
Oracle® Fusion Middleware
Developing JDBC Applications for Oracle
WebLogic Server

14c (14.1.2.0.0)
F61474-01
December 2024

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server, 14c (14.1.2.0.0)

F61474-01

Copyright © 2007, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Diversity and Inclusion ix

Related Documentation x

Conventions x

1 Using WebLogic JDBC in an Application

Getting a Database Connection from a DataSource Object 1-1

Importing Packages to Access DataSource Objects 1-1

Obtaining a Client Connection Using a DataSource 1-1

Possible Exceptions When a Connection Request Fails 1-3

Pooled Connection Limitation 1-3

Getting a Connection from an Application-Scoped Data Source 1-4

2 Using DataSource Resource Definitions

Using Jakarta EE DataSource Resource Definitions 2-1

Creating DataSource Resource Definitions Using Annotations 2-2

Creating DataSource Resource Definitions Using Deployment Descriptors 2-3

Using WebLogic Configuration Attributes 2-3

Implementation Considerations When Using DataSource Resource Definitions 2-6

Naming Conventions 2-6

WebLogic Data Source Naming Conventions 2-6

Jakarta EE Data Source Naming Conventions 2-7

Mapping the Jakarta EE DataSource Resource Definition to WebLogic Data Source
Resources 2-7

Configuring Active GridLink DataSource Resource Definitions 2-8

Using an Encrypted Password in a DataSourceDefinition 2-10

Additional Considerations 2-10

Using Data Sources in Clients 2-11

Additional Resources 2-11

iii

3 Performance Tuning Your JDBC Application

WebLogic Performance-Enhancing Features 3-1

How Pooled Connections Enhance Performance 3-1

Caching Statements and Data 3-1

Designing Your Application for Best Performance 3-2

Process as Much Data as Possible Inside the Database 3-2

Use Built-in DBMS Set-based Processing 3-2

Make Your Queries Smart 3-3

Make Transactions Single-batch 3-4

Never Have a DBMS Transaction Span User Input 3-4

Use In-place Updates 3-5

Keep Operational Data Sets Small 3-5

Use Pipelining and Parallelism 3-5

4 Using WebLogic-branded DataDirect Drivers

Using DataDirect Documentation 4-1

JDBC Specification Compliance 4-2

Installation 4-2

Supported Drivers and Databases 4-3

Connecting Through WebLogic JDBC Data Sources 4-3

Developing Your Own JDBC Code 4-3

Specifying Connection Properties 4-3

Using IP Addresses 4-3

Required Permissions for the Java Security Manager 4-3

For MS SQLServer Users 4-4

Installing MS SQLServer XA DLLs 4-4

Using instjdbc.sql with MS SQLServer 4-4

5 Using WebLogic Wrapper Drivers

Using the WebLogic RMI Driver (Deprecated) 5-1

RMI Driver Client Interoperability 5-2

Security Considerations for WebLogic RMI Drivers 5-2

Setting Up WebLogic Server to Use the WebLogic RMI Driver 5-3

Sample Client Code for Using the RMI Driver 5-3

Import the Required Packages 5-3

Get the Database Connection 5-3

Using a JNDI Lookup to Obtain the Connection 5-3

Using Only the WebLogic RMI Driver to Obtain a Database Connection 5-4

Row Caching with the WebLogic RMI Driver 5-5

iv

Important Limitations for Row Caching with the WebLogic RMI Driver 5-6

Limitations When Using Global Transactions 5-7

Using the WebLogic JTS Driver (Deprecated) 5-7

Sample Client Code for Using the JTS Driver 5-8

6 Using API Extensions in JDBC Drivers

Using API Extensions to JDBC Interfaces 6-1

Sample Code for Accessing API Extensions to JDBC Interfaces 6-1

Import Packages to Access API Extensions 6-2

Get a Connection 6-2

Cast the Connection as a Vendor Connection 6-2

Use API Extensions 6-2

Using API Extensions for Oracle JDBC Types 6-3

Sample Code for Accessing Oracle Thin Driver Extensions to JDBC Interfaces 6-5

Programming with Arrays 6-5

Import Packages to Access Oracle Extensions 6-5

Establish the Connection 6-6

Creating an Array in the Database 6-6

Getting an Array 6-6

Updating an Array in the Database 6-7

Using Oracle Array Extension Methods 6-7

Programming with Structs 6-7

Creating Objects in the Database 6-8

Getting Struct Attributes 6-9

Using OracleStruct Extension Methods 6-9

Using a Struct to Update Objects in the Database 6-9

Programming with Refs 6-10

Creating a Ref in the Database 6-10

Getting a Ref 6-10

Using WebLogic OracleRef Extension Methods 6-11

Updating Ref Values 6-11

Programming with Large Objects 6-12

Creating Blobs in the Database 6-12

Updating Blobs in the Database 6-12

Using OracleBlob Extension Methods 6-12

Programming with Clob Values 6-13

Transaction Boundaries Using LOBs 6-13

Recovering LOB Space 6-13

Programming with Opaque Objects 6-13

Using Batching with the Oracle Thin Driver 6-14

v

Using the Java Security Manager with the Oracle Thin Driver 6-14

7 Getting a Physical Connection from a Data Source

Opening a Connection 7-2

Closing a Connection 7-3

Remove Infected Connections Enabled is True 7-4

Remove Infected Connections Enabled is False 7-4

Limitations for Using a Physical Connection 7-4

8 Using RowSets with WebLogic Server

Deprecation of weblogic.jdbc.rowsets 8-2

About RowSets 8-2

Types of RowSets 8-2

Programming with RowSets 8-3

CachedRowSets 8-4

Characteristics 8-4

Special Programming Considerations and Limitations for CachedRowSets 8-5

Entire RowSet Query Results Stored in Memory 8-5

Data Contention 8-5

Code Example 8-5

Importing Classes and Interfaces for a CachedRowSet 8-6

Creating a CachedRowSet 8-7

Setting CachedRowSet Properties 8-7

Database Connection Options 8-7

Populating a CachedRowSet 8-8

Setting CachedRowSet MetaData 8-8

Working with Data in a CachedRowSet 8-8

Getting Data from a Row in a RowSet 8-9

Updating a Row in a RowSet 8-9

Inserting a Row in a RowSet 8-10

Deleting a Row in a RowSet 8-10

Synchronizing RowSet Changes with the Database 8-10

RowSet MetaData Settings for Database Updates 8-11

WebLogic RowSet Extensions for Working with MetaData 8-11

executeAndGuessTableName and executeAndGuessTableNameAndPrimaryKeys 8-12

Setting Table and Primary Key Information Using the MetaData Interface 8-12

Setting the Write Table 8-12

RowSets and Transactions 8-13

Integrating with JTA Global Transactions 8-13

Behavior of Rowsets Using Global Transactions 8-13

vi

Using Local Transactions 8-14

Behavior of Rowsets Using Local Transactions 8-14

Reusing a WebLogic RowSet After Completing a Transaction 8-14

FilteredRowSets 8-15

FilteredRowSet Characteristics 8-15

Special Programming Considerations 8-16

RowSet Filters are Not Cumulative 8-16

No Pending Changes Before Setting or Changing a Filter 8-16

FilteredRowSet Code Example 8-16

Importing Classes and Interfaces for FilteredRowSets 8-18

Creating a FilteredRowSet 8-18

Setting FilteredRowSet Properties 8-18

Database Connection Options for a FilteredRowSet 8-18

Populating a FilteredRowSet 8-18

Setting FilteredRowSet MetaData 8-18

Setting the Filter for a FilteredRowSet 8-19

User-Defined RowSet Filter 8-19

WebLogic SQL-Style Filter 8-20

Working with Data in a FilteredRowSet 8-20

WebRowSets 8-20

Special Programming Considerations 8-21

JoinRowSets 8-21

JDBCRowSets 8-22

Handling SyncProviderExceptions with a SyncResolver 8-22

RowSet Data Synchronization Conflict Types 8-23

SyncResolver Code Example 8-24

Getting a SyncResolver Object 8-25

Navigating in a SyncResolver Object 8-26

Setting the Resolved Value for a RowSet Data Synchronization Conflict 8-26

Synchronizing Changes 8-27

WLCachedRowSets 8-27

SharedRowSets 8-27

SortedRowSets 8-28

SQLPredicate, a SQL-Style RowSet Filter 8-28

What is SQLPredicate? 8-28

SQLPredicate Grammar 8-28

Code Example 8-29

Optimistic Concurrency Policies 8-29

VERIFY_READ_COLUMNS 8-30

VERIFY_MODIFIED_COLUMNS 8-30

VERIFY_SELECTED_COLUMNS 8-31

VERIFY_NONE 8-31

vii

VERIFY_AUTO_VERSION_COLUMNS 8-31

VERIFY_VERSION_COLUMNS 8-32

Optimistic Concurrency Control Limitations 8-32

Choosing an Optimistic Policy 8-32

Performance Options 8-33

JDBC Batching 8-33

Batching Limitations with and Oracle Database 8-33

Group Deletes 8-34

9 Troubleshooting JDBC

Problems with Oracle Database on UNIX 9-1

Thread-related Problems on UNIX 9-1

Closing JDBC Objects 9-2

Abandoning JDBC Objects 9-2

Using Microsoft SQL Server with Nested Triggers 9-3

Exceeding the Nesting Level 9-3

Using Triggers and EJBs 9-3

viii

Preface

This document describes about developing JDBC Applications for Oracle WebLogic Server
and evaluating WebLogic Server.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
This document is a resource for software developers and system administrators who develop
and support applications that use the Java Database Connectivity (JDBC) API. It also contains
information that is useful for business analysts and system architects who are evaluating
WebLogic Server. The topics in this document are relevant during the evaluation, design,
development, pre-production, and production phases of a software project.

It is assumed that the reader is familiar with Jakarta EE and JDBC concepts. This document
emphasizes the value-added features provided by WebLogic Server JDBC and key information
about how to use WebLogic Server features and facilities to get an JDBC application up and
running.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documentation
This document contains JDBC-specific programming information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

• Administering JDBC Data Sources for Oracle WebLogic Server is a guide to JDBC
configuration and management for WebLogic Server.

• Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications in development and production
environments.

JDBC Samples and Tutorials

In addition to this document, Oracle provides a variety of JDBC code samples that show JDBC
configuration and API use, and provide practical instructions on how to perform key JDBC
development tasks.

Samples and Tutorials

Oracle provides a variety of code examples and tutorials that show WebLogic Server
configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

JDBC Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in the
ORACLE_HOME\wlserver\samples\server directory, where ORACLE_HOME represents the
directory where you installed WebLogic Server. See Sample Applications and Code Examples
in Understanding Oracle WebLogic Server.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

x

1
Using WebLogic JDBC in an Application

Learn how to use the WebLogic Remote Console to enable, configure, and monitor features of
WebLogic Server, including JDBC generic data sources, multi data sources, or Active GridLink
data sources.You can do the same tasks programmatically using the JMX API and the
WebLogic Scripting Tool (WLST). After configuring JDBC connectivity components, you can
use them in your applications.
See Configuring JDBC Data Sources in Administering JDBC Data Sources for Oracle
WebLogic Server.

• Getting a Database Connection from a DataSource Object
Learn how to request a database connection from a DataSource object.

• Pooled Connection Limitation
When using pooled connections in a data source, it is possible to execute DBMS-specific
SQL code that will alter the database connection properties in a way which WebLogic
Server and the JDBC driver will be unaware of. When the connection is returned to the
pool, the characteristics of the connection may not be set back to a valid state.

• Getting a Connection from an Application-Scoped Data Source
To get a connection from JDBC module packaged with an enterprise application, you look
up the data source defined in the JDBC module in the local environment or in the JNDI tree
and then request a connection from the data source or multi data source.

Getting a Database Connection from a DataSource Object
Learn how to request a database connection from a DataSource object.

• Importing Packages to Access DataSource Objects

• Obtaining a Client Connection Using a DataSource

• Possible Exceptions When a Connection Request Fails

Importing Packages to Access DataSource Objects
To use the DataSource objects in your applications, import the following classes in your client
code:

import java.sql.*;
import java.util.*;
import javax.naming.*;

Obtaining a Client Connection Using a DataSource
To obtain a connection for a JDBC client, use a Java Naming and Directory Interface (JNDI)
lookup to locate the DataSource object, as shown in this code fragment.

1-1

Note:

When using a JDBC connection in a client-side application, the exact same JDBC
driver classes must be in the CLASSPATH on both the server and the client. If the driver
classes do not match, you may see java.rmi.UnmarshalException exceptions.

Context ctx = null;
 Hashtable ht = new Hashtable();
 ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 ht.put(Context.PROVIDER_URL,
 "t3://hostname:port");
 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 try {
 ctx = new InitialContext(ht);
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");
 conn = ds.getConnection();
 // You can now use the conn object to create
 // Statements and retrieve result sets:
 stmt = conn.createStatement();
 stmt.execute("select * from someTable");
 rs = stmt.getResultSet();
...
//Close JDBC objects as soon as possible
 stmt.close();
 stmt=null;
 conn.close();
 conn=null;
 }
 catch (Exception e) {
 // a failure occurred
 log message;
 }
finally {
 try {
 ctx.close();
 } catch (Exception e) {
 log message; }
 try {
 if (rs != null) rs.close();
 } catch (Exception e) {
 log message; }
 try {
 if (stmt != null) stmt.close();
 } catch (Exception e) {
 log message; }
 try {
 if (conn != null) conn.close();
 } catch (Exception e) {
 log message; }
}

(Substitute the correct hostname and port number for your WebLogic Server.)

Chapter 1
Getting a Database Connection from a DataSource Object

1-2

Note:

The code above uses one of several available procedures for obtaining a JNDI
context. For more information on JNDI, see WebLogic Server JNDI in Developing
JNDI Applications for Oracle WebLogic Server.

Possible Exceptions When a Connection Request Fails
The weblogic.jdbc.extensions package includes the following exceptions that can be thrown
when an application request fails. Each exception extends java.sql.SQLException.

• ConnectionDeadSQLException—generated when an application request to get a
connection fails because the connection test on the reserved connection failed. This
typically happens when the database server is unavailable.

• ConnectionUnavailableSQLException—generated when an application request to get a
connection fails because there are currently no connections available in the pool to be
allocated. This is a transient failure, and is generated if all connections in the pool are
currently in use. It can also be thrown when connections are unavailable because they are
being tested.

• PoolDisabledSQLException—generated when an application request to get a connection
fails because the JDBC Data Source has been administratively disabled.

• PoolLimitSQLException—generated when an application request to get a connection fails
due to a configured threshold of the data source, such as HighestNumWaiters,
ConnectionReserveTimeoutSeconds, and so forth.

• PoolPermissionsSQLException—generated when an application request to get a
connection fails a (security) authentication or authorization check.

Pooled Connection Limitation
When using pooled connections in a data source, it is possible to execute DBMS-specific SQL
code that will alter the database connection properties in a way which WebLogic Server and
the JDBC driver will be unaware of. When the connection is returned to the pool, the
characteristics of the connection may not be set back to a valid state.

Note:

For example, with a Sybase DBMS, if you use a statement such as "set rowcount 3
select * from y", the connection will only ever return a maximum of 3 rows from any
subsequent query on this connection. When the connection is returned to the pool
and then reused, the next user of the connection will still only get 3 rows returned,
even if the table being selected from has 500 rows.

When using pooled connections in a data source, it is possible to execute DBMS-specific SQL
code that will alter the database connection properties and that WebLogic Server and the
JDBC driver will be unaware of. When the connection is returned to the pool, the
characteristics of the connection may not be set back to a valid state. For example, with a
Sybase DBMS, if you use a statement such as "set rowcount 3 select * from y", the

Chapter 1
Pooled Connection Limitation

1-3

connection will only ever return a maximum of 3 rows from any subsequent query on this
connection. When the connection is returned to the pool and then reused, the next user of the
connection will still only get 3 rows returned, even if the table being selected from has 500
rows.

In most cases, there is standard JDBC code that can accomplish the same result. In this
example, you could use setMaxRows() instead of set rowcount. Oracle recommends that you
use the standard JDBC code instead of the DBMS-specific SQL code. When you use standard
JDBC calls to alter the connection, WebLogic Server returns the connection to a standard state
when the connection is returned to the data source.

If you use vendor-specific SQL code that alters the connection, you must set the connection
back to an acceptable state before returning the connection to the pool.

Getting a Connection from an Application-Scoped Data Source
To get a connection from JDBC module packaged with an enterprise application, you look up
the data source defined in the JDBC module in the local environment or in the JNDI tree and
then request a connection from the data source or multi data source.

To get a connection from an application-scoped data source, see Getting a Database
Connection from a Packaged JDBC Module in Administering JDBC Data Sources for Oracle
WebLogic Server.

Chapter 1
Getting a Connection from an Application-Scoped Data Source

1-4

2
Using DataSource Resource Definitions

Data source resources are used to define a set of properties required to identify and access a
database through the JDBC API. Learn how to create and use Jakarta EE DataSource
resource definitions.

• Using Jakarta EE DataSource Resource Definitions

• Using WebLogic Configuration Attributes
The Jakarta EE 7 Definition annotation @DataSourceDefinition provides a basic standard
set of configuration attributes. Oracle extends support for WebLogic Server's rich set of
configuration attributes by supporting proprietary attributes using the property element.

• Implementation Considerations When Using DataSource Resource Definitions
Learn about the implementation details to consider when creating and using DataSource
resource definitions.

• Using Data Sources in Clients
WebLogic Server allows you to implement Jakarta EE data sources in a Jakarta EE client
with some limitations.

• Additional Resources
Learn about additional resources for review when implementing data source resource
definitions.

Using Jakarta EE DataSource Resource Definitions
Data source resources are used to define a set of properties required to identify and access a
database through the JDBC API. These properties include information such as the URL of the
database server, the name of the database, and the network protocol to use to communicate
with the server. You can declare data source definitions by creating data source resource
definitions using annotations or deployment descriptor.
DataSource objects are registered with the Java Naming and Directory Interface (JNDI) naming
service so that applications can use the JNDI API to access a DataSource object to make a
connection with a database.

Prior to Jakarta EE 7, DataSource resources were created administratively as described in
Configuring WebLogic JDBC Resources in Administering JDBC Data Sources for Oracle
WebLogic Server. Jakarta EE 7 provides the option to programmatically define DataSource
resources for a more flexible and portable method of database connectivity.

The name element uniquely identifies a DataSource and is registered with JNDI. The value
specified in the name element begins with a namespace scope. Jakarta EE 7 includes the
following scopes:

• java:comp—Names in this namespace have per-component visibility.

• java:module—Names in this namespace are shared by all components in a module, for
example, the EJB components defined in an a ejb-jar.xml file.

• java:app—Names in this namespace are shared by all components and modules in an
application, for example, the application-client, web, and EJB components in an .ear file.

• java:global—Names in this namespace are shared by all the applications in the server.

2-1

You can programmatically declare data source definitions using one of the following methods:

• Creating DataSource Resource Definitions Using Annotations

• Creating DataSource Resource Definitions Using Deployment Descriptors

Creating DataSource Resource Definitions Using Annotations
The javax.annotation.sql package provides @DataSourceDefinition and
@DataSourceDefinitions for defining DataSource resource definitions in application
component classes such as application clients, servlets, or Jakarta Enterprise Beans (EJBs).

When the DataSource resource is injected, a DataSource object is created and registered with
JNDI. Use annotation elements to configure the DataSource object. You can specify additional
Jakarta EE and WebLogic configuration attributes in the properties element of the annotation.
See Using WebLogic Configuration Attributes.

Use @DataSourceDefinition to create a single datasource definition. For example:

. . .

@DataSourceDefinition(
name = "java:module/ExampleDS",
 className = "org.apache.derby.jdbc.ClientDataSource",
 portNumber = 1527,
 serverName = "localhost",
 databaseName = "exampleDB",
 user = "examples",
 password = "examples",
 properties={"create=true", "weblogic.TestTableName=SQL SELECT 1 FROM
SYS.SYSTABLES"})

@WebServlet("/dataSourceServlet")
public class DataSourceServlet extends HttpServlet {

 . . .

 @Resource(lookup = "java:module/ExampleDS")

. . .

Use the @DataSourceDefinitions to create multiple datasource definitions. For example:

. . .

@DataSourceDefinitions(
 value = {

 @DataSourceDefinition(name = "java:app/env/DS1",
 minPoolSize = 0,
 initialPoolSize = 0,
 className = "org.apache.derby.jdbc.ClientXADataSource",
 portNumber = 1527,
 serverName = "localhost",
 user = "examples",
 password = "examples",
 databaseName = "exampleDB",
 properties={"create=true", "weblogic.TestTableName=SQL SELECT 1 FROM
SYS.SYSTABLES"}
),

Chapter 2
Using Jakarta EE DataSource Resource Definitions

2-2

http://docs.oracle.com/javaee/7/api/javax/annotation/sql/package-summary.html

 @DataSourceDefinition(name = "java:comp/env/DS2",
 minPoolSize = 0,
 initialPoolSize = 0,
 className = "org.apache.derby.jdbc.ClientDataSource",
 portNumber = 1527,
 serverName = "localhost",
 user = "examples",
 password = "examples",
 databaseName = "examplesDB",
 properties={"create=true", "weblogic.TestTableName=SQL SELECT 1 FROM
SYS.SYSTABLES"}
)
 }
)

. . .

For a complete example, see Sample Applications and Code Examples in Understanding
Oracle WebLogic Server.

Creating DataSource Resource Definitions Using Deployment Descriptors
You can create DataSource resource definitions using deployment descriptors in
application.xml, application-client.xml, web.xml, and ejb-jar.xml files. For example:

. . .

 <data-source>
 <name>java:module/ExampleDS</name>
 <class-name>org.apache.derby.jdbc.ClientDataSource</class-name>
 <server-name>localhost</server-name>
 <port-number>1527</port-number>
 <database-name>exampleDB</database-name>
 <user>examples</user>
 <password>examples</password>
 <property>
 <name>create</name>
 <value>true</value>
 </property>
 <property>
 <name>weblogic.TestTableName</name>
 <value>SQL SELECT 1 FROM SYS.SYSTABLES</value>
 </property>
 </data-source>
. . .

Using WebLogic Configuration Attributes
The Jakarta EE 7 Definition annotation @DataSourceDefinition provides a basic standard set
of configuration attributes. Oracle extends support for WebLogic Server's rich set of
configuration attributes by supporting proprietary attributes using the property element.

Chapter 2
Using WebLogic Configuration Attributes

2-3

Note:

Consider the following limitations when using WebLogic Server proprietary attributes
in the property element. WebLogic Server proprietary attributes:

• Cannot be used to configure a Multi data source. It is not possible to embed a
Multi data source in a EAR or WAR file.

• Do not overlap @DataSourceDefinition annotation elements.

• Do not include the data source level attributes name and version.

Table 2-1 summarizes WebLogic Server's extended support for Data Source configuration
attributes by mapping Weblogic.Attribute Name property values to WebLogic configuration
elements. For an example of a DataSource resource definition using WebLogic configuration
elements, see Configuring Active GridLink DataSource Resource Definitions.

