
Oracle® Fusion Middleware
Developing Applications with Oracle User
Messaging Service Using Oracle WebLogic
Server Proxy Plug-Ins

14c (14.1.2.0.0)
F89315-02
February 2025

Oracle Fusion Middleware Developing Applications with Oracle User Messaging Service Using Oracle WebLogic Server
Proxy Plug-Ins, 14c (14.1.2.0.0)

F89315-02

Copyright © 2013, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

Related Documents vii

Conventions viii

1 Overview

Introduction to User Messaging Service 1-1

Overview of User Messaging Service APIs 1-1

Deprecated APIs 1-2

User Messaging Service Sample Applications 1-2

2 Sending and Receiving Messages using the User Messaging Service
Java API

Introduction to the UMS Java API 2-2

Creating a UMS Client Instance and Specifying Runtime Parameters 2-2

Sending a Message 2-4

Creating a Message 2-5

Creating a Plaintext Message 2-5

Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts) 2-5

Creating Delivery Channel-Specific Payloads in a Single Message for Recipients
with Different Delivery Types 2-5

Creating a message with Unicode characters like Emojis 2-6

Creating a Message with an Attachment (works only for Email) 2-7

Creating an Address 2-7

Types of Addresses 2-7

Creating Address Objects 2-8

Creating a Recipient with a Failover Address 2-8

Recipient Types 2-9

API Reference for Class MessagingFactory 2-9

API Reference for Interface Address 2-9

iii

User Preference Based Messaging 2-9

Sending Group Messages 2-10

Sending Messages to a Group 2-10

Sending Messages to a Group Through a Specific Channel 2-11

Sending Messages to an Application Role 2-11

Sending Messages to an Application Role Through a Specific Channel 2-12

Retrieving Message Status 2-12

Synchronous Retrieval of Message Status 2-12

Asynchronous Receiving of Message Status 2-12

Creating a Listener Programmatically 2-13

Default Status Listener 2-13

Per Message Status Listener 2-13

Receiving a Message 2-14

Registering an Access Point 2-14

Synchronous Receiving 2-14

Asynchronous Receiving 2-15

Creating a Listener 2-15

Default Message Listener 2-16

Per Access Point Message Listener 2-16

Message Filtering 2-16

Configuring for a Cluster Environment 2-17

Using UMS Client API for XA Transactions 2-17

About XA Transactions 2-17

Sending and Receiving XA Enabled Messages 2-18

Using UMS Java API to Specify Message Resends 2-20

Selecting a Driver Programmatically 2-20

Setting up Priority and Expiration time for a Message 2-21

Specifying User Preference Application Partitioning Profile ID 2-22

Configuring Security 2-23

Threading Model 2-23

Listener Threading 2-24

3 Sending and Receiving Messages using the User Messaging Service
Web Service API

Introduction to the UMS Web Service API 3-2

Creating a UMS Client Instance and Specifying Runtime Parameters 3-2

Sending a Message 3-4

Creating a Message 3-4

Creating a Plaintext Message 3-4

Creating a Multipart/Mixed Message (with Text and Binary Parts) 3-5

Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts) 3-5

iv

Creating Delivery Channel-Specific Payloads in a Single Message for Recipients
with Different Delivery Types 3-6

API Reference for Interface Message 3-7

API Reference for Enum DeliveryType 3-7

Creating an Address 3-7

Recipient Types 3-7

API Reference for Class MessagingFactory 3-7

User Preferences in Messages 3-7

Retrieving Message Status 3-7

Synchronous Retrieval of Message Status 3-8

Asynchronous Receiving of Message Status 3-8

Creating a Listener 3-8

Publish the Callback Service 3-9

Stop a Dynamically Published Endpoint 3-9

Registration 3-9

Receiving a Message 3-9

Registering an Access Point 3-10

Synchronous Receiving 3-10

Asynchronous Receiving 3-10

Creating a Listener 3-11

Default Message Listener 3-11

Per Access Point Message Listener 3-11

Message Filtering 3-12

Configuring for a Cluster Environment 3-12

Using UMS Web Service API to Specify Message Resends 3-12

Configuring Security 3-12

Client and Server Security 3-12

Listener or Callback Security 3-13

Threading Model 3-13

A Using the User Messaging Service Sample Applications

Using the UMS Client API to Build a Client Application A-1

Overview of Development A-2

Configuring the Email Driver A-2

Using JDeveloper 14c to Build the Application A-3

Opening the Project A-3

Deploying the Application A-3

Testing the Application A-4

Using the UMS Client API to Build a Client Echo Application A-4

Overview of Development A-5

Configuring the Email Driver A-5

v

Using Oracle JDeveloper 14c to Build the Application A-6

Opening the Project A-6

Deploying the Application A-6

Testing the Application A-7

Creating a New Application Server Connection A-7

Sample Chat Application with Web Services APIs A-8

Overview A-8

Provided Files A-8

Running the Pre-Built Sample A-9

Testing the Sample A-9

Creating a New Application Server Connection A-10

vi

Preface

This document describes how to use Oracle User Messaging Service.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This guide is intended for process developers who use Oracle User Messaging Service to send
and receive messages from their applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
For more information, see the following documents:

• Release Notes

• Administering Oracle User Messaging Service

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Developing SOA Applications with Oracle SOA Suite

• WLST Command Reference for Infrastructure Components

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=as111171&id=SOAAG

1
Overview

This chapter provides an overview of Oracle User Messaging Service (UMS) APIs and it
includes the following sections:

• Introduction to User Messaging Service
Oracle User Messaging Service (UMS) provides a common service responsible for
sending out messages from applications to devices or services using various protocols. It
also routes incoming messages from devices or services to applications.

• Overview of User Messaging Service APIs
Oracle Fusion Middleware application developers can either use the UMS Java API or the
UMS Web Service API to implement messaging services in their applications.

• Deprecated APIs
The Parlay X Multimedia Messaging API and the User Messaging Service EJB API are
deprecated in this release.

• User Messaging Service Sample Applications
The code samples for Oracle User Messaging Service are available on Oracle Technology
Network.

Introduction to User Messaging Service
Oracle User Messaging Service (UMS) provides a common service responsible for sending out
messages from applications to devices or services using various protocols. It also routes
incoming messages from devices or services to applications.

To learn more about the architecture and features of Oracle User Messaging Service, see the
"Introduction to Oracle User Messaging Service" chapter in Administering Oracle User
Messaging Service.

Overview of User Messaging Service APIs
Oracle Fusion Middleware application developers can either use the UMS Java API or the
UMS Web Service API to implement messaging services in their applications.

Use the UMS Java API if the application runs from the same JEE server as the UMS
Messaging Engine. Otherwise, use the UMS Web Services API. In the case of Web Services
API, the provided UMS client code wraps the actual Web Services calls and make use of the
UMS Web Services API very similar to the UMS Java API.

For more information about the classes and interfaces, see User Messaging Service Java API
Reference.

How does the UMS Java API work?

The UMS Client library consists of two main components, MessagingClient and
ListenerManager. The MessagingClient is created through the MessagingClientFactory and
it is the handle that the client uses to send and receive messages, to register AccessPoints
(represents the addresses an application uses for receiving messages), and to set listeners.
Addresses and AccessPoints are created through the MessagingFactory. The

1-1

ListenerManager handles the callbacks when the application wants to receive messages or
status information asynchronously using listeners.

When a MessagingClient is created, it registers the application in the user messaging engine
and when a message or status arrives, the ListenerManager calls the listener's onMessage or
onStatus method.

The following code snippet illustrates how to create a Messaging client, how to register an
access point, and how to send a message:

//Create MessagingClient
HashMap<String, Object> clientParameters = new HashMap<String, Object>();
clientParameters.put(ApplicationInfo.APPLICATION_NAME, appName);
MessagingClient messagingClient =
MessagingClientFactory.createMessagingClient(clientParameters);

//Create sender and recipient addresses
Address sender = MessagingFactory.createAddress("EMAIL:alice@example.com");
Address recipient = MessagingFactory.createAddress("EMAIL:bob@example.com");

//Create and register an accessPoint for the Address(es) you want to be able to receive
messages for.
AccessPoint accessPoint = MessagingFactory.createAccessPoint(sender);
messagingClient.registerAccessPoint(accessPoint);

//Create and send a message
Message message = MessagingFactory.createTextMessage("Hello World");
message.setSubject("Test Subject");
message.addRecipient(recipient);
message.addSender(sender);
String mid = messagingClient.send(message);

Deprecated APIs
The Parlay X Multimedia Messaging API and the User Messaging Service EJB API are
deprecated in this release.

The UMS Java API replaces the deprecated EJB API and the UMS Web Services API replaces
the deprecated Parlay X Multimedia Messaging API. See Sending and Receiving Messages
using the User Messaging Service Java API and Sending and Receiving Messages using the
User Messaging Service Web Service API.

For more information about the deprecated APIs, see Developing Applications with Oracle
User Messaging Service Using Oracle WebLogic Server Proxy Plug-Ins.

User Messaging Service Sample Applications
The code samples for Oracle User Messaging Service are available on Oracle Technology
Network.

Oracle Technology Network
http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html.

Chapter 1
Deprecated APIs

1-2

https://docs.oracle.com/middleware/1212/ums/UMSDG/index.html
https://docs.oracle.com/middleware/1212/ums/UMSDG/index.html
http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html

Note:

Unless explicitly identified as such, the sample codes are not certified or supported
by Oracle; it is intended for educational or testing purposes only.

You can build and deploy these sample applications using Oracle JDeveloper 14c, and also
manage communication preferences through a web interface (see Administering User
Communication Preferences).

Chapter 1
User Messaging Service Sample Applications

1-3

2
Sending and Receiving Messages using the
User Messaging Service Java API

This chapter describes how to use the User Messaging Service (UMS) client API to develop
applications. This API serves as a programmatic entry point for Fusion Middleware application
developers to incorporate messaging features within their enterprise applications.
For more information about the classes and interfaces, see User Messaging Service Java API
Reference.

Note:

To learn more about the code samples for Oracle User Messaging Service, or to run
the samples yourself, refer to the samples at:

http://www.oracle.com/technetwork/indexes/samplecode/sample-
ums-1454424.html

• Introduction to the UMS Java API
The UMS API provides a plain old java (POJO/POJI) programming model and this
eliminates the needs for application developers to package and implement various Jakarta
EE modules (such as an EJB module) in an application to access UMS features.

• Creating a UMS Client Instance and Specifying Runtime Parameters
The MessagingClient object is essential to the UMS Java API user. This object is used to,
for instance, send a message, retrieve status information for a sent message, and to
receive messages synchronously. The MessagingClient object is created using the
MessagingClientFactory.createMessagingClient() method.

• Sending a Message
Use the MessagingFactory class to create a UMS Message object for the client
application. The MessagingFactory class is also used to create Addresses, AccessPoints,
MessageFilters, and MessageQueries.

• Retrieving Message Status
After sending a message, use Oracle UMS to retrieve the message status either
synchronously or asynchronously.

• Receiving a Message
An application that wants to receive incoming messages must register one or more access
points that represent the recipient addresses of the messages.

• Configuring for a Cluster Environment
The API supports an environment where client applications and the UMS server are
deployed in a cluster environment.

• Using UMS Client API for XA Transactions
UMS provides support for XA enabled transactions for outbound and inbound messages.
The industry standard, X/Open XA protocol, is widely supported in other Oracle products
such as Business Process Management (BPM).

2-1

http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html
http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html

• Using UMS Java API to Specify Message Resends
When a message send attempt is classified as a complete failure, that is, the failover chain
is exhausted, the message is automatically scheduled for resend by the UMS Server. This
is repeated until the message is successfully sent or the configured number of resends is
reached.

• Selecting a Driver Programmatically
Unless multiple drivers of the same type is used, the UMS Server engine selects a driver
based on the delivery type that is defined in the UMS Message sent by the client
application.

• Setting up Priority and Expiration time for a Message
In certain circumstances such as a high load, you may benefit from specifying UMS
Message priority when sending a message.

• Specifying User Preference Application Partitioning Profile ID
User Communication Preferences are invoked for recipient addresses that contains the
USER prefix (for example, USER:john.doe). The preferences can be partitioned into
profiles.

• Configuring Security
Client applications may need to specify one or more additional configuration parameters to
establish a secure listener.

