
Oracle® Fusion Middleware
Configuring Elasticity in Dynamic Clusters for
Oracle WebLogic Server

14c (14.1.2.0.0)
F62087-01
December 2024

Oracle Fusion Middleware Configuring Elasticity in Dynamic Clusters for Oracle WebLogic Server, 14c (14.1.2.0.0)

F62087-01

Copyright © 2007, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Documentation v

Conventions vi

1 Overview

What is Elasticity? 1-1

Related Terminology 1-2

Introducing the Script and Data Source Interceptors 1-2

2 Requirements for Configuring Elasticity

Configuring Dynamic Clusters 2-1

Configuring Policies and Actions(changed) 2-3

Targeting the Diagnostic System Module 2-3

Provisioning Machines 2-3

3 On-Demand Scaling

What is On-Demand Scaling? 3-1

On-Demand Scaling Using Fusion Middleware Control 3-2

On-Demand Scaling Using WLST 3-2

4 Elastic Actions

Introducing the Elastic Actions 4-1

Configuring Scale Up Actions 4-1

Configuring Scale Down Actions 4-2

iii

5 Calendar-Based Scaling

Overview of Calendar-Based Scaling 5-1

Configuring Calendar-Based Scaling 5-1

Configuring Calendar-Based Scaling Using Fusion Middleware Control 5-3

Configuring Calendar-Based Scaling Using WLST 5-4

6 Policy-Based Scaling

What is Policy-Based Scaling? 6-1

Introducing Smart Rules 6-2

Policy-Based Scaling Example 6-3

Prerequisites 6-4

Installing Required Software 6-4

Downloading and Unpacking Required Files 6-4

Setting the Environment 6-5

Creating the Domain and its Resources 6-5

Configuring and Starting the Apache Web Server 6-6

Viewing Dynamic Server Configuration and Activity 6-6

Using JMeter to Drive the Demo 6-7

Re-running and Stopping the Elasticity Demo 6-7

7 Configuring the Data Source Interceptor

Overview of the Data Source Interceptor 7-1

Configuring Data Source Interceptors 7-1

8 Configuring the Script Interceptor

Overview of the Script Interceptor 8-1

Configuring Error Handling for a Script Interceptor 8-2

Reserved Environment Variables 8-2

iv

Preface

This document describes how to use elasticity to automatically scale up and scale down
dynamic clusters in Oracle WebLogic Server.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documentation

• Conventions

Audience
This document is a resource for system administrators and operators responsible for
monitoring and managing a WebLogic Server installation. It is relevant to all phases of a
software project, from development through test and production phases.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
• See Overview of the WLDF Architecture in Configuring and Using the Diagnostics

Framework for Oracle WebLogic Server for a description of the WebLogic Diagnostics
Framework (WLDF), a monitoring and diagnostic framework that defines and implements a

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

set of services that run within WebLogic Server processes and participate in the standard
server life cycle.

• Dynamic Clusters in Administering Clusters for Oracle WebLogic Server describes how to
create and configure dynamic clusters.

• Create dynamic cluster in Oracle WebLogic Remote Console Online Help describes how to
create a cluster that dynamically scales depending on the resource needs of your
applications.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vi

1
Overview

Elasticity enables the automatic scaling of dynamic clusters and re-provisioning of associated
resources in Oracle WebLogic Server. The following sections provide an overview of elasticity
and also introduces relevant terminology used in this guide, including the elasticity framework,
smart rules and policies and actions:

• What is Elasticity?

• Related Terminology
Learn a list of terminology associated with elasticity.

• Introducing the Script and Data Source Interceptors

What is Elasticity?
Elasticity provides the ability to configure a dynamic cluster so that it can be scaled up or
down, with its resources provisioned automatically as appropriate. You can configure elastic
scaling in a dynamic cluster in either of the following ways:

• Manually adding or removing a running dynamic server instance from an active dynamic
cluster. This is called on-demand scaling. You can perform on-demand scaling using the
Fusion Middleware component of Enterprise Manager or the WebLogic Scripting Tool
(WLST).

• Establishing policies that set the conditions under which a dynamic cluster should be
scaled up or down and actions that define the scaling operations themselves. When the
conditions defined in the scaling policy occur, the corresponding scaling action is triggered
automatically.

Policies and actions that scale a dynamic cluster are configured on a diagnostic system
module that is targeted to the Administration Server.

The elasticity framework leverages the WebLogic Diagnostic Framework (WLDF) Policies and
Actions system. Using the WLDF Policies and Actions component, you can write policy
expressions that automatically scale up or scale down a dynamic cluster. Configuring elasticity
for a dynamic cluster typically involves the following:

1. Creating a diagnostic system module for the scaling actions and policies

2. Defining scale up or scale down actions (that is, what and how to scale)

3. Defining scale up or scale down policies (that is, when to scale)

4. Assigning the scaling actions to the corresponding scaling policies

5. Targeting the diagnostic system module to the Administration Server

These policies will monitor one or more resources, such as memory, idle threads, and CPU.
When the configured threshold is met, the scaling action is triggered. For more information on
WLDF and diagnostic policies and actions, see Configuring Policies and Actions in Configuring
and Using the Diagnostics Framework for Oracle WebLogic Server.

Policies for elasticity can be based on the following types of data:

1-1

• Trends over time, or historical data, such as changes in average values during a specific
time interval. For example, a policy can be based on average JVM heap usage above a
certain threshold.

• Runtime metrics relevant to all server instances in a cluster, not just one server instance.

• Data from multiple services that are considered together. For example, a policy can be
based on response-time metrics reported by a load balancer and message-backlog metrics
from a message queue.

• Calendar-based schedules. Scaling policies can identify a specific calendar time, such as
time of day or day of week, to define when an action triggers.

• Log rules or event data rules.

Elasticity is available only for scaling dynamic clusters.

Related Terminology
Learn a list of terminology associated with elasticity.

The following table defines terminology used in this guide, Configuring Elasticity in Dynamic
Clusters for Oracle WebLogic Server:

Table 1-1 Elasticity Terminology

Term Description

Elasticity framework Component that builds upon the existing WLDF Policies and Actions system
that allows administrators to construct complex rules to monitor resource
usage in a cluster to effect scaling or administrative actions relevant
particularly to dynamic clusters.

Policy Sets the conditions under which a dynamic cluster should be scaled up or
down. When the conditions defined in a scaling policy occur, the
corresponding scaling action is triggered automatically.

Action Defines the scaling operations themselves.

Dynamic cluster A cluster that contains one or more generated (dynamic) server instances that
are based on a single shared server template.

On-demand scaling Scaling by manually adding or removing a running server instance from an
active dynamic cluster.

Calendar-based scaling Scaling based on calendar-based schedules and that specify a particular time
or date when a scaling action is executed.

Policy-based scaling Scaling based on policies and associated actions. A policy sets the conditions
under which a scaling operation should occur, and when these conditions are
met, the configured scaling action is executed.

Smart rule Prepackaged policy expression with a set of configurable parameters that
allow you to create a complex policy expression simply by specifying the
values for those parameters.