Table 2-1 WebLogic Configuration Attributes

Weblogic.Attribute Name WebLogic Element

AffinityPolicy JDBCOracleParams.setAffinityPolicy()
AlgorithmType JDBCDataSourceParams.setAlgorithmType()
CapacityIncrement JDBCConnectionPoolParams.setCapacityIncrement()
ConnectionCreationRetryF
requencySeconds

JDBCConnectionPoolParams.setConnectionCreationRetryFreq
uencySeconds()

ConnectionPoolFailoverCa
llbackHandler

JDBCDataSourceParams.setConnectionPoolFailoverCallbackH
andler()

ConnectionReserveTimeout
Seconds

JDBCConnectionPoolParams.setConnectionReserveTimeoutSec
onds()

CredentialMappingEnable JDBCConnectionPoolParams.setCredentialMappingEnabled()
DataSourceList JDBCDataSourceParams.setDataSourceList()
DriverInterceptor JDBCConnectionPoolParams.setDriverInterceptor()
FailoverRequestIfBusy JDBCDataSourceParams.setFailoverRequestIfBusy()
FanEnabled JDBCOracleParams.setFanEnabled()
GlobalTransactionsProtoc
ol

JDBCDataSourceParams.setGlobalTransactionsProtocol()

HighestNumWaiters JDBCConnectionPoolParams.setHighestNumWaiters()
IdentityBasedConnectionP
oolingEnabled

JDBCConnectionPoolParams.setIdentityBasedConnectionPool
ingEnabled()

IgnoreInUseConnectionsEn
abled

JDBCConnectionPoolParams.setIgnoreInUseConnectionsEnabl
ed()

InactiveConnectionTimeou
tSeconds

JDBCConnectionPoolParams.setInactiveConnectionTimeoutSe
conds()

InitSql JDBCConnectionPoolParams.setInitSql()
JDBCXADebugLevel JDBCConnectionPoolParams.setJDBCXADebugLevel()
KeepConnAfterLocalTx JDBCDataSourceParams.setKeepConnAfterLocalTx()

Chapter 2
Using WebLogic Configuration Attributes

2-4

Table 2-1 (Cont.) WebLogic Configuration Attributes

Weblogic.Attribute Name WebLogic Element

KeepLogicalConnOpenOnRel
ease

JDBCXAParams.setKeepLogicalConnOpenOnRelease()

KeepXaConnTillTxComplete JDBCXAParams.setKeepXaConnTillTxComplete()
LoginDelaySeconds JDBCConnectionPoolParams.setLoginDelaySeconds()
NeedTxCtxOnClose JDBCXAParams.setNeedTxCtxOnClose()
NewXaConnForCommit JDBCXAParams.setNewXaConnForCommit()
OnsNodeList JDBCOracleParams.setOnsNodeList()
OnsWalletFile JDBCOracleParams.setOnsWalletFile()
OnsWalletPassword JDBCOracleParams.setOnsWalletPassword()
OracleOptimizeUtf8Conver
sion

JDBCOracleParams.setOracleOptimizeUtf8Conversion()

PasswordEncrypted JDBCDriverParams.setPassword
PinnedToThread JDBCConnectionPoolParams.setPinnedToThread()
ProfileHarvestFrequencyS
econds

JDBCConnectionPoolParams.setProfileHarvestFrequencySeco
nds()

ProfileType JDBCConnectionPoolParams.setProfileType()
RecoverOnlyOnce JDBCXAParams.setRecoverOnlyOnce()
RemoveInfectedConnection
s

JDBCConnectionPoolParams.setRemoveInfectedConnections()

ResourceHealthMonitoring JDBCXAParams.setResourceHealthMonitoring()
RollbackLocalTxUponConnC
lose

JDBCXAParams.setRollbackLocalTxUponConnClose()

RowPrefetch JDBCDataSourceParams.setRowPrefetch()
RowPrefetchSize JDBCDataSourceParams.setRowPrefetchSize()
SecondsToTrustAnIdlePool
Connection

JDBCConnectionPoolParams.setSecondsToTrustAnIdlePoolCon
nection()

ShrinkFrequencySeconds JDBCConnectionPoolParams.setShrinkFrequencySeconds()
StatementCacheSize JDBCConnectionPoolParams.setStatementCacheSize()
StatementCacheType JDBCConnectionPoolParams.setStatementCacheType()
StatementTimeout JDBCConnectionPoolParams.setStatementTimeout()
StreamChunkSize JDBCDataSourceParams.setStreamChunkSize()
TestConnectionsOnReserve JDBCConnectionPoolParams.setTestConnectionsOnReserve()
TestFrequencySeconds JDBCConnectionPoolParams.setTestFrequencySeconds()
TestTableName JDBCConnectionPoolParams.setTestTableName()
UsePasswordIndirection JDBCDriverParams.setUsePasswordIndirection()
UseXaDataSourceInterface JDBCDriverParams.setUseXaDataSourceInterface()
WrapTypes JDBCConnectionPoolParams.setWrapTypes()
XaEndOnlyOnce JDBCXAParams.setXaEndOnlyOnce()

Chapter 2
Using WebLogic Configuration Attributes

2-5

Table 2-1 (Cont.) WebLogic Configuration Attributes

Weblogic.Attribute Name WebLogic Element

XaRetryDurationSeconds JDBCXAParams.setXaRetryDurationSeconds()
XaRetryIntervalSeconds JDBCXAParams.setXaRetryIntervalSeconds()
XaSetTransactionTimeout JDBCXAParams.setXaSetTransactionTimeout()
XaTransactionTimeout JDBCXAParams.setXaTransactionTimeout()

Implementation Considerations When Using DataSource
Resource Definitions

Learn about the implementation details to consider when creating and using DataSource
resource definitions.

• Naming Conventions

• Mapping the Jakarta EE DataSource Resource Definition to WebLogic Data Source
Resources

• Configuring Active GridLink DataSource Resource Definitions

• Using an Encrypted Password in a DataSourceDefinition

• Additional Considerations

Naming Conventions
This section provides information on Data Source naming conventions:

Note:

Pre-WebLogic Server 12.1.1 and Jakarta EE Data Source naming conventions are
compatible. Existing applications do not need to change naming conventions to
upgrade from previous releases.

• WebLogic Data Source Naming Conventions

• Jakarta EE Data Source Naming Conventions

WebLogic Data Source Naming Conventions
The following conventions are used when naming Data Sources in releases prior to WebLogic
Server 12.1.1:

• dsname - The system resource JDBC descriptor (config/jdbc/*-jdbc.xml)

• application@null@dsname - deprecated (pre-9.x), application-scoped JDBC descriptor in
EAR

• application@module@dsname - application-scoped, packaged JDBC descriptor in EAR

Chapter 2
Implementation Considerations When Using DataSource Resource Definitions

2-6

Jakarta EE Data Source Naming Conventions
The following conventions are used to name Jakarta EE Data Sources:

• appname@modulename@componentname@dsname - Component level

• appname@modulename@dsname - Module level

• appname@dsname - Application level

• dsname – Global

These names are compatible with earlier names because the Jakarta EE names begin with
java:

Mapping the Jakarta EE DataSource Resource Definition to WebLogic Data
Source Resources

Table 2-2 provides information on how to map Jakarta EE DataSource Resource definition
elements to WebLogic Server resources.

Table 2-2 Mapping a DataSource Resource Definition to WebLogic Server Resources

DataSourceBean Default Value WebLogic Resource

String name() Required JDBCDataSourceParamsBean.se
tJndiName

String className() Required JDBCDriverParamsBean.setDri
verName

String description() "" Not Used

String url() "" JDBCDriverParamsBean.setUrl
String user() "" Added to

JDBCDriverParamsBean.getPro
perties()

String password() "" JDBCDriverParamsBean.setPas
sword

String databaseName() "" Used to generate URL; added to
properties

int portNumber() -1 Used to generate URL; added to
properties

String serverName() "localhost" Used to generate URL; added to
properties

int isolationLevel() -1 Sets desiredtxisolevel
property which WebLogic Server
uses to call
Connection.setTransactionIs
olation()

boolean transactional() true Used to generate URL

int initialPoolSize() -1 JDBCConnectionPoolParamsBea
n.setInitialCapacity

Chapter 2
Implementation Considerations When Using DataSource Resource Definitions

2-7

Table 2-2 (Cont.) Mapping a DataSource Resource Definition to WebLogic Server
Resources

DataSourceBean Default Value WebLogic Resource

int maxPoolSize() -1 JDBCConnectionPoolParamsBea
n.setMaxCapacity

int minPoolSize() -1 JDBCConnectionPoolParamsBea
n.setMinCapacity (new)

int maxIdleTime() -1 JDBCConnectionPoolParamsBea
n.setShrinkFrequencySeconds

int maxStatements() -1 JDBCConnectionPoolParamsBea
n.setStatementCacheSize

String[] properties() {} JDBCPropertiesBean
int loginTimeout() 0 Not Used

Configuring Active GridLink DataSource Resource Definitions
An Active GridLink Data Source is defined by using the following name/value pair within the
DataSource resource definition:

• FanEnabled is set to true
• OnsNodeList is a non-null value. A comma-separated list of ONS daemon listen addresses

and ports for receiving ONS-based FAN events. See ONS Client Configuration in
Administering JDBC Data Sources for Oracle WebLogic Server.

The following example shows a DataSource resource definition for an Active GridLink Data
Source using deployment descriptors:

. . .

 <data-source>
 <name>java:global/DSD2</name>
 <class-name>oracle.jdbc.OracleDriver</class-name>
 <url>jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)
(HOST=lcr01155-r)(PORT=1521)))(CONNECT_DATA=(SERVICE_NAME=mydb)))</url>
 <user>lefty123</user>
 <password>password</password>
 <property><name>weblogic.CapacityIncrement</name><value>2</value></property>
 <property><name>weblogic.HighestNumWaiters</name><value>2147483647</value></property>
 <property><name>weblogic.ConnectionCreationRetryFrequencySeconds</name><value>0</
value></property>
 <property><name>weblogic.ConnectionReserveTimeoutSeconds</name><value>10</value></
property>
 <property><name>weblogic.TestFrequencySeconds</name><value>120</value></property>
 <property><name>weblogic.TestConnectionsOnReserve</name><value>false</value></
property>
 <property><name>weblogic.ProfileHarvestFrequencySeconds</name><value>300</value></
property>
 <property><name>weblogic.IgnoreInUseConnectionsEnabled</name><value>true</value></
property>
 <property><name>weblogic.InactiveConnectionTimeoutSeconds</name><value>0</value></
property>
 <property><name>weblogic.TestTableName</name><value></value></property>
 <property><name>weblogic.LoginDelaySeconds</name><value>0</value></property>
 <property><name>weblogic.InitSql</name><value></value></property>

Chapter 2
Implementation Considerations When Using DataSource Resource Definitions

2-8

 <property><name>weblogic.StatementCacheType</name><value>LRU</value></property>
 <property><name>weblogic.RemoveInfectedConnections</name><value>true</value></
property>
 <property><name>weblogic.SecondsToTrustAnIdlePoolConnection</name><value>10</value></
property>
 <property><name>weblogic.StatementTimeout</name><value>-1</value></property>
 <property><name>weblogic.ProfileType</name><value>0</value></property>
 <property><name>weblogic.JDBCXADebugLevel</name><value>10</value></property>
 <property><name>weblogic.CredentialMappingEnabled</name><value>false</value></
property>
 <property><name>weblogic.DriverInterceptor</name><value></value></property>
 <property><name>weblogic.PinnedToThread</name><value>false</value></property>
 <property><name>weblogic.IdentityBasedConnectionPoolingEnabled</name><value>false</
value></property>
 <property><name>weblogic.WrapTypes</name><value>true</value></property>
 <property><name>weblogic.ConnectionLabelingCallback</name><value></value></property>
 <property><name>weblogic.FatalErrorCodes</name><value></value></property>
 <property><name>weblogic.Scope</name><value>Global</value></property>
 <property><name>weblogic.RowPrefetch</name><value>false</value></property>
 <property><name>weblogic.RowPrefetchSize</name><value>48</value></property>
 <property><name>weblogic.StreamChunkSize</name><value>256</value></property>
 <property><name>weblogic.AlgorithmType</name><value>Failover</value></property>
 <property><name>weblogic.ConnectionPoolFailoverCallbackHandler</name><value></
value></property>
 <property><name>weblogic.FailoverRequestIfBusy</name><value>false</value></property>
 <property><name>weblogic.GlobalTransactionsProtocol</name><value>OnePhaseCommit</
value></property>
 <property><name>weblogic.KeepConnAfterLocalTx</name><value>true</value></property>
 <property><name>weblogic.KeepConnAfterGlobalTx</name><value>false</value></property>
 <property><name>weblogic.UseXaDataSourceInterface</name><value>true</value></
property>
 <property><name>weblogic.UsePasswordIndirection</name><value>false</value></property>
 <property><name>weblogic.FanEnabled</name><value>true</value></property>
 <property><name>weblogic.OnsNodeList</name><value>lcr01155-r:6200</value></property>
 <property><name>weblogic.OnsWalletFile</name><value></value></property>
 <property><name>weblogic.OnsWalletPassword</name><value></value></property>
 <property><name>weblogic.OracleOptimizeUtf8Conversion</name><value>false</value></
property>
 <property><name>weblogic.ConnectionInitializationCallback</name><value></value></
property>
 <property><name>weblogic.AffinityPolicy</name><value>Session</value></property>
 <property><name>weblogic.OracleProxySession</name><value>false</value></property>
 <property><name>weblogic.KeepXaConnTillTxComplete</name><value>true</value></
property>
 <property><name>weblogic.NeedTxCtxOnClose</name><value>false</value></property>
 <property><name>weblogic.XaEndOnlyOnce</name><value>false</value></property>
 <property><name>weblogic.NewXaConnForCommit</name><value>false</value></property>
 <property><name>weblogic.KeepLogicalConnOpenOnRelease</name><value>false</value></
property>
 <property><name>weblogic.ResourceHealthMonitoring</name><value>true</value></
property>
 <property><name>weblogic.RecoverOnlyOnce</name><value>false</value></property>
 <property><name>weblogic.XaSetTransactionTimeout</name><value>false</value></
property>
 <property><name>weblogic.XaTransactionTimeout</name><value>0</value></property>
 <property><name>weblogic.RollbackLocalTxUponConnClose</name><value>false</value></
property>
 <property><name>weblogic.XaRetryDurationSeconds</name><value>0</value></property>
 <property><name>weblogic.XaRetryIntervalSeconds</name><value>60</value></property>
 </data-source>
. . .

Chapter 2
Implementation Considerations When Using DataSource Resource Definitions

2-9

For additional information, see Using Active GridLink Data Sources in Administering JDBC
Data Sources for Oracle WebLogic Server.

Using an Encrypted Password in a DataSourceDefinition
You can provide an encrypted password in the DataSourceDefinition. To do so you need to
generate the password as shown in the following example, and then copy it into the
DataSourceDefinition:

needs to be run in the domain home directory
java weblogic.security.Encrypt
Password: user_password
{AES}OQ1CnXWsgTVQsxrHqpxMT7iZwt7wBBIrkLP5NWeAvNk="
This value needs to be pasted into the DataSourceDefinition

The encrypted password is domain specific. If you use an encrypted password that does not
match the domain, it will generate an error such as:

weblogic.application.ModuleException: com.rsa.jsafe.JSAFE_PaddingException:
 Invalid padding.:com.rsa.jsafe.JSAFE_PaddingException:Invalid padding

The following code fragment defines a data source using an encrypted password in an
annotation in a Java servlet.

@DataSourceDefinition(
name="java:comp/ds",
className="oracle.jdbc.OracleDriver",
portNumber=1521,
serverName="myhost",
user="myuser",
databaseName="mydbname",
initialPoolSize = 0,
minPoolSize = 0,
maxPoolSize = 15,
maxStatements = 0,
transactional=false,
properties = {"weblogic.TestTableName=SQL ISVALID",
 "weblogic.PasswordEncrypted={AES}OQ1CnXWsgTVQsxrHqpxMT7iZwt7wBBIrkLP5NWeAvNk="}
)
@WebServlet(urlPatterns = "/GetVersion")
public class GetVersion extends javax.servlet.http.HttpServlet
 implements javax.servlet.Servlet {
 @Resource(lookup = "java:comp/ds")
 private DataSource ds;

Additional Considerations
Consider the following when using a Jakarta EE DataSource resource definition with WebLogic
Server:

• If an annotation and a descriptor have the same DataSource name in the same scope, the
attributes are merged with values specified in the deployment descriptor. The deployment
descriptor value takes precedence over values specified in a annotation.

• A DataSource is not a module, it is a resource created as part of a module.

• A DataSource is not a JDBCSystemResources object associated with a domain and is not in
the WebLogic Server configuration bean tree.

• You can use the JSR88 API's to view applications that include Jakarta EE 7 Data Sources.

Chapter 2
Implementation Considerations When Using DataSource Resource Definitions

2-10

• There is one runtime MBean created for each datasource definition. The name of the
MBean is the decorated name.

• WLS has a limited set of known class names for which it can generate a URL. For the non-
XA case, the JDBC driver and not the datasource class is often known. An error occurs
when an unknown class name is specified with a databaseName, portNumber, and/or
serverName. In this case, remove databaseName, portNumber, serverName, and specify the
URL.

• URL generation is not supported for AGL data sources.

• URL generation in general is a problem for all Oracle drivers because of the service,
database, and Oracle RAC instance formats. The best practice is to provide the URL for
Oracle drivers

Using Data Sources in Clients
WebLogic Server allows you to implement Jakarta EE data sources in a Jakarta EE client with
some limitations.

The limitations are as follows:

• Transactional=true is not supported. The transaction protocol is set to NONE.

• Data Sources that are global or application in scope are visible (created) both on the client
and the server. This has the downside of using more connections.

• No permission checking is performed on a Data Source. Operations such as reserve and
shrink can be used on a local Data Source.

Additional Resources
Learn about additional resources for review when implementing data source resource
definitions.

• Jakarta EE 8 Specification at https://jakarta.ee/specifications/platform/8/platform-spec-8.

• The Jakarta EE 8 Tutorial at https://jakarta.ee/learn/docs/jakartaee-tutorial/current/
index.html.

• JDBC™ 4.3 Specification

• WebLogic Server Code Examples.

Chapter 2
Using Data Sources in Clients

2-11

https://jakarta.ee/specifications/platform/8/platform-spec-8
https://jakarta.ee/learn/docs/jakartaee-tutorial/current/index.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/current/index.html
https://jcp.org/en/jsr/detail?id=221

3
Performance Tuning Your JDBC Application

Learn how to design and configure WebLogic Server to get the best performance from JDBC
applications.

• WebLogic Performance-Enhancing Features
WebLogic has several features that enhance performance for JDBC applications including
pooled connections and caching statements.

• Designing Your Application for Best Performance
Most performance gained or lost in a database application are not determined by the
application language, but by how the application is designed. The number and location of
clients, size and structure of DBMS tables and indexes, and the number and types of
queries all affect application performance.

WebLogic Performance-Enhancing Features
WebLogic has several features that enhance performance for JDBC applications including
pooled connections and caching statements.

• How Pooled Connections Enhance Performance

• Caching Statements and Data

How Pooled Connections Enhance Performance
Establishing a JDBC connection with a DBMS can be very slow. If your application requires
database connections that are repeatedly opened and closed, this can become a significant
performance issue. Connection pools in WebLogic data sources offer an efficient solution to
this problem.

When WebLogic Server starts, connections in the data sources are opened and are available
to all clients. When a client closes a connection from a data source, the connection is returned
to the pool and becomes available for other clients; the connection itself is not closed. There is
little cost to opening and closing pooled connections.

Caching Statements and Data
DBMS access uses considerable resources. If your program reuses prepared or callable
statements or accesses frequently used data that can be shared among applications or can
persist between connections, you can cache prepared statements or data by using the
following:

• Statement Cache for a data source

• Read-Only Entity Beans

• JNDI in a Clustered Environment

3-1

Designing Your Application for Best Performance
Most performance gained or lost in a database application are not determined by the
application language, but by how the application is designed. The number and location of
clients, size and structure of DBMS tables and indexes, and the number and types of queries
all affect application performance.

The following are general hints that apply to all DBMSs. It is also important to be familiar with
the performance documentation of the specific DBMS that you use in your application.

• Process as Much Data as Possible Inside the Database

• Use Built-in DBMS Set-based Processing

• Make Your Queries Smart

• Make Transactions Single-batch

• Never Have a DBMS Transaction Span User Input

• Use In-place Updates

• Keep Operational Data Sets Small

• Use Pipelining and Parallelism

Process as Much Data as Possible Inside the Database
Most serious performance problems in DBMS applications come from moving raw data around
needlessly, whether it is across the network or just in and out of cache in the DBMS. A good
method for minimizing this waste is to put your logic where the data is—in the DBMS, not in the
client —even if the client is running on the same box as the DBMS. In fact, for some DBMSs a
fat client and a fat DBMS sharing one CPU is a performance disaster.

Most DBMSs provide stored procedures, an ideal tool for putting your logic where your data is.
There is a significant difference in performance between a client that calls a stored procedure
to update 10 rows, and another client that fetches those rows, alters them, and sends update
statements to save the changes to the DBMS.

Also review the DBMS documentation on managing cache memory in the DBMS. Some
DBMSs (Sybase, for example) provide the means to partition the virtual memory allotted to the
DBMS, and to guarantee certain objects exclusive use of some fixed areas of cache. This
means that an important table or index can be read once from disk and remain available to all
clients without having to access the disk again.

Use Built-in DBMS Set-based Processing
SQL is a set processing language. DBMSs are designed from the ground up to do set-based
processing. Accessing a database one row at a time is, without exception, slower than set-
based processing and, on some DBMSs is poorly implemented. For example, it will always be
faster to update each of four tables one at a time for all the 100 employees represented in the
tables than to alter each table 100 times, once for each employee.

Many complicated processes that were originally thought too complex to do any other way but
row-at-a-time have been rewritten using set-based processing, resulting in improved
performance. For example, a major payroll application was converted from a huge slow
COBOL application to four stored procedures running in series, and what took hours on a
multi-CPU machine now takes fifteen minutes with many fewer resources used.

Chapter 3
Designing Your Application for Best Performance

3-2

Make Your Queries Smart
Frequently customers ask how to tell how many rows will be coming back in a given result set.
The only way to find out without fetching all the rows is by issuing the same query using the
count keyword:

SELECT count(*) from myTable, yourTable where ...

This returns the number of rows the original query would have returned, assuming no change
in relevant data. The actual count may change when the query is issued if other DBMS activity
has occurred that alters the relevant data.

Be aware, however, that this is a resource-intensive operation. Depending on the original
query, the DBMS may perform nearly as much work to count the rows as it will to send them.

Make your application queries as specific as possible about what data it actually wants. For
example, tailor your application to select into temporary tables, returning only the count, and
then sending a refined second query to return only a subset of the rows in the temporary table.

Learning to select only the data you really want at the client is crucial. Some applications
ported from ISAM (a pre-relational database architecture) will unnecessarily send a query
selecting all the rows in a table when only the first few rows are required. Some applications
use a 'sort by' clause to get the rows they want to come back first. Database queries like this
cause unnecessary degradation of performance.

Proper use of SQL can avoid these performance problems. For example, if you only want data
about the top three earners on the payroll, the proper way to make this query is with a
correlated subquery. Table 3-1 shows the entire table returned by the SQL statement

select * from payroll

Table 3-1 Full Results Returned

Name Salary

Joe 10

Mike 20

Sam 30

Tom 40

Jan 50

Ann 60

Sue 70

Hal 80

May 80

A correlated subquery

select p.name, p.salary from payroll p
where 3 >= (select count(*) from payroll pp
where pp.salary >= p.salary);

returns a much smaller result, shown in Table 3-2.

Chapter 3
Designing Your Application for Best Performance

3-3

Table 3-2 Results from Subquery

Name Salary

Sue 70

Hal 80

May 80

This query returns only three rows, with the name and salary of the top three earners. It scans
through the payroll table, and for every row, it goes through the whole payroll table again in an
inner loop to see how many salaries are higher than the current row of the outer scan. This
may look complicated, but DBMSs are designed to use SQL efficiently for this type of
operation.

Make Transactions Single-batch
Whenever possible, collect a set of data operations and submit an update transaction in one
statement in the form:

BEGIN TRANSACTION
 UPDATE TABLE1...
 INSERT INTO TABLE2
 DELETE TABLE3
COMMIT

This approach results in better performance than using separate statements and commits.
Even with conditional logic and temporary tables in the batch, it is preferable because the
DBMS obtains all the locks necessary on the various rows and tables, and uses and releases
them in one step. Using separate statements and commits results in many more client-to-
DBMS transmissions and holds the locks in the DBMS for much longer. These locks will block
out other clients from accessing this data, and, depending on whether different updates can
alter tables in different orders, may cause deadlocks.

Caution: If any individual statement in the preceding transaction fails, due, for instance, to
violating a unique key constraint, you should put in conditional SQL logic to detect statement
failure and to roll back the transaction rather than commit. If, in the preceding example, the
insert failed, most DBMSs return an error message about the failed insert, but behave as if you
got the message between the second and third statement, and decided to commit anyway!
Microsoft SQL Server offers a connection option enabled by executing the SQL set
xact_abort on, which automatically rolls back the transaction if any statement fails.