• Threading Model
Client applications that use the UMS Java API are usually multi-threaded. Typical
scenarios include a pool of EJB instances, each of which uses a MessagingClient
instance; and a servlet instance that is serviced by multiple threads in a web container.

Introduction to the UMS Java API
The UMS API provides a plain old java (POJO/POJI) programming model and this eliminates
the needs for application developers to package and implement various Jakarta EE modules
(such as an EJB module) in an application to access UMS features.

This reduces the complexity of the client application, and also, reduces application
development time because developers can create applications to run in a Jakarta EE container
without performing any additional packaging of modules, or obtaining specialized tools to
perform such packaging tasks.

Consumers do not need to deploy any EJB or other Jakarta EE modules in their applications,
but must ensure that the UMS libraries are available in an application' s runtime class path.
The deployment is as a shared library, oracle.sdp.client.

The samples with source code are available on Oracle Technology Network (OTN).

Creating a UMS Client Instance and Specifying Runtime
Parameters

The MessagingClient object is essential to the UMS Java API user. This object is used to, for
instance, send a message, retrieve status information for a sent message, and to receive
messages synchronously. The MessagingClient object is created using the
MessagingClientFactory.createMessagingClient() method.

Client applications can specify a set of parameters at runtime when instantiating a
MessagingClient object. For example, you configure a MessagingClient instance by specifying
parameters as key-value pairs in a java.util.Map<String, Object>. Among other things, the

Chapter 2
Introduction to the UMS Java API

2-2

configuration parameters serve to identify the client application, point to the UMS server, and
establish security credentials. Client applications are responsible for storing and loading the
configuration parameters using any available mechanism.

The MessagingClient needs to be released when the application stops or undeployes, or
when the EJB bean that uses the client destroyes.

Table 2-1 lists some configuration parameters that may be set for the Java API. In typical use
cases, most of the parameters do not need to be provided and the API implementation uses
sensible default values.

Table 2-1 Configuration Parameters Specified at Runtime

Parameter Notes

APPLICATION_NAME Optional. By default, the client is identified by its
deployment name. This identifier can be overridden
by specifying a value for key
ApplicationInfo.APPLICATION_NAME.

APPLICATION_INSTANCE_NAME Optional. Only required for certain clustered use
cases or to take advantage of session-based
routing.

SDPM_SECURITY_PRINCIPAL Optional. By default, the client's resources are
available to any application with the same
application name and any security principal. This
behavior can be overridden by specifying a value for
key
ApplicationInfo.SDPM_SECURITY_PRINCIPAL.
If a security principal is specified, then all
subsequent requests involving the application's
resources (messages, access points, and so on.)
must be made using the same security principal.

MESSAGE_LISTENER_THREADS
STATUS_LISTENER_THREADS

Optional. When listeners are used to receive
messages or statuses asynchronously, the number
of listener worker threads can be controlled by
specifying values for the
MessagingConstants.MESSAGE_LISTENER_THREADS
and
MessagingConstants.STATUS_LISTENER_THREA
DS keys.

LISTENER_TRANSACTION_MODE Optional. When receiving messages, using a listener
in the transaction can be controlled by specifying a
value for this parameter.

To release resources used by the MessagingClient instance when it is no longer needed, call
MessagingClientFactory.remove(client). If you do not call this method, some resources
such as worker threads and JMS listeners may remain active.

Example 2-1 shows a sample code for creating a MessagingClient instance:

Example 2-1 Creating a MessagingClient Instance

Map<String, Object> params = new HashMap<String, Object>();
// params.put(key, value); // if optional parameters need to be specified.
MessagingClient messagingClient = MessagingClientFactory.createMessagingClient(params);

A MessagingClient cannot be reconfigured after it is instantiated. Instead, you must create a
new instance of the MessagingClient class using the desired configuration.

Chapter 2
Creating a UMS Client Instance and Specifying Runtime Parameters

2-3

The API reference for class MessagingClientFactory can be accessed from the Javadoc.

Sending a Message
Use the MessagingFactory class to create a UMS Message object for the client application.
The MessagingFactory class is also used to create Addresses, AccessPoints,
MessageFilters, and MessageQueries.

See User Messaging Service Java API Reference for more information about these methods.

When the client application sends a message, the UMS API returns a String identifier that the
client application can later use to retrieve message delivery status. The status returned is the
latest known status based on UMS internal processing and delivery notifications received from
external gateways.

The types of messages that can be created include plaintext messages, multipart messages
that can consist of text/plain and text/html parts, and attachments. However, note that the
protocol implemented by a driver may limit the kind of message that can be sent through a
driver. To address this problem, it is possible to create payloads specific to a delivery channel
(DeliveryType) in a single message as described in Creating Delivery Channel-Specific
Payloads in a Single Message for Recipients with Different Delivery Types.

The Device Address Type used for different drivers are explained in the following table:

Table 2-2 Device Address Types for Drivers

Drivers Address Type

SMPP Device Address Type - SMS

Example - SMS:1234

XMPP Device Address Type - IM

Example - IM:n.n@example.com

Extension Device Address Type - URI:<protocol>

Example - can be any thing, e.g URI:myExt:n_n

Email Device Address Type - EMAIL

Example - EMAIL:n.n@example.com

GCM Device Address Type - URI:gcm

Example - URI:gcm:sdks98sdfj098dsslkjasqijer93

Twitter Device Address Type - URI:twitter

Example -URI:twitter:n_n

APNS Device Address Type - URI:apns

Example -URI:apns:sdks98sdfj098dsslkjasqijer93

• Creating a Message

• Creating an Address

• User Preference Based Messaging

• Sending Group Messages

Chapter 2
Sending a Message

2-4

Creating a Message
This section describes the various types of messages that can be created. The message
properties are explained in the table below Table 2-3:

• Creating a Plaintext Message

• Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)

• Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with
Different Delivery Types

• Creating a message with Unicode characters like Emojis

• Creating a Message with an Attachment (works only for Email)

Creating a Plaintext Message
Example 2-2 shows how to create a plaintext message using the UMS Java API.

Example 2-2 Creating a Plaintext Message Using the UMS Java API

Message message = MessagingFactory.createTextMessage("This is a Plain Text message.");

or

Message message = MessagingFactory.createMessage();
message.setContent("This is a Plain Text message.", "text/plain;charset=utf-8");

Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
Example 2-3 shows how to create a multipart or alternative message using the UMS Java API.

Example 2-3 Creating a Multipart or Alternative Message Using the UMS Java API

Message message = MessagingFactory.createMessage();
message.setSubject("Testing attachments");
MimeMultipart mp = new MimeMultipart("related");
MimeBodyPart part1 = new MimeBodyPart();
part1.setText("A sample pdf.");
MimeBodyPart pdfPart = new MimeBodyPart();
pdfPart.attachFile("/tmp/sample-content.pdf");
pdfPart.setDisposition(Part.ATTACHMENT);
mp.addBodyPart(part1);
mp.addBodyPart(pdfPart);
message.setContent(mp, "related");

Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with
Different Delivery Types

When sending a message to multiple recipients, or to a USER-address that is resolved by the
User Preferences in run-time, there could be multiple channels involved. Oracle UMS
application developers are required to specify the correct multipart format for each channel.

Example 2-4 shows how to create delivery channel (DeliveryType) specific payloads in a
single message for recipients with different delivery types.

Chapter 2
Sending a Message

2-5

Each top-level part of a multiple payload multipart/alternative message should contain one or
more values of this header. The value of this header should be the name of a valid delivery
type. Refer to the available values for DeliveryType in the enum DeliveryType.

Example 2-4 Creating Delivery Channel-specific Payloads in a Single Message for
Recipients with Different Delivery Types

Message message = MessagingFactory.createMessage();

// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");

// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setContent("Text content for SMS.", "text/plain");

part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");

// add first part
mp.addBodyPart(part1);

// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setContent("Text content for EMAIL/IM.", "text/plain");
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setContent("<html><head></head><body><i>" + "HTML content for EMAIL/
IM." +
"</i></body></html>", "text/html");
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, "multipart/alternative");

part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");

// add second part
mp.addBodyPart(part2);

// set the content of the message
message.setContent(mp, "multipart/alternative");

// set the MultiplePayload flag to true
message.setMultiplePayload(true);

The API reference for class MessagingFactory , interface Message and enum DeliveryType
can be accessed from User Messaging Service Java API Reference.

Creating a message with Unicode characters like Emojis
If non-ASCII characters are used, then the charset on the UMS message must be set
accordingly. For example, to UTF-8. Example 2-5 is sample code that illustrates creating
messages with the character 'ä' and the emoticon.

Example 2-5 Creating a message with Unicode characters like Emojis

// message with 'ä'
Message message1 = MessagingFactory.createTextMessage("\u00e4", "UTF-8");
// message with SMILING FACE WITH SUNGLASSES (U+1F60E)
Message message2 = MessagingFactory.createTextMessage("\ud83d\ude0e", "UTF-8");

Chapter 2
Sending a Message

2-6

Creating a Message with an Attachment (works only for Email)
Example 2-6 shows how to create a message with an attachment.

Example 2-6 Creating a Message Attachment

Message message = MessagingFactory.createMessage();
message.setSubject("Testing attachments");

MimeMultipart mp = new MimeMultipart("mixed");

MimeBodyPart part1 = new MimeBodyPart();
part1.setText("A sample pdf.");

MimeBodyPart part2 = new MimeBodyPart();
part2.attachFile("/tmp/sample-content.pdf");

mp.addBodyPart(part1);
mp.addBodyPart(part2);
message.setContent(mp, MimeType.MULTIPART_MIXED.toString());

Creating an Address
This section describes the various types of UMS addresses available and how to create
address objects.

• Types of Addresses

• Creating Address Objects

• Creating a Recipient with a Failover Address

• Recipient Types

• API Reference for Class MessagingFactory

• API Reference for Interface Address

Types of Addresses
This section describes the various type of addresses available in UMS:

• Device Address: A device address can be of various types, such as email addresses,
instant messaging addresses, uri:twitter, uri:apns, uri:gcm, uri:popup and telephone
numbers. See "Creating Address Objects".

• Failover address: A backup or failover address that will be used if the message failed to
send to the original address. See "Creating a Recipient with a Failover Address".

• User Address: User addresses are user IDs in a user repository that during a message
send will be resolved to device addresses. See "User Preference Based Messaging ".

• Group Address - Group Addresses are LDAP groups (or enterprise roles) that during a
message send will be resolved to User and/or Device Addresses. See "Sending Group
Messages".

• Application Role Address: Application Role Addresses will, during a message send, be
resolved to Group, User and/or Devices Addresses. See "Sending Messages to an
Application Role".

Chapter 2
Sending a Message

2-7

Creating Address Objects
You can address senders and recipients of messages by using the class MessagingFactory to
create Address objects.

• Creating a Single Address Object

• Creating Multiple Address Objects in a Batch

• Adding Sender or Recipient Addresses to a Message

• Adding Display Name to a Sender Address When using Email Delivery Type

Creating a Single Address Object
Example 2-7 shows code for creating a single Address object:

Example 2-7 Creating a Single Address Object

Address recipient = MessagingFactory.createAddress("EMAIL:john@example.com");

Creating Multiple Address Objects in a Batch
Example 2-8 shows code for creating multiple Address objects in a batch:

Example 2-8 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"EMAIL:john@example.com", "SMS:123456"};
Address[] recipients = MessagingFactory.createAddress(recipientsStr);

Adding Sender or Recipient Addresses to a Message
Example 2-9 shows code for adding sender or recipient addresses to a message:

Example 2-9 Adding Sender or Recipient Addresses to a Message

Address sender = MessagingFactory.createAddress("EMAIL:john@example.com");
Address recipient = MessagingFactory.createAddress("EMAIL:jane@example.com");
message.addSender(sender);
message.addRecipient(recipient);

Adding Display Name to a Sender Address When using Email Delivery Type
Example 2-10 shows code for adding display name to a sender when using email delivery
type:

Example 2-10 Adding Display Name to a Sender Address When using Email Delivery
Type

Address sender = MessagingFactory.createAddress("EMAIL:\"Mr Bob\" <bob@example.com>");
message.addSender(sender);

Creating a Recipient with a Failover Address
Example 2-11 shows a sample code for creating a recipient with a failover address:

Example 2-11 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "EMAIL:john@example.com, SMS:123456";
Address recipient = MessagingFactory.createAddress(recipientWithFailoverStr);

Chapter 2
Sending a Message

2-8

or

Address recipient = MessagingFactory.createAddress("EMAIL:john@example.com");
Address failoverAddr = MessagingFactory.createAddress("SMS:123456");
recipient.setFailoverAddress(failoverAddr);

Recipient Types
The UMS Java API provides support for sending and receiving messages with To/Cc/Bcc
recipients for use with the email driver:

• To send a message and specify a Cc/Bcc recipient, create the
oracle.sdp.messaging.Address object using
oracle.sdp.messaging.MessagingFactory.buildAddress method. The arguments are the
address value (for example, user@domain.com), delivery type (for example,
DeliveryType.EMAIL), and email mode (for example, "Cc" or "Bcc").