Introducing the Script and Data Source Interceptors
Interceptors can be used to assist in coordinating with other WebLogic Server subsystems and
other components during scaling operations. Interceptors are particularly useful for performing
functions such as reprovisioning resources prior to, or immediately following, a scaling
operation.

Chapter 1
Related Terminology

1-2

Configuring Elasticity in Dynamic Clusters for Oracle WebLogic Server introduces two
interceptors, the script interceptor and the data source interceptor.

For information on using the script interceptor to coordinate with other systems during scaling
operations, see Configuring the Script Interceptor.

For information on using the data source interceptor to check database connections before a
scale up operation, see Configuring the Data Source Interceptor .

Chapter 1
Introducing the Script and Data Source Interceptors

1-3

2
Requirements for Configuring Elasticity

To configure elasticity for a dynamic cluster in Oracle WebLogic Server, you must have a
dynamic cluster for which you specify a set of key attributes related to scalability, such as the
initial, minimum, and maximum number of dynamic server instances that can be running.And
depending on your scalability needs, you can have additional tasks, such as provisioning
machines, configuring database resources, creating policies that automate scaling operations
when certain conditions arise, and more.

• Configuring Dynamic Clusters

• Configuring Policies and Actions(changed)

• Targeting the Diagnostic System Module
After you have defined the policies and elastic scaling actions in a diagnostic system
module, you must target that diagnostic system module to the Administration Server.

• Provisioning Machines
To configure policy-based elastic scaling, you must appropriately provision machines for
the maximum necessary scale-up capacity.

Configuring Dynamic Clusters
Elasticity is only available for use with dynamic clusters. Before configuring elastic scaling, you
must create and configure a dynamic cluster. See Creating and Configuring Dynamic Clusters
in Administering Clusters for Oracle WebLogic Server.
Table 2-1 explains the DynamicServersMBean attributes that are used to configure a dynamic
cluster for elasticity.

Table 2-1 Attributes for Configuring Elasticity in Dynamic Clusters

Attribute Description

DynamicClusterCooloffPeriodS
econds

The cool-off period, in seconds, used during scaling operations. After a scaling
operation is performed, subsequent requests for scaling operations will be ignored
during this cool-off period. The default value is 900 and the minimum value is 0.

DynamicClusterShutdownTimeou
tSeconds

The timeout period, in seconds, use while gracefully shutting down a dynamic server
instance. If the dynamic server instance does not shut down before the specified
timeout period, it will be forcibly shut down. The default value is 0.

DynamicClusterSize The initial number of dynamic server instances to be provisioned in the dynamic
cluster. The minimum value for this attribute is 0 and the maximum value is 800.

IgnoreSessionsDuringShutDown Indicates if the Elasticity Framework should ignore inflight HTTP requests while
shutting down dynamic server instances during scale down operations.

MaxDynamicClusterSize The maximum number of dynamic server instances that can be used in scaling
operations. The default value for MaxDynamicClusterSize is 8. The minimum value is
0 and the maximum value is 800.

Note that if a scale up operation attempts to exceed the limit set in
MaxDynamicClusterSize, the operation will not fail, but WebLogic Server will only
add running dynamic server instances until this limit is reached.

2-1

Table 2-1 (Cont.) Attributes for Configuring Elasticity in Dynamic Clusters

Attribute Description

MinDynamicClusterSize The minimum number of running dynamic server instances that the Elasticity
Framework will attempt to keep in the dynamic cluster during scaling operations. The
default value is 1. The minimum value is 0 and the maximum value is 800.

Note that, during a scale down operation, any attempt to scale down below the limit
set in MinDynamicClusterSize is not allowed. WebLogic Server will only scale
down to this limit.

WaitForAllSessionsDuringShut
down

Indicates if the Elasticity Framework should wait for all persisted and non-persisted
inflight HTTP sessions while shutting down dynamic server instances during scaling
operations.

You can set these attributes and configure your dynamic cluster for elasticity using the Fusion
Middleware Control component of Enterprise Manager (EM) or WebLogic Scripting Tool
(WLST).

For information about using Fusion Middleware Control, see Configure clusters in
Administering Oracle WebLogic Server with Fusion Middleware Control.

Example 2-1 demonstrates how to use WLST to define dynamic cluster attributes for elasticity
in an existing dynamic cluster.

Example 2-2 demonstrates how to create and configure a dynamic cluster for elasticity. This
dynamic cluster is used in the policy based scaling demonstration in Policy-Based Scaling
Example.

Example 2-1 Configuring a Dynamic Cluster for Elasticity

startEdit()
cmo.setDynamicClusterSize(4)
cmo.setMaxDynamicClusterSize(8)
cmo.setMinDynamicClusterSize(2)
cmo.setDynamicClusterCooloffPeriodSeconds(120)
save()
activate()

Example 2-2 Creating and Configuring a Dynamic Cluster

edit()
startEdit()

dynCluster=cmo.createCluster(DynamicCluster)

 dynServers=dynCluster.getDynamicServers()
 dynServers.setServerTemplate(dynamicServerTemplate)
 dynServers.setMinDynamicClusterSize(2)
 dynServers.setMaxDynamicClusterSize(8)
 dynServers.setDynamicClusterSize(4)
 dynServers.setDynamicClusterCooloffPeriodSeconds(120)
 dynServers.setCalculatedListenPorts(true)
 dynServers.setCalculatedMachineNames(true)
 #
 # Dynamic server names will be dynamic-server-1, dynamic-server-2, ...,
 # dynamic-server-10.
 #
 dynServers.setServerNamePrefix(dynamic-server-)

Chapter 2
Configuring Dynamic Clusters

2-2

save()
activate()

Configuring Policies and Actions(changed)
In policy-based scaling, a policy sets the conditions under which a scaling operation must
occur. And when these conditions are met, an elastic action performs the scaling operation. To
configure policy-based scaling of a dynamic cluster, you create a diagnostic system module
that contains one or more policies, and then assign an elastic action (scale up or scale down)
to each of those policies. For information on the Policies and Actions component of WLDF, see
Configuring Policies and Actions in Configuring and Using the Diagnostics Framework for
Oracle WebLogic Server.
To use Fusion Middleware Control, see Create and configure policies and actions in
Administering Oracle WebLogic Server with Fusion Middleware Control.

Targeting the Diagnostic System Module
After you have defined the policies and elastic scaling actions in a diagnostic system module,
you must target that diagnostic system module to the Administration Server.

Some of the smart rules and scaling actions used for elasticity must execute from the
Administration Server so that they can have visibility across the dynamic cluster. As a result of
this, diagnostic system modules intended for elastic scaling of dynamic clusters must be
targeted to the Administration Server. If such a module is targeted to the cluster itself, or to an
individual Managed Server, errors are generated and the policies and actions are consequently
ignored by WLDF.

Provisioning Machines
To configure policy-based elastic scaling, you must appropriately provision machines for the
maximum necessary scale-up capacity.

Chapter 2
Configuring Policies and Actions(changed)

2-3

3
On-Demand Scaling

Oracle WebLogic Server supports on-demand scaling, which is the ability to scale a dynamic
cluster up or down by manually adding or removing running dynamic server instances as
needed. On-demand scaling is the simplest and most basic form of incorporating elasticity into
a WebLogic domain.

