
Oracle® Fusion Middleware
Understanding WebLogic Web Services for
Oracle WebLogic Server

12c (12.2.1.4.0)
E90848-03
November 2022

Oracle Fusion Middleware Understanding WebLogic Web Services for Oracle WebLogic Server, 12c
(12.2.1.4.0)

E90848-03

Copyright © 2007, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility vi

Diversity and Inclusion vi

Conventions vi

 What's New in This Guide

New and Changed Features for 12c (12.2.1.x) vii

New and Changed Features for 12c (12.2.1) vii

New and Changed Features for 12c (12.1.3) vii

New and Changed Features for 12c (12.1.2) vii

1 Introducing Oracle WebLogic Web Services

Overview of WebLogic Web Services 1-1

How Do I Choose Between SOAP and REST? 1-2

2 Features and Standards Supported by WebLogic Web Services

A Note About JAX-WS 2.2 RI/JDK 8.0 Extensions 2-9

Apache XMLBeans 2.0 2-9

Fast Infoset 2-9

Java API for RESTful Web Services (JAX-RS) 2-10

Java API for XML-based RPC (JAX-RPC) 1.1 2-10

Java API for XML-based Web Services (JAX-WS) 2.2 2-10

Java Architecture for XML Binding (JAXB) 2.2 2-11

JSR 109: Implementing Enterprise Web Services 1.3 2-11

Security Assertion Markup Language (SAML) 2.0 and 1.1 2-11

Security Assertion Markup Language (SAML) Token Profile 1.1 and 1.0 2-12

Simple Object Access Protocol (SOAP) 1.1 and 1.2 2-12

SOAP Over JMS Transport 1.0 2-13

SOAP with Attachments API for Java (SAAJ) 1.3 2-13

Web Application Description Language (WADL) 2009 Membership Submission 2-13

iii

Web Services Addressing (WS-Addressing) 1.0 and 2004/08 Member Submission 2-14

Web Services Atomic Transaction (WS-AtomicTransaction) Version 1.2, 1.1, and 1.0 2-14

Web Services Coordination (WS-Coordination) Version 1.2, 1.1, and 1.0 2-14

Web Services Description Language (WSDL) 1.1 2-15

Web Services MakeConnection 1.1 2-16

Web Services Metadata for the Java Platform 2.0 (JSR-181) 2-16

Web Services Policy Attachment (WS-Policy Attachment) 1.5 and 1.2 2-17

Web Services Policy Framework (WS-Policy) 1.5 and 1.2 2-17

Web Services Reliable Messaging (WS-ReliableMessaging) 2-18

Web Services Reliable Messaging Policy Assertion (WS-RM Policy) 2-18

Web Services Secure Conversation Language (WS-SecureConversation) 2-19

Web Services Security (WS-Security) 1.1 and 1.0 2-19

Web Services Security Policy (WS-SecurityPolicy) 1.3 2-20

Web Services Trust Language (WS-Trust) 2-20

Additional Specifications Supported by WebLogic Web Services 2-21

3 Using the Development and Administration Tools

Using Oracle IDEs to Develop Web Services 3-1

Using the Administration Tools to Manage, Test, and Monitor WebLogic Web Services 3-1

Using Oracle Enterprise Manager Fusion Middleware Control 3-2

Using Oracle WebLogic Server Administration Console 3-3

Invoking the Administration Console 3-4

How Web Services Are Displayed In the Administration Console 3-4

Creating a Web Services Security Configuration 3-5

Using the Oracle WebLogic Scripting Tool 3-6

Using Oracle WebLogic Server Ant Tasks 3-6

Setting the Classpath for the WebLogic Ant Tasks 3-8

Differences in Operating System Case Sensitivity When Manipulating WSDL and XML
Schema Files 3-9

Using the Java Management Extensions (JMX) 3-9

Using the Java EE Deployment API 3-10

Using Web Services Apache Maven Goals 3-10

4 Roadmap and Related Information

Roadmap for Implementing WebLogic Web Services 4-1

WebLogic Web Services Documentation Set 4-2

Related Documentation—WebLogic Server Application Development 4-3

iv

5 Interoperability with Microsoft WCF/.NET

Basic Data Types Interoperability Guidelines 5-2

Basic Profile Interoperability Guidelines 5-2

Web Services Reliable Secure Profile Interoperability Guidelines 5-2

WS-Security Interoperability Guidelines 5-2

WS-SecurityPolicy Interoperability Guidelines 5-3

WS-SecureConversation Interoperability Guidelines 5-3

Using SAML Assertions Referenced from SignedInfo 5-4

6 Examples for Java EE Web Service Developers

Samples for WebLogic Web Service Developers 6-1

Web Services Samples in the WebLogic Server Distribution 6-1

Avitek Medical Records Application (MedRec) and Tutorials 6-1

Additional Web Services Samples Available for Download 6-2

v

Preface

This preface describes the document accessibility features and conventions used in
this guide—Understanding WebLogic Web Services for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New in This Guide

The following topics introduce the new and changed features of WebLogic web services and
other significant changes that are described in this guide, and provides pointers to additional
information. This document is the new edition of the formerly titled Introducing WebLogic Web
Services for Oracle WebLogic Server.

New and Changed Features for 12c (12.2.1.x)
For Oracle Fusion Middleware 12c (12.2.1.x), this document does not contain any new or
changed features. For a comprehensive listing of the new WebLogic Server features
introduced in this release, see What's New in Oracle WebLogic Server.

New and Changed Features for 12c (12.2.1)
Oracle Fusion Middleware 12c (12.2.1) includes the following new and changed features for
this document:

• Reflects support of the Jersey 2.x Java API for RESTful Web Services (JAX-RS) 2.0
Reference Implementation (RI) as the default implementation.

• Removed support for Java API for XML Registries (JAXR).

• The JAX-RPC API is deprecated in WebLogic Server as of release 12.2.1.

New and Changed Features for 12c (12.1.3)
Oracle Fusion Middleware 12c (12.1.3) includes the following new and changed features for
this document:

• Reflects support of the Jersey 2.5.1 Java API for RESTful Web Services (JAX-RS) 2.0
Reference Implementation (RI) as a pre-built shared library.

• Reflects support for the Jersey 1.18 JAX-RS 1.1. RI.

New and Changed Features for 12c (12.1.2)
Oracle Fusion Middleware 12c (12.1.2) includes the following new and changed features for
this document:

• List of new features supported, as described in Features and Standards Supported by
WebLogic Web Services, including:

– SOAP over JMS transport supported for JAX-WS web services.

– Fast Infoset supported for JAX-WS web services.

vii

– Stand-alone Java SE client access supported for JAX-WS and JAX-RS web
service clients.

• Updated versions of standards supported, as described in Features and Standards
Supported by WebLogic Web Services, including:

Standard 12c Version 11g Version

JSR 109: Implementing Enterprise Web Services 1.3 1.2

Java API for XML-based Web Services (JAX-WS) 2.2 2.1

Java API for RESTful Web Services (JAX-RS) 1.1 (Jersey
1.13 JAX-RS
RI)

1.1 (Jersey 1.9
JAX-RS RI)

Java Architecture for XML Binding (JAXB) 2.2 2.1

Web Services Security Policy (WS-SecurityPolicy) 1.3 1.2

Web Services Addressing (WS-Addressing) 1.0 and
2004/08

1.0

• WebLogic Server provides support for new web services Maven goals, including:
ws-clientgen, ws-wsdlc, and ws-jwsc. See Using Web Services Apache Maven
Goals.

What's New in This Guide

viii

1
Introducing Oracle WebLogic Web Services

WebLogic Web services for Oracle WebLogic Server are loosely coupled, distributed
environments that allow you to integrate heterogeneous applications within the enterprise or
to expose business functions to customers and partners over the Internet. These services are
characterized by the business functionality, the website which exposes that functionality, and
the set of published interfaces necessary to use the exposed functionality.

• Overview of WebLogic Web Services

• How Do I Choose Between SOAP and REST?

For definitions of unfamiliar terms found in this and other books, see the Glossary.

Overview of WebLogic Web Services
You can access the Web services using standard Web protocols such as XML or HTTP.
WebLogic Server supports the web service types such as Java API for XML-Based Web
Services (JAX-WS) 2.2, Java API for RESTful Web Services (JAX-RS), and Java API for
XML-Based RPC (JAX-RPC) 1.1.

For an overview of web services and their benefits, see What Are Web Services? in
Understanding Web Services.

Table 1-1 Types of WebLogic Web Services

Web Service Type Description

Java API for XML-Based Web
Services (JAX-WS) 2.2

The JAX-WS implementation in Oracle WebLogic Server is extended from the
JAX-WS Reference Implementation (RI) developed by the Glassfish Community
(see https://jax-ws.java.net/).

For more information about JAX-WS, see:

• Developing JAX-WS Web Services for Oracle WebLogic Server
• JAX-WS specification: http://jcp.org/aboutJava/

communityprocess/mrel/jsr224/index2.html
Java API for RESTful Web
Services (JAX-RS)

WebLogic Server supports Jersey 2.x (JAX-RS 2.0 RI) by default in this release.
Registration as a shared library with WebLogic Server is no longer required.

For more information about JAX-RS, see:

• Developing and Securing RESTful Web Services for Oracle WebLogic
Server

• JAX-RS specification: https://jcp.org/en/jsr/detail?id=339
Java API for XML-Based RPC
(JAX-RPC) 1.1

JAX-RPC is considered legacy and the specification is no longer evolving. JAX-
RPC defines APIs and conventions for supporting XML web services in the Java
Platform as well support for the WS-I Basic Profile to improve interoperability
between JAX-RPC implementations.

For more information about JAX-WS, see:

• Developing JAX-RPC Web Services for Oracle WebLogic Server
• JAX-RPC specification: https://java.net/projects/jax-rpc/

1-1

https://jax-ws.java.net/
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html
https://jcp.org/en/jsr/detail?id=339
https://java.net/projects/jax-rpc/

How Do I Choose Between SOAP and REST?
In WebLogic Server, SOAP web services are implemented using JAX-WS and
RESTful web services are implemented using JAX-RS. Follow the recommended
guidelines to consider when choosing between SOAP and REST.

See also Features and Standards Supported by WebLogic Web Services for a
comparison of the standards that are supported for JAX-WS and JAX-RS.

Table 1-2 How to Choose Between SOAP and RESTful Web Services

Use . . . In the following scenarios . . .

SOAP Implement SOAP web services using JAX-WS in enterprise application
integration scenarios that:

• Have advanced quality of service (QoS) requirements.
• Need to call methods remotely in Java components, such as Plain Old

Java Objects (POJOs) or Enterprise JavaBeans (EJBs).
JAX-WS interoperates with other standards-based SOAP web services from
Oracle or other SOAP web service vendors.

JAX-WS supports the full set of WS-* protocols that provide standards for
security, reliability, and so on, and better interoperates with other clients and
servers that conform to the WS-* protocols.

For more information about SOAP web service development, see Developing
JAX-WS Web Services for Oracle WebLogic Server.

REST Implement RESTful web services using JAX-RS to integrate services over the
web when the constraints of the RESTful style are desirable, such as separate
client-server architecture, uniform interface, and so on.

For more information about RESTful web services development, see
Developing and Securing RESTful Web Services for Oracle WebLogic Server.

Chapter 1
How Do I Choose Between SOAP and REST?

1-2

2
Features and Standards Supported by
WebLogic Web Services

WebLogic web services for Oracle WebLogic Server support various features and standards.
Many specifications that define web service standards are written to allow for broad use of
the specification throughout the industry. The Oracle implementation of a particular
specification may not cover all possible usage scenarios defined in the specifications.