• To determine the recipient type of an existing address object, for example in a received
message, use the oracle.sdp.messaging.MessagingFactory.getRecipientType method,
passing it the Address object. It returns a string indicating the recipient type.

API Reference for Class MessagingFactory
The API reference for class MessagingFactory can be accessed from User Messaging Service
Java API Reference.

API Reference for Interface Address
The API reference for interface Address can be accessed from User Messaging Service Java
API Reference.

User Preference Based Messaging
When sending a message to a user recipient (to leverage the user's messaging preferences),
you can pass current values for various business terms in the message as metadata. The UMS
server matches the supplied facts in the message against conditions for business terms
specified in the user's messaging filters and sends the message to the device address that
matches the user's preferences for this message.

For more information about user preferences, see Administering User Communication
Preferences.

Note:

All facts must be added as metadata in the
Message.NAMESPACE_NOTIFICATION_PREFERENCES namespace. Metadata in other
namespaces are ignored (for resolving User Communication Preferences).

Example 2-12 shows how to specify a user recipient and supply facts for business terms for
the user preferences in a message. For a complete list of supported business terms, refer to
Administering User Communication Preferences.

Chapter 2
Sending a Message

2-9

Example 2-12 User Preference Based Messaging

Message message = MessagingFactory.createMessage();
// create and add a user recipient
Address userRecipient1 = MessagingFactory.createAddress("USER:sampleuser1");
message.addRecipient(userRecipient1);
// specify business term facts
message.setMetaData(Message.NAMESPACE_NOTIFICATION_PREFERENCES, "Customer
Name", "ACME");
// where "Customer Name" is the Business Term name, and "ACME" is the
Business Term value (i.e, fact).

Sending Group Messages
You can send messages to a group of users by sending it to a group URI, or sending a
message to LDAP groups (or enterprise roles) and application roles.

• Sending Messages to a Group

• Sending Messages to a Group Through a Specific Channel

• Sending Messages to an Application Role

• Sending Messages to an Application Role Through a Specific Channel

Sending Messages to a Group
You can send messages to an LDAP group or to enterprise roles.

To send a message to a group, use the MessagingFactory class to create a recipient address
of type GROUP and send the message as shown in Example 2-13.

Example 2-13 Creating and addressing a message to a group

Address groupAddr = MessagingFactory.createAddress("GROUP:MyGroup");
Message message = MessagingFactory.createTextMessage("Sending message to a group");
message.addRecipient(groupAddr);
message.setSubject("Testing groups");
String id = messagingClient.send(message);

The group address groupAddr is eventually replaced by user addresses and the result will be
as shown in Example 2-14.

Example 2-14 Group Address replaced by user addresses

Address groupMember1 = MessagingFactory.createAddress("USER:MyGroupMember1");
Address groupMember2 = MessagingFactory.createAddress("USER:MyGroupMember2");
Address groupMember3 = MessagingFactory.createAddress("USER:MyGroupMember3");
Message message = MessagingFactory.createTextMessage("Sending message to a group");
message.addRecipient(groupMember1);
message.addRecipient(groupMember2);
message.addRecipient(groupMember3);
message.setSubject("Testing groups");
String id = messagingClient.send(message);

It is the User Preferences for each user that determines where the message will eventually
reach. For more information, see Administering User Communication Preferences.

Chapter 2
Sending a Message

2-10

Sending Messages to a Group Through a Specific Channel
You can specify the outgoing channel before sending a group message. To specify the
outgoing channel for a group message, you must set the DeliveryType property of the group
address (groupAddr) as shown in Example 2-15.

Example 2-15 Creating and addressing a message to a group through a channel

Address groupAddr = MessagingFactory.createAddress("GROUP:MyGroup");
groupAddr.setDeliveryType(DeliveryType.EMAIL);
Message message = MessagingFactory.createTextMessage("Sending message to a group");
message.addRecipient(groupAddr);
message.setSubject("Testing groups through email");
String id = messagingClient.send(message);

The group is resolved to users, then each user's email address is fetched. The user's email
address in this case is the same as that used for User Preferences. If no email address exists
for a user, that user is skipped.

Sending Messages to an Application Role
An application role is a collection of users, groups, and other application roles; it can be
hierarchical. Application roles are defined by application policies and not necessarily known to
a JakartaEE container. For more information about application roles, see Securing Applications
with Oracle Platform Security Services.

Note:

An application role may map to other application roles, such as the following roles:

• Authenticated role: Any user who successfully authenticates. This may result in a
large number of recipients.

• Anonymous role: There will no recipient for this role.

To send a message to an Application role, use must create a recipient address of type
application role by using the MessagingFactory class. An application role belongs to an
application ID (also known as application name or application stripe). Therefore, both these
parameters must be specified in the recipient address as shown in Example 2-16.

Example 2-16 Creating and addressing a message to an application role

Address appRoleAddr =
MessagingFactory.createAppRoleAddress("myAppRole", "theAppId");
Message message = MessagingFactory.createTextMessage("Message to an application role");
message.addRecipient(appRoleAddr);
message.setSubject("Testing application roles");
String id = messagingClient.send(message);

The application role myAppRole is eventually replaced by user addresses.

If the application id is that of the calling application, then you need not specify the application id
when creating the recipient address. UMS will automatically fetch the application id that is
specified in the application.name parameter in the JpsFilter(web.xml) or
JpsInterceptor(ejb-jar.xml). For more information about Filter and Interceptor parameters,
see Securing Applications with Oracle Platform Security Services.

Chapter 2
Sending a Message

2-11

Sending Messages to an Application Role Through a Specific Channel
The user can specify a channel for the outgoing message in the same way as specifying a
channel for sending a message to a group. You must set the delivery type on the application
role address.

The following is an example of sending a message to an application role specifying email as
the delivery channel:

Example 2-17 Creating and addressing a message to an application through a channel

Address appRoleAddr =
MessagingFactory.createAppRoleAddress("myAppRole", "theAppId");
appRoleAddr.setDeliveryType(DeliveryType.EMAIL);
Message message = MessagingFactory.createTextMessage("Message to an application role");
message.addRecipient(appRoleAddr);
message.setSubject("Testing application roles");
String id = messagingClient.send(message);

Retrieving Message Status
After sending a message, use Oracle UMS to retrieve the message status either
synchronously or asynchronously.

There will be one status object per recipient that contains status information, which helps you
understand if the message is pending, if the message was sent successfully, if the message
was failed to send, if there are failover addresses, and if the message is automatically resent.

• Synchronous Retrieval of Message Status

• Asynchronous Receiving of Message Status

Synchronous Retrieval of Message Status
To perform a synchronous retrieval of current status, use the following flow from the
MessagingClient API:

String messageId = messagingClient.send(message);
Status[] statuses = messagingClient.getStatus(messageId);

or,

Status[] statuses = messagingClient.getStatus(messageId, address[]) --- where
 address[] is an array of one or more of the recipients set in the message.

Asynchronous Receiving of Message Status
When asynchronously receiving status, the client application uses the MessagingClient object
to specify a Listener object and an optional correlator object. When incoming status arrives,
the listener' s onStatus callback is invoked. The originally-specified correlator object is also
passed to the callback method.

• Creating a Listener Programmatically

• Default Status Listener

• Per Message Status Listener

Chapter 2
Retrieving Message Status

2-12

Creating a Listener Programmatically
Listeners are purely programmatic. You create a listener by implementing the
oracle.sdp.messaging.Listener interface. You can implement it as any concrete class - one
of your existing classes, a new class, or an anonymous or inner class.

The following code example shows how to implement a status listener:

import oracle.sdp.messaging.Listener;

 public class StatusListener implements Listener {

 @Override
 public void onMessage(Message message, Serializable correlator) {
 }
 @Override
 public void onStatus(Status status, Serializable correlator) {
 System.out.println("Received Status: " + status + " with optional correlator:
" +

correlator);
 }
 }

You pass a reference to the Listener object to the setStatusListener or send methods, as
described in "Default Status Listener" and "Per Message Status Listener". When a status
arrives for your message, the UMS infrastructure invokes the Listener's onStatus method as
appropriate.

Default Status Listener
The client application typically sets a default status listener (Example 2-18). When the client
application sends a message, delivery status callbacks for the message invoke the default
listener's onStatus method.

Example 2-18 Default Status Listener

messagingClient.setStatusListener(new MyStatusListener());
messagingClient.send(message);

Per Message Status Listener
In this approach, the client application sends a message and specifies a Listener object and an
optional correlator object (Example 2-19). When delivery status callbacks are available for that
message, the specified listener's onStatus method is invoked. The originally-specified
correlator object is also passed to the callback method.

Note:

Oracle UMS uses a weak reference when storing the Listener object. This means
that the client application is responsible for keeping a reference to the Listener
object to prevent it from being garbage collected.

Chapter 2
Retrieving Message Status

2-13

Example 2-19 Per Message Status Listener

statusListener = new MyStatusListener();
messagingClient.send(message, statusListener, null);

Receiving a Message
An application that wants to receive incoming messages must register one or more access
points that represent the recipient addresses of the messages.

The server matches the recipient address of an incoming message against the set of
registered access points, and routes the incoming message to the in-queue of the application
that registered the matching access point. From the application perspective there are two
modes for receiving a message from its in-queue, synchronous and asynchronous.

• Registering an Access Point

• Synchronous Receiving

• Asynchronous Receiving

• Message Filtering

Registering an Access Point
AccessPoint represents one or more device addresses for receiving incoming messages.

Use MessagingFactory.createAccessPoint to create an access point and
MessagingClient.registerAccessPoint to register it for receiving messages.

To register an email access point:

Address apAddress = MessagingFactory.createAddress("EMAIL:user1@example.com");
AccessPoint ap = MessagingFactory.createAccessPoint(apAddress);
MessagingClient.registerAccessPoint(ap);

To register an SMS access point for the number 9000:

AccessPoint accessPointSingleAddress =
 MessagingFactory.createAccessPoint(AccessPoint.AccessPointType.SINGLE_ADDRESS,
 DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint(accessPointSingleAddress);

To register SMS access points in the number range 9000 to 9999:

AccessPoint accessPointRangeAddress =
 MessagingFactory.createAccessPoint(AccessPoint.AccessPointType.NUMBER_RANGE,
 DeliveryType.SMS,"9000,9999");
messagingClient.registerAccessPoint(accessPointRangeAddress);

Synchronous Receiving
Use the MessagingClient.receive method to synchronously receive messages that UMS
makes available to the application. This is a convenient polling method for light-weight clients
that do not want the configuration overhead associated with receiving messages
asynchronously. When receiving messages without specifying an access point, the application
receives messages for any of the access points that it has registered. Otherwise, if an access
point is specified, the application receives messages sent to that access point.

Chapter 2
Receiving a Message

2-14

Receive is a nonblocking operation. If there are no pending messages for the application or
access point, the call returns null immediately. Receive is not guaranteed to return all
available messages, but may return only a subset of available messages for efficiency
reasons.

Note:

A single invocation does not guarantee retrieval of all available messages. You must
poll in a loop until you receive null to ensure receiving all available messages.

Asynchronous Receiving
When asynchronously receiving messages, the client application registers an access point and
specifies a Listener object and an optional correlator object. When incoming messages arrive
at the specified access point address, the listener' s onMessage callback is invoked. The
originally-specified correlator object is also passed to the callback method.

• Creating a Listener

• Default Message Listener

• Per Access Point Message Listener

Creating a Listener
You create a listener by implementing the oracle.sdp.messaging.Listener interface. You can
implement it as any concrete class - one of your existing classes, a new class, or an
anonymous or inner class.

