
Oracle® Fusion Middleware
Administering the WebLogic Persistent Store

14c (14.1.2.0.0)
F53971-02
February 2025

Oracle Fusion Middleware Administering the WebLogic Persistent Store, 14c (14.1.2.0.0)

F53971-02

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Documentation vi

Conventions vii

1 The WebLogic Persistent Store

What is a Persistent Store 1-1

Features of the Persistent Store 1-2

High-Performance Throughput and Transactional Support 1-3

Comparing File Stores and JDBC-accessible Stores 1-3

High Availability For Persistent Stores 1-4

Whole Server Migration 1-4

Automatic Service Migration 1-4

Service Restart In Place 1-5

Service Restart In Place in Combination with Migration 1-6

Additional Notes 1-7

High Availability Storage Solutions 1-7

Limitations and Considerations of the Persistent Store 1-8

Additional Requirement for High Availability File Stores 1-8

File Locations 1-8

2 Using the Default Persistent Store

Using the Default Persistent Store 2-1

Default Store Location 2-1

Example of a Default File Store 2-2

3 Using Custom Persistent Stores

What are Custom File Stores and JDBC Stores 3-1

When to Use a Custom Persistent Store 3-1

iii

Methods of Creating a Custom Persistent Store 3-2

Modifying Custom Persistent Store Parameters 3-2

4 Using Custom File Stores

Creating a Custom (User-Defined) File Store 4-1

Main Steps for Configuring a Custom File Store 4-1

Example of a Custom File Store 4-2

Guidelines for Configuring a Synchronous Write Policy 4-3

Direct-Write-With-Cache Policy 4-3

Direct-Write Policy 4-4

Cache-Flush Policy 4-5

Disabled Policy 4-5

5 Using a JDBC Store

Creating JDBC-accessible Stores 5-1

Using a JDBC TLog Store 5-1

Main Steps for Configuring a JDBC TLOG Store 5-2

Choosing a Data Source 5-2

Example of a JDBC TLOG Store 5-2

Configuration Guidelines 5-4

Additional Considerations 5-4

Server Migration when using a JDBC TLOG Store 5-5

Monitoring a JDBC TLOG Store 5-5

How to Monitor the JDBC TLOG Store Health State 5-5

How to Monitor Transaction Log Store Statistics 5-6

How to Monitor Transaction Log Store Connections 5-6

Security Considerations 5-6

Using a JDBC Store 5-6

Main Steps for Configuring a JDBC Store 5-7

Example of a JDBC Store 5-7

Supported JDBC Drivers 5-9

Creating a JDBC Store Table Using Default and Custom DDL Files 5-9

Creating a JDBC Store Table Using a Custom DDL File 5-10

Enabling Oracle BLOB Record Columns 5-10

Managing JDBC Store Tables 5-11

Using the utils.Schema Utility to Delete a JDBC Store Table 5-12

Configuring JDBC Store Reconnect Retry 5-12

Using WLST and JMX MBeans 5-13

Important Tuning Considerations for Reconnect Retry 5-13

Configuring a JDBC Store Connection Caching Policy 5-14

iv

Using WLST and JMX MBeans 5-14

JDBC Store Connection Caching Behavior 5-15

Important Tuning Considerations for the NONE Connection Caching Policy 5-15

Guidelines for Configuring a JDBC Store 5-17

Using Prefixes with a JDBC Store 5-17

Recommended JDBC Data Source Settings for JDBC Stores 5-18

Handling JMS Transactions with JDBC Stores 5-19

Enabling I/O Multithreading for JDBC Stores 5-19

Rebuilding the Store Table Index for an Oracle Database 5-20

6 Managing the WebLogic Persistent Store

Administering a Persistent Store 6-1

Store Administration Using a Java Command Line 6-2

Accessing Store Administration Help 6-2

Dumping the Contents of a File Store 6-3

Compacting a File Store 6-3

Store Administration Using WLST 6-3

Accessing Store Administration Help 6-4

Dumping the Contents of a JDBC Store Using WLST 6-4

Compacting a File Store Using WLST 6-4

Secure File Store Data 6-5

7 Monitoring the WebLogic Persistent Store

Monitoring a Persistent Store 7-1

Monitoring Stores 7-1

Monitoring Store Connections 7-2

v

Preface

This document describes how to configure and monitor WebLogic Persistent Store.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
This document is a resource for system administrators and operators responsible for
implementing a WebLogic Server installation. This document is relevant to all phases of a
software project, from development through test and production phases.

It is assumed that the reader is familiar with Jakarta EE and Web technologies, object-oriented
programming techniques, and the Java programming language.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
• Understanding Domain Configuration for Oracle WebLogic Server

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle WebLogic Remote Console Online Help

New WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

1
The WebLogic Persistent Store

This chapter explains how to configure and monitor the WebLogic Server persistent store,
which provides a built-in, high-performance storage solution for WebLogic Server subsystems
and services that require persistence. It also describes how to configure high availability for
JMS service artifacts that use persistent stores.

• What is a Persistent Store
The persistent store provides a built-in, high-performance storage solution for WebLogic
Server subsystems and services that require persistence.

• Features of the Persistent Store
This section describes the key features of the persistent store.

• High-Performance Throughput and Transactional Support
Throughput is the main performance goal of the persistent store. Multiple subsystems can
share the same default or custom store, as long as they are all targeted to the same server
instance, cluster, or migratable target.

• Comparing File Stores and JDBC-accessible Stores
This section describes the similarities and differences between file stores and JDBC-
accessible stores.

• High Availability For Persistent Stores
This section describes high availability options offered by the WebLogic Server.

• Limitations and Considerations of the Persistent Store
This section describes the limitations applicable to the persistent store.

• Additional Requirement for High Availability File Stores
Custom and default file stores that are configured for high availability via service migration
or whole server migration must explicitly configure a directory on a central location on a
shared disk.

• File Locations
Persistent stores create a number of files in the file system for different purposes. Among
them are file store data files, file store cache files (for file stores with
a DirectWriteWithCache synchronous write policy), and JMS server and SAF agent
paging files.

What is a Persistent Store
The persistent store provides a built-in, high-performance storage solution for WebLogic Server
subsystems and services that require persistence.

For example, it can store persistent JMS messages or temporarily store messages sent using
the Store-and-Forward feature. The persistent store supports persistence to a file-based store
or to a JDBC-accessible store in a database.

Table 1-1 defines many of the WebLogic services and subsystems that can create connections
to the persistent store. Each subsystem that uses the persistent store specifies a unique
connection ID that identifies that subsystem.

1-1

Table 1-1 Persistent Store Users

Subsystem/Service What It Stores More Information

Diagnostic Service Log records, data events, and
harvested metrics.

Understanding WLDF Configuration in
Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server

JMS Messages Persistent messages and durable
subscribers.

Understanding the Messaging Models in
Developing JMS Applications for Oracle
WebLogic Server

JMS Paging Store One per JMS server. Paged
persistent and non-persistent
messages.

Main Steps for Configuring Basic JMS
System Resources in Administering JMS
Resources for Oracle WebLogic Server.

JTA Transaction Log
(TLOG)

Information about committed
transactions coordinated by the
server that may not have been
completed. TLOGs can be stored
in the default persistent store or a
JDBC TLOG store.

• Managing Transactions in Developing
JTA Applications for Oracle WebLogic
Server.

• Using a JDBC TLog Store

Path Service The mapping of a group of
messages to a messaging
resource.

Using the WebLogic Path Service in
Administering JMS Resources for Oracle
WebLogic Server

Store-and-Forward
(SAF) Service Agents

Messages for a sending SAF
agent for retransmission to a
receiving SAF agent

Understanding the Store-and-Forward
Service in Administering the Store-and-
Forward Service for Oracle WebLogic
Server.

EJB Timer Services EJB Timer objects. Understanding Enterprise JavaBeans in
Developing Enterprise JavaBeans, Version
3.2, for Oracle WebLogic Server

See Monitoring Store Connections.

Features of the Persistent Store
This section describes the key features of the persistent store.

The key features of the persistent store include:

• Default file store for each server instance that requires no configuration.

• The Default and custom stores are shareable by multiple subsystems, as long as they are
all targeted to the same server instance, cluster, or migratable target.

• When configured, a JDBC TLOG store which contains information about committed
transactions coordinated by the server that may not have been completed. You can select
to persist TLOG information either in the default store or the JDBC TLOG store, depending
on your application needs. See Using a JDBC TLog Store.

• High-performance throughput and transactional support.

• Modifiable parameters that let you create customized file stores and JDBC stores.

• Monitoring capabilities for persistent store statistics and open store connections.

• In a clustered environment, the JDBC TLOG store and customized stores can be migrated
from an unhealthy server to a backup server, either on the whole-server level or on the
service level.

Chapter 1
Features of the Persistent Store

1-2

• When targeted to a cluster, the high availability parameters of the persistent store control
the distribution and high availability behavior of JMS services. It also eliminates the need to
configure Migratable Targets. See Simplified JMS Cluster and High Availability
Configuration in Administering JMS Resources for Oracle WebLogic Server.

High-Performance Throughput and Transactional Support
Throughput is the main performance goal of the persistent store. Multiple subsystems can
share the same default or custom store, as long as they are all targeted to the same server
instance, cluster, or migratable target.

Note:

• The JDBC TLOG store is only used to persist information about committed
transactions coordinated by the server that may not have been completed. It can
not be shared by other subsystems.

• The JDBC TLOG store does not allow HA configuration settings.

This is a performance advantage because the persistent store is treated as a single resource
by the transaction manager for a particular transaction, even if the transaction involves multiple
services that use the same store. For example, if the TLOG, JMS and EJB timers share a file
store, and a JMS message and an EJB timer are created in a single transaction, the
transaction will be one-phase and incur a single resource write, rather than two-phase, which
incurs four resource writes (two on each resource), plus a transaction entry write (on the
transaction log).

Both a file store and a JDBC store can survive a process crash or hardware power failure
without losing any committed updates. Uncommitted updates may be retained or lost, but in no
case will a transaction be left partially complete after a crash.

Comparing File Stores and JDBC-accessible Stores
This section describes the similarities and differences between file stores and JDBC-accessible
stores.

The following are some similarities and differences between file stores and JDBC-accessible
stores:

• The default persistent store can only be a file store. Therefore, a JDBC store cannot be
used as a default persistent store.

• Both have the same transaction semantics and guarantees. As with JDBC store writes, file
store writes are guaranteed to be persisted to disk and are not simply left in an
intermediate (that is, unsafe) cache.

• Both have the same application interface (no difference in application code).

• All things being equal, file stores generally offer better throughput than a JDBC store.

Chapter 1
High-Performance Throughput and Transactional Support

1-3

Note:

If a database is running on high-end hardware with very fast disks, and
WebLogic Server is running on slower hardware or with slower disks, then you
may get better performance from the JDBC store.

• File stores are generally easier to configure and administer, and do not require that
WebLogic subsystems depend on any external component.

• File stores generate no network traffic; whereas, JDBC stores generate network traffic if
the database is on a different machine from WebLogic Server.

• JDBC stores may make it easier to handle failure recovery since the JDBC interface can
access the database from any machine on the same network. With the file store, the disk
must be shared or migrated.

• Dynamic Scalability: When custom logical persistent stores are configured and targeted
to a cluster, by default, the system automatically creates one physical instance on each of
the cluster member, and the instance is named uniquely for monitoring purposes. This
allows the store and related JMS artifacts to dynamically scale without the need for
individually configuring them on each cluster member. This behavior can be changed such
that the system only creates one physical instance and make it high available in the
cluster. See Simplified JMS Cluster and High Availability Configuration in Administering
JMS Resources for Oracle WebLogic Server.

High Availability For Persistent Stores
This section describes high availability options offered by the WebLogic Server.

• Whole Server Migration

• Automatic Service Migration

• Service Restart In Place

• High Availability Storage Solutions

Whole Server Migration
A persistent file-based store (default, or custom) can be migrated along with its parent server
as part of the "whole server-level" migration feature, which provides both automatic and
manual migration at the server level, rather than on the service level. See Whole Server
Migration in Administering Clusters for Oracle WebLogic Server. However, file-based stores
must be configured on a shared disk that is available to all servers in the cluster.

