
Oracle® Fusion Middleware
Administering Oracle User Messaging Service

14c (14.1.2.0.0)
F89236-02
February 2025

Oracle Fusion Middleware Administering Oracle User Messaging Service, 14c (14.1.2.0.0)

F89236-02

Copyright © 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Documents vi

Conventions vii

 What's New in Oracle User Messaging Service

New and Changed Features for Release 14c (14.1.2.0.0) viii

1 Introduction to Oracle User Messaging Service

Overview 1-1

Components 1-2

Architecture 1-2

Introduction to Oracle User Messaging Service Configuration 1-3

2 Getting Started with Oracle User Messaging Service

Installing User Messaging Service 2-1

Upgrading User Messaging Service 2-2

Scalability and High Availability 2-2

Moving from a Test to a Production Environment 2-3

3 Oracle User Messaging Service Drivers

Email Driver 3-1

Scalability notes 3-2

High Availability notes 3-2

Compatibility notes 3-2

UMS API Programmer notes 3-2

SMS (SMPP) Driver 3-3

Scalability notes 3-3

iii

High Availability notes 3-3

Compatibility notes 3-3

UMS API Programmer notes 3-3

XMPP Driver 3-4

Scalability notes 3-4

High Availability notes 3-4

Compatibility notes 3-4

UMS API Programmer notes 3-5

Extension Driver 3-5

Scalability notes 3-5

High Availability notes 3-5

Compatibility notes 3-5

UMS API Programmer notes 3-5

APNS Driver 3-9

Scalability notes 3-12

High Availability notes 3-12

Compatibility notes 3-13

UMS API Programmer notes 3-13

Send Push Notification 3-13

Send Push Notification With Additional Data 3-13

Send Push Notification With Additional Custom Data 3-14

Send Push Notification With Raw JSON data 3-14

Send Push Notification With Raw JSON data, MDM payload 3-15

Receive unreachable device tokens 3-15

Send Push Notification With Unicode Characters 3-15

4 Configuring Oracle User Messaging Service

Accessing User Messaging Service Configuration Pages 4-1

Configuring User Messaging Server 4-2

Configuring User Messaging Service Drivers 4-3

Configuring a Driver 4-3

Introduction to Driver Properties 4-4

Securing Passwords 4-6

Saving Driver Properties 4-7

Configuring the Messaging Extension Driver 4-7

Configuring the Email Driver 4-9

Configuring the SMPP Driver 4-32

Configuring the XMPP Driver 4-36

Configuring the APNS Driver 4-39

Configuring GCM Driver 4-43

Configuring User Messaging Service Access to the LDAP User Profile 4-46

iv

Using Oracle User Messaging Service for Group Messaging 4-47

Configuring Automatic Message Resend 4-48

Securing the Oracle User Messaging Service 4-49

Web Service Security on Notification 4-50

Enabling UMS Web Service Security 4-50

Enabling Client Security 4-50

Keystore Configuration 4-51

Client Aliases 4-51

Securing JMS Resources 4-52

5 Monitoring Oracle User Messaging Service

Monitoring Oracle User Messaging Service 5-1

Using Message Status 5-2

Deregistering Messaging Client Applications 5-3

Viewing Log Files 5-3

Configuring Logging 5-4

Viewing Metrics and Statistics 5-4

6 Managing Oracle User Messaging Service

Deploying Drivers 6-1

Deploying Drivers Using the Fusion Middleware Configuration Wizard 6-1

Using UMS Schema Purge Script 6-2

Purging UMS DB Schema Records 6-3

7 Troubleshooting Oracle User Messaging Service

A Configuring User Messaging Service with AQ JMS

v

Preface

This guide describes how to administer Oracle User Messaging Services (UMS). This includes
how to configure and deploy user messaging drivers and other components, how to enable
security in UMS, and how to monitor UMS using Oracle Enterprise Manager Fusion
Middleware Control.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This document is intended for UMS administrators, who are responsible for configuring and
monitoring UMS.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
For more information, see the following documents:

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Release Notes for Oracle Fusion Middleware Infrastructure

• Developing Applications with Oracle User Messaging Service

• User Messaging Service Java API Reference

• WLST Command Reference for Infrastructure Components

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

What's New in Oracle User Messaging Service

This chapter describes the features and improvements in Oracle User Messaging Service
(UMS). The following topics introduce the new and changed features of UMS and other
significant changes in this guide, and provides pointers to additional information.

• New and Changed Features for Release 14c (14.1.2.0.0)

New and Changed Features for Release 14c (14.1.2.0.0)
• OAuth Support for Email Driver: UMS provides support for OAuth 2.0 based

authentication to Gmail and Microsoft exchange which enables users to authorize one app
or service to sign into another without divulging private information such as passwords. For
more information, see Configuring Email Driver with OAuth in Administering Oracle User
Messaging Service.

• Enhancements to UMS Drivers: UMS supports the new Google Cloud Messaging (GCM)
driver used for mobile push notification service that can send mobile push notifications to
Android applications. Enhancements to APNS and XMPP drivers include updates to
configuration, common properties, and custom properties and support for Twitter Driver is
dropped. For more information, see Administering Oracle User Messaging Service.

• Support for Saving Driver Properties: UMS provides support to save driver specific
properties in the UMS database. When the UMS driver appears, the properties stored in
the DRIVERPROPERTIES table for specific fields override the values in the file and the
driver instance uses those property values from the database to process requests. For
more information, see Saving Driver Properties in Administering Oracle User Messaging
Service.

• SMPP Custom Property: New SMPP custom property field Optional Params is introduced
which enables passing of additional parameters along with SMS. For more information,
see SMPP Custom Properties in Administering Oracle User Messaging Service.

What's New in Oracle User Messaging Service

viii

https://docs-uat.us.oracle.com/en/middleware/fusion-middleware/user-messaging-service/14.1.2/umsag/index.html
https://docs-uat.us.oracle.com/en/middleware/fusion-middleware/user-messaging-service/14.1.2/umsag/index.html
https://docs-uat.us.oracle.com/en/middleware/fusion-middleware/user-messaging-service/14.1.2/umsag/index.html
https://docs-uat.us.oracle.com/en/middleware/fusion-middleware/user-messaging-service/14.1.2/umsag/index.html
https://docs-uat.us.oracle.com/en/middleware/fusion-middleware/user-messaging-service/14.1.2/umsag/index.html
https://docs-uat.us.oracle.com/en/middleware/fusion-middleware/user-messaging-service/14.1.2/umsag/index.html

1
Introduction to Oracle User Messaging Service

This chapter introduces you to Oracle User Messaging Service (UMS), and includes the
following topics:

• Overview
UMS enables two-way communication between users and deployed applications.

• Introduction to Oracle User Messaging Service Configuration
To enable UMS to send and receive messages, use Oracle Enterprise Manager Fusion
Middleware Control to set the UMS environment by configuring the appropriate drivers in
the domain or cluster. UMS includes drivers that support messaging through various
channels, for instance, email, IM, SMS.

Overview
UMS enables two-way communication between users and deployed applications.

Key features include:

• Support for a variety of messaging channels: Messages can be sent and received through
various channels, for instance, email, instant messaging (IM) (XMPP), short message
service (SMS) (SMPP).

• Two-way messaging: In addition to sending messages from applications to users (referred
to as outbound messaging), users can initiate messaging interactions (inbound
messaging). For example, a user can send an email or text message to a specified
address; the message is routed to the appropriate application that can then respond to the
user or invoke another process according to its business logic.

• User messaging preferences: End users can use a web interface to define preferences for
how and when they receive messaging notifications. Applications immediately become
more flexible; rather than deciding whether to send to a user's email address or IM client,
the application can simply send the message to the user, and let UMS route the message
according to the user's preferences.

Note:

The User Messaging Preferences UI is available at http://host:port/
sdpmessaging/userprefs-ui , or https://host:sslport/sdpmessaging/
userprefs-ui.

• Robust message delivery: UMS keeps track of delivery status information provided by
messaging gateways, and makes this information available to applications so that they can
respond to a failed delivery. Or, applications can specify one or more failover addresses for
a message in case delivery to the initial address fails. Using the failover capability of UMS
frees application developers from having to implement complicated retry logic. This retry
logic is also supported by the automatic resend feature that is introduced in 12c.

• Pervasive integration within Oracle Fusion Middleware: UMS is integrated with other
Fusion Middleware components providing a single consolidated bi-directional UMS.

1-1

– Integration with Oracle BPEL Process Manager: Oracle JDeveloper includes prebuilt
BPEL activities that enable messaging operations. Developers can add messaging
capability to a SOA composite application by dragging and dropping the desired
activity into any workflow.

– Integration with human workflow: UMS enables the human workflow service engine to
send actionable messages to and receive replies from users over email.

– Integration with Oracle BAM: Oracle BAM uses UMS to send email alerts in response
to monitoring events.

– Integration with Oracle WebCenter Portal: UMS APIs are available to developers
building applications for Oracle WebCenter Portal: Spaces. For more information on
Oracle WebCenter Portal, please refer to Oracle Fusion Middleware Building Portals
with Oracle WebCenter Portal.

• Components
There are three types of components that comprise UMS. These components are standard
Jakarta EE applications, making it easy to deploy and manage them using the standard
tools provided with Oracle WebLogic Server.

• Architecture
This section describes the system architecture of the User Messaging Service.

Components
There are three types of components that comprise UMS. These components are standard
Jakarta EE applications, making it easy to deploy and manage them using the standard tools
provided with Oracle WebLogic Server.

• UMS Server: The UMS Server orchestrates message flows between applications and
users. The server routes outbound messages from a client application to the appropriate
driver, and routes inbound messages to the correct client application. The server also
maintains a repository of previously sent messages in a persistent store, and correlates
delivery status information with previously sent messages.

• UMS Drivers: UMS Drivers connect UMS to the messaging gateways, adapting content to
the various protocols supported by UMS. Drivers can be deployed or undeployed
independently of one another depending on what messaging channels are available in a
given installation.

• UMS Client applications: UMS client applications implement the business logic of sending
and receiving messages. A UMS client application might be a SOA application that sends
messages as one step of a BPEL workflow, or a WebCenter Portal Spaces application that
can send messages from a web interface.

In addition to the components that comprise UMS itself, the other key entities in a messaging
environment are the external gateways required for each messaging channel. These gateways
are not a part of UMS or Oracle WebLogic Server. Since UMS Drivers support widely-adopted
messaging protocols, UMS can be integrated with existing infrastructures such as a corporate
email servers or XMPP (Jabber) servers. Alternatively, UMS can connect to outside providers
of SMS services that support SMPP.

Architecture
This section describes the system architecture of the User Messaging Service.

In 14c, UMS is available as a part of JRF. This enables easier upper stack integration. For
more information about configuring your domain using JRF templates, refer to chapter

Chapter 1
Overview

1-2

Configuring your Oracle Fusion Middleware Infrastructure Domain in Oracle Fusion
Middleware Installing and Configuring the Oracle Fusion Middleware Infrastructure.

For maximum flexibility, the components of UMS are separate Jakarta EE applications. This
allows them to be deployed and managed independently of one another. For example, a
particular driver can be stopped and reconfigured without affecting message delivery on all
other channels.

Exchanges between UMS client applications and the UMS Server occur as SOAP/HTTP web
service requests for UMS Web Services API clients, or through remote Jakarta Enterprise
Beans (EJBs) and JMS calls for UMS Java API clients. Exchanges between the UMS Server
and UMS drivers occur through JMS queues.

Figure 1-1 UMS Architecture

WebLogic Server instance

WebLogic Server instance

UMS client application

User messaging server

GCM driver SMPP driver APNS driverXMPP driver Email driver

UMS client shared libraries (Web Services API)

UMS client application

UMS client shared libraries (Java API)

IM server Firebase
service

Email
server

SMS center
(SMS-C)

Apple Push
Notification Service

(APNS)

Message
repository

SOAP/HTTP

JMS JMS JMS JMS JMS

JMS JMS JMS JMS JMS

Introduction to Oracle User Messaging Service Configuration
To enable UMS to send and receive messages, use Oracle Enterprise Manager Fusion
Middleware Control to set the UMS environment by configuring the appropriate drivers in the
domain or cluster. UMS includes drivers that support messaging through various channels, for
instance, email, IM, SMS.

Chapter 1
Introduction to Oracle User Messaging Service Configuration

1-3

For more information about configuring UMS, see Configuring Oracle User Messaging Service

For workflow participants to receive the notifications, they must register the devices that they
use to access messages through User Communication Preferences. For more information, see
chapter User Communication Preferences in Oracle Fusion Middleware Developing
Applications with Oracle User Messaging Service.

Note:

Some details in the API may vary between the underlying protocols. Study the driver
description chapter in the Administration Guide (http://docs.oracle.com/
middleware/1213/ums/administer/ns_descriptions.htm#UMSAG97610) and in
particular the UMS API Programmer Notes sections.

Chapter 1
Introduction to Oracle User Messaging Service Configuration

1-4

http://docs.oracle.com/middleware/1213/ums/administer/ns_descriptions.htm#UMSAG97610
http://docs.oracle.com/middleware/1213/ums/administer/ns_descriptions.htm#UMSAG97610

2
Getting Started with Oracle User Messaging
Service

This chapter helps you get started with Oracle User Messaging Service (UMS). It discusses
how to install and upgrade UMS. It also discusses the procedures needed for achieving high
availability and moving from a test to a production environment.

• Installing User Messaging Service
This section describes the procedures to install the User Messaging Service.

• Upgrading User Messaging Service
This section describes how to upgrade the User Messaging Service to UMS 14c.

• Scalability and High Availability
You can achieve a highly scalable environment for UMS. To achieve high scalability, UMS
scales horizontally by adding new identically configured nodes. This means, the same type
of drivers and UMS applications are deployed on each node.

• Moving from a Test to a Production Environment
This framework eases the moving of Oracle Fusion Middleware components from a test
environment to a production environment.

Installing User Messaging Service
This section describes the procedures to install the User Messaging Service.

For detailed information about installing and configuring UMS, see Oracle Fusion Middleware
Installing and Configuring the Oracle Fusion Middleware Infrastructure. The installation of UMS
includes the following main procedures:

• Running the Repository Creation Utility (RCU) to create the database schemas

When running the RCU, select User Messaging Service in the list of components. For
information about creating the database schemas, see Configuring your Oracle Fusion
Middleware Infrastructure Domain in Oracle Fusion Middleware Installing and Configuring
the Oracle Fusion Middleware Infrastructure.