Note:

The JAX-WS implementation in Oracle WebLogic Server is extended from the JAX-
WS Reference Implementation (RI) developed by the Glassfish Community (see
https://github.com/javaee/metro-jax-ws). All features defined in the JAX-WS
specification (JSR-224) are fully supported by Oracle WebLogic Server.

The JAX-WS RI also contains a variety of extensions, provided by Glassfish
contributors. Unless specifically documented, JAX-WS RI extensions are not
supported for use in Oracle WebLogic Server.

Oracle considers interoperability of web service platforms to be more important than
providing support for all possible edge cases of the web service specifications. Oracle
complies with the following specifications from the Web Services Interoperability Organization
and considers them to be the baseline for web services interoperability:

• Basic Profile 2.0 (JAX-WS only): http://www.ws-i.org/Profiles/
BasicProfile-2_0(WGD).html

• Basic Profile 1.2 (JAX-WS only): http://www.ws-i.org/Profiles/
BasicProfile-1_2(WGAD).html

• Basic Profile 1.1 (JAX-WS and JAX-RPC): http://www.ws-i.org/Profiles/
BasicProfile-1.1-2004-08-24.html

• Basic Security Profile 1.1 (JAX-WS and JAX-RPC): http://www.ws-i.org/Profiles/
BasicSecurityProfile-1.1.html

• Reliable Secure Profile 1.0 (JAX-WS only): http://www.ws-i.org/Profiles/
ReliableSecureProfile-1.0.html

The WebLogic web service documentation set does not necessarily document all of the
specification requirements; it does, however, document features that are beyond the
requirements of these specifications.

The following table summarizes the features and specifications supported by WebLogic web
services.

2-1

https://github.com/javaee/metro-jax-ws
http://www.ws-i.org/Profiles/BasicProfile-2_0(WGD).html
http://www.ws-i.org/Profiles/BasicProfile-2_0(WGD).html
http://www.ws-i.org/Profiles/BasicProfile-1_2(WGAD).html
http://www.ws-i.org/Profiles/BasicProfile-1_2(WGAD).html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0.html
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0.html

Table 2-1 Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS JAX-RPC

Programming model
(based on metadata
annotations) and
runtime architecture

JSR 109: Implementing Enterprise Web
Services—Programming model and runtime
architecture for implementing web services in
Java that run on a Java EE application
server, such as WebLogic Server. See JSR
109: Implementing Enterprise Web Services
1.3.

Version 1.3 N/A Version 1.3

Programming model
(based on metadata
annotations) and
runtime architecture

Web Services Metadata for the Java
Platform 2.0 (JSR-181)—Standard
annotations that you can use in your Java
Web Service (JWS) file to facilitate the
programming of web services. See Web
Services Metadata for the Java Platform 2.0
(JSR-181).

Supports N/A Supports

Programming APIs Java API for XML-based Web Services
(JAX-WS)—Standards-based API for coding,
assembling, and deploying Java web
services. The integrated stack includes JAX-
WS 2.1, JAXB 2.1, and SAAJ 1.3. See Java
API for XML-based Web Services (JAX-WS)
2.2.

See also Developing JAX-WS Web Services
for Oracle WebLogic Server.

Version 2.2 N/A N/A

Programming APIs Java API for RESTful Web Services (JAX-
RS)—Provides a standard JAVA API for
developing web services based on the
Representational State Transfer (REST)
architectural style. See Java API for RESTful
Web Services (JAX-RS).

See also Developing and Securing RESTful
Web Services for Oracle WebLogic Server.

N/A 2.0 N/A

Programming APIs Java API for XML-based RPC (JAX-RPC)—
Java APIs for making XML-based remote
procedure calls (RPC). See Java API for
XML-based RPC (JAX-RPC) 1.1.

See also Developing JAX-RPC Web
Services for Oracle WebLogic Server.

N/A N/A Version 1.1

Data binding Java Architecture for XML Binding (JAXB)
—Implementation used to bind an XML
schema to a representation in Java code.
JAXB is supported by JAX-WS web services
only. See Java Architecture for XML Binding
(JAXB) 2.2.

See also Using JAXB Data Binding in
Developing JAX-WS Web Services for Oracle
WebLogic Server.

Version 2.2 Version 2.2 N/A

Chapter 2

2-2

Table 2-1 (Cont.) Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS JAX-RPC

Data binding Apache XMLBeans—A technology for
binding XML schema to Java types and for
accessing XML data in a variety of ways.
XMLBeans is the default binding technology
for JAX-RPC web services. See Apache
XMLBeans 2.0.

See also Understanding Data Binding in
Developing JAX-RPC Web Services for
Oracle WebLogic Server.

N/A N/A 2.0

Web service
description

Web Services Description Language
(WSDL)—XML-based specification that
describes a web service. See Web Services
Description Language (WSDL) 1.1.

See also:

• JAX-WS: Developing WebLogic Web
Services Starting from a WSDL File:
Main Steps in Developing JAX-WS Web
Services for Oracle WebLogic Server.

• JAX-RPC: Developing WebLogic Web
Services Starting from a WSDL File:
Main Steps in Developing JAX-RPC
Web Services for Oracle WebLogic
Server.

Version 1.1 N/A Version 1.1

Web service
description

Web Application Description Language
(WADL)—XML-based specification that
provides a machine-readable description of
HTTP-based Web applications. See Web
Application Description Language (WADL)
2009 Membership Submission.

N/A 2009
Member
Submission

N/A

Web service
description

Web Services Policy Framework (WS-
Policy)—General purpose model and
corresponding syntax to describe and
communicate the policies of a web service.
See Web Services Policy Framework (WS-
Policy) 1.5 and 1.2.

Versions 1.5
and 1.2

N/A Versions 1.5
and 1.2

Web service
description

Web Services Policy Attachment (WS-
PolicyAttachment)—Abstract model and an
XML-based expression grammar for policies.
See Web Services Policy Attachment (WS-
Policy Attachment) 1.5 and 1.2.

Versions 1.5
and 1.2

N/A Versions 1.5
and 1.2

Data exchange
between web service
and requesting client

Simple Object Access Protocol (SOAP)—
Lightweight XML-based protocol used to
exchange information in a decentralized,
distributed environment. See Simple Object
Access Protocol (SOAP) 1.1 and 1.2.

Versions 1.2
and 1.1

N/A Versions 1.2
and 1.1

Data exchange
between web service
and requesting client

SOAP with Attachments API for Java
(SAAJ) 1.3—Implementation that developers
can use to produce and consume messages
conforming to the SOAP 1.1 specification
and SOAP with Attachments notes. See
SOAP with Attachments API for Java (SAAJ)
1.3.

Version 1.3 N/A Version 1.3

Chapter 2

2-3

Table 2-1 (Cont.) Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS JAX-RPC

Security Web Services Security (WS-Security)—
Standard set of SOAP [SOAP11, SOAP12]
extensions that can be used when building
secure t5rrr6s to implement message content
integrity and confidentiality. See Web
Services Security (WS-Security) 1.1 and 1.0.

See also Securing WebLogic Web Services
for Oracle WebLogic Server.

Versions 1.1
and 1.0

N/A Versions 1.1
and 1.0

Security Web Services Security Policy (WS-
SecurityPolicy)—Set of security policy
assertions for use with the WS-Policy
framework. See Web Services Security
Policy (WS-SecurityPolicy) 1.3.

See also Securing WebLogic Web Services
for Oracle WebLogic Server.

Version 1.3 N/A Version 1.3

Security Security Assertion Markup Language
(SAML)—XML standard for exchanging
authentication and authorization data
between security domains. See Security
Assertion Markup Language (SAML) 2.0 and
1.1.

See also Securing WebLogic Web Services
for Oracle WebLogic Server.

Versions 2.0
and 1.1

N/A Versions 2.0
and 1.1

Security Security Assertion Markup Language
(SAML) Token Profile—Set of WS-Security
SOAP extensions that implement SOAP
message authentication and encryption. See
Security Assertion Markup Language (SAML)
Token Profile 1.1 and 1.0.

See also Securing WebLogic Web Services
for Oracle WebLogic Server.

Versions 1.1
and 1.0

N/A Versions 1.1
and 1.0

Reliable
communication

Web Services Addressing (WS-
Addressing)—Transport-neutral
mechanisms to address web services and
messages. See Web Services Addressing
(WS-Addressing) 1.0 and 2004/08 Member
Submission.

Version 1.0
and 2004/08

N/A Version 1.0
and 2004/08

Chapter 2

2-4

Table 2-1 (Cont.) Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS JAX-RPC

Reliable
communication

Web Services Reliable Messaging (WS-
ReliableMessaging)—Implementation that
enables two endpoints (web service and
client) running on different WebLogic Server
instances to communicate reliably in the
presence of failures in software components,
systems, or networks. See Web Services
Reliable Messaging (WS-
ReliableMessaging).

See also:

• JAX-WS: Using Web Services Reliable
Messaging in Developing JAX-WS Web
Services for Oracle WebLogic Server

• JAX-RPC: Using Web Services Reliable
Messaging in Programming Advanced
Features of JAX-RPC Web Services for
Oracle WebLogic Server

Versions 1.2,
1.1

N/A Version 1.1
and 1.0

Reliable
communication

Web Services Reliable Messaging Policy
Assertion (WS-RM Policy)—Domain-
specific policy assertion for reliable
messaging for use with WS-Policy and WS-
ReliableMessaging. See Web Services
Reliable Messaging Policy Assertion (WS-
RM Policy).

See also:

• JAX-WS: Pre-packaged WS-Policy Files
for Reliable Messaging and
MakeConnection in Developing JAX-WS
Web Services for Oracle WebLogic
Server

• JAX-RPC: Pre-packaged WS-Policy
Files for Reliable Messaging in
Developing JAX-RPC Web Services for
Oracle WebLogic Server

Versions 1.2
and 1.1

N/A Versions 1.1
and 1.0

Reliable
communication

Web Services Trust Language (WS-Trust)
—Extensions that build on Web Services
Security (WS-Security) to secure
asynchronous communication. See Web
Services Trust Language (WS-Trust).

See also Configuring Message-Level
Security in Securing WebLogic Web Services
for Oracle WebLogic Server.

Version 1.4
and 1.3

N/A Version 1.3

Chapter 2

2-5

Table 2-1 (Cont.) Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS JAX-RPC

Reliable
communication

Web Services Secure Conversation
Language (WS-SecureConversation)—
Extensions that build on Web Services
Security (WS-Security) and Web Services
Trust Language (WS-Trust) to secure
asynchronous communication. See Web
Services Secure Conversation Language
(WS-SecureConversation).

See also Configuring Message-Level
Security in Securing WebLogic Web Services
for Oracle WebLogic Server.

Version 1.4 N/A Version 1.3

Asynchronous
communication

Asynchronous Request Response—When
you invoke a web service synchronously, the
invoking client application waits for the
response to return before it can continue with
its work. In cases where the response
returns immediately, this method of invoking
the web service is common. However,
because request processing can be delayed,
it is often useful for the client application to
continue its work and handle the response
later on. This can be accomplished using
asynchronous web service invocation. For
example, see:

• JAX-WS: Developing Asynchronous
Clients in Developing JAX-WS Web
Services for Oracle WebLogic Server

• JAX-RPC: Invoking a Web Service
Using Asynchronous Request-Response
in Developing JAX-RPC Web Services
for Oracle WebLogic Server

Supported Supported Supported

Asynchronous
communication

WS-MakeConnection—Provides a
mechanism for the transfer of messages
between two endpoints when the sending
endpoint is unable to initiate a new
connection to the receiving endpoint. See
Web Services MakeConnection 1.1.

See also Developing Asynchronous Clients
in Developing JAX-WS Web Services for
Oracle WebLogic Server.