Never Have a DBMS Transaction Span User Input
If an application sends a 'BEGIN TRAN' and some SQL that locks rows or tables for an update,
do not write your application so that it must wait on the user to press a key before committing
the transaction. That user may go to lunch first and lock up a whole DBMS table until the user
returns.

If you require user input to form or complete a transaction, use optimistic locking. Briefly,
optimistic locking employs timestamps and triggers in queries and updates. Queries select
data with timestamp values and prepare a transaction based on that data, without locking the
data in a transaction.

When an update transaction is finally defined by the user input, it is sent as a single
submission that includes time-stamped safeguards to make sure the data is the same as

Chapter 3
Designing Your Application for Best Performance

3-4

originally fetched. A successful transaction automatically updates the relevant timestamps for
changed data. If an interceding update from another client has altered data on which the
current transaction is based, the timestamps change, and the current transaction is rejected.
Most of the time, no relevant data has been changed so transactions usually succeed. When a
transaction fails, the application can fetch the updated data again to present to the user to
reform the transaction if desired.

Use In-place Updates
Changing a data row in place is much faster than moving a row, which may be required if the
update requires more space than the table design can accommodate. If you design your rows
to have the space they need initially, updates will be faster, although the table may require
more disk space. Because disk space is cheap, using a little more of it can be a worthwhile
investment to improve performance.

Keep Operational Data Sets Small
Some applications store operational data in the same table as historical data. Over time and
with accumulation of this historical data, all operational queries have to read through lots of
useless (on a day-to-day basis) data to get to the more current data. Move non-current data to
other tables and do joins to these tables for the rarer historical queries. If this can't be done,
index and cluster your table so that the most frequently used data is logically and physically
localized.

Use Pipelining and Parallelism
DBMSs are designed to work best when very busy with lots of different things to do. The worst
way to use a DBMS is as dumb file storage for one big single-threaded application. If you can
design your application and data to support lots of parallel processes working on easily
distinguished subsets of the work, your application will be much faster. If there are multiple
steps to processing, try to design your application so that subsequent steps can start working
on the portion of data that any prior process has finished, instead of having to wait until the
prior process is complete. This may not always be possible, but you can dramatically improve
performance by designing your program with this in mind.

Chapter 3
Designing Your Application for Best Performance

3-5

4
Using WebLogic-branded DataDirect Drivers

Learn about the WebLogic-branded DataDirect drivers that are included in the WebLogic
Server distribution.

• Using DataDirect Documentation
Oracle provides WebLogic-branded versions of DataDirect drivers for DB2, Informix, MS
SQL Server, and Sybase. Learn how WebLogic-branded DataDirect drivers are configured
and used in a WebLogic Server environment.

• JDBC Specification Compliance
WebLogic-branded Data Direct drivers are compliant with the JDBC 4.0 specification.

• Installation
Learn about the installation of DataDirect drivers with WebLogic Server.

• Supported Drivers and Databases
Learn about supported drivers and databases.

• Connecting Through WebLogic JDBC Data Sources
To create a physical database connection in the data source, create a JDBC data source in
your WebLogic Server configuration and select the JDBC driver.

• Developing Your Own JDBC Code
You can develop JDBC code that uses the WebLogic-branded DataDirect drivers as long
as the code is included in the WebLogic Server CLASSPATH.

• Specifying Connection Properties
You specify connection properties for connections in a data source using the WebLogic
Remote Console, command-line interface, or JMX API. Connection properties vary by
DBMS.

• Using IP Addresses
WebLogic-branded DataDirect drivers support Internet Protocol (IP) addresses in IPv4 and
IPv6 format.

• Required Permissions for the Java Security Manager
Using WebLogic-branded DataDirect drivers with the Java Security Manager enabled
requires certain permissions to be set in the security policy file of the domain. WebLogic
Server provides a sample security policy file that you can edit and use.

• For MS SQLServer Users
Learn about configuring MS SQLServer for use with DataDirect MS SQL Server driver.

Using DataDirect Documentation
Oracle provides WebLogic-branded versions of DataDirect drivers for DB2, Informix, MS SQL
Server, and Sybase. Learn how WebLogic-branded DataDirect drivers are configured and used
in a WebLogic Server environment.

For detailed information on these drivers, see Progress DataDirect Connect Series for JDBC
User's Guide Release 5.1 and Progress DataDirect for JDBC Drivers Reference Release 5.1 at
DataDirect Connectors for JDBC Documentation. You need to make the following adaptations
where appropriate when using DataDirect documentation:

4-1

https://documentation.progress.com/output/DataDirect/jdbcarchive/jdbcconnecthelp510/wwhelp/wwhimpl/js/html/wwhelp.htm#href=userguide/jdbconlinecopyright.html

• URLs: substitute "weblogic" for "datadirect"

• Install directory: the fully qualified installation directory for WebLogic-branded DataDirect
drivers is ORACLE_HOME\oracle_common\modules\datadirect.

JDBC Specification Compliance
WebLogic-branded Data Direct drivers are compliant with the JDBC 4.0 specification.

Note:

When comparing WebLogic Server behavior when using drivers from different
vendors, it is important to remember that even though the drivers are JDBC
specification compliant, a vendor may interpret the specification differently or provide
different implementations for a given situation.

For example: When using the WebLogic-branded SQL Server driver, if you enter a
negative value (-100) into a TINYINT column where the schema defines the range as
0 to 256, the driver throws an exception, whereas the Microsoft SQL Server driver
ignores the minus sign.

Installation
Learn about the installation of DataDirect drivers with WebLogic Server.

WebLogic-branded DataDirect drivers are installed with WebLogic Server in the
ORACLE_HOME\oracle_common\modules\datadirect folder, where ORACLE_HOME is the
directory in which you installed WebLogic Server. Driver jar files are included in the manifest
classpath in weblogic.jar, so the drivers are automatically added to your classpath on the
server.

Note:

WebLogic-branded DataDirect drivers are installed by default when you perform a
complete installation of WebLogic Server. If you choose a custom installation, ensure
that the WebLogic JDBC Drivers option is selected (checked). If this option is
unchecked, the drivers are not installed.

WebLogic-branded DataDirect drivers are not included in the manifest classpath of the
WebLogic client jar files (for example: wlclient.jar). To use the drivers with a WebLogic
client, you must copy the following files to the client and add them to the classpath on the
client:

• For DB2: wldb2.jar
• For Informix: wlinformix.jar
• For MS SQL Server: wlsqlserver.jar
• For Sybase: wlsybase.jar

Chapter 4
JDBC Specification Compliance

4-2

Supported Drivers and Databases
Learn about supported drivers and databases.

For information on driver and database support, see http://www.oracle.com/technetwork/
middleware/ias/downloads/fusion-certification-100350.html.

Connecting Through WebLogic JDBC Data Sources
To create a physical database connection in the data source, create a JDBC data source in
your WebLogic Server configuration and select the JDBC driver.

.Applications can then look up the data source on the JNDI tree and request a connection.

See the following related information:

• For information about JDBC and data sources in WebLogic Server, see Configuring JDBC
Data Sources in Administering JDBC Data Sources for Oracle WebLogic Server.

• For information about requesting a connection from a data source, see Obtaining a Client
Connection Using a DataSource.

Developing Your Own JDBC Code
You can develop JDBC code that uses the WebLogic-branded DataDirect drivers as long as
the code is included in the WebLogic Server CLASSPATH.

Specifying Connection Properties
You specify connection properties for connections in a data source using the WebLogic
Remote Console, command-line interface, or JMX API. Connection properties vary by DBMS.

For the list of the connection properties specific to each of the WebLogic-branded DataDirect
drivers, see the Connection Properties section for your driver in Progress DataDirect for
JDBC User's Guide.

Using IP Addresses
WebLogic-branded DataDirect drivers support Internet Protocol (IP) addresses in IPv4 and
IPv6 format.

See Progress DataDirect for JDBC User's Guide Release 5.1 for more details. In a WebLogic
environment, simply convert the jdbc:datadirect portion of the URL to jdbc:weblogic. For
example, the following connection URL specifies the server using IPv4 format:

jdbc:weblogic:db2://123.456.78.90:50000;DatabaseName=jdbc;User=test;
Password=secret

Required Permissions for the Java Security Manager
Using WebLogic-branded DataDirect drivers with the Java Security Manager enabled requires
certain permissions to be set in the security policy file of the domain. WebLogic Server
provides a sample security policy file that you can edit and use.

Chapter 4
Supported Drivers and Databases

4-3

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://documentation.progress.com/output/DataDirect/jdbcarchive/jdbcconnecthelp510/wwhelp/wwhimpl/js/html/wwhelp.htm#href=userguide/jdbconlinecopyright.html
https://documentation.progress.com/output/DataDirect/jdbcarchive/jdbcconnecthelp510/wwhelp/wwhimpl/js/html/wwhelp.htm#href=userguide/jdbconlinecopyright.html
https://documentation.progress.com/output/DataDirect/jdbcarchive/jdbcconnecthelp510/wwhelp/wwhimpl/js/html/wwhelp.htm#href=userguide/jdbconlinecopyright.html

The file is located at ORACLE_HOME\wlserver\server\lib. The weblogic.policy file includes
all necessary permissions for the drivers.

If you use the weblogic.policy file without changes, you may not need to grant any further
permissions. If you use another security policy file or if you use driver features that require
additional permissions, see Progress DataDirect for JDBC User's Guide Release 5.1 for
details. Use ORACLE_HOME\oracle_common\modules\datadirect as the install_dir where
ORACLE_HOME is the directory in which you installed WebLogic Server.

For more information about using the Java Security Manager with WebLogic Server, see Using
Java Security to Protect WebLogic Resources in Developing Applications with the WebLogic
Security Service.

For MS SQLServer Users
Learn about configuring MS SQLServer for use with DataDirect MS SQL Server driver.

• Installing MS SQLServer XA DLLs

• Using instjdbc.sql with MS SQLServer

Installing MS SQLServer XA DLLs
WebLogic Server provides the following XA dlls for MS SQL Server:

• sqljdbc.dll: for 32-bit Windows

• 64sqljdbc.dll: for 64-bit Windows

• X64sqljdbc.dll: for the X64 processors

To install, do the following:

1. cd to the ORACLE_HOME\oracle_common\modules\datadirect directory

2. For:

• 32-bit Windows systems, install the sqljdbc.dll file.

• 64-bit Windows systems, copy the 64sqljdbc.dll file, rename as sqljdbc.dll, and
then install the sqljdbc.dll file.

• X64 processors, copy the X64sqljdbc.dll file, rename as sqljdbc.dll, and then
install the sqljdbc.dll file.

Using instjdbc.sql with MS SQLServer
There is a known error in some versions of the DataDirect instjdbc.sql script that installs
stored procedures into MS SQLServer versions 2008 and newer. The workaround is to replace
all instances of dump tran master with no_log in the instjdbc.sql script with DBCC
SHRINKFILE(mastlog, 1).

Chapter 4
For MS SQLServer Users

4-4

https://documentation.progress.com/output/DataDirect/jdbcarchive/jdbcconnecthelp510/wwhelp/wwhimpl/js/html/wwhelp.htm#href=userguide/jdbconlinecopyright.html

5
Using WebLogic Wrapper Drivers

Learn how to use deprecated WebLogic wrapper drivers with WebLogic Server.

Note:

Oracle recommends that you use DataSource objects to get database connections in
new applications. DataSource objects, along with the JNDI tree, provide access to
pooled connections in a data source for database connectivity. The WebLogic
wrapper drivers are deprecated. For existing or legacy applications that use the
JDBC 1.x API, you can use the WebLogic wrapper drivers to get database
connectivity.

This chapter includes the following sections:

• Using the WebLogic RMI Driver (Deprecated)
A RMI driver client makes connections to the DBMS by looking up the DataSource object.
This lookup is accomplished by using a Java Naming and Directory Service (JNDI) lookup,
or by directly calling WebLogic Server which performs the JNDI lookup on behalf of the
client.

• Using the WebLogic JTS Driver (Deprecated)

Using the WebLogic RMI Driver (Deprecated)
A RMI driver client makes connections to the DBMS by looking up the DataSource object. This
lookup is accomplished by using a Java Naming and Directory Service (JNDI) lookup, or by
directly calling WebLogic Server which performs the JNDI lookup on behalf of the client.

Note:

RMI driver client functionality is deprecated and will be removed in future release.
None of the features exposed in WLConnection and WLDataSource are supported by
RMI driver clients.

The RMI driver replaces the functionality of both the WebLogic t3 driver (deprecated) and the
Pool driver (deprecated), and uses the Java standard Remote Method Invocation (RMI) to
connect to WebLogic Server rather than the proprietary t3 protocol.

Because the details of the RMI implementation are taken care of automatically by the driver, a
knowledge of RMI is not required to use the WebLogic JDBC/RMI driver.

• RMI Driver Client Interoperability

• Security Considerations for WebLogic RMI Drivers

• Setting Up WebLogic Server to Use the WebLogic RMI Driver

5-1

• Sample Client Code for Using the RMI Driver

• Row Caching with the WebLogic RMI Driver

• Limitations When Using Global Transactions

RMI Driver Client Interoperability
Interoperability with earlier WebLogic Server releases is limited. Participants (client/server or
servers-to-server) must be from the same major release. Early 10.x clients can be updated to
interoperate with later point and patch set releases by adding the ucp.jar to the CLASSPATH.

Security Considerations for WebLogic RMI Drivers
Applications that use JDBC over RMI allow unauthorized RMI access to a DataSource object,
which is a potential security vulnerability as it can provide a client with uncontrolled access to a
database. Oracle recommends replacing JDBC over RMI with local WebLogic data sources in
these environments.

You can control JDBC over RMI communications by setting the RMI JDBC Security parameter
in the DataSource object at the server level.

See Enable RMI JDBC Security in Oracle WebLogic Remote Console Online Help.

The following are the valid values of the parameter ranging from least secure to most secure:

• Compatibility - Allows uncontrolled access to DataSource objects for all incoming JDBC
application calls over RMI. This setting should only be used when strong network security
is in place.

• Secure - Rejects all incoming application JDBC calls over RMI by remote clients and
servers. Internal interserver JDBC calls over RMI operations are allowed for the Logging
Last Resource, Emulate Two-Phase Commit and One-Phase Commit Global Transactions
Protocol options. The Secure option requires that all the servers are configured with an
SSL listen port. If not, all operations fail with an exception.

Note:

For domains created with WebLogic Server 14.1.2.0.0 or later, the RMI JDBC
Security value defaults to Secure. However, for domains created prior to
WebLogic Server 14.1.2.0.0, Compatibility is the default value.

• Disabled – Disables all JDBC calls over RMI, including the internal RMI operations for
Logging Last Resource, Emulate Two-PhaseCommit and One-Phase Commit Global
Transactions Protocol options. This setting applies to domains created with WebLogic
Server 14.1.2.0.0 or later.

Note:

In WebLogic Server 14.1.1.0.0 and earlier, you can completely disable RMI
access to DataSource objects by setting the weblogic.jdbc.remoteEnabled
(deprecated) system property to false.

Chapter 5
Using the WebLogic RMI Driver (Deprecated)

5-2

Setting Up WebLogic Server to Use the WebLogic RMI Driver
The RMI driver is accessible through DataSource objects, which are created in the WebLogic
Remote Console. You should create DataSource objects in your WebLogic Server
configuration before you use the RMI driver in your applications.

Sample Client Code for Using the RMI Driver
The following code samples show how to use the RMI driver to get and use a database
connection from a WebLogic Server data source.

• Import the Required Packages

• Get the Database Connection

• Using a JNDI Lookup to Obtain the Connection

• Using Only the WebLogic RMI Driver to Obtain a Database Connection

Import the Required Packages
Before you can use the RMI driver to get and use a database connection, you must import the
following packages:

javax.sql.DataSource
java.sql.*
java.util.*
javax.naming.*

Get the Database Connection
The WebLogic JDBC/RMI client obtains its connection to a DBMS from the DataSource object
that you defined in the WebLogic Remote Console. There are two ways the client can obtain a
DataSource object:

• Using a JNDI lookup. This is the preferred and most direct procedure.

• Passing the DataSource name to the RMI driver with the Driver.connect()method. In this
case, WebLogic Server performs the JNDI look up on behalf of the client.

Using a JNDI Lookup to Obtain the Connection
To access the WebLogic RMI driver using JNDI, obtain a context from the JNDI tree by looking
up the name of your DataSource object. For example, to access a DataSource called
"myDataSource" that is defined in the WebLogic Remote Console:

Context ctx = null;
 Hashtable ht = new Hashtable();
 ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 ht.put(Context.PROVIDER_URL,
 "t3://hostname:port");
 try {
 ctx = new InitialContext(ht);
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");
 java.sql.Connection conn = ds.getConnection();
 // You can now use the conn object to create

Chapter 5
Using the WebLogic RMI Driver (Deprecated)

5-3

 // a Statement object to execute
 // SQL statements and process result sets:
 Statement stmt = conn.createStatement();
 stmt.execute("select * from someTable");
 ResultSet rs = stmt.getResultSet();
 // Do not forget to close the statement and connection objects
 // when you are finished:
 }
 catch (Exception e) {
 // a failure occurred
 log message;
 }
} finally {
 try {
 ctx.close();
 } catch (Exception e) {
 log message; }
 try {
 if (rs != null) rs.close();
 } catch (Exception e) {
 log message; }
 try {
 if (stmt != null) stmt.close();
 } catch (Exception e) {
 log message; }
 try {
 if (conn != null) conn.close();
 } catch (Exception e) {
 log message; }
}

(Where hostname is the name of the machine running your WebLogic Server and port is the
port number where that machine is listening for connection requests.)

In this example a Hashtable object is used to pass the parameters required for the JNDI
lookup. There are other ways to perform a JNDI lookup. See WebLogic Server JNDI in
Developing JNDI Applications for Oracle WebLogic Server.

Notice that the JNDI lookup is wrapped in a try/catch block in order to catch a failed look up
and also that the context is closed in a finally block.

Note:

It may be possible to access a vendor-specific interface. This is done without RMI by
casting to the vendor interface. For example:

OracleConnection oc = (OracleConnection) cconn;

This may not work if the vendor interface is not Serializable. When a server is
acting as a client, set networkClassLoadingEnabled to true on the server so that the
generated RMI class is available (the default is true for stand-alone clients).

Using Only the WebLogic RMI Driver to Obtain a Database Connection
Instead of looking up a DataSource object to get a database connection, you can access
WebLogic Server using the Driver.connect() method, in which case the JDBC/RMI driver
performs the JNDI lookup. To access the WebLogic Server, pass the parameters defining the

Chapter 5
Using the WebLogic RMI Driver (Deprecated)

5-4

URL of your WebLogic Server and the name of the DataSource object to the
Driver.connect() method. For example, to access a DataSource called "myDataSource" as
defined in the WebLogic Remote Console:

java.sql.Driver myDriver = (java.sql.Driver)
 Class.forName("weblogic.jdbc.rmi.Driver").newInstance();
String url = "jdbc:weblogic:rmi";
java.util.Properties props = new java.util.Properties();
props.put("weblogic.server.url", "t3://hostname:port");
props.put("weblogic.jdbc.datasource", "myDataSource");
java.sql.Connection conn = myDriver.connect(url, props);

(Where hostname is the name of the machine running your WebLogic Server and port is the
port number where that machine is listening for connection requests.)

You can also define the following properties which will be used to set the JNDI user
information:

• weblogic.user—specifies a username

• weblogic.credential—specifies the password for the weblogic.user.

Row Caching with the WebLogic RMI Driver
Row caching is a WebLogic Server JDBC feature that improves the performance of your
application. Normally, when a client calls ResultSet.next(), WebLogic Server fetches a single
row from the DBMS and transmits it to the client JVM. With row caching enabled, a single call
to ResultSet.next() retrieves multiple DBMS rows, and caches them in client memory. By
reducing the number of trips across the wire to retrieve data, row caching improves
performance.

Note:

WebLogic Server will not perform row caching when the client and WebLogic Server
are in the same JVM.

You can enable and disable row caching and set the number of rows fetched per
ResultSet.next() call with the data source attributes Row Prefetch Enabled and Row
Prefetch Size, respectively. You set data source attributes via the WebLogic Remote Console.
To enable row caching and to set the row prefetch size attribute for a data source, follow these
steps:

1. If you have not already done so, in the Change Center of the WebLogic Remote Console,
click Lock & Edit.

2. In the Domain Structure tree, expand Services > JDBC, then select Data Sources.

3. On the Summary of Data Sources page, click the data source name.

4. Select the Configuration: General tab and then do the following:.

a. Select the Row Prefetch Enabled check box.

b. In Row Prefetch Size, type the number of rows you want to cache for each
ResultSet.next() call.

5. Click Save.

Chapter 5
Using the WebLogic RMI Driver (Deprecated)

5-5

6. To activate these changes, in the Change Center of the WebLogic Remote Console, click
Activate Changes.

For more information, see Data Sources in Oracle WebLogic Remote Console Online Help.

• Important Limitations for Row Caching with the WebLogic RMI Driver

Important Limitations for Row Caching with the WebLogic RMI Driver
Keep the following limitations in mind if you intend to implement row caching with the RMI
driver:

• WebLogic Server only performs row caching if the result set type is both
TYPE_FORWARD_ONLY and CONCUR_READ_ONLY.

• Certain data types in a result set may disable caching for that result set. These include the
following:

– LONGVARCHAR/LONGVARBINARY

– NULL

– BLOB/CLOB

– ARRAY

– REF

– STRUCT

– JAVA_OBJECT

• Certain ResultSet methods are not supported if row caching is enabled and active for that
result set. Most pertain to streaming data, scrollable result sets or data types not supported
for row caching. These include the following:

– getAsciiStream()
– getUnicodeStream()
– getBinaryStream()
– getCharacterStream()
– isBeforeLast()
– isAfterLast()
– isFirst()
– isLast()
– getRow()
– getObject (Map)
– getRef()
– getBlob()/getClob()
– getArray()
– getDate()
– getTime()
– getTimestamp()

Chapter 5
Using the WebLogic RMI Driver (Deprecated)

5-6

Limitations When Using Global Transactions
Populating a RowSet in a global transaction may fail with Fetch Out Of Sequency exception.
For example:

1. When the RMI call returns, the global transaction is suspended automatically by the server
instance.

2. The JDBC driver invalidates the pending ResultSet object to release the system
resources.

3. The client tries to read data from the invalidated ResultSet.

4. A Fetch Out Of Sequency exception is thrown if that data has not been prefetched. Since
the number of rows prefetched is vendor specific, you may or may not encounter this
issue, especially when working with one or two rows.

If you encounter this exception, make sure to populate the RowSet on the server side and then
serialize it back to the client.

Using the WebLogic JTS Driver (Deprecated)
The Java Transaction Services or JTS driver is a server-side JDBC driver that provides access
to both data sources and global transactions from applications running in WebLogic
Server.Connections to a database are made from a data source and use a JDBC driver in
WebLogic Server to connect to the Database Management System (DBMS) on behalf of your
application.
Your application uses the JTS driver to access a connection from the data source.

WebLogic Server also uses the JTS driver internally when a connection from a data source
that uses a non-XA JDBC driver participates in a global transaction (Logging Last Resource
and Emulate Two-Phase Commit). This behavior enables a non-XA resource to emulate XA
and participate in a two-phase commit transaction. See JDBC Data Source Transaction
Options in Administering JDBC Data Sources for Oracle WebLogic Server.

Note:

The WebLogic Server JTS driver only supports T3 protocol when participating
connections that use Logging Last Resource (LLR).

Once a transaction begins, all database operations in an execute thread that get their
connection from the same data source share the same connection from that data source.
These operations can be made through services such as Jakarta Enterprise Beans (EJBs) or
JMS services, or by directly sending SQL statements using standard JDBC calls. All of these
operations will, by default, share the same connection and participate in the same transaction.
When the transaction is committed or rolled back, the connection is returned to the pool.

