
Oracle® Fusion Middleware
Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server

14c (14.1.2.0.0)
F62099-01
December 2024



Oracle Fusion Middleware Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server, 14c
(14.1.2.0.0)

F62099-01

Copyright © 2007, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Documentation vi

Conventions vi

1   Understanding WebLogic Logging Services

What You Can Do With WebLogic Logging Services 1-1

How WebLogic Logging Services Work 1-1

Components and Environment 1-2

Terminology 1-2

Overview of the Logging Process 1-3

Server Log Files and Domain Log Files 1-4

How a Server Instance Forwards Messages to the Domain Log 1-4

Server and Subsystem Logs 1-6

Server Log 1-6

Subsystem Logs 1-7

Log Message Format 1-8

Log File Format Compatibility with Previous WebLogic Server Versions 1-9

Format of Output to Standard Out and Standard Error 1-9

Message Attributes 1-9

Message Severity 1-10

Viewing WebLogic Server Logs 1-11

Configuring java.util.logging Logger Levels 1-11

Configuring java.util.logging Logger Levels Using WLST 1-12

2   Configuring WebLogic Logging Services

Configuration Scenarios 2-1

Overview of Logging Services Configuration 2-2

Using Log Severity Levels 2-3

Using Log Filters 2-3

iii



Logging Configuration Tasks: Main Steps 2-4

How to Use the Commons API with WebLogic Logging Services 2-4

Specifying Severity Level for Loggers 2-5

Specifying Severity Level for WebLogic Server Subsystem Loggers 2-6

Specifying the Severity Level for Commons Logging API Loggers 2-6

Rotating Log Files 2-6

Specifying the Location of Archived Log Files 2-8

Notification of Rotation 2-8

Redirecting JVM Output 2-9

Configuring WebLogic Server to Redirect the JVM Output 2-9

Redirecting Standard Error and Standard Output 2-10

Preventing Excessive Logging 2-12

3   Filtering WebLogic Server Log Messages

The Role of Logger and Handler Objects 3-1

Filtering Messages by Severity Level or Other Criteria 3-4

Setting the Severity Level for Loggers and Handlers 3-4

Setting the Level for Loggers 3-5

Setting the Level for Handlers 3-5

Example: Setting the Level for Handlers 3-6

Example: Setting the Severity Level for the Stdout Handler 3-6

Setting a Filter for Loggers and Handlers 3-7

Filtering Domain Log Messages 3-8

4   Subscribing to Messages

Overview of Message Handlers 4-1

Creating and Subscribing a Handler: Main Steps 4-3

Example: Subscribing to Messages in a Server JVM 4-4

Example: Implementing a Handler Class 4-4

Example: Subscribing to a Logger Class 4-6

Comparison of Java Logging Handlers with JMX Listeners 4-7

iv



Preface

Oracle WebLogic Server logging services is used to monitor server, subsystem, and
application events. You can configure WebLogic Server to write messages to log files and
listen for the log messages that WebLogic Server broadcasts. You can also view log messages
through the WebLogic Remote Console.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
This document is a resource for system administrators who configure WebLogic logging
services and monitor server and subsystem events, and for Java Platform, Enterprise Edition
(Jakartaa EE) application developers who want to integrate their application logs with
WebLogic Server logs. This document is relevant to all phases of a software project, from
development through test and production phases.

This document does not address application logging or localization and internationalization of
log message catalogs. For links to information on these topics, see Related Documentation.

It is assumed that the reader is familiar with Jakartaa EE and Web technologies, object-
oriented programming techniques, and the Java programming language.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc


Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
The corporate Web site provides all documentation for WebLogic Server. Specifically, View
Logs and Configure Logs in the Oracle WebLogic Remote Console Online Help describes
configuring log files and log messages that a WebLogic Server instance generates.

Using Message Catalogs with WebLogic Server in Adding WebLogic Logging Services to
Applications Deployed on Oracle WebLogic Server describes how you can use WebLogic
Server message catalogs, non-catalog logging, and servlet logging to produce log messages
from your application or a remote Java client, and describes WebLogic's support for
internationalization and localization of log messages.

• Logging Samples and Tutorials

• New and Changed WebLogic Server Features

Logging Samples and Tutorials
Oracle provides a variety of logging code examples and tutorials that show WebLogic Server
logging configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code
ExamplesSample Applications and Code Examples in Understanding Oracle WebLogic Server.

Logging Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in
ORACLE_HOME\wlserver\samples\server, where ORACLE_HOME represents the directory in which
you installed WebLogic Server.

New and Changed WebLogic Server Features
For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vi



1
Understanding WebLogic Logging Services

WebLogic logging services provide facilities for writing, viewing, filtering, and listening for log
messages. These log messages are generated by WebLogic Server instances, subsystems,
and Jakarta EE applications that run on Oracle WebLogic Server or in client JVMs.

• What You Can Do With WebLogic Logging Services

• How WebLogic Logging Services Work
Learn about the WebLogic Server logging environment and the logging process.

• Server and Subsystem Logs
Each subsystem within WebLogic Server generates log messages to communicate its
status.

• Log Message Format
When a WebLogic Server instance writes a message to the server log file, the first line of
each message begins with #### followed by the message attributes. Each attribute is
contained between angle brackets.

• Message Attributes

• Message Severity

• Viewing WebLogic Server Logs
The WebLogic Remote Console provides a log viewer for all the log files in a domain.

• Configuring java.util.logging Logger Levels
WebLogic Server supports configuring java.util.logging.Logger levels for named
loggers in the JDK LogManager from within the WebLogic Server logging configuration.

What You Can Do With WebLogic Logging Services
WebLogic Server subsystems use logging services to provide information about events such
as the deployment of new applications or the failure of one or more subsystems. A server
instance uses them to communicate its status and respond to specific events. For example,
you can use WebLogic logging services to report error conditions or listen for log messages
from a specific subsystem.
Each WebLogic Server instance maintains a server log. Because each WebLogic Server
domain can run concurrent, multiple instances of WebLogic Server, the logging services collect
messages that are generated on multiple server instances into a single, domain-wide message
log. The domain log provides the overall status of the domain. See Server Log Files and
Domain Log Files.

How WebLogic Logging Services Work
Learn about the WebLogic Server logging environment and the logging process.

• Components and Environment

• Terminology

• Overview of the Logging Process

1-1



• Server Log Files and Domain Log Files

• How a Server Instance Forwards Messages to the Domain Log

Components and Environment
There are two basic components in any logging system: a component that produces log
messages and another component to distribute (publish) messages. WebLogic Server
subsystems use a message catalog feature to produce messages and the Java Logging APIs
to distribute them, by default. Developers can also use message catalogs for applications they
develop.

The message catalog framework provides a set of utilities and APIs that your application can
use to send its own set of messages to the WebLogic server log. The framework is ideal for
applications that need to localize the language in their log messages, but even for those
applications that do not need to localize, it provides a rich, flexible set of tools for
communicating status and output.

See Using Message Catalogs with WebLogic Server in Adding WebLogic Logging Services to
Applications Deployed on Oracle WebLogic Server.

In addition to using the message catalog framework, your application can use the following
mechanisms to send messages to the WebLogic server log:

• weblogic.logging.NonCatalogLogger APIs

With NonCatalogLogger, instead of calling messages from a catalog, you place the
message text directly in your application code. See Using the NonCatalogLogger APIs in
Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server.

• Server Logging Bridge

WebLogic Server provides a mechanism by which your logging application can have its
messages redirected to WebLogic logging services without the need to make code
changes or implement any of the propriety WebLogic Logging APIs.

Use of either the NonCatalogLogger APIs or Server Logging Bridge is suitable for logging
messages that do not need to be internationalized or that are internationalized outside the
WebLogic I18n framework.

To distribute messages, WebLogic Server supports Java based logging by default. The
LoggingHelper class provides access to the java.util.logging.Logger object used for server
logging. This lets developers take advantage of the Java Logging APIs to add custom
handlers, filters, and formatters. See the java.util.logging API documentation at http://
docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html.

Terminology
To understand the WebLogic Logging services, you must understand the following terminology
associated with it:

• Logger - A Logger object logs messages for a specific subsystem or application
component. WebLogic logging services use a single instance of
java.util.logging.Logger for logging messages from the Message Catalogs,
NonCatalogLogger, and the Debugging system.

• Handler - A class that extends java.util.logging.Handler and receives log requests
sent to a logger. Each Logger instance can be associated with a number of handlers to

Chapter 1
How WebLogic Logging Services Work

1-2

http://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html


which it dispatches log messages. A handler attaches to a specific type of a log message;
for example, the File Handler for the server log file.

Overview of the Logging Process
WebLogic Server subsystems or application code send log requests to Logger objects. These
Logger objects allocate LogRecord objects which are passed to Handler objects for publication.
Both loggers and handlers use severity levels and (optionally) filters to determine if they are
interested in a particular LogRecord object. When it is necessary to publish a LogRecord object
externally, a handler can (optionally) use a formatter to localize and format the log message
before publishing it to an I/O stream.

Figure 1-1 shows the WebLogic Server logging process: WebLogic Catalog APIs or Commons
Logging APIs are used for producing messages; Java Logging (default) is the only options for
distributing messages.

Figure 1-1    WebLogic Server Logging Process

Distribute Messages

Produce Messages

process

Msg Catalog
Logger

NonCatalog
Logger

Java EE
Application

Server
Logger

Commons
Logging API

Memory
Handler

File
Handler

Stdout
Handler

Domain Log
Broadcaster

JMX Log
Broadcaster

WebLogic Server
Subsystem

Figure 1-1 illustrates the following process:

1. The client, in this case, a WebLogic Server subsystem or Jakarta EE application, invokes a
method on one of the generated Catalog Loggers or the Commons Logging
implementation for WebLogic Server.

a. When WebLogic Server message catalogs and the NonCatalogLogger generate
messages, they distribute their messages to the server Logger object.

b. The Jakarta Commons Logging APIs define a factory API to get a Logger reference
which dispatches log requests to the server Logger object.

The server Logger object can be an instance of java.util.logging.Logger.

2. The server Logger object publishes the messages to any message handler that has
subscribed to the Logger.

For example, the Stdout Handler prints a formatted message to standard out and the File
Handler writes formatted output to the server log file. The Domain Log Broadcaster sends
log messages to the domain log, which resides on the Administration Server, and the JMX
Log Broadcaster sends log messages to JMX listeners on remote clients.

Chapter 1
How WebLogic Logging Services Work

1-3



Server Log Files and Domain Log Files
Each WebLogic Server instance writes all messages from its subsystems and applications to a
server log file that is located on the local host computer. By default, the server log file is located
in the logs directory below the server instance root directory; for example,
DOMAIN_NAME\servers\SERVER_NAME\logs\SERVER_NAME.log, where DOMAIN_NAME is the name
of the directory in which you located the domain and SERVER_NAME is the name of the server.

In addition to writing messages to the server log file, each server instance forwards a subset of
its messages to a domain-wide log file. By default, servers forward only messages of severity
level Notice or higher. While you can modify the set of messages that are forwarded, servers
can never forward messages of the Debug severity level. See Define Debug Settings in Oracle
WebLogic Remote Console Online Help.