Automatic Service Migration
File-based stores and JDBC-accessible stores can also be migrated as part of a "service-level"
migration for JMS-related services, such as JMS servers, SAF agents, and the path service,
which rely on stores to maintain data. WebLogic Server supports automatic service migration in
two ways:

• By using simplified JMS cluster configuration: This enables the automatic service migration
for both store and all the JMS service artifacts that reference the store. The configuration
settings will take effect whenever the store is targeted to a cluster. This model offers
enhanced HA capabilities such as automatic failback, dynamic load balancing, and failover.

Chapter 1
High Availability For Persistent Stores

1-4

See Simplified JMS Cluster and High Availability Configuration in Administering JMS
Resources for Oracle WebLogic Server.

• By using Migratable Target configuration: In this model, a migratable target serves as a
grouping mechanism for related JMS services, and the entire group is hosted on only one
physical server in a cluster.

Note:

For automatic service migration, use simplified JMS cluster configuration instead of
the legacy migratable target model.

In both these models, the related hosted services can be automatically migrated from the
current unhealthy hosting server to a healthy active server with the help of the Health
Monitoring subsystem. In a cluster targeted Store case, when any store instance migrates, all
the associated JMS service instances that are referencing that Store instances are also
migrated.

In this release, Service-level migration is controlled by targeting the Store to the same cluster
as the associated JMS service artifacts, with appropriate high availability parameter settings on
the Store. See Simplified JMS Cluster and High Availability Configuration in Administering JMS
Resources for Oracle WebLogic Server. This type of migration is supported in all the cluster
types (configured, dynamic, and mixed) and eliminates the need for Migratable Target
configuration. This option also supports automatic failback as well as it controls the service
migration of the JMS artifact.As in the previous releases, you can still enable Service-level
migration by targeting related JMS services to a Migratable Target, which serves as a grouping
of JMS-related services and which is hosted on only one physical server in a cluster. In
Migratable Target based configuration, the JMS services hosted by a migratable target can
also be manually migrated on demand as part of regularly scheduled server maintenance.

In both the cases, JMS services can be automatically migrated from the current unhealthy
hosting server to a healthy active server with the help of the Health Monitoring subsystem.
When the migration takes place, all pinned services associated with the Store and are hosted
by that Server are also migrated.

See Service Migration in Administering Clusters for Oracle WebLogic Server.

In the cluster or migratable target based model, JMS-related services cannot use the default
file store, so you must configure a custom file store or JDBC store and target it to the same
migratable target as the JMS server, SAF agent, or path service associated with the store.

For best practices, see Additional Requirement for High Availability File Stores.

Service Restart In Place
Service Restart In Place provides options to automatically recover a failed custom store and its
dependent services on their original running WebLogic Server. For information about Service
Restart In Place for other store types and messaging bridges, see the Service Restart In Place
in Combination with Migration and Additional Notes sections below.

When Restart In Place is not configured and in effect, WebLogic Server marks failed custom
stores and their dependent JMS services as unhealthy and shuts them down. For example,
this can happen when a file store gets an error from a file system or when a JDBC store cannot
access its database. Messages persisted prior to a store shutdown are unavailable for

Chapter 1
High Availability For Persistent Stores

1-5

consumption until either the store is restarted or is migrated to another server within the same
cluster.

The way to enable Service Restart In Place on a custom store varies based on the store target.

Custom Store Target Service Restart In Place Option

Standalone server or cluster Option 1: Explicitly configure the store Restart In
Place setting to true.

Option 2: Set the store Migration Policy to
Always or On-Failure. This causes the Restart
In Place setting to default to true.

With either option, you can fine-tune Restart In
Place behavior by changing Seconds Between
Restarts (default 30) and Number Of Restart
Attempts (default 6) in the store configuration.

Migratable target Enable Restart In Place on the migratable target.

You can fine-tune Restart In Place behavior by
changing Seconds Between Restarts (default
30) and Number Of RestartAttempts (default 6)
in the migratable target configuration. See In-Place
Restarting of Failed Migratable Services in
Administering Clusters for Oracle WebLogic
Server.

Managed Server instance within a cluster It is not possible to enable Restart In Place on
stores that are directly targeted to a server within a
cluster. Oracle recommends targeting stores and
their dependent services to the cluster or to a
migratable target instead.

• Service Restart In Place in Combination with Migration

• Additional Notes

Service Restart In Place in Combination with Migration
Service Restart In Place can be configured independently of whole server migration or service
migration. When Restart In Place and migration are both configured, they work as follows:

Restart In Place and Service Migration

If Restart In Place is enabled, if the store's original host JVM is still running, and if a failed store
is configured to migrate from one server to another within a WebLogic cluster, then the system
tries to restart the store on its original host JVM before it tries a migration. See Service
Migration in Administering Clusters for Oracle WebLogic Server.

Restart In Place and Whole Server Migration

If a globally-scoped store is targeted to a standalone server, is targeted to a server within a
cluster, or is targeted to a cluster and has a MigrationPolicy of Off, then the store places its
host WebLogic Server instance in a failed health state after all of its restart attempts fail. The
failed WebLogic Server health state allows the optional Whole Server Migration framework to
detect the problem and attempt to either restart the WebLogic Server JVM or to migrate the
JVM to another server. See Whole Server Migration in Administering Clusters for Oracle
WebLogic Server.

Chapter 1
High Availability For Persistent Stores

1-6

Additional Notes
• Service Restart In Place is not applicable to WebLogic default stores, Transaction Log

Store, or messaging bridges.

– Failed default stores cause a server to enter a Failed health state, and require a Whole
Server Migration or Whole Server restart to recover. Oracle recommends that you
configure services to persist critical information in custom stores instead of default
stores.

– Messaging Bridges ignore Restart In Place settings. Instead, they automatically handle
failures by periodically retrying when they fail to connect to their source or target
destinations.

• Custom JDBC Stores have an additional internal retry mechanism that takes effect first
before they shutdown and requires the store and its dependent services to restart. This
functionality is helpful for silent recovery from brief database outages. See Configuring
JDBC Store Reconnect Retry.

High Availability Storage Solutions
If you have applications that need access to persistent stores that reside on remote machines
after the migration of a JMS server or JTA transaction log, then you should implement one of
the following highly-available storage solutions:

• File-based stores (default or custom)—Implement a hardware solution, such as a dual-
ported SCSI disk or Storage Area Network (SAN) to make a file store available from
shareable disks or remote machines.

Note:

– Persistent file stores that may migrate to a different JVM or machine must be
explicitly configured to reference a shared directory. See Additional
Requirement for High Availability File Stores.

– If a file store is disconnected and re-connected again, its host server instance
must be rebooted to successfully continue sending/receiving persistent JMS
messages. For example, if for some reason the file system containing a file
store is unmounted and then remounted, attempts to send persistent JMS
messages will generate JMS exceptions until the host server is rebooted.

• JDBC-accessible stores—Configure a JDBC store or JDBC TLOG store and use JDBC to
access this store, which can be on yet another server. Applications can then take
advantage of any high-availability or failover solutions offered by your database vendor. In
addition, JDBC stores support GridLink data sources and multi data sources, which
provide failover between nodes of a highly available database system, such as Oracle
Real Application Clusters (Oracle RAC). For more information, see:

– Configuring JDBC Multi Data Sources in Administering JDBC Data Sources for Oracle
WebLogic Server

– Using GridLink Data Sources in Administering JDBC Data Sources for Oracle
WebLogic Server

• Any persistent store—Use high-availability clustering software which provides an
integrated, out-of-the-box solution for WebLogic Server-based applications.

Chapter 1
High Availability For Persistent Stores

1-7

Limitations and Considerations of the Persistent Store
This section describes the limitations applicable to the persistent store.

• A persistent file store should not be opened simultaneously by two server instances;
otherwise, there is no guarantee that the data in the file will not be corrupted. If possible,
the persistent store will attempt to return an error in this case, but it will not be possible to
detect this condition in every case. It is the responsibility of the administrator to ensure that
the persistent store is being used in an environment in which multiple servers will not try to
access the same store at the same time. (Two file stores are considered the "same store" if
they have the same name and the same directory.)

• Two JDBC stores must not share the same database table, because this will result in data
corruption. A JDBC store will normally prevent this from happening by detecting if a
backing table has already been opened by another instance, but it is not possible to detect
this condition in every case. It is the responsibility of the administrator to ensure that the
persistent store is being used in an environment in which multiple servers will not try to
access the same store at the same time. (Two JDBC stores can reference the same table
if they have the same table name prefix and database schema.)

• A persistent store may not survive arbitrary corruption. If the disk file is overwritten with
arbitrary data, then the results are undefined. The store may return inconsistent data in this
case, or even fail to recover at all.

• A file store may return exceptions when its disk is full. However, it will resume normal
operation by no longer throwing an exception when disk space has been made available.
Also, the data in the persistent store must remain intact as described in the previous
points.

• When using MySQL as the backing database for a JDBC store, Oracle recommends using
the InnoDB engine because it provides safe writes. If the MyISAM engine is used, data may
be lost in some cases.

Additional Requirement for High Availability File Stores
Custom and default file stores that are configured for high availability via service migration or
whole server migration must explicitly configure a directory on a central location on a shared
disk.

This ensures that the same directory and files are available to all servers and machines that
may host a store, and is required to ensure that a store can recover its data after it migrates.

This applies to default and custom file store locations, it does not apply to cache or page file
directories as the latter do not need to be highly available and can and should be located on a
local drive for performance reasons.

See File Locations.

See Migratable Target and Simplified JMS Cluster and High Availability Configuration in
Administering JMS Resources for Oracle WebLogic Server.

File Locations
Persistent stores create a number of files in the file system for different purposes. Among them
are file store data files, file store cache files (for file stores with

Chapter 1
Limitations and Considerations of the Persistent Store

1-8

a DirectWriteWithCache synchronous write policy), and JMS server and SAF agent paging
files.

Table 1-2 describes the location of various files used by the file store system at the domain
level.

Table 1-2 File Locations

Store Type Store Path Not
Configured

Relative Store
Path

Absolute Store
Path

File Name

default <domainRoot>/
servers/
<serverName>/
data/store/
default

<domainRoot>/
<relPath>

<absPath> _WLS_<serverNam
e>NNNNNN.DAT

custom file <domainRoot>/
servers/
<serverName>/
data/store/
<storeName>

<domainRoot>/
<relPath>

<absPath> <storeName>NNNN
NN.DAT

cache $
{java.io.tmpdir
}/
WLStoreCache/$
{domainName}/
<storeUuid>

<domainRoot>/
<relPath>

<absPath> <storeName>NNNN
NN.CACHE

paging <domainRoot>/
servers/
<serverName>/tm
p

<domainRoot>/
<relPath>

<absPath> <jmsServerName>
NNNNNN.TMP
<safAgentName>N
NNNNN.TMP

Table 1-3 shows how each of the prior store types configure their directory location.

Table 1-3 Store Type Directory Configuration

Store Type Directory Configuration

default The directory configured on a WebLogic Server
default store. See Using the Default Persistent
Store.

custom file The directory configured on a custom file store.
See Using Custom File Stores.

cache The cache directory configured on a custom or
default file store that has
a DirectWriteWithCache synchronous write
policy. See Tuning the WebLogic Persistent Store in
Tuning Performance of Oracle WebLogic Server.

paging The paging directory configured on a SAF agent or
JMS server. See Paging Out Messages To Free Up
Memory in Tuning Performance of Oracle
WebLogic Server.

Chapter 1
File Locations

1-9

2
Using the Default Persistent Store

This chapter explains how to configure and monitor the WebLogic Server persistent store,
which provides a built-in, high-performance storage solution for WebLogic Server subsystems
and services that require persistence.

• Using the Default Persistent Store
Each server instance, including the Administration Server, has a default persistent store
that requires no configuration. The default store is a file-based store that maintains its data
in a group of files in a server instance data\store\default directory. A directory for the
default store is automatically created if one does not already exist.

• Default Store Location
The default store maintains its data in a data\store\default directory inside the
servername subdirectory of a domain's root directory.

• Example of a Default File Store
This section provides an example of how a default file store may look in a domain's
configuration file, with the default directory location and Synchronous Write Policy settings
overridden.

Using the Default Persistent Store
Each server instance, including the Administration Server, has a default persistent store that
requires no configuration. The default store is a file-based store that maintains its data in a
group of files in a server instance data\store\default directory. A directory for the default
store is automatically created if one does not already exist.

