
Oracle® Fusion Middleware
Securing Resources Using Roles and Policies
for Oracle WebLogic Server

14c (14.1.2.0.0)
F62498-01
December 2024

Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server, 14c (14.1.2.0.0)

F62498-01

Copyright © 2007, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

Related Documentation viii

Conventions viii

1 Introduction

2 Understanding WebLogic Resource Security

Overview of Securing WebLogic Resources 2-1

Using Policies to Protect Multiple Resources 2-3

Protecting Policies by Type 2-3

Protecting a Hierarchy of Resources 2-3

Designing Roles and Policies for WebLogic Resources: Main Steps 2-4

Best Practices: Conditionalize Policies or Conditionalize Roles 2-6

Best Practices: Configure Entitlements Caching When Using WebLogic Providers 2-6

3 Resource Types You Can Secure with Policies

Administrative Resources 3-1

Application Resources 3-3

COM Resources 3-4

EJB Resources 3-4

Enterprise Information Systems (EIS) Resources 3-5

Java DataBase Connectivity (JDBC) Resources 3-5

JDBC Operations 3-5

Java Messaging Service (JMS) Resources 3-6

JMS Operations 3-6

Java Naming and Directory Interface (JNDI) Resources 3-7

JNDI Operations 3-7

JMX Resources 3-7

iii

Maintaining a Consistent Security Scheme 3-9

Server Resources 3-10

Permissions for the weblogic.Server Command and the Node Manager 3-11

Permissions for Using the weblogic.Server Command 3-11

Permissions for Using the Node Manager 3-11

URL Resources 3-12

Web Service Resources 3-12

Work Context Resources 3-13

Coherence Resources 3-14

4 Options for Securing Web Application and EJB Resources

Deployment Descriptors Not Required 4-2

Comparison of Security Models for Web Applications and EJBs 4-2

Discussion of Each Model 4-3

Metadata Annotations 4-3

Deployment Descriptor Only Model 4-5

Custom Roles Model 4-5

Custom Roles and Policies Model 4-6

Advanced Model 4-6

Understanding the Advanced Security Model 4-7

Understanding the Check Roles and Policies Setting 4-7

Understanding the When Deploying Web Applications or EJBs Setting 4-8

How the Check Roles and Policies and When Deploying Web Applications or EJBs
Settings Interact 4-9

Understanding the Combined Role Mapping Enabled Setting 4-9

Usage Examples 4-10

Securing Web Applications and EJBs 4-11

5 Security Policies

Security Policy Storage and Prerequisites for Use 5-1

Default Root Level Security Policies 5-2

Security Policy Conditions 5-3

Basic Policy Conditions 5-3

Date and Time Policy Conditions 5-4

Context Element Policy Conditions 5-5

Protected Public Interfaces 5-5

Using the WebLogic Remote Console to Manage Security Policies 5-6

6 Users, Groups, And Security Roles

Overview of Users and Groups 6-1

iv

Default Users 6-1

Default Groups 6-2

Run Time Groups 6-3

Best Practices: Add a User To the Administrators Group 6-3

Overview of Security Roles 6-3

Types of Security Roles: Global Roles and Scoped Roles 6-4

Default Global Roles 6-4

Security Role Conditions 6-6

Basic Role Conditions 6-7

Date and Time Role Conditions 6-7

Context Element Role Conditions 6-8

Using the WebLogic Remote Console to Manage Users, Groups, and Roles 6-9

7 Using XACML Documents to Secure WebLogic Resources

Prerequisites 7-1

Adding a XACML Role or Policy to a Realm: Main Steps 7-2

Caution: Indeterminate Results Can Lock Out All Users 7-2

Determine Which Resource to Secure 7-2

Get the ID of the Resource to Secure 7-3

Create XACML Documents 7-4

Example: Defining Role Assignments 7-4

Example: Defining Authorization Policies 7-6

Use WebLogic Scripting Tool to Add the Role or Policy to the Realm 7-6

Verify That Your Roles and Policies Are in the Realm 7-8

Creating Roles and Polices for Custom MBeans 7-8

Determine the Resource IDs for a Custom MBean 7-8

Exporting Roles and Policies to XACML Documents 7-9

A Reference for XACML on WebLogic Server

Comparison of WebLogic Server and XACML Security Models A-1

Comparison of Terminology A-2

Description of Data Types A-2

Action Identifiers A-3

Examples A-4

Environment Identifiers A-5

Examples A-6

Policy and PolicySet Identifiers A-6

Examples A-6

Resource Identifiers A-7

Examples A-7

v

Subject Identifiers A-8

Examples A-8

WebLogic Server Functions for XACML A-9

Custom Data Type Variants A-9

Examples A-9

Miscellaneous Functions A-9

Example A-12

Time/Date Conversions A-14

Arithmetic Conversions and Functions A-15

Object Type Conversions A-19

Object Comparisons A-20

String Comparisons and Manipulations A-22

Rule and Policy-Combining Algorithm A-23

vi

Preface

This documentation describes how to use security roles and policies in Oracle WebLogic
Server 14c to determine who can access resources in a domain.

Audience
This document contains information that is useful for security architects and security
administrators who are designing a security strategy for resources within a WebLogic Server
domain. It includes information about resource types, options for securing Web applications
and EJBs, different types of security roles and policies, and the components of a role and
policy.

It is assumed that the reader is familiar with Java EE security and the other features of the
WebLogic Security Service.

The information in this document is relevant during the design and development phases of a
software project. This document does not address production phase administration topics. For
links to WebLogic Server documentation and resources related to these topics, see Related
Documentation .

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Related Documentation
Use the reference books as and when it is required for better understanding.

Other WebLogic Server documents that may be of interest to security administrators wanting to
secure WebLogic resources are:

• Understanding Security for Oracle WebLogic Server—Summarizes the features of the
WebLogic Security Service, including an overview of its architecture and capabilities. It is
the starting point for understanding WebLogic security.

• Administering Security for Oracle WebLogic Server—Describes how to ensure that security
is comprehensively configured for a WebLogic Server installation, including information
about security providers, identity and trust and SSL.

• Security Policies and Roles in Oracle WebLogic Remote Console Online Help Provides
instructions for using the WebLogic Remote Consoleto complete the tasks described in this
document.

These documents provide additional information about specific resource types:

• Securing Web Applications, Securing Enterprise JavaBeans (EJBs) and Using Java
Security to Protect WebLogic Resources in Developing Applications with the WebLogic
Security Service

• Configuring Access Control in Developing JCOM Applications for Oracle WebLogic Server
(COM resources)

• Security in Developing Resource Adapters for Oracle WebLogic Server (EIS resources)

• Securing WebLogic Web Services for Oracle WebLogic Server

Tutorials and Samples

Additional security documents are listed in Code Examples and Sample Applications in
Understanding Oracle WebLogic Server.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii

1
Introduction

The WebLogic Security Service combines several layers of security features to prevent
unauthorized access to your WebLogic Server domains.
This document describes using roles and policies to determine who can access resources in a
domain. The roles and policies feature fulfills the same function as the familiar Access Control
List (ACL), but offers an improvement over ACLs: an ACL is static while roles and policies
specify conditions under which users can access resources, and these conditions are
evaluated at run time.

1-1

2
Understanding WebLogic Resource Security

Learn the terms and concepts related to securing WebLogic Server resources and understand
the main steps you can follow to create roles and policies to secure them.
This chapter includes the following sections:

• Overview of Securing WebLogic Resources

• Designing Roles and Policies for WebLogic Resources: Main Steps

Overview of Securing WebLogic Resources
To secure a resource in a WebLogic Server domain, you create a policy and an optional role. A
resource is an entity (such as a Web Service or a server instance) or an action (such as a
method in a Web Service or the act of shutting down a server instance). A policy specifies
which users, groups, or roles can access the resource under a set of conditions. A security
role, like a security group, grants an identity to a user. Unlike a group, however, membership in
a role can be based on a set of conditions that are evaluated at run time.

Note:

The Java EE Security API (JSR 375) requires that group principal names are
mapped to roles of the same name by default. In WebLogic Server, if the security-
role-assignment element in the weblogic.xml deployment descriptor does not
declare a mapping between a security role and one or more principals in the
WebLogic Server security realm, then the role name is used as the default principal.

Figure 2-1 describes how you create roles and policies and how the Security Service uses
them to determine whether a client can access a resource. A brief explanation follows the
figure.

2-1

Figure 2-1 How a Policy Grants Access to a Resource

1. Before creating security policies and roles, Administrators statically assign users to groups,
which can represent organizational boundaries. The same user can be a member of
multiple groups. Figure 2-1 shows three groups with two users each. User 1 and User 3
are members of multiple groups.

Oracle recommends assigning users to groups because doing so increases efficiency for
administrators who work with many users.

2. Administrators create a security role based on their organization's established business
procedures. The security role consists of one or more conditions, which specify the
circumstances under which a particular user, group, or other role should be granted the
security role.

3. At run time, the Security Service compares the groups against the role condition(s) to
determine whether users in the group should be dynamically granted a security role. This
process of comparing groups to roles is called role mapping. In Figure 2-1, Group 2 is the
only group that is granted a security role.

Chapter 2
Overview of Securing WebLogic Resources

2-2

Individual users can also be granted a security role, but this is a less typical practice.

4. Administrators create a security policy based on their organization's established business
procedures. The security policy consists of one or more policy conditions which specify the
circumstances under which a particular security role should be granted access to a
WebLogic resource.

5. At run time, the WebLogic Security Service uses the security policy to determine whether
access to the protected WebLogic resource should be granted. Only users who are
members of the group that is granted the security role can access the WebLogic resource.
In Figure 2-1, User 3 and User 6 can access the protected WebLogic resource because
they are members of Group 2, and Group 2 is granted the necessary security role.

Using Policies to Protect Multiple Resources
WebLogic Server provides two techniques for using a single policy to protect a collection of
resources, described in the following sections:

• Protecting Policies by Type

• Protecting a Hierarchy of Resources

Protecting Policies by Type
You can create a policy that protects all resources of a specific type. Such policies are called
root-level policies. For example, you can create a root-level policy for the Web Service type.
All Web Services that you deploy in the domain for which you have defined this root-level
policy will be protected by the root-level policy.

If you define a policy for a specific Web Service, then the Web Service will be protected by its
own policy and will ignore the root-level policy.

Protecting a Hierarchy of Resources
All of the resources within a Jakarta EE application or module that you deploy exist within a
hierarchy, and policies on resources higher in the hierarchy act as default policies for resources
lower in the same hierarchy. Policies lower in a hierarchy always override policies higher in the
hierarchy.

For example, EnterpriseApp1contains EJB ModuleA along with a Web application and a JDBC
module (see Figure 2-2). You create a policy for EnterpriseApp1 and for method Y within EJB
ModuleA. When an EJB client attempts to invoke method Y, the WebLogic Security Service
enforces the specific policy and ignores the policy for the enterprise application.

When a client requests access to EJB method X (which is not protected by its own policy), the
WebLogic Security Service asks:

• Is there a policy for this EJB method? No, therefore go to the next higher level in the
hierarchy.

• Is there a policy for the EJB that contains this method? No, therefore go to the next higher
level in the hierarchy.

• Is there a policy for the EJB module that contains the method's parent EJB? No, therefore
go to the next higher level in the hierarchy.

• Is there a policy for the enterprise application that contains this URL pattern? Yes, use it. (If
there were no such policy, the Security Service would have used the default root-level
policy for EJBs.)

Chapter 2
Overview of Securing WebLogic Resources

2-3

Figure 2-2 Hierarchy of Resources and Policies

Designing Roles and Policies for WebLogic Resources: Main
Steps

To secure WebLogic resources, define roles and policies to a list of resources in the domain.
For this purpose, determine the kind of policies you want to create and analyze the user
groups and roles associated with the group.

To design a set of roles and policies that can secure the resources in your domain:

1. List all of the resources that will be in your domain and determine which ones should be
accessed only by specific users or groups.

To see a list of all the types of resources that could be in any given domain, see Resource
Types You Can Secure with Policies.

For planning purposes, organize the resources into the following categories:

• Server resources, administrative resources, and JMX resources. Server resources
determine who can start and stop server instances. Administrative resources
determine who can complete such tasks as unlocking users who have been locked out
of their accounts, uploading files (used during deployment), and viewing the domain
and server logs. JMX resources determine who can change the configuration of
servers, clusters, machines, and other components that are defined in the domain's
configuration document (config.xml).

For these tasks, WebLogic Server already provides a detailed, layered security
scheme that grants different types of access to eight security roles (Admin, Deployer,
Operator, Monitor, Anonymous, AppTester, CrossDomainConnector,
AdminChannelUser). For most environments, this security scheme is adequate and

Chapter 2
Designing Roles and Policies for WebLogic Resources: Main Steps

2-4

only requires you to assign users to the eight default security roles appropriately (see
step 3).

While it is possible to modify some parts of this layered security scheme, such
modifications are usually not needed and require careful planning to maintain
consistency between the different layers. See Administrative Resources, Server
Resources, and JMX Resources.

• Web application resources and EJB resources, which determine who can access the
Web applications and EJBs that you deploy in your domain.

The Jakarta EE platform already provides a standard model for securing Web
applications and EJBs. In this standard model, developers define role mappings and
policies in the Web application or EJB deployment descriptors.

You can use the standard model or you can use the WebLogic Remote Console to
define polices and roles, which offers unified and dynamic security management. See
Options for Securing Web Application and EJB Resources.

• All other resources, which determine who can access the business logic and business
content in the enterprise applications and other modules that you deploy or otherwise
configure for the domain.

By default, these resources are not protected by policies; you must define policies to
determine who can access them.

2. For each type of resource that you want to secure, determine if you need to create root-
level policies, scoped policies, or a combination of both.

A root-level policy applies to all instances of a resource type. For example, if you define a
root-level policy for the Web Services resource type, then the policy will apply to all Web
Services in your domain.

A scoped policy applies to a specific resource instance and overrides a root-level policy.

See Security Policies.

3. Analyze your users and the resources that you want them to access. Organize users into
security groups and roles as follows:

• Add any user that you want to start and stop servers or to engage in other
administrative tasks to one of the eight default global roles. The WebLogic Server
security scheme allows only the eight global roles to perform many of these tasks.

• For other users (that you do not want to access administrative or server resources but
you do want to access other resources for which you have defined policies), create
additional security groups and roles. Because role membership can be granted at run
time, you can place users or groups in roles based on business rules or the context of
the request.

You can create global roles, which can be used in any policy, or scoped roles, which
can be used only in a policy for a specific resource instance.

See Users, Groups, And Security Roles.

4. Use the WebLogic Remote Console to create users, groups, roles, and policies:

a. To create the users and groups, see Users and Groups in Oracle WebLogic Remote
Console Online Help.

b. To create security roles and policies, see Security Policies and Roles in Oracle
WebLogic Remote Console Online Help.

Chapter 2
Designing Roles and Policies for WebLogic Resources: Main Steps

2-5

Best Practices: Conditionalize Policies or Conditionalize Roles
Because both roles and policies can evaluate a set of conditions at run time, you should
consider which parts of your security data should be static and which should be dynamic. For
example, you might want some policies to always allow one specific role to access a resource,
and then you use conditions in the role's definition to move users in and out of the roles as
needed. In other cases, you might want a static role definition and create a policy that allows
access to different roles at different times of the day.

As a general guideline, if you base the authorization decision on the resource instead of the
entities (roles) who can access the resource, you would add conditions to the security policy. If
you base authorization on who can access the resource, then you would add conditions to the
security role.

For an example of authorization based on who can access the resource, consider a manager
who is going on vacation. You can temporarily place a user in a Manager security role.
Dynamically granting this security role means that you do not need to change or redeploy your
application to allow for such a temporary arrangement. You simply specify the hours between
which the temporary manager should have special privileges. Further, you do not need to
remember to revoke these special privileges when the actual manager returns as you would if
you temporarily added the user to a management group.

Best Practices: Configure Entitlements Caching When Using WebLogic
Providers

The WebLogic Authorization provider, known as the DefaultAuthorizer, and the WebLogic
Role Mapping provider, referred to as the DefaultRoleMapper, improve performance by
caching the roles, predicates, and resource data that they look up. If you modify your realm to
use these WebLogic providers, you can configure the maximum number of items that they
store in the caches.

In WebLogic Server 14.1.1.0.0, the WebLogic Authorization provider (DefaultAuthorizer) and
the Role Mapping provider (DefaultRoleMapper) are deprecated and will be removed in a
future release.

Note:

By default, security realms in newly created domains include the XACML
Authorization and Role Mapping providers. The XACML providers use their own
cache, but this cache is not configurable. The WebLogic Authorization provider
(DefaultAuthorizer) and the Role Mapping provider (DefaultRoleMapper) are the
only WebLogic-provided security providers with configurable caches of entitlement
data.

By default, the Weblogic Authorization and Role Mapping providers store the following number
of items in each cache:

• 2000 items in the roles cache

This cache contains the name of each role that has been looked up and the policy that
protects it.

• 200 items in the predicates cache

Chapter 2
Designing Roles and Policies for WebLogic Resources: Main Steps

2-6

This cache contains each predicate that the WebLogic entitlements engine has looked up.

• 5000 items in the resources cache

This cache contains the name of each resource that has been looked up and the policy
that protects it.

If a cache exceeds its maximum size, the WebLogic entitlements engine removes the least
recently used (LRU) item from the cache.

If the applications on a WebLogic Server instance use more than 2000 roles or 5000
resources, consider increasing the cache sizes. (The WebLogic providers include less than 50
predicates, so there is no need to increase the size of this cache.)

To change the maximum number of items that a cache contains, pass one of the following
system properties in the java startup command for a WebLogic Server instance:

• -Dweblogic.entitlement.engine.cache.max_role_count=max-roles
where max-roles is the maximum number of roles that you want to cache.

• -Dweblogic.entitlement.engine.cache.max_predicate_count=max-predicates
where max-predicates is the maximum number of predicates that you want to cache.

• -Dweblogic.entitlement.engine.cache.max_resource_count=max-resources
where max_resource_count is the maximum number of resources that you want to cache.

By default, the WebLogic providers add items to the cache as they use them. With this
configuration, the initial lookup of entitlement data takes longer than subsequent lookups. You
can, however, decrease the amount of time needed for an initial lookup by configuring a
WebLogic Server instance to load the caches during its startup cycle. To do so, pass the
following system property to the server's java startup command:

-Dweblogic.entitlement.engine.cache.preload=true

For example:

java -Dweblogic.entitlement.engine.cache.max_role_count=6001 -
Dweblogic.entitlement.engine.cache.max_resource_count=3001 -
Dweblogic.entitlement.engine.cache.preload=true weblogic.Server

Chapter 2
Designing Roles and Policies for WebLogic Resources: Main Steps

2-7

3
Resource Types You Can Secure with Policies

Learn about the types of resources that you can secure using policies in WebLogic Server.
This chapter includes the following sections:

• Administrative Resources

• Application Resources

• COM Resources

• EJB Resources

• Enterprise Information Systems (EIS) Resources

• Java DataBase Connectivity (JDBC) Resources

• Java Messaging Service (JMS) Resources

• Java Naming and Directory Interface (JNDI) Resources

• JMX Resources

• Server Resources

• URL Resources

• Web Service Resources

• Work Context Resources

• Coherence Resources

Administrative Resources
Policies for administrative resources are different from the policies defined for regular users.
Administrative resources have special privileges such as uploading files during deployment,
viewing the domain and server logs, and unlocking users, and so on.

