If the timeout is
exceeded, the call is assumed to have failed.

gg.handler.name.
noSQLURL

Optio
nal

A valid
URL
includin
g
protocol
.

None On-premise only. Used to set the connectivity URL for
the NoSQL proxy instance.

gg.handler.name.
username

Optio
nal

String None On-premise only. Used to set the username for
connectivity to an on-premise NoSQL instance
through the NoSQL proxy process.

gg.handler.name.
password

Optio
nal

String None On-premise only. Used to set the password for
connectivity to an on-premise NoSQL instance
through the NoSQL proxy process.

gg.handler.name.
compartmentId

Optio
nal

The
OCID of
an
Oracle
NoSQL
compart
ment on
OCI.

None Cloud only. The OCID of an Oracle NoSQL cloud
instance compartment on OCI.

gg.handler.name.
region

Optio
nal

Legal
Oracle
OCI
region
name.

None Cloud only. The OCI region name of an Oracle
NoSQL cloud instance.

gg.handler.name.
configFilePath

Optio
nal

A legal
path
and file
name.

None Cloud only. Set the path and file name of the config
file containing the Oracle OCI information on the
user, fingerprint, tenancy, region, and key-file.

gg.handler.name.
profile

Optio
nal

None "DEFAULT
"

Cloud only. Sets the named sub-section in the
gg.handler.name.configFilePath. OCI config
files can contain multiple entries and the naming
specifies which entry to use.

gg.handler.name.
storageGb

Optio
nal

Positive
Integer

10 Cloud only. Oracle NoSQL tables created in a cloud
instance must be configured with a maximum storage
size. This sets that configuration for tables created by
the Oracle NoSQL Handler.

gg.handler.name.
readUnits

Optio
nal

Positive
Integer

50 Cloud only. Oracle NoSQL tables created in an OCI
cloud instance must be configured with read units
which is the maximum read throughput. Each unit is
1KB per second.

gg.handler.name.
writeUnits

Optio
nal

Positive
Integer

50 Cloud only. Oracle NoSQL tables created in an OCI
cloud instance must be configured with write units
which is the maximum write throughput. Each unit is
1KB per second.

Chapter 8
Target

8-384

Properties Req
uire
d/
Opti
onal

Legal
Values

Default Explanation

gg.handler.name.
abendOnUnmappedC
olumns

Optio
nal

true|
false

true Set to true if the desired behavior of the handler is
to abend when a column is found in the source table
but the column does not exist in the target NoSQL
table. Set to false if the desired behavior is for the
handler to ignore columns found in the source table
for which no corresponding column exists in the
target NoSQL table.

gg.handler.name.
dataConverterCla
ss

Optio
nal

The
fully
qualifie
d data
convert
er class
name.

The
default
data
converter.

The custom data converter can be implemented to
override the default data conversion logic to support
your specific use case. Must be included in the
gg.classpath to be used.

gg.handler.name.
timestampPattern

Optio
nal

A legal
pattern
for
parsing
timesta
mps as
they
exist in
the
source
trail file.

yyyy-MM-
dd
HH:mm:ss

This feature can be used to parse source field data
into timestamps for timestamp target fields. The
pattern needs to follow the Java convention for
timestamp patterns and source data needs to
conform to the pattern.

gg.handler.name.
proxyServer

Optio
nal

None The proxy
server host
name.

Used to configure the forwarding proxy server host
name for connectivity of on-premise Oracle
GoldenGate for Distributed Applications and
Analytics (GG for DAA) to Oracle Cloud Infrastructure
(OCI) cloud instances of Oracle NoSQL. You must
use at least version 5.2.27 of the Oracle NoSQL Java
SDK.

gg.handler.name.
proxyPort

Optio
nal

80 Positive
Integer

Used to configure the forwarding proxy server port
number for connectivity of on-premise GG for DAA to
OCI cloud instances of Oracle NoSQL. You must use
at least version 5.2.27 of the Oracle NoSQL Java
SDK.

gg.handler.name.
proxyUsername

Optio
nal

None String Used to configure the username of the forwarding
proxy for connectivity of on-premise GG for DAA to
OCI cloud instances of Oracle NoSQL if applicable.
Most proxy servers do not require credentials. You
must use at least version 5.2.27 of the Oracle NoSQL
Java SDK.

gg.handler.name.
proxyPassword

Optio
nal

None String Used to configure the password of the forwarding
proxy for connectivity of on-premise GG for DAA to
OCI cloud instances of Oracle NoSQL if applicable.
Most proxy servers do not require credentials. Must
use at least version 5.2.27 of the Oracle NoSQL Java
SDK.

Chapter 8
Target

8-385

8.2.26.6 Performance Considerations
When then NoSQL Handler is processing in interactive mode, operations are processing one
at a time as they are received by the NoSQL Handler.

The NoSQL Handler will process in bulk mode if the following parameter is set.

gg.handler.name.interactiveMode=false
The NoSQL SDK allows bulk processing of operations for operations which meet the following
criteria:

1. Operations must be for the same NoSQL table.

2. Operations mush be in the same NoSQL shard (have the same shard key or shard key
values).

3. Only one operation per row exists in the batch.

When interactive mode is set to false, the NoSQL handler group operations by table and
shard key, and deduplicates operations for the same row.

An example of Deduplication: If there is an insert and an update for a row, then only the update
operation is processed if the operations fall within the same transaction or replicat grouped
transaction.

The NoSQL handler may provide better performance when interactive mode is set to false.
However, for the interactive mode to provide better performance, operations need to be
groupable by the above criteria. If operations are not groupable by the above criteria or if
operations or bulk mode only provide grouping into very small batches, then bulk mode may
not provide much or any improvement in performance.

8.2.26.7 Operation Processing Support
The Oracle NoSQL Handler moves operations to Oracle NoSQL using synchronous API. The
insert, update, and delete operations are processed differently in Oracle NoSQL databases
rather than in a traditional RDBMS:

The following explains how insert, update, and delete operations are interpreted by the handler
depending on the mode of operation:

• insert: If the row does not exist in your database, then an insert operation is processed as
an insert. If the row exists, then an insert operation is processed as an update.

• update: If a row does not exist in your database, then an update operation is processed as
an insert. If the row exists, then an update operation is processed as update.

• delete: If the row does not exist in your database, then a delete operation has no effect. If
the row exists, then a delete operation is processed as a delete.

The state of the data in Oracle NoSQL databases is idempotent. You can replay the source
trail files or replay sections of the trail files. Ultimately, the state of an Oracle NoSQL database
is the same regardless of the number of times the trail data was written into Oracle NoSQL.

Primary key values for a row in Oracle NoSQL databases are immutable. An update operation
that changes any primary key value for a Oracle NoSQL row must be treated as a delete and
insert. The Oracle NoSQL Handler can process update operations that result in the change of
a primary key in an Oracle NoSQL database only as a delete and insert. To successfully
process this operation, the source trail file must contain the complete before and after change
data images for all columns.

Chapter 8
Target

8-386

8.2.26.8 Column Processing
You can configure the Oracle NoSQL Handler to add columns that exist in the source trail file
table definition though are missing in the Oracle NoSQL table definition. The Oracle NoSQL
Handler can accommodate metadata change events of adding a column. A reconciliation
process occurs that reconciles the source table definition to the Oracle NoSQL table definition.
When configured to add columns, any columns found in the source table definition that do not
exist in the Oracle NoSQL table definition are added. The reconciliation process for a table
occurs after application start up the first time an operation for the table is encountered. The
reconciliation process reoccurs after a metadata change event on a source table, when the first
operation for the source table is encountered after the change event.
Drop Column Functionality

Similar to adding, you can configure the Oracle NoSQL Handler to drop columns. The Oracle
NoSQL Handler can accommodate metadata change events of dropping a column. A
reconciliation process occurs that reconciles the source table definition to the Oracle NoSQL
table definition. When configured to drop columns, any columns found in the Oracle NoSQL
table definition that are not in the source table definition are dropped.

Caution:

Dropping a column is potentially dangerous because it is permanently removing data
from an Oracle NoSQL Database. Carefully consider your use case before
configuring dropping.

Primary key columns cannot be dropped.

Column name changes are not handled well because there is no DDL-processing. The Oracle
NoSQL Handler can handle any case change for the column name. A column name change
event on the source database appears to the handler like dropping an existing column and
adding a new column.

8.2.26.9 Table Check and Reconciliation Process
1. The Oracle NoSQL Handler interrogates the target Oracle NoSQL database for the table

definition. If the table does not exist, the Oracle NoSQL Handler does one of two things. If
gg.handler.name.ddlHandling includes CREATE, then a table is created in the database.
Otherwise, the process abends and a message is logged that tells you the table that does
not exist.

2. If the table exists in the Oracle NoSQL database, then the Oracle NoSQL Handler
performs a reconciliation between the table definition from the source trail file and the table
definition in the database. This reconciliation process searches for columns that exist in the
source table definition and not in the corresponding database table definition. If it locates
columns fitting this criteria and the gg.handler.name.ddlHandling property includes
ADD, then the Oracle NoSQL Handler alters the target table in the database to add the
new columns. Otherwise the columns missing in the target will not be added. If the
property gg.handler.name.abendOnUnmappedColumns is set to true, then the NoSQL
Handler will abend. Else, if the configuration propery
gg.handler.name.abendOnUnmappedColumns is set to false, then the NoSQL Handler will
continue the process and will not replicat data for the columns which exist in the source
table and do not exist in the target NoSQL table.

Chapter 8
Target

8-387

3. The reconciliation process searches for columns that exist in the target Oracle NoSQL and
do not exist in the source table definition. If it locates columns fitting this criteria and the
gg.handler.name.ddlHandling property includes DROP, then the Oracle NoSQL Handler
alters the target table in Oracle NoSQL to drop these columns. Otherwise, those columns
are ignored.

• Full Image Data Requirements

8.2.26.9.1 Full Image Data Requirements
In Oracle NoSQL, update operations perform a complete reinsertion of the data for the entire
row. This Oracle NoSQL feature improves ingest performance, but in turn levies a critical
requirement. Updates must include data for all columns, also known as full image updates.
Partial image updates are not supported (updates with just the primary key information and
data for the columns that changed). Using the Oracle NoSQL Handler with partial image
update information results in incomplete data in the target NoSQL table.

8.2.26.10 Oracle NoSQL SDK Dependencies

The maven coordinates are as follows:

Maven groupId: com.oracle.nosql.sdk
Maven artifactId: nosqldriver
Version: 5.2.27
• Oracle NoSQL SDK Dependencies 5.2.27

8.2.26.10.1 Oracle NoSQL SDK Dependencies 5.2.27
bcpkix-jdk15on-1.68.jar
bcprov-jdk15on-1.68.jar
jackson-core-2.12.1.jar
netty-buffer-4.1.63.Final.jar
netty-codec-4.1.63.Final.jar
netty-codec-http-4.1.63.Final.jar
netty-codec-socks-4.1.63.Final.jar
netty-common-4.1.63.Final.jar
netty-handler-4.1.63.Final.jar
netty-handler-proxy-4.1.63.Final.jar
netty-resolver-4.1.63.Final.jar
netty-transport-4.1.63.Final.jar
nosqldriver-5.2.27.jar

8.2.27 OCI Autonomous Data Warehouse
Oracle Autonomous Data Warehouse (ADW) is a fully managed database tuned and optimized
for data warehouse workloads with the market-leading performance of Oracle Database.

• Detailed Functionality
The ADW Event handler is used as a downstream Event handler connected to the output
of the OCI Object Storage Event handler. The OCI Event handler loads files generated by
the File Writer Handler into Oracle OCI Object storage. All the SQL operations are
performed in batches providing better throughput.

• ADW Database Credential to Access OCI ObjectStore File

Chapter 8
Target

8-388

• ADW Database User Privileges
ADW databases come with a predefined database role named DWROLE. If the ADW 'admin'
user is not being used, then the database user needs to be granted the role DWROLE.

• Unsupported Operations/ Limitations

• Troubleshooting and Diagnostics

• Classpath
ADW apply relies on the upstream File Writer handler and the OCI Event handler. Include
the required jars needed to run the OCI Event handler in gg.classpath.

• Configuration

8.2.27.1 Detailed Functionality
The ADW Event handler is used as a downstream Event handler connected to the output of
the OCI Object Storage Event handler. The OCI Event handler loads files generated by the File
Writer Handler into Oracle OCI Object storage. All the SQL operations are performed in
batches providing better throughput.

8.2.27.2 ADW Database Credential to Access OCI ObjectStore File
To access the OCI ObjectStore File:

1. A PL/SQL procedure needs to be run to create a credential to access Oracle Cloud
Infrastructure (OCI) Object store files.

2. An OCI authentication token needs to be generated under User settings from the OCI
console. For example:

BEGIN DBMS_CLOUD.create_credential
 (credential_name =>
 'OGGBD-CREDENTIAL', username => 'oci-user', password =>
 'oci-user');
 END;
 /

3. The credential name can be configured using the followng property:
gg.eventhandler.adw.objectStoreCredential. For example:
gg.eventhandler.adw.objectStoreCredential=OGGBD-CREDENTIAL.

8.2.27.3 ADW Database User Privileges
ADW databases come with a predefined database role named DWROLE. If the ADW 'admin' user
is not being used, then the database user needs to be granted the role DWROLE.

This role provides the privileges required for data warehouse operations. For example, the
following command grants DWROLE to the user dbuser-1:

GRANT DWROLE TO dbuser-1;

Chapter 8
Target

8-389

Note:

Ensure that you do not use Oracle-created database user ggadmin for ADW
replication, because this user lacks the INHERIT privilege.

8.2.27.4 Unsupported Operations/ Limitations
• DDL changes are not supported.

• Replication of Oracle Object data types are not supported.

• If the GoldenGate trail is generated by Oracle Integrated capture, then for the UPDATE
operations on the source LOB column, only the changed portion of the LOB is written to
the trail file. Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
Autonomous Data Warehouse (ADW) apply doesn't support replication of partial LOB
columns in the trail file.

8.2.27.5 Troubleshooting and Diagnostics
• Connectivity Issues to ADW

– Validate JDBC connection URL, user name and password.

– Check if http/https proxy is enabled. See ADW proxy configuration: Prepare for Oracle
Call Interface (OCI), ODBC, and JDBC OCI Connections in Using Oracle Autonomous
Data Warehouse on Shared Exadata Infrastructure.

• DDL not applied on the target table: The ADW handler will ignore DDL.

• Target table existence: It is expected that the ADW target table exists before starting the
apply process. Target tables need to be designed with appropriate primary keys, indexes
and partitions. Approximations based on the column metadata in the trail file may not be
always correct. Therefore, replicat will ABEND if the target table is missing.

• Diagnostic throughput information on the apply process is logged into the handler
log file.
For example:

File Writer finalized 29525834 records
 (rate: 31714) (start time: 2020-02-10 01:25:32.000579) (end time:
2020-02-10
 01:41:03.000606).

In this sample log message:

– This message provides details about the end-end throughput of File Writer handler and
the downstream event handlers (OCI Event handler and ADW event handler).

– The throughput rate also takes into account the wait-times incurred before rolling over
files.

– The throughput rate also takes into account the time taken by the OCI event handler
and the ADW event handler to process operations.

– The above examples indicates that 29525834 operations were finalized at the rate of
31714 operations per second between start time: [2020-02-10 01:25:32.000579] and
end time: [2020-02-10 01:41:03.000606].

Chapter 8
Target

8-390

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-preparing.html#GUID-EFAFA00E-54CC-47C7-8C71-E7868279EF3B
https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/connect-preparing.html#GUID-EFAFA00E-54CC-47C7-8C71-E7868279EF3B

Example:

INFO 2019-10-01 00:36:49.000490 [pool-8-thread-1] – Begin DWH Apply stage
and load statistics
********START*********************************

INFO 2019-10-01 00:36:49.000490 [pool-8-thread-1] - Time spent for staging
process [2074 ms]
INFO 2019-10-01 00:36:49.000490 [pool-8-thread-1] - Time spent for merge
process [992550 ms]
INFO 2019-10-01 00:36:49.000490 [pool-8-thread-1] - [31195516] operations
processed, rate[31,364]operations/sec.

INFO 2019-10-01 00:36:49.000490 [pool-8-thread-1] – End DWH Apply stage
and load statistics
********END***********************************
INFO 2019-10-01 00:37:18.000230 [pool-6-thread-1] – Begin OCI Event
handler upload statistics
********START*********************************
INFO 2019-10-01 00:37:18.000230 [pool-6-thread-1] - Time spent loading
files into ObjectStore [71789 ms]
INFO 2019-10-01 00:37:18.000230 [pool-6-thread-1] - [31195516] operations
processed, rate[434,545] operations/sec.
INFO 2019-10-01 00:37:18.000230 [pool-6-thread-1] – End OCI Event handler
upload statistics
********END***********************************

In this example:

ADW Event handler throughput:

– In the above log message, the statistics for the ADW event handler is reported as
DWH Apply stage and load statistics. ADW is classified as a Data Ware House (DWH),
and therefore, this name.

– Here 31195516 operations from the source trail file were applied to ADW database at
the rate of 31364 operations per second.

– ADW uses stage and merge. The time spent on staging is 2074 milliseconds and the
time spent on executing merge SQL is 992550 milliseconds.

OCI Event handler throughput:

– In the above log message, the statistics for the OCI event handler is reported as OCI
Event handler upload statistics.

– Here 31195516 operations from the source trail file were uploaded to the OCI object
store at the rate of 434545 operations per second.

• Errors due to ADW credential missing grants to read OCI object store files:

– A SQL exception indicating authorization failure is logged in the handler log file. For
example:

java.sql.SQLException: ORA-20401:
Authorization failed for URI -
https://objectstorage.us-ashburn-1.oraclecloud.com/n/some_namespace/b/
some_bucket/o/ADMIN.NLS_AllTypes/ADMIN.NLS_AllTypes_2019-12-16_11-44-01.237.avro

• Errors in file format/column data:

Chapter 8
Target

8-391

In case the ADW Event handler is unable to read data from the external staging table due
to column data errors, the Oracle GoldenGate for Distributed Applications and Analytics
(GG for DAA) handler log file provides diagnostic information to debug the issue.

The following details are available in the log file:

– JOB ID
– SID
– SERIAL #
– ROWS_LOADED
– START_TIME
– UPDATE_TIME
– STATUS
– TABLE_NAME
– OWNER_NAME
– FILE_URI_LIST
– LOGFILE_TABLE
– BADFILE_TABLE
The contents of the LOGFILE_TABLE and BADFILE_TABLE should indicate the specific record
and the column(s) in the record which have error and the cause of the error. This
information is also queried automatically by the ADW Event handler and logged into the
OGGBD FW handler log file. Based on the root cause of the error, customer can take action.
In many cases, customers would have to modify the target table definition based on the
source column data types and restart replicat. In other cases, customers may also want to
modify the mapping in the replicat prm file. For this, Oracle recommends that they re-
position replicat to start from the beginning.

• Any other SQL Errors:
In case there are any errors while executing any SQL, the entire SQL statement along with
the bind parameter values are logged into the OGGBD handler log file.

• Co-existence of the components:
The location/region of the machine where replicat process is running, OCI Objects storage
bucket region and the ADW region would impact the overall throughput of the apply
process. Data flow is as follows: GoldenGate OCI Object store ADW. For best
throughput, the components need to located as close as possible.

• Debugging row count mismatch on the target table
For better throughput, ADW event handler does not validate the row counts modified on
the target table. We can enable row count matching by using the Java System property:
disable.row.count.validation. To enable row count validation, provide this property in
the jvm.bootoptions as follows: jvm.bootoptions=-Xmx512m -Xms32m -
Djava.class.path=.:ggjava/ggjava.jar:./dirprm -
Ddisable.row.count.validation=false

• Replicat ABEND due to partial LOB records in the trail file:
GG for DAA ADW apply does not support replication of partial LOB. The trail file needs to
be regenerated by Oracle Integrated capture using TRANLOGOPTIONS FETCHPARTIALLOB
option in the extract parameter file.

• Throughput gain with uncompressed UPDATE trails:

Chapter 8
Target

8-392

If the source trail files contain the full image (all the column values of the respective table)
of the row being updated, then you can include the JVM boot option -
Dcompressed.update=false in the configuration property jvm.bootoptions.

For certain workloads and ADW instance shapes, this configuration may provide a better
throughput. You may need to test the throughput gain on your environment.

8.2.27.6 Classpath
ADW apply relies on the upstream File Writer handler and the OCI Event handler. Include the
required jars needed to run the OCI Event handler in gg.classpath.

ADW Event handler uses the Oracle JDBC driver and its dependencies. The Autonomous Data
Warehouse JDBC driver and other required dependencies are packaged with Oracle
GoldenGate for Distributed Applications and Analytics (GG for DAA).

For example: gg.classpath=./oci-java-sdk/lib/*:./oci-java-sdk/third-party/lib/*

8.2.27.7 Configuration
• Automatic Configuration

Autonomous Data Warehouse (ADW) replication involves configuring of multiple
components, such as file writer handler, OCI event handler and ADW event handler.

• File Writer Handler Configuration
File writer handler name is pre-set to the value adw. The following is an example to edit a
property of file writer handler: gg.handler.adw.pathMappingTemplate=./dirout

• OCI Event Handler Configuration
OCI event handler name is pre-set to the value ‘oci’.

• ADW Event Handler Configuration
ADW event handler name is pre-set to the value adw.

• INSERTALLRECORDS Support

• End-to-End Configuration

• Compressed Update Handling

8.2.27.7.1 Automatic Configuration
Autonomous Data Warehouse (ADW) replication involves configuring of multiple components,
such as file writer handler, OCI event handler and ADW event handler.

The Automatic Configuration functionality helps to auto configure these components so that the
user configuration is minimal. The properties modified by auto configuration will also be logged
in the handler log file.

To enable auto configuration to replicate to ADW target we need to set the parameter

gg.target=adw
gg.target
Required
Legal Value: adw
Default: None
Explanation: Enables replication to ADW target

When replicating to ADW target, customization of OCI event hander name and ADW event
handler name is not allowed.

Chapter 8
Target

8-393

8.2.27.7.2 File Writer Handler Configuration
File writer handler name is pre-set to the value adw. The following is an example to edit a
property of file writer handler: gg.handler.adw.pathMappingTemplate=./dirout

8.2.27.7.3 OCI Event Handler Configuration
OCI event handler name is pre-set to the value ‘oci’.

The following is an example to edit a property of the OCI event handler:
gg.eventhandler.oci.profile=DEFAULT

8.2.27.7.4 ADW Event Handler Configuration
ADW event handler name is pre-set to the value adw.

The following are the ADW event handler configurations:

Property Required/
Optional

Legal
Values

Defaul
t

Explanationtes

gg.eventhandler
.adw.connection
URL

Required ADW None Sets the ADW JDBC connection URL. Example:
jdbc:oracle:thin:@adw20190410ns_mediu
m?TNS_ADMIN=/home/sanav/projects/adw/
wallet

gg.eventhandler
.adw.UserName

Required JDBC
User
name

None Sets the ADW database user name.

gg.eventhandler
.adw.Password

Required JDBC
Passwo
rd

None Sets the ADW database password.

gg.eventhandler
.adw.maxStateme
nts

Optional Integer
value
betwee
n 1 to
250.

The
default
value is
250.

Use this parameter to control the number of
prepared SQL statements that can be used.

gg.eventhandler
.adw.maxConnnec
tions

Optional Integer
value.

10 Use this parameter to control the number of
concurrent JDBC database connections to the
target ADW database.

gg.eventhandler
.adw.dropStagin
gTablesOnShutdo
wn

Optional true
|
false

false If set to true, the temporary staging tables
created by the ADW event handler is dropped
on replicat graceful stop.

gg.eventhandler
.adw.objectStor
eCredential

Required A
databa
se
credent
ial
name.

None ADW Database credential to access OCI
object-store files.

gg.initialLoad Optional true
|
false

false If set to true, initial load mode is enabled. See
INSERTALLRECORDS Support.

Chapter 8
Target

8-394

Property Required/
Optional

Legal
Values

Defaul
t

Explanationtes

gg.operation.ag
gregator.valida
te.keyupdate

Optional true
or
false

false If set to true, Operation Aggregator will
validate key update operations (optype 115)
and correct to normal update if no key values
have changed. Compressed key update
operations do not qualify for merge.

gg.compressed.u
pdate

Optional true
or
false

true If set the true, then this indicates that the
source trail files contain compressed update
operations. If set to true, then the source trail
files are expected to contain uncompressed
update operations.

gg.eventhandler
.adw.connection
Retries

Optional Integer
Value

3 Specifies the number of times connections to
the target data warehouse will be retried.

gg.eventhandler
.adw.connection
RetryIntervalSe
conds

Optional Integer
Value

30 Specifies the delay in seconds between
connection retry attempts.

gg.aggregate.op
erations.flush.
interval

Optional Integer 30000 The flush interval parameter determines how
often the data will be merged into ADW. The
value is set in milliseconds.

Caution:

The higher this
value, more data
will be stored in
the memory of the
Replicat process.

Note:

Use the flush
interval parameter
with caution.
Increasing its
default value will
increase the
amount of data
stored in the
internal memory
of the Replicat.
This can cause
out of memory
errors and stop
the Replicat if it
runs out of
memory.

8.2.27.7.5 INSERTALLRECORDS Support

Chapter 8
Target

8-395

Stage and merge targets supports INSERTALLRECORDS parameter.

See INSERTALLRECORDS in Reference for Oracle GoldenGate. Set the INSERTALLRECORDS
parameter in the Replicat parameter file (.prm). Set the INSERTALLRECORDS parameter in the
Replicat parameter file (.prm)

Setting this property directs the Replicat process to use bulk insert operations to load operation
data into the target table.

You can tune the batch size of bulk inserts using the File writer property
gg.handler.adw.maxFileSize. The default value is set to 1GB. The frequency of bulk inserts
can be tuned using the File writer property gg.handler.adw.fileRollInterval, the default
value is set to 3m (three minutes).
To process initial load trail files, set the INSERTALLRECORDS parameter in the Replicat parameter
file (.prm). Setting this property directs the Replicat process to use bulk insert operations to
load operation data into the target table.
You can tune the batch size of bulk inserts using the File Writer property
gg.handler.adw.maxFileSize. The default value is set to 1GB. The frequency of bulk inserts
can be tuned using the File Writer property gg.handler.adw.fileRollInterval, the default
value is set to 3m (three minutes).

8.2.27.7.6 End-to-End Configuration
The following is an end-end configuration example which uses auto configuration for FW
handler, OCI and ADW Event handlers. The sample properties file is available at the following
location:

• In an Oracle GoldenGate Classic install: <oggbd_install_dir>/AdapterExamples/big-
data/adw-via-oci/adw.props.

• In an Oracle GoldenGate Microservices install: <oggbd_install_dir>/opt/
AdapterExamples/big-data/adw-via-oci/adw.props.

Configuration to load GoldenGate trail operation records
into Autonomous Data Warehouse (ADW) by chaining
File writer handler -> OCI Event handler -> ADW Event handler.
Note: Recommended to only edit the configuration marked as TODO
gg.target=adw
##The OCI Event handler
TODO: Edit the OCI config file path.
gg.eventhandler.oci.configFilePath=<path/to/oci/config>
TODO: Edit the OCI profile name.
gg.eventhandler.oci.profile=DEFAULT
TODO: Edit the OCI namespace.
gg.eventhandler.oci.namespace=<OCI namespace>
TODO: Edit the OCI region.
gg.eventhandler.oci.region=<oci-region>
TODO: Edit the OCI compartment identifier.
gg.eventhandler.oci.compartmentID=<OCI compartment id>
gg.eventhandler.oci.pathMappingTemplate=${fullyQualifiedTableName}
TODO: Edit the OCI bucket name.
gg.eventhandler.oci.bucketMappingTemplate=<ogg-bucket>
##The ADW Event Handler
TODO: Edit the ADW JDBC connectionURL
gg.eventhandler.adw.connectionURL=jdbc:oracle:thin:@adw20190410ns_medium?TNS_ADMIN=/
path/to/ /adw/wallet
TODO: Edit the ADW JDBC user
gg.eventhandler.adw.UserName=<db user>
TODO: Edit the ADW JDBC password
gg.eventhandler.adw.Password=<db password>

Chapter 8
Target

8-396

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/insertallrecords.html#GUID-A1019C40-97BE-437B-9D80-7C99A9A6DB8E

TODO: Edit the ADW Credential that can access the OCI Object Store.
gg.eventhandler.adw.objectStoreCredential=<ADW Object Store credential>
TODO:Set the classpath to include OCI Java SDK.
gg.classpath=./oci-java-sdk/lib/*:./oci-java-sdk/third-party/lib/*
#TODO: Edit to provide sufficient memory (at least 8GB).
jvm.bootoptions=-Xmx8g -Xms8g

8.2.27.7.7 Compressed Update Handling
A compressed update record contains values for the key columns and the modified columns.

An uncompressed update record contains values for all the columns.

Oracle GoldenGate trails may contain compressed or uncompressed update records. The
default extract configuration writes compressed updates to the trails.

The parameter gg.compressed.update can be set to true or false to indicate compressed/
uncompressed update records.

• MERGE Statement with Uncompressed Updates

8.2.27.7.7.1 MERGE Statement with Uncompressed Updates

In some use cases, if the trail contains uncompressed update records, then the MERGE SQL
statement can be optimized for better performance by setting gg.compressed.update=false.

Note:

If you want to use DELETE+INSERT SQL statements instead of a MERGE SQL statement,
then set gg.eventhandler.snowflake.deleteInsert=true.

8.2.28 Oracle Cloud Infrastructure Object Storage
The Oracle Cloud Infrastructure Event Handler is used to load files generated by the File Writer
Handler into an Oracle Cloud Infrastructure Object Store.

The Oracle Cloud Infrastructure Event Handler is used to load files generated by the Flat Files
into an Oracle Cloud Infrastructure Object Store. This topic describes how to use the OCI
Event Handler.

• Overview

• Detailing the Functionality

• Configuration

• Configuring Credentials for Oracle Cloud Infrastructure

• Troubleshooting

• OCI Dependencies

8.2.28.1 Overview
The Oracle Cloud Infrastructure Object Storage service is an internet-scale, high-performance
storage platform that offers reliable and cost-efficient data durability. The Object Storage
service can store an unlimited amount of unstructured data of any content type, including

Chapter 8
Target

8-397

analytic data and rich content, like images and videos, see https://cloud.oracle.com/en_US/
cloud-infrastructure.

You can use any format handler that the File Writer Handler supports.

8.2.28.2 Detailing the Functionality
The Oracle Cloud Infrastructure Event Handler requires the Oracle Cloud Infrastructure Java
software development kit (SDK) to transfer files to Oracle Cloud Infrastructure Object Storage.
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) does not include
the Oracle Cloud Infrastructure Java SDK, see https://docs.cloud.oracle.com/iaas/Content/API/
Concepts/sdkconfig.htm.

You must download the Oracle Cloud Infrastructure Java SDK at:

https://docs.us-phoenix-1.oraclecloud.com/Content/API/SDKDocs/javasdk.htm

Extract the JAR files to a permanent directory. There are two directories required by the
handler, the JAR library directory that has Oracle Cloud Infrastructure SDK JAR and a third-
party JAR library. Both directories must be in the gg.classpath.

Specify the gg.classpath environment variable to include the JAR files of the Oracle Cloud
Infrastructure Java SDK.

Example

gg.classpath=/usr/var/oci/lib/*:/usr/var/oci/third-party/lib/*

Setting of the proxy server settings requires additional dependency libraries identified by the
following Maven coordinates:

Group ID: com.oracle.oci.sdk
Artifact ID: oci-java-sdk-addons-apache
The best way to get all of the dependencies is to use the Dependency Downloading utility
scripts. The OCI script downloads both the OCI Java SDK and the Apache Addons libraries.

For more information on this dependency, see OCI Documentation - README.

8.2.28.3 Configuration
You configure the Oracle Cloud Infrastructure Event Handler operation using the properties file.
These properties are located in the Java Adapter properties file (and not in the Replicat
properties file).

The Oracle Cloud Infrastructure Event Handler works only in conjunction with the File Writer
Handler.

To enable the selection of the Oracle Cloud Infrastructure Event Handler, you must first
configure the handler type by specifying gg.eventhandler.name.type=oci and the other
Oracle Cloud Infrastructure properties as follows:

Chapter 8
Target

8-398

https://cloud.oracle.com/en_US/cloud-infrastructure
https://cloud.oracle.com/en_US/cloud-infrastructure
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/iaas/Content/API/SDKDocs/javasdk.htm
https://github.com/oracle/oci-java-sdk/blob/master/bmc-addons/bmc-apache-connector-provider/README.md

Table 8-33 Oracle Cloud Infrastructure Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.type

Required oci None Selects the Oracle Cloud Infrastructure Event
Handler.

gg.eventhandler
.name.contentTy
pe

Optional Valid
content
type value
which is
used to
indicate the
media type
of the
resource.

applic
ation/
octet-
stream

The content type of the object.

gg.eventhandler
.name.contentEn
coding

Optional Valid values
indicate
which
encoding to
be applied.

utf-8 The content encoding of the object.

gg.eventhandler
.name.contentLa
nguage

Optional Valid
language
intended for
the
audience.

en The content language of the object.

gg.eventhandler
.name.configFil
ePath

Optional Path to the
event
handler
config file.

None The configuration file name and location.

If gg.eventhandler.name.configFilePath
is not set, then the following authentication
parameters are required:
• gg.eventhandler.name.userId
• gg.eventhandler.name.tenancyID
• gg.eventhandler.name.region
• gg.eventhandler.name.privateKeyFi

le
• gg.eventhandler.name.publicKeyFin

gerprint
These parameters take precedence over
gg.eventhandler.name.configFilePath.

gg.eventhandler
.name.userId

Optional Valid user
ID

None OCID of the user calling the API. To get the
value, see (Required Keys and OCIDs)https://
docs.oracle.com/en-us/iaas/Content/API/
Concepts/
apisigningkey.htm#Required_Keys_and_OCID
s. Example:
ocid1.user.oc1..<unique_ID> (shortened
for brevity)

gg.eventhandler
.name.tenancyId

Optional Valid
tenancy ID

None OCID of your tenancy. To get the value, see
(Required Keys and OCIDs)https://
docs.oracle.com/en-us/iaas/Content/API/
Concepts/
apisigningkey.htm#Required_Keys_and_OCID
s. in Oracle Cloud Infrastructure
documentation. Example:
ocid1.tenancy.oc1..<unique_ID>

Chapter 8
Target

8-399

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs

Table 8-33 (Cont.) Oracle Cloud Infrastructure Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.privateKe
yFile

Optional A valid path
to the file

None Full path and filename of the private key.

Note:

The key pair must
be in PEM
format. For more
information about
generating a key
pair in PEM
format, see
(Required Keys
and
OCIDs)https://
docs.oracle.com/
en-us/iaas/
Content/API/
Concepts/
apisigningkey.htm
#Required_Keys
_and_OCIDs in
Oracle Cloud
Infrastructure
documentation.
Example: /
home/opc/.oci
/
oci_api_key.p
em

gg.eventhandler
.name.publicKey
Fingerprint

Optional String None Fingerprint for the public key that was added to
this user. To get the value, see (Required Keys
and OCIDs) https://docs.oracle.com/en-us/
iaas/Content/API/Concepts/
apisigningkey.htm#Required_Keys_and_OCID
s in Oracle Cloud Infrastructure documentation.

gg.eventhandler
.name.profile

Required Valid string
representin
g the profile
name.

DEFAUL
T

In the Oracle Cloud Infrastructure config file,
the entries are identified by the profile name.
The default profile is DEFAULT. You can have
an additional profile like ADMIN_USER. Any
value that isn't explicitly defined for the
ADMIN_USER profile (or any other profiles that
you add to the config file) is inherited from the
DEFAULT profile.

gg.eventhandler
.name.region

Required Oracle
Cloud
Infrastructur
e region

None Oracle Cloud Infrastructure Servers and Data
is hosted in a region and is a localized
geographic area.

The valid Region Identifiers are listed at Oracle
Cloud Infrastructure Documentation - Regions
and Availability Domains.

Chapter 8
Target

8-400

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Required_Keys_and_OCIDs
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm

Table 8-33 (Cont.) Oracle Cloud Infrastructure Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.compartme
ntID

Required Valid
compartme
nt id.

None A compartment is a logical container to
organize Oracle Cloud Infrastructure
resources. The compartmentID is listed in
Bucket Details while using the Oracle Cloud
Infrastructure Console.

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the path in
the Oracle
Cloud
Infrastructur
e bucket to
write the
file.

None Use keywords interlaced with constants to
dynamically generate unique Oracle Cloud
Infrastructure path names at runtime. See
Template Keywords.

gg.eventhandler
.name.fileNameM
appingTemplate

Optional A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the Oracle
Cloud
Infrastructur
e file name
at runtime.

None Use resolvable keywords and constants to
dynamically generate the Oracle Cloud
Infrastructure data file name at runtime. If not
set, the upstream file name is used. See
Template Keywords.

gg.eventhandler
.name.bucketMap
pingTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the path in
the Oracle
Cloud
Infrastructur
e bucket to
write the
file.

None Use resolvable keywords and constants used
to dynamically generate the Oracle Cloud
Infrastructure bucket name at runtime. The
event handler attempts to create the Oracle
Cloud Infrastructure bucket if it does not exist.
See Template Keywords.

Chapter 8
Target

8-401

Table 8-33 (Cont.) Oracle Cloud Infrastructure Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.finalizeA
ction

Optional none |
delete

None Set to none to leave the Oracle Cloud
Infrastructure data file in place on the finalize
action. Set to delete if you want to delete the
Oracle Cloud Infrastructure data file with the
finalize action.

gg.eventhandler
.name.eventHand
ler

Optional A unique
string
identifier
cross
referencing
a child
event
handler.

No
event
handler
is
configur
ed.

Sets the event handler that is invoked on the
file roll event. Event handlers can do file roll
event actions like loading files to S3, converting
to Parquet or ORC format, loading files to
HDFS, loading files to Oracle Cloud
Infrastructure Storage Classic, or loading file to
Oracle Cloud Infrastructure.

gg.eventhandler
.name.proxyServ
er

Optional The host
name of
your proxy
server.

None Set to the host name of the proxy server if OCI
connectivity requires routing through a proxy
server.

gg.eventhandler
.name.proxyPort

Optional The port
number of
the proxy
server.

None Set to the port number of the proxy server if
OCI connectivity requires routing through a
proxy server.

gg.eventhandler
.name.proxyProt
ocol

Optional HTTP |
HTTPS

HTTP Sets the proxy protocol connection to the proxy
server for additional level of security. The
majority of proxy servers support HTTP. Only
set this if the proxy server supports HTTPS
and HTTPS is required.

gg.eventhandler
.name.proxyUser
name

Optional The
username
for the
proxy
server.

None Sets the username for connectivity to the proxy
server if credentials are required. Most proxy
servers do not require credentials.

gg.eventhandler
.name.proxyPass
word

Optional The
password
for the
proxy
server.

None Sets the password for connectivity to the proxy
server if credentials are required. Most proxy
servers do not require credentials.

gg.handler.name
.SSEKey

Optional A legal
Base64
encoded
OCI server
side
encryption
key.

None Allows you to control the encryption of data
files loaded to OCI. OCI encrypts by default.
This property allows an additional level of
control by supporting encryption with a specific
key. That key must also be used to decrypt
data files.

Sample Configuration

gg.eventhandler.oci.type=oci
gg.eventhandler.oci.configFilePath=~/.oci/config
gg.eventhandler.oci.profile=DEFAULT
gg.eventhandler.oci.namespace=dwcsdemo
gg.eventhandler.oci.region=us-ashburn-1
gg.eventhandler.oci.compartmentID=ocid1.compartment.oc1..aaaaaaaajdg6iblwgqlyqpegf6kwdais
2gyx3guspboa7fsi72tfihz2wrba

Chapter 8
Target

8-402

gg.eventhandler.oci.pathMappingTemplate=${schemaName}
gg.eventhandler.oci.bucketMappingTemplate=${schemaName}
gg.eventhandler.oci.fileNameMappingTemplate=${tableName}_${currentTimestamp}.txt
gg.eventhandler.oci.finalizeAction=NONE
goldengate.userexit.writers=javawriter

• Automatic Configuration

8.2.28.3.1 Automatic Configuration
OCI Object storage replication involves configuring multiple components, such as the File
Writer Handler, formatter, and the target OCI Object Storage Event Handler.

The Automatic Configuration functionality helps you to auto configure these components so
that the manual configuration is minimal.

The properties modified by auto-configuration is also logged in the handler log file.

To enable auto configuration to replicate to the OCI Object Storage target, set the parameter
gg.target=oci.

• File Writer Handler Configuration

• Formatter Configuration

8.2.28.3.1.1 File Writer Handler Configuration

The File Writer Handler name is pre set to the value oci.

You can add or edit a property of the File Writer Handler. For example:
gg.handler.oci.pathMappingTemplate=./dirout

8.2.28.3.1.2 Formatter Configuration

The json row formatter is set by default.

You can add or edit a property of the formatter. For example:
gg.handler.oci.format=json_row

8.2.28.4 Configuring Credentials for Oracle Cloud Infrastructure
Basic configuration information like user credentials and tenancy Oracle Cloud IDs (OCIDs) of
Oracle Cloud Infrastructure is required for the Java SDKs to work, see https://
docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm.

The ideal configuration file include keys user, fingerprint, key_file, tenancy, and region
with their respective values. The default configuration file name and location is ~/.oci/config.

Create the config file as follows:

1. Create a directory called .oci in the Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) home directory

2. Create a text file and name it config.

3. Obtain the values for these properties:

Chapter 8
Target

8-403

https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm

user
a. Login to the Oracle Cloud Infrastructure Console https://console.us-

ashburn-1.oraclecloud.com.

b. Click Username.

c. Click User Settings.
The User's OCID is displayed and is the value for the key user.

tenancy
The Tenancy ID is displayed at the bottom of the Console page.

region
The region is displayed with the header session drop-down menu in the Console.

fingerprint
To generate the fingerprint, use the How to Get the Key's Fingerprint instructions at:

https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm

key_file
You need to share the public and private key to establish a connection with Oracle Cloud
Infrastructure. To generate the keys, use the How to Generate an API Signing Keyat:

https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm

pass_phrase
This is an optional property. It is used to configure the passphrase if the private key in the
pem file is protected with a passphase. The following openssl command can be used to
take an unprotected private key pem file and add a passphrase.
The following command prompts the user for the passphrase:

openssl rsa -aes256 -in in.pem -out out.pem

Sample Configuration File

user=ocid1.user.oc1..aaaaaaaat5nvwcna5j6aqzqedqw3rynjq
fingerprint=20:3b:97:13::4e:c5:3a:34
key_file=~/.oci/oci_api_key.pem
tenancy=ocid1.tenancy.oc1..aaaaaaaaba3pv6wkcr44h25vqstifs

8.2.28.5 Troubleshooting

Connectivity Issues

If the OCI Event Handler is unable to connect to the OCI object storage when running on
premise, it’s likely your connectivity to the public internet is protected by a proxy server. Proxy
servers act a gateway between the private network of a company and the public internet.
Contact your network administrator to get the URL of your proxy server.

Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) connectivity to OCI
can be routed through a proxy server by setting the following configuration properties:

gg.eventhandler.name.proxyServer={insert your proxy server name}
gg.eventhandler.name.proxyPort={insert your proxy server port number}

Chapter 8
Target

8-404

https://console.us-ashburn-1.oraclecloud.com
https://console.us-ashburn-1.oraclecloud.com
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm

ClassNotFoundException Error

The most common initial error is an incorrect classpath that does not include all the required
client libraries so results in a ClassNotFoundException error. Specify the gg.classpath
variable to include all of the required JAR files for the Oracle Cloud Infrastructure Java SDK,
see Detailing the Functionality.

8.2.28.6 OCI Dependencies
The maven coordinates for OCI are as follows:

Maven groupId: com.oracle.oci.sdk
Maven artifactId: oci-java-sdk-full
Version: 1.34.0
The following are the Apache add-ons to which, support routing through a proxy server:

Maven groupId: com.oracle.oci.sdk
Maven artifactId: oci-java-sdk-addons-apache
Version: 1.34.0
• OCI 1.34.0

8.2.28.6.1 OCI 1.34.0
accessors-smart-1.2.jar
aopalliance-repackaged-2.6.1.jar
asm-5.0.4.jar
bcpkix-jdk15on-1.68.jar
bcprov-jdk15on-1.68.jar
checker-qual-3.5.0.jar
commons-codec-1.15.jar
commons-io-2.8.0.jar
commons-lang3-3.8.1.jar
commons-logging-1.2.jar
error_prone_annotations-2.3.4.jar
failureaccess-1.0.1.jar
guava-30.1-jre.jar
hk2-api-2.6.1.jar
hk2-locator-2.6.1.jar
hk2-utils-2.6.1.jar
httpclient-4.5.13.jar
httpcore-4.4.13.jar
j2objc-annotations-1.3.jar
jackson-annotations-2.12.0.jar
jackson-core-2.12.0.jar
jackson-databind-2.12.0.jar
jackson-datatype-jdk8-2.12.0.jar
jackson-datatype-jsr310-2.12.0.jar
jackson-module-jaxb-annotations-2.10.1.jar
jakarta.activation-api-1.2.1.jar
jakarta.annotation-api-1.3.5.jar
jakarta.inject-2.6.1.jar
jakarta.ws.rs-api-2.1.6.jar
jakarta.xml.bind-api-2.3.2.jar
javassist-3.25.0-GA.jar
jcip-annotations-1.0-1.jar

Chapter 8
Target

8-405

jersey-apache-connector-2.32.jar
jersey-client-2.32.jar
jersey-common-2.32.jar
jersey-entity-filtering-2.32.jar
jersey-hk2-2.32.jar
jersey-media-json-jackson-2.32.jar
json-smart-2.3.jar
jsr305-3.0.2.jar
listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar
nimbus-jose-jwt-8.5.jar
oci-java-sdk-addons-apache-1.34.0.jar
oci-java-sdk-analytics-1.34.0.jar
oci-java-sdk-announcementsservice-1.34.0.jar
oci-java-sdk-apigateway-1.34.0.jar
oci-java-sdk-apmcontrolplane-1.34.0.jar
oci-java-sdk-apmsynthetics-1.34.0.jar
oci-java-sdk-apmtraces-1.34.0.jar
oci-java-sdk-applicationmigration-1.34.0.jar
oci-java-sdk-artifacts-1.34.0.jar
oci-java-sdk-audit-1.34.0.jar
oci-java-sdk-autoscaling-1.34.0.jar
oci-java-sdk-bds-1.34.0.jar
oci-java-sdk-blockchain-1.34.0.jar
oci-java-sdk-budget-1.34.0.jar
oci-java-sdk-cims-1.34.0.jar
oci-java-sdk-circuitbreaker-1.34.0.jar
oci-java-sdk-cloudguard-1.34.0.jar
oci-java-sdk-common-1.34.0.jar
oci-java-sdk-computeinstanceagent-1.34.0.jar
oci-java-sdk-containerengine-1.34.0.jar
oci-java-sdk-core-1.34.0.jar
oci-java-sdk-database-1.34.0.jar
oci-java-sdk-databasemanagement-1.34.0.jar
oci-java-sdk-datacatalog-1.34.0.jar
oci-java-sdk-dataflow-1.34.0.jar
oci-java-sdk-dataintegration-1.34.0.jar
oci-java-sdk-datasafe-1.34.0.jar
oci-java-sdk-datascience-1.34.0.jar
oci-java-sdk-dns-1.34.0.jar
oci-java-sdk-dts-1.34.0.jar
oci-java-sdk-email-1.34.0.jar
oci-java-sdk-events-1.34.0.jar
oci-java-sdk-filestorage-1.34.0.jar
oci-java-sdk-full-1.34.0.jar
oci-java-sdk-functions-1.34.0.jar
oci-java-sdk-goldengate-1.34.0.jar
oci-java-sdk-healthchecks-1.34.0.jar
oci-java-sdk-identity-1.34.0.jar
oci-java-sdk-integration-1.34.0.jar
oci-java-sdk-keymanagement-1.34.0.jar
oci-java-sdk-limits-1.34.0.jar
oci-java-sdk-loadbalancer-1.34.0.jar
oci-java-sdk-loganalytics-1.34.0.jar
oci-java-sdk-logging-1.34.0.jar
oci-java-sdk-loggingingestion-1.34.0.jar
oci-java-sdk-loggingsearch-1.34.0.jar
oci-java-sdk-managementagent-1.34.0.jar
oci-java-sdk-managementdashboard-1.34.0.jar
oci-java-sdk-marketplace-1.34.0.jar
oci-java-sdk-monitoring-1.34.0.jar
oci-java-sdk-mysql-1.34.0.jar
oci-java-sdk-networkloadbalancer-1.34.0.jar

Chapter 8
Target

8-406

oci-java-sdk-nosql-1.34.0.jar
oci-java-sdk-objectstorage-1.34.0.jar
oci-java-sdk-objectstorage-extensions-1.34.0.jar
oci-java-sdk-objectstorage-generated-1.34.0.jar
oci-java-sdk-oce-1.34.0.jar
tbcampbe: oci-java-sdk-ocvp-1.34.0.jar
oci-java-sdk-oda-1.34.0.jar
oci-java-sdk-ons-1.34.0.jar
oci-java-sdk-opsi-1.34.0.jar
oci-java-sdk-optimizer-1.34.0.jar
oci-java-sdk-osmanagement-1.34.0.jar
oci-java-sdk-resourcemanager-1.34.0.jar
oci-java-sdk-resourcesearch-1.34.0.jar
oci-java-sdk-rover-1.34.0.jar
oci-java-sdk-sch-1.34.0.jar
oci-java-sdk-secrets-1.34.0.jar
oci-java-sdk-streaming-1.34.0.jar
oci-java-sdk-tenantmanagercontrolplane-1.34.0.jar
oci-java-sdk-usageapi-1.34.0.jar
oci-java-sdk-vault-1.34.0.jar
oci-java-sdk-waas-1.34.0.jar
oci-java-sdk-workrequests-1.34.0.jar
osgi-resource-locator-1.0.3.jar
resilience4j-circuitbreaker-1.2.0.jar
resilience4j-core-1.2.0.jar
slf4j-api-1.7.29.jar
vavr-0.10.0.jar
vavr-match-0.10.0.jar

8.2.29 Redis
Redis is an in-memory data structure store which supports optional durability. Redis is simply a
key/value data store where a unique key identifies the data structure stored. The value is the
data structure that is stored.

The Redis Handler supports the replication of change data capture to Redis and the storage of
that data in three different data structures: Hash Maps, Streams, JSONs.

• Data Structures Supported by the Redis Handler

• Redis Handler Configuration Properties

• Security

• Authentication Using Credentials

• SSL Basic Auth

• SSL Mutual Auth

• Redis Handler Dependencies
The Redis Handler uses the Jedis client libraries to connect to the Redis server.

• Redis Handler Client Dependencies
The Redis Handler uses the Jedis client to connect to Redis.

8.2.29.1 Data Structures Supported by the Redis Handler
• Hash Maps

• Streams

• JSONs

Chapter 8
Target

8-407

8.2.29.1.1 Hash Maps

The is the most common user use case. The key is a unique identifier for the table and row of
the data which is being pushed to Redis. The data structure stored at each key location is a
hash map. The key in the hash map is the column name and the value is the column value.

Behavior on Inserts, Updates, and Deletes

The source trail file will contain insert, update. and delete operations for which the data can be
pushed into Redis. The Redis Handler will process inserts, updates, and deletes as follows:

Inserts – The Redis Handler will create a new key in Redis the value of which is a hash map
for which the hash map key is the column name and the hash map value is the column value.

Updates – The Redis Handler will update an existing hash map structure in Redis. The existing
hash map will be updated with the column names and values from the update operation
processed. Because hash map data is updated and not replace, full image updates are not
required.

Primary Key Updates – The Redis Handler will move the old key to the new key name alone
with the data structure, then an update will be performed on the hash map.

Deletes – The Redis Handler will delete the key and its corresponding data structure from
Redis.

Handling of Null Values

Redis hash maps cannot store null as a value. A Redis hash map must have a non-null value.
The default behavior is to omit columns with a null value from the generated hash map. If an
update changes a column value from a non-null value to a null value, then the column key and
value is removed from the hash map.

Users may wish to propagate null values to Redis. But, because Redis hash maps cannot
store null values, a representative value will need to be configured to be propagated instead.
This is configured by setting the following two parameters:

gg.handler.redis.omitNullValues=false
gg.handler.redis.nullValueRepresentation=null

The user will need to designate some value as null. But the following are legal too.

In this case the null value representation is an empty string or “”.

gg.handler.redis.nullValueRepresentation=CDATA[]
In this case the null value representation is set to a tab.

gg.handler.redis.nullValueRepresentation=CDATA[\t]

Support for Binary Values

The default functionality is to push all data into Redis hash maps as Java strings. Binary values
must be converted to Base64 to be represented as a Java String. Consequently, binary values
will be represented as Base64. Alternatively, users can push bytes into Redis hash maps to
retain the original bytes values by setting the following configuration property.

gg.handler.redis.dataType=bytes
Example hash map data in Redis:

Chapter 8
Target

8-408

127.0.0.1:6379> hgetall TCUSTMER:JANE
 1) "optype"
 2) "I"
 3) "CITY"
 4) "DENVER"
 5) "primarykeycolumns"
 6) "CUST_CODE"
 7) "STATE"
 8) "CO"
 9) "CUST_CODE"
10) "JANE"
11) "position"
12) "00000000000000002126"
13) "NAME"
14) "ROCKY FLYER INC."

Example Configuration

gg.handlerlist=redis
gg.handler.redis.type=redis
gg.handler.redis.hostPortList= localhost:6379
gg.handler.redis.createIndexes=true
gg.handler.redis.mode=op
gg.handler.redis.metacolumnsTemplate=${position},${optype},${primarykeycolumns}

8.2.29.1.2 Streams

Redis streams are analogs the Kafka topics. The Redis key is the stream name. The value of
the stream are the individual messages pushed to the Redis stream. Individual messages are
identified by a timestamp and offset of when the message was pushed to Redis. The value of
each individual message is a hash map for which the key is the column name and value is the
column value.

Behavior on Inserts, Updates, and Deletes

Each and every operation and its associated data is propagated to Redis Streams. Therefore,
every operation will show up as a new message in Redis Streams.

Handling of Null Values

Redis streams stores hash maps as the value for each message. A Redis hash map cannot
store null as a value. Null values work exactly as they do in hash maps functionality.

Support for Binary Values

The default functionality is to push all data into Redis hash maps as Java strings. Binary values
must be converted to Base64 to be represented as a Java String. Consequently, binary values
will be represented as Base64. Alternatively, users can push bytes into Redis hash maps to
retain the original bytes values by setting the following configuration property.

gg.handler.redis.dataType=bytes
Steam data appears in Redis as follows:

127.0.0.1:6379> xread STREAMS TCUSTMER 0-0
1) 1) "TCUSTMER"
 2) 1) 1) "1664399290398-0"
 2) 1) "optype"
 2) "I"
 3) "CITY"
 4) "SEATTLE"

Chapter 8
Target

8-409

 5) "primarykeycolumns"
 6) "CUST_CODE"
 7) "STATE"
 8) "WA"
 9) "CUST_CODE"
 10) "WILL"
 11) "position"
 12) "00000000000000001956"
 13) "NAME"
 14) "BG SOFTWARE CO."

2) 1) "1664399290398-1"
 2) 1) "optype"
 2) "I"
 3) "CITY"
 4) "DENVER"
 5) "primarykeycolumns"
 6) "CUST_CODE"
 7) "STATE"
 8) "CO"
 9) "CUST_CODE"
 10) "JANE"
 11) "position"
 12) "00000000000000002126"
 13) "NAME"
 14) "ROCKY FLYER INC."

Example Configuration

gg.handlerlist=redis
gg.handler.redis.type=redis
gg.handler.redis.hostportlist=localhost:6379
gg.handler.redis.mode=op
gg.handler.redis.integrationType=streams
gg.handler.redis.metacolumnsTemplate=${position},${optype},${primarykeycolumns}

8.2.29.1.3 JSONs

The key is a unique identifier for the table and row of the data which is being pushed to Redis.
The value is a JSON object. The keys in the JSON object are the column names while the
values in the JSON object are the column values.

The source trail file will contain inserts update and delete operations for which the data can be
pushed into Redis. The Redis Handler will process inserts, updates, and deletes as follows:

Inserts – The Redis Handler will create a new JSON at the key.

Updates – The Redis Handler will replace the JSON at the given key with the new JSON
reflecting the data of update. Because the JSON is replaced, full image updates are
recommended in the source trail file.

Deletes – The key in Redis along with its corresponding JSON data structure are deleted.

Handling of Null Values

The JSON specification supports null values as JSON null. Therefore, null values in the data
will be propagated as JSON null. Null value replacement is not supported since the JSON
specification supports null values. Neither gg.handler.redis.omitNullValues nor
gg.handler.redis.nullValueRepresentation configuration properties have any effect when

Chapter 8
Target

8-410

the Redis Handler is configured to send JSONs. JSON per the specification is represented as
follows: “fieldname”: null

Support for Binary Values

Per the JSON specification, binary values are represented as Base64. Therefore, all binary
values will be converted and propagated as Base64. Setting the property
gg.handler.redis.dataType has no effect. JSONs will generally appear in Redis as follows:

127.0.0.1:6379> JSON.GET
TCUSTMER:JANE"{\"position\":\"00000000000000002126\",\"optype\":\"I\",\"primaryke
ycolumns\":[\"CUST_CODE\"],\"CUST_CODE\":\"JANE\",\"NAME\":\"ROCKY FLYER
INC.\",\"CITY\":\"DENVER\",\"STATE\":\"CO\"}"
Example Configuration:

gg.handlerlist=redis
gg.handler.redis.type=redis
gg.handler.redis.hostportlist=localhost:6379
gg.handler.redis.mode=op
gg.handler.redis.integrationType=jsons
gg.handler.redis.createIndexes=true
gg.handler.redis.metacolumnsTemplate=${position},${optype},${primarykeycolumns}

8.2.29.2 Redis Handler Configuration Properties

Table 8-34 Redis Handler Configuration Properties

Properties Required/Optional Legal Values Default Explanation

gg.handlerlist=
name

Required Any String none Provides the name
for the Redis
Handler.

gg.handler.name
.type

Required redis none Selects the Redis
Handler.

gg.handler.name
.mode

Optional op | tx op The default is
recommended. In
op mode,
operations are
processed as
received. In tx
mode, operations
are cached and
processed at
transaction commit.
The tx mode is
slower and creates
a larger memory
footprint.

Chapter 8
Target

8-411

Table 8-34 (Cont.) Redis Handler Configuration Properties

Properties Required/Optional Legal Values Default Explanation

gg.handler.name
.integrationTyp
e

Optional hashmaps |
streams | jsons

hashmaps Sets the integration
type for Redis.
Select hashmaps
and the data will be
pushed into Redis
as hashmaps.
Select streams and
data will be pushed
into Redis streams.
Select jsons and
the data will be
pushed into Redis
as JSONs.

gg.handler.name
.dataType

Optional string | bytes string Only valid for
hashmap and
streams integration
types. Controls if
string data or byte
data is pushed to
Redis. If string is
selected, all binary
data will be pushed
to Redis Base64
encoded. If bytes is
selected, binary
data is pushed to
Redis without
conversion.

gg.handler.name
.keyMappingTemp
ate

Optional Any combination of
string and
templating
keywords.

For hashmaps and
jsons: $
{tableName}:$
{primaryKeys}
For streams: $
{tableName}

Redis is a key
value data store.
The resolved value
of this template
determines the key
for an operation.

gg.handler.name
.createIndexes

Optional true | false true Will automatically
create an index for
each replicated
table for the
following integration
types: hashmaps |
jsons User can
delete these
indexes or create
additional indexes.
Information on
created indexes is
logged to the
replicat <replicat
name>.log file.

Chapter 8
Target

8-412

Table 8-34 (Cont.) Redis Handler Configuration Properties

Properties Required/Optional Legal Values Default Explanation

gg.handler.name
.omitNullValues

Optional true | false true Null values cannot
be stored as values
in a Redis
hashmap structure.
Both the intetgation
types hashmaps
and streams store
hashmaps. By
default, if a column
value is null it
cannot be
replicated to Redis.
By default, if a
column value is
changed to null, it
has to be removed
from a hashmap.
Setting this to false
will replicate a
configured value
representing a null
value to Redis.

gg.handler.name
.nullValueRepre
sentation

Optional Any String “” (empty string) Only valid if
integration type is
hashmaps or
streams. Only valid
if
gg.handler.name
.omitNullValues
is set to false. This
configured value
here is the value
that will be
replicated to Redis
instead of a null.

gg.handler.name
.metaColumnsTem
plate

Optional Any string of
comma separated
metacolumn
keywords.

none This can be
configured to select
one or more
metacolumns to be
added to the output
to Redis. See
Metacolumn
Keywords.

gg.handler.name
.insertOpKey

Optional Any string “I” This is the value of
the operation type
for inserts which is
replicated if the
metacolumn $
{optype} is
configured.

Chapter 8
Target

8-413

Table 8-34 (Cont.) Redis Handler Configuration Properties

Properties Required/Optional Legal Values Default Explanation

gg.handler.name
.updateOpKey

Optional Any sting “U” This is the value of
the operation type
for updates which
is replicated if the
metacolumn $
{optype} is
configured.

gg.handler.name
.deleteOpKey

Optional Any string "D" This is the value of
the operation type
for deletes which is
replicated if the
metacolumn $
{optype} is
configured.

gg.handler.name
.trucateOpKey

Optional Any string "T" This is the value of
the operation type
for truncate which
is replicated if the
metacolumn $
{optype} is
configured.

gg.handler.name
.maxStreamLengt
h

Optional Positive Integer 0 Sets the maximum
length of steams. If
more messages
are pushed to a
steam than this
value, then the
oldest messages
will be deleted so
that the maximum
stream size is
enforced. The
default value is 0
which means no
limit on the
maximum stream
length.

gg.handler.name
.username

Optional Any string None Used to set the
username, if
required, for
connectivity to
Redis.

gg.handler.name
.password

Optional Any string None Used to set the
password, if
required, for
connectivity to
Redis.

gg.handler.name
.timeout

Optional integer 15000 Property to set the
both the connection
and socket
timeouts in
milliseconds.