The domain log file provides a central location from which to view the overall status of the
domain. The domain log resides in the Administration Server logs directory. The default name
and location for the domain log file is
DOMAIN_NAME\servers\ADMIN_SERVER_NAME\logs\DOMAIN_NAME.log, where DOMAIN_NAME is the
name of the directory in which you located the domain and ADMIN_SERVER_NAME is the name of
the Administration Server.

The timestamp for a record in the domain log is the timestamp of the server where the
message originated. Log records in the domain log are not written in the order of their
timestamps; the messages are written as soon as they arrive. It may happen that a Managed
Server remains out of contact with the Administration Server for some period of time. In that
case, the messages are buffered locally and sent to the Administration Server once the servers
are reconnected.

How a Server Instance Forwards Messages to the Domain Log
To forward messages to the domain log, each server instance broadcasts its log messages. A
server broadcasts all messages and message text except for messages of the Debug severity
level.

The Administration Server listens for a subset of these messages and writes them to the
domain log file. To listen for these messages, the Administration Server registers a listener with
each Managed Server. By default, the listener includes a filter that allows only messages of
severity level Notice and higher to be forwarded to the Administration Server. (See Figure 1-2.)

Chapter 1
How WebLogic Logging Services Work

1-4



Figure 1-2    WebLogic Server and Domain Logs

Administration Server

Managed Server

Server
LOG File

Domain
LOG File

Server
LOG File

Filter

Filter Server
Logger

Domain
Logger

Server
Logger

Domain Log
Broadcaster

Domain Log
Broadcaster

All messages 
except 
DEBUG

All messages

For any given WebLogic Server instance, you can override the default filter and create a log
filter that causes a different set of messages to be written to the domain log file. For information
about setting up a log filter for a WebLogic Server instance, see Create a Log Filter in Oracle
WebLogic Remote Console Online Help.

If the Administration Server is unavailable, Managed Servers continue to write messages to
their local server log files. However, by default, when the servers are reconnected, not all the
messages written during the disconnected period are forwarded to the domain log file. A
Managed Server keeps a specified number of messages in a buffer so they can be forwarded
to the Administration Server when the servers are reconnected.

The number of messages kept in the buffer is configured by the LogMBean attribute
DomainLogBroadcasterBufferSize. DomainLogBroadcasterBufferSize controls the frequency
with which log messages are sent from the Managed Server to the domain server. With the
development default of 1, there is not batching of log messages; only the last logged message
is forwarded to the Administration Server domain log. For example, if the Administration Server

Chapter 1
How WebLogic Logging Services Work

1-5



is unavailable for two hours and then is restored, the domain log will not contain any messages
that were generated during the two hours. See MSI Mode and the Domain Log File in
Administering Server Startup and Shutdown for Oracle WebLogic Server. In production mode,
the default buffer size on the Managed Server is 10. When the buffer reaches its capacity, the
messages in the buffer are flushed by sending them to the domain log on the Administration
Server. For performance reasons, it is recommended that you set this value to 10 or higher in
production. A higher value will cause the buffer to be broadcast to the domain log less
frequently.

If you have configured a value greater than 1, that number of messages will be forwarded to
the domain log when the Managed Server is reconnected to the Administration Server.

Note:

This can result in a domain log file that lists messages with earlier timestamps after
messages with later timestamps. When messages from the buffer of a previously
disconnected Managed Server are flushed to the Administration Server, those
messages are simply appended to the domain log, even though they were generated
before the previous messages in the domain log.

Server and Subsystem Logs
Each subsystem within WebLogic Server generates log messages to communicate its status.

For example, when you start a WebLogic Server instance, the Security subsystem writes a
message to report its initialization status. To keep a record of the messages that its
subsystems generate, WebLogic Server writes the messages to log files.

• Server Log

• Subsystem Logs

Server Log
The server log records information about events such as the startup and shutdown of servers,
the deployment of new applications, or the failure of one or more subsystems. The messages
include information about the time and date of the event as well as the ID of the user who
initiated the event.

You can view and sort these server log messages to detect problems, track down the source of
a fault, and track system performance. You can also create client applications that listen for
these messages and respond automatically. For example, you can create an application that
listens for messages indicating a failed subsystem and sends E-mail to a system administrator.

The server log file is located on the computer that hosts the server instance. Each server
instance has its own server log file. By default, the server log file is located in the logs
directory below the server instance root directory; for example,
DOMAIN_NAME\servers\SERVER_NAME\logs\SERVER_NAME.log, where DOMAIN_NAME is the name
of the directory in which you located the domain and SERVER_NAME is the name of the server.

To view messages in the server log file, you can log on to the WebLogic Server host computer
and use a standard text editor, or you can log on to any computer and use the log file viewer in
the WebLogic Remote Console. See View Logs in Oracle WebLogic Remote Console Online
Help.

Chapter 1
Server and Subsystem Logs

1-6



Note:

Oracle recommends that you do not modify log files by editing them manually.
Modifying a file changes the timestamp and can confuse log file rotation. In addition,
editing a file might lock it and prevent updates from WebLogic Server, as well as
interfere with the Accessor.

For information about the Diagnostic Accessor Service, see Accessing Diagnostic
Data With the Data Accessor in Configuring and Using the Diagnostics Framework
for Oracle WebLogic Server.

In addition to writing messages to a log file, each server instance prints a subset of its
messages to standard out. Usually, standard out is the shell (command prompt) in which you
are running the server instance. However, some operating systems enable you to redirect
standard out to some other location. By default, a server instance prints only messages of a
Notice severity level or higher to standard out. (A subsequent section, Message Severity
describes severity levels.) You can modify the severity threshold so that the server prints more
or fewer messages to standard out.

If you use Node Manager to start a Managed Server, the messages that would otherwise be
output to stdout or stderr when starting a Managed Server are instead displayed in the
WebLogic Remote Console and written to a single log file for that server instance,
SERVER_NAME.out. The server instance's output log is located in the same logs directory, below
the server instance root directory, along with the WebLogic Server SERVER_NAME.log file; for
example, DOMAIN_NAME\servers\SERVER_NAME\logs\SERVER_NAME.out, where DOMAIN_NAME is
the name of the directory in which you located the domain and SERVER_NAME is the name of the
server.

Node Manager writes its own startup and status messages to a single log file, NM_HOME/
nodemanager.log, where NM_HOME designates the Node Manager root directory, by default,
DOMAIN_HOME/nodemanager. See Node Manager Configuration and Log Files in Administering
Node Manager for Oracle WebLogic Server.

Subsystem Logs
The server log messages and log file communicate events and conditions that affect the
operation of the server or the application. Some subsystems maintain additional log files to
provide an audit of the subsystem's interactions under normal operating conditions. The
following list describes each of the additional log files:

• The HTTP subsystem keeps a log of all HTTP transactions in a text file. The default
location and rotation policy for HTTP access logs is the same as the server log. You can
set the attributes that define the behavior of HTTP access logs for each server or for each
virtual host that you define. See Setting Up HTTP Access Logs in Administering Server
Environments for Oracle WebLogic Server

• Each server has a transaction log which stores information about committed transactions
coordinated by the server that may not have been completed. WebLogic Server uses the
transaction log when recovering from system crashes or network failures. You cannot
directly view the transaction log - the file is in a binary format.

The Transaction Manager uses the default persistent store to store transaction log files.

• The WebLogic Auditing provider records information from a number of security requests,
which are determined internally by the WebLogic Security Framework. The WebLogic

Chapter 1
Server and Subsystem Logs

1-7



Auditing provider also records the event data associated with these security requests, and
the outcome of the requests. Configuring an Auditing provider is optional. The default
security realm (myrealm) does not have an Auditing provider configured. See Configuring
the WebLogic Auditing Provider in Administering Security for Oracle WebLogic Server.

All auditing information recorded by the WebLogic Auditing provider is saved in
WL_HOME\DOMAIN_NAME\servers\SERVER_NAME\logs\DefaultAuditRecorder.log. Although
an Auditing provider is configured per security realm, each server writes auditing data to its
own log file in the server directory.

• The JDBC subsystem records various events related to JDBC connections, including
registering JDBC drivers and SQL exceptions. The events related to JDBC are now written
to the server log, such as when connections are created or refreshed or when
configuration changes are made to JDBC objects. See Monitoring WebLogic JDBC
Resources in Administering JDBC Data Sources for Oracle WebLogic Server.

• JMS logging is enabled by default when you create a JMS server, however, you must
specifically enable it on message destinations in the JMS modules targeted to this JMS
server (or on the JMS template used by destinations).

JMS server log files contain information on basic message life cycle events, such as
message production, consumption, and removal. When a JMS destination hosting the
subject message is configured with message logging enabled, then each of the basic
message life cycle events will generate a message log event in the JMS message log file.

The message log is located in the logs directory, below the server instance root directory,
DOMAIN_NAME\servers\SERVER_NAME\logs\jmsServers\SERVER_NAMEJMSServer\jms.messa
ges.log, where DOMAIN_NAME is the name of the directory in which you located the domain
and SERVER_NAME is the name of the server.

After you create a JMS server, you can change the default name of its log file, as well as
configure criteria for moving (rotating) old log messages to a separate file. See Monitoring
JMS Statistics and Managing Messages in Administering JMS Resources for Oracle
WebLogic Server.

Log Message Format
When a WebLogic Server instance writes a message to the server log file, the first line of each
message begins with #### followed by the message attributes. Each attribute is contained
between angle brackets.

Here is an example of a message in the server log file:

####<Sept 22, 2004 10:46:51 AM EST> <Notice> <WebLogicServer> <MyComputer>
<examplesServer><main> <<WLS Kernel>> <> <null> <1080575211904> <BEA-000360> <Server 
started in RUNNING mode> 

In this example, the message attributes are: Locale-formatted Timestamp, Severity,
Subsystem, Machine Name, Server Name, Thread ID, User ID, Transaction ID, Diagnostic
Context ID, Raw Time Value, Message ID, and Message Text. (A subsequent section, 
Message Attributes describes each attribute.)

If a message is not logged within the context of a transaction, the angle brackets for
Transaction ID are present even though no Transaction ID is present.

If the message includes a stack trace, the stack trace is included in the message text.

WebLogic Server uses the host computer's default character encoding for the messages it
writes.

Chapter 1
Log Message Format

1-8



• Log File Format Compatibility with Previous WebLogic Server Versions

• Format of Output to Standard Out and Standard Error

Log File Format Compatibility with Previous WebLogic Server Versions
To configure the logging service to revert to the legacy log format used in earlier versions of
WebLogic Server, set the DomainMBean.LogFormatCompatibilityEnabled attribute to true. In
WebLogic Server 12.2.1 and later, the default value of this attribute is false.

Format of Output to Standard Out and Standard Error
When a WebLogic Server instance writes a message to standard out, the output does not
include the #### prefix and does not include the Server Name, Machine Name, Thread ID,
User ID, Transaction ID, Diagnostic Context ID, and Raw Time Value fields.

Here is an example of how the message from the previous section would be printed to
standard out:

<Sept 22, 2004 10:51:10 AM EST> <Notice> <WebLogicServer> <BEA-000360> <Server started 
in RUNNING mode>

In this example, the message attributes are: Locale-formatted Timestamp, Severity,
Subsystem, Message ID, and Message Text.