The following code example shows how to implement a message listener:

import oracle.sdp.messaging.Listener;

 public class MyListener implements Listener {

 @Override
 public void onMessage(Message message, Serializable correlator) {
 System.out.println("Received Message: " + message + " with optional
correlator: " +
correlator);
 }
 @Override
 public void onStatus(Status status, Serializable correlator) {
 System.out.println("Received Status: " + status + " with optional correlator:
" +
correlator);
 }

 }

You pass a reference to the Listener object to the setMessageListener or
registerAccessPoint methods, as described in "Default Message Listener" and "Per Access
Point Message Listener". When a message arrives for your application, the UMS infrastructure
invokes the Listener's onMessage method.

Chapter 2
Receiving a Message

2-15

Default Message Listener
The client application typically sets a default message listener (Example 2-20). When Oracle
UMS receives messages addressed to any access points registered by this client application, it
invokes the onMessage callback for the client application's default listener, unless there is a
specific listener registered for the Access Point that corresponds to the received message.

To remove a default listener, call this method with a null argument.

Example 2-20 Default Message Listener

messagingClient.setMessageListener(new MyListener());

See the sample application usermessagingsample-echo for detailed instructions on
asynchronous receiving.

Per Access Point Message Listener
The client application can also register an access point and specify a Listener object and an
optional correlator object (Example 2-21). When incoming messages arrive at the specified
access point address, the specified listener' s onMessage method is invoked. The originally-
specified correlator object is also passed to the callback method.

Note:

Oracle UMS uses a weak reference when storing the Listener object. This means
that the client application is responsible for keeping a reference to the Listener
object to prevent it from being garbage collected.

Example 2-21 Per Access Point Message Listener

mlistener = new MyListener();
messagingClient.registerAccessPoint(accessPoint, mlistener, null);

Message Filtering
A MessageFilter is used by an application to exercise greater control over what messages are
delivered to it. A MessageFilter contains a matching criterion and an action. An application
can register a series of message filters; they are applied in order against an incoming
(received) message; if the criterion matches the message, the action is taken. For example, an
application can use MessageFilters to implement necessary blacklists, by rejecting all
messages from a given sender address. If no filters match the message, the default action is to
accept the message and deliver it to the application.

Use MessagingFactory.createMessageFilter to create a message filter, and
MessagingClient.registerMessageFilter to register it. The filter is added to the end of the
current filter chain for the application. For example, to reject a message with the subject
"spam":

MessageFilter subjectFilter = MessagingFactory.createMessageFilter("spam",
 MessageFilter.FieldType.SUBJECT, null, MessageFilter.Action.REJECT);
messagingClient.registerMessageFilter(subjectFilter);

Chapter 2
Receiving a Message

2-16

To reject messages from email address spammer@foo.com:

MessageFilter senderFilter =
 MessagingFactory.createBlacklistFilter("spammer@foo.com");
messagingClient.registerMessageFilter(senderFilter);

Configuring for a Cluster Environment
The API supports an environment where client applications and the UMS server are deployed
in a cluster environment.

For a clustered deployment to function as expected, client applications must be configured
correctly. The following rules apply:

• Two client applications are considered to be instances of the same application if they use
the same ApplicationName configuration parameter when creating the UMS Messaging
Client. If not set explicitly, UMS will use the client application's deployment name as the
ApplicationName.

• Instances of the same application share most of their configuration, and artifacts such as
Access Points and Message Filters that are registered by one instance are shared by all
instances.

• The ApplicationInstanceName configuration parameter enables you to distinguish
instances from one another. Typically this parameter is synthesized by the API
implementation, and does not need to be populated by the application developer. Refer to
the Javadoc for cases in which this value must be populated.

• Listener correlators are instance-specific. If two different instances of an application
register listeners and supply different correlators, then when instance A's listener is
invoked, correlator A is supplied; when instance B's listener is invoked, correlator B is
supplied.

Using UMS Client API for XA Transactions
UMS provides support for XA enabled transactions for outbound and inbound messages. The
industry standard, X/Open XA protocol, is widely supported in other Oracle products such as
Business Process Management (BPM).

Note:

You do not need to install the XA support feature, as this feature is included in the
UMS server and in the UMS client. Also note that the XA support is available only for
the POJO API, not for the Web Services API.

• About XA Transactions

• Sending and Receiving XA Enabled Messages

About XA Transactions
JMS services defines a common set of enterprise messaging concepts and facilities. It is used
in User Messaging Service (UMS) for messaging, queuing, sorting, and routing. Java
Transaction API (JTA) specifies local Java interfaces between a transaction manager and the

Chapter 2
Configuring for a Cluster Environment

2-17

parties involved in a distributed transaction system - the application, the resource manager,
and the application server. The JTA package consists of the following three components:

• A high-level application interface that allows a transactional application to demarcate
transaction boundaries.

• A Java mapping of the industry standard X/Open XA protocol that allows a transactional
resource manager to participate in a global transaction controlled by an external
transaction manager.

• A high-level transaction manager interface that allows an application server to control
transaction boundary demarcation for an application being managed by the application
server.

JTA is used by a JMS services provider to support XA transactions (also known as distributed
transactions). The JMS provider that supports XA Resource interface is able to participate as a
resource manager in a distributed transaction processing system that uses a two-phase
commit transaction protocol.

Sending and Receiving XA Enabled Messages
The XA support enables UMS to send messages from within a transaction boundary only when
the transaction is committed. If the transaction is rolled back, then the sending of the message
fails. A commit leads to a successful transaction; whereas rollback leaves the message
unaltered. UMS provides XA transaction support for both outbound and inbound messages.

Outbound messaging using XA

The messages sent from a UMS client application to recipients via UMS server are called
outbound messages. When an XA transaction is enabled on a UMS client, an outbound
message is sent to the UMS server, only if the transaction is committed. Upon successful
transaction, the message is safely stored and prepared for delivery to the recipients. If the
client transaction fails to commit and a rollback occurs, then the message is not sent to the
UMS server for delivery.

The following code snippet demonstrates how to send an outbound message using XA:

transaction.begin();
// Some business logic
// ...
String messageID = mClient.send(message);
// Some business logic
// ...
transaction.commit();

Inbound messaging using XA

The messages received by a UMS driver, processed by the UMS Server Engine, and routed to
a UMS client are called inbound messages. When an XA transaction is enabled on a UMS
client, an inbound message is retrieved from the UMS server and deleted from UMS server
store, only if the transaction is committed. If a transaction rollback occurs, then the message is
left unaltered in the UMS server for later redelivery.

The following code snippet demonstrates how to receive an inbound message using XA:

transaction.begin();
messages = mClient.receive();

 for (Message receivedMessage : messages) {
 // process individual messages here.

Chapter 2
Using UMS Client API for XA Transactions

2-18

}
transaction.commit();

To receive messages that failed to commit due to a server crash, the server and the client must
be restarted, or the specific server migration procedure must be executed. For more
information, see chapter Configuring Advanced JMS System Resources in Oracle Fusion
Middleware Configuring and Managing JMS for Oracle WebLogic Server.

Using a listener for XA transactions

You can also use a listener in a transaction while receiving messages. This is done by
specifying the constant MessagingConstants.LISTENER_TRANSACTED_MODE. Set the value of this
constant to TRUE or FALSE when creating a MessagingClient instance, as shown in the
example below.

Note:

If you use a listener, transactions will be committed when the messaging constant
LISTENER_TRANSACTED_MODE is set to TRUE and when no exceptions are raised. When
LISTENER_TRANSACTED_MODE is set to FALSE, transactions will be committed
irrespective of the exceptions.

If you want to roll back a transaction, set the exception accordingly. For more
information about ListenerException, see User Messaging Service Java API
Reference.

Example 2-22 Using a listener to receive XA enabled messages

Map<String, Object> params = new HashMap<String, Object>();
params.put(MessagingConstants.LISTENER_TRANSACTED_MODE, Boolean.TRUE);
MessagingClient mClient = MessagingClientFactory.createMessagingClient(params);

mListener = new MyListener();
mClient.registerAccessPoint(MessagingFactory.createAccessPoint(receiverAddr), mListener,
null);

private class MyListener implements Listener {

 @Override
 public void onMessage(Message message,
 Serializable correlator) throws ListenerException {

 }}

For more information about the messaging constant, see User Messaging Service Java API
Reference.

Using EJB calls for XA transactions

You can send XA enabled messages using EJB calls. To roll back the transaction, specify the
setRollbackOnly() method. For more information about this method, see: http://
docs.oracle.com/javaee/7/api/javax/ejb/EJBContext.html#setRollbackOnly()
You can also control the scope of a transaction by specifying the transaction attributes (such as
NotSupported, RequiresNew, and Never) as described in the Jakarta EE tutorial at:

http://docs.oracle.com/javaee/6/tutorial/doc/bncij.html

Chapter 2
Using UMS Client API for XA Transactions

2-19

http://docs.oracle.com/javaee/7/api/javax/ejb/EJBContext.html#setRollbackOnly()
http://docs.oracle.com/javaee/7/api/javax/ejb/EJBContext.html#setRollbackOnly()
http://docs.oracle.com/javaee/6/tutorial/doc/bncij.html

Example 2-23 Sending XA enabled messaging using an EJB call

Map<String, Object> params = new HashMap<String, Object>();
MessagingClient mClient =
MessagingClientFactory.createMessagingClient(params);
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart part1 = new MimeBodyPart();
Message message = MessagingFactory.createMessage();
...
...

mClient.sendMessage();

if(failure)
setRollbackOnly()

Using UMS Java API to Specify Message Resends
When a message send attempt is classified as a complete failure, that is, the failover chain is
exhausted, the message is automatically scheduled for resend by the UMS Server. This is
repeated until the message is successfully sent or the configured number of resends is
reached.

However, using the UMS Java API it is possible to override the number of resends on a per
message basis by calling the setMaxResend method as illustrated in the following example:

MessageInfo msgInfo = message.getMessageInfo();
msgInfo.setMaxResend(1);
String mid = messagingClient.send(message);

When you examine the status of a sent message as explained in Retrieving Message Status,
you get information about both the failover chain and the resends by calling
getTotalFailovers()/getFailoverOrder() and getMaxResend()/getCurrentResend() on the
Status object. When failover order equals total failovers, the API user knows that the failover
chain is exhausted. However, the resend functionality works as a loop over the failover chain.
When maxResend equals currentResend and failover order equals total failovers then the
resend and failover chain is completely exhausted.

For more information about setMaxResend, getTotalFailovers , getFailoverOrder, and other
methods, see User Messaging Service Java API Reference.

Selecting a Driver Programmatically
Unless multiple drivers of the same type is used, the UMS Server engine selects a driver
based on the delivery type that is defined in the UMS Message sent by the client application.

For example, in a message, if the recipient address is "EMAIL:john@example.com" the Email
driver is selected, if the recipient address is "SMS:1234" the SMS driver is selected, if the
recipient address is "uri:twitter" then, Twitter driver is selected and so on.

The DeliveryType enum defines the delivery channel for a message. For more information,
see User Messaging Service Java API Reference.

However, if the system topology requires multiple instances of a driver, for instance, two Email
drivers configured with different Email servers, the outgoing UMS Message can be created in
such a way that a specific driver is selected by the UMS Server engine. To do this, you must
ensure that the following properties for the message in the client application maps to the UMS
Driver configuration settings:

Chapter 2
Using UMS Java API to Specify Message Resends

2-20

UMS Message Property UMS Driver Configuration Parameter

DeliveryType SupportedDeliveryTypes
The recipient address delivery type must match
SupportedDeliveryTypes. Otherwise, the driver is not selected.

ContentType SupportedContentTypes
The ContentType object in the UMS message must match the
SupportedContentTypes parameter in the driver configuration.
Otherwise, the driver is not selected.

Sender Address SenderAddresses
If a value is defined for the SenderAddresses parameter in the
driver configuration, then the UMS Message Sender Address must
match with that value. Otherwise, the driver is not selected.

MessageInfo - protocol SupportedProtocols
If the MessageInfo object in the UMS Message has a value set for
protocol, then that protocol should be same as the one defined
for the SupportedProtocols parameter in the driver configuration.
Otherwise, the driver is not selected.

MessageInfo - carriers SupportedCarriers
If the MessageInfo object in the UMS Message has a value set for
carrier, then that carrier should be same as the one defined for
the SupportedCarriers parameter in the driver configuration.
Otherwise, the driver is not selected.

MessageInfo - application name SupportedApplicationName
If the MessageInfo object in the UMS Message has a value set for
Application Name, then that application name should be same
as the one defined for the SupportedApplicationName
parameter in the driver configuration. Otherwise, the driver is not
selected.