Chapter 8
Target

8-414

Table 8-34 (Cont.) Redis Handler Configuration Properties

Properties Required/Optional Legal Values Default Explanation

gg.handler.name
.enableSSL

Optional true | false false Set to true if
connecting to a
Redis that has
been SSL enabled.
SSL can be basic
auth (certificate
passes from server
to client) or mutual
auth (certificate
passes from server
to client and then a
certificate passes
from client to the
server). Basic auth
is generally
combined with use
of credentials
(username and
password) so that
both sides of the
connection can
authenticate the
other. SSL provides
encryption of in
flight messages.

8.2.29.3 Security

Connectivity to Redis can be secured in multiple ways. It is the Redis server which is
configured for, and thereby selects, the type of security. The Redis Handler, which is the Redis
client, must be configured to match the security of the server.

Redis server – connection listener – This is the Redis application.

Redis client – connection caller – This is the Oracle GoldenGate Redis Handler.

Check with your Redis administrator as to what security has been configured on the Redis
server. Then, configure the Redis Handler to follow the security configuration of the Redis
server.

8.2.29.4 Authentication Using Credentials

This is a simple security that requires the Redis client-provided credentials (username and
password) for the Redis server to authenticate the Redis client. This security does not provide
any encryption of inflight messages.

 gg.handler.name.username=<username>
gg.handler.name.password=<password>

8.2.29.5 SSL Basic Auth

Chapter 8
Target

8-415

In this use case the Redis server passes a certificate to the Redis client. This allows the client
to authenticate the server. The client passes credentials to the server, which allows the Redis
server to authenticate the client. This connection is SSL and provides encryption of inflight
messages.

gg.handler.name.enableSSL=true
gg.handler.name.username=<username>
gg.handler.name.password=<password>

If the Redis server passes an unsigned certificate to the Redis client, then the Redis Handler
will need to be configured with a truststore. If the Redis server passes a certificate signed by a
Certificate Authority, then a truststore is not required.

To configure a truststore on the Redis Handler:

jvm.bootoptions=-Djavax.net.ssl.trustStore=<absolute path to truststore> -
Djavax.net.ssl.trustStorePassword=<truststore password>

8.2.29.6 SSL Mutual Auth

In this use case the Redis server passes a certificate to the Redis client. This allows the client
to authenticate the server. The Redis client then passes a certificate to the Redis server. This
allows the server to authenticate the Redis client. This connection is SSL and provides
encryption of inflight messages.

gg.handler.name.enableSSL=true

Typically with this setup, the Redis client will need both a truststore and a keystore. The
configuration is as follows:

To configure a truststore on the Redis Handler:

jvm.bootoptions=-Djavax.net.ssl.keyStore=<absolute path to keystore> -
Djavax.net.ssl.keyStorePassword=<keystore password> -
Djavax.net.ssl.trustStore=<absolute path to truststore> -
Djavax.net.ssl.trustStorePassword=<truststore password>

8.2.29.7 Redis Handler Dependencies
The Redis Handler uses the Jedis client libraries to connect to the Redis server.

The following is a link to Jedis: https://github.com/redis/jedis

The Jedis libraries do not ship with Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) and will need to be obtained and then the gg.classpath
configuration property will need to be configured to resolved the Jedis client. The
dependency downloader utility which ships with Oracle GoldenGate for Distributed Applications
and Analytics (GG for DAA) can be used to download Jedis. The Redis Handler was
developed using Jedis 4.2.3. The following shows example configuration of the gg.classpath:
gg.classpath=/OGGBDinstall/DependencyDownloader/dependencies/jedis_4.2.3/*

Chapter 8
Target

8-416

https://github.com/redis/jedis

8.2.29.8 Redis Handler Client Dependencies
The Redis Handler uses the Jedis client to connect to Redis.

Group ID: redis.clients

Artifact ID: jedis

• jedis 4.2.3

8.2.29.8.1 jedis 4.2.3
commons-pool2-2.11.1.jar
gson-2.8.9.jar
jedis-4.2.3.jar
json-20211205.jar
slf4j-api-1.7.32.jar

8.2.30 Snowflake

Topics:

• Overview

• Detailed Functionality

• Configuration

• Troubleshooting and Diagnostics

8.2.30.1 Overview
Snowflake is a serverless data warehouse that runs on any of the following cloud providers:
Amazon Web Services (AWS), Google Cloud Platform (GCP), or Microsoft Azure.

The Snowflake Event Handler is used to replicate data into Snowflake.

8.2.30.2 Detailed Functionality
Replication to Snowflake uses the stage and merge data flow.

• The change data from the Oracle GoldenGate trails is staged in micro-batches at a
temporary staging location (internal or external stage).

• The staged records are then merged into the Snowflake target tables using a merge SQL
statement.

This topic contains the following:

• Staging Location

• Database User Privileges

• Prerequisites

Chapter 8
Target

8-417

8.2.30.2.1 Staging Location
The change data records from the Oracle GoldenGate trail files are formatted into Avro OCF
(Object Container Format) and are then uploaded to the staging location.

Change data can be staged in one of the following object stores:

• Snowflake internal stage

• Snowflake external stage

– AWS Simple Storage Service (S3)

– Azure Data Lake Storage (ADLS) Gen2

– Google Cloud Storage (GCS)

8.2.30.2.2 Database User Privileges
The database user used for replicating into Snowflake has to be granted the following
privileges:

• INSERT, UPDATE, DELETE, and TRUNCATE on the target tables.

• CREATE and DROP on Snowflake named stage and external stage.

• If using external stage (S3, ADLS, GCS), CREATE, ALTER, and DROP external table.

8.2.30.2.3 Prerequisites
• Verify that the target tables exist on the Snowflake database.

• You must have Amazon Web Services, Google Cloud Platform, or Azure cloud accounts
set up if you intend to use any of the external stage locations such as, S3, ADLS Gen2, or
GCS.

• Snowflake JDBC driver

8.2.30.3 Configuration
The configuration of the Snowflake replication properties is stored in the Replicat properties
file.

Note:

Ensure to specify the path to the properties file in the parameter file only when using
Coordinated Replicat. Add the following line to the parameter file:

TARGETDB LIBFILE libggjava.so SET property=<parameter file directory>/
<properties file name>

• Automatic Configuration

• Snowflake Storage Integration

• Classpath Configuration

Chapter 8
Target

8-418

• Proxy Configuration

• INSERTALLRECORDS Support

• Snowflake Key Pair Authentication

• Mapping Source JSON/XML to Snowflake VARIANT

• Operation Aggregation

• Compressed Update Handling

• End-to-End Configuration

• Compressed Update Handling

8.2.30.3.1 Automatic Configuration
Snowflake replication involves configuring multiple components, such as the File Writer
Handler, S3 or HDFS or GCS Event Handler, and the target Snowflake Event Handler.

The Automatic Configuration functionality helps you to auto-configure these components so
that the manual configuration is minimal.

The properties modified by auto-configuration is also logged in the handler log file.

To enable auto-configuration to replicate to the Snowflake target, set the parameter
gg.target=snowflake.

The parameter gg.stage determines the staging location. If gg.stage is unset, then Snowflake
internal stage is used.

If gg.stage is set to one of them - s3, abs, or gcs, then AWS S3, ADLS Gen2, or GCS are
respectively used as the staging locations.

The JDBC Metadata provider is also automatically enabled to retrieve target table metadata
from Snowflake.

• File Writer Handler Configuration

• S3 Handler Configuration

• HDFS Event Handler Configuration

• Google Cloud Storage Event Handler Configuration

• Snowflake Event Handler Configuration

8.2.30.3.1.1 File Writer Handler Configuration

The File Writer Handler name is pre-set to the value snowflake and its properties are
automatically set to the required values for Snowflake.

You can add or edit a property of the File Writer Handler. For example:

gg.handler.snowflake.pathMappingTemplate=./dirout

8.2.30.3.1.2 S3 Handler Configuration

The S3 Event Handler name is pre-set to the value s3 and must be configured to match your
S3 configuration.

Chapter 8
Target

8-419

The following is an example of editing a property of the S3 Event Handler:

gg.eventhandler.s3.bucketMappingTemplate=bucket1

For more information, see Amazon S3.

8.2.30.3.1.3 HDFS Event Handler Configuration

The Hadoop Distributed File System (HDFS) Event Handler name is pre-set to the value hdfs
and it is auto-configured to write to HDFS.

Ensure that the Hadoop configuration file core-site.xml is configured to write data files to the
respective container in the Azure Data Lake Storage (ADLS) Gen2 storage account. For more
information, see Azure Data Lake Gen2 using Hadoop Client and ABFS.

The following is an example of editing a property of the HDFS Event handler:

gg.eventhandler.hdfs.finalizeAction=delete

8.2.30.3.1.4 Google Cloud Storage Event Handler Configuration

The Google Cloud Storage (GCS) Event Handler name is pre-set to the value gcs and must be
configured to match your GCS configuration.

The following is an example of editing a GCS Event Handler property:

gg.eventhandler.gcs.bucketMappingTemplate=bucket1

8.2.30.3.1.5 Snowflake Event Handler Configuration

The Snowflake Event Handler name is pre-set to the value snowflake.

The following are configuration properties available for the Snowflake Event handler, the
required ones must be changed to match your Snowflake configuration:

Table 8-35 Snowflake Event Handler Configuration

Properties Required/Optional Legal Values Default Explanation

gg.eventhandler
.snowflake.conn
ectionURL

Required jdbc:snowflake:
//
<account_name>.
snowflakecomput
ing.com/?
warehouse=<ware
house-
name>&db=<datab
ase-name>

None JDBC URL to
connect to
Snowflake.
Snowflake account
name, warehouse
and database must
be set in the JDBC
URL.

Chapter 8
Target

8-420

Table 8-35 (Cont.) Snowflake Event Handler Configuration

Properties Required/Optional Legal Values Default Explanation

gg.eventhandler
.snowflake.conn
ectionURL

Required Supported
connection URL.

None JDBC URL to
connect to
Snowflake.
Snowflake account
name, warehouse
and database must
be set in the JDBC
URL. The
warehouse can be
set using
`warehouse=<ware
house name>`,
database can set
using `db=<db
name>`. In some
cases for
authorization, a
role should be set
using
`role=<rolename>`.

gg.eventhandler
.snowflake.User
Name

Required Supported
database user
name string.

None Snowflake
database user.

gg.eventhandler
.snowflake.Pass
word

Required Supported
database password
string.

None Snowflake
database
password.

gg.eventhandler
.snowflake.stor
ageIntegration

Optional Storage integration
name.

None This parameter is
required when
using an external
stage such as
ADLS Gen2 or
GCS or S3. This is
the credential for
Snowflake data
warehouse to
access the
respective Object
store files. For
more information,
see Snowflake
Storage Integration.

gg.eventhandler
.snowflake.maxC
onnections

Optional Integer Value 10 Use this parameter
to control the
number of
concurrent JDBC
database
connections to the
target Snowflake
database.

Chapter 8
Target

8-421

Table 8-35 (Cont.) Snowflake Event Handler Configuration

Properties Required/Optional Legal Values Default Explanation

gg.eventhandler
.snowflake.drop
StagingTablesOn
Shutdown

Optional true | false false If set to true, the
temporary staging
tables created by
Oracle GoldenGate
are dropped on
replicat graceful
stop.

Chapter 8
Target

8-422

Table 8-35 (Cont.) Snowflake Event Handler Configuration

Properties Required/Optional Legal Values Default Explanation

gg.aggregate.op
erations.flush.
interval

Optional Integer 30000 The flush interval
parameter
determines how
often the data will
be merged into
Snowflake. The
value is set in
milliseconds. Use
with caution, the
higher this value is
the more data will
need to be stored
in the memory of
the Replicat
process.

N

o

t

e

:

U
s
e
t
h
e
f
l
u
s
h
i
n
t
e
r
v
a
l
p
a
r
a
m
e
t
e
r

Chapter 8
Target

8-423

Table 8-35 (Cont.) Snowflake Event Handler Configuration

Properties Required/Optional Legal Values Default Explanation

w
i
t
h
c
a
u
t
i
o
n
.
I
n
c
r
e
a
s
i
n
g
i
t
s
d
e
f
a
u
l
t
v
a
l
u
e
w
i
l
l
i
n
c
r
e
a
s
e
t
h
e
a
m

Chapter 8
Target

8-424

Table 8-35 (Cont.) Snowflake Event Handler Configuration

Properties Required/Optional Legal Values Default Explanation

o
u
n
t
o
f
d
a
t
a
s
t
o
r
e
d
i
n
t
h
e
i
n
t
e
r
n
a
l
m
e
m
o
r
y
o
f
t
h
e
R
e
p
l
i
c
a
t
.
T
h
i
s
c

Chapter 8
Target

8-425

Table 8-35 (Cont.) Snowflake Event Handler Configuration

Properties Required/Optional Legal Values Default Explanation

a
n
c
a
u
s
e
o
u
t
o
f
m
e
m
o
r
y
e
r
r
o
r
s
a
n
d
s
t
o
p
t
h
e
R
e
p
l
i
c
a
t
i
f
i
t
r
u
n
s
o
u
t
o

Chapter 8
Target

8-426

Table 8-35 (Cont.) Snowflake Event Handler Configuration

Properties Required/Optional Legal Values Default Explanation

f
m
e
m
o
r
y
.

gg.eventhandler
.snowflake.putS
QLThreads

Optional Integer Value 4 Specifies the
number of threads
(`PARALLEL`
clause) to use for
uploading files
using PUT SQL.
This is only relevant
when Snowflake
internal stage
(named stage) is
used.

gg.eventhandler
.snowflake.putS
QLAutoCompress

Optional true | false false Specifies whether
Snowflake uses
gzip to compress
files
(AUTO_COMPRESS
clause) during
upload using PUT
SQL.

true: Files are
compressed (if they
are not already
compressed).

false: Files are
not compressed
(which means, the
files are uploaded
as is). This is only
relevant when
Snowflake internal
stage (named
stage) is used.

gg.eventhandler
.snowflake.useC
opyForInitialLo
ad

Optional true or false true If set to true, then
COPY SQL
statement will be
used during initial
load. If set to
false, then
INSERT SQL
statement will be
used during initial
load.

Chapter 8
Target

8-427

Table 8-35 (Cont.) Snowflake Event Handler Configuration

Properties Required/Optional Legal Values Default Explanation

gg.compressed.u
pdate

Optional true or false true If set the true,
then this indicates
that the source trail
files contain
compressed update
operations. If set to
false, then the
source trail files are
expected to contain
uncompressed
update operations.

gg.eventhandler
.snowflake.conn
ectionRetries

Optional Integer Value 3 Specifies the
number of times
connections to the
target data
warehouse will be
retried.

gg.eventhandler
.snowflake.conn
ectionRetryInte
rvalSeconds

Optional Integer Value 30 Specifies the delay
in minutes between
connection retry
attempts.

8.2.30.3.2 Snowflake Storage Integration
When you use an external staging location, ensure to setup Snowflake storage integration to
grant Snowflake database read permission to the files located in the cloud object store.

If the configuration property gg.stage is not set, then the storage integration is not required,
and Oracle GoldenGate will default to internal stage.

• Azure Data Lake Storage (ADLS) Gen2 Storage Integration: For more information
about creating the storage integration for Azure, see Snowflake documentation to create
the storage integration for Azure.

Example:

-- AS ACCOUNTADMIN
create storage integration azure_int
type = external_stage
storage_provider = azure
enabled = true
azure_tenant_id = '<azure tenant id>'
storage_allowed_locations = ('azure://<azure-account-name>.blob.core.windows.net/
<azure-container>/');

desc storage integration azure_int;
-- Read AZURE_CONSENT_URL and accept the terms and conditions specified in the link.
-- Read AZURE_MULTI_TENANT_APP_NAME to get the Snowflake app name to be granted Blob
Read permission.

grant create stage on schema <schema name> to role <role name>;
grant usage on integration azure_int to role <role name>;

• Google Cloud Storage (GCS) Storage Integration: For more information about creating
the storage integration for GCS, see Snowflake Documentation.

Chapter 8
Target

8-428

https://docs.snowflake.com/en/user-guide/data-load-azure-config.html#option-1-configuring-a-snowflake-storage-integration
https://docs.snowflake.com/en/user-guide/data-load-azure-config.html#option-1-configuring-a-snowflake-storage-integration
https://docs.snowflake.com/en/user-guide/data-load-gcs-config.html#step-1-create-a-cloud-storage-integration-in-snowflake

Example:

create storage integration gcs_int
type = external_stage
storage_provider = gcs
enabled = true
storage_allowed_locations = ('gcs://<gcs-bucket-name>/');

desc storage integration gcs_int;
-- Read the column STORAGE_GCP_SERVICE_ACCOUNT to get the GCP Service Account email
for Snowflake.
-- Create a GCP role with storage read permission and assign the role to the
Snowflake Service account.

grant create stage on schema <schema name> to role <role name>;
grant usage on integration gcs_int to role <role name>;

• AWS S3 Storage Integration: For more information about creating the storage integration
for S3, see Snowflake Documentation.

Note:

When you use S3 as the external stage, you don't need to create storage
integration if you already have access to the following AWS credentials: AWS
Access Key Id and Secret key. You can set AWS credentials in the
jvm.bootoptions property.

• The storage integration name must start with an alphabetic character and cannot contain
spaces or special characters unless the entire identifier string is enclosed in double quotes
for example, My object. Identifiers enclosed in double quotes are also case-sensitive.

8.2.30.3.3 Classpath Configuration
Snowflake Event Handler uses the Snowflake JDBC driver. Ensure that the classpath includes
the path to the JDBC driver. If an external stage is used, then you need to also include the
respective object store Event Handler’s dependencies in the classpath.

• Dependencies

8.2.30.3.3.1 Dependencies

Snowflake JDBC driver: You can use the Dependency Downloader tool to download the JDBC
driver by running the following script: <OGGDIR>/DependencyDownloader/snowflake.sh.

See Dependency Downloader for more information.

Alternatively, you can also download the JDBC driver from Maven central using the following
Dependency Downloader co-ordinates:

<dependency>
 <groupId>net.snowflake</groupId>
 <artifactId>snowflake-jdbc</artifactId>
 <version>3.13.19</version>
</dependency>

• If staging location is set to S3, then the classpath should include the S3 Event handler
dependencies. See S3 Handler Configuration.

Chapter 8
Target

8-429

https://docs.snowflake.com/en/user-guide/data-load-s3-config-storage-integration.html#step-3-create-a-cloud-storage-integration-in-snowflake

• If staging location is set to HDFS, then the classpath should include the HDFS Event
handler dependencies. See HDFS Event Handler Configuration.

• If staging location is set to Google Cloud Storage (GCS), then the classpath should include
the GCS Event handler dependencies. See Google Cloud Storage Event Handler
Configuration.

Edit the gg.classpath configuration parameter to include the path to the object store Event
Handler dependencies (if external stage is in use) and the Snowflake JDBC driver.

8.2.30.3.4 Proxy Configuration
When the Replicat process runs behind a proxy server, you can use the jvm.bootoptions
property proxy server configuration.

Example:

jvm.bootoptions=-Dhttp.useProxy=true -Dhttps.proxyHost=<some-proxy-address.com>
-Dhttps.proxyPort=80 -Dhttp.proxyHost=<some-proxy-address.com> -Dhttp.proxyPort=80

8.2.30.3.5 INSERTALLRECORDS Support
Stage and merge targets supports INSERTALLRECORDS parameter.

See INSERTALLRECORDS in Reference for Oracle GoldenGate. Set the INSERTALLRECORDS
parameter in the Replicat parameter file (.prm). Set the INSERTALLRECORDS parameter in the
Replicat parameter file (.prm)

Setting this property directs the Replicat process to use bulk insert operations to load operation
data into the target table. You can tune the batch size of bulk inserts using the File Writer
property gg.handler.snowflake.maxFileSize. The default value is set to 1GB. The frequency
of bulk inserts can be tuned using the File writer property
gg.handler.snowflake.fileRollInterval, the default value is set to 3m (three minutes).

Note:

• When using the Snowflake internal stage, the staging files can be compressed by
setting gg.eventhandler.snowflake.putSQLAutoCompress to true.

8.2.30.3.6 Snowflake Key Pair Authentication
Snowflake supports key pair authentication as an alternative to basic authentication using
username and password.

The path to the private key file must be set in the JDBC connection URL using the property:
private_key_file.

If the private key file is encrypted, then the connection URL should also include the property:
private_key_file_pwd.

Additionally, the connection URL should also include the Snowflake user that is assigned the
respective public key by setting the property user.

Example JDBC connection URL:

Chapter 8
Target

8-430

https://docs.oracle.com/en/middleware/goldengate/core/21.3/reference/insertallrecords.html#GUID-A1019C40-97BE-437B-9D80-7C99A9A6DB8E

jdbc:snowflake://<account_name>.snowflakecomputing.com/?warehouse=<warehouse-name>
 &db=<database-name>&private_key_file=/path/to/private/key/rsa_key.p8
 &private_key_file_pwd=<private-key-password>&user=<db-user>

When using key pair authentication, ensure that the Snowflake event handler parameters
Username and Password are not set.

Note:

Oracle recommends you to upgrade Oracle GoldenGate for Distributed Applications
and Analytics (GG for DAA) to version 21.10.0.0.0. In case you cannot upgrade to
21.10.0.0.0, then modify the JDBC URL to replace '\' characters with '/'.

8.2.30.3.7 Mapping Source JSON/XML to Snowflake VARIANT
The JSON and XML source column types in the Oracle GoldenGate trail gets automatically
detected and mapped into Snowflake VARIANT.
You can inspect the metadata in the Oracle GoldenGate trail file for JSON and XML types using
logdump.

Example: logdump output showing JSON and XML types:

022/01/06 01:38:54.717.464 Metadata Len 679 RBA 6032
Table Name: CDB1_PDB1.TKGGU1.JSON_TAB1
*
 1)Name 2)Data Type 3)External Length 4)Fetch Offset
5)Scale 6)Level
 7)Null 8)Bump if Odd 9)Internal Length 10)Binary Length 11)Table
Length 12)Most Sig DT
13)Least Sig DT 14)High Precision 15)Low Precision 16)Elementary Item
17)Occurs 18)Key Column
19)Sub DataType 20)Native DataType 21)Character Set 22)Character Length 23)LOB
Type 24)Partial Type
25)Remarks
*
TDR version: 11
Definition for table CDB1_PDB1.TKGGU1.JSON_TAB1
Record Length: 81624
Columns: 7
ID 64 50 0 0 0 0 0 50
50 50 0 0 0 0 1 0 1 2 2 -1 0 0 0
COL 64 4000 56 0 0 1 0 4000
8200 0 0 0 0 0 1 0 0 0 119 0 0 1 1 JSON
COL2 64 4000 4062 0 0 1 0 4000
8200 0 0 0 0 0 1 0 0 0 119 0 0 1 1 JSON
COL3 64 4000 8068 0 0 1 0 4000
4000 0 0 0 0 0 1 0 0 10 112 -1 0 1 1 XML
SYS_NC00005$ 64 8000 12074 0 0 1 0 4000
4000 0 0 0 0 0 1 0 0 4 113 -1 0 1 1 Hidden
SYS_IME_OSON_CF27CFDF1CEB4FA2BF85A3D6239A433C 64 65534 16080 0 0 1 0 32767
32767 0 0 0 0 0 1 0 0 4 23 -1 0 0 0 Hidden
SYS_IME_OSON_CEE1B31BB4494F6ABF31AC002BEBE941 64 65534 48852 0 0 1 0 32767
32767 0 0 0 0 0 1 0 0 4 23 -1 0 0 0 Hidden
End of definition

In this example, COL and COL2 are JSON columns and COL3 is an XML column.

Chapter 8
Target

8-431

Additionally, mapping to Snowflake VARIANT is supported only if the source columns are stored
as text.

8.2.30.3.8 Operation Aggregation
Operation aggregation is the process of aggregating (merging/compressing) multiple
operations on the same row into a single output operation based on a threshold.

• In-Memory Operation Aggregation

• Operation Aggregation Using SQL

8.2.30.3.8.1 In-Memory Operation Aggregation

• Operation records can be aggregated in-memory by setting
gg.aggregate.operations=true.
This is the default configuration.

• You can tune the frequency of merge interval using
gg.aggregate.operations.flush.interval property, the default value is set to 30000
milliseconds (thirty seconds).

• Operation aggregation in-memory requires additional JVM memory configuration.

8.2.30.3.8.2 Operation Aggregation Using SQL

• To use SQL aggregation, it is mandatory that the trail files contain uncompressed UPDATE
operation records, which means that the UPDATE operations contain full image of the row
being updated.

• Operation aggregation using SQL can provide better throughput if the trails files contains
uncompressed update records.

• Replicat can aggregate operations using SQL statements by setting the
gg.aggregate.operations.using.sql=true.

• Operation aggregation using SQL does not require additional JVM memory configuration.

8.2.30.3.9 Compressed Update Handling
A compressed update record contains values for the key columns and the modified columns.

An uncompressed update record contains values for all the columns.

Oracle GoldenGate trails may contain compressed or uncompressed update records. The
default extract configuration writes compressed updates to the trails. The parameter
gg.compressed.update can be set to true or false to indicate compressed or uncompressed
update records.

• MERGE Statement with Uncompressed Updates

8.2.30.3.9.1 MERGE Statement with Uncompressed Updates

In some use cases, if the trail contains uncompressed update records, then the MERGE SQL
statement can be optimized for better performance by setting gg.compressed.update=false. If
you want to use DELETE+INSERT SQL statements instead of a MERGE SQL statement, then set
gg.eventhandler.snowflake.deleteInsert=true.

Chapter 8
Target

8-432

8.2.30.3.10 End-to-End Configuration
The following is an end-end configuration example which uses auto-configuration.

Location of the sample properties file: <OGGDIR>/AdapterExamples/big-data/snowflake/
• sf.props: Configuration using internal stage

• sf-s3.props: Configuration using S3 stage.

• sf-az.props: Configuration using ADLS Gen2 stage.

• sf-gcs.props: Configuration using GCS stage.

Note: Recommended to only edit the configuration marked as TODO

gg.target=snowflake

#The Snowflake Event Handler
#TODO: Edit JDBC ConnectionUrl
gg.eventhandler.snowflake.connectionURL=jdbc:snowflake://
<account_name>.snowflakecomputing.com/?warehouse=<warehouse-name>&db=<database-name>
#TODO: Edit JDBC user name
gg.eventhandler.snowflake.UserName=<db user name>
#TODO: Edit JDBC password
gg.eventhandler.snowflake.Password=<db password>

Using Snowflake internal stage.
Configuration to load GoldenGate trail operation records
into Snowflake Data warehouse by chaining
File writer handler -> Snowflake Event handler.
#TODO:Set the classpath to include Snowflake JDBC driver.
gg.classpath=./snowflake-jdbc-3.13.7.jar
#TODO:Provide sufficient memory (at least 8GB).
jvm.bootoptions=-Xmx8g -Xms8g

Using Snowflake S3 External Stage.
Configuration to load GoldenGate trail operation records
into Snowflake Data warehouse by chaining
File writer handler -> S3 Event handler -> Snowflake Event handler.

#The S3 Event Handler
#TODO: Edit the AWS region
#gg.eventhandler.s3.region=<aws region>
#TODO: Edit the AWS S3 bucket
#gg.eventhandler.s3.bucketMappingTemplate=<s3 bucket>
#TODO:Set the classpath to include AWS Java SDK and Snowflake JDBC driver.
#gg.classpath=aws-java-sdk-1.11.356/lib/*:aws-java-sdk-1.11.356/third-party/lib/*:./
snowflake-jdbc-3.13.7.jar
#TODO:Set the AWS access key and secret key. Provide sufficient memory (at least 8GB).
#jvm.bootoptions=-Daws.accessKeyId=<AWS access key> -Daws.secretKey=<AWS secret key> -
DSF_STAGE=s3 -Xmx8g -Xms8g

Using Snowflake ADLS Gen2 External Stage.
Configuration to load GoldenGate trail operation records
into Snowflake Data warehouse by chaining
File writer handler -> HDFS Event handler -> Snowflake Event handler.

#The HDFS Event Handler
No properties are required for the HDFS Event handler.
If there is a need to edit properties, check example in the following line.
#gg.eventhandler.hdfs.finalizeAction=delete

Chapter 8
Target

8-433

#TODO: Edit snowflake storage integration to access Azure Blob Storage.
#gg.eventhandler.snowflake.storageIntegration=<azure_int>
#TODO: Edit the classpath to include HDFS Event Handler dependencies and Snowflake JDBC
driver.
#gg.classpath=./snowflake-jdbc-3.13.7.jar:hadoop-3.2.1/share/hadoop/common/
:hadoop-3.2.1/share/hadoop/common/lib/:hadoop-3.2.1/share/hadoop/hdfs/*:hadoop-3.2.1/
share/hadoop/hdfs/lib/*:hadoop-3.2.1/etc/hadoop/:hadoop-3.2.1/share/hadoop/tools/lib/*
#TODO: Set property SF_STAGE=hdfs. Provide sufficient memory (at least 8GB).
#jvm.bootoptions=-DSF_STAGE=hdfs -Xmx8g -Xms8g

Using Snowflake GCS External Stage.
Configuration to load GoldenGate trail operation records
into Snowflake Data warehouse by chaining
File writer handler -> GCS Event handler -> Snowflake Event handler.

The GCS Event handler
#TODO: Edit the GCS bucket name
#gg.eventhandler.gcs.bucketMappingTemplate=<gcs bucket>
#TODO: Edit the GCS credentialsFile
#gg.eventhandler.gcs.credentialsFile=<oggbd-project-credentials.json>
#TODO: Edit snowflake storage integration to access GCS.
#gg.eventhandler.snowflake.storageIntegration=<gcs_int>
#TODO: Edit the classpath to include GCS Java SDK and Snowflake JDBC driver.
#gg.classpath=gcs-deps/*:./snowflake-jdbc-3.13.7.jar
#TODO: Set property SF_STAGE=gcs. Provide sufficient memory (at least 8GB).
#jvm.bootoptions=-DSF_STAGE=gcs -Xmx8g -Xms8g

8.2.30.3.11 Compressed Update Handling
A compressed update record contains values for the key columns and the modified columns.

An uncompressed update record contains values for all the columns.

Oracle GoldenGate trails may contain compressed or uncompressed update records. The
default extract configuration writes compressed updates to the trails.

The parameter gg.compressed.update can be set to true or false to indicate compressed/
uncompressed update records.

• MERGE Statement with Uncompressed Updates

8.2.30.3.11.1 MERGE Statement with Uncompressed Updates

In some use cases, if the trail contains uncompressed update records, then the MERGE SQL
statement can be optimized for better performance by setting gg.compressed.update=false.

Note:

If you want to use DELETE+INSERT SQL statements instead of a MERGE SQL statement,
then set gg.eventhandler.snowflake.deleteInsert=true.

8.2.30.4 Troubleshooting and Diagnostics
• Connectivity issues to Snowflake:

– Validate JDBC connection URL, username, and password.

– Check HTTP(S) proxy configuration if running Replicat process behind a proxy.

Chapter 8
Target

8-434

• DDL not applied on the target table: Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) does not support DDL replication.

• SQL Errors: In case there are any errors while executing any SQL, the SQL statements
along with the bind parameter values are logged into the GG for DAA handler log file.

• Co-existence of the components: When using an external stage location (S3, ADLS Gen
2 or GCS), the location/region of the machine where the Replicat process is running and
the object store’s region have an impact on the overall throughput of the apply process.
For the best possible throughput, the components need to be located ideally in the same
region or as close as possible.

• Replicat ABEND due to partial LOB records in the trail file: GG for DAA does not
support replication of partial LOB data. The trail file needs to be regenerated by Oracle
Integrated capture using TRANLOGOPTIONS FETCHPARTIALLOB option in the Extract
parameter file.

• When replicating to more than ten target tables, the parameter maxConnnections can be
increased to a higher value which can improve throughput.

Note:

When tuning this, increasing the parameter value would create more JDBC
connections on the Snowflake data warehouse.You can consult your Snowflake
Database administrators so that the data warehouse health is not compromised.

• The Snowflake JDBC driver uses the standard Java log utility. The log levels of the JDBC
driver can be set using the JDBC connection parameter tracing. The tracing level can be
set in the Snowflake Event handler property gg.eventhandler.snowflake.connectionURL.
The following is an example of editing this property:

jdbc:snowflake://<account_name>.snowflakecomputing.com/?
warehouse=<warehouse-name>&db=<database-name>&tracing=SEVERE

For more information, see https://docs.snowflake.com/en/user-guide/jdbc-
parameters.html#tracing.

• Exception: net.snowflake.client.jdbc.SnowflakeReauthenticationRequest:
Authentication token has expired. The user must authenticate again.
This error occurs when are extended periods of inactivity. To resolve this, you can set the
JDBC parameter CLIENT_SESSION_KEEP_ALIVE to force the database user to login after a
period of inactivity in the session. For example, jdbc:snowflake://
<account_name>.snowflakecomputing.com/?warehouse=<warehouse-
name>&db=<database-name>&CLIENT_SESSION_KEEP_ALIVE=true

• Replicat stops with an out of memory error: Decrease the
gg.aggregate.operations.flush.interval value if you are not using its default value
(30000).

• Performance issue while replicating Large Object (LOB) column values: LOB
processing can lead to slowness. For every LOB column that exceeds the inline LOB
threshold, an UPDATE SQL is executed. Look for the following message to tune throughput
during LOB processing: The current operation at position [<seqno>/<rba>] for
table [<tablename>] contains a LOB column [<column name>] of length [<N>]
bytes that exceeds the threshold of maximum inline LOB size [<N>]. Operation
Aggregator will flush merged operations, which can degrade performance. The
maximum inline LOB size in bytes can be tuned using the configuration

Chapter 8
Target

8-435

https://docs.snowflake.com/en/user-guide/jdbc-parameters.html#tracing
https://docs.snowflake.com/en/user-guide/jdbc-parameters.html#tracing

gg.maxInlineLobSize.Check the trail files that contain LOB data and get a maximum size
of BLOB/CLOB columns. Alternatively, check the source table definitions to determine the
maximum size of LOB data. The default inline LOB size is set to 16000 bytes, which can
be increased to a higher value so that all LOB column updates are processed in batches.
The configuration property is gg.maxInlineLobSize`. For example: In
gg.maxInlineLobSize=24000000 --> , all LOBs up to 24 MB are processed inline. You
need to reposition the Replicat, purge the state files, data directory, and start over, so that
bigger staging files are generated.

• Error message: No database is set in the current session. Please set a database in
the JDBC connection url [gg.eventhandler.snowflake.connectionURL] using the
option 'db=<database name>'.`
Resolution: Set the database name in the configuration property
gg.eventhandler.snowflake.connectionURL.

• Warning message: No role is set in the current session. Please set a custom role
name in the JDBC connection url [gg.eventhandler.snowflake.connectionURL] using
the option 'role=<role name>' if the warehouse [{}] requires a custom role to access
it.
Resolution: In some cases a custom role is required to access the Snowflake warehouse,
set the role in the configuration property gg.eventhandler.snowflake.connectionURL.

• Error message: No active warehouse selected in the current session. Please set the
warehouse name (and custom role name if required to access the respective
warehouse) in the JDBC connection url [gg.eventhandler.snowflake.connectionURL]
using the options 'warehouse=<warehouse name>' and 'role=<role name>'.
Resolution: Set the warehouse and role in the configuration property
gg.eventhandler.snowflake.connectionURL.

• Error message: `ERROR 2024-06-07 05:52:23.000344 [main] - JDBCMDP-00034
Current attempt to connect failed with error: [Private key provided is invalid or not
supported: ./rsa_key_sanav2.p8: PBE parameter parsing error: expecting the object
identifier for AES cipher]`
Resolution: This is a recent issue in the Snowflake JDBC driver. The workaround is to
upgrade to the Snowflake JDBC driver version 3.16.1, and add the Java system property -
Dnet.snowflake.jdbc.enableBouncyCastle=true to the jvm.bootoptions parameter in
the Replicat properties file.

8.2.31 Additional Details
• Command Event Handler

This chapter describes how to use the Command Event Handler. The Command Event
Handler provides the interface to synchronously execute an external program or script.

• HDFS Event Handler
The HDFS Event Handler is used to load files generated by the File Writer Handler into
HDFS.

• Metacolumn Keywords

• Metadata Providers
The Metadata Providers can replicate from a source to a target using a Replicat parameter
file.

• Pluggable Formatters
The pluggable formatters are used to convert operations from the Oracle GoldenGate trail
file into formatted messages that you can send to Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) targets using one of the GG for DAA handlers.

Chapter 8
Target

8-436

• Stage and Merge Data Warehouse Replication
Data warehouse targets typically support Massively Parallel Processing (MPP). The cost of
a single Data Manipulation Language (DML) operation is comparable to the cost of
execution of batch DMLs.

• Template Keywords

• Velocity Dependencies
Starting Oracle GoldenGate for Big Data release 21.1.0.0.0, the Velocity jar files have been
removed from the packaging.

8.2.31.1 Command Event Handler
This chapter describes how to use the Command Event Handler. The Command Event
Handler provides the interface to synchronously execute an external program or script.

• Overview - Command Event Handler
The purpose of the Command Event Handler is to load data files generated by the File
Writer Handler into respective targets by executing an external program or a script
provided.

• Configuring the Command Event Handler
You can configure the Command Event Handler operation using the File Writer Handler
properties file.

• Using Command Argument Template Strings
Command Argument Templated Strings consists of keywords that are dynamically resolved
at runtime. Command Argument Templated strings are passed as arguments to the script
in the same order mentioned in the commandArgumentTemplate property .

8.2.31.1.1 Overview - Command Event Handler
The purpose of the Command Event Handler is to load data files generated by the File Writer
Handler into respective targets by executing an external program or a script provided.

8.2.31.1.2 Configuring the Command Event Handler
You can configure the Command Event Handler operation using the File Writer Handler
properties file.

The Command Event Handler works only in conjunction with the File Writer Handler.

To enable the selection of the Command Event Handler, you must first configure the handler
type by specifying gg.eventhandler.name.type=command and the other Command Event
properties as follows:

Table 8-36 Command Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler.
name.type

Required command None Selects the Command Event Handler for use with
Replicat

Chapter 8
Target

8-437

Table 8-36 (Cont.) Command Event Handler Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.eventhandler.
name.command

Required Valid path
of external
program or
a script to
be
executed.

None The script or an external program that should be
executed by the Command Event Handler.

gg.eventhandler.
name.cmdWaitMill
i

Optional Integer
value
representi
ng milli
seconds

Indefini
tely

The Command Event Handler will wait for a
period of time for the called commands in the
script or external program to complete. If the
Command Event Handler fails to complete the
command within the configured timout period of
time, process will get Abend.

gg.eventhandler.
name.multithread
ed

Optional true |
false

true If true, the configured commands in the script or
external program will be executed multithreaded
way. Else executed in single thread.

gg.eventhandler.
name.commandArgu
mentTemplate

Optional See Using
Command
Argument
Templated
Strings.

None The Command Event Handler uses the command
argument template strings during script or
external program execution as input arguments.
For a list of valid argument strings, see Using
Command Argument Templated Strings.

Sample Configuration

gg.eventhandler.command.type=command

gg.eventhandler.command.command=<path of the script to be executed>

#gg.eventhandler.command.cmdWaitMilli=10000

gg.eventhandler.command.multithreaded=true

gg.eventhandler.command.commandArgumentTemplate=${tablename},${datafilename},$
{countoperations}

8.2.31.1.3 Using Command Argument Template Strings
Command Argument Templated Strings consists of keywords that are dynamically resolved at
runtime. Command Argument Templated strings are passed as arguments to the script in the
same order mentioned in the commandArgumentTemplate property .

The valid tokens used as a command Argument Template strings are as follows: UUID,
TableName, DataFileName, DataFileDir, DataFileDirandName, Offset, Format,
CountOperations, CountInserts, CountUpdates, CountDeletes, CountTruncates. Invalid
Templated string results in an Abend.

Chapter 8
Target

8-438

Supported Template Strings

${uuid}
The File Writer Handler assigns a uuid to internally track the state of generated files. The
usefulness of the uuid may be limited to troubleshooting scenarios.

${tableName}
The individual source table name. For example, MYTABLE.

${dataFileName}
The generated data file name.

${dataFileDirandName}
The source file name with complete path and filename along with the file extension.

${offset}
The offset (or size in bytes) of the data file.

${format}
The format of the file. For example: delimitedtext | json | json_row | xml | avro_row |
avro_op | avro_row_ocf | avro_op_ocf

${countOperations}
The total count of operations in the data file. It must be either renamed or used by the event
handlers or it becomes zero (0) because nothing is written. For example, 1024.

${countInserts}
The total count of insert operations in the data file. It must be either renamed or used by the
event handlers or it becomes zero (0) because nothing is written. For example, 125.

${countUpdates}
The total count of update operations in the data file. It must be either renamed or used by the
event handlers or it becomes zero (0) because nothing is written. For example, 265.

${countDeletes}
The total count of delete operations in the data file. It must be either renamed or used by the
event handlers or it becomes zero (0) because nothing is written. For example, 11.

${countTruncates}
The total count of truncate operations in the data file. It must be used either on rename or by
the event handlers or it will be zero (0) because nothing is written yet. For example, 5.

Note:

The Command Event Handler on successful execution of the script or the commnad
logs a message with the following statement: The command completed successfully,
along with the statement of command that gets executed. If there's an error when the
command gets executed, the Command Event Handler abends the Replicat process
and logs the error message.

8.2.31.2 HDFS Event Handler
The HDFS Event Handler is used to load files generated by the File Writer Handler into HDFS.

This topic describes how to use the HDFS Event Handler. See Flat Files.

Chapter 8
Target

8-439

• Detailing the Functionality

8.2.31.2.1 Detailing the Functionality
• Configuring the Handler

• Configuring the HDFS Event Handler

8.2.31.2.1.1 Configuring the Handler

The HDFS Event Handler can can upload data files to HDFS. These additional configuration
steps are required:

The HDFS Event Handler dependencies and considerations are the same as the HDFS
Handler, see HDFS Additional Considerations.

Ensure that gg.classpath includes the HDFS client libraries.

Ensure that the directory containing the HDFS core-site.xml file is in gg.classpath. This is
so the core-site.xml file can be read at runtime and the connectivity information to HDFS
can be resolved. For example:

gg.classpath=/{HDFSinstallDirectory}/etc/hadoop

If Kerberos authentication is enabled on the HDFS cluster, you have to configure the Kerberos
principal and the location of the keytab file so that the password can be resolved at runtime:

gg.eventHandler.name.kerberosPrincipal=principal
gg.eventHandler.name.kerberosKeytabFile=pathToTheKeytabFile

8.2.31.2.1.2 Configuring the HDFS Event Handler

You configure the HDFS Handler operation using the properties file. These properties are
located in the Java Adapter properties file (not in the Replicat properties file).

To enable the selection of the HDFS Event Handler, you must first configure the handler type
by specifying gg.eventhandler.name.type=hdfs and the other HDFS Event properties as
follows:

Table 8-37 HDFS Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.type

Required hdfs None Selects the HDFS Event Handler for use.

gg.eventhandler
.name.pathMappi
ngTemplate

Required A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the path in
HDFS to
write data
files.

None Use keywords interlaced with constants to
dynamically generate unique path names at
runtime. Path names typically follow the
format, /ogg/data/${groupName}/$
{fullyQualifiedTableName}. See Template
Keywords.

Chapter 8
Target

8-440

Table 8-37 (Cont.) HDFS Event Handler Configuration Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.eventhandler
.name.fileNameM
appingTemplate

Optional A string
with
resolvable
keywords
and
constants
used to
dynamically
generate
the HDFS
file name at
runtime.

None Use keywords interlaced with constants to
dynamically generate unique file names at
runtime. If not set, the upstream file name is
used. See Template Keywords.

gg.eventhandler
.name.finalizeA
ction

Optional none |
delete

none Indicates what the File Writer Handler should
do at the finalize action.

none
Leave the data file in place (removing any
active write suffix, see About the Active Write
Suffix).

delete
Delete the data file (such as, if the data file has
been converted to another format or loaded to
a third party application).

gg.eventhandler
.name.kerberosP
rincipal

Optional The
Kerberos
principal
name.

None Set to the Kerberos principal when HDFS
Kerberos authentication is enabled.

gg.eventhandler
.name.keberosKe
ytabFile

Optional The path to
the Keberos
keytab
file.

None Set to the path to the Kerberos keytab file
when HDFS Kerberos authentication is
enabled.

gg.eventhandler
.name.eventHand
ler

Optional A unique
string
identifier
cross
referencing
a child
event
handler.

No
event
handler
configur
ed.

A unique string identifier cross referencing an
event handler. The event handler will be
invoked on the file roll event. Event handlers
can do thing file roll event actions like loading
files to S3, converting to Parquet or ORC
format, or loading files to HDFS.

8.2.31.3 Metacolumn Keywords
This appendix describes the metacolumn keywords.
The metacolumns functionality allows you to select the metadata fields that you want to see in
the generated output messages. The format of the metacolumn syntax is:

Chapter 8
Target

8-441

${keyword[fieldName].argument}
The keyword is fixed based on the metacolumn syntax. Optionally, you can provide a field
name between the square brackets. If a field name is not provided, then the default field name
is used.
Keywords are separated by a comma. Following is an example configuration of metacolumns:

gg.handler.filewriter.format.metaColumnsTemplate=${objectname[table]},$
{optype[op_type]},${timestamp[op_ts]},${currenttimestamp[current_ts]},$
{position[pos]}

An argument may be required for a few metacolumn keywords. For example, it is required
where specific token values are resolved or specific environmental variable values are
resolved.

${alltokens}
All of the tokens for an operation delivered as a map where the token keys are the keys in the
map and the token values are the map values.

${token}
The value of a specific Oracle GoldenGate token. The token key should follow token key
should follow the token using the period (.) operator. For example:

${token.MYTOKEN}

${sys}
A system environmental variable. The variable name should follow sys using the period (.)
operator.

${sys.MYVAR}
An Oracle GoldenGate environment variable. The variable name should follow env using the
period (.) operator.

${env}
An Oracle GoldenGate environment variable. The variable name should follow env using the
period (.) operator. For example:

${env.someVariable}

${javaprop}
A Java JVM variable. The variable name should follow javaprop using the period (.) operator.
For example:

${javaprop.MYVAR}

${optype}
The operation type. This is generally I for inserts, U for updates, D for deletes, and T for
truncates.

${position}
The record position. This is location of the record in the source trail file. It is a 20 character
string. The first 10 characters is the trail file sequence number. The last 10 characters is the
offset or rba of the record in the trail file.

${timestamp}
Record timestamp.

Chapter 8
Target

8-442

${catalog}
Catalog name.

${schema}
Schema name.

${table}
Table name.

${objectname}
The fully qualified table name.

${csn}
Source Commit Sequence Number.

${xid}
Source transaction ID.

${currenttimestamp}
Current timestamp.

${currenttimestampiso8601}
Current timestamp in ISO 8601 format.

${opseqno}
Record sequence number within the transaction.

${timestampmicro}
Record timestamp in microseconds after epoch.

${currenttimestampmicro}
Current timestamp in microseconds after epoch.

${txind}
The is the transactional indicator from the source trail file. The values of a transaction are B for
the first operation, M for the middle operations, E for the last operation, or W for whole if there is
only one operation. Filtering operations or the use of coordinated apply negate the usefulness
of this field.

${primarykeycolumns}
Use to inject a field with a list of the primary key column names.

${primarykeys}
Use to inject a field with a list of the primary key column values with underscore (_) delimiter
between primary key values.
Usage: ${primarykeys[fieldName]}
Example: ${primarykeys[JMSXGroupID]}

${static}
Use to inject a field with a static value into the output. The value desired should be the
argument. If the desired value is abc, then the syntax is ${static.abc} or $
{static[FieldName].abc}.

${seqno}
Used to inject a field containing the sequence number of the source trail file for the given
operation.

Chapter 8
Target

8-443

${rba}
Used to inject a field containing the rba (offset) of the operation in the source trail file for the
given operation.

${metadatachanged}
A boolean field which gets set to true on the first operation following a metadata change for
the source table definition.

${groupname}
A string field which the value is the group name of the replicat process. Group name is
effectively the replicat process name as it is referred to in ggsci or the Oracle GoldenGate
Microservices UI.

${positionnumber}
The position rendered as a number.

${seqnonumber}
The trail sequence number rendered as a number.

${rbanumber}
The trail rba rendered as a number.

${opseqno}
The operation sequence number rendered as a number.

8.2.31.4 Metadata Providers
The Metadata Providers can replicate from a source to a target using a Replicat parameter file.

This chapter describes how to use the Metadata Providers.

• About the Metadata Providers

• Avro Metadata Provider
The Avro Metadata Provider is used to retrieve the table metadata from Avro Schema files.
For every table mapped in Replicat using COLMAP, the metadata is retrieved from Avro
Schema. Retrieved metadata is then used by Replicat for column mapping.

• Java Database Connectivity Metadata Provider

• Hive Metadata Provider
The Hive Metadata Provider is used to retrieve the table metadata from a Hive metastore.
The metadata is retrieved from Hive for every target table that is mapped in the Replicat
properties file using the COLMAP parameter. The retrieved target metadata is used by
Replicat for the column mapping functionality.

• Google BigQuery Metadata Provider
Google metadata provider uses the Google Query Job to retrieve the metadata schema
information from the Google BigQuery Table. The Table should already be created on the
target for BigQuery to fetch the metadata.

8.2.31.4.1 About the Metadata Providers
Metadata Providers work only if handlers are configured to run with a Replicat process.

The Replicat process maps source table to target table and source column to target column
mapping using syntax in the Replicat configuration file. The source metadata definitions are
included in the Oracle GoldenGate trail file (or by source definitions files in Oracle GoldenGate
releases 12.2 and later). When the replication target is a database, the Replicat process
obtains the target metadata definitions from the target database. However, this is a

Chapter 8
Target

8-444

shortcoming when pushing data to Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) applications or during Java delivery in general. Typically, GG for DAA
applications provide no target metadata, so Replicat mapping is not possible. The metadata
providers exist to address this deficiency. You can use a metadata provider to define target
metadata using either Avro or Hive, which enables Replicat mapping of source table to target
table and source column to target column.

The use of the metadata provider is optional and is enabled if the gg.mdp.type property is
specified in the Java Adapter Properties file. If the metadata included in the source Oracle
GoldenGate trail file is acceptable for output, then do not use the metadata provider. Use a
metadata provider should be used in the following cases:

• You need to map source table names into target table names that do not match.

• You need to map source column names into target column name that do not match.

• You need to include certain columns from the source trail file and omit other columns.

A limitation of Replicat mapping is that the mapping defined in the Replicat configuration file is
static. Oracle GoldenGate provides functionality for DDL propagation when using an Oracle
database as the source. The proper handling of schema evolution can be problematic when
the Metadata Provider and Replicat mapping are used. Consider your use cases for schema
evolution and plan for how you want to update the Metadata Provider and the Replicat
mapping syntax for required changes.

For every table mapped in Replicat using COLMAP, the metadata is retrieved from a configured
metadata provider and retrieved metadata then be used by Replicat for column mapping.

Only the Hive and Avro Metadata Providers are supported and you must choose one or the
other to use in your metadata provider implementation.

Scenarios - When to use a metadata provider

1. The following scenarios do not require a metadata provider to be configured:

A mapping in which the source schema named GG is mapped to the target schema named
GGADP.*

A mapping in which the schema and table name whereby the schema GG.TCUSTMER is
mapped to the table name GGADP.TCUSTMER_NEW
MAP GG.*, TARGET GGADP.*;
(OR)
MAP GG.TCUSTMER, TARGET GG_ADP.TCUSTMER_NEW;

2. The following scenario requires a metadata provider to be configured:

A mapping in which the source column name does not match the target column name. For
example, a source column of CUST_CODE mapped to a target column of CUST_CODE_NEW.

MAP GG.TCUSTMER, TARGET GG_ADP.TCUSTMER_NEW, COLMAP(USEDEFAULTS,
CUST_CODE_NEW=CUST_CODE, CITY2=CITY);

8.2.31.4.2 Avro Metadata Provider
The Avro Metadata Provider is used to retrieve the table metadata from Avro Schema files. For
every table mapped in Replicat using COLMAP, the metadata is retrieved from Avro Schema.
Retrieved metadata is then used by Replicat for column mapping.

• Detailed Functionality

• Runtime Prerequisites

Chapter 8
Target

8-445

• Classpath Configuration

• Avro Metadata Provider Configuration

• Review a Sample Configuration

• Metadata Change Events

• Limitations

• Troubleshooting

8.2.31.4.2.1 Detailed Functionality

The Avro Metadata Provider uses Avro schema definition files to retrieve metadata. Avro
schemas are defined using JSON. For each table mapped in the process_name. prm file, you
must create a corresponding Avro schema definition file.

Avro Metadata Provider Schema Definition Syntax

{"namespace": "[$catalogname.]$schemaname",
"type": "record",
"name": "$tablename",
"fields": [
 {"name": "$col1", "type": "$datatype"},
 {"name": "$col2 ", "type": "$datatype ", "primary_key":true},
 {"name": "$col3", "type": "$datatype ", "primary_key":true},
 {"name": "$col4", "type": ["$datatype","null"]}
]
}

namespace - name of catalog/schema being mapped
name - name of the table being mapped
fields.name - array of column names
fields.type - datatype of the column
fields.primary_key - indicates the column is part of primary key.

Representing nullable and not nullable columns:

"type":"$datatype" - indicates the column is not nullable, where "$datatype" is the
actual datatype.
"type": ["$datatype","null"] - indicates the column is nullable, where "$datatype" is
the actual datatype

The names of schema files that are accessed by the Avro Metadata Provider must be in the
following format:

[$catalogname.]$schemaname.$tablename.mdp.avsc

$catalogname - name of the catalog if exists
$schemaname - name of the schema
$tablename - name of the table
.mdp.avsc - constant, which should be appended always

Supported Avro Primitive Data Types

• boolean

• bytes

• double

• float

• int

Chapter 8
Target

8-446

• long

• string

See https://avro.apache.org/docs/1.7.5/spec.html#schema_primitive.

Supported Avro Logical Data Types

• decimal

• timestamp

Example Avro for decimal logical type

{"name":"DECIMALFIELD","type":
{"type":"bytes","logicalType":"decimal","precision":15,"scale":5}}

Example of Timestamp logical type

{"name":"TIMESTAMPFIELD","type":
{"type":"long","logicalType":"timestamp-micros"}}

8.2.31.4.2.2 Runtime Prerequisites

Before you start the Replicat process, create Avro schema definitions for all tables mapped in
Replicat's parameter file.

8.2.31.4.2.3 Classpath Configuration

The Avro Metadata Provider requires no additional classpath setting.

8.2.31.4.2.4 Avro Metadata Provider Configuration

Property Required/
Optional

Legal Values Default Explanation

gg.mdp.type Required avro - Selects the Avro
Metadata Provider

gg.mdp.schema
FilesPath

Required Example:/home/user/
ggadp/avroschema/

- The path to the Avro
schema files directory

gg.mdp.charse
t

Optional Valid character set UTF-8 Specifies the character
set of the column with
character data type.
Used to convert the
source data from the
trail file to the correct
target character set.

gg.mdp.nation
alCharset

Optional Valid character set UTF-8 Specifies the character
set of the column with
character data type.
Used to convert the
source data from the
trail file to the correct
target character set.

Example: Used to
indicate character set
of columns, such as
NCHAR, NVARCHAR in an
Oracle database.

Chapter 8
Target

8-447

https://avro.apache.org/docs/1.7.5/spec.html#schema_primitive

8.2.31.4.2.5 Review a Sample Configuration

This is an example for configuring the Avro Metadata Provider. Consider a source that includes
the following table:

TABLE GG.TCUSTMER {
 CUST_CODE VARCHAR(4) PRIMARY KEY,
 NAME VARCHAR(100),
 CITY VARCHAR(200),
 STATE VARCHAR(200)
}

This table maps the(CUST_CODE (GG.TCUSTMER) in the source to CUST_CODE2
(GG_AVRO.TCUSTMER_AVRO) on the target and the column CITY(GG.TCUSTMER) in source to
CITY2 (GG_AVRO.TCUSTMER_AVRO) on the target. Therefore, the mapping in the process_name.
prm file is:

MAP GG.TCUSTMER, TARGET GG_AVRO.TCUSTMER_AVRO, COLMAP(USEDEFAULTS, CUST_CODE2=CUST_CODE,
CITY2=CITY);

In this example the mapping definition is as follows:

• Source schema GG is mapped to target schema GG_AVRO.

• Source column CUST_CODE is mapped to target column CUST_CODE2.

• Source column CITY is mapped to target column CITY2.

• USEDEFAULTS specifies that rest of the columns names are same on both source and target
(NAME and STATE columns).

This example uses the following Avro schema definition file:

File path: /home/ggadp/avromdpGG_AVRO.TCUSTMER_AVRO.mdp.avsc
{"namespace": "GG_AVRO",
"type": "record",
"name": "TCUSTMER_AVRO",
"fields": [
 {"name": "NAME", "type": "string"},
 {"name": "CUST_CODE2", "type": "string", "primary_key":true},
 {"name": "CITY2", "type": "string"},
 {"name": "STATE", "type": ["string","null"]}
]
}

The configuration in the Java Adapter properties file includes the following:

gg.mdp.type = avro
gg.mdp.schemaFilesPath = /home/ggadp/avromdp

The following sample output uses a delimited text formatter with a semi-colon as the delimiter:

I;GG_AVRO.TCUSTMER_AVRO;2013-06-02 22:14:36.000000;NAME;BG SOFTWARE
CO;CUST_CODE2;WILL;CITY2;SEATTLE;STATE;WA

Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) includes a sample
Replicat configuration file, a sample Java Adapter properties file, and sample Avro schemas at
the following location:

Chapter 8
Target

8-448

GoldenGate_install_directory/AdapterExamples/big-data/metadata_provider/avro

8.2.31.4.2.6 Metadata Change Events

If the DDL changes in the source database tables, you may need to modify the Avro schema
definitions and the mappings in the Replicat configuration file. You may also want to stop or
suspend the Replicat process in the case of a metadata change event. You can stop the
Replicat process by adding the following line to the Replicat configuration file (process_name.
prm):

DDL INCLUDE ALL, EVENTACTIONS (ABORT)
Alternatively, you can suspend the Replicat process by adding the following line to the
Replication configuration file:

DDL INCLUDE ALL, EVENTACTIONS (SUSPEND)

8.2.31.4.2.7 Limitations

Avro bytes data type cannot be used as primary key.

The source-to-target mapping that is defined in the Replicat configuration file is static. Oracle
GoldenGate 12.2 and later support DDL propagation and source schema evolution for Oracle
Databases as replication source. If you use DDL propagation and source schema evolution,
you lose the ability to seamlessly handle changes to the source metadata.

8.2.31.4.2.8 Troubleshooting

This topic contains the information about how to troubleshoot the following issues:

• Invalid Schema Files Location

• Invalid Schema File Name

• Invalid Namespace in Schema File

• Invalid Table Name in Schema File

8.2.31.4.2.8.1 Invalid Schema Files Location
The Avro schema files directory specified in the gg.mdp.schemaFilesPath configuration
property must be a valid directory.If the path is not valid, you encounter following exception:

oracle.goldengate.util.ConfigException: Error initializing Avro metadata provider
Specified schema location does not exist. {/path/to/schema/files/dir}

8.2.31.4.2.8.2 Invalid Schema File Name
For every table that is mapped in the process_name.prm file, you must create a corresponding
Avro schema file in the directory that is specified in gg.mdp.schemaFilesPath.

For example, consider the following scenario:

Mapping:

MAP GG.TCUSTMER, TARGET GG_AVRO.TCUSTMER_AVRO, COLMAP(USEDEFAULTS, cust_code2=cust_code,
CITY2 = CITY);

Property:

gg.mdp.schemaFilesPath=/home/usr/avro/

Chapter 8
Target

8-449

In this scenario, you must create a file called GG_AVRO.TCUSTMER_AVRO.mdp.avsc in the /
home/usr/avro/ directory.

If you do not create the /home/usr/avro/GG_AVRO.TCUSTMER_AVRO.mdp.avsc file, you
encounter the following exception:

java.io.FileNotFoundException: /home/usr/avro/GG_AVRO.TCUSTMER_AVRO.mdp.avsc

8.2.31.4.2.8.3 Invalid Namespace in Schema File
The target schema name specified in Replicat mapping must be same as the namespace in
the Avro schema definition file.

For example, consider the following scenario:

Mapping:

MAP GG.TCUSTMER, TARGET GG_AVRO.TCUSTMER_AVRO, COLMAP(USEDEFAULTS, cust_code2 =
cust_code, CITY2 = CITY);

Avro Schema Definition:

{
"namespace": "GG_AVRO",
..
}

In this scenario, Replicat abends with following exception:

Unable to retrieve table matadata. Table : GG_AVRO.TCUSTMER_AVRO
Mapped [catalogname.]schemaname (GG_AVRO) does not match with the schema namespace
{schema namespace}

8.2.31.4.2.8.4 Invalid Table Name in Schema File
The target table name that is specified in Replicat mapping must be same as the name in the
Avro schema definition file.

For example, consider the following scenario:

Mapping:

MAP GG.TCUSTMER, TARGET GG_AVRO.TCUSTMER_AVRO, COLMAP(USEDEFAULTS, cust_code2 =
cust_code, CITY2 = CITY);

Avro Schema Definition:

{
"namespace": "GG_AVRO",
"name": "TCUSTMER_AVRO",
..
}

In this scenario, if the target table name specified in Replicat mapping does not match with the
Avro schema name, then REPLICAT abends with following exception:

Unable to retrieve table matadata. Table : GG_AVRO.TCUSTMER_AVRO
Mapped table name (TCUSTMER_AVRO) does not match with the schema table name {table name}

8.2.31.4.3 Java Database Connectivity Metadata Provider
The Java Database Connectivity (JDBC) Metadata Provider is used to retrieve the table
metadata from any target database that supports a JDBC connection and has a database
schema. The JDBC Metadata Provider is the preferred metadata provider for any target

Chapter 8
Target

8-450

database that is an RDBMS, although various other non-RDBMS targets also provide a JDBC
driver.