Message Attributes
The messages for all WebLogic Server instances contain a consistent set of attributes. 
Table 1-1 lists the server log message attributes. In addition, if your application uses WebLogic
logging services to generate messages, its messages also contain these attributes.

Table 1-1    Server Log Message Attributes

Attribute Description

Locale-formatted
Timestamp

Time and date when the message originated, in a format that is specific to the
locale. The Java Virtual Machine (JVM) that runs each WebLogic Server instance
refers to the host computer operating system for information about the local time
zone and format.

Severity Indicates the degree of impact or seriousness of the event reported by the
message. See Message Severity.

Subsystem Indicates the subsystem of WebLogic Server that was the source of the message;
for example, Enterprise Java Bean (EJB) container or Java Messaging Service
(JMS).

Machine Name

Server Name

Thread ID

Identifies the origins of the message:

• Server Name is the name of the WebLogic Server instance on which the
message was generated.

• Machine Name is the DNS name of the computer that hosts the server
instance.

• Thread ID is the ID that the JVM assigns to the thread in which the message
originated.

Log messages that are generated within a client JVM do not include these
attributes. For example, if your application runs in a client JVM and it uses the
WebLogic logging services, the messages that it generates and sends to the
WebLogic client log files will not include these attributes.

Chapter 1
Message Attributes

1-9



Table 1-1    (Cont.) Server Log Message Attributes

Attribute Description

User ID The user ID under which the associated event was executed.

To execute some pieces of internal code, WebLogic Server authenticates the ID of
the user who initiates the execution and then runs the code under a special Kernel
Identity user ID.

Jakartaa EE modules such as EJBs that are deployed onto a server instance
report the user ID that the module passes to the server.

Log messages that are generated within a client JVM do not include this field.

Transaction ID Present only for messages logged within the context of a transaction.

Diagnostic Context
ID

Context information to correlate messages coming from a specific request or
application.

Raw Time Value The timestamp in milliseconds.

Message ID A unique six-digit identifier.

All message IDs that WebLogic Server system messages generate start with BEA-
and fall within a numerical range of 0-499999.

Your applications can use a Java class called NonCatalogLogger to generate log
messages instead of using an internationalized message catalog. The message ID
for NonCatalogLogger messages is always 000000.

See Writing Messages to the WebLogic Server Log in Adding WebLogic Logging
Services to Applications Deployed on Oracle WebLogic Server.

Message Text A description of the event or condition.

Message Severity
The severity attribute of a WebLogic Server log message indicates the potential impact of the
event or condition that the message reports.Table 1-2 lists the severity levels of log messages
from WebLogic Server subsystems, starting from the lowest level of impact to the highest.

Table 1-2    Message Severity

Severity Meaning

Trace Used for messages from the Diagnostic Action Library. Upon enabling diagnostic
instrumentation of server and application classes, Trace messages follow the
request path of a method.

See Diagnostic Action Library in Configuring and Using the Diagnostics Framework
for Oracle WebLogic Server.

Debug A debug message was generated.

Info Used for reporting normal operations; a low-level informational message.

Notice An informational message with a higher level of importance.

Warning A suspicious operation or configuration has occurred but it might not affect normal
operation.

Error A user error has occurred. The system or application can handle the error with no
interruption and limited degradation of service.

Critical A system or service error has occurred. The system can recover but there might be
a momentary loss or permanent degradation of service.

Chapter 1
Message Severity

1-10



Table 1-2    (Cont.) Message Severity

Severity Meaning

Alert A particular service is in an unusable state while other parts of the system continue
to function. Automatic recovery is not possible; the immediate attention of the
administrator is needed to resolve the problem.

Emergency The server is in an unusable state. This severity indicates a severe system failure
or panic.

WebLogic Server subsystems generate many messages of lower severity and fewer messages
of higher severity. For example, under normal circumstances, they generate many Info
messages and no Emergency messages.

If your application uses WebLogic logging services, it can use an additional severity level,
Debug. See Writing Debug Messages in Adding WebLogic Logging Services to Applications
Deployed on Oracle WebLogic Server.

Viewing WebLogic Server Logs
The WebLogic Remote Console provides a log viewer for all the log files in a domain.

The log viewer can find and display the messages based on any of the following message
attributes: date, subsystem, severity, machine, server, thread, user ID, transaction ID, context
ID, timestamp, message ID, or message. It can also display messages as they are logged or
search for past log messages.

For information about viewing, configuring, debugging, and filtering message logs, see Log
Messages in Oracle WebLogic Remote Console Online Help.

For a detailed description of log messages in WebLogic Server message catalogs, see Error
Messages. This index of messages describes all of the messages emitted by WebLogic
subsystems and provides a detailed description of the error, a possible cause, and a
recommended action to avoid or fix the error. To view available details, click on the appropriate
entry in the Range column (if viewing by range) or the Subsystem column (if viewing by
subsystem).

Configuring java.util.logging Logger Levels
WebLogic Server supports configuring java.util.logging.Logger levels for named loggers in
the JDK LogManager from within the WebLogic Server logging configuration.

You can configure java.util.logging levels for named loggers using the
PlatformLoggerLevels attribute in the LogMBean. This configuration applies to
java.util.logging.Logger instances in the JDK's default global LogManager.

Note:

This configuration is persisted as part of the WebLogic logging configuration and is
not included in the logging.properties file.

Chapter 1
Viewing WebLogic Server Logs

1-11



If your WebLogic domain includes Oracle JRF and is configured to use Oracle Diagnostic
Logging (ODL), the java.util.logging levels set on the LogMBean.PlatformLoggerLevels
attribute are ignored. For more information about ODL logging, see Managing Log Files and
Diagnostic Data in Administering Oracle Fusion Middleware.

To configure WebLogic Server loggers, use the LoggerSeverities attribute on the LogMBean.
See Table 1-2. These loggers are not available in the JDK's default global LogManager.

Note:

Log management at application level is supported as of WebLogic Server 14.1.2.0.0
release. You can now declare an application scope in the platform logger, such that
the rules apply to a specific application scope only.
For example, if you set a rule at Platform Logger Levels for app1:a.b.c (Properties
Name) to FINER (Properties Value); for logger a.b.c, a FINER rule is applied when
logging during app1's execution.

• Configuring java.util.logging Logger Levels Using WLST

Configuring java.util.logging Logger Levels Using WLST
The following example demonstrates using WLST to configure java.util.logging logger
levels:

wls:/mydomain/serverConfig> edit()
wls:/mydomain/edit> startEdit()
wls:/mydomain/edit !> cd ('/Servers/myserver/Log/myserver')
wls:/mydomain/edit/Servers/myserver/Log/myserver !> props = java.util.Properties()
wls:/mydomain/edit/Servers/myserver/Log/myserver !> props.put("foo.bar","INFO")
wls:/mydomain/edit/Servers/myserver/Log/myserver !> 
wls:/mydomain/edit/Servers/myserver/Log/myserver !> cmo.setPlatformLoggerLevels(props)
wls:/mydomain/edit/Servers/myserver/Log/myserver !> save()
Saving all your changes ...
Saved all your changes successfully.
wls:/mydomain/edit/Servers/myserver/Log/myserver !> activate()
Activating all your changes, this may take a while ... 
The edit lock associated with this edit session is released once the activation is 
completed.
Activation completed

Chapter 1
Configuring java.util.logging Logger Levels

1-12



2
Configuring WebLogic Logging Services

You can configure the logging output to receive log messages for specific events in Oracle
WebLogic Server. Use WebLogic Remote Console, WLST commands or the Java Logging
APIs to configure the logging output.
For detailed instructions on filtering and subscribing to messages, see Filtering WebLogic
Server Log Messages and Subscribing to Messages.

This chapter describes WebLogic Server logging scenarios and basic configuration tasks:

• Configuration Scenarios

• Overview of Logging Services Configuration
In the logging process, a logging request is dispatched to subscribed handlers or
appenders. Volume control of logging is provided through the LogMBean interface.

• Logging Configuration Tasks: Main Steps
You can configure and filter log messages that the WebLogic Server generates. You can
use the WebLogic Remote Console, WebLogic Scripting Tool, or the Java APIs.

• How to Use the Commons API with WebLogic Logging Services
WebLogic logging services provide the Commons LogFactory and Log interface
implementations that direct requests to the underlying logging implementation being used
by WebLogic logging services.

• Rotating Log Files
The log messages are accumulated in predefined numbered log files. Whenever the file
grows in size from the set size, depending on whether it is in development or production
mode, the server rotates its server log file.

• Redirecting JVM Output
The JVM in which a WebLogic Server instance runs sends messages to standard error
and standard out. Server as well as application code write directly to these streams instead
of using the logging mechanism. However, you can use a configuration option to redirect
the JVM output to all registered log destinations, such as the server terminal console and
the server log file. 

• Redirecting Standard Error and Standard Output

• Preventing Excessive Logging

Configuration Scenarios
WebLogic Server system administrators and developers configure logging output and filter log
messages to troubleshoot errors or to receive notification for specific events.The following
tasks describe some logging configuration scenarios:

• Stop Debug and Info messages from going to the log file.

• Allow Info level messages from the HTTP subsystem to be published to the log file, but
not to standard out.

• Specify that a handler publishes messages that are Warning severity level or higher.

• Track log information for individual servers in a cluster.

2-1



Overview of Logging Services Configuration
In the logging process, a logging request is dispatched to subscribed handlers or appenders.
Volume control of logging is provided through the LogMBean interface.

WebLogic Server provides handlers for sending log messages to standard out, the server log
file, broadcasting messages to the domain log, remote clients, and a memory buffer for tail
viewing log events. You can achieve volume control for each type of handler by filtering log
messages based on severity level and other criteria. The LogMBean, described in MBean
Reference for Oracle WebLogic Server, defines attributes for setting the severity level and
specifying filter criteria for WebLogic Server handlers.

In earlier versions of WebLogic Server, system administrators and developers had only
programmatic access to loggers and handlers. In this release of WebLogic Server, you can
configure handlers using MBeans, eliminating the need to write code for most basic logging
configurations. The WebLogic Server Scripting Tool (WLST) provide an interface for interacting
with logging MBeans. Additionally, you can specify LogMBean parameters on the command line
using Dweblogic.log.attribute-name=value; for example,
Dweblogic.log.StdoutSeverity=Debug. See Message Output and Logging in Command
Reference for Oracle WebLogic Server.

For advanced usage scenarios and for configuring loggers, you use the Java Logging APIs.

Setting the severity level on a handler is the simplest type of volume control; for example, any
message of a lower severity than the specified threshold severity level, will be rejected. For
example, by default, the Stdout Handler has a Notice threshold severity level. Therefore, Info
and Debug level messages are not sent to standard out.

Configuring a filter on a handler lets you specify criteria for accepting log messages for
publishing; for example, only messages from the HTTP and JDBC subsystems are sent to
standard out.

Note:

The java.util.logging.LoggingPermission class, described at http://
docs.oracle.com/javase/8/docs/api/java/util/logging/
LoggingPermission.html, is required for a user to change the configuration of a
logger or handler. In production environments, we recommend using the Java
Security Manager with java.util.logging.LoggingPermission enabled for the
current user.