• What is On-Demand Scaling?

• On-Demand Scaling Using Fusion Middleware Control
You can perform on-demand scaling using Fusion Middleware Control.

• On-Demand Scaling Using WLST
You can manually scale a dynamic cluster up or down using the WLST commands.

What is On-Demand Scaling?
On-demand scaling allows you to manually add or remove running dynamic server instances
from an active dynamic cluster as needed.For example, if the average user-request backlog in
dynamic cluster members is trending up, indicating a need for higher processing capacity, you
can add running dynamic server instances to the dynamic cluster. When the backlog for user-
requests drops substantially, you can shut down idle dynamic server instances.
When you expand the cluster, the size must not exceed the limit set in Maximum Dynamic
Cluster Size. WebLogic Server adds only running dynamic server instances up to the
Maximum Dynamic Cluster Size limit. Also, when you shrink the cluster, the number of running
dynamic servers cannot be below the limit set in Minimum Dynamic Cluster Size.

To perform on-demand scaling, you must have a dynamic cluster configured. See Dynamic
Clusters in Administering Clusters for Oracle WebLogic Server.

You can perform on-demand scaling using the Fusion Middleware Control or WLST, as
described in the following sections:

• On-Demand Scaling Using Fusion Middleware Control

• On-Demand Scaling Using WLST

Note:

Before performing on-demand scaling of a dynamic cluster, make sure that the
scaling operation will not have adverse effects on the rest of the system. For
example, before a scale up, it may be necessary to adjust JDBC connection pool
sizes and Work Manager parameters to avoid exceeding database capacity. Before a
scale down, make sure that any inflight work has a chance to finish before the
dynamic server instances are shut down. Also, if you are using JMS or JTA, do not
use a scale down approach that lowers the dynamic cluster size configuration setting.
See Best Practices for Using Clustered JMS Services in Administering JMS
Resources for Oracle WebLogic Server.

3-1

On-Demand Scaling Using Fusion Middleware Control
You can perform on-demand scaling using Fusion Middleware Control.

1. From the WebLogic Domain dropdown menu, select Environment, then select Clusters.

2. In the Clusters table, select the row of the dynamic cluster you want to scale up or scale
down.

3. Click the Scale Up/Down button.

4. On the Scale Up/Down page, you can review current dynamic cluster settings. In the
Desired Server Count field, use the arrows to set the number of dynamic server instances
you want running in this dynamic cluster. Click Scale Up/Down to activate this setting. A
confirmation message is displayed to notify you that your scale up or scale down operation
was successful.

For more information about using Fusion Middleware Control to manage WebLogic Server, see
Administration in Administering Oracle WebLogic Server with Fusion Middleware Control.

On-Demand Scaling Using WLST
You can manually scale a dynamic cluster up or down using the WLST commands.

To manually scale your dynamic cluster using WLST:

• Use the scaleUp command to increase the number of running dynamic servers in your
dynamic cluster. When you use the scaleUp command and enable the
updateConfiguration argument, WLST will increase the size of the dynamic cluster by the
specified number of dynamic servers and start these server instances.

• Use the scaleDown command to decrease the number of running dynamic servers in your
dynamic cluster. When you use the scaleDown command and enable the
updateConfiguration argument, WLST will gracefully shut down the specified number of
running dynamic servers and remove them from the dynamic cluster.

Note:

The scaleDown command lowers the cluster dynamic cluster size setting when its
updateConfiguration option is enabled, which in turn can abandon JMS
persistent messages and JTA transactions that are associated with retired
servers. If you are using JMS or JTA, do not use scaleDown with its
updateConfiguration option enabled. See Best Practices for Using Cluster
Targeted JMS Services in Administering JMS Resources for Oracle WebLogic
Server.

See scaleUp and scaleDown commands in WLST Command Reference for Oracle WebLogic
Server.

See Expanding or Reducing Dynamic Clusters in Administering Clusters for Oracle WebLogic
Server.

Example 3-1 demonstrates how to use WLST to scale a dynamic cluster named
DynamicCluster up by two running dynamic server instances and then scale it back down by
one running dynamic server instance.

Chapter 3
On-Demand Scaling Using Fusion Middleware Control

3-2

Example 3-1 On-Demand Scaling Using WLST

wls:/offline> connect('weblogic','weblogic','t3://localhost:7001')
Connecting to weblogic server instance running at t3://localhost:7001 as username
weblogic...

Successfully connected to Admin Server 'AdminServer' that belongs to domain 'mydomain'.

wls:/mydomain/serverConfig/> scaleUp("DynamicCluster", 2, true ,true)
Remote ScaleUp started successfully after 38 seconds. Waiting for 2 servers to reach the
running state. The timeout is 600 seconds.

All servers are now running.
wls:/mydomain/serverConfig/> scaleDown("DynamicCluster", 1, true ,true)
Remote ScaleDown started successfully after 0 seconds.
The servers were stopped successfully.

Chapter 3
On-Demand Scaling Using WLST

3-3

4
Elastic Actions

The Policies and Actions component of the WebLogic Diagnostics Framework (WLDF) in
Oracle WebLogic Server provides two actions for performing elastic operations in a dynamic
cluster: scale up, and scale down.The following sections describe the two elastic actions and
the roadmap for configuring the elastic actions:

• Introducing the Elastic Actions
The scale up and scale down actions are used to start or stop running dynamic server
instances in a dynamic cluster during scaling operations.

• Configuring Scale Up Actions
When an associated policy is triggered, the scale up action adds running dynamic server
instances to the specified dynamic cluster.

• Configuring Scale Down Actions
When an associated policy is triggered, the scale down action shuts down running dynamic
server instances in the specified dynamic cluster.

Introducing the Elastic Actions
The scale up and scale down actions are used to start or stop running dynamic server
instances in a dynamic cluster during scaling operations.

Elastic actions are associated with policies. As a policy's conditions are met, the elastic action
is triggered and the scaling operation begins. This type of scaling is called policy based
scaling. See Policy-Based Scaling .

Only one elastic action can be assigned to a policy. However, any number of non-scaling
actions can be assigned to a policy, and elastic actions can be used in conjunction with non-
scaling actions.

Note:

To configure automated elasticity for a dynamic cluster, you must create a domain-
scope diagnostic system module in which you define the scaling policies, along with
their corresponding elastic actions, and then target that diagnostic module to the
Administration Server.

See Configuring Policies and Actions in Configuring and Using the Diagnostics Framework for
Oracle WebLogic Server for information on the Policies and Actions component of WLDF.

Configuring Scale Up Actions
When an associated policy is triggered, the scale up action adds running dynamic server
instances to the specified dynamic cluster.

Example 4-1 shows a scale up action that will scale a dynamic cluster up by one running
dynamic server instance.

4-1

Example 4-2 shows how to create and configure the scale up action shown in Example 4-1
using WLST. This scale up action is used as part of the policy-based scaling demo in Policy-
Based Scaling Example.