Policies for administrative resources determine who can complete such tasks as uploading
files (used during deployment), viewing the domain and server logs, and unlocking users who
have been locked out of their accounts.

For the most security-sensitive of these tasks, users must first be authorized by additional
policies on a JMX resource (see Figure 3-1). For information about JMX resources and how to
design roles and policies for activities that are protected by multiple resources, see JMX
Resources.

3-1

Figure 3-1 Some Policies Overlap

Table 3-1 describes the administrative activities that administrative resources protect and
which of these activities are also protected by additional JMX resources. For activities that are
protected by multiple resources, the default policy in the JMX resource duplicates the
protections in the Administrative resource.

Table 3-1 Activities And Default Policies For Administrative Resources

Administrative Activities Default Policy Allows
These Roles

Also Protected By a
JMX Resource?

Upload files for deployment. Admin, Deployer No

Control access to these methods in the file
download servlet:

• ALL methods
• wl_component_request
• wl_ear_resource_request
• ear_request
• wl_xml_entity_request
• wl_jsp_refresh_request
• file
• wl_init_replica_request
• wl_file_realm_request
• wl_managed_server_independence_reque

st
Note: The file download servlet is used internally
by WebLogic Server. Oracle recommends that you
do not modify the default policies for any of its
methods. They are listed here only for
completeness.

Admin, Operator No

Chapter 3
Administrative Resources

3-2

Table 3-1 (Cont.) Activities And Default Policies For Administrative Resources

Administrative Activities Default Policy Allows
These Roles

Also Protected By a
JMX Resource?

Enable applications to use identity assertion.

The default policy for this activity specifies that an
application must supply credentials for a user who
is in the Admin role before it can successfully
invoke the Authentication.assertIdentity()
API.

See
weblogic.security.services.Authenticati
on in the Java API Reference for Oracle WebLogic
Server.

Admin No

View domain and server logs through the
WebLogic Remote Console.

Admin, Deployer,
Operator, Monitor

Yes

Unlock users who have been locked out of their
accounts.

Admin Yes

Application Resources
An application resource is an enterprise application, Web application, or other Java EE module
that you deploy as a stand-alone application (for example, you can deploy Web Services and
JDBC modules as stand-alone applications). You secure an application resource when you
want to protect all resources that constitute the application. For example, securing an
enterprise application protects access to all WebLogic resources within that application (see
Figure 3-2).

Chapter 3
Application Resources

3-3

Figure 3-2 Application Resource Protects All Resources

See Protecting a Hierarchy of Resources.

COM Resources
A COM resource represents a package that contains one or more jCOM classes. jCOM is a
software bridge that allows bidirectional access between Java/Java EE objects deployed in
WebLogic Server and Microsoft ActiveX components available within the Microsoft Office
family of products, Visual Basic and C++ objects, and other Component Object Model/
Distributed Component Object Model (COM/DCOM) environments.

A policy on a COM resource protects access to all jCOM objects in a package.

For related information, see Configuring Access Control in Developing JCOM Applications for
Oracle WebLogic Server.

EJB Resources
An EJB (Enterprise JavaBean) resource is an EJB deployment module (JAR), individual EJB,
or individual method in an EJB. EJB resources exist within a hierarchy of resources, and at the
top of the hierarchy is an application resource. See Protecting a Hierarchy of Resources.

Because the Java EE platform standardizes EJB security in deployment descriptors, WebLogic
Server integrates this standard mechanism with its Security Service to give you a choice of

Chapter 3
COM Resources

3-4

techniques for securing EJB resources. See Options for Securing Web Application and EJB
Resources.

Enterprise Information Systems (EIS) Resources
An EIS resource is a system-level software driver used by an application server, such as
WebLogic Server, to connect to an Enterprise Information System. Oracle supports resource
adapters developed by EIS vendors and third-party application developers. Resource adapters
can be deployed in any application server supporting the applicable Java EE Platform
Specification. Resource Adapters contain the Java code, and if necessary, the native
components required to interact with the EIS.

To secure access to an EIS, create security policies and security roles for all resource adapters
as a group, or for individual adapters. These resources exist within a hierarchy of resources,
and at the top of the hierarchy is an application resource. See Protecting a Hierarchy of
Resources.

For related information, see Security in Developing Resource Adapters for Oracle WebLogic
Server.

Java DataBase Connectivity (JDBC) Resources
A Java DataBase Connectivity (JDBC) resource is a JDBC system resource, JDBC module
that is part of an application, JDBC data source, or a specific method within a data source. If
you deploy a JDBC module as a stand-alone application, the application is represented by an
application resource (see Application Resources).

JDBC resources exist within a hierarchy of resources, and at the top of the hierarchy is an
application resource. See Protecting a Hierarchy of Resources.

JDBC Operations
When you secure an individual data source, you can choose whether to protect JDBC
operations using one or more of the following administrator methods:

• admin—The following methods on the JDBCDataSourceRuntimeMBean are invoked as admin
operations: clearStatementCache, suspend, forceSuspend, resume, shutdown,
forceShutdown, start, getProperties, and poolExists.

• reserve—Applications reserve a connection in the data source by looking up the data
source and then calling getConnection.

Note:

Giving a user the reserve permission enables them to execute vendor-specific
operations. Depending on the database vendor, some of these operations may
have database security implications.

• shrink—Shrinks the number of connections in the data source to the maximum of the
currently reserved connections or to the initial size.

• reset—Resets the data source connections by shutting down and re-establishing all
physical database connections. This also clears the statement cache for each connection.
You can only reset data source connections that are running normally.

Chapter 3
Enterprise Information Systems (EIS) Resources

3-5

• All—An individual data source is protected by the union of the Admin, reserve, shrink,
and reset administrator methods.

Note:

If a security policy controls access to connections in a multi data source, access
checks are performed at both levels of the JDBC resource hierarchy (once at the
multi data source level, and again at the individual data source level). As with all
types of WebLogic resources, this double-checking ensures that the most
specific security policy controls access.

Table 3-2 lists the JDBC administrator methods and the roles that the default policy allows for
each operation.

Table 3-2 Default Policies for JDBC Resources

JDBC Administrator Methods Default Policy Allows These Roles

admin Admin, Deployer
reset Admin, Deployer
reserve Everyone
shrink Admin, Deployer

Java Messaging Service (JMS) Resources
A Java Messaging Service (JMS) resource is a JMS system module, a JMS module that is part
of an application (deprecated), a specific WebLogic JMS destination or destination template
defined within a module, or a specific operation within a WebLogic JMS destination. You can
create security policies and roles for WebLogic JMS destinations (JMS queues and JMS
topics) as a group by securing the JMS module where they are defined, or for specific
WebLogic JMS destinations (JMS queues or JMS topics) defined within a JMS module. The
WebLogic destinations defined in a JMS module run on WebLogic JMS Servers.

These resources exist within a hierarchy of resources, and at the top of the hierarchy is an
application resource. See Protecting a Hierarchy of Resources.

JMS Operations
When you secure a specific destination on a JMS server, you can protect operations on the
destination. By default, destinations are not protected. This means that any valid user for a
WebLogic server instance can send, receive, and browse messages on a destination. Only
users defined by the policy condition can access control of the destination. Valid protection
operations are:

• send—Required to send a message to a queue or a topic. This includes calls to the
MessageProducer.send(), QueueSender.send(), and TopicPublisher.publish()
methods, as well as the Messaging Bridge.

• receive—Required to create a consumer on a queue or a topic. This includes calls to the
Session.createConsumer(), Session.createDurableSubscriber(),
QueueSession.createReceiver(), TopicSession.createSubscriber(),
TopicSession.createDurableSubscriber(), Connection.createConnectionConsumer(),
Connection.createDurableConnectionConsumer(),

Chapter 3
Java Messaging Service (JMS) Resources

3-6

QueueConnection.createConnectionConsumer(),
TopicConnection.createConnectionConsumer(), and
TopicConnection.createDurableConnectionConsumer() methods, as well as the
Messaging Bridge and message-driven beans.

• browse—Required to view the messages on a queue using the QueueBrowser interface.

• ALL—Required to send, receive, and browse methods on a destination.

Java Naming and Directory Interface (JNDI) Resources
A Java Naming and Directory Interface (JNDI) resource is a node in a server's JNDI tree. A
policy on a JNDI resource determines who can access WebLogic Server entities and actions
through JNDI. You can create a policy on the root node of the JNDI tree or on individual nodes.

If your domain is configured to run in secured production mode, then the authorization policies
for JNDI and MBean access are more restrictive to enforce a highly secure environment for
your production domain. In this mode, remote anonymous JNDI access is not allowed for
modify and list operations. This is enforced by the RemoteAnonymousJNDIEnabled attribute in
the SecurityConfigurationMBean. This attribute disables anonymous JNDI access and the
default value, in secured production mode, is true. See SecurityConfigurationMBean in MBean
Reference for Oracle WebLogic Server for more information about this MBean attribute. When
in secured production mode, only the standard roles (Admin, Deployer, Operator, and Monitor)
can look up MBeans using the JNDI lookup methods.

JNDI Operations
For each JNDI node, you can create a policy for all operations or for one of the following
operations:

• modify—Whenever an application modifies the JNDI tree in any way (that is, adding,
removing, changing) the current user must have permission to make the modification. This
includes the bind(), rebind(), createSubContext(), destroySubContext(), and unbind()
methods.

• lookup—Whenever an application looks up an object in the JNDI tree, the current user
must have permission to perform the lookup. This includes the lookup() and
lookupLink() methods.

If your domain is configured to run in secured production mode, then only the standard
roles (Admin, Deployer, Operator, and Monitor) can look up MBeans using the JNDI
lookup methods. For more information about secured production mode, see Install
WebLogic Server in a Secure Manner in Securing a Production Environment for Oracle
WebLogic Server.

• list—Whenever an application lists the contents of a context in JNDI, the current user
must have permission to perform the listing operation. This includes the list() and
listBindings() methods.

JMX Resources
A JMX resource is an MBean attribute or MBean operation. A policy on a JMX resource
controls who can read or write MBean attributes or invoke operations.

WebLogic Server uses managed beans (MBeans) in the implementation of its management
system. Almost all administrative activities require you to invoke an MBean operation or modify

Chapter 3
Java Naming and Directory Interface (JNDI) Resources

3-7

an MBean attribute using a Java Management Extensions (JMX) client. For example, the
WebLogic Scripting Tool is a JMX client. See Understanding WebLogic Server MBeans in
Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

Oracle provides a default set of JMX resources to protect WebLogic Server MBeans. See
Default Security Policies for MBeans in the MBean Reference for Oracle WebLogic Server. For
MBean attributes and operations that represent particularly sensitive data or actions, WebLogic
Server uses additional types of resources to secure access. For example, the
ServerLifeCycleRuntimeMBean's shutdown() operation is protected by a JMX resource and a
Server resource.

If your domain is configured to run in secured production mode, then more restrictive policies
are enabled by default for JMX authorization. If you enable restrictive JMX policies, then the
default policies allow MBean access only to the standard WebLogic Server roles (Admin,
Deployer, Operator, or Monitor). You can enable or disable restrictive JMX policies using as
follows:

• Use Fusion Middleware Control. From the WebLogic Domain menu, select Security >
Administration. Expand Advanced, then expand Secure Mode Settings. Under Secure
Mode Settings, select the Restrictive JMX Policies check box. See Configure domain
security in Administering Oracle WebLogic Server with Fusion Middleware Control.

When a JMX client attempts to invoke an operation or change an attribute that is secured by a
JMX resource and some other resource type, the client must satisfy the policies defined in both
resources (see Figure 3-3).

Chapter 3
JMX Resources

3-8

Figure 3-3 MBean Server Checks with Both Resources

Maintaining a Consistent Security Scheme
The default configuration of groups, global roles, and security policies on all resources that are
used to protect an entity or action create a consistent security scheme. You can, however,
make modifications to that limit access in ways that you do not intend. Make sure that any
modifications you make to the default security settings do not prevent a user from being
authorized by both the JMX resource and other resource type. When you create or modify a
security policy, consider taking the following action:

• Always include the Admin and Operator global roles in policies for Server resources.

Chapter 3
JMX Resources

3-9

Failure to use the Operator global role or a security role nested within this default global
role may result in inconsistent behavior by the WebLogic Security Service.

• For a security policy on a deployable resource (such as an Web application or EJB
module, Connector module, or startup/shutdown class), use the Deployer global role.

Server Resources
Policies for a server resource determine who can control the state of a WebLogic Server server
instance.

When users start server instances by directly invoking the weblogic.Server class in a Java
command, the policy on the Server resource is the only security check that occurs. All other
tasks that change the state of a WebLogic Server instance require the use of the WebLogic
Remote Console, WebLogic Scripting Tool, Node Manager, or some other JMX client, and
therefore require users to be authorized first by an additional JMX resource. See JMX
Resources.

You can create security policies that apply to all WebLogic Server instances in a domain or to
individual servers. If you define a policy for an individual server, you can protect all of its life
cycle operations or define individual policies for each of the following operations:

• boot—A user who tries to start a WebLogic Server instance, either an Administration
Server or Managed Server, must have permission to do so. This action is typically initiated
through a call to the java weblogic.Server command on the command line, by a
configured start script (which in turn calls the java weblogic.Server command), or
through the Node Manager capabilities that allow for remote start of WebLogic Server

• shutdown—A user who tries to shut down a running WebLogic Server instance, either an
Administration Server or Managed Server, must have permission to do so. This action is
typically initiated through the WebLogic Remote Console or the WLST SHUTDOWN or
FORCESHUTDOWN commands.

• suspend—A user who tries to prohibit additional logins (logins other than for privileged
administrative actions) to a running WebLogic Server instance, either an Administration
Server or Managed Server, must have permission to do so. This action is typically initiated
through the WebLogic Remote Console.

• resume—A user who tries to re-enable non-privileged logins to a running WebLogic Server
instance, either an Administration Server or Managed Server, must have permission to do
so. This action is typically initiated through the WebLogic Remote Console.

All server resources inherit a default security policy that gives permission to the Admin and
Operator global security roles.

Note:

If you enable the domain-wide administration port, then only the Admin role (and not
Operator) can control the state of a WebLogic Server server instance. See Configure
the Domain-Wide Administration Port in Oracle WebLogic Remote Console Online
Help.

Chapter 3
Server Resources

3-10

Note:

Do not remove roles from the default security policies. Eliminating some of the
existing security roles might negatively affect the functioning of WebLogic Server.
However, if you like, you can make the default security policies more inclusive (for
example, by adding new security roles). See Maintaining a Consistent Security
Scheme.

Permissions for the weblogic.Server Command and the Node Manager
WebLogic Server provides two ways to start and shut down WebLogic Server instances
(servers): the weblogic.Server command and the Node Manager. Because the underlying
components for the weblogic.Server command and the Node Manager are different, the two
commands use different authorization methods.

Permissions for Using the weblogic.Server Command
The weblogic.Server command, which you can use to start both Administration and Managed
Servers, calls methods that are protected by a security policy on the Server resource. To use
this command, you must satisfy the requirements of the security policy on the Server resource.

Some weblogic.Server arguments set attributes for MBeans. However, because these
arguments modify an MBean before the server is in the RUNNING state, the security policy on
the Server resource, not the protection on the MBean, is the authorizer. For example, a user in
the Operator global role can use the -Dweblogic.ListenPort argument to change a server's
default listen port, but once the WebLogic Server instance is running, this user cannot change
the listen port value.

See weblogic.Server Command-Line Reference in the Command Reference for Oracle
WebLogic Server.

Permissions for Using the Node Manager
The Node Manager uses both MBeans and the security policy on the Server resource to start a
remote server.

If you configure a Node Manager on the host machine of a remote WebLogic Server instance,
by default a user in the Admin or Operator global role can use the Node Manager to start the
remote server.

See Node Manager Overview in Administering Node Manager for Oracle WebLogic Server.

Shutting down a WebLogic Server instance involves both MBeans and the security policy on
the Server resource. When a user issues a shutdown command, the server first determines
whether that user is granted the Admin or Operator global role (per the MBean security layer).
Then, after the MBean operations run, the server determines whether the security policy on the
Server resource authorizes the user to shut down the server.

See Starting and Stopping Servers: Quick Reference in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

Chapter 3
Server Resources

3-11

URL Resources
A URL resource is a specific URL or URL pattern in a Web application. You can create a policy
for a URL resource that protects all HTTP methods for a specified URL or URL pattern, or that
protects only specific HTTP methods. These resources exist within a hierarchy of resources,
and at the top of the hierarchy is an application resource. See Protecting a Hierarchy of
Resources.

Because the Java EE platform standardizes Web application security in deployment
descriptors, WebLogic Server integrates this standard mechanism with its Security Service to
give you a choice of techniques for securing Web application resources. See Options for
Securing Web Application and EJB Resources.

Web Service Resources
A Web Service resource is a Web Service module (WAR or JAR) or an operation within a Web
Service module. Web Services are protected by the following hierarchy of resources:

• The application resource for the parent application.

• The Web Service resource for the Web Service module (WAR or JAR).

• Individual Web Service resources for each Web Service operation.

If you implement the Web Service with standard Java objects, any of the above resources
protect the Java objects.

If you implement the Web Service with an EJB any of the above or any of the following
resources protect the EJB implementation:

– The EJB resource for the EJB.

– Individual EJB resources for each EJB method.

If you use an EJB to implement your Web Service, Oracle recommends that you create a
policy at the application level. Policies on the Web Service module and individual Web Service
operations apply only to Web Service clients. EJB clients can use RMI or JNDI to bypass the
Web Service module and directly invoke EJB operations (see Figure 3-4).

Chapter 3
URL Resources

3-12

Figure 3-4 Hierarchy of Resources for Web Service with EJB Implementation

For information on using Java annotations to secure Web Services, see Configuring Message-
Level Security in Securing WebLogic Web Services for Oracle WebLogic Server.

Work Context Resources
Work Contexts enable Java EE developers to define and pass properties without including
them in a remote call. A Work Context resource represents the operations that create, delete,
read, or modify a property. You can use one Work Context resource for all operations of a
given property, or you can create individual resources for each operation.

See Best Practices for Application Design in Developing RMI Applications for Oracle WebLogic
Server.

Chapter 3
Work Context Resources

3-13

Coherence Resources
Coherence resources provide distributed, in-memory caching and data grid processing for
applications. Roles and policies can be applied to two types of Coherence resources:

• Caches – A cluster contains any number of caches that are shared by all cluster members.
The caches are used by applications to store and retrieve data.

• Services – A cluster contains any number of services that are shared by all cluster
members. The services include connectivity services, cache services, and processing
services. Each cluster member can provide and consume such services.

The default authorization policy allows everybody access to all Coherence resources. To define
policies and roles on caches and services, the names of the caches and services must be
known. In some cases, the cache configuration file in a Coherence Grid ARchive (GAR)
module can be inspected to discover cache and service names. However, there are some
configurations that allow applications to use different names to refer to the same cache. Always
consult an application's developers or architects to be certain of the cache and service names
used by an application.

Chapter 3
Coherence Resources

3-14

4
Options for Securing Web Application and EJB
Resources

WebLogic Server offers several options for securing your Web application and EJB resources,
including the Java EE standard model.
In the Java EE standard model, you can secure Web applications and EJBs in either of the
following ways:

• Declaratively, using deployment descriptors or metadata annotations.