See Using the Java Security Manager to Protect WebLogic Resources in Developing
Applications with the WebLogic Security Service, and the Java Logging Overview at 
http://docs.oracle.com/javase/8/docs/technotes/guides/logging/
overview.html.

Chapter 2
Overview of Logging Services Configuration

2-2

http://docs.oracle.com/javase/8/docs/api/java/util/logging/LoggingPermission.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/LoggingPermission.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/LoggingPermission.html
http://docs.oracle.com/javase/8/docs/technotes/guides/logging/overview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/logging/overview.html


Note:

By default, the query string parameters may show up in the HTTP log files. This allow
attackers, access to sensitive data such as passwords, personal information,
database details, and so on. To overcome this vulnerability, we have removed the
query string as part of the default access log entries.

To restore the query strings to default HTTP access log entires or previous behavior,
set this system property
weblogic.servlet.access.log.default.format.with.query to TRUE.

• Using Log Severity Levels

• Using Log Filters

Using Log Severity Levels
Each log message has an associated severity level. The level gives a rough guide to the
importance and urgency of a log message. WebLogic Server has predefined severities,
ranging from Trace to Emergency, which are converted to a log level when dispatching a log
request to the logger. A log level object can specify any of the following values, from lowest to
highest impact:

Trace, Debug, Info, Notice, Warning, Error, Critical, Alert, Emergency
You can set a log severity level on the logger and the handler. When set on the logger, none of
the handlers receive an event which is rejected by the logger. For example, if you set the log
level to Notice on the logger, none of the handlers will receive Info level events. When you set
a log level on the handler, the restriction only applies to that handler and not the others. For
example, turning Debug off for the File Handler means no Debug messages will be written to the
log file, however, Debug messages will be written to standard out.

For the description of supported severity levels, see weblogic.logging.Severities in Java
API Reference for Oracle WebLogic Server.

You set log levels for handlers and loggers using the WebLogic Remote Console, WLST, or the
command line. See Specifying Severity Level for Loggers. Loggers and handlers can also be
configured through the API. See Setting the Severity Level for Loggers and Handlers.

Using Log Filters
To provide more control over the messages that a Logger object publishes, you can create and
set a filter. A filter is a class that uses custom logic to evaluate the log record content which
you use to accept or reject a log message; for example, to filter out messages of a certain
severity level, from a particular subsystem, or according to specified criteria. The Logger object
publishes only the log messages that satisfy the filter criteria. You can create separate filters
for the messages that each server instance writes to its server log file, standard out, memory
buffer, or broadcasts to the domain-wide message log.

You can associate a filter with loggers and handlers. You configure filters for handlers using the
WebLogic Remote Console, WLST, or the command line. There are LogFilterMBean attributes
to define filters for Stdout, Log File, Log Broadcaster, and Memory Handlers, or you can
implement custom filtering logic programmatically. The LogFilterMBean, described in the
MBean Reference for Oracle WebLogic Server, defines the filtering criteria based on user ID
and subsystem. Filters for loggers are configured only through the API.

Chapter 2
Overview of Logging Services Configuration

2-3



See Setting a Filter for Loggers and Handlers.

Logging Configuration Tasks: Main Steps
You can configure and filter log messages that the WebLogic Server generates. You can use
the WebLogic Remote Console, WebLogic Scripting Tool, or the Java APIs.

The following steps summarize how you can configure and filter the log messages. Related
documentation and later sections in this guide describe these steps in more detail.

1. Use WebLogic Remote Console to configure WebLogic Logging services. See Log
Messages in Oracle WebLogic Remote Console Online Help.

2. Alternatively, configure log message filtering on the message handler using the WebLogic
Scripting Tool. See Configuring Existing Domains in Understanding the WebLogic Scripting
Tool.

3. Filter log messages published by the logger using the Java APIs. See Filtering Messages
by Severity Level or Other Criteria.

How to Use the Commons API with WebLogic Logging Services
WebLogic logging services provide the Commons LogFactory and Log interface
implementations that direct requests to the underlying logging implementation being used by
WebLogic logging services.

To use Commons Logging, put the WebLogic-specific Commons classes, $WL_HOME/modules/
com.bea.core.weblogic.commons.logging_1.3.0.0.jar, together with the commons-
logging.jar file in one of the following locations:

• APP-INF/LIB or WEB-INF/LIB directory

• DOMAIN_NAME/LIB directory

• server CLASSPATH

Note:

WebLogic Server does not provide a Commons logging version in its distribution.

Example 2-1 illustrates how to use the Commons interface by setting the appropriate system
property.

Note:

When you use the org.apache.commons.logging.LogFactory system property to
implement the Commons interface as described here, you are implementing it for all
application instances running on the server. For information on how to implement
Commons logging for specific application instances, without affecting other
applications, use the JDK service discovery mechanism or commons-
logging.properties mechanism to specify the LogFactory as described at http://
commons.apache.org/logging/apidocs/org/apache/commons/logging/
LogFactory.html#getFactory().

Chapter 2
Logging Configuration Tasks: Main Steps

2-4

http://commons.apache.org/logging/apidocs/org/apache/commons/logging/LogFactory.html#getFactory()
http://commons.apache.org/logging/apidocs/org/apache/commons/logging/LogFactory.html#getFactory()
http://commons.apache.org/logging/apidocs/org/apache/commons/logging/LogFactory.html#getFactory()


1. Set the system property org.apache.commons.logging.LogFactory to
weblogic.logging.commons.LogFactoryImpl.

This LogFactory creates instances of weblogic.logging.commons.LogFactoryImpl that
implement the org.apache.commons.logging.Log interface.

2. From the LogFactory, get a reference to the Commons Log object by name.

This name appears as the subsystem name in the log file.

3. Use the Log object to issue log requests to WebLogic logging services.

The Commons Log interface methods accept an object. In most cases, this will be a string
containing the message text.

The Commons LogObject takes a message ID, subsystem name, and a string message
argument in its constructor. See org.apache.commons.logging at http://
commons.apache.org/logging/apidocs/index.html.

4. The weblogic.logging.commons.LogImpl log methods direct the message to the server
log.

Example 2-1    Commons Code Example

import org.apache.commons.logging.LogFactory;
import org.apache.commons.logging.Log;

public class MyCommonsTest {
  public void testWLSCommonsLogging() {
    System.setProperty(LogFactory.FACTORY_PROPERTY,
      "weblogic.logging.commons.LogFactoryImpl");
    Log clog = LogFactory.getFactory().getInstance("MyCommonsLogger");
    // Log String objects
    clog.debug("Hey this is common debug");
    clog.fatal("Hey this is common fatal", new Exception());
    clog.error("Hey this is common error", new Exception());
    clog.trace("Dont leave your footprints on the sands of time");
  }
}

• Specifying Severity Level for Loggers

Specifying Severity Level for Loggers
WebLogic Server provides a hierarchical Logger tree that lets you specify the Severity level for:

• Generated Message Catalog Logger classes from the XML I18N catalog using
weblogic.i18ngen.

• Instances of the Commons Logging APIs when the WebLogic Server implementation of the
Commons org.apache.commons.logging.LogFactory interface is enabled.

All Loggers inherit their Severity level from the nearest parent in the tree. You can, however,
explicitly set the Severity level of a Logger, thereby overriding the level that is set for the
nearest parent. You can set the Severity level for loggers from the WebLogic Remote Console,
WLST, or the command line.

• Specifying Severity Level for WebLogic Server Subsystem Loggers

• Specifying the Severity Level for Commons Logging API Loggers

Chapter 2
How to Use the Commons API with WebLogic Logging Services

2-5

http://commons.apache.org/logging/apidocs/index.html
http://commons.apache.org/logging/apidocs/index.html


Specifying Severity Level for WebLogic Server Subsystem Loggers
If you are using the Message Catalog Loggers, the Severity level for messages coming from a
specific subsystem are determined by the Severity level of the root Logger. You can override
the root Logger Severity level for individual subsystem Loggers such as the
DeploymentService Logger, Security Logger, or EJB Logger. For example, suppose the root
Logger severity level is Critical, and you want to set the Severity Level to Notice for the
Security subsystem logger and to Warning for the EJB subsystem logger. You can do this from
the WLST or from the command line:

• Via WLST, use the set command to set the value of the LoggerSeverityProperties
attribute of the LogMBean. See Configuring Logging in Understanding the WebLogic
Scripting Tool.

• From the command line, specify the following parameter in the startup command:

-Dweblogic.Log.LoggerSeverityProperties="Security=Notice;EJB=Warning"

For a complete index of all subsystem names, see Error Messages. The subsystem name
is case-sensitive and must be entered exactly as shown in the Subsystem column of the
index.

Specifying the Severity Level for Commons Logging API Loggers
If you are using the Commons Logging API, logger names follow the Java package dot
notation naming convention. For example, logger names could be a.b.FooLogger or
a.b.c.Barlogger, corresponding to the name of the classes in which they are used. In this
case, each dot-separated identifier appears as a node in the Logger tree. For example, there
will be a child node named "a" under the root Logger, a child node named "b" whose parent is
"a", and so on.

You can configure the Severity for a package or for any Logger at any level in the tree. For
example, if you specify the Severity level for package a.b=Info, then Debug and Trace
messages coming from all child nodes of package a.b will be blocked. You can, however,
override the Severity level of a parent node by explicitly setting a value for a child node. For
example, if you specify the Severity level for logger a.b.FooLogger=Debug, all log messages
from FooLogger will be allowed, while Debug and Trace messages will still be filtered for other
child nodes under a.b.

You can specify the severity level for a package or Logger from the WLST or the command
line:

• Via WLST, use the set command to set the value of the LoggerSeverityProperties
attribute of the LogMBean. See Configuring Logging in Understanding the WebLogic
Scripting Tool.

• From the command line, specify the following parameter in the startup command:

-Dweblogic.Log.LoggerSeverityProperties="a.b=Info;a.b.FooLogger=Debug"

Rotating Log Files
The log messages are accumulated in predefined numbered log files. Whenever the file grows
in size from the set size, depending on whether it is in development or production mode, the
server rotates its server log file.

Chapter 2
Rotating Log Files

2-6



By default, when you start a WebLogic Server instance in development mode, the server
automatically renames (rotates) its local server log file as SERVER_NAME.log.n. For the
remainder of the server session, log messages accumulate in SERVER_NAME.log until the file
grows to a size of 500 kilobytes.

Each time the server log file reaches this size, the server renames the log file and creates a
new SERVER_NAME.log to store new messages. By default, the rotated log files are numbered in
order of creation filenamennnnn, where filename is the name configured for the log file. You
can configure a server instance to include a time and date stamp in the file name of rotated log
files; for example, server-name-%yyyy%-%mm%-%dd%-%hh%-%mm%.log.

By default, when you start a server instance in production mode, the server rotates its server
log file whenever the file grows to 5000 kilobytes in size. It does not rotate the local server log
file when you start the server.

You can change these default settings for log file rotation. For example, you can change the file
size at which the server rotates the log file or you can configure a server to rotate log files
based on a time interval. You can also specify the maximum number of rotated files that can
accumulate. After the number of log files reaches this number, subsequent file rotations delete
the oldest log file and create a new log file with the latest suffix.