• Extending your domain using the UMS template

The UMS templates are located at ORACLE_HOME/oracle_common/common/templates/
wls. For more information about UMS templates, see Oracle Fusion Middleware Domain
Template Reference. In the WebLogic Server Configuration Wizard, extend the domain
using oracle.ums.basic_template.jar to set up the UMS JDBC properties and target the
UMS server along with the chosen drivers to your managed servers or clusters. The Oracle
User Messaging Service Basic template is a quick start template that defines the managed
server, ums_server1, and targets all UMS components to that server.

2-1

Note:

The UMS Client API is packaged in a shared library that an UMS client
application must reference. The shared library is available where the UMS Server
and the JRF template has been installed. However, when the client application is
running on a managed server other than UMS, and uses the UMS Web Services
API, and if the JRF template is not used then the client shared library must be
deployed explicitly. This can be achieved by extending the domain where the
client application is deployed with the UMS Client API template available
at $ORACLE_HOME/common/templates/wls/oracle.ums.client_template.jar.
The UMS Client API shared library is called oracle.sdp.client.

Upgrading User Messaging Service
This section describes how to upgrade the User Messaging Service to UMS 14c.

For detailed information about upgrading to UMS 14c, see Oracle Fusion Middleware
Upgrading to the Oracle Fusion Middleware Infrastructure.

UMS provides a Schema Upgrade plug-in and a Config Upgrade plug-in to the Oracle Fusion
Middleware Upgrade Assistant. The config upgrade plug-in handles the change from
application level configuration in 12c to domain level configuration in 14.1.2. This includes
copying the application configuration from remote managed servers to the Administration
Server and merging it into the UMS domain level configuration file. For information about
upgrading from 12c to 14.1.2 using Upgrade Assistant, see Oracle Fusion Middleware
Upgrading with the Upgrade Assistant.

Scalability and High Availability
You can achieve a highly scalable environment for UMS. To achieve high scalability, UMS
scales horizontally by adding new identically configured nodes. This means, the same type of
drivers and UMS applications are deployed on each node.

This gives UMS linear scalability up to the point where the scalability of JMS or the scalability
of data storage becomes the limiting factor.

Since the WS-UMS Server application component is deployed on the UMS node, it scales the
same way as UMS does. On the other hand, since the WS-UMS Client application is deployed
on separate machines, the scalability is up to the design of that component.

UMS supports the following deployment scenarios for scaling up your environment:

• Instances of UMS deployed in a domain are configured identical and deployed identical.
No limitation on the number of servers or how the domain/clusters are set up.

• Instances of UMS deployed in a domain that have different configuration (server and/or
driver) must be deployed in separate clusters.

For detailed information about scaling up your environment, see Oracle Fusion Middleware
Administering Oracle Fusion Middleware.

Whole Server Migration is a key High Availability feature that UMS supports. For more
information about Whole Server Migration, see Oracle Fusion Middleware Administering
Clusters for Oracle WebLogic Server.

High availability for UMS can be achieved through the following ways:

Chapter 2
Upgrading User Messaging Service

2-2

• Automatic reconnects to external gateways

• Message resends and failover chains

• Persistence layer recovery handling database connections problems

For detailed information about high availability, see Oracle Fusion Middleware High Availability
Guide.

Moving from a Test to a Production Environment
This framework eases the moving of Oracle Fusion Middleware components from a test
environment to a production environment.

For details about the procedures used for moving Oracle Fusion Middleware from a test
environment to a production environment, see Oracle Fusion Middleware Administering Oracle
Fusion Middleware.

Most configuration in a test environment is handled automatically by this framework.
Components that require custom actions implement these in the T2P plug-ins. UMS provides a
T2P plug-in to this framework. Some User Preferences data is stored in a database and
requires the T2P plug-in to move that data from a test database to a production database.
Also, the T2P plug-in extracts preselected driver configuration properties, like host names and
ports to the moveplan.xml file so that the settings can be prepared for the production
environment before the production system is started.

For detailed information about moving from a test to a production environment, see Oracle
Fusion Middleware Administering Oracle Fusion Middleware.

Chapter 2
Moving from a Test to a Production Environment

2-3

3
Oracle User Messaging Service Drivers

This chapter describes the purpose, features and limitations of Oracle User Messaging Service
(UMS) drivers.
UMS drivers contain protocol specific implementation to connect UMS to various messaging
gateways, for instance, email servers, or short message service centers (SMSC), and so on.
Drivers can be deployed or undeployed, independently of one another, depending on the
availability of messaging channels in a given installation.

• Email Driver
The Email Driver sends and receives messages. It supports all relevant email protocols,
SMTP for sending emails, and IMAP and POP3 for receiving emails, to be able to
communicate with every standard mail server.

• SMS (SMPP) Driver
The Short Message Peer-to-Peer (SMPP) protocol is a TCP/IP based industry protocol for
exchanging SMS messages between SMS peer entities such as short message service
centers (SMS-C) and/or External Short Messaging Entities (ESME). The UMS SMPP
Driver is implemented as an ESME. It is based on SMPP protocol v3.4.

• XMPP Driver
The XMPP Driver provides unidirectional or bidirectional access from Oracle Fusion
Middleware to end users for real-time IM through the Extensible Messaging and Presence
Protocol (XMPP). This driver enables end users to receive alert notifications or interactively
chat with applications through the IM client of their choice.

• Extension Driver
The Extension Driver sends messages to the configured Endpoint URL that implements
the Notification WebServices interface defined by UMS. A messaging gateway, or an
adapter to a gateway, can implement this Web Service, thereby, extending UMS with no
changes in UMS.

• APNS Driver
The APNS driver is available in User Messaging Service (UMS) 12.2.1 and onwards. It
provides support for sending a UMS message as a notification to Apple iOS devices such
as an iPhone or an iPad.

Email Driver
The Email Driver sends and receives messages. It supports all relevant email protocols, SMTP
for sending emails, and IMAP and POP3 for receiving emails, to be able to communicate with
every standard mail server.

Support is implemented for enabling the security protocols, TLS or SSL, to protect email
contents on the wire. The Email Driver uses JavaMail v1.4, which is the standard Java
component that implements the required protocols and clients, to create, access, send, and
receive emails.

The Email Driver uses a multi-threaded design to be able to poll multiple mail boxes (over
IMAP or POP3 protocol). One limitation is that if there is only one mail box to poll, this leads to
only one thread working on that box.

3-1

Note:

POP3 is deprecated protocol and should be avoided.

• Scalability notes

• High Availability notes

• Compatibility notes

• UMS API Programmer notes

Scalability notes
The Email Driver can be scaled out to multiple nodes.

High Availability notes
When the connection to the Email Server fails, the Email Driver will wait and retry. The wait
period and maximum retries are configurable.

Compatibility notes
The Email Driver is compatible with these protocols: POP3, IMAP4, and SMTP. Table 3-1 lists
the Email Driver gateway vendors and their versions.

Table 3-1 Email Driver Gateway Vendors and Versions

Vendor Version

Oracle Beehive Release 1 (1.4.3)

Oracle Collaboration Suite 10g Release 1 (10.1.2)

Microsoft Exchange 2003

Dovecot (IMAP4/POP3) 0.99.11

sendmail (SMTP) 8.13.1

The UMS Message API Priority Levels are translated into the Email message header "X-
Priority" as follows:

MessagePriorityType.LOWEST => header value "5"
MessagePriorityType.LOW => header value "4"
MessagePriorityType.NORMAL => header value "3"
MessagePriorityType.HIGH => header value "2"
MessagePriorityType.HIGHEST => header value "1"

UMS API Programmer notes
The Email Driver handles transformation of a UMS message to an email message (and vice
versa), including headers, content type and charset encoding, MIME multipart and body parts.
For an incoming message, the UMS Message recipient is the email address of the email box
that received the mail. You can tell if the recipient was in the email To, CC or BCC field, by
looking at the Address metadata.

Chapter 3
Email Driver

3-2

When an outbound email is not deliverable, a Delivery Status Notification (DSN) can be
created by the recipient's mail server and sent back to the sender's email address. The Email
Driver tries to match a received DSN to the outbound email which the DSN is referring to and
create a “failed to deliver" status of that outbound message. In such a case, a successful
delivery status may, after some time, be changed to a failed delivery status.

SMS (SMPP) Driver
The Short Message Peer-to-Peer (SMPP) protocol is a TCP/IP based industry protocol for
exchanging SMS messages between SMS peer entities such as short message service
centers (SMS-C) and/or External Short Messaging Entities (ESME). The UMS SMPP Driver is
implemented as an ESME. It is based on SMPP protocol v3.4.

If the sending feature is enabled, the SMPP driver opens one TCP connection to the SMS-C as
a transmitter for sending. If the driver's receiving feature is enabled, it opens another
connection to the SMS-C as a receiver for receiving. Only two TCP connections (both initiated
by the driver) are needed for all communication between the driver and the SMS-C.

• Scalability notes

• High Availability notes

• Compatibility notes

• UMS API Programmer notes

Scalability notes
The SMPP Driver can be scaled out to multiple nodes. There would be a limitation only if the
SMS-C does not allow multiple login by the same account.

High Availability notes
If the connection to the SMS-C is lost, the SMPP driver will periodically attempt to reconnect.

Compatibility notes
The SMPP driver is based on SMPP Protocol v3.4. Table 3-2 lists the SMPP Driver gateway
vendors.

Table 3-2 SMPP Driver Gateway Vendors

Vendor

Syniverse

Clickatell

Logica CMG

OpenSMPP (simulator)

UMS API Programmer notes
The outgoing text message is a concatenation of the UMS Message Subject and Content. The
incoming SMS Content is put in the UMS Message Content. The UMS Message Subject will be
empty.

Chapter 3
SMS (SMPP) Driver

3-3

The UMS Message API Priority Levels are translated into SMPP Priority as follows:

MessagePriorityType.LOWEST, MessagePriorityType.LOW, MessagePriorityType.NORMAL =>
Smpp Priority: 0

MessagePriorityType.HIGH => Smpp Priority: 1

MessagePriorityType.HIGHEST => Smpp Priority: 2

However, the Smpp Priority may be limited by the SMPP Driver configuration parameter
“PriorityAllowed".

The SMPP Driver honors the UMS API MessageInfo “expiration" data and passes that
information with the message to the SMS-C.

XMPP Driver
The XMPP Driver provides unidirectional or bidirectional access from Oracle Fusion
Middleware to end users for real-time IM through the Extensible Messaging and Presence
Protocol (XMPP). This driver enables end users to receive alert notifications or interactively
chat with applications through the IM client of their choice.

XMPP is an open XML-based protocol for IM and consists of a client/server architecture, which
resembles the ubiquitous email network. Recipients are addressed by an XMPP ID (or Jabber
ID or JID) with the following form: [username]@domain[/resource]. To use the XMPP Driver in
UMS, you must have access to a Jabber/XMPP server and an XMPP account for the UMS
XMPP Driver instance with which to log in.

An end user of XMPP connects to an XMPP server using an XMPP client to send instant
messages to other XMPP users. XMPP, however, is not the only protocol network available for
IM. XMPP has an extensible and modular architecture. It integrates with proprietary IM
networks, enabling XMPP users to communicate with those on other networks.

• Scalability notes

• High Availability notes

• Compatibility notes

• UMS API Programmer notes

Scalability notes
An XMPP Driver cannot be scaled out to multiple servers since the XMPP server does not
allow multiple drivers (i.e. clients) to access the same account. When the second driver logs in,
the XMPP server disconnects the first driver. The first driver, then, reconnects after a while and
then the second driver is disconnected and so on. In this setup, outgoing messages work only
if the driver that handles the message is connected at that particular moment.

High Availability notes
When there are connection problems towards the XMPP server, the XMPP driver keeps
attempting to reconnect to the remote server, but, increases the delay to avoid tight loops.

Compatibility notes
lists the XMPP Driver gateway vendors and versions.

Chapter 3
XMPP Driver

3-4

Table 3-3 XMPP Driver Gateway Vendors and Versions

Vendor Version

ejabberd 2.1.3

jabberd2 2.2.14

jabberd14 1.6.1.1-p1

Oracle Beehive 2.0.1.2.1

UMS API Programmer notes
XMPP has a concept of Subject and Body which corresponds to the UMS Message Subject
and Content.

Extension Driver
The Extension Driver sends messages to the configured Endpoint URL that implements the
Notification WebServices interface defined by UMS. A messaging gateway, or an adapter to a
gateway, can implement this Web Service, thereby, extending UMS with no changes in UMS.

The Extension driver also supports sending messages to any ADF Business Components web
application, for instance, the ATK Popup Service which is one of Oracle's workflow and
collaboration products. At runtime, the Extension Driver detects if the configured Endpoint URL
is the Notification WebService or the ATK Popup Service and acts accordingly.

The Extension Driver is used for outgoing messages only.

• Scalability notes

• High Availability notes

• Compatibility notes

• UMS API Programmer notes

Scalability notes
The Extension Driver can be scaled out to multiple nodes.

High Availability notes
The driver communicates with the external system via WebServices calls and the host part in
the Endpoint URL is a virtual IP, that is, the external system is behind a load balancer.