This default store is available to subsystems that do not require explicit selection of a particular
store and function best by using the system's default storage mechanism. For example, a JMS
Server with no persistent store configured will use the default store for its Managed Server and
will support persistent messaging.

The default store can be configured by directly manipulating DefaultFileStoreMBean
parameters. If this MBean is not defined in the domain configuration file, then the configuration
subsystem ensures that the DefaultFileStoreMBean always exists with the default values.

Default Store Location
The default store maintains its data in a data\store\default directory inside the servername
subdirectory of a domain's root directory.

For example, if no directory name is specified for the default file store, it defaults to:

ORACLE_HOME\user_projects\domains\domain-name\servers\server-name\data\store\default

where domainname is the root directory of your domain, typically
c:\oracle\user_projects\domains\domainname, which is parallel to the directory in which
WebLogic Server program files are stored, typically c:\oracle\wlserver_12.1.

2-1

Example of a Default File Store
This section provides an example of how a default file store may look in a domain's
configuration file, with the default directory location and Synchronous Write Policy settings
overridden.

<server
 <name>myserver</name>
 <default-file-store>
 <directory>C:/store</directory>
 </default-file-store>
</server>

Chapter 2
Example of a Default File Store

2-2

3
Using Custom Persistent Stores

This chapter explains how to configure and monitor the WebLogic Server persistent store,
which provides a built-in, high-performance storage solution for WebLogic Server subsystems
and services that require persistence.

• What are Custom File Stores and JDBC Stores
In addition to using the default file store, you can also configure a file store or JDBC store
to suit your specific needs. A custom file store, like the default file store, maintains its data
in a group of files in a directory.

• When to Use a Custom Persistent Store
WebLogic Server provides configuration options for creating a custom file store or JDBC-
accessible store.

• Methods of Creating a Custom Persistent Store
This section describes the different methods to configure a custom persistent store.

• Modifying Custom Persistent Store Parameters
Modifying certain custom store configuration options, such as a JDBC store's prefix or a
file store's directory, do not necessarily require a server restart as described in the
following procedures.

What are Custom File Stores and JDBC Stores
In addition to using the default file store, you can also configure a file store or JDBC store to
suit your specific needs. A custom file store, like the default file store, maintains its data in a
group of files in a directory.

However, you may want to create a custom file store so that the file store's data is persisted to
a particular storage device or when you want a JMS service that accesses a file store to be
able to migrate with the store to another server member in a cluster. When configuring a file
store directory, the directory must be accessible to the server instance on which the file store is
located.

A JDBC store can be configured when a relational database is used for storage. A JDBC store
enables you to store persistent messages in a standard JDBC-accessible database, which is
accessed through a designated JDBC data source. The data is stored in the JDBC store's
database table, which has a logical name of WLStore. It is up to the database administrator to
configure the database for high availability and performance. JDBC stores also support
migratable targets for automatic or manual JMS service migration.

See When to Use a Custom Persistent Store.

When to Use a Custom Persistent Store
WebLogic Server provides configuration options for creating a custom file store or JDBC-
accessible store.

For example, you may want to:

• Place a file store's files on a particular device.

3-1

• Use a JDBC store rather than a file store for a particular server instance. If you want to
persist transaction logs, use a JDBC TLOG store. See Using a JDBC TLog Store.

• Allow all physical stores in a cluster to share the same logical name.

• Logically separate different services to use different files or tables. (This may simplify
administration and maintenance at the expense of reduced performance.)

• Migratable JMS-related services cannot use the default persistent store, so you must
configure a custom store and target it to the same migratable target as the migratable JMS
service. See Service Migration in Administering Clusters for Oracle WebLogic Server.

Methods of Creating a Custom Persistent Store
This section describes the different methods to configure a custom persistent store.

A user-defined persistent store can be configured in the following ways:

• Directly edit the configuration file (config.xml) of the server instance that is hosting a
persistent store.

• Use the WebLogic Java Management Extensions (JMX) to create persistent stores. JMX is
the Jakarta EE solution for monitoring and managing resources on a network. See
Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

• Use the WebLogic Scripting Tool (WLST) to create persistent stores. WLST is a command-
line scripting interface that you use to interact with and configure WebLogic Server
instances and domains. See Understanding the WebLogic Scripting Tool.

• Use the WebLogic Configuration Wizard to change the options of the default persistent
store. For detailed information on how to use the Configuration Wizard to configure a
persistent store, see Creating a WebLogic Domain in Creating WebLogic Domains Using
the Configuration Wizard.

Modifying Custom Persistent Store Parameters
Modifying certain custom store configuration options, such as a JDBC store's prefix or a file
store's directory, do not necessarily require a server restart as described in the following
procedures.

1. Set the targets of any dependent services to null (such as a JMS server that uses the
custom store), and then setting the custom store target to null. (Setting a service's target to
null implicitly shuts down the service.)

2. Reverse the process by setting the custom store target back to its original value and then
setting the dependent resource targets back to their original values.

In cases where the custom store and JMS servers share a migratable target, you can
administratively restart the migratable target.

Chapter 3
Methods of Creating a Custom Persistent Store

3-2

4
Using Custom File Stores

This chapter explains how to configure the custom file stores for WebLogic Server. It includes
the following sections:

• Creating a Custom (User-Defined) File Store
The following section provides an example of a custom file store and configuration
guidelines for choosing a synchronous write policy.

• Main Steps for Configuring a Custom File Store
This section describes the main steps to create a custom file store.

• Example of a Custom File Store
This section provides an example of how a custom file store may look in a domain's
configuration file with its files kept in a /disk1/jmslog directory.

• Guidelines for Configuring a Synchronous Write Policy
There are several Synchronous Write Policies available for file stores. The Synchronous
Write Policy determines the behavior of the write operation of the file store.

Creating a Custom (User-Defined) File Store
The following section provides an example of a custom file store and configuration guidelines
for choosing a synchronous write policy.

To create a custom file store, you can directly modify the default FileStoreMBean parameters.
For instructions on using the WebLogic Remote Console to create a custom file store, see
Create a File Store in the Oracle WebLogic Remote Console Online Help.

Main Steps for Configuring a Custom File Store
This section describes the main steps to create a custom file store.

Perform the following steps to create a custom file store:

1. Create a directory where the file store's data will be persisted.

2. Make a note of the following information:

• For stores that may migrate, such as cluster targeted stores with a Migration
Policy != Off, stores that are targeted to a migratable target, or stores hosted on a
WebLogic Server JVM that may be moved to a different machine, always configure a
directory that is centrally accessible from any location that the store may migrate to (do
not leave the directory name at the default). This is necessary for migrated stores to
recover any data written before the migration - including, for example, queued JMS
messages. See Whole Server Migration and Service Migration in Administering
Clusters for Oracle WebLogic Server.

• For information about default, absolute, and relative file locations, see File Locations.

3. Associate the custom file store with the subsystem(s) or migratable target that will be
accessing it, such as:

• For JMS servers, select the custom file store on the General Configuration page.

4-1

• For Store-and-Forward agents, select the custom file store on the General
Configuration page.

• For a Path Service, select the custom file store on the General Configuration page.

Example of a Custom File Store
This section provides an example of how a custom file store may look in a domain's
configuration file with its files kept in a /disk1/jmslog directory.

<file-store>
 <name>SampleFileStore</name>
 <target>myserver</target>
 <directory>/disk1/jmslog</directory>
</file-store>

Table 4-1 briefly describes the file store configuration parameters that can be modified.

Table 4-1 Custom File Store Configuration Options

Option Required What It Does

Name Yes The name of the file store, which must be unique across all stores
in the domain.

Targets Yes The server instance, cluster, or migratable target where a file store
is targeted. Multiple subsystems can share the same file store, as
long as they are all targeted to the same server instance or
migratable target.

Note:
• When using a cluster to host a JMS Server, you must target

the file store to the same cluster used by the JMS Server. See
Simplified JMS Cluster and High Availability Configuration in
Administering JMS Resources for Oracle WebLogic Server.

• When using migratable targets for JMS services, you must
target the file store to the same migratable target used by the
JMS service. See Service Migration in Administering Clusters
for Oracle WebLogic Server.

Directory Yes The path name to the directory on the file system where the file
store is kept.

Note:
• For stores that may migrate, such as cluster targeted stores

with a Migration Policy != Off, stores that are targeted to a
migratable target, or stores hosted on a WebLogic Server JVM
that may be moved to a different machine, always configure a
directory that is centrally accessible from any location that the
store may migrate to (do not leave the directory name at the
default). This is necessary for migrated stores to recover any
data written before the migration - including, for example,
queued JMS messages. See Whole Server Migration and
Service Migration in Administering Clusters for Oracle
WebLogic Server.

• For information about default, absolute, and relative file
locations, see File Locations.

• Modifying an existing file store's directory does not necessarily
require a server restart, as described in Modifying Custom
Persistent Store Parameters.

Chapter 4
Example of a Custom File Store

4-2

Table 4-1 (Cont.) Custom File Store Configuration Options

Option Required What It Does

CacheDirectory No This setting only applies for the Direct-Write-With-Cache file
store synchronous write policy. See Guidelines for Configuring a
Synchronous Write Policy.

Logical Name No Optionally used with subsystems, like EJBs, when deploying a
module to an entire cluster, but also require a different physical
store on each server instance in the cluster. In such a
configuration, each physical store would have its own name, but all
the persistent stores would share the same logical name.

Synchronous Write
Policy

No Defines the IO behavior of a file store including immediate
durability of individual write operations. Values are: Direct-Write
(default), Direct-Write-With-Cache, Cache-Flush, and Disabled.

See Guidelines for Configuring a Synchronous Write Policy.

For instructions on configuring a custom file store using the WebLogic Remote Console, see
Create a File Store in the Oracle WebLogic Remote Console Online Help.

Guidelines for Configuring a Synchronous Write Policy
There are several Synchronous Write Policies available for file stores. The Synchronous Write
Policy determines the behavior of the write operation of the file store.

You should select a policy that best suits your environment and meets your needs for runtime
performance and data integrity after a possible crash. See Tuning the WebLogic Persistent
Store in Tuning Performance of Oracle WebLogic Server for more details about tuning and
performance specifics of Synchronous Write Policy and other file store options.

Note:

To view a running custom or default file store's synchronous write policy and driver,
check the WL-280008 and WL-280009 messages in the server log.

• Direct-Write-With-Cache Policy

• Direct-Write Policy

• Cache-Flush Policy

• Disabled Policy

Direct-Write-With-Cache Policy
For most scenarios, Oracle recommends using the Direct-Write-With-Cache policy. When
this policy is selected, WebLogic Server writes synchronously to a primary set of files in the
location defined by the Directory attribute of the file store configuration using a native I/O
wlfileio driver. WebLogic Server also asynchronously writes to a corresponding cache file in
the location defined by the CacheDirectory attribute of the file store configuration, which is
done implicitly by using OS memory caching the cache file blocks as output buffers for the
primary data file. The cache files are used for performance optimizations at runtime and boot

Chapter 4
Guidelines for Configuring a Synchronous Write Policy

4-3

time and for recovery. This combination of direct writing with a native file driver and the use of
corresponding cache files typically provides the best overall performance with the most safe
disk writes.

This option uses approximately twice as much disk space as other policies and stores files in
two locations. You may need to consider disk space allocations in these locations and you may
need to secure both of these locations.

When configuring file locations with the Direct-Write-With-Cache policy, the location of the
CacheDirectory attribute should be a local directory, even when configuring for high availability
(Whole Server Migration or Automatic Service Migration). The cache files are used for
performance optimizations only. The true persistent storage for messages is defined by the
Directory attribute of the file store configuration. Only that directory needs to be available to
the migrated WebLogic Server instance or JMS service after migration. The same applies to
disaster recovery scenarios: only the files defined in the Directory location need to replicated
to the backup site.

Note:

If the file store native wlfileio driver cannot be loaded, the store automatically runs
in an alternate specialized Direct-Write policy mode. To view a running custom or
default file store's configured and actual synchronous write policy and driver, examine
the server log for WL-280008 and WL-280009 messages.