Topics:

• JDBC Detailed Functionality

• Java Classpath

• JDBC Metadata Provider Configuration

• Review a Sample Configuration

8.2.31.4.3.1 JDBC Detailed Functionality

The JDBC Metadata Provider uses the JDBC driver that is provided with your target database.
The DBC driver retrieves the metadata for every target table that is mapped in the Replicat
properties file. Replicat processes use the retrieved target metadata to map columns.

You can enable this feature for JDBC Handler by configuring the REPERROR property in your
Replicat parameter file. In addition, you need to define the error codes specific to your RDBMS
JDBC target in the JDBC Handler properties file as follows:

Table 8-38 JDBC REPERROR Codes

Property Value Required

gg.error.duplicateErrorCodes Comma-separated integer values
of error codes that indicate
duplicate errors

No

gg.error.notFoundErrorCodes Comma-separated integer values
of error codes that indicate Not
Found errors

No

gg.error.deadlockErrorCodes Comma-separated integer values
of error codes that indicate
deadlock errors

No

For example:

#ErrorCode
gg.error.duplicateErrorCodes=1062,1088,1092,1291,1330,1331,1332,1333
gg.error.notFoundErrorCodes=0
gg.error.deadlockErrorCodes=1213

To understand how the various JDBC types are mapped to database-specific SQL types, see
https://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/mapping.html#table1.

8.2.31.4.3.2 Java Classpath

The JDBC Java Driver location must be included in the class path of the handler using the
gg.classpath property.

For example, the configuration for a MySQL database might be:

gg.classpath= /path/to/jdbc/driver/jar/mysql-connector-java-5.1.39-bin.jar

Chapter 8
Target

8-451

https://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/mapping.html#table1

8.2.31.4.3.3 JDBC Metadata Provider Configuration

The following are the configurable values for the JDBC Metadata Provider. These properties
are located in the Java Adapter properties file (not in the Replicat properties file).

Table 8-39 JDBC Metadata Provider Properties

Properties Required/
Optional

Legal
Values

Default Explanation

gg.mdp.type Required jdbc None Entering jdbc at a command prompt
activates the use of the JDBC Metadata
Provider.

gg.mdp.Connec
tionUrl

Required jdbc:subp
rotocol:s
ubname

None The target database JDBC URL.

gg.mdp.Driver
ClassName

Required Java class
name of the
JDBC driver

None The fully qualified Java class name of the
JDBC driver.

gg.mdp.userNa
me

Optional A legal
username
string.

None The user name for the JDBC connection.
Alternatively, you can provide the user
name using the ConnectionURL property.

gg.mdp.passwo
rd

Optional A legal
password
string

None The password for the JDBC connection.
Alternatively, you can provide the
password using the ConnectionURL
property.

8.2.31.4.3.4 Review a Sample Configuration

MySQL Driver Configuration

gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:oracle:thin:@myhost:1521:orcl
gg.mdp.DriverClassName=oracle.jdbc.driver.OracleDriver
gg.mdp.UserName=username
gg.mdp.Password=password

Netezza Driver Configuration

gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:netezza://hostname:port/databaseName
gg.mdp.DriverClassName=org.netezza.Driver
gg.mdp.UserName=username
gg.mdp.Password=password

Oracle OCI Driver configuration

ggg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:oracle:oci:@myhost:1521:orcl
gg.mdp.DriverClassName=oracle.jdbc.driver.OracleDriver
gg.mdp.UserName=username
gg.mdp.Password=password

Chapter 8
Target

8-452

Oracle Teradata Driver configuration

gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:teradata://10.111.11.111/USER=username,PASSWORD=password
gg.mdp.DriverClassName=com.teradata.jdbc.TeraDriver
gg.mdp.UserName=username
gg.mdp.Password=password

Oracle Thin Driver Configuration

gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:mysql://localhost/databaseName?user=username&password=password
gg.mdp.DriverClassName=com.mysql.jdbc.Driver
gg.mdp.UserName=username
gg.mdp.Password=password

Redshift Driver Configuration

gg.mdp.type=jdbc
gg.mdp.ConnectionUrl=jdbc:redshift://hostname:port/databaseName
gg.mdp.DriverClassName=com.amazon.redshift.jdbc42.Driver
gg.mdp.UserName=username
gg.mdp.Password=password

8.2.31.4.4 Hive Metadata Provider
The Hive Metadata Provider is used to retrieve the table metadata from a Hive metastore. The
metadata is retrieved from Hive for every target table that is mapped in the Replicat properties
file using the COLMAP parameter. The retrieved target metadata is used by Replicat for the
column mapping functionality.

• Detailed Functionality

• Configuring Hive with a Remote Metastore Database

• Classpath Configuration

• Hive Metadata Provider Configuration Properties

• Review a Sample Configuration

• Security

• Metadata Change Event

• Limitations

• Additional Considerations

• Troubleshooting

8.2.31.4.4.1 Detailed Functionality

The Hive Metadata Provider uses both Hive JDBC and HCatalog interfaces to retrieve
metadata from the Hive metastore. For each table mapped in the process_name.prm file, a
corresponding table is created in Hive.

The default Hive configuration starts an embedded, local metastore Derby database. Because,
Apache Derby is designed to be an embedded database, it allows only a single connection.
The limitation of the Derby Database means that it cannot function when working with the Hive
Metadata Provider. To workaround this limitation this, you must configure Hive with a remote
metastore database. For more information about how to configure Hive with a remote

Chapter 8
Target

8-453

metastore database, see https://cwiki.apache.org/confluence/display/Hive/
AdminManual+Metastore+Administration.

Hive does not support Primary Key semantics, so the metadata retrieved from Hive metastore
does not include a primary key definition. When you use the Hive Metadata Provider, use the
Replicat KEYCOLS parameter to define primary keys.

KEYCOLS

Use the KEYCOLS parameter must be used to define primary keys in the target schema. The
Oracle GoldenGate HBase Handler requires primary keys. Therefore, you must set primary
keys in the target schema when you use Replicat mapping with HBase as the target.

The output of the Avro formatters includes an Array field to hold the primary column names. If
you use Replicat mapping with the Avro formatters, consider using KEYCOLS to identify the
primary key columns.

For example configurations of KEYCOLS, see Review a Sample Configuration.

Supported Hive Data types

• BIGINT
• BINARY
• BOOLEAN
• CHAR
• DATE
• DECIMAL
• DOUBLE
• FLOAT
• INT
• SMALLINT
• STRING
• TIMESTAMP
• TINYINT
• VARCHAR
See https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types.

8.2.31.4.4.2 Configuring Hive with a Remote Metastore Database

You can find a list of supported databases that you can use to configure remote Hive metastore
can be found at https://cwiki.apache.org/confluence/display/Hive/
AdminManual+MetastoreAdmin#AdminManualMetastoreAdmin-
SupportedBackendDatabasesforMetastore.

The following example shows a MySQL database is configured as the Hive metastore using
properties in the ${HIVE_HOME}/conf/hive-site.xml Hive configuration file.

Chapter 8
Target

8-454

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManualMetastoreAdministration-SupportedBackendDatabasesforMetastore
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManualMetastoreAdministration-SupportedBackendDatabasesforMetastore
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManualMetastoreAdministration-SupportedBackendDatabasesforMetastore

Note:

The ConnectionURL and driver class used in this example are specific to MySQL
database. If you use a database other than MySQL, then change the values to fit
your configuration.

<property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:mysql://MYSQL_DB_IP:MYSQL_DB_PORT/DB_NAME?
createDatabaseIfNotExist=false</value>
 </property>

 <property>
 <name>javax.jdo.option.ConnectionDriverName</name>
 <value>com.mysql.jdbc.Driver</value>
 </property>

 <property>
 <name>javax.jdo.option.ConnectionUserName</name>
 <value>MYSQL_CONNECTION_USERNAME</value>
 </property>

 <property>
 <name>javax.jdo.option.ConnectionPassword</name>
 <value>MYSQL_CONNECTION_PASSWORD</value>
 </property>

To see a list of parameters to configure in the hive-site.xml file for a remote metastore, see
https://cwiki.apache.org/confluence/display/Hive/
AdminManual+MetastoreAdmin#AdminManualMetastoreAdmin-RemoteMetastoreDatabase.

Note:

Follow these steps to add the MySQL JDBC connector JAR in the Hive classpath:

1. In HIVE_HOME/lib/ directory. DB_NAME should be replaced by a valid database
name created in MySQL.

2. Start the Hive Server:

HIVE_HOME/bin/hiveserver2/bin/hiveserver2
3. Start the Hive Remote Metastore Server:

HIVE_HOME/bin/hive --service metastore

8.2.31.4.4.3 Classpath Configuration

For the Hive Metadata Provider to connect to Hive, you must configure thehive-site.xml file
and the Hive and HDFS client jars in the gg.classpath variable. The client JARs must match
the version of Hive to which the Hive Metadata Provider is connecting.

For example, if the hive-site.xml file is created in the /home/user/oggadp/dirprm directory,
then gg.classpath entry is gg.classpath=/home/user/oggadp/dirprm/
1. Create a hive-site.xml file that has the following properties:

Chapter 8
Target

8-455

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManualMetastoreAdministration-RemoteMetastoreDatabase
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+Administration#AdminManualMetastoreAdministration-RemoteMetastoreDatabase

<configuration>
<!-- Mandatory Property -->
<property>
<name>hive.metastore.uris</name>
<value>thrift://HIVE_SERVER_HOST_IP:9083</value>
<property>

<!-- Optional Property. Default value is 5 -->
<property>
<name>hive.metastore.connect.retries</name>
<value>3</value>
</property>

<!-- Optional Property. Default value is 1 -->
<property>
<name>hive.metastore.client.connect.retry.delay</name>
<value>10</value>
</property>

<!-- Optional Property. Default value is 600 seconds -->
<property>
<name>hive.metastore.client.socket.timeout</name>
<value>50</value>
</property>

 </configuration>
2. By default, the following directories contain the Hive and HDFS client jars:

HIVE_HOME/hcatalog/share/hcatalog/*
HIVE_HOME/lib/*
HIVE_HOME/hcatalog/share/webhcat/java-client/*
HADOOP_HOME/share/hadoop/common/*
HADOOP_HOME/share/hadoop/common/lib/*
HADOOP_HOME/share/hadoop/mapreduce/*

Configure the gg.classpath exactly as shown in the step 1. The path to the hive-
site.xml file must be the path with no wildcard appended. If you include the * wildcard in
the path to the hive-site.xml file, it will not be located. The path to the dependency JARs
must include the * wildcard character to include all of the JAR files in that directory in the
associated classpath. Do not use *.jar.

8.2.31.4.4.4 Hive Metadata Provider Configuration Properties

Property Required/
Optional

Legal Values Default Explanation

gg.mdp.type Required hive - Selects the Hive Metadata
Provider

Chapter 8
Target

8-456

Property Required/
Optional

Legal Values Default Explanation

gg.mdp.connec
tionUrl

Required Format without Kerberos
Authentication:

jdbc:hive2://
HIVE_SERVER_IP:HIVE_JDBC_P
ORT/HIVE_DB
Format with Kerberos
Authentication:

jdbc:hive2://
HIVE_SERVER_IP:HIVE_JDBC_P
ORT/HIVE_DB;
principal=user/
FQDN@MY.REALM

- The JDBC connection
URL of the Hive server

gg.mdp.driver
ClassName

Required org.apache.hive.jdbc.HiveD
river

- The fully qualified Hive
JDBC driver class name

gg.mdp.userNa
me

Optional Valid username "" The user name for
connecting to the Hive
database. The userName
property is not required
when Kerberos
authentication is used.
The Kerberos principal
should be specified in the
connection URL as
specified in
connectionUrl
property's legal values.

gg.mdp.passwo
rd

Optional Valid Password "" The password for
connecting to the Hive
database

gg.mdp.charse
t

Optional Valid character set UTF-8 The character set of the
column with the character
data type. Used to convert
the source data from the
trail file to the correct
target character set.

gg.mdp.nation
alCharset

Optional Valid character set UTF-8 The character set of the
column with the national
character data type. Used
to convert the source data
from the trail file to the
correct target character
set.

For example, this property
may indicate the character
set of columns, such as
NCHAR and NVARCHAR in
an Oracle database.

gg.mdp.authTy
pe

Optional Kerberos none Allows you to designate
Kerberos authentication to
Hive.

Chapter 8
Target

8-457

Property Required/
Optional

Legal Values Default Explanation

gg.mdp.kerber
osKeytabFile

Optional
(Required if
authType=
kerberos)

Relative or absolute path to a
Kerberos keytab file.

- The keytab file allows
Hive to access a
password to perform the
kinit operation for
Kerberos security.

gg.mdp.kerber
osPrincipal

Optional
(Required if
authType=
kerberos)

A legal Kerberos principal
name(user/FQDN@MY.REALM)

- The Kerberos principal
name for Kerberos
authentication.

8.2.31.4.4.5 Review a Sample Configuration

This is an example for configuring the Hive Metadata Provider. Consider a source with
following table:

TABLE GG.TCUSTMER {
 CUST_CODE VARCHAR(4) PRIMARY KEY,
 NAME VARCHAR(100),
 CITY VARCHAR(200),
 STATE VARCHAR(200)}

The example maps the column CUST_CODE (GG.TCUSTMER) in the source to CUST_CODE2
(GG_HIVE.TCUSTMER_HIVE) on the target and column CITY (GG.TCUSTMER) in the source to
CITY2 (GG_HIVE.TCUSTMER_HIVE)on the target.

Mapping configuration in the process_name. prm file includes the following configuration:

MAP GG.TCUSTMER, TARGET GG_HIVE.TCUSTMER_HIVE, COLMAP(USEDEFAULTS, CUST_CODE2=CUST_CODE,
CITY2=CITY) KEYCOLS(CUST_CODE2);

In this example:

• The source schema GG is mapped to the target schema GG_HIVE.

• The source column CUST_CODE is mapped to the target column CUST_CODE2.

• The source column CITY is mapped to the target column CITY2.

• USEDEFAULTS specifies that rest of the column names are same on both source and target
(NAME and STATE columns).

• KEYCOLS is used to specify that CUST_CODE2 should be treated as primary key.

Because primary keys cannot be specified in the Hive DDL, the KEYCOLS parameter is used to
specify the primary keys.

Chapter 8
Target

8-458

Note:

You can choose any schema name and are not restricted to the gg_hive schema
name. The Hive schema can be pre-existing or newly created. You do this by
modifying the connection URL (gg.mdp.connectionUrl) in the Java Adapter
properties file and the mapping configuration in the Replicat.prm file. Once the
schema name is changed, update the connection URL (gg.mdp.connectionUrl) and
mapping in the Replicat.prm file.

You can create the schema and tables for this example in Hive by using the following
commands. You can create the schema and tables for this example in Hive by using the
following commands. To start the Hive CLI use the following command:

HIVE_HOME/bin/hive
To create the GG_HIVE schema, in Hive, use the following command:

hive> create schema gg_hive;
OK
Time taken: 0.02 seconds

To create the TCUSTMER_HIVE table in the GG_HIVE database, use the following command:

hive> CREATE EXTERNAL TABLE `TCUSTMER_HIVE`(
 > "CUST_CODE2" VARCHAR(4),
 > "NAME" VARCHAR(30),
 > "CITY2" VARCHAR(20),
 > "STATE" STRING);
OK
Time taken: 0.056 seconds

Configure the .properties file in a way that resembles the following:

gg.mdp.type=hive
gg.mdp.connectionUrl=jdbc:hive2://HIVE_SERVER_IP:10000/gg_hive
gg.mdp.driverClassName=org.apache.hive.jdbc.HiveDriver

The following sample output uses the delimited text formatter, with a comma as the delimiter:

I;GG_HIVE.TCUSTMER_HIVE;2015-10-07T04:50:47.519000;cust_code2;WILL;name;BG SOFTWARE
CO;city2;SEATTLE;state;WA

A sample Replicat configuration file, Java Adapter properties file, and Hive create table SQL
script are included with the installation at the following location:

GoldenGate_install_directory/AdapterExamples/big-data/metadata_provider/hive

8.2.31.4.4.6 Security

You can secure the Hive server using Kerberos authentication. For information about how to
secure the Hive server, see the Hive documentation for the specific Hive release. The Hive
Metadata Provider can connect to a Kerberos secured Hive server.

Make sure that the paths to the HDFS core-site.xml file and the hive-site.xml file are in the
handler's classpath.

Enable the following properties in the core-site.xml file:

Chapter 8
Target

8-459

<property>
<name>hadoop.security.authentication</name>
<value>kerberos</value>
</property>

<property>
<name>hadoop.security.authorization</name>
<value>true</value>
</property>

Enable the following properties in the hive-site.xml file:

<property>
<name>hive.metastore.sasl.enabled</name>
<value>true</value>
</property>

<property>
<name>hive.metastore.kerberos.keytab.file</name>
<value>/path/to/keytab</value> <!-- Change this value -->
</property>

<property>
<name>hive.metastore.kerberos.principal</name>
<value>Kerberos Principal</value> <!-- Change this value -->
</property>

<property>
 <name>hive.server2.authentication</name>
 <value>KERBEROS</value>
</property>

<property>
 <name>hive.server2.authentication.kerberos.principal</name>
 <value>Kerberos Principal</value> <!-- Change this value -->
</property>

<property>
 <name>hive.server2.authentication.kerberos.keytab</name>
 <value>/path/to/keytab</value> <!-- Change this value -->
</property>

8.2.31.4.4.7 Metadata Change Event

Tables in Hive metastore should be updated, altered, or created manually if the source
database tables change. In the case of a metadata change event, you may wish to terminate
or suspend the Replicat process. You can terminate the Replicat process by adding the
following to the Replicat configuration file (process_name. prm):

DDL INCLUDE ALL, EVENTACTIONS (ABORT)
You can suspend, the Replicat process by adding the following to the Replication configuration
file:

DDL INCLUDE ALL, EVENTACTIONS (SUSPEND)

8.2.31.4.4.8 Limitations

Columns with binary data type cannot be used as primary keys.

The source-to-target mapping that is defined in the Replicat configuration file is static. Oracle
GoldenGate 12.2 and later versions supports DDL propagation and source schema evolution

Chapter 8
Target

8-460

for Oracle databases as replication sources. If you use DDL propagation and source schema
evolution, you lose the ability to seamlessly handle changes to the source metadata.

8.2.31.4.4.9 Additional Considerations

The most common problems encountered are the Java classpath issues. The Hive Metadata
Provider requires certain Hive and HDFS client libraries to be resolved in its classpath.

The required client JAR directories are listed in Classpath Configuration. Hive and HDFS client
JARs do not ship with Oracle GoldenGate for Big Data. The client JARs should be of the same
version as the Hive version to which the Hive Metadata Provider is connecting.

To establish a connection to the Hive server, the hive-site.xml file must be in the classpath.

8.2.31.4.4.10 Troubleshooting

If the mapped target table is not present in Hive, the Replicat process will terminate with a
"Table metadata resolution exception".

For example, consider the following mapping:

MAP GG.TCUSTMER, TARGET GG_HIVE.TCUSTMER_HIVE, COLMAP(USEDEFAULTS, CUST_CODE2=CUST_CODE,
CITY2=CITY) KEYCOLS(CUST_CODE2);

This mapping requires a table called TCUSTMER_HIVE to be created in the schema GG_HIVE in
the Hive metastore. If this table is not present in Hive, then the following exception occurs:

ERROR [main) - Table Metadata Resolution Exception
Unable to retrieve table matadata. Table : GG_HIVE.TCUSTMER_HIVE
NoSuchObjectException(message:GG_HIVE.TCUSTMER_HIVE table not found)

8.2.31.4.5 Google BigQuery Metadata Provider
Google metadata provider uses the Google Query Job to retrieve the metadata schema
information from the Google BigQuery Table. The Table should already be created on the
target for BigQuery to fetch the metadata.

Google BigQuery does not support primary key semantics, so the metadata retrieved from
BigQuery Table does not include any primary key definition. You can identify the primary keys
using the KEYCOLS syntax in the replicat mapping statement. If KEYCOLS is not present, then the
key information from the source table is used.

• Authentication

• Supported BigQuery Datatypes

• Parameterized BigQuery Datatypes
The BigQuery datatypes that can be parameterized to add constraints are STRING,
BYTES, NUMERIC, and BIGNUMERIC. The STRING and BYTES datatypes can have
length constraints.NUMERIC and BIGNUMERIC can have scale and precision constraints.

• Unsupported BigQuery Datatypes

• Configuring BigQuery Metadata Provider

• Sample Configuration

• Proxy Settings

• Classpath Settings

• Limitations

Chapter 8
Target

8-461

8.2.31.4.5.1 Authentication

Google BigQuery cloud service account can be connected either using the credentials JSON
file by setting the path to the file in MDP property or setting the individual keys of credentials
JSON into BigQuery MDP properties. The individual properties of BigQuery metadata provider
for configuring the service account credential keys can be encrypted using Oracle wallet.

8.2.31.4.5.2 Supported BigQuery Datatypes

The following table lists the Google BigQuery datatypes that are supported and their default
scale and precision values:

Data Type Range Max
Scale

Max
Precisi
on

Max Bytes

BOOL TRUE|FALSE|
NIL

NA NA 1

INT64 [-2^64] to
[+ 2^64 -1]

NA NA 8

FLOAT64 NA NA None 8

NUMERIC Min:
9.999999999
99999999999
99999999999
999999E+28
Max:
9.999999999
99999999999
99999999999
999999E+28

9 38 64

BIG NUMERIC Min:
5.789604461
86580977117
85492504343
9539266
34992332820
28201972879
20039565648
19968E+38
Max:
5.789604461
86580977117
85492504343
9539266
34992332820
28201972879
20039565648
19967E+38

38 77 255

STRING Unlimited NA NA 2147483647L

BYTES Unlimited NA NA 2147483647L

Chapter 8
Target

8-462

Data Type Range Max
Scale

Max
Precisi
on

Max Bytes

DATE 0001-01-01
to
9999-12-31

NA NA NA

TIME 00:00:00 to
23:59:59.99
9999

NA NA NA

TIMESTAMP 0001-01-01
00:00:00 to
9999-12-31
23:59:59.99
9999 UTC

NA NA NA

8.2.31.4.5.3 Parameterized BigQuery Datatypes

The BigQuery datatypes that can be parameterized to add constraints are STRING, BYTES,
NUMERIC, and BIGNUMERIC. The STRING and BYTES datatypes can have length
constraints.NUMERIC and BIGNUMERIC can have scale and precision constraints.

1. STRING(L): L is the maximum number of Unicode characters allowed.

2. BYTES(L): L is the maximum number of bytes allowed.

3. NUMERIC(P[, S]) or BIGNUMERIC(P[, S]): P is maximum precision (total number of digits)
and S is maximum scale (number of digits after decimal) that is allowed.

The parameterized datatypes are supported in BigQuery Metadata Provider. If there is a
datatype with user-defined precision, scale or max-length, then metadata provider calculates
the data based on those values.

8.2.31.4.5.4 Unsupported BigQuery Datatypes

The following table lists the Google BigQuery datatypes that are supported and their default
scale and precision values:

The BigQuery datatypes that are not supported by metadata provider are complex datatypes,
such as GEOGRAPHY, JSON, ARRAY, INTERVAL, and STRUCT. The metadata provider is
going to abend with invalid datatype exception if it encounters them.

8.2.31.4.5.5 Configuring BigQuery Metadata Provider

The following table lists the configuration properties for BigQuery metadata provider:

Property Required/
Optional

Legal
Values

Defaul
t

Explanationtes

gg.mdp.type Required bq NA Select BigQuery Metadata Provider

gg.mdp.credenti
alsFile

Optional File
path to
credent
ials
JSON
file.

NA Provides path to the credentials JSON file for
connecting to Google BigQuery Service
account.

Chapter 8
Target

8-463

Property Required/
Optional

Legal
Values

Defaul
t

Explanationtes

gg.mdp.clientId Optional Valid
BigQue
ry
Creden
tials
Client
Id

NA Provides the client Id key from the credentials
file for connecting to Google BigQuery service
account.

gg.mdp.clientEm
ail

Optional Valid
BigQue
ry
Creden
tials
Client
Email

NA Provides the client Email key from the
credentials file for connecting to Google
BigQuery service account.

gg.mdp.privateK
eyId

Optional Valid
BigQue
ry
Creden
tials
Private
Key ID

NA Provides the Private Key ID from the credentials
file for connecting to Google BigQuery service
account.

gg.mdp.privateK
ey

Optional Valid
BigQue
ry
Creden
tials
Private
Key

NA Provides the Private Key from the credentials
file for connecting to Google BigQuery service
account.

gg.mdp.projectI
d

Optional Unique
BigQue
ry
project
Id

NA Unique project Id of BigQuery.

gg.mdp.connecti
onTimeout

Optional Time in
sec

5 Connect Timeout for BigQuery connection.

gg.mdp.readTime
out

Optional Time in
sec

6 Timeout to read from BigQuery connection.

gg.mdp.totalTim
eout

Optional Time in
sec

9 Total timeout for BigQuery connection.

gg.mdp.retryCou
nt

Optional Maxim
um
number
of
retries.

3 Maximum number of reties for connecting to
BigQuery.

Either of the property to set the path to credentials JSON file or the properties to set the
credential file keys are mandatory for connecting to Google Service account for accessing the
BigQuery. Setting the individual credentials parameter enables them to be encrypted using
Oracle wallet.

8.2.31.4.5.6 Sample Configuration

Sample properties file content:

Chapter 8
Target

8-464

The following are sample properties that are added to BigQuery Handler properties file or
BigQuery Event Handler properties file along with their own properties in order to configure the
metadata provider.

gg.mdp.type=bq
gg.mdp.credentialsFile=/path/to/credFile.json

Sample parameter file:

There is no change in parameter file for configuring metadata provider. This sample parameter
file is similar to the BigQuery Event Handler parameter file.

REPLICAT bqeh
TARGETDB LIBFILE libggjava.so SET property=dirprm/bqeh.props
MAP schema.tableName, TARGET schema.tableName;

8.2.31.4.5.7 Proxy Settings

The proxy settings can be added as java virtual machine (JVM) arguments when we are trying
to access the BigQuery server from behind a proxy. For example, for oracle proxy server
connection cab be added in properties file as follows:

jvm.bootoptions= -Dhttps.proxyHost=www-proxy.us.oracle.com -
Dhttps.proxyPort=80

8.2.31.4.5.8 Classpath Settings

The dependency of BigQuery metadata provider is same as the Google BigQuery stage-and-
merge Event Handler dependency. The dependencies added to the Oracle GoldenGate class-
path for BigQuery event Handler is sufficient for running the BigQuery metadata provider, and
no extra dependency need to be configured.

8.2.31.4.5.9 Limitations

The complex BigQuery datatypes are not yet supported by the metadata provider. It will abend
in case any of unsupported datatypes are encountered.

If the BigQuery handler or event-handler is configured to auto create table and dataspace, then
the metadata provider expects table to exist in order to fetch the metadata. The feature to auto-
create table and dataspace of BigQuery handler and event handler does not work with
BigQuery metadata provider. Metadata change event is not supported by Big Query metadata
provider. It can be configured to abend or suspend in case there is a metadata change.

8.2.31.5 Pluggable Formatters
The pluggable formatters are used to convert operations from the Oracle GoldenGate trail file
into formatted messages that you can send to Oracle GoldenGate for Distributed Applications
and Analytics (GG for DAA) targets using one of the GG for DAA handlers.

This chapter describes how to use the pluggable formatters.

• Using Operation-Based versus Row-Based Formatting
The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) formatters
include operation-based and row-based formatters.

Chapter 8
Target

8-465

• Using the Avro Formatter
Apache Avro is an open source data serialization and deserialization framework known for
its flexibility, compactness of serialized data, and good serialization and deserialization
performance. Apache Avro is commonly used in Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) applications.

• Using the Delimited Text Formatter

• Using the JSON Formatter

• Using the Length Delimited Value Formatter
The Length Delimited Value (LDV) Formatter is a row-based formatter. It formats database
operations from the source trail file into a length delimited value output. Each insert,
update, delete, or truncate operation from the source trail is formatted into an individual
length delimited message.

• Using the XML Formatter
The XML Formatter formats before-image and after-image data from the source trail file
into an XML document representation of the operation data. The format of the XML
document is effectively the same as the XML format in the previous releases of the Oracle
GoldenGate Java Adapter.

8.2.31.5.1 Using Operation-Based versus Row-Based Formatting
The Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) formatters
include operation-based and row-based formatters.

The operation-based formatters represent the individual insert, update, and delete events that
occur on table data in the source database. Insert operations only provide after-change data
(or images), because a new row is being added to the source database. Update operations
provide both before-change and after-change data that shows how existing row data is
modified. Delete operations only provide before-change data to identify the row being deleted.
The operation-based formatters model the operation as it is exists in the source trail file.
Operation-based formats include fields for the before-change and after-change images.

The row-based formatters model the row data as it exists after the operation data is applied.
Row-based formatters contain only a single image of the data. The following sections describe
what data is displayed for both the operation-based and the row-based formatters.

• Operation Formatters

• Row Formatters

• Table Row or Column Value States

8.2.31.5.1.1 Operation Formatters

The formatters that support operation-based formatting are JSON, Avro Operation, and XML.
The output of operation-based formatters are as follows:

• Insert operation: Before-image data is null. After image data is output.

• Update operation: Both before-image and after-image data is output.

• Delete operation: Before-image data is output. After-image data is null.

• Truncate operation: Both before-image and after-image data is null.

8.2.31.5.1.2 Row Formatters

The formatters that support row-based formatting are Delimited Text and Avro Row. Row-
based formatters output the following information for the following operations:

Chapter 8
Target

8-466

• Insert operation: After-image data only.

• Update operation: After-image data only. Primary key updates are a special case which will
be discussed in individual sections for the specific formatters.

• Delete operation: Before-image data only.

• Truncate operation: The table name is provided, but both before-image and after-image
data are null. Truncate table is a DDL operation, and it may not support different database
implementations. Refer to the Oracle GoldenGate documentation for your database
implementation.

8.2.31.5.1.3 Table Row or Column Value States

In an RDBMS, table data for a specific row and column can only have one of two states: either
the data has a value, or it is null. However; when data is transferred to the Oracle GoldenGate
trail file by the Oracle GoldenGate capture process, the data can have three possible states: it
can have a value, it can be null, or it can be missing.

For an insert operation, the after-image contains data for all column values regardless of
whether the data is null.. However, the data included for update and delete operations may not
always contain complete data for all columns. When replicating data to an RDBMS for an
update operation only the primary key values and the values of the columns that changed are
required to modify the data in the target database. In addition, only the primary key values are
required to delete the row from the target database. Therefore, even though values are present
in the source database, the values may be missing in the source trail file. Because data in the
source trail file may have three states, the Plugable Formatters must also be able to represent
data in all three states.

Because the row and column data in the Oracle GoldenGate trail file has an important effect on
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) integration, it is
important to understand the data that is required. Typically, you can control the data that is
included for operations in the Oracle GoldenGate trail file. In an Oracle database, this data is
controlled by the supplemental logging level. To understand how to control the row and column
values that are included in the Oracle GoldenGate trail file, see the Oracle GoldenGate
documentation for your source database implementation..

8.2.31.5.2 Using the Avro Formatter
Apache Avro is an open source data serialization and deserialization framework known for its
flexibility, compactness of serialized data, and good serialization and deserialization
performance. Apache Avro is commonly used in Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) applications.

• Avro Row Formatter

• The Avro Operation Formatter

• Avro Object Container File Formatter

8.2.31.5.2.1 Avro Row Formatter

The Avro Row Formatter formats operation data from the source trail file into messages in an
Avro binary array format. Each individual insert, update, delete, and truncate operation is
formatted into an individual Avro message. The source trail file contains the before and after
images of the operation data. The Avro Row Formatter takes the before-image and after-image
data and formats it into an Avro binary representation of the operation data.

Chapter 8
Target

8-467

The Avro Row Formatter formats operations from the source trail file into a format that
represents the row data. This format is more compact than the output from the Avro Operation
Formatter for the Avro messages model the change data operation.

The Avro Row Formatter may be a good choice when streaming Avro data to HDFS. Hive
supports data files in HDFS in an Avro format.

This section contains the following topics:

• Operation Metadata Formatting Details
The automated output of meta-column fields in generated Avro messages has been
removed as of Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
release 21.1. Meta-column fields can still be output; however, they need to explicitly
configured as the following property: gg.handler.name.format.metaColumnsTemplate.

• Operation Data Formatting Details

• Sample Avro Row Messages

• Avro Schemas
Avro uses JSONs to represent schemas. Avro schemas define the format of generated
Avro messages and are required to serialize and deserialize Avro messages.

• Avro Row Configuration Properties

• Review a Sample Configuration

• Metadata Change Events

• Special Considerations

8.2.31.5.2.1.1 Operation Metadata Formatting Details
The automated output of meta-column fields in generated Avro messages has been removed
as of Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) release 21.1.
Meta-column fields can still be output; however, they need to explicitly configured as the
following property: gg.handler.name.format.metaColumnsTemplate.

To output the metacolumns configure the following:

gg.handler.name.format.metaColumnsTemplate=${objectname[table]},$
{optype[op_type]},${timestamp[op_ts]},${currenttimestamp[current_ts]},$
{position[pos]}
To also include the primary key columns and the tokens configure as follows:

gg.handler.name.format.metaColumnsTemplate=${objectname[table]},$
{optype[op_type]},${timestamp[op_ts]},${currenttimestamp[current_ts]},$
{position[pos]},${primarykeycolumns[primary_keys]},${alltokens[tokens]}
For more information see the configuration property:
gg.handler.name.format.metaColumnsTemplate.

Table 8-40 Avro Formatter Metadata

Value Description

table The fully qualified table in the format is:
CATALOG_NAME.SCHEMA_NAME.TABLE_NAME

op_type The type of database operation from the source trail file. Default
values are I for insert, U for update, D for delete, and T for truncate.

Chapter 8
Target

8-468

Table 8-40 (Cont.) Avro Formatter Metadata

Value Description

op_ts The timestamp of the operation from the source trail file. Since this
timestamp is from the source trail, it is fixed. Replaying the trail file
results in the same timestamp for the same operation.

current_ts The time when the formatter processed the current operation record.
This timestamp follows the ISO-8601 format and includes microsecond
precision. Replaying the trail file will not result in the same timestamp
for the same operation.

pos The concatenated sequence number and the RBA number from the
source trail file. This trail position lets you trace the operation back to
the source trail file. The sequence number is the source trail file
number. The RBA number is the offset in the trail file.

primary_keys An array variable that holds the column names of the primary keys of
the source table.

tokens A map variable that holds the token key value pairs from the source
trail file.

8.2.31.5.2.1.2 Operation Data Formatting Details
The operation data follows the operation metadata. This data is represented as individual fields
identified by the column names.

Column values for an operation from the source trail file can have one of three states: the
column has a value, the column value is null, or the column value is missing. Avro attributes
only support two states, the column has a value or the column value is null. Missing column
values are handled the same as null values. Oracle recommends that when you use the Avro
Row Formatter, you configure the Oracle GoldenGate capture process to provide full image
data for all columns in the source trail file.

By default, the setting of the Avro Row Formatter maps the data types from the source trail file
to the associated Avro data type. Because Avro provides limited support for data types, source
columns map into Avro long, double, float, binary, or string data types. You can also configure
data type mapping to handle all data as strings.

8.2.31.5.2.1.3 Sample Avro Row Messages
Because Avro messages are binary, they are not human readable. The following sample
messages show the JSON representation of the messages.

• Sample Insert Message

• Sample Update Message

• Sample Delete Message

• Sample Truncate Message

8.2.31.5.2.1.3.1 Sample Insert Message

{"table": "GG.TCUSTORD",
"op_type": "I",
"op_ts": "2013-06-02 22:14:36.000000",
"current_ts": "2015-09-18T10:13:11.172000",
"pos": "00000000000000001444",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"],
"tokens": {"R": "AADPkvAAEAAEqL2AAA"},
"CUST_CODE": "WILL",
"ORDER_DATE": "1994-09-30:15:33:00",

Chapter 8
Target

8-469

"PRODUCT_CODE": "CAR",
"ORDER_ID": "144",
"PRODUCT_PRICE": 17520.0,
"PRODUCT_AMOUNT": 3.0,
"TRANSACTION_ID": "100"}

8.2.31.5.2.1.3.2 Sample Update Message

{"table": "GG.TCUSTORD",
"op_type": "U",
"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:13:11.492000",
"pos": "00000000000000002891",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"R": "AADPkvAAEAAEqLzAAA"},
"CUST_CODE": "BILL",
"ORDER_DATE": "1995-12-31:15:00:00",
"PRODUCT_CODE": "CAR",
"ORDER_ID": "765",
"PRODUCT_PRICE": 14000.0,
"PRODUCT_AMOUNT": 3.0,
"TRANSACTION_ID": "100"}

8.2.31.5.2.1.3.3 Sample Delete Message

{"table": "GG.TCUSTORD",
"op_type": "D",
"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:13:11.512000",
"pos": "00000000000000004338",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"L": "206080450", "6": "9.0.80330", "R": "AADPkvAAEAAEqLzAAC"}, "CUST_CODE":
 "DAVE",
"ORDER_DATE": "1993-11-03:07:51:35",
"PRODUCT_CODE": "PLANE",
"ORDER_ID": "600",
"PRODUCT_PRICE": null,
"PRODUCT_AMOUNT": null,
"TRANSACTION_ID": null}

8.2.31.5.2.1.3.4 Sample Truncate Message

{"table": "GG.TCUSTORD",
"op_type": "T",
"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:13:11.514000",
"pos": "00000000000000004515",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"R": "AADPkvAAEAAEqL2AAB"},
"CUST_CODE": null,
"ORDER_DATE": null,
"PRODUCT_CODE": null,
"ORDER_ID": null,
"PRODUCT_PRICE": null,
"PRODUCT_AMOUNT": null,
"TRANSACTION_ID": null}

8.2.31.5.2.1.4 Avro Schemas
Avro uses JSONs to represent schemas. Avro schemas define the format of generated Avro
messages and are required to serialize and deserialize Avro messages.

Schemas are generated on a just-in-time basis when the first operation for a table is
encountered. Newer schemas are generated when there is a change in the metadata. The

Chapter 8
Target

8-470

generated Avro schemas are specific to a table definition, and therefore, a separate Avro
schema is generated for every table encountered for processed operations. By default, Avro
schemas are written to the GoldenGate_Home/dirdef directory, although the write location is
configurable. Avro schema file names adhere to the following naming convention:
Fully_Qualified_Table_Name.avsc.

The following is a sample Avro schema for the Avro Row Format for the references examples
in the previous section:

{
 "type" : "record",
 "name" : "TCUSTORD",
 "namespace" : "GG",
 "fields" : [{
 "name" : "table",
 "type" : "string"
 }, {
 "name" : "op_type",
 "type" : "string"
 }, {
 "name" : "op_ts",
 "type" : "string"
 }, {
 "name" : "current_ts",
 "type" : "string"
 }, {
 "name" : "pos",
 "type" : "string"
 }, {
 "name" : "primary_keys",
 "type" : {
 "type" : "array",
 "items" : "string"
 }
 }, {
 "name" : "tokens",
 "type" : {
 "type" : "map",
 "values" : "string"
 },
 "default" : { }
 }, {
 "name" : "CUST_CODE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "ORDER_DATE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "PRODUCT_CODE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "ORDER_ID",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "PRODUCT_PRICE",
 "type" : ["null", "double"],
 "default" : null
 }, {

Chapter 8
Target

8-471

 "name" : "PRODUCT_AMOUNT",
 "type" : ["null", "double"],
 "default" : null
 }, {
 "name" : "TRANSACTION_ID",
 "type" : ["null", "string"],
 "default" : null
 }]
}

8.2.31.5.2.1.5 Avro Row Configuration Properties

Table 8-41 Avro Row Configuration Properties

Properties Optio
nal/
Requ
ired

Legal
Value
s

Def
ault

Explanation

gg.handler.name.format.insertOpKey Optio
nal

Any
string

I Indicator to be inserted
into the output record to
indicate an insert
operation.

gg.handler.name.format.updateOpKey Optio
nal

Any
string

U Indicator to be inserted
into the output record to
indicate an update
operation.

gg.handler.name.format.deleteOpKey Optio
nal

Any
string

D Indicator to be inserted
into the output record to
indicate a delete
operation.

gg.handler.name.format.truncateOpKey Optio
nal

Any
string

T Indicator to be inserted
into the output record to
indicate a truncate
operation.

gg.handler.name.format.encoding Optio
nal

Any
legal
encod
ing
name
or
alias
suppo
rted
by
Java.

UTF
-8
(the
JSO
N
defa
ult)

Controls the output
encoding of generated
JSON Avro schema. The
JSON default is UTF-8.
Avro messages are
binary and support their
own internal
representation of
encoding.

gg.handler.name.format.treatAllColumnsAsStr
ings

Optio
nal

true |
false

fal
se

Controls the output
typing of generated Avro
messages. If set to false
then the formatter will
attempt to map Oracle
GoldenGate types to the
corresponding AVRO
type. If set to true then all
data will be treated as
Strings in the generated
Avro messages and
schemas.

Chapter 8
Target

8-472

Table 8-41 (Cont.) Avro Row Configuration Properties

Properties Optio
nal/
Requ
ired

Legal
Value
s

Def
ault

Explanation

gg.handler.name.format.pkUpdateHandling Optio
nal

abend
|
updat
e |
delet
e-
inser
t

abe
nd

Specifies how the
formatter handles update
operations that change a
primary key. Primary key
operations for the Avro
Row formatter require
special consideration.

• abend: the process
terminates.

• update: the process
handles the update
as a normal update.

• delete or insert:
the process handles
the update as a
delete and an insert.
Full supplemental
logging must be
enabled. Without full
before and after row
images, the insert
data will be
incomplete.

gg.handler.name.format.lineDelimiter Optio
nal

Any
string

no
valu
e

Inserts a delimiter after
each Avro message. This
is not a best practice, but
in certain cases you may
want to parse a stream of
data and extract
individual Avro messages
from the stream. Select a
unique delimiter that
cannot occur in any Avro
message. This property
supports CDATA[]
wrapping.

Chapter 8
Target

8-473

Table 8-41 (Cont.) Avro Row Configuration Properties

Properties Optio
nal/
Requ
ired

Legal
Value
s

Def
ault

Explanation

gg.handler.name.format.versionSchemas Optio
nal

true|
false

fal
se

Avro schemas always
follow
thefully_qualified_t
able_name.avsc
convention. Setting this
property to true creates
an additional Avro
schema named
fully_qualified_tab
le_name_current_tim
estamp.avsc in the
schema directory.
Because the additional
Avro schema is not
destroyed or removed,
provides a history of
schema evolution.

gg.handler.name.format.wrapMessageInGeneric
AvroMessage

Optio
nal

true|
false

fal
se

Wraps the Avro
messages for operations
from the source trail file
in a generic Avro
wrapper message. For
more information, see
Generic Wrapper
Functionality.

gg.handler.name.format.schemaDirectory Optio
nal

Any
legal,
existin
g file
syste
m
path.

./
dir
def

The output location of
generated Avro schemas.

gg.handler.name.format.schemaFilePath Optio
nal

Any
legal
encod
ing
name
or
alias
suppo
rted
by
Java.

./
dir
def

The directory in the
HDFS where schemas
are output. A metadata
change overwrites the
schema during the next
operation for the
associated table.
Schemas follow the same
naming convention as
schemas written to the
local file
system:catalog.schem
a.table.avsc.

Chapter 8
Target

8-474

Table 8-41 (Cont.) Avro Row Configuration Properties

Properties Optio
nal/
Requ
ired

Legal
Value
s

Def
ault

Explanation

gg.handler.name.format.iso8601Format Optio
nal

true |
false

tru
e

The format of the current
timestamp. The default is
the ISO 8601 format. A
setting of false removes
the T between the date
and time in the current
timestamp, which outputs
a space instead.

gg.handler.name.format.includeIsMissingFiel
ds

Optio
nal

true |
false

fal
se

Set to true to include a
{column_name}_isMis
sing boolean field for
each source field. This
field allows downstream
applications to
differentiate if a null value
is null in the source trail
file (value is false) or is
missing in the source trail
file (value is true).

gg.handler.name.format.enableDecimalLogical
Type

Optio
nal

true |
false

fal
se

Enables the use of Avro
decimal logical types.
The decimal logical type
represents numbers as a
byte array and can
provide support for much
larger numbers than can
fit in the classic 64-bit
long or double data
types.

Chapter 8
Target

8-475

Table 8-41 (Cont.) Avro Row Configuration Properties

Properties Optio
nal/
Requ
ired

Legal
Value
s

Def
ault

Explanation

gg.handler.name.format.oracleNumberScale Optio
nal

Any
intege
r
value
from 0
to 38.

Non
e

Allows you to set the
scale on the Avro
decimal data type.Only
applicable when you set
enableDecimalLogica
lType=true. The Oracle
NUMBER is a proprietary
numeric data type of
Oracle Database that
supports variable
precision and scale.
Precision and scale are
variable on a per
instance of the Oracle
NUMBER data type.
Precision and scale are
required parameters
when generating the Avro
decimal logical type.
This makes mapping of
Oracle NUMBER data
types into Avro difficult
because there is no way
to deterministically know
the precision and scale of
an Oracle NUMBER data
type when the Avro
schema is generated.
The best alternative is to
generate a large Avro
decimal data type a
precision of 164 and a
scale of 38, which should
hold any legal instance of
Oracle NUMBER. While
this solves the problem of
precision loss when
converting Oracle
Number data types to
Avro decimal data
types, you may not like
that Avro decimal data
types when retrieved
from Avro messages
downstream have 38
digits trailing the decimal
point.

Chapter 8
Target

8-476

Table 8-41 (Cont.) Avro Row Configuration Properties

Properties Optio
nal/
Requ
ired

Legal
Value
s

Def
ault

Explanation

gg.handler.name.format.mapOracleNumbersAsSt
rings

Optio
nal

true |
false

fal
se

This property is only
applicable if decimal
logical types are enabled
via the property
gg.handler.name.for
mat.enableDecimalLo
gialType=true. Oracle
numbers are especially
problematic because
they have a large
precision (168) and
floating scale of up to 38.
Some analytical tools,
such as Spark cannot
read numbers that large.
This property allows you
to map those Oracle
numbers as strings while
still mapping the smaller
numbers as decimal
logical types.

gg.handler.name.format.enableTimestampLogic
alType

Optio
nal

true |
false

fal
se

Set to true to map
source date and time
data types into the Avro
TimestampMicros
logical data type. The
variable
gg.format.timestamp
must be configured to
provide a mask for the
source date and time
data types to make
sense of them. The Avro
TimestampMicros is
part of the Avro 1.8
specification. If
gghandler.name.form
at.enableTimestampL
ogicalType is set to
true and
gg.format.timestamp
is unset, then replicat will
abend with a
configuration exception.

Chapter 8
Target

8-477

Table 8-41 (Cont.) Avro Row Configuration Properties

Properties Optio
nal/
Requ
ired

Legal
Value
s

Def
ault

Explanation

gg.handler.name.format.mapLargeNumbersAsStr
ings

Optio
nal

true |
false

fal
se

Oracle GoldenGate
supports the floating
point and integer source
datatypes. Some of these
datatypes may not fit into
the Avro primitive double
or long datatypes. Set
this property to true to
map the fields that do not
fit into the Avro primitive
double or long datatypes
to Avro string.

gg.handler.name.format.metaColumnsTemplate Optio
nal

See
Metac
olumn
Keyw
ords.

Non
e

The current meta column
information can be
configured in a simple
manner and removes the
explicit need to use:

insertOpKey |
updateOpKey |
deleteOpKey |
truncateOpKey |
includeTableName |
includeOpTimestamp
| includeOpType |
includePosition |
includeCurrentTimes
tamp,
useIso8601Format
It is a comma-delimited
string consisting of one
or more templated values
that represent the
template.

For more information
about the Metacolumn
keywords, see
Metacolumn Keywords.

Chapter 8
Target

8-478

Table 8-41 (Cont.) Avro Row Configuration Properties

Properties Optio
nal/
Requ
ired

Legal
Value
s

Def
ault

Explanation

gg.handler.name.format.maxPrecision Optio
nal

None Posi
tive
Inte
ger

Allows you to set the
maximum precision for
Avro decimal logical
types. Consuming
applications may have
limitations on Avro
precision (that is, Apache
Spark supports a
maximum precision of
38).

W

A

R

N

I

N

G

:

C
o
n
f
i
g
u
r
a
t
i
o
n
o
f
t
h
i
s
p
r
o
p
e
r

Chapter 8
Target

8-479

Table 8-41 (Cont.) Avro Row Configuration Properties

Properties Optio
nal/
Requ
ired

Legal
Value
s

Def
ault

Explanation

t
y
i
s
n
o
t
w
i
t
h
o
u
t
r
i
s
k
.

The NUMBER type in an
Oracle RDBMS supports
a maximum precision of
164. Configuration of this
property likely means you
are casting larger source
numeric types to smaller
target numeric types. If
the precision of the
source value is greater
than the configured
precision, then a runtime
exception will occur and
the replicat process will
abend. That behavior is
not a bug. That is the
expected behavior.

8.2.31.5.2.1.6 Review a Sample Configuration
The following is a sample configuration for the Avro Row Formatter in the Java Adapter
properties file:

gg.handler.hdfs.format=avro_row
gg.handler.hdfs.format.insertOpKey=I
gg.handler.hdfs.format.updateOpKey=U
gg.handler.hdfs.format.deleteOpKey=D
gg.handler.hdfs.format.truncateOpKey=T
gg.handler.hdfs.format.encoding=UTF-8
gg.handler.hdfs.format.pkUpdateHandling=abend
gg.handler.hdfs.format.wrapMessageInGenericAvroMessage=false

Chapter 8
Target

8-480

8.2.31.5.2.1.7 Metadata Change Events
If the replicated database and upstream Oracle GoldenGate replication process can propagate
metadata change events, the Avro Row Formatter can take action when metadata changes.
Because Avro messages depend closely on their corresponding schema, metadata changes
are important when you use Avro formatting.

An updated Avro schema is generated as soon as a table operation occurs after a metadata
change event. You must understand the impact of a metadata change event and change
downstream targets to the new Avro schema. The tight dependency of Avro messages to Avro
schemas may result in compatibility issues. Avro messages generated before the schema
change may not be able to be deserialized with the newly generated Avro schema.

Conversely, Avro messages generated after the schema change may not be able to be
deserialized with the previous Avro schema. It is a best practice to use the same version of the
Avro schema that was used to generate the message. For more information, consult the
Apache Avro documentation.

8.2.31.5.2.1.8 Special Considerations
This sections describes these special considerations:

• Troubleshooting

• Primary Key Updates

• Generic Wrapper Functionality

8.2.31.5.2.1.8.1 Troubleshooting
Because Avro is a binary format, it is not human readable. Since Avro messages are in binary
format, it is difficult to debug any issue, the Avro Row Formatter provides a special feature to
help debug issues. When the log4j Java logging level is set to TRACE , Avro messages are
deserialized and displayed in the log file as a JSON object, letting you view the structure and
contents of the created Avro messages. Do not enable TRACE in a production environment as it
has substantial negative impact on performance. To troubleshoot content, you may want to
consider switching to use a formatter that produces human-readable content. The XML or
JSON formatters both produce content in human-readable format.

8.2.31.5.2.1.8.2 Primary Key Updates
In Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) integrations,
primary key update operations require special consideration and planning. Primary key
updates modify one or more of the primary keys of a given row in the source database.
Because data is appended in Oracle GoldenGate for Distributed Applications and Analytics
(GG for DAA) applications, a primary key update operation looks more like a new insert than
like an update without special handling. You can use the following properties to configure the
Avro Row Formatter to handle primary keys:

Table 8-42 Configurable behavior

Value Description

abend The formatter terminates. This behavior is the default behavior.

update With this configuration the primary key update is treated like any other
update operation. Use this configuration only if you can guarantee that
the primary key is not used as selection criteria row data from a GG
for DAA system.

Chapter 8
Target

8-481

Table 8-42 (Cont.) Configurable behavior

Value Description

delete-insert The primary key update is treated as a special case of a delete, using
the before image data and an insert using the after-image data. This
configuration may more accurately model the effect of a primary key
update in a GG for DAA application. However, if this configuration is
selected, it is important to have full supplemental logging enabled on
Replication at the source database. Without full supplemental logging
the delete operation will be correct, but insert operation will not contain
all of the data for all of the columns for a full representation of the row
data in the GG for DAA application.

8.2.31.5.2.1.8.3 Generic Wrapper Functionality
Because Avro messages are not self describing, the receiver of the message must know the
schema associated with the message before the message can be deserialized. Avro messages
are binary and provide no consistent or reliable way to inspect the message contents in order
to ascertain the message type. Therefore, Avro can be troublesome when messages are
interlaced into a single stream of data such as Kafka.

The Avro formatter provides a special feature to wrap the Avro message in a generic Avro
message. You can enable this functionality by setting the following configuration property.

gg.handler.name.format.wrapMessageInGenericAvroMessage=true

The generic message is Avro message wrapping the Avro payload message that is common to
all Avro messages that are output. The schema for the generic message is name
generic_wrapper.avsc and is written to the output schema directory. This message has the
following three fields:

• table_name :The fully qualified source table name.

• schema_fingerprint : The fingerprint of the Avro schema of the wrapped message. The
fingerprint is generated using the Avro
SchemaNormalization.parsingFingerprint64(schema) call.

• payload: The wrapped Avro message.

The following is the Avro Formatter generic wrapper schema.

{
 "type" : "record",
 "name" : "generic_wrapper",
 "namespace" : "oracle.goldengate",
 "fields" : [{
 "name" : "table_name",
 "type" : "string"
 }, {
 "name" : "schema_fingerprint",
 "type" : "long"
 }, {
 "name" : "payload",
 "type" : "bytes"
 }]
}

Chapter 8
Target

8-482

8.2.31.5.2.2 The Avro Operation Formatter

The Avro Operation Formatter formats operation data from the source trail file into messages in
an Avro binary array format. Each individual insert, update, delete, and truncate operation is
formatted into an individual Avro message. The source trail file contains the before and after
images of the operation data. The Avro Operation Formatter formats this data into an Avro
binary representation of the operation data.

This format is more verbose than the output of the Avro Row Formatter for which the Avro
messages model the row data.

• Operation Metadata Formatting Details

• Operation Data Formatting Details

• Sample Avro Operation Messages

• Avro Schema

• Avro Operation Formatter Configuration Properties

• Review a Sample Configuration

• Metadata Change Events

• Special Considerations

8.2.31.5.2.2.1 Operation Metadata Formatting Details
To output the metacolumns configure the following:
gg.handler.name.format.metaColumnsTemplate=${objectname[table]},$
{optype[op_type]},${timestamp[op_ts]},${currenttimestamp[current_ts]},$
{position[pos]}
To also include the primary key columns and the tokens configure as follows:

gg.handler.name.format.metaColumnsTemplate=${objectname[table]},$
{optype[op_type]},${timestamp[op_ts]},${currenttimestamp[current_ts]},$
{position[pos]},${primarykeycolumns[primary_keys]},${alltokens[tokens]}
For more information see the configuration property:
gg.handler.name.format.metaColumnsTemplate

Table 8-43 Avro Messages and its Metadata

Fields Description

table The fully qualified table name, in the format:
CATALOG_NAME.SCHEMA NAME.TABLE NAME

op_type The type of database operation from the source trail file. Default values
are I for insert, U for update, D for delete, and T for truncate.

op_ts The timestamp of the operation from the source trail file. Since this
timestamp is from the source trail, it is fixed. Replaying the trail file
results in the same timestamp for the same operation.

current_ts The time when the formatter processed the current operation record.
This timestamp follows the ISO-8601 format and includes microsecond
precision. Replaying the trail file will not result in the same timestamp
for the same operation.

Chapter 8
Target

8-483

Table 8-43 (Cont.) Avro Messages and its Metadata

Fields Description

pos The concatenated sequence number and rba number from the source
trail file. The trail position provides traceability of the operation back to
the source trail file. The sequence number is the source trail file
number. The rba number is the offset in the trail file.

primary_keys An array variable that holds the column names of the primary keys of
the source table.

tokens A map variable that holds the token key value pairs from the source
trail file.

8.2.31.5.2.2.2 Operation Data Formatting Details
The operation data is represented as individual fields identified by the column names.

Column values for an operation from the source trail file can have one of three states: the
column has a value, the column value is null, or the column value is missing. Avro attributes
only support two states: the column has a value or the column value is null. The Avro
Operation Formatter contains an additional Boolean field COLUMN_NAME_isMissing for each
column to indicate whether the column value is missing or not. Using COLUMN_NAME field
together with the COLUMN_NAME_isMissing field, all three states can be defined.

• State 1: The column has a value

COLUMN_NAME field has a value

COLUMN_NAME_isMissing field is false

• State 2: The column value is null

COLUMN_NAME field value is null

COLUMN_NAME_isMissing field is false

• State 3: The column value is missing

COLUMN_NAME field value is null

COLUMN_NAME_isMissing field is true

By default the Avro Row Formatter maps the data types from the source trail file to the
associated Avro data type. Because Avro supports few data types, this functionality usually
results in the mapping of numeric fields from the source trail file to members typed as
numbers. You can also configure this data type mapping to handle all data as strings.

8.2.31.5.2.2.3 Sample Avro Operation Messages
Because Avro messages are binary, they are not human readable. The following topics show
example Avro messages in JSON format:

• Sample Insert Message

• Sample Update Message

• Sample Delete Message

• Sample Truncate Message

8.2.31.5.2.2.3.1 Sample Insert Message

{"table": "GG.TCUSTORD",
"op_type": "I",
"op_ts": "2013-06-02 22:14:36.000000",

Chapter 8
Target

8-484

"current_ts": "2015-09-18T10:17:49.570000",
"pos": "00000000000000001444",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"R": "AADPkvAAEAAEqL2AAA"},
"before": null,
"after": {
"CUST_CODE": "WILL",
"CUST_CODE_isMissing": false,
"ORDER_DATE": "1994-09-30:15:33:00",
"ORDER_DATE_isMissing": false,
"PRODUCT_CODE": "CAR",
"PRODUCT_CODE_isMissing": false,
"ORDER_ID": "144", "ORDER_ID_isMissing": false,
"PRODUCT_PRICE": 17520.0,
"PRODUCT_PRICE_isMissing": false,
"PRODUCT_AMOUNT": 3.0, "PRODUCT_AMOUNT_isMissing": false,
"TRANSACTION_ID": "100",
"TRANSACTION_ID_isMissing": false}}

8.2.31.5.2.2.3.2 Sample Update Message

{"table": "GG.TCUSTORD",
"op_type": "U",
"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:17:49.880000",
"pos": "00000000000000002891",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"R": "AADPkvAAEAAEqLzAAA"},
"before": {
"CUST_CODE": "BILL",
"CUST_CODE_isMissing": false,
"ORDER_DATE": "1995-12-31:15:00:00",
"ORDER_DATE_isMissing": false,
"PRODUCT_CODE": "CAR",
"PRODUCT_CODE_isMissing": false,
"ORDER_ID": "765",
"ORDER_ID_isMissing": false,
"PRODUCT_PRICE": 15000.0,
"PRODUCT_PRICE_isMissing": false,
"PRODUCT_AMOUNT": 3.0,
"PRODUCT_AMOUNT_isMissing": false,
"TRANSACTION_ID": "100",
"TRANSACTION_ID_isMissing": false},
"after": {
"CUST_CODE": "BILL",
"CUST_CODE_isMissing": false,
"ORDER_DATE": "1995-12-31:15:00:00",
"ORDER_DATE_isMissing": false,
"PRODUCT_CODE": "CAR",
"PRODUCT_CODE_isMissing": false,
"ORDER_ID": "765",
"ORDER_ID_isMissing": false,
"PRODUCT_PRICE": 14000.0,
"PRODUCT_PRICE_isMissing": false,
"PRODUCT_AMOUNT": 3.0,
"PRODUCT_AMOUNT_isMissing": false,
"TRANSACTION_ID": "100",
"TRANSACTION_ID_isMissing": false}}

8.2.31.5.2.2.3.3 Sample Delete Message

{"table": "GG.TCUSTORD",
"op_type": "D",

Chapter 8
Target

8-485

"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:17:49.899000",
"pos": "00000000000000004338",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"L": "206080450", "6": "9.0.80330", "R": "AADPkvAAEAAEqLzAAC"}, "before": {
"CUST_CODE": "DAVE",
"CUST_CODE_isMissing": false,
"ORDER_DATE": "1993-11-03:07:51:35",
"ORDER_DATE_isMissing": false,
"PRODUCT_CODE": "PLANE",
"PRODUCT_CODE_isMissing": false,
"ORDER_ID": "600",
"ORDER_ID_isMissing": false,
"PRODUCT_PRICE": null,
"PRODUCT_PRICE_isMissing": true,
"PRODUCT_AMOUNT": null,
"PRODUCT_AMOUNT_isMissing": true,
"TRANSACTION_ID": null,
"TRANSACTION_ID_isMissing": true},
"after": null}

8.2.31.5.2.2.3.4 Sample Truncate Message

{"table": "GG.TCUSTORD",
"op_type": "T",
"op_ts": "2013-06-02 22:14:41.000000",
"current_ts": "2015-09-18T10:17:49.900000",
"pos": "00000000000000004515",
"primary_keys": ["CUST_CODE", "ORDER_DATE", "PRODUCT_CODE", "ORDER_ID"], "tokens":
 {"R": "AADPkvAAEAAEqL2AAB"},
"before": null,
"after": null}

8.2.31.5.2.2.4 Avro Schema
Avro schemas are represented as JSONs. Avro schemas define the format of generated Avro
messages and are required to serialize and deserialize Avro messages.Avro schemas are
generated on a just-in-time basis when the first operation for a table is encountered. Because
Avro schemas are specific to a table definition, a separate Avro schema is generated for every
table encountered for processed operations. By default, Avro schemas are written to the
GoldenGate_Home/dirdef directory, although the write location is configurable. Avro schema
file names adhere to the following naming convention: Fully_Qualified_Table_Name.avsc .