Example 4-1 Sample Configuration for a Scale Up Action (in DIAG_MODULE.xml)

<wldf-resource>
 <name>ClusterManager</name>
 <watch-notification>
 <!-- One or more policy configurations -->
 <scale-up-action>
 <name>scaleUp</name>
 <cluster-name>DynamicCluster</cluster-name>
 <scaling-size>1</scaling-size>
 </scale-up-action>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

Example 4-2 Configuring a Scale Up Action

startEdit()
scaleUp=wn.createScaleUpAction('scaleUp')
 scaleUp.setScalingSize(1)
 scaleUp.setClusterName(DynamicCluster)
save()
activate()

Configuring Scale Down Actions
When an associated policy is triggered, the scale down action shuts down running dynamic
server instances in the specified dynamic cluster.

Example 4-3 shows a scale down action that will scale down a dynamic cluster by one dynamic
server instance.

Example 4-4 shows how to create and configure the scale down action shown in Example 4-3.
This scale down action is used as part of the policy-based scaling demo in Policy-Based
Scaling Example.

Shutting down server instances during a scale down operation can take a significant amount of
time if there are, for instance, unreplicated sessions. Until they time out, the server instance
will not shut down.

To reduce the time it takes to complete a scale down operation, the following
DynamicServersMBean attributes are used:

• DynamicClusterShutdownTimeoutSeconds
• IgnoreSessionsDuringShutdown
• WaitForAllSessionsDuringShutdown
By specifying a timeout period or ignoring sessions during server shutdown, the shutdown time
can be limited. However, remaining sessions may be lost. See Table 2-1 for descriptions of
these attributes.

Example 4-3 Sample Configuration for a Scale Down Action (in DIAG_MODULE.xml)

<wldf-resource>
 <name>ClusterManager</name>
 <watch-notification>

Chapter 4
Configuring Scale Down Actions

4-2

 <!-- One or more policy configurations -->
 <scale-down-action>
 <name>scaleDown</name>
 <cluster-name>DynamicCluster</cluster-name>
 <scaling-size>1</scaling-size>
 </scale-down-action>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

Example 4-4 Configuring a Scale Down Action

startEdit()
scaleDown=wn.createScaleDownAction('scaleDown')
scaleDown.setScalingSize(1)
scaleDown.setClusterName(DynamicCluster)
save()
activate()

Shutting down server instances during a scale down operation can take a significant amount of
time if there are, for example, unreplicated sessions. Until those unreplication sessions time
out, the server instance is not shut down.

To reduce the time it takes to complete a scale down operation, you can configure the following
DynamicServersMBean attributes:

• DynamicClusterShutdownTimeoutSeconds
• IgnoreSessionsDuringShutdown
• WaitForAllSessionsDuringShutdown
By specifying a timeout period or ignoring sessions during server shutdown, the shutdown time
can be reduced. However, remaining sessions may be lost. See Configuring Dynamic Clusters
for descriptions of these attributes.

Chapter 4
Configuring Scale Down Actions

4-3

5
Calendar-Based Scaling

In Oracle WebLogic Server, you use calendar-based scaling to scale a dynamic cluster up and
down based on a calendar schedule.The following sections describe how to configure
calendar-based scaling with examples:

• Overview of Calendar-Based Scaling
WLDF supports actions for policies to be triggered according to a calendar schedule at a
specific time, after a duration of time, or at timed intervals. Calendar-based scaling
executes a scaling action based on a defined schedule.

• Configuring Calendar-Based Scaling
To configure calendar-based scaling, you create a policy and define the policy's schedule,
then create and assign a scaling action to that policy.

Overview of Calendar-Based Scaling
WLDF supports actions for policies to be triggered according to a calendar schedule at a
specific time, after a duration of time, or at timed intervals. Calendar-based scaling executes a
scaling action based on a defined schedule.

Calendar-based rule schedules are only supported for Harvester rules that utilize the Java
Expression Language (EL) as the expression language. The following policy types support
calendar-based rule schedules:

• Calendar-based

• Smart rule-based

• Collected metrics

Configuring Calendar-Based Scaling
To configure calendar-based scaling, you create a policy and define the policy's schedule, then
create and assign a scaling action to that policy.

Policy schedules can be set to set to execute based on the following:

• Every N seconds

• Every N minutes

• Every N hours

• Specific days of the week (at a specific time)

• Specific days of the month (at a specific time)

Policy schedules are based on the WLDFScheduleBean. Table 5-1 lists the attributes used for
setting policy schedules.

5-1

Table 5-1 WLDFScheduleBean Attributes

Attribute Default Value Allowable Values

dayOfMonth * (every day) • last, which specifies the last day of the month

• 1st to 31st
• 1 to 31
• Sun, Mon, Tues, Weds, Thurs, Fri, Sat
• -x where x is the number of days before the last day of the month (for

example, -7 would be seven days before the last day of the month)

daysOfWeek * (every day) • 0 to 7 (0 and 7 both represent Sunday)

• Sun, Mon, Tues, Weds, Thurs, Fri, Sat
hour * (every hour) • 0 to 23
minute */5 (every five

minutes)
• 0 to 59

month * (every month) • 1 to 12
• Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

second 0 • 0 to 59
timezone n/a • Defaults to the local VM time zone

year * (every year) • A four-digit calendar year, for example: 2015

These attributes can be specified in several ways using the following syntax . This syntax is
supported by the EJB ScheduleExpression class. See the ScheduleExpression
documentation for full details about this syntax.

1. As a single value. For example:

second = "10"
month = "Oct"

2. Using a wild card (*), which represents all of the attribute's allowable values. For example,
to specify every day of the week:

dayOfWeek = "*"
3. As a range, which constrains the attribute to an inclusive range of values. You specify the

two ends of the range, separated by a dash (-). For example:

second = "1-10"
dayOfWeek = "Mon-Fri"

4. As an increment, which constrains the attribute based on a starting point and an interval,
using a slash (/) to separate the two values. The use of increments is supported only for
specifying second, minute, and hour attributes. For example:

• minute = "*/5" specifies every five minutes. This syntax is equivalent to minute =
"0,5,10,15,20,25,30,35,40,45,50,55"

• second = "30/10" specifies every 10 seconds within the minute starting at second 30.
This syntax is equivalent to second = "30,40,50"

Chapter 5
Configuring Calendar-Based Scaling

5-2

http://docs.oracle.com/javaee/7/api/javax/ejb/ScheduleExpression.html

Note:

When the maximum value for an attribute is reached, the incrementing stops.
That is, it will not exceed the maximum allowable value.

5. As a list, which constrains the attribute to two or more allowable values, or range of values,
using a comma-separated list. Each list item must be a value or range; list items cannot be
wild cards, lists, or increments. For example:

second = "10,20,30"
dayOfWeek = "Mon,Wed,Fri"
minute = "0-10,30,40"

Note:

• Before you configure calendar-based scaling in your domain, make sure that you
have created a dynamic cluster and completed the prerequisite tasks that are
described in Requirements for Configuring Elasticity .

• Calendar-based scaling policies must be configured in a domain-wide diagnostic
system module that is targeted to the Administration Server.