For information about setting up log file rotation, see Rotate Log Files in Oracle WebLogic
Remote Console Online Help.

To cause the immediate rotation of the server, domain, or HTTP access log file, use the
LogRuntime.forceLogRotation() method. See LogRuntimeMBean in MBean Reference for
Oracle WebLogic Server.

Note:

Though the LogMBean property defines 2 GB as the legal maximum limit for the
FileMinsize attribute, WebLogic Server sets a threshold size limit of 500 MB before
it forces a hard rotation to prevent excessive log file growth.

The WLST commands in Example 2-2 cause the immediate rotation of the server log file.

Example 2-2    Log Rotation on Demand

#invoke WLST
C:\>java weblogic.WLST
#connect WLST to an Administration Server
wls:/offline> connect('username','password')
#navigate to the ServerRuntime MBean hierarchy
wls:/mydomain/serverConfig> serverRuntime()
wls:/mydomain/serverRuntime>ls()
#navigate to the server LogRuntimeMBean
wls:/mydomain/serverRuntime> cd('LogRuntime/myserver')
wls:/mydomain/serverRuntime/LogRuntime/myserver> ls()
-r--   Name                                         myserver
-r--   Type                                         LogRuntime
-r-x   forceLogRotation                             java.lang.Void :
#force the immediate rotation of the server log file
wls:/mydomain/serverRuntime/LogRuntime/myserver> cmo.forceLogRotation()
wls:/mydomain/serverRuntime/LogRuntime/myserver>

The server immediately rotates the file and prints the following message:

Chapter 2
Rotating Log Files

2-7



<Mar 2, 2005 3:23:01 PM EST> <Info> <Log Management> <BEA-170017> <The log file
C:\diablodomain\servers\myserver\logs\myserver.log will be rotated. Reopen the
log file if tailing has stopped. This can happen on some platforms like Windows.>
<Mar 2, 2005 3:23:01 PM EST> <Info> <Log Management> <BEA-170018> <The log file
has been rotated to C:\diablodomain\servers\myserver\logs\myserver.log00001. Log
messages will continue to be logged in 
C:\diablodomain\servers\myserver\logs\myserver.log.>

• Specifying the Location of Archived Log Files

• Notification of Rotation

Specifying the Location of Archived Log Files
By default, the rotated files are stored in the same directory where the log file is stored. You
can specify a different directory location for the archived log files by setting the
LogFileRotationDir property of the LogFileMBean from the command line. See LogFileMBean
in the MBean Reference for Oracle WebLogic Server.

The following command specifies the directory location for the archived log files using the -
Dweblogic.log.LogFileRotationDir Java startup option:

java -Dweblogic.log.LogFileRotationDir=c:\foo
-Dweblogic.management.username=installadministrator
-Dweblogic.management.password=installadministrator weblogic.Server

Notification of Rotation
When the log file exceeds the rotation threshold that you specify, the server instance prints a
log message that states that the log file will be rotated. Then it rotates the log file and prints an
additional message that indicates the name of the file that contains the old messages.

For example, if you set up log files to rotate by size and you specify 500K as the minimum
rotation size, when the server determines that the file is greater than 500K in size, the server
prints the following message:

<Sept 20, 2004 1:51:09 PM EST> <Info> <Log Management> <MachineName>
<MedRecServer> <ExecuteThread: '2' for queue: 'weblogic.kernel.System'> <<WLS
Kernel>> <> <> <1095692939895> <BEA-170017> <The log file
C:\Oracle\Middleware\wlserver_12.1\samples\domains\medrec\servers\MedRecServer\logs\medre
c.log will be rotated.
Reopen the log file if tailing has stopped. This can happen on some platforms like 
Windows.> 

The server immediately rotates the file and prints the following message:

<Sept 20, 2004 1:51:09 PM EST> <Info> <Log Management> <MachineName>
<MedRecServer> <ExecuteThread: '2' for queue: 'weblogic.kernel.System'> 
<<WLS Kernel>> <> <> <1095692939895> <BEA-170018> <The log file has been rotated
to 
C:\Oracle\Middleware\wlserver_12.1\samples\domains\medrec\servers\MedRecServer\logs\medre
c.log00001. 
Log messages will continue to be logged in 
C:\Oracle\Middleware\wlserver_12.1\samples\domains\medrec\servers\MedRecServer\logs\medre
c.log.>

Note that the severity level for both messages is Info. The message ID for the message
before rotation is always BEA-170017 and the ID for the message after rotation is always
BEA-170018.

Chapter 2
Rotating Log Files

2-8



File systems such as the standard Windows file system place a lock on files that are open for
reading. On such file systems, if your application is tailing the log file, or if you are using a
command such as the DOS tail -f command in a command prompt, the tail operation stops
after the server has rotated the log file. The tail -f command prints messages to standard
out as lines are added to a file. For more information, enter help tail in a DOS prompt.

To remedy this situation for an application that tails the log file, you can create a JMX listener
that notifies your application when the server emits the log rotation message. When your
application receives the message, it can restart its tailing operation. To see an example of a
JMX listener, see Subscribing to Messages.

Redirecting JVM Output
The JVM in which a WebLogic Server instance runs sends messages to standard error and
standard out. Server as well as application code write directly to these streams instead of using
the logging mechanism. However, you can use a configuration option to redirect the JVM
output to all registered log destinations, such as the server terminal console and the server log
file. 

When this redirect is enabled, a log entry appears as a message of Notice severity. Note that
redirecting the JVM output does not capture output from native code; for example, thread
dumps from the JVM are not captured.

Note:

Redirecting JVM standard out and standard error messages to the WebLogic logging
service by enabling the LogMBean attributes, as described in this section, has two key
disadvantages you should be aware of:

• JVM messages are redirected asynchronously. In the event of an overload
situation, these messages may be dropped.

• Redirecting JVM messages to the WebLogic logging service in high volume can
have a significantly negative impact on system performance and is therefore not
recommended.

As a best practice for storing JVM standard out and standard error messages in a log
file, Oracle recommends using one of the supported logging APIs instead. Using a
logging API ensures that even during times of peak system load, messages are not
lost, including the times when those messages are generated in high volume.

• Configuring WebLogic Server to Redirect the JVM Output

Configuring WebLogic Server to Redirect the JVM Output
To configure WebLogic Server to redirect JVM standard out or standard error messages to the
WebLogic logging service, you can do one of the following:

• In the weblogic.Server command that starts WebLogic Server, include either or both of
the following options, as desired:

– -Dweblogic.log.RedirectStdoutToServerLogEnabled=true
This option redirects JVM standard out messages to the WebLogic logging service.

– -Dweblogic.log.RedirectStderrToServerLogEnabled=true

Chapter 2
Redirecting JVM Output

2-9



This option redirects JVM standard error messages to the WebLogic logging service.

See weblogic.Server Configuration Options in Command Reference for Oracle WebLogic
Server.

• After the Administration Server has started, you can use the WebLogic Remote Console to
redirect the JVM standard out or standard error messages. See Filter Log Messages in
Oracle WebLogic Remote Console Online Help.

• Use WLST to set either or both of the following attribute values of the LogMBean and restart
the server:

– RedirectStdoutToServerLogEnabled=true—Redirects the JVM standard out
messages to the WebLogic logging service.

– RedirectStderrToServerLogEnabled=true—Redirects the JVM standard error
messages to the WebLogic logging service.

The WLST commands in the following example redirect the JVM standard out messages in
the Administration Server to the server logging destinations.

C:\>java weblogic.WLST
wls:/offline> connect('username','password')
wls:/mydomain/serverConfig> edit()
wls:/mydomain/edit> startEdit()
wls:/mydomain/edit !> cd("Servers/myserver/Log/myserver")
wls:/mydomain/edit/Servers/myserver/Log/myserver !> 
cmo.setRedirectStdoutToServerLogEnabled(true)
wls:/mydomain/edit/Servers/myserver/Log/myserver !> save()
wls:/mydomain/edit/Servers/myserver/Log/myserver !> activate()

See Navigating MBeans (WLST Online) inUnderstanding the WebLogic Scripting Tool. For
more information about the RedirectStdoutToServerLogEnabled and
RedirectStderrToServerLogEnabled attributes, see LogMBean in the MBean Reference for
Oracle WebLogic Server.

Redirecting Standard Error and Standard Output
The weblogic.RotatingFileRedirector is a standalone utility tool for redirecting standard
error and standard output streams to a rotating log file.Use the following command to run the
utility:
java weblogic.RotatingFileRedirector [options]
The options include:

• -help: Prints help about supported options and flags

• -verbose: Prints additional output during execution

• -config Config Properties File: (Optional) Properties file which specifies the log
rotation file parameters as key-value pairs. If not specified, the rotation parameters are
defaulted.

• -configOverride: Override of a key-value config property pair. This is useful if the same
config.properties is shared for multiple servers and only the baseLogFileName needs to
be different for each server. Multiple overrides can be specified, for example

-configOverride baseLogFileName=${SERVER_NAME}.out -configOverride
rotatedFileCount=10

The following table lists the properties that can be configured and the default values.

Chapter 2
Redirecting Standard Error and Standard Output

2-10



Table 2-1    Properties and Default Values

Property Name Default Value Comments

baseLogFileName
OR
baseLogFilePath

redirect.log baseLogFilePath is valid for
WebLogic Server versions 12.2.1
and later. Use baseLogFileName
for earlier versions.

Specifies the log file to which
stdin will be redirected.

logFileRotationDir null When not specified rotated log
files are created in the same
directory as the base log file.

numberOfFilesLimited false Specifies whether to limit the
number of old rotated files on
disk.

bufferSizeKB 8 Buffer size of the output stream in
KB before the contents are
flushed to the disk.

rotateLogOnStartupEnabled true Rotate the log file from previous
run if it exists on start up.

rotatedFileCount 7 Used in conjunction with
numberOfFilesLimited.
Specifies the number of old
rotated logs to keep.

rotationSize 500 Size limit when rotation occurs,
specified in KB.

rotationTime 00:00 Specifies the start time for the
rotation when using time based
rotation.

rotationTimeSpan 24 The interval in hours to rotate the
log files. Defaults to 24 hours.

rotationType bySize Valid values are either bySize or
byTime.

Example 2-3    Using the Utility

An example of config.properties file contents:

rotationSize=100 
baseLogFilePath=foo.log

The utility is executed as follows:

{JAVA_HOME}/bin/java ${JAVA_VM} ${MEM_ARGS} ${JAVA_OPTIONS} -Dweblogic.Name=$
{SERVER_NAME} weblogic.Server 2>$DOMAIN_HOME/logs/mps/${SERVER_NAME}_stderr.log
| ${JAVA_HOME}/bin/java -Xms128m -Xmx256m -cp $WL_HOME/server/lib/weblogic.jar
weblogic.RotatingFileRedirector -configOverride baseLogFilePath=$DOMAIN_HOME/
logs/mps/${SERVER_NAME}_stdout.log -config $DOMAIN_HOME/bt_stdout.prop &

Chapter 2
Redirecting Standard Error and Standard Output

2-11



Preventing Excessive Logging
Depending on the situation, log messages may become generated at a very high frequency,
and often with the same message. This can flood the system with log messages and put
excessive load on the system. Excessive logging can occasionally occur due to a number of
reasons. For example, a network outage can cause several components to log messages on
repeated connection retries, or an incorrect configuration can result in a component emitting
log messages repeatedly. Excessive logging can create a number of problems, such as:

• System performance is reduced.