For EJB 3.x, EJB security metadata annotations can be specified directly in the EJB bean
class to specify the roles that are allowed to invoke all, or a subset, of the EJB's methods.

• Programmatically, as described in the following topics in Developing Applications with the
WebLogic Security Service:

– Using Programmatic Security With Web Applications

To implement programmatic security in web applications, WebLogic Server supports
the use of the Java EE Security API (JSR 375) getCallerPrincipal,
getPrincipalsByType, isCallerInRole, hasAccessToWebResource, and authenticate
methods of the SecurityContext interface, and the getUserPrincipal and
isUserInRole methods of the HttpServletRequest interface.

– Using Programmatic Security With EJBs

To implement programmatic security in EJBs, WebLogic Server supports the use of the
Java EE Security API (JSR 375) getCallerPrincipal, getPrincipalsByType, and
isCallerInRole methods of the SecurityContext interface, and the isCallerInRole
and getCallerPrincipal methods of the EJBContext interface. WebLogic Server also
supports the use of the security-role-ref element in deployment descriptors.

Because this Java EE standard may be too inflexible for some environments, WebLogic Server
also offers a choice of other, more flexible models in addition to supporting the Java EE
standard.

Note:

If you are implementing security using JACC (Java Authorization Contract for
Containers as defined in JSR 115), you must use the Java EE standard model. Other
WebLogic Server models are not available and the security functions for Web
applications and EJBs in the WebLogic Remote Console are disabled. See Using the
Java Authorization Contract for Containers in Developing Applications with the
WebLogic Security Service.

This chapter includes the following sections:

• Deployment Descriptors Not Required

• Comparison of Security Models for Web Applications and EJBs

4-1

http://jcp.org/en/jsr/detail?id=115

• Understanding the Advanced Security Model

• Securing Web Applications and EJBs

Note:

The instructions for EJB resources provided in this section also apply to Message-
Driven Beans (MDBs).

Deployment Descriptors Not Required
As described in What Was New and Changed in EJB 3.0 in Developing Enterprise JavaBeans
for Oracle WebLogic Server, you are no longer required to create the deployment descriptor
files (such as ejb-jar.xml). You can now use metadata annotations in the bean file itself to
configure metadata. Annotations simplify the EJB development process by allowing a
developer to specify within the Java class itself how the bean behaves in the container,
requests for dependency injection, and so on. Annotations are an alternative to deployment
descriptors that were required by older versions (2.x and earlier) of EJB.

You can still use XML deployment descriptors in addition to, or instead of, the metadata
annotations if you so choose.

Note:

Deployment descriptor elements always override their annotation counterparts. In the
case of conflicts, the deployment descriptor value overrides the annotation value.

Comparison of Security Models for Web Applications and EJBs
For EJBs, the application developer can make the deployer's task easier by using the security-
related metadata annotations to specify the security roles that are allowed to invoke the EJB
methods. If you use annotations or deployment descriptors, you choose a security model when
you deploy each Web application or EJB and your choice is immutable for the lifetime of the
deployment. If you want to use a different model, you must delete and redeploy the Web
application or EJB.

Each deployment descriptor-based security model defines two types of behaviors for securing
Web applications and EJBs: where roles and policies are defined and which URL patterns and
EJB methods trigger the Security Service to perform security checks.

Table 4-1 compares the security model behaviors.

Chapter 4
Deployment Descriptors Not Required

4-2

Table 4-1 Security Model Behaviors

This Model . . . Uses Roles and Policies From . . . And Performs Security
Checks . . .

Metadata Annotations

Categorized as Deployment
Descriptor Only (Java EE standard)
in WebLogic Remote Console

Metadata annotations in the EJB bean file itself
specify the roles that are allowed to invoke all, or
a subset, of the EJB's methods.

Only when clients request EJB
methods that are protected by a role
specified in an annotation.

You can use metadata annotations
in conjunctions with deployment
descriptor- and WebLogic Remote
Console-based mechanisms. In
case of conflict, deployment
descriptor elements always override
their annotation counterparts.

Deployment Descriptor Only (Java
EE standard)

The web.xml, weblogic.xml and ejb-
jar.xml, weblogic-ejb-jar.xml deployment
descriptors.

If roles have been defined for the application that
contains the Web application or EJB, all roles
are combined using a logical OR operation.

Only when clients request URLs or
EJB methods that are protected by
a policy in the deployment
descriptor.

Deployment descriptor elements
always override their annotation
counterparts, if any.

Custom Roles This model uses role mappings from a role
mapping provider that you configure for the
security realm. You can use WebLogic Remote
Console to configure the provider. Any role
mappings in the deployment descriptors or
annotations are ignored.

The model uses the policies that are defined in
the web.xml and ejb-jar.xml deployment
descriptors.

Only when clients request URLs or
EJB methods that are protected by
a policy in the deployment
descriptor.

Custom Roles and Policies A role mapping provider and an authorization
provider that you configure for the security
realm. You can use WebLogic Remote Console
to configure the providers.

Any role mappings or policies in the deployment
descriptors or annotations are ignored.

For all URLs and EJB methods.

Advanced Configurable.

You can configure this model to use only
security data from annotations or deployment
descriptors, use only the data from security
providers, or import security data from
deployment descriptors into the security provider
databases to provide a baseline for further
modifications.

Configurable.

Discussion of Each Model
The following sections describe each model and suggest scenarios under which each is
appropriate.

Metadata Annotations
As described in Overview of Metadata Annotations and EJB Bean Files in Developing
Enterprise JavaBeans for Oracle WebLogic Server, the EJB programming model uses the

Chapter 4
Comparison of Security Models for Web Applications and EJBs

4-3

metadata annotations feature in which you create an annotated EJB bean file, compile the
class with the standard Java compiler, and the resulting class can then be packaged into a
target module for deployment. At runtime, WebLogic Server parses the annotations and
applies the required behavioral aspects to the bean file.

The following security-related annotations are available:

• javax.annotation.security.DeclareRoles — Explicitly lists the security roles that will be used
to secure the EJB.

• javax.annotation.security.RolesAllowed — Specifies the security roles that are allowed to
invoke all the methods of the EJB (when specified at the class-level) or a particular method
(when specified at the method-level.)

• javax.annotation.security.DenyAll — Specifies that the annotated method can not be
invoked by any role.

• javax.annotation.security.PermitAll — Specifies that the annotated method can be invoked
by all roles.

• javax.annotation.security.RunAs — Specifies the role which runs the EJB. By default, the
EJB runs as the user who actually invokes it.

At deployment time, the deployer must then create these security roles if they do not already
exist and map users to these roles using the WebLogic Remote Console to update your
security realm. For details, see Security Policies and Roles in Oracle WebLogic Remote
Console Online Help.

This model gives the application developer more control without having to implement
programmatic authorization in EJBs.

Table 4-2 Metadata Annotations: Typical Scenario

Company A, Developer Company A, Admin/Deployer

In Company A, a user in the role of developer performs the
following tasks:

• Adds one or more security-related metadata
annotations.

• Uses the WebLogic compile tool weblogic.appc (or its
Ant equivalent wlappc) to compile the bean file.

• Turns application over to the Admin/Deployer. Provides
instructions as to which roles are required.

In Company A, a user in the role of administrator or deployer
performs the following tasks:

• Uses the WebLogic Remote Console to ensure that the
roles exist and are properly mapped to groups and
users.

• To have only the annotations considered, deploys the
application as Deployment Descriptor Only (Java EE
standard) in the WebLogic Remote Console.

You can use metadata annotations in conjunction with deployment descriptor- and WebLogic
Remote Console mechanisms. If you do so, note the following:

• In case of conflict, deployment descriptor elements always override their annotation
counterparts. For example, if the annotation specifies Deny All for a method and the
deployment descriptor specifies that the Developer role has access to that method, the
Developer role does have access to the method.

• If you specify Custom Roles in the WebLogic Remote Console, any role mappings in the
deployment descriptors or annotations are ignored.

See Securing Access to the EJB in Developing Enterprise JavaBeans for Oracle WebLogic
Server for an example of a simple stateless session EJB that uses all of the security-related
annotations.

Chapter 4
Comparison of Security Models for Web Applications and EJBs

4-4

Deployment Descriptor Only Model
This is part of the standard Java EE model and is therefore a widely known technique for
adding declarative security to Web applications and EJBs. It uses only roles and policies
defined by a developer in the Java EE deployment descriptor (DD) and the WebLogic Server
DD. It requires the security administrator to verify that the security principals (groups or users)
in the deployment descriptors exist and are mapped properly in the security realm.

Note:

This model also affects application-scoped roles that apply to an EAR: with this
model, the Security Service uses only the application-scoped roles defined in the
WebLogic Server DD.

If a developer changes roles or policies in a deployment descriptor, WebLogic Server
recognizes the change as soon as you redeploy the Web application, EJB, or EAR.

With this model, EJBs and URL patterns are not protected by roles and policies of a broader
scope (such as a policy scoped to an entire Web application). If an EJB or URL pattern is not
protected by a role or policy in the DD, then it is unprotected: anyone can access it. For
example, if you create an application-scoped policy for an EAR and the EAR contains an EJB,
the EJB will not be protected by the EAR's application-scoped policy.

This model is appropriate if developers and security administrators can closely coordinate their
work, both upon initial deployment of the Web application or EJB and upon subsequent
redeployments. Table 4-3 shows a typical scenario:

Table 4-3 Deployment Descriptors Only: Typical Scenario

Company A, Developer Company A, Admin/Deployer

In Company A, a user in the role of developer
performs the following tasks:

• Maps EJBs and/or Web URLs to roles in the
Java EE DD.

• Maps roles to principals in the WebLogic
Server DD.

• Turns application over to the Admin/Deployer.

In Company A, a user in the role of administrator or
deployer performs the following tasks:

• Uses the WebLogic Remote Console to ensure
that groups exist and are properly mapped to
users.

Custom Roles Model
This security model uses policies defined in the Java EE DD and ignores any principal
mappings in the WebLogic Server DD. The security administrator completes the role mappings
using the WebLogic Remote Console.

The model enables team members to focus on their areas of expertise. Web application and
EJB developers need only to declare which URL patterns or EJB methods should be secured.
Then the security administrator creates role mappings that fit within the existing hierarchy of
roles and principals for a given realm.

If a developer changes policies in a deployment descriptor, WebLogic Server recognizes the
change as soon as you redeploy the Web application or EJB. If an administrator changes role
mappings, the changes take effect immediately without requiring a redeployment.

Chapter 4
Comparison of Security Models for Web Applications and EJBs

4-5

This model is appropriate if developers and administrators cannot closely coordinate their work
or if role mappings change frequently. Table 4-4 shows a typical scenario:

Table 4-4 Customize Roles Only: Typical Scenario

Company A, ISV Developer; or Company B,
Developer

Company B, Admin/Deployer

An ISV developer from Company A, or a developer
from Company B, does the following tasks:

• Maps EJBs/URLs to roles in Java EE
deployment descriptor.

• Turns application over to Admin/Deployer

An administrator or a deployer from Company B
does the following task:

• Uses the WebLogic Remote Console to define
security roles.

Custom Roles and Policies Model
This security model offers unified and dynamic security management. It uses roles and policies
that a security administrator has created using the WebLogic Remote Console and ignores any
roles and policies defined in deployment descriptors.

Instead of requiring developers to modify multiple deployment descriptors when organizational
security requirements change, administrators can modify all security configurations from a
centralized, graphical user interface. Users, groups, security roles, and security policies can all
be defined using the WebLogic Remote Console. As a result, the process of making changes
based on updated security requirements becomes more efficient.

This model is appropriate if you require only that entire Web applications or EJBs be secured,
but is less appropriate if you require fine-grained control of a large number of specific URL
patterns or EJB methods. Such fine-grained control requires a developer to provide to
administrators detailed information about the URL patterns or EJB methods that must be
secured. If you require such fine-grained control, consider using the Custom Roles model (see
Custom Roles Model).

The model also introduces a slight performance degradation because it checks permissions
regardless of which URL a client requests or EJB method a client attempts to invoke.

Table 4-5 shows a typical scenario:

Table 4-5 Customize roles and Policies: Typical Scenario

Company A, Developer Company A, Admin/Deployer

• Provides no mappings in the Java EE or
WebLogic Server DD.

• Turns application over to Admin/Deployer

• Uses the WebLogic Remote Console to define
roles and policies for EJBs and Web
applications.

Advanced Model
WebLogic Server provides this model primarily for backwards compatibility with releases prior
to 9.0.

You can configure the following behaviors for this model (see Understanding the Combined
Role Mapping Enabled Setting):

• Perform security checks for all URLs and EJB methods or only those that are protected in
the deployment descriptors.

Chapter 4
Comparison of Security Models for Web Applications and EJBs

4-6

• (Not applicable if you configure this model to perform security checks only for URLs and
EJB methods that are secured in deployment descriptors.) Use only roles and policies
defined in the deployment descriptors, or use only roles and policies defined in the realm's
security providers, or import security data from deployment descriptors into the realm's
authorization provider or role mapping provider databases.

• (Not applicable if you configure this model to use only roles and policies defined in the
realm's security providers.) Combine roles in parent applications with roles in the Web
application or EJB, or override roles in parent applications.

If you change the configuration of this model, the change applies to all Web applications and
EJBs that use this model. For example, you configure the Advanced model to perform security
checks for all URLs and methods, and then you deploy several EJBs and configure them to
use the Advanced model. The EJB container will request a security check any time a client
tries to invoke any method in any of the several EJBs. If you then modify the Advance model to
perform security checks only for the EJB methods that are protected in deployment
descriptors, then the EJB container immediately begins to request security checks only for
protected methods for the several EJBs.

Understanding the Advanced Security Model

Note:

This section applies only for those Web applications and EJBs that use the Advanced
security model.

Oracle recommends using an alternative security model instead of the advanced
security model. See Comparison of Security Models for Web Applications and EJBs.

Three settings configure the Advanced model: Check Roles and Policies, When Deploying
Web Applications or EJBs, and Combined Role Mapping Enabled. Failure to understand
these settings could result in incorrect or lost security data.

If you change the configuration of this model, the change applies to all Web applications and
EJBs that use this model.

The following sections describe the settings for the Advanced security model:

• Understanding the Check Roles and Policies Setting

• Understanding the When Deploying Web Applications or EJBs Setting

• How the Check Roles and Policies and When Deploying Web Applications or EJBs
Settings Interact

• Understanding the Combined Role Mapping Enabled Setting

Understanding the Check Roles and Policies Setting
The Check Roles and Policies setting determines whether the Security Service performs
security checks for all URLs and EJB methods or only those that are protected in the
deployment descriptors and annotations.

Using WLST, set the value of Check Roles and Policies as follows:

Chapter 4
Understanding the Advanced Security Model

4-7

• To perform security checks only on Web application and EJB resources that have security
specified in their associated deployment descriptors (DDs) and annotations, set
RealmMBean.FullyDelegateAuthorization to false.

Note:

This selection is analogous to the Deployment Descriptor Only security model:
the Security Service uses only roles and policies defined in a Web application or
EJB's deployment descriptors and annotations.

• To perform security checks on all Web application and EJB resources, regardless of
whether there are any security settings in the deployment descriptors and annotations for
these WebLogic resources, set RealmMBean.FullyDelegateAuthorization to true.

Note:

With this selection, you can also configure the When Deploying Web
Applications or EJBs setting.

Understanding the When Deploying Web Applications or EJBs Setting
The When Deploying Web Applications or EJBs setting determines whether the Security
Service ignores role and policy data in deployment descriptors and annotations or imports the
data into role mapping and authorization provider databases each time you deploy a Web
application or EJB.

Note:

This setting is valid only if you have set Check Roles and Policies to All Web
applications and EJBs (RealmMBean.FullyDelegateAuthorization=true).

Using WLST, set the value of When Deploying Web Applications or EJBs as follows:

• To secure Web application and EJB resources using only WebLogic Remote Console, set
both RealmMBean.DeployPolicyIgnored and RealmMBean.DeployRoleIgnored to true.

At this point, you can begin to use WebLogic Remote Console to secure the resources.
See Create a Scoped Role and Create a Policy for Resource Instances in Oracle
WebLogic Remote Console Online Help.

• To import security data from the deployment descriptors and annotations, set both
RealmMBean.DeployPolicyIgnored and RealmMBean.DeployRoleIgnored to false.

Chapter 4
Understanding the Advanced Security Model

4-8

Note:

Importing security data introduces risks to the integrity of your security data.
Each time you import security data, the Security Service attempts to remove all
associated security data from the provider databases and re-imports data from
the deployment descriptors and annotations. If you modified the imported
security data, then your modifications could become invalid or could be removed.

How the Check Roles and Policies and When Deploying Web Applications
or EJBs Settings Interact

Table 4-6 shows how to achieve the behavior you want from the WebLogic Security Service
using different combinations of the Check Roles and Policies and When Deploying Web
Applications and EJBs settings.

Table 4-6 Interaction Between the Check Roles and Policies Setting and the When
Deploying Web Applications or EJBs Setting

If you want to control
security for . . .

and set security for Web
application and EJB
resources . . .

then set Check
Roles and
Policies to . . .

and set When
Deploying Web
Applications or
EJBs to . . .

All Web application and EJB
resources

using only WebLogic Remote
Console

All Web
applications and
EJBs

Ignore Roles and
Policies from DD

All Web application and EJB
resources

by copying or reinitializing
security data from the
deployment descriptors and
annotations into the
configured Authorization and
Role Mapping providers'
databases when the Web
application or EJB resource is
deployed, then use one of the
other techniques to modify
security roles and security
policies

Note: Security data is copied/
reinitialized each time the
Web application or EJB
resource is deployed.

All Web
applications and
EJBs

Initialize Roles and
Policies from DD

Only on Web applications and
EJB methods that are
specified in the deployment
descriptors and annotations
(default configuration)

using only the deployment
descriptors and annotations

Web applications
and EJBs
Protected in DD

--

Understanding the Combined Role Mapping Enabled Setting
The Combined Role Mapping Enabled setting determines how the role mappings in the
Enterprise Application, Web application, and EJB containers interact.

Chapter 4
Understanding the Advanced Security Model

4-9

WebLogic Server provides this setting for backwards compatibility with 8.x versions. For all
applications initially deployed in version 9.x, the default value for this setting is true (enabled).
For all applications previously deployed in version 8.1 and upgraded to version 9.x, the default
value is false (disabled). If either of the following is true, consider changing the default value for
Combined Role Mapping Enabled:

• You selected the Advanced security model for an 8.x application upgrade and want to use
the combine role mapping behavior available in version 9.x.

• You selected the Advanced security model for a 9.x application and want to use the role
mapping behavior in version 8.x.

Table 4-7 compares how this setting affects security for Web applications and EJBs:

Table 4-7 How Combined Role Mapping Affects Security for Web Applications and
EJBs

When Combined Role Mapping is Disabled... When Combined Role Mapping is Enabled...

Role mappings for each container are exclusive to
other containers unless defined by the
<externally-defined> descriptor element.

Application role mappings are combined with EJB
and Web application mappings so that all principal
mappings are included. The Security Service
combines the role mappings with a logical OR
operator.