Version 1.1 N/A N/A

Chapter 2

2-6

Table 2-1 (Cont.) Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS JAX-RPC

Atomic transactions Web Services Atomic Transaction—
Defines the Atomic Transaction coordination
type that is to be used with the extensible
coordination framework described in the Web
Services Coordination specification. The WS-
AtomicTransaction and WS-Coordination
specifications define an extensible framework
for coordinating distributed activities among a
set of participants. See Web Services Atomic
Transaction (WS-AtomicTransaction) Version
1.2, 1.1, and 1.0.

See also Using Web Services Atomic
Transactions in Developing JAX-WS Web
Services for Oracle WebLogic Server.

Note: For JAX-RPC similar functionality can
be accomplished using @WebMethod inside a
transaction
(@weblogic.jws.Transactional). See
weblogic.jws.Transaction in WebLogic Web
Services Reference for Oracle WebLogic
Server.

Versions 1.2,
1.1, and 1.0

N/A N/A (see
Note in
description)

Atomic transactions Web Services Coordination—Defines an
extensible framework for providing protocols
that coordinate the actions of distributed
applications. The WS-AtomicTransaction and
WS-Coordination specifications define an
extensible framework for coordinating
distributed activities among a set of
participants. See Web Services Coordination
(WS-Coordination) Version 1.2, 1.1, and 1.0.

See also Using Web Services Atomic
Transactions in Developing JAX-WS Web
Services for Oracle WebLogic Server.

Versions 1.2,
1.1, and 1.0

N/A N/A

Client event
notification

Web service callbacks—Callbacks notify a
client of your web service that some event
has occurred. For example, you can notify a
client when the results of that client's request
are ready, or when the client's request
cannot be fulfilled.

For more information, see:

• JAX-WS: Using Callbacks in Developing
JAX-WS Web Services for Oracle
WebLogic Server

• JAX-RPC: Using Callbacks to Notify
Clients of Events in Developing JAX-
RPC Web Services for Oracle WebLogic
Server

Supported Not
supported

Supported

Chapter 2

2-7

Table 2-1 (Cont.) Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS JAX-RPC

Optimizing XML
transmission

Fast Infoset—Compressed binary encoding
format that provides a more efficient
serialization than the text-based XML format.
Fast Infoset optimizes both document size
and processing performance. See Fast
Infoset.

See also Optimizing XML Transmission
Using Fast Infoset in Developing JAX-WS
Web Services for Oracle WebLogic Server.

Supported Not
supported

Not
supported

Optimizing XML
transmission

Message Transmission Optimization
Mechanism (MTOM)—Defines a method for
optimizing the transmission of XML data of
type xs:base64Binary or xs:hexBinary
in SOAP messages. For more information,
see:

• JAX-WS: Optimizing Binary Data
Transmission in Developing JAX-WS
Web Services for Oracle WebLogic
Server

• JAX-RPC: Sending Binary Data Using
MTOM/XOP in Developing JAX-RPC
Web Services for Oracle WebLogic
Server

Supported Not
supported

Supported

SOAP Over JMS
Transport

SOAP over JMS transport—Typically, client
applications use HTTP/S as the connection
protocol when invoking a WebLogic web
service. You can, however, configure a
WebLogic web service so that client
applications use JMS as the transport
instead. See SOAP Over JMS Transport 1.0.

For more information, see:

• Using JMS Transport as the Connection
Protocol in Developing JAX-WS Web
Services for Oracle WebLogic Server

• Using JMS Transport as the Connection
Protocol in Developing JAX-RPC Web
Services for Oracle WebLogic Server

Supported Not
supported

Supported

Stand-alone Java SE
client access

Stand-alone Java SE client JAR file—If
your computer does not have WebLogic
Server installed, you can still invoke a web
service by using the stand-alone WebLogic
web services client JAR file. See:

• Invoking a Web Service from a
Standalone Java SE Client in
Developing JAX-WS Web Services for
Oracle WebLogic Server

• Using a Standalone Client JAR File
When Invoking a Web Service in
Developing JAX-RPC Web Services for
Oracle WebLogic Server

Supported Supported Supported

Chapter 2

2-8

Table 2-1 (Cont.) Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS JAX-RPC

Advertisement
(registration and
discovery)

Universal Description, Discovery, and
Integration (UDDI)—The UDDI v2.0 registry
and UDDIExplorer applications have been
removed in this release.

N/A N/A N/A

The following sections describe the specifications in more detail. Specifications are listed in
alphabetical order. Additional specifications that WebLogic web services support are listed in
Additional Specifications Supported by WebLogic Web Services.

A Note About JAX-WS 2.2 RI/JDK 8.0 Extensions
A subset of the APIs such as com.sun.xml.ws.developer are supported as an extension to
the JDK 8.0 or JAX-WS 2.2 Reference Implementation (RI).

Because the APIs are not provided as part of the JDK 8.0 or WebLogic Server software, they
are subject to change. The APIs include, but are not limited to:

com.sun.xml.ws.api.server.AsyncProvider
com.sun.xml.ws.client.BindingProviderProperties
com.sun.xml.ws.developer.JAXWSProperties
com.sun.xml.ws.developer.SchemaValidation
com.sun.xml.ws.developer.SchemaValidationFeature
com.sun.xml.ws.developer.StreamingAttachment
com.sun.xml.ws.developer.StreamingAttachmentFeature
com.sun.xml.ws.developer.StreamingDataHandler

Apache XMLBeans 2.0
XMLBeans uses XML Schema to compile Java interfaces and classes that use to access and
modify XML instance data. XMLBeans is the default binding technology for JAX-RPC web
services.

Apache XMLBeans 2.0, described at http://xmlbeans.apache.org, provides a technology
for binding XML schema to Java types and for accessing XML data in a variety of ways.

Fast Infoset
Fast Infoset is a compressed binary encoding format that provides a more efficient
serialization than the text-based XML format. Fast Infoset optimizes both document size and
processing performance.

When enabled, Fast Infoset converts the XML Information Set in the SOAP envelope into a
compressed binary format before transmitting the data. Fast Infoset optimizes encrypted and
signed messages, MTOM-enabled messages, and SOAP attachments, and supports both
HTTP and JMS transports.

The Fast Infoset specification, ITU-T Rec. X.891 and ISO/IEC 24824-1 (Fast Infoset) is
defined by both the ITU-T and ISO standards bodies. The specification can be downloaded
from the ITU Web site: http://www.itu.int/rec/T-REC-X.891-200505-I/en

Chapter 2
A Note About JAX-WS 2.2 RI/JDK 8.0 Extensions

2-9

http://xmlbeans.apache.org
http://www.itu.int/rec/T-REC-X.891-200505-I/en

See Optimizing XML Transmission Using Fast Infoset in Developing JAX-WS Web
Services for Oracle WebLogic Server.

Java API for RESTful Web Services (JAX-RS)
The Java API for RESTful Web Services (JAX-RS) specification provides a standard
JAVA API for developing web services based on the Representational State Transfer
(REST) architectural style. See https://jcp.org/en/jsr/detail?id=339.
WebLogic Server provides support for Jersey 2.x (JAX-RS 2.0 RI) by default in this
release. Registration as a shared library with WebLogic Server is no longer required.

See Developing and Securing RESTful Web Services for Oracle WebLogic Server.

Java API for XML-based RPC (JAX-RPC) 1.1
The Java API for XML-based RPC (JAX-RPC) specification defines the Java APIs for
making XML-based remote procedure calls (RPC). In particular, these APIs are used
to invoke and get a response from a web service using SOAP 1.1, and XML-based
protocol for exchange of information in a decentralized and distributed environment.

Namespace: http://java.sun.com/xml/ns/jax-rpc
See https://github.com/javaee/jax-rpc-ri.

WebLogic Server implements all required features of the JAX-RPC Version 1.1
specification. Additionally, WebLogic Server implements optional data type support, as
described in Understanding Data Bindingin Developing JAX-RPC Web Services for
Oracle WebLogic Server. WebLogic Server does not implement optional features of
the JAX-RPC specification, other than what is described in this chapter.

See Developing JAX-RPC Web Services for Oracle WebLogic Server.

Note:

Because JAX-WS is the successor to the JAX-RPC and it implements many
of the new features in Java EE, Oracle recommends that you develop web
services with JAX-WS. JAX-RPC is considered legacy and the specification
is no longer evolving.

Java API for XML-based Web Services (JAX-WS) 2.2
The Java API for XML-based Web Services (JAX-WS) is a standards-based API for
coding, assembling, and deploying Java web services.

Namespace: http://java.sun.com/xml/ns/jaxws
See http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html. The
integrated stack includes JAX-WS 2.2, Java Architecture for XML Binding (JAXB) 2.2
and SOAP with Attachments API for Java (SAAJ) 1.3.

See Developing JAX-WS Web Services for Oracle WebLogic Server.

Chapter 2
Java API for RESTful Web Services (JAX-RS)

2-10

https://jcp.org/en/jsr/detail?id=339
https://github.com/javaee/jax-rpc-ri
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html

Java Architecture for XML Binding (JAXB) 2.2
The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an XML
schema to a representation in Java code. This makes it easy for you to incorporate XML data
and processing functions in applications based on Java technology without having to know
much about XML itself.

Namespace: http://java.sun.com/xml/ns/jaxb
See http://jcp.org/en/jsr/detail?id=222.

See Using JAXB Data Binding in Developing JAX-WS Web Services for Oracle WebLogic
Server.

Note:

JAXB cannot be used with JAX-RPC.

JSR 109: Implementing Enterprise Web Services 1.3
The JSR 109: Implementing Enterprise Web Services defines the programming model and
runtime architecture for implementing web services in Java that run on a Java EE application
server, such as WebLogic Server.

See the JSR 109: Implementing Enterprise Web Services specification at http://
www.jcp.org/en/jsr/detail?id=109. In particular, it specifies that programmers implement
Java EE web services using one of two components:

• Java class running in the Web container

• Stateless session EJB running in the EJB container

The specification also describes a standard Java EE web services packaging format,
deployment model, and runtime services, all of which are implemented by WebLogic web
services.

Security Assertion Markup Language (SAML) 2.0 and 1.1
The Security Assertion Markup Language (SAML) specification provides an XML standard for
exchanging authentication and authorization data between security domains.

Namespaces:

urn:oasis:names:tc:SAML:2.0:assertion
urn:oasis:names:tc:SAML:2.0:protocol
See:

• http://www.oasis-open.org/specs/index.php#samlv2.0
• http://www.oasis-open.org/specs/index.php#samlv1.1
See Securing WebLogic Web Services for Oracle WebLogic Server.

Chapter 2
Java Architecture for XML Binding (JAXB) 2.2

2-11

http://jcp.org/en/jsr/detail?id=222
http://www.jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=109
http://www.oasis-open.org/specs/index.php#samlv2.0
http://www.oasis-open.org/specs/index.php#samlv1.1

Security Assertion Markup Language (SAML) Token Profile
1.1 and 1.0

The Web Services Security: SAML Token Profile 1.1 specification defines a set of
SOAP extensions that implement SOAP message authentication and encryption.

Namespace: urn:oasis:names:tc:SAML:1.0:assertion
See:

• http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-
os-SAMLTokenProfile.pdf

• http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
See Securing WebLogic Web Services for Oracle WebLogic Server.

Simple Object Access Protocol (SOAP) 1.1 and 1.2
Simple Object Access Protocol (SOAP) is a lightweight XML-based protocol used to
exchange information in a decentralized, distributed environment.

Namespace: http://schemas.xmlsoap.org/wsdl/soap
See the Simple Object Access Protocol (SOAP) specification, described at http://
www.w3.org/TR/SOAP. WebLogic Server includes its own implementation of versions
1.1 and 1.2 of the SOAP specification. The protocol consists of:

• An envelope that describes the SOAP message. The envelope contains the body
of the message, identifies who should process it, and describes how to process it.

• A set of encoding rules for expressing instances of application-specific data types.

• A convention for representing remote procedure calls and responses.