Although Java clients may not register the JTS driver themselves, they may participate in
transactions via Remote Method Invocation (RMI). You can begin a transaction in a thread on a
client and then have the client call a remote RMI object. The database operations executed by
the remote object become part of the transaction that was begun on the client. When the
remote object is returned back to the calling client, you can then commit or roll back the
transaction. The database operations executed by the remote objects must all use the same
data source to be part of the same transaction.

Chapter 5
Using the WebLogic JTS Driver (Deprecated)

5-7

For the JTS driver and your application to participate in a global transaction, the application
must call conn = myDriver.connect("jdbc:weblogic:jts", props); within a global
transaction. After the transaction completes (gets committed or rolled back), WebLogic Server
puts the connection back in the data source. If you want to use a connection for another global
transaction, the application must call conn = myDriver.connect("jdbc:weblogic:jts",
props); again within a new global transaction.

• Sample Client Code for Using the JTS Driver

Sample Client Code for Using the JTS Driver
To use the JTS driver, you must first use the WebLogic Remote Console to create a data
source in WebLogic Server.

This explanation demonstrates creating and using a JTS transaction from a server-side
application and uses a data source named "myDataSource."

1. Import the following classes:

import javax.transaction.UserTransaction;
import java.sql.*;
import javax.naming.*;
import java.util.*;
import weblogic.jndi.*;

2. Establish the transaction by using the UserTransaction class. You can look up this class
on the JNDI tree. The UserTransaction class controls the transaction on the current
execute thread. Note that this class does not represent the transaction itself. The actual
context for the transaction is associated with the current execute thread.

Context ctx = null;
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.
// Substitute the correct hostname, port number
// user name, and password for your environment:
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, "Fred");
env.put(Context.SECURITY_CREDENTIALS, "secret");

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");

3. Start a transaction on the current thread:

// Start the global transaction before getting a connection
tx.begin();

4. Load the JTS driver:

Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.jts.Driver").newInstance();

5. Get a connection from the data source:

Properties props = new Properties();
props.put("connectionPoolID", "myDataSource");

Chapter 5
Using the WebLogic JTS Driver (Deprecated)

5-8

conn = myDriver.connect("jdbc:weblogic:jts", props);
6. Execute your database operations. These operations may be made by any service that

uses a database connection, including EJB, JMS, and standard JDBC statements. These
operations must use the JTS driver to access the same data source as the transaction
begun in step 3 in order to participate in that transaction.

If the additional database operations using the JTS driver use a different data source than
the one specified in step 5, an exception will be thrown when you try to commit or roll back
the transaction.

7. Close your connection objects. Note that closing the connections does not commit the
transaction nor return the connection to the pool:

conn.close();
8. Complete the transaction by either committing the transaction or rolling it back. In the case

of a commit, the JTS driver commits all the transactions on all connection objects in the
current thread and returns the connection to the pool.

tx.commit();

// or:

tx.rollback();

Chapter 5
Using the WebLogic JTS Driver (Deprecated)

5-9

6
Using API Extensions in JDBC Drivers

Learn how to configure and use third-party JDBC drivers, including using API extensions and
batch processing, with Oracle Thin Drivers.

• Using API Extensions to JDBC Interfaces

• Using API Extensions for Oracle JDBC Types

• Using Batching with the Oracle Thin Driver
In some situations, the Oracle Thin driver may not send updates to the DBMS if a batch
size has not been reached and waits until the statement is closed. When a Prepared
Statement is closed, WebLogic Server returns the statement to a standard JDBC state
rather than closing it. It is then put back into the pool for the connection so it can be re-
delivered the next time it is needed.

• Using the Java Security Manager with the Oracle Thin Driver
Learn how to use Java Security Manager with Oracle Thin Driver to create a security policy
for an application.

Using API Extensions to JDBC Interfaces
WebLogic Server has implemented new interfaces for Oracle JDBC Types. Learn about the
new interfaces and how they map to the deprecated Oracle concrete classes.
To use the extension methods exposed in the JDBC driver, you must include these steps in
your application code:

• Import the driver interfaces from the JDBC driver used to create connections in the data
source.

• Get a connection from the data source.

• Cast the connection object as the vendor's connection interface.

• Use the API extensions as described in the vendor's documentation.

• Wrap the JNDI lookup in a try/catch block in order to catch a failed look up and ensure
the context is closed in a finally block.

The following sections provide details on using API extensions and supporting code examples.
For information about specific extension methods for a particular JDBC driver, refer to the
documentation from the JDBC driver vendor.

• Sample Code for Accessing API Extensions to JDBC Interfaces

Sample Code for Accessing API Extensions to JDBC Interfaces
The following code examples use extension methods available in the Oracle Thin driver to
illustrate how to use API extensions to JDBC. You can adapt these examples to fit methods
exposed in your JDBC driver.

• Import Packages to Access API Extensions

• Get a Connection

• Cast the Connection as a Vendor Connection

6-1

• Use API Extensions

Import Packages to Access API Extensions
Import the interfaces from the JDBC driver used to create the connection in the data source.
This example uses interfaces from the Oracle Thin Driver.

import java.sql.*;
import java.util.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.sql.DataSource;
import oracle.jdbc.*;
// Import driver interfaces. The driver must be the same driver
// used to create the database connection in the data source.

Get a Connection
Establish the database connection using JNDI, DataSource, and data source objects.

// Get a valid DataSource object for a data source.
// Here we assume that getDataSource() takes
// care of those details.
javax.sql.DataSource ds = getDataSource(args);
// get a java.sql.Connection object from the DataSource
java.sql.Connection conn = ds.getConnection();

Cast the Connection as a Vendor Connection
Now that you have the connection, you can cast it as a vendor connection. This example uses
the OracleConnection interface from the Oracle Thin Driver.

OracleConnection = (oracle.jdbc.OracleConnection)conn;

Use API Extensions
The following code fragment shows how to use the Oracle Row Prefetch method available
from the Oracle Thin driver.

Example 6-1 Using an API Extension

// Cast to OracleConnection and retrieve the
// default row prefetch value for this connection.
int default_prefetch =
 ((oracle.jdbc.OracleConnection)conn).getDefaultRowPrefetch();
// Cast to OracleStatement and set the row prefetch
// value for this statement. Note that this
// prefetch value applies to the connection between
// WebLogic Server and the database.
 ((oracle.jdbc.OracleStatement)stmt).setRowPrefetch(20);
// Perform a normal sql query and process the results...
String query = "select empno,ename from emp";
java.sql.ResultSet rs = stmt.executeQuery(query);
while(rs.next()) {
 java.math.BigDecimal empno = rs.getBigDecimal(1);
 String ename = rs.getString(2);
 System.out.println(empno + "\t" + ename);
}
rs.close();
stmt.close();

Chapter 6
Using API Extensions to JDBC Interfaces

6-2

conn.close();
conn = null;
. . .

Using API Extensions for Oracle JDBC Types
WebLogic Server has implemented new interfaces for Oracle JDBC Types. Learn about the
new interfaces and how they map to the deprecated Oracle concrete classes.
When Oracle implemented JDBC, concrete classes were used instead of using interfaces for
Oracle JDBC Types. There are many of drawbacks in using concrete classes and in the
11.2.0.3 driver there are new interfaces corresponding to the Oracle types. The concrete
classes now implement a public interface from the package oracle.jdbc. Programmers should
use methods exposed in java.sql whenever possible and for Oracle extension methods use
oracle.jdbc.

In the mean time, WebLogic Server implemented corresponding interfaces that could be used
to work around the limitations of the concrete classes. These are now deprecated and should
be replaced with the corresponding oracle.jdbc interfaces.

In Database version 11.2.0.3 the following types have interfaces.

Old Oracle types Deprecated WLS Interface New interfaces

oracle.sql.ARRAY weblogic.jdbc.vendor.oracle.Oracl
eArray

oracle.jdbc.OracleArray

oracle.sql.STRUCT weblogic.jdbc.vendor.oracle.Oracl
eStruct

oracle.jdbc.OracleStruct

oracle.sql.CLOB weblogic.jdbc.vendor.oracle.Oracl
eThinClob

oracle.jdbc.OracleClob

oracle.sql.BLOB weblogic.jdbc.vendor.oracle.Oracl
eThinBlob

oracle.jdbc.OracleBlob

oracle.sql.REF weblogic.jdbc.vendor.oracle.Oracl
eRef

oracle.jdbc.OracleRef

Changing the code to use new interfaces is not difficult, but should be handled with care. The
below examples use oracle.sql.ARRAY and similar changes apply to other types as well. A list
of suggested changes is mentioned below:

• Import: Modify import statements to use the new interfaces (oracle.jdbc) instead of old
interfaces (oracle.sql or weblogic.jdbc.vendor.oracle).

• Declaration: Use standard Java interfaces for declaration whenever possible. If there is a
need to use Oracle extension, use the new Oracle interfaces under oracle.jdbc.

• Methods: Use standard Java interfaces whenever possible:

– (Oracle Types): Use methods in standard Java interfaces whenever possible. If
required use methods from Oracle interfaces under oracle.jdbc.

– (Defines): Refrain from using Oracle specific methods such as getARRAY; instead use
standard Java methods such as getArray or getObject for those that do have
standard Java interfaces.

– (Binds): Refrain from using Oracle specific methods such as setARRAY; instead use
standard Java methods such as setArray or setObject for the ones that do have
standard Java interfaces.

Replacing import statements can be done by a script that uses find and sed. For example:

Chapter 6
Using API Extensions for Oracle JDBC Types

6-3

find . -name "*.java" -exec egrep ... > files.list

for f in `cat files.list`; do

 cat $f |sed 's@^import oracle\.sql\.ARRAY@oracle\.jdbc.OracleArray@g' > /tmp/temp.txt

 mv /tmp/temp.txt $f

done

Programmers should use factory methods on oracle.jdbc.OracleConnection to create an
instance of the types. For example:

int[] intArray = { 5, 7, 9};

oracle.sql.ArrayDescriptor aDescriptor = new oracle.sql.ArrayDescriptor("SCOTT.TYPE1",
connection);

oracle.sql.ARRAY array = new oracle.sql.ARRAY(aDescriptor, connection, intArray);

should be changed to:

int[] intArray = { 5, 7, 9};
java.sql.Array array = connection.createOracleArray("SCOTT.TYPE1", intArray);

Note:

Oracle does not support anonymous array types and so does not support the
standard Connection.createArrayOf method. Instead, use createOracleArray as
shown in the sample above.

There are some methods that are no longer available because:

• There is a way to accomplish the same end using standard or already public
methods.

• The method refers to a deprecated type.

• The method does not add significant value.

In these cases, the code needs to be modified to use standard API's.

• Sample Code for Accessing Oracle Thin Driver Extensions to JDBC Interfaces

• Programming with Arrays

• Programming with Structs

• Programming with Refs

• Programming with Large Objects

• Programming with Opaque Objects
This topic describes the use case of working with Opaque Objects.

Chapter 6
Using API Extensions for Oracle JDBC Types

6-4

Sample Code for Accessing Oracle Thin Driver Extensions to JDBC
Interfaces

The following code examples show how to access the interfaces for Oracle extensions,
including interfaces for:

• Arrays—See Programming with Arrays.

• Structs—See Programming with Structs.

• Refs—See Programming with Refs.

• Blobs and Clobs—See Programming with Large Objects.

If you selected the option to install server examples with WebLogic Server, see the JDBC
examples for more code examples, see JDBC Samples and Tutorials.

Note:

You can use Arrays, Structs, and Refs in server-side applications only. You cannot
access them in remote clients using the deprecated JDBC over RMI interface.

Programming with Arrays
In your WebLogic Server server-side applications, you can materialize an Oracle Collection (a
SQL Array) in a result set or from a callable statement as a Java array.

To use an Array in WebLogic Server applications:

1. Import the required classes.

2. Get a connection and then create a statement for the connection.

3. Create the Array type, a table that uses that type, and create some rows in the table with
arrays.

4. Get the Array using a result set or a callable statement.

5. Use the standard Java methods (when used as a java.sql.Array) or Oracle extension
methods (when cast as java.jdbc.OracleArray) to work with the data.

The following sections provide more details for these actions:

• Import Packages to Access Oracle Extensions

• Establish the Connection

• Creating an Array in the Database

• Getting an Array

• Updating an Array in the Database

• Using Oracle Array Extension Methods

Import Packages to Access Oracle Extensions
Import the SQL and Oracle interfaces used in this example.

Chapter 6
Using API Extensions for Oracle JDBC Types

6-5

import java.math.BigDecimal;
import java.sql.*;
import java.util.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.sql.DataSource;
import oracle.jdbc.*;

Establish the Connection
Establish the database connection using JNDI and DataSource objects.

// Get a valid DataSource object.
// Here we assume that getDataSource() takes
// care of those details.
javax.sql.DataSource ds = getDataSource(args);
// get a java.sql.Connection object from the DataSource
java.sql.Connection conn = ds.getConnection();

Creating an Array in the Database
You must first create the array type and a table that uses the type. For example:

Statement stmt = conn.createStatement();
 stmt.execute("CREATE TYPE TEST_SCORES AS VARRAY(10)OF INT");
stmt.execute("CREATE TABLE STUDENTS (STUDENT_ID INT, NAME VARCHAR2(100), SCORES
TEST_SCORES)");

The following example creates an array of up to 10 test scores to be associated with a student:

• Create a row with an Array. You can use a Statement or create the Array using
OracleConnection.createOracleArray for use in a PreparedStatement.

Note:

You cannot use Connection.createArrayOf because Oracle does not support
anonymous array types

• Insert two rows. The first one uses a SQL statement. The second creates an Array and
binds it into a PreparedStatement.

stmt.execute("INSERT INTO STUDENTS VALUES 1,'John Doe',TEST_SCORES(100,99))");
PreparedStatement pstmt = conn.prepareStatement("INSERT INTO STUDENTS VALUES (?,?,?)");
pstmt.setInt(1,2);
pstmt.setString(2,"Jane Doe");
int scores[] = {94, 95};
Array array = ((OracleConnection)conn).createOracleArray("TEST_SCORES",scores);
pstmt.setArray(3,array);
pstmt.execute();

Getting an Array
You can use the getArray() methods for a callable statement or a result set to get a Java
array. You can then use the array as a java.sql.array to use standard methods, or you can
cast the array as a oracle.jdbc.OracleArray to use the Oracle extension methods for an
array.

Chapter 6
Using API Extensions for Oracle JDBC Types

6-6

The following example shows how to get a java.sql.Array from a result set that contains an
Array. In the example, the query returns a result set that contains an object column—an Array
of test scores for a student.

ResultSet rs = null;
rs = stmt.executeQuery("SELECT * FROM STUDENTS");
while (rs.next()) {
 System.out.print("Name="+rs.getString(2)+": ");
 array = rs.getArray(3);
 BigDecimal scoresBD[] = (BigDecimal[])array.getArray();
 OracleArray oracleArray = (OracleArray)rs.getArray(3);
 scores = oracleArray.getIntArray();
 for (int i = 0; i < scores.length; i++) {
 System.out.print(""+scores[i]+" ");
 }
 System.out.println("");
}

Note:

The default return type for an integer is a BigDecimal. We can cast the Array to an
OracleArray and use the Oracle extension method getIntArray() to get back
integer values.

Updating an Array in the Database
To update an Array in a database, use the following steps:

1. Create an array in the database, see Creating an Array in the Database.

2. Update the array in the database using the setArray() method for a prepared statement
or a callable statement. For example:

String sqlUpdate = "UPDATE STUDENTS SET SCORES = ? WHERE STUDENT_ID = ?";
int newscores[] = {94, 95, 96};
pstmt = conn.prepareStatement(sqlUpdate);
array = ((OracleConnection)conn).createOracleArray("TEST_SCORES",newscores);
pstmt.setArray(1, array);
pstmt.setInt(2, 1);
pstmt.executeUpdate();

Using Oracle Array Extension Methods
To use the Oracle Thin driver extension methods for an Array, you must first cast the array as
an oracle.jdbc.OracleArray. You can then make calls to the Oracle Thin driver extension
methods for an Array in addition to the standard methods. For example:

OracleArray oracleArray = (OracleArray)rs.getArray(3);
String sqltype = oracleArray.getSQLTypeName();

Programming with Structs
In your WebLogic Server applications, you can access and manipulate objects from an Oracle
database. When you retrieve objects from an Oracle database, you can cast them as either
custom Java objects or as a Struct (java.sql.Struct or oracle.jdbc.OracleStruct). A
Struct is a loosely typed data type for structured data that takes the place of custom classes

Chapter 6
Using API Extensions for Oracle JDBC Types

6-7

in your applications. The Struct interface in the JDBC API includes several methods for
manipulating the attribute values in a Struct. Oracle extends the Struct interface with
additional methods.

To use a Struct in WebLogic Server applications:

1. Import the required classes. (See Import Packages to Access Oracle Extensions.)

2. Get a connection. (See Establish the Connection.)

3. Create the Struct object type, a table that uses the object, and rows with Struct objects.

4. Cast the object as a Struct, either java.sql.Struct (to use standard methods) or
oracle.jdbc.OracleStruct (to use standard and Oracle extension methods).

5. Use the standard or Oracle Thin driver extension methods to work with the data.

The following sections provide more details for steps 3 through 5:

• Creating Objects in the Database

• Getting Struct Attributes

• Using OracleStruct Extension Methods

• Using a Struct to Update Objects in the Database

Creating Objects in the Database
A Struct is typically used to materialize database objects in your Java application in place of
custom Java classes that map to the database objects. You must first create the type and table
that uses the type. For example (this snippet is poorly designed and used for demonstration
purposes only):

conn = ds.getConnection();
Statement stmt = conn.createStatement();
stmt.execute("CREATE TYPE EMP_STRUCT AS OBJECT (DEPT INT, NAME VARCHAR2(100))");
stmt.execute("CREATE TABLE EMP (ID INT, EMPLOYEE EMP_STRUCT)");

To create a row with a Struct object, you can use a SQL Statement or create the Struct using
Connection.createStruct and use it in a PreparedStatement.

Insert two rows. The first one row uses a SQL statement. The second creates a Struct and
binds it into a PreparedStatement.

stmt.execute("INSERT INTO EMP VALUES (1001, EMP_STRUCT(10,'John Doe'))");
PreparedStatement pstmt = conn.prepareStatement("INSERT INTO EMP VALUES (?,?)");
Object attrs[] = { new Integer(20), "Jane Doe"};
Struct struct = conn.createStruct("EMP_STRUCT", attrs);
pstmt.setInt(1,1002);
pstmt.setObject(2,struct);
pstmt.execute();

Note:

When creating a SQL structure using Connection.createStruct(), it is necessary to
unwrap all data types (Clob, Blob, Struct, Ref, Array, NClob, and SQLXML). Once the
structure is created, there is no way to re-wrap them before returning the structure to
the application. The structure returned to the application has unwrapped values for
the data types.

Chapter 6
Using API Extensions for Oracle JDBC Types

6-8

Getting Struct Attributes
To get the value for an individual attribute in a Struct, you can use the standard JDBC API
methods getAttributes() and getAttributes(java.util.Dictionary map).

You can create a result set, get a Struct from the result set, and then use the
getAttributes() method. The method returns an array of ordered attributes. You can assign
the attributes from the Struct (object in the database) to an object in the application, including
Java language types. You can then manipulate the attributes individually. For example:

conn = ds.getConnection();
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT * FROM EMP WHERE ID = 1002");
//The second column uses an object data type.
if (rs.next()) {
 struct = (Struct)rs.getObject(2);
 attrs = struct.getAttributes();
 String name = attrs[1];
}

In the preceding example, the second column in the emp table uses an object data type. The
example shows how to assign the results from the getObject method to a Java object that
contains an array of values, and then use individual values in the array as necessary. Note that
the type of the first integer attribute is actually a java.math.BigDecimal.

You can also use the getAttributes(java.util.Dictionary map) method to get the
attributes from a Struct. When you use this method, you must provide a hash table to map the
data types in the Oracle object to Java language data types. For example:

java.util.Hashtable map = new java.util.Hashtable();
map.put("INT", Class.forName("java.lang.Integer"));
map.put("VARCHAR2", Class.forName("java.lang.String"));
Object[] attrs = struct.getAttributes(map);
String name = (String)attrs[1];

In this example, the value is returned as an Integer instead of a BigDecimal.

Using OracleStruct Extension Methods
To use the Oracle Thin driver extension methods for a Struct, you must cast the
java.sql.Struct (or the original getObject result) as a oracle.jdbc.OracleStruct. When
you cast a Struct as an OracleStruct, you can use both the standard and extension methods.
For example:

OracleStruct oracleStruct =
 (OracleStruct)rs.getObject(2);
String n = oracleStruct.getSQLTypeName(); // Standard
oracle.jdbc.OracleTypeMetaData otmd =
 oracleStruct.getOracleMetaData(); // Extension

Using a Struct to Update Objects in the Database
To update an object in the database using a Struct, you can use the setObject method in a
prepared statement. For example:

pstmt = conn.prepareStatement("UPDATE EMP SET EMPLOYEE = ? WHERE ID =?");
attrs[0] = new Integer(30);
struct = conn.createStruct("EMP_STRUCT", attrs);

Chapter 6
Using API Extensions for Oracle JDBC Types

6-9

pstmt.setObject (1, struct);
pstmt.setInt (2, 1002);
pstmt.executeUpdate();

Programming with Refs
A Ref is a logical pointer to a row object. When you retrieve a Ref, you are actually getting a
pointer to a value in another table (or recursively to the same table). The Ref target must be a
row in an object table. You can use a Ref to examine or update the object it refers to. You can
also change a Ref so that it points to a different object of the same object type or assign it a
null value.

To use a Ref in WebLogic Server applications, use the following steps:

1. Import the required classes. (See Import Packages to Access Oracle Extensions.)

2. Get a database connection. (See Establish the Connection.)

3. Create a Ref using a SQL Statement.

4. Get the Ref using a result set or a callable statement.

5. Use the extended Oracle methods by casting to OracleRef.

6. Update a Ref in the database.

The following sections describe steps 3 through 6 in greater detail:

• Creating a Ref in the Database

• Getting a Ref

• Using WebLogic OracleRef Extension Methods

• Updating Ref Values

Creating a Ref in the Database
You cannot create Ref objects in your JDBC application—you can only retrieve existing Ref
objects from the database. However, you can create a Ref in the database using statements or
prepared statements. For example:

conn = ds.getConnection();
stmt = conn.createStatement();
stmt.execute("CREATE TYPE OB AS OBJECT (OB1 INT, OB2 INT)");
stmt.execute("CREATE TABLE T1 OF OB");
stmt.execute("INSERT INTO T1 VALUES (5, 5)");
stmt.execute("CREATE TABLE T2 (COL REF OB)");
stmt.execute("INSERT INTO T2 SELECT REF(P) FROM T1 P WHERE P.OB1=5");

The preceding example creates an object type (OB), a table (T1) of that object type, a table (T2)
with a Ref column that can point to instances of OB objects, and inserts a Ref into the Ref
column. The Ref points to a row in T1 where the value in the first column is 5.

Getting a Ref
To get a Ref in an application, you can use a query to create a result set and then use the
getRef method to get the Ref from the result set. For example:

rs = stmt.executeQuery("SELECT REF (S) FROM T1 S WHERE S.OB1=5");
rs.next();

Chapter 6
Using API Extensions for Oracle JDBC Types

6-10

Ref ref = rs.getRef(1);
String name = ref.getBaseTypeName();

The WHERE clause in the preceding example uses dot notation to specify the attribute in the
referenced object. After you get the Ref, you can use the Java API method getBaseTypeName.

Using WebLogic OracleRef Extension Methods
In order to use the Oracle Thin driver extension methods for Refs, you must cast the Ref as an
OracleRef. For example:

OracleTypeMetaData mdata = ((OracleRef)ref). getOracleMetaData();

Updating Ref Values
To update a Ref, you change the location to which the Ref points with a PreparedStatement or
a CallableStatement.

