
Oracle® Fusion Middleware
WebLogic Web Services Reference for Oracle
WebLogic Server

14c (14.1.2.0.0)
F53592-01
December 2024

Oracle Fusion Middleware WebLogic Web Services Reference for Oracle WebLogic Server, 14c (14.1.2.0.0)

F53592-01

Copyright © 2007, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Diversity and Inclusion ix

Related Documentation ix

Conventions x

1 Introduction

2 Ant Task Reference

Overview of WebLogic Web Services Ant Tasks 2-1

clientgen 2-2

Taskdef Classname 2-3

Child Elements 2-3

binding 2-3

jmstransportclient 2-3

xmlcatalog 2-4

Attributes 2-5

Examples 2-6

wsdlc 2-8

Taskdef Classname 2-10

Child Elements 2-10

binding 2-10

xmlcatalog 2-10

Attributes 2-11

WebLogic-Specific wsdlc Attributes 2-11

Standard Ant javac Attributes That Apply To wsdlc 2-13

Example 2-14

wsdlget 2-15

Taskdef Classname 2-16

Child Elements 2-16

Attributes 2-16

iii

Example 2-17

3 JWS Annotation Reference

Overview of JWS Annotation Tags 3-1

Web Services Metadata Annotations (JSR-181) 3-3

JAX-WS Annotations (JSR-224) 3-3

JAXB Annotations (JSR-222) 3-4

Jakarta Annotations (JSR-250) 3-5

WebLogic-Specific Annotations 3-5

com.oracle.webservices.api.jms.JMSTransportClient 3-7

com.oracle.webservices.api.jms.JMSTransportService 3-8

weblogic.jws.Policies 3-9

Description 3-9

Example 3-9

weblogic.jws.Policy 3-9

Description 3-10

Attributes 3-10

Example 3-11

weblogic.jws.security.WssConfiguration 3-11

Description 3-11

Attributes 3-12

Example 3-12

weblogic.wsee.jws.jaxws.owsm.Property 3-12

Description 3-12

Example 3-13

weblogic.wsee.jws.jaxws.owsm.SecurityPolicies 3-13

Description 3-13

Example 3-13

weblogic.wsee.jws.jaxws.owsm.SecurityPolicy 3-13

Description 3-14

Attributes 3-14

Examples 3-14

weblogic.wsee.jws.jaxws.owsm.SecurityPolicies 3-15

Description 3-15

Example 3-15

weblogic.wsee.jws.jaxws.owsm.SecurityPolicy 3-15

Description 3-15

Attribute 3-16

Example 3-16

weblogic.wsee.wstx.wsat.Transactional 3-16

Description 3-16

iv

Attributes 3-17

Example 3-18

4 Web Service Reliable Messaging Policy Assertion Reference

Overview of a WS-Policy File That Contains Web Service Reliable Messaging Assertions 4-1

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1 4-1

Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.2 and
1.1 4-2

Element Descriptions 4-2

wsp:Policy 4-2

wsrmp:DeliveryAssurance 4-2

wsrmp:RMAssertion 4-3

wsrmp:SequenceSTR 4-3

wsrmp:SequenceTransportSecurity 4-3

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated) 4-4

Example of a WS-Policy File With Web Service Reliable Messaging Assertions 4-4

Element Description 4-4

beapolicy:Expires 4-5

beapolicy:QOS 4-5

wsrm:AcknowledgementInterval 4-6

wsrm:BaseRetransmissionInterval 4-6

wsrm:ExponentialBackoff 4-6

wsrm:InactivityTimeout 4-7

wsrm:RMAssertion 4-7

5 Web Service MakeConnection Policy Assertion Reference

Overview of a WS-Policy File That Contains MakeConnection Assertions 5-1

Example of a WS-Policy File With MakeConnection and WS-Policy 1.5 5-2

Element Descriptions 5-2

wsp:Policy 5-2

wsmc:MCSupported 5-2

6 Oracle Web Services Security Policy Assertion Reference

Overview of a Policy File That Contains Security Assertions 6-1

Example of a Policy File With Security Elements 6-2

Element Description 6-3

CanonicalizationAlgorithm 6-4

Claims 6-4

Confidentiality 6-5

ConfirmationMethod 6-5

v

DigestAlgorithm 6-7

EncryptionAlgorithm 6-7

Identity 6-7

Integrity 6-7

KeyInfo 6-8

KeyWrappingAlgorithm 6-8

Label 6-8

Length 6-9

MessageAge 6-9

MessageParts 6-10

Policy 6-11

SecurityToken 6-11

SecurityTokenReference 6-12

SignatureAlgorithm 6-12

SupportedTokens 6-13

Target 6-13

TokenLifeTime 6-13

Transform 6-13

UsePassword 6-14

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or
Signed 6-14

XPath 1.0 6-15

Pre-Defined wsp:Body() Function 6-16

WebLogic-Specific Header Functions 6-16

7 WebLogic Web Service Deployment Descriptor Schema Reference

Overview of weblogic-webservices.xml 7-1

Example of a weblogic-webservices.xml Deployment Descriptor File 7-2

Element Descriptions 7-2

acknowledgement-interval 7-6

activation-config 7-6

auth-constraint 7-7

base-retransmission-interval 7-7

binding-version 7-7

buffer-retry-count 7-7

buffer-retry-delay 7-8

buffering-config 7-8

callback-protocol 7-8

connection-factory-jndi-name 7-8

customized 7-8

default-logical-store-name 7-8

vi

delivery-mode 7-9

deployment-listener-list 7-9

deployment-listener 7-9

destination-name 7-9

destination-type 7-9

enable-http-wsdl-access 7-9

enabled 7-9

exposed 7-10

fastinfoset 7-10

flowType 7-10

http-flush-response 7-10

http-response-buffersize 7-10

inactivity-timeout 7-10

jndi-connection-factory-name 7-11

jndi-context-parameter 7-11

jndi-initial-context-factory 7-11

jndi-url 7-11

logging-level 7-11

login-config 7-12

lookup-variant 7-12

mbean-name 7-12

mdb-per-destination 7-12

message-type 7-13

messaging-queue-jndi-name 7-13

messaging-queue-mdb-run-as-principal-name 7-13

name 7-13

non-buffered-destination 7-13

non-buffered-source 7-13

operation 7-14

persistence-config 7-14

port-component 7-14

port-component-name 7-14

priority 7-14

reliability-config 7-14

reply-to-name 7-14

request-queue 7-15

response-queue 7-15

retransmission-exponential-backoff 7-15

retry-count 7-15

retry-delay 7-16

run-as-principal 7-16

run-as-role 7-16

vii

sequence-expiration 7-16

service-endpoint-address 7-16

soapjms-service-endpoint-address 7-17

stream-attachments 7-17

target-service 7-17

time-to-live 7-17

transport-guarantee 7-17

transaction-enabled 7-18

transaction-timeout 7-18

validate-request 7-18

version 7-18

weblogic-webservices 7-19

webservice-contextpath 7-19

webservice-description 7-19

webservice-description-name 7-19

webservice-security 7-20

webservice-serviceuri 7-20

webservice-type 7-20

wsat-config 7-20

wsdl 7-20

wsdl-publish-file 7-20

viii

Preface

This document provides reference information for developing WebLogic web services for
Oracle WebLogic Server 14c.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
This documentation is for software developers who are responsible for developing WebLogic
web services for Oracle WebLogic Server. It is assumed that the reader is familiar with
WebLogic concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
New and Changed WebLogic Server Features

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

For a comprehensive listing of the new and changed WebLogic Server features introduced in
this release, see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

x

1
Introduction

This chapter list the reference information that is available to software developers who develop
WebLogic web services.

The following table summarizes the topics described in this document.

Table 1-1 WebLogic Web Service Reference Topics

This Reference Topic . . . Describes . . .

Ant Task Reference WebLogic web services Ant tasks.

JWS Annotation Reference JWS annotations that you can use in the JWS file that implements
your web service.

Web Service Reliable Messaging
Policy Assertion Reference

Policy assertions you can add to a WS-Policy file to configure the
web service reliable messaging feature of a WebLogic web service.

Web Service MakeConnection
Policy Assertion Reference

Policy assertions you can add to a WS-Policy file to configure the
web service MakeConnection feature of a WebLogic web service.

Oracle Web Services Security
Policy Assertion Reference

Policy assertions you can add to a WS-Policy file to configure the
message-level (digital signatures and encryption) security of a
WebLogic web service, using a proprietary Oracle security policy
schema.

Note: You may prefer to use files that conform to the OASIS WS-
SecurityPolicy specification, as described in Configuring Message-
Level Security in Securing WebLogic Web Services for Oracle
WebLogic Server.

WebLogic Web Service
Deployment Descriptor Schema
Reference

Elements in the WebLogic-specific web services deployment
descriptor weblogic-webservices.xml.

For an overview of WebLogic web services, samples, and related documentation, see
Understanding WebLogic Web Services for Oracle WebLogic Server.

1-1

2
Ant Task Reference

WebLogic web services includes a variety of Ant tasks that you can use to centralize many of
the configuration and administrative tasks into a single Ant build script.

This chapter includes the following sections:

• Overview of WebLogic Web Services Ant Tasks

• clientgen
The clientgen Ant task generates, from an existing WSDL file, the client component files
that client applications use to invoke both WebLogic and non-WebLogic web services.

• wsdlc
The wsdlc Ant task generates, from an existing WSDL file, a set of artifacts that together
provide a partial Java implementation of the web service described by the WSDL file. By
specifying the type attribute, you can generate a partial implementation based on JAX-WS.

• wsdlget
The wsdlget Ant task downloads to the local directory a WSDL and its imported XML
resources.

Overview of WebLogic Web Services Ant Tasks
Ant is a Java-based build tool, similar to the make command but much more powerful. Ant uses
XML-based configuration files (called build.xml by default) to execute tasks written in Java.
Oracle provides a number of Ant tasks that help you generate important web service-related
artifacts.
The Apache Web site provides other useful Ant tasks for packaging EAR, WAR, and EJB JAR
files. See the Apache Ant Manual at http://jakarta.apache.org/ant/manual/.

Note:

The Apache Jakarta Web site publishes online documentation for only the most
current version of Ant, which might be different from the version of Ant that is bundled
with WebLogic Server. To determine the version of Ant that is bundled with WebLogic
Server, run the following command after setting your WebLogic environment:

prompt> ant -version

To view the documentation for a specific version of Ant, download the Ant zip file from
http://archive.apache.org/dist/ant/binaries/ and extract the documentation.

The following table provides an overview of the web service Ant tasks provided by Oracle.

2-1

http://jakarta.apache.org/ant/manual/
http://archive.apache.org/dist/ant/binaries/

Table 2-1 WebLogic Web Service Ant Tasks

Ant Task Description

clientgen Generates the Service stubs and other client-side artifacts used to invoke a web service.

wsdlc Generates a partial web service implementation based on a WSDL file.

wsdlget Downloads to the local directory a WSDL and its imported XML targets, such as XSD and
WSDL files.

For detailed information about how to integrate and use these Ant tasks in your development
environment to program a web service and a client application that invokes the web service,
see:

• Using Oracle WebLogic Server Ant Tasks in Understanding WebLogic Web Services for
Oracle WebLogic Server

• Developing JAX-WS Web Services for Oracle WebLogic Server

clientgen
The clientgen Ant task generates, from an existing WSDL file, the client component files that
client applications use to invoke both WebLogic and non-WebLogic web services.

The generated artifacts for JAX-WS web services include:

• The Java class for the Service interface implementation for the particular web service you
want to invoke.

• JAXB data binding artifacts.

• The Java class for any user-defined XML Schema data types included in the WSDL file.

Two types of client applications use the generated artifacts of clientgen to invoke web
services:

• Standalone Jakarta clients that do not use the Jakarta Platform, Enterprise Edition client
container.

• Jakarta EE clients, such as EJBs, JSPs, and web services, that use the Jakarta EE client
container.

If you are generating client artifacts for a JAX-WS web service, you can set the type attribute
to JAXWS. For example: type="JAXWS".

You typically use the destDir attribute of clientgen to specify the directory into which all the
artifacts should be generated, and then compile the generate Java files yourself using the
javac Ant task. However, clientgen also provides a destFile attribute if you want the Ant task
to compile the Java files for you and package them, along with the other generated artifacts,
into the specified JAR file. You must specify one of either destFile or destDir, although you
cannot specify both.

The following sections provide more information about the clientgen Ant task:

• Taskdef Classname

• Child Elements

• Attributes

• Examples

Chapter 2
clientgen

2-2

Taskdef Classname
The following shows the task definition for the clientgen classname which must appear in
your Ant build file.

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

Child Elements
The following sections describe the WebLogic-specific child elements for the clientgen Ant
task.

• binding

• jmstransportclient

• xmlcatalog

binding
Use the <binding> child element to specify JAX-WS.

For JAX-WS, one or more customization files that specify one or more of the following:

• JAX-WS and JAXB custom binding declarations. See Customizing XML Schema-to-Java
Mapping Using Binding Declarations in Developing JAX-WS Web Services for Oracle
WebLogic Server.

• SOAP handler files. See Creating and Using SOAP Message Handlers in Developing JAX-
WS Web Services for Oracle WebLogic Server.

You use the <binding> element the same way as the standard Ant FileSet data type, using the
same attributes. For example, the following <binding> element specifies the JAX-WS custom
binding declarations defined in the file jaxws-binding.xml:

<binding file="./jaxws-binding.xml"/>

The following example specifies the JAX-WS customization files that are located in the $
{basedir} directory:

<binding dir="${basedir}"/>

For information about the full set of attributes you can specify using the FileSet data type,
obtain the documentation for the version of Ant you are using at http://ant.apache.org/
index.html and navigate to the description of the FileSet type.

jmstransportclient

Note:

The <jmstransportclient> child element applies to JAX-WS only.

The <jmstransportclient> element enables and configures SOAP over JMS transport.

Chapter 2
clientgen

2-3

http://ant.apache.org/index.html
http://ant.apache.org/index.html

Optionally, you can configure the destination name, destination type, delivery mode, request
and response queues, and other JMS transport properties, using the <jmstransportclient>
element. For a complete list of JMS transport properties supported, see Configuring JMS
Transport Properties in Developing JAX-WS Web Services for Oracle WebLogic Server.

The following example shows how to enable and configure JMS transport when generating the
web service client using clientgen.

<target name="clientgen">
<clientgen
 wsdl="./WarehouseService.wsdl"
 destDir="clientclasses"
 packageName="client.warehouse"
 type="JAXWS">
 <jmstransportclient
 targetService="JWSCEndpointService"
 destinationName="com.oracle.webservices.jms.SoapJmsRequestQueue"
 jndiInitialContextFactory="weblogic.jndi.WLInitialContextFactory"
 jndiConnectionFactoryName="weblogic.jms.ConnectionFactory"
 jndiURL="t3://localhost:7001"
 deliveryMode="NON_PERSISTENT"
 timeToLive="60000"
 priority="1"
 messageType="TEXT"
 replyToName="com.oracle.webservices.jms.SoapJmsResponseQueue"
 />
</clientgen>

xmlcatalog

Note:

The <xmlcatalog> child element applies to JAX-WS only.

The <xmlcatalog> child element specifies the ID of an embedded XML catalog. The following
shows the element syntax:

<xmlcatalog refid="id"/>

The ID referenced by <xmlcatalog> must match the ID of an embedded XML catalog. You
embed an XML catalog in the build.xml file using the following syntax:

<xmlcatalog id="id">
 <entity publicid="public_id" location="uri"/>
</xmlcatalog>

In the above syntax, public_id specifies the public identifier of the original XML resource
(WSDL or XSD) and uri specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using clientgen.
Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
 type="JAXWS"
 wsdl="${wsdl}"
 destDir="${clientclasses.dir}"

Chapter 2
clientgen

2-4

 packageName="xmlcatalog.jaxws.clientgen.client"
 catalog="wsdlcatalog.xml">
 <xmlcatalog refid="wsimportcatalog"/>
</clientgen>
</target>
<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

See Using XML Catalogs in Developing JAX-WS Web Services for Oracle WebLogic Server.

Attributes
The following table describe the WebLogic-specific attributes of the clientgen Ant task for
JAX-WS web services.

Table 2-2 WebLogic-specific Attributes of the clientgen Ant Task

Attribute Description Data Type Required?

catalog Specifies an external XML catalog file. See Using
XML Catalogs in Developing JAX-WS Web Services
for Oracle WebLogic Server.

String No

copyWsdl Controls whether the WSDL should be copied in the
destination directory defined by destDir.

Boolean No

destDir Directory into which the clientgen Ant task
generates the client source code, compiled classes,
WSDL, and client deployment descriptor files.

You can set this attribute to any directory you want.
However, if you are generating the client component
files to invoke a web service from an EJB, JSP, or
other web service, you typically set this attribute to
the directory of the Java EE component which holds
shared classes, such as META-INF for EJBs, WEB-
INF/classes for Web Applications, or APP-INF/
classes for Enterprise Applications. If you are
invoking the web service from a stand-alone client,
then you can generate the client component files into
the same source code directory hierarchy as your
client application code.

String You must
specify either
the destFile
or destDir
attribute, but
not both.

destFile Name of a JAR file or exploded directory into which
the clientgen task packages the client source
code, compiled classes, WSDL, and client
deployment descriptor files. If you specify this
attribute, the clientgen Ant task also compiles all
Java code into classes.

To create or update a JAR file, use a .jar suffix
when specifying the JAR file, such as
myclientjar.jar. If the attribute value does not
have a .jar suffix, then the clientgen task
assumes you are referring to a directory name.

If you specify a JAR file or directory that does not
exist, the clientgen task creates a new JAR file or
directory.

String You must
specify either
the destFile
or destDir
attribute, but
not both.

Chapter 2
clientgen

2-5

Table 2-2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task

Attribute Description Data Type Required?

failonerror Specifies whether the clientgen Ant task continues
executing in the event of an error.

Valid values for this attribute are True or False. The
default value is True, which means clientgen
continues executing even after it encounters an error.

Boolean No

getRuntimeCatalog Specifies whether the clientgen Ant task should
generate the XML catalog artifacts in the client
runtime environment. To disable their generation, set
this flag to false. This value defaults to true. See
Disabling XML Catalogs in the Client Runtime in
Developing JAX-WS Web Services for Oracle
WebLogic Server.

Boolean No

packageName Package name into which the generated client
interfaces and stub files are packaged.

If you do not specify this attribute, the clientgen
Ant task generates Java files whose package name
is based on the targetNamespace of the WSDL file.
For example, if the targetNamespace is http://
example.org, then the package name might be
org.example or something similar. If you want
control over the package name, then you should
specify this attribute.

If you do specify this attribute, Oracle recommends
you use all lower-case letters for the package name.

String No

type Specifies the type of web service for which you are
generating client artifacts.

Valid values is JAXWS.

String No

wsdl Full path name or URL of the WSDL that describes a
web service (either WebLogic or non-WebLogic) for
which the client component files should be
generated.

The generated stub factory classes in the client JAR
file use the value of this attribute in the default
constructor.

String Yes

wsdlLocation Specifies the value of the wsdlLocation attribute
generated on the @WebServiceClient.