This information is embedded in a Multipurpose Internet Mail Extensions (MIME)-
encoded package that can be transmitted over HTTP, HTTPs, or other Web protocols.
MIME is a specification for formatting non-ASCII messages so that they can be sent
over the Internet.

The following example shows a SOAP 1.1 request for stock trading information
embedded inside an HTTP request:

POST /StockQuote HTTP/1.1
Host: www.sample.com:7001
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastStockQuote xmlns:m="Some-URI">
 <symbol>ORCL</symbol>
 </m:GetLastStockQuote>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Chapter 2
Security Assertion Markup Language (SAML) Token Profile 1.1 and 1.0

2-12

http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP

By default, WebLogic web services use version 1.1 of SOAP; if you want your web services
to use version 1.2, you must specify the binding type in the JWS file that implements your
service.

SOAP Over JMS Transport 1.0
SOAP over Java Messaging Service (JMS) transport is supported as a connection protocol
for JAX-WS and JAX-RPC WebLogic web services.

For JAX-WS, this feature supports the new W3C SOAP over Java Message Service 1.0
standard (February 2012), available at: http://www.w3.org/TR/soapjms/
For more information, see:

• Using JMS Transport as the Connection Protocol in Developing JAX-WS Web Services
for Oracle WebLogic Server

• Using JMS Transport as the Connection Protocol in Developing JAX-RPC Web Services
for Oracle WebLogic Server

SOAP with Attachments API for Java (SAAJ) 1.3
The SOAP with Attachments API for Java (SAAJ) describes how developers can produce
and consume messages conforming to the SOAP 1.1 specification and SOAP with
Attachments notes.

See the SOAP with Attachments API for Java (SAAJ) specification, described at https://
saaj.java.net.

The single package in the API, javax.xml.soap, provides the primary abstraction for SOAP
messages with MIME attachments. Attachments may be entire XML documents, XML
fragments, images, text documents, or any other content with a valid MIME type. In addition,
the package provides a simple client-side view of a request-response style of interaction with
a web service.

Web Application Description Language (WADL) 2009
Membership Submission

Web Application Description Language (WADL) is an XML-based specification that provides
a machine-readable description of HTTP-based Web applications. Developers of WebLogic
web services do not need to create the WADL files; you generate these files automatically as
part of the WebLogic web services development process.

Namespace: http://wadl.dev.java.net/2009/02/wadl.xsd
See Web Application Description Language (WADL) specification at http://www.w3.org/
Submission/wadl.

See Developing and Securing RESTful Web Services for Oracle WebLogic Server.

Chapter 2
SOAP Over JMS Transport 1.0

2-13

http://www.w3.org/TR/soapjms/
https://saaj.java.net
https://saaj.java.net
http://www.w3.org/Submission/wadl
http://www.w3.org/Submission/wadl

Web Services Addressing (WS-Addressing) 1.0 and
2004/08 Member Submission

The Web Services Addressing (WS-Addressing) Core provides transport-neutral
mechanisms to address web services and messages.

Namespaces:

http://www.w3.org/2005/08/addressing
http://www.w3.org/2007/05/addressing/metadata
See the Web Services Addressing (WS-Addressing) Core specification, described at
http://www.w3.org/TR/ws-addr-core. In particular, the specification defines a
number of XML elements used to identify web service endpoints and to secure end-to-
end endpoint identification in messages.

In addition to 1.0, the current release supports Web Services Addressing (August 2004
Member Submission), described at http://www.w3.org/Submission/2004/SUBM-ws-
addressing-20040810.

The Web Services Addressing (WS-Addressing) Metadata specification, described at
http://www.w3.org/TR/ws-addr-metadata, defines how the abstract properties
defined in Web Services Addressing Core are described using WSDL and how WS-
Policy can be used to indicate the support of WS-Addressing by a web service.

Web Services Atomic Transaction (WS-AtomicTransaction)
Version 1.2, 1.1, and 1.0

The Web Services Atomic Transaction (WS-AtomicTransaction) defines the Atomic
Transaction coordination type that is to be used with the extensible coordination
framework described in the Web Services Coordination specification. The WS-
AtomicTransaction and WS-Coordination specifications define an extensible
framework for coordinating distributed activities among a set of participants.

See the Web Services Atomic Transaction (WS-AtomicTransaction) specification,
described at http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-
wsat-1.2-spec-cs-01.html.

See Using Web Services Atomic Transactions in Developing JAX-WS Web Services
for Oracle WebLogic Server.

Web Services Coordination (WS-Coordination) Version 1.2,
1.1, and 1.0

The Web Services Coordination (WS-Coordination) defines an extensible framework
for providing protocols that coordinate the actions of distributed applications.

See the Web Services Coordination (WS-Coordination) specification, described at
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-
wscoor-1.2-spec-cs-01.html. The WS-AtomicTransaction and WS-Coordination

Chapter 2
Web Services Addressing (WS-Addressing) 1.0 and 2004/08 Member Submission

2-14

http://www.w3.org/TR/ws-addr-core
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810
http://www.w3.org/TR/ws-addr-metadata
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

specifications define an extensible framework for coordinating distributed activities among a
set of participants.

Web Services Description Language (WSDL) 1.1
Web Services Description Language (WSDL) is an XML-based specification that describes a
web service. A WSDL document describes web services operations, input and output
parameters, and how a client application connects to the web service.

Namespace: http://schemas.xmlsoap.org/wsdl
See the Web Services Description Language (WSDL) specification at http://
www.w3.org/TR/wsdl.

Developers of WebLogic web services do not need to create the WSDL files; you generate
these files automatically as part of the WebLogic web services development process.

The following example, for informational purposes only, shows a WSDL file that describes the
stock trading web services StockQuoteService that contains the method GetLastStockQuote:

<?xml version="1.0"?>
 <definitions name="StockQuote"
 targetNamespace="http://sample.com/stockquote.wsdl"
 xmlns:tns="http://sample.com/stockquote.wsdl"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 xmlns:xsd1="http://sample.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <message name="GetStockPriceInput">
 <part name="symbol" element="xsd:string"/>
 </message>
 <message name="GetStockPriceOutput">
 <part name="result" type="xsd:float"/>
 </message>
 <portType name="StockQuotePortType">
 <operation name="GetLastStockQuote">
 <input message="tns:GetStockPriceInput"/>
 <output message="tns:GetStockPriceOutput"/>
 </operation>
 </portType>
 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastStockQuote">
 <soap:operation soapAction="http://sample.com/GetLastStockQuote"/>
 <input>
 <soap:body use="encoded" namespace="http://sample.com/stockquote"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="http://sample.com/stockquote"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>>
 </binding>
 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://sample.com/stockquote"/>
 </port>

Chapter 2
Web Services Description Language (WSDL) 1.1

2-15

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

 </service>
 </definitions>

The WSDL specification includes optional extension elements that specify different
types of bindings that can be used when invoking the web service. The WebLogic web
services runtime:

• Fully supports SOAP bindings, which means that if a WSDL file includes a SOAP
binding, the WebLogic web services will use SOAP as the format and protocol of
the messages used to invoke the web service.

• Ignores HTTP GET and POST bindings, which means that if a WSDL file includes
this extension, the WebLogic web services runtime skips over the element when
parsing the WSDL.

• Partially supports MIME bindings, which means that if a WSDL file includes this
extension, the WebLogic web services runtime parses the element, but does not
actually create MIME bindings when constructing a message due to a web service
invoke.

See:

• JAX-WS: Developing WebLogic Web Services Starting from a WSDL File: Main
Steps in Developing JAX-WS Web Services for Oracle WebLogic Server.

• JAX-RPC: Developing WebLogic Web Services Starting from a WSDL File: Main
Steps in Developing JAX-RPC Web Services for Oracle WebLogic Server.

Web Services MakeConnection 1.1
The Web Services MakeConnection provides a mechanism for the transfer of
messages between two endpoints when the sending endpoint is unable to initiate a
new connection to the receiving endpoint. For example, to enable asynchronous web
service invocation from behind a firewall.

Namespace: http://docs.oasis-open.org/ws-rx/wsmc/200702
See the Web Services MakeConnection specification at http://docs.oasis-
open.org/ws-rx/wsmc/200702.

See Developing Asynchronous Clients in Developing JAX-WS Web Services for
Oracle WebLogic Server.

Web Services Metadata for the Java Platform 2.0 (JSR-181)
Oracle recommends that you take advantage of the metadata annotations feature and
use a programming model in which you create an annotated Java file and then use Ant
tasks to convert the file into the Java source code of a standard Java class or EJB and
automatically generate all the associated artifacts.

See http://download.oracle.com/javase/6/docs/technotes/guides/language/
annotations.html.

The Java Web Service (JWS) annotated file (called a JWS file for simplicity) is the core
of your web service. It contains the Java code that determines how your web service
behaves. A JWS file is an ordinary Java class file that uses JDK 5.0 metadata
annotations to specify the shape and characteristics of the web service. The JWS
annotations you can use in a JWS file include the standard ones defined by the Web

Chapter 2
Web Services MakeConnection 1.1

2-16

http://docs.oasis-open.org/ws-rx/wsmc/200702
http://docs.oasis-open.org/ws-rx/wsmc/200702
http://download.oracle.com/javase/6/docs/technotes/guides/language/annotations.html
http://download.oracle.com/javase/6/docs/technotes/guides/language/annotations.html

Services Metadata for the Java Platform specification (JSR-181), described at http://
www.jcp.org/en/jsr/detail?id=181, as well as a set of other standard or WebLogic-specific
ones, depending on the type of web service you are creating.

Note:

As an alternative to using a JWS annotated file, you can program a WebLogic web
service manually by coding the standard Java class or EJB from scratch and
generating its associated artifacts by hand (deployment descriptor files, WSDL, data
binding artifacts for user-defined data types, and so on). However, the entire
process can be difficult and tedious and is not recommended.

Web Services Policy Attachment (WS-Policy Attachment) 1.5
and 1.2

The Web Services Policy Attachment (WS-Policy Attachment) specification defines an
abstract model and an XML-based expression grammar for policies. The specification defines
two general-purpose mechanisms for associating such policies with the subjects to which
they apply. This specification also defines how these general-purpose mechanisms can be
used to associate WS-Policy with WSDL and UDDI descriptions.

Namespaces:

WS-Policy Attachment 1.5: http://www.w3.org/ns/ws-policy
WS-PolicyAttachment 1.2: http://schemas.xmlsoap.org/ws/2004/09/policy
See:

• Web Services Policy 1.5 - Attachment (Recommendation): http://www.w3.org/TR/ws-
policy-attach/

• Web Services Policy 1.2 - Attachment (WS-PolicyAttachment) (Member Submission):
http://www.w3.org/Submission/WS-PolicyAttachment

See Securing WebLogic Web Services for Oracle WebLogic Server.

Web Services Policy Framework (WS-Policy) 1.5 and 1.2
The WS-Policy Framework (WS-Policy) specification provides a general purpose model and
corresponding syntax to describe and communicate the policies of a web service. WS-Policy
defines a base set of constructs that can be used and extended by other web services
specifications to describe a broad range of service requirements, preferences, and
capabilities.

Namespaces:

WS-Policy Framework 1.5: http://www.w3.org/ns/ws-policy
WS-Policy 1.2: http://schemas.xmlsoap.org/ws/2004/09/policy
See:

Chapter 2
Web Services Policy Attachment (WS-Policy Attachment) 1.5 and 1.2

2-17

http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/Submission/WS-PolicyAttachment

• Web Services Policy 1.5 - Framework (Recommendation): http://
www.w3.org/TR/ws-policy

• Web Services Policy 1.2 - Framework (WS-Policy) (Member Submission): http://
www.w3.org/Submission/WS-Policy

See Securing WebLogic Web Services for Oracle WebLogic Server.