Certain older versions of Microsoft Windows may incorrectly report storage device
synchronous write completion if the Windows default Write Cache Enabled setting is
used. This violates the transactional semantics of transactional products (not specific
to Oracle), including file stores configured with a Direct-Write (default) or Direct-
Write-With-Cache policy, as a system crash or power failure can lead to a loss or a
duplication of records/messages. One of the visible symptoms is that this problem
may manifest itself in high persistent message/transaction throughput exceeding the
physical capabilities of your storage device. You can address the problem by
applying a Microsoft supplied patch, disabling the Windows Write Cache Enabled
setting, or by using a power-protected storage device.

Direct-Write Policy
When the Direct-Write policy is selected, WebLogic Server writes synchronously to a primary
set of files in the location defined by the Directory attribute of the file store configuration using
a native I/O wlfileio driver. This policy typically performs slower than the Direct-Write-With-
Cache policy, but it uses less disk space and may have fewer environmental considerations to
manage. The Direct-Write policy is typically faster than the Cache-Flush policy.

Chapter 4
Guidelines for Configuring a Synchronous Write Policy

4-4

Note:

Certain older versions of Microsoft Windows may incorrectly report storage device
synchronous write completion if the Windows default Write Cache Enabled setting is
used. This violates the transactional semantics of transactional products (not specific
to Oracle), including file stores configured with a Direct-Write (default) or Direct-
Write-With-Cache policy, as a system crash or power failure can lead to a loss or a
duplication of records/messages. One of the visible symptoms is that this problem
may manifest itself in high persistent message/transaction throughput exceeding the
physical capabilities of your storage device. You can address the problem by
applying a Microsoft supplied patch, disabling the Windows Write Cache Enabled
setting, or by using a power-protected storage device.

Cache-Flush Policy
When the Cache-Flush policy is selected, WebLogic Server enables the default file write
behavior of the operating system and storage device, which typically includes caching and
scheduling file writes, but forces a flush of the cache to disk before completing a transaction.
Transactions cannot complete until all of their writes have been flushed down to disk. This
policy is reliable and scales well as the number of simultaneous users increases. It is
transactionally safe, but tends to provide lower runtime performance than the direct-write
policies in typical use cases, except in those cases with large numbers of simultaneous
producers or consumers.

Disabled Policy
When the Disabled policy is selected, WebLogic Server relies on the default file write behavior
of the operating system and storage device. In most cases, file writes are cached in memory
and are scheduled for writing instead of being directly written to disk. The Disabled policy
generally improves file store performance, often quite dramatically, but at the expense of
possibly losing sent messages or generating duplicate received messages (even if messages
are transactional) in the event of an operating system crash or a hardware failure. This is
because transactions are complete as soon as their writes are cached in memory, instead of
waiting for the writes to successfully reach the disk. Simply shutting down an operating system
or killing a WebLogic Server process does not generate these failures, as an OS flushes all
outstanding writes under these circumstances during a normal shutdown. Instead, these
failures can be emulated by abruptly shutting the power off to a busy server.

Chapter 4
Guidelines for Configuring a Synchronous Write Policy

4-5

5
Using a JDBC Store

This chapter explains how to configure and monitor the WebLogic Server persistent store,
which provides a built-in, high-performance storage solution for WebLogic Server subsystems
and services that require persistence.

• Creating JDBC-accessible Stores
The following sections provide information on how to configure and use JDBC-accessible
stores.

• Using a JDBC TLog Store
You can configure a JDBC TLOG store to persist transaction logs to a database, which
provides the benefits described in this section.

• Using a JDBC Store
The following sections provide an example of a JDBC store, and information about creating
a database table for a JDBC store, either using an existing DDL, a custom DDL, and using
Oracle blob record columns in a DDL file.

Creating JDBC-accessible Stores
The following sections provide information on how to configure and use JDBC-accessible
stores.

• JDBC TLog Stores: to persist transaction logs (TLOGs) in a database. See Using a JDBC
TLog Store.

• JDBC Stores: to persist WebLogic Server instance services and subsystem information,
excluding TLOGs, in a database. See Using a JDBC Store.

Using a JDBC TLog Store
You can configure a JDBC TLOG store to persist transaction logs to a database, which
provides the benefits described in this section.

• Leverages replication and HA characteristics of the underlying database.

• Simplifies disaster recovery by allowing the easy synchronization of the state of the
database and TLOGs.

• Improved Transaction Recovery service migration as the transaction logs to do not need to
be migrated (copied) to a new location.

• Main Steps for Configuring a JDBC TLOG Store

• Example of a JDBC TLOG Store

• Configuration Guidelines

• Additional Considerations

• Server Migration when using a JDBC TLOG Store

• Monitoring a JDBC TLOG Store

• Security Considerations

5-1

Main Steps for Configuring a JDBC TLOG Store
The main steps for creating a JDBC TLOG store are as follows:

1. Create a JDBC data source, GridLink data source, or multi data source to interface with
the JDBC store. See Choosing a Data Source.

2. Create a JDBC TLOG store and associate it with the JDBC data source, GridLink data
source, or multi data source created in Step 1. .

3. Optional. It is highly recommended that you configure the Prefix option to a unique value
for each configured JDBC TLOG store.

4. For high availability, make your data source available to backup servers. See Server
Migration when using a JDBC TLOG Store.

• Choosing a Data Source

Choosing a Data Source
You can choose one of the following data source types, depending on your WebLogic Server
license and application needs:

• Generic Data Sources—See Creating a JDBC Data Source in Administering JDBC Data
Sources for Oracle WebLogic Server.

• GridLink Data Sources—See Using GridLink Data Sources in Administering JDBC Data
Sources for Oracle WebLogic Server.

• Multi data sources—Backed by a fully replicated, zero-latency database, such as Oracle
RAC. See Configuring JDBC Multi Data Sources and Using Multi Data Sources with Oracle
RAC in Administering JDBC Data Sources for Oracle WebLogic Server.

Example of a JDBC TLOG Store
Here's an example of how a JDBC TLOG store may look in the configuration file, using the
JDBC data source MyDataSource, and with a logical name specified:

<server>
 <transaction-log-jdbc-store>
 <data-source>MyDataSource</data-source>
 <prefix-name>TLOG_MS1</prefix-name>
 <create-table-ddl-file>myDDL/myCreateTable.sql</create-table-ddl-file>
 <max-retry-seconds-before-tlog-fail>120</max-retry-seconds-before-tlog-fail>
 </transaction-log-jdbc-store>
</server>

Table 5-1 describes the JDBC TLOG store configuration parameters that can be modified.

Chapter 5
Using a JDBC TLog Store

5-2

Table 5-1 JDBC TLOG Store Configuration Options

Option Required What it Does

Prefix Name No The prefix for the JDBC store's table is generally
entered in the following format:
[[[catalog.]schema.]prefix]
When using multiple JDBC stores, it is required to set
this option to a unique value for each configured
JDBC store. When no prefix is specified, the JDBC
store table name is simply WLStore and the
database implicitly determines the schema according
the current user of the JDBC connection. Also, two
JDBC stores cannot share the same database table.
See Using Prefixes with a JDBC Store.

Modifying an existing JDBC store's prefix does not
necessarily require a server restart, as described in
Modifying Custom Persistent Store Parameters.

Create Table from DDL File No Optionally used with supported DDL (data definition
language) files to create the JDBC store's database
table (WLStore). This option is ignored when the
JDBC store's database table already exists. See
Creating a JDBC Store Table Using Default and
Custom DDL Files.

Deletes Per Batch Maximum Default is
20.

The maximum number of table rows that are deleted
per database call.

Inserts Per Batch Maximum Default is
20.

The maximum number of table rows that are inserted
per database call.

Deletes Per Statement Maximum Default is
20

The maximum number of table rows that are deleted
per database call.

MaxRetrySecondsBeforeTLogFail Default is
300.

The maximum amount of time, in seconds, WebLogic
Server tries to recover from a JDBC TLog store
failure. If store remains unusable after this period,
WebLogic Server set the health state to
HEALTH_FAILED. A value of 0 indicates WebLogic
Server does not conduct a retry and and immediately
sets the health state as HEALTH_FAILED.

MaxRetrySecondsBeforeTXRollbac
k

Default is
60.

The maximum amount of time, in seconds, WebLogic
Server waits before trying to recover from a JDBC
TLog store failure while processing a transaction. If
store remains unusable after this amount of time,
WebLogic Server rolls back the affected transaction.
A value of 0 indicates WebLogic Server does not
conduct a retry and rolls back the transaction
immediately. The practical maximum value is a value
less than the current value of
MaxRetrySecondsBeforeTLogFail.

RetryIntervalSeconds Default is 5. The amount of time, in seconds, WebLogic Server
waits before attempting to verify the health of the
TLOG store after a store failure has occurred.

Chapter 5
Using a JDBC TLog Store

5-3

Table 5-1 (Cont.) JDBC TLOG Store Configuration Options

Option Required What it Does

N/A 1000 The amount of time, in milliseconds, a JDBC Store
reconnect retry or a TLOG-in-DB Store attempts to
re-establish a connection to a database, before the
Store shuts down, and all the operations waiting on
the Store are unblocked.The minimum value that can
be configured through the
ReconnectRetryPeriodMillis is 200, and the
maximum value is 300000. For more information
about JDBC Store reconnect retry, see Configuring
JDBC Store Reconnect Retry.

ReconnectRetryIntervalMillis 200 The amount of time in milliseconds, between
reconnect attempts, during the connection retry
period. The minimum value that can be configured
through the ReconnectRetryIntervalMillis is
100, and the maximum value is 10000. See
Configuring JDBC Store Reconnect Retry.

Configuration Guidelines
The following section provides guidelines for configuring JDBC TLOG stores.

• Only globally-scoped (not application-scoped) data sources can be targeted to a JDBC
TLOG store.

• Only one JDBC TLOG store can be configured per WebLogic Server. Conversely, multiple
WebLogic Servers can not share a JDBC TLOG store.

• You must configure a JDBC TLOG store. The default is to persist TLOG information to the
server's default persistent store.

• You cannot use a data source that is configured to use an XA JDBC driver or is configured
to support global transactions. Use a non-XA data source.

• For general rules on JDBC-accessible stores, see Guidelines for Configuring a JDBC
Store.

Additional Considerations
The following section provides additional information on JDBC TLOG store behavior and
limitations:

• The database used to store the TLOG information must be available at server startup. If
the database is not available, the WebLogic Server instance will fail to boot.

• Only the JTA sub-system can use the JDBC TLOG store to persist information about
committed transactions coordinated by the server that may not have been completed. No
other systems can access the JDBC TLOG store.

• Using a JDBC TLOG store does not change LLR behavior. A JDBC TLOG store can be
used with or without LLR. When used in tandem with LLR transactions, the transaction
committing information is stored in a LLR table but the checkpoint records and heuristic
logs are stored in the JDBC TLOG store.

• If the TLOG store is changed from one store type to another or from one location to
another, the change takes effect only after reboot and all pending transactions in the old

Chapter 5
Using a JDBC TLog Store

5-4

store are not be copied to the new store. You must ensure there are no pending
transactions before changing the TLOG store type or location.

• If the JDBC TLOG store becomes unavailable, the JTA health state transitions to FAILED
and any global transactions will fail. In turn, the server life-cycle changes to FAILED. The
JTA Transaction Recovery System then attempts to recover from transient runtime errors if
possible and resolves any in-doubt transactions. See Server Migration when using a JDBC
TLOG Store.

• If the database used to store TLOG is corrupted and can not be restored, than all pending
transaction information is lost.

• If database tables or rows used by the JDBC TLOG store are locked for some reason in
the database, the database administrator must resolve these locks manually. Otherwise,
the JTA subsystem is blocked and will be suspended until the lock(s) are released, or
encounters an exception due to lock. The JTA subsystem will remain unable to operate
correctly until the lock(s) are released or the value of MaxRetrySecondsBeforeTLOGFail is
exceeded.

Note:

Different databases have different features for locked local transactions. Some
databases may have trouble resolving database locks in a timely manner. You
may need to contact your database administrator for more information on basic
row locking issues that may occur in your application environment.

Server Migration when using a JDBC TLOG Store
WebLogic Server supports both manual and automatic migration of the Transaction Recovery
Service when using a JDBC TLOG store. The data source used by the JDBC TLOG store must
be targeted on both the primary server instance and a backup server instance. Oracle
recommends targeting the data source to all the server instances of a cluster. See Transaction
Recovery After a Server Fails in Developing JTA Applications for Oracle WebLogic Server.