String No

Examples
The following examples illustrate how to build a clientgen Ant target.

Example 1 Building a Basic clientgen Ant Target
In the following example, when the sample build_client target is executed, clientgen uses
the WSDL file specified by the wsdl attribute to generate all the client-side artifacts needed to
invoke the web service specified by the serviceName attribute. The clientgen Ant task
generates all the artifacts into the /output/clientclasses directory. All generated Java code
is in the myapp.myservice.client package. After clientgen has finished, the javac Ant task
then compiles the Java code, both clientgen-generated as well as your own client application

Chapter 2
clientgen

2-6

that uses the generated artifacts and contains your business code. By default, clientgen
generates client artifacts based on a JAX-WS web service.

<taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
...
<target name="build_client">
<clientgen
 wsdl="http://example.com/myapp/myservice.wsdl"
 destDir="/output/clientclasses"
 packageName="myapp.myservice.client"
 serviceName="StockQuoteService" />
<javac ... />
</target>

Example 2 Generating a JAX-WS Web Service Client
In the preceding example, it is assumed that the web service for which you are generating
client artifacts is based on JAX-WS; the following example shows how to use the type
attribute to specify that the web service is based on JAX-WS:

<clientgen
 type="JAXWS"
 wsdl="http://${wls.hostname}:${wls.port}/JaxWsImpl/JaxWsImplService?WSDL"
 destDir="/output/clientclasses"
 packageName="examples.webservices.jaxws.client"
/>

Example 3 Compiling and Packaging the Generated Artifacts
If you want the clientgen Ant task to compile and package the generated artifacts for you,
specify the destFile attribute rather than destDir. In this example, you do not need to also
specify the javac Ant task after clientgen in the build.xml file because the Java code has
already been compiled.

<clientgen
 type="JAXWS"
 wsdl="http://example.com/myapp/myservice.wsdl"
 destFile="/output/jarfiles/myclient.jar"
 packageName="myapp.myservice.client"
 serviceName="StockQuoteService"
/>

Example 4 Executing clientgen on a Static WSDL File
You typically execute the clientgen Ant task on a WSDL file that is deployed on the Web and
accessed using HTTP. Sometimes, however, you might want to execute clientgen on a static
WSDL file that is packaged in an archive file, such as the WAR or JAR file generated by the
jwsc Ant task. In this case you must use the following syntax for the wsdl attribute:

wsdl="jar:file:archive_file!WSDL_file"

where archive_file refers to the full or relative (to the current directory) name of the archive
file and WSDL_file refers to the full pathname of the WSDL file, relative to the root directory of
the archive file.
The following example shows how to execute clientgen on a static WSDL file called
SimpleService.wsdl, which is packaged in the WEB-INF directory of a WAR file called
SimpleImpl.war, which is located in the output/myEAR/examples/webservices/simple sub-
directory of the directory that contains the build.xml file.

<clientgen
 type="JAXWS"

Chapter 2
clientgen

2-7

 wsdl="jar:file:output/myEAR/examples/webservices/simple/SimpleImpl.war!/WEB-INF/
SimpleService.wsdl"
 destDir="/output/clientclasses"
 packageName="myapp.myservice.client"
/>

Example 5 Setting Java Properties
You can use the standard Ant <sysproperty> nested element to set Java properties, such as
the username and password of a valid WebLogic Server user (if you have enabled access
control on the web service) or the name of a client-side trust store that contains trusted
certificates, as shown in the following example:

<clientgen
 type="JAXWS"
 wsdl="http://example.com/myapp/mySecuredService.wsdl"
 destDir="/output/clientclasses"
 packageName="myapp.mysecuredservice.client"
 serviceName="SecureStockQuoteService"
 <sysproperty key="javax.net.ssl.trustStore"
 value="/keystores/DemoTrust.jks"/>
 <sysproperty key="weblogic.wsee.client.ssl.stricthostchecking"
 value="false"/>
 <sysproperty key="javax.xml.ws.security.auth.username"
 value="juliet"/>
 <sysproperty key="javax.xml.ws.security.auth.password"
 value="secret"/>
</clientgen>

wsdlc
The wsdlc Ant task generates, from an existing WSDL file, a set of artifacts that together
provide a partial Java implementation of the web service described by the WSDL file. By
specifying the type attribute, you can generate a partial implementation based on JAX-WS.

By default, it is assumed that the WSDL file includes a single <service> element from which
the wsdlc Ant task generates artifacts. You can, however, use the srcServiceName attribute to
specify a specific web service, in the case that there is more than one <service> element in
the WSDL file, or use the srcPortName attribute to specify a specific port of a web service in
the case that there is more than one <port> child element for a given web service.

The wsdlc Ant task generates the following artifacts:

• A JWS interface file—or service endpoint interface—that implements the web service
described by the WSDL file. The interface includes full method signatures that implement
the web service operations, and JWS annotations (such as @WebService and
@SOAPBinding) that implement other aspects of the web service. You should not modify this
file.

• Data binding artifacts used by WebLogic Server to convert between the XML and Java
representations of the web service parameters and return values. The XML Schema of the
data types is specified in the WSDL, and the Java representation is generated by the
wsdlc Ant task. You should not modify this file.

• A JWS file that contains a partial (stubbed-out) implementation of the generated JWS
interface. You need to modify this file to include your business code.

• Optional Javadocs for the generated JWS interface.

After running the wsdlc Ant task, (which typically you only do once) you update the generated
JWS implementation file, for example, to add Java code to the methods so that they function

Chapter 2
wsdlc

2-8

as defined by your business requirements. The generated JWS implementation file does not
initially contain any business logic because the wsdlc Ant task does not know how you want
your web service to function, although it does know the shape of the web service, based on the
WSDL file.

When you code the JWS implementation file, you can also add additional JWS annotations,
although you must abide by the following rules:

• The only standard JSR-181 JWS annotations you can include in the JWS implementation
file are @WebService and @HandlerChain, @SOAPMessageHandler, and
@SOAPMessageHandlers. If you specify any other JWS-181 JWS annotations, the jwsc Ant
task will return an error when you try to compile the JWS file into a web service.

• You cannot attach policies to the web service within the JWS implementation file using the
weblogic.jws.Policy or weblogic.jws.Policies annotations.

• Additionally, you can specify only the serviceName and endpointInterface attributes of
the @WebService annotation. Use the serviceName attribute to specify a different
<service> WSDL element from the one that the wsdlc Ant task used, in the rare case that
the WSDL file contains more than one <service> element. Use the endpointInterface
attribute to specify the JWS interface generated by the wsdlc Ant task.

• You cannot use any WebLogic-specific JWS annotations in a JAX-WS web service.

• For JAX-WS, you can specify JAX-WS (JSR 224 at https://jcp.org/en/jsr/detail?
id=224), JAXB (JSR 222 at http://jcp.org/en/jsr/detail?id=222), or Common (JSR
250 at http://jcp.org/en/jsr/detail?id=250) annotations, as required.

After you have coded the JWS file with your business logic, run the jwsc Ant task to generate a
complete Java implementation of the web service. Use the compiledWsdl attribute of jwsc to
specify the JAR file generated by the wsdlc Ant task which contains the JWS interface file and
data binding artifacts. By specifying this attribute, the jwsc Ant task does not generate a new
WSDL file but instead uses the one in the JAR file. Consequently, when you deploy the web
service and view its WSDL, the deployed WSDL will look just like the one from which you
initially started.

Note:

The only potential difference between the original and deployed WSDL is the value of
the location attribute of the <address> element of the port(s) of the web service. The
deployed WSDL will specify the actual hostname and URI of the deployed web
service, which is most likely different from that of the original WSDL. This difference
is to be expected when deploying a real web service based on a static WSDL.

Depending on the type of partial implementation you generate (JAX-WS), the Java package
name of the generated complex data types differs, as described in the following guidelines:

• For JAX-WS, if you specify the packageName attribute, then all artifacts (Java complex data
types, JWS interface, and the JWS interface implementation) are generated into this
package. If you want to change the package name of the generated Java complex data
types in this case, use the <binding> child element of the wsdlc Ant task to specify a
custom binding declarations file. For information about creating a custom binding
declarations file, see Using JAXB Data Binding in Developing JAX-WS Web Services for
Oracle WebLogic Server.

Chapter 2
wsdlc

2-9

https://jcp.org/en/jsr/detail?id=224
https://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=250

• The package name of the generated Java complex data types, however, always
corresponds to the XSD Schema type namespace, whether you specify the packageName
attribute or not.

See Creating a web service from a WSDL File in Developing JAX-WS Web Services for Oracle
WebLogic Server for a complete example of using the wsdlc Ant task in conjunction with jwsc.

The following sections discuss additional important information about wsdlc:

• Taskdef Classname

• Child Elements

• Attributes

• Example

Taskdef Classname
 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

Child Elements
The wsdlc Ant task has the following WebLogic-specific child elements.

For a list of elements associated with the standard Ant javac task that you can also set for the
wsdlc Ant task, see Standard Ant javac Attributes That Apply To wsdlc.

• binding

• xmlcatalog

binding
Use the <binding> child element to specify the JAX-WS web service.

For JAX-WS, one or more customization files that specify JAX-WS and JAXB custom binding
declarations. See Customizing XML Schema-to-Java Mapping Using Binding Declarations in
Developing JAX-WS Web Services for Oracle WebLogic Server.

The <binding> element is similar to the standard Ant <Fileset> element and has all the same
attributes. See the Apache Ant documentation on the Fileset element at http://
ant.apache.org/manual/Types/fileset.html for the full list of attributes you can specify.

xmlcatalog
The <xmlcatalog> child element specifies the ID of an embedded XML catalog. The following
shows the element syntax:

<xmlcatalog refid="id"/>

The ID referenced by <xmlcatalog> must match the ID of an embedded XML catalog. You
embed an XML catalog in the build.xml file using the following syntax:

<xmlcatalog id="id">
 <entity publicid="public_id" location="uri"/>
</xmlcatalog>

Chapter 2
wsdlc

2-10

http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html

In the above syntax, public_id specifies the public identifier of the original XML resource
(WSDL or XSD) and uri specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using wsdlc.
Relevant code lines are shown in bold.

<target name="wsdlc">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="output/impl"
 packageName="examples.webservices.wsdlc"
 <xmlcatalog refid="wsimportcatalog"/>
 </wsdlc>
</target>
<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

See Using XML Catalogs in Developing JAX-WS Web Services for Oracle WebLogic Server.

Attributes
The table in the following sections describes the attributes of the wsdlc Ant task.

• WebLogic-Specific wsdlc Attributes

• Standard Ant javac Attributes That Apply To wsdlc

WebLogic-Specific wsdlc Attributes
The following table describes the WebLogic-specific wsdlc attributes.

Table 2-3 WebLogic-specific Attributes of the wsdlc Ant Task

Attribute Description Data Type Required?

catalog Specifies an external XML catalog file. See
Using XML Catalogs in Developing JAX-WS
Web Services for Oracle WebLogic Server.

String No

destImplDir Directory into which the stubbed-out JWS
implementation file is generated.

The generated JWS file implements the
generated JWS interface file (contained within
the JAR file). You update this JWS
implementation file, adding Java code to the
methods so that they behave as you want, then
later specify this updated JWS file to the jwsc
Ant task to generate a deployable web service.

String No

Chapter 2
wsdlc

2-11

Table 2-3 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task

Attribute Description Data Type Required?

destJavadocDir Directory into which Javadoc that describes the
JWS interface is generated.

Because you should never unjar or update the
generated JAR file that contains the JWS
interface file that implements the specified web
service, you can get detailed information about
the interface file from this generated Javadoc.
You can then use this documentation, together
with the generated stubbed-out JWS
implementation file, to add business logic to the
partially generated web service.

String No

destJwsDir Directory into which the JAR file that contains
the JWS interface and data binding artifacts
should be generated.

The name of the generated JAR file is
WSDLFile_wsdl.jar, where WSDLFile refers
to the root name of the WSDL file. For example,
if the name of the WSDL file you specify to the
file attribute is MyService.wsdl, then the
generated JAR file is MyService_wsdl.jar.

String Yes

explode Specifies whether the generated JAR file that
contains the generated JWS interface file and
data binding artifacts is in exploded directory
format or not.

Valid values for this attribute are true or false.
Default value is false, which means that wsdlc
generates an actual JAR archive file, and not an
exploded directory.

Boolean No

packageName Package into which the generated JWS interface
and implementation files should be generated.

If you do not specify this attribute, the wsdlc Ant
task generates a package name based on the
targetNamespace of the WSDL.

String No

srcPortName Name of the WSDL port from which the JWS
interface file should be generated.

Set the value of this attribute to the value of the
name attribute of the <port> element that
corresponds to the web service port for which
you want to generate a JWS interface file. The
<port> element is a child element of the
<service> element in the WSDL file.

If you do not specify this attribute, wsdlc
generates a JWS interface file from the service
specified by srcServiceName.

String No

Chapter 2
wsdlc

2-12

Table 2-3 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task

Attribute Description Data Type Required?

srcServiceName Name of the web service from which the JWS
interface file should be generated.

Set the value of this attribute to the value of the
name attribute of the <service> element that
corresponds to the web service for which you
want to generate a JWS interface file.

The wsdlc Ant task generates a single JWS
endpoint interface and data binding JAR file for a
given web service. This means that if the
<service> element contains more than one
<port> element, the following must be true:

• The bindings for each port must be the
same or equivalent to each other.

• The transport for each port must be
different. The wsdlc Ant task determines
the transport for a port from the address
listed in its <address> child element.
Because WebLogic web services support
only three transports (JMS, HTTP, and
HTTPS), this means that there can be at
most three <port> child elements for the
<service> element specified by this
attribute. The generated JWS
implementation file will then include the
corresponding @WLXXXTransport
annotations.

If you do not specify either this or the
srcPortName attribute, the WSDL file must
include only one <service> element. The
wsdlc Ant task generates the JWS interface file
and data binding JAR file from this single web
service.

String No

srcWsdl Name of the WSDL from which to generate the
JAR file that contains the JWS interface and
data binding artifacts.

The name must include its pathname, either
absolute or relative to the directory which
contains the Ant build.xml file.

String Yes

type Specifies the type of web service for which you
are generating a partial implementation:

Valid value is JAXWS.

String No

Standard Ant javac Attributes That Apply To wsdlc
In addition to the WebLogic-specific wsdlc attributes, you can also define the following
standard javac attributes; see the Ant documentation at http://ant.apache.org/manual/ for
additional information about each attribute:

• bootclasspath
• bootClasspathRef

Chapter 2
wsdlc

2-13

http://ant.apache.org/manual/

• classpath
• classpathRef
• compiler
• debug
• debugLevel
• depend
• deprecation
• destdir
• encoding
• extdirs
• failonerror
• fork
• includeantruntime
• includejavaruntime
• listfiles
• memoryInitialSize
• memoryMaximumSize
• nowarn
• optimize
• proceed
• source
• sourcepath
• sourcepathRef
• tempdir
• verbose
You can also use the following standard Ant child elements with the wsdlc Ant task:

• <FileSet>
• <SourcePath>
• <Classpath>
• <Extdirs>

Example
The following excerpt from an Ant build.xml file shows how to use the wsdlc and jwsc Ant
tasks together to build a WebLogic web service. The build file includes two different targets:
generate-from-wsdl that runs the wsdlc Ant task against an existing WSDL file, and build-
service that runs the jwsc Ant task to build a deployable web service from the artifacts
generated by the wsdlc Ant task:

Chapter 2
wsdlc

2-14

 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="output/impl"
 packageName="examples.webservices.wsdlc"
 type="JAXWS" />
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/wsdlcEar">
 <jws file=
"examples/webservices/wsdlc/TemperatureService_TemperaturePortTypeImpl.java"
 compiledWsdl="output/compiledWsdl/TemperatureService_wsdl.jar"
 type="JAXWS"/>
 </jwsc>
 </target>

In the example, the wsdlc Ant task takes as input the TemperatureService.wsdl file and
generates the JAR file that contains the JWS interface and data binding artifacts into the
directory output/compiledWsdl. The name of the JAR file is TemperatureService_wsdl.jar.
The Ant task also generates a JWS file that contains a stubbed-out implementation of the JWS
interface into the output/impl/examples/webservices/wsdlc directory (a combination of the
value of the destImplDir attribute and the directory hierarchy corresponding to the specified
packageName).

For JAX-WS, the name of the stubbed-out JWS implementation file is based on the name of
the <service> element and its inner <port> element in the WSDL file. For example, if the
service name is TemperatureService and the port name is TemperaturePortType, then the
generated JWS implementation file is called
TemperatureService_TemperaturePortTypeImpl.java.

After running wsdlc, you code the stubbed-out JWS implementation file, adding your business
logic. Typically, you move this JWS file from the wsdlc-output directory to a more permanent
directory that contains your application source code; in the example, the fully coded
TemperatureService_TemperaturePortTypeImpl.java JWS file has been moved to the
directory src/examples/webservices/wsdlc/. You then run the jwsc Ant task, specifying this
JWS file as usual. The only additional attribute you must specify is compiledWsdl to point to the
JAR file generated by the wsdlc Ant task, as shown in the preceding example. This indicates
that you do not want the jwsc Ant task to generate a new WSDL file, because you want to use
the original one that has been compiled into the JAR file.

wsdlget
The wsdlget Ant task downloads to the local directory a WSDL and its imported XML
resources.

You may wish to use the download files when defining and referencing an XML catalog to
redirect remote XML resources in your application to a local version of the resources.

See Using XML Catalogs in Developing JAX-WS Web Services for Oracle WebLogic Server.

The following sections discuss additional important information about wsdlget:

Chapter 2
wsdlget

2-15

• Taskdef Classname

• Child Elements

• Attributes

• Example

Taskdef Classname
 <taskdef name="wsdlget"
 classname="weblogic.wsee.tools.anttasks.WsdlGetTask"/>

Child Elements
The wsdlget Ant task has one WebLogic-specific child element: <xmlcatalog>. The
<xmlcatalog> child element specifies the ID of an embedded XML catalog. The following
shows the element syntax:

<xmlcatalog refid="id"/>

The ID referenced by <xmlcatalog> must match the ID of an embedded XML catalog. You
embed an XML catalog in the build.xml file using the following syntax:

<xmlcatalog id="id">
 <entity publicid="public_id" location="uri"/>
</xmlcatalog>

In the above syntax, public_id specifies the public identifier of the original XML resource
(WSDL or XSD) and uri specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using wsdlget.
Relevant code lines are shown in bold.

<target name="wsdlget">
<wsdlget
 wsdl="${wsdl}"
 destDir="${wsdl.dir}"
 catalog="wsdlcatalog.xml"/>
 <xmlcatalog refid="wsimportcatalog"/>
</wsdlget>
</target>
<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

See Using XML Catalogs in Developing JAX-WS Web Services for Oracle WebLogic Server.

Attributes
The following table describes the attributes of the wsdlget Ant task.

Chapter 2
wsdlget

2-16

Table 2-4 WebLogic-specific Attributes of the wsdlget Ant Task

Attribute Description Data Type Required?

catalog Specifies an external XML catalog file. See Using XML
Catalogs in Developing JAX-WS Web Services for
Oracle WebLogic Server.