Compatibility notes
Not applicable

UMS API Programmer notes
The UMS Message content must be textual, not binary. To enable a new protocol in UMS using
the Extension Driver, perform the following tasks:

Chapter 3
Extension Driver

3-5

1. Implement and deploy a web service listener endpoint based on the
MessagingNotifyService WSDL (umsnotify.wsdl):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://xmlns.oracle.com/ucs/messaging/extension"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 name="MessagingNotifyService"
 targetNamespace="http://xmlns.oracle.com/ucs/messaging/extension">

 <wsdl:types>

 <xsd:schema targetNamespace="http://xmlns.oracle.com/ucs/messaging/extension">
 <xsd:element name="notification">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageId" type="xsd:string" minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>Unique message identifier from User
 Messaging Service.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="sender" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The sender address.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="recipient" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The recipient address (typically
 username).</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="subject" type="xsd:string" minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>The subject of the message, if
 available.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="contentType" type="xsd:string"
 default="text/plain">
 <xsd:annotation>
 <xsd:documentation>The MIME type of the message. e.g.
 text/plain, text/html, text/xml.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="content" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The main body of the message. Textual
 content only (no binary content).</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="parameters" type="tns:parameter" minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>Additional key-value pairs. This interface
 does not define any specific key-value pair meanings. Use of such parameters
 is defined on a private basis by particular implementations of this interface.
 </xsd:documentation>

Chapter 3
Extension Driver

3-6

 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="parameter">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>Parameter name</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="value" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>Parameter value</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="notificationResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageId" type="xsd:string" minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>A message identifier returned in response to
 successfully accepting the message. If returned, the identifier should be
 unique. Note: A fault is raised if the message cannot be
 accepted.</xsd:documentation>
 </xsd:annotation></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="notificationFault">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="code" type="xsd:string"/>
 <xsd:element name="message" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="notifyRequest">
 <wsdl:part element="tns:notification" name="parameters" />
 </wsdl:message>
 <wsdl:message name="notifyResponse">
 <wsdl:part element="tns:notificationResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="notifyException">
 <wsdl:part element="tns:notificationFault" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="Notify">
 <wsdl:operation name="invoke">
 <wsdl:input message="tns:notifyRequest"/>
 <wsdl:output message="tns:notifyResponse"/>
 <wsdl:fault message="tns:notifyException" name="NotifyException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="NotifySOAPBinding" type="tns:Notify">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />

Chapter 3
Extension Driver

3-7

 <wsdl:operation name="invoke">
 <soap:operation
 soapAction="http://www.oracle.com/ucs/messaging/extension" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 <wsdl:fault name="NotifyException">
 <soap:fault name="NotifyException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="NotifyService">
 <wsdl:port binding="tns:NotifySOAPBinding" name="Notify">
 <soap:address location="http://localhost:8001/NotifyService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

2. Configure the extension driver by performing the following tasks:

a. Target the predeployed extension driver called usermessagingdriver-extension (or a
new deployment) to the appropriate server where UMS (usermessagingserver) is
running and start the driver.

b. In Enterprise Manager Fusion Middleware Control, navigate to the
usermessagingserver home page.

c. Click User Messaging Service and navigate to Driver Properties.

d. Select and edit the driver usermessagingdriver-extension or create a new driver with
the same name as your new driver deployment.

e. Under Driver-Specific Configuration, add a new extension endpoint configuration group
and specify the properties. EndpointURL is the URL to the web service listener
endpoint that you created in Step one. Protocol is the value of the new messaging
channel for which you want to add notification support (for example, myProtocol).

f. Under Common Configuration, update Supported Protocols with a comma-separated
list of protocols defined in each Extension Endpoint group.

g. Click OK to save the configuration.

This completes the configuration and integration of a new messaging channel
(protocol) in UMS using the extension driver.

To send notifications to this new channel (protocol), recipients must be specified for the
URI delivery type using the following URI addressing format:

URI:scheme:scheme-specific-address-value
where, scheme is the protocol. The URI delivery type is optional. For example, if the
extension driver was configured to support the protocol, myProtocol, an application can
compose a message to myProtocol:john.doe@example.com.

End users can also declare their messaging preferences by creating a new messaging
channel for the new channel type in the User Communication Preferences UI. Note that
user preferences are only applied when applications send user-based notifications (that is,
to recipients of the form USER:username).

Chapter 3
Extension Driver

3-8

APNS Driver
The APNS driver is available in User Messaging Service (UMS) 12.2.1 and onwards. It
provides support for sending a UMS message as a notification to Apple iOS devices such as
an iPhone or an iPad.

The following are some features of the APNS driver:

• Otbound Message: Messages sent from a UMS client application to an Apple Device via
APNs are called outbound messages in the UMS terminology. In Apple terminology, it is a
notification. A Message sent to recipient "uri:apns:token" is handled by the UMS APNS
driver. The UMS APNS driver extracts the token from the recipient address and creates an
empty Apple Push Notification Payload. Given the information in the UMS Message, Apple
Push Notification Payload is populated and finally sent to APNs.

– Delivery Type Supported

Delivery type URI is supported. Protocol apns is supported.

– Mime types supported

Mime types of text/plain and application/json are supported.

– Delivery status types supported

The UMS API defines various status types. The APNS driver uses the following:

* DELIVER_TO_DRIVER_SUCCESS
The message has been received by the driver for further processing.

* DELIVERY_TO_GATEWAY_FAILURE
The notification could not be sent to APNs.

* DELIVERY_TO_GATEWAY_SUCCESS
The notification was sent to APNs. However, note that since APNs does not
guarantee delivery and UMS does not know if the message was sent to the device
or not, the APNS driver can never return DELIVERY_TO_DEVICE_SUCCESS.

* DELIVERY_TO_DEVICE_FAILURE
The APNS driver has for instance found out that the address used is invalid.
Typically the user has unregistered the application on its device.

– Mapping to external protocol

Table 3-4 shows how UMS Message properties maps to the APNs protocol.

Table 3-4 GCM Metadata for Outbound Messages

UMS message
property

APNs
protocol

Value Type Description

Recipient address
e.g.
'uri:apns:token'

device token UMS address The token part of the recipient address is
used as device token towards the APNs.

Chapter 3
APNS Driver

3-9

Table 3-4 (Cont.) GCM Metadata for Outbound Messages

UMS message
property

APNs
protocol

Value Type Description

Content alert string UMS Message text content is used as
payload in the alert message. If the content
type is text/plain then the content will be
used in the alert. Metadata properties (see
table below) are added to the payload. If
content type is application/json the content
is passed as is to APNs and the metadata
properties will be ignored.

Expiration (on the
MessageInfo) in
seconds. Default
zero.

expiry integer UMS property Expiration specifies a time to
live in seconds; zero or negative means that
the message shall never expire. If Expiration
is negative or zero then expiry will be set to
MAX_INT otherwise expiry property will be
calculated as current time in seconds +
Expiration.

Push notifications that expire before being
delivered are not considered a failed
delivery and don't impact the feedback
service.

Subject - - Subject on the UMS message will be
ignored.

Table Table 3-5 lists the optional UMS Message metadata.

Table 3-5 Optional UMS Message Metadata

Name Description

badge The number to display as the badge of the application icon. If this
property is absent, the badge is not changed. To remove the badge, set
the value of this property to 0.

sound The name of a sound file in the application bundle. The sound in this file
is played as an alert. If the sound file doesn't exist or default.aiff is
specified as the value, the default alert sound is played.

action-loc-key If a string is specified, displays an alert with two buttons. However, iOS
uses the string as a key to get a localized string in the current localization
to use for the right button's title instead of 'View'. If the value is null, the
system displays an alert with a single OK button that simply dismisses
the alert when tapped.

loc-key A key to an alert-message string in a Localizable.strings file for the
current localization (which is set by the user's language preference). The
key string can be formatted with %@ and %n$@ specifiers to take the
variables specified in loc-args

launch-image The filename of an image file in the application bundle; it may include the
extension or omit it. The image is used as the launch image when users
tap the action button or move the action slider. If this property is not
specified, the system either uses the previous snapshot, uses the image
identified by the UILaunchImageFile key in the application's Info.plist file,
or falls back to Default.png.

Chapter 3
APNS Driver

3-10

Table 3-5 (Cont.) Optional UMS Message Metadata

Name Description

custom To add custom values to the Apple Push Payload use metadata name
'custom' and a JSON formatted String as value. The JSON object will be
passed as is to the device application. Custom values must use the
JSON structured and primitive types: dictionary (object), array, string,
number and boolean. The JSON object will be appended to the payload.

– Driver specific message validation

The device token and the message size will be validated. If the device token is not of
proper length the message will not be sent and a fail status will be generated. If the
message size exceeds 256 bytes the message will not be sent and a failed status will
be generated.

In case of content type application/json or that a custom JSON object is added in the
metadata property, a JSON sanity check is done to see if the JSON object is parsable,
if not the message will not be sent and a failed status will be generated.

– Send raw JSON

By setting the content type to application/json the complete APNs message can be set.
UMS will handover the JSON data as is to APNs. When the content type is set to
application/json all driver specific metadata properties are ignored.

This will also allow other message types to APNs, like MDM (Mobile Device
Management) messages.

– Multiple application support

The APNS driver supports multi configuration so that multiple independent application
can use the APNS driver. In order to select the proper APNS driver for a message the
UMS core feature of driver selection is used. The preferred way is to use the
SupportedApplicationNames or the SupportedCarriers driver configuration properties.

The message must in case of SupportedCarriers have the corresponding Carrier
property set on the message's info object (oracle.sdp.messaging.MessageInfo).

message.getMessageInfo().setCarrier("myapp");

In case of SupportedApplicationNames, the default value for the application name
property is the application's deployment name so in normal cases that can be used. If
for some reason some other value must be used the application name property can be
set when the MessagingClient is created, like this:

Map<String, Object> parameters = new HashMap<String, Object>();

parameters.put(ApplicationInfo.APPLICATION_NAME, "myapp");

messagingClient = MessagingClientFactory.createMessagingClient(parameters);
• Inbound Message - Feedback service: Inbound message consists of reports from the

APNs feedback service. The feedback service will report devices that are not reachable
any more due to for instance that the user has uninstalled the iOS application. The APNS
driver will poll the feedback service for invalid device tokens for this device application and
report those in an inbound message to the provider application. In order for the provider
application to receive those messages it needs to register an access point with the same
values as the driver is configured with e.g. 'uri:apns:myapp'

Chapter 3
APNS Driver

3-11

The feedback service will return all unreachable device tokens for the device application
that the TLS connection indicates. It is not possible to only retrieve a subset of device
tokens.

Apple APNs documentation strongly recommends using the feedback service. By using
this information to stop sending push notifications that will fail to be delivered, the
application will reduce unnecessary message overhead and improve overall system
performance. APNs monitors providers for their diligence in checking the feedback service
and refraining from sending push notifications to non-existent applications on devices.

The format of the message will be in JSON. The message is an array of JSON objects with
device token and expiry date (in Epoch milliseconds as long):

[
 {
 "deviceToken" : "ad123e45f6f78c9041dd234e5a6f7890",
 "expiry" : 134567878222112333
 },
 {
 "deviceToken" : "bb223e45f6f78c9041dd234e5a6f1234",
 "expiry" : 133577878222123456
 }
]

• Same Information Provider Application for different customers: In case the provider
application is to be used by several customers (installed on premises or in the cloud) then
the client side of the application (the device application) cannot be directly reused. The
device application needs to be delivered to the customers using unique bundle identities.
This is due to the fact that different TLS certificates needs to be used for each customer
when the feedback service is to be polled for unreachable device tokens. The APNS driver
needs to use different TLS certificates for each customer, otherwise unreachable device
tokens for some other customer will be retrieved.

to add more text.

• Scalability notes

• High Availability notes

• Compatibility notes

• UMS API Programmer notes

Scalability notes
The APNS Driver supports as many messages sending as a resource adapter can handle
given the JEE platform.

The scalability of the driver is limited by the scalability of the JMS solution. UMS, and the
driver, can be deployed on multiple nodes.

High Availability notes
If the call to APNs fails then the message is marked as delivery to gateway failure.

UMS, and the APNS driver, can be deployed on multiple nodes.

Chapter 3
APNS Driver

3-12

Note:

Delivery of Push Notification is not guaranteed by APNs! Data transfer should not be
performed using Push Notifications, only send a notification saying that data is
available.

Compatibility notes
The APNS Driver is introduced in 12.2.1.0.0.

UMS API Programmer notes
When the UMS APNS driver is deployed into a mid-tier server, the 'uri:apns' delivery channel
should be available to all UMS clients. For more information, refer to the code samples below:

• Send Push Notification

• Send Push Notification With Additional Data

• Send Push Notification With Additional Custom Data

• Send Push Notification With Raw JSON data

• Send Push Notification With Raw JSON data, MDM payload

• Receive unreachable device tokens

• Send Push Notification With Unicode Characters

Send Push Notification
To send a push notification, just send a message to the device token. Suppose the token is
'1234567890…1234567890'. The following java snippet will push a notification to that device:

String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createTextMessage("New Lenny K clips");
message.addRecipient(MessagingFactory.createAddress(recipient));
String id = mMessagingClient.send(message);

Send Push Notification With Additional Data
To send a push notification specifying badge number and sound file, add meta data to the UMS
Message as shown in following java snippet:

String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createTextMessage("New Lenny K clips");
message.addRecipient(MessagingFactory.createAddress(recipient));
message.setMetaData("UMS-APNS", "badge", "3");
message.setMetaData("UMS-APNS", "sound", "Rocknroll.aiff");
String id = mMessagingClient.send(message);

To send a push notification specifying localized alert text with arguments, add meta data to the
UMS Message as shown in following java snippet:

String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createTextMessage("New Lenny K clips");
message.addRecipient(MessagingFactory.createAddress(recipient));
message.setMetaData("UMS-APNS", "loc-key", "GAME_PLAY_REQUEST_FORMAT");

Chapter 3
APNS Driver

3-13

message.setMetaData("UMS-APNS", "loc-args", "Jenna,Frank");
String id = mMessagingClient.send(message);

The above will result in a notification payload looking like this:

{
 "aps" : {
 "alert" : {
 "loc-key" : "GAME_PLAY_REQUEST_FORMAT",
 "loc-args" : ["Jenna", "Frank"]
 }
 }
}

Send Push Notification With Additional Custom Data
To send a push notification specifying custom data, create a JSON formatted String
representing the custom data and add it as metadata "custom" to the UMS Message as shown
in following java snippet:

String customDataAsJson = "{\"myCustomDataSection\":
{\"mykey1\":\"value1\",\"mykey2\":\"value2\"}, \"section2\":4711}";
String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createTextMessage("New Lenny K clips");
message.addRecipient(MessagingFactory.createAddress(recipient));
message.setMetaData("UMS-APNS", "custom", customDataAsJson);
String id = mMessagingClient.send(message);

The resulting notification payload will look like this:

{
 "aps" : {
 "alert" : "New Lenny K clips",
 },
 "myCustomDataSection" : {
 "mykey1" : "value1",
 "mykey2" : "value2",
 },
 "section2" : 4711
}

Note:

JSON formatted Strings can be created from various objects, for instance using the
com.fasterxml.jackson package already available in WebLogic.