To update the location to which a Ref points using a prepared statement, you can follow these
basic steps:

1. Get a Ref that points to the new location. You use this Ref to replace the value of another
Ref.

2. Create a string for the SQL command to replace the location of an existing Ref with the
value of the new Ref.

3. Create and execute a prepared statement.

For example:

//Get the Ref
rs = stmt.executeQuery("SELECT REF (S) FROM T1 S WHERE S.OB1=5");
rs.next();
ref = rs.getRef(1);
//Create and execute the prepared statement.
String sqlUpdate = "UPDATE T2 S2 SET COL = ? WHERE S2.COL.OB1 = 20";
pstmt = conn.prepareStatement(sqlUpdate);
pstmt.setRef(1, ref);
pstmt.executeUpdate();

To use a callable statement to update the location to which a REF points, you prepare the
stored procedure, set any IN parameters and register any OUT parameters, and then execute
the statement. The stored procedure updates the REF value, which is actually a location. For
example:

rs = stmt.executeQuery("SELECT REF (S) FROM T1 S where S.OB1=5");
rs.next();
ref = rs.getRef(1);
// Prepare the stored procedure
String sql = "{call SP1 (?,?)}";
CallableStatement cstmt = conn.prepareCall(sql);
// Set IN and register OUT params
cstmt.setRef(1, ref);
cstmt.registerOutParameter(2, Types.STRUCT, "OB");
// Execute
cstmt.execute();

Chapter 6
Using API Extensions for Oracle JDBC Types

6-11

Programming with Large Objects
This section contains information, including sample code, on how to work with Blob and Clob
objects. For additional information, refer to Working with LOBs in Database SecureFiles and
Large Objects Developer's Guide.

• Creating Blobs in the Database

• Updating Blobs in the Database

• Using OracleBlob Extension Methods

• Programming with Clob Values

• Transaction Boundaries Using LOBs

• Recovering LOB Space

Creating Blobs in the Database
The following code presumes the Connection is already established. It creates a table with a
Blob as the second column.

ResultSet rs = null;
Statement stmt = null;
java.sql.Blob blob = null;
java.io.InputStream is = null;
stmt = conn.createStatement();
stmt.execute("CREATE TABLE TESTBLOB (ID INT, COL2 BLOB)");

The following code inserts a Blob value using a string converted to a byte array as the data.

String insertsql2 = "INSERT INTO TESTBLOB VALUES (?,?)";
PreparedStatement pstmt = conn.prepareStatement("INSERT INTO TESTBLOB VALUES (?,?)");
pstmt.setInt(1, 1);
pstmt.setBytes(2, "initialvalue".getBytes());
pstmt.executeUpdate();

Updating Blobs in the Database
The following code updates the Blob value.

rs = stmt.executeQuery("SELECT COL2 FROM TESTBLOB WHERE ID = 1 FOR UPDATE");
rs.next();
Blob blob = rs.getBlob(1);
blob.setBytes(1, "newdata".getBytes());

Note that you need the FOR UPDATE to be able to update the Blob value.

Using OracleBlob Extension Methods
The following code casts the Blob to an OracleBlob so that you can use an extension method.

rs = stmt.executeQuery("SELECT COL1, COL2 FROM TESTBLOB");
rs.next();
Blob blob = rs.getBlob(2);
is = blob.getBinaryStream(); // Standard
is.close();
is = ((OracleBlob)blob).getBinaryStream(0); // Extended

Chapter 6
Using API Extensions for Oracle JDBC Types

6-12

Once you cast to the OracleBlob interface, you can access the Oracle supported methods in
addition to the standard methods. BLOB#freeTemporary should be replaced with
OracleBlob#free.

Programming with Clob Values
Using Clob values is similar to using Blob values except that the data is a string instead of a
binary array (use setString instead of setBytes, getClob instead of getBlob, and
getCharacterStream instead of getBinaryStream).

If you use a prepared statement to update a Clob and the new value is shorter than the
previous value, the Clob retains the characters that were not specifically replaced during the
update. For example, if the current value of a Clob is abcdefghij and you update the Clob
using a prepared statement with zxyw, the value in the Clob is updated to zxywefghij. To
correct values updated with a prepared statement, you should use the dbms_lob.trim
procedure to remove the excess characters left after the update. See DBMS_LOB in Oracle
Database PL/SQL Packages and Types Reference for more information about the
dbms_lob.trim procedure. CLOB#freeTemporary must be replaced with OracleClob#free.

Transaction Boundaries Using LOBs
When using LOBs, you must take transaction boundaries into account; for example, direct all
read/writes to a particular LOB within a transaction.

Recovering LOB Space
To free up space used by a LOB, it's necessary to call lob.close(). This is not automatically
done when a ResultSet, Statement, or Connection is closed. For Oracle data bases only, it is
also necessary to execute alter session set events '60025 trace name context
forever'; on the session so that other sessions can use the freed memory.

Programming with Opaque Objects
This topic describes the use case of working with Opaque Objects.

The new Oracle type interfaces have only methods that are considered significant or not
available with standard JDBC API's. Here the oracle.sql.OPAQUE has been replaced with
oracle.jdbc.OracleOpaque. The new interface only has a method to get the value as an
Object and two meta information methods to get meta data and type name. Unlike the other
Oracle type interfaces (oracle.jdbc.OracleStruct extends java.sql.Struct and
oracle.jdbc.OracleArray extends java.sql.Array), oracle.jdbc.OracleOpaque does not
extend a JDBC interface.

Since XMLType doesn't work with the replay datasource and the oracle.xdb package uses
XMLType extensively, this package is no longer usable for Application Continuity replay.

There is one related very common use case that needs to be changed to work with Application
Continuity (AC). Early uses of SQLXML made use of the following XDB API.

SQLXML sqlXml = oracle.xdb.XMLType.createXML(

((oracle.jdbc.OracleResultSet)resultSet).getOPAQUE("issue"));

Chapter 6
Using API Extensions for Oracle JDBC Types

6-13

oracle.xdb.XMLType extends oracle.sql.OPAQUE and its use will disable AC replay. This must
be replaced with the standard JDBC API

SQLXML sqlXml = resultSet.getSQLXML("issue");
The JDeveloper JPublisher feature has been deprecated and removed starting in Release
12.2.1. Code generated by this feature includes concrete classes, requiring the re-write of the
code as described above. Here are several additional hints on doing that re-write.

MutableArray#toDatum should be replaced with OracleDataMutableArray.toJDBCObject.

MutableStruct#toDatum should be replaced with OracleDataMutableStruct.toJDBCObject.
The following are the additional classes that have new interfaces. They do not have
corresponding WLS interfaces and they do not map to JDBC types.

- -

oracle.sql.ORAData oracle.jdbc.OracleData
oracle.sql.ORADataFactory oracle.jdbc.OracleDataFactory
oracle.sql.OPAQUE oracle.jdbc.OracleOpaque
oracle.sql.NCLOB oracle.jdbc.OracleNClob
oracle.sql.BFILE oracle.jdbc.OracleBfile
oracle.sql.Datum java.lang.Object and then use instanceOf for

other interface types

oracle.jpub.runtime.MutableStruct oracle.jpub.runtime.OracleDataMutableSt
ruct

oracle.jpub.runtime.MutableArray oracle.jpub.runtime.OracleDataMutableAr
ray

Using Batching with the Oracle Thin Driver
In some situations, the Oracle Thin driver may not send updates to the DBMS if a batch size
has not been reached and waits until the statement is closed. When a Prepared Statement is
closed, WebLogic Server returns the statement to a standard JDBC state rather than closing it.
It is then put back into the pool for the connection so it can be re-delivered the next time it is
needed.

To make sure all your updates are delivered, you need to call
OraclePreparedStatement.sendBatch() explicitly after the last use of the statement, before
closing it or closing the connection.

Using the Java Security Manager with the Oracle Thin Driver
Learn how to use Java Security Manager with Oracle Thin Driver to create a security policy for
an application.

When using the Oracle Thin Driver with the Java Security Manager enabled, it is necessary to
update privileges in your java.policy file.

1. Download the Demo jar file for the Oracle JDBC driver from the Oracle Technology Network.

2. Review the ojdbc.policy file, it specifies the permissions required for the driver.

Chapter 6
Using Batching with the Oracle Thin Driver

6-14

http://www.oracle.com/pls/topic/lookup?ctx=fmw122140&id=wlsjdbcotn

3. Add these privileges to the policy file used to run the server. For example,
java.util.PropertyPermission "oracle.jdbc.*", "read"; is required for the
ojdbc.jar file.

Chapter 6
Using the Java Security Manager with the Oracle Thin Driver

6-15

7
Getting a Physical Connection from a Data
Source

To directly access a physical connection from a data source, standard practice is to cast a
connection to the generic JDBC connection (a wrapped physical connection) provided by
WebLogic Server. Oracle strongly discourages directly accessing a physical JDBC connection
except for when it is absolutely required.
The standard practice of casting a connection to the generic JDBC connection allows the
server instance to manage the connection for the connection pool, enable connection pool
features, and maintain the quality of connections provided to applications. Occasionally, a
DBMS provides extra non-standard JDBC-related classes that require direct access of the
physical connection (the actual vendor JDBC connection). To directly access a physical
connection in a connection pool, you must cast the connection using getVendorConnection.

Note:

Oracle also provides another mechanism to access a physical connection
getVendorConnectionSafe. This mechanism also returns the underlying physical
connection (the vendor connection) from a pooled database connection (a logical
connection). However, when the connection is closed, it is returned to the pool,
independent of the setting of Remove Infected Connections Enabled. See
getVendorConnectionSafe.

This chapter includes the following sections:

Note:

Oracle strongly discourages directly accessing a physical JDBC connection except
for when it is absolutely required.

• Opening a Connection
To get a physical connection, you first need to get a connection from a connection pool and
then implicitly pass the physical connection or cast the connection.

• Closing a Connection
Once you have completed the JDBC work, you should close the logical connection in order
to return the connection to the pool.

• Limitations for Using a Physical Connection
Learn about the limitations of using a physical connection instead of a logical connection
from a connection pool.

7-1

Opening a Connection
To get a physical connection, you first need to get a connection from a connection pool and
then implicitly pass the physical connection or cast the connection.

After obtaining a connection from a connection pool, do one of the following:

• Implicitly pass the physical connection (using getVendorConnection) within a method that
requires the physical connection.

• Cast the connection as a WLConnection and call getVendorConnection.

Always limit direct access of physical database connections to vendor-specific calls. For all
other situations, use the generic JDBC connection provided by WebLogic Server. Sample code
to open a connection for vendor-specific calls is provided below.

Example 7-1 Code Sample to Open a Connection for Vendor-specific Calls

//Import this additional class and any vendor packages
//you may need.
import weblogic.jdbc.extensions.WLConnection
.
.
.
myJdbcMethod()
{
 // Connections from a connection pool should always be
 // method-level variables, never class or instance methods.
 Connection conn = null;
 try {
 ctx = new InitialContext(ht);
 // Look up the data source on the JNDI tree and request
 // a connection.
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");
 // Always get a pooled connection in a try block where it is
 // used completely and is closed if necessary in the finally
 // block.
 conn = ds.getConnection();
 // You can now cast the conn object to a WLConnection
 // interface and then get the underlying physical connection.
 java.sql.Connection vendorConn =
 ((WLConnection)conn).getVendorConnection();
 // do not close vendorConn
 // You could also cast the vendorConn object to a vendor
 // interface, such as:
 // oracle.jdbc.OracleConnection vendorConn = (OracleConnection)
 // ((WLConnection)conn).getVendorConnection()
 // If you have a vendor-specific method that requires the
 // physical connection, it is best not to obtain or retain
 // the physical connection, but simply pass it implicitly
 // where needed, eg: //
vendor.special.methodNeedingConnection(((WLConnection)conn)).getVendorConnection());

Chapter 7
Opening a Connection

7-2

Closing a Connection
Once you have completed the JDBC work, you should close the logical connection in order to
return the connection to the pool.

When you are done with the physical connection:

• Close any objects you have obtained from the connection.

• Do not close the physical connection. Set the physical connection to null.

• You determine how a connection closes by setting the value of the Remove Infected
Connections Enabled property in the WebLogic Remote Console. See Create a UCP Data
Source in the Oracle WebLogic Remote Console Online Help or see
JDBCConnectionPoolParamsBean in the MBean Reference for Oracle WebLogic Server
for more details about these options.

Note:

The Remove Infected Connections Enabled property applies only to
applications that explicitly call getVendorConnection.

Example 7-2 Sample Code to Close a Connection for Vendor-specific Calls

// As soon as you are finished with vendor-specific calls,
 // nullify the reference to the connection.
 // Do not keep it or close it.
 // Never use the vendor connection for generic JDBC.
 // Use the logical (pooled) connection for standard JDBC.
 vendorConn = null;
 ... do all the JDBC needed for the whole method...
 // close the logical (pooled) connection to return it to
 // the connection pool, and nullify the reference.
 conn.close();
 conn = null;
 }
 catch (Exception e)
 {
 // Handle the exception.
 }
 finally
{
 // For safety, check whether the logical (pooled) connection
 // was closed.
 // Always close the logical (pooled) connection as the
 // first step in the finally block.
 if (conn != null) try {conn.close();} catch (Exception ignore){}
 }
}

• Remove Infected Connections Enabled is True

• Remove Infected Connections Enabled is False

Chapter 7
Closing a Connection

7-3

Remove Infected Connections Enabled is True
When Remove infected Connections Enabled=true (default value) and you close the logical
connection, the server instance discards the underlying physical connection and creates a new
connection to replace it. This action ensures that the pool can guarantee to the next user that
they are the sole user of the physical connection. This configuration provides a simple and safe
way to close a connection. However, there is a performance loss because:

• The physical connection is replaced with a new database connection in the connection
pool, which uses resources on both the application server and the database server.

• The statement cache for the original connection is closed and a new cache is opened for
the new connection. Therefore, the performance gains from using the statement cache are
lost.

Remove Infected Connections Enabled is False
Use Remove infected Connections Enabled=false only if you are sure that the exposed
physical connection will never be retained or reused after the logical connection is closed.

When Remove infected Connections Enabled=false and you close the logical connection,
the server instance simply returns the physical connection to the connection pool for reuse.
Although this configuration minimizes performance losses, the server instance does not
guarantee the quality of the connection or to effectively manage the connection after the logical
connection is closed. You must make sure that the connection is suitable for reuse by other
applications before it is returned to the connection pool.

Limitations for Using a Physical Connection
Learn about the limitations of using a physical connection instead of a logical connection from
a connection pool.

Oracle strongly discourages using a physical connection instead of a logical connection from a
connection pool. However, if you must use a physical connection, for example, to create a
STRUCT, consider the following costs and limitations:

• The physical connection can only be used in server-side code.

• When you use a physical connection, you lose all of the connection management benefits
that WebLogic Server offer, such as error handling and statement caching.

• You should use the physical connection only for the vendor-specific methods or classes
that require it. Do not use the physical connection for generic JDBC, such as creating
statements or transactional calls.

Chapter 7
Limitations for Using a Physical Connection

7-4

8
Using RowSets with WebLogic Server

Learn about the characteristics and usage of WebLogic RowSets such as types of RowSets,
RowSet extensions, usage of RowSet in programming and so on.

Note:

The WebLogic JDBC RowSets are not supported with 23ai JDBC Drivers.

• Deprecation of weblogic.jdbc.rowsets
The weblogic.jdbc.rowset interfaces and classes are deprecated in WebLogic Server
12.1.2.

• About RowSets
A RowSet is an extension of a Java ResultSet. Like a ResultSet, a rowset is a Java object
that holds tabular data. However, a rowset adds significant flexibility to ResultSet features
and reduces or eliminates some ResultSet limitations.

• Types of RowSets
The WebLogic Server implementation of rowsets includes standard RowSet types and
WebLogic RowSet extensions.

• Programming with RowSets
The WebLogic RowSet implementation includes a life cycle framework that prevents a
rowset object from getting into an unhealthy condition.

• CachedRowSets
Learn about using standard CachedRowSets with WebLogic Server.

• RowSet MetaData Settings for Database Updates

• WebLogic RowSet Extensions for Working with MetaData
Learn about WebLogic rowset extensions that you can use to obtain or set the appropriate
metadata for a rowset.

• RowSets and Transactions
Most database or JDBC applications use transactions, and RowSets support transactions,
including JTA transactions.

• FilteredRowSets
Learn how to use standard FilteredRowSets with WebLogic Server.

• WebRowSets
A WebRowSet is a cached rowset that can read and write a rowset in XML format.

• JoinRowSets
A JoinRowSet is a number of disconnected RowSet objects joined together in a single
rowset by a SQL JOIN.

• JDBCRowSets

• Handling SyncProviderExceptions with a SyncResolver
Learn about the steps for handling SyncProviderException with a SyncResolver. The
SyncProviderException throws an error when it encounters violations in reading from or

8-1

writing to the originating data source. The SyncResolver object may be used to examine
and resolve each conflict in a row and then go to the next row with a conflict to repeat the
procedure.

• WLCachedRowSets
A WLCachedRowSet is an extension of CachedRowSets, FilteredRowSets, WebRowSets, and
SortedRowSets.

• SharedRowSets
Rowsets can be used by a single thread. They cannot be shared by multiple threads. A
SharedRowSet extends CachedRowSets so that additional CachedRowSets can be
created for use in other threads based on the data in an original CachedRowSet.

• SortedRowSets
A SortedRowSet extends CachedRowSets so that rows in a CachedRowSet can be sorted
based on the Comparator object provided by the application.

• SQLPredicate, a SQL-Style RowSet Filter
The SQLPredicate class is used to define a filter for a FilteredRowSet using SQL-like
WHERE clause syntax.

• Optimistic Concurrency Policies
With optimistic concurrency, RowSets work on the assumption that multiple users are
unlikely to change the same data at the same time. Therefore, as part of the disconnected
rowset model, the rowset does not lock database resources.

• Performance Options
Learn about the RowSets performance options such as JDBC Batching and Group
Deletes.

Deprecation of weblogic.jdbc.rowsets
The weblogic.jdbc.rowset interfaces and classes are deprecated in WebLogic Server 12.1.2.

Use the reference implementation, com.sun.rowset, in the J2SE JRE/SDK. See
weblogic.jdbc.rowset.

About RowSets
A RowSet is an extension of a Java ResultSet. Like a ResultSet, a rowset is a Java object that
holds tabular data. However, a rowset adds significant flexibility to ResultSet features and
reduces or eliminates some ResultSet limitations.

WebLogic Server includes an implementation of Java RowSets according to the specifications
indicated in JSR-114. See (http://www.oracle.com/technetwork/java/javase/jdbc/
index.html) for details about the specification. The WebLogic rowset implementation also
includes extensions to the RowSets specification. These extensions make RowSets more
useful in your applications.

Types of RowSets
The WebLogic Server implementation of rowsets includes standard RowSet types and
WebLogic RowSet extensions.

Standard RowSet Types:

• CachedRowSets

Chapter 8
Deprecation of weblogic.jdbc.rowsets

8-2

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html

• FilteredRowSets

• WebRowSets

• JoinRowSets

• JDBCRowSets

WebLogic RowSet Extensions:

• WLCachedRowSets

• SharedRowSets

• SortedRowSets

• SQLPredicate, a SQL-Style RowSet Filter

Programming with RowSets
The WebLogic RowSet implementation includes a life cycle framework that prevents a rowset
object from getting into an unhealthy condition.

The WebLogic Server rowset implementation was designed with the expectation that you
would work with a rowset in the following manner:

1. Create and configure the rowset — define the query, database connection, and other
properties.

2. Populate the rowset with data — specify query parameters and execute the query.

3. Optionally, work with rowset metadata.

4. Optionally set the filter or sorter for the rowset.

5. Manipulate the data in the rowset — insert, update, and delete.

6. Synchronize data changes from the rowset to the database.

After synchronizing changes, the process can repeat starting with step 2 or 3, depending on
the way your application is designed. See Reusing a WebLogic RowSet After Completing a
Transaction.

Internally, WebLogic Server sets a life cycle stage for the RowSet as the RowSet moves
through the previously described process. To reduce the risk of data loss, WebLogic Server
limits the operations you can do on the rowset depending on the life cycle stage of the rowset.
For example, when the RowSet is in the Updating stage, you can only call update XXX ()
methods, such as updateString() and updateInt(), on the RowSet until you call
updateRow() to complete the update phase.

Some important notes:

• If you have pending changes, you cannot re-populate, filter, or sort the RowSet. WebLogic
Server prevents these operations on the RowSet when the RowSet data has changed but
the changes have not been synchronized with the database to prevent the accidental loss
of data changes.

• There is no implicit movement of the cursor! You must explicitly move the cursor from row
to row.

• RowSet life cycle stage is an internal process. There are no public APIs to access it. You
cannot set the life cycle stage. When you call acceptChanges() or restoreOriginal(),
WebLogic Server rests the life cycle stage of the RowSet so you can begin again.

Chapter 8
Programming with RowSets

8-3

Note:

When using a rowset in a client-side application, the exact same JDBC driver
classes must be in the CLASSPATH on both the server and the client. If the driver
classes do not match, you may see java.rmi.UnmarshalException exceptions.

See the comments in Example 8-1 for an illustration of the life cycle stages for a rowset from
when it is created to when data changes are synchronized with the database.

CachedRowSets
Learn about using standard CachedRowSets with WebLogic Server.

Also see WLCachedRowSets for information about using WebLogic extensions to the standard
CachedRowSet object.

• Characteristics

• Special Programming Considerations and Limitations for CachedRowSets

• Code Example

• Importing Classes and Interfaces for a CachedRowSet

• Creating a CachedRowSet

• Setting CachedRowSet Properties

• Database Connection Options

• Populating a CachedRowSet

• Setting CachedRowSet MetaData

• Working with Data in a CachedRowSet

• Synchronizing RowSet Changes with the Database

Characteristics
A CachedRowSet is a disconnected ResultSet object. Data in a CachedRowSet is stored in
memory. CachedRowSets from the WebLogic Server implementation have the following
characteristics:

• Can be used to insert, update, or delete data.

• Are serializable, so they can be passed to various application components, including
wireless devices.

• Include transaction handling to enable rowset reuse. See Reusing a WebLogic RowSet
After Completing a Transaction.

• Use an optimistic concurrency control for synchronizing data changes in the rowset with
the database.

• Use a SyncResolver object from a SyncProvider exception to resolve conflicts between
data changes in the rowset and the database. See Handling SyncProviderExceptions with
a SyncResolver.

Chapter 8
CachedRowSets

8-4

Special Programming Considerations and Limitations for CachedRowSets
When designing your application, consider the following information:

• Entire RowSet Query Results Stored in Memory

• Data Contention

• Entire RowSet Query Results Stored in Memory

• Data Contention

Entire RowSet Query Results Stored in Memory
Because a CachedRowSet does not hold a connection to the database, it must hold the entire
query results in memory. If the query result is very large, you may see performance
degradation or out-of-memory errors. For large data sets, a ResultSet may be more
appropriate because it keeps a connection to the database, so it can hold partial query results
in memory and return to the database for additional rows as needed.

Data Contention
CachedRowSets are most suitable for use with data that is not likely to be updated by another
process between when the rowset is populated and when data changes in the rowset are
synchronized with the database. Database changes during that period will cause data
contention. See Handling SyncProviderExceptions with a SyncResolver for more information
about detecting and handling data contention.

Code Example
Example 8-1 shows the basic workflow of a CachedRowSet. It includes comments that
describe each major operation and its corresponding rowset life cycle stage. Following the
code example is a more detailed explanation of each of the major sections of the example.