String No

destDir Directory into which the XML resources are copied.

The generated JWS file implements the generated JWS
interface file (contained within the JAR file). You update
this JWS implementation file, adding Java code to the
methods so that they behave as you want, then later
specify this updated JWS file to the jwsc Ant task to
generate a deployable web service.

String Yes

wsdl Name of the WSDL to copy to the local directory. String No

Example
The following excerpt from an Ant build.xml file shows how to use the wsdlget Ant task to
download a WSDL and its imported XML resources. The XML resources will be saved to the
wsdl folder in the directory from which the Ant task is run.

<target name="wsdlget"
 <wsdlget
 wsdl="http://host/service?wsdl"
 destDir="./wsdl/"
 />
</target>

Chapter 2
wsdlget

2-17

3
JWS Annotation Reference

The WebLogic web services programming model uses the JDK metadata annotations feature,
specified by JSR-175: A Metadata Facility for the JavaTM Programming Language, to provide a
set of WebLogic-specific JWS annotations.

This chapter includes the following sections:

• Overview of JWS Annotation Tags
In the metadata annotations programming model, you create an annotated Java file and
then use Ant tasks to compile the file into the Java source code and generate all the
associated artifacts.

• Web Services Metadata Annotations (JSR-181)
Understand the standard JSR-181 annotations that you can use in your JWS file to specify
the shape and behavior of your web service.

• JAX-WS Annotations (JSR-224)

• JAXB Annotations (JSR-222)

• Jakarta Annotations (JSR-250)

• WebLogic-Specific Annotations

Overview of JWS Annotation Tags
In the metadata annotations programming model, you create an annotated Java file and then
use Ant tasks to compile the file into the Java source code and generate all the associated
artifacts.

The Java Web Service (JWS) annotated file is the core of your Web Service. It contains the
Java code that determines how your Web Service behaves. A JWS file is an ordinary Java
class file that uses annotations to specify the shape and characteristics of the Web Service.

The JWS annotations that are supported vary based on the Web Service. The Web Service
annotation support for JAX-WS are as follows:

You can target a JWS annotation at either the class-, method- or parameter-level in a JWS file.
Some annotations can be targeted at more than one level, such as @SecurityRoles that can
be targeted at both the class and method level.

The following example shows a simple JWS file that uses standard JSR-181, shown in bold:

package examples.webservices.complex;
// Import the standard JWS annotation interfaces
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
// Import the BasicStruct JavaBean
import examples.webservices.complex.BasicStruct;
// Standard JWS annotation that specifies that the portType name of the Web
// Service is "ComplexPortType", its public service name is "ComplexService",
// and the targetNamespace used in the generated WSDL is "http://example.org"

3-1

@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")
// Standard JWS annotation that specifies this is a document-literal-wrapped
// Web Service
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
/**
 * This JWS file forms the basis of a WebLogic Web Service. The Web Services
 * has two public operations:
 *
 * - echoInt(int)
 * - echoComplexType(BasicStruct)
 *
 * The Web Service is defined as a "document-literal" service, which means
 * that the SOAP messages have a single part referencing an XML Schema element
 * that defines the entire body.
 *
*/
public class ComplexImpl {
 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: echoInt.
 //
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "IntegerOutput", rather than the
 // default name "return". The WebParam annotation specifies that the input
 // parameter name in the WSDL file is "IntegerInput" rather than the Java
 // name of the parameter, "input".
 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/complex")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/complex")
 int input)
 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
 // Standard JWS annotation to expose method "echoStruct" as a public operation
 // called "echoComplexType"
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "EchoStructReturnMessage",
 // rather than the default name "return".
 @WebMethod(operationName="echoComplexType")
 @WebResult(name="EchoStructReturnMessage",
 targetNamespace="http://example.org/complex")
 public BasicStruct echoStruct(BasicStruct struct)
 {
 System.out.println("echoComplexType called");
 return struct;
 }
}

The following sections describe the JWS annotations that are supported.

Chapter 3
Overview of JWS Annotation Tags

3-2

Web Services Metadata Annotations (JSR-181)
Understand the standard JSR-181 annotations that you can use in your JWS file to specify the
shape and behavior of your web service.

The following table lists these annotations, which are available with the javax.jws at https://
jakarta.ee/specifications/web-services-metadata/2.1/apidocs/javax/jws/package-
summary or javax.jws.soap package at https://jakarta.ee/specifications/web-services-
metadata/2.1/apidocs/javax/jws/soap/package-summary and are described in more detail in
the Jakarta Web Services Metadata (JSR-181) specification at http://www.jcp.org/en/jsr/
detail?id=181.

Table 3-1 Standard JSR-181 JWS Annotations

This annotation . . . Specifies . . .

javax.jws.WebService At the class level that the JWS file implements a Web Service. For more information,
see Specifying that the JWS File Implements a Web Service (@WebService
Annotation) in Developing JAX-WS Web Services for Oracle WebLogic Server.

javax.jws.WebMethod That a method of the JWS file should be exposed as a public operation of the Web
Service. For more information, see Specifying That a JWS Method Be Exposed as a
Public Operation (@WebMethod and @OneWay Annotations) in Developing JAX-WS
Web Services for Oracle WebLogic Server.

javax.jws.OneWay That an operation not return a value to the calling application. For more information,
see Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod
and @OneWay Annotations) in Developing JAX-WS Web Services for Oracle WebLogic
Server.

javax.jws.WebParam The mapping between operation input parameters of the Web Service and elements of
the generated WSDL file, as well as specify the behavior of the parameter. For more
information, see Customizing the Mapping Between Operation Parameters and WSDL
Elements (@WebParam Annotation) in Developing JAX-WS Web Services for Oracle
WebLogic Server.

javax.jws.WebResult The mapping between the Web Service operation return value and the corresponding
element of the generated WSDL file. For more information, see Customizing the
Mapping Between the Operation Return Value and a WSDL Element (@WebResult
Annotation) in Developing JAX-WS Web Services for Oracle WebLogic Server.

javax.jws.HandlerChain An external handler chain. For more information, see Creating and Using SOAP
Message Handlers in Developing JAX-WS Web Services for Oracle WebLogic Server.

javax.jws.SOAPBinding At the class level the SOAP bindings of the Web Service (such as, document-
encoded or document-literal-wrapped). For more information, see Specifying the
Mapping of the Web Service to the SOAP Message Protocol (@SOAPBinding
Annotation) in Developing JAX-WS Web Services for Oracle WebLogic Server.

JAX-WS Annotations (JSR-224)
Understand the JAX-WS (JSR-224) annotations that you can use in your JWS file to specify
the shape and behavior of your web service.The following table summarizes these JAX-WS
annotations, which are available with the javax.xml.ws package at https://
javaee.github.io/metro-jax-ws/ and are described in more detail in JSR 224 (JAX-WS)

Chapter 3
Web Services Metadata Annotations (JSR-181)

3-3

https://jakarta.ee/specifications/web-services-metadata/2.1/apidocs/javax/jws/package-summary
https://jakarta.ee/specifications/web-services-metadata/2.1/apidocs/javax/jws/package-summary
https://jakarta.ee/specifications/web-services-metadata/2.1/apidocs/javax/jws/package-summary
https://jakarta.ee/specifications/web-services-metadata/2.1/apidocs/javax/jws/soap/package-summary
https://jakarta.ee/specifications/web-services-metadata/2.1/apidocs/javax/jws/soap/package-summary
http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181
https://javaee.github.io/metro-jax-ws/
https://javaee.github.io/metro-jax-ws/

Annotations at https://javaee.github.io/metro-jax-ws/doc/user-guide/
ch03.html#jsr-224-jax-ws-annotations-outline.

Note:

The JAX-WS JWS annotations are relevant to JAX-WS web services only.

Table 3-2 JAX-WS (JSR-224) Annotations

This annotation . . . Specifies . . .

javax.xml.ws.Action Whether to allow an explicit association of a WS-Addressing Action message
addressing property with input, output, and fault messages of the mapped WSDL
operation.

javax.xml.ws.BindingType The binding to use for a Web Service implementation class. See Specifying the
Binding Type to Use for an Endpoint (@BindingType Annotation) in Developing JAX-
WS Web Services for Oracle WebLogic Server.

javax.xml.ws.FaultAction Whether to allow an explicit association of a WS-Addressing Action message
addressing property with the fault messages of the WSDL operation mapped from the
exception class. The @FaultAction annotation is used inside an @Action
annotation.

javax.xml.ws.RequestWrapper The request wrapper bean to be used at runtime for the methods in the endpoint
interface.

javax.xml.ws.ResponseWrapper The response wrapper bean to be used at runtime for the methods in the endpoint
interface.

javax.xml.ws.ServiceMode Whether a provider implementation works with the entire protocol message or with the
payload only.

javax.xml.ws.WebEndpoint The getPortName() methods of a generated service interface.

javax.xml.ws.WebFault Service-specific exception classes to customize to the local and namespace name of
the fault element and the name of the fault bean.

javax.xml.ws.WebServiceClien
t

A generated service interface.

javax.xml.ws.WebServiceProvi
der

A provider implementation class.

javax.xml.ws.WebServiceRef A reference to a Web Service. See Defining a Web Service Reference Using the
@WebServiceRef Annotation in Developing JAX-WS Web Services for Oracle
WebLogic Server.

JAXB Annotations (JSR-222)
Understand the JAXB (JSR-222) annotations that you can use in your JWS file to specify the
shape and behavior of your web service.
The following table summarizes these JAXB annotations, which are available with the
javax.xml.bind.annotation package at https://jakarta.ee/specifications/xml-
binding/3.0/apidocs/jakarta.xml.bind/jakarta/xml/bind/annotation/package-summary.
They are described in more detail in Customizing Java-to-XML Schema Mapping Using JAXB
Annotations in Developing JAX-WS Web Services for Oracle WebLogic Server or in the JAXB
(JSR-222) specification at http://jcp.org/en/jsr/detail?id=222).

Chapter 3
JAXB Annotations (JSR-222)

3-4

https://javaee.github.io/metro-jax-ws/doc/user-guide/ch03.html#jsr-224-jax-ws-annotations-outline
https://javaee.github.io/metro-jax-ws/doc/user-guide/ch03.html#jsr-224-jax-ws-annotations-outline
https://jakarta.ee/specifications/xml-binding/3.0/apidocs/jakarta.xml.bind/jakarta/xml/bind/annotation/package-summary
https://jakarta.ee/specifications/xml-binding/3.0/apidocs/jakarta.xml.bind/jakarta/xml/bind/annotation/package-summary
http://jcp.org/en/jsr/detail?id=222

Note:

The JAXB JWS annotations are relevant to JAX-WS Web Services only.

Table 3-3 JAXB Mapping Annotations (JSR-222)

This annotation . . . Specifies . . .

javax.xml.bind.annotation.Xm
lAccessorType

Whether fields or properties are serialized by default. See Specifying Default
Serialization of Fields and Properties (@XmlAccessorType) in Developing JAX-WS
Web Services for Oracle WebLogic Server.

javax.xml.bind.annotation.Xm
lElement

That a property contained in a class be mapped to a local element in the XML schema
complex type to which the containing class is mapped. See Mapping Properties to
Local Elements (@XmlElement) in Developing JAX-WS Web Services for Oracle
WebLogic Server.

javax.xml.bind.annotation.Xm
lRootElement

That a top-level class be mapped to a global element in the XML schema that is used
by the WSDL of the Web Service. See Mapping a Top-level Class to a Global Element
(@XmlRootElement) in Developing JAX-WS Web Services for Oracle WebLogic
Server.

javax.xml.bind.annotation.Xm
lSeeAlso

The other classes to bind when binding the current class. See Binding a Set of
Classes (@XmlSeeAlso) in Developing JAX-WS Web Services for Oracle WebLogic
Server.

javax.xml.bind.annotation.Xm
lType

That a class or enum type be mapped to an XML Schema type. See Mapping a Value
Class to a Schema Type (@XmlType) in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Jakarta Annotations (JSR-250)
Understand the Jakarta Annotations for the Java Platform (JSR-250) that you can use in your
JWS file to specify the shape and behavior of your web service. Each of these annotations are
available with the javax.annotation package at https://jakarta.ee/specifications/
annotations/1.3/apidocs/ and are described in more detail in the Jakarta Annotations for the
Java Platform (JSR-250) specification at http://jcp.org/en/jsr/detail?id=250.

Table 3-4 Jakarta Annotations (JSR-250)

This annotation . . . Specifies . . .

javax.annotation.Resource A resource that is needed by the application. This annotation may be applied to
an application component class or to fields or methods of the component class.

javax.annotation.PostConstruct A method that needs to be executed after dependency injection is done to
perform initialization.

javax.annotation.PreDestroy A callback notification om a method to signal that the instance is in the process
of being removed by the container.

WebLogic-Specific Annotations
WebLogic web services define a set of JWS annotations that you can use to specify behavior
and features in addition to the standard JSR-181 JWS annotations. The following table

Chapter 3
Jakarta Annotations (JSR-250)

3-5

https://jakarta.ee/specifications/annotations/1.3/apidocs/
https://jakarta.ee/specifications/annotations/1.3/apidocs/
http://jcp.org/en/jsr/detail?id=250

summarizes the WebLogic-specific annotations supported for JAX-WS. Each annotation is
described in more detail in the sections that follow.

Table 3-5 WebLogic-specific Annotations

This annotation . . . Specifies . .

com.oracle.webservices.api.jms.JMSTransport
Client

That the web service client supports SOAP over JMS transport connection
protocol.

com.oracle.webservices.api.jms.JMSTransport
Service

That the web service supports SOAP over JMS transport connection
protocol.

weblogic.jws.Policies An array of @weblogic.jws.Policy annotations.

weblogic.jws.Policy That a WS-Policy file, which contains information about digital signatures,
encryption, or Web Service reliable messaging, should be applied to the
request or response SOAP messages.

weblogic.jws.security.WssConfiguration The name of the Web Service security configuration you want the Web
Service to use.

weblogic.wsee.jws.jaxws.owsm.Property A policy configuration property override.

Use this annotation with the
weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation to
override a configuration property when attaching a policy to a web service
client.

weblogic.wsee.jws.jaxws.owsm.SecurityPolicie
s

An array of @weblogic.wsee.jws.jaxws.owsm.SecurityPolicies
annotations.

weblogic.wsee.jws.jaxws.owsm.SecurityPolicy That an Oracle Web Services Manager (OWSM) security policy be
attached to the web service or client.

weblogic.wsee.jws.jaxws.owsm.SecurityPolicie
s

An array of @weblogic.jws.SecurityPolicy annotations.

weblogic.wsee.jws.jaxws.owsm.SecurityPolicy That an Oracle Web Services Manager (Oracle WSM) WS-Policy file,
which contains information about digital signatures or encryption, should
be applied to the request or response SOAP messages.

weblogic.wsee.wstx.wsat.Transactional Whether the annotated class or method runs inside of a web service
atomic transaction.

• com.oracle.webservices.api.jms.JMSTransportClient

• com.oracle.webservices.api.jms.JMSTransportService

• weblogic.jws.Policies

• weblogic.jws.Policy

• weblogic.jws.security.WssConfiguration

• weblogic.wsee.jws.jaxws.owsm.Property

• weblogic.wsee.jws.jaxws.owsm.SecurityPolicies

• weblogic.wsee.jws.jaxws.owsm.SecurityPolicy

• weblogic.wsee.jws.jaxws.owsm.SecurityPolicies

• weblogic.wsee.jws.jaxws.owsm.SecurityPolicy

• weblogic.wsee.wstx.wsat.Transactional

Chapter 3
WebLogic-Specific Annotations

3-6

com.oracle.webservices.api.jms.JMSTransportClient
Target: Class

Enables and configures SOAP over JMS transport for JAX-WS web service clients.

Using SOAP over JMS transport, web services and clients communicate using JMS
destinations instead of HTTP connections, offering the following benefits:

• Reliability

• Scalability

• Quality of service

For more information about using SOAP over JMS transport, see Using SOAP Over JMS
Transport as the Connection Protocol in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Attributes

Optionally, you can configure the following JMS transport properties using the
@JMSTransportClient annotation. For a description of the properties, see Configuring JMS
Transport Properties in Developing JAX-WS Web Services for Oracle WebLogic Server.

• destinationName
• destinationType
• enabled
• jmsHeaderProperty
• jmsMessageProperty
• jndiConnectionFactoryName
• jndiContextParameters
• jndiInitialContextFactory
• jndiURL
• messageType
• priority
• replyToName
• targetService
• timeToLive

Note:

You cannot use SOAP over JMS transport in conjunction with web services reliable
messaging or streaming SOAP attachments, as described in Developing JAX-WS
Web Services for Oracle WebLogic Server.

Chapter 3
WebLogic-Specific Annotations

3-7

Example

The following sample snippet shows how to use the @JMSTransportClient annotation in a
client file to enable SOAP over JMS transport.

...
import javax.xml.ws.WebServiceClient;
import com.oracle.webservices.api.jms.JMSTransportClient;
...
@WebServiceClient(name = "WarehouseService", targetNamespace = "http://oracle.com/samples/",
 wsdlLocation="WarehouseService.wsdl")
@JMSTransportClient (
 destinationName="myQueue",
 replyToName="myReplyToQueue",
 jndiURL="t3://localhost:7001",
 jndiInitialContextFactory="weblogic.jndi.WLInitialContextFactory" ,
 jndiConnectionFactoryName="weblogic.jms.ConnectionFactory" ,
 deliveryMode="PERSISTENT", timeToLive="1000", priority="1",
 messageType="TEXT"
)

public class WarehouseService extends Service { ... }

com.oracle.webservices.api.jms.JMSTransportService
Target: Class

Enables and configures SOAP over JMS transport for JAX-WS web services.

Using SOAP over JMS transport, web services and clients communicate using JMS
destinations instead of HTTP connections, offering the following benefits:

• Reliability

• Scalability

• Quality of service

For more information about using SOAP over JMS transport, see Using SOAP Over JMS
Transport as the Connection Protocol in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Note:

SOAP over JMS transport is not compatible with the following web service features:
reliable messaging and HTTP transport-specific security.

Attributes

Optionally, you can configure JMS transport properties using the @JMSTransportService
annotation. For a description of the properties, see Configuring JMS Transport Properties in
Developing JAX-WS Web Services for Oracle WebLogic Server.

Chapter 3
WebLogic-Specific Annotations

3-8

Example

The following sample snippet shows how to use the @JMSTransportService annotation in a
JWS file to enable SOAP over JMS transport. The @ActivationConfigProperty is used to set
service-side MDB configuration properties.

import javax.jws.WebService;
import com.oracle.webservices.api.jms.JMSTransportService;
import com.sun.xml.ws.binding.SOAPBindingImpl;
import javax.ejb.ActivationConfigProperty;
@WebService(name="NotifyServicePortType", serviceName="NotifyService",
 targetNamespace="http://examples.org/")
@JMSTransportService(destinationName="myQueue",
 activationConfig = {
 @ActivationConfigProperty(
 propertyName = "destinationType",
 propertyValue = "javax.jms.Topic"),
 @ActivationConfigProperty(
 propertyName = "subscriptionDurability",
 propertyValue = "Durable"),
 @ActivationConfigProperty(propertyName = "topicMessagesDistributionMode",
 propertyValue = "One-Copy-Per-Application")})
@BindingType(SOAPBindingImpl.SOAP11_JMS_BINDING)
public class NotifyServiceImpl {..}

weblogic.jws.Policies
The following sections describe the annotation in detail.