Web Services Reliable Messaging (WS-ReliableMessaging)
The Web Services Reliable Messaging (WS-ReliableMessaging) describes how two
web services running on different WebLogic Server instances can communicate
reliably in the presence of failures in software components, systems, or networks.

Namespace: http://docs.oasis-open.org/ws-rx/wsrm/200702
See the Web Services Reliable Messaging (WS-ReliableMessaging) specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702, In particular, the specification
provides for an interoperable protocol in which a message sent from a source endpoint
to a destination endpoint is guaranteed either to be delivered or to raise an error.

See:

• JAX-WS: Using Web Services Reliable Messaging in Developing JAX-WS Web
Services for Oracle WebLogic Server

• JAX-RPC: Using Web Services Reliable Messaging in Programming Advanced
Features of JAX-RPC Web Services for Oracle WebLogic Server

Note:

The WebLogic Server WS-ReliableMessaging supports backward
compatibility with older versions of the specification. For example, a WS-
ReliableMessaging 1.2 web service can be accessed by clients conforming
to either the WS-ReliableMessaging 1.2 or 1.1 specifications. However, a
WS-ReliableMessaging 1.2/1.1 client cannot communicate with a WS-
ReliableMessaging 1.0 server. Note that WS-ReliableMessaging 1.2 (client
or service) is supported on JAX-WS only.

Web Services Reliable Messaging Policy Assertion (WS-RM
Policy)

The Web Services Reliable Messaging Policy Assertion (WS-RM Policy) specification
defines a domain-specific policy assertion for reliable messaging for use with WS-
Policy and WS-ReliableMessaging. This specification enables an RM Destination and
an RM Source to describe their requirements for a given sequence.

Namespace: http://docs.oasis-open.org/ws-rx/wsrmp/200702
See:

• Version 1.2 (JAX-WS only): http://docs.oasis-open.org/ws-rx/wsrmp/200702/
wsrmp-1.2-spec-os.html

Chapter 2
Web Services Reliable Messaging (WS-ReliableMessaging)

2-18

http://www.w3.org/TR/ws-policy
http://www.w3.org/TR/ws-policy
http://www.w3.org/Submission/WS-Policy
http://www.w3.org/Submission/WS-Policy
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-os.html

• Version 1.1 (JAX-WS and JAX-RPC): http://docs.oasis-open.org/ws-rx/wsrmp/
200702/wsrmp-1.1-spec-os-01.html

See:

• JAX-WS: Using Web Services Reliable Messaging in Developing JAX-WS Web Services
for Oracle WebLogic Server

• JAX-RPC: Using Web Services Reliable Messaging in Programming Advanced Features
of JAX-RPC Web Services for Oracle WebLogic Server

Web Services Secure Conversation Language (WS-
SecureConversation)

The Web Services Secure Conversation Language (WS-SecureConversation) specification
defines extensions that build on Web Services Security (WS-Security) 1.1 and 1.0 and Web
Services Trust Language (WS-Trust) to provide secure communication across one or more
messages.

Namespace: http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
Specifically, the specification defines mechanisms for establishing and sharing security
contexts, and deriving keys from established security contexts (or any shared secret).

See:

• Version 1.4 (JAX-WS): http://docs.oasis-open.org/ws-sx/ws-secureconversation/
v1.4/ws-secureconversation.html

• Version 1.3 (JAX-RPC): http://docs.oasis-open.org/ws-sx/ws-secureconversation/
200512/ws-secureconversation-1.3-os.html

See Securing WebLogic Web Services for Oracle WebLogic Server.

Web Services Security (WS-Security) 1.1 and 1.0
Namespaces: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecuritysecext-1.0.xsd, http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurityutility-1.0.xsd, http://docs.oasis-open.org/wss/oasis-wss-
wssecurity-secext-1.1.xsd
The following description of Web Services Security is taken directly from the OASIS standard
1.1 specification, titled Web Services Security: SOAP Message Security, dated February
2006:

This specification proposes a standard set of SOAP [SOAP11, SOAP12] extensions that can
be used when building secure web services to implement message content integrity and
confidentiality. This specification refers to this set of extensions and modules as the Web
Services Security: SOAP Message Security or WSS: SOAP Message Security.

This specification is flexible and is designed to be used as the basis for securing web
services within a wide variety of security models including PKI, Kerberos, and SSL.
Specifically, this specification provides support for multiple security token formats, multiple
trust domains, multiple signature formats, and multiple encryption technologies. The token
formats and semantics for using these are defined in the associated profile documents.

Chapter 2
Web Services Secure Conversation Language (WS-SecureConversation)

2-19

http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/ws-secureconversation.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/ws-secureconversation.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html

This specification provides three main mechanisms: ability to send security tokens as
part of a message, message integrity, and message confidentiality. These mechanisms
by themselves do not provide a complete security solution for web services. Instead,
this specification is a building block that can be used in conjunction with other web
service extensions and higher-level application-specific protocols to accommodate a
wide variety of security models and security technologies.

These mechanisms can be used independently (for example, to pass a security token)
or in a tightly coupled manner (for example, signing and encrypting a message or part
of a message and providing a security token or token path associated with the keys
used for signing and encryption).

See the OASIS Web Service Security Web page at http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wss.

WebLogic web services also implement the following token profiles:

• Web Services Security: SOAP Message Security

• Web Services Security: Username Token Profile

• Web Services Security: X.509 Certificate Token Profile

• Web Services Security: SAML Token Profile 1.0 and 1.1

See Securing WebLogic Web Services for Oracle WebLogic Server.

Web Services Security Policy (WS-SecurityPolicy) 1.3
The Web Services Security Policy (WS-SecurityPolicy) defines a set of security policy
assertions for use with the WS-Policy framework to describe how messages are to be
secured in the context of WS-Security, WS-Trust and WS-SecureConversation.

Namespace: http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
See the Web Services Security Policy (WS-SecurityPolicy) specification at http://
docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/cd/ws-securitypolicy-1.3-
spec-cd-03.html.

All the asynchronous features of WebLogic web services (callbacks, conversations,
and web service reliable messaging) use addressing in their implementation, but web
service programmers can also use the APIs that conform to this specification stand-
alone if additional addressing functionality is needed.

See Securing WebLogic Web Services for Oracle WebLogic Server.

Web Services Trust Language (WS-Trust)
The Web Services Trust Language (WS-Trust) defines extensions that provides a
framework for requesting and issuing security tokens, and to broker trust relationships.

Namespace: http://schemas.xmlsoap.org/ws/2005/02/trust
See the Web Services Trust Language (WS-Trust) specification at Web Services
Security (WS-Security) 1.1 and 1.0.

See:

• Version 1.4 (JAX-WS): http://docs.oasis-open.org/ws-sx/ws-trust/200802

Chapter 2
Web Services Security Policy (WS-SecurityPolicy) 1.3

2-20

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/cd/ws-securitypolicy-1.3-spec-cd-03.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/cd/ws-securitypolicy-1.3-spec-cd-03.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/cd/ws-securitypolicy-1.3-spec-cd-03.html
http://docs.oasis-open.org/ws-sx/ws-trust/200802

• Version 1.3 (JAX-RPC): http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-
trust-1.3-os.html

See Securing WebLogic Web Services for Oracle WebLogic Server.

Additional Specifications Supported by WebLogic Web Services
• XML Schema Part 1: Structures described at http://www.w3.org/TR/xmlschema-1
• XML Schema Part 2: Data Types described at http://www.w3.org/TR/xmlschema-2

Chapter 2
Additional Specifications Supported by WebLogic Web Services

2-21

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2

3
Using the Development and Administration
Tools

Oracle provides helpful tools for developing and administering WebLogic web services for
Oracle WebLogic Server, such as Oracle IDEs to develop web services, administration tools
to manage, test, and monitor WebLogic Web services, Oracle WebLogic Scripting Tool, Java
Management Extensions (JMX), and so on.

• Using Oracle IDEs to Develop Web Services

• Using the Administration Tools to Manage, Test, and Monitor WebLogic Web Services

• Using Oracle Enterprise Manager Fusion Middleware Control

• Using Oracle WebLogic Server Administration Console

• Using the Oracle WebLogic Scripting Tool

• Using Oracle WebLogic Server Ant Tasks

• Using the Java Management Extensions (JMX)

• Using the Java EE Deployment API

• Using Web Services Apache Maven Goals

Using Oracle IDEs to Develop Web Services
Oracle JDeveloper and Oracle Enterprise Pack for Eclipse (OEPE) tools are available to
develop web services.

• Oracle JDeveloper—Oracle's full-featured Java IDE, can be used for end-to-end
development of web services. Developers can build Java classes or EJBs, expose them
as web services, automatically deploy them to an instance of Oracle WebLogic Server,
and immediately test the running web service. Alternatively, JDeveloper can be used to
drive the creation of web services from WSDL descriptions. JDeveloper also is Ant-
aware. You can use this tool to build and run Ant scripts for assembling the client and for
assembling and deploying the service. See the Developing and Securing Web Services
in Developing Applications with Oracle JDeveloper.

• Oracle Enterprise Pack for Eclipse (OEPE)—Provides a collection of plug-ins to the
Eclipse IDE platform that facilitate development of WebLogic web services. For more
information, see the Eclipse IDE platform online help.

Using the Administration Tools to Manage, Test, and Monitor
WebLogic Web Services

Basic administration of web services is very similar to basic administration of standard Java
Platform, Enterprise Edition (Java EE) applications and modules. These standard tasks
include deploying and monitoring the Enterprise application, configuring the policy files, and
so on.

3-1

When you use the jwsc Ant task to compile and package a WebLogic web service, the
task packages it as part of an Enterprise application. The web service itself is
packaged inside the Enterprise application as a Web application WAR file, by default.
However, if your JWS file implements a session bean then the web service is
packaged as an EJB JAR file.

The standard tasks include:

• Deploying the Enterprise application that contains the web service.

• Starting and stopping the deployed Enterprise application.

• Configuring the Enterprise application and the archive file which implements the
actual web service. You can configure general characteristics of the Enterprise
application, such as the deployment order, or module-specific characteristics, such
as session time-out for Web applications or transaction type for EJBs.

• Creating and updating the Enterprise application's deployment plan.

• Monitoring the Enterprise application.

• Testing the Enterprise application.

The following provides examples of administrative tasks are specific to web services:

• Configuring the policy files associated with a web service endpoint or its
operations.

• Viewing the SOAP handlers associated with the web service.

• Viewing the WSDL of the web service.

• Creating a web service security configuration.

There are a variety of ways to administer Java EE modules and applications that run
on WebLogic Server, including web services, as described in the following sections:

• Using Oracle Enterprise Manager Fusion Middleware Control

• Using Oracle WebLogic Server Administration Console

• Using the Oracle WebLogic Scripting Tool

• Using Oracle WebLogic Server Ant Tasks

• Using the Java Management Extensions (JMX)

• Using the Java EE Deployment API

Using Oracle Enterprise Manager Fusion Middleware
Control

The Oracle Enterprise Manager Fusion Middleware Control (Fusion Middleware
Control) is a Web browser-based, graphical user interface that you can use to
administer and monitor a farm.

A farm is a collection of managed components. It can contain Oracle WebLogic Server
domains, one or more Managed Servers and the Oracle Fusion Middleware system
components that are installed, configured, and running in the domain.

Fusion Middleware Control organizes a wide variety of performance data and
administrative functions into distinct, Web-based home pages for the farm, Oracle
WebLogic Server domain, components, and applications. The Fusion Middleware

Chapter 3
Using Oracle Enterprise Manager Fusion Middleware Control

3-2

Control home pages make it easy to locate the most important monitoring data and the most
commonly used administrative functions—all from your Web browser.

For more information about managing, testing, and monitoring web services using the
Enterprise Manager, see Administering Web Services.