The following is a sample Avro schema for the Avro Operation Format for the samples in the
preceding sections:

{
 "type" : "record",
 "name" : "TCUSTORD",
 "namespace" : "GG",
 "fields" : [{
 "name" : "table",
 "type" : "string"
 }, {
 "name" : "op_type",
 "type" : "string"
 }, {
 "name" : "op_ts",
 "type" : "string"
 }, {
 "name" : "current_ts",
 "type" : "string"
 }, {

Chapter 8
Target

8-486

 "name" : "pos",
 "type" : "string"
 }, {
 "name" : "primary_keys",
 "type" : {
 "type" : "array",
 "items" : "string"
 }
 }, {
 "name" : "tokens",
 "type" : {
 "type" : "map",
 "values" : "string"
 },
 "default" : { }
 }, {
 "name" : "before",
 "type" : ["null", {
 "type" : "record",
 "name" : "columns",
 "fields" : [{
 "name" : "CUST_CODE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "CUST_CODE_isMissing",
 "type" : "boolean"
 }, {
 "name" : "ORDER_DATE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "ORDER_DATE_isMissing",
 "type" : "boolean"
 }, {
 "name" : "PRODUCT_CODE",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "PRODUCT_CODE_isMissing",
 "type" : "boolean"
 }, {
 "name" : "ORDER_ID",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "ORDER_ID_isMissing",
 "type" : "boolean"
 }, {
 "name" : "PRODUCT_PRICE",
 "type" : ["null", "double"],
 "default" : null
 }, {
 "name" : "PRODUCT_PRICE_isMissing",
 "type" : "boolean"
 }, {
 "name" : "PRODUCT_AMOUNT",
 "type" : ["null", "double"],
 "default" : null
 }, {
 "name" : "PRODUCT_AMOUNT_isMissing",
 "type" : "boolean"

Chapter 8
Target

8-487

 }, {
 "name" : "TRANSACTION_ID",
 "type" : ["null", "string"],
 "default" : null
 }, {
 "name" : "TRANSACTION_ID_isMissing",
 "type" : "boolean"
 }]
 }],
 "default" : null
 }, {
 "name" : "after",
 "type" : ["null", "columns"],
 "default" : null
 }]
}

8.2.31.5.2.2.5 Avro Operation Formatter Configuration Properties

Table 8-44 Configuration Properties

Properties Optional
Y/N

Legal Values Default Explanation

gg.handler.name.form
at.insertOpKey

Optional Any string I Indicator to be inserted into the
output record to indicate an
insert operation

gg.handler.name.form
at.updateOpKey

Optional Any string U Indicator to be inserted into the
output record to indicate an
update operation.

gg.handler.name.form
at.deleteOpKey

Optional Any string D Indicator to be inserted into the
output record to indicate a
delete operation.

gg.handler.name.form
at.truncateOpKey

Optional Any string T Indicator to be inserted into the
output record to indicate a
truncate operation.

gg.handler.name.form
at.encoding

Optional Any legal
encoding name or
alias supported by
Java

UTF-8
(the JSON
default)

Controls the output encoding of
generated JSON Avro schema.
The JSON default is UTF-8.
Avro messages are binary and
support their own internal
representation of encoding.

gg.handler.name.form
at.treatAllColumnsAs
Strings

Optional true | false false Controls the output typing of
generated Avro messages. If
set to false, then the formatter
attempts to map Oracle
GoldenGate types to the
corresponding Avro type. If set
to true, then all data is treated
as Strings in the generated Avro
messages and schemas.

Chapter 8
Target

8-488

Table 8-44 (Cont.) Configuration Properties

Properties Optional
Y/N

Legal Values Default Explanation

gg.handler.name.form
at.lineDelimiter

Optional Any string no value Inserts delimiter after each Avro
message. This is not a best
practice, but in certain cases
you may want to parse a stream
of data and extract individual
Avro messages from the
stream, use this property to
help. Select a unique delimiter
that cannot occur in any Avro
message. This property
supports CDATA[] wrapping.

gg.handler.name.form
at.schemaDirectory

Optional Any legal, existing
file system path.

./dirdef The output location of
generated Avro schemas.

gg.handler.name.form
at.wrapMessageInGene
ricAvroMessage

Optional true|false false Wraps Avro messages for
operations from the source trail
file in a generic Avro wrapper
message. For more information,
see Generic Wrapper
Functionality.

gg.handler.name.form
at.iso8601Format

Optional true | false true The format of the current
timestamp. By default the ISO
8601 is set to false, removes
the T between the date and
time in the current timestamp,
which outputs a space instead.

gg.handler.name.form
at.includeIsMissingF
ields

Optional true | false false Set to true to include a
{column_name}_isMissing
boolean field for each source
field. This field allows
downstream applications to
differentiate if a null value is null
in the source trail file (value is
false) or is missing in the the
source trail file (value is true).

Chapter 8
Target

8-489

Table 8-44 (Cont.) Configuration Properties

Properties Optional
Y/N

Legal Values Default Explanation

gg.handler.name.form
at.oracleNumberScale

Optional Any integer value
from 0 to 38.

None Allows you to set the scale on
the Avro decimal data
type.Only applicable when you
set
enableDecimalLogicalType
=true. The Oracle NUMBER is a
proprietary numeric data type of
Oracle Database that supports
variable precision and scale.
Precision and scale are variable
on a per instance of the Oracle
NUMBER data type. Precision
and scale are required
parameters when generating
the Avro decimal logical type.
This makes mapping of Oracle
NUMBER data types into Avro
difficult because there is no way
to deterministically know the
precision and scale of an Oracle
NUMBER data type when the
Avro schema is generated. The
best alternative is to generate a
large Avro decimal data type a
precision of 164 and a scale of
38, which should hold any legal
instance of Oracle NUMBER.
While this solves the problem of
precision loss when converting
Oracle Number data types to
Avro decimal data types, you
may not like that Avro decimal
data types when retrieved from
Avro messages downstream
have 38 digits trailing the
decimal point.

gg.handler.name.form
at.mapOracleNumbersA
sStrings

Optional true | false false This property is only applicable
if decimal logical types are
enabled via the property
gg.handler.name.format.e
nableDecimalLogialType=t
rue. Oracle numbers are
especially problematic because
they have a large precision
(168) and floating scale of up to
38. Some analytical tools, such
as Spark cannot read numbers
that large. This property allows
you to map those Oracle
numbers as strings while still
mapping the smaller numbers
as decimal logical types.

Chapter 8
Target

8-490

Table 8-44 (Cont.) Configuration Properties

Properties Optional
Y/N

Legal Values Default Explanation

gg.handler.name.form
at.enableTimestampLo
gicalType

Optional true | false false Set to true to map source
date and time data types into
the Avro TimestampMicros
logical data type. If
gghandler.name.format.en
ableTimestampLogicalType
is set to true and
gg.format.timestamp is
unset, then replicat will abend
with a configuration exception.
The variable
gg.format.timestamp must
be configured to provide a mask
for the source date and time
data types to make sense of
them. The Avro
TimestampMicros is part of
the Avro 1.8 specification.

gg.handler.name.form
at.enableDecimalLogi
calType

Optional true | false false Enables the use of Avro
decimal logical types. The
decimal logical type represents
numbers as a byte array and
can provide support for much
larger numbers than can fit in
the classic 64-bit long or double
data types.

gg.handler.name.form
at.mapLargeNumbersAs
Strings

Optional true | false false Oracle GoldenGate supports
the floating point and integer
source datatypes. Some of
these datatypes may not fit into
the Avro primitive double or long
datatypes. Set this property to
true to map the fields that do
not fit into the Avro primitive
double or long datatypes to
Avro string.

Chapter 8
Target

8-491

Table 8-44 (Cont.) Configuration Properties

Properties Optional
Y/N

Legal Values Default Explanation

gg.handler.name.form
at.metaColumnsTempla
te

Optional See Metacolumn
Keywords

None The current meta column
information can be configured in
a simple manner and removes
the explicit need to use:

insertOpKey |
updateOpKey |
deleteOpKey |
truncateOpKey |
includeTableName |
includeOpTimestamp |
includeOpType |
includePosition |
includeCurrentTimestamp,
useIso8601Format
It is a comma-delimited string
consisting of one or more
templated values that represent
the template.

For more information about the
Metacolumn keywords, see
Metacolumn Keywords.

Chapter 8
Target

8-492

Table 8-44 (Cont.) Configuration Properties

Properties Optional
Y/N

Legal Values Default Explanation

gg.handler.name.form
at.maxPrecision

Optional None Positive
Integer

Allows you to set the maximum
precision for Avro decimal
logical types. Consuming
applications may have
limitations on Avro precision
(that is, Apache Spark supports
a maximum precision of 38).

W

A

R

N

I

N

G

:

C
on
fig
ur
ati
on
of
thi
s
pr
op
ert
y
is
no
t
wi
th
ou
t
ris
k.

The NUMBER type in an Oracle
RDBMS supports a maximum
precision of 164. Configuration
of this property likely means
you are casting larger source
numeric types to smaller target
numeric types. If the precision

Chapter 8
Target

8-493

Table 8-44 (Cont.) Configuration Properties

Properties Optional
Y/N

Legal Values Default Explanation

of the source value is greater
than the configured precision, a
runtime exception occurs and
the replicat process will abend.
That behavior is not a bug. That
is the expected behavior.

8.2.31.5.2.2.6 Review a Sample Configuration
The following is a sample configuration for the Avro Operation Formatter in the Java Adapter
properg.handlerties file:

gg.handler.hdfs.format=avro_op
gg.handler.hdfs.format.insertOpKey=I
gg.handler.hdfs.format.updateOpKey=U
gg.handler.hdfs.format.deleteOpKey=D
gg.handler.hdfs.format.truncateOpKey=T
gg.handler.hdfs.format.encoding=UTF-8
gg.handler.hdfs.format.wrapMessageInGenericAvroMessage=false

8.2.31.5.2.2.7 Metadata Change Events
If the replicated database and upstream Oracle GoldenGate replication process can propagate
metadata change events, the Avro Operation Formatter can take action when metadata
changes. Because Avro messages depend closely on their corresponding schema, metadata
changes are important when you use Avro formatting.

An updated Avro schema is generated as soon as a table operation occurs after a metadata
change event.

You must understand the impact of a metadata change event and change downstream targets
to the new Avro schema. The tight dependency of Avro messages to Avro schemas may result
in compatibility issues. Avro messages generated before the schema change may not be able
to be deserialized with the newly generated Avro schema. Conversely, Avro messages
generated after the schema change may not be able to be deserialized with the previous Avro
schema. It is a best practice to use the same version of the Avro schema that was used to
generate the message

For more information, consult the Apache Avro documentation.

8.2.31.5.2.2.8 Special Considerations
This section describes these special considerations:

• Troubleshooting

• Primary Key Updates

• Generic Wrapper Message

8.2.31.5.2.2.8.1 Troubleshooting
Because Avro is a binary format, it is not human readable. However, when the log4j Java
logging level is set to TRACE, Avro messages are deserialized and displayed in the log file as a
JSON object, letting you view the structure and contents of the created Avro messages. Do not
enable TRACE in a production environment, as it has a substantial impact on performance.

8.2.31.5.2.2.8.2 Primary Key Updates

Chapter 8
Target

8-494

The Avro Operation Formatter creates messages with complete data of before-image and
after-images for update operations. Therefore, the Avro Operation Formatter requires no
special treatment for primary key updates.

8.2.31.5.2.2.8.3 Generic Wrapper Message
Because Avro messages are not self describing, the receiver of the message must know the
schema associated with the message before the message can be deserialized. Avro messages
are binary and provide no consistent or reliable way to inspect the message contents in order
to ascertain the message type. Therefore, Avro can be troublesome when messages are
interlaced into a single stream of data such as Kafka.

The Avro formatter provides a special feature to wrap the Avro message in a generic Avro
message. You can enable this functionality by setting the following configuration property:

gg.handler.name.format.wrapMessageInGenericAvroMessage=true

The generic message is Avro message wrapping the Avro payload message that is common to
all Avro messages that are output. The schema for the generic message is name
generic_wrapper.avsc and is written to the output schema directory. This message has the
following three fields:

• table_name: The fully qualified source table name.

• schema_fingerprint : The fingerprint of the of the Avro schema generating the messages.
The fingerprint is generated using the parsingFingerprint64(Schema s) method on the
org.apache.avro.SchemaNormalization class.

• payload: The wrapped Avro message.

The following is the Avro Formatter generic wrapper schema:

{
 "type" : "record",
 "name" : "generic_wrapper",
 "namespace" : "oracle.goldengate",
 "fields" : [{
 "name" : "table_name",
 "type" : "string"
 }, {
 "name" : "schema_fingerprint",
 "type" : "long"
 }, {
 "name" : "payload",
 "type" : "bytes"
 }]
}

8.2.31.5.2.3 Avro Object Container File Formatter

Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) can write to HDFS
in Avro Object Container File (OCF) format. Avro OCF handles schema evolution more
efficiently than other formats. The Avro OCF Formatter also supports compression and
decompression to allow more efficient use of disk space.

The HDFS Handler integrates with the Avro formatters to write files to HDFS in Avro OCF
format. The Avro OCF format is required for Hive to read Avro data in HDFS. The Avro OCF
format is detailed in the Avro specification, see http://avro.apache.org/docs/current/
spec.html#Object+Container+Files.

Chapter 8
Target

8-495

http://avro.apache.org/docs/current/spec.html#Object+Container+Files
http://avro.apache.org/docs/current/spec.html#Object+Container+Files

You can configure the HDFS Handler to stream data in Avro OCF format, generate table
definitions in Hive, and update table definitions in Hive in the case of a metadata change event.

• Avro OCF Formatter Configuration Properties

8.2.31.5.2.3.1 Avro OCF Formatter Configuration Properties

Properties Optional /
Required

Legal Values Default Explanation

gg.handler.name
.format.insertO
pKey

Optional Any string I Indicator to be
inserted into the
output record to
indicate an insert
operation.

gg.handler.name
.format.updateO
pKey

Optional Any string U Indicator to be
inserted into the
output record to
indicate an update
operation.

gg.handler.name
.format.truncat
eOpKey

Optional Any string T Indicator to be
truncated into the
output record to
indicate a truncate
operation.

gg.handler.name
.format.deleteO
pKey

Optional Any string D Indicator to be
inserted into the
output record to
indicate a truncate
operation.

gg.handler.name
.format.encodin
g

Optional Any legal encoding
name or alias
supported by Java.

UTF-8 Controls the output
encoding of
generated JSON
Avro schema. The
JSON default is
UTF-8. Avro
messages are
binary and support
their own internal
representation of
encoding.

gg.handler.name
.format.treatAl
lColumnsAsStrin
gs

Optional true | false false Controls the output
typing of generated
Avro messages.
When the setting is
false, the
formatter attempts
to map Oracle
GoldenGate types
to the
corresponding Avro
type. When the
setting is true, all
data is treated as
strings in the
generated Avro
messages and
schemas.

Chapter 8
Target

8-496

Properties Optional /
Required

Legal Values Default Explanation

gg.handler.name
.format.pkUpdat
eHandling

Optional abend | update |
delete-insert

abend Controls how the
formatter should
handle update
operations that
change a primary
key. Primary key
operations can be
problematic for the
Avro Row formatter
and require special
consideration by
you.

• abend : the
process will
terminates.

• update : the
process
handles this as
a normal
update

• delete and
insert: the
process
handles thins
operation as a
delete and an
insert. The full
before image
is required for
this feature to
work properly.
This can be
achieved by
using full
supplemental
logging in
Oracle.
Without full
before and
after row
images the
insert data will
be incomplete.

gg.handler.name
.format.generat
eSchema

Optional true | false true Because schemas
must be generated
for Avro
serialization to
false to suppress
the writing of the
generated schemas
to the local file
system.

Chapter 8
Target

8-497

Properties Optional /
Required

Legal Values Default Explanation

gg.handler.name
.format.schemaD
irectory

Optional Any legal, existing
file system path

./dirdef The directory
where generated
Avro schemas are
saved to the local
file system. This
property does not
control where the
Avro schema is
written to in HDFS;
that is controlled by
an HDFS Handler
property.

gg.handler.name
.format.iso8601
Format

Optional true | false true By default, the
value of this
property is true,
and the format for
the current
timestamp is
ISO8601. Set to
false to remove
the T between the
date and time in the
current timestamp
and output a space
instead.

gg.handler.name
.format.version
Schemas

Optional true | false false If set to true, an
Avro schema is
created in the
schema directory
and versioned by a
time stamp. The
schema uses the
following format:

fully_qualified
table_name_time
stamp.avsc

8.2.31.5.3 Using the Delimited Text Formatter
The Delimited Text Formatter formats database operations from the source trail file into a
delimited text output. Each insert, update, delete, or truncate operation from the source trail is
formatted into an individual delimited message. Delimited text output includes a fixed number
of fields for each table separated by a field delimiter and terminated by a line delimiter. The
fields are positionally relevant. Many Oracle GoldenGate for Distributed Applications and
Analytics (GG for DAA) analytical tools including Hive work well with HDFS files that contain
delimited text. Column values for an operation from the source trail file can have one of three
states: the column has a value, the column value is null, or the column value is missing. By
default, the delimited text maps these column value states into the delimited text output as
follows:

• Column has a value: The column value is output.

• Column value is null: The default output value is NULL. The output for the case of a null
column value is configurable.

Chapter 8
Target

8-498

• Column value is missing: The default output value is an empty string (""). The output for
the case of a missing column value is configurable.

• Using the Delimited Text Row Formatter
The Delimited Text Row Formatter is the Delimited Text Formatter that was included a
release prior to the Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA) 19.1.0.0.0 release. It writes the after change data for inserts and updates, and before
change data for deletes.

• Delimited Text Operation Formatter
The Delimited Text Operation Formatter outputs both before and after change data for
insert, update, and delete operations.

8.2.31.5.3.1 Using the Delimited Text Row Formatter

The Delimited Text Row Formatter is the Delimited Text Formatter that was included a release
prior to the Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
19.1.0.0.0 release. It writes the after change data for inserts and updates, and before change
data for deletes.

• Message Formatting Details

• Sample Formatted Messages

• Output Format Summary Log

• Configuration

• Metadata Change Events

• Additional Considerations

8.2.31.5.3.1.1 Message Formatting Details
The automated output of meta-column fields in generated delimited text messages has been
removed as of Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
release 21.1. Meta-column fields can still be output; however, they need to explicitly configured
as the following property:

gg.handler.name.format.metaColumnsTemplate
To output the metacolumns as in previous versions configure the following:

gg.handler.name.format.metaColumnsTemplate=${optype[op_type]},$
{objectname[table]},${timestamp[op_ts]},${currenttimestamp[current_ts]},$
{position[pos]}
To also include the primary key columns and the tokens configure as follows:

gg.handler.name.format.metaColumnsTemplate=${optype[op_type]},$
{objectname[table]},${timestamp[op_ts]},${currenttimestamp[current_ts]},$
{position[pos]},${primarykeycolumns[primary_keys]},${alltokens[tokens]}

For more information, see
see the configuration property gg.handler.name.format.metaColumnsTemplate in the
Delimited Text Formatter Configuration Properties table.

Formatting details:

• Operation Type : Indicates the type of database operation from the source trail file.
Default values are I for insert, U for update, D for delete, T for truncate. Output of this field
is suppressible.

Chapter 8
Target

8-499

• Fully Qualified Table Name: The fully qualified table name is the source database table
including the catalog name, and the schema name. The format of the fully qualified table
name is catalog_name.schema_name.table_name. The output of this field is suppressible.

• Operation Timestamp : The commit record timestamp from the source system. All
operations in a transaction (unbatched transaction) will have the same operation
timestamp. This timestamp is fixed, and the operation timestamp is the same if the trail file
is replayed. The output of this field is suppressible.

• Current Timestamp : The timestamp of the current time when the delimited text formatter
processes the current operation record. This timestamp follows the ISO-8601 format and
includes microsecond precision. Replaying the trail file does not result in the same
timestamp for the same operation. The output of this field is suppressible.

• Trail Position :The concatenated sequence number and RBA number from the source trail
file. The trail position lets you trace the operation back to the source trail file. The
sequence number is the source trail file number. The RBA number is the offset in the trail
file. The output of this field is suppressible.

• Tokens : The token key value pairs from the source trail file. The output of this field in the
delimited text output is suppressed unless the includeTokens configuration property on the
corresponding handler is explicitly set to true.

8.2.31.5.3.1.2 Sample Formatted Messages
The following sections contain sample messages from the Delimited Text Formatter. The
default field delimiter has been changed to a pipe character, |, to more clearly display the
message.

• Sample Insert Message

• Sample Update Message

• Sample Delete Message

• Sample Truncate Message

8.2.31.5.3.1.2.1 Sample Insert Message

I|GG.TCUSTORD|2013-06-02
22:14:36.000000|2015-09-18T13:23:01.612001|00000000000000001444|R=AADPkvAAEAAEqL2A
AA|WILL|1994-09-30:15:33:00|CAR|144|17520.00|3|100

8.2.31.5.3.1.2.2 Sample Update Message

U|GG.TCUSTORD|2013-06-02
22:14:41.000000|2015-09-18T13:23:01.987000|00000000000000002891|R=AADPkvAAEAAEqLzA
AA|BILL|1995-12-31:15:00:00|CAR|765|14000.00|3|100

8.2.31.5.3.1.2.3 Sample Delete Message

D,GG.TCUSTORD,2013-06-02
22:14:41.000000,2015-09-18T13:23:02.000000,00000000000000004338,L=206080450,6=9.0.
80330,R=AADPkvAAEAAEqLzAAC,DAVE,1993-11-03:07:51:35,PLANE,600,,,

8.2.31.5.3.1.2.4 Sample Truncate Message

T|GG.TCUSTORD|2013-06-02
22:14:41.000000|2015-09-18T13:23:02.001000|00000000000000004515|R=AADPkvAAEAAEqL2A
AB|||||||

8.2.31.5.3.1.3 Output Format Summary Log
If INFO level logging is enabled, the Java log4j logging logs a summary of the delimited text
output format . A summary of the delimited fields is logged for each source table encountered
and occurs when the first operation for that table is received by the Delimited Text formatter.

Chapter 8
Target

8-500

This detailed explanation of the fields of the delimited text output may be useful when you
perform an initial setup. When a metadata change event occurs, the summary of the delimited
fields is regenerated and logged again at the first subsequent operation for that table.

8.2.31.5.3.1.4 Configuration

• Review a Sample Configuration

8.2.31.5.3.1.4.1 Review a Sample Configuration
The following is a sample configuration for the Delimited Text formatter in the Java Adapter
configuration file:

gg.handler.name.format.includeColumnNames=false
gg.handler.name.format.insertOpKey=I
gg.handler.name.format.updateOpKey=U
gg.handler.name.format.deleteOpKey=D
gg.handler.name.format.truncateOpKey=T
gg.handler.name.format.encoding=UTF-8
gg.handler.name.format.fieldDelimiter=CDATA[\u0001]
gg.handler.name.format.lineDelimiter=CDATA[\n]
gg.handler.name.format.keyValueDelimiter=CDATA[=]
gg.handler.name.format.kevValuePairDelimiter=CDATA[,]
gg.handler.name.format.pkUpdateHandling=abend
gg.handler.name.format.nullValueRepresentation=NULL
gg.handler.name.format.missingValueRepresentation=CDATA[]
gg.handler.name.format.includeGroupCols=false
gg.handler.name.format=delimitedtext

8.2.31.5.3.1.5 Metadata Change Events
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) now handles
metadata change events at runtime. This assumes that the replicated database and upstream
replication processes are propagating metadata change events. The Delimited Text Formatter
changes the output format to accommodate the change and the Delimited Text Formatter
continue running.

Note:

A metadata change may affect downstream applications. Delimited text formats
include a fixed number of fields that are positionally relevant. Deleting a column in the
source table can be handled seamlessly during Oracle GoldenGate runtime, but
results in a change in the total number of fields, and potentially changes the
positional relevance of some fields. Adding an additional column or columns is
probably the least impactful metadata change event, assuming that the new column
is added to the end. Consider the impact of a metadata change event before
executing the event. When metadata change events are frequent, Oracle
recommends that you consider a more flexible and self-describing format, such as
JSON or XML.

8.2.31.5.3.1.6 Additional Considerations
Exercise care when you choose field and line delimiters. It is important to choose delimiter
values that will not occur in the content of the data.

The Java Adapter configuration trims leading and trailing characters from configuration values
when they are determined to be whitespace. However, you may want to choose field
delimiters, line delimiters, null value representations, and missing value representations that
include or are fully considered to be whitespace . In these cases, you must employ specialized
syntax in the Java Adapter configuration file to preserve the whitespace. To preserve the

Chapter 8
Target

8-501

whitespace, when your configuration values contain leading or trailing characters that are
considered whitespace, wrap the configuration value in a CDATA[] wrapper. For example, a
configuration value of \n should be configured as CDATA[\n].

You can use regular expressions to search column values then replace matches with a
specified value. You can use this search and replace functionality together with the Delimited
Text Formatter to ensure that there are no collisions between column value contents and field
and line delimiters. For more information, see Using Regular Expression Search and Replace.

Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) applications sore
data differently from RDBMSs. Update and delete operations in an RDBMS result in a change
to the existing data. However, in GG for DAA applications, data is appended instead of
changed. Therefore, the current state of a given row consolidates all of the existing operations
for that row in the HDFS system. This leads to some special scenarios as described in the
following sections.

• Primary Key Updates

• Data Consolidation

8.2.31.5.3.1.6.1 Primary Key Updates
In Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) integrations,
primary key update operations require special consideration and planning. Primary key
updates modify one or more of the primary keys for the given row from the source database.
Because data is appended in GG for DAA applications, a primary key update operation looks
more like an insert than an update without any special handling. You can configure how the
Delimited Text formatter handles primary key updates. These are the configurable behaviors:

Table 8-45 Configurable Behavior

Value Description

abend By default the delimited text formatter terminates in the case of a
primary key update.

update The primary key update is treated like any other update operation.
Use this configuration alternative only if you can guarantee that the
primary key is not used as selection criteria to select row data from a
GG for DAA system.

delete-insert The primary key update is treated as a special case of a delete, using
the before-image data and an insert using the after-image data. This
configuration may more accurately model the effect of a primary key
update in a GG for DAA application. However, if this configuration is
selected it is important to have full supplemental logging enabled on
replication at the source database. Without full supplemental logging,
the delete operation will be correct, but the insert operation will not
contain all of the data for all of the columns for a full representation of
the row data in the GG for DAA application.

8.2.31.5.3.1.6.2 Data Consolidation
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) applications
append data to the underlying storage. Analytic tools generally spawn MapReduce programs
that traverse the data files and consolidate all the operations for a given row into a single
output. Therefore, it is important to specify the order of operations. The Delimited Text
formatter provides a number of metadata fields to do this. The operation timestamp may be
sufficient to fulfill this requirement. Alternatively, the current timestamp may be the best
indicator of the order of operations. In this situation, the trail position can provide a tie-breaking
field on the operation timestamp. Lastly, the current timestamp may provide the best indicator
of order of operations in GG for DAA.

Chapter 8
Target

8-502

8.2.31.5.3.2 Delimited Text Operation Formatter

The Delimited Text Operation Formatter outputs both before and after change data for insert,
update, and delete operations.

• Message Formatting Details

• Sample Formatted Messages

• Output Format Summary Log

• Delimited Text Formatter Configuration Properties

• Review a Sample Configuration

• Metadata Change Events
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) now handles
metadata change events at runtime. This assumes that the replicated database and
upstream replication processes are propagating metadata change events. The Delimited
Text Formatter changes the output format to accommodate the change and the Delimited
Text Formatter continue running.

• Additional Considerations
Exercise care when you choose field and line delimiters. It is important to choose delimiter
values that do not occur in the content of the data.

8.2.31.5.3.2.1 Message Formatting Details
The automated output of meta-column fields in generated delimited text messages has been
removed as of Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
release 21.1. Meta-column fields can still be output; however, they need to explicitly configured
as the following property: gg.handler.name.format.metaColumnsTemplate. For more
information, see the configuration property gg.handler.name.format.metaColumnsTemplate in
the Delimited Text Formatter Configuration Properties table.

To output the metacolumns as in previous versions configure the following:

gg.handler.name.format.metaColumnsTemplate=${optype[op_type]},$
{objectname[table]},${timestamp[op_ts]},${currenttimestamp[current_ts]},$
{position[pos]}
To also include the primary key columns and the tokens configure as follows:

gg.handler.name.format.metaColumnsTemplate=${optype[op_type]},$
{objectname[table]},${timestamp[op_ts]},${currenttimestamp[current_ts]},$
{position[pos]},${primarykeycolumns[primary_keys]},${alltokens[tokens]}
Formatting details:

• Operation Type :Indicates the type of database operation from the source trail file. Default
values are I for insert, U for update, D for delete, T for truncate. Output of this field is
suppressible.

• Fully Qualified Table Name: The fully qualified table name is the source database table
including the catalog name, and the schema name. The format of the fully qualified table
name is catalog_name.schema_name.table_name. The output of this field is suppressible.

• Operation Timestamp : The commit record timestamp from the source system. All
operations in a transaction (unbatched transaction) will have the same operation
timestamp. This timestamp is fixed, and the operation timestamp is the same if the trail file
is replayed. The output of this field is suppressible.

Chapter 8
Target

8-503

• Current Timestamp : The timestamp of the current time when the delimited text formatter
processes the current operation record. This timestamp follows the ISO-8601 format and
includes microsecond precision. Replaying the trail file does not result in the same
timestamp for the same operation. The output of this field is suppressible.

• Trail Position :The concatenated sequence number and RBA number from the source trail
file. The trail position lets you trace the operation back to the source trail file. The
sequence number is the source trail file number. The RBA number is the offset in the trail
file. The output of this field is suppressible.

• Tokens : The token key value pairs from the source trail file. The output of this field in the
delimited text output is suppressed unless the includeTokens configuration property on the
corresponding handler is explicitly set to true.

8.2.31.5.3.2.2 Sample Formatted Messages
The following sections contain sample messages from the Delimited Text Formatter. The
default field delimiter has been changed to a pipe character, |, to more clearly display the
message.

• Sample Insert Message

• Sample Update Message

• Sample Delete Message

• Sample Truncate Message

8.2.31.5.3.2.2.1 Sample Insert Message
I|GG.TCUSTMER|2015-11-05 18:45:36.000000|2019-04-17T04:49:00.156000|
00000000000000001956|R=AAKifQAAKAAAFDHAAA,t=,L=7824137832,6=2.3.228025||WILL||BG
SOFTWARE CO.||SEATTLE||WA

8.2.31.5.3.2.2.2 Sample Update Message

U|QASOURCE.TCUSTMER|2015-11-05
18:45:39.000000|2019-07-16T11:54:06.008002|00000000000000005100|R=AAKifQAAKAAAFDHAAE|ANN|
ANN|ANN'S
BOATS||SEATTLE|NEW YORK|WA|NY

8.2.31.5.3.2.2.3 Sample Delete Message
D|QASOURCE.TCUSTORD|2015-11-05 18:45:39.000000|2019-07-16T11:54:06.009000|
00000000000000005272|L=7824137921,R=AAKifSAAKAAAMZHAAE,6=9.9.479055|DAVE||
1993-11-03 07:51:35||PLANE||600||135000.00||2||200|

8.2.31.5.3.2.2.4 Sample Truncate Message
T|QASOURCE.TCUSTMER|2015-11-05 18:45:39.000000|2019-07-16T11:54:06.004002|
00000000000000003600|R=AAKifQAAKAAAFDHAAE||||||||

8.2.31.5.3.2.3 Output Format Summary Log
If INFO level logging is enabled, the Java log4j logging logs a summary of the delimited text
output format . A summary of the delimited fields is logged for each source table encountered
and occurs when the first operation for that table is received by the Delimited Text formatter.
This detailed explanation of the fields of the delimited text output may be useful when you
perform an initial setup. When a metadata change event occurs, the summary of the delimited
fields is regenerated and logged again at the first subsequent operation for that table.

8.2.31.5.3.2.4 Delimited Text Formatter Configuration Properties

Chapter 8
Target

8-504

Table 8-46 Delimited Text Formatter Configuration Properties

Properties Option
al /
Requir
ed

Legal
Values

Default Explanation

gg.handler.name.format Requir
ed

delimite
dtext_op

None Selects the Delimited Text Operation
Formatter as the formatter.

gg.handler.name.format.includeC
olumnNames

Option
al

true |
false

false Controls the output of writing the column
names as a delimited field preceding the
column value. When true, the output
resembles:

COL1_Name|COL1_Before_Value|
COL1_After_Value|COL2_Name|
COL2_Before_Value|
COL2_After_Value

When false, the output resembles:

COL1_Before_Value|
COL1_After_Value|
COL2_Before_Value|COL2_After_Value

gg.handler.name.format.disableE
scaping

Option
al

true |
false

false Set to true to disable the escaping of
characters which conflict with the configured
delimiters. Ensure that it is set to true if
gg.handler.name.format.fieldDelimi
ter is set to a value of multiple characters.

gg.handler.name.format.insertOp
Key

Option
al

Any string I Indicator to be inserted into the output
record to indicate an insert operation.

gg.handler.name.format.updateOp
Key

Option
al

Any string U Indicator to be inserted into the output
record to indicate an update operation.

gg.handler.name.format.deleteOp
Key

Option
al

Any string D Indicator to be inserted into the output
record to indicate a delete operation.

gg.handler.name.format.truncate
OpKey

Option
al

Any string T Indicator to be inserted into the output
record to indicate a truncate operation.

gg.handler.name.format.encoding Option
al

Any
encoding
name or
alias
supported
by Java.

The native
system
encoding of
the machine
hosting the
Oracle
GoldenGate
process.

Determines the encoding of the output
delimited text.

gg.handler.name.format.fieldDel
imiter

Option
al

Any String ASCII 001
(the default
Hive delimiter)

The delimiter used between delimited fields.
This value supports CDATA[] wrapping. If a
delimiter of more than one character is
configured, then escaping is automatically
disabled.

gg.handler.name.format.lineDeli
miter

Option
al

Any String Newline (the
default Hive
delimiter)

The delimiter used between delimited fields.
This value supports CDATA[] wrapping.

Chapter 8
Target

8-505

Table 8-46 (Cont.) Delimited Text Formatter Configuration Properties

Properties Option
al /
Requir
ed

Legal
Values

Default Explanation

gg.handler.name.format.keyValue
Delimiter

Option
al

Any string = Specifies a delimiter between keys and
values in a map. Key1=value1. Tokens are
mapped values. Configuration value
supports CDATA[] wrapping.

gg.handler.name.format.keyValue
PairDelimiter

Option
al

Any string , Specifies a delimiter between key value
pairs in a map.
Key1=Value1,Key2=Value2. Tokens are
mapped values. Configuration value
supports CDATA[] wrapping.

gg.handler.name.format.nullValu
eRepresentation

Option
al

Any string NULL Specifies what is included in the delimited
output in the case of a NULL value.
Configuration value supports CDATA[]
wrapping.

gg.handler.name.format.missingV
alueRepresentation

Option
al

Any string ""(no value) Specifies what is included in the delimited
text output in the case of a missing value.
Configuration value supports CDATA[]
wrapping.

gg.handler.name.format.includeM
etaColumnNames

Option
al

true |
false

false Set to true, a field is included prior to each
metadata column value, which is the column
name of the metadata column. You can use
it to make delimited messages more self-
describing.

gg.handler.name.format.wrapStri
ngsInQuotes

Option
al

true |
false

false Set to true to wrap string value output in
the delimited text format in double quotes
(").

gg.handler.name.format.includeG
roupCols

Option
al

true |
false

false If set to true, the columns are grouped into
sets of all names, all before values, and all
after values

U,QASOURCE.TCUSTMER,2015-11-05
18:45:39.000000,2019-04-17T05:19:30.5
56000,00000000000000005100,R=AAKifQAA
KAAAFDHAAE,CUST_CODE,NAME,CITY,STATE,
ANN,ANN'S
BOATS,SEATTLE,WA,ANN,,NEW YORK,NY

gg.handler.name.format.enableFi
eldDescriptorHeaders

Option
al

true |
false

false Set to true to add a descriptive header to
each data file for delimited text output. The
header will be the individual field names
separated by the field delimiter.

Chapter 8
Target

8-506

Table 8-46 (Cont.) Delimited Text Formatter Configuration Properties

Properties Option
al /
Requir
ed

Legal
Values

Default Explanation

gg.handler.name.format.metaColu
mnsTemplate

Option
al

See
Metacolu
mn
Keywords
.

None The current meta column information can be
configured in a simple manner and removes
the explicit need to use:

insertOpKey | updateOpKey |
deleteOpKey |
 truncateOpKey |
includeTableName |
includeOpTimestamp |
 includeOpType |
includePosition |
includeCurrentTimestamp,
 useIso8601Format

It is a comma-delimited string consisting of
one or more templated values that represent
the template. For more information about the
Metacolumn keywords, see Metacolumn
Keywords. This is an example that would
produce a list of metacolumns: $
{optype}, ${token.ROWID}, $
{sys.username}, $
{currenttimestamp}

8.2.31.5.3.2.5 Review a Sample Configuration
The following is a sample configuration for the Delimited Text formatter in the Java Adapter
configuration file:

gg.handler.name.format.includeColumnNames=false
gg.handler.name.format.insertOpKey=I
gg.handler.name.format.updateOpKey=U
gg.handler.name.format.deleteOpKey=D
gg.handler.name.format.truncateOpKey=T
gg.handler.name.format.encoding=UTF-8
gg.handler.name.format.fieldDelimiter=CDATA[\u0001]
gg.handler.name.format.lineDelimiter=CDATA[\n]
gg.handler.name.format.keyValueDelimiter=CDATA[=]
gg.handler.name.format.kevValuePairDelimiter=CDATA[,]
gg.handler.name.format.nullValueRepresentation=NULL
gg.handler.name.format.missingValueRepresentation=CDATA[]
gg.handler.name.format.includeGroupCols=false
gg.handler.name.format=delimitedtext_op

8.2.31.5.3.2.6 Metadata Change Events
Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA) now handles
metadata change events at runtime. This assumes that the replicated database and upstream
replication processes are propagating metadata change events. The Delimited Text Formatter

Chapter 8
Target

8-507

changes the output format to accommodate the change and the Delimited Text Formatter
continue running.

Note:

A metadata change may affect downstream applications. Delimited text formats
include a fixed number of fields that are positionally relevant. Deleting a column in the
source table can be handled seamlessly during Oracle GoldenGate runtime, but
results in a change in the total number of fields, and potentially changes the
positional relevance of some fields. Adding an additional column or columns is
probably the least impactful metadata change event, assuming that the new column
is added to the end. Consider the impact of a metadata change event before
executing the event. When metadata change events are frequent, Oracle
recommends that you consider a more flexible and self-describing format, such as
JSON or XML.

8.2.31.5.3.2.7 Additional Considerations
Exercise care when you choose field and line delimiters. It is important to choose delimiter
values that do not occur in the content of the data.

The Java Adapter configuration trims leading and trailing characters from configuration values
when they are determined to be whitespace. However, you may want to choose field
delimiters, line delimiters, null value representations, and missing value representations that
include or are fully considered to be whitespace . In these cases, you must employ specialized
syntax in the Java Adapter configuration file to preserve the whitespace. To preserve the
whitespace, when your configuration values contain leading or trailing characters that are
considered whitespace, wrap the configuration value in a CDATA[] wrapper. For example, a
configuration value of \n should be configured as CDATA[\n].

You can use regular expressions to search column values then replace matches with a
specified value. You can use this search and replace functionality together with the Delimited
Text Formatter to ensure that there are no collisions between column value contents and field
and line delimiters. For more information, see Using Regular Expression Search and Replace.

Big Data applications sore data differently from RDBMSs. Update and delete operations in an
RDBMS result in a change to the existing data. However, in Big Data applications, data is
appended instead of changed. Therefore, the current state of a given row consolidates all of
the existing operations for that row in the HDFS system. This leads to some special scenarios
as described in the following sections.

8.2.31.5.4 Using the JSON Formatter
The JavaScript Object Notation (JSON) formatter can output operations from the source trail
file in either row-based format or operation-based format. It formats operation data from the
source trail file into a JSON objects. Each insert, update, delete, and truncate operation is
formatted into an individual JSON message.

• Operation Metadata Formatting Details

• Operation Data Formatting Details

• Row Data Formatting Details

• Sample JSON Messages

• JSON Schemas

Chapter 8
Target

8-508

• JSON Formatter Configuration Properties

• Review a Sample Configuration

• Metadata Change Events

• JSON Primary Key Updates

• Integrating Oracle Stream Analytics

• Mongo Document Formatting Details

8.2.31.5.4.1 Operation Metadata Formatting Details

To output the metacolumns configure the following:

gg.handler.name.format.metaColumnsTemplate=${objectname[table]},$
{optype[op_type]},${timestamp[op_ts]},${currenttimestamp[current_ts]},$
{position[pos]}
To also include the primary key columns and the tokens configure as follows:

gg.handler.name.format.metaColumnsTemplate=${objectname[table]},$
{optype[op_type]},${timestamp[op_ts]},${currenttimestamp[current_ts]},$
{position[pos]},${primarykeycolumns[primary_keys]},${alltokens[tokens]}
For more information see the configuration property:
gg.handler.name.format.metaColumnsTemplate.

8.2.31.5.4.2 Operation Data Formatting Details

JSON messages begin with the operation metadata fields, which are followed by the operation
data fields. This data is represented by before and after members that are objects. These
objects contain members whose keys are the column names and whose values are the column
values.

Operation data is modeled as follows:

• Inserts: Includes the after-image data.

• Updates: Includes both the before-image and the after-image data.

• Deletes: Includes the before-image data.

Column values for an operation from the source trail file can have one of three states: the
column has a value, the column value is null, or the column value is missing. The JSON
Formatter maps these column value states into the created JSON objects as follows:

• The column has a value: The column value is output. In the following example, the
member STATE has a value.

 "after":{ "CUST_CODE":"BILL", "NAME":"BILL'S USED CARS",
"CITY":"DENVER", "STATE":"CO" }

• The column value is null: The default output value is a JSON NULL. In the following
example, the member STATE is null.

 "after":{ "CUST_CODE":"BILL", "NAME":"BILL'S USED CARS",
"CITY":"DENVER", "STATE":null }

• The column value is missing: The JSON contains no element for a missing column value.
In the following example, the member STATE is missing.

 "after":{ "CUST_CODE":"BILL", "NAME":"BILL'S USED CARS",
"CITY":"DENVER", }

Chapter 8
Target

8-509

The default setting of the JSON Formatter is to map the data types from the source trail file to
the associated JSON data type. JSON supports few data types, so this functionality usually
results in the mapping of numeric fields from the source trail file to members typed as
numbers. This data type mapping can be configured treat all data as strings.

8.2.31.5.4.3 Row Data Formatting Details

JSON messages begin with the operation metadata fields, which are followed by the operation
data fields. For row data formatting, this are the source column names and source column
values as JSON key value pairs. This data is represented by before and after members that
are objects. These objects contain members whose keys are the column names and whose
values are the column values.

Row data is modeled as follows:

• Inserts: Includes the after-image data.

• Updates: Includes the after-image data.

• Deletes: Includes the before-image data.

Column values for an operation from the source trail file can have one of three states: the
column has a value, the column value is null, or the column value is missing. The JSON
Formatter maps these column value states into the created JSON objects as follows:

• The column has a value: The column value is output. In the following example, the
member STATE has a value.

 "CUST_CODE":"BILL", "NAME":"BILL'S USED CARS",
"CITY":"DENVER", "STATE":"CO" }

• The column value is null :The default output value is a JSON NULL. In the following
example, the member STATE is null.

 "CUST_CODE":"BILL", "NAME":"BILL'S USED CARS",
"CITY":"DENVER", "STATE":null }

• The column value is missing: The JSON contains no element for a missing column value.
In the following example, the member STATE is missing.

 "CUST_CODE":"BILL", "NAME":"BILL'S USED CARS",
"CITY":"DENVER", }

The default setting of the JSON Formatter is to map the data types from the source trail file to
the associated JSON data type. JSON supports few data types, so this functionality usually
results in the mapping of numeric fields from the source trail file to members typed as
numbers. This data type mapping can be configured to treat all data as strings.

8.2.31.5.4.4 Sample JSON Messages

The following topics are sample JSON messages created by the JSON Formatter for insert,
update, delete, and truncate operations.

• Sample Operation Modeled JSON Messages

• Sample Flattened Operation Modeled JSON Messages

• Sample Row Modeled JSON Messages

• Sample Primary Key Output JSON Message

Chapter 8
Target

8-510

8.2.31.5.4.4.1 Sample Operation Modeled JSON Messages

Insert

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"I",
 "op_ts":"2015-11-05 18:45:36.000000",
 "current_ts":"2016-10-05T10:15:51.267000",
 "pos":"00000000000000002928",
 "after":{
 "CUST_CODE":"WILL",
 "ORDER_DATE":"1994-09-30:15:33:00",
 "PRODUCT_CODE":"CAR",
 "ORDER_ID":144,
 "PRODUCT_PRICE":17520.00,
 "PRODUCT_AMOUNT":3,
 "TRANSACTION_ID":100
 }
}

Update

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"U",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:15:51.310002",
 "pos":"00000000000000004300",
 "before":{
 "CUST_CODE":"BILL",
 "ORDER_DATE":"1995-12-31:15:00:00",
 "PRODUCT_CODE":"CAR",
 "ORDER_ID":765,
 "PRODUCT_PRICE":15000.00,
 "PRODUCT_AMOUNT":3,
 "TRANSACTION_ID":100
 },
 "after":{
 "CUST_CODE":"BILL",
 "ORDER_DATE":"1995-12-31:15:00:00",
 "PRODUCT_CODE":"CAR",
 "ORDER_ID":765,
 "PRODUCT_PRICE":14000.00
 }
}

Delete

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"D",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:15:51.312000",
 "pos":"00000000000000005272",

Chapter 8
Target

8-511

 "before":{
 "CUST_CODE":"DAVE",
 "ORDER_DATE":"1993-11-03:07:51:35",
 "PRODUCT_CODE":"PLANE",
 "ORDER_ID":600,
 "PRODUCT_PRICE":135000.00,
 "PRODUCT_AMOUNT":2,
 "TRANSACTION_ID":200
 }
}

Truncate

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"T",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:15:51.312001",
 "pos":"00000000000000005480",
}

8.2.31.5.4.4.2 Sample Flattened Operation Modeled JSON Messages

Insert

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"I",
 "op_ts":"2015-11-05 18:45:36.000000",
 "current_ts":"2016-10-05T10:34:47.956000",
 "pos":"00000000000000002928",
 "after.CUST_CODE":"WILL",
 "after.ORDER_DATE":"1994-09-30:15:33:00",
 "after.PRODUCT_CODE":"CAR",
 "after.ORDER_ID":144,
 "after.PRODUCT_PRICE":17520.00,
 "after.PRODUCT_AMOUNT":3,
 "after.TRANSACTION_ID":100
}

Update

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"U",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:34:48.192000",
 "pos":"00000000000000004300",
 "before.CUST_CODE":"BILL",
 "before.ORDER_DATE":"1995-12-31:15:00:00",
 "before.PRODUCT_CODE":"CAR",
 "before.ORDER_ID":765,
 "before.PRODUCT_PRICE":15000.00,
 "before.PRODUCT_AMOUNT":3,

Chapter 8
Target

8-512

 "before.TRANSACTION_ID":100,
 "after.CUST_CODE":"BILL",
 "after.ORDER_DATE":"1995-12-31:15:00:00",
 "after.PRODUCT_CODE":"CAR",
 "after.ORDER_ID":765,
 "after.PRODUCT_PRICE":14000.00
}

Delete

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"D",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:34:48.193000",
 "pos":"00000000000000005272",
 "before.CUST_CODE":"DAVE",
 "before.ORDER_DATE":"1993-11-03:07:51:35",
 "before.PRODUCT_CODE":"PLANE",
 "before.ORDER_ID":600,
 "before.PRODUCT_PRICE":135000.00,
 "before.PRODUCT_AMOUNT":2,
 "before.TRANSACTION_ID":200
}

Truncate

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"D",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T10:34:48.193001",
 "pos":"00000000000000005480",
 "before.CUST_CODE":"JANE",
 "before.ORDER_DATE":"1995-11-11:13:52:00",
 "before.PRODUCT_CODE":"PLANE",
 "before.ORDER_ID":256,
 "before.PRODUCT_PRICE":133300.00,
 "before.PRODUCT_AMOUNT":1,
 "before.TRANSACTION_ID":100
}

8.2.31.5.4.4.3 Sample Row Modeled JSON Messages

Insert

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"I",
 "op_ts":"2015-11-05 18:45:36.000000",
 "current_ts":"2016-10-05T11:10:42.294000",
 "pos":"00000000000000002928",
 "CUST_CODE":"WILL",
 "ORDER_DATE":"1994-09-30:15:33:00",

Chapter 8
Target

8-513

 "PRODUCT_CODE":"CAR",
 "ORDER_ID":144,
 "PRODUCT_PRICE":17520.00,
 "PRODUCT_AMOUNT":3,
 "TRANSACTION_ID":100
}

Update

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"U",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T11:10:42.350005",
 "pos":"00000000000000004300",
 "CUST_CODE":"BILL",
 "ORDER_DATE":"1995-12-31:15:00:00",
 "PRODUCT_CODE":"CAR",
 "ORDER_ID":765,
 "PRODUCT_PRICE":14000.00
}

Delete

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"D",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T11:10:42.351002",
 "pos":"00000000000000005272",
 "CUST_CODE":"DAVE",
 "ORDER_DATE":"1993-11-03:07:51:35",
 "PRODUCT_CODE":"PLANE",
 "ORDER_ID":600,
 "PRODUCT_PRICE":135000.00,
 "PRODUCT_AMOUNT":2,
 "TRANSACTION_ID":200
}

Truncate

{
 "table":"QASOURCE.TCUSTORD",
 "op_type":"T",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-10-05T11:10:42.351003",
 "pos":"00000000000000005480",
}

8.2.31.5.4.4.4 Sample Primary Key Output JSON Message

{
 "table":"DDL_OGGSRC.TCUSTMER",
 "op_type":"I",

Chapter 8
Target

8-514

 "op_ts":"2015-10-26 03:00:06.000000",
 "current_ts":"2016-04-05T08:59:23.001000",
 "pos":"00000000000000006605",
 "primary_keys":[
 "CUST_CODE"
],
 "after":{
 "CUST_CODE":"WILL",
 "NAME":"BG SOFTWARE CO.",
 "CITY":"SEATTLE",
 "STATE":"WA"
 }
}

8.2.31.5.4.5 JSON Schemas

By default, JSON schemas are generated for each source table encountered. JSON schemas
are generated on a just in time basis when an operation for that table is first encountered.
Newer schemas are generated when there is a change in the metadata. A JSON schema is
not required to parse a JSON object. However, many JSON parsers can use a JSON schema
to perform a validating parse of a JSON object. Alternatively, you can review the JSON
schemas to understand the layout of output JSON objects. By default, the JSON schemas are
created in the GoldenGate_Home/dirdef directory and are named by the following convention:

FULLY_QUALIFIED_TABLE_NAME.schema.json

The generation of the JSON schemas is suppressible.

The following JSON schema example is for the JSON object listed in Sample Operation
Modeled JSON Messages.

{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"QASOURCE.TCUSTORD",
 "description":"JSON schema for table QASOURCE.TCUSTORD",
 "definitions":{
 "row":{
 "type":"object",
 "properties":{
 "CUST_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "ORDER_DATE":{
 "type":[
 "string",
 "null"
]
 },
 "PRODUCT_CODE":{
 "type":[
 "string",
 "null"
]

Chapter 8
Target

8-515

 },
 "ORDER_ID":{
 "type":[
 "number",
 "null"
]
 },
 "PRODUCT_PRICE":{
 "type":[
 "number",
 "null"
]
 },
 "PRODUCT_AMOUNT":{
 "type":[
 "integer",
 "null"
]
 },
 "TRANSACTION_ID":{
 "type":[
 "number",
 "null"
]
 }
 },
 "additionalProperties":false
 },
 "tokens":{
 "type":"object",
 "description":"Token keys and values are free form key value
pairs.",
 "properties":{
 },
 "additionalProperties":true
 }
 },
 "type":"object",
 "properties":{
 "table":{
 "description":"The fully qualified table name",
 "type":"string"
 },
 "op_type":{
 "description":"The operation type",
 "type":"string"
 },
 "op_ts":{
 "description":"The operation timestamp",
 "type":"string"
 },
 "current_ts":{
 "description":"The current processing timestamp",
 "type":"string"

Chapter 8
Target

8-516

 },
 "pos":{
 "description":"The position of the operation in the data source",
 "type":"string"
 },
 "primary_keys":{
 "description":"Array of the primary key column names.",
 "type":"array",
 "items":{
 "type":"string"
 },
 "minItems":0,
 "uniqueItems":true
 },
 "tokens":{
 "$ref":"#/definitions/tokens"
 },
 "before":{
 "$ref":"#/definitions/row"
 },
 "after":{
 "$ref":"#/definitions/row"
 }
 },
 "required":[
 "table",
 "op_type",
 "op_ts",
 "current_ts",
 "pos"
],
 "additionalProperties":false
}

The following JSON schema example is for the JSON object listed in Sample Flattened
Operation Modeled JSON Messages.

{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"QASOURCE.TCUSTORD",
 "description":"JSON schema for table QASOURCE.TCUSTORD",
 "definitions":{
 "tokens":{
 "type":"object",
 "description":"Token keys and values are free form key value
pairs.",
 "properties":{
 },
 "additionalProperties":true
 }
 },
 "type":"object",
 "properties":{
 "table":{

Chapter 8
Target

8-517

 "description":"The fully qualified table name",
 "type":"string"
 },
 "op_type":{
 "description":"The operation type",
 "type":"string"
 },
 "op_ts":{
 "description":"The operation timestamp",
 "type":"string"
 },
 "current_ts":{
 "description":"The current processing timestamp",
 "type":"string"
 },
 "pos":{
 "description":"The position of the operation in the data source",
 "type":"string"
 },
 "primary_keys":{
 "description":"Array of the primary key column names.",
 "type":"array",
 "items":{
 "type":"string"
 },
 "minItems":0,
 "uniqueItems":true
 },
 "tokens":{
 "$ref":"#/definitions/tokens"
 },
 "before.CUST_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "before.ORDER_DATE":{
 "type":[
 "string",
 "null"
]
 },
 "before.PRODUCT_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "before.ORDER_ID":{
 "type":[
 "number",
 "null"
]

Chapter 8
Target

8-518

 },
 "before.PRODUCT_PRICE":{
 "type":[
 "number",
 "null"
]
 },
 "before.PRODUCT_AMOUNT":{
 "type":[
 "integer",
 "null"
]
 },
 "before.TRANSACTION_ID":{
 "type":[
 "number",
 "null"
]
 },
 "after.CUST_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "after.ORDER_DATE":{
 "type":[
 "string",
 "null"
]
 },
 "after.PRODUCT_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "after.ORDER_ID":{
 "type":[
 "number",
 "null"
]
 },
 "after.PRODUCT_PRICE":{
 "type":[
 "number",
 "null"
]
 },
 "after.PRODUCT_AMOUNT":{
 "type":[
 "integer",
 "null"
]

Chapter 8
Target

8-519

 },
 "after.TRANSACTION_ID":{
 "type":[
 "number",
 "null"
]
 }
 },
 "required":[
 "table",
 "op_type",
 "op_ts",
 "current_ts",
 "pos"
],
 "additionalProperties":false
}

The following JSON schema example is for the JSON object listed in Sample Row
Modeled JSON Messages.

{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"QASOURCE.TCUSTORD",
 "description":"JSON schema for table QASOURCE.TCUSTORD",
 "definitions":{
 "tokens":{
 "type":"object",
 "description":"Token keys and values are free form key value
pairs.",
 "properties":{
 },
 "additionalProperties":true
 }
 },
 "type":"object",
 "properties":{
 "table":{
 "description":"The fully qualified table name",
 "type":"string"
 },
 "op_type":{
 "description":"The operation type",
 "type":"string"
 },
 "op_ts":{
 "description":"The operation timestamp",
 "type":"string"
 },
 "current_ts":{
 "description":"The current processing timestamp",
 "type":"string"
 },
 "pos":{

Chapter 8
Target

8-520

 "description":"The position of the operation in the data source",
 "type":"string"
 },
 "primary_keys":{
 "description":"Array of the primary key column names.",
 "type":"array",
 "items":{
 "type":"string"
 },
 "minItems":0,
 "uniqueItems":true
 },
 "tokens":{
 "$ref":"#/definitions/tokens"
 },
 "CUST_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "ORDER_DATE":{
 "type":[
 "string",
 "null"
]
 },
 "PRODUCT_CODE":{
 "type":[
 "string",
 "null"
]
 },
 "ORDER_ID":{
 "type":[
 "number",
 "null"
]
 },
 "PRODUCT_PRICE":{
 "type":[
 "number",
 "null"
]
 },
 "PRODUCT_AMOUNT":{
 "type":[
 "integer",
 "null"
]
 },
 "TRANSACTION_ID":{
 "type":[
 "number",

Chapter 8
Target

8-521

 "null"
]
 }
 },
 "required":[
 "table",
 "op_type",
 "op_ts",
 "current_ts",
 "pos"
],
 "additionalProperties":false
}

8.2.31.5.4.6 JSON Formatter Configuration Properties

Table 8-47 JSON Formatter Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name.format Optional json |
json_row

None Controls whether the generated JSON
output messages are operation modeled or
row modeled. Set to json for operation
modeled orjson_row for row modeled.

gg.handler.name.format.
insertOpKey

Optional Any string I Indicator to be inserted into the output
record to indicate an insert operation.

gg.handler.name.format.
updateOpKey

Optional Any string U Indicator to be inserted into the output
record to indicate an update operation.

gg.handler.name.format.
deleteOpKey

Optional Any string D Indicator to be inserted into the output
record to indicate a delete operation.

gg.handler.name.format.
truncateOpKey

Optional Any string T Indicator to be inserted into the output
record to indicate a truncate operation.

gg.handler.name.format.
prettyPrint

Optional true | false false Controls the output format of the JSON
data. True formats the data with white space
for easy reading. False generates more
compact output that is difficult to read..

gg.handler.name.format.
jsonDelimiter

Optional Any string "" (no value) Inserts a delimiter between generated
JSONs so that they can be more easily
parsed in a continuous stream of data.
Configuration value supports CDATA[]
wrapping.

gg.handler.name.format.
generateSchema

Optional true | false true Controls the generation of JSON schemas
for the generated JSON documents. JSON
schemas are generated on a table-by-table
basis. A JSON schema is not required to
parse a JSON document. However, a JSON
schemahelp indicate what the JSON
documents look like and can be used for a
validating JSON parse.

gg.handler.name.format.
schemaDirectory

Optional Any legal,
existing file
system path

./dirdef Controls the output location of generated
JSON schemas.

Chapter 8
Target

8-522

Table 8-47 (Cont.) JSON Formatter Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name.format.
treatAllColumnsAsString
s

Optional true |
false

false Controls the output typing of generated
JSON documents. When false, the
formatter attempts to map Oracle
GoldenGate types to the corresponding
JSON type. When true, all data is treated
as strings in the generated JSONs and
JSON schemas.

gg.handler.name.format.
encoding

Optional Any legal
encoding
name or alias
supported by
Java.

UTF-8 (the
JSON default)

Controls the output encoding of generated
JSON schemas and documents.

gg.handler.name.format.
versionSchemas

Optional true |
false

false Controls the version of created schemas.
Schema versioning creates a schema with a
timestamp in the schema directory on the
local file system every time a new schema
is created. True enables schema
versioning. False disables schema
versioning.

gg.handler.name.format.
iso8601Format

Optional true | false true Controls the format of the current
timestamp. The default is the ISO 8601
format. A setting of false removes the “T”
between the date and time in the current
timestamp, which outputs a single space
(“ “) instead.

gg.handler.name.format.
flatten

Optional true | false false Controls sending flattened JSON formatted
data to the target entity. Must be set to true
for the flatten Delimiter property to work.

This property is applicable only to Operation
Formatted JSON
(gg.handler.name.format=json).

gg.handler.name.format.
flattenDelimiter

Optional Any legal
character or
character
string for a
JSON field
name.

. Controls the delimiter for concatenated
JSON element names. This property
supports CDATA[] wrapping to preserve
whitespace. It is only relevant when
gg.handler.name.format.flatten is
set to true.

gg.handler.name.format.
beforeObjectName

Optional Any legal
character or
character
string for a
JSON field
name.

Any legal
JSON
attribute
name.

Allows you to set whether the JSON
element-before, that contains the change
column values, can be renamed.

This property is only applicable to Operation
Formatted JSON
(gg.handler.name.format=json).

gg.handler.name.format.
afterObjectName

Optional Any legal
character or
character
string for a
JSON field
name.

Any legal
JSON
attribute
name.

Allows you to set whether the JSON
element, that contains the after-change
column values, can be renamed.

This property is only applicable to Operation
Formatted JSON
(gg.handler.name.format=json).

Chapter 8
Target

8-523

Table 8-47 (Cont.) JSON Formatter Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name.format.
pkUpdateHandling

Optional abend |
update |
delete-
insert

abend Specifies how the formatter handles update
operations that change a primary key.
Primary key operations can be problematic
for the JSON formatter and you need to
speacially consider it. You can only use this
property in conjunction with the row
modeled JSON output messages.

This property is only applicable to Row
Formatted JSON
(gg.handler.name.format=json_row).

• abend : indicates that the process
terminates.

• update: the process handles the
operation as a normal update.

• delete or insert: the process
handles the operation as a delete and
an insert. Full supplemental logging
must be enabled. Without full before
and after row images, the insert data
will be incomplete.

gg.handler.name.format.
omitNullValues

Optional true |
false

false Set to true to omit fields that have null
values from being included in the generated
JSON output.

gg.handler.name.format.
omitNullValuesSpecialUp
dateHandling

Optional true |
false

false Only applicable if
gg.handler.name.format.omitNullVal
ues=true. When set to true, it provides
special handling to propagate the null value
on the update after image if the before
image data is missing or has a value.

gg.handler.name.format.
enableJsonArrayOutput

Optional true |
false

false Set to true to nest JSON documents
representing the operation data into a JSON
array. This works for file output and Kafka
messages in transaction mode.