• Description

• Example

Description
Target: Class, Method

Specifies an array of @weblogic.jws.Policy annotations.

Use this annotation if you want to attach more than one WS-Policy files to a class or method of
a JWS file. If you want to attach just one WS-Policy file, you can use the
@weblogic.jws.Policy on its own.

This JWS annotation does not have any attributes.

Example
@Policies({
 @Policy(uri="policy:firstPolicy.xml"),
 @Policy(uri="policy:secondPolicy.xml")
 })

weblogic.jws.Policy
The following sections describe the annotation in detail.

• Description

• Attributes

Chapter 3
WebLogic-Specific Annotations

3-9

• Example

Description
Target: Class, Method

Specifies that a WS-Policy file, which contains information about digital signatures, encryption,
or Web Service reliable messaging, should be applied to the request or response SOAP
messages.

This annotation can be used on its own to apply a single WS-Policy file to a class or method. If
you want to apply more than one WS-Policy file to a class or method, use the
@weblogic.jws.Policies annotation to group them together.

If this annotation is specified at the class level, the indicated WS-Policy file or files are applied
to every public operation of the Web Service. If the annotation is specified at the method level,
then only the corresponding operation will have the WS-Policy file applied.

By default, WS-Policy files are applied to both the request (inbound) and response (outbound)
SOAP messages. You can change this default behavior with the direction attribute.

Also by default, the specified WS-Policy file is attached to the generated and published WSDL
file of the Web Service so that consumers can view all the WS-Policy requirements of the Web
Service. Use the attachToWsdl attribute to change this default behavior.

Attributes

Table 3-6 Attributes of the weblogic.jws.Policy JWS Annotation Tag

Name Description Data Type Required?

uri Specifies the location from which to retrieve the WS-
Policy file.

Use the http: prefix to specify the URL of a WS-Policy
file on the Web.

Use the policy: prefix to specify that the WS-Policy file
is packaged in the Web Service archive file or in a
shareable Jakarta EE library of WebLogic Server, as
shown in the following example:

@Policy(uri="policy:MyPolicyFile.xml")
If you are going to publish the WS-Policy file in the Web
Service archive, the WS-Policy XML file must be located
in either the META-INF/policies or WEB-INF/
policies directory of the EJB JAR file (for EJB
implemented Web Services) or WAR file (for Java class
implemented Web Services), respectively.

For information on publishing the WS-Policy file in a
library, see Creating Shared Jakarta EE Libraries and
Optional Packages in Developing Applications for Oracle
WebLogic Server.

String Yes

Chapter 3
WebLogic-Specific Annotations

3-10

Table 3-6 (Cont.) Attributes of the weblogic.jws.Policy JWS Annotation Tag

Name Description Data Type Required?

direction Specifies when to apply the policy: on the inbound
request SOAP message, the outbound response SOAP
message, or both (default).

Valid values for this attribute are:

• Policy.Direction.both
• Policy.Direction.inbound
• Policy.Direction.outbound
The default value is Policy.Direction.both.

enum No

attachToWsdl Specifies whether the WS-Policy file should be attached
to the WSDL that describes the Web Service.

Valid values are true and false. Default value is
false.

boolean No

Example
 @Policy(uri="policy:myPolicy.xml",
 attachToWsdl=true,
 direction=Policy.Direction.outbound)

weblogic.jws.security.WssConfiguration
The following sections describe the annotation in detail.

• Description

• Attributes

• Example

Description
Target: Class

Specifies the name of the Web Service security configuration you want the Web Service to
use. If you do not specify this annotation in your JWS file, the Web Service is associated with
the default security configuration (called default_wss) if it exists in your domain.

The @WssConfiguration annotation only makes sense if your Web Service is configured for
message-level security (encryption and digital signatures). The security configuration,
associated to the Web Service using this annotation, specifies information such as whether to
use an X.509 certificate for identity, whether to use password digests, the keystore to be used
for encryption and digital signatures, and so on.

WebLogic Web Services are not required to be associated with a security configuration; if the
default behavior of the Web Services security runtime is adequate then no additional
configuration is needed. If, however, a Web Service requires different behavior from the default
(such as using an X.509 certificate for identity, rather than the default user name/password
token), then the Web Service must be associated with a security configuration.

For general information about message-level security, see Configuring Message-Level Security
in Securing WebLogic Web Services for Oracle WebLogic Server.

Chapter 3
WebLogic-Specific Annotations

3-11

Note:

All WebLogic Web Services packaged in a single Web Application must be
associated with the same security configuration when using the @WssConfiguration
annotation. This means, for example, that if a @WssConfiguration annotation exists
in all the JWS files that implement the Web Services contained in a given Web
Application, then the value attribute of each @WssConfiguration must be the same.

To specify that more than one Web Service be contained in a single Web Application
when using the jwsc Ant task to compile the JWS files into Web Services, group the
corresponding <jws> elements under a single <module> element.

Attributes

Table 3-7 Attributes of the weblogic.jws.security.WssConfiguration JWS Annotation Tag

Name Description Data Type Required?

value Specifies the name of the Web Service security configuration that is
associated with this Web Service. The default configuration is called
default_wss.

String Yes

Example
The following example shows how to specify that a Web Service is associated with the
my_security_configuration security configuration; only the relevant Java code is shown:

package examples.webservices.wss_configuration;
import javax.jws.WebService;
...
import weblogic.jws.security.WssConfiguration;
@WebService(...
...
@WssConfiguration(value="my_security_configuration")
public class WssConfigurationImpl {
...

weblogic.wsee.jws.jaxws.owsm.Property
The following sections describe the annotation in detail.

• Description

• Example

Description
Target: Class

Specifies a policy configuration property override.

Use this annotation with the weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation to
override a configuration property when attaching a policy to a web service client.

Chapter 3
WebLogic-Specific Annotations

3-12

Note:

This annotation can be used for web service clients only. It is not supported for web
service (server-side) policy attachment.

See Attaching Policies to Java EE Web Services and Clients Using Annotations in Securing
Web Services and Managing Policies with Oracle Web Services Manager for detailed
information and examples of using this annotation.

This JWS annotation does not have any attributes.

Example
@SecurityPolicy(uri="policy:oracle/wss10_message_protection_client_policy",
 properties = {
 @Property(name="keystore.recipient.alias", value="mykey")
 })

weblogic.wsee.jws.jaxws.owsm.SecurityPolicies
The following sections describe the annotation in detail.

• Description

• Example

Description
Target: Class

Specifies an array of @weblogic.wsee.jws.jaxws.owsm.SecurityPolicies annotations.

Use this annotation if you want to attach more than one OWSM security policy to the class of a
JWS file. If you want to attach just one OWSM security policy, you can use the
@weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation.

See Attaching Policies to Java EE Web Services and Clients Using Annotations in Securing
Web Services and Managing Policies with Oracle Web Services Manager for detailed
information and examples of using this annotation.

This JWS annotation does not have any attributes.

Example
@SecurityPolicies({
 @SecurityPolicy(uri="oracle/wss_saml20_token_over_sll_service_policy"),
 @SecurityPolicy(uri="oracle/binding_authorization_permitall_policy")
 })

weblogic.wsee.jws.jaxws.owsm.SecurityPolicy
The following sections describe the annotation in detail.

• Description

• Attributes

Chapter 3
WebLogic-Specific Annotations

3-13

• Examples

Description
Target: Class

Attaches an OWSM security policy file to the web service or client.

This annotation can be used on its own to apply a single OWSM security policy to a class. If
you want to attach more than one OWSM security policy to a class, use the
@weblogic.wsee.jws.jaxws.owsm.SecurityPolicies annotation to group them together.

See Attaching Policies to Java EE Web Services and Clients Using Annotations in Securing
Web Services and Managing Policies with Oracle Web Services Manager for detailed
information and examples of using this annotation.

Attributes

Table 3-8 Attributes of the weblogic.wsee.jws.jaxws.owsm.SecurityPolicy JWS
Annotation Tag

Name Description Data Type Required?

uri Specifies the name of the OWSM security policy.

Use the policy: prefix to specify that the OWSM policy
is packaged in the OWSM policy repository, as shown in
the following example:

@SecurityPolicy(uri="policy:oracle/
wss_saml20_token_over_ssl_service_policy")
For more information about the OWSM repository, see
Managing the OWSM Repository in Securing Web
Services and Managing Policies with Oracle Web
Services Manager.

String Yes

properties Note: This attribute can be specified for web service
clients only. This attribute is not supported for web
service (server-side) policy attachment.

Specifies policy configuration override information. You
specify one or more configuration property values using
the weblogic.wsee.jws.jaxws.owsm.Property
annotation, as described in
weblogic.wsee.jws.jaxws.owsm.Property.

String No

enabled Specifies whether the OWSM policy file is enabled.

Valid values are true and false. Default value is true.

boolean No

Examples
The following example shows how to attach the wss_saml20_token_over_ssl_service_policy
to a web service.

@SecurityPolicy(uri="policy:oracle/wss_saml20_token_over_ssl_service_policy",
 enabled=true)

The following example shows how to attach the wss10_message_protection_client_policy to
a web service client and override the keystore.recipient.alias configuration property.

Chapter 3
WebLogic-Specific Annotations

3-14

@SecurityPolicy(uri="policy:oracle/wss10_message_protection_client_policy",
 properties = {
 @Property(name="keystore.recipient.alias", value="mykey")
 },
 enabled=true)

weblogic.wsee.jws.jaxws.owsm.SecurityPolicies
The following sections describe the annotation in detail.

• Description

• Example

Description
Target: Class, Method

Specifies an array of @weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotations.

Use this annotation if you want to attach more than one Oracle Web Services Manager (Oracle
WSM) WS-Policy files to a class or method of a JWS file. If you want to attach just one Oracle
WSM WS-Policy file, you can use the @weblogic.wsee.jws.jaxws.owsm.SecurityPolicy on
its own.

See Using Oracle Web Service Security Policies in Securing WebLogic Web Services for
Oracle WebLogic Server for detailed information and examples of using this annotation.

This JWS annotation does not have any attributes.

Example
@SecurityPolicies({
 @SecurityPolicy(uri="policy:firstPolicy.xml"),
 @SecurityPolicy(uri="policy:secondPolicy.xml")
 })

weblogic.wsee.jws.jaxws.owsm.SecurityPolicy
The following sections describe the annotation in detail.

• Description

• Attribute

• Example

Description
Target: Class, Method

Specifies that an Oracle Web Services Manager (Oracle WSM) WS-Policy file, which contains
information about digital signatures or encryption, should be applied to the request or response
SOAP messages.

This annotation can be used on its own to apply a single Oracle WSM WS-Policy file to a class
or method. If you want to apply more than one Oracle WSM WS-Policy file to a class or
method, use the @weblogic.wsee.jws.jaxws.owms.SecurityPolicies annotation to group
them together.

Chapter 3
WebLogic-Specific Annotations

3-15

This annotation can be applied at the class level only, indicating that the Oracle WSM WS-
Policy file or files are applied to every public operation of the Web Service.

The Oracle WSM WS-Security policies are not advertised in the WSDL of a WebLogic Server
JAX-WS Web service. (Typically, the policy file associated with a Web service is attached to its
WSDL, which the Web services client runtime reads to determine whether and how to digitally
sign and encrypt the SOAP message request from an operation invoke from the client
application.)

See Using Oracle Web Service Security Policies in Securing WebLogic Web Services for
Oracle WebLogic Server for detailed information and examples of using this annotation.

Attribute

Table 3-9 Attribute of the weblogic.jws.SecurityPolicy JWS Annotation Tag

Name Description Data Type Required?

uri Specifies the location from which to retrieve the Oracle
WSM WS-Policy file.

Use the http: prefix to specify the URL of an Oracle
WSM WS-Policy file on the Web.

Use the policy: prefix to specify that the Oracle WSM
WS-Policy file is packaged in the Web Service archive
file or in a shareable Jakarta EE library of WebLogic
Server, as shown in the following example:

@SecurityPolicy(uri= "policy:oracle/
wss10_username_token_with_message_protection
_server_policy")

String Yes

Example
@SecurityPolicy(uri=
"policy:oracle/wss10_username_token_with_message_protection_server_policy")

weblogic.wsee.wstx.wsat.Transactional
The following sections describe the annotation in detail.

• Description

• Attributes

• Example

Description
Target: Class, Method

Specifies whether the annotated class or method runs inside of a web service atomic
transaction.

If you specify the @Transactional annotation at the web service class level, the settings apply
to all two-way synchronous methods defined by the service endpoint interface. You can
override the flow type value at the method level; however, the version must be consistent
across the entire transaction.

Chapter 3
WebLogic-Specific Annotations

3-16

WebLogic web services enable interoperability with other external transaction processing
systems, such as WebSphere, JBoss, Microsoft .NET, and so on, through the support of the
following specifications:

• WS-AtomicTransaction Version (WS-AT) 1.0, 1.1, and 1.2: http://docs.oasis-
open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html

• WS-Coordination Version 1.0, 1.1, and 1.2: http://docs.oasis-open.org/ws-tx/wstx-
wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

Attributes

Table 3-10 Attribute of the weblogic.wsee.wstx.wsat.Transactional Annotation

Name Description Data Type Required?

version Version of the web services atomic transaction
coordination context that is used for web services and
clients. For clients, it specifies the version used for
outbound messages only. The value specified must be
consistent across the entire transaction.

Valid values include WSAT10, WSAT11, WSAT12, and
DEFAULT. The DEFAULT value for web services is all
three versions (driven by the inbound request); the
DEFAULT value for web service clients is WSAT10.

For example:

@Transactional(version=Transactional.Version
.WSAT10])

String No

value Whether the web service atomic transaction coordination
context is passed with the transaction flow. For valid
values, see Table 3-11.

String No

The following table summarizes the valid values for flow type and their meaning on the web
service and client. The table also summarizes the valid value combinations when configuring
web service atomic transactions for an EJB-style web service that uses the
@TransactionAttribute annotation.

Table 3-11 Flow Types Values

Value Web Service Client Web Service Valid EJB @TransactionAttribute
Values

NEVER Do not export
transaction coordination
context.

Do not import
transaction coordination
context.

NEVER, NOT_SUPPORTED, REQUIRED,
REQUIRES_NEW, SUPPORTS

SUPPORTS (Default) Export transaction
coordination context if
transaction is available.

Import transaction
coordination context if
available in the
message.

REQUIRED, SUPPORTS

MANDATORY Export transaction
coordination context. An
exception is thrown if
there is no active
transaction.

Import transaction
coordination context. An
exception is thrown if
there is no active
transaction.

MANDATORY, REQUIRED, SUPPORTS

Chapter 3
WebLogic-Specific Annotations

3-17

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

Example
@Transactional(value = Transactional.TransactionFlowType.SUPPORTS,
 version="Transactional.Versino.WSAT12

Chapter 3
WebLogic-Specific Annotations

3-18

4
Web Service Reliable Messaging Policy
Assertion Reference

Oracle WebLogic Server supports the use of WS-Policy files to configure reliable message
capabilities of a WebLogic web service that are running on a destination endpoint.

This chapter includes the following sections:

• Overview of a WS-Policy File That Contains Web Service Reliable Messaging Assertions

• WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1

• WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0
(Deprecated)

Overview of a WS-Policy File That Contains Web Service
Reliable Messaging Assertions

Use the @Policy JWS annotations in the JWS file that implements the web service to specify
the name of the WS-Policy file that is associated with a web service. A WS-Policy file is an
XML file that conforms to the WS-Policy specification at http://www.w3.org/TR/ws-policy/.
The root element of a WS-Policy file is always <wsp:Policy>. To configure web service reliable
messaging, you first add a <wsrmp:RMAssertion> child element; its main purpose is to group all
the reliable messaging policy assertions together. Then, you add child elements to
<wsrmp:RMAssertion> to define the web service reliable messaging. All these assertions
conform to the WS-PolicyAssertions specification.

WebLogic Server includes default WS-Policy files that contain typical reliable messaging
assertions that you can use if you do not want to create your own WS-Policy file. The default
WS-Policy files are defined in Pre-Packaged WS-Policy Files for Web Services Reliable
Messaging and MakeConnection in Developing JAX-WS Web Services for Oracle WebLogic
Server.

For task-oriented information about creating a reliable WebLogic web service, see Using Web
Services Reliable Messaging in Developing JAX-WS Web Services for Oracle WebLogic
Server.

WS-Policy File With Web Service Reliable Messaging Assertions
—Version 1.2 and 1.1

You can create a WS-Policy file with web service reliable messaging assertions that are based
on Version 1.2 and 1.1 of the WS Reliable Messaging Policy Assertion (WS-RM Policy)
namespace. A description of Version 1.2 of the WS-RM Policy namespace is available at
http://docs.oasis-open.org/ws-rx/wsrmp/200702.

• Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.2 and 1.1

• Element Descriptions

4-1

http://www.w3.org/TR/ws-policy/
http://docs.oasis-open.org/ws-rx/wsrmp/200702

Example of a WS-Policy File With Web Service Reliable Messaging
Assertions 1.2 and 1.1

The following example shows a simple WS-Policy file used to configure reliable messaging for
a WebLogic web service.

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceSTR/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

Element Descriptions
The element hierarchy of web service reliable messaging policy assertions in a WS-Policy file
is shown below. Each element is described in more detail in the following sections.

Note:

You must enter the assertions in the ordered listed below.

wsp:Policy
 wsrmp:RMAssertion
 wsrmp:SequenceSTR
 wsrmp:SequenceTransportSecurity
 wsrmp:DeliveryAssurance
 wsp:Policy

• wsp:Policy

• wsrmp:DeliveryAssurance

• wsrmp:RMAssertion

• wsrmp:SequenceSTR

• wsrmp:SequenceTransportSecurity

wsp:Policy
Groups nested policy assertions.

wsrmp:DeliveryAssurance
Specifies the delivery assurance (or quality of service) of the web service. You can set one of
the delivery assurances defined in the following table. If not set, the delivery assurance
defaults to ExactlyOnce.

Chapter 4
WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1

4-2

Table 4-1 Delivery Assurances for Reliable Messaging

Delivery Assurance Description

wsrmp:AtMostOnce Messages are delivered at most once, without duplication. It is possible
that some messages may not be delivered at all.

wsrmp:AtLeastOnce Every message is delivered at least once. It is possible that some
messages are delivered more than once.

wsrmp:ExactlyOnce Every message is delivered exactly once, without duplication.This value
is enabled by default.

wsrmp:InOrder Messages are delivered in the order that they were sent. This delivery
assurance can be combined with one of the preceding three assurances.
This value is enabled by default.

The delivery assurance must be enclosed by wsp:Policy element. For example:

<wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
</wsrmp:DeliveryAssurance>

wsrmp:RMAssertion
Main web service reliable messaging assertion that groups all the other assertions under a
single element. The presence of this assertion in a WS-Policy file indicates that the
corresponding web service must be invoked reliably.