Note:

If no driver passes the above conditions, a failure status is returned to the application
and a WARNING log is also generated.

If multiple drivers pass the above conditions, one of them is chosen by the UMS
engine.

If exactly one driver passes the above conditions then that driver is selected.

For more information about the driver configuration parameters, see "Configuring User
Messaging Service Drivers" in Administering Oracle User Messaging Service.

Setting up Priority and Expiration time for a Message
In certain circumstances such as a high load, you may benefit from specifying UMS Message
priority when sending a message.

Chapter 2
Setting up Priority and Expiration time for a Message

2-21

The message priority is used in the internal JMS queues. Also, if the protocol implemented by
the driver supports priority, the UMS Message priority is translated to the corresponding
protocol priority. Specify the priority as illustrated in the following example:

Example 2-24 Setting up high priority for a message

MessageInfo msgInfo = message.getMessageInfo();
msgInfo.setPriority(MessagePriorityType.HIGH);
String mid = messagingClient.send(message);

For information about all available priority types, see MessagePriorityType definition in User
Messaging Service Java API Reference.

The expiration time can be set for a message if the message is only valid for a limited period of
time. Note that it depends on the underlying messaging protocol if the expiration setting is
honored or not, see table Table 2-3

Example 2-25 Setting up expiry time for a message

MessageInfo msgInfo = message.getMessageInfo();
msgInfo.setExpiration(3600);
String mid = messagingClient.send(message);

Table 2-3 shows which drivers, that is, underlying messaging protocols, that support message
priority and/or message expiration:

Table 2-3 Message Properties

Driver Expiry (Yes/No) Priority (Yes/No)

SMPP Yes Yes

XMPP No No

Email No Yes

Extension No No

Twitter No No

GCM Yes No

APNS Yes No

Specifying User Preference Application Partitioning Profile ID
User Communication Preferences are invoked for recipient addresses that contains the USER
prefix (for example, USER:john.doe). The preferences can be partitioned into profiles.

Below is an example of how to specify a profile when sending a message:

Example 2-26 Specifying application partitioning profile id

Address recipient = MessagingFactory.createAddress("USER:john.doe");
message.addRecipient(recipient);
MessageInfo msgInfo = message.getMessageInfo();
msgInfo.setProfileId(“myProfileId");
String mid = messagingClient.send(message);

For information about User Communication Preferences and profiles, see Administering User
Communication Preferences.

Chapter 2
Specifying User Preference Application Partitioning Profile ID

2-22

Configuring Security
Client applications may need to specify one or more additional configuration parameters to
establish a secure listener.

For more information, see Table 2-1.

Threading Model
Client applications that use the UMS Java API are usually multi-threaded. Typical scenarios
include a pool of EJB instances, each of which uses a MessagingClient instance; and a
servlet instance that is serviced by multiple threads in a web container.

The UMS Java API supports the following thread model:

• Each call to MessagingClientFactory.createMessagingClient returns a new
MessagingClient instance.

• When two MessagingClient instances are created by passing parameter maps that are
equal to MessagingClientFactory.createMessagingClient, they are instances of the
same client. Instances created by passing different parameter maps are instances of
separate clients.

• An instance of MessagingClient is not thread safe when it has been obtained using
MessagingClientFactory.createMessagingClient. Client applications must ensure that a
given instance is used by only one thread at a time. They may do so by ensuring that an
instance is only visible to one thread at a time, or by synchronizing access to the
MessagingClient instance.

• Two instances of the same client (created with identical parameter maps) do share some
resources – notably they share Message and Status Listeners, and use a common pool of
Worker threads to execute asynchronous messaging operations. For example, if instance
A calls setMessageListener(), and then instance B calls setMessageListener(), then B's
listener is the active default message listener.

The following are typical use cases:

• To use the UMS Java API from an EJB (either a Message Driven Bean or a Session Bean)
application, the recommended approach is to create a MessagingClient instance in the
bean' s ejbCreate (or equivalent @PostConstruct) method, and store the
MessagingClient in an instance variable in the bean class. The EJB container ensures
that only one thread at a time uses a given EJB instance, which ensures that only one
thread at a time accesses the bean' s MessagingClient instance.

• To use the UMS Java API from a Servlet, there are several possible approaches. In
general, web containers create a single instance of the servlet class, which may be
accessed by multiple threads concurrently. If a single MessagingClient instance is created
and stored in a servlet instance variable, then access to the instance must be
synchronized.

Another approach is to create a pool of MessagingClient instances that are shared among
servlet threads.

Finally, you can associate individual MessagingClient instances with individual HTTP
Sessions. This approach allows increased concurrency compared to having a single
MessagingClient for all servlet requests. However, it is possible for multiple threads to

Chapter 2
Configuring Security

2-23

access an HTTP Session at the same time due to concurrent client requests, so
synchronization is still required in this case.

• Listener Threading

Listener Threading
For asynchronous receiving described in Asynchronous Receiving of Message Status and
Asynchronous Receiving UMS by default uses one thread for incoming messages and one
thread for incoming status notifications (assuming at least one message or status listener is
registered, respectively). Client applications can increase the concurrency of asynchronous
processing by configuring additional worker threads. This is done by specifying integer values
for the MessagingConstants.MESSAGE_LISTENER_THREADS and
MessagingConstants.STATUS_LISTENER_THREADS keys, settings these values to the desired
number of worker threads in the configuration parameters used when creating a
MessagingClient instance. In this case, the application's listener must be written to handle
multi-threaded execution.

Chapter 2
Threading Model

2-24

3
Sending and Receiving Messages using the
User Messaging Service Web Service API

This chapter describes how to use the User Messaging Service (UMS) Web Service API to
develop applications. This API serves as a programmatic entry point for Fusion Middleware
application developers to implement UMS messaging applications that run in a remote
container relative to the UMS server.

Note:

To learn more about the code samples for Oracle User Messaging Service, or to run
the samples yourself, see the samples at:

http://www.oracle.com/technetwork/indexes/samplecode/sample-
ums-1454424.html

• Introduction to the UMS Web Service API
The UMS Web Service API is functionally identical to the Java API. The JAX-WS and
JAXB bindings of the web service types and interfaces have similar names as the
corresponding Java API classes. That means, the client code looks the same for both the
UMS Java API and UMS Web Service API. However, the API classes are in their own
package spaces and the classes from these two APIs are not interoperable.

• Creating a UMS Client Instance and Specifying Runtime Parameters
The MessagingClient object is the fundamental UMS API object that you must create in
the Client application using the UMS Web Service API.

• Sending a Message
Invoking the send method of MessagingClient object sends the message in a Web Service
request to the UMS Server, where it is processed accordingly.

• Retrieving Message Status
After sending a message, you can use Oracle UMS to retrieve the message status either
synchronously or asynchronously.

• Receiving a Message
This section describes how an application receives messages.

• Configuring for a Cluster Environment
The UMS Web Services API supports an environment where client applications and the
UMS server are deployed in a cluster environment.

• Using UMS Web Service API to Specify Message Resends
When a message send attempt is classified as a complete failure, that is, the failover chain
is exhausted, the message is automatically scheduled for resend by the UMS Server. This
is repeated until the message is successfully sent or the configured number of resends is
reached.

• Configuring Security
This section contains information related to configuring security.

3-1

http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html
http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html

• Threading Model
Instances of the Web Services MessagingClient class are not thread-safe due to the
underlying services provided by the JAX-WS stack.

Introduction to the UMS Web Service API
The UMS Web Service API is functionally identical to the Java API. The JAX-WS and JAXB
bindings of the web service types and interfaces have similar names as the corresponding
Java API classes. That means, the client code looks the same for both the UMS Java API and
UMS Web Service API. However, the API classes are in their own package spaces and the
classes from these two APIs are not interoperable.

The UMS Web Service API consists of packages grouped as follows:

• Common and Client Packages

– oracle.ucs.messaging.ws
– oracle.ucs.messaging.ws.types

• Web Service API Web Service Definition Language (WSDL) files:

– messaging.wsdl: defines the operations invoked by a web service client.

– listener.wsdl: defines the callback operations that a client must implement to receive
asynchronous message or status notifications.

The samples with source code are available on Oracle Technology Network (OTN).

Creating a UMS Client Instance and Specifying Runtime
Parameters

The MessagingClient object is the fundamental UMS API object that you must create in the
Client application using the UMS Web Service API.

You can create a instance of oracle.ucs.messaging.ws.MessagingClient by using the public
constructor. Client applications can specify a set of parameters at runtime when instantiating a
client object. For example, you configure a MessagingClient instance by specifying
parameters as a map of key-value pairs in a java.util.Map<String, Object>. Among other
things, the configuration parameters serve to identify the web service endpoint URL identifying
the UMS server to communicate with, and other web service-related information such as
security policies. Client applications are responsible for storing and loading the configuration
parameters using any available mechanism.

You are responsible for mapping the parameters to or from whatever configuration storage
mechanism is appropriate for your deployment. The MessagingClient class uses the specified
key/value pairs for configuration, and passes through all parameters to the underlying JAX-WS
service. Any parameters recognized by JAX-WS are valid. Table 3-1 lists the most common
configuration parameters:

Table 3-1 Configuration Parameters Specified at Runtime

Key Type Use

javax.xml.ws.BindingProvider.ENDPOI
NT_ADDRESS_PROPERTY

String Endpoint URL for the remote UMS WS.
This is typically "http://<host>:<port>/ucs/
messaging/webservice".

Chapter 3
Introduction to the UMS Web Service API

3-2

Table 3-1 (Cont.) Configuration Parameters Specified at Runtime

Key Type Use

javax.xml.ws.BindingProvider.USERNA
ME_PROPERTY

String Username to be asserted in WS-Security
headers when relevant

oracle.ucs.messaging.ws.ClientConst
ants.POLICIES

String[] Array of OWSM WS-Security policies to
attach to the client's requests. These must
match the policies specified on the server
side.

oracle.wsm.security.util.SecurityCo
nstants.Config.KEYSTORE_RECIPIENT_A
LIAS_PROPERTY

String Used for OWSM policy attachment.
Specifies an alternate alias to use for
looking up encryption and signing keys
from the credential store.

oracle.wsm.security.util.SecurityCo
nstants.ClientConstants.WSS_CSF_KEY

String Used for OWSM policy attachment.
Specifies a credential store key to use for
looking up remote username/password
information from the Oracle Web Services
Management credential store map.

To know more about the OWSM policy parameters, see Java API Reference for Oracle Web
Services Manager.

A MessagingClient cannot be reconfigured after it is instantiated. Instead, a new instance of
the MessagingClient class must be created using the new configuration.

Example 3-1 shows code for creating a MessagingClient instance using username/token
security.

Example 3-1 Creating a MessagingClient Instance, Username/Token Security

HashMap<String, Object> config = new HashMap<String, Object>();
config.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://example.com:8001/ucs/messaging/webservice");
config.put(ClientConstants.POLICIES, new String[] {"oracle/wss11_username_token_
with_message_protection_client_policy"});
config.put(BindingProvider.USERNAME_PROPERTY, "user1");
config.put(oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_
LOCATION, oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_LOC_
SUBJECT);
config.put(oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_CSF_KEY,
 "user1-passkey");
config.put(MessagingConstants.APPLICATION_NAME, "MyUMSWSApp");
mClient = new MessagingClient(config);

Example 3-2 shows code for creating a MessagingClient instance using SAML token security.

Example 3-2 Creating a MessagingClient Instance, SAML Token Security

HashMap<String, Object> config = new HashMap<String, Object>();
config.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://example.com:8001/ucs/messaging/webservice");
config.put(ClientConstants.POLICIES, new String[] {"oracle/wss11_saml_token_
identity_switch_with_message_protection_client_policy"});
config.put(BindingProvider.USERNAME_PROPERTY, "user1");
config.put(oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_
LOCATION, oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_LOC_
SUBJECT);
config.put(oracle.wsm.security.util.SecurityConstants.Config.KEYSTORE_RECIPIENT_

Chapter 3
Creating a UMS Client Instance and Specifying Runtime Parameters

3-3

ALIAS_PROPERTY, "example.com");
config.put(MessagingConstants.APPLICATION_NAME, "MyUMSWSApp");
mClient = new MessagingClient(config);

A MessagingClient cannot be reconfigured after it is instantiated. Instead, you must create a
new instance of the MessagingClient class using the desired configuration.