Monitoring a JDBC TLOG Store
You can monitor statistics for Transaction Log Store statistics and for each open store
connection. For general information on how to monitor persistent stores, see Monitoring the
WebLogic Persistent Store.

• How to Monitor the JDBC TLOG Store Health State

• How to Monitor Transaction Log Store Statistics

• How to Monitor Transaction Log Store Connections

How to Monitor the JDBC TLOG Store Health State
When you configure WebLogic Server to use a JDBC TLOG store, the store is registered with
the Health system as a non-critical subsystem using a name with the following pattern:

PersistentStore.TLOG_servername
where servername is the name of the WebLogic Server instance hosting the primary TLOG
store.

Chapter 5
Using a JDBC TLog Store

5-5

How to Monitor Transaction Log Store Statistics
You can monitor Transaction Log Store statistics in the WebLogic Remote Console, see View
Transaction Statistics in Oracle WebLogic Remote Console Online Help.

How to Monitor Transaction Log Store Connections
You can monitor Transaction Log Store connection statistics in the WebLogic Remote Console,
see View Transaction Statistics in Oracle WebLogic Remote Console Online Help.

Security Considerations
Properly secure your application environment, including the JDBC TLOG store table. Failure to
do so may allow a process to:

• Delete information, maliciously or unintentionally. Such a deletion can cause transaction
information to be lost and cause affected global transactions to be completed heuristically.

• Modify information, maliciously or unintentionally. Such modification can cause unexpected
behavior.

• Read confidential transaction information, such as when transaction starts and what
resources are involved.

• Access the database instance or database machine.

• Access the network between JTA and the database, potentially intercepting, viewing, or
modifying data.

See Secure File Store Data.

Using a JDBC Store
The following sections provide an example of a JDBC store, and information about creating a
database table for a JDBC store, either using an existing DDL, a custom DDL, and using
Oracle blob record columns in a DDL file.

To create a JDBC store, you can directly modify the default JDBCStoreMBean parameters. For
instructions on using the WebLogic Remote Console to create a JDBC store, see Create a
JDBC Store in Oracle WebLogic Remote Console Online Help.

For configuration guidelines on using prefixes with JDBC stores and recommended JDBC data
source settings, see Guidelines for Configuring a JDBC Store.

• Main Steps for Configuring a JDBC Store

• Example of a JDBC Store

• Supported JDBC Drivers

• Creating a JDBC Store Table Using Default and Custom DDL Files

• Managing JDBC Store Tables

• Configuring JDBC Store Reconnect Retry
The JDBC Store reconnect retry period indicates the time period when a WebLogic JDBC
Store or a TLOG in-DB Store retries to connect to a database, before the Store shuts down
and requires a restart. You can configure the Store retry period through Command line
system properties, MBeans and WLST.

Chapter 5
Using a JDBC Store

5-6

• Important Tuning Considerations for Reconnect Retry

• Configuring a JDBC Store Connection Caching Policy

• Guidelines for Configuring a JDBC Store

• Enabling I/O Multithreading for JDBC Stores

Main Steps for Configuring a JDBC Store
The main steps for creating a JDBC store are as follows:

1. Create a JDBC data source or multi data source to interface with the JDBC store.

2. Create a JDBC store and associate it with the JDBC data source or multi data source.

3. It is highly recommended that you configure the Prefix option to a unique value for each
configured JDBC store table.

4. Associate the JDBC store with the subsystem(s) that will be using it, such as:

• For JMS servers, select the JDBC store on the General Configuration page.

• For Store-and-Forward agents, select the JDBC store on the General Configuration
page.

• For a Path Service, select the custom file store on the General Configuration page.

Example of a JDBC Store
Here's an example of how a JDBC store may look in the configuration file, using the JDBC data
source MyDataSource, and with a logical name specified:

<jdbc-store>
 <name>SampleJDBCStore</name>
 <target>yourserver</target>
 <data-source>MyDataSource</data-source>
 <logical-name>Baz</logical-name>
</jdbc-store>

Table 5-2 describes the JDBC store configuration parameters that can be modified.

Table 5-2 JDBC Store Configuration Options

Option Required What It Does

Name Yes The name of the JDBC store, which must be unique across all
stores in the domain.

Chapter 5
Using a JDBC Store

5-7

Table 5-2 (Cont.) JDBC Store Configuration Options

Option Required What It Does

Targets Yes The server instance, cluster, or migratable target where a
JDBC store is targeted. Multiple subsystems can share the
same JDBC store, as long as they are all targeted to the
same server instance or migratable target.

Note:
• When using a cluster to host a JMS Server, you must

target the JDBC store to the same cluster used by the
JMS Server. See Configuring Dynamic Clustered JMS in
Administering JMS Resources for Oracle WebLogic
Server.

• When using migratable targets for JMS services, you
must target the JDBC store to the same migratable target
used by the JMS service. See Service Migration in
Administering Clusters for Oracle WebLogic Server.

Data Source Yes The JDBC data source or multi data source used by this
JDBC store to access the store's database table (WLStore).
This data source or multi data source must be targeted to the
same target as the JDBC store.

Note: The JDBC store must use a JDBC data source that
uses a non-XA JDBC driver and has Supports Global
Transactions disabled. This limitation does not remove the
XA capabilities of layered subsystems that use JDBC stores.
For example, WebLogic JMS is fully XA-capable regardless of
whether it uses a file store or any JDBC store.

Prefix Name No The prefix for the JDBC store's table is generally entered in
the following format: [[[catalog.]schema.]prefix]
When using multiple JDBC stores, it is required to set this
option to a unique value for each configured JDBC store.
When no prefix is specified, the JDBC store table name is
simply WLStore and the database implicitly determines the
schema according the current user of the JDBC connection.
Also, two JDBC stores cannot share the same database table.
See Using Prefixes with a JDBC Store.

Modifying an existing JDBC store's prefix does not
necessarily require a server restart, as described in Modifying
Custom Persistent Store Parameters.

Logical Name No Optionally used with WebLogic Server subsystems, like EJBs,
when deploying a module to an entire cluster, but also require
a different physical store on each server instance in the
cluster. In such a configuration, each physical store would
have its own name, but all the persistent stores would share
the same logical name.

Create Table from DDL
File

No Optionally used with supported DDL (data definition
language) files to create the JDBC store's database table
(WLStore). This option is ignored when the JDBC store's
database table already exists. See Creating a JDBC Store
Table Using Default and Custom DDL Files.

For instructions on configuring a JDBC store using the WebLogic Remote Console, see Create
a JDBC Store in Oracle WebLogic Remote Console Online Help.

Chapter 5
Using a JDBC Store

5-8

Supported JDBC Drivers
When using a JDBC store, the backing database can be any database that is accessible
through a JDBC driver. WebLogic Server detects some drivers for supported databases.

For each of these databases, there are corresponding DDL (data definition language) files
within the ORACLE_HOME\wlserver\modules\com.bea.core.store.jdbc_1.0.0.0.jar file, in
the weblogic/store/io/jdbc/ddl directory, where ORACLE_HOME is the top-level
installation directory of your WebLogic Server installation.

Table 5-3 Supported JDBC Drivers and Corresponding DDL Files

Database DDL Files

IBM DB2 db2.ddl db2v6.ddl
Informix informix.ddl
Microsoft SQL (MSSQL) Server mssql.ddl
MySQL mysql.ddl
Oracle oracle.ddl oracle_blob.ddl

oracle_blob_securefile.ddl
Sybase sysbase.ddl

The DDL files are actually text files containing the SQL commands (terminated by semicolons)
that create the JDBC store's database table (WLStore). Therefore, if you are using a database
that is not included in this list, you can copy and edit any one of the existing DDL files to suit
your specific database, as described in Creating a JDBC Store Table Using a Custom DDL
File.

Creating a JDBC Store Table Using Default and Custom DDL Files
The JDBC Store Configuration page provides an optional Create Table from DDL File option,
through which you can access a pre-configured DDL file that is used to create the JDBC
store's backing table (WLStore). This option is ignored when the JDBC store's backing table
already exists. It is mainly used to specify a custom DDL file created for an unsupported
database, or when upgrading JMS JDBC store tables from a prior release to a current JDBC
Store table.

If a DDL file name is not specified in the Create Table from DDL File field, and the JDBC store
detects that its backing table does not already exist, the JDBC store automatically creates the
table by executing a pre-configured DDL file that is specific to the database vendor (see
Supported JDBC Drivers).

If a DDL file name is specified in the Create Table from DDL File field, and the JDBC store
detects that its backing table does not already exist, the JDBC store searches for the specified
DDL file in the file path first, and then, if not found, searches for the DDL file in the CLASSPATH.
Once found, the SQL within the DDL file is executed to create the JDBC store's backing table.
If the configured file is not found and the table doesn't already exist, the JDBC store will fail to
boot.

• Creating a JDBC Store Table Using a Custom DDL File

• Enabling Oracle BLOB Record Columns

Chapter 5
Using a JDBC Store

5-9

Creating a JDBC Store Table Using a Custom DDL File
To use a different database from those listed in Supported JDBC Drivers, you can copy and
edit any one of the existing DDL template files to suit your specific database.

1. Use the JAR utility supplied with the JDK to extract the DDL files to the /weblogic/
store/io/jdbc/ddl directory using the following command:

jar xf com.bea.core.store.jdbc_1.0.0.0.jar /weblogic/store/io/jdbc/ddl

Note:

If you omit the weblogic/store/io/jdbc/ddl parameter, the entire jar file is
extracted.

2. Edit the DDL file for your database. An SQL command can span several lines and is
terminated with a semicolon (;). Lines beginning with pound signs (#) are comments.

3. Save your changes and rename the new DDL appropriately (for example, mydatabase.ddl)

4. Create a JDBC store, as explained in Create a JDBC Store in Oracle WebLogic Remote
Console Online Help.

5. Use the Create Table from DDL File option on the General Configuration page to specify
your custom DDL file (for example, /mydatabase.ddl).

Note:

On Windows systems, for full path names always include the drive letter.

Enabling Oracle BLOB Record Columns
For Oracle databases, you can use the oracle_blob.ddl or oracle_blob_securefile.ddl file
to create a JDBC store table with a BLOB record column type rather than the default LONG RAW
record column type. The oracle_blob.ddl is used to create Oracle basic file BLOBs and the
oracle_blob_securefile.ddl file is used to create Oracle secure file BLOBs. Both files types
are pre-configured and supplied in the WebLogic CLASSPATH, as described in Supported JDBC
Drivers.

Oracle Database 11g Release 2 includes a zero copy I/O performance enhancement for
Secure Files and a logical cache for BLOBs. Use of these enhancements can improve
throughput with a JDBC store when message sizes are large and when network connections to
the database are slow. The Oracle LONG RAW datatype is typically better performing than
BLOBS when using a fast connection to the database.

Note:

If you need to preserve data already in a Oracle LONG RAW column, but still want to
switch the column to BLOB, do not use this method. Instead, consult the Oracle
documentation for the SQL ALTER TABLE command.

Chapter 5
Using a JDBC Store

5-10

To use the Oracle BLOB DDL with a JDBC store:

1. Shut down the server instance that uses the JDBC store.

2. Delete the current JDBC table, as explained in Managing JDBC Store Tables.

3. Reboot the server instance.

4. Create a new JDBC store.

5. In the Create Table from DDL File field on the General Configuration page, enter the
location of:

• the oracle_blob.ddl file as: /weblogic/store/io/jdbc/ddl/oracle_blob.ddl
• the oracle_blob_securefile.ddl file as: /weblogic/store/io/jdbc/ddl/

oracle_blob_securefile.ddl
6. Click Finish to create the JDBC store's backing table.

When using Oracle BLOBS, you may be able to improve performance by tuning the
ThreeStepThreshold value.

When the JDBC store schema contains an Oracle BLOB column (basic file or secure file), the
JDBC store populates the BLOB data using one of the following implementations based on the
size of the BLOB data:

• The JDBC store inserts a row with BLOB data directly into the store table in a single step.
Because only a single step is involved, JDBC batch insert is also adopted and performs
best when the data size is small. This implementation is used when the BLOB data to be
inserted is less than or equal to the value of the ThreeStepThreshold.

• The JDBC store inserts a row with BLOB data into the store table in three steps using the
Oracle LOB API. This implementation provides better performance when the data size is
large. This implementation is used when the BLOB data to be inserted is greater than the
value of the ThreeStepThreshold.