The following table summarizes the attributes of the wsrmp:RMAssertion element.

Table 4-2 Attributes of <wsrmp:RMAssertion>

Attribute Description Required?

optional Specifies whether the web service requires the operations to be
invoked reliably. Valid values for this attribute are true and false.
Default value is false.

No

wsrmp:SequenceSTR
Specifies that in order to secure messages in a reliable sequence, the runtime will use the
wsse:SecurityTokenReference that is referenced in the CreateSequence message. You can
only specify one security assertion; that is, you can specify wsrmp:SequenceSTR or
wsrmp:SequenceTransportSecurity, but not both.

wsrmp:SequenceTransportSecurity
Specifies that in order to secure messages in a reliable sequence, the runtime will use the SSL
transport session that is used to send the CreateSequence message. This assertion must be
used in conjunction with the sp:TransportBinding assertion that requires the use of some
transport-level security mechanism (for example, sp:HttpsToken). You can only specify one
security assertion; that is, you can specify wsrmp:SequenceSTR or
wsrmp:SequenceTransportSecurity, but not both.

Chapter 4
WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1

4-3

WS-Policy File With Web Service Reliable Messaging Assertions
—Version 1.0 (Deprecated)

Oracle WebLogic Server supports the ability to create a WS-Policy file with web service reliable
messaging assertions that are based on WS Reliable Messaging Policy Assertion 1.0. This
specification is available at http://schemas.xmlsoap.org/ws/2005/02/rm/policy/.

• Example of a WS-Policy File With Web Service Reliable Messaging Assertions

• Element Description

Example of a WS-Policy File With Web Service Reliable Messaging
Assertions

The following example shows a simple WS-Policy file used to configure reliable messaging for
a WebLogic web service:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >
 <wsrm:RMAssertion >
 <wsrm:InactivityTimeout
 Milliseconds="600000" />
 <wsrm:BaseRetransmissionInterval
 Milliseconds="3000" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval
 Milliseconds="200" />
 <beapolicy:Expires Expires="P1D" optional="true"/>
 </wsrm:RMAssertion>
</wsp:Policy>

Element Description
The element hierarchy of web service reliable messaging policy assertions in a WS-Policy file
is shown below. Each element is described in more detail in the following sections.

Note:

You must enter the assertions in the order listed below.

wsp:Policy
 wsrm:RMAssertion
 wsrm:InactivityTimeout
 wsrm:BaseRetransmissionInterval
 wsrm:ExponentialBackoff
 wsrm:AcknowledgementInterval
 beapolicy:Expires
 beapolicy:QOS

Chapter 4
WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

4-4

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/

• beapolicy:Expires

• beapolicy:QOS

• wsrm:AcknowledgementInterval

• wsrm:BaseRetransmissionInterval

• wsrm:ExponentialBackoff

• wsrm:InactivityTimeout

• wsrm:RMAssertion

beapolicy:Expires
Specifies an amount of time after which the reliable web service expires and does not accept
any new sequences. Client applications invoking this instance of the reliable web service will
receive an error if they try to invoke an operation after the expiration duration.

The default value of this element, if not specified in the WS-Policy file, is for the web service to
never expires.

Table 4-3 Attributes of <beapolicy:Expires>

Attribute Description Required?

Expires The amount of time after which the reliable web service expires. The
format of this attribute conforms to the XML Schema duration at
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
#duration data type. For example, to specify that the reliable web
service expires after 3 hours, specify Expires="P3H".

Yes

beapolicy:QOS
Specifies the delivery assurance (or Quality Of Service) of the web service:

Table 4-4 Attributes of <beapolicy:QOS>

Attribute Description Required?

QOS Specifies the delivery assurance. You can specify exactly one of the
following values:

• AtMostOnce—Messages are delivered at most once, without
duplication. It is possible that some messages may not be
delivered at all.

• AtLeastOnce—Every message is delivered at least once. It is
possible that some messages be delivered more than once.

• ExactlyOnce—Every message is delivered exactly once, without
duplication.

You can also add the InOrder string to specify that the messages be
delivered in order.

If you specify one of the XXXOnce values, but do not specify InOrder,
then the messages are not guaranteed to be in order. This is different
from the default value if the entire QOS element is not specified
(exactly once in order).

This attribute defaults to ExactlyOnce InOrder.

Example: <beapolicy:QOS QOS="AtMostOnce InOrder" />

Yes

Chapter 4
WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

4-5

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#duration
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#duration

wsrm:AcknowledgementInterval
Specifies the maximum interval, in milliseconds, in which the destination endpoint must
transmit a stand alone acknowledgement.

A destination endpoint can send an acknowledgement on the return message immediately
after it has received a message from a source endpoint, or it can send one separately in a
stand alone acknowledgement. In the case that a return message is not available to send an
acknowledgement, a destination endpoint may wait for up to the acknowledgement interval
before sending a stand alone acknowledgement. If there are no unacknowledged messages,
the destination endpoint may choose not to send an acknowledgement.

This assertion does not alter the formulation of messages or acknowledgements as
transmitted. Its purpose is to communicate the timing of acknowledgements so that the source
endpoint may tune appropriately.

This element is optional. If you do not specify this element, the default value is set by the store
and forward (SAF) agent configured for the destination endpoint.

Table 4-5 Attributes of <wsrm:AcknowledgementInterval>

Attribute Description Required?

Milliseconds Specifies the maximum interval, in milliseconds, in which the
destination endpoint must transmit a stand alone acknowledgement.

Yes

wsrm:BaseRetransmissionInterval
Specifies the interval, in milliseconds, that the source endpoint waits after transmitting a
message and before it retransmits the message.

If the source endpoint does not receive an acknowledgment for a given message within the
interval specified by this element, the source endpoint retransmits the message. The source
endpoint can modify this retransmission interval at any point during the lifetime of the
sequence of messages. This assertion does not alter the formulation of messages as
transmitted, only the timing of their transmission.

This element can be used in conjunctions with the <wsrm:ExponentialBackoff> element to
specify that the retransmission interval will be adjusted using the algorithm specified by the
<wsrm:ExponentialBackoff> element.

Table 4-6 Attributes of <wsrm:BaseRetransmissionInterval>

Attribute Description Required?

Milliseconds Number of milliseconds the source endpoint waits to retransmit
message.

Yes

wsrm:ExponentialBackoff
Specifies that the retransmission interval will be adjusted using the exponential backoff
algorithm.

This element is used in conjunction with the <wsrm:BaseRetransmissionInterval> element. If
a destination endpoint does not acknowledge a sequence of messages for the amount of time
specified by <wsrm:BaseRetransmissionInterval>, the exponential backoff algorithm will be

Chapter 4
WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

4-6

used for timing of successive retransmissions by the source endpoint, should the message
continue to go unacknowledged.

The exponential backoff algorithm specifies that successive retransmission intervals should
increase exponentially, based on the base retransmission interval. For example, if the base
retransmission interval is 2 seconds, and the exponential backoff element is set in the WS-
Policy file, successive retransmission intervals if messages continue to be unacknowledged
are 2, 4, 8, 16, 32, and so on.

This element is optional. If not set, the same retransmission interval is used in successive
retries, rather than the interval increasing exponentially.

This element has no attributes.

wsrm:InactivityTimeout
Specifies (in milliseconds) a period of inactivity for a sequence of messages. A sequence of
messages is defined as a set of messages, identified by a unique sequence number, for which
a particular delivery assurance applies; typically a sequence originates from a single source
endpoint. If, during the duration specified by this element, a destination endpoint has received
no messages from the source endpoint, the destination endpoint may consider the sequence
to have been terminated due to inactivity. The same applies to the source endpoint.

This element is optional. If it is not set in the WS-Policy file, then sequences never time-out
due to inactivity.

Table 4-7 Attributes of <wsrm:InactivityTimeout>

Attribute Description Required?

Milliseconds The number of milliseconds that defines a period of inactivity. Yes

wsrm:RMAssertion
Main web service reliable messaging assertion that groups all the other assertions under a
single element.

The presence of this assertion in a WS-Policy file indicates that the corresponding web service
must be invoked reliably.

Table 4-8 Attributes of <wsrm:RMAssertion>

Attribute Description Required?

optional Specifies whether the web service requires the operations to be
invoked reliably.

Valid values for this attribute are true and false. Default value is
false.

No

Chapter 4
WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

4-7

5
Web Service MakeConnection Policy
Assertion Reference

You use WS-Policy files to enable and configure MakeConnection on a web service. Use the
@Policy JWS annotations in the JWS file that implements the web service to specify the name
of the WS-Policy file that is associated with a web service. A WS-Policy file is an XML file that
conforms to the WS-Policy specification at http://www.w3.org/TR/ws-policy/.
This chapter includes the following sections:

Note:

This section applies only to JAX-WS web services.

• Overview of a WS-Policy File That Contains MakeConnection Assertions
The root element of a WS-Policy file is always <wsp:Policy>. To configure web service
MakeConnection, you simply add a <wsmc:MCSupported> child element. The policy
assertions conform to the WS-PolicyAssertions specification.

• Example of a WS-Policy File With MakeConnection and WS-Policy 1.5
Learn how to create a simple WS-Policy file, based on WS-Policy 1.5, to configure
MakeConnection for a WebLogic web service.

• Element Descriptions

Overview of a WS-Policy File That Contains MakeConnection
Assertions

The root element of a WS-Policy file is always <wsp:Policy>. To configure web service
MakeConnection, you simply add a <wsmc:MCSupported> child element. The policy assertions
conform to the WS-PolicyAssertions specification.

WebLogic Server includes default WS-Policy files that contain typical MakeConnection
assertions that you can use if you do not want to create your own WS-Policy file. The default
WS-Policy files are defined in Pre-Packaged WS-Policy Files for Web Services Reliable
Messaging and MakeConnection in Developing JAX-WS Web Services for Oracle WebLogic
Server.

For task-oriented information about enabling and configuring MakeConnection, see Using
Asynchronous Web Service Clients Through a Firewall (MakeConnection) in Developing JAX-
WS Web Services for Oracle WebLogic Server.

The following sections describe how to create a WS-Policy file with web service
MakeConnection assertions that are based on WS-MakeConnection specification at http://
docs.oasis-open.org/ws-rx/wsmc/200702.

5-1

http://www.w3.org/TR/ws-policy/
http://docs.oasis-open.org/ws-rx/wsmc/200702
http://docs.oasis-open.org/ws-rx/wsmc/200702

Example of a WS-Policy File With MakeConnection and WS-
Policy 1.5

Learn how to create a simple WS-Policy file, based on WS-Policy 1.5, to configure
MakeConnection for a WebLogic web service.

<?xml version="1.0"?>
<wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy"
 xmlns:wsmc="http://docs.oasis-open.org/ws-rx/wsmc/200702">
 <wsmc:MCSupported wsp15:Optional="true" />
</wsp15:Policy>

Element Descriptions
The web service MakeConnection policy assertions in a WS-Policy file contain elements that
are arranged in a specific hierarchy. Each element in that hierarchy, shown below, is described
in more detail in the sections that follow.

wsp:Policy
 wsmc:MCSupported

• wsp:Policy

• wsmc:MCSupported

wsp:Policy
Groups nested policy assertions.

wsmc:MCSupported
The presence of this assertion in a WS-Policy file indicates that the corresponding web service
uses MakeConnection as the transport model.

The following table summarizes the attributes of the wsmc:MCSupport element.

Table 5-1 Attributes of <wsmc:MCSupport>

Attribute Description Required?

optional Specifies whether MakeConnection must be used by the web service
client. Valid values for this attribute are true and false. Default value
is true. If set to false, both ReplyTo and FaultTo headers must
contain MakeConnection anonymous URIs.

No

Chapter 5
Example of a WS-Policy File With MakeConnection and WS-Policy 1.5

5-2

6
Oracle Web Services Security Policy Assertion
Reference

Oracle WebLogic Server supports the ability to configure security assertions in a WebLogic
web services security policy file that conforms to the OASIS WS-SecurityPolicy 1.2
specification. This specification is available at http://www.oasis-open.org/committees/
download.php/21401/ws-securitypolicy-1.2-spec-cd-01.pdf.
Previous releases of WebLogic Server, released before the formulation of the OASIS WS-
SecurityPolicy specification, used security policy files written under the WS-Policy
specification, using a proprietary schema for web services security policy. WebLogic Server still
supports the proprietary web services security policy files first included in WebLogic Server
version 9.0, but this legacy policy format is deprecated and should not be used for new
applications.

This chapter includes the following sections:

• Overview of a Policy File That Contains Security Assertions
You can use policy files to configure the message-level security of a WebLogic web
service. Use the @Policy and @Policies JWS annotations in the JWS file that implements
the web service to specify the name of the security policy file that is associated with a
WebLogic web service.

• Example of a Policy File With Security Elements
Learn about the security elements that are contained within a security policy file.

• Element Description

• Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or
Signed

Overview of a Policy File That Contains Security Assertions
You can use policy files to configure the message-level security of a WebLogic web service.
Use the @Policy and @Policies JWS annotations in the JWS file that implements the web
service to specify the name of the security policy file that is associated with a WebLogic web
service.

A security policy file is an XML file that conforms to the WS-Policy specification at http://
www-106.ibm.com/developerworks/library/specification/ws-polfram/. The root element
of a WS-Policy file is always <wsp:Policy>. To configure message-level security, you add
policy assertions that specify the type of tokens supported for authentication and how the
SOAP messages should be encrypted and digitally signed.

6-1

http://www.oasis-open.org/committees/download.php/21401/ws-securitypolicy-1.2-spec-cd-01.pdf
http://www.oasis-open.org/committees/download.php/21401/ws-securitypolicy-1.2-spec-cd-01.pdf
http://www-106.ibm.com/developerworks/library/specification/ws-polfram/
http://www-106.ibm.com/developerworks/library/specification/ws-polfram/

Note:

These security policy assertions are based on the assertions described in the
December 18, 2002 version of the Web Services Security Policy Language (WS-
SecurityPolicy) specification. This means that although the exact syntax and usage of
the assertions in WebLogic Server are different, they are similar in meaning to those
described in the specification. The assertions are not based on the latest update of
the specification (13 July 2005.)

Policy files using the Oracle web services security policy schema have the following
namespace

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 >

This release of WebLogic Server also includes a large number of packaged policy files that
conform to the OASIS WS-SecurityPolicy 1.2 specification. WS-SecurityPolicy 1.2 policy files
and Oracle proprietary web services security policy schema files are not mutually compatible;
you cannot use both types of policy file in the same web services security configuration. For
information about using WS-SecurityPolicy 1.2 security policy files, see Using WS-
SecurityPolicy 1.2 Policy Files in Securing WebLogic Web Services for Oracle WebLogic
Server.

See Configuring Message-Level Security in Securing WebLogic Web Services for Oracle
WebLogic Server for task-oriented information about creating a message-level secured
WebLogic web service.

Example of a Policy File With Security Elements
Learn about the security elements that are contained within a security policy file.

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken TokenType="http://docs.oasis-open.org/wss/2004/01/
oasis-2004-01-saml-token-profile-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

Chapter 6
Example of a Policy File With Security Elements

6-2

 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(Assertion)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()</wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo />
 </wssp:Confidentiality>
</wsp:Policy>

Element Description
The web service reliable messaging policy assertions in a WS-Policy file are arranged in a
specific hierarchy of elements. The hierarchy is shown below. Each element is described in
more detail in the sections that follow.

Policy {1}
 Identity {1}
 SupportedTokens {0 or 1}
 SecurityToken {1 or more}
 Claims {0 or 1}
 UsePassword {0 or 1}
 ConfirmationMethod {0 or 1}
 TokenLifeTime {0 or 1}
 Length {0 or 1}
 Label {0 or 1}
 Integrity {1}
 SignatureAlgorithm {1}
 CanonicalizationAlgorithm {1}
 SupportedTokens {0 or 1}
 SecurityToken {1 or more}
 Target {1 or more)
 DigestAlgorithm {1}
 Transform (0 or more)
 MessageParts {1}
 Confidentiality {1}
 KeyWrappingAlgorithm {1}
 Target {1 or more}
 EncryptionAlgorithm {1}
 Transform {0 or more)
 MessageParts {1}
 KeyInfo {1}
 SecurityToken {0 or more)
 SecurityTokenReference {0 or more}
 MessageAge {1}

• CanonicalizationAlgorithm

• Claims

• Confidentiality

• ConfirmationMethod

• DigestAlgorithm

Chapter 6
Element Description

6-3

• EncryptionAlgorithm

• Identity

• Integrity

• KeyInfo

• KeyWrappingAlgorithm

• Label

• Length

• MessageAge

• MessageParts

• Policy

• SecurityToken

• SecurityTokenReference

• SignatureAlgorithm

• SupportedTokens

• Target

• TokenLifeTime

• Transform

• UsePassword

CanonicalizationAlgorithm
Specifies the algorithm used to canonicalize the SOAP message elements that are digitally
signed.

Note:

The WebLogic web services security runtime does not support specifying an
InclusiveNamespaces PrefixList that contains a list of namespace prefixes or a token
indicating the presence of the default namespace to the canonicalization algorithm.

Table 6-1 Attributes of <CanonicalizationAlgorithm>

Attribute Description Required?

URI The algorithm used to canonicalize the SOAP message being signed.

You can specify only the following canonicalization algorithm:

http://www.w3.org/2001/10/xml-exc-cl4n#

Yes

Claims
Specifies additional metadata information that is associated with a particular type of security
token. Depending on the type of security token, you can or must specify the following child
elements:

Chapter 6
Element Description

6-4

• For username tokens, you can define a <UsePassword> child element to specify whether
you want the SOAP messages to use password digests. For more information, see
UsePassword.

• For SAML tokens, you must define a <ConfirmationMethod> child element to specify the
type of SAML confirmation (sender-vouches or holder-of-key). For more information, see
ConfirmationMethod.

By default, a security token for a secure conversation has a lifetime of 12 hours. To change this
default value, define a <TokenLifeTime> child element to specify a new lifetime, in
milliseconds, of the security token. For more information, see TokenLifeTime.

This element does not have any attributes.

Confidentiality
Specifies that part or all of the SOAP message must be encrypted, as well as the algorithms
and keys that are used to encrypt the SOAP message.

For example, a web service may require that the entire body of the SOAP message must be
encrypted using triple-DES.

Table 6-2 Attributes of <Confidentiality>

Attribute Description Required?

SupportTrust1
0

The valid values for this attribute are true and false. The default
value is false.

No

ConfirmationMethod
Specifies the type of confirmation method that is used when using SAML tokens for identity.
You must specify one of the following two values for this element: sender-vouches or holder-
of-key. For example:

 <wssp:Claims>
 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
 </wssp:Claims>

This element does not have any attributes.

The <ConfirmationMethod> element is required only if you are using SAML tokens.

The exact location of the <ConfirmationMethod> assertion in the security policy file depends
on the type configuration method you are configuring. In particular:

sender-vouches:

Specify the <ConfirmationMethod> assertion within an <Identity> assertion, as shown in the
following example:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >

Chapter 6
Element Description

6-5

 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-
profile-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
</wsp:Policy>

holder-of-key:

Specify the <ConfirmationMethod> assertion within an <Integrity> assertion. The reason you
put the SAML token in the <Integrity> assertion for this confirmation method is that the web
service runtime must prove the integrity of the message, which is not required by sender-
vouches.