Send Push Notification With Raw JSON data
To send a push notification specifying the APS payload data, create a JSON formatted String
representing the payload:

String rawJson = "{\"aps\":{\"alert\":\"UMS rocks\"}}";
String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createMessage();
message.addRecipient(MessagingFactory.createAddress(recipient));
message.setContent(rawJson,"application/json; charset=\"UTF-8\"");
String id = mMessagingClient.send(message);

Chapter 3
APNS Driver

3-14

Send Push Notification With Raw JSON data, MDM payload
To send a push notification specifying the MDM payload data, create a JSON formatted String
representing the payload:

String rawJson = "{\"mdm\":\"the_push_magic_token\"}";
String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createMessage();
message.addRecipient(MessagingFactory.createAddress(recipient));
message.setContent(rawJson,"application/json");
String id = mMessagingClient.send(message);

Receive unreachable device tokens
The APNS driver will poll the feedback services regularly to get a list of unreachable device
tokens. Once the list of device tokens is retrieved the feedback service clears its information
about the device tokens. So it is not possible to retrieve the same device token again (unless it
has registered again and then again become unreachable).

The application needs to register an UMS access point that corresponds to the access point
that the APNS driver is configured with.

import com.fasterxml.jackson.databind.*;
String address = "uri:apns:myapp";
AccessPoint accessPoint =
AccessPointFactory.createAccessPoint(MessagingFactory.createAddress(address));
messagingClient.registerAccessPoint(accessPoint);
Message[] messages = messagingClient.receive();
byte[] content = (byte[]) messages[0].getContent();
JsonNode devices = new ObjectMapper().readTree(content);
for (JsonNode device : devices) {
 System.out.println("deviceToken: " + device.get("deviceToken").asText());
 System.out.println("expiry: " + new Date(device.get("expiry").asLong()));
}

Send Push Notification With Unicode Characters
If non-ASCII characters are used, then the charset on the UMS message must be set
accordingly. For example, to UTF-8. Below is a sample code that illustrates creating messages
with the character 'ä' and the emoticon.

// message with 'ä'
Message message1 = MessagingFactory.createTextMessage("\u00e4", "UTF-8");
// message with SMILING FACE WITH SUNGLASSES (U+1F60E)
Message message2 = MessagingFactory.createTextMessage("\ud83d\ude0e", "UTF-8");

Chapter 3
APNS Driver

3-15

4
Configuring Oracle User Messaging Service

This chapter describes how to configure and secure Oracle User Messaging Server (UMS) in
your environment.

• Accessing User Messaging Service Configuration Pages
You can configure UMS through Oracle Enterprise Manager Fusion Middleware Control.

• Configuring User Messaging Server
UMS is deployed as one enterprise archive for the server and one enterprise archive per
driver type. The configuration can be defined at the managed server level or cluster level,
where cluster level overrides domain level. It is possible to configure the server and drivers
using WebLogic Scripting Tool (WLST) and Enterprise Manager (EM).

• Configuring User Messaging Service Drivers
UMS supports multiple configurations. This means that, one deployed driver instance can
handle more than one configuration. This makes it possible to have one instance of a
particular driver configured differently in a domain without having to deploy several
instances of that driver. All the drivers support multiple configuration.

• Configuring User Messaging Service Access to the LDAP User Profile
As part of the LDAP provider setup in a UMS deployment, you configure the User Name
Attribute through the WebLogic Remote Console. If you configure that attribute with a
value other than the default cn or if the user's email address is stored in an LDAP attribute
which is different from mail, you must make an additional configuration change in Oracle
Platform Security Services (OPSS) for UMS to successfully access the user profile to
obtain the list of communication channels provisioned in LDAP, such as business email.

• Using Oracle User Messaging Service for Group Messaging
In addition to supporting bi-directional mutli-channel messaging through a variety of
channels, UMS supports group messaging. This feature includes sending a message to a
group of users by sending it to a group URI, or sending a message to LDAP groups (or
enterprise roles) and application roles.

• Configuring Automatic Message Resend
In 14c, the automatic resend feature can be configured to automate the administrator's
resend. This means that when a message send attempt is classified as a complete failure,
then the message is automatically scheduled for resend.

• Securing the Oracle User Messaging Service
The User Communications Preferences User Interface can be secured at the transport-
level using Secure Sockets Layer (SSL). By default, all deployed web services are
unsecured. Web Service Security should be enabled for any services that are deployed in
a production environment.

Accessing User Messaging Service Configuration Pages
You can configure UMS through Oracle Enterprise Manager Fusion Middleware Control.

For more information, see Administering Oracle Fusion Middleware with Fusion Middleware
Control.

Alternatively, you can also use WebLogic Scripting Tool (WLST) to configure UMS. For more
information, see WLST Command Reference for Infrastructure Components.

4-1

Configuring User Messaging Server
UMS is deployed as one enterprise archive for the server and one enterprise archive per driver
type. The configuration can be defined at the managed server level or cluster level, where
cluster level overrides domain level. It is possible to configure the server and drivers using
WebLogic Scripting Tool (WLST) and Enterprise Manager (EM).

If the User Messaging Server configuration is defined at the cluster level, then the cluster name
along with all the following properties must be specified.

Table 4-1 Properties for Configuring User Messaging Server

Name Description Mandatory

AppReceivingQueuesInfo The default set of queues from which the
application will dequeue received
messages.

Y

DuplicateMessageRetryDelay The delay period for deferring
processing of a possible duplicate
message.

Y

EngineCommandQueuesInfo The set of queues from which the engine
will dequeue command messages sent
by other messaging components.

Y

EnginePendingReceiveQueue
Info

The queue from which the engine will
dequeue pending messages. The format
for this value is
JNDIQueueConnectionFactoryName:JN
DIQueueName.

Y

EngineReceivingQueuesInfo The set of queues from which the engine
will dequeue received messages.

Y

EngineSendingQueuesInfo The set of queues from which the engine
will dequeue sent messages.

Y

JpsContextName The name of the Java Platform Security
(JPS) context to use when getting an
Identity Store Service instance. Empty
value leads to default JPS context.

Y

ReceivedmessageStatusEnab
led

Enable received message status
reporting - if false, client library does not
return delivery status to engine.

Y

ResendDefault The default number of automatic
resends upon delivery failure. You can
override this property programmatically
on a per message basis. The upper limit
is the value specified in the configuration
parameter ResendMax.

Y

ResendDelay The delay in seconds between automatic
resends.

Y

ResendMax The max number of automatic resends
upon delivery failure.

Y

SecurityPrincipal The default system user used. Y

SessionTimeout The duration to wait before a session
timeout when the session flag is set by a
Driver or Messaging Client Application.

Y

Chapter 4
Configuring User Messaging Server

4-2

Table 4-1 (Cont.) Properties for Configuring User Messaging Server

Name Description Mandatory

SupportedDeliveryTypes The set of delivery types supported by
this server.

Y

Configuring User Messaging Service Drivers
UMS supports multiple configurations. This means that, one deployed driver instance can
handle more than one configuration. This makes it possible to have one instance of a particular
driver configured differently in a domain without having to deploy several instances of that
driver. All the drivers support multiple configuration.

You can create multiple configurations of a single deployment of the drivers using a unique
name at each configuration. Though possible, it is recommended not to use the same
configuration name while creating multiple configurations for a particular driver instance, as this
may lead to unintended results.

Since UMS can be deployed in a cluster or a server, the configuration of drivers can be done at
the cluster or server level. It is recommended that the configuration be done at the same level
as that of the deployment. However, exceptional scenarios might justify creating configuration
at a level different from that of the deployment level.

You can configure UMS drivers by using Oracle Enterprise Manager Fusion Middleware
Control. Alternatively, you can configure the UMS drivers by using the WLST command
configUserMessagingDriver. For more information about this command, see WLST
Command Reference for Infrastructure Components.

Note:

UMS drivers can be configured at the cluster level or server level. For more
information, see Configuring User Messaging Server to ensure that you select the
appropriate configuration level.

• Configuring a Driver

Configuring a Driver
You can navigate to the driver configuration page from any one of the following:

• Associated Drivers table on the User Messaging Service home page

• Driver Properties menu for the driver target in the Target Navigation pane

• Driver Properties menu on the User Messaging Service home page

To configure a driver, perform the following tasks:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control as an administrator.

2. Navigate to the User Messaging Service home page.

3. Click usermessagingserver(AdminServer). The Associated Drivers page appears.

Chapter 4
Configuring User Messaging Service Drivers

4-3

4. Select the Local tab to access the drivers collocated with the UMS server instance. These
drivers may or may not be registered with the UMS server depending on whether they are
properly configured. The ALL tab lists all drivers that are deployed in the domain and
registered to all the UMS server instances.

5. Choose a driver from the list, and click the corresponding Configure Driver icon.

The configuration page that lists all the configurations applied to this driver deployment will
be displayed, and the administrator can create, edit, or delete a configuration. User
Messaging drivers are configured differently in the following scenarios:

a. For the email driver (only email driver supports multiple configuration in 12.1.3), the
configuration depends on whether the driver is deployed in a clustered or a non-
clustered environment.

• If the driver is deployed in a cluster, for instance a_ums_cluster, then all the email
configurations for cluster a_ums_cluster and also for the whole domain will be
listed. The cluster-level configuration will override the domain-level configuration, if
they have the same configuration name.

• For a driver deployed in a non-clustered managed server, the configuration will be
at the server level.

For information about support for multiple configuration, and the relationship between
cluster level and domain level configuration, refer to Configuring User Messaging Server
and Configuring User Messaging Service Drivers.

6. Click Create, or select a driver configuration from the list and click Edit. The Driver
Properties page appears. You can create a new configuration or update the existing one.

7. If needed, expand the Driver-Specific Configuration section and configure the driver
parameters. For more information, see Introduction to Driver Properties.

8. To validate if the configuration properties are in correct format and valid in the deployment
environment, you can 'test' the driver configuration parameters that you have entered.
Click the Test button on the page. Click OK to continue.

Note:

Even if the testing does not succeed, you can still save the configuration.

• Introduction to Driver Properties

• Securing Passwords

• Saving Driver Properties

• Configuring the Messaging Extension Driver

• Configuring the Email Driver

• Configuring the SMPP Driver

• Configuring the XMPP Driver

• Configuring the APNS Driver

• Configuring GCM Driver

Introduction to Driver Properties
UMS drivers share common properties (listed in Table 4-2) that are used by the Messaging
Engine when routing outbound messages.

Chapter 4
Configuring User Messaging Service Drivers

4-4

Table 4-2 Common Driver Properties

Name Description Mandatory Property

Capability Sets the driver's capability to
send or receive messages. The
values are SEND, RECEIVE, and
BOTH.

Yes

Cost Only used for driver configuration
selection between multiple driver
configurations of the same type,
and only when required by the
client application, The cost level
of the driver (from 0 - 10). 0 is
least expensive; 10 is most
expensive. If the value is not in
this range, cost is considered to
be 0.

No

DefaultSenderAddress If the UMS Message has no
Sender Address of the specific
DeliveryType that the driver
supports, then the driver may use
the DefaultSenderAddress as the
Sender Address. The sample
DefaultSenderAddress is
EMAIL:alice@example.com.

No

SenderAddresses The list of sender addresses that
the driver is configured to handle.
A driver with specified
SenderAdresses will be selected
only for an outgoing message
that has a matching Sender
Address. A driver that has not
specified any SenderAdresses is
considered to be able to handle
any outgoing message regardless
of the Sender Address of the
message. The list should consist
of UMS addresses separated by
comma, for example
EMAIL:alice@example.com or
EMAIL:alice@example.com,EM
AIL:bob@example.com. The
matching is case insensitive.

No

Speed Only used for driver configuration
selection between multiple driver
configurations of the same type,
and only when required by the
client application. The speed level
of the driver (from 0-10, with 10
being the fastest).

No

SupportedCarriers A comma-delimited list of
supported carriers.

No

Chapter 4
Configuring User Messaging Service Drivers

4-5

Table 4-2 (Cont.) Common Driver Properties

Name Description Mandatory Property

Configuration Level Enables driver configuration at
the server level or at the
cluster level. If Server level is
selected, then the server name
must be specified. If Cluster level
is selected, then the cluster name
must be specified.

Yes

SupportedContentTypes The content type supported by
the driver.

Yes

SupportedDeliveryTypes The delivery types supported by
the driver.

Yes

SupportedProtocols A comma-delimited list of
supported protocols.

No

SupportedStatusTypes The status types supported by
the driver.

No

Supported Application Names The application name supported
by the driver.

No

Securing Passwords
Sensitive driver properties (namely, passwords) can be stored securely in the credential store
using Oracle Enterprise Manager Fusion Middleware Control. Properties are marked with the
flag Encoded Credential and have a custom entry form field.

To store a sensitive driver property securely, perform the following tasks:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control, and navigate to the driver
configuration page of the selected driver.

The configuration page that lists all the configurations applied to this driver deployment will
be displayed, and the administrator can create, edit, or delete a configuration.

2. Click Create to create a new configuration or select a configuration and click Edit to edit
an existing configuration.

The Driver properties page appears.

3. In the Driver-Specific Configuration table, locate the properties with the Encoded
Credential flag set.

4. Select the credential type from the Type of Password drop-down list in the adjoining Value
column.

5. Depending on the selected credential type, you are prompted to enter the username and/or
password. There are the following three options:

• Indirect password, create new user (default option): specify the username and real
password; the password is stored in the credential store with the username as part of
the key. The key and a fixed folder (map name) are stored in the driver deployment's
file.

• Indirect password, use existing user: choose an existing indirect username/key in the
credential store (to reference the password you stored previously).

• User a clear text password: specify the password, and it is stored directly in the driver
deployment file.

Chapter 4
Configuring User Messaging Service Drivers

4-6

6. Click OK to save changes.

7. Restart the driver application or the container for the changes to take effect.

You can check the password in the driver deployment directory's file. For an indirect password,
the format is:

value="->mapName:keyName" (mapName can be any name of the user's choice,
and the key is <parameter_name>.<username>)

Saving Driver Properties
You can save the driver properties in the UMS database.