Factory methods are provided for creating Web Service API types in the class
"oracle.ucs.messaging.ws.MessagingFactory".

Sending a Message
Invoking the send method of MessagingClient object sends the message in a Web Service
request to the UMS Server, where it is processed accordingly.

The send method returns a String message identifier that the client application can later use to
retrieve message delivery status, or to correlate with asynchronous status notifications that are
delivered to a Listener. The status returned is the latest known status based on UMS internal
processing and delivery notifications received from external gateways.

The types of messages that can be created include plaintext messages, multipart messages
that can consist of text/plain and text/html parts, and messages that include the creation of
delivery channel (DeliveryType) specific payloads in a single message for recipients with
different delivery types.

• Creating a Message

• API Reference for Interface Message

• API Reference for Enum DeliveryType

• Creating an Address

• User Preferences in Messages

Creating a Message
This section describes the various types of messages that can be created.

• Creating a Plaintext Message

• Creating a Multipart/Mixed Message (with Text and Binary Parts)

• Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)

• Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with
Different Delivery Types

Creating a Plaintext Message
Example 3-3 shows two ways to create a plaintext message using the UMS Web Service API.

Example 3-3 Creating a Plaintext Message Using the UMS Web Service API

Message message = MessagingFactory.createTextMessage("This is a Plain Text
 message.");

or

Message message = MessagingFactory.createMessage();

Chapter 3
Sending a Message

3-4

message.setContent(new DataHandler(new StringDataSource("This is a Plain Text
 message.", "text/plain; charset=UTF-8")));

Creating a Multipart/Mixed Message (with Text and Binary Parts)
Example 3-4 shows how to create a multipart/mixed message using the UMS Web Service
API.

Example 3-4 Creating a Multipart/Mixed Message Using the UMS Web Service API

Message message = MessagingFactory.createMessage();
MimeMultipart mp = new MimeMultipart("mixed");

// Create the first body part
MimeBodyPart mp_partPlain = new MimeBodyPart();
StringDataSource plainDS = new StringDataSource("This is a Plain Text part.",
 "text/plain; charset=UTF-8");
mp_partPlain.setDataHandler(new DataHandler(plainDS));
mp.addBodyPart(mp_partPlain);

byte[] imageData;
// Create or load image data in the above byte array (code not shown for brevity)

// Create the second body part
MimeBodyPart mp_partBinary = new MimeBodyPart();
ByteArrayDataSource binaryDS = new ByteArrayDataSource(imageData, "image/gif");
mp_partBinary.setDataHandler(binaryDS);
mp.addBodyPart(mp_partBinary);

message.setContent(new DataHandler(mp, mp.getContentType()));

Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
Example 3-5 shows how to create a multipart/alternative message using the UMS Web Service
API.

Example 3-5 Creating a Multipart/Alternative Message Using the UMS Web Service API

Message message = MessagingFactory.createMessage();
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart mp_partPlain = new MimeBodyPart();
StringDataSource plainDS = new StringDataSource("This is a Plain Text part.", "text/
plain; charset=UTF-8");
mp_partPlain.setDataHandler(new DataHandler(plainDS));
mp.addBodyPart(mp_partPlain);

MimeBodyPart mp_partRich = new MimeBodyPart();
StringDataSource richDS = new StringDataSource(
 "<html><head></head><body><i>This is an HTML part.</i></body></html>",
 "text/html");
mp_partRich.setDataHandler(new DataHandler(richDS));
mp.addBodyPart(mp_partRich);

message.setContent(new DataHandler(mp, mp.getContentType()));

Chapter 3
Sending a Message

3-5

Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with
Different Delivery Types

When sending a message to multiple recipients, there could be multiple channels involved.
Oracle UMS application developers are required to specify the correct multipart format for each
channel.

Example 3-6 shows how to create delivery channel (DeliveryType) specific payloads in a
single message for recipients with different delivery types.

Each top-level part of a multiple payload multipart/alternative message should contain one or
more values of this header. The value of this header should be the name of a valid delivery
type. Refer to the available values for DeliveryType in the enum DeliveryType.

Example 3-6 Creating Delivery Channel-specific Payloads in a Single Message for
Recipients with Different Delivery Types

Message message = MessagingFactory.createMessage();

// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");

// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setDataHandler(new DataHandler(new StringDataSource("Text content for SMS.",
 "text/plain; charset=UTF-8")));
part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");
// add first part
mp.addBodyPart(part1);

// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setDataHandler(new DataHandler(new StringDataSource("Text
 content for EMAIL/IM.", "text/plain; charset=UTF-8")));
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setDataHandler(new DataHandler(new
 StringDataSource("<html><head></head><body><i>" + "HTML content for EMAIL/IM."
 +
 "</i></body></html>", "text/html; charset=UTF-8")));
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, part2_mp.getContentType());
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");
// add second part
mp.addBodyPart(part2);

// set the content of the message
message.setContent(new DataHandler(mp, mp.getContentType()));

// set the MultiplePayload flag to true
MimeHeader multiHeader = new MimeHeader();
multiHeader.setName(oracle.sdp.client.Message.HEADER_SDPM_MULTIPLE_PAYLOAD);
multiHeader.setValue(Boolean.TRUE.toString());
message.getHeaders().add(multiHeader);

Chapter 3
Sending a Message

3-6

API Reference for Interface Message
The API reference for interface Message can be accessed from the Javadoc.

API Reference for Enum DeliveryType
The API reference for enum DeliveryType can be accessed from the User Messaging Service
Java API Reference.

Creating an Address
For information about the types of addresses and to understand how to create Address objects
and to define failover address, see Creating an Address.

See User Messaging Service Java API Reference to know more about the Address interface.

• Recipient Types

• API Reference for Class MessagingFactory

Recipient Types
The WS API provides support for sending and receiving messages with To/Cc/Bcc recipients
for use with the email driver:

• To send a message and specify a Cc/Bcc recipient, create the
oracle.ucs.messaging.ws.Address object using
oracle.ucs.messaging.ws.MessagingFactory.buildAddress method. The arguments are
the address value (for example, user@domain.com), delivery type (for example,
DeliveryType.EMAIL), and email mode (for example, "Cc" or "Bcc").

• To determine the recipient type of an existing address object, for example in a received
message, use the oracle.ucs.messaging.ws.MessagingFactory.getRecipientType
method, passing it the Address object. It returns a string indicating the recipient type.

API Reference for Class MessagingFactory
See User Messaging Service Java API Reference for information about the class
MessagingFactory.

User Preferences in Messages
When you create a message using WS API, you can also supply facts for business terms for
the user preferences in that message. See User Preference Based Messaging for more
details.

Retrieving Message Status
After sending a message, you can use Oracle UMS to retrieve the message status either
synchronously or asynchronously.

• Synchronous Retrieval of Message Status

• Asynchronous Receiving of Message Status

Chapter 3
Retrieving Message Status

3-7

Synchronous Retrieval of Message Status
To perform a synchronous retrieval of current status, use the following flow from the
MessagingClient API:

String messageId = messagingClient.send(message);
List<Status> statuses = messagingClient.getStatus(messageId, null)

or,

List<Status> statuses = messagingClient.getStatus(messageId, addresses) --- where
addresses is a "List<Address>" of one or more of the recipients set in the message.

Asynchronous Receiving of Message Status
To receive statuses asynchronously, a client application must implement the listener web
service as described in listener.wsdl. There is no constraint on how the listener endpoint
must be implemented. For example, one method is to use the javax.xml.ws.Endpoint JAX-
WS Service API to publish a web service endpoint. This mechanism is available in Java SE 6
and does not require the consumer to explicitly define a Jakarta EE servlet module.

However, a servlet-based listener implementation is acceptable as well.

When sending a message, the client application can provide a reference to the listener
endpoint, consisting of the endpoint URL and a SOAP interface name. As statuses are
generated during the processing of the message, the UMS server invokes the listener
endpoint' s onStatus method to notify the client application.

• Creating a Listener

• Publish the Callback Service

• Stop a Dynamically Published Endpoint

• Registration

Creating a Listener
You create a listener by implementing the oracle.ucs.messaging.ws.Listener interface. You
can implement it as any concrete class - one of your existing classes, a new class, or an
anonymous or inner class.

The following code example shows how to implement a status listener:

@PortableWebService(serviceName="ListenerService",
targetNamespace="http://xmlns.oracle.com/ucs/messaging/",
endpointInterface="oracle.ucs.messaging.ws.Listener",
wsdlLocation="META-INF/wsdl/listener.wsdl",
portName="Listener")
public class MyListener implements Listener {
 public MyListener() {
 }

 @Override
 public void onMessage(Message message, byte[] correlator) throws MessagingException {
 System.out.println("I got a message!");
 } @Override
 public void onStatus(Status status, byte[] correlator) throws MessagingException {
 System.out.println("I got a status!");

Chapter 3
Retrieving Message Status

3-8

 }
}

Publish the Callback Service
To publish the callback service, you can either declare a servlet in web.xml in a web module
within your application, or use the JAX-WS javax.xml.ws.Endpoint class's publish method to
programmatically publish a WS endpoint (Example 3-7):

Example 3-7 Publish the Callback Service

Listener myListener = new MyListener();
String callbackURL = "http://host:port/umswscallback";
Endpoint myEndpoint = javax.xml.ws.Endpoint.publish(callbackURL, myListener);

Stop a Dynamically Published Endpoint
To stop a dynamically published endpoint, call the stop() method on the Endpoint object
returned from Endpoint.publish() (Example 3-8).

Example 3-8 Stop a Dynamically Published Endpoint

// When done, stop the endpoint, ideally in a finally block or other reliable cleanup
mechanism
myEndpoint.stop();

Registration
Once the listener web service is published, you must register the fact that your client has such
an endpoint. There are the following relevant methods in the MessagingClient API:

• setStatusListener(ListenerReference listener)
• send(Message message, ListenerReference listener, byte[] correlator)
setStatusListener() registers a "default" status listener whose callback is invoked for any
incoming status messages. A listener passed to send() is only invoked for status updates
related to the corresponding message.

Receiving a Message
This section describes how an application receives messages.

An application that wants to receive incoming messages must register one or more access
points that represent the recipient addresses of the messages. The server matches the
recipient address of an incoming message against the set of registered access points, and
routes the incoming message to the application that registered the matching access point.
From the application perspective there are two modes for receiving a message, synchronous
and asynchronous.

• Registering an Access Point

• Synchronous Receiving

• Asynchronous Receiving

• Message Filtering

Chapter 3
Receiving a Message

3-9

Registering an Access Point
AccessPoint represents one or more device addresses for receiving incoming messages. For
more details about access points, see Registering an Access Point.

Synchronous Receiving
Use the method MessagingClient.receive to synchronously receive messages that UMS
makes available to the application. This is a convenient polling method for light-weight clients
that do not want the configuration overhead associated with receiving messages
asynchronously.

Note:

In a multi UMS server deployment, the WS API user must make sure “receive" is
called on all UMS servers. This could be done by for instance making sure the Load
Balancer uses a round-robin algorithm. Or, simply do not use receive in this use-
case, use asynchronous receiving using a Listener as describe in Asynchronous
Receiving instead.

Receive is a nonblocking operation. If there are no pending messages for the application or
access point, the call returns immediately with an empty list. Receive is not guaranteed to
return all available messages, but may return only a subset of available messages for
efficiency reasons.

Note:

A single invocation does not guarantee retrieval of all available messages. You must
poll to ensure receiving all available messages.

Asynchronous Receiving
To receive messages asynchronously, a client application must implement the Listener web
service as described in listener.wsdl. There is no constraint on how the listener endpoint
must be implemented. For example, one mechanism is using the javax.xml.ws.Endpoint
JAX-WS Service API to publish a web service endpoint. This mechanism is available in Java
SE 6 and does not require the consumer to explicitly define a Jakarta EE servlet module.
However, a servlet-based listener implementation is also acceptable.

• Creating a Listener

• Default Message Listener

• Per Access Point Message Listener

Chapter 3
Receiving a Message

3-10

Creating a Listener
You create a listener by implementing the oracle.ucs.messaging.ws.Listener interface. You
can implement it as any concrete class - one of your existing classes, a new class, or an
anonymous or inner class.