Chapter 8
Target

8-524

Table 8-47 (Cont.) JSON Formatter Configuration Properties

Properties Required/
Optional

Legal Values Default Explanation

gg.handler.name.format.
metaColumnsTemplate

Optional See
Metacolumn
Keywords

None The current meta column information can
be configured in a simple manner and
removes the explicit need to use:

insertOpKey | updateOpKey |
deleteOpKey | truncateOpKey |
includeTableName |
includeOpTimestamp | includeOpType
| includePosition |
includeCurrentTimestamp,
useIso8601Format
It is a comma-delimited string consisting of
one or more templated values that
represent the template.

For more information about the Metacolumn
keywords, see Metacolumn Keywords.

This is an example that would produce a list
of metacolumns: ${optype}, $
{token.ROWID}, ${sys.username}, $
{currenttimestamp}

8.2.31.5.4.7 Review a Sample Configuration

The following is a sample configuration for the JSON Formatter in the Java Adapter
configuration file:

gg.handler.hdfs.format=json
gg.handler.hdfs.format.insertOpKey=I
gg.handler.hdfs.format.updateOpKey=U
gg.handler.hdfs.format.deleteOpKey=D
gg.handler.hdfs.format.truncateOpKey=T
gg.handler.hdfs.format.prettyPrint=false
gg.handler.hdfs.format.jsonDelimiter=CDATA[]
gg.handler.hdfs.format.generateSchema=true
gg.handler.hdfs.format.schemaDirectory=dirdef
gg.handler.hdfs.format.treatAllColumnsAsStrings=false

8.2.31.5.4.8 Metadata Change Events

Metadata change events are handled at runtime. When metadata is changed in a table, the
JSON schema is regenerated the next time an operation for the table is encountered. The
content of created JSON messages changes to reflect the metadata change. For example, if
an additional column is added, the new column is included in created JSON messages after
the metadata change event.

8.2.31.5.4.9 JSON Primary Key Updates

When the JSON formatter is configured to model operation data, primary key updates require
no special treatment and are treated like any other update. The before and after values reflect
the change in the primary key.

When the JSON formatter is configured to model row data, primary key updates must be
specially handled. The default behavior is to abend. However, by using

Chapter 8
Target

8-525

thegg.handler.name.format.pkUpdateHandling configuration property, you can configure the
JSON formatter to model row data to treat primary key updates as either a regular update or as
delete and then insert operations. When you configure the formatter to handle primary key
updates as delete and insert operations, Oracle recommends that you configure your
replication stream to contain the complete before-image and after-image data for updates.
Otherwise, the generated insert operation for a primary key update will be missing data for
fields that did not change.

8.2.31.5.4.10 Integrating Oracle Stream Analytics

You can integrate Oracle GoldenGate for Big Data with Oracle Stream Analytics (OSA) by
sending operation-modeled JSON messages to the Kafka Handler. This works only when the
JSON formatter is configured to output operation-modeled JSON messages.

Because OSA requires flattened JSON objects, a new feature in the JSON formatter generates
flattened JSONs. To use this feature, set the gg.handler.name.format.flatten=false to
true. (The default setting is false). The following is an example of a flattened JSON file:

{
 "table":"QASOURCE.TCUSTMER",
 "op_type":"U",
 "op_ts":"2015-11-05 18:45:39.000000",
 "current_ts":"2016-06-22T13:38:45.335001",
 "pos":"00000000000000005100",
 "before.CUST_CODE":"ANN",
 "before.NAME":"ANN'S BOATS",
 "before.CITY":"SEATTLE",
 "before.STATE":"WA",
 "after.CUST_CODE":"ANN",
 "after.CITY":"NEW YORK",
 "after.STATE":"NY"
}

8.2.31.5.4.11 Mongo Document Formatting Details

MongoDB Capture processed documents in trail will have two columns:

• Column 0 as "_id", which identifies a document in a collection.

• Column 1 as "payload", which holds all the columns (fields of a collection).

JSON Mongo Document Formatter formats the MongoDB Capture processed documents into
a JSON format with only payload information.

Example

The document from trail received is

{"after":{"id":"{ \"_id\" :

{ \"$oid\" : \"65b9f02b80f1c27eb4b498e1\" }

}", "payload":"{\"_id\":

{\"$oid\": \"65b9f02b80f1c27eb4b498e1\"}

, \"CUST_CODE\":

Chapter 8
Target

8-526

\"test2\", \"name\": \"hello world\", \"cost\": {\"$numberDouble\":
\"3000.0\"}}"}}

Will be written as:

{"data":"{\"_id\":

{\"$oid\": \"65b9f02b80f1c27eb4b498e1\"}

, \"CUST_CODE\": \"test2\", \"name\": \"hello world\", \"cost\":
{\"$numberDouble\": \"3000.0\"}}"}

where id field is removed and column name payload is removed.
JSON MongoDocument Formatter can be configured to write the data either in JSON EXTENDED
format or JSON RELAXED format with payload value.

Required Dependencies

Oracle GoldenGate requires that you use the 4.11.1 bson library with JSON Mongo Document
Formatter. You can download this driver from: https://mvnrepository.com/artifact/org.mongodb/
bson/4.11.1

Maven artifacts for bson-4.11.1 as follows:

<dependency>

 <groupId>org.mongodb</groupId>

 <artifactId>bson</artifactId>

 <version>4.11.1</version>

 </dependency>

You must include the path of the bson library in the gg.classpath property.

Example:

gg.classpath=./bson-4.11.1.jar
JSON MongoDocument Formatter Configuration Properties

Properties Required/ Optional Legal Values Default Explanation

gg.handler.name.fo
rmat

Optional mongodocument None Formats the
MongoDB Capture
processed
documents into a
JSON format with
only payload
information

gg.handler.name.fo
rmat.jsonMode

Optional RELAXED/
EXTENDED

RELAXED MongoDB
Document will be
represented either
in Extended or
Relaxed format.

Chapter 8
Target

8-527

https://mvnrepository.com/artifact/org.mongodb/bson/4.11.1
https://mvnrepository.com/artifact/org.mongodb/bson/4.11.1

gg.handler.name.fo
rmat.insertOpKey

Optional Any string I Indicator to be
inserted into the
output record to
indicate an insert
operation.

gg.handler.name.fo
rmat.updateOpKey

Optional Any string U Indicator to be
inserted into the
output record to
indicate an update
operation.

gg.handler.name.fo
rmat.deleteOpKey

Optional Any string D Indicator to be
inserted into the
output record to
indicate a delete
operation.

gg.handler.name.fo
rmat.truncateOpKe
y

Optional Any string T Indicator to be
inserted into the
output record to
indicate a truncate
operation.

gg.handler.name.fo
rmat.metaColumns
Template

Optional See Metacolumn
Keywords

None The current meta
column information
can be configured
in a simple manner
and removes the
explicit need to
use: insertOpKey |
updateOpKey |
deleteOpKey |
truncateOpKey |
includeTableName |
includeOpTimesta
mp |
includeOpType |
includePosition |
includeCurrentTime
stamp,
useIso8601FormatI
t is a comma-
delimited string
consisting of one or
more templated
values that
represent the
template. For more
information about
the Metacolumn
keywords, see
Metacolumn
Keywords. This is
an example that
would produce a
list of
metacolumns: $
{optype}, $
{token.ROWID}, $
{sys.username}, $
{currenttimestamp}

Chapter 8
Target

8-528

https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/gadbd/additional-details.html#GUID-7231D03B-5470-4E46-9852-C61273D7EEEA
https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/gadbd/additional-details.html#GUID-7231D03B-5470-4E46-9852-C61273D7EEEA

gg.handler.name.fo
rmat.encoding

Optional Any legal encoding
name or alias
supported by Java.

UTF-8 (the JSON
default)

Controls the output
encoding of
generated JSON
schemas and
documents.

Review a Sample Configuration
The following is a sample configuration for the JSON Mongo Document Formatter in the Java
Adapter configuration file:

gg.handler.kafka.format=mongodocument

gg.handler.kafka.format.insertOpKey=I

gg.handler.kafka.format.updateOpKey=U

gg.handler.kafka.format.deleteOpKey=D

gg.handler.kafka.format.truncateOpKey=T

gg.handler.kafka.format.metaColumnsTemplate=${optype},${timestampmicro},$
{currenttimestampmicro},${timestamp}

8.2.31.5.5 Using the Length Delimited Value Formatter
The Length Delimited Value (LDV) Formatter is a row-based formatter. It formats database
operations from the source trail file into a length delimited value output. Each insert, update,
delete, or truncate operation from the source trail is formatted into an individual length
delimited message.

With the length delimited, there are no field delimiters. The fields are variable in size based on
the data.

By default, the length delimited maps these column value states into the length delimited value
output. Column values for an operation from the source trail file can have one of three states:

• Column has a value —The column value is output with the prefix indicator P.

• Column value is NULL —The default output value is N. The output for the case of a NULL
column value is configurable.

• Column value is missing - The default output value is M. The output for the case of a
missing column value is configurable.

• Formatting Message Details

• Sample Formatted Messages

• LDV Formatter Configuration Properties

• Additional Considerations

8.2.31.5.5.1 Formatting Message Details

The default format for output of data is the following:

First is the row Length followed by metadata:
<ROW LENGTH><PRESENT INDICATOR><FIELD LENGTH><OPERATION TYPE><PRESENT INDICATOR><FIELD
LENGTH><FULLY QUALIFIED TABLE NAME><PRESENT INDICATOR><FIELD LENGTH><OPERATION

Chapter 8
Target

8-529

TIMESTAMP><PRESENT INDICATOR><FIELD LENGTH><CURRENT TIMESTAMP><PRESENT INDICATOR><FIELD
LENGTH><TRAIL POSITION><PRESENT INDICATOR><FIELD LENGTH><TOKENS>

Or

<ROW LENGTH><FIELD LENGTH><FULLY QUALIFIED TABLE NAME><FIELD LENGTH><OPERATION
TIMESTAMP><FIELD LENGTH><CURRENT TIMESTAMP><FIELD LENGTH><TRAIL POSITION><FIELD
LENGTH><TOKENS>

Next is the row data:
<PRESENT INDICATOR><FIELD LENGTH><COLUMN 1 VALUE><PRESENT INDICATOR><FIELD
LENGTH><COLUMN N VALUE>

8.2.31.5.5.2 Sample Formatted Messages

Insert Message:
0133P01IP161446749136000000P161529311765024000P262015-11-05
18:45:36.000000P04WILLP191994-09-30 15:33:00P03CARP03144P0817520.00P013P03100

Update Message
0133P01UP161446749139000000P161529311765035000P262015-11-05
18:45:39.000000P04BILLP191995-12-31 15:00:00P03CARP03765P0814000.00P013P03100

Delete Message
0136P01DP161446749139000000P161529311765038000P262015-11-05
18:45:39.000000P04DAVEP191993-11-03
07:51:35P05PLANEP03600P09135000.00P012P03200

8.2.31.5.5.3 LDV Formatter Configuration Properties

Table 8-48 LDV Formatter Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name.
format.binaryLen
gthMode

Optional true |
false

false The output can be controlled to display the field
or record length in either binary or ASCII format.
If set to true, the record or field length is
represented in binary format else in ASCII.

gg.handler.name.
format.recordLen
gth

Optional 4 | 8 true Set to true, the record length is represented
using either a 4 or 8–byte big Endian integer. Set
to false, the string representation of the record
length with padded value with configured length
of 4 or 8 is used.

gg.handler.name.
format.fieldLeng
th

Optional 2 | 4 true Set to true, the record length is represented
using either a 2 or 4-byte big Endian integer. Set
to false, the string representation of the record
length with padded value with configured length
of 2 or 4 is used.

gg.handler.name.
format.format

Optional true |
false

true Use to configure the Pindicator with MetaColumn.
Set to false, enables the indicator P before the
MetaColumns. If set to true, disables the
indicator.

Chapter 8
Target

8-530

Table 8-48 (Cont.) LDV Formatter Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name.
format.presentVa
lue

Optional Any string P Use to configure what is included in the output
when a column value is present. This value
supports CDATA[] wrapping.

gg.handler.name.
format.missingVa
lue

Optional Any string M Use to configure what is included in the output
when a missing value is present. This value
supports CDATA[] wrapping.

gg.handler.name.
format.nullValue

Optional Any string N Use to configure what is included in the output
when a NULL value is present. This value
supports CDATA[] wrapping.

gg.handler.name.
format.metaColum
nsTemplate

Optional See
Metacolum
n
Keywords.

None Use to configure the current meta column
information in a simple manner and removes the
explicit need of insertOpKey, updateOpKey,
deleteOpKey, truncateOpKey,
includeTableName, includeOpTimestamp,
includeOpType, includePosition,
includeCurrentTimestamp and
useIso8601Format.

A comma-delimited string consisting of one or
more templated values represents the template.
This example produces a list of meta columns:

${optype}, ${token.ROWID},$
{sys.username},${currenttimestamp}
See Metacolumn Keywords.

gg.handler.name.
format.pkUpdateH
andling

Optional abend |
update |
delete-
insert

abend Specifies how the formatter handles update
operations that change a primary key. Primary
key operations can be problematic for the text
formatter and require special consideration by
you.

• abend : indicates the process will abend

• update : indicates the process will treat this
as a normal update

• delete-insert: indicates the process
handles this as a delete and an insert. Full
supplemental logging must be enabled for
this to work. Without full before and after row
images, the insert data will be incomplete.

Chapter 8
Target

8-531

Table 8-48 (Cont.) LDV Formatter Configuration Properties

Properties Require
d/
Optional

Legal
Values

Defaul
t

Explanation

gg.handler.name.
format.encoding

Optional Any
encoding
name or
alias
supported
by Java.

The
native
system
encodi
ng of
the
machin
e
hosting
the
Oracle
Golden
Gate
proces
s.

Use to set the output encoding for character data
and columns.

For more information about the Metacolumn keywords, see Metacolumn Keywords.
This is an example that would produce a list of metacolumns:

${optype}, ${token.ROWID}, ${sys.username}, ${currenttimestamp}

Review a Sample Configuration

#The LDV Handler
gg.handler.filewriter.format=binary
gg.handler.filewriter.format.binaryLengthMode=false
gg.handler.filewriter.format.recordLength=4
gg.handler.filewriter.format.fieldLength=2
gg.handler.filewriter.format.legacyFormat=false
gg.handler.filewriter.format.presentValue=CDATA[P]
gg.handler.filewriter.format.missingValue=CDATA[M]
gg.handler.filewriter.format.nullValue=CDATA[N]
gg.handler.filewriter.format.metaColumnsTemplate=${optype},${timestampmicro},$
{currenttimestampmicro},${timestamp}
gg.handler.filewriter.format.pkUpdateHandling=abend

8.2.31.5.5.4 Additional Considerations

Big Data applications differ from RDBMSs in how data is stored. Update and delete operations
in an RDBMS result in a change to the existing data. Data is not changed in Big Data
applications, it is simply appended to existing data. The current state of a given row becomes a
consolidation of all of the existing operations for that row in the HDFS system.

Primary Key Updates

Primary key update operations require special consideration and planning for Big Data
integrations. Primary key updates are update operations that modify one or more of the
primary keys for the given row from the source database. Since data is simply appended in Big
Data applications, a primary key update operation looks more like a new insert than an update
without any special handling. The Length Delimited Value Formatter provides specialized
handling for primary keys that is configurable to you. These are the configurable behaviors:

Chapter 8
Target

8-532

Table 8-49 Primary Key Update Behaviors

Value Description

Abend The default behavior is that the length delimited value formatter will abend in the case of a
primary key update.

Update With this configuration the primary key update will be treated just like any other update
operation. This configuration alternative should only be selected if you can guarantee that
the primary key that is being changed is not being used as the selection criteria when
selecting row data from a Big Data system.

Delete-
Insert

Using this configuration the primary key update is treated as a special case of a delete
using the before image data and an insert using the after image data. This configuration
may more accurately model the effect of a primary key update in a Big Data application.
However, if this configuration is selected it is important to have full supplemental logging
enabled on replication at the source database. Without full supplemental logging, the
delete operation will be correct, but the insert operation do not contain all of the data for
all of the columns for a full representation of the row data in the Big Data application.

Consolidating Data

Big Data applications simply append data to the underlying storage. Typically, analytic tools
spawn map reduce programs that traverse the data files and consolidate all the operations for
a given row into a single output. It is important to have an indicator of the order of operations.
The Length Delimited Value Formatter provides a number of metadata fields to fulfill this need.
The operation timestamp may be sufficient to fulfill this requirement. However, two update
operations may have the same operation timestamp especially if they share a common
transaction. The trail position can provide a tie breaking field on the operation timestamp.
Lastly, the current timestamp may provide the best indicator of order of operations in Big Data.

8.2.31.5.6 Using the XML Formatter
The XML Formatter formats before-image and after-image data from the source trail file into an
XML document representation of the operation data. The format of the XML document is
effectively the same as the XML format in the previous releases of the Oracle GoldenGate
Java Adapter.

• Message Formatting Details

• Sample XML Messages

• XML Schema

• XML Formatter Configuration Properties

• Review a Sample Configuration

• Metadata Change Events

• Primary Key Updates

8.2.31.5.6.1 Message Formatting Details

The XML formatted messages contain the following information:

Table 8-50 XML formatting details

Value Description

table The fully qualified table name.

Chapter 8
Target

8-533

Table 8-50 (Cont.) XML formatting details

Value Description

type The operation type.

current_ts The current timestamp is the time when the formatter processed the
current operation record. This timestamp follows the ISO-8601 format
and includes micro second precision. Replaying the trail file does not
result in the same timestamp for the same operation.

pos The position from the source trail file.

numCols The total number of columns in the source table.

col The col element is a repeating element that contains the before and
after images of operation data.

tokens The tokens element contains the token values from the source trail
file.

8.2.31.5.6.2 Sample XML Messages

The following sections provide sample XML messages.

• Sample Insert Message

• Sample Update Message

• Sample Delete Message

• Sample Truncate Message

8.2.31.5.6.2.1 Sample Insert Message

<?xml version='1.0' encoding='UTF-8'?>
<operation table='GG.TCUSTORD' type='I' ts='2013-06-02 22:14:36.000000'
current_ts='2015-10-06T12:21:50.100001' pos='00000000000000001444' numCols='7'>
 <col name='CUST_CODE' index='0'>
 <before missing='true'/>
 <after><![CDATA[WILL]]></after>
 </col>
 <col name='ORDER_DATE' index='1'>
 <before missing='true'/>
 <after><![CDATA[1994-09-30:15:33:00]]></after>
 </col>
 <col name='PRODUCT_CODE' index='2'>
 <before missing='true'/>
 <after><![CDATA[CAR]]></after>
 </col>
 <col name='ORDER_ID' index='3'>
 <before missing='true'/>
 <after><![CDATA[144]]></after>
 </col>
 <col name='PRODUCT_PRICE' index='4'>
 <before missing='true'/>
 <after><![CDATA[17520.00]]></after>
 </col>
 <col name='PRODUCT_AMOUNT' index='5'>
 <before missing='true'/>
 <after><![CDATA[3]]></after>
 </col>
 <col name='TRANSACTION_ID' index='6'>
 <before missing='true'/>

Chapter 8
Target

8-534

 <after><![CDATA[100]]></after>
 </col>
 <tokens>
 <token>
 <Name><![CDATA[R]]></Name>
 <Value><![CDATA[AADPkvAAEAAEqL2AAA]]></Value>
 </token>
 </tokens>
</operation>

8.2.31.5.6.2.2 Sample Update Message

<?xml version='1.0' encoding='UTF-8'?>
<operation table='GG.TCUSTORD' type='U' ts='2013-06-02 22:14:41.000000'
current_ts='2015-10-06T12:21:50.413000' pos='00000000000000002891' numCols='7'>
 <col name='CUST_CODE' index='0'>
 <before><![CDATA[BILL]]></before>
 <after><![CDATA[BILL]]></after>
 </col>
 <col name='ORDER_DATE' index='1'>
 <before><![CDATA[1995-12-31:15:00:00]]></before>
 <after><![CDATA[1995-12-31:15:00:00]]></after>
 </col>
 <col name='PRODUCT_CODE' index='2'>
 <before><![CDATA[CAR]]></before>
 <after><![CDATA[CAR]]></after>
 </col>
 <col name='ORDER_ID' index='3'>
 <before><![CDATA[765]]></before>
 <after><![CDATA[765]]></after>
 </col>
 <col name='PRODUCT_PRICE' index='4'>
 <before><![CDATA[15000.00]]></before>
 <after><![CDATA[14000.00]]></after>
 </col>
 <col name='PRODUCT_AMOUNT' index='5'>
 <before><![CDATA[3]]></before>
 <after><![CDATA[3]]></after>
 </col>
 <col name='TRANSACTION_ID' index='6'>
 <before><![CDATA[100]]></before>
 <after><![CDATA[100]]></after>
 </col>
 <tokens>
 <token>
 <Name><![CDATA[R]]></Name>
 <Value><![CDATA[AADPkvAAEAAEqLzAAA]]></Value>
 </token>
 </tokens>
</operation>

8.2.31.5.6.2.3 Sample Delete Message

<?xml version='1.0' encoding='UTF-8'?>
<operation table='GG.TCUSTORD' type='D' ts='2013-06-02 22:14:41.000000'
current_ts='2015-10-06T12:21:50.415000' pos='00000000000000004338' numCols='7'>
 <col name='CUST_CODE' index='0'>
 <before><![CDATA[DAVE]]></before>
 <after missing='true'/>
 </col>
 <col name='ORDER_DATE' index='1'>
 <before><![CDATA[1993-11-03:07:51:35]]></before>
 <after missing='true'/>

Chapter 8
Target

8-535

 </col>
 <col name='PRODUCT_CODE' index='2'>
 <before><![CDATA[PLANE]]></before>
 <after missing='true'/>
 </col>
 <col name='ORDER_ID' index='3'>
 <before><![CDATA[600]]></before>
 <after missing='true'/>
 </col>
 <col name='PRODUCT_PRICE' index='4'>
 <missing/>
 </col>
 <col name='PRODUCT_AMOUNT' index='5'>
 <missing/>
 </col>
 <col name='TRANSACTION_ID' index='6'>
 <missing/>
 </col>
 <tokens>
 <token>
 <Name><![CDATA[L]]></Name>
 <Value><![CDATA[206080450]]></Value>
 </token>
 <token>
 <Name><![CDATA[6]]></Name>
 <Value><![CDATA[9.0.80330]]></Value>
 </token>
 <token>
 <Name><![CDATA[R]]></Name>
 <Value><![CDATA[AADPkvAAEAAEqLzAAC]]></Value>
 </token>
 </tokens>
</operation>

8.2.31.5.6.2.4 Sample Truncate Message

<?xml version='1.0' encoding='UTF-8'?>
<operation table='GG.TCUSTORD' type='T' ts='2013-06-02 22:14:41.000000'
current_ts='2015-10-06T12:21:50.415001' pos='00000000000000004515' numCols='7'>
 <col name='CUST_CODE' index='0'>
 <missing/>
 </col>
 <col name='ORDER_DATE' index='1'>
 <missing/>
 </col>
 <col name='PRODUCT_CODE' index='2'>
 <missing/>
 </col>
 <col name='ORDER_ID' index='3'>
 <missing/>
 </col>
 <col name='PRODUCT_PRICE' index='4'>
 <missing/>
 </col>
 <col name='PRODUCT_AMOUNT' index='5'>
 <missing/>
 </col>
 <col name='TRANSACTION_ID' index='6'>
 <missing/>
 </col>
 <tokens>
 <token>
 <Name><![CDATA[R]]></Name>

Chapter 8
Target

8-536

 <Value><![CDATA[AADPkvAAEAAEqL2AAB]]></Value>
 </token>
 </tokens>
</operation>

8.2.31.5.6.3 XML Schema

The XML Formatter does not generate an XML schema (XSD). The XSD applies to all
messages generated by the XML Formatter. The following XSD defines the structure of the
XML documents that are generated by the XML Formatter.

<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="operation">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="col" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="before" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute type="xs:string" name="missing"
use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="after" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute type="xs:string" name="missing"
use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element type="xs:string" name="missing" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute type="xs:string" name="name"/>
 <xs:attribute type="xs:short" name="index"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="tokens" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="token" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="Name"/>
 <xs:element type="xs:string" name="Value"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute type="xs:string" name="table"/>
 <xs:attribute type="xs:string" name="type"/>

Chapter 8
Target

8-537

 <xs:attribute type="xs:string" name="ts"/>
 <xs:attribute type="xs:dateTime" name="current_ts"/>
 <xs:attribute type="xs:long" name="pos"/>
 <xs:attribute type="xs:short" name="numCols"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

8.2.31.5.6.4 XML Formatter Configuration Properties

Table 8-51 XML Formatter Configuration Properties

Properties Optional
Y/N

Legal Values Default Explanation

gg.handler.name
.format.insertO
pKey

Optional Any string I Indicator to be inserted into the
output record to indicate an insert
operation.

gg.handler.name
.format.updateO
pKey

Optional Any string U Indicator to be inserted into the
output record to indicate an update
operation.

gg.handler.name
.format.deleteO
pKey

Optional Any string D Indicator to be inserted into the
output record to indicate a delete
operation.

gg.handler.name
.format.truncat
eOpKey

Optional Any string T Indicator to be inserted into the
output record to indicate a truncate
operation.

gg.handler.name
.format.encodin
g

Optional Any legal
encoding
name or alias
supported by
Java.

UTF-8 (the XML
default)

The output encoding of generated
XML documents.

gg.handler.name
.format.include
Prolog

Optional true | false false Determines whether an XML prolog
is included in generated XML
documents. An XML prolog is
optional for well-formed XML. An
XML prolog resembles the
following:<?xml version='1.0'
encoding='UTF-8'?>

gg.handler.name
.format.iso8601
Format

Optional true | false true Controls the format of the current
timestamp in the XML message. The
default adds a T between the date
and time. Set to false to suppress
the T between the date and time and
instead include blank space.

gg.handler.name
.format.missing

Optional true | false true Set to true, the XML output
displays the missing column value of
the before and after image.

gg.handler.name
.format.missing
After

Optional true | false true Set to true, the XML output
displays the missing column value of
the after image.

gg.handler.name
.format.missing
Before

Optional true | false true Set to true, the XML output
displays the missing column value of
the before image.

Chapter 8
Target

8-538

Table 8-51 (Cont.) XML Formatter Configuration Properties

Properties Optional
Y/N

Legal Values Default Explanation

gg.handler.name
.format.metaCol
umnsTemplate

Optional See
Metacolumn
Keywords.

None The current meta column information
can be configured in a simple
manner and removes the explicit
need to use:

insertOpKey | updateOpKey |
deleteOpKey | truncateOpKey
| includeTableName |
includeOpTimestamp |
includeOpType |
includePosition |
includeCurrentTimestamp,
useIso8601Format
It is a comma-delimited string
consisting of one or more templated
values that represent the template.
For more information about the
Metacolumn keywords, see
Metacolumn Keywords.

8.2.31.5.6.5 Review a Sample Configuration

The following is a sample configuration for the XML Formatter in the Java Adapter properties
file:

gg.handler.hdfs.format=xml
gg.handler.hdfs.format.insertOpKey=I
gg.handler.hdfs.format.updateOpKey=U
gg.handler.hdfs.format.deleteOpKey=D
gg.handler.hdfs.format.truncateOpKey=T
gg.handler.hdfs.format.encoding=ISO-8859-1
gg.handler.hdfs.format.includeProlog=false

8.2.31.5.6.6 Metadata Change Events

The XML Formatter seamlessly handles metadata change events. A metadata change event
does not result in a change to the XML schema. The XML schema is designed to be generic so
that the same schema represents the data of any operation from any table.

If the replicated database and upstream Oracle GoldenGate replication process can propagate
metadata change events, the XML Formatter can take action when metadata changes.
Changes in the metadata are reflected in messages after the change. For example, when a
column is added, the new column data appears in XML messages for the table.

8.2.31.5.6.7 Primary Key Updates

Updates to a primary key require no special handling by the XML formatter. The XML formatter
creates messages that model database operations. For update operations, this includes before
and after images of column values. Primary key changes are represented in this format as a
change to a column value just like a change to any other column value.

Chapter 8
Target

8-539

8.2.31.6 Stage and Merge Data Warehouse Replication
Data warehouse targets typically support Massively Parallel Processing (MPP). The cost of a
single Data Manipulation Language (DML) operation is comparable to the cost of execution of
batch DMLs.

Therefore, for better throughput the change data from the Oracle GoldenGate trails can be
staged in micro batches at a temporary staging location, and the staged data records are
merged into the data warehouse target table using the respective data warehouse’s merge
SQL statement. This section outlines an approach to replicate change data records from
source databases to target data warehouses using stage and merge. The solution uses
Command Event handler to invoke custom bash-shell scripts.

This chapter contains examples of what you can do with command event handler feature.

• Steps for Stage and Merge

• Hive Stage and Merge
Hive is a data warehouse infrastructure built on top of Hadoop. It provides tools to enable
easy data ETL, a mechanism to put structures on the data, and the capability for querying
and analysis of large data sets stored in Hadoop files.

8.2.31.6.1 Steps for Stage and Merge
• Stage

In this step the change data records in the Oracle GoldenGate trail files are pushed into a
staging location. The staging location is typically a cloud object store such as OCI, AWS
S3, Azure Data Lake, or Google Cloud Storage.

• Merge
In this step the change data files in the object store are viewed as an external table defined
in the data warehouse. The data in the external staging table is merged onto the target
table.

• Configuration of Handlers
File Writer(FW) handler needs to be configured to generate local staging files that contain
change data from the GoldenGate trail files.

• File Writer Handler
File Writer (FW) handler is typically configured to generate files partitioned by table using
the configuration gg.handler.{name}.partitionByTable=true.

• Operation Aggregation
Operation aggregation is the process of aggregating (merging/compressing) multiple
operations on the same row into a single output operation based on a threshold.

• Object Store Event handler
The File Writer handler needs to be chained with an object store Event handler. Oracle
GoldenGate for BigData supports uploading files to most cloud object stores such as OCI,
AWS S3, and Azure Data Lake.

• JDBC Metadata Provider
If the data warehouse supports JDBC connection, then the JDBC metadata provider needs
to be enabled.

• Command Event handler Merge Script
Command Event handler is configured to invoke a bash-shell script. Oracle provides a
bash-shell script that can execute the SQL statements so that the change data in the
staging files are merged into the target tables.

Chapter 8
Target

8-540

• Stage and Merge Sample Configuration
A working configuration for the respective data warehouse is available under the directory
AdapterExamples/big-data/data-warehouse-utils/<target>/.

• Variables in the Merge Script
Typically, variables appear at the beginning of the Oracle provided script. There are lines
starting with #TODO: that document the changes required for variables in the script.

• SQL Statements in the Merge Script
The SQL statements in the shell script needs to be customized. There are lines starting
with #TODO: that document the changes required for SQL statements.

• Merge Script Functions

• Prerequisites

• Limitations

8.2.31.6.1.1 Stage

In this step the change data records in the Oracle GoldenGate trail files are pushed into a
staging location. The staging location is typically a cloud object store such as OCI, AWS S3,
Azure Data Lake, or Google Cloud Storage.

This can be achieved using File Writer handler and one of the Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) for object store Event handlers.

8.2.31.6.1.2 Merge

In this step the change data files in the object store are viewed as an external table defined in
the data warehouse. The data in the external staging table is merged onto the target table.

Merge SQL uses the external table as the staging table. The merge is a batch operation
leading to better throughput.

8.2.31.6.1.3 Configuration of Handlers

File Writer(FW) handler needs to be configured to generate local staging files that contain
change data from the GoldenGate trail files.

The FW handler needs to be chained to an object store Event handler that can upload the
staging files into a staging location.

The staging location is typically a cloud object store, such as AWS S3 or Azure Data Lake.

The output of the object store event handler is chained with the Command Event handler that
can invoke custom scripts to execute merge SQL statements on the target data warehouse.

8.2.31.6.1.4 File Writer Handler

File Writer (FW) handler is typically configured to generate files partitioned by table using the
configuration gg.handler.{name}.partitionByTable=true.

In most cases FW handler is configured to use the Avro Object Container Format (OCF)
formatter.

The output file format could change based on the specific data warehouse target.

Chapter 8
Target

8-541

8.2.31.6.1.5 Operation Aggregation

Operation aggregation is the process of aggregating (merging/compressing) multiple
operations on the same row into a single output operation based on a threshold.

Operation Aggregation needs to be enabled for stage and merge replication using the
configuration gg.aggregate.operations=true.

8.2.31.6.1.6 Object Store Event handler

The File Writer handler needs to be chained with an object store Event handler. Oracle
GoldenGate for BigData supports uploading files to most cloud object stores such as OCI,
AWS S3, and Azure Data Lake.

8.2.31.6.1.7 JDBC Metadata Provider

If the data warehouse supports JDBC connection, then the JDBC metadata provider needs to
be enabled.

8.2.31.6.1.8 Command Event handler Merge Script

Command Event handler is configured to invoke a bash-shell script. Oracle provides a bash-
shell script that can execute the SQL statements so that the change data in the staging files
are merged into the target tables.

The shell script needs to be customized as per the required configuration before starting the
replicat process.

8.2.31.6.1.9 Stage and Merge Sample Configuration

A working configuration for the respective data warehouse is available under the directory
AdapterExamples/big-data/data-warehouse-utils/<target>/.

This directory contains the following:

• replicat parameter (.prm) file.

• replicat properties file that contains the FW handler and all the Event handler configuration.

• DDL file for the sample table used in the merge script.

• Merge script for the specific data warehouse. This script contains SQL statements tested
using the sample table defined in the DDL file.

8.2.31.6.1.10 Variables in the Merge Script

Typically, variables appear at the beginning of the Oracle provided script. There are lines
starting with #TODO: that document the changes required for variables in the script.

Example:

#TODO: Edit this. Provide the replicat group name.
repName=RBD

#TODO: Edit this. Ensure each replicat uses a unique prefix.
stagingTablePrefix=${repName}_STAGE_

#TODO: Edit the AWS S3 bucket name.
bucket=<AWS S3 bucket name>

#TODO: Edit this variable as needed.

Chapter 8
Target

8-542

s3Location="'s3://${bucket}/${dir}/'"

#TODO: Edit AWS credentials awsKeyId and awsSecretKey
awsKeyId=<AWS Access Key Id>
awsSecretKey=<AWS Secret key>

The variables repName and stagingTablePrefix are relevant for all the data warehouse
targets.

8.2.31.6.1.11 SQL Statements in the Merge Script

The SQL statements in the shell script needs to be customized. There are lines starting with
#TODO: that document the changes required for SQL statements.

In most cases, we need to double quote " identifiers in the SQL statement. The double quote
needs to be escaped in the script using backslash. For example: \".

Oracle provides a working example of SQL statements for a single table with a pre-defined set
of columns defined in the sample DDL file. You need to add new sections for your own tables
as part of if-else code block in the script.

Example:

if ["${tableName}" == "DBO.TCUSTORD"]
then
 #TODO: Edit all the column names of the staging and target tables.
 # The merge SQL example here is configured for the example table defined in the DDL
file.
 # Oracle provided SQL statements

TODO: Add similar SQL queries for each table.
elif ["${tableName}" == "DBO.ANOTHER_TABLE"]
then

#Edit SQLs for this table.
fi

8.2.31.6.1.12 Merge Script Functions

The script is coded to include the following shell functions:

• main
• validateParams
• process
• processTruncate
• processDML
• dropExternalTable
• createExternalTable
• merge
The script has code comments for you to infer the purpose of each function.

Merge Script main function

The function main is the entry point of the script. The processing of the staged changed data
file begin here.

Chapter 8
Target

8-543

This function invokes two functions: validateParams and process.

The input parameters to the script is validated in the function: validateParams.

Processing resumes in the process function if validation is successful.

Merge Script process function

This function processes the operation records in the staged change data file and invokes
processTruncate or processDML as needed.

Truncate operation records are handled in the function processTruncate. Insert, Update, and
Delete operation records are handled in the function processDML.

Merge Script merge function

The merge function invoked by the function processDML contains the merge SQL statement that
will be executed for each table.

The key columns to be used in the merge SQL’s ON clause needs to be customized.

To handle key columns with null values, the ON clause uses data warehouse specific NVL
functions. Example for a single key column "C01Key":

ON ((NVL(CAST(TARGET.\"C01Key\" AS VARCHAR(4000)),'${uuid}')=NVL(CAST(STAGE.\"C01Key\"
AS VARCHAR(4000)),'${uuid}')))`

The column names in the merge statement’s update and insert clauses also needs to be
customized for every table.

Merge Script createExternalTable function

The createExternalTable function invoked by the function processDML creates an external
table that is backed by the file in the respective object store file.

In this function, the DDL SQL statement for the external table should be customized for every
target table to include all the target table columns.

In addition to the target table columns, the external table definition also consists of three meta-
columns: optype, position, and fieldmask.

The data type of the meta-columns should not be modified. The position of the meta-columns
should not be modified in the DDL statement.

8.2.31.6.1.13 Prerequisites

• The Command handler merge scripts are available, starting from Oracle GoldenGate for
Distributed Applications and Analytics (GG for DAA) release 19.1.0.0.8.

• The respective data warehouse’s command line programs to execute SQL queries must be
installed on the machine where GG for DAA is installed.

8.2.31.6.1.14 Limitations

Primary key update operations are split into delete and insert pair. In case the Oracle
GoldenGate trail file doesn't contain column values for all the columns in the respective table,
then the missing columns gets updated to null on the target table.

Chapter 8
Target

8-544

8.2.31.6.2 Hive Stage and Merge
Hive is a data warehouse infrastructure built on top of Hadoop. It provides tools to enable easy
data ETL, a mechanism to put structures on the data, and the capability for querying and
analysis of large data sets stored in Hadoop files.

This topic contains examples of what you can do with the Hive command event handler

• Data Flow

• Configuration
The directory AdapterExamples/big-data/data-warehouse-utils/hive/ in the Oracle
GoldenGate BigData install contains all the configuration and scripts needed needed for
replication to Hive using stage and merge.

• Merge Script Variables

• Prerequisites

8.2.31.6.2.1 Data Flow

• File Writer (FW) handler is configured to generate files in Avro Object Container Format
(OCF).

• The HDFS Event handler is used to push the Avro OCF files into Hadoop.

• The Command Event handler passes the Hadoop file metadata to the hive.sh script.

8.2.31.6.2.2 Configuration

The directory AdapterExamples/big-data/data-warehouse-utils/hive/ in the Oracle
GoldenGate BigData install contains all the configuration and scripts needed needed for
replication to Hive using stage and merge.

The following are the files:

• hive.prm: The replicat parameter file.

• hive.props: The replicat properties file that stages data to Hadoop and runs the Command
Event handler.

• hive.sh: The bash-shell script that reads data staged in Hadoop and merges data to Hive
target table.

• hive-ddl.sql: The DDL statement that contains sample target table used in the script
hive.sh.

Edit the properties indicated by the #TODO: comments in the properties file hive.props.

The bash-shell script function merge() contains SQL statements that needs to be customized
for your target tables.

8.2.31.6.2.3 Merge Script Variables

Modify the variables needs as needed:

#TODO: Modify the location of the OGGBD dirdef directory where the Avro schema files
exist.
avroSchemaDir=/opt/ogg/dirdef

#TODO: Edit the JDBC URL to connect to hive.
hiveJdbcUrl=jdbc:hive2://localhost:10000/default

Chapter 8
Target

8-545

#TODO: Edit the JDBC user to connect to hive.
hiveJdbcUser=APP
#TODO: Edit the JDBC password to connect to hive.
hiveJdbcPassword=mine

#TODO: Edit the replicat group name.
repName=HIVE

#TODO: Edit this. Ensure each replicat uses a unique prefix.
stagingTablePrefix=${repName}_STAGE_

8.2.31.6.2.4 Prerequisites

The following are the prerequisites:

• The merge script hive.sh requires command line program beeline to be installed on the
machine where Oracle GoldenGate for BigData replicat is installed.

• The custom script hive.sh uses the merge SQL statement.
Hive Query Language (Hive QL) introduced support for merge in Hive version 2.2.

8.2.31.7 Template Keywords
The templating functionality allows you to use a mix of constants and/or keywords for context
based resolution of string values at runtime. The templating functionality is used extensively in
the Oracle GoldenGate for Big Data to resolve file paths, file names, topic names, or message
keys. This appendix describes the keywords and their associated arguments if applicable.
Additionally, there are examples showing templates and resolved values.

Template Keywords

This table includes a column if the keyword is supported for transaction level messages.

Keyword Explanation Transaction Message Support

${fullyQualifiedTableName} Resolves to the fully qualified
table name including the period
(.) delimiter between the catalog,
schema, and table names.

For example, TEST.DBO.TABLE1.

No

${catalogName} Resolves to the catalog name. No

${schemaName} Resolves to the schema name. No

${tableName} Resolves to the short table name. No

${opType} Resolves to the type of the
operation: (INSERT, UPDATE,
DELETE, or TRUNCATE)

No

${primaryKeys[]} The first parameter is optional
and allows you to set the
delimiter between primary key
values. The default is _.

No

${position} The sequence number of the
source trail file followed by the
offset (RBA).

Yes

${opTimestamp} The operation timestamp from the
source trail file.

Yes

Chapter 8
Target

8-546

Keyword Explanation Transaction Message Support

${emptyString} Resolves to “”. Yes

${groupName} Resolves to the name of the
Replicat process. If using
coordinated delivery, it resolves to
the name of the Replicat process
with the Replicate thread number
appended.

Yes

${staticMap[]}
or

${staticMap[][]}

Resolves to a static value where
the key is the fully-qualified table
name. The keys and values are
designated inside of the square
brace in the following format: $
{staticMap[DBO.TABLE1=valu
e1,DBO.TABLE2=value2]}
The second parameter is an
optional default value. If the value
cannot be located using the
lookup by the table name, then
the default value will be used
instead.

No

${xid} Resolves the transaction id. Yes

Chapter 8
Target

8-547

Keyword Explanation Transaction Message Support

${columnValue[][]}
or

${columnValue[][][]}

Resolves to a column value
where the key is the fully-qualified
table name and the value is the
column name to be resolved. For
example:

$
{columnValue[DBO.TABLE1=CO
L1,DBO.TABLE2=COL2]}
The second parameter is optional
and allows you to set the value to
use if the column value is null.
The default is an empty string "".

The third parameter is optional
and allows you to set the value to
use if the column value is
missing. The default is an empty
string "".

If the ${columnValue} keyword
is used in partitioning, then only
the column name needs to be
set. Only the HDFS Handler and
the File Writer Handler support
partitioning. In the case of
partitioning, the table name is
already known because
partitioning configuration is
separate for each and every
source table. The following is an
example of ${columnValue}
when used in the context of
partitioning:

${columnValue[COL1]}
or

${columnValue[COL2][NULL]
[MISSING]}

No

${currentTimestamp}
Or

${currentTimestamp[]}

Resolves to the current
timestamp. You can control the
format of the current timestamp
using the Java based formatting
as described in the
SimpleDateFormat class, see
https://docs.oracle.com/javase/8/
docs/api/java/text/
SimpleDateFormat.html

Examples:

${currentTimestamp}$
{currentTimestamp[yyyy-MM-
dd HH:mm:ss.SSS]}

Yes

${null} Resolves to a NULL string. Yes

${custom[]} It is possible to write a custom
value resolver. If required, contact
Oracle Support.

Implementation dependent

${token[]} Resolves a token value. No

Chapter 8
Target

8-548

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Keyword Explanation Transaction Message Support

${toLowerCase[]} Keyword to convert to argument
to lower case. Argument can be
constants, keywords, or
combination of both.

Yes

${toUpperCase[]} Keyword to convert to argument
to upper case. Argument can be
constants, keywords, or
combination of both.

Yes

Chapter 8
Target

8-549

Keyword Explanation Transaction Message Support

${substring[][]}
Or

${substring[][][]}

Keyword to perform a substring
operation on the configured
content.

1. The string on which the
substring functionality is
acting. Can be nested
keywords, constants, or a
combination of both.

2. The starting index.

3. The ending index. (If not
provided then the end of the
input string.) $
{substring[thisisfun]
[4]} returns isfun. $
{substring[thisisfun]
[4][6]} returns is.

No

te:

Perf
orm
ing
a
sub
strin
g
func
tion
mea
ns
that
an
arra
y
inde
x
out
of
bou
nds
con
ditio
n
can
occ
ur
at
runt
ime.
This
occ
urs

Yes

Chapter 8
Target

8-550

Keyword Explanation Transaction Message Support

if
the
conf
igur
ed
star
ting
inde
x or
endi
ng
inde
x is
bey
ond
the
leng
th of
the
strin
g
curr
entl
y
bein
g
acte
d
upo
n.
The
$
{su
bst
rin
g}
func
tion
doe
s
not
thro
w a
runt
ime
exc
epti
on.
It
inst
ead
dete
cts
an
arra
y

Chapter 8
Target

8-551

Keyword Explanation Transaction Message Support

inde
x
out
of
bou
nds
con
ditio
n
and
in
that
cas
e
doe
s
not
exe
cute
the
sub
strin
g
func
tion.

${regex[][][]} Keyword to apply a regular
expressions to search and
replace content. This has three
required parameters:

1. The string on which the
regular expression search
and replace functionality is
acting. Can be nested
keywords or constants or a
combination.

2. The regular expression
search string.

3. The regular expression
replacement string.

Yes

${operationCount} Keyword to resolve the count of
operations.

Yes

${insertCount} Keyword to resolve the count of
insert operations.

Yes

${deleteCount} Keyword to resolve the count of
delete operations.

Yes

${updateCount} Keyword to resolve the count of
update operations.

Yes

${truncateCount} Keyword to resolve the count of
truncate operations.

Yes

Chapter 8
Target

8-552

Keyword Explanation Transaction Message Support

${uuid} Keyword to resolve a universally
unique identifier (UUID). This is a
36 character string guaranteed to
be unique. An example UUID:
7f6e4529-e387-48c1-
a1b6-3e7a4146b211

Yes

Example Templates

The following describes example template configuration values and the resolved values.

Example Template Resolved Value

${groupName}_${fullyQualfiedTableName} KAFKA001_DBO.TABLE1
prefix_${schemaName}_$
{tableName}_suffix

prefix_DBO_TABLE1_suffix

${currentTimestamp[yyyy-MM-dd
HH:mm:ss.SSS]}

2017-05-17 11:45:34.254

A_STATIC_VALUE A_STATIC_VALUE

8.2.31.8 Velocity Dependencies
Starting Oracle GoldenGate for Big Data release 21.1.0.0.0, the Velocity jar files have been
removed from the packaging.

For the Velocity formatting to work, you need to download the jars and include them in their
runtime by modifying the gg.classpath.

The maven coordinates for Velocity are as follows:

Maven groupId: org.apache.velocity
Maven artifactId: velocity
Version: 1.7

Chapter 8
Target

8-553

9
Administer

• Automatic Heartbeat for Oracle GoldenGate for Distributed Applications and Analytics
This article describes how to enable Heartbeat for Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) and how to manage and modify heartbeat across
the replication environment.

• Parsing the Message

• Message Capture Properties

• Oracle GoldenGate Java Delivery

9.1 Automatic Heartbeat for Oracle GoldenGate for Distributed
Applications and Analytics

This article describes how to enable Heartbeat for Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) and how to manage and modify heartbeat across the
replication environment.

• Overview

• Automatic Heartbeat Tables

9.1.1 Overview

To enable HEARTBEATTABLE for Oracle GoldenGate for Distributed Applications and Analytics
(GG for DAA), you need to:

• Specify GGSCHEMA in GLOBALS with any value, for example, GGSCHEMA GGADMIN.

• Enable ENABLE_HEARTBEAT_TABLE in GLOBALS.

• Execute ADD HEARTBEATTABLE from GGSCI.

In Oracle GoldenGate for RDBMS, the HEARTBEATTABLE records are applied to the following
target HEARTBEATTABLE tables: GGADMIN.GG_HEARTBEAT and GGADMIN.GG_HEARBEAT_HISTORY.

Two Modes of HEARTBEATTABLE in GG for DAA:

In Mode 1 (as user data), the records that are handled by GG for DAA are written to
HEARTBEATTABLE files. For example, table GGADMIN.GG_HEARTBEAT is stored in file dirtmp/
<replicat name>-hb.json. Here, the records are written to the replicat file hb.json. Table
GGADMIN.GG_HEARTBEAT_HISTORY is stored in dirtmp/<replicat-name>hb <date>.json. Here,
the History records re written to thehb-<date>.json file.

To apply HEARTBEATTABLE as user data:

• Disable HEARTBEATTABLE by specifying DISABLEHEARTBEATTABLE in the replicat parameter
file.

9-1

• Specify HEARTBEATTABLE tables in the replicat MAP statements:

MAP GGADMIN.GG_HEARTBEAT, TARGET GGADMIN.GG_HEARTBEAT;
MAP GGADMIN.GG_HEARTBEAT_HISTORY, TARGET GGADMIN.GG_HEARTBEAT_HISTORY;

When applied as user data, the HEARTBEAT records GG_HEARTBEAT and GG_HEARTBEAT_HISTORY
are written to the handler as if they are user tables. The HEARTBEAT records are not stored in
tables like RDBMS, but in .json files.

Mode 2 (as passthrough) enables you to send a statement directly to a non-Oracle system,
such as Kafka without first being interpreted by GG for DAA. You do not need to explicitly add
MAP for GG_HEARTBEAT, GG_HEARTBEAT_HISTORY tables in replicate parameter file. You must
add ENABLE_HEARTBEAT_TABLE in GLOBALS file. Restart of ggsci, manager and other child
processes are recommended after any changes in GLOBALS file.

9.1.2 Automatic Heartbeat Tables
• ADD HEARTBEATTABLE

• ALTER HEARTBEAT TABLE

• INFO HEARTBEATTABLE

• LAG

• DELETE HEARTBEATTABLE

9.1.2.1 ADD HEARTBEATTABLE

ADD HEARTBEATTABLE
[, RETENTION_TIME number in days] |
[, PURGE_FREQUENCY number in days]

RETENTION_TIME
Specifies when heartbeat entries older than the retention time in the history table are purged.
The default is 30 days.

PURGE FREQUENCY
Specifies how often the purge scheduler is run to delete table entries that are older than the
retention time from the heartbeat history. The default is 1 day.

Example:

GGSCI > ADD HEARTBEATTABLE
HEARTBEAT is now enabled:
HEARTBEAT configuration file in dirprm\heartbeat.properties
heartbeat.enabled=true
heartbeat.frequency=60
heartbeat.retention_time=30
heartbeat.purge.frequency=1
heartbeat.db.name=BigData

Note:

Ensure to run the ADD HEARTBEATTABLE command before processing the trail file
through the replicat.

Chapter 9
Automatic Heartbeat for Oracle GoldenGate for Distributed Applications and Analytics

9-2

9.1.2.2 ALTER HEARTBEAT TABLE

ALTER HEARTBEATTABLE

[, RETENTION_TIME number in days] |

[, PURGE_FREQUENCY number in days]

RETENTION_TIME
Update heartbeat.retention_time in dirprm/heartbeat.properties; will take affect on the
next restart.

PURGE_FREQUENCY
Specifies how often entries older than the retention time are purged from the
GG_HEARTBEAT_HISTORY. The default is 1 day.

9.1.2.3 INFO HEARTBEATTABLE
Example

HEARTBEAT configuration file dirprm\heartbeat.properties
heartbeat.enabled=true
heartbeat.frequency=60
heartbeat.retention_time=30
heartbeat.purge.frequency=1
heartbeat.db.name=BigData

9.1.2.4 LAG
LAG <replicat name>

Example

GGSCI> LAG rtpc
Lag Information From Heartbeat Table
LAG AGE FROM TO PATH
5.77s 10m 22.87s ORCL BIGDATA ETPC ==> PTPC ==> RTPC

LAG <replicat name> HISTORY

GGSCI> LAG rtpc HISTORY

Example

Lag Information From Heartbeat Table
LAG AGE FROM TO PATH
5.77s 10m 22.87s ORCL ORCL ETPC ==> PTPC ==> RTPC
Lag History
DATE MIN AVG MAX
2018-07-01 5.77s 5.90s 6.20s
2018-07-02 6.77s 6.90s 7.20s
2018-07-03 7.77s 7.90s 8.20s
2018-07-04 8.77s 9.90s 9.20s

Chapter 9
Automatic Heartbeat for Oracle GoldenGate for Distributed Applications and Analytics

9-3

9.1.2.5 DELETE HEARTBEATTABLE
DELETE HEARTBEATTABLE

Example

GGSCI> DELETE HEARTBEATTABLE

9.2 Parsing the Message
• Parsing Overview

• Fixed Width Parsing

• Delimited Parsing

• XML Parsing

• Source Definitions Generation Utility

9.2.1 Parsing Overview
The role of the parser is to translate JMS text message data and header properties into an
appropriate set of transactions and operations to pass into the VAM interface. To do this, the
parser always must find certain data:

• Transaction identifier

• Sequence identifier

• Timestamp

• Table name

• Operation type

• Column data specific to a particular table name and operation type

Other data will be used if the configuration requires it:

• Transaction indicator

• Transaction name

• Transaction owner

The parser can obtain this data from JMS header properties, system generated values, static
values, or in some parser-specific way. This depends on the nature of the piece of information.

• Parser Types

• Source and Target Data Definitions

• Required Data

• Optional Data

9.2.1.1 Parser Types
The Oracle GoldenGate message capture adapter supports three types of parsers:

• Fixed – Messages contain data presented as fixed width fields in contiguous text.

• Delimited – Messages contain data delimited by field and end of record characters.

Chapter 9
Parsing the Message

9-4

• XML – Messages contain XML data accessed through XPath expressions.

9.2.1.2 Source and Target Data Definitions
There are several ways source data definitions can be defined using a combination of
properties and external files.

There are several properties that configure how the selected parser gets data and how the
source definitions are converted to target definitions.

9.2.1.3 Required Data
The following information is required for the parsers to translate the messages:

• Transaction Identifier

• Sequence Identifier

• Timestamp

• Table Name

• Operation Type

• Column Data

9.2.1.3.1 Transaction Identifier
The transaction identifier (txid) groups operations into transactions as they are written to the
Oracle GoldenGate trail file. The Oracle GoldenGate message capture adapter supports only
contiguous, non-interleaved transactions. The transaction identifier can be any unique value
that increases for each transaction. A system generated value can generally be used.

9.2.1.3.2 Sequence Identifier
The sequence identifier (seqid) identifies each operation internally. This can be used during
recovery processing to identify operations that have already been written to the Oracle
GoldenGate trail. The sequence identifier can be any unique value that increases for each
operation. The length should be fixed.

The JMS Message ID can be used as a sequence identifier if the message identifier for that
provider increases and is unique. However, there are cases (for example, using clustering,
failed transactions) where JMS does not guarantee message order or when the ID may be
unique but not be increasing. The system generated Sequence ID can be used, but it can
cause duplicate messages under some recovery situations. The recommended approach is to
have the JMS client that adds messages to the queue set the Message ID, a header property,
or some data element to an application-generated unique value that is increasing.

9.2.1.3.3 Timestamp
The timestamp (timestamp) is used as the commit timestamp of operations within the Oracle
GoldenGate trail. It should be increasing but this is not required, and it does not have to be
unique between transactions or operations. It can be any date format that can be parsed.

9.2.1.3.4 Table Name
The table name is used to identify the logical table to which the column data belongs. The
adapter requires a two part table name in the form SCHEMA_NAME.TABLE_NAME. This can either

Chapter 9
Parsing the Message

9-5

be defined separately (schema and table) or as a combination of schema and table
(schemaandtable).

A single field may contain both schema and table name, they may be in separate fields, or the
schema may be included in the software code so only the table name is required. How the
schema and table names can be specified depends on the parser. In any case the two part
logical table name is used to write records in the Oracle GoldenGate trail and to generate the
source definitions file that describes the trail.

9.2.1.3.5 Operation Type
The operation type (optype) is used to determine whether an operation is an insert, update or
delete when written to the Oracle GoldenGate trail. The operation type value for any specific
operation is matched against the values defined for each operation type.

The data written to the Oracle GoldenGate trail for each operation type depends on the Extract
configuration:

• Inserts

– The after values of all columns are written to the trail.

• Updates

– Default – The after values of keys are written. The after values of columns that have
changed are written if the before values are present and can be compared. If before
values are not present then all columns are written.

– NOCOMPRESSUPDATES – The after values of all columns are written to the trail.

– GETUPDATEBEFORES – The before and after values of columns that have changed are
written to the trail if the before values are present and can be compared. If before
values are not present only after values are written.

– If both NOCOMPRESSUPDATES and GETUPDATEBEFORES are included, the before and after
values of all columns are written to the trail if before values are present

• Deletes

– Default – The before values of all keys are written to the trail.

– NOCOMPRESSDELETES – The before values of all columns are written to the trail.

Primary key update operations may also be generated if the before values of keys are present
and do not match the after values.

9.2.1.3.6 Column Data
All parsers retrieve column data from the message text and write it to the Oracle GoldenGate
trail. In some cases the columns are read in index order as defined by the source definitions, in
other cases they are accessed by name.

Depending on the configuration and original message text, both before and after or only after
images of the column data may be available. For updates, the data for non-updated columns
may or may not be available.

All column data is retrieved as text. It is converted internally into the correct data type for that
column based on the source definitions. Any conversion problem will result in an error and the
process will abend.

Chapter 9
Parsing the Message

9-6

9.2.1.4 Optional Data
The following data may be included, but is not required.

• Transaction Indicator

• Transaction Name

• Transaction Owner

9.2.1.4.1 Transaction Indicator
The relationship of transactions to messages can be:

• One transaction per message

This is determined automatically by the scope of the message.

• Multiple transactions per message

This is determined by the transaction indicator (txind). If there is no transaction indicator,
the XML parser can create transactions based on a matching transaction rule.

• Multiple messages per transaction

The transaction indicator (txind) is required to specify whether the operation is the
beginning, middle, end or the whole transaction. The transaction indicator value for any
specific operation is matched against the values defined for each transaction indicator
type. A transaction is started if the indicator value is beginning or whole, continued if it is
middle, and ended if it is end or whole.

9.2.1.4.2 Transaction Name
The transaction name (txname) is optional data that can be used to associate an arbitrary
name to a transaction. This can be added to the trail as a token using a GETENV function.

9.2.1.4.3 Transaction Owner
The transaction owner (txowner) is optional data that can be used to associate an arbitrary
user name to a transaction. This can be added to the trail as a token using a GETENV function,
or used to exclude certain transactions from processing using the EXCLUDEUSER Extract
parameter.

9.2.2 Fixed Width Parsing
Fixed width parsing is based on a data definition that defines the position and the length of
each field. This is in the format of a Cobol copybook. A set of properties define rules for
mapping the copybook to logical records in the Oracle GoldenGate trail and in the source
definitions file.

The incoming data should consist of a standard format header followed by a data segment.
Both should contain fixed width fields. The data is parsed based on the PIC definition in the
copybook. It is written to the trail translated as explained in Header and Record Data Type
Translation.

• Header

• Header and Record Data Type Translation

• Key identification

Chapter 9
Parsing the Message

9-7

• Using a Source Definition File

9.2.2.1 Header
The header must be defined by a copybook 01 level record that includes the following:

• A commit timestamp or a change time for the record

• A code to indicate the type of operation: insert, update, or delete

• The copybook record name to use when parsing the data segment

Any fields in the header record that are not mapped to Oracle GoldenGate header fields are
output as columns.

The following example shows a copybook definition containing the required header values

Example 9-1 Specifying a Header

01 HEADER.
20 Hdr-Timestamp PIC X(23)
20 Hdr-Source-DB-Function PIC X
20 Hdr-Source-DB-Rec-ID PIC X(8)

For the preceding example, you must set the following properties:

fixed.header=HEADER
fixed.timestamp=Hdr-Timestamp
fixed.optype=Hdr-Source-DB-Function
fixed.table=Hdr-Source-DB-Rec-Id

The logical name table output in this case will be the value of Hdr-Source-DB-Rec-Id.

• Specifying Compound Table Names

• Specifying timestamp Formats

• Specifying the Function

9.2.2.1.1 Specifying Compound Table Names
More than one field can be used for a table name. For example, you can define the logical
schema name through a static property such as:

fixed.schema=MYSCHEMA

You can then add a property that defines the data record as multiple fields from the copybook
header definition.

Example 9-2 Specifying Compound Table Names

01 HEADER.
 20 Hdr-Source-DB PIC X(8).
 20 Hdr-Source-DB-Rec-Id PIC X(8).
 20 Hdr-Source-DB-Rec-Version PIC 9(4).
 20 Hdr-Source-DB-Function PIC X.
 20 Hdr-Timestamp PIC X(22).

For the preceding example, you must set the following properties:

fixed.header=HEADER
fixed.table=Hdr-Source-DB-Rec-Id,Hdr-Source-DB-Rec-Version
fixed.schema=MYSCHEMA

Chapter 9
Parsing the Message

9-8

The fields will be concatenated to result in logical schema and table names of the form:

MYSCHEMA.Hdr-Source-DB-Rec-Id+Hdr-Source-DB-Rec-Version

9.2.2.1.2 Specifying timestamp Formats
A timestamp is parsed using the default format YYYY-MM-DD HH:MM:SS.FFF, with FFF depending
on the size of the field.

Specify different incoming formats by entering a comment before the datetime field as shown in
the next example.

Example 9-3 Specifying timestamp formats

01 HEADER.
* DATEFORMAT YYYY-MM-DD-HH.MM.SS.FF
 20 Hdr-Timestamp PIC X(23)

9.2.2.1.3 Specifying the Function
Use properties to map the standard Oracle GoldenGate operation types to the optype values.
The following example specifies that the operation type is in the Hdr-Source-DB-Function field
and that the value for insert is A, update is U and delete is D.

Example 9-4 Specifying the Function

fixed.optype=Hdr-Source-DB-Function
fixed.optype.insert=A
fixed.optype.update=U
fixed.optype.delete=D

9.2.2.2 Header and Record Data Type Translation
The data in the header and the record data are written to the trail based on the translated data
type.