You can configure calendar based scaling using the Fusion Middleware Control or WLST, as
described in the following sections:

• Configuring Calendar-Based Scaling Using Fusion Middleware Control

• Configuring Calendar-Based Scaling Using WLST

• Configuring Calendar-Based Scaling Using Fusion Middleware Control

• Configuring Calendar-Based Scaling Using WLST

Configuring Calendar-Based Scaling Using Fusion Middleware Control
To configure calendar-based scaling using Fusion Middleware Control:

1. Create and enable a policy that supports calendar-based rules. See Create a new policy in
Administering Oracle WebLogic Server with Fusion Middleware Control.

Note:

While creating a policy in Fusion Middleware Control, you can specify the
schedule for the policy and also create and assign a scaling action to the policy.
If you choose not to specify the schedule and scaling action for a policy during
creation, you can use the following steps to complete the necessary
configuration.

2. Set or update the schedule for your policy:

a. From the WebLogic Domain dropdown menu, select Diagnostics, then select
Diagnostic Modules.

Chapter 5
Configuring Calendar-Based Scaling

5-3

b. In the Diagnostic Modules table, select the diagnostic system module containing the
policy you want to configure.

c. Select Configuration > Policies and Actions > Policies and click the name of the
policy you want to configure.

d. Select the Schedule page and define the desired schedule settings for your policy.

e. Click Apply.

3. Create and enable a scaling action. See Create a scale up or scale down action in
Administering Oracle WebLogic Server with Fusion Middleware Control.

4. Assign a scaling action to your policy:

Note:

You can assign only one scaling action to a given policy.

a. From the WebLogic Domain dropdown menu, select Diagnostics, then select
Diagnostic Modules.

b. In the Diagnostic Modules table, select the diagnostic system module containing the
policy you want to configure.

c. Select Configuration > Policies and Actions > Policies and click the name of the
policy you want to configure.

d. Select the Actions page.

e. In the Scaling Actions section, select either Scale Up Action or Scale Down Action
and choose the desired scaling action from the list. Optionally, click Create Scale Up
Action or Create Scale Down Action to create a new scaling action for this policy.

f. Click Apply.

Configuring Calendar-Based Scaling Using WLST
The following examples show how to use WLST to create and configure calendar-based
policies that scale a dynamic cluster at a certain time on a certain date. Example 5-1 shows the
commands to configure a calendar-based policy that executes a scale up action at 3:00 a.m.
on December 26. Example 5-2 shows the commands to configure a calendar-based policy that
executes a scale down action at midnight on January 15.

Example 5-1 Calendar-Based Policy With a Scale Up Action

calendarScaleUp=wn.createWatch('ChristmasReturnsScaleUpWatch')
 calendarScaleUp.setExpressionLanguage('EL')
 calendarScaleUp.getSchedule().setHour('3')
 calendarScaleUp.getSchedule().setMinute('0')
 calendarScaleUp.getSchedule().setSecond('0')
 calendarScaleUp.getSchedule().setDayOfMonth('26')
 calendarScaleUp.getSchedule().setMonth('Dec')
 calendarScaleUp.setEnabled(false)
 calendarScaleUp.addNotification(scaleUp)

Example 5-2 Calendar-Based Policy With a Scale Down Action

calendarScaleDown=wn.createWatch('PostChristmasReturnsScaleDownWatch')
 calendarScaleDown.setExpressionLanguage('EL')

Chapter 5
Configuring Calendar-Based Scaling

5-4

 calendarScaleDown.getSchedule().setHour('0')
 calendarScaleDown.getSchedule().setMinute('0')
 calendarScaleDown.getSchedule().setSecond('0')
 calendarScaleDown.getSchedule().setDayOfMonth('15')
 calendarScaleDown.getSchedule().setMonth('Jan')
 calendarScaleDown.setEnabled(false)
 calendarScaleDown.addNotification(scaleDown)

Chapter 5
Configuring Calendar-Based Scaling

5-5

6
Policy-Based Scaling

Oracle WebLogic Server supports policy-based scaling, which is the ability to automatically
execute a scaling operation on a dynamic cluster in response to a change in demand, or any
other condition, that is monitored by a policy that has been configured in a domain-scope
diagnostic system module.The following sections describe policy-based scaling in WebLogic
Server and include an example of policy-based scaling using smart rules to track the average
throughput in a cluster:

• What is Policy-Based Scaling?

• Introducing Smart Rules
Smart rules are prepackaged functions with a set of configurable parameters that allow you
to create complex policy expressions just by specifying the values for these configurable
parameters.

• Policy-Based Scaling Example
You can create policies that use the wls:HighThroughput() and wls:LowThroughput()
smart rules to scale a dynamic cluster up under high load, and then scale the dynamic
cluster back down when the demand decreases.

What is Policy-Based Scaling?
Policy-based scaling is based on policies and associated actions, leveraging the Policies and
Actions component of the WebLogic Diagnostics Framework (WLDF). A policy sets the
conditions under which a scaling operation on a dynamic cluster must occur, and when these
conditions are met, the scaling action performs the scaling operation. For more information on
the Policies and Actions component of WLDF, see Configuring Policies and Actions in
Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

WLDF provides two elastic actions, scale up and scale down, that you can assign to a policy to
perform a scaling operation. For more information on the scale up and scale down actions, see
Elastic Actions . Only one scaling action can be assigned to a given policy.

For example, Example 6-1 shows the WLST commands to create and configure a policy that,
when triggered, executes a scale up action. Note the following:

• The scale up action, scaleUp, is created. This action is configured to scale up the dynamic
cluster, DynamicCluster, by one server instance.

• The policy, named highMark, is configured to be evaluated every 10 seconds.

• When the policy is triggered — that is, it is evaluated to true — the corresponding scale up
action is executed.

Similarly, Example 6-2 shows the configuration of a policy that, when triggered, executes a
scale down action. Note the following:

• The scale down action, scaleDown, is created. This action is configured to scale down the
dynamic cluster, DynamicCluster, by one server instance.

• The policy, named LowMark, is configured to be evaluated every 10 seconds.

6-1

• When the policy is triggered — that is, it is evaluated to true — the corresponding scale
down action is executed.

Example 6-1 Creating a Policy to Scale Up a Dynamic Cluster

scaleUp=wn.lookupScaleUpAction('scaleUp')
if scaleUp == None:
 print "Creating scale up action"
 scaleUp=wn.createScaleUpAction('scaleUp')
scaleUp.setScalingSize(1)
scaleUp.setClusterName(DynamicCluster)
high=wn.createWatch('highMark')
high.setExpressionLanguage('EL')
high.getSchedule().setMinute('*')
high.getSchedule().setSecond('*/10')
high.getRuleType()
high.setAlarmType('AutomaticReset')
high.setAlarmResetPeriod(150000)
high.setRuleExpression("wls:ClusterHighThroughput('"+DynamicCluster+"', '10s', '30s',
250, 60)")
high.addNotification(scaleUp)
high.setEnabled(true)

Example 6-2 Creating a Policy to Scale Down a Dynamic Cluster

scaleDown=wn.lookupScaleDownAction('scaleDown')
if scaleDown == None:
 print "Creating scale down action"
 scaleDown=wn.createScaleDownAction('scaleDown')
scaleDown.setScalingSize(1)
scaleDown.setClusterName(DynamicCluster)
low=wn.createWatch('lowMark')
low.setExpressionLanguage('EL')
low.getSchedule().setMinute('*')
low.getSchedule().setSecond('*/10')
low.getRuleType()
low.setAlarmType('AutomaticReset')
low.setAlarmResetPeriod(60000)
low.setRuleExpression("wls:ClusterLowThroughput('"+DynamicCluster+"', '10s', '60s', 50,
75)")
low.addNotification(scaleDown)
low.setEnabled(true)

Note:

To configure automated elasticity for a dynamic cluster, you must create a domain-
scope diagnostic system module in which you define the scaling policy, along with its
corresponding elastic action, and then target that diagnostic module to the
Administration Server.