• Log files fill up, and are rotated frequently, increasing the risk of losing useful messages.

• Captured standard out (stdout) files grow indefinitely.

• Messages from Managed Servers are broadcast to the domain log, which floods the
domain log broadcaster and thereby creating another bottleneck.

• Threads become stuck.

To prevent this problem, the WebLogic logging service provides a feature that monitors the
domain for the presence of excessive logging. Log monitoring, which is enabled by default,
works by counting the number of messages generated during a specified period of time. If
messages are generated at a rate above a set threshold, the logging service inspects
individual messages to determine if a specific message is being logged repeatedly. If so, the
logging service suppresses, or throttles, that message to reduce the overall rate of logging.
Throttling is automatically disabled when the overall message generation volume falls.

A message that is being logged repeatedly is identified by its signature, which consists of the
following parameters:

• The logger name that is generating the message

• The message ID

• A portion of the beginning of the message, which is established by the
LogMonitoringThrottleMessageLength attribute. (The default value is 50, which limits the
portion of the message that is evaluated to the first 50 characters.)

To enable log monitoring, configure the following values on the LogMBean:

Table 2-2    Attribute

Attribute Description

LogMonitoringEnabled={true|
false}

Flag to indicate whether log monitoring is enabled. By default,
this value is set to true.

LogMonitoringIntervalSecs=secon
ds

Timer interval, in seconds, during which the number of
messages logged is counted. The default is 30.

LogMonitoringThrottleThreshold=
value

Threshold number of messages logged during the specified
time interval that either begins or stops message throttling.
The default is 1500.

LogMonitoringThrottleMessageLen
gth=value

Length of the initial portion of the log message that is
evaluated during the throttle period. The default is 50.

Chapter 2
Preventing Excessive Logging

2-12



Table 2-2    (Cont.) Attribute

Attribute Description

LogMonitoringMaxThrottleMessage
SignatureCount=value

Maximum number of unique message signatures that are
monitored during the throttle interval. This value provides a
cap on the number of signatures that are stored in an internal
cache, which prevents the cache from growing indefinitely and
causing an OutOfMemoryError.

Chapter 2
Preventing Excessive Logging

2-13



3
Filtering WebLogic Server Log Messages

Oracle WebLogic Server logging services provide filtering options that give you the flexibility to
determine which messages are written to WebLogic Server log files and standard out, and
which are written to the log file and standard out that a client JVM maintains. Most of these
filtering features are implementations of the Java Logging APIs, which are available in the
java.util.logging package.
For related information, see:

• For information about setting up a log filter for a WebLogic Server instance, see Filter Log
Messages in Oracle WebLogic Remote Console Online Help.

• Subscribing to Messages for information about creating and subscribing a message
handler.

• The Role of Logger and Handler Objects
When WebLogic Server message catalogs and the NonCatalogLogger generate
messages, they distribute their messages to a java.util.logging.Logger object. The
Logger object publishes the messages to any message handler that has subscribed to the
Logger.

• Filtering Messages by Severity Level or Other Criteria

• Setting the Severity Level for Loggers and Handlers
To filter the messages by severity level, you can set the severity level for a Handler and
Logger object using the WLST commands.

• Setting a Filter for Loggers and Handlers
When you set a filter on the Logger object, the filter specifies which messages the object
publishes; therefore, the filter affects all handlers that are registered with the Logger object
as well. When you set a filter on Handler, the filter affects only the behavior of the specific
handler.

The Role of Logger and Handler Objects
When WebLogic Server message catalogs and the NonCatalogLogger generate messages,
they distribute their messages to a java.util.logging.Logger object. The Logger object
publishes the messages to any message handler that has subscribed to the Logger.

WebLogic Server instantiates Logger and Handler objects in three distinct contexts. See 
Figure 3-1 for more details:

• In client JVMs that use WebLogic logging services. This client Logger object publishes
messages that are sent from client applications running in the client JVM.

The following handlers subscribe to the Logger object in a client JVM:

– ConsoleHandler, which prints messages from the client JVM to the client's standard
out.

If you use the -Dweblogic.log.StdoutSeverityLevel Java startup option for the client
JVM, WebLogic logging services create a filter for this handler that limits the messages
that the handler writes to standard out. See Writing Messages from a Client Application

3-1



in Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic
Server.

– FileStreamHandler, which writes messages from the client JVM to the client's log file.

• In each instance of WebLogic Server. This server Logger object publishes messages that
are sent from subsystems and applications that run on a server instance.

The following handlers subscribe to the server Logger object:

– ConsoleHandler, which makes messages available to the server's standard out.

– FileStreamHandler, which writes messages to the server log file.

– An internal handler, which broadcasts messages to the domain log and JMX clients,
and publishes messages to the Administration Server.

• The Administration Server maintains a domain Logger object in addition to a server Logger
object. The domain Logger object receives messages from each Managed Server's Logger
object.

The following handler subscribes to the domain Logger object:

– FileStreamHandler, which writes messages to the domain log file.

Chapter 3
The Role of Logger and Handler Objects

3-2



Figure 3-1    WebLogic Logging Services Contexts

Logger for 
domain log

Logger for 
local server log

Level

Level Filter

Level Filter

InternalHandler

Level

Filter

FileStreamHandler

Level

Filter

FileStreamHandler

Level

Filter

FileStreamHandler

Level

Filter

FileStreamHandler

Level

Filter

ConsoleHandler

Level

Filter

ConsoleHandler

Logger for 
client log

Filter

Chapter 3
The Role of Logger and Handler Objects

3-3



Filtering Messages by Severity Level or Other Criteria
When WebLogic Server message catalogs and the NonCatalogLogger generate messages,
they convert the message severity to a weblogic.logging.WLLevel object. A WLLevel object
can specify any of the following values, from lowest to highest impact:

Trace, Debug, Info, Notice, Warning, Error, Critical, Alert, Emergency

By default, a Logger object publishes messages of all levels. To set the lowest-level message
that a Logger object publishes, you use a simple Logger.setLevel API. When a Logger object
receives an incoming message, it checks the message level with the level set by the setLevel
API. If the message level is below the Logger level, it returns immediately. If the message level
is above the Logger level, the Logger allocates a WLLogRecord object to describe the message.

For example, if you set a Logger object level to Warning, the Logger object publishes only
Warning, Error, Critical, Alert, or Emergency messages.

To provide more control over the messages that a Logger object publishes, you can also create
and set a filter. A filter is a class that compares data in the WLLogRecord object with a set of
criteria. The Logger object publishes only the WLLogRecord objects that satisfy the filter criteria.
For example, a filter can configure a Logger to publish only messages from the JDBC
subsystem. To create a filter, you instantiate a java.util.logging.Filter object and use the
Logger.setFilter API to set it for a Logger object.

Instead of (or in addition to) setting the level and a filter for the messages that a Logger object
publishes, you can set the level and filters on individual message handlers.

For example, you can specify that a Logger publishes messages that are of the Warning level
or higher. Then you can do the following for each handler:

• For the ConsoleHandler, set a level and filter that selects only Alert messages from the
JDBC, JMS, and EJB subsystems. This causes standard out to display only Alert
messages from the JDBC, JMS, and EJB subsystems.

• For the FileStreamHandler, set no additional level or filter criteria. Because the Logger
object has been configured to publish only messages of the Warning level or higher, the log
file will contain all messages from all subsystems that are of Warning severity level or
higher.

• Publish all messages of Warning severity level or higher to the domain-wide message log
on the Administration Server.

Setting the Severity Level for Loggers and Handlers
To filter the messages by severity level, you can set the severity level for a Handler and Logger
object using the WLST commands.

The WLST commands provide a way to set the severity level for a Handler object through
standard MBean commands. To set the Severity level for a Logger object, you can use the
Logger API. You can also set the Severity level for a Logger via the WLST or the command
line; see Specifying Severity Level for Loggers. To configure Logger and Handler severity level
for WLS clients (such as EJB and Web Service clients), you must use the Java Logging API.

• Setting the Level for Loggers

• Setting the Level for Handlers

Chapter 3
Filtering Messages by Severity Level or Other Criteria

3-4



Setting the Level for Loggers
To set the severity level for a Logger object, create a class that does the following:

1. Invokes one of the following LoggingHelper methods:

• getClientLogger if the current context is a client JVM.

• getServerLogger if the current context is a server JVM and you want to retrieve the
Logger object that a server uses to manage its local server log.

• getDomainLogger if the current context is the Administration Server and you want to
retrieve the Logger object that manages the domain log.

The LoggerHelper method returns a Logger object. See the API documentation for the
Logger class at http://docs.oracle.com/javase/8/docs/api/java/util/logging/
Logger.html.

2. Invokes the Logger.setLevel(Level level) method.

To set the level of a WebLogic Server Logger object, you must pass a value that is defined
in the weblogic.logging.WLLevel class. WebLogic Server maps the
java.util.logging.Level to the appropriate WLLevel. For a list of valid values, see the
description of the weblogic.logging.WLLevel class in Java API Reference for Oracle
WebLogic Server.

For example:

setLevel(WLLevel.Alert) 

Setting the Level for Handlers
To set the severity level for a Handler object using the API, create a class that does the
following (See Example 3-1):

1. Invokes one of the following LoggingHelper methods:

• getClientLogger if the current context is a client JVM.

• getServerLogger if the current context is a server JVM and you want to retrieve the
Logger object that a server uses to manage its local server log.

• getDomainLogger if the current context is the Administration Server and you want to
retrieve the Logger object that manages the domain log.

The LoggerHelper method returns a Logger object. See the API documentation for the
Logger class at http://docs.oracle.com/javase/8/docs/api/java/util/logging/
Logger.html.

2. Invokes the Logger.getHandlers() method.

The method returns an array of all handlers that are registered with the Logger object.

3. Iterates through the list of handlers until it finds the Handler object for which you want to
set a level.

Use Handler.getClass().getName() to determine the type of handler to which the current
array index refers.

4. Invokes the Handler.setLevel(Level level) method.

Chapter 3
Setting the Severity Level for Loggers and Handlers

3-5

http://docs.oracle.com/javase/8/docs/api/java/util/logging/Logger.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/Logger.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/Logger.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/Logger.html


To set the level of a WebLogic Server Handler object, you must pass a value that is
defined in the weblogic.logging.WLLevel class. WebLogic Server maps the
java.util.logging.Level to the appropriate WLLevel. For a list of valid values, see the
description of the weblogic.logging.WLLevel class in Java API Reference for Oracle
WebLogic Server.

For example:

setLevel(WLLevel.Alert) 

• Example: Setting the Level for Handlers

• Example: Setting the Severity Level for the Stdout Handler

Example: Setting the Level for Handlers
The following example demonstrate how to set level for handlers using API.