• A field definition preceded by a date format comment is translated to an Oracle
GoldenGate datetime field of the specified size. If there is no date format comment, the
field will be defined by its underlying data type.

• A PIC X field is translated to the CHAR data type of the indicated size.

• A PIC 9 field is translated to a NUMBER data type with the defined precision and scale.
Numbers that are signed or unsigned and those with or without decimals are supported.

The following examples show the translation for various PIC definitions.

Input Output

PIC XX CHAR(2)

PIC X(16) CHAR(16)

PIC 9(4) NUMBER(4)

* YYMMDD
PIC 9(6)

DATE(10)
YYYY-MM-DD

Chapter 9
Parsing the Message

9-9

Input Output

PIC 99.99 NUMBER(4,2)

In the example an input YYMMDD date of 100522 is translated to 2010-05-22. The number
1234567 with the specified format PIC 9(5)V99 is translated to a seven digit number with two
decimal places, or 12345.67.

9.2.2.3 Key identification
A comment is used to identify key columns within the data record.

In the following example Account has been marked as a key column for TABLE1.

01 TABLE1
* KEY
20 Account PIC X(19)
20 PAN_Seq_Num PIC 9(3)

9.2.2.4 Using a Source Definition File

You can use fixed width parsing based on a data definition that comes from an Oracle
GoldenGate source definition file. This is similar to Cobol copybook because a source
definition file contains the position and the length of each field of participating tables. To use a
source definition file, you must set the following properties:

fixed.userdefs.tables=qasource.HEADER
fixed.userdefs.qasource.HEADER.columns=optype,schemaandtable
fixed.userdefs.qasource.HEADER.optype=vchar 3
fixed.userdefs.qasource.HEADER.schemaandtable=vchar 30

fixed.header=qasource.HEADER

The following example defines a header section of a total length of 33 characters; the first 3
characters are the operation type, and the last 30 characters is the table name. The layout of
all records to be parsed must start with the complete header section as defined in the
fixed.userdefs properties. For each record, the header section is immediately followed by the
content of all column data for the corresponding table. The column data must be strictly laid out
according to its offset and length defined in the source definition file. Specifically, the offset
information is the fourth field (Fetch Offset) of the column definition and the length information
is the third field (External Length) of the column definition. The following is an example of a
definition for GG.JMSCAP_TCUSTMER:

Definition for table GG.JMSCAP_TCUSTMER
Record length: 78
Syskey: 0
Columns: 4
CUST_CODE 64 4 0 0 0 1 0 4 4 0 0 0 0 0 1 0
1 0
NAME 64 30 10 0 0 1 0 30 30 0 0 0 0 0 1 0
0 0
CITY 64 20 46 0 0 1 0 20 20 0 0 0 0 0 1 0
0 0

Chapter 9
Parsing the Message

9-10

STATE 0 2 72 0 0 1 0 2 2 0 0 0 0 0 1 0
0 0
End of definition

The fixed width data for GG.JMSCAP_TCUSTMER may be similar to the following where the
offset guides have been added to each section for clarity:

0 1 2 3 0 1 2 3
4 5 6 7 8
012345678901234567890123456789012012345678901234567890123456789012345678901234
567890123456789012345678901234567890
I GG.JMSCAP_TCUSTMER WILL BG SOFTWARE
CO. SEATTLE WA
I GG.JMSCAP_TCUSTMER JANE ROCKY FLYER
INC. DENVER CO
I GG.JMSCAP_TCUSTMER DAVE DAVE'S PLANES
INC. TALLAHASSEE FL
I GG.JMSCAP_TCUSTMER BILL BILL'S USED
CARS DENVER CO
I GG.JMSCAP_TCUSTMER ANN ANN'S
BOATS SEATTLE WA
U GG.JMSCAP_TCUSTMER ANN ANN'S
BOATS NEW YORK NY

You can choose to specify shorter data records, which means that only some of the earlier
columns are present. To do this, the following requirements must be met:

• None of the missing or omitted columns are part of the key and

• all columns that are present contain complete data according to their respective External
Length information

.

9.2.3 Delimited Parsing
Delimited parsing is based a preexisting source definitions files and a set of properties. The
properties specify the delimiters to use and other rules, such as whether there are column
names and before values. The source definitions file determines the valid tables to be
processed and the order and data type of the columns in the tables.

The format of the delimited message is:

METACOLSn[,COLNAMES]m[,COLBEFOREVALS]m,{COLVALUES}m\n

Where:

• There can be n metadata columns each followed by a field delimiter such as the comma
shown in the format statement.

• There can be m column values. Each of these are preceded by a field delimiter such as a
comma.

• The column name and before value are optional.

• Each record is terminated by an end of line delimiter, such as \n.

Chapter 9
Parsing the Message

9-11

The message to be parsed must contain at least the header and metadata columns. If the
number of columns is fewer than the number of header and meta columns, then the capture
process terminates and provides an error message.

The remaining number of columns after the header and metadata columns are the column data
for the corresponding table, specified in the order of the columns in the resolved metadata.
Ideally, the number of table columns present in the message is exactly the same as the
expected number of columns according to the metadata. However, missing columns in the
message towards the end of message is allowed and the parser marks those last columns (not
present in the rest of the message) as missing column data.

Although missing data is allowed from parser perspective, if the key @ column(s) is/are
missing, then the capture process will also terminate.

Oracle GoldenGate primary key updates and unified updates are not supported. The only
supported operations are inserts, updates, deletes, and truncates.

• Metadata Columns

• Parsing Properties

• Parsing Steps

9.2.3.1 Metadata Columns
The metadata columns correspond to the header and contain fields that have special meaning.
Metadata columns should include the following information.

• optype contains values indicating if the record is an insert, update, or delete. The default
values are I, U, and D.

• timestamp indicates type of value to use for the commit timestamp of the record. The
format of the timestamp defaults to YYYY-DD-MM HH:MM:SS.FFF.

• schemaandtable is the full table name for the record in the format SCHEMA.TABLE.

• schema is the record's schema name.

• table is the record's table name.

• txind is a value that indicates whether the record is the beginning, middle, end or the only
record in the transaction. The default values are 0, 1, 2, 3.

• id is the value used as the sequence number (RSN or CSN) of the record. The id of the
first record (operation) in the transaction is used for the sequence number of the
transaction.

9.2.3.2 Parsing Properties
Properties can be set to describe delimiters, values, and date and time formats.

• Properties to Describe Delimiters

• Properties to Describe Values

• Properties to Describe Date and Time

9.2.3.2.1 Properties to Describe Delimiters
The following properties determine the parsing rules for delimiting the record.

• fielddelim specifies one or more ASCII or hexadecimal characters as the value for the
field delimiter

Chapter 9
Parsing the Message

9-12

• recorddelim specifies one or more ASCII or hexadecimal characters as the value for the
record delimiter

• quote specifies one or more ASCII or hexadecimal characters to use for quoted values

• nullindicator specifies one or more ASCII or hexadecimal characters to use for NULL
values

You can define escape characters for the delimiters so they will be replaced if the characters
are found in the text. For example if a backslash and apostrophe (\') are specified, then the
input "They used Mike\'s truck" is translated to "They used Mike's truck". Or if two quotes ("")
are specified, "They call him ""Big Al""" is translated to "They call him "Big Al"".

Data values may be present in the record without quotes, but the system only removes escape
characters within quoted values. A non-quoted string that matches a null indicator is treated as
null.

9.2.3.2.2 Properties to Describe Values
The following properties provide more information:

• hasbefores indicates before values are present for each record

• hasnames indicates column names are present for each record

• afterfirst indicates column after values come before column before values

• isgrouped indicates all column names, before values and after values are grouped
together in three blocks, rather than alternately per column

9.2.3.2.3 Properties to Describe Date and Time
The default format YYYY-DD-MM HH:MM:SS.FFF is used to parse dates. You can use properties
to override this on a global, table or column level. Examples of changing the format are shown
below.

delim.dateformat.default=MM/DD/YYYY-HH:MM:SS
delim.dateformat.MY.TABLE=DD/MMM/YYYY
delim.dateformat.MY.TABLE.COL1=MMYYYY

9.2.3.3 Parsing Steps
The steps in delimited parsing are:

1. The parser first reads and validates the metadata columns for each record.

2. This provides the table name, which can then be used to look up column definitions for that
table in the source definitions file.

3. If a definition cannot be found for a table, the processing will stop.

4. Otherwise the columns are parsed and output to the trail in the order and format defined by
the source definitions.

9.2.4 XML Parsing
XML parsing is based on a preexisting source definitions file and a set of properties. The
properties specify rules to determine XML elements and attributes that correspond to
transactions, operations and columns. The source definitions file determines the valid tables to
be processed and the ordering and data types of columns in those tables.

• Styles of XML

Chapter 9
Parsing the Message

9-13

• XML Parsing Rules

• XPath Expressions

• Other Value Expressions

• Transaction Rules

• Operation Rules

• Column Rules

• Overall Rules Example

9.2.4.1 Styles of XML
The XML message is formatted in either dynamic or static XML. At runtime the contents of
dynamic XML are data values that cannot be predetermined using a sample XML or XSD
document. The contents of static XML that determine tables and column element or attribute
names can be predetermined using those sample documents.

The following two examples contain the same data.

Example 9-5 An Example of Static XML

<NewMyTableEntries>
 <NewMyTableEntry>
 <CreateTime>2010-02-05:10:11:21</CreateTime>
 <KeyCol>keyval</KeyCol>
 <Col1>col1val</Col1>
 </NewMyTableEntry>
</NewMyTableEntries>

The NewMyTableEntries element marks the transaction boundaries. The NewMyTableEntry
indicates an insert to MY.TABLE. The timestamp is present in an element text value, and the
column names are indicated by element names.

You can define rules in the properties file to parse either of these two styles of XML through a
set of XPath-like properties. The goal of the properties is to map the XML to a predefined
source definitions file through XPath matches.

Example 9-6 An Example of Dynamic XML

<transaction id="1234" ts="2010-02-05:10:11:21">
 <operation table="MY.TABLE" optype="I">
 <column name="keycol" index="0">
 <aftervalue><![CDATA[keyval]]></aftervalue>
 </column>
 <column name="col1" index="1">
 <aftervalue><![CDATA[col1val]]></aftervalue>
 </column>
 </operation>
</transaction>

Every operation to every table has the same basic message structure consisting of transaction,
operation and column elements. The table name, operation type, timestamp, column names,
column values, etc. are obtained from attribute or element text values.

9.2.4.2 XML Parsing Rules
Independent of the style of XML, the parsing process needs to determine:

• Transaction boundaries

Chapter 9
Parsing the Message

9-14

• Operation entries and metadata including:

– Table name

– Operation type

– Timestamp

• Column entries and metadata including:

– Either the column name or index; if both are specified the system will check to see if
the column with the specified data has the specified name.

– Column before or after values, sometimes both.

This is done through a set of interrelated rules. For each type of XML message that is to be
processed you name a rule that will be used to obtain the required data. For each of these
named rules you add properties to:

• Specify the rule as a transaction, operation, or column rule type. Rules of any type are
required to have a specified name and type.

• Specify the XPath expression to match to see if the rule is active for the document being
processed. This is optional; if not defined the parser will match the node of the parent rule
or the whole document if this is the first rule.

• List detailed rules (subrules) that are to be processed in the order listed. Which subrules
are valid is determined by the rule type. Subrules are optional.

In the following example the top-level rule is defined as genericrule. It is a transaction type
rule. Its subrules are defined in oprule and they are of the type operation.

xmlparser.rules=genericrule
xmlparser.rules.genericrule.type=tx
xmlparser.rules.genericrule.subrules=oprule
xmlparser.rules.oprule.type=op

9.2.4.3 XPath Expressions
The XML parser supports a subset of XPath expressions necessary to match elements and
Extract data. An expression can be used to match a particular element or to Extract data.

When doing data extraction most of the path is used to match. The tail of the expression is
used for extraction.

• Supported Constructs:

• Supported Expressions

• Obtaining Data Values

9.2.4.3.1 Supported Constructs:

Supported
Constructs

Description

/e Use the absolute path from the root of the document to match e.

./e or e Use the relative path from current node being processed to match e.

../e Use a path based on the parent of the current node (can be repeated) to match e.

Chapter 9
Parsing the Message

9-15

Supported
Constructs

Description

//e Match e wherever it occurs in a document.

* Match any element. Note: Partially wild-carded names are not supported.

[n] Match the nth occurrence of an expression.

[x=v] Match when x is equal to some value v where x can be:

• @att - some attribute value

• text() - some text value

• name() - some name value

• position() - the element position

9.2.4.3.2 Supported Expressions

Supported Expressions Descriptions

Match root element /My/Element

Match sub element to current node ./Sub/Element

Match nth element /My/*[n]

Match nth Some element /My/Some[n]

Match any text value /My/*[text() ='value']

Match the text in Some element /My/Some[text() = 'value']

Match any attribute /My/*[@att = 'value']

Match the attribute in Some element /My/Some[@att = 'value']

9.2.4.3.3 Obtaining Data Values
In addition to matching paths, the XPath expressions can also be used to obtain data values,
either absolutely or relative to the current node being processed. Data value expressions can
contain any of the path elements in the preceding table, but must end with one of the value
accessors listed below.

Value Accessors Description

@att Some attribute value.

text() The text content (value) of an element.

Chapter 9
Parsing the Message

9-16

Value Accessors Description

content() The full content of an element, including any child XML nodes.

name() The name of an element.

position() The position of an element in its parent.

Example 9-7 Examples of Extracting Data Values

To extract the relative element text value:

/My/Element/text()

To extract the absolute attribute value:

/My/Element/@att

To extract element text value with a match:

/My/Some[@att = 'value']/Sub/text()

Note:

Path accessors, such as ancestor/descendent/self, are not supported.

9.2.4.4 Other Value Expressions
The values extracted by the XML parser are either column values or properties of the
transaction or operation, such as table or timestamp. These values are either obtained from
XML using XPath or through properties of the JMS message, system values, or hard coded
values. The XML parser properties specify which of these options are valid for obtaining the
values for that property.

The following example specifies that timestamp can be an XPath expression, a JMS property,
or the system generated timestamp.

{txrule}.timestamp={xpath-expression}|${jms-property}|*ts

The next example specifies that table can be an XPath expression, a JMS property, or hard
coded value.

{oprule}.table={xpath-expression}|${jms-property}|"value"

The last example specifies that name can be a XPath expression or hard coded value.

{colrule}.timestamp={xpath-expression}|"value"

9.2.4.5 Transaction Rules
The rule that specifies the boundary for a transaction is at the highest level. Messages may
contain a single transaction, multiple transactions, or a part of a transaction that spans
messages. These are specified as follows:

Chapter 9
Parsing the Message

9-17

• single - The transaction rule match is not defined.

• multiple - Each transaction rule match defines new transaction.

• span – No transaction rule is defined; instead a transaction indicator is specified in an
operation rule.

For a transaction rule, the following properties of the rule may also be defined through XPath
or other expressions:

• timestamp – The time at which the transaction occurred.

• txid – The identifier for the transaction.

Transaction rules can have multiple subrules, but each must be of type operation.

The following example specifies a transaction that is the whole message and includes a
timestamp that comes from the JMS property.

Example 9-8 JMS Timestamp

singletxrule.timestamp=$JMSTimeStamp

The following example matches the root element transaction and obtains the timestamp from
the ts attribute.

Example 9-9 ts Timestamp

dyntxrule.match=/Transaction
dyntxrule.timestamp=@ts

9.2.4.6 Operation Rules
An operation rule can either be a sub rule of a transaction rule, or a highest level rule (if the
transaction is a property of the operation).

In addition to the standard rule properties, an operation rule should also define the following
through XPath or other expressions:

• timestamp – The timestamp of the operation. This is optional if the transaction rule is
defined.

• table – The name of the table on which this is an operation. Use this with schema.

• schema – The name of schema for the table.

• schemaandtable – Both schema and table name together in the form SCHEMA.TABLE. This
can be used in place of the individual table and schema properties.

• optype – Specifies whether this is an insert, update or delete operation based on optype
values:

– optype.insertval – The value indicating an insert. The default is I.

– optype.updateval – The value indicating an update. The default is U.

– optype.deleteval – The value indicating a delete. The default is D.

• seqid – The identifier for the operation. This will be the transaction identifier if txid has not
already been defined at the transaction level.

• txind – Specifies whether this operation is the beginning of a transaction, in the middle or
at the end; or if it is the whole operation. This property is optional and not valid if the
operation rule is a sub rule of a transaction rule.

Operation rules can have multiple sub rules of type operation or column.

Chapter 9
Parsing the Message

9-18

The following example dynamically obtains operation information from the /Operation element
of a /Transaction.

Example 9-10 Operation

dynoprule.match=./Operation
dynoprule.schemaandtable=@table
dynoprule.optype=@type

The following example statically matches /NewMyTableEntry element to an insert operation on
the MY.TABLE table.

Example 9-11 Operation example

statoprule.match=./NewMyTableEntry
statoprule.schemaandtable="MY.TABLE"
statoprule.optype="I"
statoprule.timestamp=./CreateTime/text()

9.2.4.7 Column Rules
A column rule must be a sub rule of an operation rule. In addition to the standard rule
properties, a column rule should also define the following through XPath or other expressions.

• name – The name of the column within the table definition.

• index – The index of the column within the table definition.

Note:

If only one of name and index is defined, the other will be determined.

• before.value – The before value of the column. This is required for deletes, but is optional
for updates.

• before.isnull – Indicates whether the before value of the column is null.

• before.ismissing – Indicates whether the before value of the column is missing.

• after.value – The before value of the column. This is required for deletes, but is optional
for updates.

• after.isnull – Indicates whether the before value of the column is null.

• after.ismissing – Indicates whether the before value of the column is missing.

• value – An expression to use for both before.value and after.value unless overridden
by specific before or after values. Note that this does not support different before values for
updates.

• isnull – An expression to use for both before.isnull and after.isnull unless overridden.

• ismissing – An expression to use for both before.ismissing and after.ismissing unless
overridden.

The following example dynamically obtains column information from the /Column element of
an /Operation
Example 9-12 Dynamic Extraction of Column Information

dyncolrule.match=./Column
dyncolrule.name=@name

Chapter 9
Parsing the Message

9-19

dyncolrule.before.value=./beforevalue/text()
dyncolrule.after.value=./aftervalue/text()

The following example statically matches the /KeyCol and /Col1 elements to columns in
MY.TABLE.

Example 9-13 Static Matching of Elements to Columns

statkeycolrule.match=/KeyCol
statkeycolrule.name="keycol"
statkeycolrule.value=./text()
statcol1rule.match=/Col1
statcol1rule.name="col1"
statcol1rule.value=./text()

9.2.4.8 Overall Rules Example
The following example uses the XML samples shown earlier with appropriate rules to generate
the same resulting operation on the MY.TABLE table.

Dynamic XML Static XML

<transaction id="1234"
 ts="2010-02-05:10:11:21">
 <operation table="MY.TABLE" optype="I">
 <column name="keycol" index="0">
 <aftervalue>
<![CDATA[keyval]]>
 </aftervalue>
 </column>
 <column name="col1" index="1">
 <aftervalue>
 <![CDATA[col1val]]>
 </aftervalue>
 </column>
 </operation>
</transaction>

NewMyTableEntries>
 <NewMyTableEntry>
 <CreateTime>
 2010-02-05:10:11:21
 </CreateTime>
 <KeyCol>keyval</KeyCol>
 <Col1>col1val</Col1>
 </NewMyTableEntry>
</NewMyTableEntries>

Dynamic Static

dyntxrule.match=/Transaction
dyntxrule.timestamp=@ts
dyntxrule.subrules=dynoprule
dynoprule.match=./Operation
dynoprule.schemaandtable=@table
dynoprule.optype=@type
dynoprule.subrules=dyncolrule
dyncolrule.match=./Column
dyncolrule.name=@name

stattxrule.match=/NewMyTableEntries
stattxrule.subrules= statoprule
statoprule.match=./NewMyTableEntry
statoprule.schemaandtable="MY.TABLE"
statoprule.optype="I"
statoprule.timestamp=./CreateTime/text()
statoprule.subrules= statkeycolrule,
statcol1rule
statkeycolrule.match=/KeyCol

INSERT INTO MY.TABLE (KEYCOL, COL1)
VALUES ('keyval', 'col1val')

Chapter 9
Parsing the Message

9-20

9.2.5 Source Definitions Generation Utility
By default, the JMS capture process writes metadata information in the produced trail files,
allowing trail file consumers to understand the structure of the trail records without any help
from an external definition file.

The output source definitions file can then be used in a pump or delivery process to interpret
the trail data created through the VAM.

9.3 Message Capture Properties
• Logging and Connection Properties

• Parser Properties

9.3.1 Logging and Connection Properties
The following properties control the connection to JMS and the log file names, error handling,
and message output.

• Logging Properties

• JMS Connection Properties

• JNDI Properties

9.3.1.1 Logging Properties
Logging is controlled by the following properties.

• gg.log

• gg.log.level

• gg.log.file

• gg.log.classpath

9.3.1.1.1 gg.log
Specifies the type of logging that is to be used. The default implementation is the JDK option.
This is the built-in Java logging called java.util.logging (JUL). The other logging options are
log4j or logback. The syntax is:

gg.log={JDK|log4j|logback}

For example, to set the type of logging to log4j:

gg.log=log4j

The log file is created in the report subdirectory of the installation. The default log file name
includes the group name of the associated Extract and the file extension is log.

9.3.1.1.2 gg.log.level
Specifies the overall log level for all modules. The syntax is:

gg.log.level={ERROR|WARN|INFO|DEBUG}

Chapter 9
Message Capture Properties

9-21

The log levels are defined as follows:

• ERROR – Only write messages if errors occur

• WARN – Write error and warning messages

• INFO – Write error, warning and informational messages

• DEBUG – Write all messages, including debug ones.

The default logging level is INFO. The messages in this case will be produced on startup,
shutdown and periodically during operation. If the level is switched to DEBUG, large volumes of
messages may occur which could impact performance. For example, the following sets the
global logging level to INFO:

global logging level
gg.log.level=INFO

9.3.1.1.3 gg.log.file
Specifies the path to the log file. The syntax is:

gg.log.file=path_to_file

Where the path_to_file is the fully defined location of the log file. This allows a change to the
name of the log, but you must include the Replicat name if you have more than one Replicat to
avoid one overwriting the log of the other.

9.3.1.1.4 gg.log.classpath
Specifies the classpath to the JARs used to implement logging.

gg.log.classpath=path_to_jars

9.3.1.2 JMS Connection Properties
The JMS connection properties set up the connection, such as how to start up the JVM for
JMS integration.

• jvm.boot options

• jms.report.output

• jms.report.time

• jms.report.records

• jms.id

• jms.destination

• jms.connectionFactory

• jms.user, jms.password

9.3.1.2.1 jvm.boot options
Specifies the classpath and boot options that will be applied when the JVM starts up. The path
needs colon (:) separators for UNIX/Linux and semicolons (;) for Windows.

The syntax is:

jvm.bootoptions=option[, option][. . .]

Chapter 9
Message Capture Properties

9-22

The options are the same as those passed to Java executed from the command line. They
may include classpath, system properties, and JVM memory options (such as maximum
memory or initial memory) that are valid for the version of Java being used. Valid options may
vary based on the JVM version and provider.

For example (all on a single line):

jvm.bootoptions= -Djava.class.path=ggjava/ggjava.jar
-Dlog4j.configuration=my-log4j.properties

The log4j.configuration property could be a fully qualified URL to a log4j properties file; by
default this file is searched for in the classpath. You may use your own log4j configuration, or
one of the pre-configured log4j settings: log4j.properties (default level of logging), debug-
log4j.properties (debug logging) or trace-log4j.properties (very verbose logging).

9.3.1.2.2 jms.report.output
Specifies where the JMS report is written. The syntax is:

jms.report.output={report|log|both}

Where:
• report sends the JMS report to the Oracle GoldenGate report file. This is the default.

• log will write to the Java log file (if one is configured)

• both will send to both locations.

9.3.1.2.3 jms.report.time
Specifies the frequency of report generation based on time.

jms.report.time=time_specification

The following examples write a report every 30 seconds, 45 minutes and eight hours.

jms.report.time=30sec
jms.report.time=45min
jms.report.time=8hr

9.3.1.2.4 jms.report.records
Specifies the frequency of report generation based on number of records. The syntax is:

jms.report.records=number

The following example writes a report every 1000 records.

jms.report.records=1000

9.3.1.2.5 jms.id
Specifies that a unique identifier with the indicated format is passed back from the JMS
integration to the message capture VAM. This may be used by the VAM as a unique sequence
ID for records.

jms.id={ogg|time|wmq|activemq|message_header|custom_java_class}

Where:

Chapter 9
Message Capture Properties

9-23

• ogg - returns the message header property GG_ID which is set by Oracle GoldenGate JMS
delivery.

• time - uses a system timestamp as a starting point for the message ID

• wmq - reformats a WebSphere MQ Message ID for use with the VAM

• activemq - reformats an ActiveMQ Message ID for use with the VAM

• message_header - specifies your customized JMS message header to be included, such
as JMSMessageID, JMSCorrelationID, or JMSTimestamp.

• custom_java_class - specifies a custom Java class that creates a string to be used as an
ID.

For example:

jms.id=time
jms.id=JMSMessageID

The ID returned must be unique, incrementing, and fixed-width. If there are duplicate numbers,
the duplicates are skipped. If the message ID changes length, the Extract process will abend.

9.3.1.2.6 jms.destination
Specifies the queue or topic name to be looked up using JNDI.

jms.destination=jndi_name

For example:

jms.destination=sampleQ

9.3.1.2.7 jms.connectionFactory
Specifies the connection factory name to be looked up using JNDI.

jms.connectionFactory=jndi_name

For example

jms.connectionFactory=ConnectionFactory

9.3.1.2.8 jms.user, jms.password
Sets the user name and password of the JMS connection, as specified by the JMS provider.

jms.user=user_name
jms.password=password

This is not used for JNDI security. To set JNDI authentication, see the JNDI
java.naming.security properties.

For example:

jms.user=myuser
jms.password=mypasswd

Chapter 9
Message Capture Properties

9-24

9.3.1.3 JNDI Properties
In addition to specific properties for the message capture VAM, the JMS integration also
supports setting JNDI properties required for connection to an Initial Context to look up the
connection factory and destination. The following properties must be set:

java.naming.provider.url=url
java.naming.factory.initial=java_class_name

If JNDI security is enabled, the following properties may be set:

java.naming.security.principal=user_name
java.naming.security.credentials=password_or_other_authenticator

For example:

java.naming.provider.url= t3://localhost:7001
java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.security.principal=jndiuser
java.naming.security.credentials=jndipw

9.3.2 Parser Properties
Properties specify the formats of the message and the translation rules for each type of parser:
fixed, delimited, or XML. Set the parser.type property to specify which parser to use. The
remaining properties are parser specific.

• Setting the Type of Parser

• Fixed Parser Properties

• Delimited Parser Properties

• XML Parser Properties

9.3.2.1 Setting the Type of Parser
The following property sets the parser type.

• parser.type

9.3.2.1.1 parser.type
Specifies the parser to use.

parser.type={fixed|delim|xml}

Where:
• fixed invokes the fixed width parser

• delim invokes the delimited parser

• xml invokes the XML parser

For example:

parser.type=delim

Chapter 9
Message Capture Properties

9-25

9.3.2.2 Fixed Parser Properties
The following properties are required for the fixed parser.

• fixed.schematype

• fixed.sourcedefs

• fixed.copybook

• fixed.header

• fixed.seqid

• fixed.timestamp

• fixed.timestamp.format

• fixed.txid

• fixed.txowner

• fixed.txname

• fixed.optype

• fixed.optype.insertval

• fixed.optype.updateval

• fixed.optype.deleteval

• fixed.table

• fixed.schema

• fixed.txind

• fixed.txind.beginval

• fixed.txind.middleval

• fixed.txind.endval

• fixed.txind.wholeval

9.3.2.2.1 fixed.schematype
Specifies the type of file used as metadata for message capture. The two valid options are
sourcedefs and copybook.

fixed.schematype={sourcedefs|copybook}

For example:

fixed.schematype=copybook

The value of this property determines the other properties that must be set in order to
successfully parse the incoming data.

9.3.2.2.2 fixed.sourcedefs
If the fixed.schematype=sourcedefs, this property specifies the location of the source
definitions file that is to be used.

fixed.sourcedefs=file_location

Chapter 9
Message Capture Properties

9-26

For example:

fixed.sourcedefs=dirdef/hrdemo.def

9.3.2.2.3 fixed.copybook
If the fixed.schematype=copybook, this property specifies the location of the copybook file to
be used by the message capture process.

fixed.copybook=file_location

For example:

fixed.copybook=test_copy_book.cpy

9.3.2.2.4 fixed.header
Specifies the name of the sourcedefs entry or copybook record that contains header
information used to determine the data block structure:

fixed.header=record_name

For example:

fixed.header=HEADER

9.3.2.2.5 fixed.seqid
Specifies the name of the header field, JMS property, or system value that contains the seqid
used to uniquely identify individual records. This value must be continually incrementing and
the last character must be the least significant.

fixed.seqid={field_name|$jms_property|*seqid}

Where:
• field_name indicates the name of a header field containing the seqid

• jms_property uses the value of the specified JMS header property. A special value of this
is $jmsid which uses the value returned by the mechanism chosen by the jms.id property

• seqid indicates a simple incrementing 64-bit integer generated by the system

For example:

fixed.seqid=$jmsid

9.3.2.2.6 fixed.timestamp
Specifies the name of the field, JMS property, or system value that contains the timestamp.

fixed.timestamp={field_name|$jms_property|*ts}

For example:

fixed.timestamp=TIMESTAMP
fixed.timestamp=$JMSTimeStamp
fixed.timestamp=*ts

9.3.2.2.7 fixed.timestamp.format
Specifies the format of the timestamp field.

Chapter 9
Message Capture Properties

9-27

fixed.timestamp.format=format

Where the format can include punctuation characters plus:

• YYYY – four digit year

• YY – two digit year

• M[M] – one or two digit month

• D[D] – one or two digit day

• HH – hours in twenty four hour notation

• MI – minutes

• SS – seconds

• Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

fixed.timestamp.format=YYYY-MM-DD-HH.MI.SS

9.3.2.2.8 fixed.txid
Specifies the name of the field, JMS property, or system value that contains the txid used to
uniquely identify transactions. This value must increment for each transaction.

fixed.txid={field_name|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

fixed.txid=$JMSTxId
fixed.txid=*txid

9.3.2.2.9 fixed.txowner
Specifies the name of the field, JMS property, or static value that contains a user name
associated with a transaction. This value may be used to exclude certain transactions from
processing. This is an optional property.

fixed.txowner={field_name|$jms_property|"value"}

For example:

fixed.txowner=$MessageOwner
fixed.txowner="jsmith"

9.3.2.2.10 fixed.txname
Specifies the name of the field, JMS property, or static value that contains an arbitrary name to
be associated with a transaction. This is an optional property.

fixed.txname={field_name|$jms_property|"value"}

For example:

fixed.txname="fixedtx"

Chapter 9
Message Capture Properties

9-28

9.3.2.2.11 fixed.optype
Specifies the name of the field, or JMS property that contains the operation type, which is
validated against the fixed.optype values specified in the next sections.

fixed.header.optype={field_name|$jms_property}

For example:

fixed.header.optype=FUNCTION

9.3.2.2.12 fixed.optype.insertval
This value identifies an insert operation. The default is I.

fixed.optype.insertval={value|\xhex_value}

For example:

fixed.optype.insertval=A

9.3.2.2.13 fixed.optype.updateval
This value identifies an update operation. The default is U.

fixed.optype.updateval={value|\xhex_value}

For example:

fixed.optype.updateval=M

9.3.2.2.14 fixed.optype.deleteval
This value identifies a delete operation.The default is D.

fixed.optype.deleteval={value|\xhex_value}

For example:

fixed.optype.deleteval=R

9.3.2.2.15 fixed.table
Specifies the name of the table. This enables the parser to find the data record definition
needed to translate the non-header data portion.

fixed.table=field_name|$jms_property[, . . .]

More than one comma delimited field name may be used to determine the name of the table
Each field name corresponds to a field in the header record defined by the fixed.header
property or JMS property. The values of these fields are concatenated to identify the data
record.

For example:

fixed.table=$JMSTableName
fixed.table=SOURCE_Db,SOURCE_Db_Rec_Version

Chapter 9
Message Capture Properties

9-29

9.3.2.2.16 fixed.schema
Specifies the static name of the schema when generating SCHEMA.TABLE table names.

fixed.schema="value"

For example:

fixed.schema="OGG"

9.3.2.2.17 fixed.txind
Specifies the name of the field or JMS property that contains a transaction indicator that is
validated against the transaction indicator values. If this is not defined, all operations within a
single message will be seen to have occurred within a whole transaction. If defined, then it
determines the beginning, middle and end of transactions. Transactions defined in this way can
span messages. This is an optional property.

fixed.txind={field_name|$jms_property}

For example:

fixed.txind=$TX_IND

9.3.2.2.18 fixed.txind.beginval
This value identifies an operation as the beginning of a transaction. The defaults is B.

fixed.txind.beginval={value|\xhex_value}

For example:

fixed.txind.beginval=0

9.3.2.2.19 fixed.txind.middleval
This value identifies an operation as the middle of a transaction. The default is M.

fixed.txind.middleval={value|\xhex_value}

For example:

fixed.txind.middleval=1

9.3.2.2.20 fixed.txind.endval
This value identifies an operation as the end of a transaction. The default is E.

fixed.txind.endval={value|\xhex_value}

For example:

fixed.txind.endval=2

9.3.2.2.21 fixed.txind.wholeval
This value identifies an operation as a whole transaction. The default is W.

fixed.txind.wholeval={value|\xhex_value}

Chapter 9
Message Capture Properties

9-30

For example:

fixed.txind.wholeval=3

9.3.2.3 Delimited Parser Properties
The following properties are required for the delimited parser except where otherwise noted.

• delim.sourcedefs

• delim.header

• delim.seqid

• delim.timestamp

• delim.timestamp.format

• delim.txid

• delim.txowner

• delim.txname

• delim.optype

• delim.optype.insertval

• delim.optype.updateval

• delim.optype.deleteval

• delim.schemaandtable

• delim.schema

• delim.table

• delim.txind

• delim.txind.beginval

• delim.txind.middleval

• delim.txind.endval

• delim.txind.wholeval

• delim.fielddelim

• delim.linedelim

• delim.quote

• delim.nullindicator

• delim.fielddelim.escaped

• delim.linedelim.escaped

• delim.quote.escaped

• delim.nullindicator.escaped

• delim.hasbefores

• delim.hasnames

• delim.afterfirst

• delim.isgrouped

• delim.dateformat | delim.dateformat.table | delim.dateform.table.column

Chapter 9
Message Capture Properties

9-31

9.3.2.3.1 delim.sourcedefs
Specifies the location of the source definitions file to use.

delim.sourcedefs=file_location

For example:

delim.sourcedefs=dirdef/hrdemo.def

9.3.2.3.2 delim.header
Specifies the list of values that come before the data and assigns names to each.

delim.header=name[,name2][. . .]

The names must be unique. They can be referenced in other delim properties or wherever
header fields can be used.

For example:

delim.header=optype, tablename, ts
delim.timestamp=ts

9.3.2.3.3 delim.seqid
Specifies the name of the header field, JMS property, or system value that contains the seqid
used to uniquely identify individual records. This value must increment and the last character
must be the least significant.

delim.seqid={field_name|$jms_property|*seqid}

Where:
• field_name indicates the name of a header field containing the seqid

• jms_property uses the value of the specified JMS header property, a special value of this
is $jmsid which uses the value returned by the mechanism chosen by the jms.id
property

• seqid indicates a simple continually incrementing 64-bit integer generated by the system

For example:

delim.seqid=$jmsid

9.3.2.3.4 delim.timestamp
Specifies the name of the JMS property, header field, or system value that contains the
timestamp.

delim.timestamp={field_name|$jms_property|*ts}

For example:

delim.timestamp=TIMESTAMP
delim.timestamp=$JMSTimeStamp
delim.timestamp=*ts

Chapter 9
Message Capture Properties

9-32

9.3.2.3.5 delim.timestamp.format
Specifies the format of the timestamp field.

delim.timestamp.format=format

Where the format can include punctuation characters plus:

• YYYY – four digit year

• YY – two digit year

• M[M] – one or two digit month

• D[D] – one or two digit day

• HH – hours in twenty four hour notation

• MI – minutes

• SS – seconds

• Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

delim.timestamp.format=YYYY-MM-DD-HH.MI.SS

9.3.2.3.6 delim.txid
Specifies the name of the JMS property, header field, or system value that contains the txid
used to uniquely identify transactions. This value must increment for each transaction.

delim.txid={field_name|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

delim.txid=$JMSTxId
delim.txid=*txid

9.3.2.3.7 delim.txowner
Specifies the name of the JMS property, header field, or static value that contains an arbitrary
user name associated with a transaction. This value may be used to exclude certain
transactions from processing. This is an optional property.

delim.txowner={field_name|$jms_property|"value"}

For example:

delim.txowner=$MessageOwner
delim.txowner="jsmith"

9.3.2.3.8 delim.txname
Specifies the name of the JMS property, header field, or static value that contains an arbitrary
name to be associated with a transaction. This is an optional property.

delim.txname={field_name|$jms_property|"value"}

Chapter 9
Message Capture Properties

9-33

For example:

delim.txname="fixedtx"

9.3.2.3.9 delim.optype
Specifies the name of the JMS property or header field that contains the operation type. This is
compared to the values for delim.optype.insertval, delim.optype.updateval and
delim.optype.deleteval to determine the operation.

delim.optype={field_name|$jms_property}

For example:

delim.optype=optype

9.3.2.3.10 delim.optype.insertval
This value identifies an insert operation. The default is I.

delim.optype.insertval={value|\xhex_value}

For example:

delim.optype.insertval=A

9.3.2.3.11 delim.optype.updateval
This value identifies an update operation. The default is U.

delim.optype.updateval={value|\xhex_value}

For example:

delim.optype.updateval=M

9.3.2.3.12 delim.optype.deleteval
This value identifies a delete operation. The default is D.

delim.optype.deleteval={value|\xhex_value}

For example:

delim.optype.deleteval=R

9.3.2.3.13 delim.schemaandtable
Specifies the name of the JMS property or header field that contains the schema and table
name in the form SCHEMA.TABLE.

delim.schemaandtable={field_name|$jms_property}

For example:

delim.schemaandtable=$FullTableName

9.3.2.3.14 delim.schema
Specifies the name of the JMS property, header field, or hard-coded value that contains the
schema name.

Chapter 9
Message Capture Properties

9-34

delim.schema={field_name|$jms_property|"value"}

For example:

delim.schema="OGG"

9.3.2.3.15 delim.table
Specifies the name of the JMS property or header field that contains the table name.

delim.table={field_name|$jms_property}

For example:

delim.table=TABLE_NAME

9.3.2.3.16 delim.txind
Specifies the name of the JMS property or header field that contains the transaction indicator
to be validated against beginval, middleval, endval or wholeval. All operations within a single
message will be seen as within one transaction if this property is not set. If it is set it
determines the beginning, middle and end of transactions. Transactions defined in this way can
span messages. This is an optional property.

delim.txind={field_name|$jms_property}

For example:

delim.txind=txind

9.3.2.3.17 delim.txind.beginval
The value that identifies an operation as the beginning of a transaction. The default is B.

delim.txind.beginval={value|\xhex_value}

For example:

delim.txind.beginval=0

9.3.2.3.18 delim.txind.middleval
The value that identifies an operation as the middle of a transaction. The default is M.

delim.txind.middleval={value|\xhex_value}

For example:

delim.txind.middleval=1

9.3.2.3.19 delim.txind.endval
The value that identifies an operation as the end of a transaction. The default is E.

delim.txind.endval={value|\xhex_value}

For example:

delim.txind.endval=2

Chapter 9
Message Capture Properties

9-35

9.3.2.3.20 delim.txind.wholeval
The value that identifies an operation as a whole transaction. The default is W.

delim.txind.wholeval={value|\xhex_value}

For example:

delim.txind.wholeval=3

9.3.2.3.21 delim.fielddelim
Specifies the delimiter value used to separate fields (columns) in the data. This value is
defined through characters or hexadecimal values:

delim.fielddelim={value|\xhex_value}

For example:

delim.fielddelim=,
delim.fielddelim=\xc7

9.3.2.3.22 delim.linedelim
Specifies the delimiter value used to separate lines (records) in the data. This value is defined
using characters or hexadecimal values.

delim.linedelim={value|\xhex_value}

For example:

delim.linedelim=||
delim.linedelim=\x0a

9.3.2.3.23 delim.quote
Specifies the value used to identify quoted data. This value is defined using characters or
hexadecimal values.

delim.quote={value|\xhex_value}

For example:

delim.quote="

9.3.2.3.24 delim.nullindicator
Specifies the value used to identify NULL data. This value is defined using characters or
hexadecimal values.

delim.nullindicator={value|\xhex_value}

For example:

delim.nullindicator=NULL

9.3.2.3.25 delim.fielddelim.escaped
Specifies the value that will replace the field delimiter when the field delimiter occurs in the
input field. The syntax is:

Chapter 9
Message Capture Properties

9-36

delim.fielddelim.escaped={value|\xhex_value}

For example, given the following property settings:

delim.fielddelim=-
delim.fielddelim.escaped=$#$

If the data does not contain the hyphen delimiter within any of the field values:

one two three four

The resulting delimited data is:

one-two-three-four

If there are hyphen (-) delimiters within the field values:

one two three four-fifths two-fifths

The resulting delimited data is:

one-two-three-four$#$fifths-two$#$fifths

9.3.2.3.26 delim.linedelim.escaped
Specifies the value that will replace the line delimiter when the line delimiter occurs in the input
data. The syntax is:

delim.linedelim.escaped={value|\xhex_value}

For example, given the following property settings:

delim.linedelim=\
delim.linedelim.escaped=%/%

If the input lines are:

These are the lines and they
do not contain the delimiter.

Because the lines do not contain the backslash (\), the result is:

These are the lines and they\
do not contain the delimiter.\

However, if the input lines do contain the delimiter:

These are the lines\data values
and they do contain the delimiter.

So the results are:

These are the lines%/%data values\
and they do contain the delimiter.\

9.3.2.3.27 delim.quote.escaped
Specifies the value that will replace a quote delimiter when the quote delimiter occurs in the
input data. The syntax is:

delim.quote.escaped={value|\xhex_value}

For example, given the following property settings:

Chapter 9
Message Capture Properties

9-37

delim.quote="
delim.quote.escaped="'"

If the input data does not contain the quote (") delimiter:

It was a very original play.

The result is:

"It was a very original play."

However, if the input data does contain the quote delimiter:

It was an "uber-original" play.

The result is:

"It was an "'"uber-original"'" play."

9.3.2.3.28 delim.nullindicator.escaped
Specifies the value that will replace a null indicator when a null indicator occurs in the input
data. The syntax is:

delim.nullindicator.escaped={value|\xhex_value}

For example, given the following property settings:

delim.fielddelim=,
delim.nullindicator=NULL
delim.nullindicator.escaped=$NULL$

When the input data does not contain a NULL value or a NULL indicator:

1 2 3 4 5

The result is

1,2,3,4,5

When the input data contains a NULL value:

1 2 4 5

The result is

1,2,NULL,4,5

When the input data contains a NULL indicator:

1 2 NULL 4 5

The result is:

1,2,$NULL$,4,5

9.3.2.3.29 delim.hasbefores
Specifies whether before values are present in the data.

delim.hasbefores={true|false}

Chapter 9
Message Capture Properties

9-38

The default is false. The parser expects to find before and after values of columns for all
records if delim.hasbefores is set to true. The before values are used for updates and
deletes, the after values for updates and inserts. The afterfirst property specifies whether
the before images are before the after images or after them. If delim.hasbefores is false, then
no before values are expected.

For example:

delim.hasbefores=true

9.3.2.3.30 delim.hasnames
Specifies whether column names are present in the data.

delim.hasnames={true|false}

The default is false. If true, the parser expects to find column names for all records. The parser
validates the column names against the expected column names. If false, no column names
are expected.

For example:

delim.hasnames=true

9.3.2.3.31 delim.afterfirst
Specifies whether after values are positioned before or after the before values.

delim.afterfirst={true|false}

The default is false. If true, the parser expects to find the after values before the before values.
If false, the after values are before the before values.

For example:

delim.afterfirst=true

9.3.2.3.32 delim.isgrouped
Specifies whether the column names and before and after images should be expected grouped
together for all columns or interleaved for each column.

delim.isgrouped={true|false}

The default is false. If true, the parser expects find a group of column names (if hasnames is
true), followed by a group of before values (if hasbefores), followed by a group of after values
(the afterfirst setting will reverse the before and after value order). If false, the parser will
expect to find a column name (if hasnames), before value (if hasbefores) and after value for
each column.

For example:

delim.isgrouped=true

9.3.2.3.33 delim.dateformat | delim.dateformat.table | delim.dateform.table.column
Specifies the date format for column data. This is specified at a global level, table level or
column level.The format used to parse the date is a subset of the formats used for
parser.timestamp.format.

Chapter 9
Message Capture Properties

9-39

delim.dateformat=format
delim.dateformat.TABLE=format
delim.dateformat.TABLE.COLUMN=format

Where:
• format is the format defined for parser.timestamp.format.

• table is the fully qualified name of the table that is currently being processed.

• column is a column of the specified table.

For example:

delim.dateformat=YYYY-MM-DD HH:MI:SS
delim.dateformat.MY.TABLE=DD/MM/YY-HH.MI.SS
delim.dateformat.MY.TABLE.EXP_DATE=YYMM

9.3.2.4 XML Parser Properties
The following properties are used by the XML parser.

• xml.sourcedefs

• xml.rules

• rulename.type

• rulename.match

• rulename.subrules

• txrule.timestamp

• txrule.timestamp.format

• txrule.seqid

• txrule.txid

• txrule.txowner

• txrule.txname

• oprule.timestamp

• oprule.timestamp.format

• oprule.seqid

• oprule.txid

• oprule.txowner

• oprule.txname

• oprule.schemandtable

• oprule.schema

• oprule.table

• oprule.optype

• oprule.optype.insertval

• oprule.optype.updateval

• oprule.optype.deleteval

• oprule.txind

Chapter 9
Message Capture Properties

9-40

• oprule.txind.beginval

• oprule.txind.middleval

• oprule.txind.endval

• oprule.txind.wholeval

• colrule.name

• colrule.index

• colrule.value

• colrule.isnull

• colrule.ismissing

• colrule.before.value

• colrule.before.isnull

• colrule.before.ismissing

• colrule.after.value

• colrule.after.isnull

• colrule.after.ismissing

9.3.2.4.1 xml.sourcedefs
Specifies the location of the source definitions file.

xml.sourcedefs=file_location

For example:

xml.sourcedefs=dirdef/hrdemo.def

9.3.2.4.2 xml.rules
Specifies the list of XML rules for parsing a message and converting to transactions,
operations and columns:

xml.rules=xml_rule_name[, . . .]

The specified XML rules are processed in the order listed. All rules matching a particular XML
document may result in the creation of transactions, operations and columns. The specified
XML rules should be transaction or operation type rules.

For example:

xml.rules=dyntxrule, statoprule

9.3.2.4.3 rulename.type
Specifies the type of XML rule.

rulename.type={tx|op|col}

Where:
• tx indicates a transaction rule

• op indicates an operation rule

Chapter 9
Message Capture Properties

9-41

• col indicates a column rule

For example:

dyntxrule.type=tx
statoprule.type=op

9.3.2.4.4 rulename.match
Specifies an XPath expression used to determine whether the rule is activated for a particular
document or not.

rulename.match=xpath_expression

If the XPath expression returns any nodes from the document, the rule matches and further
processing occurs. If it does not return any nodes, the rule is ignored for that document.

The following example activates the dyntxrule if the document has a root element of
Transaction
dyntxrule.match=/Transaction

Where statoprule is a sub rule of stattxtule, the following example activates the
statoprule if the parent rule's matching nodes have child elements of NewMyTableEntry.
statoprule.match=./NewMyTableEntry

9.3.2.4.5 rulename.subrules
Specifies a list of rule names to check for matches if the parent rule is activated by its match.

rulename.subrules=xml_rule_name[, . . .]

The specified XML rules are processed in the order listed. All matching rules may result in the
creation of transactions, operations and columns.

Valid sub-rules are determined by the parent type. Transaction rules can only have operation
sub-rules. Operation rules can have operation or column sub-rules. Column rules cannot have
sub-rules.

For example:

dyntxrule.subrules=dynoprule
statoprule.subrules=statkeycolrule, statcol1rule

9.3.2.4.6 txrule.timestamp
Controls the transaction timestamp by instructing the adapter to 1) use the transaction commit
timestamp contained in a specified XPath expression or JMS property or 2) use the current
system time. This is an optional property.

txrule.timestamp={xpath_expression|$jms_property|*ts}

The timestamp for the transaction may be overridden at the operation level, or may only be
present at the operation level. Any XPath expression must end with a value, accessor, such as
@att or text().

For example:

dyntxrule.timestamp=@ts

Chapter 9
Message Capture Properties

9-42

9.3.2.4.7 txrule.timestamp.format
Specifies the format of the timestamp field.

txrule.timestamp.format=format

Where the format can include punctuation characters plus:

• YYYY – four digit year

• YY – two digit year

• M[M] – one or two digit month

• D[D] – one or two digit day

• HH – hours in twenty four hour notation

• MI – minutes

• SS – seconds
• Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

dyntxrule.timestamp.format=YYYY-MM-DD-HH.MI.SS

9.3.2.4.8 txrule.seqid
Specifies the seqid for a particular transaction. This can be used when there are multiple
transactions per message. Determines the XPath expression, JMS property, or system value
that contains the transactions seqid. Any XPath expression must end with a value accessor
such as @att or text().

txrule.seqid={xpath_expression|$jms_property|*seqid}

For example:

dyntxrule.seqid=@seqid

9.3.2.4.9 txrule.txid
Specifies the XPath expression, JMS property, or system value that contains the txid used to
unique identify transactions. This value must increment for each transaction.

txrule.txid={xpath_expression|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

dyntxrule.txid=$JMSTxId
dyntxrule.txid=*txid

9.3.2.4.10 txrule.txowner
Specifies the XPath expression, JMS property, or static value that contains an arbitrary user
name associated with a transaction. This value may be used to exclude certain transactions
from processing.

Chapter 9
Message Capture Properties

9-43

txrule.txowner={xpath_expression|$jms_property|"value"}

For example:

dyntxrule.txowner=$MessageOwner
dyntxrule.txowner="jsmith"

9.3.2.4.11 txrule.txname
Specifies the XPath expression, JMS property, or static value that contains an arbitrary name
to be associated with a transaction. This is an optional property.

txrule.txname={xpath_expression|$jms_property|"value"}

For example:

dyntxrule.txname="fixedtx"

9.3.2.4.12 oprule.timestamp
Controls the operation timestamp by instructing the adapter to 1) use the transaction commit
timestamp contained in a specified XPath expression or JMS property or 2) use the current
system time. This is an optional property.

oprule.timestamp={xpath_expression|$jms_property|*ts}

The timestamp for the operation will override a timestamp at the transaction level.

Any XPath expression must end with a value accessor such as @att or text().

For example:

statoprule.timestamp=./CreateTime/text()

9.3.2.4.13 oprule.timestamp.format
Specifies the format of the timestamp field.

oprule.timestamp.format=format

Where the format can include punctuation characters plus:

• YYYY – four digit year

• YY – two digit year

• M[M] – one or two digit month

• D[D] – one or two digit day

• HH – hours in twenty four hour notation

• MI – minutes

• SS – seconds

• Fn – n number of fractions

The default format is "YYYY-MM-DD:HH:MI:SS.FFF"

For example:

statoprule.timestamp.format=YYYY-MM-DD-HH.MI.SS

Chapter 9
Message Capture Properties

9-44

9.3.2.4.14 oprule.seqid
Specifies the seqid for a particular operation. Use the XPath expression, JMS property, or
system value that contains the operation seqid. This overrides any seqid defined in parent
transaction rules. Must be present if there is no parent transaction rule.

Any XPath expression must end with a value accessor such as @att or text().

oprule.seqid={xpath_expression|$jms_property|*seqid}

For example:

dynoprule.seqid=@seqid

9.3.2.4.15 oprule.txid
Specifies the XPath expression, JMS property, or system value that contains the txid used to
uniquely identify transactions. This overrides any txid defined in parent transaction rules and
is required if there is no parent transaction rule. The value must be incremented for each
transaction.

oprule.txid={xpath_expression|$jms_property|*txid}

For most cases using the system value of *txid is preferred.

For example:

dynoprule.txid=$JMSTxId
dynoprule.txid=*txid

9.3.2.4.16 oprule.txowner
Specifies the XPath expression, JMS property, or static value that contains an arbitrary user
name associated with a transaction. This value may be used to exclude certain transactions
from processing. This is an optional property.

oprule.txowner={xpath_expression|$jms_property|"value"}

For example:

dynoprule.txowner=$MessageOwner
dynoprule.txowner="jsmith"

9.3.2.4.17 oprule.txname
Specifies the XPath expression, JMS property, or static value that contains an arbitrary name
to be associated with a transaction. This is an optional property.

oprule.txname={xpath_expression|$jms_property|"value"}

For example:

dynoprule.txname="fixedtx"

9.3.2.4.18 oprule.schemandtable
Specifies the XPath expression JMS property or hard-coded value that contains the schema
and table name in the form SCHEMA.TABLE. Any XPath expression must end with a value

Chapter 9
Message Capture Properties

9-45

accessor such as @att or text(). The value is verified to ensure the table exists in the source
definitions.

oprule.schemaandtable={xpath_expression|$jms_property|"value"}

For example:

statoprule.schemaandtable="MY.TABLE"

9.3.2.4.19 oprule.schema
Specifies the XPath expression, JMS property or hard-coded value that contains the schema
name. Any XPath expression must end with a value accessor such as @att or text().

oprule.schema={xpath_expression|$jms_property|"value"}

For example:

statoprule.schema=@schema

9.3.2.4.20 oprule.table
Specifies the XPath expression, JMS property or hard-coded value that contains the table
name. Any XPath expression must end with a value accessor such as @att or text().

oprule.table={xpath_expression|$jms_property|"value"}

For example:

statoprule.table=$TableName

9.3.2.4.21 oprule.optype
Specifies the XPath expression, JMS property or literal value that contains the optype to be
validated against an optype insertval. Any XPath expression must end with a value accessor
such as @att or text().

oprule.optype={xpath_expression|$jms_property|"value"}

For example:

dynoprule.optype=@type
statoprule.optype="I"

9.3.2.4.22 oprule.optype.insertval
Specifies the value that identifies an insert operation. The default is I.

oprule.optype.insertval={value|\xhex_value}

For example:

dynoprule.optype.insertval=A

9.3.2.4.23 oprule.optype.updateval
Specifies the value that identifies an update operation. The default is U.

oprule.optype.updateval={value|\xhex_value}

For example:

Chapter 9
Message Capture Properties

9-46

dynoprule.optype.updateval=M

9.3.2.4.24 oprule.optype.deleteval
Specifies the value that identifies a delete operation. The default is D.

oprule.optype.deleteval={value|\xhex_value}

For example:

dynoprule.optype.deleteval=R

9.3.2.4.25 oprule.txind
Specifies the XPath expression or JMS property that contains the transaction indicator to be
validated against beginval or other value that identifies the position within the transaction. All
operations within a single message are regarded as occurring within a whole transaction if this
property is not defined. Specifies the begin, middle and end of transactions. Any XPath
expression must end with a value accessor such as @att or text(). Transactions defined in
this way can span messages. This is an optional property.

oprule.txind={xpath_expression|$jms_property}

For example:

dynoprule.txind=@txind

9.3.2.4.26 oprule.txind.beginval
Specifies the value that identifies an operation as the beginning of a transaction. The default is
B.

oprule.txind.beginval={value|\xhex_value}

For example:

dynoprule.txind.beginval=0

9.3.2.4.27 oprule.txind.middleval
Specifies the value that identifies an operation as the middle of a transaction. The default is M.

oprule.txind.middleval={value|\xhex_value}

For example:

dynoprule.txind.middleval=1

9.3.2.4.28 oprule.txind.endval
Specifies the value that identifies an operation as the end of a transaction. The default is E.

oprule.txind.endval={value|\xhex_value}

For example:

dynoprule.txind.endval=2

Chapter 9
Message Capture Properties

9-47

9.3.2.4.29 oprule.txind.wholeval
Specifies the value that identifies an operation as a whole transaction. The default is W.

oprule.txind.wholeval={value|\xhex_value}

For example:

dynoprule.txind.wholeval=3

9.3.2.4.30 colrule.name
Specifies the XPath expression or hard-coded value that contains a column name. The column
index must be specified if this is not and the column name will be resolved from that. If
specified the column name will be verified against the source definitions file. Any XPath
expression must end with a value accessor such as @att or text().

colrule.name={xpath_expression|"value"}

For example:

dyncolrule.name=@name
statkeycolrule.name="keycol"

9.3.2.4.31 colrule.index
Specifies the XPath expression or hard-coded value that contains a column index. If not
specified then the column name must be specified and the column index will be resolved from
that. If specified the column index will be verified against the source definitions file. Any XPath
expression must end with a value accessor such as @att or text().

colrule.index={xpath_expression|"value"}

For example:

dyncolrule.index=@index
statkeycolrule.index=1

9.3.2.4.32 colrule.value
Specifies the XPath expression or hard-coded value that contains a column value. Any XPath
expression must end with a value accessor such as @att or text(). If the XPath expression
fails to return any data because a node or attribute does not exist, the column value will be
deemed as null. To differentiate between null and missing values (for updates) the isnull and
ismissing properties should be set. The value returned is used for delete before values, and
update/insert after values.

colrule.value={xpath_expression|"value"}

For example:

statkeycolrule.value=./text()

9.3.2.4.33 colrule.isnull
Specifies the XPath expression used to discover if a column value is null. The XPath
expression must end with a value accessor such as @att or text(). If the XPath expression
returns any value, the column value is null. This is an optional property.

Chapter 9
Message Capture Properties

9-48

colrule.isnull=xpath_expression

For example:

dyncolrule.isnull=@isnull

9.3.2.4.34 colrule.ismissing
Specifies the XPath expression used to discover if a column value is missing. The XPath
expression must end with a value accessor such as @att or text(). If the XPath expression
returns any value, then the column value is missing. This is an optional property.

colrule.ismissing=xpath_expression

For example:

dyncolrule.ismissing=./missing

9.3.2.4.35 colrule.before.value
Overrides colrule.value to specifically say how to obtain before values used for updates or
deletes. This has the same format as colrule.value. This is an optional property.

For example:

dyncolrule.before.value=./beforevalue/text()

9.3.2.4.36 colrule.before.isnull
Overrides colrule.isnull to specifically say how to determine if a before value is null for
updates or deletes. This has the same format as colrule.isnull. This is an optional property.

For example:

dyncolrule.before.isnull=./beforevalue/@isnull

9.3.2.4.37 colrule.before.ismissing
Overrides colrule.ismissing to specifically say how to determine if a before value is missing
for updates or deletes. This has the same format as colrule.ismissing. This is an optional
property.

For example:

dyncolrule.before.ismissing=./beforevalue/missing

9.3.2.4.38 colrule.after.value
Overrides colrule.value to specifically say how to obtain after values used for updates or
deletes. This has the same format as colrule.value. This is an optional property.

For example:

dyncolrule.after.value=./aftervalue/text()

9.3.2.4.39 colrule.after.isnull
Overrides colrule.isnull to specifically say how to determine if an after value is null for
updates or deletes. This has the same format as colrule.isnull. This is an optional property.

Chapter 9
Message Capture Properties

9-49

For example:

dyncolrule.after.isnull=./aftervalue/@isnull

9.3.2.4.40 colrule.after.ismissing
Overrides colrule.ismissing to specifically say how to determine if an after value is missing
for updates or deletes. This has the same format as colrule.ismissing. This is an optional
property.

For example:

dyncolrule.after.ismissing=./aftervalue/missing

9.4 Oracle GoldenGate Java Delivery
This part of the book contains information on using Oracle GoldenGate for Distributed
Applications and Analytics (GG for DAA) to process transaction records and apply it to various
targets by means of Java module.

For more information, see Understanding Oracle GoldenGate for Distributed Applications and
Analytics .

• Configuring Java Delivery

• Running Java Delivery

• Java Delivery Properties

• Configuring Event Handlers

• Developing Custom Filters, Formatters, and Handlers

• Configuring Data Transforms

9.4.1 Configuring Java Delivery
• Configuring the JRE in the Properties File

• Configuring Oracle GoldenGate for Java Delivery

• Configuring the Java Handlers

9.4.1.1 Configuring the JRE in the Properties File
The current release of Oracle GoldenGate Java Delivery requires Java 8. Refer to the section
on configuring Java for how to correctly access Java and the required Java shared libraries.
Modify the Adapter Properties file to point to the location of the Oracle GoldenGate for Java
main JAR (ggjava.jar) and set any additional JVM runtime boot options as required (these
are passed directly to the JVM at startup):

jvm.bootoptions=-Djava.class.path=.:ggjava/ggjava.jar -Xmx512m -Xmx64m

Note the following options in particular:

• java.class.path must include pathing to the core application (ggjava/ggjava.jar). The
current directory (.) should be included as well in the classpath. Logging initializes when
the JVM is loaded therefore the java.class.path variable should including any pathing to
logging properties files (such as log4j properties files). The dependency JARs required for
logging functionality are included in ggjava.jar and do not need to be explicitly included.

Chapter 9
Oracle GoldenGate Java Delivery

9-50

Pathing can reference files and directories relative to the Oracle GoldenGate install
directory, to allow storing Java property files, Velocity templates and other classpath
resources in the dirprm subdirectory. It is also possible to append to the classpath in the
Java application properties file. Pathing to handler dependency JARs can be added here
as well. However, it is considered to be a better practice to use the gg.classpath variable
to include any handler dependencies.

• The jvm.bootoptions property also allows you to control the initial heap size of the JVM
(Xms) and the maximum heap size of the JVM (Xmx). Increasing the maximum heap size
can improve performance by requiring less frequent garbage collections. Additionally, you
may need to increase the maximum heap size if a Java out of memory exception occurs.