The following code example shows how to implement a message listener:

@PortableWebService(serviceName="ListenerService",
targetNamespace="http://xmlns.oracle.com/ucs/messaging/",
endpointInterface="oracle.ucs.messaging.ws.Listener",
wsdlLocation="META-INF/wsdl/listener.wsdl",
portName="Listener")
public class MyListener implements Listener {
 public MyListener() {
 }

 @Override
 public void onMessage(Message message, byte[] correlator) throws MessagingException {
 System.out.println("I got a message!");
 } @Override
 public void onStatus(Status status, byte[] correlator) throws MessagingException {
 System.out.println("I got a status!");
 }
}

You pass a reference to the Listener object to the setMessageListener or
registerAccessPoint methods, as described in "Default Message Listener" and "Per Access
Point Message Listener". When a message arrives for your application, the UMS infrastructure
invokes the Listener's onMessage method.

Default Message Listener
The client application typically sets a default message listener (Example 3-9). When Oracle
UMS receives messages addressed to any access points registered by this client application, it
invokes the onMessage callback for the client application's default listener.

To remove a default listener, call this method with a null argument.

Example 3-9 Default Message Listener

ListenerReference listenerRef = new ListenerReference();
listenerRef.setEndpoint("url_to_your_webservice_message_listener");
messagingClient.setMessageListener(listenerRef);

Per Access Point Message Listener
The client application can also register an access point and specify a Listener object and an
optional correlator object (Example 3-10). When incoming messages arrive at the specified
access point address, the specified listener' s onMessage method is invoked. The originally-
specified correlator object is also passed to the callback method.

Example 3-10 Per Access Point Message Listener

AccessPoint accessPoint =
 MessagingFactory.createAccessPoint(AccessPointType.SINGLE_ADDRESS,
DeliveryType.EMAIL, "test@example.org");
ListenerReference listenerRef = new ListenerReference();
listenerRef.setEndpoint("url_to_your_webservice_message_listener");

Chapter 3
Receiving a Message

3-11

byte[] correlator = null; // Not to correlate the callback
messagingClient.registerAccessPoint(accessPoint, listenerRef, correlator);

Message Filtering
A MessageFilter is used by an application to exercise greater control over what messages are
delivered to it. For more details about creating message filters, see Message Filtering.

Configuring for a Cluster Environment
The UMS Web Services API supports an environment where client applications and the UMS
server are deployed in a cluster environment.

For a clustered deployment to function as expected, client applications must be configured
correctly as explained in Configuring for a Cluster Environment.

Using UMS Web Service API to Specify Message Resends
When a message send attempt is classified as a complete failure, that is, the failover chain is
exhausted, the message is automatically scheduled for resend by the UMS Server. This is
repeated until the message is successfully sent or the configured number of resends is
reached.

However, using the UMS Web Services API it is possible to override the number of resends on
a per message basis by calling the setMaxResend method as illustrated in the following
example:

MessageInfo msgInfo = new oracle.ucs.messages.ws.types.MessageInfo();
msgInfo.setMaxResend(new Integer(1));
// When MessageInfo is created we must also set priority
msgInfo.setPriority(PriorityType.NORMAL);
message.setMessageInfo(msgInfo);
String mid = client.send(message, null, null);

The status of the failover addresses can be received by calling getTotalFailovers() and
getFailoverOrder(). When failover order equals total failovers, the API user knows that the
failover chain is exhausted. However, the resend functionality works as a loop over the failover
chain. You can call getMaxResend() and getCurrentResend() to know when the resend and
failover chain is completely exhausted.

For more information about setMaxResend, getTotalFailovers() and getFailoverOrder()
methods, see User Messaging Service Java API Reference.

Configuring Security
This section contains information related to configuring security.

• Client and Server Security

• Listener or Callback Security

Client and Server Security
There are two supported security modes for the UMS Web Service: Security Assertions
Markup Language (SAML) tokens and username tokens.

Chapter 3
Configuring for a Cluster Environment

3-12

The supported SAML-based policy is "oracle/
wss11_saml_token_with_message_protection_client_policy". This policy establishes a trust
relationship between the client application and the UMS server based on the exchange of
cryptographic keys. The client application is then allowed to assert a user identity that is
respected by the UMS server. To use SAML tokens for WS-Security, some keystore
configuration is required for both the client and the server.

See Example 3-2 for more details about configuring SAML security in a UMS web service
client.

The supported username token policy is "oracle/
wss11_username_token_with_message_protection_client_policy". This policy passes an
encrypted username/password token in the WS-Security headers, and the server authenticates
the supplied credentials. It is highly recommended that the username and password be stored
in the Credential Store, in which case only a Credential Store key must be passed to the
MessagingClient constructor, ensuring that credentials are not hard-coded or stored in an
unsecure manner. See Example 3-1 for more details about configuring SAML security in a
UMS web service client.

For more information about securing web services using Oracle Web Services Manager see
Securing Web Services and Managing Policies with Oracle Web Services Manager.

Listener or Callback Security
Username token and SAML token security are also supported for the Listener callback web
services. When registering a listener, the client application must supply additional parameters
specifying the security policy and any key or credential lookup information that the server
requires to establish a secure connection.

Example 3-11 illustrates how to establish a secure callback endpoint using username token
security:

Example 3-11 Establishing a Secure Callback Endpoint Using Username Token
Security

MessagingClient client = new MessagingClient(clientParameters);
...
ListenerReference listenerRef = new ListenerReference();
// A web service implementing the oracle.ucs.messaging.ws.Listener
// interface must be available at the specified URL.
listenerRef.setEndpoint(myCallbackURL);
Parameter policyParam = new Parameter();
policyParam.setName(ClientConstants.POLICY_STRING);
policyParam.setValue("oracle/
wss11_username_token_with_message_protection_client_policy");
listenerRef.getParameters.add(policyParam);
// A credential store entry with the specified key must be
// provisioned on the server side so it will be available when the callback
// is invoked.
Parameter csfParam = new Parameter();
csfParam.setName(oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_CSF_KEY);
csfParam.setValue("callback-csf-key");
listenerRef.getParameters.add(csfParam);
client.setMessageListener(listenerRef);

Threading Model
Instances of the Web Services MessagingClient class are not thread-safe due to the
underlying services provided by the JAX-WS stack.

Chapter 3
Threading Model

3-13

You are responsible for ensuring that each instance is used by only one thread at a time.

Chapter 3
Threading Model

3-14

A
Using the User Messaging Service Sample
Applications

This appendix describes how to create a client application that uses Oracle User Messaging
Service (UMS) Java API.

Note:

To learn more about the code samples for Oracle User Messaging Service, or to run
the samples yourself, refer to the samples at:

http://www.oracle.com/technetwork/indexes/samplecode/sample-
ums-1454424.html.

• Using the UMS Client API to Build a Client Application
This section describes how to create an application called usermessagingsample, a web
client application that uses the UMS Client API for both outbound messaging and the
synchronous retrieval of message status. usermessagingsample also supports inbound
messaging. Once you have deployed and configured usermessagingsample, you can use
it to send a message to an email client.

• Using the UMS Client API to Build a Client Echo Application
This section describes how to create an application called usermessagingsample-echo, a
demo client application that uses the UMS Client API to asynchronously receive messages
from an email address and echo a reply back to the sender.

• Creating a New Application Server Connection
You define an application server connection in Oracle JDeveloper, and deploy and run the
application.

• Sample Chat Application with Web Services APIs
This section describes how to create, deploy and run the sample chat application with the
Web Services APIs provided with Oracle User Messaging Service on OTN.

Using the UMS Client API to Build a Client Application
This section describes how to create an application called usermessagingsample, a web client
application that uses the UMS Client API for both outbound messaging and the synchronous
retrieval of message status. usermessagingsample also supports inbound messaging. Once
you have deployed and configured usermessagingsample, you can use it to send a message
to an email client.

This sample focuses on a Web Application Module (WAR), which defines some HTML forms
and servlets. You can examine the code and corresponding XML files for the web application
module from the provided usermessagingsample-src.zip source. The servlets uses the UMS
Client API to create an UMS Client instance (which in turn registers the application's
information) and sends messages.

A-1

http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html
http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html

This application, which is packaged as a Enterprise ARchive file (EAR) called
usermessagingsample.ear, has the following structure:

• usermessagingsample.ear
– META-INF

* application.xml -- Descriptor file for all of the application modules.

* weblogic-application.xml -- Descriptor file that contains the import of the
oracle.sdp.messaging shared library.

– usermessagingsample-web.ear -- Contains the web-based front-end and servlets.

* WEB-INF
* web.xml
* weblogic.xml

The prebuilt sample application, and the source code (usermessagingsample-src.zip) are
available on OTN.

• Overview of Development

• Configuring the Email Driver

• Using JDeveloper 14c to Build the Application

• Deploying the Application

• Testing the Application

Overview of Development
The following steps describe the process of building an application capable of outbound
messaging using usermessagingsample.ear as an example:

1. Configuring the Email Driver

2. Using JDeveloper 14c to Build the Application

3. Deploying the Application

4. Testing the Application

Configuring the Email Driver
To enable the Oracle User Messaging Service's email driver to perform outbound messaging
and status retrieval, when you configure the email driver, enter the name of the SMTP mail
server as the value for the OutgoingMailServer property.

For more information about configuring the email driver, see Administering Oracle User
Messaging Service.

Note:

This sample application is generic and can support outbound messaging through
other channels when the appropriate messaging drivers are deployed and
configured.

Appendix A
Using the UMS Client API to Build a Client Application

A-2

Using JDeveloper 14c to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile, and
deploy usermessagingsample through the following steps:

• Opening the Project

Opening the Project
1. Open usermessagingsample.jws (contained in the usermessagingsample-src.zip file) in

Oracle JDeveloper.

In the Oracle JDeveloper main window, the project appears.

2. To build the sample application, the web module should include the "Oracle UMS Client"
library.

a. In the Application Navigator, right-click web module usermessagingsample-web, and
select Project Properties.

b. In the left pane, select Libraries and Classpath.

c. Click OK.

3. Explore the Java files under the usermessagingsample-web project to see how the
messaging client APIs are used to send messages, get statuses, and synchronously
receive messages. The MessagingClient instance is created in SampleUtils.java in the
project.

Deploying the Application
Perform the following steps to deploy the application:

1. Create an Application Server Connection by right-clicking the application in the navigation
pane and selecting New. Follow the instructions in Creating a New Application Server
Connection.

2. Deploy the application by selecting the usermessagingsample application, Deploy,
usermessagingsample, to, and ums_server.

3. Verify that the message Build Successful appears in the log.

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample, you must configure any additional drivers in Oracle User
Messaging Service and optionally configure a default device for the user receiving the
message in User Communication Preferences.

Note:

Refer to Administering Oracle User Messaging Service for more information.

Appendix A
Using the UMS Client API to Build a Client Application

A-3

Testing the Application
Once usermessagingsample has been deployed to a running instance of Oracle WebLogic
Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows: http://
host:http-port/usermessagingsample/. For example, enter http://localhost:7001/
usermessagingsample/ into the browser's navigation bar.

When prompted, enter login credentials. For example, username weblogic. The browser
page for testing messaging samples appears.

2. Click Send sample message. The Send Message page appears.

3. As an optional step, enter the sender address in the following format:

Email:sender_address.

For example, enter Email:sender@example.com.

4. Enter one or more recipient addresses. For example, enter
Email:recipient@example.com. Enter multiple addresses as a comma-separated list as
follows:

Email:recipient_address1, Email:recipient_address2.

If you have configured User Communication Preferences, you can address the message
simply to User:username. For example, User:weblogic.

5. As an optional step, enter a subject line or content for the email.

6. Click Send. The Message Status page appears, showing the progress of transaction. The
Status Content field displays Message received by Messaging engine for processing.

7. Click Refresh to update the status. When the email message has been delivered to the
email server, the Status Content field displays Outbound message delivery to remote
gateway succeeded..

Using the UMS Client API to Build a Client Echo Application
This section describes how to create an application called usermessagingsample-echo, a
demo client application that uses the UMS Client API to asynchronously receive messages
from an email address and echo a reply back to the sender.

Note:

To learn more about the code samples for Oracle User Messaging Service, or to run
the samples yourself, refer to the Oracle User Messaging Service samples at
http://www.oracle.com/technetwork/indexes/samplecode/sample-
ums-1454424.html.