Example 3-1    Example: Setting Level for a Handler Object Using the API

import java.util.logging.Logger;
import java.util.logging.Handler;
import weblogic.logging.LoggingHelper;
import weblogic.logging.WLLevel;
public class LogLevel {
    public static void main(String[] argv) throws Exception {
        Logger serverlogger = LoggingHelper.getServerLogger();
        Handler[] handlerArray = serverlogger.getHandlers();
        for (int i=0; i < handlerArray.length; i++) {
            Handler h = handlerArray[i];
            if(h.getClass().getName().equals
                      ("weblogic.logging.ConsoleHandler")){
                h.setLevel(WLLevel.Alert);
            }
        }
    }
}

Example: Setting the Severity Level for the Stdout Handler
You can configure the severity level for a Handler object through the LogMBean interface using
the command line:

• The WLST commands in Example 3-2 set the severity level for the Stdout Handler to Info.

See Using the WebLogic Scripting Tool in Understanding the WebLogic Scripting Tool. For
more information about setStdoutSeverity, see LogMBean in MBean Reference for Oracle
WebLogic Server.

Example 3-2    Setting the Severity Level for the Stdout Handler

C:\>java weblogic.WLST
wls:/offline> connect('username','password')
wls:/mydomain/serverConfig> edit()
wls:/mydomain/edit> startEdit()
wls:/mydomain/edit !> cd("Servers/myserver/Log/myserver")
wls:/mydomain/edit/Servers/myserver/Log/myserver !> cmo.setStdoutSeverity("Info")
wls:/mydomain/edit/Servers/myserver/Log/myserver !> save()
wls:/mydomain/edit/Servers/myserver/Log/myserver !> activate()

Chapter 3
Setting the Severity Level for Loggers and Handlers

3-6



Setting a Filter for Loggers and Handlers
When you set a filter on the Logger object, the filter specifies which messages the object
publishes; therefore, the filter affects all handlers that are registered with the Logger object as
well. When you set a filter on Handler, the filter affects only the behavior of the specific
handler.

The WLST provides a way to set a filter on the Handler object through standard MBean
commands. To set a filter on the Logger object, you must use the Logger API. For client-side
logging, the only way to set a filter is through using the Java Logging API.

To set a filter:

1. Create a class that implements java.util.logging.Filter.

The class must include the Filter.isLoggable method and logic that evaluates incoming
messages. If the logic evaluates as true, the isLoggable method enables the Logger
object to publish the message.

2. Place the filter object in the classpath of the JVM on which the Logger object is running.

3. To set a filter for a Logger object, create a class that does the following:

Invokes one of the following LoggingHelper methods:

• getClientLogger if the current context is a client JVM.

• getServerLogger if the current context is a server JVM and you want to filter the
Logger object that a server uses to manage its local server log.

• getDomainLogger if the current context is the Administration Server and you want to
filter the Logger object that manages the domain server log.

Invokes the Logger.setFilter(Filter newFilter) method.

4. To set a filter for a Handler object using the API, create a class that does the following:

Invokes one of the following LoggingHelper methods:

• getClientLogger if the current context is a client JVM.

• getServerLogger if the current context is a server JVM and you want to filter the
Logger object that a server uses to manage its local server log.

• getDomainLogger if the current context is the Administration Server and you want to
filter the Logger object that manages the domain server log.

a. Iterates through the list of handlers until it finds the Handler object for which you want
to set a level.

Use Handler.getClass().getName() to determine the type of handler to which the
current array index refers.

b. Invokes the Handler.setFilter(Filter newFilter) method.

The following is an example class that rejects all messages from the Deployer subsystem.

import java.util.logging.Logger;
import java.util.logging.Filter;
import java.util.logging.LogRecord;
import weblogic.logging.WLLogRecord;
import weblogic.logging.WLLevel;
public class MyFilter implements Filter {

Chapter 3
Setting a Filter for Loggers and Handlers

3-7



    public boolean isLoggable(LogRecord record) {
        if (record instanceof WLLogRecord) {
            WLLogRecord rec = (WLLogRecord)record;
            if (rec.getLoggerName().equals("Deployer")) {
              return false;
            } else {
              return true;
            }
        } else {
          return false;
        }
    }
}

You can configure a filter for a Handler object through the LogMBean interface using the
command line:

• The WLST commands in the following example creates and sets a filter on the Domain Log
Broadcaster.

C:\>java weblogic.WLST
wls:/offline> connect('username','password')
wls:/mydomain/serverConfig> edit()
wls:/mydomain/edit> startEdit()
wls:/mydomain/edit !> cmo.createLogFilter('myFilter')
wls:/mydomain/edit !> cd("Servers/myserver/Log/myserver")
wls:/mydomain/edit/Servers/myserver/Log/myserver !> 
cmo.setDomainLogBroadcastFilter(getMBean('/LogFilters/myFilter'))
wls:/mydomain/edit/Servers/myserver/Log/myserver !> save()
wls:/mydomain/edit/Servers/myserver/Log/myserver !> activate()

For more information about using WLST, see Using the WebLogic Scripting Tool in
Understanding the WebLogic Scripting tool. For more information about
setDomainLogBroadcastFilter, see LogMBean in the MBean Reference for Oracle WebLogic
Server.

• Filtering Domain Log Messages

Filtering Domain Log Messages
To filter the messages that each Managed Server publishes to the domain log, you can create
a log filter for the domain log using WLST or WebLogic Remote Console. For information about
creating log filters using Remote Console, see Create a Log Filter in Oracle WebLogic Remote
Console Online Help.

Any Java Logging severity level or filter that you set on the Logger object that manages a
server instance's log file supersedes a domain log filter. For example, if the level of the server
Logger object is set to Warning, a domain log filter will receive only messages of the Warning
level or higher.

You can define a domain log filter which modifies the set of messages that one or more servers
send to the domain log. By default, all messages of severity Notice or higher are sent.

Note:

Messages of severity Debug are never sent to the domain log, even if you use a filter.

Chapter 3
Setting a Filter for Loggers and Handlers

3-8



For information about configuring a domain log filter for a WebLogic Server instance using the
WebLogic Remote Console, see Filter Log Messages in Oracle WebLogic Remote Console
Online Help.

Chapter 3
Setting a Filter for Loggers and Handlers

3-9



4
Subscribing to Messages

Oracle WebLogic Server logging services provides the ability to create and subscribe a
message handler. When WebLogic Server message catalogs and the NonCatalogLogger
generate messages, they distribute their messages to a java.util.logging.Logger object.
The Logger object allocates a WLLogRecord object to describe the message and publishes the
WLLogRecord to any message handler that has subscribed to the Logger.

For more information about WebLogic Server loggers and handlers, see The Role of Logger
and Handler Objects.

• Overview of Message Handlers

• Creating and Subscribing a Handler: Main Steps
A handler that you create and subscribe to a Logger object receives all messages that
satisfy the level and filter criteria of the logger. Your handler can specify additional level
and filter criteria so that it responds only to a specific set of messages that the logger
publishes.

• Example: Subscribing to Messages in a Server JVM

• Comparison of Java Logging Handlers with JMX Listeners

Overview of Message Handlers
WebLogic Server instantiates and subscribes a set of message handlers that receive and print
log messages.You can also create your own message handlers and subscribe them to the
WebLogic Server Logger objects (see Figure 4-1).

4-1



Figure 4-1    Subscribing a Handler

Level

InternalHandler

Level

Filter

FileStreamHandler

Level

Filter

FileStreamHandler

Level

Filter

MyHandler

Level

Filter

ConsoleHandler

Logger

Filter

For example, if your application runs in a client JVM and you want the application to listen for
the messages that your application generates, you can create a handler and subscribe it to the
Logger object in the client JVM. If your application receives a log message that signals the
failure of a specific subsystem, it can perform actions such as:

• E-mail the log message to the WebLogic Server administrator.

• Shut down or restart itself or its subcomponents.

Note:

When creating your own message handlers, be careful to avoid executing
custom code which runs in the WebLogic Server process before the server
initialization has completed and the server has come to a running state. In some
cases, custom code can interfere with server services which are being initialized.
For example, custom log handlers that make an outbound RMI call which use the
PortableRemoteObject before the IIOP server service is initialized, can cause
server startup to fail.

Chapter 4
Overview of Message Handlers

4-2



Creating and Subscribing a Handler: Main Steps
A handler that you create and subscribe to a Logger object receives all messages that satisfy
the level and filter criteria of the logger. Your handler can specify additional level and filter
criteria so that it responds only to a specific set of messages that the logger publishes.

To create and subscribe a handler:

1. Create a handler class that includes the following minimal set of import statements:

import java.util.logging.Handler;
import java.util.logging.LogRecord;
import java.util.logging.ErrorManager;
import weblogic.logging.WLLogRecord;
import weblogic.logging.WLLevel;
import weblogic.logging.WLErrorManager;
import weblogic.logging.LoggingHelper;

2. In the handler class, extend java.util.logging.Handler.

3. In the handler class, implement the Handler.publish(LogRecord record) method.

This method:

a. Casts the LogRecord objects that it receives as WLLogRecord objects.

b. Applies any filters that have been set for the handler.

c. If the WLLogRecord object satisfies the criteria of any filters, the method uses
WLLogRecord methods to retrieve data from the messages.

d. Optionally writes the message data to one or more resources.

4. In the handler class, implement the Handler.flush and Handler.close methods.

All handlers that work with resources should implement the flush method so that it flushes
any buffered output and the close method so that it closes any open resources.

When the parent Logger object shuts down, it calls the Handler.close method on all of its
handlers. The close method calls the flush method and then executes its own logic.

5. Create a filter class that specifies which types of messages your Handler object should
receive. See Setting a Filter for Loggers and Handlers.

6. Create a class that invokes one of the following LoggingHelper methods:

• getClientLogger if the current context is a client JVM.

• getServerLogger if the current context is a server JVM and you want to attach a
handler to the server Logger object.

• getDomainLogger if the current context is the Administration Server and you want to
attach a handler to the domain Logger object.

LoggingHelper.getDomainLogger() retrieves the Logger object that manages the
domain log. You can subscribe a custom handler to this logger and process log
messages from all the servers in a single location.

7. In this class, invoke the Logger.addHandler(Handler myHandler) method.

8. Optional. Invoke the Logger.setFilter(Filter myFilter) method to set a filter.

Chapter 4
Creating and Subscribing a Handler: Main Steps

4-3



Example: Subscribing to Messages in a Server JVM
To subscribe to messages in a server JVM, create a handler that connects to a JDBC data
source and issues SQL statements that insert messages into a database table.The example
implements the following classes:

• A Handler class. See Example: Implementing a Handler Class.

• A Filter class. See Setting a Filter for Loggers and Handlers.

• A class that subscribes the handler and filter to a server's Logger class. See Example:
Subscribing to a Logger Class.

• Example: Implementing a Handler Class

• Example: Subscribing to a Logger Class

Example: Implementing a Handler Class
The example Handler class in Example 4-1 writes messages to a database by doing the
following:

1. Extends java.util.logging.Handler.

2. Constructs a javax.naming.InitialContext object and invokes the Context.lookup
method to look up a data source named myPoolDataSource.

3. Invokes the javax.sql.DataSource.getConnection method to establish a connection with
the data source.

4. Implements the setErrorManager method, which constructs a
java.util.logging.ErrorManager object for this handler.

If this handler encounters any error, it invokes the error manager's error method. The
error method in this example:

a. Prints an error message to standard error.

b. Disables the handler by invoking
LoggingHelper.getServerLogger().removeHandler(MyJDBCHandler.this).