When the UMS driver appears, the properties stored in the DRIVERPROPERTIES table for specific
fields override the values in the file and the driver instance uses those property values from the
database to process requests. Given below are the driver property details:

• Table Name - DRIVERPROPERTIES
• Columns - DRIVERNAME, PROPERTYNAME, and PROPERTYVALUE
The following MBean is used to save driver properties in the UMS database:

MBean Name

oracle.ucs.messaging:Location=ESS_SOAServer_1,name=UserPrefsAdministration,type=S
DPMessagingRuntime (Note: Any other instance of SOA server can be used to invoke
this mbean than ESS_SOAServer_1)
Operation Name

saveDriverProperties
Parameters

• P1 - driverName

• P2 - propertyName

• P3 - propertyValue

Example

mBean =
ObjectName("oracle.ucs.messaging:Location=ESS_SOAServer_1,name=UserPrefsAdmini
stration,type=SDPMessagingRuntime")
set_param = ['usermessagingdriver-apns-HCM', 'Alias', 'apns-prod-server-
hcm-12122023']
set_type = ["java.lang.String", "java.lang.String", "java.lang.String"]
mbs.invoke(mBean, "saveDriverProperties", set_param, set_type)

Configuring the Messaging Extension Driver
The extension driver extends the messaging capability of UMS by enabling support for
arbitrary administrator-defined channels (protocols) and delivering the notifications for such
channels to an administrator-defined web service listener endpoint.

Chapter 4
Configuring User Messaging Service Drivers

4-7

Note:

An instance of this driver is deployed, but not targeted to any servers in the default.
To enable this driver instance, it must be targeted to the appropriate servers where
UMS (usermessagingserver) is running.

• Common Properties

• Custom Properties

• Extension Driver Security

Common Properties
These are common driver properties that are indicative of the capabilities of this driver for use
by the messaging engine when routing outbound messages. Some properties are set by the
driver developer and do not normally require modification, while others can be modified by the
administrator to change the routing behavior. Table 4-3 lists the common properties of the
Extension driver. For detailed description of these properties, refer to Table 4-2. For the
complete list of available values, see User Messaging Service Java API Reference.

Table 4-3 Extension Driver Common Properties

Name Mandatory Default Value

InstanceName Yes Extension-Driver

Capability Yes SEND

SupportedDeliveryTypes Yes URI

SupportedContentTypes Yes text/plain, text/html, text/xml

SupportedStatusTypes No DELIVERY_TO_GATEWAY_SUC
CESS,
DELIVERY_TO_GATEWAY_FAIL
URE

Cost No

Speed No

SupportedCarriers No

Configuration Level Yes Server/Cluster

SupportedProtocols No popup

SenderAddresses No

DefaultSenderAddress No

Supported Application Names No Empty

Custom Properties
Table 4-3 lists properties specific to this driver and generally associated with configuring a
remote endpoint at which to deliver extension notifications:

Chapter 4
Configuring User Messaging Service Drivers

4-8

Table 4-4 Extension Driver Custom Properties

Name Description Mandatory

Group Name The name of this extension
endpoint configuration group.

Yes

Endpoint URL Remote endpoint listener URL. Yes

Mapped Domain The extension endpoint used to
deliver messages where the
domain part of the recipient URI
matches this value.

No

Protocol The extension endpoint used to
deliver messages where the
protocol (scheme) part of the
recipient URI matches this value.

Yes

Security Policies Comma-separated list of WS-
Security policies to apply to this
endpoint.

No

Username Username to propagate through
WS-Security headers.

No

Keystore Alias Keystore alias to use for looking
up WS-Security policy public
keys.

No

Credential Store Key Key to use for looking up the WS-
Security username and password
from the Oracle Web Services
Management credential store
map.

No

Extension Driver Security
If the remote extension endpoint is secured using WS-Security, then additional configuration of
the extension driver is required. There are two typical WS-Security configurations that are
supported. The extension driver can either use SAML tokens or username tokens.

To use extension driver security:

1. To use SAML tokens, the Security Policies configuration property should contain value
oracle/wss11_saml_token_identity_switch_with_message_protection_client_policy,
and the Keystore Alias configuration property should contain a valid alias for keystore
entries that is accepted by the remote extension endpoint.

2. To use username tokens, the Security Policies configuration property should contain value
oracle/wss11_username_token_with_message_protection_client_policy, and the
Credential Store Key configuration property should contain a valid alias for a credential
store entry that is accepted by the remote extension endpoint.

For more details about using WS-Security policies and configuring OWSM, see Oracle Fusion
Middleware Administering Web Services.

Configuring the Email Driver
The email driver both sends and receives messages (that is, its capability property is set to
both by default). The email driver sends messages over SMTP and uses either IMAP or POP3
for receiving messages.

Chapter 4
Configuring User Messaging Service Drivers

4-9

• Common Properties

• Configuring Email Driver with OAuth

Common Properties
Table 4-5 lists common driver properties that are indicative of the capabilities of this driver for
use by the messaging engine when routing outbound messages. Some properties are set by
the driver developer and do not normally require modification, while others can be modified by
the administrator to change the routing behavior. For detailed description of these properties,
refer to Table 4-5. For the complete list of available values, see User Messaging Service Java
API Reference.

Table 4-5 Common Email Properties

Name Mandatory Default Value

InstanceName Yes Email-Driver

Capability Yes Both

SupportedDeliveryTypes Yes Email

SupportedContentTypes Yes text/plain, text/html, multipart/
mixed, multipart/alternative,
multipart/related

SupportedStatusTypes No DELIVERY_TO_GATEWAY_SUC
CESS,
DELIVERY_TO_GATEWAY_FAIL
URE,
USER_REPLY_ACKNOWLEDGE
MENT_SUCCESS,
USER_REPLY_ACKNOWLEDGE
MENT_FAILURE

Cost No N/A

Speed No N/A

SupportedCarriers No N/A

Configuration Level Yes Server/Cluster

Supported Protocols No N/A

SenderAddresses No N/A

DefaultSenderAddress No N/A

Supported Application Names No Empty

• Email Custom Properties

Email Custom Properties

Table 4-6 lists properties specific to this driver and generally associated with configuring
access to the remote gateway and certain protocol or channel-specific behavior.

Chapter 4
Configuring User Messaging Service Drivers

4-10

Table 4-6 Custom Email Properties

Name Description Mandatory Default Value

MailAccessProtocol Email receiving protocol. The possible
values are IMAP and POP3. Required
only if email receiving is supported on
the driver instance.

No IMAP

AutoDelete This value indicates if the driver
should mark the messages deleted
after they have been processed. The
default is Disabled. For the POP3
protocol, the messages are always
deleted right after they are processed.

No Disabled

Debug This value indicates if the driver is
running in Debug mode. When
enabled, JavaMail prints out requests
and responses between the email
driver and the mail server to Fusion
Middleware Control. The default is
Disabled.

No Disabled

CheckMailFreq The frequency with which to retrieve
messages from the mail server. The
unit is in seconds and the default
value is 30 seconds.

No 30

ReceiveFolder The name of the folder from which the
driver is polling messages. The
default value is INBOX.

No INBOX

OutgoingMailServer The name of the SMTP server. This is
mandatory only if email sending is
required.

No N/A

OutgoingMailServerPort The port number of the SMTP server;
typically 25.

No 25

OutgoingMailServerSecu
rity

The security setting used by the
SMTP server. Possible values are
None, TLS, and SSL. The default
value is None.

No None

OutgoingDefaultFromAd
dr

The default FROM address (if one is
not provided in the outgoing
message).

Note: The
OutgoingDefaultFromAddr
property is deprecated, use
DefaultSenderAddress instead.
For more details about the
DefaultSenderAddress property,
see Table 4-5 .

No N/A

OutgoingUsername The username used for SMTP
authentication. Required only if SMTP
authentication is supported by the
SMTP server.

No N/A

Chapter 4
Configuring User Messaging Service Drivers

4-11

Table 4-6 (Cont.) Custom Email Properties

Name Description Mandatory Default Value

OutgoingPassword The password used for SMTP
authentication. This is required only if
SMTP authentication is supported by
the SMTP server. This includes Type
of Password (choose from Indirect
Password/Create New User, Indirect
Password/Use Existing User, and Use
Cleartext Password) and Password.

No N/A

IncomingMailServer The hostname of the incoming mail
server. Required only if email
receiving is supported on the driver
instance.

No N/A

IncomingMailServerPort Port number of IMAP4 (that is, 143 or
993) or POP3 (that is, 110 or 995)
server.

No N/A

IncomingMailServerSSL Indication to enable SSL when
connecting to IMAP4 or POP3 server.
The default is Disabled.

No Disabled

IncomingMailIDs The email addresses corresponding
to the user names. Each email
address is separated by a comma
and must reside in the same position
in the list as their corresponding user
name appears on the usernames list.
Required only if email receiving is
supported on the driver instance.

No N/A

IncomingUserIDs The list of user names of the mail
accounts from which the driver
instance is polling. Each name must
be separated by a comma, for
example, foo,bar. This is required only
if email receiving is supported on the
driver instance.

No N/A

IncomingUserPasswords The list of passwords corresponding
to the user names. Each password is
separated by a comma and must
reside in the same position in the list
as their corresponding user name
appears on the usernames list. This is
required only if email receiving is
supported on the driver instance. This
includes Type of Password (choose
from Indirect Password/Create New
User, Indirect Password/Use Existing
User, and Use Cleartext Password)
and Password.

No N/A

ProcessingChunkSize The number of messages processed
during each message polling. The
default is 100.

No 100

Disconnect After Poll Whether or not to disconnect from the
email server after message poll.
Effective only for IMAP, as POP3
always disconnects.

No False

Chapter 4
Configuring User Messaging Service Drivers

4-12

Table 4-6 (Cont.) Custom Email Properties

Name Description Mandatory Default Value

ImapAuthPlainDisable Indication to disable or enable plain
text authentication (AUTHENTICATE
PLAIN command) for IMAP user
authentication. The default is
Disabled.

No Disabled. When this
property is disabled,
that means that plain
text is allowed.

Note:

Multiple Incoming Email IDs/User IDs/Passwords will be added through a popup
dialog (import from a CSV file or add in table), so that hundreds of ID/Passwords can
be added.

For information about saving driver properties, see Saving Driver Properties.

Configuring Email Driver with OAuth
OAuth 2.0 based authentication is provided for Gmail and Microsoft exchange. To configure the
Email driver with OAuth, you must have a valid Gmail or Microsoft Exchange email account.

• Configuring WebLogic

• Updating Common Properties

• Enabling OAuth for Gmail Accounts

• Enabling OAuth for Microsoft 365 Accounts

Configuring WebLogic

In environments where OAuth access token generation URLs or Gmail/MS secure IMAP or
SMTP ports are inaccessible due to firewall or VPN configurations blocking them, you must
update the configuration settings.

Chapter 4
Configuring User Messaging Service Drivers

4-13

Table 4-7 WebLogic Configuration

Issue Workaround WebLogic Configuration
Update

JavaMail connection to the
secure ports of 993 and 587 fail
due to firewall or network issues.

Connecting/tunnelling through
SOCKS proxy.

• -
Dmail.imaps.proxy.host
=<Your SOCKS proxy
server>

• -
Dmail.imaps.proxy.port
=<Proxy server's port>

• -
Dmail.smtp.proxy.host=
<Your SOCKS proxy
server>

• -
Dmail.smtp.proxy.port=
<Proxy server's port>

JavaMail SSL handshake with the
IMAP/SMTP servers fail when
connecting to secure ports due to
certificate validation errors.

Ignoring the certificates or
disabling certificate validation.

• -
Dweblogic.security.SSL
.ignoreHostnameVerific
ation=true

• -
Dmail.imaps.ssl.trust=
imap.gmail.com

• -
Dmail.smtp.ssl.trust=s
mtp.gmail.com

For MS OAuth, you must
configure outlook.office365.com
and smtp.office365.com.

Failure in connecting to the OAuth
access token generation URLs as
follows:

https://login.microsoftonline.com/
<tenant id>/oauth2/v2.0/token

https://oauth2.googleapis.com/
token

Connecting/tunnelling through
HTTP proxy.

• -
Dhttps.proxyHost=<Your
https proxy>

• -
Dhttps.proxyPort=<http
s proxy port>

Updating Common Properties

You must update the usermessagingconfig.xml file with common properties.

Table 4-8 Common Properties

Property Name Value Procedure

ImapAuthUseOAuth2 True Set the value to true to use OAuth
for all IMAP mail accesses.

SMTPAuthUseOAuth2 True Set the value to true to use OAuth
for sending messages through
SMTP.

Chapter 4
Configuring User Messaging Service Drivers

4-14

Table 4-8 (Cont.) Common Properties

Property Name Value Procedure

OutgoingUsername Your UMS OAuth mail ID for
outgoing e-mails.

Enter your UMS OAuth mail ID.
For example,
umsoauth@gmail.com.

OutgoingPassword <Empty> Do not set the password, as the
communication with servers take
place using the OAuth access
and refresh tokens.

IncomingMailIDs Your UMS OAuth mail ID for
incoming e-mails.

Enter your UMS OAuth mail ID.
For example,
umsoauth@gmail.com.

IncomingUserIDs Your UMS OAuth mail ID for
incoming e-mails.

Enter your UMS OAuth mail ID.
For example,
umsoauth@gmail.com.

IncomingUserPasswords <Empty> Do not set the password, as the
communication with servers take
place using the OAuth access
and refresh tokens.

Example 4-1 Common Properties

<ns1:Property name="IncomingMailIDs" value="umsoauth@gmail.com"/>
<ns1:Property name="IncomingUserIDs" value="umsoauth@gmail.com"/>
<ns1:Property name="IncomingUserPasswords" value=" "/>
<ns1:Property name="OutgoingUsername" value="umsoauth@gmail.com"/>
<ns1:Property name="OutgoingPassword" value=""/>
<ns1:Property name="SMTPAuthUseOAuth2" value="true"/>
<ns1:Property name="ImapAuthUseOAuth2" value="true"/>

Enabling OAuth for Gmail Accounts

This section describes how to enable OAuth 2.0 based authentication for Gmail accounts and
includes the following topics:

• Prerequisites

• Updating Configuration Properties

• Creating OAuth Client ID

• Generating Tokens

• Verifying Tokens

• Configuring SendAs

Prerequisites
You must perform the following prerequisite tasks:

1. Ensure that you have a valid Gmail or Microsoft email account.

2. Install Python.

Updating Configuration Properties
You must update the usermessagingconfig.xml file with configuration properties.