For example:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part">
 <wssp:Integrity>
 <wssp:SignatureAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 IncludeInMessage="true"
 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-
profile-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>
</wsp:Policy>

For more information about the two SAML confirmation methods (sender-vouches or holder-
of-key), see SAML Token Profile Support in WebLogic Web Services in Understanding
Security for Oracle WebLogic Server.

Chapter 6
Element Description

6-6

DigestAlgorithm
Specifies the digest algorithm that is used when digitally signing the specified parts of a SOAP
message. Use the <MessageParts> sibling element to specify the parts of the SOAP message
you want to digitally sign. For more information, see MessageParts.

Table 6-3 Attributes of <DigestAlgorithm>

Attribute Description Required?

URI The digest algorithm that is used when digitally signing the specified
parts of a SOAP message.

You can specify only the following digest algorithm:

http://www.w3.org/2000/09/xmldsig#sha1

Yes

EncryptionAlgorithm
Specifies the encryption algorithm that is used when encrypting the specified parts of a SOAP
message. Use the <MessageParts> sibling element to specify the parts of the SOAP message
you want to digitally sign. For more information, see MessageParts.

Table 6-4 Attributes of <EncryptionAlgorithm>

Attribute Description Required?

URI The encryption algorithm used to encrypt specified parts of the SOAP
message.

Valid values are:

http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#aes128-cbc
When interoperating between web services built with WebLogic
Workshop 8.1, you must specify http://www.w3.org/2001/04/
xmlenc#aes128-cbc as the encryption algorithm.

Yes

Identity
Specifies the type of security tokens (username, X.509, or SAML) that are supported for
authentication.

This element has no attributes.

Integrity
Specifies that part or all of the SOAP message must be digitally signed, as well as the
algorithms and keys that are used to sign the SOAP message.

For example, a web service may require that the entire body of the SOAP message must be
digitally signed and only algorithms using SHA1 and an RSA key are accepted.

Chapter 6
Element Description

6-7

Table 6-5 Attributes of <Integrity>

Attribute Description Required?

SignToken Specifies whether the security token, specified using the
<SecurityToken> child element of <Integrity>, should also
be digitally signed, in addition to the specified parts of the
SOAP message.

The valid values for this attribute are true and false. The
default value is true.

No

SupportTrust10 The valid values for this attribute are true and false. The
default value is false.

No

X509AuthConditional Whenever an Identity assertion includes X.509 tokens in the
supported token list, your policy must also have an Integrity
assertion. The server will not accept X.509 tokens as proof of
authentication unless the token is also used in a digital
signature.

If the Identity assertion accepts other token types, you may use
the X509AuthConditional attribute of the Integrity assertion
to specify that the digital signature is required only when the
actual authentication token is an X.509 token. Remember that
abstract Identity assertions are pre-processed at deploy time
and converted into concrete assertions by inserting a list of all
token types supported by your runtime environment.

No

KeyInfo
Used to specify the security tokens that are used for encryption.

This element has no attributes.

KeyWrappingAlgorithm
Specifies the algorithm used to encrypt the message encryption key.

Table 6-6 Attributes of <KeyWrappingAlgorithm>

Attribute Description Required?

URI The algorithm used to encrypt the SOAP message encryption key.

Valid values are:

• http://www.w3.org/2001/04/xmlenc#rsa-1_5
(to specify the RSA-v1.5 algorithm)

• http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
(to specify the RSA-OAEP algorithm)

Yes

Label
Specifies a label for the security context token. Used when configuring WS-
SecureConversation security contexts.

This element has no attributes.

Chapter 6
Element Description

6-8

Length
Specifies the length of the key when using security context tokens and derived key tokens.
This assertion only applies to WS-SecureConversation security contexts.

The default value is 32.

This element has no attributes.

MessageAge
Specifies the acceptable time period before SOAP messages are declared stale and
discarded.

When you include this security assertion in your security policy file, the web services runtime
adds a <Timestamp> header to the request or response SOAP message, depending on the
direction (inbound, outbound, or both) to which the security policy file is associated. The
<Timestamp> header indicates to the recipient of the SOAP message when the message
expires.

For example, assume that your security policy file includes the following <MessageAge>
assertion:

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 >
...
 <wssp:MessageAge Age="300" />
</wsp:Policy>

The resulting generated SOAP message will have a <Timestamp> header similar to the
following excerpt:
<wsu:Timestamp
 wsu:Id="Dy2PFsX3ZQacqNKEANpXbNMnMhm2BmGOA2WDc2E0JpiaaTmbYNwT"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <wsu:Created>2005-11-09T17:46:55Z</wsu:Created>
 <wsu:Expires>2005-11-09T17:51:55Z</wsu:Expires>
</wsu:Timestamp>

In the example, the recipient of the SOAP message discards the message if received after
2005-11-09T17:51:55Z, or five minutes after the message was created.

The web services runtime, when generating the SOAP message, sets the <Created> header to
the time when the SOAP message was created and the <Expires> header to the creation time
plus the value of the Age attribute of the <MessageAge> assertion.

The following table describes the attributes of the <MessageAge> assertion.

Table 6-7 Attributes of <MessageAge>

Attribute Description Required?

Age Specifies the actual maximum age time-out for a SOAP message, in
seconds.

No

Chapter 6
Element Description

6-9

The following table lists the properties that describe the timestamp behavior of the WebLogic
web services security runtime, along with their default values.

Table 6-8 Timestamp Behavior Properties

Property Description Default Value

Clock
Synchronized

Specifies whether the web service assumes synchronized clocks. true

Clock Precision If clocks are synchronized, describes the accuracy of the
synchronization.

Note: This property is deprecated as of release 9.2 of WebLogic
web services. Use the Clock Skew property instead. If both
properties are set, then Clock Skew takes precedence.

60000
milliseconds

Clock Skew Specifies the allowable difference, in milliseconds, between the
sender and receiver of the message.

60000
milliseconds

Lax Precision Allows you to relax the enforcement of the clock precision
property.

Note: This property is deprecated as of release 9.2 of WebLogic
web services. Use the Clock Skew property instead.

false

Max Processing
Delay

Specifies the freshness policy for received messages. -1

Validity Period Represents the length of time the sender wants the outbound
message to be valid.

60 seconds

MessageParts
Specifies the parts of the SOAP message that should be signed or encrypted, depending on
the grand-parent of the element. You can use either an XPath 1.0 expression or a set of pre-
defined functions within this assertion to specify the parts of the SOAP message.

The MessageParts assertion is always a child of a Target assertion. The Target assertion can
be a child of either an Integrity assertion (to specify how the SOAP message is digitally
signed) or a Confidentiality assertion (to specify how the SOAP messages are encrypted.)

See Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or
Signed for detailed information about using this assertion, along with a variety of examples.

Chapter 6
Element Description

6-10

Table 6-9 Attributes of <MessageParts>

Attribute Description Required?

Dialect Identifies the dialect used to identity the parts of the SOAP message
that should be signed or encrypted. If this attribute is not specified,
then XPath 1.0 is assumed.

The value of this attribute must be one of the following:

• http://www.w3.org/TR/1999/REC-xpath-19991116:
Specifies that an XPath 1.0 expression should be used against the
SOAP message to specify the part to be signed or encrypted.

• http://schemas.xmlsoap.org/2002/12/wsse#part:
Convenience dialect used to specify that the entire SOAP body
should be signed or encrypted.

• http://www.bea.com/wls90/security/policy/wsee#part:
Convenience dialect to specify that the WebLogic-specific headers
should be signed or encrypted. You can also use this dialect to use
QNames to specify the parts of the security header that should be
signed or encrypted.

See Using MessageParts To Specify Parts of the SOAP Messages that
Must Be Encrypted or Signed for examples of using these dialects.

Yes

Policy
Groups nested policy assertions.

SecurityToken
Specifies the security token that is supported for authentication, encryption or digital
signatures, depending on the parent element.

For example, if this element is defined in the <Identity> parent element, then is specifies that
a client application, when invoking the web service, must attach a security token to the SOAP
request. For example, a web service might require that the client application present a SAML
authorization token issued by a trusted authorization authority for the web service to be able to
access sensitive data. If this element is part of <Confidentiality>, then it specifies the token
used for encryption.

The specific type of the security token is determined by the value of its TokenType attribute, as
well as its parent element.

By default, a security token for a secure conversation has a lifetime of 12 hours. To change this
default value, add a <Claims> child element that itself has a <TokenLifeTime> child element,
as described in Claims.

Table 6-10 Attributes of <SecurityToken>

Attribute Description Required?

DerivedFromTokenType Specifies what security token it is derived from. For example,
a value of "http://schemas.xmlsoap.org/ws/
2005/02/sc/sct" specifies that it is derived from an old
version of Secure Conversation Token.

No

Chapter 6
Element Description

6-11

Table 6-10 (Cont.) Attributes of <SecurityToken>

Attribute Description Required?

IncludeInMessage Specifies whether to include the token in the SOAP
message.

Valid values are true or false.

The default value of this attribute is false when used in the
<Confidentiality> assertion and true when used in the
<Integrity> assertion.

The value of this attribute is always true when used in the
<Identity> assertion, even if you explicitly set it to false.

No

TokenType Specifies the type of security token. Valid values are:

• http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-x509-token-
profile-1.0#X509v3 (To specify a binary X.509 token)

• http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-
profile-1.0#UsernameToken (To specify a username
token)

• http://docs.oasis-open.org/wss/2004/01/
oasis-2004-01-saml-token-
profile-1.0#SAMLAssertionID (To specify a SAML
token)

Yes

SecurityTokenReference
For internal use only.

You should never include this security assertion in your custom security policy file; it is
described in this section for informational purposes only. The WebLogic web services runtime
automatically inserts this security assertion in the security policy file that is published in the
dynamic WSDL of the deployed web service. The security assertion specifies WebLogic
Server's public key; the client application that invokes the web service then uses it to encrypt
the parts of the SOAP message specified by the security policy file. The web services runtime
then uses the server's private key to decrypt the message.

SignatureAlgorithm
Specifies the cryptographic algorithm used to compute the digital signature.

Table 6-11 Attributes of <SignatureAlgorithm>

Attribute Description Required?

URI Specifies the cryptographic algorithm used to compute the signature.

Note: Be sure that you specify an algorithm that is compatible with the
certificates you are using in your enterprise.

Valid values are:

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1

Yes

Chapter 6
Element Description

6-12

SupportedTokens
Specifies the list of supported security tokens that can be used for authentication, encryption,
or digital signatures, depending on the parent element.

This element has no attributes.

Target
Encapsulates information about which targets of a SOAP message are to be encrypted or
signed, depending on the parent element.

The child elements also depend on the parent element; for example, when used in
<Integrity>, you can specify the <DigestAlgorithm>, <Transform>, and <MessageParts>
child elements. When used in <Confidentiality>, you can specify the
<EncryptionAlgorithm>, <Transform>, and <MessageParts> child elements.

You can have one or more targets.

Table 6-12 Attributes of <Target>

Attribute Description Required?

encryptContentOnly Specifies whether to encrypt an entire element, or just its content.

This attribute can be specified only when <Target> is a child
element of <Confidentiality>.

Default value of this attribute is true, which means that only the
content is encrypted.

No

TokenLifeTime
Specifies the lifetime, in seconds, of the security context token or derived key token. This
element is used only when configuring WS-SecurityConversation security contexts.

The default lifetime of a security token is 12 hours (43,200 seconds).

This element has no attributes.

Transform
Specifies the URI of a transformation algorithm that is applied to the parts of the SOAP
message that are signed or encrypted, depending on the parent element.

You can specify zero or more transforms, which are executed in the order they appear in the
<Target> parent element.

Chapter 6
Element Description

6-13

Table 6-13 Attributes of <Transform>

Attribute Description Required?

URI Specifies the URI of the transformation algorithm.

Valid URIs are:

• http://www.w3.org/2000/09/xmldsig#base64 (Base64
decoding transforms)

• http://www.w3.org/TR/1999/REC-xpath-19991116 (XPath
filtering)

For detailed information about these transform algorithms, see XML-
Signature Syntax and Processing at http://www.w3.org/TR/
xmldsig-core/#sec-TransformAlg.

Yes

UsePassword
Specifies that whether the plaintext or the digest of the password appear in the SOAP
messages. This element is used only with username tokens.

Table 6-14 Attributes of <UsePassword>

Attribute Description Required?

Type Specifies the type of password. Valid values are:

• http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-
profile-1.0#PasswordText: Specifies that cleartext passwords
should be used in the SOAP messages.

• http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-
profile-1.0#PasswordDigest: Specifies that password digests
should be used in the SOAP messages.

Note: For backward compatibility reasons, the two preceding URIs can
also be specified with an initial "www.". For example:

• http://www.docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-
profile-1.0#PasswordText

• http://www.docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-
profile-1.0#PasswordDigest

Yes

Using MessageParts To Specify Parts of the SOAP Messages
that Must Be Encrypted or Signed

When you use either the Integrity or Confidentiality assertion in your security policy file,
you are required to also use the Target child assertion to specify the targets of the SOAP
message to digitally sign or encrypt. The Target assertion in turn requires that you use the
MessageParts child assertion to specify the actual parts of the SOAP message that should be
digitally signed or encrypted. This section describes various ways to use the MessageParts
assertion.
See Example of a Policy File With Security Elements for an example of a complete security
policy file that uses the MessageParts assertion within a Confidentiality assertion. The

Chapter 6
Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

6-14

http://www.w3.org/TR/xmldsig-core/#sec-TransformAlg
http://www.w3.org/TR/xmldsig-core/#sec-TransformAlg

example shows how to specify that the entire body, as well as the Assertion security header,
of the SOAP messages should be encrypted.

You use the Dialect attribute of MessageParts to specify the dialect used to identify the SOAP
message parts. The WebLogic web services security runtime supports the following three
dialects.

Be sure that you specify a message part that actually exists in the SOAP messages that result
from a client invoke of a message-secured web service. If the web services security runtime
encounters an inbound SOAP message that does not include a part that the security policy file
indicates should be signed or encrypted, then the web services security runtime returns an
error and the invoke fails. The only exception is if you use the WebLogic-specific
wls:SystemHeader() function to specify that any WebLogic-specific SOAP header in a SOAP
message should be signed or encrypted; if the web services security runtime does not find any
of these headers in the SOAP message, the runtime simply continues with the invoke and
does not return an error.

• XPath 1.0

• Pre-Defined wsp:Body() Function

• WebLogic-Specific Header Functions

XPath 1.0
This dialect enables you to use an XPath 1.0 expression to specify the part of the SOAP
message that should be signed or encrypted. The value of the Dialect attribute to enable this
dialect is http://www.w3.org/TR/1999/REC-xpath-19991116.

You typically want to specify that the parts of a SOAP message that should be encrypted or
digitally signed are child elements of either the soap:Body or soap:Header elements. For this
reason, Oracle provides the following two functions that take as parameters an XPath
expression:

• wsp:GetBody(xpath_expression)—Specifies that the root element from which the XPath
expression starts searching is soap:Body.

• wsp:GetHeader(xpath_expression)—Specifies that the root element from which the
XPath expression starts searching is soap:Header.

You can also use a plain XPath expression as the content of the MessageParts assertion,
without one of the preceding functions. In this case, the root element from which the XPath
expression starts searching is soap:Envelope.

The following example specifies that the AddInt part, with namespace prefix n1 and located in
the SOAP message body, should be signed or encrypted, depending on whether the parent
Target parent is a child of Integrity or Confidentiality assertion:

<wssp:MessageParts
 Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116"
 xmlns:n1="http://www.bea.com/foo">
 wsp:GetBody(./n1:AddInt)
</wssp:MessageParts>

The preceding example shows that you should define the namespace of a part specified in the
XPath expression (n1 in the example) as an attribute to the MessageParts assertion, if you
have not already defined the namespace elsewhere in the security policy file.

Chapter 6
Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

6-15

The following example is similar, except that the part that will be signed or encrypted is
wsu:Timestamp, which is a child element of wsee:Security and is located in the SOAP
message header:

<wssp:MessageParts
 Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116">
 wsp:GetHeader(./wsse:Security/wsu:Timestamp)
</wssp:MessageParts>

In the preceding example, it is assumed that the wsee: and wse: namespaces have been
defined elsewhere in the security policy file.

Note:

It is beyond the scope of this document to describe how to create XPath expressions.
For detailed information, see the XML Path Language (XPath), Version 1.0, at
http://www.w3.org/TR/xpath specification.

Pre-Defined wsp:Body() Function
The XPath dialect described in XPath 1.0 is flexible enough for you to pinpoint any part of the
SOAP message that should be encrypted or signed. However, sometimes you might just want
to specify that the entire SOAP message body be signed or encrypted. In this case using an
XPath expression is unduly complicated, so Oracle recommends you use the dialect that pre-
defines the wsp:Body() function for just this purpose, as shown in the following example:

<wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
</wssp:MessageParts>

WebLogic-Specific Header Functions
Oracle provides its own dialect that pre-defines a set of functions to easily specify that some or
all of the WebLogic security or system headers should be signed or encrypted. Although you
can achieve the same goal using the XPath dialect, it is much simpler to use this WebLogic
dialect. You enable this dialect by setting the Dialect attribute to http://www.bea.com/wls90/
security/policy/wsee#part.

The wls:SystemHeaders() function specifies that all of the WebLogic-specific headers should
be signed or encrypted. These headers are used internally by the WebLogic web services
runtime for various features, such as reliable messaging and addressing. The headers are:

• wsrm:SequenceAcknowledgement
• wsrm:AckRequested
• wsrm:Sequence
• wsa:Action
• wsa:FaultTo
• wsa:From
• wsa:MessageID

Chapter 6
Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

6-16

http://www.w3.org/TR/xpath

• wsa:RelatesTo
• wsa:ReplyTo
• wsa:To
• wsax:SetCookie
The following example shows how to use the wls:SystemHeader() function:

<wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
</wssp:MessageParts>

Use the wls:SecurityHeader(header) function to specify a particular part in the security
header that should be signed or encrypted, as shown in the following example:

<wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsa:From)
</wssp:MessageParts>

In the example, only the wsa:From security header is signed or encrypted. You can specify any
of the preceding list of headers to the wls:SecurityHeader() function.

Chapter 6
Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

6-17

7
WebLogic Web Service Deployment
Descriptor Schema Reference

The WebLogic equivalent to the standard Jakarta EE webservices.xml deployment descriptor
file is called weblogic-webservices.xml. This file contains WebLogic-specific information
about a WebLogic web service, such as the URL used to invoke the deployed web service,
configuration settings such as timeout values, and so on.

This chapter includes the following sections:

• Overview of weblogic-webservices.xml

• Example of a weblogic-webservices.xml Deployment Descriptor File
Learn about the deployment elements that are contained within the weblogic-
webservices.xml deployment descriptor.

• Element Descriptions

Overview of weblogic-webservices.xml
The standard Jakarta EE deployment descriptor for web services is called webservices.xml.
This file specifies the set of web services that are to be deployed to WebLogic Server and the
dependencies they have on container resources and other services. See the web services
XML Schema at http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/
javaee_web_services_1_4.xsd for a full description of this file.
For the XML Schema file that describes the weblogic-webservices.xml deployment
descriptor, see http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-
webservices.xsd.