Introducing Smart Rules
Smart rules are prepackaged functions with a set of configurable parameters that allow you to
create complex policy expressions just by specifying the values for these configurable
parameters.

A smart rule can be used as a predicate within a policy expression, either alone or with other
predicates to create a more complex policy expression. Smart rules policy expressions are

Chapter 6
Introducing Smart Rules

6-2

specified using the Java Expression Language (EL). See Configuring Smart Rule Based
Policies in Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

Smart rules can be used in policy-based scaling. Policy-Based Scaling Example shows the use
of policies that use smart rules, wls:ClusterHighThroughput() and
wls:ClusterLowThroughput(), in their rule expressions. These two smart rules are also shown
in Example 6-1 and Example 6-2:

• Example 6-1 shows the wls:ClusterHighThroughput() smart rule. This smart rule
measures whether the average throughput in a cluster is increasing, as indicated by the
average value of the ThreadPoolRuntimeMBean.Throughput attribute in each Managed
Server.

As specified in this example, this smart rule is triggered — that is, it is evaluated to true —
if the average Throughput value, collected at 10-second intervals over the previous 30
seconds, is greater than or equal to 250 on at least 60 per cent of the servers in the
dynamic cluster, DynamicCluster. When this smart rule is triggered, it executes the scale
up action, scaleUp, which starts up a server instance in the cluster.

• Example 6-2 shows the wls:ClusterLowThroughput() smart rule. This smart rule
measures whether the average throughput in a cluster is decreasing, as indicated by the
average value of the ThreadPoolRuntimeMBean.Throughput attribute in each Managed
Server.

As specified in this example, this smart rule is triggered — that is, it is evaluated to true —
if the average Throughput value, collected at 10-second intervals over the previous 60
seconds, is less than 50 on at least 75 per cent of the servers in the dynamic cluster,
DynamicCluster. When this smart rule is triggered, it executes the scale down action,
scaleDown, which stops a server instance in the cluster.

For more information about creating and configuring smart rule-based policies:

• See Create and configure policies and actions in Administering Oracle WebLogic Server
with Fusion Middleware Control using the Fusion Middleware Control console.

• See Smart Rule Reference in Configuring and Using the Diagnostics Framework for Oracle
WebLogic Server.

Policy-Based Scaling Example
You can create policies that use the wls:HighThroughput() and wls:LowThroughput() smart
rules to scale a dynamic cluster up under high load, and then scale the dynamic cluster back
down when the demand decreases.

The following topics describe the tasks for running a demonstration that shows policy-based
scaling of a dynamic cluster:

• Prerequisites

• Setting the Environment

• Creating the Domain and its Resources

• Configuring and Starting the Apache Web Server

• Viewing Dynamic Server Configuration and Activity

• Using JMeter to Drive the Demo

• Re-running and Stopping the Elasticity Demo

Chapter 6
Policy-Based Scaling Example

6-3

Prerequisites
To successfully run this example, first prepare your environment and download the required
files used in this example.

This section includes the following tasks:

• Installing Required Software

• Downloading and Unpacking Required Files

Installing Required Software
To run this example, download and install the following software:

• Oracle WebLogic Server—for instructions and more information, see Installing the Oracle
WebLogic Server and Coherence Software in Installing and Configuring Oracle WebLogic
Server and Coherence.

Note:

You must have a valid JDK 8 to install and use WebLogic Server for this
example. See JDK 8 Certification in What's New in Oracle WebLogic Server.

• Apache HTTP Server - Ensure that you have a supported Apache HTTP Server
installation. See https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-
certification-100350.html.

• Apache HTTP Server 2.2.x plug-ins for WebLogic Server are available for download on the
My Oracle Support (http://support.oracle.com) and Software Delivery Cloud (http://
edelivery.oracle.com) web sites as zip files containing the necessary binary and helper
files. See Configure the Apache HTTP Server Plug-In for more information about
configuring the plug-in for Apache HTTP Server.

• Apache JMeter—you can view instructions and download and install Apache JMeter from
http://jmeter.apache.org/download_jmeter.cgi.

Downloading and Unpacking Required Files
The elasticity demo JAR files are available for download from the article Elasticity for Dynamic
Clusters in the WebLogic Server Blog.

Unpack the following files from the elasticity JAR that are used in this example:

Note:

Save all of the following files in the same directory. This directory is referred to as
DEMO_HOME in this example.

• create-domain script - this script creates the domain in this example.

• Elasticity5MinuteDemo.jmx—the JMeter test plan used in this example.

Chapter 6
Policy-Based Scaling Example

6-4

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://support.oracle.com
http://edelivery.oracle.com
http://edelivery.oracle.com
http://jmeter.apache.org/download_jmeter.cgi
https://blogs.oracle.com/weblogicserver/elasticity-for-dynamic-clusters-with-apache
https://blogs.oracle.com/weblogicserver/elasticity-for-dynamic-clusters-with-apache

• Elasticity1HourDemo.jmx—optional, longer JMeter test plan.

Setting the Environment
After installing WebLogic Server in the ORACLE_HOME directory, run the setWLSEnv script
command to set your environment variables for this example.

1. Open a command window.

Note:

If you are running this demo on a Windows system, you may need to have
administrator privileges. If so, open the command window as follows:

a. Click Start.

b. Right-click Command Prompt, then select Run as administrator.

If Command Prompt is not listed in the Start Menu, enter command in the
Search field, then right-click Command Prompt.

c. Enter the administrator credentials, if requested.

2. In the command window, change to the ORACLE_HOME/wlserver/server/bin directory.

3. Run the setWLSEnv script. For example:

Windows:

ORACLE_HOME\wlserver\server\bin> setWLSEnv.cmd

Unix:

prompt> sh setWLSEnv.sh

Creating the Domain and its Resources
Creating the domain using the create-domain script sets up your domain for this example,
including the following:

• Creates the elasticity_domain domain and directory.

• Creates and configures the dynamic cluster, DynamicCluster, and four dynamic servers,
DynamicCluster-1, DynamicCluster-2, DynamicCluster-3, and DynamicCluster-4.

• Create and configures the smart rule-based policies, highMark and lowMark, and the
elastic actions, scaleDown and scaleUp.