If one or more policies in the web.xml file specifies
a role for which no role mapping exists in the
weblogic.xml file, the Web application container
assumes that the undefined role is the name of a
principal. It therefore maps the assumed principal
to the role name. For example, if the web.xml file
contains the following stanza in one of its policies:

<auth-constraint>
 <role-name>PrivilegedUser</role-name>
</auth-constraint>

but the weblogic.xml file has no role mapping for
PrivilegedUser, then the Web application container
creates an in-memory mapping that is equivalent to
the following stanza:

<security-role-assignment>
<role-name>PrivilegedUser</role-name>
<principal-name>PrivilegedUser </principal-
name>
</security-role-assignment>

If one or more policies in the web.xml file specifies
a role for which no mapping exists in the
weblogic.xml file, the Web application container
creates an empty map for the undefined role (that
is, the role is explicitly defined as containing no
principal). Therefore, no one can access URL
patterns that are secured by such policies.

Role mappings for EJB methods must be defined in
the weblogic-ejb-jar.xml file. Role mappings defined
in the other containers are not used unless defined
by the <externally-defined> descriptor
element.

If one or more policies in the ejb-jar.xml file
specifies a role for which no mapping exists in the
weblogic-ejb-jar.xml file, the EJB container creates
an empty map for the undefined role (that is, the
role is explicitly defined as containing no principal).
Therefore, no one can access methods that are
secured by such policies.

Usage Examples
The following examples show the differences in role mapping behaviors depending on whether
Combined Role Mapping is enabled or disabled.

Chapter 4
Understanding the Advanced Security Model

4-10

Example for EAR, WAR and EJB
MyAppEar contains MyAppWAR which contains MyEJB. Role to Principal mappings (p1 and
p2) are as follows:

• EAR descriptor, myRole = p1

• WAR descriptor, myRole = p2

• EJB-JAR descriptor, myRole = empty

When Combined Role Mapping is enabled, the role mappings would be:

• For the Ear container, myRole maps to p1.

• For the WAR container, myRole maps to p1 or p2.

• For the EJB container, myRole maps to p1.

When Combined Role Mapping is disabled, the role mappings would be

• For the Ear container, myRole maps to p1.

• For the WAR container, myRole maps to p2.

• For the EJB container: Must be externally-defined or the deployment fails.

Example for EAR and WAR
MyAppEar contains MyAppWAR. Role to Principal mappings are as follows:

• In MyAppEAR descriptor, myRole = p1

• In MyAppWAR descriptor, myRole = (none defined)

When Combined Role Mapping is enabled, the role mappings would be:

• For the Ear container, myRole maps to p1.

• For the WAR container, myRole maps to p1.

The mapping is the same because of the combined role behavior.

When Combined Role Mapping is disabled, the role mappings would be:

• For the Ear container, myRole maps to p1.

• For the WAR container, myRole maps to MyRole.

The mapping is the same because if there is no mapping defined for the Web application,
WebLogic Server copies the EAR mapping to the WAR mapping.

Securing Web Applications and EJBs
For metadata annotations, when you code an EJB you add the security-related annotations to
specify the roles that are allowed to invoke all, or a subset, of the methods. At deployment
time, the deployer must then create these security roles if they do not already exist and map
users to these roles using WebLogic Remote Console to update your security realm. For
details, see Security Policies and Roles in Oracle WebLogic Remote Console Online Help.

For deployment descriptor- and WebLogic Remote Console-based security, you choose a
security model when you deploy each Web application or EJB, and your choice is immutable
for the lifetime of the deployment. If you want to use a different model, you must delete and
redeploy the Web application or EJB.

Chapter 4
Securing Web Applications and EJBs

4-11

For information on using WebLogic Remote Console to deploy applications, choose a security
model, modify roles and polices, and complete other related tasks, see Deploying Applications
in Oracle WebLogic Remote Console Online Help.

If you plan to use deployment descriptors to secure Web applications or EJBs, see Using
Declarative Security With Web Applications and Using Declarative Security With EJBs in
Developing Applications with the WebLogic Security Service.

Chapter 4
Securing Web Applications and EJBs

4-12

5
Security Policies

Understand the features and functions of security policies, which specify who can access a
WebLogic Server resource. You can create simple policies, such as "allow access if user is in
Admin role", or more complex policies, such as "between the hours of 8 and 5, allow access if
user is in Admin role".
This chapter includes the following sections:

• Security Policy Storage and Prerequisites for Use

• Default Root Level Security Policies

• Security Policy Conditions

• Protected Public Interfaces

• Using the WebLogic Remote Console to Manage Security Policies

For information on using security policies to protect multiple resources, see Using Policies to
Protect Multiple Resources.

Security Policy Storage and Prerequisites for Use
Security policies for all resources other than Web Application resources and EJB resources are
always stored in the security provider database of the Authorization provider that is configured
in the security realm. The security realm that WebLogic Server provides stores policies in the
embedded LDAP server.

For Web Application resources and EJB resources, the location of policies depends on the
following:

• If you implement security using JACC (Java Authorization Contract for Containers as
defined in JSR 115), the policies are stored in the Web application or EJB deployment
descriptors.

• If you use the DDOnly model to secure a Web application or EJB, the policies are stored in
the deployment descriptors.

• If you use a security model that ignores the policies in the descriptors, then the
Authorization provider determines where the policies are stored. The security realm that
WebLogic Server provides stores policies in the embedded LDAP server.

• If you use the Advanced security model, the location of policies depends on how you
configure the model.

See Options for Securing Web Application and EJB Resources.

Each user or group that you add to a security policy must be defined in the security provider
database of the Authentication provider that is configured in the active security realm. Each
role that you add must be defined in the security provider database of the Role Mapping
provider that is configured in the active security realm. The security realm that WebLogic
Server provides is configured to use the WebLogic Authentication and WebLogic XACML Role
Mapping providers, which store users, groups, and roles in the embedded LDAP server.

See WebLogic Security Providers in Understanding Security for Oracle WebLogic Server.

5-1

http://jcp.org/en/jsr/detail?id=115

Default Root Level Security Policies
A root level policy is inherited by all instances of a specific resource type. Table 5-1 describes
the default root level policies that are defined in the security realm that WebLogic Server
installs. For information about the roles and groups that are named in these policies, see
Users, Groups, And Security Roles.

Note:

You can access root level policies in the WebLogic Remote Console. See Security
Policies in Oracle WebLogic Remote Console Online Help.

Table 5-1 Default Security Policies for WebLogic Resources

WebLogic Resource Security Policy

Administrative resources Default global role: Admin
Application resources None

EIS (Resource Adapter)
resources

Default group: Everyone

EJB resources Default group: Everyone
COM resources None

JDBC resources Default group: Everyone
JNDI resources Default group: Everyone
JMS resources Default group: Everyone
Server resources Default global roles:

• Admin
• Operator

Work Context Default group: Everyone
URL resources Default group: Everyone
Web Services resources Default group: Everyone
Coherence resources Default group: Everyone

Note:

Do not modify the default root level policies for Administrative and Server resources
to make them more restrictive. Eliminating some of the existing security roles might
negatively impact the functioning of WebLogic Server. However, if you like, you can
make the default security policies more inclusive (for example, by adding new
security roles). See Maintaining a Consistent Security Scheme.

Chapter 5
Default Root Level Security Policies

5-2

Security Policy Conditions
To determine who can access a resource, a policy contains one or more conditions. The most
basic policy simply contains the name of a security role or a principal. For example, a basic
policy might simply name the Admin global role. At run time, the WebLogic Security Service
interprets this policy as allow access if user is in Admin role. You can create more complex
conditions and combine them using the logical operators AND and OR (which is an inclusive
OR). You can also negate any condition, which would prohibit access under the specified
condition.

The WebLogic Server Authorization providers display three kinds of built-in policy conditions in
the WebLogic Remote Console:

Note:

These sections describe the conditions that are available in realms that use the
WebLogic Authorization provider or the WebLogic XACML Authorization provider. If
your security realm uses a third-party Authorization provider, refer to the third-party
documentation for information on its capabilities.

• Basic Policy Conditions

• Date and Time Policy Conditions

• Context Element Policy Conditions

Basic Policy Conditions
The basic policy conditions that are available in this release of WebLogic Server are:

• User—Allows a specific user to access the resource. For example, you might create a
condition indicating that only the user John can access the Deposit EJB.

Note:

Instead of the User condition, Oracle recommends adding the user to a Group
and using the Group condition in the security policy. If you do use the User
condition, ensure that you update any existing policies when the user is deleted
from the authentication store.

• Group—Allows all users or groups in the specified group to access the resource unless a
User or Role condition contradicts the Group condition.

• Role—Allows all users or groups in the specified role to access the resource unless a User
or Group condition contradicts the Role condition. For example, if you create a Role
condition that specifies ‘Admin’ and a User condition that negates ‘Joe’, then user ‘Joe’ will
be denied access even if he is in the Admin role.

• Server is in Development Mode—Allows access if the server that hosts the resource is
running in development mode. See Creating a WebLogic Domain in Creating WebLogic
Domains Using the Configuration Wizard.

• Allow access to everyone—Allows access for all users, groups, and roles.

Chapter 5
Security Policy Conditions

5-3

• Deny access to everyone—Prohibits access for all users, groups, and roles.

• Element requires signature by—(Used only when securing Web Services resources)
Creates a condition for a security policy based on who has digitally signed an element in
the SOAP request message that invokes a Web Service operation. For example, you might
create a condition that says the getBalance operation can only be invoked if the
AccountNumber element in the incoming SOAP request has been digitally signed by a user
who is named joe.

To create an Element requires signature by condition, provide the following information:

– Specify whether a group or a user is required to sign the SOAP element.

For example, enter user to specify that a user must sign the element.

– The name of the user or group that must sign the element.

– The name of the SOAP message element that must be digitally signed. Use the
following format:

{Namespace}LocalPart

where LocalPart refers to the name of the element in the SOAP message that must
be digitally signed and Namespace refers to its namespace. Use the WSDL of the Web
Service to get these values.

For example:

{http://schemas.xmlsoap.org/soap/envelope/}AccountNumber

Note:

You can specify only those elements that have already been configured to be
digitally signed in the WS-Policy of the Web Service. For details, see
Configuring Message-Level Security in Securing WebLogic Web Services for
Oracle WebLogic Server.

Date and Time Policy Conditions
When you use any of the date and time conditions, the security policy grants access to all
users for the date or time you specify, unless you further restrict the users by adding one of the
other conditions. The date and time policy conditions available in this release of WebLogic
Server are:

• Access occurs between specified hours—Allows access during a specified time period.
For example, you might create a condition granting access to users only during business
hours.

• Access occurs after—Allows access after a specified time. For example, you might
create a condition that grants access to users after the business opens or after a certain
date and time.

• Access occurs before—Allows access before a specified time. For example, you might
create a condition that grants access to users before the business closes or before a
certain date and time.

• Access occurs on specified days of the week—Allows access on specified days. For
example, you might create a condition that grants access to users on week days.

Chapter 5
Security Policy Conditions

5-4

• Access occurs on the specified day of the month—Allows access on an ordinal day
of the month. For example, you might create a condition that grants access to users only
the first day of each month.

• Access occurs after the specified day of the month—Allows access after an ordinal
day in the month. For example, you might create a condition indicating that grants access
to users after the 15th day of the month.

• Access occurs before the specified day of the month—Allows access before an
ordinal day in the month. For example, you might create a condition that grants access to
users before the 15th day of the month.

Note:

The format for specifying the time in a time policy condition, such as Access occurs
between specified hours, is locale-dependent. In English versions of WebLogic
Server, the format is 12-hour based and is expressed as hh:mm:ss AM|PM, using the
time zone local to the WebLogic Server instance. For example, to specify 8:30 p.m.,
use the format 08:30:00 PM.

Context Element Policy Conditions
You can use the context element conditions to create security policies based on the value of
HTTP Servlet Request attributes, HTTP Session attributes, and EJB method parameters.
WebLogic Server retrieves this information from the ContextHandler object and allows you to
defined policy conditions based on the values. When using any of these conditions, it is your
responsibility to ensure that the attribute or parameter/value pairs apply to the context in which
you are using them. See ContextHandlers and WebLogic Resources in Developing Security
Providers for Oracle WebLogic Server.

The context element role conditions available in this release of WebLogic Server are:

• Context element defined—Allows access based on the existence of a specified attribute
or parameter.

• Context element's value equals a numeric constant—Allows access based on a
specified attribute or parameter's number value (or string representing a double number)
being equal to a specified double number.

• Context element's value is greater than a numeric constant—Allows access based
on a specified attribute or parameter's number value (or string representing a double
number) being greater than a specified double number.

• Context element's value is less than a numeric constant—Allows access based on
a specified attribute or parameter's number value (or string representing a double number)
being less than a specified double number.

• Context element's value equals a string constant—Allows access based on a
specified attribute or parameter's string value being equal to a specified string.

Protected Public Interfaces
The WebLogic Remote Console, the WebLogic Scripting Tool (WLST), and MBean APIs are
secured using the default security policies, which are based on the default global roles and
default groups described in Table 6-2. Therefore, to use the WebLogic Remote Console, a user

Chapter 5
Protected Public Interfaces

5-5

must belong to one of these default groups or be granted one of these global roles.
Additionally, administrative operations that require interaction with MBeans are secured using
the MBean protections described in Maintaining a Consistent Security Scheme. Therefore,
interaction with the following protected public interfaces typically must satisfy both security
schemes.

• WebLogic Remote Console—The WebLogic Security Service verifies whether a particular
user can access the WebLogic Remote Console when the user attempts to log in.
Operations for which the user does not have access are hidden from the user.

• The WebLogic Scripting Tool—The WebLogic Scripting Tool (WLST) is a command-line
scripting interface that system administrators and operators can use to monitor and
manage WebLogic Server instances and domains. The WebLogic Security Service verifies
whether a particular user has permission to execute a WLST command when the user
attempts to invoke the command. If a user attempts to invoke an operation for which the
user does not have access, WebLogic Server throws a
weblogic.management.NoAccessRuntimeException, which developers can catch explicitly
in their programs. The server sends this exception to its log file, but you can also configure
the server to send exceptions to standard out.

For information about using this public interface, see Using the WebLogic Scripting Tool in
Understanding the WebLogic Scripting Tool.

Note:

WLST is a convenience utility that abstracts the interaction with the MBean APIs
(described next). Therefore, for any administrative task you can perform using
WLST, you can also perform using the MBean APIs.

• MBean APIs—The WebLogic Security Service verifies whether a particular user has
permission to access the API when the user attempts to perform an operation on the
MBean. If a user attempts to invoke an operation for which the user does not have access,
WebLogic Server throws a weblogic.management.NoAccessRuntimeException, which
developers can catch explicitly in their programs. The server sends this exception to its log
file, but you can also configure the server to send exceptions to standard out.

For information about using these APIs, see Understanding WebLogic Server MBeans in
Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

Using the WebLogic Remote Console to Manage Security
Policies

Note:

This section describes the features and functions that are available in security realms
that are using the WebLogic Authorization provider or the WebLogic XACML
Authorization provider. If your security realm uses a third-party Authorization provider,
refer to the third-party documentation for information on how to add polices to the
provider database.

Chapter 5
Using the WebLogic Remote Console to Manage Security Policies

5-6

You can use the WebLogic Remote Console to access WebLogic resources for creating and
modifying security policies. See Security Policies and Roles in Oracle WebLogic Remote
Console Online Help.

Chapter 5
Using the WebLogic Remote Console to Manage Security Policies

5-7

6
Users, Groups, And Security Roles

Understand the features and functions of users, groups, and security roles within security
realms in WebLogic Server.
This chapter includes the following sections:

• Overview of Users and Groups

• Default Users

• Default Groups

• Overview of Security Roles

• Types of Security Roles: Global Roles and Scoped Roles

• Default Global Roles

• Security Role Conditions

• Using the WebLogic Remote Console to Manage Users, Groups, and Roles

Overview of Users and Groups
A user is an entity that can be authenticated. A user can be a person or a software entity, such
as a Java client. Each user is given a unique identity within a security realm. For efficient
security management, Oracle recommends adding users to groups. A group is a collection of
users who usually have something in common, such as working in the same department in a
company.

Default Users
When you create a WebLogic Server domain, three user accounts are created in the security
realm by default: the Administration user account that you define during domain creation,
OracleSystemUser and LCMUser.

• The default WebLogic Administrator user account for the domain is used to boot and
connect to the domain's Administration Server. You specify the user name and password
for this account when you create the domain. You should make note of these credentials
because you will need them to start and access the Administration Server, and to log into
the WebLogic Remote Console.

Note:

– For additional security, avoid choosing an obvious name such as system, admin,
administrator, or weblogic for your system administrator user accounts. If you
enable secured production mode, then WebLogic Server logs warnings if users in the
administrator group have these obvious user names.

– You should create at least one additional user and assign them the Admin security
role. Be sure to use unique names that cannot be easily guessed. Having at least two
system administrator user accounts helps to ensure that one user maintains account
access in case another user becomes locked out by a dictionary/brute force attack.

6-1

• OracleSystemUser facilitates the installation of Fusion Middleware components that run on
WebLogic Server, such as Oracle SOA Suite, and is the default user for Fusion
Middleware components such as Oracle Web Services Manager.

Note:

– OracleSystemUser is assigned the same password that you specify for the default
Administration user when you create the domain. If necessary, you can change this
password in the WebLogic Remote Console.

– OracleSystemUser is assigned to the OracleSystemGroup and is granted the
OracleSystemRole by default. This user is not a member of any of the default
WebLogic Server groups or global roles. Therefore, it does not have access to
WebLogic Server resources and would not represent any security concerns.

– Although you can remove OracleSystemUser with no issues if you have a standalone
WebLogic Server installation, if you do so you will encounter problems if you attempt to
install Fusion Middleware components on top of WebLogic Server at a later date, or
use Oracle Web Services Manager.

• LCMUser is an internal WebLogic account that is required for software features such as
Lifecycle Manager, RESTful Management Services, and Fusion Middleware Control.

Note:

– The password for LCMUser is randomly generated, therefore you cannot log into the
WebLogic Remote Console as this user. Oracle recommends that you do not change
this password.

– Do not remove the LCMUser account. If you remove LCMUser from the WebLogic
security realm, then you are disabling the maintenance capability of the Lifecycle
Manager tool and you may encounter errors if you later attempt to upgrade your
installation.

– If you replace the embedded LDAP with an external provider and you plan to use the
WebLogic Server Lifecycle Manager functionality, then you need to recreate this user
in the new provider. See Configuring Authentication Providers in Administering
Security for Oracle WebLogic Server.

Default Groups
Table 6-1 lists the groups that WebLogic Server defines in the security realm that it installs. By
default, if you add a user to one of these groups, you also place the user in one of the default
global security roles (see Default Global Roles).

Table 6-1 Default Groups

Group Name Membership

Administrators By default, this group contains the user information entered as part of the installation process (that
is, the Configuration Wizard). Any user assigned to the Administrators group is granted the
Admin security role by default.

See Best Practices: Add a User To the Administrators Group.

Deployers By default, this group is empty. Any user assigned to the Deployers group is granted the
Deployer security role by default.

Operators By default, this group is empty. Any user assigned to the Operators group is granted the
Operator security role by default.

Chapter 6
Default Groups

6-2

Table 6-1 (Cont.) Default Groups

Group Name Membership

Monitors By default, this group is empty. Any user assigned to the Monitors group is granted the Monitor
security role by default.

AppTesters By default, this group is empty. Any user assigned to the AppTesters group is granted the
AppTester security role by default.

CrossDomainConnect
ors

By default, this group is empty. Any user assigned to the CrossDomainConnectors group is
granted the CrossDomainConnector security role by default.