Fusion Middleware Control is available as part of the Oracle Fusion Middleware product; it is
not available to you if you purchase the standalone version of Oracle WebLogic Server. See
Getting Started Using Oracle Enterprise Manager Fusion Middleware Control in
Administering Oracle Fusion Middleware.

Using Oracle WebLogic Server Administration Console
The WebLogic Server Administration Console is a web browser-based, graphical user
interface that you use to manage a WebLogic Server domain, one or more WebLogic Server
instances, clusters, and applications, including web services, that are deployed to the server
or cluster.

One instance of WebLogic Server in each domain is configured as an Administration Server.
The Administration Server provides a central point for managing a WebLogic Server domain.
All other WebLogic Server instances in a domain are called Managed Servers. In a domain
with only a single WebLogic Server instance, that server functions both as Administration
Server and Managed Server. The Administration Server hosts the WebLogic Server
Administration Console, which is a Web Application accessible from any supported Web
browser with network access to the Administration Server.

You can use the WebLogic Server Administration Console to:

• Deploy an Enterprise application

• Start and stop a deployed Enterprise application

• Configure an Enterprise application

• Configure Web applications

• Configure EJBs

• Create a deployment plan

• Update a deployment plan

• Test the modules in an Enterprise application

• Associate the WS-Policy file with a web service

• View the SOAP message handlers of a web service

• View the WSDL of a web service

• Create a web service security configuration

For more information about using the WebLogic Server Administration Console to administer
web services, see Web Services in Oracle WebLogic Server Administration Console Online
Help.

The following sections provide more details on the following topics:

• Invoking the Administration Console

• How Web Services Are Displayed In the Administration Console

• Creating a Web Services Security Configuration

Chapter 3
Using Oracle WebLogic Server Administration Console

3-3

Invoking the Administration Console
To invoke the WebLogic Server Administration Console in your browser, enter the
following URL:

http://host:port/console

where

• host refers to the computer on which the Administration Server is running.

• port refers to the port number where the Administration Server is listening for
connection requests. The default port number for the Administration server is
7001.

Click the Help button, located at the top right corner of the WebLogic Server
Administration Console, to invoke the Online Help for detailed instructions on using the
WebLogic Server Administration Console.

How Web Services Are Displayed In the Administration Console
Web services are typically deployed to WebLogic Server as part of an Enterprise
Application. The Enterprise Application can be either archived as an EAR, or be in
exploded directory format. The web service itself is almost always packaged as a Web
Application; the only exception is if your JWS file implements a session bean in which
case it is packaged as an EJB. The web service can be in archived format (WAR or
EJB JAR file, respectively) or as an exploded directory.

It is not required that a web service be installed as part of an Enterprise application; it
can be installed as just the Web Application or EJB. However, Oracle recommends
that users install the web service as part of an Enterprise application. The WebLogic
Ant task used to create a web service, jwsc, always packages the generated web
service into an Enterprise application.

To view and update the web service-specific configuration information about a web
service using the WebLogic Server Administration Console, click on the Deployments
node in the left pane and, in the Deployments table that appears in the right pane,
locate the Enterprise application in which the web service is packaged. Expand the
application by clicking the + node; the web services in the application are listed under
the Web Services category. Click on the name of the web service to view or update its
configuration.

The following figure shows how the HelloWorldService web service, packaged inside
the helloWorldEar Enterprise application, is displayed in the Deployments table of
the WebLogic Server Administration Console.

Chapter 3
Using Oracle WebLogic Server Administration Console

3-4

Figure 3-1 WebLogic Server Administration Console Main Window

Creating a Web Services Security Configuration
When a deployed WebLogic web service has been configured to use message-level security
(encryption and digital signatures, as described by the WS-Security specification), the web
services runtime determines whether a web service security configuration is also associated
with the service. This security configuration specifies information such as whether to use an
X.509 certificate for identity, whether to use password digests, the keystore to be used for
encryption, and so on. A single security configuration can be associated with many web
services.

Because web services security configurations are domain-wide, you create them from the
domainName > WebService Security tab of the WebLogic Server Administration Console,
rather than the Deployments tab. The following figure shows the location of this tab.

Chapter 3
Using Oracle WebLogic Server Administration Console

3-5

Figure 3-2 Web Service Security Configuration in Administration Console

Using the Oracle WebLogic Scripting Tool
The WebLogic Scripting Tool (WLST) is a command-line scripting interface that you
can use to interact with and configure WebLogic Server domains and instances, as
well as deploy Java EE modules and applications (including web services) to a
particular WebLogic Server instance. Using WLST, system administrators and
operators can initiate, manage, and persist WebLogic Server configuration changes.

See:

• Web Services Custom WLST Commands in WLST Command Reference for
Infrastructure Components

• Understanding the WebLogic Scripting Tool

Using Oracle WebLogic Server Ant Tasks
WebLogic Server includes a variety of Ant tasks that you can use to centralize many of
the configuration and administrative tasks into a single Ant build script. Use wlserver,
wlconfig, and wldeploy for basic Ant tasks.

The Ant tasks can:

• Create, start, and configure a new WebLogic Server domain, using the wlserver
and wlconfig Ant tasks.

• Deploy a compiled application to the newly-created domain, using the wldeploy
Ant task.

• Generate web services and clients, and download a WSDL to a local directory.

The following table summarizes the steps to use the web services Ant tasks.

Chapter 3
Using the Oracle WebLogic Scripting Tool

3-6

Table 3-1 Steps to Use the Web Services Ant Tasks

Step Description

1 Set up your environment. On Windows NT, execute the setDomainEnv.cmd command, located in your
domain directory. The default location of WebLogic Server domains is
ORACLE_HOME\user_projects\domains\domainName, where
ORACLE_HOME represents the directory you specified as the Oracle Home
when you installed WebLogic Server and domainName is the name of your
domain.

On UNIX, execute the setDomainEnv.sh command, located in your domain
directory. The default location of WebLogic Server domains is ORACLE_HOME/
user_projects/domains/domainName, where ORACLE_HOME represents
the directory you specified as the Oracle Home when you installed WebLogic
Server and domainName is the name of your domain.

2 Create the build.xml file
that contains a call to the web
services Ant tasks.

The following example shows a simple build.xml file with a single target
called clean:

<project name="my-webservice">
 <target name="clean">
 <delete>
 <fileset dir="tmp" />
 </delete>
 </target>
</project>

This clean target deletes all files in the tmp subdirectory. Later sections
provide examples of specifying the Ant task in the build.xml file.

3 For each WebLogic web
service Ant task you want to
execute, add an appropriate
task definition and target to
the build.xml file using the
<taskdef> and <target>
elements.

The following example shows how to add the jwsc Ant task to the build file;
the attributes of the task have been removed for clarity:

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
<target name="build-service">
 <jwsc attributes go here...>
 ...
 </jwsc>
</target>

Note: You can name the WebLogic web services Ant tasks anything you want
by changing the value of the name attribute of the relevant <taskdef>
element. For consistency, however, this document uses the names jwsc,
clientgen, wsdlc, and wsdlget throughout.

4 Execute the Ant task or tasks
specified in the build.xml
file.

Type ant in the same directory as the build.xml file and specify the target.
For example:

prompt> ant build-service

5 Specify the context path and
service URI used in the URL
that invokes the web service.
(Optional)

You can set this information in several ways, as described in Defining the
Context Path of a WebLogic Web Service in Developing JAX-WS Web
Services for Oracle WebLogic Server.

For more information, see:

• Ant Task Reference in WebLogic Web Services Reference for Oracle WebLogic Server

Chapter 3
Using Oracle WebLogic Server Ant Tasks

3-7

• The following sections in Developing Applications for Oracle WebLogic Server:

– Using Ant Tasks to Configure and Use a WebLogic Server Domain

– wldeploy Ant Task Reference

Setting the Classpath for the WebLogic Ant Tasks
Each WebLogic Ant task accepts a classpath attribute or element so that you can add
new directories or JAR files to your current CLASSPATH environment variable.

The following example shows how to use the classpath attribute of the jwsc Ant task
to add a new directory to the CLASSPATH variable:

<jwsc srcdir="MyJWSFile.java"
 classpath="${java.class.path};my_fab_directory"
 ...
</jwsc>

The following example shows how to add to the CLASSPATH by using the
<classpath> element:

<jwsc ...>
 <classpath>
 <pathelement path="${java.class.path}" />
 <pathelement path="my_fab_directory" />
 </classpath>
...
</jwsc>

The following example shows how you can build your CLASSPATH variable outside of
the WebLogic web service Ant task declarations, then specify the variable from within
the task using the <classpath> element:

<path id="myClassID">
 <pathelement path="${java.class.path}"/>
 <pathelement path="${additional.path1}"/>
 <pathelement path="${additional.path2}"/>
</path>
<jwsc>
 <classpath refid="myClassID" />
...
</jwsc>

Note:

The Java Ant utility included in WebLogic Server uses the ant (UNIX) or
ant.bat (Windows) configuration files in the WL_HOME\server\bin directory
to set various Ant-specific variables, where WL_HOME is the top-level directory
of your WebLogic Server installation If you need to update these Ant
variables, make the relevant changes to the appropriate file for your
operating system.

Chapter 3
Using Oracle WebLogic Server Ant Tasks

3-8

Differences in Operating System Case Sensitivity When Manipulating
WSDL and XML Schema Files

Many WebLogic web service Ant tasks have attributes that you can use to specify a file, such
as a WSDL or an XML Schema file.

The Ant tasks process these files in a case-sensitive way. This means that if, for example, the
XML Schema file specifies two user-defined types whose names differ only in their
capitalization (for example, MyReturnType and MYRETURNTYPE), the clientgen Ant task
correctly generates two separate sets of Java source files for the Java representation of the
user-defined data type: MyReturnType.java and MYRETURNTYPE.java.

However, compiling these source files into their respective class files might cause a problem
if you are running the Ant task on Microsoft Windows, because Windows is a case insensitive
operating system. This means that Windows considers the files MyReturnType.java and
MYRETURNTYPE.java to have the same name. So when you compile the files on Windows, the
second class file overwrites the first, and you end up with only one class file. The Ant tasks,
however, expect that two classes were compiled, thus resulting in an error similar to the
following:

c:\src\com\bea\order\MyReturnType.java:14:
class MYRETURNTYPE is public, should be declared in a file named MYRETURNTYPE.java
public class MYRETURNTYPE
 ^

To work around this problem rewrite the XML Schema so that this type of naming conflict
does not occur, or if that is not possible, run the Ant task on a case sensitive operating
system, such as Unix.

Using the Java Management Extensions (JMX)
A managed bean (MBean) is a Java bean that provides a Java Management Extensions
(JMX) interface. JMX is the Java EE solution for monitoring and managing resources on a
network. Like SNMP and other management standards, JMX is a public specification and
many vendors of commonly used monitoring products support it.

WebLogic Server provides a set of MBeans that you can use to configure, monitor, and
manage WebLogic Server resources through JMX. WebLogic web services also have their
own set of MBeans that you can use to perform some web service administrative tasks.

There are two types of MBeans: runtime (for read-only monitoring information) and
configuration (for configuring the web service after it has been deployed).

The configuration web services MBeans are:

• WebserviceSecurityConfigurationMBean
• WebserviceCredentialProviderMBean
• WebserviceSecurityMBean
• WebserviceSecurityTokenMBean
• WebserviceTimestampMBean
• WebserviceTokenHandlerMBean

Chapter 3
Using the Java Management Extensions (JMX)

3-9

The runtime web services MBeans are:

• WseeRuntimeMBean
• WseeHandlerRuntimeMBean
• WseePortRuntimeMBean
• WseeOperationRuntimeMBean
• WseePolicyRuntimeMBean
See MBean Reference for Oracle WebLogic Server and the following sections in
Developing Custom Management Utilities Using JMX for Oracle WebLogic Server:

• Understanding WebLogic Server MBeans

• Accessing WebLogic Server MBeans with JMX

• Managing a Domain's Configuration with JMX

Using the Java EE Deployment API
The Java EE Deployment architecture defines the contracts that enable tools or
application programmers to configure and deploy applications on any Java EE
platform product. The contracts define a uniform model between tools and Java EE
platform products for application deployment configuration and deployment.