Example 8-1 Cached RowSet Code Example

import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetFactory;
public class CachedRowSetDemo {
public static void main (String[] args) {
//DESIGNING lifecycle stage - Create the rowset and set properties
 try {
 //Create a RowSetFactory instance and from the factory,
 //create a FilteredRowSet.
 RowSetFactory rsfact =
RowSetProvider.newFactory("weblogic.jdbc.rowset.JdbcRowSetFactory",null);
 CachedRowSet rs = rsfact.createCachedRowSet();
 //Set database access through a DataSource.
 rs.setDataSourceName(examples-dataSource-demoPool);
 //See Database Connection Options for more options.
 //Set query command
 rs.setCommand("SELECT ID, FIRST_NAME, MIDDLE_NAME, LAST_NAME,
 PHONE, EMAIL FROM PHYSICIAN WHERE ID>?");
 //CONFIGURE QUERY lifecycle operation
 rs.setInt(1, 0);
 //POPULATING lifecycle stage - Execute the command to populate the rowset
 rs.execute();
 }

Chapter 8
CachedRowSets

8-5

 //CONFIGURING METADATA - Populate first, then set MetaData,
 //including KeyColumns
 rs.setKeyColumns(new int[] { 1 });
 while (rs.next ()) //NAVIGATING lifecycle stage
 {
 System.out.println ("ID: " +rs.getInt (1));
 System.out.println ("FIRST_NAME: " +rs.getString (2));
 System.out.println ("MIDDLE_NAME: " +rs.getString (3));
 System.out.println ("LAST_NAME: " +rs.getString (4));
 System.out.println ("PHONE: " +rs.getString (5));
 System.out.println ("EMAIL: " +rs.getString (6));
 }
 }
//Working with data
//Delete rows in the rowset
 try {
 //MANIPULATING lifecycle stage - navigate to a row
 //(manually moving the cursor)
 rs.last();
 rs.deleteRow();
 //Note that the database is not updated yet.
 }
//Update a row in the rowset
 try {
 //MANIPULATING lifecycle stage - navigate to a row
 //(manually moving the cursor)
 rs.first();
 //UPDATING lifecycle stage - call an update() method
 rs.updateString(4, "Francis");
 //MANIPULATING lifecycle stage - finish update
 rs.updateRow();
 //Note that the database is not updated yet.
 }
//INSERTING lifecycle stage - Insert rows in the rowset
 try {
 rs.moveToInsertRow();
 rs.updateInt(1, 104);
 rs.updateString("FIRST_NAME", "Yuri");
 rs.updateString("MIDDLE_NAME", "M");
 rs.updateString("LAST_NAME", "Zhivago");
 rs.updateString("PHONE", "1234567812");
 rs.updateString("EMAIL", "Yuri@poet.com");
 rs.insertRow(); //"Finish Update" action;
 //MANIPULATING lifecycle stage - navigate to a row
 rs.moveToCurrentRow();
 //Note that the database is not updated yet.
 }
//Send all changes (delete, update, and insert) to the database.
//DESIGNING or POPULATING lifecycle stage - after synchronizing changes
//with the database, lifecycle stage depends on other environment settings.
//See Reusing a WebLogic RowSet After Completing a Transaction.
 try {
 rs.acceptChanges();
 rs.close();
 }
}

Importing Classes and Interfaces for a CachedRowSet
For standard RowSets, you must import the following classes:

Chapter 8
CachedRowSets

8-6

javax.sql.rowset.CachedRowSet;
javax.sql.rowset.RowSetFactory;

Creating a CachedRowSet
Rowsets are created from a factory interface. To create a rowset with WebLogic Server, follow
these main steps:

1. Create a RowSetFactory instance, which serves as a factory to create rowset objects for
use in your application.

RowSetFactory rsfact =
RowSetProvider.newFactory("weblogic.jdbc.rowset.JdbcRowSetFactory",null);

2. Create a javax.sql.rowset.CachedRowSet object. For example:

CachedRowSet rs = rsfact.createCachedRowSet();

Setting CachedRowSet Properties
There are numerous rowset properties, such as concurrency type, data source name,
transaction isolation level, and so forth, that you can set to determine the behavior of the
rowset. You are required to set only those properties that are needed for your particular use of
the rowset. For information about available properties, see the Javadoc for the
javax.sql.rowset.BaseRowSet class at http://docs.oracle.com/javase/1.5.0/docs/api/
javax/sql/rowset/BaseRowSet.html.

Database Connection Options
In most applications, you populate a rowset with data from a database. You can set rowset
database connectivity in any of the following ways:

• Automatically with a data source—You can use the setDataSourceName() method to
specify the JNDI name of a JDBC data source. When you call execute() and
acceptChanges(), the rowset gets a database connection from the data source, uses it,
and returns it to the pool of connections in the data source. This is a preferred method.

rs.setDataSourceName(examples-dataSource-demoPool);
• Manually get a database connection—In your application, you can get a database

connection before the rowset needs it, and then pass the connection object as a parameter
in the execute() and acceptChanges() methods. You must also close the connection as
necessary.

//Lookup DataSource and get a connection
ctx = new InitialContext(ht);
javax.sql.DataSource ds = (javax.sql.DataSource) ctx.lookup ("myDS");
conn = ds.getConnection();

//Pass the connection to the rowset
rs.execute(conn);

For more information about JDBC data sources, see Getting a Database Connection from
a DataSource Object.

• Load the JDBC driver for a direct connection—When you load the JDBC driver and set the
appropriate properties, the rowset creates a database connection when you call execute()
and acceptChanges(). The rowset closes the connection immediately after it uses it. The

Chapter 8
CachedRowSets

8-7

http://docs.oracle.com/javase/1.5.0/docs/api/javax/sql/rowset/BaseRowSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/javax/sql/rowset/BaseRowSet.html

rowset does not keep the connection between the execute() and acceptChanges()
method calls.

Class.forName("org.apache.derby.jdbc.ClientDriver");
rs.setUrl("jdbc:derby://localhost:1527/demo");
rs.setUsername("examples");
rs.setPassword("examples");
rs.execute();

Populating a CachedRowSet
Populating a rowset is the act of filling the rowset with rows of data. The source of the data is
most commonly a relational database. To populate a rowset with data from a database, you
can use either of the following methods:

• Set an SQL command with the setCommand() method, then execute the command with the
execute() method:

rs.setCommand("SELECT ID, FIRST_NAME, MIDDLE_NAME, LAST_NAME,
 PHONE, EMAIL FROM PHYSICIAN");
rs.execute();

• From an existing result set using the populate() method:

rs.populate(resultSet);

Note:

If using a result set that is ResultSet.TYPE_FORWARD_ONLY, a SQLException will
be thrown if you attempt to populate a row set with the following conditions:

– If you call CachedRowset.populate(ResultSet rs) when the result set
cursor is at a position beyond row 1.

– If you call CachedRowset.populate(ResultSet rs, int newPosition) when
newPosition is less than the current result set cursor position.

Setting CachedRowSet MetaData
In some cases, you may need to set metadata for the rowset in order to synchronize data
changes in the rowset with data in the database. See RowSet MetaData Settings for Database
Updates.

Working with Data in a CachedRowSet
After you populate the cached rowset with rows of data, you can work with the cached data in
much the same way as you would work with data in a result set, except that before your
changes are made in the database, you must explicitly call acceptChanges().

Chapter 8
CachedRowSets

8-8

Note:

Delimiter identifiers may not be used for column or table names in rowsets. Delimiter
identifiers are identifiers that need to be enclosed in double quotation marks when
appearing in a SQL statement. They include identifiers that are SQL reserved words
(e.g., USER, DATE, etc.) and names that are not identifiers. A valid identifier must start
with a letter and contain only letters, numbers, and underscores.

• Getting Data from a Row in a RowSet

• Updating a Row in a RowSet

• Inserting a Row in a RowSet

• Deleting a Row in a RowSet

Getting Data from a Row in a RowSet
To get data from a rowset, you use the getXXX methods just as you would with a result set. For
example:

while (rs.next ())
 {
 int id = rs.getInt (1);
 String fname = rs.getString ("FIRST_NAME");
 String mname = rs.getString ("MIDDLE_NAME");
 String lname = rs.getString ("LAST_NAME"));
 }

Updating a Row in a RowSet
Data updates typically follow this course of events:

1. Navigate to the row or to an insert row.

2. Change the row with updateXXX methods.

3. Complete the operation with updateRow() or insertRow().

Note that completing the operation does not synchronize your changes with the database.
Changes are made to the rowset only. You must explicitly synchronize your changes by calling
acceptChanges(). For details, see Synchronizing RowSet Changes with the Database later in
this section.

When working with a rowset, WebLogic Server internally sets the life cycle stage of the rowset
after each operation on the rowset, and then limits further operations you can perform on the
rowset based on its current life cycle stage. After you begin modifying a row with update
methods, you must complete the operation with updateRow() or insertRow() before you can
work with data in any other rows, including moving the cursor to another row. See
Programming with RowSets for a complete discussion of rowset life cycle stages and
operations allowed for each stage.

To update a row, you move the cursor to the row you want to update, call updateXXX methods
on individual columns within the row, then call updateRow() to complete the operation. For
example:

Chapter 8
CachedRowSets

8-9

rs.first();
rs.updateString(4, "Francis");
rs.updateRow();

Note:

If you are updating same-named columns from more than one table, you must use
the column index number to refer to the column in the update statement.

Inserting a Row in a RowSet
To insert a row, you move the cursor to a new insert row, update the column values within the
row, then call insertRow() to add the row to the rowset. For example:

rs.moveToInsertRow();
rs.updateInt(1, 104);
rs.updateString("FIRST_NAME", "Yuri");
rs.updateString("MIDDLE_NAME", "M");
rs.updateString("LAST_NAME", "Zhivago");
rs.updateString("PHONE", "1234567812");
rs.updateString("EMAIL", "Yuri@poet.com");
rs.insertRow();
rs.moveToCurrentRow();

Note that you must explicitly move the cursor after inserting a row. There is no implicit
movement of the cursor.

Deleting a Row in a RowSet
To delete a row in the rowset, you move the cursor to the row and call deleteRow(). For
example:

rs.last();
rs.deleteRow();

Synchronizing RowSet Changes with the Database
After you make changes to individual rows in a rowset, you call acceptChanges() to propagate
those changes to the database. For example:

rs.acceptChanges();

When you call acceptChanges(), the rowset connects to the database using the database
connection information already used by the rowset (see Database Connection Options) or
using a connection object passed with the acceptChanges(connection) method. You can call
acceptChanges() after making changes to one row or several rows. Calling acceptChanges()
after making all changes to the rowset is more efficient because the rowset connects to the
database only once.

When using rowsets with WebLogic Server, WebLogic Server internally uses a
weblogic.jdbc.rowset.WLSyncProvider object to read from and write to the database. The
WLSyncProvider uses an optimistic concurrency algorithm for making changes to the
database, which means that the design assumes data in the database will not be changed by
another process during the time between when a rowset is populated to when rowset data
changes are propagated to the database. Before writing changes to the database, the

Chapter 8
CachedRowSets

8-10

WLSyncProvider compares the data in the database against the original values in the rowset
(values read into the rowset when the rowset was created or at the last synchronization). If any
values in the database have changed, WebLogic Server throws a
javax.sql.rowset.spi.SyncProviderException and does not write any changes to the
database. You can catch the exception in your application and determine how to proceed. See
Handling SyncProviderExceptions with a SyncResolver.

The WLCachedRowSet interface, an extension to the standard CachedRowSet interface, provides
options for selecting an optimistic concurrency policy. See Optimistic Concurrency Policies.

After propagating changes to the database, WebLogic Server changes the life cycle stage of
the rowset to Designing or Populating, depending on your application environment. In the
Designing stage, you must repopulate the rowset before you can use it again; in the Populating
stage, you can use the rowset with its current data. See Reusing a WebLogic RowSet After
Completing a Transaction for more details.

If you do not plan to use the rowset again, you should close it with the close() method. For
example:

rs.close();

RowSet MetaData Settings for Database Updates
When populating a rowset with an SQL query, the WebLogic rowset implementation uses the
ResultSetMetaData interface to automatically learn the table and column names of the data in
the rowset. In many cases, this is enough information for the rowset to generate the required
SQL to write changes back to the database. However, some JDBC drivers do not include table
and column metadata for the rows returned by the query.
When you attempt to synchronize data changes in the rowset with the database, you will see
the following error:

java.sql.SQLException: Unable to determine the table name for column:
column_name. Please ensure that you've called WLRowSetMetaData.setTableName to
set a table name for this column.

Without the table name, you can use the rowset for read-only operations only. The rowset
cannot issue updates unless the table name is specified programmatically. You may also need
to set the primary key columns with the setKeyColumns() method. For example:

rs.setTableName(PHYSICIAN);
rs.setKeyColumns(new int[] { 1 });

See the documentation for the javax.sql.rowset.CachedRowSet interface for more details.

WebLogic RowSet Extensions for Working with MetaData
Learn about WebLogic rowset extensions that you can use to obtain or set the appropriate
metadata for a rowset.

• executeAndGuessTableName and executeAndGuessTableNameAndPrimaryKeys

• Setting Table and Primary Key Information Using the MetaData Interface

• Setting the Write Table

Chapter 8
RowSet MetaData Settings for Database Updates

8-11

executeAndGuessTableName and
executeAndGuessTableNameAndPrimaryKeys

When populating a rowset with an SQL query, you typically use the execute() method to run
the query and read the data. The WLCachedRowSet implementation provides the
executeAndGuessTableName and executeAndGuessTableNameAndPrimaryKeys methods that
extend the execute method to also determine the associated table metadata.

The executeAndGuessTableName method parses the associated SQL and sets the table name
for all columns as the first word following the SQL keyword FROM.

The executeAndGuessTableNameAndPrimaryKeys method parses the SQL command to read
the table name. It then uses the java.sql.DatabaseMetaData to determine the table's primary
keys.

Note:

These methods rely on support in the DBMS or JDBC driver. They do not work with
all DBMSs or all JDBC drivers.

Setting Table and Primary Key Information Using the MetaData Interface
You can also choose to manually set the table and primary key information using the
WLRowSetMetaData interface.

WLRowSetMetaData metaData = (WLRowSetMetaData) rowSet.getMetaData();
// Sets one table name for all columns
metaData.setTableName("employees");

or

metaData.setTableName("e_id", "employees");
metaData.setTableName("e_name", "employees");

You can also use the WLRowSetMetaData interface to identify primary key columns.

metaData.setPrimaryKeyColumn("e_id", true);

See weblogic.jdbc.rowset.WLRowSetMetaData in Java API Reference for Oracle WebLogic
Server.

Setting the Write Table
The WLRowSetMetaData interface includes the setWriteTableName method to indicate the only
table that should be updated or deleted. This is typically used when a rowset is populated with
a join from multiple tables, but the rowset should only update one table. Any column that is not
from the write table is marked as read-only.

For instance, a rowset might include a join of orders and customers. The write table could be
set to orders. If deleteRow were called, it would delete the order row, but not delete the
customer row.

Chapter 8
WebLogic RowSet Extensions for Working with MetaData

8-12

Note:

JSR-114 provides the CachedRowSet.setTableName (see http://docs.oracle.com/
javase/8/docs/api/javax/sql/rowset/
CachedRowSet.html#setTableName(java.lang.String)) that provides the same
functionality as the WebLogic CachedRowSetMetaData.setWriteTableName method.
Calling either method marks those columns that do NOT belong to the write table as
read-only. WebLogic also provides the CachedRowSetMetaData.setTableName
method which is used to map which table a column belongs to. When setting the
write table using setTableName, be careful to implement the method using the
appropriate API for your application.

RowSets and Transactions
Most database or JDBC applications use transactions, and RowSets support transactions,
including JTA transactions.

The common use case is to populate the RowSet in Transaction 1. Transaction 1 commits, and
there are no database or application server locks on the underlying data.

The RowSet holds the data in-memory, and it can be modified or shipped over the network to a
client. When the application wishes to commit the changes to the database, it starts
Transaction 2 and calls the RowSet's acceptChanges method. It then commits Transaction 2.

• Integrating with JTA Global Transactions

• Using Local Transactions

• Reusing a WebLogic RowSet After Completing a Transaction

Integrating with JTA Global Transactions
The EJB container and the UserTransaction interface start transactions with the JTA
transaction manager. The RowSet operations can participate in this transaction. To participate
in the JTA transaction, the RowSet must use a transaction-aware DataSource (TxDataSource).
The DataSource can be configured in the WebLogic Remote console.

If an Optimistic conflict or other exception occurs during acceptChanges, the RowSet aborts the
global JTA transaction. The application will typically re-read the data and process the update
again in a new transaction.

• Behavior of Rowsets Using Global Transactions

Behavior of Rowsets Using Global Transactions
In the case of a failure or rollback, the data is rolled back from the database, but is not rolled
back from the rowset. Before proceeding you should do one of the following:

• Call rowset.refresh to update the rowset with data from the database.

• Create a new rowset with current data.

Chapter 8
RowSets and Transactions

8-13

http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/CachedRowSet.html#setTableName(java.lang.String)
http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/CachedRowSet.html#setTableName(java.lang.String)
http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/CachedRowSet.html#setTableName(java.lang.String)

Using Local Transactions
If a JTA global transaction is not being used, the RowSet uses a local transaction. It first calls
setAutoCommit(false) on the connection, then it issues all of the SQL statements, and finally
it calls connection.commit(). This attempts to commit the local transaction. This method
should not be used when trying to integrate with a JTA transaction that was started by the EJB
or JMS containers.

If an Optimistic conflict or other exception occurs during acceptChanges, the RowSet rolls back
the local transaction. In this case, none of the SQL issued in acceptChanges will commit to the
database.

• Behavior of Rowsets Using Local Transactions

Behavior of Rowsets Using Local Transactions
This section provides information on the behavior of rowsets in failed local transactions. The
behavior depends on the type of connection object:

• Calling connection.commit

• Calling acceptChanges

Calling connection.commit
In this situation, the connection object is not created by the rowset and initiates a local
transaction by calling connection.commit. If the transaction fails or if the connection calls
connection.rollback, the data is rolled back from the database, but is not rolled back in the
rowset. Before proceeding, you must do one of the following:

• Call rowset.refresh to update the rowset with data from the database.

• Create a new rowset with current data.

Calling acceptChanges
In this situation, the rowset creates its own connection object and uses it to update the data in
rowset by calling acceptChanges. In the case of failure or if the rowset calls
connection.rollback, the data is be rolled back from the rowset and also from the database.

Reusing a WebLogic RowSet After Completing a Transaction
In many cases, after you synchronize changes in the rowset with the database, you may want
to continue to use the rowset with its current data, which can improve application performance
by reducing the number of database round trips. However, to reuse the rowset and its data,
WebLogic Server needs to make sure that any transaction in which the rowset participates has
completed before allowing you to make further changes to the data.

If you use a rowset in a local transaction and if autocommit=true is set on the connection
object before rowset data changes are synchronized with the database, you can reuse the
rowset with its current data after synchronizing the data because the autocommit setting forces
the local transaction to complete immediately. WebLogic Server can be sure that the local
transaction is complete before any further changes are made to the rowset.

WebLogic Server cannot automatically be sure that all transactions are complete if you use a
rowset in either of the following scenarios:

Chapter 8
RowSets and Transactions

8-14

• In a global transaction

• In a local transaction using a connection object with autocommit=false to synchronize
data changes with the database

With either of these conditions, before you can reuse a rowset with its current data, after calling
acceptChanges() to synchronize your changes with the database, you must call
javax.sql.rowset.CachedRowSet.commit() instead of tx.commit() or
java.sql.Connection.commit() to commit the transaction. The CachedRowSet.commit()
method wraps the Connection.commit() method and enables WebLogic Server to ensure that
the transaction is complete before allowing changes to the rowset.

FilteredRowSets
Learn how to use standard FilteredRowSets with WebLogic Server.

• FilteredRowSet Characteristics

• Special Programming Considerations

• FilteredRowSet Code Example

• Importing Classes and Interfaces for FilteredRowSets

• Creating a FilteredRowSet

• Setting FilteredRowSet Properties

• Database Connection Options for a FilteredRowSet

• Populating a FilteredRowSet

• Setting FilteredRowSet MetaData

• Setting the Filter for a FilteredRowSet

• Working with Data in a FilteredRowSet

FilteredRowSet Characteristics
A FilteredRowSet enables you to work with a subset of cached rows and change the subset of
rows while disconnected from the database. A filtered rowset is simply a cached rowset in
which only certain rows are available for viewing, navigating, and manipulating.
FilteredRowSets have the following characteristics:

• The rows available are determined by a javax.sql.rowset.Predicate object supplied by
the application and set with the setFilter() method.

• The Predicate object must implement the javax.sql.rowset.Predicate interface. The
Predicate interface includes the public boolean evaluate(RowSet rs) method, which
evaluates each row in the rowset

– If the method returns true, the row is available and visible.

– If the method returns false, the row is not available or visible.

See Setting the Filter for a FilteredRowSet.

• WebLogic Server provides the weblogic.jdbc.rowset.SQLPredicate class, which is an
implementation of the javax.sql.rowset.Predicate interface that you can use to define a
filter for a FilteredRowSet using SQL-like WHERE clause syntax. See SQLPredicate, a
SQL-Style RowSet Filter.

Chapter 8
FilteredRowSets

8-15

Special Programming Considerations
• RowSet Filters are Not Cumulative

• No Pending Changes Before Setting or Changing a Filter

RowSet Filters are Not Cumulative
Current behavior of WebLogic implementation of a FilteredRowSet is that when you set a filter
for the second time on a FilteredRowSet, the new filter replaces the old filter. JSR-114 is not
clear on this point. The reference implementation does not behave the same way, it further
filters the filtered rows in the rowset. You can accomplish the same effect by changing the
second filter to filter on all necessary criteria.

No Pending Changes Before Setting or Changing a Filter
If you have pending changes in a rowset before you set or change the rowset filter, you must
either accept the changes (call acceptChanges()) or restore the rowset data to it pre-changed
state (call restoreOriginal()). WebLogic Server considers navigating within a rowset to be
indicative of a possible change and requires you to call either one of these methods before
allowing you to change the rowset filter. Note that acceptChanges() includes a round-trip to the
database, whereas restoreOriginal() does not.

FilteredRowSet Code Example
The following example shows how to create a cached rowset and then apply and change a
filter using the WebLogic Server SQLPredicate.

Example 8-2 FilteredRowSet Code Example

import javax.sql.rowset.FilteredRowSet;
import javax.sql.rowset.RowSetFactory;
import weblogic.jdbc.rowset.SQLPredicate;
public class FilteredRowSetDemo {
public static void main (String[] args) {
//DESIGNING lifecycle stage - Create the rowset and set properties
 try {
 //Create a RowSetFactory instance and from the factory,
 //create a FilteredRowSet.
 RowSetFactory rsfact = RowSetProvider.newFactory("weblogic.jdbc.rowset.JdbcRowSetFactory",null);
 FilteredRowSet rs = rsfact.createFilteredRowSet();
 //Set database access through a DataSource.
 //See Database Connection Options for more options.
 rs.setDataSourceName(examples-dataSource-demoPool);
 rs.setCommand("SELECT ID, FIRST_NAME, MIDDLE_NAME, LAST_NAME,
 PHONE, EMAIL FROM PHYSICIAN WHERE ID>?");
 //CONFIGURE QUERY lifecycle operation - set values for query parameters.
 rs.setInt(1, 0);
 //POPULATING lifecycle stage - Execute the command to populate the rowset
 rs.execute();
 }
//CONFIGURING METADATA - Populate first, then set MetaData, including KeyColumns
 rs.setKeyColumns(new int[] { 1 });
 while (rs.next ())
//NAVIGATE operations put the rowset in the MANIPULATING lifecycle stage
 {
 System.out.println ("ID: " +rs.getInt (1));

Chapter 8
FilteredRowSets

8-16

 System.out.println ("FIRST_NAME: " +rs.getString (2));
 System.out.println ("MIDDLE_NAME: " +rs.getString (3));
 System.out.println ("LAST_NAME: " +rs.getString (4));
 System.out.println ("PHONE: " +rs.getString (5));
 System.out.println ("EMAIL: " +rs.getString (6));
 }
 }
//Need to accept changes or call restoreOriginal to put the rowset
//into the DESIGNING or POPULATING stage.
//After navigating, the rowset is in MANIPULATING stage,
//and you cannot change properties in that lifecycle stage.
 rs.restoreOriginal();
//S E T F I L T E R
//use SQLPredicate class to create a SQLPredicate object,
//then pass the object in the setFilter method to filter the RowSet.
 SQLPredicate filter = new SQLPredicate("ID >= 103");
 rs.setFilter(filter);
 System.out.println("Filtered data: ");
 while (rs.next ())
 {
 System.out.println ("ID: " +rs.getInt (1));
 System.out.println ("FIRST_NAME: " +rs.getString (2));
 System.out.println ("MIDDLE_NAME: " +rs.getString (3));
 System.out.println ("LAST_NAME: " +rs.getString (4));
 System.out.println ("PHONE: " +rs.getString (5));
 System.out.println ("EMAIL: " +rs.getString (6));
 System.out.println (" ");
 }
//Need to accept changes or call restoreOriginal to put the rowset
//into the DESIGNING or POPULATING lifecycle stage.
//After navigating, the rowset is in MANIPULATING stage,
//and you cannot change properties in that lifecycle stage.
 rs.restoreOriginal();
//C H A N G I N G F I L T E R
 SQLPredicate filter2 = new SQLPredicate("ID <= 103");
 rs.setFilter(filter2);
 System.out.println("Filtered data: ");
 while (rs.next ())
 {
 System.out.println ("ID: " +rs.getInt (1));
 System.out.println ("FIRST_NAME: " +rs.getString (2));
 System.out.println ("MIDDLE_NAME: " +rs.getString (3));
 System.out.println ("LAST_NAME: " +rs.getString (4));
 System.out.println ("PHONE: " +rs.getString (5));
 System.out.println ("EMAIL: " +rs.getString (6));
 System.out.println (" ");
 }
//Need to accept changes or call restoreOriginal to put the rowset
//into the DESIGNING or POPULATING lifecycle stage.
//After navigating, the rowset is in MANIPULATING stage,
//and you cannot change properties in that lifecycle stage.
 rs.restoreOriginal();
//R E M O V I N G F I L T E R
 rs.setFilter(null);
 while (rs.next ())
 {
 System.out.println ("ID: " +rs.getInt (1));
 System.out.println ("FIRST_NAME: " +rs.getString (2));
 System.out.println ("MIDDLE_NAME: " +rs.getString (3));
 System.out.println ("LAST_NAME: " +rs.getString (4));
 System.out.println ("PHONE: " +rs.getString (5));
 System.out.println ("EMAIL: " +rs.getString (6));

Chapter 8
FilteredRowSets

8-17

 System.out.println (" ");
 }
 rs.close();
 }
}

Importing Classes and Interfaces for FilteredRowSets
For standard FilteredRowSets, you must import the following classes:

javax.sql.rowset.FilteredRowSet;
javax.sql.rowset.RowSetFactory;

The preceding code example also uses the weblogic.jdbc.rowset.SQLPredicate class to
create a filter. In your application, you can use the weblogic.jdbc.rowset.SQLPredicate class
or you can create your own filter class. See Setting the Filter for a FilteredRowSet.