Chapter 4
Configuring User Messaging Service Drivers

4-15

Table 4-9 Configuration Properties

Property Name Value Other Details

IncomingMailServer imap.gmail.com Gmail IMAP server

IncomingMailServerPort 993 Gmail’s IMAP port

IncomingMailServerSSL False Constant value

OutgoingMailServer smtp.gmail.com Gmail SMTP server

OutgoingMailServerPort 587 Use SMTP server’s port

OAuth2AccessTokenSupplierF
actory

oracle.sdpinternal.mes
saging.
oauth.ums.google.UMSGm
ail
AccessTokenSupplierFac
tory

Constant value. Set this value
whenever you are using gmail ID.

GoogleOAuthClientID <Cliend id of the form
xxx-
xxx.apps.googleusercon
tent.com>

For more information about how
to get the value, see Creating
OAuth Client ID.

GoogleOAuthClientSecret Encoded secret value For more information about how
to get the value, see Creating
OAuth Client ID.

GoogleOAuthRefreshToken Encoded and valid
refresh token

For more information about how
to get the value, see Generating
Tokens.

Example 4-2 Configuration Properties

<ns1:Property name="IncomingMailServer" value="imap.gmail.com"/>
<ns1:Property name="IncomingMailServerPort" value="993"/>
<ns1:Property name="IncomingMailServerSSL" value="false"/>
<ns1:Property name="OutgoingMailServer" value="smtp.gmail.com"/>
<ns1:Property name="OutgoingMailServerPort" value="587"/>
<ns1:Property name="OAuth2AccessTokenSupplierFactory"
value="oracle.sdpinternal.messaging.oauth.ums.google.UMSGmailAccessTokenSuppli
erFactory"/>
<ns1:Property name="GoogleOAuthClientID"
value="GoogleOAuthClientID.apps.googleusercontent.com"/>
<ns1:Property name="GoogleOAuthClientSecret"
value="GoogleOAuthClientSecret"/>
<ns1:Property name="GoogleOAuthRefreshToken"
value="GoogleOAuthRefreshToken"/>

Sample UMS Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<ns1:MessagingConfiguration xmlns:ns0="http://www.oracle.com/ucs/messaging/
configtemplate" xmlns:ns1="http://www.oracle.com/ucs/messaging/config"
version="12.2.1.3.0">
 <ns1:Driver name="Test1" type="email" server="AdminServer" enabled="true">
 <ns1:Property name="SupportedDeliveryTypes" value="EMAIL"/>

Chapter 4
Configuring User Messaging Service Drivers

4-16

 <ns1:Property name="SupportedContentTypes" value="*"/>
 <ns1:Property name="Capability" value="BOTH"/>
 <ns1:Property name="Cost" value=""/>
 <ns1:Property name="Speed" value=""/>
 <ns1:Property name="SupportedCarriers" value=""/>
 <ns1:Property name="SupportedProtocols" value="SMTP"/>
 <ns1:Property name="SupportsCancel" value="false"/>
 <ns1:Property name="SupportsReplace" value="false"/>
 <ns1:Property name="SupportsStatusPolling" value="false"/>
 <ns1:Property name="SupportsTracking" value="false"/>
 <ns1:Property name="SupportedStatusTypes"
value="DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE,
USER_REPLY_ACKNOWLEDGEMENT_SUCCESS, USER_REPLY_ACKNOWLEDGEMENT_FAILURE"/>
 <ns1:Property name="SenderAddresses" value=""/>
 <ns1:Property name="SupportedApplicationNames" value=""/>
 <ns1:Property name="DefaultSenderAddress" value=""/>
 <ns1:Property name="SendingQueuesInfo" value="OraSDPM/
QueueConnectionFactory:OraSDPM/Queues/OraSDPMDriverDefSndQ1"/>
 <ns1:Property name="MailAccessProtocol" value="IMAP"/>
 <ns1:Property name="AutoDelete" value="false"/>
 <ns1:Property name="Debug" value="true"/>
 <ns1:Property name="CheckMailFreq" value="30"/>
 <ns1:Property name="DisconnectAfterPoll" value="false"/>
 <ns1:Property name="ReceiveFolder" value="INBOX"/>
 <ns1:Property name="OutgoingMailServer" value="smtp.gmail.com"/>
 <ns1:Property name="OutgoingMailServerPort" value="587"/>
 <ns1:Property name="OutgoingMailServerSecurity" value="None"/>
 <ns1:Property name="OutgoingDefaultFromAddr" value=""/>
 <ns1:Property name="OutgoingUsername" value="umstest@gmail.com"/>
 <ns1:Property name="OutgoingPassword" value=""/>
 <ns1:Property name="IncomingMailServer" value="imap.gmail.com"/>
 <ns1:Property name="IncomingMailServerPort" value="993"/>
 <ns1:Property name="IncomingMailServerSSL" value="false"/>
 <ns1:Property name="IncomingMailIDs" value="umstest@gmail.com"/>
 <ns1:Property name="IncomingUserIDs" value="umstest@gmail.com"/>
 <ns1:Property name="IncomingUserPasswords" value="welcome"/>
 <ns1:Property name="ProcessingChunkSize" value="100"/>
 <ns1:Property name="ImapAuthPlainDisable" value="false"/>
 <ns1:Property name="CNSMode" value="false"/>
 <ns1:Property name="SMTPAuthUseOAuth2" value="true"/>
 <ns1:Property name="ImapAuthUseOAuth2" value="true"/>
 <ns1:Property name="OAuth2AccessTokenSupplierFactory"
value="oracle.sdpinternal.messaging.oauth.ums.google.UMSGmailAccessTokenSuppli
erFactory"/>
 <ns1:Property name="GoogleOAuthClientID"
value="GoogleOAuthClientID.apps.googleusercontent.com"/>
 <ns1:Property name="GoogleOAuthClientSecret"
value="GoogleOAuthClientSecret"/>
 <ns1:Property name="GoogleOAuthRefreshToken"
value="GoogleOAuthRefreshToken"/>
 </ns1:Driver>
</ns1:MessagingConfiguration>

Creating OAuth Client ID

Perform the following steps to create the OAuth Client ID:

Chapter 4
Configuring User Messaging Service Drivers

4-17

1. Open Google Cloud Console using the following URL:

https://console.developers.google.com/

2. Enter your Gmail account credentials.

You can create a project or use any of the existing projects.

3. Select the newly created project from the Dashboard option.

4. Select Credentials option.

5. Click Create Credentials and select OAuth client ID.

6. Configure the OAuth consent screen when prompted as follows:

a. Under User Type, select External.

b. Click Create.

c. In the Edit app registration page, provide details in the following fields:

• App name

• User support email

• Developer contact information

You can skip the other fields as they are optional.

7. In the Create OAuth client ID page, select Desktop app from the Application type drop-
down list.

8. In the Name field, enter My UMS OAuth Client1.

9. Click Create.

The OAuth client created dialog box appears.

10. Copy Your Client ID and Your Client Secret from the dialog box.

11. Click OK.

The Your Client ID and Your Client Secret details are also visible in the OAuth 2.0 Client
IDs table in the Credentials section and can also be copied from here when required.

Generating Tokens

Perform the following steps to generate access and refresh tokens:

1. Download oauth2.py python script from GitHub.

https://github.com/google/gmail-oauth2-tools/blob/master/python/oauth2.py

2. Run the script with the following four parameters:

--user=<your UMS OAuth gmail id>
--client_id=<your client id>
--client_secret=<your client secret>
--generate_oauth2_token

Note:

Ensure you follow all the instructions and authorize the app when prompted.

Chapter 4
Configuring User Messaging Service Drivers

4-18

https://console.developers.google.com/
https://github.com/google/gmail-oauth2-tools/blob/master/python/oauth2.py

3. After you receive the verification code, enter the details in the python script to get the
refresh token and access token.

Verifying Tokens
You must verify the validity of the refresh token. You must send a POST request to Google
OAuth token generation URL to generate a new access token. The verification is complete
once you receive the access token. You must set the same refresh token value in
usermessagingconfig.xml.

You must send a POST request using curl or POSTMAN or any suitable client to the URL
given below:

URL

https://oauth2.googleapis.com/token

Parameters

The following is a list of the POST request parameters.

client_id: <your client id>
client_secret: <your client secret>
refresh_token: <refresh token value>
grant_type: refresh_token

Curl Command

The following example shows how to verify the validity of the refresh token using curl:

curl --location --request POST 'https://oauth2.googleapis.com/token' \
 --header 'Content-Type: application/x-www-form-
urlencoded' \
 --data-urlencode 'client_id=734918285672-
hij60r3464hd4gt8ejt9vbpgh11ndhj2.apps.googleusercontent.com' \
 --data-urlencode
'client_secret=t9JYc9QcwLQzZTI4BEkfW4-M' \
 --data-urlencode
'refresh_token=1//0guaq1jSMUQO8CgYIARAAGBASNwF-
L9IrFMCFjCIVtYLCR73Dyh84adQDA8fBouxSP8du9Zje7Z9VkE3wV2mJ3oNUzSVDx-vNFjc' \
 --data-urlencode 'grant_type=refresh_token'

Response

The following example shows the details of the access token in the Response body:

{
 "access_token": "ya29.a0ARrdaM9ToRMTmg6ghpP3GboRg3JrtDN-
dbqEUAq0PjhyKauR4_olpHiMK2OdR-sHm45C6wmrNkJ-LubZlgd7sxFKaiP65kt3migGJcjAK-
WwbbXkxitr2igqzD441kP2OB1M-BVEyR9RU-uUjELEnOmdhx-kYOk",
 "expires_in": 3599,
 "scope": "https://mail.google.com/",
 "token_type": "Bearer"
}

Chapter 4
Configuring User Messaging Service Drivers

4-19

Configuring SendAs
For information about how to configure SendAs feature after the OAuth integration, see How to
Send Mail on Behalf of Another Person in Google Mail.

Enabling OAuth for Microsoft 365 Accounts

UMS provides OAuth 2.0 based authentication support in the following two approaches to
connect Microsoft IMAP and SMTP:

• Authorization Code Flow - UMS is configured using O365OAuthClientID,
O365OAuthTenantID, O365OAuthRefreshToken, and O365OAuthRefreshTokenScope tokens.
UMS internally generates "Access token" which is used to connect the IMAP and SMTP for
both inbound and outbound emails.

• Client Credentials Flow - UMS is configured using O365OAuthClientID,
O365OAuthTenantID, O365OAuthClientSecret, and O365OAuthClientSecretScope tokens.
UMS internally generates "Access token" which is used to connect the IMAP and SMTP for
both inbound and outbound emails.

• Prerequisites

• Updating Configuration Properties

• Generating Tokens Using Authorization Code Flow

• Generating Tokens Using Client Credentials Flow

• Enabling SMTP AUTH

• Configuring SendAsDenied

• Configuring Multiple Inbound Email IDs

Prerequisites
You must perform the following prerequisite tasks:

1. Ensure you have a valid Gmail or Microsoft email account.

2. Install Python.

3. Obtain the following certificate to create trusted connections with MS hosts while using
WebLogic in secured mode:
DigiCertSHA2SecureServerCA-2.crt

Updating Configuration Properties
You must update the usermessagingconfig.xml file with configuration properties.

Table 4-10 Configuration Properties

Property Name Value Other Details

IncomingMailServer outlook.office365.com MS IMAP server

IncomingMailServerPort 993 MS server’s IMAP port

IncomingMailServerSSL False Constant value

OutgoingMailServer smtp.office365.com MS SMTP server

OutgoingMailServerPort 587 SMTP server’s port

OAuth2AccessTokenSupplierFact
ory

oracle.sdpinternal.messaging.
oauth.ums.ms.UMSO365Access
TokenSupplierFactory

Constant value. You must set this
value when you use MS O365
mail ID.

Chapter 4
Configuring User Messaging Service Drivers

4-20

https://support.sou.edu/kb/articles/how-to-send-mail-on-behalf-of-another-person-in-google-mail
https://support.sou.edu/kb/articles/how-to-send-mail-on-behalf-of-another-person-in-google-mail
http://cacerts.digicert.com/DigiCertSHA2SecureServerCA-2.crt

Table 4-10 (Cont.) Configuration Properties

Property Name Value Other Details

O365OAuthClientID <Cliend id (UUID format)> For more information about how
to get the value, see Initiation an
App Registration section.

O365OAuthTenantID <Tenant id (UUID format)> For more information about how
to get the value, see Initiation an
App Registration section.

O365OAuthRefreshToken Encoded and valid refresh token For more information about how
to get the value, see Generating
Tokens section.