The J2EE Application Deployment specification (JSR-88), described at http://
jcp.org/en/jsr/detail?id=88, defines a standard API that you can use to configure
an application for deployment to a target application server environment.

The Deployment architecture makes it easier to deploy applications: Deployers do not
have to learn all the features of many different Java EE deployment tools in order to
deploy an application on many different Java EE platform products.

See Deploying Applications to Oracle WebLogic Server for more information.

Using Web Services Apache Maven Goals
Apache Maven is a software tool for building and managing Java-based projects.
WebLogic Server provides support for Maven through the provisioning of plug-ins that
enable you to perform various operations on WebLogic Server from within a Maven
environment.

WebLogic Server provides support for the following web services Maven goals.

Table 3-2 Web Services Maven Goals

Maven Goal Description

ws-clientgen Generates client web service artifacts from a WSDL.

ws-wsdlc Generates a set of artifacts and a partial Java implementation of
the web service from a WSDL.

ws-jwsc Builds a JAX-WS web service.

See Using the WebLogic Development Maven Plug-in in Developing Applications for
Oracle WebLogic Server for complete documentation.

Chapter 3
Using the Java EE Deployment API

3-10

http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88

4
Roadmap and Related Information

Understand how to implement WebLogic web services for Oracle WebLogic Server using a
roadmap that lists common tasks for creating, deploying, and invoking WebLogic web
services, along with a summary of related documentation.

• Roadmap for Implementing WebLogic Web Services

• WebLogic Web Services Documentation Set

• Related Documentation—WebLogic Server Application Development

Roadmap for Implementing WebLogic Web Services
The roadmap provides common tasks for creating, deploying, and invoking WebLogic web
services, such as reviewing the supported standards, running the samples, developing and
administering web services using JAX-WS, and more.

Table 4-1 Roadmap for Implementing WebLogic Web Services

Task More Information

Review supported standards Features and Standards Supported by WebLogic Web Services

Run samples Examples for Java EE Web Service Developers

Develop and administer web services
using JAX-WS

Developing JAX-WS Web Services for Oracle WebLogic Server

Develop and administer RESTful web
services using JAX-RS

Developing and Securing RESTful Web Services for Oracle WebLogic
Server

Develop and administer web services
using JAX-RPC

Developing JAX-RPC Web Services for Oracle WebLogic Server

Secure the web service—Oracle Web
Services Manager (OWSM) policies

Securing Web Services and Managing Policies with Oracle Web
Services Manager

Secure the web service—WebLogic web
service policies

Securing WebLogic Web Services for Oracle WebLogic Server

Attach OWSM policies • Attaching Policies in Securing Web Services and Managing
Policies with Oracle Web Services Manager

• Attaching Policies in Developing Applications with Oracle
JDeveloper

Attach WebLogic web service policies • Using Oracle Web Service Manager Security Policies in Securing
WebLogic Web Services for Oracle WebLogic Server

• Attaching Policies in Developing Applications with Oracle
JDeveloper

Deploy web services Install a Web Service

Administer web services—Fusion
Middleware Control

Administering Web Services

Administer web services—WebLogic
Server Administration Console

Web Services

4-1

Table 4-1 (Cont.) Roadmap for Implementing WebLogic Web Services

Task More Information

Test web services • Testing Web Services in Administering Web Services
• Test a Web Service

Testing and Debugging Web Services in Developing Applications
with Oracle JDeveloper

Monitor web service performance • Monitoring and Auditing Web Services in Administering Web
Services

• Monitor Web Services

Create custom OWSM policy file Creating Custom Assertions in Developing Extensible Applications with
Oracle Web Services Manager

Create custom WebLogic web service
policy file

Creating and Using a Custom Policy File in Securing WebLogic Web
Services for Oracle WebLogic Server

Interoperate WebLogic and Oracle WSM
web service policies

Interoperability Guide for Oracle Web Services Manager

Upgrade Upgrading WebLogic Web Services in Upgrading Oracle WebLogic
Server

WebLogic Web Services Documentation Set
This document is part of a larger WebLogic web services documentation set that
covers a comprehensive list of web services topics. The full documentation set
includes the Web services documents such as Understanding Web Services,
Understanding WebLogic Web Services for Oracle WebLogic Server, Understanding
Oracle Web Services Manager, Administering Web Services, and so on.

Table 4-2 WebLogic Web Services Documentation Set

Document Description

Understanding Web Services Develop web services for Oracle Fusion Middleware 12c.

Understanding WebLogic Web
Services for Oracle WebLogic
Server (This Document)

Introduces WebLogic web services, the standards that are
supported, interoperability information, and relevant
samples and documentation.

Understanding Oracle Web
Services Manager

Introduces WebLogic web services, the standards that are
supported, interoperability information, and relevant
samples and documentation.

Developing JAX-WS Web
Services for Oracle WebLogic
Server

Describes how to develop WebLogic web services using
JAX-WS. The guide includes use cases and examples,
iterative development procedures, typical JWS
programming steps, data type information, and how to
invoke a web service.

Developing and Securing RESTful
Web Services for Oracle
WebLogic Server

Describes how to develop WebLogic web services that
conform to the Representational State Transfer (REST)
architectural style using Java API for RESTful Web
Services (JAX-RS).

Chapter 4
WebLogic Web Services Documentation Set

4-2

Table 4-2 (Cont.) WebLogic Web Services Documentation Set

Document Description

Developing JAX-RPC Web
Services for Oracle WebLogic
Server

Describes how to develop WebLogic web services using
JAX-RPC. The guide includes use cases and examples,
iterative development procedures, typical JWS
programming steps, data type information, and how to
invoke a web service.

Securing WebLogic Web Services
for Oracle WebLogic Server

Describes how to develop and configure message-level
(digital signatures and encryption), transport-level, and
access control security for a web service.

Securing Web Services and
Managing Policies with Oracle
Web Services Manager

Describes how to secure web services using Oracle Web
Services Manager (OWSM) policies.

Administering Web Services Administer web services for Oracle Fusion Middleware 12c.

WebLogic Web Services
Reference for Oracle WebLogic
Server

Reference information on JWS annotations, Ant tasks,
reliable messaging WS-Policy assertions, security WS-
Policy assertions, and deployment descriptors.

Interoperability Guide for Oracle
Web Services Manager

Interoperate with OWSM.

Developing Extensible
Applications for Oracle Web
Services Manager

Develop custom assertions for OWSM.

Related Documentation—WebLogic Server Application
Development

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, refer to the documents such as Developing Applications for Oracle WebLogic
Server, Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server,
Developing XML Applications for Oracle WebLogic Server, and so on.

Table 4-3 Related Documentation—WebLogic Server Application Development

Review this document . . . To learn how to . . .

Developing Applications for
Oracle WebLogic Server

Develop WebLogic Server components (such as Web applications and
EJBs) and applications.

Developing Web
Applications, Servlets, and
JSPs for Oracle WebLogic
Server

Develop Web applications, including servlets and JSPs, that are
deployed and run on WebLogic Server.

Developing Enterprise
JavaBeans, Version 2.1, for
Oracle WebLogic Server

Develop EJBs that are deployed and run on WebLogic Server.

Developing XML Applications
for Oracle WebLogic Server

Design and develop applications that include XML processing.

Deploying Applications to
Oracle WebLogic Server

Deploy WebLogic Server applications. Use this guide for both
development and production deployment of your applications.

Chapter 4
Related Documentation—WebLogic Server Application Development

4-3

Table 4-3 (Cont.) Related Documentation—WebLogic Server Application
Development

Review this document . . . To learn how to . . .

Configuring Applications for
Production Deployment in
Deploying Applications to
Oracle WebLogic Server

Configure your applications for deployment to a production WebLogic
Server environment.

Tuning Performance of
Oracle WebLogic Server

Monitor and improve the performance of WebLogic Server applications.

System Administration in
Understanding Oracle
WebLogic Server

Administer WebLogic Server and its deployed applications.

Chapter 4
Related Documentation—WebLogic Server Application Development

4-4

5
Interoperability with Microsoft WCF/.NET

Oracle performs interoperability testing, in conjunction with Microsoft, to ensure that
WebLogic web services for Oracle WebLogic Server can access and consume web services
created using Microsoft Windows Communication Foundation (WCF)/.NET 3.0, 3.5, and
Framework 4.0, and vice versa.
Table 5-1 describes the interoperability tests that were completed on JAX-WS and JAX-RPC
web services.

Table 5-1 Completed Interoperability Tests

Area Interoperability Guidelines

Basic and complex data types Basic Data Types Interoperability Guidelines

WS-I Basic Profile 2.0, 1.2, and 1.1 Basic Profile Interoperability Guidelines

Note: WS-I Basic Profile 2.0 and 1.2 applies to JAX-WS only.
WS-I Basic Profile 1.1 applies to both JAX-WS and JAX-RPC
web services.

Web Services Reliable Secure Profile
(WS-RSP) 1.0

Web Services Reliable Secure Profile Interoperability
Guidelines

Web Services Security (WS-Security)
1.0 and 1.1

WS-Security Interoperability Guidelines

Web Services Security Policy (WS-
SecurityPolicy) 1.2

WS-SecurityPolicy Interoperability Guidelines

Web Services Secure Conversation
Language (WS-SecureConversation)
1.3

WS-SecureConversation Interoperability Guidelines

Web Services Policy Framework
(WS-Policy) 1.5

No interoperability restrictions.

Web Services Addressing (WS-
Addressing) 0.9 and 1.0

N/A

Message Transmission Optimization
Mechanism (MTOM)

N/A

SAML Assertions Using SAML Assertions Referenced from SignedInfo

In addition, the following combined features were tested:

• MTOM and WS-Security

• WS-ReliableMessaging and MTOM

• WS-ReliableMessaging 1.2 and WS-Addressing 1.0 (JAX-WS)

• WS-ReliableMessaging 1.1 and WS-Addressing 1.0 (JAX-WS)

• WS-ReliableMessaging 1.1 and WS-Addressing 0.9 and 1.0 (JAX-RPC)

• WS-ReliableMessaging 1.0 and WS-Addressing 0.9 and 1.0 (JAX-RPC)

• WS-ReliableMessaging 1.2 and WS-SecureConversation 1.4

5-1

• WS-ReliableMessaging 1.1 and WS-SecureConversation 1.3

• WS-ReliableMessaging 1.0 and WS-SecureConversation 1.3

• WS-Policy 1.5 and WS-SecurityPolicy 1.2

The following sections describe the interoperability issues and guidelines that were
identified during the testing.

Basic Data Types Interoperability Guidelines
When using the anyType class with Microsoft .NET 3.0/3.5 the Java data type returned
cannot be guaranteed. If a specific Java data type is required, avoid using anyType.

Basic Profile Interoperability Guidelines
Follow the basic profile interoperability guidelines to test the WS-I Basic Profiles.

The WS-I Basic Profile 1.2 and 2.0 profiles were tested between WebLogic web
services JAX-WS and the Microsoft .NET Framework 4.0. No interoperability
restrictions were found.

WS-I Basic Profile 1.1 was tested between WLS JAX-RPC and the Microsoft .NET
3.0/3.5 framework. This testing found that Microsoft .NET 3.0/3.5 does not enforce
string Basic Profile 1.1 semantics for the use case described on the Java Web site at:
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/
reference/tutorials/wsit/doc/DataBinding7.html

Web Services Reliable Secure Profile Interoperability
Guidelines

The Web Services Reliable Secure Profile implementations for WebLogic web services
and Microsoft .NET Web are compatible with few caveats.