The default value of ThreeStepThreshold is 200K.

Managing JDBC Store Tables
The JDBC utils.Schema utility allows you to regenerate a new JDBC store database table
(WLStore) by deleting the existing version. Running this utility is usually not necessary, since
WebLogic Server automatically creates this table for you. However, if your existing JDBC store
database table somehow becomes corrupted, you can delete it using the utils.Schema utility.

The utils.Schema utility is a Java program that takes command-line arguments to specify the
following:

• JDBC driver

• Database connection information

• Name of a file containing the SQL Data Definition Language (DDL) commands that create
the database table

• Using the utils.Schema Utility to Delete a JDBC Store Table

Chapter 5
Using a JDBC Store

5-11

Using the utils.Schema Utility to Delete a JDBC Store Table
Enter the utils.Schema command, as follows:

$ java utils.Schema url JDBC_driver [options] DDL_file

Note:

To execute utils.Schema, your CLASSPATH must contain the weblogic.jar file.

Table 5-4 lists the utils.Schema command-line arguments.

Table 5-4 Command-line arguments for utils.Schema

Argument Description

url Database connection URL. This value must be a colon-separated URL as defined by the
JDBC specification.

JDBC_driver Full package name of the JDBC Driver class.

options Optional command options.

If required by the database, you can specify:

• The user name and password as follows:

-u <username> -p <password>
• The Domain Name Server (DNS) name of the JDBC database server as follows:

-s <dbserver>
You can also specify the -verbose option, which causes utils.Schema to echo SQL
commands as they are executed.

DDL_file The full pathname of the DDL text file containing the SQL commands that you want to
execute. For more information, see Supported JDBC Drivers.

For example, the following command deletes a JDBC table named MYWLStore in an Oracle
server named DEMO, with the user name user1 and password foobar:

$ echo "drop MYWLStore;" > drop.ddl

$ java utils.Schema
jdbc:weblogic:oracle:DEMO \
weblogic.jdbc.oci.Driver -u user1 -p foobar -verbose \
drop.ddl

Configuring JDBC Store Reconnect Retry
The JDBC Store reconnect retry period indicates the time period when a WebLogic JDBC
Store or a TLOG in-DB Store retries to connect to a database, before the Store shuts down
and requires a restart. You can configure the Store retry period through Command line system
properties, MBeans and WLST.

• Using WLST and JMX MBeans

Chapter 5
Using a JDBC Store

5-12

Using WLST and JMX MBeans
The JDBC Store reconnect retry period controls the length of the time period required by a
JDBC Store reconnect retry or a TLOG-in-DB Store to retry database requests before a Store
shuts down, and requires a restart. The JDBC Store reconnect retry interval controls the length
of the time in milliseconds between reconnect attempts during the connection retry period. You
can configure the JDBC Store reconnect retry period and interval by using the
ReconnectRetryPeriodMillis and ReconnectRetryIntervalMillis attributes available in the
JDBCStoreMBean and TransactionLogJDBCStoreMBean. For more information about the Retry
attributes, see MBean Reference for Oracle WebLogic Server.

• Using Command Line System Properties

Using Command Line System Properties
You can configure the retry period and interval for custom JDBC Store reconnect retry and
TLOG-in-DB Stores by setting system properties on the WebLogic Server command line. The
-DwebLogic.store.jdbc.RecnnectRetryPeriodMillis=<millis> and -
Dweblogic.store.jdbc.ReconnectRetryIntervalMillis=<millis> option specifies the JDBC
Store reconnect retry in period and interval available in the WebLogic Server domain.

The -Dweblogic.store.jdbc.ReconnectRetryPeriodMillis=<millis> system property
overrides legacy properties-Dweblogic.store.jdbc.IORetryDelayMillis=<millis> or -
Dweblogic.jms.store.JMSJDBCIORetryDelay=<seconds>, if they are set on the same
command line. If the retry period property is not set, then the legacy properties will take effect.

Deprecation Note: All JDBC Store reconnect retry command line properties are deprecated as
of 12.2.1.0 and may be removed in a future release. In 12.2.1.0 and later, Oracle recommends
setting these values through MBean attributes instead.

Important Tuning Considerations for Reconnect Retry
It is important to consider the following when configuring a JDBC Store reconnect retry period:

• The total elapsed time before a Store fails may sometimes be more than double the
configured retry period.

• It is advisable to configure more tolerant retry periods of up to 15 seconds or more instead
of the maximum, since a retry period that is set to too long may lock up WebLogic Server
applications and client applications during this period.

• JDBC Store reconnect retry tuning should be configured to align with transaction tuning.

– Consider tuning JTA transaction time outs to be higher than the retry period so that the
application transactions that involve a JDBC Store do not time out waiting for a JDBC
Store to successfully recover from a database failure. The default transaction time out
for a domain is 30 seconds and is tunable via the TimeoutSeconds attribute on the
JTAMBean. In addition, transaction time outs are tunable on a per application basis.

– WebLogic's transaction system will temporarily stop allowing a JDBC Store to
participate in transactions if the JDBC Store is unresponsive for more than the
JTAMBean MaxXACallMillis attribute (default is 1200000 millis/two minutes). Once
JTA decides a Store is unresponsive, it will not attempt to allow the Store to participate
in transactions until after MaxResourceUnavailableMillis has passed (default is
1800000 millis/30minutes). It is therefore advisable to ensure that MaxXACallMillis is
at least twice the JDBC Store reconnect retry period.

Chapter 5
Using a JDBC Store

5-13

– If the retry period is configured on a TLOG-in-DB Store, it should be set to less than
half of the TransactionLogJDBCStoreMBean MaxRetrySecondsBeforeTLOGFail setting.
otherwise, the TLOG-in Store may delay failure longer than the TLOGFail setting.

• A JDBC Store reconnect retry period is configured in milliseconds while some transaction
settings are configured in seconds.

Configuring a JDBC Store Connection Caching Policy
By default, a WebLogic JDBC Store obtains two JDBC connections from its Data Source, and
caches these connections throughout a Store's lifetime. You can optionally tune the JDBC
Store's Connection Caching Policy to reduce the number of cached JDBC connections.

• Using WLST and JMX MBeans

• JDBC Store Connection Caching Behavior

• Important Tuning Considerations for the NONE Connection Caching Policy

Using WLST and JMX MBeans
The JDBC Store Connection Caching Policy setting controls how many JDBC connections it
caches. The Connection Caching policy can be configured by using the
ConnectionCachingPolicy attribute available in the JDBCStoreMBean and
TransactionLogJDBCStoreMBean. The valid values for ConnectionCachingPolicy attribute are
- DEFAULT, MINIMAL and NONE. For more information about the valid values, see MBean
Reference for Oracle WebLogic Server and Table 6-5.

Note:

The NONE policy requires additional tuning to avoid deadlocking a server. For more
information about tuning the NONE JDBC Store Connection Caching Policy, see
Important Tuning Considerations for the NONE Connection Caching Policy.

• Using a Command Line Parameter

Using a Command Line Parameter
You can configure the JDBC Store Connection Caching Policy by setting a system property on
the WebLogic Server command line. The -Dweblogic.store.jdbc.ConnectionCachingPolicy
option specifies the WebLogic JDBC Store Connections available in the WebLogic Server
domain. For more information about the valid values that can be set for this Policy, see Table
6-5.

Chapter 5
Using a JDBC Store

5-14

Note:

• The weblogic.store.jdbc.ConnectionCachingPolicy system property has been
deprecated as of 12.2.1.1.0, and may not remain available in future releases.
Oracle recommends configuring a Connection Policy through WLST or MBeans
instead. For more information about tuning the NONE JDBC Store Connection
Caching Policy, see Important Tuning Considerations for the NONE Connection
Caching Policy

• The NONE policy requires additional tuning to avoid deadlocking a server. For
more information about tuning the NONE JDBC Store Connection Caching Policy,
see Important Tuning Considerations for the NONE Connection Caching Policy.

JDBC Store Connection Caching Behavior
A JDBC Store's Connection Caching behavior is determined by the combination of its
Connection Caching Policy setting and Worker Count setting.

Table 5-5 JDBC Store Connection Caching Policy behavior

Connectio
n Caching
Policy

Cached
Connectio
ns when
Worker
count=1

Cached
Connectio
ns when
WorkerCo
unt>1

Description

DEFAULT 2 2+ Worker
Count

By default, each JDBC Store instance caches two database
connections for the life of store.

If the JDBC Store worker-count is configured to be more than two,
the store opens an additional connection for each worker.

MINIMAL 1 1+WorkerC
ount

Each JDBC store instance caches a single database connection
for the life of the store. If the JDBC worker- count is configured to
be two or higher, the store opens one connection for each worker.

The performance of this setting may be less than DEFAULT for low
concurrency messaging scenarios.

NONE 0 N/A Each JDBC store instance obtains a connection from its data
source as needed, and releases the connection when finished.

The NONE setting is not compatible with a JDBC Store worker-
count of two or more, and will result in a configuration validation
exception. The performance of this setting will be lesser than
DEFAULT or MINIMAL.

Warning: To avoid the risk of dead-locking a WebLogic Server,
Oracle strongly recommends configuring a dedicated data source
for NONE connection-caching-policy JDBC stores.

Important Tuning Considerations for the NONE Connection Caching Policy
It is important to consider the following tuning considerations when a JDBC Store Connection
Caching Policy is set to NONE:

• Use a dedicated Data Source to avoid deadlocks - It is strongly advised to configure JDBC
Stores to use a dedicated Data Source when the JDBC Store Connection Caching Policy

Chapter 5
Using a JDBC Store

5-15

is set to NONE. ANONE policy JDBC Store may deadlock a server or eventually fail if it is
configured to share the Data Source with applications or non-store services.

For example, consider an application that performs the following steps:

1. Obtains a Data Source connection.

2. Sends a persistent JMS message through a JMS Server with a NONE policy, JDBC
Store that uses the same Data Source.

3. Closes the Data Source connection.

• It is possible that step 1 can obtain the last available connection in the Data Source
connection pool, and therefore in step 2, the JMS send call will block until the NONE policy
JDBC Store is able to get a connection from the same pool. This is a problem because
step 2 will potentially never get a connection no matter how long it waits since it is possible
that all other applications are also blocked in step 2 (and therefore no application can get
to step 3 in order to free up a connection). This problem in turn can cause a server or client
to have many stuck threads and/or cause a JDBC Store to ultimately shutdown once it
waits too long to try and get a connection.

• Tune a large enough Data Source connection pool - A JDBC Store uses multiple
concurrent connections when its dependent services (such as JMS) first initialize. Hence,
the Data Source pool must be configured so that it can grow somewhat larger than the
number of JDBC Stores that are using the pool.

• Enable and tune Data Source connection testing - Enabling Data Source connection
testing helps provide JDBC Store resiliency during database access failures. But, note that
if performance is a concern, then frequent Data Source connection testing should be
avoided, since it lowers performance of a NONE policy JDBC Store. In general, it is
advisable to enable the Data Source Test Connection on Reserve setting, and set the
Data Source Seconds to Trust and Idle Pool Connection value higher than zero, and
lower than the JDBC Store Connection Retry Interval Millis value. See Connection
Testing Options for a Data Source in Administering JDBC Data Sources for Oracle
WebLogic Server.

• Monitor and tune Prepared Statement Caching performance - A JDBC Store configured
with NONE may yield poor performance if its Data Source or JDBC driver Prepared
Statement Cache size is too small. To check if cache misses are lowering performance,
monitor your prepared statement cache activity when under load. This monitoring should
show frequent cache hits and few cache misses, but if you see many cache misses then
increase your cache size.

• Monitor Oracle RAC with GridLink performance and potentially tune accordingly. If a NONE
policy JDBC Store yields poor performance in comparison to other policies when using
Oracle RAC with a GridLink driver, the potential workarounds are:

– Use a Multi Data Source instead of GridLink Data Source.

– Rebuild JDBC Store tables with a reverse index. See Rebuilding the Store Table Index
for an Oracle Database.

Note:

The NONE policy may yield measurably lower performance than the MINIMAL or
DEFAULT policies even if all of the above considerations are carefully followed.

Chapter 5
Using a JDBC Store

5-16

Guidelines for Configuring a JDBC Store
The following sections provide guidelines for using JDBC store prefixes, recommended
WebLogic JDBC data source settings for JDBC stores, and handling JMS transactions with
JDBC stores.