Example 4-3 Configuration Properties

 <ns1:Property name="IncomingMailServer" value="outlook.office365.com"/>
 <ns1:Property name="IncomingMailServerPort" value="993"/>
 <ns1:Property name="IncomingMailServerSSL" value="false"/>
 <ns1:Property name="OutgoingMailServer" value="smtp.office365.com"/>
 <ns1:Property name="OutgoingMailServerPort" value="587"/>
 <ns1:Property name="OAuth2AccessTokenSupplierFactory"
value="oracle.sdpinternal.messaging.oauth.ums.ms.UMSO365AccessTokenSupplierFac
tory"/>
 <ns1:Property name="O365OAuthClientID" value="O365OAuthClientID"/>
 <ns1:Property name="O365OAuthTenantID" value="O365OAuthTenantID"/>
 <ns1:Property name="O365OAuthRefreshToken"
value="O365OAuthRefreshToken"/>

Sample UMS Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<ns1:MessagingConfiguration xmlns:ns0="http://www.oracle.com/ucs/messaging/
configtemplate" xmlns:ns1="http://www.oracle.com/ucs/messaging/config"
version="12.2.1.3.0">
 <ns1:Driver name="Test1" type="email" server="AdminServer" enabled="true">
 <ns1:Property name="SupportedDeliveryTypes" value="EMAIL"/>
 <ns1:Property name="SupportedContentTypes" value="*"/>
 <ns1:Property name="Capability" value="BOTH"/>
 <ns1:Property name="Cost" value=""/>
 <ns1:Property name="Speed" value=""/>
 <ns1:Property name="SupportedCarriers" value=""/>
 <ns1:Property name="SupportedProtocols" value="SMTP"/>
 <ns1:Property name="SupportsCancel" value="false"/>
 <ns1:Property name="SupportsReplace" value="false"/>
 <ns1:Property name="SupportsStatusPolling" value="false"/>
 <ns1:Property name="SupportsTracking" value="false"/>
 <ns1:Property name="SupportedStatusTypes"
value="DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE,
USER_REPLY_ACKNOWLEDGEMENT_SUCCESS, USER_REPLY_ACKNOWLEDGEMENT_FAILURE"/>
 <ns1:Property name="SenderAddresses" value=""/>
 <ns1:Property name="SupportedApplicationNames" value=""/>

Chapter 4
Configuring User Messaging Service Drivers

4-21

 <ns1:Property name="DefaultSenderAddress" value=""/>
 <ns1:Property name="SendingQueuesInfo" value="OraSDPM/
QueueConnectionFactory:OraSDPM/Queues/OraSDPMDriverDefSndQ1"/>
 <ns1:Property name="MailAccessProtocol" value="IMAP"/>
 <ns1:Property name="AutoDelete" value="false"/>
 <ns1:Property name="Debug" value="true"/>
 <ns1:Property name="CheckMailFreq" value="30"/>
 <ns1:Property name="DisconnectAfterPoll" value="false"/>
 <ns1:Property name="ReceiveFolder" value="INBOX"/>
 <ns1:Property name="OutgoingMailServer" value="smtp.office365.com"/>
 <ns1:Property name="OutgoingMailServerPort" value="587"/>
 <ns1:Property name="OutgoingMailServerSecurity" value="None"/>
 <ns1:Property name="OutgoingDefaultFromAddr" value=""/>
 <ns1:Property name="OutgoingUsername"
value="umstest@myumsoauth.onmicrosoft.com"/>
 <ns1:Property name="OutgoingPassword" value=""/>
 <ns1:Property name="IncomingMailServer" value="outlook.office365.com"/>
 <ns1:Property name="IncomingMailServerPort" value="993"/>
 <ns1:Property name="IncomingMailServerSSL" value="false"/>
 <ns1:Property name="IncomingMailIDs"
value="umstest@myumsoauth.onmicrosoft.com"/>
 <ns1:Property name="IncomingUserIDs"
value="umstest@myumsoauth.onmicrosoft.com"/>
 <ns1:Property name="IncomingUserPasswords" value=""/>
 <ns1:Property name="ProcessingChunkSize" value="100"/>
 <ns1:Property name="ImapAuthPlainDisable" value="false"/>
 <ns1:Property name="CNSMode" value="false"/>
 <ns1:Property name="SMTPAuthUseOAuth2" value="true"/>
 <ns1:Property name="ImapAuthUseOAuth2" value="true"/>
 <ns1:Property name="OAuth2AccessTokenSupplierFactory"
value="oracle.sdpinternal.messaging.oauth.ums.ms.UMSO365AccessTokenSupplierFac
tory"/>
 <ns1:Property name="O365OAuthClientID" value="O365OAuthClientID"/>
 <ns1:Property name="O365OAuthTenantID" value="O365OAuthTenantID"/>
 <ns1:Property name="O365OAuthRefreshTokenScope" value="https://
graph.microsoft.com/IMAP.AccessAsUser.All https://graph.microsoft.com/
SMTP.Send"/>
 <ns1:Property name="O365OAuthRefreshToken"
value="O365OAuthRefreshToken"/>
 </ns1:Driver>
</ns1:MessagingConfiguration>

Generating Tokens Using Authorization Code Flow
This section includes the following topics:

• Initiating an App Registration

• Generating Tokens

• Verifying Tokens

Initiating an App Registration

1. Log into Microsoft Azure using the following URL:

https://portal.azure.com/

2. Enter your MS O365 account credentials.

Chapter 4
Configuring User Messaging Service Drivers

4-22

3. Click the hamburger menu on top.

4. Navigate to Azure Active Directory.

Creating Tenant

5. Click Create a Tenant.

Note:

You must create a tenant if no tenant is present in your list.

6. In the Configuration page, provide details in the following fields:

• Organization name

• Initial domain name

• Country/Region

7. Click Review + Create.

8. In the Azure Active Directory page, select App registrations from the left side navigation
menu.

9. Click New registration.

10. In the Register an application page, provide details in the Name field.

11. Under Supported account types, select Accounts in this organizational directory only
(myumsoauth only - Single tenant).

12. Click Register.

13. In the left side navigation menu, select Authentication.

14. Click Add a platform.

15. Under Configure platforms, select Mobile and desktop applications.

16. In Configure Desktop + devices page, select https://login.microsoftonline.com/
common/oauth2/nativeclient under Redirect URIs.

Defining API Permissions

17. In the left side navigation menu, select API permissions.

18. Click Add a permission.

19. In Request API permission page, select Delegated permissions.

20. In Select permissions field, enter the following:

• IMAP.AccessAsUser.All

• SMTP.Send

21. Select IMAP.AccessAsUser.All and SMTP.Send listed under Permission.

Generating Client Secret

22. In the left side navigation menu, select Certificates & Secrets.

23. Click New client secret.

24. In the Add a client secret, provide details in the following fields:

• Description

• Expires

Chapter 4
Configuring User Messaging Service Drivers

4-23

25. Click Add.

Generating Tokens

Perform the following steps to generate access and refresh tokens:

1. Open Microsoft URL with the following details:

https://login.microsoftonline.com/<your tenant id>/ oauth2/v2.0/authorize?client_id=<your
client id>&scope=IMAP.AccessAsUser.All
SMTP.Send&response_type=code&redirect_uri=https://login.microsoftonline.com/common/
oauth2/nativeclient

Example:

https://login.microsoftonline.com/887c9fe4-c2e4-4b73-96e7-3f034cde3332/oauth2/v2.0/
authorize?client_id=ce347d51-92a8-47ec-85a8-
b71a903affc4&scope=IMAP.AccessAsUser.All
SMTP.Send&response_type=code&redirect_uri=https://login.microsoftonline.com/common/
oauth2/nativeclient

2. Enter your MSO 365 account credentials when prompted.

3. Select Consent on behalf of your organisation and click Accept.

You will be redirected to a URL with the following details:

https://login.microsoftonline.com/common/oauth2/nativeclient?code=<code>&
session_state=<session state>

Example

https://login.microsoftonline.com/common/oauth2/nativeclient?
code=0.AVYA5J98iOTCc0uW5z8DTN4zMlF9NM6okuxHhai3GpA6_8RWAM8.AQABAAIA
AAD--DLA3VO7QrddgJg7WevrBzhwQ-
VnAhparfeQA3VEDSXbYwDZ87LvKWkmPUWNZZOTOSa1Ja2rJOuizFnqqnDfFWj4Uwry
PjBNMeIAeHAgJ_RzhZTPCepmlcV_q9-93V6n0ASfjPbKwzN7A9XGRsZ8HJSJ-
vMwGOAZvG3O8ywkMj6m_kOYSkCHEaiRMhSJRrIokpL0b70STHBxeaTXM4u71Mv0C3z
-
PdJqa4Rqwoboo77CF7hhLMHhtil9tJxSlA6Gvh6JVj0qXH27WvFQO7ZIUqrJZrDae2uCTVw
yo70hJJ41trZsm6px8diWUf_zgnxuHAt4YCHNmj5TO-
laj-02CKsHWpgzDSk7dduhl9KPnYerxLeE1T8EXjodG289sbsoz939yZe-mMbjyKOIzM-
eM7B_WUrpt2zFKYQne0wETbi_o2RAxieMHmV-
w2TFv54QeGAyXZ7ECkZuiyVuPPIaYnSRrV67Ps_Rj4LfcJJI2kj3QaRCGAvnUJRoJUb-0m
2Bv23DtqPpn0o6tRPSUxiuLOHSWpxLhK7IW5nSfyeRiwzTC9-4YUpAfqf4N0u2yHMEAqrb
TKOocJKm7KkadhHb1jyJ_rUYJD-0qHugqEtF0aqFvmvEDB-
pOAsPXbtO6rycIjexEZgs26mSKeKv65yZ2lBLtN1XmUXa3Rvoec_GejvYwUeFINICkRa1N
CrxMukgAA&session_state=fb6c0bf9-c9ea-43c0-ab07-7523d99e491c

4. Copy the code parameter value from the above URL.

5. Send a POST request with required parameters as described below:

URL

https://login.microsoftonline.com/<your tenant id>/oauth2/v2.0/token

Parameters

The following is a list of the POST request parameters.

client_id: <your client application id>
scope: IMAP.AccessAsUser.All SMTP.Send offline_access
grant_type: authorization_code

Chapter 4
Configuring User Messaging Service Drivers

4-24

code: The code you got from Step #2
redirect_uri: https://login.microsoftonline.com/common/oauth2/nativeclient

Curl Command

The following example shows how to generate access and refresh tokens using curl:

curl --location --request POST 'https://login.microsoftonline.com/887c9fe4-
c2e4-4b73-96e7-3f034cde3332/oauth2/v2.0/token' \

 --header 'Content-Type: application/x-www-form-
urlencoded' \
 --data-urlencode 'client_id=ce347d51-92a8-47ec-
85a8-b71a903affc4' \
 --data-urlencode 'scope=IMAP.AccessAsUser.All
SMTP.Send offline_access' \
 --data-urlencode 'grant_type=authorization_code' \

 --data-urlencode
'code=0.AVYA5J98iOTCc0uW5z8DTN4zMlF9NM6okuxHhai3GpA6_8RWAM8.AQABAAIAAAD--
DLA3VO7QrddgJg7WevrBzhwQ-
VnAhparfeQA3VEDSXbYwDZ87LvKWkmPUWNZZOTOSa1Ja2rJOuizFnqqnDfFWj4UwryPjBNMeIAe
HAgJ_RzhZTPCepmlcV_q9-93V6n0ASfjPbKwzN7A9XGRsZ8HJSJ-
vMwGOAZvG3O8ywkMj6m_kOYSkCHEaiRMhSJRrIokpL0b70STHBxeaTXM4u71Mv0C3z-
PdJqa4Rqwoboo77CF7hhLMHhtil9tJxSlA6Gvh6JVj0qXH27WvFQO7ZIUqrJZrDae2uCTVwyo70
hJJ41trZsm6px8diWUf_zgnxuHAt4YCHNmj5TO-laj-
02CKsHWpgzDSk7dduhl9KPnYerxLeE1T8EXjodG289sbsoz939yZe-mMbjyKOIzM-
eM7B_WUrpt2zFKYQne0wETbi_o2RAxieMHmV-
w2TFv54QeGAyXZ7ECkZuiyVuPPIaYnSRrV67Ps_Rj4LfcJJI2kj3QaRCGAvnUJRoJUb-
0m2Bv23DtqPpn0o6tRPSUxiuLOHSWpxLhK7IW5nSfyeRiwzTC9-
4YUpAfqf4N0u2yHMEAqrbTKOocJKm7KkadhHb1jyJ_rUYJD-0qHugqEtF0aqFvmvEDB-
pOAsPXbtO6rycIjexEZgs26mSKeKv65yZ2lBLtN1XmUXa3Rvoec_GejvYwUeFINICkRa1NCrxMu
kgAA' \
 --data-urlencode
'redirect_uri=https://login.microsoftonline.com/common/oauth2/nativeclient'

The access and refresh token details will be in the response.

Verifying Tokens
You must verify the validity of the refresh token.You must send a POST request to MS OAuth
token generation URL to generate a new access token. The verification is complete once you
receive the access token.You must set the same refresh token value in
usermessagingconfig.xml.

You must send a POST request using curl or POSTMAN or any suitable client to the URL
given below:

URL

https://login.microsoftonline.com/<your tenant id>/oauth2/v2.0/token

Chapter 4
Configuring User Messaging Service Drivers

4-25

Parameters

The following is a list of the POST request parameters.

client_id: <your client application id>
scope: IMAP.AccessAsUser.All SMTP.Send offline_access
grant_type: refresh_token
refresh_token: The refresh token that you just obtained
redirect_uri: https://login.microsoftonline.com/common/oauth2/nativeclient

Curl Command

The following example shows how to verify the validity of the refresh token using curl:

curl --location --request POST 'https://login.microsoftonline.com/887c9fe4-
c2e4-
4b73-96e7-3f034cde3332/oauth2/v2.0/token' \
 --header 'Content-Type: application/x-www-form-
urlencoded'
\

 --data-urlencode 'client_id=eba0d084-3a6b-4520-83b2-
52ed27a15b7b' \

 --data-urlencode 'scope=https://outlook.office.com/
IMAP.AccessAsUser.All
 https://outlook.office.com/SMTP.Send offline_access'
\
 --data-urlencode 'grant_type=refresh_token' \
 --data-urlencode
'refresh_token=0.AVYA5J98iOTCc0uW5z8DTN4zMoTQoOtrOiBFg7JS7SehW3tWAM8.AgABAAEAA
AD--
DLA3VO7QrddgJg7WevrAgDs_wQA9P-m1OnkkabmlTMmSH_G5cOl_6_1Cr-
_NoAjwozM1QItkpuWGtxkLiSmAm-o5jg5zTHhFdcxwknuDwCtQ9bNxT32a8xGmeei-
fo5GycV7V6QqApR0jcZqhoGQx1168WeCHBDk7HcTR9RZagoPIgpYCgArdKwSypBOU5s37s2gJG3e9m
_flC9
GK0VxycmnQHWmCnFr91-QYeQNSsWA-nMQmhpkmFKBBlIm6BhWz5XCJA1m0J7-
ZukuJp_D14OsFhwzzNszH-
wAd9_XEBq62NjTeADkvZ28-
2Ppqiky4hlPi0Go4JtpPh0zsDcOIUJrdJPTIY8GlEy2yJOslksctz4gh_Dg1eq35m_s1EeV8HVPOd3
vXZcu
unHWKgrfPIZE7MslS_iu9xeslBcGvEpJNtpC4kdB8uTHLo2g8U8W7nZgyjrc8r09yt0bv27eVWBIRc
UKuJe
yAs_mOIUij6eYpwMEAbuiPRd6efA9T-
arwB5iDbOrAfHt1FCnpJNXP166A22KcSx83CmLBrIsJu8wOpxfitj27fKo0sIOeE5e06GvDaZMLI6r
02kRW
xJuYdUVSnjosuryREwqdSio735YhM9K0wINMPm6yJTmBL85SuZONN5Nd8DgJCNDfCK_1FGyXeqQvy5
TjHRd
W3IBy0SjjAj2VPqtQ2IyuNXrpHxFWsgyqSpESrwkE6LZp6cXTc5DxNz6arilBojlOTKwX9q4KRnnyz
cSBX7
pgyziNWACxMgIK4_s-l7WJyjk-oNiwZMGnJgDNYaeLdffvIqtly6vmI' \