AdminChannelUsers By default, this group is empty. Any user assigned to the AdminChannelUsers group is granted
the AdminChannelUser security role by default.

OracleSystemGroup By default, this group contains the user OracleSystemUser and is granted the
OracleSystemRole role by default.

Run Time Groups
At run time, WebLogic Server places all users in the following groups:

• users. This group contains all users who have been authenticated.

• everyone. This group contains all anonymous users and, because it contains the users
group, all users who have been authenticated.

Unlike the groups in Table 6-1 (or other groups that you create), you cannot add or remove
users directly to these groups; WebLogic Server assigns users to them dynamically. These
groups do not appear under Groups in the WebLogic Remote Console, and they are not
exported with the authentication database.

Best Practices: Add a User To the Administrators Group
Oracle recommends that you add at least one user to the Administrators group in addition to
the user you defined at installation (using the Configuration wizard). Having at least two
administrators at all times helps protect against a single admin user being locked out from a
potential security breach. Also, avoid using predictable user names like system, admin, or
Administrator.

Overview of Security Roles
A security role is an identity granted to users or groups based on specific conditions. Multiple
users or groups can be granted the same security role and a user or group can be in more
than one security role. Security roles are used by policies to determine who can access a
WebLogic resource. (See Security Policies.)

Like a security group, a role grants an identity to a user. Security roles differ from groups as
follows:

• Security roles can be scoped to specific WebLogic resources within a single application in
a WebLogic Server domain. Groups, on the other hand, are always scoped to an entire
WebLogic Server domain. See Types of Security Roles: Global Roles and Scoped Roles.

• Security roles are computed and granted to users or groups dynamically, based on
conditions such as user name, group membership, or the time of day. Groups are static.

Chapter 6
Overview of Security Roles

6-3

The process of computing and granting roles is referred to as role mapping and occurs just
before the WebLogic Security Service renders an access decision for a protected
WebLogic resource. An access decision is the component of an Authorization provider that
determines whether a subject has permission to perform a given operation on a WebLogic
resource. (See Access Decisions in Developing Security Providers for Oracle WebLogic
Server.)

Types of Security Roles: Global Roles and Scoped Roles
There are two types of security roles in WebLogic Server:

• A global security role can be used in any security policy. Oracle provides several default
global roles that you can use out of the box to secure your WebLogic resources; these are
described in Default Global Roles.

Note:

If you are implementing security using JACC (Java Authorization Contract for
Containers as defined in JSR 115) global security roles cannot be used.

• A scoped role can be used only in policies that are defined for a specific instance of a
WebLogic resource (such as a method on an EJB or a branch of a JNDI tree). You might
never need to use scoped roles. They are provided for their flexibility and are an extra
feature for advanced customers.

Default Global Roles
Table 6-2 lists the global roles that WebLogic Server defines in the security realm that it
installs. The table also summarizes the access that the default security policies grant to each
role and indicates which groups are in each role by default. Table 6-3 summarizes the
permissions in the WebLogic Remote Console for the Admin, Deployer, Operator, and Monitor
global roles.

Note:

Do not delete these roles. They are used in the default security policies that protect
most types of WebLogic resources. In addition, they are used by the MBean security
layer. If you delete the Admin role, no one will be able to modify the configuration of a
running domain. See Maintaining a Consistent Security Scheme.

Table 6-2 Default Global Roles, Privileges, and Default Group Assignments

Global Role Default Policies Grant Access To . . . Default Conditions Include
This Group . . .

Admin • View the server configuration, including the encrypted
value of some encrypted attributes.

• Modify the entire server configuration.
• Deploy Enterprise Applications and Web application,

EJB, Java EE Connector, and Web Service modules.
• Start, resume, and stop servers.

Administrators

Chapter 6
Types of Security Roles: Global Roles and Scoped Roles

6-4

http://jcp.org/en/jsr/detail?id=115

Table 6-2 (Cont.) Default Global Roles, Privileges, and Default Group Assignments

Global Role Default Policies Grant Access To . . . Default Conditions Include
This Group . . .

AdminChannelUser Access the administrative channel, AdminChannel. AdminChannelUsers,
Administrators,
Deployers, Operators,
Monitors, and AppTesters

Anonymous All users (the group everyone) are granted this global role.

Note: This global role is provided as a convenience, and can
be specified in the weblogic.xml and weblogic-ejb-
jar.xml deployment descriptors. See weblogic.xml
Deployment Descriptor Elements in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server
and weblogic-ejb-jar.xml Deployment Descriptor Reference in
Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

everyone

Deployer • View the server configuration, including some encrypted
attributes related to deployment activities.

• Change startup and shutdown classes, Web
applications, JDBC data pool connections, EJB, Java EE
Connector, Web Service, and WebLogic Tuxedo
Connector components. If applicable, edit deployment
descriptors.

• Access deployment operations in the Java EE
Deployment Implementation (JSR-88). See
Understanding WebLogic Server Deployment in
Deploying Applications to Oracle WebLogic Server.

Deployers

Operator • View the server configuration, except for encrypted
attributes.

• Start, resume, and stop servers.
• Start and stop applications using MBean APIs and

WLST. You cannot start and stop applications in the
WebLogic Remote Console. See Table 6-3.

Operators

Monitor View the server configuration, except for encrypted attributes.

This security role effectively provides read-only access to the
WebLogic Remote Console, WLST, and MBean APIs.

Monitors

AppTester Access applications for testing purposes that are running in
Administration mode. See Administration Mode for Isolating
Production Applications in Deploying Applications to Oracle
WebLogic Server.

AppTesters

CrossDomainConnector Make inter-domain calls from foreign domains. See Enabling
Trust Between WebLogic Server Domains in Administering
Security for Oracle WebLogic Server.

CrossDomainConnectors

OracleSystemRole Assert identity on behalf of users whose WS-Security tokens
have been authenticated.

Note: This global role is provided for use by Oracle Web
Services Manager.

OracleSystemGroup

Table 6-3 summarizes the privileges provided in the WebLogic Remote Console for the Admin,
Deployer, Operator, and Monitor global roles. Note that the information provided in the table is
based on the default out-of-the-box security policy for WebLogic Resources and MBeans. You
can manage the default security policies in the WebLogic Remote Console, as described in
Security Policies and Roles in Oracle WebLogic Remote Console Online Help.

Chapter 6
Default Global Roles

6-5

http://jcp.org/en/jsr/detail?id=88

Table 6-3 WebLogic Server WebLogic Remote Console Privileges for Default Global
Roles

Privileges Administrator Deployer Operator Monitor

Edit session operations: start or
release session, activate or undo
changes

Yes Yes No No

Server, Cluster, Template, or
Machine

Lifecyle operations: create,
delete

Yes No No No

Modify configuration Yes No No No

Control operations: start, stop,
resume

Yes No Yes No

View configuration Yes Yes Yes Yes

Application Deployments

Lifecycle operations: deploy,
undeploy, redeploy

Yes Yes No No

Modify configuration Yes Yes No No

Control operations: start, stop Yes Yes No No

JDBC and JMS resources

Lifecyle operations: create,
delete

Yes Yes No No

Modify configuration Yes Yes No No

Control operations: start, stop Yes No No No

View configuration Yes Yes Yes Yes

Startup and Shutdown
Classes, Coherence Clusters

Lifecyle operations: create,
delete

Yes No No No

Modify configuration Yes Yes No No

View configuration Yes Yes Yes Yes

Security Role Conditions
To determine who is in a security role at run time, a role contains one or more conditions. For
example, a basic role might simply be the Administrator group. At run time, the WebLogic
Security Service interprets this policy as place the Administrator group in this role. You can
create more complex conditions and combine them using the logical operators AND and OR
(which is an inclusive OR). You can also negate any condition, which would make sure that a
user is not in the role. The entire collection of conditions must be true for a user or group to be
granted the security role. More restrictive expressions should come later in a role statement.

In the WebLogic Remote Console, the WebLogic Server Role Mapping providers display the
three built-in policy conditions described in the following sections:

• Basic Role Conditions

• Date and Time Role Conditions

Chapter 6
Security Role Conditions

6-6

• Context Element Role Conditions

Note:

The following sections describe the conditions that are available in realms that use
the WebLogic Role Mapping provider or the WebLogic XACML Role Mapping
provider. If your security realm uses a third-party Role Mapping provider, refer to the
third-party documentation for information about its capabilities.

Basic Role Conditions
The basic role conditions available in this release of WebLogic Server are:

• User—Adds the specified user to the role. For example, you might create a condition
indicating that only the user John can be granted the BankTeller security role.

Note:

Instead of the User condition, Oracle recommends adding the user to a Group
and using the Group condition in the security role. If you do use the User
condition, ensure that you update any existing roles when the user is deleted
from the authentication store.

• Group—Adds the specified group to the role. For example, you might create a condition
indicating that only users in the group FullTimeBankEmployees can be granted the
BankTeller security role.

As a minimum requirement, Oracle recommends this role condition for more efficient
security management.

• Server is in development mode—Adds principals to the role only when the server is
running in development mode. See Creating a WebLogic Domain in Creating WebLogic
Domains Using the Configuration Wizard.

• Allow access to everyone—Adds all users and groups to the role.

• Deny access to everyone—Prevents any user or group from being in the role.

Date and Time Role Conditions
When you use any of the date and time role conditions, the security role is granted to all users
for the date or time you specify, unless you further restrict the users by adding one of the other
role conditions. The date and time role conditions available in this release of WebLogic Server
are:

• Access occurs between specified hours—Adds principals to the role only during the
specified time period. For example, you might create a condition indicating that the
BankTeller security role can only be granted to users when the bank is open.

• Access occurs after—Adds principals to the role only if the current time is after a
specified time. For example, you might create a condition indicating that the BankTeller
security role can only be granted to users after the bank opens or after a certain date and
time.

Chapter 6
Security Role Conditions

6-7

• Access occurs before—Adds principals to the role only if the current time is before a
specified time. For example, you might create a condition indicating that the BankTeller
security role can only be granted to users before the bank closes or before a certain date
and time.

• Access occurs on specified days of the week—Adds principals to the role only on
specified days. For example, you might create a condition indicating that the BankTeller
security role can only be granted to users on week days.

• Access occurs on the specified day of the month—Adds principals to the role only
on an ordinal day of the month. For example, you might create a condition indicating that
the BankTeller security role can only be granted to users on the first day of each month.

• Access occurs after the specified day of the month—Creates a condition for a
security role based on a time after an ordinal day in the month. For example, you might
create a condition indicating that the BankTeller security role can only be granted to users
after the 15th day of the month.

• Access occurs before the specified day of the month—Adds principals to the role
only if the current day is before an ordinal day in the month. For example, you might create
a condition indicating that the BankTeller security role can only be granted to users before
the 15th day of the month.

Context Element Role Conditions
You can use the context element conditions to create security roles based on the value of
HTTP Servlet Request attributes, HTTP Session attributes, and EJB method parameters.
WebLogic Server retrieves this information from the ContextHandler object and allows you to
defined role conditions based on the values. When using any of these conditions, it is your
responsibility to ensure that the attribute or parameter/value pairs apply to the context in which
you are using them. See ContextHandlers and WebLogic Resources in Developing Security
Providers for Oracle WebLogic Server.

The context element role conditions available in this release of WebLogic Server are:

• Context element defined—Adds principals to the role based on the existence of a
specified attribute or parameter.

• Context element's value equals a numeric constant—Adds principals to the role
based on a specified attribute or parameter's number value (or string representing a
double number) being equal to a specified double number.

• Context element's value is greater than a numeric constant—Adds principals to
the role based on a specified attribute or parameter's number value (or string representing
a double number) being greater than a specified double number.

• Context element's value is less than a numeric constant—Adds principals to the
role based on a specified attribute or parameter's number value (or string representing a
double number) being less than a specified double number

• Context element's value equals a string constant—Adds principals to the role
based on a specified attribute or parameter's string value being equal to a specified string.

Chapter 6
Security Role Conditions

6-8

Using the WebLogic Remote Console to Manage Users, Groups,
and Roles

Note:

This section describes the features that are available in realms that use the
WebLogic Authentication provider and the WebLogic Role Mapping provider or the
WebLogic XACML Role Mapping provider. If your security realm uses a third-party
Authentication or Role Mapping provider, refer to the third-party documentation for
information on its capabilities.

For information on adding users and groups to a security realm, see Users and Groups in
Oracle WebLogic Remote Console Online Help.

For information on creating security roles, see Security Policies and Roles in Oracle WebLogic
Remote Console Online Help.

Chapter 6
Using the WebLogic Remote Console to Manage Users, Groups, and Roles

6-9

7
Using XACML Documents to Secure
WebLogic Resources

Learn how to use the eXtensible Access Control Markup Language (XACML), an XML
language for expressing authorization policies and role assignments, to secure WebLogic
resources. You can create roles and policies in an XACML document and then use the
WebLogic Scripting Tool (WLST) to add them to your security realm. This is useful if you need
to create security roles or policies that are more complex than can be created with the
WebLogic Remote Console, or if you are required to use a standard language. You can also
export your realm's roles and policies to a XACML document and then import the document in
other WebLogic Server realms.
This chapter includes the following sections:

• Prerequisites

• Adding a XACML Role or Policy to a Realm: Main Steps

• Creating Roles and Polices for Custom MBeans

• Exporting Roles and Policies to XACML Documents

Note:

Always create a backup of a domain before you load XACML documents into a
security realm. If you make a typographical or other type of error in an attribute
description, you can cause the XACML provider to evaluate your realm's roles and
polices as indeterminate, which locks all users (including the administrative user) out
of the domain. See Caution: Indeterminate Results Can Lock Out All Users.

The WebLogic Server XACML Authorization Provider and the WebLogic Server XACML Role
Mapping Provider implement the XACML 2.0 Core Specification, available at http://
docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf.

Prerequisites
Note the following prerequisites for using XACML documents to secure WebLogic resources:

• To add XACML authorization policies to a security realm, the realm must use either the
WebLogic Server XACML Authorization Provider or a third party authorization provider that
implements the weblogic.management.security.authorization.PolicyStoreMBean
interface.

• To add XACML role assignments to a security realm, the realm must use either the
WebLogic Server XACML Role Mapping Provider or a third party authorization provider
that implements the weblogic.management.security.authorization.PolicyStoreMBean
interface.

7-1

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

• To secure a resource with a XACML authorization or role policy, you need the resource
identifier (ID). Because WebLogic Server creates an immutable, unique ID when you
deploy or create a resource, you must deploy the resource before creating a policy for it.

• To secure an EJB or Web application, you must deploy using the Custom Roles or Custom
Roles and Policies security model. You cannot use a XACML document to create roles and
polices for an EJB or Web application that you have deployed using the Deployment
Descriptor Only security model. See Comparison of Security Models for Web Applications
and EJBs.

Adding a XACML Role or Policy to a Realm: Main Steps
You can create a XACML document that describes roles and policies and then use the
WebLogic Scripting Tool to add the policy or role to your security realm.

The main steps for this process are as follows:

1. Determine Which Resource to Secure

2. Get the ID of the Resource to Secure

3. Create XACML Documents

4. Use WebLogic Scripting Tool to Add the Role or Policy to the Realm

5. Verify That Your Roles and Policies Are in the Realm

Caution: Indeterminate Results Can Lock Out All Users
The XACML specification requires that if the decision engine is unable to process a decision
point, the engine returns a result of indeterminate. Depending on the combining algorithms that
you use for a decision point and its associated decision points, an indeterminate result can
propagate to the top of the decision and cause the provider to deny access to all requests.

For example, the following attribute specifies MustBePresent='true' and contains a spelling
mistake (ancester instead of ancestor). It will evaluate as indeterminate and will cause the
security provider to deny access:

<ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:2.0:resource:resource-ancester"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 MustBePresent="true"/>

Determine Which Resource to Secure
WebLogic Server organizes its resources into a hierarchy. If you use the WebLogic Remote
Console or a Java EE deployment descriptor (instead of a XACML document) to secure
WebLogic resources, policies that you create on resources that are higher in the hierarchy act
as default policies for resources lower in the same hierarchy. Policies lower in a hierarchy
always override policies higher in the hierarchy.

Your XACML document can encode this hierarchical protection scheme, though XACML's
hierarchical model differs slightly from WebLogic Server. See Comparison of WebLogic Server
and XACML Security Models.

Chapter 7
Adding a XACML Role or Policy to a Realm: Main Steps

7-2

Get the ID of the Resource to Secure
WebLogic Server creates an immutable, unique identifier (ID) when you deploy or create a
resource, and your XACML document must include a resource identifier that specifies the
WebLogic Server ID.

To find the ID that WebLogic Server has assigned to a resource:

1. Enable security auditing for your realm by configuring an Auditing provider.

See Configure an Auditing Provider in Oracle WebLogic Remote Console Online Help.
Take note of the location in which the Auditing provider saves its log files (by default, in the
server's logs directory).

2. Deploy or create the resource.

3. Send a request from an external client to the resource.

For example, use a Web Service client to invoke a Web Service method that you want to
secure.This will trigger an event that causes the Auditing provider to generate a message
for the resource.

Note:

The Web Service client needs to authenticate itself before it can be granted
access to the Weblogic resource that is secured by the roles and policies
specified in the XACML document.

4. Open the log file for the Auditing provider and find the entry for the event that you
triggered.

For example, if you configure the WebLogic Server Default Auditor to generate messages
for severity level INFORMATION and higher, when you invoke the sayHello method from a
Web Service named SimpleSoapPort, the audit log contains the following entries, one from
the Role Mapping provider and the other from the Authorization provider:

Audit Record Begin <Mar 30, 2006 9:24:12 AM>
<Severity =INFORMATION>
<<<Event Type = RoleManager Audit Event ><Subject: 0>
<<webservices>><type=<webservices>,
application=webservicesJwsSimpleEar, contextPath=/jws_basic_simple,
webService=SimpleSoapPort, method=sayHello,
signature={java.lang.String}><>>> Audit Record End ####
Audit Record Begin <Mar 30, 2006 9:24:12 AM>
<Severity =SUCCESS>
<<<Event Type = Authorization Audit Event V2 ><Subject: 0>
<ONCE><<webservices>><type=<webservices>,
application=webservicesJwsSimpleEar, contextPath=/jws_basic_simple,
webService=SimpleSoapPort, method=sayHello,
signature={java.lang.String}>>> Audit Record End ####

The resource ID for the sayHello method is:

type=<webservices>,
application=webservicesJwsSimpleEar, contextPath=/jws_basic_simple,
webService=SimpleSoapPort, method=sayHello,
signature={java.lang.String}

Chapter 7
Adding a XACML Role or Policy to a Realm: Main Steps

7-3

5. Edit the resource ID from the auditing record to specify the resource that you want to
protect.

The IDs in the audit log are for resources that are at the bottom of the WebLogic Server
resource hierarchy. Typically, instead of creating policies for a specific operation (such as a
Web Service or EJB method or an HTTP method on a specific URL), you design policies
for resources higher in the hierarchy, such as for a URL pattern or an entire Web Service.

You can derive the following resource IDs from the resource ID from the previous step:

• The ID for the Web Service that contains the sayHello method is:

type=<webservices>,
application=webservicesJwsSimpleEar, contextPath=/jws_basic_simple,
webService=SimpleSoapPort

• The ID for the application that contains the Web Service is:

type=<application>,
application=webservicesJwsSimpleEar

Note that resource ID for an application specifies type=<application>.