This application, which is packaged as a Enterprise Archive file (EAR) called
usermessagingsample-echo.ear, has the following structure:

• usermessagingsample-echo.ear
– META-INF

Appendix A
Using the UMS Client API to Build a Client Echo Application

A-4

http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html
http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html

* application.xml -- Descriptor file for all of the application modules.

* weblogic-application.xml -- Descriptor file that contains the import of the
oracle.sdp.messaging shared library.

– usermessagingsample-echo-web.war -- Contains the web-based front-end and
servlets. It also contains the listener that processes a received message and returns
an echo response

* WEB-INF
* web.xml
* weblogic.xml

The prebuilt sample application, and the source code (usermessagingsample-echo-src.zip)
are available on OTN.

• Overview of Development

• Configuring the Email Driver

• Using Oracle JDeveloper 14c to Build the Application

• Deploying the Application

• Testing the Application

Overview of Development
The following steps describe the process of building an application capable of asynchronous
inbound and outbound messaging using usermessagingsample-echo.ear as an example:

1. Configuring the Email Driver

2. Using Oracle JDeveloper 14c to Build the Application

3. Deploying the Application

4. Testing the Application

Configuring the Email Driver
To enable the Oracle User Messaging Service's email driver to perform inbound and outbound
messaging and status retrieval, configure the email driver as follows:

• Enter the name of the SMTP mail server as the value for the OutgoingMailServer
property.

• Enter the name of the IMAP4/POP3 mail server as the value for the IncomingMailServer
property. Also, configure the incoming user name, and password.

For more information about configuring the Email driver, refer to section Configuring the Email
Driver in Oracle Fusion Middleware Administering Oracle User Messaging Service.

Note:

This sample application is generic and can support inbound and outbound
messaging through other channels when the appropriate messaging drivers are
deployed and configured.

Appendix A
Using the UMS Client API to Build a Client Echo Application

A-5

Using Oracle JDeveloper 14c to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile, and
deploy usermessagingsample-echo through the following steps:

• Opening the Project

Opening the Project
1. Unzip usermessagingsample-echo-src.zip, to the JDEV_HOME/communications/ samples/

directory. This directory must be used for the shared library references to be valid in the
project.

Note:

If you choose to use a different directory, you must update the
oracle.sdp.messaging library source path to JDEV_HOME/ communications/
modules/oracle.sdp.messaging_12.1.3/ sdpmessaging.jar.

2. Open usermessagingsample-echo.jws (contained in the .zip file) in Oracle JDeveloper.

In the Oracle JDeveloper main window the project appears.

3. Verify that the build dependencies for the sample application have been satisfied by
checking that the following library has been added to the usermessagingsample-echo-web
module.

• Library: oracle.sdp.messaging, Classpath: JDEV_HOME/ communications/modules/
oracle.sdp.messaging_12.1.3/ sdpmessaging.jar. This is the Java library used by
UMS and applications that use UMS to send and receive messages.

Perform the following steps for each module:

a. In the Application Navigator, right-click the module and select Project Properties.

b. In the left pane, select Libraries and Classpath.

c. Click OK.

4. Explore the Java files under the usermessagingsample-echo-web project to see how the
messaging client APIs are used to register and unregister access s, and how the
EchoListener is used to asynchronously receive messages.

Deploying the Application
Perform the following steps to deploy the application:

1. Create an Application Server Connection by right-clicking the application in the navigation
pane and selecting New. Follow the instructions in Creating a New Application Server
Connection.

2. Deploy the application by selecting the usermessagingsample-echo application,
Deploy, usermessagingsample-echo, to, and ums_server.

3. Verify that the message Build Successful appears in the log.

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Appendix A
Using the UMS Client API to Build a Client Echo Application

A-6

Before you can run the sample you must configure any additional drivers in Oracle User
Messaging Service and optionally configure a default device for the user receiving the
message in User Communication Preferences.

Note:

Refer to Developing Applications with Oracle User Messaging Service for more
information.

Testing the Application
Once usermessagingsample-echo has been deployed to a running instance of Oracle
WebLogic Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows: http://
host:http-port/usermessagingsample-echo/. For example, enter http://
localhost:7001/usermessagingsample-echo/ into the browser's navigation bar.

When prompted, enter login credentials. For example, username weblogic. The browser
page for testing messaging samples appears.

2. Click Register/Unregister Access Points. The Access Point Registration page
appears.

3. Enter the access address in the following format:

EMAIL:server_address.

For example, enter EMAIL:myserver@example.com.

4. Select the Action Register and Click Submit. The registration status page appears,
showing Registered.

5. Send a message from your messaging client (for email, your email client) to the address
you just registered as an access in the previous step.

If the UMS messaging driver for that channel is configured correctly, you should expect to
receive an echo message back from the usermessagingsample-echo application.

Creating a New Application Server Connection
You define an application server connection in Oracle JDeveloper, and deploy and run the
application.

Perform the following steps to create an Application Server Connection.

1. Right-click the project and select New. From the context menu, select From Gallery. In the
New Gallery window, navigate to Connections in the left pane, and select Application
Server Connection from list of items.

Click OK.

2. In the Connection Name field, enter your server connection name, for example,
SOA_server, and click Next.

3. Select WebLogic 12.x from the Connection Type drop-down list.

4. In the Authentication screen, enter your application server's admin Username and
Password. Click Next.

Appendix A
Creating a New Application Server Connection

A-7

5. In the Configuration screen, enter the WebLogic Server host name, port, and SSL port,
and domain name. Click Next.

6. On the Test screen, verify your connection by clicking Test Connection. If the test is
successful, then you will see a confirmation message. Click Finish.

The Application Server Connection has been created.

Sample Chat Application with Web Services APIs
This section describes how to create, deploy and run the sample chat application with the Web
Services APIs provided with Oracle User Messaging Service on OTN.

Note:

To learn more about the code samples for Oracle User Messaging Service, or to run
the samples yourself, see the samples at:

http://www.oracle.com/technetwork/indexes/samplecode/sample-
ums-1454424.html.

• Overview

• Running the Pre-Built Sample

• Testing the Sample

• Creating a New Application Server Connection

Overview
This sample demonstrates how to create a web-based chat application to send and receive
messages through email, SMS, or IM. The sample uses the Web Service APIs to interact with
a User Messaging server. You define an application server connection in Oracle JDeveloper,
and deploy and run the application.

The application is provided as a pre-built Oracle JDeveloper project that includes a simple web
chat interface.

Note:

For this sample to work, a UMS Server must be available and properly configured
with the required drivers.

• Provided Files

Provided Files
The following files are included in the sample application:

• usermessagingsample-ws-src.zip – the archive containing the source code and Oracle
JDeveloper project files.

Appendix A
Sample Chat Application with Web Services APIs

A-8

http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html
http://www.oracle.com/technetwork/indexes/samplecode/sample-ums-1454424.html

• usermessagingsample-ws.ear - the pre-built sample application that can be deployed to
the container.

Running the Pre-Built Sample
Perform the following steps to run and deploy the pre-built sample application:

1. Extract usermessagingsample-ws-src.zip and open usermessagingsample-ws.jws in
Oracle JDeveloper.

In the Oracle JDeveloper main window the project appears.

The application contains one web module. All of the source code for the application is in
place.

2. Satisfy the build dependencies for the sample application by ensuring the Oracle UMS
Client library is used by the web module.

a. In the Application Navigator, right-click web module usermessagingsample-ws-war,
and select Project Properties.

b. In the left pane, select Libraries and Classpath.

c. Click OK.

3. Create an Application Server Connection by right-clicking the project in the navigation
pane and selecting New. Follow the instructions in Creating a New Application Server
Connection.

4. Deploy the project by selecting the usermessasgingsample-ws project, Deploy,
usermessasgingsample-ws, to, and ums_server.

5. Verify that the message Build Successful appears in the log.

6. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Testing the Sample
Perform the following steps to run and test the sample:

1. Open a web browser.

2. Navigate to the URL of the application as follows, and log in:

http://host:port/usermessagingsample-ws/
The Messaging Web Services sample web page appears. This page contains navigation
tabs and instructions for the application.

3. Click Configure and enter the following values:

• Specify the web service endpoint. For example, http://example.com:8001/ucs/
messaging/webservice

• Specify the Username and Password.

• Specify a Policy (required if the User Messaging Service instance has WS security
enabled).

4. Click Save.

5. Click Manage.

6. Enter an address and optional keyword at which to receive messages.

Appendix A
Sample Chat Application with Web Services APIs

A-9

7. Click Start.

Verify that the message Registration operation succeeded appears.

8. Click Chat.

9. Enter recipients in the To: field.

10. Enter a message.

11. Click Send.

12. Verify that the message is received.

Creating a New Application Server Connection
You define an application server connection in Oracle JDeveloper, and deploy and run the
application. Perform the steps in Creating a New Application Server Connection to create an
Application Server Connection.

Appendix A
Sample Chat Application with Web Services APIs

A-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Overview
	Introduction to User Messaging Service
	Overview of User Messaging Service APIs
	Deprecated APIs
	User Messaging Service Sample Applications

	2 Sending and Receiving Messages using the User Messaging Service Java API
	Introduction to the UMS Java API
	Creating a UMS Client Instance and Specifying Runtime Parameters
	Sending a Message
	Creating a Message
	Creating a Plaintext Message
	Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types
	Creating a message with Unicode characters like Emojis
	Creating a Message with an Attachment (works only for Email)

	Creating an Address
	Types of Addresses
	Creating Address Objects
	Creating a Single Address Object
	Creating Multiple Address Objects in a Batch
	Adding Sender or Recipient Addresses to a Message
	Adding Display Name to a Sender Address When using Email Delivery Type

	Creating a Recipient with a Failover Address
	Recipient Types
	API Reference for Class MessagingFactory
	API Reference for Interface Address

	User Preference Based Messaging
	Sending Group Messages
	Sending Messages to a Group
	Sending Messages to a Group Through a Specific Channel
	Sending Messages to an Application Role
	Sending Messages to an Application Role Through a Specific Channel

	Retrieving Message Status
	Synchronous Retrieval of Message Status
	Asynchronous Receiving of Message Status
	Creating a Listener Programmatically
	Default Status Listener
	Per Message Status Listener

	Receiving a Message
	Registering an Access Point
	Synchronous Receiving
	Asynchronous Receiving
	Creating a Listener
	Default Message Listener
	Per Access Point Message Listener

	Message Filtering

	Configuring for a Cluster Environment
	Using UMS Client API for XA Transactions
	About XA Transactions
	Sending and Receiving XA Enabled Messages

	Using UMS Java API to Specify Message Resends
	Selecting a Driver Programmatically
	Setting up Priority and Expiration time for a Message
	Specifying User Preference Application Partitioning Profile ID
	Configuring Security
	Threading Model
	Listener Threading

	3 Sending and Receiving Messages using the User Messaging Service Web Service API
	Introduction to the UMS Web Service API
	Creating a UMS Client Instance and Specifying Runtime Parameters
	Sending a Message
	Creating a Message
	Creating a Plaintext Message
	Creating a Multipart/Mixed Message (with Text and Binary Parts)
	Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	API Reference for Interface Message
	API Reference for Enum DeliveryType
	Creating an Address
	Recipient Types
	API Reference for Class MessagingFactory

	User Preferences in Messages

	Retrieving Message Status
	Synchronous Retrieval of Message Status
	Asynchronous Receiving of Message Status
	Creating a Listener
	Publish the Callback Service
	Stop a Dynamically Published Endpoint
	Registration

	Receiving a Message
	Registering an Access Point
	Synchronous Receiving
	Asynchronous Receiving
	Creating a Listener
	Default Message Listener
	Per Access Point Message Listener

	Message Filtering

	Configuring for a Cluster Environment
	Using UMS Web Service API to Specify Message Resends
	Configuring Security
	Client and Server Security
	Listener or Callback Security

	Threading Model

	A Using the User Messaging Service Sample Applications
	Using the UMS Client API to Build a Client Application
	Overview of Development
	Configuring the Email Driver
	Using JDeveloper 14c to Build the Application
	Opening the Project

	Deploying the Application
	Testing the Application

	Using the UMS Client API to Build a Client Echo Application
	Overview of Development
	Configuring the Email Driver
	Using Oracle JDeveloper 14c to Build the Application
	Opening the Project

	Deploying the Application
	Testing the Application

	Creating a New Application Server Connection
	Sample Chat Application with Web Services APIs
	Overview
	Provided Files

	Running the Pre-Built Sample
	Testing the Sample
	Creating a New Application Server Connection