• Using Prefixes with a JDBC Store

• Recommended JDBC Data Source Settings for JDBC Stores

• Handling JMS Transactions with JDBC Stores

Using Prefixes with a JDBC Store
The JDBC store database contains a database table, named WLStore, that is generated
automatically and is used internally by WebLogic Server. The JDBC store provides an optional
Prefix Name parameter, which can be used to provide more precise access to the database
table.

It is always a best practice to configure a prefix for the JDBC WLStore table name, especially
when:

• The database requires fully-qualified names. (You should verify this with your database
administrator.)

• There is more than one JDBC store instance sharing a database, since no two JDBC
stores can share the same table.

• There are many tables in the database. Setting the prefix reduces the number of tables the
JDBC store must search through to find its table during boot.

• JDBC Store Table Rules

• Prefix Name Format Guidelines

JDBC Store Table Rules
To avoid potential data loss, follow these rules:

• Each JDBC store table name must be unique.

• If multiple JDBC stores share a table, the behavior is undefined and data loss is likely.

• There is no procedure for combining two database tables into a single table.

Prefix Name Format Guidelines
For most databases, the Prefix Name option for the JDBC store's backing database table
should be set in the following format for each configured JDBC store, which will result in a valid
table name when prepended to the JDBC store table name:

[[[catalog.]schema.]prefix]

Note that each period in the [[[catalog.]schema.]prefix] format is significant. Generally,
catalog identifies the set of system tables being referenced by the DBMS, and schema
generally corresponds to ID of the table owner (username). When no prefix is specified, the
JDBC store table name is simply WLStore and the database implicitly determines the schema
according the current user of the JDBC connection.

Chapter 5
Using a JDBC Store

5-17

For example, in a production database, the database administrator could maintain a unique
table for the Sales department, as follows:

[[[Production.]JMSAdmin.]Sales]

The resulting table will be created in the Production catalog, under the JMSAdmin schema,
and will be named SalesWLStore.

For some DBMS vendors, such as Oracle, there is no catalog to set or choose, so the format
simplifies to [[schema.]prefix]. For more information, refer to your DBMS documentation for
instructions on fully-qualified table names, but note that the syntax specified by the DBMS may
differ from the format required for this option.

Caution:

If the Prefix Name setting is changed, but the WLStore database table already exists
in the database, take care to preserve existing table data. In this case, the existing
database table must be renamed by a database administrator to match the new
configured table name.

Recommended JDBC Data Source Settings for JDBC Stores
The following settings are recommended when you use a JDBC data source or multi data
source for JDBC stores.

• Automatic Reconnection to Failed Databases

• Required Setting for Oracle DB2 Type 4 JDBC Drivers

Automatic Reconnection to Failed Databases
WebLogic Server provides robust JDBC data sources that can automatically reconnect to failed
databases after they come back online, without requiring you to restart WebLogic Server. To
take advantage of this capability, and make your use of JDBC stores more robust, configure
the following options on the JDBC data source associated with the JDBC store:

TestConnectionsOnReserve="true"
TestTableName="SYSTABLES"
ConnectionCreationRetryFrequencySeconds="600"

For more information about JDBC default Test Table Names, see Connection Testing Options
for a Data Source in the Administering JDBC Data Sources for Oracle WebLogic Server. For
more information about setting the number of database reconnection attempts, see the
Enabling Connection Creation Retries section in Administering JDBC Data Sources for Oracle
WebLogic Server.

Required Setting for Oracle DB2 Type 4 JDBC Drivers
For data sources used as a JDBC store that use the Oracle Type 4 JDBC driver for DB2, the
BatchPerformanceWorkaround property must be set to "true" due to internal JMS batching
requirements.

Chapter 5
Using a JDBC Store

5-18

Handling JMS Transactions with JDBC Stores
The JDBC store must use a JDBC data source that uses a non-XA JDBC driver and has
Supports Global Transactions disabled. This limitation does not remove the XA capabilities
of layered subsystems that use JDBC stores. For example, WebLogic JMS is fully XA-capable
regardless of whether it uses a file store or any JDBC store.

Because the JDBC store implements the XAResource interface, it acts as it's own resource
manager and handles the transactions above the JDBC driver level. That is, the store itself
implements the XAResource and handles the transactions without depending on the database
(even when the messages are stored in the database).

This means that whenever you are using a JDBC store and a database (even if it is the same
database where the JMS messages are stored), then it is two-phase commit transaction.

For more information about using JMS transactions with a JDBC store, see Using Transactions
with WebLogic JMS in Developing JMS Applications for Oracle WebLogic Server.

From a performance perspective, you may also boost your performance as follows:

• Ensure that the JDBC data source used for the database work exists on the same server
instance as the JMS destination—the transaction will still be two-phase, but it will be
handled with less network overhead.

• Use file stores rather than JDBC stores.

• Configure multiple services to share the same store if they will commonly be invoked within
the same transaction.

• If an application directly performs database operations in addition to invoking store
services (such as JMS) within the same transaction, consider using a JDBC data source
with Logging Last Resource (LLR) enabled for the database operations.

With the LLR optimization, the transaction will follow the two-phase commit protocol, but
the database operations will be handled in a single local transaction, which may improve
overall transaction performance. For more information on using the LLR optimization, see
Understanding the Logging Last Resource Transaction Option in Administering JDBC Data
Sources for Oracle WebLogic Server.

Enabling I/O Multithreading for JDBC Stores
Under heavy JDBC store I/O loads, you can improve performance by configuring a JDBC store
to use multiple JDBC connections to concurrently process I/O operations.

Note:

Enabling I/O multithreading under light loads may actually reduce performance.
Oracle recommends that you tune your applications appropriately.

To enable I/O multithreading, set the Worker Count attribute to an integer value greater than 1.
The default value of this configuration property is 1 and disables this option. The Worker Count
attribute specifies the number of worker threads the JDBC store uses to process store I/O.
Each worker thread acquires one JDBC connection from the configured data source pool when
the store is opened. In many cases, benefits of multithreading tends to decrease after 4

Chapter 5
Using a JDBC Store

5-19

concurrent threads. When using a slow connection to the database, multithreading may not
improve performance.

Note:

If you set the Worker Count to a value where there are not enough connections
available in the connection pool, the JDBC store will fail to open.

You can tune the workload for each worker thread by changing the value of the Worker
Preferred Batch Size attribute. Increasing the value of this attribute incrementally increases
the workload assigned to each worker thread. The workload consists of store I/O requests,
which are grouped and pushed to each JDBC worker thread for processing. If the size of
individual I/O requests is commonly very large (for example, requests to store 1 MB JMS
messages), then tune the value of Worker Preferred Batch Size to a smaller value for better
performance.

• Rebuilding the Store Table Index for an Oracle Database

Rebuilding the Store Table Index for an Oracle Database
When I/O multithreading is enabled, multiple JDBC connections are used to concurrently
process store I/O operations which can result in database resource contention. To reduce
contention on Oracle databases, Oracle recommends rebuilding the primary key index into a
reverse key index when I/O multithreading is used. If you use and then disable I/O
multithreading, Oracle recommends rebuilding the primary key index as a non-reverse index.
For more information on reverse key indexes, see Indexes and Index-Organized Tables in
Oracle Database Concepts.

Use the following basic steps to rebuild the Store table index for Oracle database:

1. Login to the Oracle database under the Store schema name. The Store schema name may
or may not be the same as the data source user name.

2. Use the PL/SQL script found in Build a Reverse Index for an Oracle Database or Build a
Non-Reverse Index for an Oracle Database to rebuild the Store table index as needed.
Replace <Store Table Name> in each script with the Store table name as described in
Using Prefixes with a JDBC Store. See Execution of PL/SQL Subprograms in Oracle
Database Concepts.

Note:

Oracle recommends reverse indexes for I/O multithreading and non-reverse
indexes for single threaded I/O.

• Build a Reverse Index for an Oracle Database

• Build a Non-Reverse Index for an Oracle Database

• Reducing Contention in a Non-Oracle Database

Chapter 5
Using a JDBC Store

5-20

http://docs.oracle.com/cd/E11882_01/server.112/e40540/indexiot.htm#CNCPT721
http://docs.oracle.com/database/121/CNCPT/srvrside.htm#CNCPT036

Build a Reverse Index for an Oracle Database
To rebuild the Store table index as a reverse index for an Oracle database, run the following
PL/SQL block as the store database user:

declare
 idx user_ind_columns.index_name%TYPE;
 alter_stmt VARCHAR2(200);
begin
 select index_name into idx from user_ind_columns where table_name =
 <Store Table Name> and column_name = 'ID';
 alter_stmt := 'alter index ' || idx || ' rebuild reverse';
 dbms_output.put_line(alter_stmt);
 execute immediate alter_stmt;
end;
/

Build a Non-Reverse Index for an Oracle Database
To rebuild a reverse Store table index as a non-reverse index for Oracle database, run the
following PL/SQL block as the store database user:

declare
 idx user_ind_columns.index_name%TYPE;
 alter_stmt VARCHAR2(200);
begin
 select index_name into idx from user_ind_columns where table_name =
 <Store Table Name> and column_name = 'ID';
 alter_stmt := 'alter index ' || idx || ' rebuild noreverse';
 dbms_output.put_line(alter_stmt);
 execute immediate alter_stmt;
end;
/

Reducing Contention in a Non-Oracle Database
For non-Oracle databases, refer to the database provider's documentation on how to reduce
the contention.

Chapter 5
Using a JDBC Store

5-21

6
Managing the WebLogic Persistent Store

This chapter explains how to use the administration utility and secure store data.

• Administering a Persistent Store
The WebLogic Store administration utility enables administrators to troubleshoot a
WebLogic persistent store. The store utility operates only on a store that is not currently
opened by a running server instance.

• Secure File Store Data
In order to properly secure file store data, you must set appropriate directory permissions
on all your file store directories.

Administering a Persistent Store
The WebLogic Store administration utility enables administrators to troubleshoot a WebLogic
persistent store. The store utility operates only on a store that is not currently opened by a
running server instance.

This utility can be run from a Java command line or from WebLogic Scripting Tool (WLST), as
described in Store Administration Using a Java Command Line and Store Administration Using
WLST.

The most common uses-cases for store administration are for compacting a file store to reduce
its size and for dumping the contents of a file store of JDBC store to an XML file for
troubleshooting purposes. Examples of these use cases are provided later in this section.

Table 6-1 defines the available store administration commands for Java and WLST.

Table 6-1 Persistent Store Administration Options

Java Command WLST
Method

What It Does

help helpstore Displays available commands, usage, and examples.

compact compactstor
e

Compacts and defragments the space occupied by a file
store. This command only works offline and does not work for
JDBC stores.

Note: Compacting a file store is usually not necessary if you
know that file store will likely grow to the current size again.
File stores automatically re-use space freed by deleted
records and expand only when there is insufficient internal
space for new records. Also, file stores do not normally
become fragmented as most persistent records are short-
lived.

openfile openfilesto
re

Opens an existing file store for further operations. If a file
store does not exist, a new one is created in an open state
using the -create parameter.

openjdbc openjdbcsto
re

Opens an existing JDBC store for further operations. If a
JDBC store does not exist, a new one is created in an open
state

6-1

Table 6-1 (Cont.) Persistent Store Administration Options

Java Command WLST
Method

What It Does

dump dumpstore Dumps store or connection contents in a human-readable
format to user-specified XML file. The XML file format is the
same format used by the diagnostic image of the persistent
store.

list liststore Lists store names, open stores, or connections in a store.

n/a getstorecon
ns

Returns a list of connections in the specified store (for script
access)

n/a getopenstor
es

Returns a list of opened stores (for script access).

opts n/a Lists invocation options for the store administration tool.

verbose n/a Controls display of additional information, such as stack
traces.

close closestore Closes a previously opened store.

quit exit Ends the store administration session.

A persistent store can be backed by the file system (file store) or by a JDBC-capable database
(JDBC store). Except for the openfile/openfilestore() and openjdbc/openjdbcstore()
options, there is no difference in the options to operate on these two different types of stores.

Most commands and methods work in terms of store names, while others also work in terms of
connection names. Store connections are logical groups of records within persistent stores.
For example, the JMS and JTA subsystems persist their respective records in different
connections in the same file store.