• The ID for the Web Service type, which you would use to create a root-level policy for
all Web Services is:

type=<webservices>
For information about root-level policies and the hierarchy of resources, see Using Policies
to Protect Multiple Resources.

Create XACML Documents
If you want to create role assignments and authorization policies, create two XACML
documents: one that describes your roles and another that describes your policies. You load
one of the documents into the Role Mapping provider's store and the other into the
Authorization provider's store.

For information about using XACML to describe WebLogic Server resources, see Reference
for XACML on WebLogic Server.

Example: Defining Role Assignments
The syntax for describing role assignments in a XACML document is specified in the OASIS
RBAC Profile specification, available at http://docs.oasis-open.org/xacml/2.0/
access_control-xacml-2.0-rbac-profile1-spec-os.pdf. (WebLogic Server supports only a
subset of this specification.)

The syntax requires the following elements:

• A Policy parent element.

• Under Policy, a Target element.

– Under Target, at least one Resource element that contains the following
ResourceMatch elements:

(Optional) One ResourceMatch element to identify the name of the role. If you do not
include this ResourceMatch element, then the role policy applies to all roles in the
realm. The MatchId attribute may specify function identifiers and, thus, wildcard role
names. The DataType attribute must specify the string type.

Chapter 7
Adding a XACML Role or Policy to a Realm: Main Steps

7-4

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf

(Optional) Another ResourceMatch element to identify the WebLogic resource to which
the role applies. If you do not include this ResourceMatch element, the role applies to
all WebLogic resources.

– Under Target, an Action element that indicates that the policy applies to a role instead
of some other type of resource.

• Under Policy, one or more Rule elements that define which users, groups, or roles are in
the role.

The XACML document in Example 7-1 specifies that a role named MyRole role can be used
with the SimpleSoapPort Web Service. It also specifies that the webServiceGroup group is in
the role.

Note:

When specifying values in the <AttributeValue> element, you must not include
extraneous space characters. In particular:

• Do not precede the first value with more than a single space character.

• When specifying multiple values, do not separate each value by more than a
single space character.

• Make sure there are no space characters that follow the last value.

For example:

<AttributeValue datatype>value1, value2, value3</AttributeValue>

Example 7-1 XACML Policy for a Role

<?xml version="1.0" encoding="UTF-8"?>
<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os" PolicyId="urn:bea:xacml:2.0:myRolePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable">
 <Description>Grp(group1)</Description>
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">type=<webservices>,
application=webservicesJwsSimpleEar, contextPath=/jws_basic_simple, webService=SimpleSoapPort</
AttributeValue>
 <ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:resource:resource-
ancestor-or-self" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>
 </ResourceMatch>
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">MyRole</AttributeValue>
 <ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
 <AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#anyURI">urn:oasis:names:tc:xacml:2.0:actions:enableRole</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

Chapter 7
Adding a XACML Role or Policy to a Realm: Main Steps

7-5

 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 <Rule RuleId="primary-rule" Effect="Permit">
 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">webServiceGroup</
AttributeValue>
 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:group"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </Apply>
 </Condition>
 </Rule>
 <Rule RuleId="deny-rule" Effect="Deny"/>
</Policy>

Example: Defining Authorization Policies
The XACML document in Example 7-2 specifies that only the MyRole role can access the
SimpleSoapPort Web Service.

Example 7-2 XACML Policy for a Web Service

<?xml version="1.0" encoding="UTF-8"?>
<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os" PolicyId="urn:bea:xacml:2.0:myPolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable">
 <Description>Rol(MyRole)</Description>
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">type=<webservices>,
application=webservicesJwsSimpleEar, contextPath=/jws_basic_simple, webService=SimpleSoapPort</
AttributeValue>
 <ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:resource:resource-
ancestor-or-self" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 </Target>
 <Rule RuleId="primary-rule" Effect="Permit">
 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">MyRole</AttributeValue>
 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </Apply>
 </Condition>
 </Rule>
 <Rule RuleId="deny-rule" Effect="Deny"/>
</Policy>

Use WebLogic Scripting Tool to Add the Role or Policy to the Realm
The WebLogic Scripting Tool (WLST) is a command-line scripting interface that you can use to
load your XACML document into a WebLogic security realm.

You can use WLST in interactive mode or script mode. You cannot use WLST in offline mode;
the Authentication provider and Role Mapping provider can update their policy stores only
when the Administration Server is running.

Chapter 7
Adding a XACML Role or Policy to a Realm: Main Steps

7-6

For information about using script mode, see Using the WebLogic Scripting Tool in
Understanding the WebLogic Scripting Tool.

The following steps describe using the WLST interactive mode:

1. Start the WebLogic Server instance that contains the realm you want to configure.

2. Open a command prompt and set up the environment for running WLST.

One way to set up the environment is as follows:

a. Change to the root directory of the domain.

b. Invoke the setWLSenv script (the Domain Configuration Wizard creates this script for
you when you create the domain).

3. Change to the directory that contains your XACML document.

4. To start WLST and connect to a WebLogic Server instance that is listening at
localhost:7001, enter the following commands:

a. java weblogic.WLST
This command returns a WLST offline prompt.

b. connect(' ',' ','localhost:7001')
Please enter your username :
Please enter your password :
Here, username and password are credentials for an administrative user.

5. To load a XACML document into a Java String object, enter the following commands:

a. xacmlFile = open('myfile','r')
where myfile is the name of your XACML document.

b. xacmlDoc = xacmlFile.read()
c. (Optional) To verify that you have loaded your document into a String, enter:

print(xacmlDoc)

The command prints the value of the xacmlDoc variable to standard out.

6. To load role assignments into the WebLogic XACML Role Mapper, enter the following
commands:

a. cd ('SecurityConfiguration/mydomain/Realms/myrealm/RoleMappers/
XACMLRoleMapper')
where

mydomain is the name of your WebLogic Server domain

myrealm is the name of your security realm

b. cmo.addPolicy(xacmlDoc) or cmo.addPolicySet(xacmlDoc), depending on whether
your XACML document contains a Policy or PolicySet.

c. cmo.setPolicyExpression('type=<jmx>','{Rol(Admin) | Rol(myrole)}')
where myrole is any additional role to which you want the policy to apply.

7. To load authorization policies into the WebLogic XACML Authorizer, repeat step 5 to load
your XACML policies document, Then enter the following commands:

Chapter 7
Adding a XACML Role or Policy to a Realm: Main Steps

7-7

a. cd ('SecurityConfiguration/mydomain/Realms/myrealm/Authorizers/
XACMLAuthorizer')
where

mydomain is the name of your WebLogic Server domain

myrealm is the name of your security realm

b. cmo.addPolicy(xacmlDoc) or cmo.addPolicySet(xacmlDoc), depending on whether
your XACML document contains a Policy or PolicySet.

c. cmo.setPolicyExpression('type=<jmx>','{Rol(Admin) | Rol(myrole)}')
where myrole is any additional role to which you want the policy to apply.

To see a full list of operations that you can use to add, modify, or delete policies, see
XACMLAuthorizerMBean in MBean Reference for Oracle WebLogic Server.

Verify That Your Roles and Policies Are in the Realm
The WebLogic Remote Console does not display roles and policies that you add from a
XACML document.

Instead, to verify that your roles and policies were added to the realm, see Exporting Roles and
Policies to XACML Documents.

Creating Roles and Polices for Custom MBeans
A Managed Bean (MBean) is a standard for exposing management data and operations for a
resource. Your application developers can greatly reduce the cost of operating and maintaining
your applications by creating MBeans (custom MBeans) to monitor and manage your
applications. See Developing Manageable Applications Using JMX for Oracle WebLogic
Server.

If you register custom MBeans in a WebLogic Server MBean server, you can create a XACML
document that defines who can access your MBeans. In addition to the prerequisites described
in Prerequisites, note that your MBean's object name must include a Type=valuekey property.

The main steps for creating roles and policies for custom MBeans are:

1. Determine the Resource IDs for a Custom MBean

2. Create XACML Documents

3. Use WebLogic Scripting Tool to Add the Role or Policy to the Realm

4. Verify That Your Roles and Policies Are in the Realm

Determine the Resource IDs for a Custom MBean
When you register a custom MBean with a WebLogic MBean server, the WebLogic security
service creates two resource IDs for each attribute in the MBean: one for the attribute's getter
method and another for the setter. It creates one resource ID for each MBean operation.

The IDs use the following pattern:

type=<jmx>, operation=type-of-access, application=, mbeanType=type-name,
target=attribute-or-operation

In the preceding pattern:

Chapter 7
Creating Roles and Polices for Custom MBeans

7-8

• type-of-access specifies the type of access that the policy secures. Use one of the
following values:

– get
Indicates that the policy controls who can read one or more MBean attributes.

– set
Indicates that the policy controls who can write one or more MBean attributes.

– invoke
Indicates that the policy controls who can invoke one or more MBean operations.

– create
Indicates that the policy controls who can use the MBean-server's create method to
create an instance of an MBean.

– unregister
Indicates that the policy controls who can use the MBean-server's unregister method
to unregister an instance of an MBean.

• type-name is the value of the MBean object name's Type key property.

• attribute-or-operation is the name of an MBean attribute or operation.

For example, if you create an MBean that contains a single attribute named NewUserCount and
an operation named clearNewUserCount, and if you register the MBean under the object name
medrec:Name=AdminReportMBean,Type=CustomMBeanType, then the security service creates the
following resource IDs:

type=<jmx>, operation=get, application=, mbeanType=CustomMBeanType,
target=NewUserCount

type=<jmx>, operation=set, application=, mbeanType=CustomMBeanType,
target=NewUserCount

type=<jmx>, operation=clearNewUserCount, application=,
mbeanType=CustomMBeanType,target=

Exporting Roles and Policies to XACML Documents
To see a XACML representation of all roles and policies that are in your security realm, you
can export the data from the Authorization and Role Mapping providers.

Note:

Do not attempt round-trip editing of roles and policies. That is, do not export roles and
policies, modify the XACML documents, and then import the modified documents.
Editing exported files might result in an unusable WebLogic Server configuration and
is not supported.

Chapter 7
Exporting Roles and Policies to XACML Documents

7-9

A
Reference for XACML on WebLogic Server

Understand the extensions that you can use when writing XACML 2.0 documents to protect
resources on WebLogic Server and the restrictions that WebLogic Server places on XACML.
The eXtensible Access Control Markup Language (XACML) is an XML language for
expressing authorization policies and role assignments. XACML offers extension points so that
vendors such as Oracle can express vendor-specific resources, data types, and functions in
XACML.
The WebLogic Server XACML Authorization Provider and XACML Role Mapping Provider:

• Implement and extend the OASIS XACML 2.0 Core Specification, available at http://
docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

• Partially implement the Core and Hierarchical Role Based Access Control (RBAC) Profile
of XACML 2.0, described in the OASIS RBAC specification at http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf

This appendix includes the following sections:

• Comparison of WebLogic Server and XACML Security Models

• Action Identifiers

• Environment Identifiers

• Policy and PolicySet Identifiers

• Resource Identifiers

• Subject Identifiers

• WebLogic Server Functions for XACML

• Rule and Policy-Combining Algorithm

This document describes only the WebLogic Server extensions and restrictions for XACML.
For a complete reference of the XACML 2.0 language, see the OASIS XACML 2.0 Core
Specification and the OASIS RBAC specification.

Comparison of WebLogic Server and XACML Security Models
The WebLogic Server model for representing resources and policies follows the model of Java
EE deployment descriptors. This Java EE model creates a hierarchy of resources in which
roles and authorization policies at the top of the hierarchy protect resources that are lower in
the hierarchy. (See Protecting a Hierarchy of Resources.) Policies lower in a hierarchy always
override policies higher in the hierarchy. The higher levels of the resource hierarchy contain
enterprise applications, Web applications, and EJBs. The lowest levels of the resource
hierarchy contain EJB methods, HTTP methods on specific URL patterns, and MBean getters
and setters.

The XACML model also recognizes a hierarchy of resources. Unlike the native WebLogic
Server model, your XACML policies must specify how to interpret cases in which a resource is
protected by its own policy and by a policy on the resource's parent or ancestor.

In addition, a XACML document typically distinguishes between a resource and the actions of
a resource. For example, a XACML document defines a resource such as an EJB, and then

A-1

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf

defines an action within the EJB resource to represent a method in the EJB. The native
WebLogic Server model considers an EJB and each EJB method to be resources. See
Figure A-1.

Figure A-1 WebLogic Resource Hierarchy Includes Methods

While it is possible to describe an action such as an EJB method as a XACML resource, a
more natural expression in XACML would define an EJB as a resource and an EJB method as
an action within the resource.

Comparison of Terminology
The WebLogic Server terminology for describing resources and policies follows the model of
Java EE deployment descriptors. This Java EE model uses the following terms to describe key
concepts:

• Role, which contains one or more conditions that describe which users or groups are in the
role at any given time. A role expression is a collection of conditions and the name of a
user or group whom the conditions add to the role. The collection of expressions is the role
statement.

• Policy, which contains one or more conditions that describe who can access a resource at
any given time. A policy expression is a collection of conditions and the name of a user,
group, or role whom the conditions allow access. The collection of expressions is the policy
statement.

In XACML, a set of rules comprise a policy, and policies can be used to determine who is in a
role or who can access a resource. In general, a XACML policy is equivalent to a role
statement or policy statement in WebLogic Server.

Description of Data Types
Oracle implements support for all of the data types that are required by the XACML core
specification. It supports additional, standard XML data types and provides a group of custom
data types. This document uses the bea: prefix to indicate that a data type is a custom Oracle
type.

For a description of all data types that the WebLogic XACML providers recognize, see
com.bea.common.security.xacml.Type in Java API Reference for Oracle WebLogic Server.

Appendix A
Comparison of WebLogic Server and XACML Security Models

A-2

Action Identifiers
XACML uses an Action element to identify an operation in a resource or a hierarchy of
resources.

WebLogic Server supports all of the XACML Action identifiers, as described in the XACML 2.0
Core Specification, and adds support for an additional one that can appear anywhere that a
standard XACML environment identifier can appear.

To identify operations in WebLogic Server resources (for example, to identify a specific EJB
method), use action identifiers as described in Table A-1.

Note:

While it is possible to use a resource identifier to describe an operation such as an
EJB method, a more natural expression in XACML would use an action identifier. See
Comparison of WebLogic Server and XACML Security Models.

Table A-1 Action Identifiers

To Identify... Use This Identifier...

An operation • Attribute ID:
urn:oasis:names:tc:xacml:1.0:action:action-id

• Data Type: string
• Value: Depends on the type of resource that contains the operation.

See Table A-2.

When the provider performs a
security check

• Attribute ID: urn:bea:xacml:2.0:action:direction
• Data Type: string
• Values: ONCE, PRIOR, or POST
The WebLogic Security SPI contains an optional feature that enables
containers to specify when a provider performs a security check on a
request:

• ONCE requests an authorization check once with no preference of
whether it is done before or after an operation.

• PRIOR requests an authorization check prior to processing the
request.

• POST requests an authorization check after the request has been
processed but before the results have been returned.

You can use this direction identifier to match requests that have been
checked ONCE, PRIOR, or POST.

See weblogic.security.spi.Direction in the Java API Reference
for Oracle WebLogic Server, which is the object type that is used to pass
ONCE, PRIOR, or POST to the security provider.

Note: Using a Direction object in a decision is optional for Authorization
providers. The WebLogic Server XACML Authorization provider supports
only the ONCE value.

Table A-2 describes the value that you specify for the action-id identifier.

Appendix A
Action Identifiers

A-3

Table A-2 Value for the action-id Identifier

If the operation is
in this resource
type...

Specify...

Admin The name of an administrative activity that is protected by an Admin resource. For
example, UserLockout.

For a list of valid values, see the action parameter for the
weblogic.security.service.AdminResource constructor in the Java API
Reference for Oracle WebLogic Server.

Application The name of the application as displayed in the WebLogic Remote Console.

Control The name of a method in a Java control. Java controls are reusable components
that you can create and use anywhere within a WebLogic Platform application.

EJB The name of an EJB method. For example, mymethod. If the method is overloaded,
all methods with the specified method name will be matched.

JDBC The name of an administrative activity that is protected by a JDBC resource.

For a list of valid values, see the action parameter for the
weblogic.security.service.JDBCResource constructor in the Java API
Reference for Oracle WebLogic Server.

JMS The name of an administrative activity that is protected by a JMS resource.

For a list of valid values, see the action parameter for the
weblogic.security.service.JMSResource constructor in the Java API
Reference for Oracle WebLogic Server.

JMX The name of an operation in a WebLogic Server MBean. For example, shutdown.

JNDI The name of an administrative activity that is protected by a JNDI resource.

For a list of valid values, see the action parameter for the
weblogic.security.service.JNDIResource constructor in the Java API
Reference for Oracle WebLogic Server.

Server The name of a server life cycle activity that is protected by a Server resource. For
example, boot.

For a list of valid values, see Server Resources.

URL The name of an HTTP method. For example, POST.

Web Service The name of a Web Service method. For example, mymethod.

Work Context The name of an administrative activity that is protected by a Work Context
resource.

For a list of valid values, see the action parameter for the
weblogic.security.service.WorkContextResource constructor in the Java
API Reference for Oracle WebLogic Server.

All others The following string: access

Examples
The following example uses an Action element to specify that the target is mymethod within the
SimpleSoap Web Service.

Appendix A
Action Identifiers

A-4

Note:

When specifying values in the <AttributeValue> element, you must not include
extraneous space characters. In particular:

• Do not precede the first value with more than a single space character.

• When specifying multiple values, do not separate each value by more than a
single space character.

• Make sure there are no space characters that follow the last value.

For example:

<AttributeValue datatype>value1, value2, value3</AttributeValue>

<Target>
 <Resources>
 <Resource>
 <ResourceMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">type=<webservices>,
application=webservicesJwsSimpleEar,contextPath=/jws_basic_simple,
webService=SimpleSoapPort</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 MustBePresent="true"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <ActionMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">mymethod</
AttributeValue>
 <ActionAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 MustBePresent="true"/>
 </ActionMatch>
</Target>

Environment Identifiers
XACML uses an optional Environment element to describe conditions in the operating
environment that must be met before providing access to a target. For example, an
Environment element can specify a time and date range within which access is allowed.

WebLogic Server supports all of the XACML Environment identifiers (see the OASIS XACML
2.0 Core Specification at http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-core-spec-os.pdf) and adds support for an additional one that can appear
anywhere that a standard XACML environment identifier can appear. Table A-3 lists and
provides the values that can be specified for identifiers that can be used to hold values that the
container passes to the provider.

Appendix A
Environment Identifiers

A-5

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Table A-3 WebLogic Server Environment Identifiers

Identifier Value and Description

Attribute ID urn:bea:xacml:2.0:environment:context:key
In this identifier, key specifies a ContextHandler element name as defined in
ContextHandlers and WebLogic Resources in Developing Security Providers for
Oracle WebLogic Server. A ContextHandler is a WebLogic class that obtains
additional context and container-specific information from the resource container and
represents the information as a list of name/value pairs.

Data Type bea:Object, string, or double
Value The value of the ContextHandler element that you want to match.