Creating a FilteredRowSet
Rowsets are created from a factory interface. To create a FilteredRowSet with WebLogic
Server, follow these main steps:

1. Create a RowSetFactory instance, which serves as a factory to create rowset objects for
use in your application. For example:

RowSetFactory rsfact =
RowSetProvider.newFactory("weblogic.jdbc.rowset.JdbcRowSetFactory",null);

2. Create a javax.sql.rowset.FilteredRowSet object. For example:

FilteredRowSet rs = rsfact.createCachedRowSet();

Setting FilteredRowSet Properties
Property options for a FilteredRowSet are the same as those for a CachedRowSet. See
Setting CachedRowSet Properties.

Database Connection Options for a FilteredRowSet
Database connection options for a FilteredRowSet are the same as those for a
CachedRowSet. See Database Connection Options.

Populating a FilteredRowSet
Data population options for a FilteredRowSet are the same as those for a CachedRowSet. See
Populating a CachedRowSet.

Setting FilteredRowSet MetaData
In some cases, you may need to set metadata for the rowset in order to synchronize data
changes in the rowset with data in the database. See RowSet MetaData Settings for Database
Updates.

Chapter 8
FilteredRowSets

8-18

Setting the Filter for a FilteredRowSet
To filter the rows in a FilteredRowSet, you must call the setFilter method and pass a
predicate (filter) object as a parameter of the method. The predicate object is an instance of a
class that implements the javax.sql.rowset.Predicate interface. With the WebLogic
implementation of FilteredRowSets, you can define your own filter or use an instance of the
weblogic.jdbc.rowset.SQLPredicate class.

• User-Defined RowSet Filter

• WebLogic SQL-Style Filter

User-Defined RowSet Filter
When defining the filter for a FilteredRowSet, you follow these main steps:

1. Define a class that implements the javax.sql.rowset.Predicate interface with the
filtering behavior you plan to use, such as limiting displayed rows to rows with a value in a
particular column. For example, you may want to limit displayed rows based on a range of
values for the ID column. The class you define would include logic to filter values for the ID
column

2. Create an instance of the class (a filter) to specify the filtering criteria that you want to use.
For example, you may want to see only rows with values in the ID column between 100
and 199.

3. Call rowset.setFilter() and pass the class as a parameter of the method.

Example 8-3 Filter Class that Implements javax.sql.rowset.Predicate

package examples.jdbc.rowsets;
import javax.sql.rowset.Predicate;
import javax.sql.rowset.CachedRowSet;
import javax.sql.RowSet;
import java.sql.SQLException;
public class SearchPredicate implements Predicate, java.io.Serializable {
 private boolean DEBUG = false;
 private String col = null;
 private String criteria = null;
 //Constructor to create case-insensitive column - value comparison.
 public SearchPredicate(String col, String criteria) {
 this.col = col;
 this.criteria = criteria;
 }
 public boolean evaluate(RowSet rs) {
 CachedRowSet crs = (CachedRowSet)rs;
 boolean bool = false;
 try {
 debug("evaluate(): "+crs.getString(col).toUpperCase()+" contains "+
 criteria.toUpperCase()+" = "+
 crs.getString(col).toUpperCase().contains(criteria.toUpperCase()));
 if (crs.getString(col).toUpperCase().contains(criteria.toUpperCase()))
 bool = true;
 } catch(Throwable t) {
 t.printStackTrace();
 throw new RuntimeException(t.getMessage());
 }
 return bool;
 }
 public boolean evaluate(Object o, String s) throws SQLException {

Chapter 8
FilteredRowSets

8-19

 throw new SQLException("String evaluation is not supported.");
 }
 public boolean evaluate(Object o, int i) throws SQLException {
 throw new SQLException("Int evaluation is not supported.");
 }
}

Example 8-4 Code to Set a Filter for a FilteredRowSet

SearchPredicate pred = new SearchPredicate(ROWSET_LASTNAME, lastName);
rs.setFilter(pred);

Example 8-3 shows an example of a class that implements the javax.sql.rowset.Predicate
interface. This example shows a class that enables you to create a filter that evaluates a case-
insensitive version of the value in a column. Example 8-4 shows code to create an instance of
the class, which determines the filter criteria, and then set the filter object as the filter for a
FilteredRowSet.

WebLogic SQL-Style Filter
WebLogic Server provides the weblogic.jdbc.rowset.SQLPredicate class, which implements
the javax.sql.rowset.Predicate interface. You can use the SQLPredicate class to define a
filter using SQL-like WHERE clause syntax to filter rows in a rowset. For example:

SQLPredicate filter = new SQLPredicate("ID >= 103");
rs.setFilter(filter);

See SQLPredicate, a SQL-Style RowSet Filter.

Working with Data in a FilteredRowSet
Working with data in a FilteredRowSet is much the same as working with data in a
CachedRowSet, except that when you insert a row or update a row, the changes that you
make must be within the filtering criteria so that the row will remain in the set of rows displayed.
For example, if the filter on the rowset allowed only rows with an ID column value of less than
105 to be displayed, if you tried to insert a row with a value of 106 in the ID column or update
an ID value to 106, that operation would fail and throw an SQLException.

For more details about working with data, see Working with Data in a CachedRowSet.

WebRowSets
A WebRowSet is a cached rowset that can read and write a rowset in XML format.

WebRowSets have the following characteristics:

• Uses the readXml(java.io.InputStream iStream) method to populate the rowset from an
XML source.

• Uses the writeXml(java.io.OutputStream oStream) method to write data and metadata
in XML for use by other application components or to send to a remote client.

• The XML code used to populate the rowset or written from the rowset conforms to the
standard WebRowSet XML Schema definition available at http://www.oracle.com/
webfolder/technetwork/jsc/xml/ns/jdbc/webrowset.xsd.

Chapter 8
WebRowSets

8-20

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/jdbc/webrowset.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/jdbc/webrowset.xsd

See http://www.oracle.com/technetwork/java/javase/jdbc/index.html and the Javadoc
for the javax.sql.rowset.WebRowSet interface at http://docs.oracle.com/javase/8/
docs/api/javax/sql/rowset/WebRowSet.html.

Note:

WebLogic Server supports two schemas for rowsets: one for the standard
WebRowSet and one for the WLCachedRowSet, which was implemented before
JSR-114 was finalized.

• Special Programming Considerations

Special Programming Considerations
• The WebLogic WebRowSets implementation supports two XML schemas (and APIs): one

for the standard WebRowSet specification (available at http://www.oracle.com/
webfolder/technetwork/jsc/xml/ns/jdbc/webrowset.xsd.) and one for the
WLCachedRowSet, which was implemented before JSR-114 was finalized.

• If you are using only WebLogic Server rowsets, you can use either schema. The
proprietary schema has more element types.

• To interact with other rowset implementations, you must use the standard schema.

JoinRowSets
A JoinRowSet is a number of disconnected RowSet objects joined together in a single rowset
by a SQL JOIN.

JoinRowSets have the following characteristics:

• Each rowset added to the JoinRowSet must have a "match" column specified in the
addRowSet method used to add the rowset to the JoinRowSet. For example:

addRowSet(javax.sql.RowSet[] rowset,java.lang.String[] columnName);
• You can set the join type using setJoinType method. The following join types are

supported:

CROSS_JOIN
FULL_JOIN
INNER_JOIN
LEFT_OUTER_JOIN
RIGHT_OUTER_JOIN

• Enables you to join data while disconnected from the database.

• JoinRowSets are for read-only use. JoinRowSets cannot be used to update data in the
database.

• Match columns in a JoinRowSet are limited to four data types: Number, Boolean, Date,
and String. Table 8-1 provides more details about data types allowed for a match column in
a JoinRowSet.

Chapter 8
JoinRowSets

8-21

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://docs.oracle.com/javase/7/docs/api/javax/sql/rowset/WebRowSet.html
http://docs.oracle.com/javase/7/docs/api/javax/sql/rowset/WebRowSet.html
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/jdbc/webrowset.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/jdbc/webrowset.xsd

Table 8-1 Data Types Allowed for Match Columns

Left Data Type in the Join Allowed Right Data Types in the Join

Number Number

String

Boolean Boolean

String

Date Date

String

String String

Number

Boolean

Date

For more information about JoinRowSets, see the Javadoc for the
javax.sql.rowset.Joinable (http://docs.oracle.com/javase/8/docs/api/javax/sql/
rowset/Joinable.html) and JoinRowSet interfaces (http://docs.oracle.com/javase/8/
docs/api/javax/sql/rowset/JoinRowSet.html).

JDBCRowSets
A JDBCRowSet is a wrapper around a ResultSet object that enables you to use the result set
as a JavaBeans component. Note that a JDBCRowSet is a connected rowset. All other rowset
types are disconnected rowsets.
See the Javadoc for the javax.sql.rowset.JdbcRowSet interface at http://
docs.oracle.com/javase/8/docs/api/javax/sql/rowset/JdbcRowSet.html.

Handling SyncProviderExceptions with a SyncResolver
Learn about the steps for handling SyncProviderException with a SyncResolver. The
SyncProviderException throws an error when it encounters violations in reading from or
writing to the originating data source. The SyncResolver object may be used to examine and
resolve each conflict in a row and then go to the next row with a conflict to repeat the
procedure.

When you call acceptChanges() to propagate changes in a rowset to the database, WebLogic
Server compares the original data in the rowset (data since the last synchronization) based on
an optimistic concurrency policy with the data in the database. If it detects data changes, it
throws a javax.sql.rowset.spi.SyncProviderException. By default, your application does
not have to do anything, but the changes in the rowset will not be synchronized in the
database.You can design your application to handle these exceptions and process the data
changes as is suitable for your system.

Chapter 8
JDBCRowSets

8-22

http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/Joinable.html
http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/Joinable.html
http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/JoinRowSet.html
http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/JoinRowSet.html
http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/JdbcRowSet.html
http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/JdbcRowSet.html

Note:

For javax.sql.rowset.CachedRowSets, WebLogic Server compares all original
values in all rows in the rowset with the corresponding rows in the database. For
weblogic.jdbc.rowset.WLCachedRowSet or other WebLogic extended rowset types,
WebLogic Server makes the data comparison based on the optimistic concurrency
setting. See Optimistic Concurrency Policies.

The main steps for handling a SyncProviderException are:

1. Catch the javax.sql.rowset.spi.SyncProviderException.

2. Get the SyncResolver object from the exception. See Getting a SyncResolver Object.

3. Page through conflicts using nextConflict() or any other navigation method. See
Navigating in a SyncResolver Object.

4. Determine the correct value, then set it with setResolvedValue(), which sets the value in
the rowset. See Setting the Resolved Value for a RowSet Data Synchronization Conflict.

5. Repeat steps 3 and 4 for each conflicted value.

6. Call rowset.acceptChanges() on the rowset (not the SyncResolver) to synchronize
changes with the database using the new resolved values. See Synchronizing Changes.

For more details about SyncResolvers and the SyncProviderException, see the RowSets
specification or the Javadoc for the SyncResolver interface.

Note:

Before you begin to resolve the SyncProviderException, make sure that no other
processes will update the data.

• RowSet Data Synchronization Conflict Types

• SyncResolver Code Example

• Getting a SyncResolver Object

• Navigating in a SyncResolver Object

• Setting the Resolved Value for a RowSet Data Synchronization Conflict

• Synchronizing Changes

RowSet Data Synchronization Conflict Types
Table 8-2 lists the types of conflict scenarios that can occur when synchronizing data changes
from a rowset to the database.

Chapter 8
Handling SyncProviderExceptions with a SyncResolver

8-23

Table 8-2 Conflict Types When Synchronizing RowSet Changes in the Database

RowSet Data
Change Type

Database Data
Change Type

Notes

Update Update Values in the same row in the rowset and database have
changed. The syncresolver status is
SyncResolver.UPDATE_ROW_CONFLICT.

Your application may need to supply logic to resolve the conflict or
may need to present the new data to the user.

Update Delete Values in the row in the rowset have been updated, but the row
has been deleted in the database. The syncresolver status is
SyncResolver.UPDATE_ROW_CONFLICT.

Your application may need to supply logic to decide whether to
leave the row as deleted (as it is in the database) or to restore the
row and persist changes from the rowset.

• To leave the row as deleted, revert the changes to the row in
the rowset.

• To restore the row with changes, insert a new row with the
desired values.

Note that if the row is deleted in the database, there is no conflict
value. When you call getConflictValue(), WebLogic Server
throws a weblogic.jdbc.rowset.RowNotFoundException.

Delete Update The row has been deleted in the rowset, but the row has been
updated in the database. The syncresolver status is
SyncResolver.DELETE_ROW_CONFLICT.

Your application may need to supply logic to decide whether to
delete the row (as it is in the rowset) or to keep the row and
persist changes currently in the database.

Note that in this scenario, all values in the row will be conflicted
values. To keep the row with the current values in the database,
call setResolvedValue to set the resolved value for each
column in the row to the current value in the database. To
proceed with the delete, call syncprovider.deleteRow().

Delete Delete The row has been deleted in the rowset and has been deleted in
the database by another process.The syncresolver status is
SyncResolver.DELETE_ROW_CONFLICT.

To resolve the SyncProviderException, you must revert the delete
operation on the row in the rowset.

Note that there will be no conflict value (not null, either) for any
column in the row. When you call getConflictValue(),
WebLogic Server throws a
weblogic.jdbc.rowset.RowNotFoundException.

Insert Insert If a row is inserted in the rowset and a row is inserted in the
database, a primary key conflict may occur, in which case an SQL
exception will be thrown. You cannot directly handle this conflict
type using a SyncResolver because a SyncProviderException is
not thrown.

SyncResolver Code Example
Example 8-5 shows an abbreviated example of how to use a SyncResolver to resolve
conflicting values between the rowset and the database. This example checks the value for

Chapter 8
Handling SyncProviderExceptions with a SyncResolver

8-24

known column names in each row in the SyncResolver in which there is a conflict. Details
about the example are explained in the sections that follow the example.

Example 8-5 SyncResolver Abbreviated Code Example

try {
 rs.acceptChanges();
} catch (SyncProviderException spex) {
 SyncResolver syncresolver = spex.getSyncResolver();
 while (syncresolver.nextConflict()) {
 int status = syncresolver.getStatus();
 int rownum = syncresolver.getRow();
 rs.absolute(rownum);
 //check for null in each column
 //write out the conflict
 //set resolved value to value in the db for this example
 //handle exception for deleted row in the database
 try {
 Object idConflictValue = syncresolver.getConflictValue("ID");
 if (idConflictValue != null) {
 System.out.println("ID value in db: " + idConflictValue);
 System.out.println("ID value in rowset: " + rs.getInt("ID"));
 syncresolver.setResolvedValue("ID", idConflictValue);
 System.out.println("Set resolved value to " + idConflictValue);
 }
 else {
 System.out.println("ID: NULL - no conflict");
 }
 } catch (RowNotFoundException e) {
 System.out.println("An exception was thrown when requesting a ");
 System.out.println("value for ID. This row was ");
 System.out.println("deleted in the database.");
 }
. . .
 }
 try {
 rs.acceptChanges();
 } catch (Exception ignore2) {
 }
}

Getting a SyncResolver Object
To handle a SyncProviderException, you can catch the exception and get a SyncResolver
object from it. For example:

try {
 rowset.acceptChanges();
} catch (SyncProviderException spex) {
 SyncResolver syncresolver = spex.getSyncResolver();
. . .
}

A SyncResolver is a rowset that implements the SyncResolver interface. A SyncResolver
object contains a row for every row in the original rowset. For values without a conflict, the
value in the SyncResolver is null. For values with a conflict, the value is the current value in the
database.

Chapter 8
Handling SyncProviderExceptions with a SyncResolver

8-25

Navigating in a SyncResolver Object
With a SyncResolver object, you can page through all conflicts and set the appropriate value
for each conflict value. The SyncResolver interface includes the nextConflict() and
previousConflict() methods that you can use to navigate directly to the next row in the
SyncResolver that has a conflict value other than null. Because a SyncResolver object is a
rowset, you can also use all of the rowset navigation methods to move the cursor to any row in
the SyncResolver. However, the nextConflict() and previousConflict() methods enable
you to easily skip rows that do not contain conflict values.

After you move the cursor to a conflict row, you must check the value in each column with the
getConflictValue() method to find the values in the database that conflict with the values in
the rowset, and then compare values to determine how to handle the conflict. For rows with
values that do not conflict, the return value is null. If the row was deleted in the database,
there is no value to return, so an exception is thrown.

Note:

In the WebLogic rowsets implementation, a value conflict occurs if any value in a row
in the database differs from the values read into the rowset when the rowset was
created or when it was last synchronized.

An example of code to compare values in the rowset and database:

syncresolver.nextConflict()
for (int i = 1; i <= colCount; i++) {
 if (syncresolver.getConflictValue(i) != null) {
 rsValue = rs.getObject(i);
 resolverValue = syncresolver.getConflictValue(i);
 . . .
 // compare values in the rowset and SyncResolver to determine
 // which should be the resolved value (the value to persist)
 }
}

Setting the Resolved Value for a RowSet Data Synchronization Conflict
To set the appropriate value to persist in the database, you call setResolvedValue(). For
example:

syncresolver.setResolvedValue(i, resolvedValue);

The setResolvedValue() method makes the following changes:

• Sets the value to persist in the database. That is, it sets the current value in the rowset.
When changes are synchronized, the new value will be persisted to the database.

• Changes the original value for the rowset data to the current value in the database. The
original value was the value since the last synchronization. After calling
setResolvedValue(), the original value becomes the current value in the database.

• Changes the WHERE clause in the synchronization call so that updates are made to
appropriate rows in the database.

Chapter 8
Handling SyncProviderExceptions with a SyncResolver

8-26

Synchronizing Changes
After resolving conflicting values in the SyncResolver, you must synchronize your changes with
the database. To do that, you call rowset.acceptChanges(). again. The acceptChanges() call
closes the SyncResolver object and releases locks on the database after the synchronization
completes.

WLCachedRowSets
A WLCachedRowSet is an extension of CachedRowSets, FilteredRowSets, WebRowSets, and
SortedRowSets.

WLCachedRowSet hasthe following characteristics:

• In the WebLogic Server RowSets implementation, all rowsets originate as a
WLCachedRowset. WLCachedRowSet can be interchangeably used as any of the standard
rowset types that it extends.

• WLCachedRowSet include convenience methods that help make using rowsets easier and
also include methods for setting optimistic concurrency options and data synchronization
options.

• It may not be possible to read or update an SQLXML datatype object. The JDBC 4.0
specification does not require vendors to make SQLXML objects readable after they have
been set. Once WebLogic Server sets the value for an SQLXML datatype object, it cannot be
read or updated.

See weblogic.jdbc.rowset.WLCachedRowSet in Java API Reference for Oracle WebLogic
Server interface.

SharedRowSets
Rowsets can be used by a single thread. They cannot be shared by multiple threads. A
SharedRowSet extends CachedRowSets so that additional CachedRowSets can be created
for use in other threads based on the data in an original CachedRowSet.

SharedRowSets have the following characteristics:

• Each SharedRowSet is a shallow copy of the original rowset (with references to data in the
original rowset instead of a copy of the data) with its own context (cursor, filter, sorter,
pending changes, and sync provider).

• When data changes from any of the SharedRowSets are synchronized with the database,
the base CachedRowSet is updated as well.

• Using SharedRowSets can increase performance by reducing the number of database
round-trips required by an application.

To create a SharedRowSet, you use the createShared() method in the WLCachedRowSet
interface and cast the result as a WLCachedRowSet. For example:

WLCachedRowSet sharedrowset = (WLCachedRowSet)rowset.createShared();

Chapter 8
WLCachedRowSets

8-27

SortedRowSets
A SortedRowSet extends CachedRowSets so that rows in a CachedRowSet can be sorted
based on the Comparator object provided by the application.

SortedRowSets have the following characteristics:

• Sorting is set in a way similar to way filtering is set for a FilteredRowSet, except that
sorting is based on a java.util.Comparator object instead of a
javax.sql.rowset.Predicate object:

1. The application creates a Comparator object with the desired sorting behavior.

2. The application then sets the sorting criteria with the
setSorter(java.util.Comparator) method.

• Sorting is done in memory rather than depending on the database management system for
sort processing. Using SortedRowSets can increase application performance by reducing
the number of database round-trips.

• WebLogic Server provides the SQLComparator object, which implements
java.util.Comparator. You can use it to sort rows in a SortedRowSet by passing the list
of columns that you want use as sorting criteria. For example:

rs.setSorter(new weblogic.jdbc.rowset.SQLComparator("columnA,columnB,columnC"));
See the following interface and class in Java API Reference for Oracle WebLogic Server:

• weblogic.jdbc.rowset.SortedRowSet interface

• weblogic.jdbc.rowset.SQLComparator class

SQLPredicate, a SQL-Style RowSet Filter
The SQLPredicate class is used to define a filter for a FilteredRowSet using SQL-like WHERE
clause syntax.

• What is SQLPredicate?

• SQLPredicate Grammar

• Code Example

What is SQLPredicate?
WebLogic Server provides the weblogic.jdbc.rowset.SQLPredicate class, which is an
implementation of the javax.sql.rowset.Predicate interface. You can use the SQLPredicate
class to define a filter for a FilteredRowSet using SQL-like WHERE clause syntax.

SQLPredicate Grammar
The SQLPredicate class borrows its grammar from the JMS selector grammar, which is very
similar to the grammar for an SQL select WHERE clause.

Some important notes:

• When referencing a column, you must use the column name; you cannot use column index
number.

Chapter 8
SortedRowSets

8-28

• The grammar supports the use of operators and mathematical operations, for example:

 (colA + ColB) >=100.
• In constructing the WHERE clause, you can use simple datatypes only, including:

– String

– Int

– Boolean

– Float

• Complex data types are not supported:

– Array

– BLOB

– CLOB

– Date

Code Example
//S E T F I L T E R
//use SQLPredicate class to create a SQLPredicate object,
//then pass the object in the setFilter method to filter the RowSet.
SQLPredicate filter = new SQLPredicate("ID >= 103");
rs.setFilter(filter);

See weblogic.jdbc.rowset.SQLPredicate class in Java API Reference for Oracle WebLogic
Server.