• For WS-ReliableMessaging security, you must use WS-SecureConversation as
per the guidelines in the WS-I Reliable Secure Profile Version 1.0 Working Group
Draft specification at http://www.ws-i.org/Profiles/
ReliableSecureProfile-1.0.html.

• Asynchronous reliable messaging plus WS-SecureConversation or WS-Trust is
only supported for WebLogic web service JAX-WS clients and Microsoft .NET
services. In is not supported for JAX-RPC clients.

WS-Security Interoperability Guidelines
WebLogic Server lists interoperability guidelines for WS-Security, such as defining the
security policies, Microsoft .NET 3.0/3.5 guidelines, and so on.

• Use of <sp:Strict> layout assertions (shown below) cannot be guaranteed.

<sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
</sp:Layout>

Chapter 5
Basic Data Types Interoperability Guidelines

5-2

http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/reference/tutorials/wsit/doc/DataBinding7.html
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/reference/tutorials/wsit/doc/DataBinding7.html
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0.html
http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0.html

Instead, you should define your policy as follows:

<sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
</sp:Layout>

• The following assertions are not supported by Microsoft .NET 3.0/3.5:

– Digest password in UsernameToken
– <sp:EncryptedSupportingTokens>
– Element-level signature

– Element-level encryption

• Support of asymmetric binding for WS-Security 1.1 cannot be guaranteed on
Microsoft .NET 3.0/3.5.

WS-SecurityPolicy Interoperability Guidelines
WebLogic Server provides WS-SecurityPolicy interoperability guidelines to be followed.

In this release, WebLogic Server and Microsoft .NET 3.5 support Web Services Security
Policy (WS-SecurityPolicy) 1.3. Microsoft .NET 3.0 supports the December 2005 draft version
of the WS-SecurityPolicy specification.

In the December 2005 draft version of the specification, the
<sp:SignedEncryptedSupportingTokens> policy assertion is not supported. As a result,
Microsoft .NET 3.0 encrypts the UsernameToken in the <sp:SignedSupportingTokens> policy
assertion. If you use the <sp:SignedSupportingTokens> policy assertion without encrypting
the UsernameToken, the WebLogic Server and Microsoft .NET web services will not
interoperate.

WS-SecureConversation Interoperability Guidelines
Use the interoperability guidelines for WS-SecureConversation, such as usage of
<sp:SignBeforeEncrypt>, setCompatibilityPreference("msft") method, and so on.

• Oracle recommends that you do not use <sp:EncryptBeforeSigning/> unless there is a
security requirement. Instead, use <sp:SignBeforeEncrypt> (the default).

• Although WebLogic Server web services support cookie mode conversations, this feature
is a Microsoft proprietary implementation, and may not be supported by other vendors.

• When using <sp:BootstrapPolicy> policy assertion, you should refer to the guidelines
defined in WS-Security Interoperability Guidelines.

• There is no standard method of supporting cancel and renew of WS-SecureConversation
defined in the WS-SecurityPolicy or WS-SecureConversation specifications. The method
used by Microsoft .NET to support cancel and renew of WS-SecureConversation is not
compatible with WebLogic Server 10.x. As a result:

– For a Microsoft .NET client to interoperate with a WebLogic Server web service, the
Compatibility flag must be set on the server side via the web service Security
MBean using the setCompatibilityPreference("msft") method.

Chapter 5
WS-SecurityPolicy Interoperability Guidelines

5-3

– For a WebLogic Server web service client to interoperate with a WebLogic
Server web service that has the Compatibility flag set, the client must set
this flag as well, as follows:

stub._setProperty(WLStub.POLICY_COMPATIBILITY_PREFERENCE,"msft");
For examples, see Example 5-1 and Example 5-2.

Using SAML Assertions Referenced from SignedInfo
When the SAML assertion is referenced in the <ds:SignedInfo> element of a
<ds:Signature> element in a <wsee:Security> header, Microsoft .NET does not
support a SAML assertion that is referenced from <wsse:SecurityTokenReference>.
Use of <wsse:SecurityTokenReference> is defined as a best practice in the WS-
Security specification.

See http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-
os-SAMLTokenProfile.pdf.

For compatibility with Microsoft .NET, you must set the
WLStub.POLICY_COMPATIBILITY_PREFERENCE flag to
WLStub.POLICY_COMPATIBILITY_MSFT flag in web service client code. When the flag is
set, the SAML assertion will be signed with direct reference, rather than using a
SecurityTokenReference.

The following provides an example of how to set the Microsoft .NET compatibility flag
for a JAX-WS web service client:

The following provides an example of how to set the Microsoft .NET compatibility flag
for a JAX-RPC web service client:

Example 5-1 Setting the Microsoft .NET Compatibility Flag in a JAX-WS Web Service Client

. . .
import weblogic.wsee.jaxrpc.WLStub;
. . .
public String test(String hello) throws Exception {
 . . .
 BindingProvider provider = (BindingProvider)port;
 Map context = provider.getRequestContext();
 . . .
 . . .
 context.put(WLStub.POLICY_COMPATIBILITY_PREFERENCE, WLStub.POLICY_COMPATIBILITY_MSFT);
 try {
 String result = port.getName(hello);
 System.out.println("MSFT Result was: " + result);
 return result;
 } catch (Exception e) {
 throw new RuntimeException (e);
 }
}

Example 5-2 Setting the Microsoft .NET Compatibility Flag in a JAX-RPC Web Service Client

. . .

. . .
import weblogic.wsee.jaxrpc.WLStub;
. . .

@WebMethod()

Chapter 5
Using SAML Assertions Referenced from SignedInfo

5-4

http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf

public String callSamlHelloSV_WSS10_MSFT(String input) {
 try {
 System.out.println("Calling sayHello(" + input + ") with MSFT Ways");
 ((Stub)port)._setProperty(WLStub.POLICY_COMPATIBILITY_PREFERENCE,
 WLStub.POLICY_COMPATIBILITY_MSFT);
 String result = port.sayHelloSV_WSS10(input);
 System.out.println("MSFT Result was: " + result);
 return result;
 }
 catch (RemoteException e) {
 throw new RuntimeException(e);
 }
}

Chapter 5
Using SAML Assertions Referenced from SignedInfo

5-5

6
Examples for Java EE Web Service
Developers

Oracle provides a variety of samples that web service developers can use to learn more
about WebLogic web services for Oracle WebLogic Server.

• Samples for WebLogic Web Service Developers

• Additional Web Services Samples Available for Download

Samples for WebLogic Web Service Developers
Oracle provides a variety of code samples for web services developers. The samples and
tutorials illustrate WebLogic web services in action, and provide practical instructions on how
to perform key web service development tasks. Oracle recommends that you run the web
service samples before programming your own application that use web services.

Web services samples include:

• JAX-WS web services and clients

• RESTful web services and clients

• JAX-RPC web services and clients

Web Services Samples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in the
ORACLE_HOME\wlserver\samples\server\examples\src\examples\webservices directory,
where ORACLE_HOME represents the directory in which you installed WebLogic Server. See
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec
application provides a framework for patients, doctors, and administrators to manage patient
data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE_HOME\user_projects\domains\medrec
directory, where ORACLE_HOME is the directory you specified as the Oracle Home when you
installed Oracle WebLogic Server. See Sample Applications and Code Examplesin
Understanding Oracle WebLogic Server.

6-1

Additional Web Services Samples Available for Download
The additional Web services samples include Oracle-certified ones, and the samples
submitted by fellow developers. Your use rights and restrictions for each sample code
item described in the applicable license agreement.

Additional API samples for download can be found at http://www.oracle.com/
technetwork/indexes/samplecode/index.html.

Chapter 6
Additional Web Services Samples Available for Download

6-2

http://www.oracle.com/technetwork/indexes/samplecode/index.html
http://www.oracle.com/technetwork/indexes/samplecode/index.html

	Contents
	Preface
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1.x)
	New and Changed Features for 12c (12.2.1)
	New and Changed Features for 12c (12.1.3)
	New and Changed Features for 12c (12.1.2)

	1 Introducing Oracle WebLogic Web Services
	Overview of WebLogic Web Services
	How Do I Choose Between SOAP and REST?

	2 Features and Standards Supported by WebLogic Web Services
	A Note About JAX-WS 2.2 RI/JDK 8.0 Extensions
	Apache XMLBeans 2.0
	Fast Infoset
	Java API for RESTful Web Services (JAX-RS)
	Java API for XML-based RPC (JAX-RPC) 1.1
	Java API for XML-based Web Services (JAX-WS) 2.2
	Java Architecture for XML Binding (JAXB) 2.2
	JSR 109: Implementing Enterprise Web Services 1.3
	Security Assertion Markup Language (SAML) 2.0 and 1.1
	Security Assertion Markup Language (SAML) Token Profile 1.1 and 1.0
	Simple Object Access Protocol (SOAP) 1.1 and 1.2
	SOAP Over JMS Transport 1.0
	SOAP with Attachments API for Java (SAAJ) 1.3
	Web Application Description Language (WADL) 2009 Membership Submission
	Web Services Addressing (WS-Addressing) 1.0 and 2004/08 Member Submission
	Web Services Atomic Transaction (WS-AtomicTransaction) Version 1.2, 1.1, and 1.0
	Web Services Coordination (WS-Coordination) Version 1.2, 1.1, and 1.0
	Web Services Description Language (WSDL) 1.1
	Web Services MakeConnection 1.1
	Web Services Metadata for the Java Platform 2.0 (JSR-181)
	Web Services Policy Attachment (WS-Policy Attachment) 1.5 and 1.2
	Web Services Policy Framework (WS-Policy) 1.5 and 1.2
	Web Services Reliable Messaging (WS-ReliableMessaging)
	Web Services Reliable Messaging Policy Assertion (WS-RM Policy)
	Web Services Secure Conversation Language (WS-SecureConversation)
	Web Services Security (WS-Security) 1.1 and 1.0
	Web Services Security Policy (WS-SecurityPolicy) 1.3
	Web Services Trust Language (WS-Trust)
	Additional Specifications Supported by WebLogic Web Services

	3 Using the Development and Administration Tools
	Using Oracle IDEs to Develop Web Services
	Using the Administration Tools to Manage, Test, and Monitor WebLogic Web Services
	Using Oracle Enterprise Manager Fusion Middleware Control
	Using Oracle WebLogic Server Administration Console
	Invoking the Administration Console
	How Web Services Are Displayed In the Administration Console
	Creating a Web Services Security Configuration

	Using the Oracle WebLogic Scripting Tool
	Using Oracle WebLogic Server Ant Tasks
	Setting the Classpath for the WebLogic Ant Tasks
	Differences in Operating System Case Sensitivity When Manipulating WSDL and XML Schema Files

	Using the Java Management Extensions (JMX)
	Using the Java EE Deployment API
	Using Web Services Apache Maven Goals

	4 Roadmap and Related Information
	Roadmap for Implementing WebLogic Web Services
	WebLogic Web Services Documentation Set
	Related Documentation—WebLogic Server Application Development

	5 Interoperability with Microsoft WCF/.NET
	Basic Data Types Interoperability Guidelines
	Basic Profile Interoperability Guidelines
	Web Services Reliable Secure Profile Interoperability Guidelines
	WS-Security Interoperability Guidelines
	WS-SecurityPolicy Interoperability Guidelines
	WS-SecureConversation Interoperability Guidelines
	Using SAML Assertions Referenced from SignedInfo

	6 Examples for Java EE Web Service Developers
	Samples for WebLogic Web Service Developers
	Web Services Samples in the WebLogic Server Distribution
	Avitek Medical Records Application (MedRec) and Tutorials

	Additional Web Services Samples Available for Download