Examples
The following example uses an Environment element to match value of a WebLogic Server
listen port. Such an element could create a policy that requires a request to come through
listen port 9001:

<Environment>
 <EnvironmentMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:double-equal">
 <EnvironmentAttributeDesignator
 AttributeId="urn:bea:xacml:2.0:environment:context:com.bea.cont
 extelement.channel.Port"
 DataType="http://www.w3.org/2001/XMLSchema#double"/>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#double">9001</
AttributeValue>
 </EnvironmentMatch>
</Environment>

Policy and PolicySet Identifiers
XACML uses a Policy element to contain one or more rules and a PolicySet element to
contain one or more policies. Each element must include the PolicySetId attribute to provide
a unique identification. The XACML specification requires PolicySetId identifiers to be legal
URI values.

XACML documents use the PolicySetId to include a specific Policy or PolicySet element
within another PolicySet element. WebLogic Server uses the PolicySetId as the key in the
Authorization provider or Role Mapping provider's policy store.

WebLogic Server reserves URI values beginning with urn:bea: for its internal use. While you
cannot create your own policies with URIs that begin with urn:bea:, you can use these values
to include Oracle's policies in your policy sets.

Examples
The following example is a valid identifier for a Policy element:

<Policy
 PolicyId="urn:mycompany:myapplication:policyid:1"
...>

The following example is a valid reference to the Policy element above:

Appendix A
Policy and PolicySet Identifiers

A-6

<PolicyIdReference>
 urn:mycompany:myapplication:policyid:1
</PolicyIdReference>

Resource Identifiers
XACML uses a Resource element to represent data, a service, or a system component.

WebLogic Server supports all of the XACML Resource identifiers, as described in the XACML
2.0 Core Specification.

To identify a WebLogic Server resource, use resource identifiers as described in Table A-4. For
information about WebLogic Server resources, see Resource Types You Can Secure with
Policies.

Table A-4 WebLogic Server Resource Identifiers

To identify a... Use the following identifier...

Resource • Attribute ID: urn:oasis:names:tc:xacml:1.0:resource:resource-id
• Data Type: string
• Value: A collection of name and value pairs that specify the WebLogic Server

resource type and the location of the resource in the WebLogic Server
resource hierarchy. WebLogic Server generates these identifiers.

Note that a policy that uses this identifier will not protect resources that are
below the specified resource. For example, if you use this identifier for a policy
on a Web Service module, the policy will not protect methods within the Web
Service.

See Get the ID of the Resource to Secure .

Resource and its
ancestors

• Attribute ID: urn:oasis:names:tc:xacml:2.0:resource:resource-
ancestor-or-self

• Data Type: string
• Values: A collection of name and value pairs that specify a WebLogic Server

resource type. WebLogic Server generates these identifiers.
See Get the ID of the Resource to Secure .

Parent of a
resource

• Attribute ID: urn:oasis:names:tc:xacml:1.0:resource:resource-
parent

• Data Type: string
• Values: A collection of name and value pairs that specify a WebLogic Server

resource type. WebLogic Server generates these identifiers.
See Get the ID of the Resource to Secure .

Ancestor of a
resource

• Attribute ID: urn:oasis:names:tc:xacml:2.0:resource:resource-
ancestor

• Data Type: string
• Values: A collection of name and value pairs that specify a WebLogic Server

resource type. WebLogic Server generates these identifiers.
See Get the ID of the Resource to Secure .

Examples
The following example Resource element matches a Web Service named SimpleSoapPort and
all methods within that Web Service:

<Resource>
 <ResourceMatch

Appendix A
Resource Identifiers

A-7

 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">type=<webservices>, application=webservicesJwsSimpleEar,
contextPath=/jws_basic_simple, webService=SimpleSoapPort</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:2.0:resource:resource-ancestor"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 MustBePresent="true"/>
 </ResourceMatch>
</Resource>

Subject Identifiers
XACML uses a Subject element to represent an actor whose attributes may be referenced by
a predicate.

WebLogic Server supports all of the XACML Subject identifiers, as described in the XACML 2.0
Core Specification.

To identify a WebLogic Server user, group, or role as defined in a WebLogic Server realm, use
subject identifiers as described Table A-5.

Table A-5 WebLogic Subject Identifiers

To identify a... Use the following identifier...

User principal • Attribute ID: urn:oasis:names:tc:xacml:1.0:subject:subject-id
• Data Type: string
• Value: Name of a WebLogic Server user principal.

Group principal • Attribute ID: urn:oasis:names:tc:xacml:2.0:subject:group
• Data Type: string
• Values: Name of a WebLogic Server group principal.

Role • Attribute ID: urn:oasis:names:tc:xacml:2.0:subject:role
• Data Type: string
• Values: Names of one or more roles as resolved by a XACML Role Mapping

provider.
Note: WebLogic Server supports only a subset of the RBAC Profile specification,
which is the specification that defines this attribute.

Subject who has
signed a SOAP
document

• Attribute ID:
urn:bea:xacml:2.0:subject:context:com.bea.contextelement.web
service.Integrity{{namespace}element}
where namespace and element are the namespace and element that was
signed.

For example:

urn:bea:xacml:2.0:subject:context:com.bea.
contextelement.webservice.Integrity{{ http://
schemas.xmlsoap.org/soap/envelope/}Body}

• Data Type: string
• Values: The Java subject who has signed the element (either user ID or group

ID).

Examples
For an example of a XACML document that uses identifiers from Table A-7 to define a security
role that can be used to protect access to a Web Service, see Example 7-2.

Appendix A
Subject Identifiers

A-8

WebLogic Server Functions for XACML
The following sections describe the functions that the WebLogic Server XACML providers
support in addition to the functions described in the XACML Core Specification:

• Custom Data Type Variants

• Miscellaneous Functions

• Time/Date Conversions

• Arithmetic Conversions and Functions

• Object Type Conversions

• Object Comparisons

• String Comparisons and Manipulations

Custom Data Type Variants
The following function identifiers specify functions that are direct ports of standard XACML
functions and operate on XML and WebLogic Server data types long, float, decimal and
bea:Character. For a description of these data types, see
com.bea.common.security.xacml.Type in Java API Reference for Oracle WebLogic Server.

In this list, type refers to the names of the data types (long, float, decimal or character):

urn:bea:xacml:2.0:function:type-equal
urn:bea:xacml:2.0:function:type-greater-than
urn:bea:xacml:2.0:function:type-greater-than-or-equal
urn:bea:xacml:2.0:function:type-less-than
urn:bea:xacml:2.0:function:type-less-than-or-equal
urn:bea:xacml:2.0:function:type-one-and-only
urn:bea:xacml:2.0:function:type-bag-size urn:bea:xacml:2.0:function:type-is-in
urn:bea:xacml:2.0:function:type-bag urn:bea:xacml:2.0:function:type-intersection
urn:bea:xacml:2.0:function:type-union
urn:bea:xacml:2.0:function:type-at-least-one-member-of
urn:bea:xacml:2.0:function:type-subset
urn:bea:xacml:2.0:function:type-set-equals

For information on functions that compare bea:Objects, see Object Comparisons.

Examples
The following example is a Condition that uses urn:bea:xacml:2.0:function:character-
equal to compare two bea:characters:

<Condition>
 <Apply FunctionId="urn:bea:xacml:2.0:function:character-equal">
 <AttributeValue DataType="urn:bea:xacml:2.0:data-type:character">Q</AttributeValue>
 <AttributeValue DataType="urn:bea:xacml:2.0:data-type:character">Q</AttributeValue>
 </Apply>
</Condition>

Miscellaneous Functions
Table A-6 lists the miscellaneous functions that WebLogic Server provides in addition to the
standard XACML functions.

Appendix A
WebLogic Server Functions for XACML

A-9

Table A-6 Miscellaneous WebLogic Server XACML Functions

Function Description

in-development-mode • URI: urn:bea:xacml:2.0:function:in-development-mode
• Input Type: null
• Return Type: boolean
• Description: This function takes no arguments and returns true if the

WebLogic Server instance that hosts the realm is in development
mode

See Creating a WebLogic Domain in Creating WebLogic Domains Using
the Configuration Wizard.

instance-method • URI: urn:bea:xacml:2.0:function:instance-method
• Input Type: bea:Object, string, Bag of bea:Class,

[bea:Object ...]
• Return Type: bea:Object
• Description: This function invokes a method on a bea:Object that

the container makes available in the current context.
The function takes the following arguments:

• bea:Object. A Java object whose method will be invoked. Use the
urn:bea:xacml:2.0:environment:context:key environment
identifier to specify the bea:Object. See Environment Identifiers.

• string. The method name.

• Bag of bea:Class. The Java classes that are declared in the
method's signature. Use Oracle's string-to-class function to
create the required classes. See Object Type Conversions.

• Zero or more bea:Objects. Each object contains a parameter
value to pass to the method. Use Oracle's object conversion
functions to create the required objects. See Object Type
Conversions.

The function returns the return value of the invoked method as a
bea:Object. Methods that return void may not be invoked.

instance-method-match • URI: urn:bea:xacml:2.0:function:instance-method-match
• Input Type: bea:Object, string, [bea:Object ...]
• Return Type: bea:Object
• Description: This function invokes a method on a bea:Object that

the container makes available in the current context.
The function takes the following arguments:

• bea:Object. A Java object whose method will be invoked. Use the
urn:bea:xacml:2.0:environment:context:key environment
identifier to specify the bea:Object. See Environment Identifiers.

• string. The method name.

• Zero or more bea:Objects. Each object contains a parameter
value to pass to the method. Use Oracle's object conversion
functions to create the required objects. See Object Type
Conversions.

This function uses the method name and the class types of the
parameter bea:Objects to find the appropriate method in the target
bea:Object. If the target bea:Object does not exactly one method
that matches the parameters, then the function result is indeterminate.

The function returns the return value of the invoked method as a
bea:Object. Methods that return void may not be invoked.

Appendix A
WebLogic Server Functions for XACML

A-10

Table A-6 (Cont.) Miscellaneous WebLogic Server XACML Functions

Function Description

instance-method-v2 • URI: urn:bea:xacml:2.0:function:instance-method-v2
• Input Type: bea:Class, bea:Object, string, Bag of

bea:Class, [bea:Object ...]
• Return Type: bea:Object
• Description: This function invokes a method on a bea:Object that

the container makes available in the current context.
The function takes the following arguments:

• bea:Class. The class type of the bea:Object. Use Oracle's
string-to-class function to create the class. See Object Type
Conversions.

• bea:Object. A Java object whose method will be invoked. Use the
urn:bea:xacml:2.0:environment:context:key environment
identifier to specify the bea:Object. See Environment Identifiers.

• string. The method name.

• Bag of bea:Class. The Java classes that are declared in the
method's signature. Use Oracle's string-to-class function to
create the required classes. See Object Type Conversions.

• Zero or more bea:Objects. Each object contains a parameter
value to pass to the method. Use Oracle's object conversion
functions to create the required objects. See Object Type
Conversions.

The function returns the return value of the invoked method as a
bea:Object. Methods that return void may not be invoked.

instance-method-match-
v2

• URI: urn:bea:xacml:2.0:function:instance-method-
match-v2

• Input Type: bea:Class, bea:Object, string,
[bea:Object ...]

• Return Type: bea:Object
• Description: This function uses the class type of the bea:Object,

method name, and the class types of the parameter bea:Objects
to find the appropriate method in the target bea:Object. If the
target bea:Object does not contain exactly one method that
matches the parameters, then the function result is indeterminate.

The function takes the following arguments:

• bea:Class. The class type of the bea:Object. Use Oracle's
string-to-class function to create the class. See Object Type
Conversions.

• bea:Object. A Java object whose method will be invoked. Use the
urn:bea:xacml:2.0:environment:context:key environment
identifier to specify the bea:Object. See Environment Identifiers.

• string. The method name.

• Zero or more bea:Objects. Each object contains a parameter
value to pass to the method. Use Oracle's object conversion
functions to create the required objects. See Object Type
Conversions.

The function returns the return value of the invoked method as a
bea:Object. Methods that return void may not be invoked.

Appendix A
WebLogic Server Functions for XACML

A-11

Table A-6 (Cont.) Miscellaneous WebLogic Server XACML Functions

Function Description

instance-method-match-
v3

• URI: urn:bea:xacml:2.0:function:instance-method-
match-v3

• Input Type: string, bea:Object, string, Bag of string,
[bea:Object...]

• Return Type: bea:Object
• Description: This function uses the class name of the bea:Object,

method name, and the class types of the parameter bea:Objects
to find the appropriate method in the target bea:Object. If the target
bea:Object does not contain exactly one method that matches the
parameters, then the function result is indeterminate.

This function invokes uses the Java reflection API to invoke a method on
a specified bea:Object. The function takes the following arguments:

• String. The name of the bea:Object's class type.

• bea:Object. A Java object whose method will be invoked. Use the
urn:bea:xacml:2.0:environment:context:key environment
identifier to specify the bea:Object. See Environment Identifiers.

• String. The method name.

• Bag of string. The class names of the parameters in the method
signature.

• Zero or more bea:Objects. Each object contains a parameter
value to pass to the method. Use Oracle's object conversion
functions to create the required objects. See Object Type
Conversions.

• The function returns the return value of the invoked method as a
bea:Object. Methods that return void may not be invoked.

Example
The following policy uses the instance-method function to invoke the
HttpServletRequest.getAuthType() method on requests that match a specific URL pattern
(see javax.servlet.http.HttpServletRequest.getAuthType() in the Java EE 8 Platform API
Specification, available at https://javaee.github.io/javaee-spec/javadocs/javax/
servlet/http/HttpServletRequest.html). The WebLogic Server ContextHandler makes this
HttpServletRequest object available to the Authorization and Role Mapping providers for all
requests that come through the servlet container. Any policy for a URL resource can invoke
this or other HttpServletRequest methods.

Example A-1 Policy That Invokes HttpServletRequest.getAuthType()

<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 PolicyId="urn:sample:xacml:2.0:function:instance-method"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:
 first-applicable">
 <Description>function:instance-method</Description>
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">type=<url>, application=MedRecEAR, contextPath=,uri=/docs/*</
AttributeValue>

Appendix A
WebLogic Server Functions for XACML

A-12

https://javaee.github.io/javaee-spec/javadocs/javax/servlet/http/HttpServletRequest.html
https://javaee.github.io/javaee-spec/javadocs/javax/servlet/http/HttpServletRequest.html

 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:2.0:resource:
 resource-ancestor-or-self"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 MustBePresent="true"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 </Target>
 <!-- Declaring the instance-method function as a variable because this policy
 invokes it multiple times.
 -->
 <VariableDefinition VariableId="authType">
 <Apply FunctionId="urn:bea:xacml:2.0:function:instance-method">
 <!-- Passing the HttpServletRequest object to the function, which the
 BEA ContextHandler makes available to the security framework.
 -->
 <Apply FunctionId="urn:bea:xacml:2.0:function:object-one-and-only">
 <EnvironmentAttributeDesignator
 DataType="urn:bea:xacml:2.0:data-type:object"
 AttributeId="urn:bea:xacml:2.0:environment:context:com.bea.
 contextelement.servlet.HttpServletRequest" />
 </Apply>
 <!-- Passing "getAuthType()" as the name of the HttpServletRequest
 method to invoke
 -->
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">getAuthType</
AttributeValue>
 <!-- Because the getAuthType() method signature contains no parameters,
 pass an empty bag of Class.
 -->
 <Apply FunctionId="urn:bea:xacml:2.0:function:class-bag" />
 </Apply>
 </VariableDefinition>
 <!-- Creating a rule that allows access to the resource only if
 the getAuthType() returns a non-null value and if the non-null
 value is "CLIENT_CERT"
 -->
 <Rule RuleId="primary-rule" Effect="Permit">
 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:not">
 <Apply FunctionId="urn:bea:xacml:2.0:function:object-is-null">
 <VariableReference VariableId="authType" />
 </Apply>
 </Apply>
 <Apply
 FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <!-- Because the instance-method function returns a bea:Object,
 this policy wraps the function in an object-to-string function,
 which enables comparison a of the function output with another
 string.
 -->
 <Apply FunctionId="urn:bea:xacml:2.0:function:object-to-string">
 <VariableReference VariableId="authType" />
 </Apply>
 <!-- Declaring a String object to compare to the
 HttpServletRequest.getAuthType() return value.
 -->
 <AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">CLIENT_CERT</AttributeValue>
 </Apply>

Appendix A
WebLogic Server Functions for XACML

A-13

 </Apply>
 </Condition>
 </Rule>
 <Rule RuleId="deny-rule" Effect="Deny" />
</Policy>

Time/Date Conversions
Table A-7 lists the functions that Oracle provides to convert XACML times and dates to
different data types.

Table A-7 WebLogic Server Time/Date Conversions

Function Description

dateTime-dayOfMonth • URI: urn:bea:xacml:2.0:function:dateTime-dayOfMonth
• Input Type: dateTime
• Return Type: integer
• Description: This function takes a single argument of type

dateTime and returns an integer value that represents the day of
month implied by the dateTime input.

The first day of the month is represented with a value of 1.

dateTime-
dayOfMonthMaximum

• URI: urn:bea:xacml:2.0:function:dateTime-
dayOfMonthMaximum

• Input Type: dateTime
• Return Type: integer
• Description: This function takes a single argument of type

dateTime and returns an integer value that represents the value of
the last day of the month.

For example, if the dateTime describes a time in the month of
December, the function returns 31 (because December has a
maximum of 31 days). This function adjusts the value returned for
February on leap years.

dateTime-dayOfWeek • URI: urn:bea:xacml:2.0:function:dateTime-dayOfWeek
• Input Type: dateTime
• Return Type: integer
• Description: This function takes a single argument of type

dateTime and returns an integer value that indicates the day of the
week implied by the dateTime input.

Sunday is the first day of the week and has a value of 1.

dateTime-secondsOfDay • URI: urn:bea:xacml:2.0:function:dateTime-secondsOfDay
• Input Type: dateTime
• Return Type: integer
• Description: This function takes a single argument of type

dateTime and returns an integer value that indicates the number of
whole seconds that have elapsed in the day that is indicated by the
dateTime input.

dayTimeDuration-
timeZoneOffset

• URI: urn:bea:xacml:2.0:function:dayTimeDuration-
timeZoneOffset

• Input Type: null
• Return Type: dayTimeDuration
• Description: This function takes no arguments and returns a

dayTimeDuration value that indicates the time-zone offset
between the local time and GMT time.

Appendix A
WebLogic Server Functions for XACML

A-14

Table A-7 (Cont.) WebLogic Server Time/Date Conversions

Function Description

string-to-dateTime • URI: urn:bea:xacml:2.0:function:string-to-dateTime
• Input Type: string
• Return Type: dateTime
• Description: This function takes a single argument of type string

and returns the argument as a dateTime.

string-to-date • URI: urn:bea:xacml:2.0:function:string-to-date
• Input Type: string
• Return Type: date
• Description: This function takes a single argument of type string

and returns the argument as a date.

object-to-dateTime • URI: urn:bea:xacml:2.0:function:object-to-dateTime
• Input Type: bea:Object
• Return Type: dateTime
• Description: This function takes a single argument of type

bea:Object and returns the value as a dateTime object. If the
bea:Object is an instance of java.util.Calendar, then its
value is returned directly. If the bea:Object is an instance of
java.security.Timestamp or java.util.Date, this function
converts the bea:Object to java.util.Calendar and returns
the Calendar value. Otherwise, this function converts the
bea:Object to java.lang.String and parses the String into a
dateTime value.

object-to-date • URI: urn:bea:xacml:2.0:function:object-to-date
• Input Type: bea:Object
• Return Type: date
• Description: This function takes a single argument of type

bea:Object and returns the value as a date object. If the
bea:Object is an instance of java.util.Calendar, then its
value is returned directly. If the bea:Object is an instance of
java.util.Date, this function converts the bea:Object to
java.util.Calendar and returns the Calendar value.
Otherwise, this function converts the bea:Object to
java.lang.String and parses the String into a date value.