Both deployment descriptor files are located in the same location on the Jakarta EE archive
that contains the web service. In particular:

• For Java class-implemented web services, the web service is packaged as a Web
application WAR file and the deployment descriptors are located in the WEB-INF directory.

• For stateless session EJB-implemented web services, the web service is packaged as an
EJB JAR file and the deployment descriptors are located in the META-INF directory.

The structure of the weblogic-webservices.xml file is similar to the structure of the Jakarta EE
webservices.xml file in how it lists and identifies the web services that are contained within the
archive. For example, for each web service in the archive, both files have a <webservice-
description> child element of the appropriate root element (<webservices> for the Jakarta EE
webservices.xml file and <weblogic-webservices> for the weblogic-webservices.xml file)

This section is published for informational purposes only. Typically, configuration updates are
made using the WebLogic Remote Console or using JWS annotations and you will not need to
edit either of the deployment descriptor files directly.

7-1

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd
http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd
http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd

Note:

The data type definitions of two elements in the weblogic-webservices.xml file
(login-config and transport-guarantee) are imported from the Jakarta EE Schema for
the web.xml file. See the Servlet Deployment Descriptor Schema at http://
www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd for
details about these elements and data types.

Example of a weblogic-webservices.xml Deployment Descriptor
File

Learn about the deployment elements that are contained within the weblogic-
webservices.xml deployment descriptor.

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-webservices
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-webservices">
 <webservice-description>
 <webservice-description-name>MyService</webservice-description-name>
 <port-component>
 <port-component-name>MyServiceServicePort</port-component-name>
 <service-endpoint-address>
 <webservice-contextpath>/MyService</webservice-contextpath>
 <webservice-serviceuri>/MyService</webservice-serviceuri>
 </service-endpoint-address>
 <wsat-config>
 <version>WSAT10</version>
 <flowType>SUPPORTS</flowType>
 </wsat-config>
 <reliability-config>
 <inactivity-timeout>P0DT600S</inactivity-timeout>
 <base-retransmission-interval>P0DT3S</base-retransmission-interval>
 <retransmission-exponential-backoff>true
 </retransmission-exponential-backoff>
 <acknowledgement-interval>P0DT3S</acknowledgement-interval>
 <sequence-expiration>P1D</sequence-expiration>
 <buffer-retry-count>3</buffer-retry-count>
 <buffer-retry-delay>P0DT5S</buffer-retry-delay>
 </reliability-config>
 </port-component>
 </webservice-description>
</weblogic-webservices>

Element Descriptions
The configuration elements specified in the weblogic-webservices.xml deployment descriptor
are arranged in a specific hierarchy. The hierarchy is shown below. The number of occurrences
allowed of each element is identified within braces after the element name. Each element is
described in detail in the sections that follow.

<weblogic-webservices> {1}
 <webservice-description> {1 or more}
 <webservice-description-name> {1 or more}
 <webservice-type> {0 or 1}

Chapter 7
Example of a weblogic-webservices.xml Deployment Descriptor File

7-2

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd

 <wsdl-publish-file {0 or 1}
 <port-component> {0 or more}
 <port-component-name> {1}
 <service-endpoint-address> {0 or 1}
 <webservice-contextpath> {1}
 <webservice-serviceuri> {1}
 <auth-constraint> {0 or 1}
 <login-config> {0 or 1}
 <transport-guarantee> {0 or 1}
 <deployment-listener-list> {0 or 1}
 <deployment-listener> {1 or more}
 <wsdl> {0 or 1}
 <exposed> {1}
 <transaction-timeout> {0 or 1}
 <callback-protocol> {1}
 <stream-attachments> {0 or 1}
 <validate-request> {0 or 1}
 <http-flush-response> {0 or 1}
 <http-response-buffersize> {0 or 1}
 <reliability-config> {0 or 1}
 <customized> {0 or 1}
 <inactivity-timeout> {0 or 1}
 <base-retransmission-interval> {0 or 1}
 <retransmission-exponential-backoff> {0 or 1}
 <non-buffered-source> {0 or 1}
 <acknowledgement-interval> {0 or 1}
 <sequence-expiration> {0 or 1}
 <buffer-retry-count> {0 or 1}
 <buffer-retry-delay> {0 or 1}
 <non-buffered-destination> {0 or 1}
 <messaging-queue-jndi-name> {0 or 1}
 <messaging-queue-mdb-run-as-principal-name> {0 or 1}
 <persistence-config> {0 or 1}
 <customized> {0 or 1}
 <default-logical-store-name> {0 or 1}
 <buffering-config> {0 or 1}
 <customized> {0 or 1}
 <request-queue> {0 or 1}
 <name> {0 or 1}
 <enabled> {0 or 1}
 <connection-factory-jndi-name> {0 or 1}
 <transaction-enabled> {0 or 1}
 <response-queue> {0 or 1}
 <name> {0 or 1}
 <enabled> {0 or 1}
 <connection-factory-jndi-name> {0 or 1}
 <transaction-enabled> {0 or 1}
 <retry-count> {0 or 1}
 <retry-delay> {0 or 1}
 <wsat-config> {0 or 1}
 <version> {0 or 1}
 <flowType> {0 or 1}
 <operation> {0 or more}
 <name> {0 or 1}
 <wsat-config> {0 or 1}
 <version> {0 or 1}
 <flowType> {0 or 1}
 <soapjms-service-endpoint-address> {0 or 1}
 <lookup-variant> {0 or 1}

Chapter 7
Element Descriptions

7-3

 <destination-name> {0 or 1}
 <destination-type> {0 or 1}
 <jndi-connection-factory-name> {0 or 1}
 <jndi-initial-context-factory> {0 or 1}
 <jndi-url> {0 or 1}
 <jndi-context-parameter> {0 or 1}
 <time-to-live> {0 or 1}
 <priority> {0 or 1}
 <delivery-mode> {0 or 1}
 <reply-to-name> {0 or 1}
 <target-service> {0 or 1}
 <binding-version> {0 or 1}
 <message-type> {0 or 1}
 <enable-http-wsdl-access> {0 or 1}
 <run-as-principal> {0 or 1}
 <run-as-role> {0 or 1}
 <mdb-per-destination> {0 or 1}
 <activation-config> {0 or 1}
 <fastinfoset> {0 or 1}
 <logging-level> {0 or 1}
 <webservice-security> {0 or 1}
 <mbean-name> {1}

• acknowledgement-interval

• activation-config

• auth-constraint

• base-retransmission-interval

• binding-version

• buffer-retry-count

• buffer-retry-delay

• buffering-config

• callback-protocol

• connection-factory-jndi-name

• customized

• default-logical-store-name

• delivery-mode

• deployment-listener-list

• deployment-listener

• destination-name

• destination-type

• enable-http-wsdl-access

• enabled

• exposed

• fastinfoset

• flowType

• http-flush-response

Chapter 7
Element Descriptions

7-4

• http-response-buffersize

• inactivity-timeout

• jndi-connection-factory-name

• jndi-context-parameter

• jndi-initial-context-factory

• jndi-url

• logging-level

• login-config

• lookup-variant

• mbean-name

• mdb-per-destination

• message-type

• messaging-queue-jndi-name

• messaging-queue-mdb-run-as-principal-name

• name

• non-buffered-destination

• non-buffered-source

• operation

• persistence-config

• port-component

• port-component-name

• priority

• reliability-config

• reply-to-name

• request-queue

• response-queue

• retransmission-exponential-backoff

• retry-count

• retry-delay

• run-as-principal

• run-as-role

• sequence-expiration

• service-endpoint-address

• soapjms-service-endpoint-address

• stream-attachments

• target-service

• time-to-live

• transport-guarantee

Chapter 7
Element Descriptions

7-5

• transaction-enabled

• transaction-timeout

• validate-request

• version

• weblogic-webservices

• webservice-contextpath

• webservice-description

• webservice-description-name

• webservice-security

• webservice-serviceuri

• webservice-type

• wsat-config

• wsdl

• wsdl-publish-file

acknowledgement-interval
The <acknowledgement-interval> child element of the <reliability-config> element
specifies the maximum interval during which the destination endpoint must transmit a stand-
alone acknowledgement.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMS

Table 7-1 describes the duration format fields. This value defaults to P0DT3S (3 seconds).

Table 7-1 Duration Format Description

Field Description

nY Number of years (n).

nM Number of months (n).

nD Number of days (n).

T Date and time separator.

nH Number of hours (n).

nM Number of minutes (n).

nS Number of seconds (n).

See Configuring the Acknowledgement Interval in Developing JAX-WS Web Services for
Oracle WebLogic Server.

activation-config
The <activation-config> child element of the <soapjms-service-endpoint-address>
element specifies activation configuration properties passed to the JMS provider. Each

Chapter 7
Element Descriptions

7-6

property is specified using name-value pairs, separated by semicolons (;). For example:
name1=value1;...;nameN=valueN
See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server. For a list of valid activation properties, see Configuring JMS Transport
Properties in Developing JAX-WS Web Services for Oracle WebLogic Server.

auth-constraint
The <auth-constraint> element defines the user roles that are permitted access to this
resource collection.

The XML Schema data type of the <j2ee:auth-constraint> element is <j2ee:auth-
constraintType>, and is defined in the Java EE Schema that describes the standard web.xml
deployment descriptor. For the full reference information, see http://www.oracle.com/
webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd.

base-retransmission-interval
The <base-retransmission-interval> child element of the <reliability-config> element
specifies the interval of time that must pass before a message is retransmitted to the RM
destination. This element can be used in conjunction with the <retransmission-exponential-
backoff> element to specify the algorithm that is used to adjust the retransmission interval.

If a destination endpoint does not acknowledge a sequence of messages for the time interval
specified by <base-retransmission-interval>, the exponential backoff algorithm is used for
timing successive retransmissions by the source endpoint, should the message continue to go
unacknowledged.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMS

Table 7-1 describes the duration format fields. This value defaults to P0DT3S (3 seconds).

See Configuring the Base Retransmission Interval in Developing JAX-WS Web Services for
Oracle WebLogic Server.

binding-version
The <binding-version> child element of the <soapjms-service-endpoint-address> element
defines the version of the SOAP JMS binding. This value must be set to 1.0 for this release,
which equates to org.jvnet.ws.jms.JMSBindingVersion.SOAP_JMS_1_0. This value maps to
the SOAPJMS_bindingVersion JMS message property.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

buffer-retry-count
The <buffer-retry-count> child element of the <reliability-config> element specifies the
number of times that the JMS queue on the destination WebLogic Server instance attempts to
deliver the message from a client that invokes the reliable operation to the web service
implementation. This value defaults to 3.

Chapter 7
Element Descriptions

7-7

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd

See Using Web Services Reliable Messaging in Developing JAX-WS Web Services for Oracle
WebLogic Server.

buffer-retry-delay
The <buffer-retry-delay> child element of the <reliability-config> element specifies the
amount of time that elapses between message delivery retry attempts. The retry attempts are
between the client's request message on the JMS queue and delivery of the message to the
web service implementation.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMS

Table 7-1 describes the duration format fields.This value defaults to P0DT5S (5 seconds).

See Using Web Services Reliable Messaging in Developing JAX-WS Web Services for Oracle
WebLogic Server.

buffering-config
The <buffering-config> element groups together the buffering configuration elements. The
child elements of the <buffering-config> element specify runtime configuration values such
as retry counts and delays.

See Configuring Message Buffering for Web Services in Developing JAX-WS Web Services for
Oracle WebLogic Server.

callback-protocol
The <callback-protocol> child element of the <port-component> element specifies the
protocol used for callbacks to notify clients of an event. Valid values include: http, https, or
jms.

connection-factory-jndi-name
The <connection-factory-jndi-name> child element of the <request-queue> and <response-
queue> elements specifies the JNDI name of the connection factory to use for request and
response message buffering, respectively.

See Configuring Message Buffering for Web Services in Developing JAX-WS Web Services for
Oracle WebLogic Server.

customized
The <customized> child element of the <reliability-config>, <persistence-config>, and
<buffering-config> is a Boolean flag that specifies whether the configuration has been
customized.

default-logical-store-name
The <default-logical-store-name> child element of the <persistence-config> element
defines the name of the default logical store.

Chapter 7
Element Descriptions

7-8

See Managing Web Service Persistence in Developing JAX-WS Web Services for Oracle
WebLogic Server.

delivery-mode
The <delivery-mode> child element of the <soapjms-service-endpoint-address> element
specifies the delivery mode indicating whether the request message is persistent. Valid values
are org.jvnet.ws.jms.DeliveryMode.PERSISTENT and
org.jvnet.ws.jms.DeliveryMode.NON_PERSISTENT. This value defaults to PERSISTENT.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

deployment-listener-list
For internal use only.

deployment-listener
For internal use only.

destination-name
The <destination-name> child element of the <soapjms-service-endpoint-address> element
defines the name of the destination queue or topic. This value defaults to
com.oracle.webservices.jms.RequestQueue.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

destination-type
The <destination-type> child element of the <soapjms-service-endpoint-address> element
defines the destination type. Valid values are org.jvnet.ws.jms.JMSDestinationType.QUEUE
or org.jvnet.ws.jms.JMSDestinationType.TOPIC. This value defaults to QUEUE.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

enable-http-wsdl-access
The <enable-http-wsdl-access> child element of the <soapjms-service-endpoint-address>
element is a Boolean value that specifies whether to publish the WSDL through HTTP.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

enabled
The <enabled> child element of the <request-queue> and <response-queue> elements
specifies whether request and response message buffering is enabled, respectively.

See Configuring Message Buffering for Web Services in Developing JAX-WS Web Services for
Oracle WebLogic Server.

Chapter 7
Element Descriptions

7-9

exposed
The <exposed> child element of the <wsdl> element is a boolean attribute indicating whether
the WSDL should be exposed to the public when the web service is deployed.

fastinfoset
The <fastinfoset> child element of the <port-component> element is a Boolean flag that
specifies whether Fast Infoset is supported for the web service port component.

See Using Fast Infoset in Developing JAX-WS Web Services for Oracle WebLogic Server.

flowType
The <flowtype> child element of the <wsat-config> element specifies Whether the web
service atomic transaction coordination context is passed with the transaction flow. Valid values
include: NEVER, SUPPORTS, and MANDATORY. The value defaults to SUPPORTS.

For complete details on the valid values and their meanings, and valid value combinations
when configuring web service atomic transactions for an EJB-style web service that uses the
@TransactionAttribute annotation, see the Flow Type Values table in Enabling Web Services
Atomic Transactions on Web Services in Developing JAX-WS Web Services for Oracle
WebLogic Server.

http-flush-response
The <http-flush-response> child element of the <port-component> element specifies
whether or not you want to flush the reliable response. This value defaults to true.

http-response-buffersize
The <http-response-buffersize> child element of the <port-component> element specifies
the size of the reliable response buffer that is used to cache the request on the server. This
value defaults to 0.

inactivity-timeout
The <inactivity-timeout> child element of the <reliability-config> element specifies an
inactivity interval. If, during the specified interval, an endpoint (RM source or RM destination)
has not received application or control messages, the endpoint may consider the RM
sequence to have been terminated due to inactivity.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMnS

Table 7-1 describes the duration format fields. This value defaults to P0DT600S (600 seconds).

See Configuring Inactivity Timeout in Developing JAX-WS Web Services for Oracle WebLogic
Server.

Chapter 7
Element Descriptions

7-10

jndi-connection-factory-name
The <jndi-connection-factory-name> child element of the <soapjms-service-endpoint-
address> element defines the JNDI name of the connection factory that is used to establish a
JMS connection. This value defaults to com.oracle.webservices.jms.ConnectionFactory.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

jndi-context-parameter
The <jndi-context-parameter> child element of the <soapjms-service-endpoint-address>
element defines additional JNDI environment properties. Each property is specified using
name-value pairs, separated by semicolons (;). For example:
name1=value1;...;nameN=valueN.

JNDI properties. Each property is specified using name-value pairs, separated by semicolons
(;). For example: name1=value1;...;nameN=valueN.

This property can be specified more than once. Each occurrence of the jndiContextParameter
property specifies a JNDI property name-value pair to be added to the java.util.Hashtable
sent to the InitialContext constructor for the JNDI provider.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

jndi-initial-context-factory
The <jndi-initial-connection-factory> child element of the <soapjms-service-endpoint-
address> element defines the name of the initial context factory class used for JNDI lookup.
This value defaults to weblogic.jndi.WLInitialContextFactory.

This value maps to the java.naming.factory.initial property.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

jndi-url
The <jndi-url> child element of the <soapjms-service-endpoint-address> element defines
the JNDI provider URL. This value maps to the java.naming.provider.url property. This
value defaults to t3://localhost:7001.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

logging-level
The <logging-level> child element of the <port-component> element sets the logging level
for the port component. Valid values include: SEVERE, WARNING, INFO, CONFIG, FINE, FINER,
FINEST, ALL, and OFF.

Chapter 7
Element Descriptions

7-11

login-config
The <j2ee:login-config> element specifies the authentication method that should be used,
the realm name that should be used for this application, and the attributes that are needed by
the form login mechanism.

The XML Schema data type of the <j2ee:login-config> element is <j2ee:login-
configType>, and is defined in the Java EE Schema that describes the standard web.xml
deployment descriptor. For the full reference information, see http://www.oracle.com/
webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd.

lookup-variant
The <lookup-variant> child element of the <soapjms-service-endpoint-address> element
defines the method used for looking up the specified destination name. This value must be set
to jndi to support SOAP over JMS transport.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

mbean-name
The <mbean-name> child element of the <webservice-security> element specifies the name of
the web service security configuration (specifically an instantiation of the
WebserviceSecurityMBean) that is associated with the web services described in the
deployment descriptor file. The default configuration is called default_wss.

The associated security configuration specifies information such as whether to use an X.509
certificate for identity, whether to use password digests, the keystore to be used for encryption
and digital signatures, and so on.

You must create the security configuration (even the default one) using the WebLogic Remote
Console before you can successfully invoke the web service.

Note:

The web service security configuration described by this element applies to all web
services contained in the weblogic-webservices.xml file. The jwsc Ant task always
packages a web service in its own JAR or WAR file, so this limitation is not an issue if
you always use the jwsc Ant task to generate a web service. However, if you update
the weblogic-webservices.xml deployment descriptor manually and add additional
web service descriptions, you cannot associate different security configurations to
different services.

mdb-per-destination
The <mdb-per-destination> child element of the <soapjms-service-endpoint-address>
element is a Boolean value that specifies whether to create one listening message-driven bean
(MDB) for each requested destination. This value defaults to true.

Chapter 7
Element Descriptions

7-12

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd

If set to false, one listening MDB is created for each web service port, and that MDB cannot
be shared by other ports.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

message-type
The <message-type> child element of the <soapjms-service-endpoint-address> element
specifies message type to use with the request message. A value of BYTES indicates the
javax.jms.BytesMessage object is used. A value of TEXT indicates javax.jms.TextMessage
object is used. This value defaults to BYTES.