To create the domain:

1. Change to the directory in which you unpacked the demo JAR file. For example, on
Windows:

ORACLE_HOME\wlserver\server\bin> cd DEMO_HOME
2. Run the create-domain script. For example:

Windows:

DEMO_HOME> create-domain.cmd username password
Unix:

Chapter 6
Policy-Based Scaling Example

6-5

DEMO_HOME> sh create-domain.sh username password
Use the WebLogic Administrator's username and password to run the script.

Configuring and Starting the Apache Web Server
After the installation of Apache HTTP Server and the plug-in for Apache HTTP Server, ensure
that you configure the httpd.conf file with the following details:

LoadModule weblogic_module /home/myhome/weblogic-plugins/lib/mod_wl.so

Also, specify the WebLogic cluster and all the ports of the managed servers in the cluster. You
can also provide the cluster DNS name instead. For example:

<IfModule mod_weblogic.c>
WebLogicCluster localhost:8001,localhost:8002
</IfModule>
<Location>
SetHandler weblogic-handler
</Location>

Starting the Apache Web Server

Start the Apache WebServer using the following command from the Apache bin directory:

Windows

httpd.exe

Unix

sudo systemctl start httpd

Viewing Dynamic Server Configuration and Activity
When you run the start-servers script, the following WebLogic Server instances are started:

• The Administration Server

• Two server instances in the dynamic cluster named DynamicCluster:

– DynamicCluster-1
– DynamicCluster-2

You can use either the WebLogic Remote Console or Fusion Middleware Control to view the
configuration of DynamicCluster and also the number of currently running server instances in
the cluster as the demo runs.

For example, to view DynamicCluster in the WebLogic Remote Console:

1. Launch the WebLogic Remote Console.

See Get Started in WebLogic Remote Console for full details.

2. In the Monitoring Tree, go to Environment, then Servers.

Chapter 6
Policy-Based Scaling Example

6-6

The Summary of Servers page is displayed, listing the servers that are currently running
and shut down. You can refer to this page as the demo runs to see the state of server
instances.

See Starting and Stopping Servers in Administering Server Startup and Shutdown for Oracle
WebLogic Server.

Using JMeter to Drive the Demo
To execute the test plan from JMeter:

1. Open a command prompt and change to the bin directory of the JMeter installation. For
example, C:\JMeter\apache-jmeter-2.13\bin.

2. Enter the following command to start JMeter in GUI mode:

jmeter.bat
3. In the JMeter console, select File > Open and select Elasticity5MinuteDemo.jmx.

4. From the Options menu, make sure that Log Viewer is selected.

5. In the navigation pane on the left, make sure Elasticity Ping Servlet Driver is selected.

6. Select Run > Start.

Re-running and Stopping the Elasticity Demo
You can re-run the elasticity demo from the JMeter GUI, or you can stop the demo and all
running server instances by running the stop-servers script as follows:

Windows:

DEMO_HOME> stop-servers.cmd

Unix:

DEMO_HOME> sh stop-servers.sh

Chapter 6
Policy-Based Scaling Example

6-7

7
Configuring the Data Source Interceptor

Before a scale up operation is executed in Oracle WebLogic Server, a database interceptor
can be automatically invoked to determine the number of database connections that can be
created from a WebLogic domain to a database. This interceptor can be used to ensure that
the capacities of the available connections are not exceeded as a result of a subsequent scale
up operation.The following sections describe how to configure and use the data source
interceptor:

• Overview of the Data Source Interceptor
In a scale up operation, new dynamic server instances are started in a dynamic cluster. If
any data sources are targeted to this dynamic cluster, then starting a new server instance
can result in the creation of more connections to the databases. However, the creation of
these additional database connections has the potential to exceed database capabilities.
The data source interceptor provides the means to determine whether database capacity
would be exceeded by the addition of a new server instance and, if so, to prevent a scale
up operation from proceeding.

• Configuring Data Source Interceptors

Overview of the Data Source Interceptor
In a scale up operation, new dynamic server instances are started in a dynamic cluster. If any
data sources are targeted to this dynamic cluster, then starting a new server instance can
result in the creation of more connections to the databases. However, the creation of these
additional database connections has the potential to exceed database capabilities. The data
source interceptor provides the means to determine whether database capacity would be
exceeded by the addition of a new server instance and, if so, to prevent a scale up operation
from proceeding.

Before a scale up operation, the data source interceptor determines the maximum number of
connections that may be created if additional dynamic server instances are added to the
dynamic cluster. If this number is not yet currently met, the interceptor allows the scale up
operation to proceed. However, if the number is already met or exceeded, then the interceptor
stops the scale up operation from being invoked.

Note:

If the execution of an interceptor fails, then neither the associated scaling operation
nor any subsequently configured interceptors are invoked.

Configuring Data Source Interceptors
When you configure a data source interceptor, you specify the database capacities in terms of
the total number of connections allowed.Data source interceptors are configured using the
DatasourceInterceptorMBean. The connection URL specified in a data source interceptor
configuration also identifies the database to which the connections are made. It is possible that

7-1

several databases, with a certain total capacity, map to the same machine that hosts those
databases. The data source interceptor configuration identifies a quota corresponding to a
group of database URLs, and this quota is the maximum total number of connections that may
be created from the domain.
If data sources are targeted to the dynamic cluster that is being scaled up, the data source
interceptor will:

• Determine the maximum number of projected connections that may be created on groups
of databases if additional dynamic server instances are added to the dynamic cluster.

• Allow the scaling operation to proceed if the configured quota is not exceeded.

• Generate an exception if the configured quota is exceeded, which prevents the scaling
operation from proceeding.

Example 7-1 shows a sample configuration for a data source interceptor in the config.xml file.

Example 7-2 shows the WLST commands to create and configure a new data source
interceptor.

Example 7-1 Sample Configuration for a Data Source Interceptor (in CONFIG.XML)

 <interceptors>
 <interceptor xsi:type="datasource-interceptorType">
 <name>datasource-interceptor-1</name>
 <priority>1073741823</priority>
 <connection-urls-pattern>jdbc:derby://host:1527/(.*)
 </connection-urls-pattern>
 <connection-quota>20</connection-quota>
 </interceptor>
 </interceptors>

Example 7-2 Creating a Data Source Interceptor Using WLST

startEdit()

cd('/Interceptors/wl_server')
cmo.createDatasourceInterceptor('datasource-interceptor-1')

cd('/Interceptors/wl_server/Interceptors/datasource-interceptor-1')
cmo.setPriority(1073741823)
cmo.setConnectionQuota(20)
cmo.setConnectionUrlsPattern(jdbc:derby://host:1527/(.*))

activate()
save()

Chapter 7
Configuring Data Source Interceptors

7-2

8
Configuring the Script Interceptor

In Oracle WebLogic Server, you can configure and use script interceptors in conjunction with
elastic scaling operations performed in dynamic clusters.The following sections describe how
to configure the script interceptor:

• Overview of the Script Interceptor

• Configuring Error Handling for a Script Interceptor
When configuring a preprocessor or postprocessor script for a script interceptor, you can
specify an error handler script to use if an error occurs during the execution of the main
script.