Arithmetic Conversions and Functions
Table A-8 lists the functions that Oracle provides to convert arithmetic values to different Input
Types and to extend the basic set of arithmetic functions specified by XACML.

Table A-8 WebLogic Server Arithmetic Conversions and Functions

Function Description

float-to-double • URI: urn:bea:xacml:2.0:function:float-to-double
• Input Type: float
• Return Type: double
• Description: This function takes a single argument of type float and returns

the argument as a double.

Appendix A
WebLogic Server Functions for XACML

A-15

Table A-8 (Cont.) WebLogic Server Arithmetic Conversions and Functions

Function Description

long-to-double • URI: urn:bea:xacml:2.0:function:long-to-double
• Input Type: long
• Return Type: double
• Description: This function takes a single argument of type long and returns

the argument as a double.

long-to-float • URI: urn:bea:xacml:2.0:function:long-to-float
• Input Type: long
• Return Type: float
• Description: This function takes a single argument of type long and returns

the argument as a float.

integer-to-
float

• URI: urn:bea:xacml:2.0:function:integer-to-float
• Input Type: integer
• Return Type: float
• Description: This function takes a single argument of type integer and

returns the argument as a float.

integer-to-long • URI: urn:bea:xacml:2.0:function:integer-to-long
• Input Type: integer
• Return Type: long
• Description: This function takes a single argument of type integer and

returns the argument as a long.

string-to-
double

• URI: urn:bea:xacml:2.0:function:string-to-double
• Input Type: string
• Return Type: double
• Description: This function takes a single argument of type string and returns

the argument as a double.

string-to-long • URI: urn:bea:xacml:2.0:function:string-to-long
• Input Type: string
• Return Type: long
• Description: This function takes a single argument of type string and returns

the argument as a long.

string-to-
integer

• URI: urn:bea:xacml:2.0:function:string-to-integer
• Input Type: string
• Return Type: integer
• Description: This function takes a single argument of type string and returns

the argument as a integer.

string-to-float • URI: urn:bea:xacml:2.0:function:integer-to-long
• Input Type: string
• Return Type: float
• Description: This function takes a single argument of type string and returns

the argument as a float.

to-degrees • URI: urn:bea:xacml:2.0:function:to-degrees
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double, converts

the value from radians to degrees, and returns the degrees value as a double.

Appendix A
WebLogic Server Functions for XACML

A-16

Table A-8 (Cont.) WebLogic Server Arithmetic Conversions and Functions

Function Description

to-radians • URI: urn:bea:xacml:2.0:function:to-radians
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double, converts

the value from degrees to radians, and returns the radians value as a double.

acos • URI: urn:bea:xacml:2.0:function:acos
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double and returns

the arc cosine of the argument as a double.

asin • URI: urn:bea:xacml:2.0:function:asin
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double and returns

the arc sine of the argument as a double.

atan • URI: urn:bea:xacml:2.0:function:atan
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double and returns

the arc tangent of the argument as a double.

atan2 • URI: urn:bea:xacml:2.0:function:atan2
• Input Type: double
• Return Type: double
• Description: This function takes two arguments of type double that represent

the x and y coordinates of a point. It returns a double value which is the theta
component of the point in polar coordinates for the r value that corresponds to
the x coordinate.

ceil • URI: urn:bea:xacml:2.0:function:ceil
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double and returns

a double value that is the smallest mathematical integer that is greater than or
equal to the argument value.

cos • URI: urn:bea:xacml:2.0:function:cos
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double and returns

the cosine of the argument as a double.

exp • URI: urn:bea:xacml:2.0:function:exp
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double and returns

a double value that is Euler's number, e, raised to the power of the argument
value.

Appendix A
WebLogic Server Functions for XACML

A-17

Table A-8 (Cont.) WebLogic Server Arithmetic Conversions and Functions

Function Description

ieee-remainder • URI: urn:bea:xacml:2.0:function:ieee-remainder
• Input Type: double
• Return Type: double
• Description: This function takes two arguments of type double and returns a

double value that is the remainder operation result of the two arguments as
described in the IEEE 754 standard. See https://ieeexplore.ieee.org/
document/5976968.

log • URI: urn:bea:xacml:2.0:function:log
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double and the

natural logarithm as a double.

maximum • URI: urn:bea:xacml:2.0:function:maximum
• Input Type: double
• Return Type: double
• Description: This function takes two arguments of type double and returns the

larger of the two values as a double.

minimum • URI: urn:bea:xacml:2.0:function:minimum
• Input Type: double
• Return Type: double
• Description: This function takes two arguments of type double and returns the

smaller of the two values as a double.

pow • URI: urn:bea:xacml:2.0:function:pow
• Input Type: double
• Return Type: double
• Description: This function takes two arguments of type double and returns a

double value that is the result of taking the first argument value to the power
of the second argument value.

random-number • URI: urn:bea:xacml:2.0:function:random-number
• Input Type: double
• Return Type: double
• Description: This function takes two arguments of type double and returns a

double value that is a random number greater than or equal to the first
argument and less than the second argument.

rint • URI: urn:bea:xacml:2.0:function:rint
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double and returns

a double value that is the mathematical integer that is closest to the argument
value. If the higher and lower integer values are equally close, then the even
value is returned.

sqrt • URI: urn:bea:xacml:2.0:function:sqrt
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double and returns

the square root as a double.

Appendix A
WebLogic Server Functions for XACML

A-18

https://ieeexplore.ieee.org/document/5976968
https://ieeexplore.ieee.org/document/5976968

Table A-8 (Cont.) WebLogic Server Arithmetic Conversions and Functions

Function Description

tan • URI: urn:bea:xacml:2.0:function:tan
• Input Type: double
• Return Type: double
• Description: This function takes a single argument of type double and returns

the tangent as a double.

Object Type Conversions
WebLogic Server provides a collection of functions for converting XACML data into Java
objects. The URI for each function in this collection is as follows:

urn:bea:xacml:2.0:function:type-to-object

where type is the name of a XACML data type. Table A-9 lists all data types and the Java
object that the corresponding function returns.

For example, this function returns test as a java.lang.String object:

<Apply
 FunctionId="urn:bea:xacml:2.0:function:string-to-object">test</Apply>

Table A-9 Data to Java Object Conversion

When type
equals...

The urn:bea:xacml:2.0:function:type-to-object function returns...

character java.lang.Character
string java.lang.String
boolean java.lang.Boolean
integer java.lang.Integer
double java.lang.Double
float java.lang.Float
long java.lang.Long
decimal java.lang.Double
base64Binary java.lang.Byte[]
hexBinary java.lang.Byte[]
date java.util.Calendar
time java.util.Calendar
dateTime java.util.Calendar
dayTimeDuration java.lang.Long
yearMonthDuration java.lang.Integer
rfc822Name java.lang.String
x500Name java.lang.String
anyURI java.net.URI

Appendix A
WebLogic Server Functions for XACML

A-19

Table A-9 (Cont.) Data to Java Object Conversion

When type
equals...

The urn:bea:xacml:2.0:function:type-to-object function returns...

ipAddress java.lang.String
dnsAddress java.lang.String

Table A-10 lists the functions that Oracle provides to convert strings or Java objects to different
data or object types. To pass objects that the container makes available to the current context,
use the urn:bea:xacml:2.0:environment:context:key environment identifier to specify the
bea:Object. See Environment Identifiers.

Table A-10 WebLogic Server Object Conversions

Function Description

string-to-class • URI: urn:bea:xacml:2.0:function:string-to-class
• Input Type: string
• Return Type: bea:Class
• Description: This function takes a single argument of type string, invokes

java.lang.Class.forName() on the argument value, and returns the result
as a bea:Class.

object-to-
string

• URI: urn:bea:xacml:2.0:function:object-to-string
• Input Type: bea:Object
• Return Type: string
• Description: This function takes a single argument of type bea:Object,

invokes java.lang.Object.toString() on the argument value, and
returns the result as a string.

object-to-
double

• URI: urn:bea:xacml:2.0:function:object-to-double
• Input Type: bea:Object
• Return Type: double
• Description: This function takes a single argument of type bea:Object and

returns the value as a double. If the bea:Object is an instance of double,
then its value is used directly. If the bea:Object is an instance of
java.lang.Number, then this function invokes Number.doubleValue() on
the value. Otherwise, this function converts the bea:Object to a
java.lang.String and parses the String into a double.

object-to-
integer

• URI: urn:bea:xacml:2.0:function:object-to-integer
• Input Type: bea:Object
• Return Type: integer
• Description: This function takes a single argument of type bea:Object and

returns the value as integer. If the bea:Object is an instance of
java.lang.Integer, then its value is used directly. If the bea:Object is an
instance of java.lang.Number, then this function invokes
Number.intValue() on the value. Otherwise, this function converts the
bea:Object to java.lang.String and parses the String into an integer.

Object Comparisons
Table A-11 lists the functions that Oracle provides to compare Java objects.

Appendix A
WebLogic Server Functions for XACML

A-20

Table A-11 WebLogic Server Object Comparisons

Function Description

object-is-null • URI: urn:bea:xacml:2.0:function:object-is-null
• Input Type: bea:Object
• Return Type: boolean
• Description: This function takes a single argument of type bea:Object and

returns a boolean value indicating whether the object reference is equal to the
Java keyword null. If there is no object that corresponds to the given object
reference, this function returns true.

object-equal • URI: urn:bea:xacml:2.0:function:object-equal
• Input Type: bea:Object, bea:Object
• Return Type: boolean
• Description: This function takes two arguments of type bea:Object, invokes

java.lang.Object.equals(), and returns a boolean value indicating whether
the two Objects are equal.

For information about the java.lang.Object.equals() method, see Object in
Jakarta SE and JDK API Specification.

object-greater-than • URI: urn:bea:xacml:2.0:function:object-greater-than
• Input Type: bea:Object, bea:Object
• Return Type: boolean
• Description: This function takes two arguments of type bea:Object and returns a

boolean value indicating whether the first bea:Object is greater than the
second bea:Object. The two bea:Objects must implement
java.lang.Comparable, else the evaluation is indeterminate.

object-greater-than-or-equal • URI: urn:bea:xacml:2.0:function:object-greater-than-or-equal
• Input Type: bea:Object, bea:Object
• Return Type: boolean
• Description: This function takes two arguments of type bea:Object and returns a

boolean value indicating whether the first bea:Object is greater than or equal
to the second bea:Object. The two bea:Objects must implement
java.lang.Comparable, else the evaluation is indeterminate.

object-less-than • URI: urn:bea:xacml:2.0:function:object-less-than
• Input Type: bea:Object, bea:Object
• Return Type: boolean
• Description: This function takes two arguments of type bea:Object and returns a

boolean value indicating whether the first bea:Object is less than the second
bea:Object. The two bea:Objects must implement java.lang.Comparable,
else the evaluation is indeterminate.

object-less-than-or-equal • URI: urn:bea:xacml:2.0:function:object-less-than-or-equal
• Input Type: bea:Object, bea:Object
• Return Type: boolean
• Description: This function takes two arguments of type bea:Object and returns a

boolean value indicating whether the first bea:Object is less than or equal to
the second bea:Object. The two bea:Objects must implement
java.lang.Comparable, else the evaluation is indeterminate.

Appendix A
WebLogic Server Functions for XACML

A-21

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

Table A-11 (Cont.) WebLogic Server Object Comparisons

Function Description

object-collection-contains • URI: urn:bea:xacml:2.0:function:object-collection-contains
• Input Type: bea:Object, bea:Object
• Return Type: boolean
• Description: This function takes two arguments of type bea:Object and returns a

boolean that indicates whether the first bea:Object contains the second
bea:Object, as determined by Collection.contains(). The first
bea:Object must implement java.util.Collection, else the evaluation is
indeterminate.

For information about the Collection.contains() method, see Interface
Collection <E> in Jakarta SE and JDK API Specification .

object-collection-contains-
all

• URI: urn:bea:xacml:2.0:function:object-collection-contains-all
• Input Type: bea:Object, bea:Object
• Return Type: boolean
• Description: This function takes two arguments of type bea:Object and returns a

boolean that indicates whether the first bea:Object contains all of the second
bea:Object as determined by Collection.containsAll(). Both
bea:Objects must implement java.util.Collection, else the evaluation is
indeterminate.

For information about the Collection.containsAll() method, see Interface
Collection <E> in Jakarta SE and JDK API Specification.

String Comparisons and Manipulations
Table A-12 lists the functions that Oracle provides to compare Java objects.

Table A-12 WebLogic Server String Comparisons and Manipulations

Function Description

string-char-at • URI: urn:bea:xacml:2.0:function:string-char-at
• Input Type: string, integer
• Return Type: bea:Character
• Description: This function takes two arguments of type string and integer,

searches in the string for the character that is in the position indicated by the
Integer, and returns the character as a bea:Character.

string-compare-to-ignore-
case

• URI: urn:bea:xacml:2.0:function:string-compare-to-ignore-case
• Input Type: string, string
• Return Type: integer
This function takes two arguments of type string and returns an integer that
indicates how the two string arguments compare:

• 0 if the strings are identical

• Less than 0 if the first string lexically precedes the second string

• Greater than 0 if the first string lexically follows the second string

Comparisons are preformed without considering case.

Appendix A
WebLogic Server Functions for XACML

A-22

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

Table A-12 (Cont.) WebLogic Server String Comparisons and Manipulations

Function Description

string-contains • URI: urn:bea:xacml:2.0:function:string-contains
• Input Type: string, string
• Return Type: boolean
• Description: This function takes two arguments of type string and returns a

boolean value that indicates whether the first string contains the value of the
second string as a substring.

string-starts-with • URI: urn:bea:xacml:2.0:function:string-starts-with
• Input Type: string, string
• Return Type: boolean
• Description: This function takes two arguments of type string and returns a

boolean value that indicates whether the first string value starts with the value
of the second string.

string-ends-with • URI: urn:bea:xacml:2.0:function:string-ends-with
• Input Type: string, string
• Return Type: boolean
• Description: This function takes two arguments of type string and returns a

boolean that indicates whether the first string value ends with the value of the
second string.

string-length • URI: urn:bea:xacml:2.0:function:string-length
• Input Type: string
• Return Type: integer
• Description: This function takes a single argument of type string and returns an

integer that indicates the length of the string value.

string-replace • URI: urn:bea:xacml:2.0:function:string-replace
• Input Type: string, bea:Character, bea:Character
• Return Type: string
• Description: This function takes three arguments of type string,

bea:Character, and bea:Character, replaces in the string all instances of
the first bea:Character value with the value of the second bea:Character,
and returns the result as a string.

string-substring • URI: urn:bea:xacml:2.0:function:string-substring
• Input Type: string, integer, integer
• Return Type: string
• Description: This function takes three arguments of type string, integer, and

integer, and returns a string that is the substring of the string argument
from and including the index of the first integer argument to but excluding the
index of the second integer argument.

string-normalize-to-upper-
case

• URI: urn:bea:xacml:2.0:function:string-normalize-to-upper-case
• Input Type: string
• Return Type: string
• Description: This function takes a single argument of type string, normalizes it

to upper case, and returns the result as a string.

Rule and Policy-Combining Algorithm
If multiple PolicySets apply to a decision, their results are combined using the following
algorithm:

Appendix A
Rule and Policy-Combining Algorithm

A-23

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny-overrides

Appendix A
Rule and Policy-Combining Algorithm

A-24

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction
	2 Understanding WebLogic Resource Security
	Overview of Securing WebLogic Resources
	Using Policies to Protect Multiple Resources
	Protecting Policies by Type
	Protecting a Hierarchy of Resources

	Designing Roles and Policies for WebLogic Resources: Main Steps
	Best Practices: Conditionalize Policies or Conditionalize Roles
	Best Practices: Configure Entitlements Caching When Using WebLogic Providers

	3 Resource Types You Can Secure with Policies
	Administrative Resources
	Application Resources
	COM Resources
	EJB Resources
	Enterprise Information Systems (EIS) Resources
	Java DataBase Connectivity (JDBC) Resources
	JDBC Operations

	Java Messaging Service (JMS) Resources
	JMS Operations

	Java Naming and Directory Interface (JNDI) Resources
	JNDI Operations

	JMX Resources
	Maintaining a Consistent Security Scheme

	Server Resources
	Permissions for the weblogic.Server Command and the Node Manager
	Permissions for Using the weblogic.Server Command
	Permissions for Using the Node Manager

	URL Resources
	Web Service Resources
	Work Context Resources
	Coherence Resources

	4 Options for Securing Web Application and EJB Resources
	Deployment Descriptors Not Required
	Comparison of Security Models for Web Applications and EJBs
	Discussion of Each Model
	Metadata Annotations
	Deployment Descriptor Only Model
	Custom Roles Model
	Custom Roles and Policies Model
	Advanced Model

	Understanding the Advanced Security Model
	Understanding the Check Roles and Policies Setting
	Understanding the When Deploying Web Applications or EJBs Setting
	How the Check Roles and Policies and When Deploying Web Applications or EJBs Settings Interact
	Understanding the Combined Role Mapping Enabled Setting
	Usage Examples
	Example for EAR, WAR and EJB
	Example for EAR and WAR

	Securing Web Applications and EJBs

	5 Security Policies
	Security Policy Storage and Prerequisites for Use
	Default Root Level Security Policies
	Security Policy Conditions
	Basic Policy Conditions
	Date and Time Policy Conditions
	Context Element Policy Conditions

	Protected Public Interfaces
	Using the WebLogic Remote Console to Manage Security Policies

	6 Users, Groups, And Security Roles
	Overview of Users and Groups
	Default Users
	Default Groups
	Run Time Groups
	Best Practices: Add a User To the Administrators Group

	Overview of Security Roles
	Types of Security Roles: Global Roles and Scoped Roles
	Default Global Roles
	Security Role Conditions
	Basic Role Conditions
	Date and Time Role Conditions
	Context Element Role Conditions

	Using the WebLogic Remote Console to Manage Users, Groups, and Roles

	7 Using XACML Documents to Secure WebLogic Resources
	Prerequisites
	Adding a XACML Role or Policy to a Realm: Main Steps
	Caution: Indeterminate Results Can Lock Out All Users
	Determine Which Resource to Secure
	Get the ID of the Resource to Secure
	Create XACML Documents
	Example: Defining Role Assignments
	Example: Defining Authorization Policies

	Use WebLogic Scripting Tool to Add the Role or Policy to the Realm
	Verify That Your Roles and Policies Are in the Realm

	Creating Roles and Polices for Custom MBeans
	Determine the Resource IDs for a Custom MBean

	Exporting Roles and Policies to XACML Documents

	A Reference for XACML on WebLogic Server
	Comparison of WebLogic Server and XACML Security Models
	Comparison of Terminology
	Description of Data Types

	Action Identifiers
	Examples

	Environment Identifiers
	Examples

	Policy and PolicySet Identifiers
	Examples

	Resource Identifiers
	Examples

	Subject Identifiers
	Examples

	WebLogic Server Functions for XACML
	Custom Data Type Variants
	Examples
	Miscellaneous Functions
	Example
	Time/Date Conversions
	Arithmetic Conversions and Functions
	Object Type Conversions
	Object Comparisons
	String Comparisons and Manipulations

	Rule and Policy-Combining Algorithm