Optimistic Concurrency Policies
With optimistic concurrency, RowSets work on the assumption that multiple users are unlikely
to change the same data at the same time. Therefore, as part of the disconnected rowset
model, the rowset does not lock database resources.

In most cases, populating a rowset with data and updating the database occur in separate
transactions. The underlying data in the database can change in the time between the two
transactions. The WebLogic Server rowset implementation (WLCachedRowSet) uses
optimistic concurrency control to ensure data consistency.

With optimistic concurrency, RowSets work on the assumption that multiple users are unlikely
to change the same data at the same time. Therefore, as part of the disconnected rowset
model, the rowset does not lock database resources. However, before writing changes to the
database, the rowset must check to make sure that the data to be changed in the database
has not already changed since the data was read into the rowset.

The UPDATE and DELETE statements issued by the rowset include WHERE clauses that are
used to verify the data in the database against what was read when the rowset was populated.
If the rowset detects that the underlying data in the database has changed, it issues an
OptimisticConflictException. The application can catch this exception and determine how
to proceed. Typically, applications will refresh the updated data and present it to the user
again.

The WLCachedRowSet implementation offers several optimistic concurrency policies that
determine what SQL the rowset issues to verify the underlying database data:

• VERIFY_READ_COLUMNS

Chapter 8
Optimistic Concurrency Policies

8-29

• VERIFY_MODIFIED_COLUMNS

• VERIFY_SELECTED_COLUMNS

• VERIFY_NONE

• VERIFY_AUTO_VERSION_COLUMNS

• VERIFY_VERSION_COLUMNS

To illustrate the differences between these policies, we will use an example that uses the
following:

• A very simple employees table with 3 columns:

CREATE TABLE employees (
 e_id integer primary key,
 e_salary integer,
 e_name varchar(25)
);

• A single row in the table:

e_id = 1, e_salary = 10000, and e_name = 'John Smith'
In the example for each of the optimistic concurrency policies listed below, the rowset will read
this row from the employees table and set John Smith's salary to 20000. The example will then
show how the optimistic concurrency policy affects the SQL code issued by the rowset.

• VERIFY_READ_COLUMNS

• VERIFY_MODIFIED_COLUMNS

• VERIFY_SELECTED_COLUMNS

• VERIFY_NONE

• VERIFY_AUTO_VERSION_COLUMNS

• VERIFY_VERSION_COLUMNS

• Optimistic Concurrency Control Limitations

• Choosing an Optimistic Policy

VERIFY_READ_COLUMNS
The default rowset optimistic concurrency control policy is VERIFY_READ_COLUMNS. When
the rowset issues an UPDATE or DELETE, it includes all columns that were read from the
database in the WHERE clause. This verifies that the value in all columns that were initially
read into the rowset have not changed.

In our example update, the rowset issues:

UPDATE employees SET e_salary = 20000
 WHERE e_id = 1 AND e_salary=10000 AND e_name = 'John Smith';

VERIFY_MODIFIED_COLUMNS
The VERIFY_MODIFIED_COLUMNS policy only includes the primary key columns and the
updated columns in the WHERE clause. It is useful if your application only cares if its updated
columns are consistent. It does allow your update to commit if columns that have not been
updated have changed since the data has been read.

In our example update, the rowset issues:

Chapter 8
Optimistic Concurrency Policies

8-30

UPDATE employees SET e_salary = 20000
 WHERE e_id = 1 AND e_salary=10000

The e_id column is included since it is a primary key column. The e_salary column is a
modified column so it is included as well. The e_name column was only read so it is not verified.

VERIFY_SELECTED_COLUMNS
The VERIFY_SELECTED_COLUMNS includes the primary key columns and columns you
specify in the WHERE clause.

WLRowSetMetaData metaData = (WLRowSetMetaData) rowSet.getMetaData();
metaData.setOptimisticPolicy(WLRowSetMetaData.VERIFY_SELECTED_COLUMNS);
// Only verify the e_salary column
metaData.setVerifySelectedColumn("e_salary", true);

metaData.acceptChanges();

In our example update, the rowset issues:

UPDATE employees SET e_salary = 20000
 WHERE e_id = 1 AND e_salary=10000

The e_id column is included since it is a primary key column. The e_salary column is a
selected column so it is included as well.

VERIFY_NONE
The VERIFY_NONE policy only includes the primary key columns in the WHERE clause. It
does not provide any additional verification on the database data.

In our example update, the rowset issues:

UPDATE employees SET e_salary = 20000 WHERE e_id = 1

VERIFY_AUTO_VERSION_COLUMNS
The VERIFY_AUTO_VERSION_COLUMNS includes the primary key columns as well as a
separate version column that you specify in the WHERE clause. The rowset will also
automatically increment the version column as part of the update. This version column must be
an integer type. The database schema must be updated to include a separate version column
(e_version). Assume for our example this column currently has a value of 1.

metaData.setOptimisticPolicy(WLRowSetMetaData.
 VERIFY_AUTO_VERSION_COLUMNS);

metaData.setAutoVersionColumn("e_version", true);

metaData.acceptChanges();

In our example update, the rowset issues:

UPDATE employees SET e_salary = 20000, e_version = 2
WHERE e_id = 1 AND e_version = 1

The e_version column is automatically incremented in the SET clause. The WHERE clause
verified the primary key column and the version column.

Chapter 8
Optimistic Concurrency Policies

8-31

VERIFY_VERSION_COLUMNS
The VERIFY_VERSION_COLUMNS has the rowset check the primary key columns as well as
a separate version column. The rowset does not increment the version column as part of the
update. The database schema must be updated to include a separate version column
(e_version). Assume for our example this column currently has a value of 1.

metaData.setOptimisticPolicy(WLRowSetMetaData.VERIFY_VERSION_COLUMNS);
metaData.setVersionColumn("e_version", true);
metaData.acceptChanges();

In our example update, the rowset issues:

UPDATE employees SET e_salary = 20000
WHERE e_id = 1 AND e_version = 1

The WHERE clause verifies the primary key column and the version column. The rowset does
not increment the version column so this must be handled by the database. Some databases
provide automatic version columns that increment when the row is updated. It is also possible
to use a database trigger to handle this type of update.

Optimistic Concurrency Control Limitations
The Optimistic policies only verify UPDATE and DELETE statements against the row they are
changing. Read-only rows are not verified against the database.

Most databases do not allow BLOB or CLOB columns in the WHERE clause so the rowset
never verifies BLOB or CLOB columns.

When multiple tables are included in the rowset, the rowset only verifies tables that have been
updated.

Choosing an Optimistic Policy
The default VERIFY_READ_COLUMNS provides a strong-level of consistency at the expense
of some performance. Since all columns that were initially read must be sent to the database
and compared in the database, there is some additional overhead to this policy.
VERIFY_READ_COLUMNS is appropriate when strong levels of consistency are needed, and
the database tables cannot be modified to include a version column.

The VERIFY_SELECTED_COLUMNS is useful when the developer needs complete control
over the verification and wants to use application-specific knowledge to fine-tune the SQL.

The VERIFY_AUTO_VERSION_COLUMNS provides the same level of consistency as
VERIFY_READ_COLUMNS but only has to compare a single integer column. This policy also
handles incrementing the version column so it requires a minimal amount of database setup.

The VERIFY_VERSION_COLUMNS is recommended for production systems that want the
highest level of performance and consistency. Like VERIFY_AUTO_VERSION_COLUMNS, it
provides a high level of consistency while only incurring a single column comparison in the
database. VERIFY_VERSION_COLUMNS requires that the database handle incrementing the
version column. Some databases provide a column type that automatically increments itself on
updates, but this behavior can also be implemented with a database trigger.

The VERIFY_MODIFIED_COLUMNS and VERIFY_NONE decrease the consistency
guarantees, but they also decrease the likelihood of an optimistic conflict. You should consider

Chapter 8
Optimistic Concurrency Policies

8-32

these policies when performance and avoiding conflicts outweigh the need for higher level of
data consistency.

Performance Options
Learn about the RowSets performance options such as JDBC Batching and Group Deletes.

• JDBC Batching

• Group Deletes

JDBC Batching
The rowset implementation includes support for JDBC batch operations. Instead of sending
each SQL statement individually to the JDBC driver, a batch sends a collection of statements
in one bulk operation to the JDBC driver. Batching is disabled by default, but it generally
improves performance when large numbers of updates occur in a single transaction. It is
worthwhile to benchmark with this option enabled and disabled for your application and
database.

The WLCachedRowSet interface contains the methods setBatchInserts(boolean),
setBatchDeletes(boolean), and setBatchUpdates(boolean) to control batching of INSERT,
DELETE, and UPDATE statements.

Note:

The setBatchInserts, setBatchDeletes, or setBatchUpdates methods must be
called before the acceptChanges method is called.

• Batching Limitations with and Oracle Database

Batching Limitations with and Oracle Database
Since the WLCachedRowSet relies on optimistic concurrency control, it needs to determine
whether an update or delete command has succeeded or an optimistic conflict occurred. The
WLCachedRowSet implementation relies on the JDBC driver to report the number of rows
updated by a statement to determine whether a conflict occurred or not. In the case where 0
rows were updated, the WLCachedRowSet knows that a conflict did occur.

Oracle JDBC drivers return java.sql.Statement.SUCCESS_NO_INFO when batch updates are
executed, so the rowset implementation cannot use the return value to determine whether a
conflict occurred.

When the rowset detects that batching is used with an Oracle database, it automatically
changes its batching behavior:

Batched inserts perform as usual since they are not verified.

Batched updates run as normal, but the rowset issues an extra SELECT query to check
whether the batched update encountered an optimistic conflict.

Batched deletes use group deletes since this is more efficient than executing a batched delete
followed by a SELECT verification query.

Chapter 8
Performance Options

8-33

Group Deletes
When multiple rows are deleted, the rowset would normally issue a DELETE statement for
each deleted row. When group deletes are enabled, the rowset issues a single DELETE
statement with a WHERE clause that includes the deleted rows.

For instance, if we were deleting 3 employees from our table, the rowset would normally issue:

DELETE FROM employees WHERE e_id = 3 AND e_version = 1;
DELETE FROM employees WHERE e_id = 4 AND e_version = 3;
DELETE FROM employees WHERE e_id = 5 AND e_version = 10;

When group deletes are enabled, the rowset issues:

DELETE FROM employees
WHERE e_id = 3 AND e_version = 1 OR
 e_id = 4 AND e_version = 3 OR
 e_id = 5 AND e_version = 10;

You can use the WLRowSetMetaData.setGroupDeleteSize to determine the number of rows
included in a single DELETE statement. The default value is 50.

Chapter 8
Performance Options

8-34

9
Troubleshooting JDBC

Learn about common issues such as problems with Oracle Database on UNIX, thread-related
problems on UNIX and so on.

• Problems with Oracle Database on UNIX
If you have problems with an Oracle database running on Unix, check the threading model
being used. When using Oracle drivers, WebLogic recommends that you use native
threads. You can specify this by adding the -native flag when you start Java.

• Thread-related Problems on UNIX
On UNIX, two threading models are available: green threads and native threads. You can
determine what type of threads you are using by checking the environment variable called
THREADS_TYPE.

• Closing JDBC Objects
Oracle recommends—and good programming practice dictates—that you always close
JDBC objects, such as Connections, Statements, and ResultSets, in a finally block to
make sure that your program executes efficiently.

• Using Microsoft SQL Server with Nested Triggers
Learn about the troubleshooting information when using nested triggers with some
Microsoft SQL Server databases.

Problems with Oracle Database on UNIX
If you have problems with an Oracle database running on Unix, check the threading model
being used. When using Oracle drivers, WebLogic recommends that you use native threads.
You can specify this by adding the -native flag when you start Java.

Thread-related Problems on UNIX
On UNIX, two threading models are available: green threads and native threads. You can
determine what type of threads you are using by checking the environment variable called
THREADS_TYPE.
For more information, read about the JDK for the Solaris operating environment at http://
www.oracle.com/technetwork/java/index.html.

To determine the type of threads you are using check the environment variable called
THREADS_TYPE.. If this variable is not set, you can check the shell script in your Java installation
bin directory.

Some of the problems are related to the implementation of threads in the JVM for each
operating system. Not all JVMs handle operating-system specific threading issues equally well.
If you are using Oracle drivers, use native threads.

9-1

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Closing JDBC Objects
Oracle recommends—and good programming practice dictates—that you always close JDBC
objects, such as Connections, Statements, and ResultSets, in a finally block to make sure
that your program executes efficiently.

Here is a general example:

Example 9-1 Closing a JDBC Object

try {

Driver d =
(Driver)Class.forName("oracle.jdbc.OracleDriver").newInstance();

Connection conn = d.connect("jdbc:weblogic:oracle:myserver",
 "scott", "tiger");

 Statement stmt = conn.createStatement();
 stmt.execute("select * from emp");
 ResultSet rs = stmt.getResultSet();
 // do work

 }

 catch (Exception e) {

 // handle any exceptions as appropriate

 }

 finally {

 try {rs.close();}
 catch (Exception rse) {}
 try {stmt.close();}
 catch (Exception sse) {}
 try {conn.close();
 catch (Exception cse) {}

 }

• Abandoning JDBC Objects

Abandoning JDBC Objects
You should also avoid the following practice, which creates abandoned JDBC objects:

//Do not do this.
stmt.executeQuery();
rs = stmt.getResultSet();

//Do this instead
rs = stmt.executeQuery();

The first line in this example creates a result set that is lost and can be garbage collected
immediately.

Chapter 9
Closing JDBC Objects

9-2

Using Microsoft SQL Server with Nested Triggers
Learn about the troubleshooting information when using nested triggers with some Microsoft
SQL Server databases.

For information on supported data bases and data base drivers, see the Oracle Fusion
Middleware Supported System Configurations page at http://www.oracle.com/technetwork/
middleware/ias/downloads/fusion-certification-100350.html.

• Exceeding the Nesting Level

• Using Triggers and EJBs

Exceeding the Nesting Level
You may encounter a SQL Server error indicating that the nesting level has been exceeded on
some SQL Server databases.

For example:

 CREATE TABLE EmployeeEJBTable (name varchar(50) not null,salary int, card
varchar(50), primary key (name))

 CREATE TABLE CardEJBTable (cardno varchar(50) not null, employee
varchar(50), primary key (cardno), foreign key (employee) references
EmployeeEJB Table(name) on delete cascade)
 CREATE TRIGGER card on EmployeeEJBTable for delete as delete CardEJBTable
where employee in (select name from deleted)

 CREATE TRIGGER emp on CardEJBTable for delete as delete EmployeeEJBTable
where card in (select cardno from deleted)

 insert into EmployeeEJBTable values ('1',1000,'1')
 insert into CardEJBTable values ('1','1')
 DELETE FROM CardEJBTable WHERE cardno = 1

Results in the following error message:

Maximum stored procedure, function, trigger, or view nesting level exceeded (limit 32).

To work around this issue, do the following:

1. Run the following script to reset the nested trigger level to 0:

-- Start batch
exec sp_configure 'nested triggers', 0 -- This set's the new value.
reconfigure with override -- This makes the change permanent
-- End batch

2. Verify the current value the SQL server by running the following script:

exec sp_configure 'nested triggers'

Using Triggers and EJBs
Applications using EJBs with a Microsoft driver may encounter situations when the return code
from the execute() method is 0, when the expected value is 1 (1 record deleted).

For example:

Chapter 9
Using Microsoft SQL Server with Nested Triggers

9-3

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

 CREATE TABLE EmployeeEJBTable (name varchar(50) not null,salary int, card
varchar(50), primary key (name))

 CREATE TABLE CardEJBTable (cardno varchar(50) not null, employee
varchar(50), primary key (cardno), foreign key (employee) references
EmployeeEJB Table(name) on delete cascade)
 CREATE TRIGGER emp on CardEJBTable for delete as delete EmployeeEJBTable
where card in (select cardno from deleted)

 insert into EmployeeEJBTable values ('1',1000,'1')
 insert into CardEJBTable values ('1','1')
 DELETE FROM CardEJBTable WHERE cardno = 1
The EJB code assumes that the record is not found and throws an appropriate error
message.
To work around this issue, run the following script:
 exec sp_configure 'show advanced options', 1
 reconfigure with override
 exec sp_configure 'disallow results from triggers',1
 reconfigure with override

Chapter 9
Using Microsoft SQL Server with Nested Triggers

9-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Using WebLogic JDBC in an Application
	Getting a Database Connection from a DataSource Object
	Importing Packages to Access DataSource Objects
	Obtaining a Client Connection Using a DataSource
	Possible Exceptions When a Connection Request Fails

	Pooled Connection Limitation
	Getting a Connection from an Application-Scoped Data Source

	2 Using DataSource Resource Definitions
	Using Jakarta EE DataSource Resource Definitions
	Creating DataSource Resource Definitions Using Annotations
	Creating DataSource Resource Definitions Using Deployment Descriptors

	Using WebLogic Configuration Attributes
	Implementation Considerations When Using DataSource Resource Definitions
	Naming Conventions
	WebLogic Data Source Naming Conventions
	Jakarta EE Data Source Naming Conventions

	Mapping the Jakarta EE DataSource Resource Definition to WebLogic Data Source Resources
	Configuring Active GridLink DataSource Resource Definitions
	Using an Encrypted Password in a DataSourceDefinition
	Additional Considerations

	Using Data Sources in Clients
	Additional Resources

	3 Performance Tuning Your JDBC Application
	WebLogic Performance-Enhancing Features
	How Pooled Connections Enhance Performance
	Caching Statements and Data

	Designing Your Application for Best Performance
	Process as Much Data as Possible Inside the Database
	Use Built-in DBMS Set-based Processing
	Make Your Queries Smart
	Make Transactions Single-batch
	Never Have a DBMS Transaction Span User Input
	Use In-place Updates
	Keep Operational Data Sets Small
	Use Pipelining and Parallelism

	4 Using WebLogic-branded DataDirect Drivers
	Using DataDirect Documentation
	JDBC Specification Compliance
	Installation
	Supported Drivers and Databases
	Connecting Through WebLogic JDBC Data Sources
	Developing Your Own JDBC Code
	Specifying Connection Properties
	Using IP Addresses
	Required Permissions for the Java Security Manager
	For MS SQLServer Users
	Installing MS SQLServer XA DLLs
	Using instjdbc.sql with MS SQLServer

	5 Using WebLogic Wrapper Drivers
	Using the WebLogic RMI Driver (Deprecated)
	RMI Driver Client Interoperability
	Security Considerations for WebLogic RMI Drivers
	Setting Up WebLogic Server to Use the WebLogic RMI Driver
	Sample Client Code for Using the RMI Driver
	Import the Required Packages
	Get the Database Connection
	Using a JNDI Lookup to Obtain the Connection
	Using Only the WebLogic RMI Driver to Obtain a Database Connection

	Row Caching with the WebLogic RMI Driver
	Important Limitations for Row Caching with the WebLogic RMI Driver

	Limitations When Using Global Transactions

	Using the WebLogic JTS Driver (Deprecated)
	Sample Client Code for Using the JTS Driver

	6 Using API Extensions in JDBC Drivers
	Using API Extensions to JDBC Interfaces
	Sample Code for Accessing API Extensions to JDBC Interfaces
	Import Packages to Access API Extensions
	Get a Connection
	Cast the Connection as a Vendor Connection
	Use API Extensions

	Using API Extensions for Oracle JDBC Types
	Sample Code for Accessing Oracle Thin Driver Extensions to JDBC Interfaces
	Programming with Arrays
	Import Packages to Access Oracle Extensions
	Establish the Connection
	Creating an Array in the Database
	Getting an Array
	Updating an Array in the Database
	Using Oracle Array Extension Methods

	Programming with Structs
	Creating Objects in the Database
	Getting Struct Attributes
	Using OracleStruct Extension Methods
	Using a Struct to Update Objects in the Database

	Programming with Refs
	Creating a Ref in the Database
	Getting a Ref
	Using WebLogic OracleRef Extension Methods
	Updating Ref Values

	Programming with Large Objects
	Creating Blobs in the Database
	Updating Blobs in the Database
	Using OracleBlob Extension Methods
	Programming with Clob Values
	Transaction Boundaries Using LOBs
	Recovering LOB Space

	Programming with Opaque Objects

	Using Batching with the Oracle Thin Driver
	Using the Java Security Manager with the Oracle Thin Driver

	7 Getting a Physical Connection from a Data Source
	Opening a Connection
	Closing a Connection
	Remove Infected Connections Enabled is True
	Remove Infected Connections Enabled is False

	Limitations for Using a Physical Connection

	8 Using RowSets with WebLogic Server
	Deprecation of weblogic.jdbc.rowsets
	About RowSets
	Types of RowSets
	Programming with RowSets
	CachedRowSets
	Characteristics
	Special Programming Considerations and Limitations for CachedRowSets
	Entire RowSet Query Results Stored in Memory
	Data Contention

	Code Example
	Importing Classes and Interfaces for a CachedRowSet
	Creating a CachedRowSet
	Setting CachedRowSet Properties
	Database Connection Options
	Populating a CachedRowSet
	Setting CachedRowSet MetaData
	Working with Data in a CachedRowSet
	Getting Data from a Row in a RowSet
	Updating a Row in a RowSet
	Inserting a Row in a RowSet
	Deleting a Row in a RowSet

	Synchronizing RowSet Changes with the Database

	RowSet MetaData Settings for Database Updates
	WebLogic RowSet Extensions for Working with MetaData
	executeAndGuessTableName and executeAndGuessTableNameAndPrimaryKeys
	Setting Table and Primary Key Information Using the MetaData Interface
	Setting the Write Table

	RowSets and Transactions
	Integrating with JTA Global Transactions
	Behavior of Rowsets Using Global Transactions

	Using Local Transactions
	Behavior of Rowsets Using Local Transactions
	Calling connection.commit
	Calling acceptChanges

	Reusing a WebLogic RowSet After Completing a Transaction

	FilteredRowSets
	FilteredRowSet Characteristics
	Special Programming Considerations
	RowSet Filters are Not Cumulative
	No Pending Changes Before Setting or Changing a Filter

	FilteredRowSet Code Example
	Importing Classes and Interfaces for FilteredRowSets
	Creating a FilteredRowSet
	Setting FilteredRowSet Properties
	Database Connection Options for a FilteredRowSet
	Populating a FilteredRowSet
	Setting FilteredRowSet MetaData
	Setting the Filter for a FilteredRowSet
	User-Defined RowSet Filter
	WebLogic SQL-Style Filter

	Working with Data in a FilteredRowSet

	WebRowSets
	Special Programming Considerations

	JoinRowSets
	JDBCRowSets
	Handling SyncProviderExceptions with a SyncResolver
	RowSet Data Synchronization Conflict Types
	SyncResolver Code Example
	Getting a SyncResolver Object
	Navigating in a SyncResolver Object
	Setting the Resolved Value for a RowSet Data Synchronization Conflict
	Synchronizing Changes

	WLCachedRowSets
	SharedRowSets
	SortedRowSets
	SQLPredicate, a SQL-Style RowSet Filter
	What is SQLPredicate?
	SQLPredicate Grammar
	Code Example

	Optimistic Concurrency Policies
	VERIFY_READ_COLUMNS
	VERIFY_MODIFIED_COLUMNS
	VERIFY_SELECTED_COLUMNS
	VERIFY_NONE
	VERIFY_AUTO_VERSION_COLUMNS
	VERIFY_VERSION_COLUMNS
	Optimistic Concurrency Control Limitations
	Choosing an Optimistic Policy

	Performance Options
	JDBC Batching
	Batching Limitations with and Oracle Database

	Group Deletes

	9 Troubleshooting JDBC
	Problems with Oracle Database on UNIX
	Thread-related Problems on UNIX
	Closing JDBC Objects
	Abandoning JDBC Objects

	Using Microsoft SQL Server with Nested Triggers
	Exceeding the Nesting Level
	Using Triggers and EJBs