• Reserved Environment Variables

Overview of the Script Interceptor
Script interceptors are provided as a means to perform tasks before or immediately after a
scaling operation has been completed.During a scaling operation, it is necessary to perform
functions with various entities or systems in the WebLogic Server environment. For example,
before starting a new server instance in a dynamic cluster, it is necessary to coordinate with a
virtualization manager to provision a new VM or to configure a machine.
Script interceptors can execute two main types of scripts:

• Preprocessor scripts execute tasks prior to a scaling operation

• Postprocessor scripts execute tasks immediately after a scaling operation

Script interceptors can also execute error handler scripts if an error occurs during the
execution of the preprocessor or postprocessor scripts. And multiple script interceptor
instances can be used in an interceptor chain for a scaling operation.

Note:

If the execution of a preprocessor script fails, then neither the associated scaling
operation nor any subsequently configured interceptors are invoked. If a
postprocessor script fails, the scaling action that preceded the invocation of that
script cannot be reverted or otherwise cancelled.

Script interceptors are configured using the ScriptInterceptorMBean. Example 8-1 offers a
sample script interceptor configuration.

Example 8-1 Configuring a Script Interceptor

EditServiceMBean editService = mbsFactory.getEditService();
ConfigurationManagerMBean configManager = editService.getConfigurationManager();
configManager.startEdit(5000, 5000);

DomainMBean domainMBean = editService.getDomainConfiguration();
InterceptorsMBean interceptors = (InterceptorsMBean) domainMBean.getInterceptors();
ScriptInterceptorMBean scriptInterceptor1 =

8-1

interceptors.createScriptInterceptor("script-1");
scriptInterceptor1.setPriority(50);
PreProcessorScriptMBean pre1 = scriptInterceptor1.getPreProcessor();
pre1.setWorkingDirectory(domainMBean.getRootDirectory());
pre1.setPathToScript("/bin/sh");
pre1.setArguments(new String[] {domainMBean.getRootDirectory() + "/scripts/interceptors/
echo-arg-interceptor.sh", "first"});
Properties envAsProps = new Properties();
envAsProps.put("env-key-1", "env-1-value");
envAsProps.put("env-key-2", "env-2-value");
envAsProps.put("env-key-3", "env-3-value");
pre1.setEnvironment(envAsProps);

ScriptInterceptorMBean scriptInterceptor2 =
interceptors.createScriptInterceptor("script-2");
scriptInterceptor2.setPriority(20);
PreProcessorScriptMBean pre2 = scriptInterceptor2.getPreProcessor();
pre2.setWorkingDirectory(domainMBean.getRootDirectory());
pre2.setPathToScript("/bin/sh");
pre2.setArguments(new String[] {domainMBean.getRootDirectory() + "/scripts/interceptors/
echo-arg-interceptor.sh", "second"});

configManager.save();
configManager.activate(5000);

Configuring Error Handling for a Script Interceptor
When configuring a preprocessor or postprocessor script for a script interceptor, you can
specify an error handler script to use if an error occurs during the execution of the main script.

The error handler script is executed using the same arguments and environment properties as
the command script.

Reserved Environment Variables
Script interceptors can pass both computed and dynamic parameters as environment variables
to scripts. In addition, WLDF includes a set of reserved environment variables that can be used
in scripts. These reserved environment variables are listed and described in the following table.
Note that with the exception of the first variable in this table, WLS_SCRIPT_THIS_STEP_FAILED,
each of these variables can be passed to preprocessor scripts, postprocessor scripts, and
error handler scripts.

Table 8-1 Reserved Environment Variables

Environment Variable Description

WLS_SCRIPT_THIS_STEP_FAILED This variable is passed to error-handler scripts only. Value 'false'
indicates some subsequent step failed.

• A value of true indicates that current step failed.

• A value of false indicates that a subsequent step failed.

WLS_SCRIPT_OUTPUT_FILE Represents the path to the output properties file that scripts may
create. The contents of the file will be read and passed to
subsequent scripts.

WLS_SCRIPT_TEMP_DIR Represents the path to the temporary directory in which scripts
may create temporary files.

Chapter 8
Configuring Error Handling for a Script Interceptor

8-2

Table 8-1 (Cont.) Reserved Environment Variables

Environment Variable Description

WLS_SCRIPT_DYNAMIC_CLUSTER_NAME Represents the name of the dynamic cluster that is being scaled up
or down.

WLS_SCRIPT_DYNAMIC_CLUSTER_OPERATION_NAME Represents the current scaling operation, which is either scaleUp
or scaleDown.

WLS_SCRIPT_DYNAMIC_CLUSTER_MIN_SIZE Represents the minimum size of the dynamic cluster.

WLS_SCRIPT_DYNAMIC_CLUSTER_MAX_SIZE Represents the maximum size of the dynamic cluster.

WLS_SCRIPT_DYNAMIC_CLUSTER_SIZE Represents the current size of the dynamic cluster.

WLS_SCRIPT_DYNAMIC_CLUSTER_CANDIDATE_MEMBE
R_NAMES

Represents the names of candidate servers that may be chosen to
be started or stopped.

WLS_SCRIPT_DYNAMIC_CLUSTER_REQUESTED_SCALI
NG_SIZE

Represents the number of running servers in the cluster that are
requested to be either incremented or decremented.

WLS_SCRIPT_DYNAMIC_CLUSTER_ALLOWED_SCALING
_SIZE

Represents the actual number of servers that will be started or
stopped (which may be smaller than the requested scaling size).

WLS_SCRIPT_DYNAMIC_CLUSTER_SCALED_MEMBER_N
AMES

Represents the names of the servers that are chosen to be started
or stopped during scale up or scale down operations.

Chapter 8
Reserved Environment Variables

8-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Overview
	What is Elasticity?
	Related Terminology
	Introducing the Script and Data Source Interceptors

	2 Requirements for Configuring Elasticity
	Configuring Dynamic Clusters
	Configuring Policies and Actions(changed)
	Targeting the Diagnostic System Module
	Provisioning Machines

	3 On-Demand Scaling
	What is On-Demand Scaling?
	On-Demand Scaling Using Fusion Middleware Control
	On-Demand Scaling Using WLST

	4 Elastic Actions
	Introducing the Elastic Actions
	Configuring Scale Up Actions
	Configuring Scale Down Actions

	5 Calendar-Based Scaling
	Overview of Calendar-Based Scaling
	Configuring Calendar-Based Scaling
	Configuring Calendar-Based Scaling Using Fusion Middleware Control
	Configuring Calendar-Based Scaling Using WLST

	6 Policy-Based Scaling
	What is Policy-Based Scaling?
	Introducing Smart Rules
	Policy-Based Scaling Example
	Prerequisites
	Installing Required Software
	Downloading and Unpacking Required Files

	Setting the Environment
	Creating the Domain and its Resources
	Configuring and Starting the Apache Web Server
	Viewing Dynamic Server Configuration and Activity
	Using JMeter to Drive the Demo
	Re-running and Stopping the Elasticity Demo

	7 Configuring the Data Source Interceptor
	Overview of the Data Source Interceptor
	Configuring Data Source Interceptors

	8 Configuring the Script Interceptor
	Overview of the Script Interceptor
	Configuring Error Handling for a Script Interceptor
	Reserved Environment Variables