Once the properties file is correctly configured for your system, it usually remains unchanged.
See Common Properties, for additional configuration options.

9.4.1.2 Configuring Oracle GoldenGate for Java Delivery
Java Delivery is compatible with the Oracle GoldenGate Replicat process. Transaction data is
read from the Oracle GoldenGate trail files and delivered to the Oracle GoldenGate Java
Delivery module across JNI interface. The data is transferred to the Oracle GoldenGate Java
Delivery module using the JNI interface. The Java Delivery module is configurable to allow
data to be streamed into various targets. The supported targets for the Oracle GoldenGate
Java Adapter product include JMS, file writing, and custom integrations. The Oracle
GoldenGate for Big Data product includes all of those integrations and streaming capabilities to
Big Data targets.

• Configuring a Replicat for Java Delivery

9.4.1.2.1 Configuring a Replicat for Java Delivery
The Oracle GoldenGate Replicat process can be configured to send transaction data to the
Oracle GoldenGate for Java module. Replicat consumes a local trail (for example dirdat/aa)
and sends the data to the Java Delivery module. The Java module is responsible for
processing all the data and applying it to the desired target.

Following is an example of adding a Replicat process:

ADD REPLICAT javarep, EXTTRAIL ./dirdat/aa
The process names and trail names used in the preceding example can be replaced with any
valid name. Process names must be 8 characters or less, trail names must to be two
characters. In the Replicat parameter file (javarep.prm), specify the location of the user exit
library.

The Replicat process has transaction grouping built into the application. Transaction grouping
can significantly improve performance when streaming data to a target database. Transaction
grouping can also significantly improve performance when streaming data to Big Data
applications. The Replicat parameter to control transaction grouping is the GROUPTRANSOPS
variable in the Replicat configuration file. The default value of this variable is 1000 which
means the Replicat process will attempt to group 1000 operations into single target
transaction. Performance testing has generally shown that the higher the GROUPTRANSOPS the
better the performance when streaming data to Big Data applications. Setting the
GROUPTRANSOPS variable to 1 means that the original transaction boundaries from the source
trail file (source database) will be maintained.

Chapter 9
Oracle GoldenGate Java Delivery

9-51

Table 9-1 User Exit Replicat Parameters

Parameter Explanation

REPLICAT javarep All Replicat parameter files start with the Replicat name

SOURCEDEFS ./dirdef/tcust.def (Optional) If the input trail files do not contain the metadata
records, the Replicat process requires metadata describing
the trail data. This can come from a database or a source
definitions file. This metadata defines the column names
and data types in the trail being read (./dirdat/aa).

TARGETDB LIBFILE libggjava.so SET
properties= dirprm/
javarep.properties

The TARGETDB LIBFILE libggjava.so parameter
serves as a trigger to initialize the Java module. The SET
clause to specify the Java properties file is optional. If
specified, it should contain an absolute or relative path
(relative to the Replicat executable) to the properties file for
the Java module. The default value is
replicat_name.properties in the dirprm directory.

MAP schema.*, TARGET *.*; The tables to pass to the Java module; tables not included
will be skipped. If mapping from source to target tables is
required, one can use the MAP source_specification
TARGET target_specification as describe in
"Mapping and Manipulating Data" in Administering Oracle
GoldenGate.

GROUPTRANSOPS 1000 Group source transactions into a single larger target
transaction for improved performance. GROUPTRANSOPS of
1000 is the default setting. GROUPTRANSOPS sets a
minimum value rather than an absolute value, to avoid
splitting apart source transactions. Replicat waits until it
receives all operations from the last source transaction in
the group before applying the target transaction.

For example, if transaction 1 contains 200 operations, and
transaction 2 contains 400 operations, and transaction 3
contains 500 operations, then Replicat transaction contains
all 1,100 operations even though GROUPTRANSOPS is set to
the default of 1,000. Conversely, Replicat might apply a
transaction before reaching the value set by
GROUPTRANSOPS if there is no more data in the trail to
process.

9.4.1.3 Configuring the Java Handlers
The Handlers are integrations with target applications which plug into the Oracle GoldenGate
Java Delivery module. It is the Java Handlers which provide the functionality to push data to
integration targets such as JMS or Big Data applications. The Java Adapter properties file is
used to configure Java Delivery and Java handlers. To test the configuration, users may use
the built-in file handler. Here are some example properties, followed by explanations of the
properties (comment lines start with #):

the list of active handlers
gg.handlerlist=myhandler
set properties on 'myhandler'
gg.handler.myhandler.type=file
gg.handler.myhandler.format=tx2xml.vm
gg.handler.myhandler.file=output.xml

Chapter 9
Oracle GoldenGate Java Delivery

9-52

This property file declares the following:

• Active event handlers. In the example a single event handler is active, called myhandler.
Multiple handlers may be specified, separated by commas. For example:
gg.handlerlist=myhandler, yourhandler

Note:

Starting Oracle GoldenGate for Big Data 23c release, you will be able to specify
only a single handler.

• Configuration of the handlers. In the example myhandler is declared to be a file type of
handler: gg.handler.myhandler.type=file

Note:

See the documentation for each type of handler (for example, the JMS handler or
the file writer handler) for the list of valid properties that can be set.

• The format of the output is defined by the Velocity template tx2xml.vm. You may specify
your own custom template to define the message format; just specify the path to your
template relative to the Java classpath.

This property file is actually a complete example that will write captured transactions to the
output file output.xml. Other handler types can be specified using the keywords: jms_text (or
jms), jms_map, singlefile (a file that does not roll), and others. Custom handlers can be
implemented, in which case the type would be the fully qualified name of the Java class for the
handler. Oracle GoldenGate Big Data package also contains built in Big Data target types.

Note:

See the documentation for each type of handler (for example, the JMS handler or the
file writer handler) for the list of valid properties that can be set.

9.4.2 Running Java Delivery
• Starting the Application

• Restarting the Java Delivery

9.4.2.1 Starting the Application
To run the Java Delivery and execute the Java application, you only need an existing Oracle
GoldenGate trail file. If the trail file does not contain metadata records, a source definitions file
is also required to describe the schema for operations in the trail file. For the examples that
follow, a simple TCUSTMER and TCUSTORD trail is used (matching the demo SQL provided with
the Oracle GoldenGate software download).

• Starting Using Replicat

Chapter 9
Oracle GoldenGate Java Delivery

9-53

9.4.2.1.1 Starting Using Replicat
To run Java Delivery using Replicat, simply start the Replicat process from GGSCI:

GGSCI> START REPLICAT javarep
GGSCI> INFO REPLICAT javarep

The INFO command returns information similar to the following:

REPLICAT JAVAREP Last Started 2015-09-10 17:25 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:00 ago)
Log Read Checkpoint File ./dirdat/aa0000002015-09-10 17:50:41.000000
 RBA 2702

9.4.2.2 Restarting the Java Delivery
There are two possible checkpoint files when running with Replicat, the Replicat process
checkpoint file and the Java Delivery checkpoint file. Both files are located in the dirchk
directory and created using the following naming conventions.

Replicat checkpoint file
group_name.cpr

Java delivery checkpoint file:
group_name.cpj

To suppress the creation and use of the Java Delivery checkpoint the Replicat process should
be created using the following syntax:

ADD REPLICAT myrep EXTTRAIL ./dirdat/tr NODBCHECKPOINT

It is the NODBCHECKPOINT syntax that disables the creation and use of the Java Delivery
checkpoint file.

• Restarting Java Delivery in Replicat

9.4.2.2.1 Restarting Java Delivery in Replicat
The checkpoint handling in Replicat is more straightforward as it includes logic to pick which
one out of the two checkpoint information is of higher priority. The logic is as follows:

• If the Java Delivery is started after user manually performed an ADD or ALTER REPLICAT,
then the checkpoint information held by Replicat process will be used as the starting
position.

• If the Java Delivery is started without prior manual intervention to alter checkpoint (for
example, upon graceful stop or an abend), then the checkpoint information held by Java
module will be used as the starting position.

For example, restarting a Java Delivery using Replicat at the beginning of a trail looks like
the following:

1. Reset the Replicat to the beginning of the trail data:

GGSCI> ALTER REPLICAT JAVAREP, EXTSEQNO 0, EXTRBA 0
2. Reset the Replicat

Chapter 9
Oracle GoldenGate Java Delivery

9-54

GGSCI> START JAVAREP
GGSCI> INFO JAVAREP
REPLICAT JAVAREP Last Started 2015-09-10 17:25 Status RUNNING
Checkpoint Lag 00:00:00 (updated 00:00:00 ago)
Log Read Checkpoint File ./dirdat/aa000000
2015-09-10 17:50:41.000000 RBA 2702

It may take a few seconds for the Replicat process status to report itself as running.
Check the report file to see if it abended or is still in the process of starting:

GGSCI> VIEW REPORT JAVAREP
In the case where the Java Delivery is restarted after a crash or an abend, the last
position kept by the Java module will be used when the application restarts.

9.4.3 Java Delivery Properties
• Common Properties

• Delivery Properties

• Java Application Properties

9.4.3.1 Common Properties
The following properties are common to Java Delivery using either Replicat or Extract.

• Logging Properties

• JVM Boot Options

9.4.3.1.1 Logging Properties
Logging is controlled by the following properties.

• gg.log

• gg.log.level

• gg.log.file

• gg.log.classpath

9.4.3.1.1.1 gg.log

Specifies the type of logging that is to be used. The default implementation for the Oracle
GoldenGate for Big Data is the jdk option. This is the built-in Java logging called
java.util.logging (JUL). The other logging options are log4j or logback.

For example, to set the type of logging to log4j:

gg.log=log4j

The recommended setting is log4j. The log file is created in the dirrpt subdirectory of the
installation. The default log file name includes the group name of the associated Extract and
the file extension is .log.

<process name>_<log level>_log4j.log
Therefore if the Oracle GoldenGate Replicat process is called javaue, and the gg.log.level is
set to debug, the resulting log file name will be:

Chapter 9
Oracle GoldenGate Java Delivery

9-55

javaue_debug_log4j.log

9.4.3.1.1.2 gg.log.level

Specifies the overall log level for all modules. The syntax is:

gg.log.level={ERROR|WARN|INFO|DEBUG|TRACE}

The log levels are defined as follows:

• ERROR – Only write messages if errors occur

• WARN – Write error and warning messages

• INFO – Write error, warning and informational messages

• DEBUG – Write all messages, including debug ones.

• TRACE - Highest level of logging, includes all messages.

The default logging level is INFO. The messages in this case will be produced on startup,
shutdown and periodically during operation. If the level is switched to DEBUG, large volumes of
messages may occur which could impact performance. For example, the following sets the
global logging level to INFO:

global logging level
gg.log.level=INFO

9.4.3.1.1.3 gg.log.file

Specifies the path to the log file. The syntax is:

gg.log.file=path_to_file

Where the path_to_file is the fully defined location of the log file. This allows a change to the
name of the log, but you must include the Replicat name if you have more than one Replicat to
avoid one overwriting the log of the other.

9.4.3.1.1.4 gg.log.classpath

Specifies the classpath to the JARs used to implement logging. This configuration property is
not typically used as the ggjava.jar library includes the required logging dependency libraries.

gg.log.classpath=path_to_jars

9.4.3.1.2 JVM Boot Options
The following options configure the Java Runtime Environment. Java classpath and memory
options are configurable.

• jvm.bootoptions

9.4.3.1.2.1 jvm.bootoptions

Specifies the initial Java classpath and other boot options that will be applied when the JVM
starts. The java.class.path needs colon (:) separators for UNIX/Linux and semicolons (;) for
Windows. This is where to specify various options for the JVM, such as initial and maximum
heap size and classpath; for example:

• -Xms: initial java heap size

• -Xmx: maximum java heap size

Chapter 9
Oracle GoldenGate Java Delivery

9-56

• -Djava.class.path: classpath specifying location of at least the main application JAR,
ggjava.jar. Other JARs, such as JMS provider JARs, may also be specified here as well;
alternatively, these may be specified in the Java application properties file. If using a
separate log4j properties file then the location of the properties file must be included in
the bootoptions java.class.path included in the bootoptions variable.

• -verbose:jni: run in verbose mode (for JNI)

For example (all on a single line):

jvm.bootoptions= -Djava.class.path=ggjava/ggjava.jar
-Dlog4j.configuration=my-log4j.properties -Xmx512m

The log4j.configuration property identifies a log4j properties file that is resolved by
searching the classpath. You may use your own log4j configuration, or one of the
preconfigured log4j settings: log4j.properties (default level of logging), debug-
log4j.properties (debug logging) or trace-log4j.properties (very verbose logging). To use
log4j logging with the Replicat process gg.log=log4j must be set.

Use of the one of the preconfigured log4j settings does not require any change to the classpath
since those files are already included in the classpath. The -Djava.class.path variable must
include the path to the directory containing a custom log4j configuration file without the * wild
card appended.

9.4.3.2 Delivery Properties
The following properties are available to Java Delivery:

• General Properties

• Statistics and Reporting
Disables or enables the checkpoint file handling. This causes the standard Oracle
GoldenGate reporting to be incomplete. Oracle GoldenGate for Java adds its own
reporting to handle this issue.

9.4.3.2.1 General Properties
The following properties apply to all writer configurations:

• goldengate.userexit.writers

• goldengate.userexit.chkptprefix

• goldengate.userexit.nochkpt

• goldengate.userexit.usetargetcols

9.4.3.2.1.1 goldengate.userexit.writers

Specifies the name of the writer. This is always jvm and should not be modified.

For example:

goldengate.userexit.writers=jvm
All other properties in the file should be prefixed by the writer name, jvm.

9.4.3.2.1.2 goldengate.userexit.chkptprefix

Specifies a string value for the prefix added to the Java checkpoint file name. For example:

Chapter 9
Oracle GoldenGate Java Delivery

9-57

goldengate.userexit.chkptprefix=javaue_

9.4.3.2.1.3 goldengate.userexit.nochkpt

Disables or enables the checkpoint file. The default is false, the checkpoint file is enabled. Set
this property to true if transactions are supported and enabled on the target.

For example, Java Adapter Properties if JMS is the target and JMS local transactions are
enabled (the default), set goldengate.userexit.nochkpt=true to disable the user exit
checkpoint file. If JMS transactions are disabled by setting localTx=false on the handler, the
checkpoint file should be enabled by setting goldengate.userexit.nochkpt=false.
goldengate.userexit.nochkpt=true|false

9.4.3.2.1.4 goldengate.userexit.usetargetcols

Specifies whether or not mapping to target columns is allowed. The default is false, no target
mapping.

goldengate.userexit.usetargetcols=true|false

9.4.3.2.2 Statistics and Reporting
Disables or enables the checkpoint file handling. This causes the standard Oracle GoldenGate
reporting to be incomplete. Oracle GoldenGate for Java adds its own reporting to handle this
issue.

Statistics can be reported every t seconds or every n records - or if both are specified,
whichever criteria is met first.

There are two sets of statistics recorded: those maintained by the Replicat module and those
obtained from the Java module. The reports received from the Java side are formatted and
returned by the individual handlers.

The statistics include the total number of operations, transactions and corresponding rates.

• jvm.stats.display

• jvm.stats.full

• jvm.stats.time | jvm.stats.numrecs

9.4.3.2.2.1 jvm.stats.display

Controls the output of statistics to the Oracle GoldenGate report file and to the user exit log
files.

The following example outputs these statistics.

jvm.stats.display=true

9.4.3.2.2.2 jvm.stats.full

Controls the output of statistics from the Java side, in addition to the statistics from the C side.

Java side statistics are more detailed but also involve some additional overhead, so if statistics
are reported often and a less detailed summary is adequate, it is recommended that
stats.full property is set to false.

The following example will output Java statistics in addition to C.

Chapter 9
Oracle GoldenGate Java Delivery

9-58

jvm.stats.full=true

9.4.3.2.2.3 jvm.stats.time | jvm.stats.numrecs

Specifies a time interval, in seconds or a number of records, after which statistics will be
reported. The default is to report statistics every hour or every 10000 records (which ever
occurs first).

For example, to report ever 10 minutes or every 1000 records, specify:

jvm.stats.time=600
jvm.stats.numrecs=1000

The Java application statistics are handler-dependent:

• For the all handlers, there is at least the total elapsed time, processing time, number of
operations, transactions;

• For the JMS handler, there is additionally the total number of bytes received and sent.

• The report can be customized using a template.

9.4.3.3 Java Application Properties
The following defines the properties which may be set in the Java application property file.

• Properties for All Handlers

• Properties for Formatted Output

• Properties for CSV and Fixed Format Output

• File Writer Properties

• JMS Handler Properties

• JNDI Properties

• General Properties

• Java Delivery Transaction Grouping

9.4.3.3.1 Properties for All Handlers
The following properties apply to all handlers:

• gg.handlerlist

• gg.handler.name.type

9.4.3.3.1.1 gg.handlerlist

The handler list is a list of active handlers separated by commas. These values are used in the
rest of the property file to configure the individual handlers. For example:

gg.handlerlist=name1, name2
gg.handler.name1.propertyA=value1
gg.handler.name1.propertyB=value2
gg.handler.name1.propertyC=value3
gg.handler.name2.propertyA=value1
gg.handler.name2.propertyB=value2
gg.handler.name2.propertyC=value3

Chapter 9
Oracle GoldenGate Java Delivery

9-59

Using the handlerlist property, you may include completely configured handlers in the
property file and just disable them by removing them from the handlerlist.

9.4.3.3.1.2 gg.handler.name.type

This type of handler. This is either a predefined value for built-in handlers, or a fully qualified
Java class name. The syntax is:

gg.handler.name.type={jms|jms_map|aq|singlefile|rollingfile|custom_java_class}

Where:

All but the last are pre-defined handlers:

• jms – Sends transactions, operations, and metadata as formatted messages to a JMS
provider

• aq – Sends transactions, operations, and metadata as formatted messages to Oracle
Advanced Queuing (AQ)

• jms_map – Sends JMS map messages

• singlefile – Writes to a single file on disk, but does not roll the file

• rollingfile – Writes transactions, operations, and metadata to a file on disk, rolling the file
over after a certain size, amount of time, or both. For example:

gg.handler.name1.rolloverSize=5000000
gg.handler.name1.rolloverTime=1m

• custom_java_class – Any class that extends the Oracle GoldenGate for Java
AbstractHandler class and can handle transaction, operation, or metadata events

The Oracle GoldenGate foe Big Data package also contains more predefined handlers to
write to various Big Data targets.

9.4.3.3.2 Properties for Formatted Output
The following properties apply to all handlers capable of producing formatted output; this
includes:

• The jms_text handler (but not the jms_map handler)

• The aq handler

• The singlefile and rolling handlers, for writing formatted output to files

• The predefined Oracle GoldenGate for Distributed Applications and Analytics (GG for
DAA) handlers

• gg.handler.name.format

• gg.handler.name.includeTables

• gg.handler.name.excludeTables

• gg.handler.name.mode, gg.handler.name.format.mode

9.4.3.3.2.1 gg.handler.name.format

Specifies the format used to transform operations and transactions into messages sent to JMS,
to the Big Data target or to a file. The format is specified uniquely for each handler. The value
may be:

Chapter 9
Oracle GoldenGate Java Delivery

9-60

• Velocity template

• Java class name (fully qualified - the class specified must be a type of formatter)

• csv for delimited values (such as comma separated values; the delimiter can be
customized)

• fixed for fixed-length fields

• Built-in formatter, such as:

– xml – demo XML format

– xml2 – internal XML format

For example, to specify a custom Java class:

gg.handlerlist=abc
gg.handler.abc.format=com.mycompany.MyFormat

Or, for a Velocity template:

gg.handlerlist=xyz
gg.handler.xyz.format=path/to/sample.vm

If using templates, the file is found relative to some directory or JAR that is in the classpath. By
default, the Oracle GoldenGate installation directory is in the classpath, so the preceding
template could be placed in the dirprm directory of the Oracle GoldenGate installation location.

The default format is to use the built-in XML formatter.

9.4.3.3.2.2 gg.handler.name.includeTables

Specifies a list of tables this handler will include.

If the schema (or owner) of the table is specified, then only that schema matches the table
name; otherwise, the table name matches any schema. A comma separated list of tables can
be specified. For example, to have the handler only process tables foo.customer and
bar.orders:

gg.handler.myhandler.includeTables=foo.customer, bar.orders

If the catalog and schema (or owner) of the table are specified, then only that catalog and
schema matches the table name; otherwise, the table name matches any catalog and schema.
A comma separated list of tables can be specified. For example, to have the handler only
process tables dbo.foo.customer and dbo.bar.orders:

gg.handler.myhandler.includeTables=dbo.foo.customer, dbo.bar.orders

Note:

In order to selectively process operations on a table by table basis, the handler must
be processing in operation mode. If the handler is processing in transaction mode,
then when a single transaction contains several operations spanning several tables, if
any table matches the include list of tables, the transaction will be included.

9.4.3.3.2.3 gg.handler.name.excludeTables

Specifies a list of tables this handler will exclude.

Chapter 9
Oracle GoldenGate Java Delivery

9-61

If the schema (or owner) of the table is specified, then only that schema matches the table
name; otherwise, the table name matches any schema. A list of tables may be specified,
comma-separated. For example, to have the handler process all operations on all tables
except table date_modified in all schemas:

gg.handler.myhandler.excludeTables=date_modified

If the catalog and schema (or owner) of the table are specified, then only that catalog and
schema matches the table name; otherwise, the table name matches any catalog and schema.
A list of tables may be specified, comma-separated. For example, to have the handler process
all operations on all tables except table date_modified in catalog dbo and schema bar:

gg.handler.myhandler.excludeTables=dbo.bar.date_modified

9.4.3.3.2.4 gg.handler.name.mode, gg.handler.name.format.mode

Specifies whether to output one operation per message (op) or one transaction per message
(tx). The default is op. Use gg.handler.name.format.mode when you have a custom formatter.

9.4.3.3.3 Properties for CSV and Fixed Format Output
If the handler is set to use either comma separated values (CSV) CSV or fixed format output,
the following properties may also be set.

• gg.handler.name.format.delim

• gg.handler.name.format.quote

• gg.handler.name.format.metacols

• gg.handler.name.format.missingColumnChar

• gg.handler.name.format.presentColumnChar

• gg.handler.name.format.nullColumnChar

• gg.handler.name.format.beginTxChar

• gg.handler.name.format.middleTxChar

• gg.handler.name.format.endTxChar

• gg.handler.name.format.wholeTxChar

• gg.handler.name.format.insertChar

• gg.handler.name.format.updateChar

• gg.handler.name.format.deleteChar

• gg.handler.name.format.truncateChar

• gg.handler.name.format.endOfLine

• gg.handler.name.format.justify

• gg.handler.name.format.includeBefores

9.4.3.3.3.1 gg.handler.name.format.delim

Specifies the delimiter to use between fields. Set this to no value to have no delimiter used. For
example:

gg.handler.handler1.format.delim=,

Chapter 9
Oracle GoldenGate Java Delivery

9-62

9.4.3.3.3.2 gg.handler.name.format.quote

Specifies the quote character to be used if column values are quoted. For example:

gg.handler.handler1.format.quote='

9.4.3.3.3.3 gg.handler.name.format.metacols

Specifies the metadata column values to appear at the beginning of the record, before any
column data. Specify any of the following, in the order they should appear:

• position – unique position indicator of records in a trail

• opcode – I, U, or D for insert, update, or delete records (see: insertChar, updateChar,
deleteChar)

• txind – transaction indicator – such as 0=begin, 1=middle, 2=end, 3=whole tx (see
beginTxChar, middleTxChar, endTxChar, wholeTxChar)

• opcount – position of a record in a transaction, starting from 0

• catalog – catalog of the schema for the record

• schema – schema/owner of the table for the record

• tableonly – just table (no schema/owner)

• table – full name of table, catalog.schema.table
• timestamp – commit timestamp of record

For example:

gg.handler.handler1.format.metacols=opcode, table, txind, position

9.4.3.3.3.4 gg.handler.name.format.missingColumnChar

Specifies a special column prefix for a column value that was not captured from the source
database transaction log. The column value is not in trail and it is unknown if it has a value or
is NULL
The character used to represent the missing state of the column value can be customized. For
example:

gg.handler.handler1.format.missingColumnChar=M

By default, the missing column value is set to an empty string and does not show.

9.4.3.3.3.5 gg.handler.name.format.presentColumnChar

Specifies a special column prefix for a column value that exists in the trail and is not NULL.

The character used to represent the state of the column can be customized. For example:

gg.handler.handler1.format.presentColumnChar=P

By default, the present column value is set to an empty string and does not show.

9.4.3.3.3.6 gg.handler.name.format.nullColumnChar

Specifies a special column prefix for a column value that exists in the trail and is set to NULL.

Chapter 9
Oracle GoldenGate Java Delivery

9-63

The character used to represent the state of the column can be customized. For example:

gg.handler.handler1.format.nullColumnChar=N

By default, the null column value is set to an empty string and does not show.

9.4.3.3.3.7 gg.handler.name.format.beginTxChar

Specifies the header metadata character (see metacols) used to identify a record as the begin
of a transaction. For example:

gg.handler.handler1.format.beginTxChar=B

9.4.3.3.3.8 gg.handler.name.format.middleTxChar

Specifies the header metadata characters (see metacols) used to identify a record as the
middle of a transaction. For example:

gg.handler.handler1.format.middleTxChar=M

9.4.3.3.3.9 gg.handler.name.format.endTxChar

Specifies the header metadata characters (see metacols) used to identify a record as the end
of a transaction. For example:

gg.handler.handler1.format.endTxChar=E

9.4.3.3.3.10 gg.handler.name.format.wholeTxChar

Specifies the header metadata characters (see metacols) used to identify a record as a
complete transaction; referred to as a whole transaction. For example:

gg.handler.handler1.format.wholeTxChar=W

9.4.3.3.3.11 gg.handler.name.format.insertChar

Specifies the character to identify an insert operation. The default I.

For example, to use INS instead of I for insert operations:

gg.handler.handler1.format.insertChar=INS

9.4.3.3.3.12 gg.handler.name.format.updateChar

Specifies the character to identify an update operation. The default is U.

For example, to use UPD instead of U for update operations:

gg.handler.handler1.format.updateChar=UPD

9.4.3.3.3.13 gg.handler.name.format.deleteChar

Specifies the character to identify a delete operation. The default is D.

For example, to use DEL instead of D for delete operations:

gg.handler.handler1.format.deleteChar=DEL

9.4.3.3.3.14 gg.handler.name.format.truncateChar

Specifies the character to identify a truncate operation. The default is T.

Chapter 9
Oracle GoldenGate Java Delivery

9-64

For example, to use TRUNC instead of T for truncate operations:

gg.handler.handler1.format.truncateChar=TRUNC

9.4.3.3.3.15 gg.handler.name.format.endOfLine

Specifies the end-of-line character as:

• EOL - Native platform

• CR - Neutral (UNIX-style \n)

• CRLF - Windows (\r\n)

For example:

gg.handler.handler1.format.endOfLine=CR

9.4.3.3.3.16 gg.handler.name.format.justify

Specifies the left or right justification of fixed fields. For example:

gg.handler.handler1.format.justify=left

9.4.3.3.3.17 gg.handler.name.format.includeBefores

Controls whether before images should be included in the output. There must be before
images in the trail. For example:

gg.handler.handler1.format.includeBefores=false

9.4.3.3.4 File Writer Properties
The following properties only apply to handlers that write their output to files: the file handler
and the singlefile handler.

• gg.handler.name.file

• gg.handler.name.append

• gg.handler.name.rolloverSize

9.4.3.3.4.1 gg.handler.name.file

Specifies the name of the output file for the given handler. If the handler is a rolling file, this
name is used to derive the rolled file names. The default file name is output.xml.

9.4.3.3.4.2 gg.handler.name.append

Controls whether the file should be appended to (true) or overwritten upon restart (false).

9.4.3.3.4.3 gg.handler.name.rolloverSize

If using the file handler, this specifies the size of the file before a rollover should be attempted.
The file size will be at least this size, but will most likely be larger. Operations and transactions
are not broken across files. The size is specified in bytes, but a suffix may be given to identify
MB or KB. For example:

gg.handler.myfile.rolloverSize=5MB

The default rollover size is 10MB.

Chapter 9
Oracle GoldenGate Java Delivery

9-65

9.4.3.3.5 JMS Handler Properties
The following properties apply to the JMS handlers. Some of these values may be defined in
the Java application properties file using the name of the handler. Other properties may be
placed into a separate JMS properties file, which is useful if using more than one JMS handler
at a time. For example:

gg.handler.myjms.type=jms_text
gg.handler.myjms.format=xml
gg.handler.myjms.properties=weblogic.properties

Just as with Velocity templates and formatting property files, this additional JMS properties file
is found in the classpath. The preceding properties file weblogic.properties would be found
in {gg_install_dir}/dirprm/weblogic.properties, since the dirprm directory is included by
default in the classpath.

Settings that can be made in the Java application properties file will override the corresponding
value set in the supplemental JMS properties file (weblogic.properties in the preceding
example). In the following example, the destination property is specified in the Java application
properties file. This allows the same default connection information for the two handlers myjms1
and myjms2, but customizes the target destination queue.

gg.handlerlist=myjms1,myjms2
gg.handler.myjms1.type=jms_text
gg.handler.myjms1.destination=queue.sampleA
gg.handler.myjms1.format=sample.vm
gg.handler.myjms1.properties=tibco-default.properties
gg.handler.myjms2.type=jms_map
gg.handler.myjms2.destination=queue.sampleB
gg.handler.myjms2.properties=tibco-default.properties

To set a property, specify the handler name as a prefix; for example:

gg.handlerlist=sample
gg.handler.sample.type=jms_text
gg.handler.sample.format=my_template.vm
gg.handler.sample.destination=gg.myqueue
gg.handler.sample.queueortopic=queue
gg.handler.sample.connectionUrl=tcp://host:61616?jms.useAsyncSend=true
gg.handler.sample.useJndi=false
gg.handler.sample.connectionFactory=ConnectionFactory
gg.handler.sample.connectionFactoryClass=\
 org.apache.activemq.ActiveMQConnectionFactory
gg.handler.sample.timeToLive=50000

• Standard JMS Settings

• Group Transaction Properties

9.4.3.3.5.1 Standard JMS Settings

The following outlines the JMS properties which may be set, and the accepted values. These
apply for both JMS handler types: jms_text (TextMessage) and jms_map (MapMessage).

• gg.handler.name.destination

• gg.handler.name.user

• gg.handler.name.password

• gg.handler.name.queueOrTopic

Chapter 9
Oracle GoldenGate Java Delivery

9-66

• gg.handler.name.persistent

• gg.handler.name.priority

• gg.handler.name.timeToLive

• gg.handler.name.connectionFactory

• gg.handler.name.useJndi

• gg.handler.name.connectionUrl

• gg.handler.name.connectionFactoryClass

• gg.handler.name.localTX

• gg.handlerlist.nop

• gg.handler.name.physicalDestination

9.4.3.3.5.1.1 gg.handler.name.destination
The queue or topic to which the message is sent. This must be correctly configured on the
JMS server. Typical values may be: queue/A, queue.Test, example.MyTopic, etc.

gg.handler.name.destination=queue_or_topic

9.4.3.3.5.1.2 gg.handler.name.user
(Optional) User name required to send messages to the JMS server.

gg.handler.name.user=user_name

9.4.3.3.5.1.3 gg.handler.name.password
(Optional) Password required to send messages to the JMS server

gg.handler.name.password=password

9.4.3.3.5.1.4 gg.handler.name.queueOrTopic
Whether the handler is sending to a queue (a single receiver) or a topic (publish / subscribe).
This must be correctly configured in the JMS provider. This property is an alias of
gg.handler.name.destination. The syntax is:

gg.handler.name.queueOrTopic=queue|topic

Where:

• queue – a message is removed from the queue once it has been read. This is the default.

• topic – messages are published and may be delivered to multiple subscribers.

9.4.3.3.5.1.5 gg.handler.name.persistent
If the delivery mode is set to persistent or not. If the messages are to be persistent, the JMS
provider must be configured to log the message to stable storage as part of the client's send
operation. The syntax is:

gg.handler.name.persistent={true|false}

9.4.3.3.5.1.6 gg.handler.name.priority
JMS defines a 10 level priority value, with 0 as the lowest and 9 as the highest. Priority is set to
4 by default. The syntax is:

gg.handler.name.priority=integer

For example:

gg.handler.name.priority=5

Chapter 9
Oracle GoldenGate Java Delivery

9-67

9.4.3.3.5.1.7 gg.handler.name.timeToLive
The length of time in milliseconds from its dispatch time that a produced message should be
retained by the message system. A value of zero specifies the time is unlimited. The default is
zero. The syntax is:

gg.handler.name.timeToLive=milliseconds

For example:

gg.handler.name.timeToLive= 36000

9.4.3.3.5.1.8 gg.handler.name.connectionFactory
Name of the connection factory to lookup using JNDI. ConnectionFactoryJNDIName is an alias.
The syntax is:

gg.handler.name.connectionFactory=JNDI_name

9.4.3.3.5.1.9 gg.handler.name.useJndi
If gg.handler.name.usejndi is false, then JNDI is not used to configure the JMS client.
Instead, factories and connections are explicitly constructed. The syntax is:

gg.handler.name.useJndi=true|false

9.4.3.3.5.1.10 gg.handler.name.connectionUrl
Connection URL is used only when not using JNDI to explicitly create the connection. The
syntax is:

gg.handler.name.connectionUrl=url

9.4.3.3.5.1.11 gg.handler.name.connectionFactoryClass
The Connection Factory Class is used to access a factory only when not using JNDI. The
value of this property is the Java class name to instantiate; constructing a factory object
explicitly.

gg.handler.name.connectionFactoryClass=java_class_name

9.4.3.3.5.1.12 gg.handler.name.localTX
Specifies whether or not local transactions are used. The default is true, local transactions are
used. The syntax is:

gg.handler.name.localTX=true|false

9.4.3.3.5.1.13 gg.handlerlist.nop
Disables the sending of JMS messages to allow testing of message generation. This is a
global property used only for testing. The events are still generated and handled and the
message is constructed. The default is false; do not disable message send. The syntax is:

gg.handlerlist.nop=true|false

Users can take advantage of this option to measure the performance of trail records
processing without involving the handler module. This approach can narrow down the possible
culprits of a suspected performance issue while applying trail records to the target system.

9.4.3.3.5.1.14 gg.handler.name.physicalDestination
Name of the queue or topic object, obtained through the ConnectionFactory API instead of the
JNDI provider.

gg.handler.name.physicalDestination=queue_name

Chapter 9
Oracle GoldenGate Java Delivery

9-68

9.4.3.3.5.2 Group Transaction Properties

These properties set limits for grouping transactions.

9.4.3.3.6 JNDI Properties
These JNDI properties are required for connection to an Initial Context to look up the
connection factory and initial destination.

java.naming.provider.url=url
java.naming.factory.initial=java-class-name

If JNDI security is enabled, the following properties may be set:

java.naming.security.principal=user-name
java.naming.security.credentials=password-or-other-authenticator

For example:

java.naming.provider.url= t3://localhost:7001
java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.security.principal=jndiuser
java.naming.security.credentials=jndipw

9.4.3.3.7 General Properties
The following are general properties that are used for the Java framework:

• gg.classpath

• gg.report.time

• gg.binaryencoding

9.4.3.3.7.1 gg.classpath

Specifies a comma delimited list of additional paths to directories or JARs to add to the
classpath. Optionally, the list can be delimited by semicolons for Windows systems or by
colons for UNIX. For example:

gg.classpath=C:\Program Files\MyProgram\bin;C:\Program Files\ProgramB\app\bin;

This Adapter properties file configuration property should be used to configure pathing to
custom Java JARs or to the external dependencies of Big Data applications.

9.4.3.3.7.2 gg.report.time

Specifies how often statistics are calculated and sent to Extract for the processing report. If
Extract is configured to print a report, these statistics are included. The syntax is:

gg.report.time=report_interval{s|m|h}

Where:

• report_interval is an integer

• The valid time units are:

– s - seconds

– m - minutes

Chapter 9
Oracle GoldenGate Java Delivery

9-69

– h - hours

If no value is entered, the default is to calculate and send every 24 hours.

9.4.3.3.7.3 gg.binaryencoding

Specifies the binary encoding type. The desired output encoding for binary data can be
configured using this property. For example:

gg.binaryencoding=base64|hex

The default value is base64. The valid values to represent binary data are:

• base64 - a base64 string

• hex - a hexadecimal string

9.4.3.3.8 Java Delivery Transaction Grouping
Transaction grouping can significantly improve the performance of Java integrations especially
Big Data integrations. Java Delivery provides functionality to perform transaction grouping.
When Java Delivery is hosted by a Replicat process then the GROUPTRANSOPS Replicat
configuration should be used to perform transaction grouping.

9.4.4 Developing Custom Filters, Formatters, and Handlers
• Filtering Events

• Custom Formatting

• Coding a Custom Handler in Java

• Additional Resources

9.4.4.1 Filtering Events
By default, all transactions, operations and metadata events are passed to the
DataSourceListener event handlers. An event filter can be implemented to filter the events
sent to the handlers. The filter could select certain operations on certain tables containing
certain column values, for example

Filters are additive: if more than one filter is set for a handler, then all filters must return true in
order for the event to be passed to the handler.

You can configure filters using the Java application properties file:

handler "foo" only receives certain events
gg.handler.one.type=jms
gg.handler.one.format=mytemplate.vm
gg.handler.one.filter=com.mycompany.MyFilter

To activate the filter, you write the filter and set it on the handler; no additional logic needs to be
added to specific handlers.

9.4.4.2 Custom Formatting
You can customize the output format of a built-in handler by:

• Writing a custom formatter in Java or

• Using a velocity template

Chapter 9
Oracle GoldenGate Java Delivery

9-70

• Coding a Custom Formatter in Java

• Using a Velocity Template

9.4.4.2.1 Coding a Custom Formatter in Java
The preceding examples show a JMS handler and a file output handler using the same
formatter (com.mycompany.MyFormatter). The following is an example of how this formatter
may be implemented.

Example 9-14 Custom Formatting Implementation

package com.mycompany.MyFormatter;
import oracle.goldengate.datasource.DsOperation;
import oracle.goldengate.datasource.DsTransaction;
import oracle.goldengate.datasource.format.DsFormatterAdapter;
import oracle.goldengate.datasource.meta.ColumnMetaData;
import oracle.goldengate.datasource.meta.DsMetaData;
import oracle.goldengate.datasource.meta.TableMetaData;
import java.io.PrintWriter;
public class MyFormatter extends DsFormatterAdapter {

 public MyFormatter() { }
 @Override
 public void formatTx(DsTransaction tx,

DsMetaData meta,
PrintWriter out)

 {

 out.print("Transaction: ");
 out.print("numOps=\'" + tx.getSize() + "\' ");
 out.println("ts=\'" + tx.getStartTxTimeAsString() + "\'");
 for(DsOperation op: tx.getOperations()) {
TableName currTable = op.getTableName();
TableMetaData tMeta = dbMeta.getTableMetaData(currTable);
String opType = op.getOperationType().toString();
String table = tMeta.getTableName().getFullName();
out.println(opType + " on table \"" + table + "\":");
int colNum = 0;
for(DsColumn col: op.getColumns())
{

ColumnMetaData cMeta = tMeta.getColumnMetaData(colNum++);
out.println(
cMeta.getColumnName() + " = " + col.getAfterValue());
}

 }
 @Override
 public void formatOp(DsTransaction tx,

DsOperation op,
TableMetaData tMeta,
PrintWriter out)

 {

 // not used...

 }

Chapter 9
Oracle GoldenGate Java Delivery

9-71

}

The formatter defines methods for either formatting complete transactions (after they are
committed) or individual operations (as they are received, before the commit). If the formatter
is in operation mode, then formatOp(...) is called; otherwise, formatTx(...) is called at
transaction commit.

To compile and use this custom formatter, include the Oracle GoldenGate for Java JARs in the
classpath and place the compiled .class files in gg_install_dir/dirprm:

javac -d gg_install_dir/dirprm
-classpath ggjava/ggjava.jar MyFormatter.java

The resulting class files are located in resources/classes (in correct package structure):

gg_install_dir/dirprm/com/mycompany/MyFormatter.class

Alternatively, the custom classes can be put into a JAR; in this case, either include the JAR file
in the JVM classpath using the user exit properties (using java.class.path in the
jvm.bootoptions property), or by setting the Java application properties file to include your
custom JAR:

set properties on 'one'
gg.handler.one.type=file
gg.handler.one.format=com.mycompany.MyFormatter
gg.handler.one.file=output.xml
gg.classpath=/path/to/my.jar,/path/to/directory/of/jars/*

9.4.4.2.2 Using a Velocity Template
As an alternative to writing Java code for custom formatting, Velocity templates can be a good
alternative to quickly prototype formatters. For example, the following template could be
specified as the format of a JMS or file handler:

Transaction: numOps='$tx.size' ts='$tx.timestamp'
#for each($op in $tx)
operation: $op.sqlType, on table "$op.tableName":
#for each($col in $op)
$op.tableName, $col.meta.columnName = $col.value
#end
#end

If the template were named sample.vm, it could be placed in the classpath, for example:

gg_install_dir/dirprm/sample.vm

Update the Java application properties file to use the template:

set properties on 'one'
gg.handler.one.type=file
gg.handler.one.format=sample.vm
gg.handler.one.file=output.xml

When modifying templates, there is no need to recompile any Java source; simply save the
template and re-run the Java application. When the application is run, the following output
would be generated (assuming a table named SCHEMA.SOMETABLE, with columns TESTCOLA and
TESTCOLB):

Transaction: numOps='3' ts='2008-12-31 12:34:56.000'
operation: UPDATE, on table "SCHEMA.SOMETABLE":

Chapter 9
Oracle GoldenGate Java Delivery

9-72

SCHEMA.SOMETABLE, TESTCOLA = value 123
SCHEMA.SOMETABLE, TESTCOLB = value abc
operation: UPDATE, on table "SCHEMA.SOMETABLE":
SCHEMA.SOMETABLE, TESTCOLA = value 456
SCHEMA.SOMETABLE, TESTCOLB = value def
operation: UPDATE, on table "SCHEMA.SOMETABLE":
SCHEMA.SOMETABLE, TESTCOLA = value 789
SCHEMA.SOMETABLE, TESTCOLB = value ghi

9.4.4.3 Coding a Custom Handler in Java
A custom handler can be implemented by extending AbstractHandler as in the following
example:

import oracle.goldengate.datasource.*;
import static oracle.goldengate.datasource.GGDataSource.Status;
public class SampleHandler extends AbstractHandler {
 @Override
 public void init(DsConfiguration conf, DsMetaData metaData) {
 super.init(conf, metaData);
 // ... do additional config...
 }
 @Override
 public Status operationAdded(DsEvent e, DsTransaction tx, DsOperation op) { ... }
 @Override
 public Status transactionCommit(DsEvent e, DsTransaction tx) { ... }
 @Override
 public Status metaDataChanged(DsEvent e, DsMetaData meta) { }
 @Override
 public void destroy() { /* ... do cleanup ... */ }
 @Override
 public String reportStatus() { return "status report..."; }
 @Override
 public Status ddlOperation(OpType opType, ObjectType objectType, String
objectName, String ddlText) }

The method in AbstractHandler is not abstract rather it has a body. In the body it performs
cached metadata invalidation by marking the metadata object as dirty. It also provides TRACE-
level logging of DDL events when the ddlOperation method is specified. You can override this
method in your custom handler implementations. You should always call the super method
before any custom handling to ensure the functionality in AbstractHandler is executed

When a transaction is processed from the Extract, the order of calls into the handler is as
follows:

1. Initialization:

• First, the handler is constructed.

• Next, all the "setters" are called on the instance with values from the property file.

• Finally, the handler is initialized; the init(...) method is called before any
transactions are received. It is important that the init(...) method call
super.init(...) to properly initialize the base class.

2. Metadata is then received. If the Java module is processing an operation on a table not yet
seen during this run, a metadata event is fired, and the metadataChanged(...) method is
called. Typically, there is no need to implement this method. The DsMetaData is
automatically updated with new data source metadata as it is received.

Chapter 9
Oracle GoldenGate Java Delivery

9-73

3. A transaction is started. A transaction event is fired, causing the transactionBegin(...)
method on the handler to be invoked (this is not shown). This is typically not used, since
the transaction has zero operations at this point.

4. Operations are added to the transaction, one after another. This causes the
operationAdded(...) method to be called on the handler for each operation added. The
containing transaction is also passed into the method, along with the data source metadata
that contains all processed table metadata. The transaction has not yet been committed,
and could be aborted before the commit is received.

Each operation contains the column values from the transaction (possibly just the changed
values when Extract is processing with compressed updates.) The column values may
contain both before and after values.

For the ddlOperation method, the options are:

• opType - Is an enumeration that identifies the DDL operation type that is occurring
(CREATE, ALTER, and so on).

• objectType - Is an enumeration that identifies the type of the target of the DDL (TABLE,
VIEW, and so on).

• objectName - Is the fully qualified source object name; typically a fully qualified table
name.

• ddlText - Is the raw DDL text executed on the source relational database.

5. The transaction is committed. This causes the transactionCommit(...) method to be
called.

6. Periodically, reportStatus may be called; it is also called at process shutdown. Typically,
this displays the statistics from processing (the number of operations andtransactions
processed and other details).

An example of a simple printer handler, which just prints out very basic event information for
transactions, operations and metadata follows. The handler also has a property myoutput for
setting the output file name; this can be set in the Java application properties file as follows:

gg.handlerlist=sample
set properties on 'sample'
gg.handler.sample.type=sample.SampleHandler
gg.handler.sample.myoutput=out.txt

To use the custom handler,

1. Compile the class

2. Include the class in the application classpath,

3. Add the handler to the list of active handlers in the Java application properties file.

To compile the handler, include the Oracle GoldenGate for Java JARs in the classpath and
place the compiled .class files in gg_install_dir/javaue/resources/classes:

javac -d gg_install_dir/dirprm
-classpath ggjava/ggjava.jar SampleHandler.java

The resulting class files would be located in resources/classes, in correct package structure,
such as:

gg_install_dir/dirprm/sample/SampleHandler.class

Chapter 9
Oracle GoldenGate Java Delivery

9-74

Note:

For any Java application development beyond hello world examples, either Ant or
Maven would be used to compile, test and package the application. The examples
showing javac are for illustration purposes only.

Alternatively, custom classes can be put into a JAR and included in the classpath. Either
include the custom JAR files in the JVM classpath using the Java properties (using
java.class.path in the jvm.bootoptions property), or by setting the Java application
properties file to include your custom JAR:

set properties on 'one'
gg.handler.one.type=sample.SampleHandler
gg.handler.one.myoutput=out.txt
gg.classpath=/path/to/my.jar,/path/to/directory/of/jars/*

The classpath property can be set on any handler to include additional individual JARs, a
directory (which would contain resources or extracted class files) or a whole directory of JARs.
To include a whole directory of JARs, use the Java 6 style syntax:

c:/path/to/directory/* (or on UNIX: /path/to/directory/*)

Only the wildcard * can be specified; a file pattern cannot be used. This automatically matches
all files in the directory ending with the .jar suffix. To include multiple JARs or multiple
directories, you can use the system-specific path separator (on UNIX, the colon and on
Windows the semicolon) or you can use platform-independent commas, as shown in the
preceding example.

If the handler requires many properties to be set, just include the property in the parameter file,
and your handler's corresponding "setter" will be called. For example:

gg.handler.one.type=com.mycompany.MyHandler
gg.handler.one.myOutput=out.txt
gg.handler.one.myCustomProperty=12345

The preceding example would invoke the following methods in the custom handler:

public void setMyOutput(String s) {

 // use the string...

} public void setMyCustomProperty(int j) {

 // use the int...

}

Any standard Java type may be used, such as int, long, String, boolean. For custom types, you
may create a custom property editor to convert the String to your custom type.

9.4.4.4 Additional Resources
There is Javadoc available for the Java API. The Javadoc has been intentionally reduced to a
set of core packages, classes and interfaces in order to only distribute the relevant interfaces
and classes useful for customizing and extension.

Chapter 9
Oracle GoldenGate Java Delivery

9-75

In each package, some classes have been intentionally omitted for clarity. The important
classes are:

• oracle.goldengate.datasource.DsTransaction: represents a database transaction. A
transaction contains zero or more operations.

• oracle.goldengate.datasource.DsOperation: represents a database operation (insert,
update, delete). An operation contains zero or more column values representing the data-
change event. Columns indexes are offset by zero in the Java API.

• oracle.goldengate.datasource.DsColumn: represents a column value. A column value is
a composite of a before and an after value. A column value may be 'present' (having a
value or be null) or 'missing' (is not included in the source trail).

– oracle.goldengate.datasource.DsColumnComposite is the composite

– oracle.goldengate.datasource.DsColumnBeforeValue is the column value before the
operation (this is optional, and may not be included in the operation)

– oracle.goldengate.datasource.DsColumnAfterValue is the value after the operation

• oracle.goldengate.datasource.meta.DsMetaData: represents all database metadata
seen; initially, the object is empty. DsMetaData contains a hash map of zero or more
instances of TableMetaData, using the TableName as a key.

• oracle.goldengate.datasource.meta.TableMetaData: represents all metadata for a
single table; contains zero or more ColumnMetaData.

• oracle.goldengate.datasource.meta.ColumnMetaData: contains column names and data
types, as defined in the database and/or in the Oracle GoldenGate source definitions file.

See the Javadoc for additional details.

9.4.5 Configuring Data Transforms
Data Transforms is the Oracle GoldenGate module for Distributed Applications and Analytics,
which can help with column level data transformations during the replicat process.

It's a 2 step process:

1. Configuring a Matcher:
Matcher configuration helps in identifying target columns, which you want to apply the Data
Transforms on.

2. Configuring a Converter:
Converter defines the logic to be used to convert the matched target columns prior to
writing it to the target.

• Built-in Regex Based Data Transforms

• Developing Custom Data Transforms

• Troubleshooting and Diagnostics

9.4.5.1 Built-in Regex Based Data Transforms
By default, Oracle GoldenGate for Distributed Applications and Analytics (GG for DAA)
provides a default regex based implementation for both matcher and the converter.

Data Transform Configuration

Chapter 9
Oracle GoldenGate Java Delivery

9-76

Transform name (To be referred in the subsequent configs)
gg.transforms=t1

Configure the matcher implementation (using the built-in regex type in this ex)
gg.transform.t1.matcher=regex

Configure the converter implementation (using the built-in regex type in this ex)
gg.transform.t1.converter=regex

These matcher configs correspond to the buit-in regex matcher

Target catalogs to match. Default value is *
gg.transform.t1.matcher.catalogRegex={}

Target schema to match. Default value is *
gg.transform.t1.matcher.schemaRegex={}

Target tables to match (*Required field)
gg.transform.t1.matcher.tableRegex={}

Target columns to match (*Required field)
gg.transform.t1.matcher.columnRegex={}

These converter configs correspond to the buit-in regex converter

Content search regex (from the columns selected, filter only specific values matching
this regex)
gg.transform.t1.converter.replaceRegex={}

Content replacement value
gg.transform.t1.converter.replaceString={}

Note:

tableRegex and columnRegex params do not have any default value. No tables or
columns will be matched if either tableRegex or columnRegex is not defined.

Example on how to use the built-in regex based data transform

The following configuration creates a data transform which identifies all the target objects with:

Matcher

1. Table name starting with tab.

2. Column name ending with col.

Converter

1. Converts the above matched column values to a fixed value, for example: TestValue.

gg.transforms=t1

gg.transform.t1.matcher=regex
gg.transform.t1.converter=regex

gg.transform.t1.matcher.catalogRegex=.*
gg.transform.t1.matcher.schemaRegex=.*

Chapter 9
Oracle GoldenGate Java Delivery

9-77

Table name staring with 'tab'
gg.transform.t1.matcher.tableRegex=^tab.*

Column name ending with 'col'
gg.transform.t1.matcher.columnRegex=.*col$

gg.transform.t1.converter.replaceRegex=.*

Replacement value
gg.transform.t1.converter.replaceString=TestVal

9.4.5.2 Developing Custom Data Transforms
A custom data transform implementation can be achieved by implementing the matcher and
converter interfaces as shown in the example below.

Consider a scenario where you want to mask a sensitive field's value during replicat process.

1. Configure the target column which matches the following criteria:

a. Catalog name: Cat1
b. Schema name: Sch1
c. Table name: Sample_Table
d. Column name: Sample_Column

2. Configure a converter with some conversion implementation.

a. Replace the column values for the above matched column with a masked value

@Matcher(id = "matcher1", description = "Custom target column matcher.")
public class CustomTargetMatcher implements TargetMatcher {
 @Override
 public boolean matches(final TableMetaData tableMetaData) {
 return tableMetaData.getCatalogName().equals("Cat1") &&
tableMetaData.getSchemaName().equals("Sch1") &&
tableMetaData.getTableName().equals("Sample_Table");
 }
 @Override
 public boolean matches(final ColumnMetaData columnMetaData) {
 return columnMetaData.getColumnName().equals("Sample_Column");
 }
}

@Converter(id = "converter1", description = "Custom data converter.")
public class CustomConverter implements DataConverter {

 public String convert(String originalData, final TableMetaData tableMetaData, final
ColumnMetaData columnMetaData) {
 return "********"; // Masked Value
 }
}

Adapter properties for this implementation

gg.transforms=t1

This config corresponds to the @Matcher => id param
gg.transform.t1.matcher=matcher1

Chapter 9
Oracle GoldenGate Java Delivery

9-78

This config corresponds to the @Converter => id param
gg.transform.t1.converter=converter1

To use the custom classes:

Place the custom classes into a JAR and include them in the classpath. Include the custom
JAR files in the JVM classpath using the Java properties (using java.class.path in the
jvm.bootoptions property) or under gg.classpath

9.4.5.3 Troubleshooting and Diagnostics
1. Ensure that all the required transform parameters are declared under the replicat

properties file.
When the data transform is not configured appropriately and the replicat properties file has
missing/invalid gg.transform properties, replicat will just skip this transform and continue.

Replicat will also throw the following Warning messages for these scenarios.

Transform property is not set [gg.transform.{name}.matcher.tableRegex].
Transform property is not set [gg.transform.{name}.matcher.columnRegex].

2. Ensure that the regex specified under each of the matcher/converter properties are valid
regex strings.
Replicat will throw the following error message and exception in case there’s an invalid
regex configured: PatternSyntaxException – If the regular expression's syntax is
invalid.

Fix the regex errors in order to continue with the replicat process.

3. For the custom transform, ensure the implemented custom class has been correctly added
to the classpath.
Replicat will throw the following error message in this case and it will just skip this
transform and continue:

Could not find transform class instance for type {type}.

Ensure to add the custom class to the gg.classpath property.

Chapter 9
Oracle GoldenGate Java Delivery

9-79

10
Troubleshoot

• Troubleshooting the Java Adapters

10.1 Troubleshooting the Java Adapters
This chapter includes the following sections:

Topics:

• Checking for Errors

• Reporting Issues

10.1.1 Checking for Errors
There are two types of errors that can occur in the operation of Oracle GoldenGate for Java:

• The Replicat process running or VAM does not start or abends

• The process runs successfully, but the data is incorrect or nonexistent

If the Replicat or Extract process does not start or abends, check the error messages in order
from the beginning of processing through to the end:

1. Check the Oracle GoldenGate event log for errors, and view the Extract report file:

GGSCI> VIEW GGSEVT
GGSCI> VIEW REPORT {replicat/extract name}

2. Check the applicable log file.

For the native log file:

• Look at the last messages reported in the log file for the native library. The file name is
the log file prefix (log.logname) set in the property file and the current date.

shell> more {log.logname}_{yyyymmdd}.log

Note:

This is the only log file for the shared library, not the Java application.

3. If the Replicat, or VAM was able to launch the Java runtime, then a log4j log file will exist.

The name of the log file is defined in your log4j.properties file. By default, the log file
name is ggjava-version-log4j.log, where version is the version number of the JAR file
being used. For example:

shell> more ggjava-*log4j.log

To set a more detailed level of logging for the Java application, either:

• Edit the current log4j properties file to log at a more verbose level or

10-1

• Re-use one of the existing log4j configurations by editing properties file:

jvm.bootoptions=-Djava.class.path=ggjava/ggjava.jar
-Dlog4j.configuration=debug-log4j.properties –Xmx512m

These pre-configured log4j property files are found in the classpath, and are installed in:

./ggjava/resources/classes/*log4j.properties
4. If one of these log files does not reveal the source of the problem, run the native process

directly from the shell (outside of GGSCI) so that stderr and stdout can more easily be
monitored and environmental variables can be verified. For example:

shell> REPLICAT PARAMFILE dirprm/javaue.prm
If the process runs successfully, but the data is incorrect or nonexistent, check for errors in any
custom filter, formatter or handler you have written.

To restart the Replicat from the beginning of a trail, see Restarting the Java Delivery.

10.1.2 Reporting Issues
If you have a support account for Oracle GoldenGate, submit a support ticket and include the
following:

• Operating system and Java versions

The version of the Java Runtime Environment can be displayed by:

$ java -version
• Configuration files:

– Parameter file for the Replicat

– All properties files used, including any JMS or JNDI properties files

– Velocity templates for formatting purposes

– If applicable, also include the target-specific configuration file

• Log files:

In the Oracle GoldenGate install directory, all .log files: the Java log4j log files and the
native module or VAM log file.

Chapter 10
Troubleshooting the Java Adapters

10-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions
	Related Information

	1 Overview
	1.1 Understanding Oracle GoldenGate for Distributed Applications and Analytics
	1.1.1 Understanding Oracle GoldenGate for Distributed Applications and Analytics
	1.1.1.1 Oracle GoldenGate VAM Message Capture
	1.1.1.1.1 Message Capture Configuration Options
	1.1.1.1.2 Typical Configuration

	1.1.1.2 Oracle GoldenGate Java Delivery
	1.1.1.3 Delivery Configuration Options
	1.1.1.4 Adapter Integration Options
	1.1.1.4.1 Capturing Transactions to a Trail
	1.1.1.4.2 Applying Transactions from a Trail

	1.1.1.5 Using Oracle GoldenGate Java Adapter Properties
	1.1.1.5.1 Values in Property Files
	1.1.1.5.2 Location of Property Files
	1.1.1.5.3 Using Comments in the Property File
	1.1.1.5.4 Variables in Property Names

	1.1.1.6 Monitoring Performance

	1.2 What’s Supported in Oracle GoldenGate for Distributed Applications and Analytics
	1.2.1 Verifying Certification and System Requirements
	1.2.2 Understanding Handler Compatibility
	1.2.3 What are the Additional Support Considerations?