• Store Administration Using a Java Command Line

• Store Administration Using WLST

Store Administration Using a Java Command Line
To open the persistent store administration utility from a Java command line, type the following:

> java weblogic.store.Admin
> storeadmin->

• Accessing Store Administration Help

• Dumping the Contents of a File Store

• Compacting a File Store

Accessing Store Administration Help
Type help for detailed descriptions on available store administration commands, as well as
examples of typical command usage. For example, the following comprehensive help is
provided for the list command, which lists store names, open stores, or connections in a
store.

storeadmin->help list
 Command:

Chapter 6
Administering a Persistent Store

6-2

 list
 Description:
 lists store names, open stores, or connections in a store
 Usage:
 list [-store storename|-dir dir]
 Examples:
 list #lists all opened stores by storename
 list -store store1 #lists all connections in store1
 list -dir dir1 #lists all storenames found in dir1

Dumping the Contents of a File Store
Here's an example of using a series of store administration commands to ultimately export the
contents of a file store named myfilestore into a human-readable XML file format in a
temporary directory. This does not include store connection names or the actual record
contents, which require the optional -conn and -deep parameters.

> storeadmin-> list -dir .
> storeadmin-> openfile -store myfilestore -dir .
> storeadmin-> dump -store myfilestore -out d:\tmp\filestore1-out
> storeadmin-> close -store myfilestore

The list command shows all the store names in the current directory. The openfile and
openjdbc commands must be used to open and/or create a file or JDBC store first before
calling certain administration functions, like dump and list (only when listing open stores). After
administering an open store, you must close it using the close command.

Compacting a File Store
Here is an example of using the compact command to compact the space occupied by a file
store in the mystores directory.

> storeadmin->compact -dir c:\mystores -tempdir c:\tmp

Since the compact command can only be used on an unopened file store, none of the stores
that have files in the source -dir directory should be open. Also, the temporary -tempdir
directory should have at least enough extra space as the source directory and should also not
be under the source directory. When compact successfully completes, the newly compacted
store files will be in the mystores directory. In addition, a new, uniquely-named directory will be
created under tmp containing the original uncompacted store files.

Store Administration Using WLST
The WLST interface has additional methods (compared to the Java command line) such as
getopenstores and getstoreconns, that return relevant Java objects and can be used for
scripting in WLST.

Note:

In this release, ThreeStepThreshold, Worker Count, and Worker Preferred Batch
Size are not supported when using the WebLogic Scripting Tool (WLST) offline.

• Accessing Store Administration Help

Chapter 6
Administering a Persistent Store

6-3

• Dumping the Contents of a JDBC Store Using WLST

• Compacting a File Store Using WLST

Accessing Store Administration Help
To access the persistent store administration utility from WLST, type the following command:

> java weblogic.WLST

Type helpstore() for detailed descriptions on available store administration commands, as
well as examples of typical command usage. For example, the following help is provided for
the list command, which lists store names, open stores, or connections in a store.

> wls:/offline> helpstore(liststore)
 lists storenames, opened stores, or connections (for interactive access)
 Parameters store and dir cannot both be specified concurrently.

 Usage: liststore(store='null',dir='null')

 @param store [optional] a previously opened JDBC or File store's name.
 If store is specified, all connections in the store are listed.
 @param dir [optional] directory for which to list available store names
 If dir is specified, all store names in the directory are listed.

 If neither store nor dir are specified, all open store names are listed.
 @return 1 on success, 0 on failure

Note that the parameters with an equal sign "=" are optional. For example, the compactstore
method can be invoked as either compactstore(dir='storename', tempdir='/tmp') or
compactstore(store='storename'), where tempdir takes the default value. Default values for
optional parameters are listed in the command-specific help.

Dumping the Contents of a JDBC Store Using WLST
Here is an example of using the dumpstore method (store, outfile, conn='null',
deep='false') to export the contents of a JDBC store named myJDBCStore in a human-
readable XML file format out to a file named mystoredump-out.xml. This does not include store
connection names or the actual record contents, which require the optional conn and deep
parameters.

> wls:/offline>
 openjdbcstore('myJDBCStore', 'oracle.jdbc.OracleDriver',
 'jdbc:oracle:thin:@test2k31:1521:test120a', './wlstoreadmin-dump.props',
 'jmstest', 'jmstest', '', 'jdbcstoreprefix')
 dumpstore('myJDBCStore', 'mystoredump-out')
 closestore('myJDBCStore')

The openjdbcstore and openfilestore methods must be used to open and/or create a store
first before calling certain administration functions, like dumpstore and liststore (only when
listing open stores). After administering an open store, you must close it using the closestore
method.

Compacting a File Store Using WLST
Here is an example of a WLST script that uses the compactstore method
(dir,tempdir='null') to compact the space occupied by a file store files in the mystores
directory.

Chapter 6
Administering a Persistent Store

6-4

> wls:/offline> compactstore('c:\mystores','c:\tmpmystore.dir')

Since the compactstore() method can only be used on unopened file stores, none of the
stores that have files in the source 'dir' directory should be open. Also, the temporary
'tempdir' directory should have at least enough extra space as the source directory and
should also not be under the source directory. When compact successfully completes, the
newly compacted store files will be in the mystores directory. In addition, a new, uniquely-
named directory will be created under tmpmystore containing the original uncompacted store
files.

Secure File Store Data
In order to properly secure file store data, you must set appropriate directory permissions on all
your file store directories.

If you require data encryption, you must use appropriate third-party encryption software.

Chapter 6
Secure File Store Data

6-5

7
Monitoring the WebLogic Persistent Store

This chapter explains how to monitor the WebLogic Server persistent store.

• Monitoring a Persistent Store
You can monitor statistics for each existing persistent store and for each open store
connection.

• Monitoring Stores
Each persistent store is represented at run time by an instance of the
PersistentStoreRuntimeMBean.

• Monitoring Store Connections
For each open persistent store connection, the persistent store also registers a
PersistentStoreConnectionRuntimemMBean.

Monitoring a Persistent Store
You can monitor statistics for each existing persistent store and for each open store
connection.

Monitoring Stores
Each persistent store is represented at run time by an instance of the
PersistentStoreRuntimeMBean.

The PersistentStoreRuntimeMBean provides the following options.

Table 7-1 Persistent Store Run-time Options

Option What It Does

CreateCount Number of create requests issued to this persistent
store.

ReadCount Number of read requests issued to this persistent
store.

UpdateCount Number of update requests issued by this
persistent store.

DeleteCount Number of delete requests issued by this persistent
store.

ObjectCount Number of objects contained in the persistent
store.

Connections Number of active connections in the persistent
store.

PhysicalWriteCount Number of times the persistent store flushes its
data to durable storage.

7-1

Monitoring Store Connections
For each open persistent store connection, the persistent store also registers a
PersistentStoreConnectionRuntimemMBean.

The PersistentStoreConnectionRuntimemMBean provides the following options.

Table 7-2 Persistent Store Connection Runtime Options

Option What It Does

CreateCount Number of create requests issued to this
connection.

ReadCount Number of read requests issued to this connection.

UpdateCount Number of update requests issued by this
connection.

DeleteCount Number of delete requests issued by this
connection.

ObjectCount Number of objects contained in the connection.

Table 7-3 defines most of the run-time prefix names of the WebLogic services and subsystems
that can create a connection to the persistent store.

Table 7-3 Persistent Store Run-Time Prefix Names

Subsystem/Service Run-Time Prefix Name

Deployment weblogic.deploy.internal
where internal is the name of the deployment
connection

Diagnostic Service weblogic.diagnostics.internal
where internal is the logical name of the
diagnostic archive connection

EJB Timer Services weblogic.ejb.timer.internal
where internal uniquely identifies EJB
deployments in a server instance

JMS Service JMS server:

weblogic.messaging.jmsServer.internal
where internal is the name of the JMS server
connection

JMS durable subscriber:

weblogic.messaging.jmsServer.durablesub
s.internal
where internal is the name of the durable
subscriber connection

JTA Transaction Log (TLOG) weblogic.transaction.internal
where internal is the name of the TLOG
connection

Path Service weblogic.messaging.PathService.internal
where internal is the name of the path service
connection

Chapter 7
Monitoring Store Connections

7-2

Table 7-3 (Cont.) Persistent Store Run-Time Prefix Names

Subsystem/Service Run-Time Prefix Name

SAF Service SAF agent

weblogic.messaging.SAFAgent@server1.int
ernal
where internal is the name of the SAF agent's
connection

SAF durable subscriber:

weblogic.messaging.SAFAgent@server1.dur
ablesubs.internal
where internal is the name of the durable
subscriber connection

Web Services weblogic.wsee.server.store.internal
where internal is the name of the Web Service's
connection

Chapter 7
Monitoring Store Connections

7-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 The WebLogic Persistent Store
	What is a Persistent Store
	Features of the Persistent Store
	High-Performance Throughput and Transactional Support
	Comparing File Stores and JDBC-accessible Stores
	High Availability For Persistent Stores
	Whole Server Migration
	Automatic Service Migration
	Service Restart In Place
	Service Restart In Place in Combination with Migration
	Additional Notes

	High Availability Storage Solutions

	Limitations and Considerations of the Persistent Store
	Additional Requirement for High Availability File Stores
	File Locations

	2 Using the Default Persistent Store
	Using the Default Persistent Store
	Default Store Location
	Example of a Default File Store

	3 Using Custom Persistent Stores
	What are Custom File Stores and JDBC Stores
	When to Use a Custom Persistent Store
	Methods of Creating a Custom Persistent Store
	Modifying Custom Persistent Store Parameters

	4 Using Custom File Stores
	Creating a Custom (User-Defined) File Store
	Main Steps for Configuring a Custom File Store
	Example of a Custom File Store
	Guidelines for Configuring a Synchronous Write Policy
	Direct-Write-With-Cache Policy
	Direct-Write Policy
	Cache-Flush Policy
	Disabled Policy

	5 Using a JDBC Store
	Creating JDBC-accessible Stores
	Using a JDBC TLog Store
	Main Steps for Configuring a JDBC TLOG Store
	Choosing a Data Source

	Example of a JDBC TLOG Store
	Configuration Guidelines
	Additional Considerations
	Server Migration when using a JDBC TLOG Store
	Monitoring a JDBC TLOG Store
	How to Monitor the JDBC TLOG Store Health State
	How to Monitor Transaction Log Store Statistics
	How to Monitor Transaction Log Store Connections

	Security Considerations

	Using a JDBC Store
	Main Steps for Configuring a JDBC Store
	Example of a JDBC Store
	Supported JDBC Drivers
	Creating a JDBC Store Table Using Default and Custom DDL Files
	Creating a JDBC Store Table Using a Custom DDL File
	Enabling Oracle BLOB Record Columns

	Managing JDBC Store Tables
	Using the utils.Schema Utility to Delete a JDBC Store Table

	Configuring JDBC Store Reconnect Retry
	Using WLST and JMX MBeans
	Using Command Line System Properties

	Important Tuning Considerations for Reconnect Retry
	Configuring a JDBC Store Connection Caching Policy
	Using WLST and JMX MBeans
	Using a Command Line Parameter

	JDBC Store Connection Caching Behavior
	Important Tuning Considerations for the NONE Connection Caching Policy

	Guidelines for Configuring a JDBC Store
	Using Prefixes with a JDBC Store
	JDBC Store Table Rules
	Prefix Name Format Guidelines

	Recommended JDBC Data Source Settings for JDBC Stores
	Automatic Reconnection to Failed Databases
	Required Setting for Oracle DB2 Type 4 JDBC Drivers

	Handling JMS Transactions with JDBC Stores

	Enabling I/O Multithreading for JDBC Stores
	Rebuilding the Store Table Index for an Oracle Database
	Build a Reverse Index for an Oracle Database
	Build a Non-Reverse Index for an Oracle Database
	Reducing Contention in a Non-Oracle Database

	6 Managing the WebLogic Persistent Store
	Administering a Persistent Store
	Store Administration Using a Java Command Line
	Accessing Store Administration Help
	Dumping the Contents of a File Store
	Compacting a File Store

	Store Administration Using WLST
	Accessing Store Administration Help
	Dumping the Contents of a JDBC Store Using WLST
	Compacting a File Store Using WLST

	Secure File Store Data

	7 Monitoring the WebLogic Persistent Store
	Monitoring a Persistent Store
	Monitoring Stores
	Monitoring Store Connections