Note:

Instead of defining the ErrorManager class in a separate class file, the
example includes the ErrorManager as an anonymous inner class.

For more information about error managers, see the API documentation for the
java.util.logging.ErrorManager class at http://docs.oracle.com/javase/8/
docs/api/java/util/logging/ErrorManager.html.

5. Implements the Handler.publish(LogRecord record) method. The method does the
following:

a. Casts each LogRecord object that it receives as a WLLogRecord objects.

b. Calls an isLoggable method to apply any filters that are set for the handler. The
isLoggable method is defined at the end of this handler class.

Chapter 4
Example: Subscribing to Messages in a Server JVM

4-4

http://docs.oracle.com/javase/8/docs/api/java/util/logging/ErrorManager.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/ErrorManager.html


c. Uses WLLogRecord methods to retrieve data from the messages.

For more information about WLLogRecord methods, see the description of the 
weblogic.logging.WLLogRecord class in Java API Reference for Oracle WebLogic
Server.

d. Formats the message data as a SQL prepareStatement and executes the database
update.

The schema for the table used in the example is as follows:

Table 4-1    Schema for Database Table in Handler Example

Name Null? Type

MSGID n/a CHAR(25)
LOGLEVEL n/a CHAR(25)
SUBSYSTEM n/a CHAR(50)
MESSAGE n/a CHAR(1024)

6. Invokes a flush method to flush the connection.

7. Implements the Handler.close method to close the connection with the data source.

When the parent Logger object shuts down, it calls the Handler.close method, which calls
the Handler.flush method before executing its own logic.

Example 4-1 illustrates the steps described in this section.

Example 4-1    Implementing a Handler Class

import java.util.logging.Handler;
import java.util.logging.LogRecord;
import java.util.logging.Filter;
import java.util.logging.ErrorManager;
import weblogic.logging.WLLogRecord;
import weblogic.logging.WLLevel;
import weblogic.logging.WLErrorManager;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.PreparedStatement;
import weblogic.logging.LoggingHelper;
public class MyJDBCHandler extends Handler {
   private Connection con = null;
   private PreparedStatement stmt = null;
   public MyJDBCHandler() throws NamingException, SQLException {
      InitialContext ctx = new InitialContext();
      DataSource ds = (DataSource)ctx.lookup("myPoolDataSource");
      con = ds.getConnection();
      PreparedStatement stmt = con.prepareStatement
      setErrorManager(new ErrorManager() {
          public void error(String msg, Exception ex, int code) {
              System.err.println("Error reported by MyJDBCHandler " 
                                + msg + ex.getMessage());
              //Removing any prior istantiation of this handler
              LoggingHelper.getServerLogger().removeHandler(
                                MyJDBCHandler.this);

Chapter 4
Example: Subscribing to Messages in a Server JVM

4-5



          }
      });
   }
   public void publish(LogRecord record) {
      WLLogRecord rec = (WLLogRecord)record;
      if (!isLoggable(rec)) return;
      try {
          ("INSERT INTO myserverLog VALUES (?, ?, ? ,?)");
          stmt.setEscapeProcessing(true);
          stmt.setString(1, rec.getId());
          stmt.setString(2, rec.getLevel().getLocalizedName());
          stmt.setString(3, rec.getLoggerName());
          stmt.setString(4, rec.getMessage());
          stmt.executeUpdate();
          flush();
      } catch(SQLException sqex) {
          reportError("Error publihsing to SQL", sqex,
                            ErrorManager.WRITE_FAILURE);
      }
   }
   public void flush() {
      try {
          con.commit();
      } catch(SQLException sqex) {
          reportError("Error flushing connection of MyJDBCHandler", 
                              sqex, ErrorManager.FLUSH_FAILURE);
      }
   }
    public boolean isLoggable(LogRecord record) {
        Filter filter = getFilter();
        if (filter != null) {
            return filter.isLoggable(record);
        } else {
           return true;
        }
    }
   public void close() {
      try {
          con.close();
      } catch(SQLException sqex) {
           reportError("Error closing connection of MyJDBCHandler", 
                              sqex, ErrorManager.CLOSE_FAILURE);
      }
   }
}

Example: Subscribing to a Logger Class
The example Logger class in Example 4-2 does the following:

1. Invokes the LoggingHelper.getServerLogger method to retrieve the Logger object.

2. Invokes the Logger.addHandler(Handler myHandler) method.

3. Invokes the Logger.getHandlers method to retrieve all handlers of the Logger object.

4. Iterates through the array until it finds myHandler.

5. Invokes the Handler.setFilter(Filter myFilter) method.

If you wanted your handler and filter to subscribe to the server's Logger object each time the
server starts, you could deploy this class as a WebLogic Server startup class.

Chapter 4
Example: Subscribing to Messages in a Server JVM

4-6



Example 4-2    Subscribing to a Logger Class

import java.util.logging.Logger;
import java.util.logging.Handler;
import java.util.logging.Filter;
import java.util.logging.LogRecord;
import weblogic.logging.LoggingHelper;
import weblogic.logging.FileStreamHandler;
import weblogic.logging.WLLogRecord;
import weblogic.logging.WLLevel;
import java.rmi.RemoteException;
import weblogic.jndi.Environment;
import javax.naming.Context;
public class LogConfigImpl {
    public void configureLogger() throws RemoteException {
        Logger logger = LoggingHelper.getServerLogger();
        try {
            Handler h = null;
            h = new MyJDBCHandler();
            logger.addHandler(h);
            h.setFilter(new MyFilter());
        } catch(Exception nmex) {
            System.err.println("Error adding MyJDBCHandler to logger " 
                               + nmex.getMessage());
            logger.removeHandler(h);
        } 
    }
    public static void main(String[] argv) throws Exception {
        LogConfigImpl impl = new LogConfigImpl();
        impl.configureLogger();
    }
}

Comparison of Java Logging Handlers with JMX Listeners
You can use either Java Logging Handlers or a Java Management Extensions (JMX) listener to
receive log messages. You can use both the techniques depending on the requirement.
Prior to WebLogic Server 8.1, the only technique for receiving messages from the WebLogic
logging services was to create a Java Management Extensions (JMX) listener and register it
with a LogBroadcasterRuntimeMBean. With the release of WebLogic Server 8.1, you can also
use Java Logging handlers to receive (subscribe to) log messages.

While both techniques - Java Logging handlers and JMX listeners - provide similar results, the
Java Logging APIs include a Formatter class that a Handler object can use to format the
messages that it receives. JMX does not offer similar APIs for formatting messages. For more
information about formatters, see the API documentation for the Formatter class at http://
docs.oracle.com/javase/8/docs/api/java/util/logging/Formatter.html.

In addition, the Java Logging Handler APIs are easier to use and require fewer levels of
indirection than JMX APIs. For example, the following lines of code retrieve a Java Logging
Logger object and subscribe a handler to it:

Logger logger = LoggingHelper.getServerLogger();
Handler h = null;
h = new MyJDBCHandler();
logger.addHandler(h)

To achieve a similar result by registering a JMX listener, you must use lines of code similar to 
Example 4-3. The code looks up the MBeanHome interface, looks up the RemoteMBeanServer
interface, looks up the LogBroadcasterRuntimeMBean, and then registers the listener.

Chapter 4
Comparison of Java Logging Handlers with JMX Listeners

4-7

http://docs.oracle.com/javase/8/docs/api/java/util/logging/Formatter.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/Formatter.html


Optimally, you would use Java Logging handlers to subscribe to log messages on your local
machine and JMX listeners to receive log messages from a remote machine. If you are already
using JMX for monitoring and you simply want to listen for log messages, not to change their
formatting or reroute them to some other output, use JMX listeners. Otherwise, use the Java
Logging handlers.

Example 4-3    Registering a JMX Listener

MBeanHome home = null;
RemoteMBeanServer rmbs = null;
//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";
//Using MBeanHome to get MBeanServer.
try {
    Environment env = new Environment();
    env.setProviderUrl(url);
    env.setSecurityPrincipal(username);
    env.setSecurityCredentials(password);
    Context ctx = env.getInitialContext();
    //Getting the Administration MBeanHome.
    home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
    System.out.println("Got the Admin MBeanHome: " + home );
    rmbs = home.getMBeanServer();
} catch (Exception e) {
    System.out.println("Caught exception: " + e);
}
try {
    //Instantiating your listener class.
    MyListener listener = new MyListener();
    MyFilter filter = new MyFilter();
    //Construct the WebLogicObjectName of the server's
    //log broadcaster.
    WebLogicObjectName logBCOname = new
             WebLogicObjectName("TheLogBroadcaster",
           "LogBroadcasterRuntime", domainName, serverName);
    //Passing the name of the MBean and your listener class to the
    //addNotificationListener method of MBeanServer.
    rmbs.addNotificationListener(logBCOname, listener, filter, null);
    } catch(Exception e) {
        System.out.println("Exception: " + e);
    }
}

Chapter 4
Comparison of Java Logging Handlers with JMX Listeners

4-8


	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Logging Samples and Tutorials
	New and Changed WebLogic Server Features

	Conventions

	1 Understanding WebLogic Logging Services
	What You Can Do With WebLogic Logging Services
	How WebLogic Logging Services Work
	Components and Environment
	Terminology
	Overview of the Logging Process
	Server Log Files and Domain Log Files
	How a Server Instance Forwards Messages to the Domain Log

	Server and Subsystem Logs
	Server Log
	Subsystem Logs

	Log Message Format
	Log File Format Compatibility with Previous WebLogic Server Versions
	Format of Output to Standard Out and Standard Error

	Message Attributes
	Message Severity
	Viewing WebLogic Server Logs
	Configuring java.util.logging Logger Levels
	Configuring java.util.logging Logger Levels Using WLST


	2 Configuring WebLogic Logging Services
	Configuration Scenarios
	Overview of Logging Services Configuration
	Using Log Severity Levels
	Using Log Filters

	Logging Configuration Tasks: Main Steps
	How to Use the Commons API with WebLogic Logging Services
	Specifying Severity Level for Loggers
	Specifying Severity Level for WebLogic Server Subsystem Loggers
	Specifying the Severity Level for Commons Logging API Loggers


	Rotating Log Files
	Specifying the Location of Archived Log Files
	Notification of Rotation

	Redirecting JVM Output
	Configuring WebLogic Server to Redirect the JVM Output

	Redirecting Standard Error and Standard Output
	Preventing Excessive Logging

	3 Filtering WebLogic Server Log Messages
	The Role of Logger and Handler Objects
	Filtering Messages by Severity Level or Other Criteria
	Setting the Severity Level for Loggers and Handlers
	Setting the Level for Loggers
	Setting the Level for Handlers
	Example: Setting the Level for Handlers
	Example: Setting the Severity Level for the Stdout Handler


	Setting a Filter for Loggers and Handlers
	Filtering Domain Log Messages


	4 Subscribing to Messages
	Overview of Message Handlers
	Creating and Subscribing a Handler: Main Steps
	Example: Subscribing to Messages in a Server JVM
	Example: Implementing a Handler Class
	Example: Subscribing to a Logger Class

	Comparison of Java Logging Handlers with JMX Listeners