The web service uses the same message type when sending the response. If the request is
received as a BYTES, the reply will be sent as a BYTES.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

messaging-queue-jndi-name
The <messaging-queue-jndi-name> child element of the <reliability-config> element
specifies the JNDI name of the destination queue or topic.

See Using Web Services Reliable Messaging in Developing JAX-WS Web Services for Oracle
WebLogic Server.

messaging-queue-mdb-run-as-principal-name
The <messaging-queue-mdb-run-as-principal-name> child element of the <reliability-
config> element specifies the principal used to run the listening MDB.

See Using Web Services Reliable Messaging in Developing JAX-WS Web Services for Oracle
WebLogic Server.

name
The <name> child element of the <operation> element defines the name of the web service
operation.

non-buffered-destination
The <non-buffered-destination> child element of the <reliability-config> element is a
Boolean value that specifies whether to disable message buffering on a particular destination
server to control whether buffering is used when receiving messages.

See Configuring a Non-buffered Destination for a Web Service in Developing JAX-WS Web
Services for Oracle WebLogic Server.

non-buffered-source
The <non-buffered-source> child element of the <reliability-config> element is a Boolean
value that specifies whether to disable message buffering on a particular source server to
control whether buffering is used when delivering messages. This value should always be set
to false; message buffering should always be enabled on the source server.

Chapter 7
Element Descriptions

7-13

See Configuring a Non-buffered Destination for a Web Service in Developing JAX-WS Web
Services for Oracle WebLogic Server.

operation
The <operation> element defines characteristics of a web service operation. The child
elements of the <operation> element defines the name and configuration options of the web
service operation.

persistence-config
The <persistence-config> element groups together the persistence configuration elements.
The child elements of the <persistence-config> element specify the default logical store.

See Managing Web Service Persistence in Developing JAX-WS Web Services for Oracle
WebLogic Server.

port-component
The <port-component> element is a container of other elements used to describe a web
service port. The child elements of the <port-component> element specify WebLogic-specific
characteristics of the web service port, such as the context path and service URI used to
invoke the web service after it has been deployed to WebLogic Server.

port-component-name
The <port-component-name> child element of the <port-component> element specifies the
internal name of the WSDL port. The value of this element must be unique for all <port-
component-name> elements within a single weblogic-webservices.xml file.

priority
The <priority> child element of the <soapjms-service-endpoint-address> element defines
the JMS priority associated with the request and response message. Specify this value as a
positive Integer from 0, the lowest priority, to 9, the highest priority. This value defaults to 0).

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

reliability-config
The <reliability-config> element groups together the reliable messaging configuration
elements. The child elements of the <reliability-config> element specify runtime
configuration values such as retransmission and timeout intervals for reliable messaging.

See Using Web Services Reliable Messaging in Developing JAX-WS Web Services for Oracle
WebLogic Server.

reply-to-name
The <reply-to-name> child element of the <soapjms-service-endpoint-address> element
defines the JNDI name of the JMS destination to which the response message is sent.

Chapter 7
Element Descriptions

7-14

For a two-way operation, a temporary response queue is generated by default. Using the
default temporary response queue minimizes the configuration that is required. However, in the
event of a server failure, the response message may be lost. This property enables the client
to use a previously defined, "permanent" queue or topic rather than use the default temporary
queue or topic, for receiving replies.

The value maps to the JMSReplyTo JMS header in the request message.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

request-queue
The <request-queue> child element of the <buffering-config> element. defines the JNDI
name of the connection factory to use for request message buffering. This value defaults to the
default JMS connection factory defined by the server.

See Configuring the Request Queue in Developing JAX-WS Web Services for Oracle
WebLogic Server.

response-queue
The <response-queue> child element of the <buffering-config> element. defines the JNDI
name of the connection factory to use for response message buffering. This value defaults to
the default JMS connection factory defined by the server.

See Configuring the Response Queue in Developing JAX-WS Web Services for Oracle
WebLogic Server.

retransmission-exponential-backoff
The <retransmission-exponential-backoff> child element of the <reliability-config>
element is a boolean attribute that specifies whether the message retransmission interval will
be adjusted using the exponential backoff algorithm. This element is used in conjunction with
the <base-retransmission-interval> element.

If a destination endpoint does not acknowledge a sequence of messages for the time interval
specified by <base-retransmission-interval>, the exponential backoff algorithm is used for
timing successive retransmissions by the source endpoint, should the message continue to go
unacknowledged.

This value defaults to false—the same retransmission interval is used in successive retries,
rather than the interval increasing exponentially.

See Configuring the Retransmission Exponential Backoff in Developing JAX-WS Web Services
for Oracle WebLogic Server.

retry-count
The <retry-count> child element of the <buffering-config> element. defines the number of
times that the JMS queue on the invoked WebLogic Server instance attempts to deliver the
message to the web service implementation until the operation is successfully invoked. This
value defaults to 3.

See Configuring Message Retry Count and Delay in Developing JAX-WS Web Services for
Oracle WebLogic Server.

Chapter 7
Element Descriptions

7-15

retry-delay
The <retry-delay> child element of the <buffering-config> element. defines the number of
times that the JMS queue on the invoked WebLogic Server instance attempts to deliver the
message to the web service implementation until the operation is successfully invoked. This
value defaults to 3.

Amount of time between retries of a buffered request and response. Note, this value is only
applicable when RetryCount is greater than 0.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMS

Table 7-1 describes the duration format fields. This value defaults to P0DT30S (30 seconds).

See Configuring Message Retry Count and Delay in Developing JAX-WS Web Services for
Oracle WebLogic Server.

run-as-principal
The <run-as-principal> child element of the <soapjms-service-endpoint-address> element
defines the principal used to run the listening MDB.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

run-as-role
The <run-as-role> child element of the <soapjms-service-endpoint-address> element
defines the role used to run the listening MDB.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

sequence-expiration
The <sequence-expiration> child element of the <reliability-config> element specifies the
expiration time for a sequence regardless of activity.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMS

Table 7-1 describes the duration format fields. This value defaults to P1D (1 day).

See Configuring the Sequence Expiration in Developing JAX-WS Web Services for Oracle
WebLogic Server.

service-endpoint-address
The <service-endpoint-address> element groups the WebLogic-specific context path and
service URI values that together make up the web service endpoint address, or the URL that
invokes the web service after it has been deployed to WebLogic Server.

Chapter 7
Element Descriptions

7-16

These values are specified with the <webservice-contextpath> and <webservice-
serviceuri> child elements.

soapjms-service-endpoint-address
The <soapjms-service-endpoint-address> element groups the configuration properties for
SOAP over JMS transport.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

stream-attachments
The <stream-attachments> child element of the <port-component> element is a boolean value
that specifies whether the WebLogic web services runtime uses streaming APIs when reading
the parameters of all methods of the web service. This increases the performance of web
service operation invocation, in particular when the parameters are large, such as images.

You cannot use this annotation if you are also using the following features in the same web
service:

• Conversations

• Reliable Messaging

• JMS Transport

• A proxy server between the client application and the web service it invokes

target-service
The <target-service> child element of the <soapjms-service-endpoint-address> element
defines the port component name of the web service. This value is used by the service
implementation to dispatch the service request. If not specified, the service name from the
WSDL or @javax.jms.WebService annotation is used.

This value maps to the SOAPJMS_targetService JMS message property.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

time-to-live
The <time-to-live> child element of the <soapjms-service-endpoint-address> element
defines the lifetime, in milliseconds, of the request message. A value of 0 indicates an infinite
lifetime. If not specified, the JMS-defined default value (180000) is used.

On the service side, timeToLive also specifies the expiration time for each MDB transaction.

See Using SOAP Over JMS Transport in Developing JAX-WS Web Services for Oracle
WebLogic Server.

transport-guarantee
The j2ee:transport-guarantee element specifies the type of communication between the
client application invoking the web service and WebLogic server.

Chapter 7
Element Descriptions

7-17

Valid values include:

• INTEGRAL—Application requires that the data sent between the client and server be sent in
such a way that it cannot be changed in transit.

• CONFIDENTIAL—Application requires that the data be transmitted in a way that prevents
other entities from observing the contents of the transmission.

• NONE—Application does not require transport guarantees.

The XML Schema data type of the j2ee:transport-guarantee element is j2ee:transport-
guaranteeType, and is defined in the Java EE Schema that describes the standard web.xml
deployment descriptor. For the full reference information, see http://www.oracle.com/
webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd.

transaction-enabled
The <transaction-enabled> child element of the <request-queue> and <response-queue>
elements is a Boolean value that specifies whether transactions should be used when storing
and retrieving messages from the request and response buffering queues, respectively. This
flag defaults to false.

See Configuring Message Buffering for Web Services in Developing JAX-WS Web Services for
Oracle WebLogic Server.

transaction-timeout
The <transaction-timeout> child element of the <port-component> element specifies a
timeout value for the current transaction, if the web service operation(s) are running as part of
a transaction.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMnS

Table 7-1 describes the duration format fields. This value defaults to 30 seconds.

validate-request
The <validate-request> child element of the <port-component> element is a boolean value
that specifies whether the request should be validated.

The value specified must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMnDTnHnMnS

Table 7-1 describes the duration format fields. This value defaults to P0DT3S (3 seconds).

version
The <version> child element of the <wsat-config> element specifies the version of the web
service atomic transaction coordination context that is used for web services and clients. For
clients, it specifies the version used for outbound messages only. The value specified must be
consistent across the entire transaction.

Chapter 7
Element Descriptions

7-18

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_4_0.xsd

Valid values include WSAT10, WSAT11, WSAT12, and DEFAULT. The DEFAULT value for web services
is all three versions (driven by the inbound request); the DEFAULT value for web service clients
is WSAT10.

For more information about web service atomic transactions, see Using Web Service Atomic
Transactions in Developing JAX-WS Web Services for Oracle WebLogic Server.

weblogic-webservices
The <weblogic-webservices> element is the root element of the WebLogic-specific web
services deployment descriptor (weblogic-webservices.xml).

The element specifies the set of web services contained in the Java EE component archive in
which the deployment descriptor is also contained. The archive is either an EJB JAR file (for
stateless session EJB-implemented web services) or a WAR file (for Java class-implemented
web services)

webservice-contextpath
The <webservice-contextpath> element specifies the context path portion of the URL used to
invoke the web service. The URL to invoke a web service deployed to WebLogic Server is:

http://host:port/contextPath/serviceURI

where

• host is the host computer on which WebLogic Server is running.

• port is the port address to which WebLogic Server is listening.

• contextPath is the value of this element

• serviceURI is the value of the webservice-serviceuri element.

When using the jwsc Ant task to generate a web service from a JWS file, the value of the
<webservice-contextpath> element is taken from the contextPath attribute of the WebLogic-
specific @WLHttpTransport annotation or the <WLHttpTransport> child element of jwsc.

webservice-description
The <webservice-description> element is a container of other elements used to describe a
web service. The <webservice-description> element defines a set of port components
(specified using one or more <port-component> child elements) that are associated with the
WSDL ports defined in the WSDL document.

There may be multiple <webservice-description> elements defined within a single weblogic-
webservices.xml file, each corresponding to a particular stateless session EJB or Java class
contained within the archive, depending on the implementation of your web service. In other
words, an EJB JAR contains the EJBs that implement a web service, a WAR file contains the
Java classes.

webservice-description-name
The <webservice-description-name> element specifies the internal name of the web service.
The value of this element must be unique for all <webservice-description-name> elements
within a single weblogic-webservices.xml file.

Chapter 7
Element Descriptions

7-19

webservice-security
Element used to group together all the security-related elements of the weblogic-
webservices.xml deployment descriptor.

webservice-serviceuri
The <webservice-serviceuri> element specifies the web service URI portion of the URL used
to invoke the web service. The URL to invoke a web service deployed to WebLogic Server is:

http://host:port/contextPath/serviceURI

where

• host is the host computer on which WebLogic Server is running.

• port is the port address to which WebLogic Server is listening.

• contextPath is the value of the webservice-contextpath element

• serviceURI is the value of this element.

When using the jwsc Ant task to generate a web service from a JWS file, the value of the
<webservice-serviceuri> element is taken from the serviceURI attribute of the WebLogic-
specific @WLHttpTransport annotation or the <WLHttpTransport> child element of jwsc.

webservice-type
The <webservice-type> element specifies the web service based on the JAX-WS standard.
Valid values is JAXWS.

wsat-config
The <wsat-config> element enables and configures web service atomic transaction
configuration at the class or synchronous method level. The child elements of the <wsat-
config> element specify the WS-AtomicTransaction version supported and whether or not the
web service atomic transaction coordination context is passed with the transaction flow.

For more information about web service atomic transactions, see Using Web Service Atomic
Transactions in Developing JAX-WS Web Services for Oracle WebLogic Server.

wsdl
The <wsdl> element groups together all the WSDL-related elements of the weblogic-
webservices.xml deployment descriptor.

wsdl-publish-file
The <wsdl-publish-file> element specifies a directory (on the system that hosts the web
service) to which WebLogic Server should publish a hard-copy of the WSDL file of a deployed
web service; this is in addition to the standard WSDL file accessible via HTTP.

For example, assume that your web service is implemented with an EJB, and its WSDL file is
located in the following directory of the EJB JAR file, relative to the root of the JAR:

Chapter 7
Element Descriptions

7-20

META-INF/wsdl/a/b/Fool.wsdl

Further assume that the weblogic-webservices.xml file includes the following element for a
given web service:

<wsdl-publish-file>d:/bar</wsdl-publish-file>

This means that when WebLogic Server deploys the web service, the server publishes the
WSDL file at the standard HTTP location, but also puts a copy of the WSDL file in the following
directory of the computer on which the service is running:

d:/bar/a/b/Foo.wsdl

Note:

Only specify this element if client applications that invoke the web service need to
access the WSDL via the local file system or FTP; typically, client applications access
the WSDL using HTTP.

The value of this element should be an absolute directory pathname. This directory must exist
on every machine which hosts a WebLogic Server instance or cluster to which you deploy the
web service.

Chapter 7
Element Descriptions

7-21

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction
	2 Ant Task Reference
	Overview of WebLogic Web Services Ant Tasks
	clientgen
	Taskdef Classname
	Child Elements
	binding
	jmstransportclient
	xmlcatalog

	Attributes
	Examples

	wsdlc
	Taskdef Classname
	Child Elements
	binding
	xmlcatalog

	Attributes
	WebLogic-Specific wsdlc Attributes
	Standard Ant javac Attributes That Apply To wsdlc

	Example

	wsdlget
	Taskdef Classname
	Child Elements
	Attributes
	Example

	3 JWS Annotation Reference
	Overview of JWS Annotation Tags
	Web Services Metadata Annotations (JSR-181)
	JAX-WS Annotations (JSR-224)
	JAXB Annotations (JSR-222)
	Jakarta Annotations (JSR-250)
	WebLogic-Specific Annotations
	com.oracle.webservices.api.jms.JMSTransportClient
	com.oracle.webservices.api.jms.JMSTransportService
	weblogic.jws.Policies
	Description
	Example

	weblogic.jws.Policy
	Description
	Attributes
	Example

	weblogic.jws.security.WssConfiguration
	Description
	Attributes
	Example

	weblogic.wsee.jws.jaxws.owsm.Property
	Description
	Example

	weblogic.wsee.jws.jaxws.owsm.SecurityPolicies
	Description
	Example

	weblogic.wsee.jws.jaxws.owsm.SecurityPolicy
	Description
	Attributes
	Examples

	weblogic.wsee.jws.jaxws.owsm.SecurityPolicies
	Description
	Example

	weblogic.wsee.jws.jaxws.owsm.SecurityPolicy
	Description
	Attribute
	Example

	weblogic.wsee.wstx.wsat.Transactional
	Description
	Attributes
	Example

	4 Web Service Reliable Messaging Policy Assertion Reference
	Overview of a WS-Policy File That Contains Web Service Reliable Messaging Assertions
	WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1
	Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.2 and 1.1
	Element Descriptions
	wsp:Policy
	wsrmp:DeliveryAssurance
	wsrmp:RMAssertion
	wsrmp:SequenceSTR
	wsrmp:SequenceTransportSecurity

	WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)
	Example of a WS-Policy File With Web Service Reliable Messaging Assertions
	Element Description
	beapolicy:Expires
	beapolicy:QOS
	wsrm:AcknowledgementInterval
	wsrm:BaseRetransmissionInterval
	wsrm:ExponentialBackoff
	wsrm:InactivityTimeout
	wsrm:RMAssertion

	5 Web Service MakeConnection Policy Assertion Reference
	Overview of a WS-Policy File That Contains MakeConnection Assertions
	Example of a WS-Policy File With MakeConnection and WS-Policy 1.5
	Element Descriptions
	wsp:Policy
	wsmc:MCSupported

	6 Oracle Web Services Security Policy Assertion Reference
	Overview of a Policy File That Contains Security Assertions
	Example of a Policy File With Security Elements
	Element Description
	CanonicalizationAlgorithm
	Claims
	Confidentiality
	ConfirmationMethod
	DigestAlgorithm
	EncryptionAlgorithm
	Identity
	Integrity
	KeyInfo
	KeyWrappingAlgorithm
	Label
	Length
	MessageAge
	MessageParts
	Policy
	SecurityToken
	SecurityTokenReference
	SignatureAlgorithm
	SupportedTokens
	Target
	TokenLifeTime
	Transform
	UsePassword

	Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed
	XPath 1.0
	Pre-Defined wsp:Body() Function
	WebLogic-Specific Header Functions

	7 WebLogic Web Service Deployment Descriptor Schema Reference
	Overview of weblogic-webservices.xml
	Example of a weblogic-webservices.xml Deployment Descriptor File
	Element Descriptions
	acknowledgement-interval
	activation-config
	auth-constraint
	base-retransmission-interval
	binding-version
	buffer-retry-count
	buffer-retry-delay
	buffering-config
	callback-protocol
	connection-factory-jndi-name
	customized
	default-logical-store-name
	delivery-mode
	deployment-listener-list
	deployment-listener
	destination-name
	destination-type
	enable-http-wsdl-access
	enabled
	exposed
	fastinfoset
	flowType
	http-flush-response
	http-response-buffersize
	inactivity-timeout
	jndi-connection-factory-name
	jndi-context-parameter
	jndi-initial-context-factory
	jndi-url
	logging-level
	login-config
	lookup-variant
	mbean-name
	mdb-per-destination
	message-type
	messaging-queue-jndi-name
	messaging-queue-mdb-run-as-principal-name
	name
	non-buffered-destination
	non-buffered-source
	operation
	persistence-config
	port-component
	port-component-name
	priority
	reliability-config
	reply-to-name
	request-queue
	response-queue
	retransmission-exponential-backoff
	retry-count
	retry-delay
	run-as-principal
	run-as-role
	sequence-expiration
	service-endpoint-address
	soapjms-service-endpoint-address
	stream-attachments
	target-service
	time-to-live
	transport-guarantee
	transaction-enabled
	transaction-timeout
	validate-request
	version
	weblogic-webservices
	webservice-contextpath
	webservice-description
	webservice-description-name
	webservice-security
	webservice-serviceuri
	webservice-type
	wsat-config
	wsdl
	wsdl-publish-file