	1.3 Dependency Downloader
	1.3.1 Dependency Downloader Setup
	1.3.2 Running the Dependency Downloader Scripts
	1.3.3 Dependency Downloader Scripts

	2 Get Started
	2.1 Getting Started with Oracle GoldenGate for Distributed Applications and Analytics
	2.1.1 Working With Deployments
	2.1.2 About Oracle GoldenGate Properties Files
	2.1.2.1 Parameter Files

	2.1.3 Using the Admin Client
	2.1.4 Controlling Oracle GoldenGate (Microservices Architecture) Processes

	3 Prepare
	3.1 Preparing for Installation
	3.1.1 Downloading Oracle GoldenGate for Distributed Applications and Analytics
	3.1.2 Installation Overview
	3.1.2.1 Contents of the Installation ZIP File
	3.1.2.2 Using the Generic Build of Oracle GoldenGate
	3.1.2.3 Considerations for Using a Custom Build for a GoldenGate for Distributed Applications and Analytics Instance of Oracle GoldenGate
	3.1.2.4 Installing to a Non-Generic Instance of Oracle GoldenGate

	3.1.3 Directories and Variables in Microservices Architecture
	3.1.4 Setting up Environmental Variables
	3.1.4.1 Java on Linux/UNIX
	3.1.4.2 Java on Windows

	4 Install
	4.1 Setting up Oracle GoldenGate for Distributed Applications and Analytics in a High Availability Environment
	4.1.1 Running GG for DAA from a Single Instance
	4.1.2 Running GG for DAA on a Cluster of Servers
	4.1.3 Shared Storage

	4.2 Installing Oracle GoldenGate for Distributed Applications and Analytics
	4.2.1 Installing Oracle GoldenGate MA for Distributed Applications and Analytics Using the UI
	4.2.2 Silent Installation
	4.2.3 Setting Up Secure or Non-Secure Deployments
	4.2.3.1 How to Add Secure or Non-Secure Deployments
	4.2.3.2 How to Remove a Deployment
	4.2.3.2.1 How to Remove a Deployment: GUI
	4.2.3.2.2 How to Remove a Deployment: Silent Mode

	5 Upgrade
	5.1 Upgrading Oracle GoldenGate for Distributed Applications and Analytics
	5.1.1 Obtaining the Oracle GoldenGate Distribution
	5.1.2 Scope of Upgrade
	5.1.2.1 Replicat Upgrade Considerations

	5.1.3 Upgrading Oracle GoldenGate for Distributed Applications and Analytics – GUI Based

	6 Configure
	6.1 Configuring Oracle GoldenGate for Distributed Applications and Analytics
	6.1.1 Running with Replicat
	6.1.1.1 Replicat Grouping
	6.1.1.2 About Replicat Checkpointing
	6.1.1.3 About Initial Load Support
	6.1.1.4 About the Unsupported Replicat Features
	6.1.1.5 How the Mapping Functionality Works

	6.1.2 About Schema Evolution and Metadata Change Events
	6.1.3 About Configuration Property CDATA[] Wrapping
	6.1.4 Using Regular Expression Search and Replace
	6.1.4.1 Using Schema Data Replace
	6.1.4.2 Using Content Data Replace

	6.1.5 Scaling Oracle GoldenGate for Distributed Applications and Analytics Delivery
	6.1.6 Configuring Cluster High Availability
	6.1.7 Using Identities in Oracle GoldenGate Credential Store
	6.1.7.1 Creating a Credential Store
	6.1.7.2 Adding Users to a Credential Store
	6.1.7.3 Configuring Properties to Access the Credential Store

	6.2 Logging
	6.2.1 About Replicat Process Logging
	6.2.2 About Java Layer Logging

	6.3 Configuring Logging
	6.3.1 Oracle GoldenGate Java Adapter Default Logging
	6.3.1.1 Default Logging Setup
	6.3.1.2 Log File Name
	6.3.1.3 Changing Logging Level

	6.3.2 Recommended Logging Settings
	6.3.2.1 Changing to the Recommended Logging Type

	7 Quickstarts
	7.1 QuickStarts: Prerequisites
	7.2 Google Cloud Platform Big Query Stage and Merge Replication
	7.2.1 Prerequisites: Google Cloud Platform BigQuery Stage and Merge Replicat And Google Cloud Storage Replication
	7.2.2 Install Dependency Files
	7.2.3 Create a Replicat in Oracle GoldenGate for Big Data

	7.3 Google Cloud Storage Replication
	7.3.1 Install Dependency Files
	7.3.2 Create a Replicat in Oracle GoldenGate for Big Data

	7.4 Realtime Replication into Oracle Cloud Infrastructure (OCI) Streaming with GG for DAA
	7.4.1 Install Dependency Files
	7.4.2 Create Kafka Producer Properties File
	7.4.3 Create a Replicat in Oracle GoldenGate for Big Data

	7.5 Realtime Parquet Ingestion into AWS S3 Buckets with Oracle GoldenGate for Distributed Applications and Analytics
	7.5.1 Install Dependency Files
	7.5.2 Create a Replicat in Oracle GoldenGate for Big Data

	7.6 Realtime Data Ingestion into Kafka with Oracle GoldenGate for Distributed Applications and Analytics
	7.6.1 Install Dependency Files
	7.6.2 Create Kafka Producer Properties File
	7.6.3 Create a Replicat in Oracle GoldenGate for Big Data

	7.7 Realtime Message Streaming to AWS Kinesis
	7.7.1 Install Dependency Files
	7.7.2 Create a Replicat in Oracle GoldenGate for Distributed Applications and Analytics

	8 Replicate Data
	8.1 Source
	8.1.1 Amazon MSK
	8.1.2 Apache Cassandra
	8.1.2.1 Overview
	8.1.2.2 Setting Up Cassandra Extract Change Data Capture
	8.1.2.2.1 Setup SSH Connection to the Cassandra Nodes
	8.1.2.2.2 Data Types
	8.1.2.2.3 Cassandra Database Operations
	8.1.2.2.4 Set up Credential Store Entry to Detect Source Type

	8.1.2.3 Deduplication
	8.1.2.4 Topology Changes
	8.1.2.5 Data Availability in the CDC Logs
	8.1.2.6 Using Initial Load Extract
	8.1.2.7 Using Change Data Capture Extract
	8.1.2.7.1 Handling Schema Evolution

	8.1.2.8 Replicating to RDMBS Targets
	8.1.2.9 Partition Update or Insert of Static Columns
	8.1.2.10 Partition Delete
	8.1.2.11 Security and Authentication
	8.1.2.11.1 Configuring SSL

	8.1.2.12 Cleanup of CDC Commit Log Files
	8.1.2.12.1 Cassandra CDC Commit Log Purger
	8.1.2.12.1.1 How to Run the Purge Utility
	8.1.2.12.1.1.1 Third Party Libraries Needed to Run this Program
	8.1.2.12.1.1.2 Command to Run the Program
	8.1.2.12.1.1.3 Runtime Arguments

	8.1.2.12.1.2 Sample config.properties for Local File System
	8.1.2.12.1.3 Argument cassCommitLogPurgerConfFile
	8.1.2.12.1.3.1 Sample config.properties for Local File System
	8.1.2.12.1.3.2 Sample config.properties for Remote File System

	8.1.2.12.1.4 Argument purgeInterval
	8.1.2.12.1.5 Argument cassUnProcessedFilesPurgeInterval

	8.1.2.13 Multiple Extract Support
	8.1.2.14 CDC Configuration Reference
	8.1.2.15 Troubleshooting
	8.1.2.16 Cassandra Capture Client Dependencies

	8.1.3 Apache Kafka
	8.1.3.1 Overview
	8.1.3.2 Prerequisites
	8.1.3.2.1 Set up Credential Store Entry to Detect Source Type

	8.1.3.3 General Terms and Functionality of Kafka Capture
	8.1.3.3.1 Kafka Streams
	8.1.3.3.2 Kafka Message Order
	8.1.3.3.3 Kafka Message Timestamps
	8.1.3.3.4 Kafka Message Coordinates
	8.1.3.3.5 Start Extract Modes
	8.1.3.3.5.1 Start Earliest
	8.1.3.3.5.2 Start Timestamp

	8.1.3.3.6 General Configuration Overview
	8.1.3.3.7 OGGSOURCE parameter
	8.1.3.3.8 The Extract Parameter File
	8.1.3.3.9 Kafka Consumer Properties File
	8.1.3.3.9.1 Encrypt Kafka Producer Properties

	8.1.3.4 Generic Mutation Builder
	8.1.3.5 Kafka Connect Mutation Builder
	8.1.3.5.1 Functionality and Limitations of the Kafka Connect Mutation Builder
	8.1.3.5.2 Primary Key
	8.1.3.5.3 Kafka Message Key
	8.1.3.5.4 Kafka Connect Supported Types
	8.1.3.5.5 How to Enable the Kafka Connect Mutation Builder

	8.1.3.6 Example Configuration Files
	8.1.3.6.1 Example kc.prm file
	8.1.3.6.2 Example Kafka Consumer Properties File

	8.1.4 Azure Event Hubs
	8.1.5 Confluent Kafka
	8.1.6 DataStax
	8.1.7 Java Message Service (JMS)
	8.1.7.1 Prerequisites
	8.1.7.1.1 Set up Credential Store Entry to Detect Source Type

	8.1.7.2 Configuring Message Capture
	8.1.7.2.1 Configuring the VAM Extract
	8.1.7.2.1.1 Adding the Extract
	8.1.7.2.1.2 Configuring the Extract Parameters
	8.1.7.2.1.3 Configuring Message Capture

	8.1.7.2.2 Connecting and Retrieving the Messages
	8.1.7.2.2.1 Connecting to JMS
	8.1.7.2.2.2 Retrieving Messages
	8.1.7.2.2.3 Completing the Transaction

	8.1.8 MongoDB
	8.1.8.1 Overview
	8.1.8.2 Prerequisites to Setting up MongoDB
	8.1.8.2.1 Set up Credential Store Entry to Detect Source Type

	8.1.8.3 MongoDB Database Operations
	8.1.8.4 Using Extract Initial Load
	8.1.8.5 Using Change Data Capture Extract
	8.1.8.6 Positioning the Extract
	8.1.8.7 Security and Authentication
	8.1.8.7.1 SSL Configuration Setup

	8.1.8.8 MongoDB Bidirectional Replication
	8.1.8.8.1 Enabling Trandata
	8.1.8.8.2 Enabling MongoDB Bi-directional Replication
	8.1.8.8.3 Extracting from Target Replicat which is Bidirectionally Processed
	8.1.8.8.4 Troubleshooting

	8.1.8.9 Mongo DB Configuration Reference
	8.1.8.10 Columns in Trail File
	8.1.8.11 Update Operation Behavior
	8.1.8.12 Oplog Size Recommendations
	8.1.8.13 Troubleshooting
	8.1.8.14 MongoDB Capture Client Dependencies
	8.1.8.14.1 MongoDB Capture Client Dependencies: Reactive Streams Java Driver 4.4.1
	8.1.8.14.2 MongoDB Reactive Streams Java Driver 4.4.1

	8.1.9 OCI Streaming

	8.2 Target
	8.2.1 Amazon Kinesis
	8.2.1.1 Overview
	8.2.1.2 Detailed Functionality
	8.2.1.2.1 Amazon Kinesis Java SDK
	8.2.1.2.2 Kinesis Streams Input Limits

	8.2.1.3 Setting Up and Running the Kinesis Streams Handler
	8.2.1.3.1 Set the Classpath in Kinesis Streams Handler
	8.2.1.3.2 Kinesis Streams Handler Configuration
	8.2.1.3.3 Using Templates to Resolve the Stream Name and Partition Name
	8.2.1.3.4 Resolving AWS Credentials
	8.2.1.3.4.1 AWS Kinesis Client Authentication
	8.2.1.3.4.1.1 Explicit Configuration of the Client ID and Secret
	8.2.1.3.4.1.2 Use of the AWS Default Credentials Provider Chain
	8.2.1.3.4.1.3 AWS Federated Login

	8.2.1.3.5 Configuring the Proxy Server for Kinesis Streams Handler
	8.2.1.3.6 Configuring Security in Kinesis Streams Handler

	8.2.1.4 Kinesis Handler Performance Considerations
	8.2.1.4.1 Kinesis Streams Input Limitations
	8.2.1.4.2 Transaction Batching
	8.2.1.4.3 Deferring Flush at Transaction Commit

	8.2.1.5 Troubleshooting
	8.2.1.5.1 Java Classpath
	8.2.1.5.2 Kinesis Handler Connectivity Issues
	8.2.1.5.3 Logging

	8.2.2 Amazon MSK
	8.2.3 Amazon Redshift
	8.2.3.1 Detailed Functionality
	8.2.3.2 Operation Aggregation
	8.2.3.2.1 In-Memory Operation Aggregation
	8.2.3.2.2 Aggregation using SQL post loading data into the staging table

	8.2.3.3 Unsupported Operations and Limitations
	8.2.3.4 Uncompressed UPDATE records
	8.2.3.5 Error During the Data Load Proces
	8.2.3.6 Troubleshooting and Diagnostics
	8.2.3.7 Classpath
	8.2.3.8 Configuration
	8.2.3.9 INSERTALLRECORDS Support
	8.2.3.10 Redshift COPY SQL Authorization
	8.2.3.11 Co-ordinated Apply Support
	8.2.3.12 Support for Mixed Case Identifiers

	8.2.4 Amazon S3
	8.2.4.1 Overview
	8.2.4.2 Detailing Functionality
	8.2.4.2.1 Resolving AWS Credentials
	8.2.4.2.1.1 Amazon Web Services Simple Storage Service Client Authentication
	8.2.4.2.1.1.1 Explicit Configuration of the Client ID and Secret
	8.2.4.2.1.1.2 Use of the AWS Default Credentials Provider Chain
	8.2.4.2.1.1.3 AWS Federated Login

	8.2.4.2.2 About the AWS S3 Buckets
	8.2.4.2.3 Troubleshooting

	8.2.4.3 Configuring the S3 Event Handler

	8.2.5 Apache Cassandra
	8.2.5.1 Overview
	8.2.5.2 Detailing the Functionality
	8.2.5.2.1 About the Cassandra Data Types
	8.2.5.2.2 About Catalog, Schema, Table, and Column Name Mapping
	8.2.5.2.3 About DDL Functionality
	8.2.5.2.3.1 About the Keyspaces
	8.2.5.2.3.2 About the Tables
	8.2.5.2.3.3 Adding Column Functionality
	8.2.5.2.3.4 Dropping Column Functionality

	8.2.5.2.4 How Operations are Processed
	8.2.5.2.5 About Compressed Updates vs. Full Image Updates
	8.2.5.2.6 About Primary Key Updates

	8.2.5.3 Setting Up and Running the Cassandra Handler
	8.2.5.3.1 Understanding the Cassandra Handler Configuration
	8.2.5.3.2 Review a Sample Configuration
	8.2.5.3.3 Configuring Security

	8.2.5.4 About Automated DDL Handling
	8.2.5.4.1 About the Table Check and Reconciliation Process
	8.2.5.4.2 Capturing New Change Data

	8.2.5.5 Performance Considerations
	8.2.5.6 Additional Considerations
	8.2.5.7 Troubleshooting
	8.2.5.7.1 Java Classpath
	8.2.5.7.2 Write Timeout Exception
	8.2.5.7.3 Datastax Driver Error

	8.2.5.8 Cassandra Handler Client Dependencies
	8.2.5.8.1 Cassandra Datastax Java Driver 4.12.0
	8.2.5.8.2 Cassandra Datastax Java Driver 4.9.0

	8.2.6 Apache HBase
	8.2.6.1 Overview
	8.2.6.2 Detailed Functionality
	8.2.6.3 Setting Up and Running the HBase Handler
	8.2.6.3.1 Classpath Configuration
	8.2.6.3.2 HBase Handler Configuration
	8.2.6.3.3 Sample Configuration
	8.2.6.3.4 Performance Considerations

	8.2.6.4 Security
	8.2.6.5 Metadata Change Events
	8.2.6.6 Additional Considerations
	8.2.6.7 Troubleshooting the HBase Handler
	8.2.6.7.1 Java Classpath
	8.2.6.7.2 HBase Connection Properties
	8.2.6.7.3 Logging of Handler Configuration
	8.2.6.7.4 HBase Handler Delete-Insert Problem

	8.2.6.8 HBase Handler Client Dependencies
	8.2.6.8.1 HBase 2.4.4
	8.2.6.8.2 HBase 2.3.3
	8.2.6.8.3 HBase 2.2.0
	8.2.6.8.4 HBase 2.1.5
	8.2.6.8.5 HBase 2.0.5
	8.2.6.8.6 HBase 1.4.10
	8.2.6.8.7 HBase 1.3.3
	8.2.6.8.8 HBase 1.2.5
	8.2.6.8.9 HBase 1.1.1
	8.2.6.8.10 HBase 1.0.1.1

	8.2.7 Apache HDFS
	8.2.7.1 Overview
	8.2.7.2 Writing into HDFS in SequenceFile Format
	8.2.7.2.1 Integrating with Hive
	8.2.7.2.2 Understanding the Data Format

	8.2.7.3 Setting Up and Running the HDFS Handler
	8.2.7.3.1 Classpath Configuration
	8.2.7.3.2 HDFS Handler Configuration
	8.2.7.3.3 Review a Sample Configuration
	8.2.7.3.4 Performance Considerations
	8.2.7.3.5 Security

	8.2.7.4 Writing in HDFS in Avro Object Container File Format
	8.2.7.5 Generating HDFS File Names Using Template Strings
	8.2.7.6 Metadata Change Events
	8.2.7.7 Partitioning
	8.2.7.8 HDFS Additional Considerations
	8.2.7.9 Best Practices
	8.2.7.10 Troubleshooting the HDFS Handler
	8.2.7.10.1 Java Classpath
	8.2.7.10.2 Java Boot Options
	8.2.7.10.3 HDFS Connection Properties
	8.2.7.10.4 Handler and Formatter Configuration

	8.2.7.11 HDFS Handler Client Dependencies
	8.2.7.11.1 Hadoop Client Dependencies
	8.2.7.11.1.1 HDFS 3.3.0
	8.2.7.11.1.2 HDFS 3.2.0
	8.2.7.11.1.3 HDFS 3.1.4
	8.2.7.11.1.4 HDFS 3.0.3
	8.2.7.11.1.5 HDFS 2.9.2
	8.2.7.11.1.6 HDFS 2.8.5
	8.2.7.11.1.7 HDFS 2.7.7
	8.2.7.11.1.8 HDFS 2.6.0
	8.2.7.11.1.9 HDFS 2.5.2
	8.2.7.11.1.10 HDFS 2.4.1
	8.2.7.11.1.11 HDFS 2.3.0
	8.2.7.11.1.12 HDFS 2.2.0

	8.2.8 Apache Kafka
	8.2.8.1 Apache Kafka
	8.2.8.1.1 Overview
	8.2.8.1.2 Detailed Functionality
	8.2.8.1.3 Setting Up and Running the Kafka Handler
	8.2.8.1.3.1 Classpath Configuration
	8.2.8.1.3.2 Kafka Handler Configuration
	8.2.8.1.3.3 Java Adapter Properties File
	8.2.8.1.3.4 Kafka Producer Configuration File
	8.2.8.1.3.4.1 Encrypt Kafka Producer Properties

	8.2.8.1.3.5 Using Templates to Resolve the Topic Name and Message Key
	8.2.8.1.3.6 Kafka Configuring with Kerberos on a Hadoop Platform
	8.2.8.1.3.7 Kafka SSL Support

	8.2.8.1.4 Schema Propagation
	8.2.8.1.5 Performance Considerations
	8.2.8.1.6 About Security
	8.2.8.1.7 Metadata Change Events
	8.2.8.1.8 Snappy Considerations
	8.2.8.1.9 Kafka Interceptor Support
	8.2.8.1.10 Kafka Partition Selection
	8.2.8.1.11 Troubleshooting
	8.2.8.1.11.1 Verify the Kafka Setup
	8.2.8.1.11.2 Classpath Issues
	8.2.8.1.11.3 Invalid Kafka Version
	8.2.8.1.11.4 Kafka Producer Properties File Not Found
	8.2.8.1.11.5 Kafka Connection Problem

	8.2.8.1.12 Kafka Handler Client Dependencies
	8.2.8.1.12.1 Kafka 2.8.0
	8.2.8.1.12.2 Kafka 2.7.0
	8.2.8.1.12.3 Kafka 2.6.0
	8.2.8.1.12.4 Kafka 2.5.1
	8.2.8.1.12.5 Kafka 2.4.1
	8.2.8.1.12.6 Kafka 2.3.1

	8.2.8.2 Apache Kafka Connect Handler
	8.2.8.2.1 Overview
	8.2.8.2.2 Detailed Functionality
	8.2.8.2.3 Setting Up and Running the Kafka Connect Handler
	8.2.8.2.3.1 Kafka Connect Handler Configuration
	8.2.8.2.3.2 Using Templates to Resolve the Topic Name and Message Key
	8.2.8.2.3.3 Configuring Security in the Kafka Connect Handler

	8.2.8.2.4 Connecting to a Secure Schema Registry
	8.2.8.2.5 Kafka Connect Handler Performance Considerations
	8.2.8.2.6 Kafka Interceptor Support
	8.2.8.2.7 Kafka Partition Selection
	8.2.8.2.8 Troubleshooting the Kafka Connect Handler
	8.2.8.2.8.1 Java Classpath for Kafka Connect Handler
	8.2.8.2.8.2 Invalid Kafka Version
	8.2.8.2.8.3 Kafka Producer Properties File Not Found
	8.2.8.2.8.4 Kafka Connection Problem

	8.2.8.2.9 Kafka Connect Handler Client Dependencies
	8.2.8.2.9.1 Kafka 2.8.0
	8.2.8.2.9.2 Kafka 2.7.1
	8.2.8.2.9.3 Kafka 2.6.0
	8.2.8.2.9.4 Kafka 2.5.1
	8.2.8.2.9.5 Kafka 2.4.1
	8.2.8.2.9.6 Kafka 2.3.1
	8.2.8.2.9.7 Kafka 2.2.1
	8.2.8.2.9.8 Kafka 2.1.1
	8.2.8.2.9.9 Kafka 2.0.1
	8.2.8.2.9.10 Kafka 1.1.1
	8.2.8.2.9.11 Kafka 1.0.2
	8.2.8.2.9.12 Kafka 0.11.0.0
	8.2.8.2.9.13 Kafka 0.10.2.0
	8.2.8.2.9.14 Kafka 0.10.2.0
	8.2.8.2.9.15 Kafka 0.10.0.0
	8.2.8.2.9.16 Kafka 0.9.0.1
	8.2.8.2.9.16.1 Confluent Dependencies
	8.2.8.2.9.16.1.1 Confluent 6.2.0
	8.2.8.2.9.16.1.2 Confluent 6.1.0
	8.2.8.2.9.16.1.3 Confluent 6.0.0
	8.2.8.2.9.16.1.4 Confluent 5.5.0
	8.2.8.2.9.16.1.5 Confluent 5.4.0
	8.2.8.2.9.16.1.6 Confluent 5.3.0
	8.2.8.2.9.16.1.7 Confluent 5.2.1
	8.2.8.2.9.16.1.8 Confluent 5.1.3
	8.2.8.2.9.16.1.9 Confluent 5.0.3
	8.2.8.2.9.16.1.10 Confluent 4.1.2

	8.2.8.3 Apache Kafka REST Proxy
	8.2.8.3.1 Overview
	8.2.8.3.2 Setting Up and Starting the Kafka REST Proxy Handler Services
	8.2.8.3.2.1 Using the Kafka REST Proxy Handler
	8.2.8.3.2.2 Downloading the Dependencies
	8.2.8.3.2.3 Classpath Configuration
	8.2.8.3.2.4 Kafka REST Proxy Handler Configuration
	8.2.8.3.2.5 Review a Sample Configuration
	8.2.8.3.2.6 Security
	8.2.8.3.2.7 Generating a Keystore or Truststore
	8.2.8.3.2.8 Using Templates to Resolve the Topic Name and Message Key
	8.2.8.3.2.9 Kafka REST Proxy Handler Formatter Properties

	8.2.8.3.3 Consuming the Records
	8.2.8.3.4 Performance Considerations
	8.2.8.3.5 Kafka REST Proxy Handler Metacolumns Template Property

	8.2.9 Apache Hive
	8.2.10 Azure Blob Storage
	8.2.10.1 Overview
	8.2.10.2 Prerequisites
	8.2.10.3 Storage Account, Container, and Objects
	8.2.10.4 Configuration
	8.2.10.4.1 Classpath Configuration
	8.2.10.4.2 Dependencies
	8.2.10.4.3 Authentication
	8.2.10.4.3.1 Azure Tenant ID, Client ID, and Client Secret

	8.2.10.4.4 Proxy Configuration
	8.2.10.4.5 Sample Configuration
	8.2.10.4.6 Azure Government Cloud Configuration

	8.2.10.5 Troubleshooting and Diagnostics

	8.2.11 Azure Data Lake Storage
	8.2.11.1 Azure Data Lake Gen1 (ADLS Gen1)
	8.2.11.2 Azure Data Lake Gen2 using Hadoop Client and ABFS
	8.2.11.3 Azure Data Lake Gen2 using BLOB endpoint

	8.2.12 Azure Event Hubs
	8.2.13 Azure Synapse Analytics Data Warehouse
	8.2.13.1 Detailed Functionality
	8.2.13.1.1 Database User Privileges
	8.2.13.1.2 Merge SQL Statement
	8.2.13.1.3 Prerequisites

	8.2.13.2 Configuration
	8.2.13.2.1 Automatic Configuration
	8.2.13.2.1.1 File Writer Handler Configuration
	8.2.13.2.1.2 Synapse Event Handler Configuration

	8.2.13.2.2 Synapse Database Credentials
	8.2.13.2.3 Classpath Configuration
	8.2.13.2.3.1 Dependencies
	8.2.13.2.3.2 Classpath

	8.2.13.2.4 INSERTALLRECORDS Support
	8.2.13.2.5 Large Object (LOB) Performance
	8.2.13.2.6 End-to-End Configuration
	8.2.13.2.7 Compressed Update Handling
	8.2.13.2.7.1 MERGE Statement with Uncompressed Updates

	8.2.13.3 Troubleshooting and Diagnostics

	8.2.14 Confluent Kafka
	8.2.15 DataStax
	8.2.16 Elasticsearch
	8.2.16.1 Elasticsearch with Elasticsearch 7x and 6x
	8.2.16.1.1 Overview
	8.2.16.1.2 Detailing the Functionality
	8.2.16.1.2.1 About the Elasticsearch Version Property
	8.2.16.1.2.2 About the Index and Type
	8.2.16.1.2.3 About the Document
	8.2.16.1.2.4 About the Primary Key Update
	8.2.16.1.2.5 About the Data Types
	8.2.16.1.2.6 Operation Mode
	8.2.16.1.2.7 Operation Processing Support
	8.2.16.1.2.8 About the Connection

	8.2.16.1.3 Setting Up and Running the Elasticsearch Handler
	8.2.16.1.3.1 Configuring the Elasticsearch Handler
	8.2.16.1.3.1.1 Common Configurable Properties
	8.2.16.1.3.1.2 Transport Client Configurable Properties
	8.2.16.1.3.1.3 Transport Client Setting Properties File
	8.2.16.1.3.1.4 Classpath Settings for Transport Client
	8.2.16.1.3.1.5 REST Client Configurable Properties
	8.2.16.1.3.1.6 Authentication for REST Client
	8.2.16.1.3.1.7 Classpath Settings for REST Client

	8.2.16.1.4 Troubleshooting
	8.2.16.1.4.1 Incorrect Java Classpath
	8.2.16.1.4.2 Elasticsearch Version Mismatch
	8.2.16.1.4.3 Transport Client Properties File Not Found
	8.2.16.1.4.4 Cluster Connection Problem
	8.2.16.1.4.5 Unsupported Truncate Operation
	8.2.16.1.4.6 Bulk Execute Errors

	8.2.16.1.5 Performance Consideration
	8.2.16.1.6 About the Shield Plug-In Support
	8.2.16.1.7 About DDL Handling
	8.2.16.1.8 Known Issues in the Elasticsearch Handler
	8.2.16.1.9 Elasticsearch Handler Transport Client Dependencies
	8.2.16.1.10 Elasticsearch High Level REST Client Dependencies

	8.2.16.2 Elasticsearch 8x
	8.2.16.2.1 Overview
	8.2.16.2.2 Detailing the Functionality
	8.2.16.2.3 About the Index
	8.2.16.2.4 About the Document
	8.2.16.2.5 About the Data Types
	8.2.16.2.6 About the Connection
	8.2.16.2.7 About Supported Operation
	8.2.16.2.8 About DDL Handling
	8.2.16.2.9 About the Primary Key Update
	8.2.16.2.10 About UPSERT
	8.2.16.2.11 About Bulk Write
	8.2.16.2.12 About Routing
	8.2.16.2.13 About Request Headers
	8.2.16.2.14 About Java API Client
	8.2.16.2.15 Setting Up the Elasticsearch Handler
	8.2.16.2.16 Elasticsearch Handler Configuration
	8.2.16.2.17 Enabling Security for Elasticsearch
	8.2.16.2.18 Security Configuration for Elasticsearch Cluster
	8.2.16.2.19 Security Configuration for Elasticsearch Handler
	8.2.16.2.20 Troubleshooting
	8.2.16.2.21 Elasticsearch Handler Client Dependencies
	8.2.16.2.21.1 Elasticsearch 8.7.0

	8.2.17 Flat Files
	8.2.17.1 File Writer Handler
	8.2.17.1.1 Detailing the Functionality
	8.2.17.1.1.1 Using File Roll Events
	8.2.17.1.1.2 Automatic Directory Creation
	8.2.17.1.1.3 About the Active Write Suffix
	8.2.17.1.1.4 Maintenance of State

	8.2.17.1.2 Configuring the File Writer Handler
	8.2.17.1.3 Stopping the File Writer Handler
	8.2.17.1.4 Review a Sample Configuration
	8.2.17.1.5 File Writer Handler Partitioning
	8.2.17.1.5.1 File Writer Handler Partitioning Precondition
	8.2.17.1.5.2 Path Configuration
	8.2.17.1.5.3 Partitioning Configuration
	8.2.17.1.5.4 Partitioning Effect on Event Handler

	8.2.17.2 Optimized Row Columnar (ORC)
	8.2.17.2.1 Overview
	8.2.17.2.2 Detailing the Functionality
	8.2.17.2.2.1 About the Upstream Data Format
	8.2.17.2.2.2 About the Library Dependencies
	8.2.17.2.2.3 Requirements

	8.2.17.2.3 Configuring the ORC Event Handler
	8.2.17.2.4 Optimized Row Columnar Event Handler Client Dependencies
	8.2.17.2.4.1 ORC Client 1.6.9
	8.2.17.2.4.2 ORC Client 1.5.5
	8.2.17.2.4.3 ORC Client 1.4.0

	8.2.17.3 Parquet
	8.2.17.3.1 Parquet Handler
	8.2.17.3.2 Detailing the Functionality
	8.2.17.3.2.1 Configuring the Parquet Event Handler to Write to HDFS
	8.2.17.3.2.2 About the Upstream Data Format

	8.2.17.3.3 Configuring the Parquet Event Handler
	8.2.17.3.4 Parquet Event Handler Client Dependencies
	8.2.17.3.4.1 Parquet Client 1.12.0
	8.2.17.3.4.2 Parquet Client 1.11.1
	8.2.17.3.4.3 Parquet Client 1.10.1
	8.2.17.3.4.4 Parquet Client 1.9.0

	8.2.18 Google BigQuery
	8.2.18.1 Using Streaming API
	8.2.18.1.1 Detailing the Functionality
	8.2.18.1.1.1 Data Types
	8.2.18.1.1.2 Metadata Support
	8.2.18.1.1.3 Operation Modes
	8.2.18.1.1.4 Operation Processing Support
	8.2.18.1.1.5 Proxy Settings
	8.2.18.1.1.6 Mapping to Google Datasets

	8.2.18.1.2 Setting Up and Running the BigQuery Handler
	8.2.18.1.2.1 Schema Mapping for BigQuery
	8.2.18.1.2.2 Understanding the BigQuery Handler Configuration
	8.2.18.1.2.3 Review a Sample Configuration
	8.2.18.1.2.4 Configuring Handler Authentication

	8.2.18.1.3 Google BigQuery Dependencies
	8.2.18.1.3.1 BigQuery 2.7.1

	8.2.18.2 Google BigQuery Stage and Merge
	8.2.18.2.1 Overview
	8.2.18.2.2 Detailed Functionality
	8.2.18.2.3 Prerequisites
	8.2.18.2.4 Differences between BigQuery Handler and Stage and Merge BigQuery Event Handler
	8.2.18.2.5 Authentication or Authorization
	8.2.18.2.5.1 BigQuery Permissions

	8.2.18.2.6 Configuration
	8.2.18.2.6.1 Automatic Configuration
	8.2.18.2.6.1.1 File Writer Handler Configuration
	8.2.18.2.6.1.2 GCS Event Handler Configuration
	8.2.18.2.6.1.3 BigQuery Event Handler Configuration

	8.2.18.2.6.2 Classpath Configuration
	8.2.18.2.6.3 Proxy Configuration
	8.2.18.2.6.4 INSERTALLRECORDS Support
	8.2.18.2.6.5 BigQuery Dataset and GCP ProjectId Mapping
	8.2.18.2.6.5.1 Three-Part Table Names
	8.2.18.2.6.5.2 Mapping Table

	8.2.18.2.6.6 End-to-End Configuration
	8.2.18.2.6.7 Recommended configuration when using Google BigQuery Stage and Merge Event Handler as a Coordinated Apply Replicat
	8.2.18.2.6.8 Compressed Update Handling
	8.2.18.2.6.8.1 MERGE Statement with Uncompressed Updates

	8.2.18.2.7 Troubleshooting and Diagnostics

	8.2.19 Google Cloud Storage
	8.2.19.1 Overview
	8.2.19.2 Prerequisites
	8.2.19.3 Buckets and Objects
	8.2.19.4 Authentication and Authorization
	8.2.19.4.1 Bucket Permissions
	8.2.19.4.2 Object Permissions

	8.2.19.5 Configuration
	8.2.19.5.1 Classpath Configuration
	8.2.19.5.1.1 Dependencies

	8.2.19.5.2 Proxy Configuration
	8.2.19.5.3 Sample Configuration

	8.2.20 Java Message Service (JMS)
	8.2.20.1 Overview
	8.2.20.2 Setting Up and Running the JMS Handler
	8.2.20.2.1 Classpath Configuration
	8.2.20.2.2 Java Naming and Directory Interface Configuration
	8.2.20.2.3 Handler Configuration
	8.2.20.2.4 Sample Configuration Using Oracle WebLogic Server

	8.2.20.3 JMS Dependencies
	8.2.20.3.1 JMS 8.0

	8.2.21 Java Database Connectivity
	8.2.21.1 Overview
	8.2.21.2 Detailed Functionality
	8.2.21.2.1 Single Operation Mode
	8.2.21.2.2 Oracle Database Data Types
	8.2.21.2.3 MySQL Database Data Types
	8.2.21.2.4 Netezza Database Data Types
	8.2.21.2.5 Redshift Database Data Types

	8.2.21.3 Setting Up and Running the JDBC Handler
	8.2.21.3.1 Java Classpath
	8.2.21.3.2 Handler Configuration
	8.2.21.3.3 Statement Caching
	8.2.21.3.4 Setting Up Error Handling

	8.2.21.4 Sample Configurations
	8.2.21.4.1 Sample Oracle Database Target
	8.2.21.4.2 Sample Oracle Database Target with JDBC Metadata Provider
	8.2.21.4.3 Sample MySQL Database Target
	8.2.21.4.4 Sample MySQL Database Target with JDBC Metadata Provider

	8.2.22 Map(R)
	8.2.23 MongoDB
	8.2.23.1 Overview
	8.2.23.2 MongoDB Wire Protocol
	8.2.23.3 Supported Target Types
	8.2.23.4 Detailed Functionality
	8.2.23.4.1 Document Key Column
	8.2.23.4.2 Primary Key Update Operation
	8.2.23.4.3 MongoDB Trail Data Types

	8.2.23.5 Setting Up and Running the MongoDB Handler
	8.2.23.5.1 Classpath Configuration
	8.2.23.5.2 MongoDB Handler Configuration
	8.2.23.5.3 Using Bulk Write
	8.2.23.5.4 Using Write Concern
	8.2.23.5.5 Using Three-Part Table Names
	8.2.23.5.6 Using Undo Handling

	8.2.23.6 Security and Authentication
	8.2.23.6.1 SSL Configuration Setup

	8.2.23.7 Reviewing Sample Configurations
	8.2.23.8 MongoDB to AJD/ATP Migration
	8.2.23.8.1 Overview
	8.2.23.8.2 Configuring MongoDB handler to Write to AJD/ATP
	8.2.23.8.3 Steps for Migration
	8.2.23.8.4 Best Practices

	8.2.23.9 Configuring an Initial Synchronization of Extract for a MongoDB Source Database using Precise Instantiation
	8.2.23.9.1 Synchronization of MongoDB dump with Change Data Capture (CDC) Extract
	8.2.23.9.2 Steps with Example

	8.2.23.10 MongoDB Handler Client Dependencies
	8.2.23.10.1 MongoDB Java Driver 4.6.0
	8.2.23.10.2 MongoDB Java Driver 3.12.8

	8.2.24 Netezza
	8.2.25 OCI Streaming
	8.2.26 Oracle NoSQL
	8.2.26.1 Overview
	8.2.26.2 On-Premise Connectivity
	8.2.26.2.1 Server Authentication
	8.2.26.2.2 Client Authentication
	8.2.26.2.3 Sample On-Premise Oracle NoSQL Configuration

	8.2.26.3 OCI Cloud Connectivity
	8.2.26.3.1 Server Authentication
	8.2.26.3.2 Client Authentication
	8.2.26.3.3 Sample Cloud Oracle NoSQL Configuration
	8.2.26.3.4 Sample OCI Configuration file

	8.2.26.4 Oracle NoSQL Types
	8.2.26.5 Oracle NoSQL Handler Configuration
	8.2.26.6 Performance Considerations
	8.2.26.7 Operation Processing Support
	8.2.26.8 Column Processing
	8.2.26.9 Table Check and Reconciliation Process
	8.2.26.9.1 Full Image Data Requirements

	8.2.26.10 Oracle NoSQL SDK Dependencies
	8.2.26.10.1 Oracle NoSQL SDK Dependencies 5.2.27

	8.2.27 OCI Autonomous Data Warehouse
	8.2.27.1 Detailed Functionality
	8.2.27.2 ADW Database Credential to Access OCI ObjectStore File
	8.2.27.3 ADW Database User Privileges
	8.2.27.4 Unsupported Operations/ Limitations
	8.2.27.5 Troubleshooting and Diagnostics
	8.2.27.6 Classpath
	8.2.27.7 Configuration
	8.2.27.7.1 Automatic Configuration
	8.2.27.7.2 File Writer Handler Configuration
	8.2.27.7.3 OCI Event Handler Configuration
	8.2.27.7.4 ADW Event Handler Configuration
	8.2.27.7.5 INSERTALLRECORDS Support
	8.2.27.7.6 End-to-End Configuration
	8.2.27.7.7 Compressed Update Handling
	8.2.27.7.7.1 MERGE Statement with Uncompressed Updates

	8.2.28 Oracle Cloud Infrastructure Object Storage
	8.2.28.1 Overview
	8.2.28.2 Detailing the Functionality
	8.2.28.3 Configuration
	8.2.28.3.1 Automatic Configuration
	8.2.28.3.1.1 File Writer Handler Configuration
	8.2.28.3.1.2 Formatter Configuration

	8.2.28.4 Configuring Credentials for Oracle Cloud Infrastructure
	8.2.28.5 Troubleshooting
	8.2.28.6 OCI Dependencies
	8.2.28.6.1 OCI 1.34.0

	8.2.29 Redis
	8.2.29.1 Data Structures Supported by the Redis Handler
	8.2.29.1.1 Hash Maps
	8.2.29.1.2 Streams
	8.2.29.1.3 JSONs

	8.2.29.2 Redis Handler Configuration Properties
	8.2.29.3 Security
	8.2.29.4 Authentication Using Credentials
	8.2.29.5 SSL Basic Auth
	8.2.29.6 SSL Mutual Auth
	8.2.29.7 Redis Handler Dependencies
	8.2.29.8 Redis Handler Client Dependencies
	8.2.29.8.1 jedis 4.2.3

	8.2.30 Snowflake
	8.2.30.1 Overview
	8.2.30.2 Detailed Functionality
	8.2.30.2.1 Staging Location
	8.2.30.2.2 Database User Privileges
	8.2.30.2.3 Prerequisites

	8.2.30.3 Configuration
	8.2.30.3.1 Automatic Configuration
	8.2.30.3.1.1 File Writer Handler Configuration
	8.2.30.3.1.2 S3 Handler Configuration
	8.2.30.3.1.3 HDFS Event Handler Configuration
	8.2.30.3.1.4 Google Cloud Storage Event Handler Configuration
	8.2.30.3.1.5 Snowflake Event Handler Configuration

	8.2.30.3.2 Snowflake Storage Integration
	8.2.30.3.3 Classpath Configuration
	8.2.30.3.3.1 Dependencies

	8.2.30.3.4 Proxy Configuration
	8.2.30.3.5 INSERTALLRECORDS Support
	8.2.30.3.6 Snowflake Key Pair Authentication
	8.2.30.3.7 Mapping Source JSON/XML to Snowflake VARIANT
	8.2.30.3.8 Operation Aggregation
	8.2.30.3.8.1 In-Memory Operation Aggregation
	8.2.30.3.8.2 Operation Aggregation Using SQL

	8.2.30.3.9 Compressed Update Handling
	8.2.30.3.9.1 MERGE Statement with Uncompressed Updates

	8.2.30.3.10 End-to-End Configuration
	8.2.30.3.11 Compressed Update Handling
	8.2.30.3.11.1 MERGE Statement with Uncompressed Updates

	8.2.30.4 Troubleshooting and Diagnostics

	8.2.31 Additional Details
	8.2.31.1 Command Event Handler
	8.2.31.1.1 Overview - Command Event Handler
	8.2.31.1.2 Configuring the Command Event Handler
	8.2.31.1.3 Using Command Argument Template Strings

	8.2.31.2 HDFS Event Handler
	8.2.31.2.1 Detailing the Functionality
	8.2.31.2.1.1 Configuring the Handler
	8.2.31.2.1.2 Configuring the HDFS Event Handler

	8.2.31.3 Metacolumn Keywords
	8.2.31.4 Metadata Providers
	8.2.31.4.1 About the Metadata Providers
	8.2.31.4.2 Avro Metadata Provider
	8.2.31.4.2.1 Detailed Functionality
	8.2.31.4.2.2 Runtime Prerequisites
	8.2.31.4.2.3 Classpath Configuration
	8.2.31.4.2.4 Avro Metadata Provider Configuration
	8.2.31.4.2.5 Review a Sample Configuration
	8.2.31.4.2.6 Metadata Change Events
	8.2.31.4.2.7 Limitations
	8.2.31.4.2.8 Troubleshooting
	8.2.31.4.2.8.1 Invalid Schema Files Location
	8.2.31.4.2.8.2 Invalid Schema File Name
	8.2.31.4.2.8.3 Invalid Namespace in Schema File
	8.2.31.4.2.8.4 Invalid Table Name in Schema File

	8.2.31.4.3 Java Database Connectivity Metadata Provider
	8.2.31.4.3.1 JDBC Detailed Functionality
	8.2.31.4.3.2 Java Classpath
	8.2.31.4.3.3 JDBC Metadata Provider Configuration
	8.2.31.4.3.4 Review a Sample Configuration

	8.2.31.4.4 Hive Metadata Provider
	8.2.31.4.4.1 Detailed Functionality
	8.2.31.4.4.2 Configuring Hive with a Remote Metastore Database
	8.2.31.4.4.3 Classpath Configuration
	8.2.31.4.4.4 Hive Metadata Provider Configuration Properties
	8.2.31.4.4.5 Review a Sample Configuration
	8.2.31.4.4.6 Security
	8.2.31.4.4.7 Metadata Change Event
	8.2.31.4.4.8 Limitations
	8.2.31.4.4.9 Additional Considerations
	8.2.31.4.4.10 Troubleshooting

	8.2.31.4.5 Google BigQuery Metadata Provider
	8.2.31.4.5.1 Authentication
	8.2.31.4.5.2 Supported BigQuery Datatypes
	8.2.31.4.5.3 Parameterized BigQuery Datatypes
	8.2.31.4.5.4 Unsupported BigQuery Datatypes
	8.2.31.4.5.5 Configuring BigQuery Metadata Provider
	8.2.31.4.5.6 Sample Configuration
	8.2.31.4.5.7 Proxy Settings
	8.2.31.4.5.8 Classpath Settings
	8.2.31.4.5.9 Limitations

	8.2.31.5 Pluggable Formatters
	8.2.31.5.1 Using Operation-Based versus Row-Based Formatting
	8.2.31.5.1.1 Operation Formatters
	8.2.31.5.1.2 Row Formatters
	8.2.31.5.1.3 Table Row or Column Value States

	8.2.31.5.2 Using the Avro Formatter
	8.2.31.5.2.1 Avro Row Formatter
	8.2.31.5.2.1.1 Operation Metadata Formatting Details
	8.2.31.5.2.1.2 Operation Data Formatting Details
	8.2.31.5.2.1.3 Sample Avro Row Messages
	8.2.31.5.2.1.3.1 Sample Insert Message
	8.2.31.5.2.1.3.2 Sample Update Message
	8.2.31.5.2.1.3.3 Sample Delete Message
	8.2.31.5.2.1.3.4 Sample Truncate Message

	8.2.31.5.2.1.4 Avro Schemas
	8.2.31.5.2.1.5 Avro Row Configuration Properties
	8.2.31.5.2.1.6 Review a Sample Configuration
	8.2.31.5.2.1.7 Metadata Change Events
	8.2.31.5.2.1.8 Special Considerations
	8.2.31.5.2.1.8.1 Troubleshooting
	8.2.31.5.2.1.8.2 Primary Key Updates
	8.2.31.5.2.1.8.3 Generic Wrapper Functionality

	8.2.31.5.2.2 The Avro Operation Formatter
	8.2.31.5.2.2.1 Operation Metadata Formatting Details
	8.2.31.5.2.2.2 Operation Data Formatting Details
	8.2.31.5.2.2.3 Sample Avro Operation Messages
	8.2.31.5.2.2.3.1 Sample Insert Message
	8.2.31.5.2.2.3.2 Sample Update Message
	8.2.31.5.2.2.3.3 Sample Delete Message
	8.2.31.5.2.2.3.4 Sample Truncate Message

	8.2.31.5.2.2.4 Avro Schema
	8.2.31.5.2.2.5 Avro Operation Formatter Configuration Properties
	8.2.31.5.2.2.6 Review a Sample Configuration
	8.2.31.5.2.2.7 Metadata Change Events
	8.2.31.5.2.2.8 Special Considerations
	8.2.31.5.2.2.8.1 Troubleshooting
	8.2.31.5.2.2.8.2 Primary Key Updates
	8.2.31.5.2.2.8.3 Generic Wrapper Message

	8.2.31.5.2.3 Avro Object Container File Formatter
	8.2.31.5.2.3.1 Avro OCF Formatter Configuration Properties

	8.2.31.5.3 Using the Delimited Text Formatter
	8.2.31.5.3.1 Using the Delimited Text Row Formatter
	8.2.31.5.3.1.1 Message Formatting Details
	8.2.31.5.3.1.2 Sample Formatted Messages
	8.2.31.5.3.1.2.1 Sample Insert Message
	8.2.31.5.3.1.2.2 Sample Update Message
	8.2.31.5.3.1.2.3 Sample Delete Message
	8.2.31.5.3.1.2.4 Sample Truncate Message

	8.2.31.5.3.1.3 Output Format Summary Log
	8.2.31.5.3.1.4 Configuration
	8.2.31.5.3.1.4.1 Review a Sample Configuration

	8.2.31.5.3.1.5 Metadata Change Events
	8.2.31.5.3.1.6 Additional Considerations
	8.2.31.5.3.1.6.1 Primary Key Updates
	8.2.31.5.3.1.6.2 Data Consolidation

	8.2.31.5.3.2 Delimited Text Operation Formatter
	8.2.31.5.3.2.1 Message Formatting Details
	8.2.31.5.3.2.2 Sample Formatted Messages
	8.2.31.5.3.2.2.1 Sample Insert Message
	8.2.31.5.3.2.2.2 Sample Update Message
	8.2.31.5.3.2.2.3 Sample Delete Message
	8.2.31.5.3.2.2.4 Sample Truncate Message

	8.2.31.5.3.2.3 Output Format Summary Log
	8.2.31.5.3.2.4 Delimited Text Formatter Configuration Properties
	8.2.31.5.3.2.5 Review a Sample Configuration
	8.2.31.5.3.2.6 Metadata Change Events
	8.2.31.5.3.2.7 Additional Considerations

	8.2.31.5.4 Using the JSON Formatter
	8.2.31.5.4.1 Operation Metadata Formatting Details
	8.2.31.5.4.2 Operation Data Formatting Details
	8.2.31.5.4.3 Row Data Formatting Details
	8.2.31.5.4.4 Sample JSON Messages
	8.2.31.5.4.4.1 Sample Operation Modeled JSON Messages
	8.2.31.5.4.4.2 Sample Flattened Operation Modeled JSON Messages
	8.2.31.5.4.4.3 Sample Row Modeled JSON Messages
	8.2.31.5.4.4.4 Sample Primary Key Output JSON Message

	8.2.31.5.4.5 JSON Schemas
	8.2.31.5.4.6 JSON Formatter Configuration Properties
	8.2.31.5.4.7 Review a Sample Configuration
	8.2.31.5.4.8 Metadata Change Events
	8.2.31.5.4.9 JSON Primary Key Updates
	8.2.31.5.4.10 Integrating Oracle Stream Analytics
	8.2.31.5.4.11 Mongo Document Formatting Details

	8.2.31.5.5 Using the Length Delimited Value Formatter
	8.2.31.5.5.1 Formatting Message Details
	8.2.31.5.5.2 Sample Formatted Messages
	8.2.31.5.5.3 LDV Formatter Configuration Properties
	8.2.31.5.5.4 Additional Considerations

	8.2.31.5.6 Using the XML Formatter
	8.2.31.5.6.1 Message Formatting Details
	8.2.31.5.6.2 Sample XML Messages
	8.2.31.5.6.2.1 Sample Insert Message
	8.2.31.5.6.2.2 Sample Update Message
	8.2.31.5.6.2.3 Sample Delete Message
	8.2.31.5.6.2.4 Sample Truncate Message

	8.2.31.5.6.3 XML Schema
	8.2.31.5.6.4 XML Formatter Configuration Properties
	8.2.31.5.6.5 Review a Sample Configuration
	8.2.31.5.6.6 Metadata Change Events
	8.2.31.5.6.7 Primary Key Updates

	8.2.31.6 Stage and Merge Data Warehouse Replication
	8.2.31.6.1 Steps for Stage and Merge
	8.2.31.6.1.1 Stage
	8.2.31.6.1.2 Merge
	8.2.31.6.1.3 Configuration of Handlers
	8.2.31.6.1.4 File Writer Handler
	8.2.31.6.1.5 Operation Aggregation
	8.2.31.6.1.6 Object Store Event handler
	8.2.31.6.1.7 JDBC Metadata Provider
	8.2.31.6.1.8 Command Event handler Merge Script
	8.2.31.6.1.9 Stage and Merge Sample Configuration
	8.2.31.6.1.10 Variables in the Merge Script
	8.2.31.6.1.11 SQL Statements in the Merge Script
	8.2.31.6.1.12 Merge Script Functions
	8.2.31.6.1.13 Prerequisites
	8.2.31.6.1.14 Limitations

	8.2.31.6.2 Hive Stage and Merge
	8.2.31.6.2.1 Data Flow
	8.2.31.6.2.2 Configuration
	8.2.31.6.2.3 Merge Script Variables
	8.2.31.6.2.4 Prerequisites

	8.2.31.7 Template Keywords
	8.2.31.8 Velocity Dependencies

	9 Administer
	9.1 Automatic Heartbeat for Oracle GoldenGate for Distributed Applications and Analytics
	9.1.1 Overview
	9.1.2 Automatic Heartbeat Tables
	9.1.2.1 ADD HEARTBEATTABLE
	9.1.2.2 ALTER HEARTBEAT TABLE
	9.1.2.3 INFO HEARTBEATTABLE
	9.1.2.4 LAG
	9.1.2.5 DELETE HEARTBEATTABLE

	9.2 Parsing the Message
	9.2.1 Parsing Overview
	9.2.1.1 Parser Types
	9.2.1.2 Source and Target Data Definitions
	9.2.1.3 Required Data
	9.2.1.3.1 Transaction Identifier
	9.2.1.3.2 Sequence Identifier
	9.2.1.3.3 Timestamp
	9.2.1.3.4 Table Name
	9.2.1.3.5 Operation Type
	9.2.1.3.6 Column Data

	9.2.1.4 Optional Data
	9.2.1.4.1 Transaction Indicator
	9.2.1.4.2 Transaction Name
	9.2.1.4.3 Transaction Owner

	9.2.2 Fixed Width Parsing
	9.2.2.1 Header
	9.2.2.1.1 Specifying Compound Table Names
	9.2.2.1.2 Specifying timestamp Formats
	9.2.2.1.3 Specifying the Function

	9.2.2.2 Header and Record Data Type Translation
	9.2.2.3 Key identification
	9.2.2.4 Using a Source Definition File

	9.2.3 Delimited Parsing
	9.2.3.1 Metadata Columns
	9.2.3.2 Parsing Properties
	9.2.3.2.1 Properties to Describe Delimiters
	9.2.3.2.2 Properties to Describe Values
	9.2.3.2.3 Properties to Describe Date and Time

	9.2.3.3 Parsing Steps

	9.2.4 XML Parsing
	9.2.4.1 Styles of XML
	9.2.4.2 XML Parsing Rules
	9.2.4.3 XPath Expressions
	9.2.4.3.1 Supported Constructs:
	9.2.4.3.2 Supported Expressions
	9.2.4.3.3 Obtaining Data Values

	9.2.4.4 Other Value Expressions
	9.2.4.5 Transaction Rules
	9.2.4.6 Operation Rules
	9.2.4.7 Column Rules
	9.2.4.8 Overall Rules Example

	9.2.5 Source Definitions Generation Utility

	9.3 Message Capture Properties
	9.3.1 Logging and Connection Properties
	9.3.1.1 Logging Properties
	9.3.1.1.1 gg.log
	9.3.1.1.2 gg.log.level
	9.3.1.1.3 gg.log.file
	9.3.1.1.4 gg.log.classpath

	9.3.1.2 JMS Connection Properties
	9.3.1.2.1 jvm.boot options
	9.3.1.2.2 jms.report.output
	9.3.1.2.3 jms.report.time
	9.3.1.2.4 jms.report.records
	9.3.1.2.5 jms.id
	9.3.1.2.6 jms.destination
	9.3.1.2.7 jms.connectionFactory
	9.3.1.2.8 jms.user, jms.password

	9.3.1.3 JNDI Properties

	9.3.2 Parser Properties
	9.3.2.1 Setting the Type of Parser
	9.3.2.1.1 parser.type

	9.3.2.2 Fixed Parser Properties
	9.3.2.2.1 fixed.schematype
	9.3.2.2.2 fixed.sourcedefs
	9.3.2.2.3 fixed.copybook
	9.3.2.2.4 fixed.header
	9.3.2.2.5 fixed.seqid
	9.3.2.2.6 fixed.timestamp
	9.3.2.2.7 fixed.timestamp.format
	9.3.2.2.8 fixed.txid
	9.3.2.2.9 fixed.txowner
	9.3.2.2.10 fixed.txname
	9.3.2.2.11 fixed.optype
	9.3.2.2.12 fixed.optype.insertval
	9.3.2.2.13 fixed.optype.updateval
	9.3.2.2.14 fixed.optype.deleteval
	9.3.2.2.15 fixed.table
	9.3.2.2.16 fixed.schema
	9.3.2.2.17 fixed.txind
	9.3.2.2.18 fixed.txind.beginval
	9.3.2.2.19 fixed.txind.middleval
	9.3.2.2.20 fixed.txind.endval
	9.3.2.2.21 fixed.txind.wholeval

	9.3.2.3 Delimited Parser Properties
	9.3.2.3.1 delim.sourcedefs
	9.3.2.3.2 delim.header
	9.3.2.3.3 delim.seqid
	9.3.2.3.4 delim.timestamp
	9.3.2.3.5 delim.timestamp.format
	9.3.2.3.6 delim.txid
	9.3.2.3.7 delim.txowner
	9.3.2.3.8 delim.txname
	9.3.2.3.9 delim.optype
	9.3.2.3.10 delim.optype.insertval
	9.3.2.3.11 delim.optype.updateval
	9.3.2.3.12 delim.optype.deleteval
	9.3.2.3.13 delim.schemaandtable
	9.3.2.3.14 delim.schema
	9.3.2.3.15 delim.table
	9.3.2.3.16 delim.txind
	9.3.2.3.17 delim.txind.beginval
	9.3.2.3.18 delim.txind.middleval
	9.3.2.3.19 delim.txind.endval
	9.3.2.3.20 delim.txind.wholeval
	9.3.2.3.21 delim.fielddelim
	9.3.2.3.22 delim.linedelim
	9.3.2.3.23 delim.quote
	9.3.2.3.24 delim.nullindicator
	9.3.2.3.25 delim.fielddelim.escaped
	9.3.2.3.26 delim.linedelim.escaped
	9.3.2.3.27 delim.quote.escaped
	9.3.2.3.28 delim.nullindicator.escaped
	9.3.2.3.29 delim.hasbefores
	9.3.2.3.30 delim.hasnames
	9.3.2.3.31 delim.afterfirst
	9.3.2.3.32 delim.isgrouped
	9.3.2.3.33 delim.dateformat | delim.dateformat.table | delim.dateform.table.column

	9.3.2.4 XML Parser Properties
	9.3.2.4.1 xml.sourcedefs
	9.3.2.4.2 xml.rules
	9.3.2.4.3 rulename.type
	9.3.2.4.4 rulename.match
	9.3.2.4.5 rulename.subrules
	9.3.2.4.6 txrule.timestamp
	9.3.2.4.7 txrule.timestamp.format
	9.3.2.4.8 txrule.seqid
	9.3.2.4.9 txrule.txid
	9.3.2.4.10 txrule.txowner
	9.3.2.4.11 txrule.txname
	9.3.2.4.12 oprule.timestamp
	9.3.2.4.13 oprule.timestamp.format
	9.3.2.4.14 oprule.seqid
	9.3.2.4.15 oprule.txid
	9.3.2.4.16 oprule.txowner
	9.3.2.4.17 oprule.txname
	9.3.2.4.18 oprule.schemandtable
	9.3.2.4.19 oprule.schema
	9.3.2.4.20 oprule.table
	9.3.2.4.21 oprule.optype
	9.3.2.4.22 oprule.optype.insertval
	9.3.2.4.23 oprule.optype.updateval
	9.3.2.4.24 oprule.optype.deleteval
	9.3.2.4.25 oprule.txind
	9.3.2.4.26 oprule.txind.beginval
	9.3.2.4.27 oprule.txind.middleval
	9.3.2.4.28 oprule.txind.endval
	9.3.2.4.29 oprule.txind.wholeval
	9.3.2.4.30 colrule.name
	9.3.2.4.31 colrule.index
	9.3.2.4.32 colrule.value
	9.3.2.4.33 colrule.isnull
	9.3.2.4.34 colrule.ismissing
	9.3.2.4.35 colrule.before.value
	9.3.2.4.36 colrule.before.isnull
	9.3.2.4.37 colrule.before.ismissing
	9.3.2.4.38 colrule.after.value
	9.3.2.4.39 colrule.after.isnull
	9.3.2.4.40 colrule.after.ismissing

	9.4 Oracle GoldenGate Java Delivery
	9.4.1 Configuring Java Delivery
	9.4.1.1 Configuring the JRE in the Properties File
	9.4.1.2 Configuring Oracle GoldenGate for Java Delivery
	9.4.1.2.1 Configuring a Replicat for Java Delivery

	9.4.1.3 Configuring the Java Handlers

	9.4.2 Running Java Delivery
	9.4.2.1 Starting the Application
	9.4.2.1.1 Starting Using Replicat

	9.4.2.2 Restarting the Java Delivery
	9.4.2.2.1 Restarting Java Delivery in Replicat

	9.4.3 Java Delivery Properties
	9.4.3.1 Common Properties
	9.4.3.1.1 Logging Properties
	9.4.3.1.1.1 gg.log
	9.4.3.1.1.2 gg.log.level
	9.4.3.1.1.3 gg.log.file
	9.4.3.1.1.4 gg.log.classpath

	9.4.3.1.2 JVM Boot Options
	9.4.3.1.2.1 jvm.bootoptions

	9.4.3.2 Delivery Properties
	9.4.3.2.1 General Properties
	9.4.3.2.1.1 goldengate.userexit.writers
	9.4.3.2.1.2 goldengate.userexit.chkptprefix
	9.4.3.2.1.3 goldengate.userexit.nochkpt
	9.4.3.2.1.4 goldengate.userexit.usetargetcols

	9.4.3.2.2 Statistics and Reporting
	9.4.3.2.2.1 jvm.stats.display
	9.4.3.2.2.2 jvm.stats.full
	9.4.3.2.2.3 jvm.stats.time | jvm.stats.numrecs

	9.4.3.3 Java Application Properties
	9.4.3.3.1 Properties for All Handlers
	9.4.3.3.1.1 gg.handlerlist
	9.4.3.3.1.2 gg.handler.name.type

	9.4.3.3.2 Properties for Formatted Output
	9.4.3.3.2.1 gg.handler.name.format
	9.4.3.3.2.2 gg.handler.name.includeTables
	9.4.3.3.2.3 gg.handler.name.excludeTables
	9.4.3.3.2.4 gg.handler.name.mode, gg.handler.name.format.mode

	9.4.3.3.3 Properties for CSV and Fixed Format Output
	9.4.3.3.3.1 gg.handler.name.format.delim
	9.4.3.3.3.2 gg.handler.name.format.quote
	9.4.3.3.3.3 gg.handler.name.format.metacols
	9.4.3.3.3.4 gg.handler.name.format.missingColumnChar
	9.4.3.3.3.5 gg.handler.name.format.presentColumnChar
	9.4.3.3.3.6 gg.handler.name.format.nullColumnChar
	9.4.3.3.3.7 gg.handler.name.format.beginTxChar
	9.4.3.3.3.8 gg.handler.name.format.middleTxChar
	9.4.3.3.3.9 gg.handler.name.format.endTxChar
	9.4.3.3.3.10 gg.handler.name.format.wholeTxChar
	9.4.3.3.3.11 gg.handler.name.format.insertChar
	9.4.3.3.3.12 gg.handler.name.format.updateChar
	9.4.3.3.3.13 gg.handler.name.format.deleteChar
	9.4.3.3.3.14 gg.handler.name.format.truncateChar
	9.4.3.3.3.15 gg.handler.name.format.endOfLine
	9.4.3.3.3.16 gg.handler.name.format.justify
	9.4.3.3.3.17 gg.handler.name.format.includeBefores

	9.4.3.3.4 File Writer Properties
	9.4.3.3.4.1 gg.handler.name.file
	9.4.3.3.4.2 gg.handler.name.append
	9.4.3.3.4.3 gg.handler.name.rolloverSize

	9.4.3.3.5 JMS Handler Properties
	9.4.3.3.5.1 Standard JMS Settings
	9.4.3.3.5.1.1 gg.handler.name.destination
	9.4.3.3.5.1.2 gg.handler.name.user
	9.4.3.3.5.1.3 gg.handler.name.password
	9.4.3.3.5.1.4 gg.handler.name.queueOrTopic
	9.4.3.3.5.1.5 gg.handler.name.persistent
	9.4.3.3.5.1.6 gg.handler.name.priority
	9.4.3.3.5.1.7 gg.handler.name.timeToLive
	9.4.3.3.5.1.8 gg.handler.name.connectionFactory
	9.4.3.3.5.1.9 gg.handler.name.useJndi
	9.4.3.3.5.1.10 gg.handler.name.connectionUrl
	9.4.3.3.5.1.11 gg.handler.name.connectionFactoryClass
	9.4.3.3.5.1.12 gg.handler.name.localTX
	9.4.3.3.5.1.13 gg.handlerlist.nop
	9.4.3.3.5.1.14 gg.handler.name.physicalDestination

	9.4.3.3.5.2 Group Transaction Properties

	9.4.3.3.6 JNDI Properties
	9.4.3.3.7 General Properties
	9.4.3.3.7.1 gg.classpath
	9.4.3.3.7.2 gg.report.time
	9.4.3.3.7.3 gg.binaryencoding

	9.4.3.3.8 Java Delivery Transaction Grouping

	9.4.4 Developing Custom Filters, Formatters, and Handlers
	9.4.4.1 Filtering Events
	9.4.4.2 Custom Formatting
	9.4.4.2.1 Coding a Custom Formatter in Java
	9.4.4.2.2 Using a Velocity Template

	9.4.4.3 Coding a Custom Handler in Java
	9.4.4.4 Additional Resources

	9.4.5 Configuring Data Transforms
	9.4.5.1 Built-in Regex Based Data Transforms
	9.4.5.2 Developing Custom Data Transforms
	9.4.5.3 Troubleshooting and Diagnostics

	10 Troubleshoot
	10.1 Troubleshooting the Java Adapters
	10.1.1 Checking for Errors
	10.1.2 Reporting Issues