Chapter 4
Configuring User Messaging Service Drivers

4-26

 --data-urlencode
'redirect_uri=https://login.microsoftonline.com/common/oauth2/nativeclient' \

Response

The following example shows the details of the access and refresh tokens in the Response
body:

{
 "token_type": "Bearer",
 "scope": "EWS.AccessAsUser.All IMAP.AccessAsUser.All Mail.ReadWrite.All
SMTP.Send User.Read profile openid email",
 "expires_in": 5397,
 "ext_expires_in": 5397,
 "access_token":

"eyJ0eXAiOiJKV1QiLCJub25jZSI6IkpieWVRMkVFbXFMQklhWmk3cXhBdmhxX2I2d3RUTzBpWWlNR
nI1Mz

RzTGMiLCJhbGciOiJSUzI1NiIsIng1dCI6ImpTMVhvMU9XRGpfNTJ2YndHTmd2UU8yVnpNYyIsImtp
ZCI6I

mpTMVhvMU9XRGpfNTJ2YndHTmd2UU8yVnpNYyJ9.eyJhdWQiOiIwMDAwMDAwMy0wMDAwLTAwMDAtYz
AwMC0

wMDAwMDAwMDAwMDAiLCJpc3MiOiJodHRwczovL3N0cy53aW5kb3dzLm5ldC84ODdjOWZlNC1jMmU0L
TRiNz

MtOTZlNy0zZjAzNGNkZTMzMzIvIiwiaWF0IjoxNjU0NzQwMTUwLCJuYmYiOjE2NTQ3NDAxNTAsImV4
cCI6M

TY1NDc0NTg0OCwiYWNjdCI6MCwiYWNyIjoiMSIsImFpbyI6IkUyWmdZUGhXMVpiR1kvYkkySVF6MnM
vaTdt

WlBEL1h5ODF5aW5KZCt4Q3Y4TDJUOTR3d0EiLCJhbXIiOlsicHdkIl0sImFwcF9kaXNwbGF5bmFtZS
I6IlR

lc3QgT0F1dGgiLCJhcHBpZCI6ImViYTBkMDg0LTNhNmItNDUyMC04M2IyLTUyZWQyN2ExNWI3YiIsI
mFwcG

lkYWNyIjoiMCIsImZhbWlseV9uYW1lIjoiQmFidSIsImdpdmVuX25hbWUiOiJWZW5rYXRlc2giLCJp
ZHR5c

CI6InVzZXIiLCJpcGFkZHIiOiIxMjIuMTY3LjIyNi4yNiIsIm5hbWUiOiJWZW5rYXRlc2ggQmFidSI
sIm9p

ZCI6IjAwYWM5M2JlLTY1MGQtNGRhNy1iNDI2LTE3YzJiODI0ZGI5MiIsInBsYXRmIjoiMyIsInB1aW
QiOiI

xMDAzMjAwMEU1NTE2MThGIiwicHdkX2V4cCI6IjAiLCJwd2RfdXJsIjoiaHR0cHM6Ly9wb3J0YWwub
Wljcm

9zb2Z0b25saW5lLmNvbS9DaGFuZ2VQYXNzd29yZC5hc3B4IiwicmgiOiIwLkFWWUE1Sjk4aU9UQ2Mw
dVc1e

Chapter 4
Configuring User Messaging Service Drivers

4-27

jhEVE40ek1nTUFBQUFBQUFBQXdBQUFBQUFBQUFCV0FNOC4iLCJzY3AiOiJFV1MuQWNjZXNzQXNVc2V
yLkFs

bCBJTUFQLkFjY2Vzc0FzVXNlci5BbGwgTWFpbC5SZWFkV3JpdGUuQWxsIFNNVFAuU2VuZCBVc2VyLl
JlYWQ

gcHJvZmlsZSBvcGVuaWQgZW1haWwiLCJzaWduaW5fc3RhdGUiOlsia21zaSJdLCJzdWIiOiJGSUdjc
nNzQU

ZTYnNTdW9VNy1KdlFySDlkRzNxbkpLcXpuMnV0dU9VdlpFIiwidGVuYW50X3JlZ2lvbl9zY29wZSI6
IkFTI

iwidGlkIjoiODg3YzlmZTQtYzJlNC00YjczLTk2ZTctM2YwMzRjZGUzMzMyIiwidW5pcXVlX25hbWU
iOiJ2

ZW5rYXRiYWJ1a3JAbXl1bXNvYXV0aC5vbm1pY3Jvc29mdC5jb20iLCJ1cG4iOiJ2ZW5rYXRiYWJ1a3
JAbXl

1bXNvYXV0aC5vbm1pY3Jvc29mdC5jb20iLCJ1dGkiOiJVUG9wS2xWLXVVT1B2X3FWVTB0RUFBIiwid
mVyIj

oiMS4wIiwid2lkcyI6WyI2MmU5MDM5NC02OWY1LTQyMzctOTE5MC0wMTIxNzcxNDVlMTAiLCJiNzlm
YmY0Z

C0zZWY5LTQ2ODktODE0My03NmIxOTRlODU1MDkiXSwieG1zX3N0Ijp7InN1YiI6IlVZWTFXS2hQaGl
RUDlf

bkdNcXJDcU8zVmVfZC1tZzlReVhZSEQ2alNOb1EifSwieG1zX3RjZHQiOjE2MDA2Njk1Mjh9.DT9fH
a8_IF
 8bZt6sAUt43ep0slEEKh3ZslSHvLee6cIgbP4ACns_XK6-Xv-f1zqsHHj-2uPU3pLwP0_-
 0sOqILiv4dBEDKqUElzb54EqHQix2-yXqomKCZBspF245kpDX-
 dSbu3hJ3lh_qSTPpTG7jAXvWJdEyST1o1X0mTCt1pn1HAu2GxWhWFf2daVVcmlfuLtjyW82T-
 xKY5NlZvlzx5dxn8-M4Txkg-

GInwYtcRgrsxHG9HyIY1dNfjoRv5k4uU1tRzQeTrNOa62E6hk26LIdZi9zGgrAV0KVGDbsxnkrmKZy
-
 7JkvhGmczTg1PCnpbCdmFnNy1UGf3SjmEOKQ",

 "refresh_token":
 "0.AVYA5J98iOTCc0uW5z8DTN4zMoTQoOtrOiBFg7JS7SehW3tWAM8.AgABAAEAAAD--
 DLA3VO7QrddgJg7WevrAgDs_wQA9P-m1OnkkabmlTMmSH_G5cOl_6_1Cr-
 _NoAjwozM1QItkpuWGtxkLiSmAm-o5jg5zTHhFdcxwknuDwCtQ9bNxT32a8xGmeei-

fo5GycV7V6QqApR0jcZqhoGQx1168WeCHBDk7HcTR9RZagoPIgpYCgArdKwSypBOU5s37s2gJG3e9m
_flC9
 GK0VxycmnQHWmCnFr91-QYeQNSsWA-nMQmhpkmFKBBlIm6BhWz5XCJA1m0J7-
ZukuJp_D14OsFhwzzNszH-
 wAd9_XEBq62NjTeADkvZ28-

2Ppqiky4hlPi0Go4JtpPh0zsDcOIUJrdJPTIY8GlEy2yJOslksctz4gh_Dg1eq35m_s1EeV8HVPOd3
vXZcu

unHWKgrfPIZE7MslS_iu9xeslBcGvEpJNtpC4kdB8uTHLo2g8U8W7nZgyjrc8r09yt0bv27eVWBIRc
UKuJe
 yAs_mOIUij6eYpwMEAbuiPRd6efA9T-

Chapter 4
Configuring User Messaging Service Drivers

4-28

arwB5iDbOrAfHt1FCnpJNXP166A22KcSx83CmLBrIsJu8wOpxfitj27fKo0sIOeE5e06GvDaZMLI6r
02kRW

xJuYdUVSnjosuryREwqdSio735YhM9K0wINMPm6yJTmBL85SuZONN5Nd8DgJCNDfCK_1FGyXeqQvy5
TjHRd

W3IBy0SjjAj2VPqtQ2IyuNXrpHxFWsgyqSpESrwkE6LZp6cXTc5DxNz6arilBojlOTKwX9q4KRnnyz
cSBX7
 pgyziNWACxMgIK4_s-l7WJyjk-oNiwZMGnJgDNYaeLdffvIqtly6vmI"
}

Generating Tokens Using Client Credentials Flow

If O365OAuthClientSecret and O365OAuthClientSecretScope are provided in
usermessagingconfig.xml file, the UMS uses these two values to generate the access
token internally.

Perform the following steps to generate access tokens using O365OAuthClientSecret and
O365OAuthClientSecretScope values:

1. Create a new account and configure it.

For more information about configuring the account, see Updating UMS Configuration File.

2. Add the following new permissions:

• IMAP.AccessAsApp

• POP.AccessAsApp

• SMTP.SendAsApp

3. Create a new client secret and copy it.

Note:

The new client secret is visible only once (once you leave the page the secret will
not be visible) so you must copy the new secret value and save it.

4. Connect PowerShell and add mailbox permissions as described below:

a. Install and Import ExchangeOnlineManagement

Run the following two commands:

Install-Module -Name ExchangeOnlineManagement -allowprerelease
Import-module ExchangeOnlineManagement

Note:

If you are connecting for the first time, you must run the two commands.

b. Connect Exchange Online

Run the following command:

Connect-ExchangeOnline -Organization <Tenant id>
Example:

Connect-ExchangeOnline -Organization 887c9fe4-c2e4-4b73-96e7-3f034cde3332

Chapter 4
Configuring User Messaging Service Drivers

4-29

Note:

The Azure portal login window appears. You must log into the portal and
close it.

c. Add Mailbox Permission

Run the following commands:

New-ServicePrincipal -AppId <> -ObjectId <>
Example:

New-ServicePrincipal -AppId eba0d084-3a6b-4520-83b2-52ed27a15b7b -ObjectId
31cb91f7-84fd-40e6-bb30-7b41371b95a7

Add-MailboxPermission -Identity <user_mail_id> -User <ObjectId> -
AccessRights FullAccess
Example:

Add-MailboxPermission -Identity venkatbabukr@myumsoauth.onmicrosoft.com -
User 31cb91f7-84fd-40e6-bb30-7b41371b95a7 -AccessRights FullAccess

5. Enter client secret in the usermessagingcofnig.xml file.

6. Restart the SOA servers.

Note:

If the O365OAuthClientSecret and O365OAuthClientSecretScope values are not
provided then the system uses refresh token to generate access token.

Enabling SMTP AUTH

The Microsoft 365 admin center or Exchange Online PowerShell provides pre-mailbox setting
to enable and disable SMTP AUTH.

Perform the following steps to enable SMTP AUTH on specific mailboxes:

1. Open the Microsoft 365 admin center using the following URL:

https://admin.microsoft.com/

2. Enter your domain admin email ID and password.

3. In the left side navigation menu, click Users.

4. Select Active Users.

5. Click your user display name.

A flyout appears with user details.

6. Select Mail.

7. Under Email apps, select Manage email apps.

8. In Manage email apps page, select the option Authenticated SMTP.

9. Click Save changes.

For more information, see https://docs.microsoft.com/en-us/exchange/clients-and-mobile-
in-exchange-online/authenticated-client-smtp-submission#enable-smtp-auth-for-specific-
mailboxes.

Chapter 4
Configuring User Messaging Service Drivers

4-30

https://admin.microsoft.com/
https://docs.microsoft.com/en-us/exchange/clients-and-mobile-in-exchange-online/authenticated-client-smtp-submission#enable-smtp-auth-for-specific-mailboxes
https://docs.microsoft.com/en-us/exchange/clients-and-mobile-in-exchange-online/authenticated-client-smtp-submission#enable-smtp-auth-for-specific-mailboxes
https://docs.microsoft.com/en-us/exchange/clients-and-mobile-in-exchange-online/authenticated-client-smtp-submission#enable-smtp-auth-for-specific-mailboxes

Configuring SendAsDenied

You must configure SendAsDenied in the Microsoft admin portal.

Perform the following steps to configure SendAsDenied in the Microsoft admin portal:

1. Open the Microsoft 365 admin center using the following URL:

https://admin.microsoft.com/

2. Enter your domain admin email ID and password.

3. In the left side navigation menu, click Users.

4. Select Active Users.

5. Click your user display name to view the user details.

6. Select Mail.

7. Under Mailbox Permissions, click Send on behalf of permissions.

8. Select Add permission.

9. Select the OAuth user email.

10. Restart the SOA service.

You must wait for one hour to get the cache updated on the Microsoft side if it does not
work instantly.

Configuring Multiple Inbound Email IDs

You can configure multiple inbound email IDs and give permission to the OAuth user.

Perform the following steps to configure an inbound email ID:

1. Open the Microsoft 365 admin center using the following URL:

https://admin.microsoft.com/

2. Enter your domain admin email ID and password.

3. In the left side navigation menu, click Users.

4. Select Active Users.

5. Select the user that needs to be configured for UMS inbound flow.

For example, inbounduser1@domain.com.

6. Select Mail.

7. Under Mailbox Permissions, click Send on behalf of permissions.

8. Select Add permission.

9. Select the user that needs to be configured as the OAuth is UMS email.

For example, oauthuser1@domain.com.

10. Click Add.

Note:

You must ensure no password is saved in usermessagingconfig.xml for
IncomingUserPasswords.

Chapter 4
Configuring User Messaging Service Drivers

4-31

https://admin.microsoft.com/
https://admin.microsoft.com/

Configuring the SMPP Driver
Short Message Peer-to-Peer (SMPP) is a popular GSM SMS protocols. UMS includes a
prebuilt implementation of the SMPP protocol as a driver that can send and receive short
messages. If the sending feature is enabled, the SMPP driver opens one TCP connection to
the Short Message Service Center (SMS-C) as a transmitter for sending messages. If the
driver's receiving feature is enabled, it opens another connection to the SMS-C as a receiver
for receiving messages. Only two TCP connections (both initiated by the driver) are needed for
all communication between the driver and the SMS-C.

Note:

The SMPP Driver implements version 3.4 of the SMPP protocol and only supports
connections to an SMS-C or an SMS gateway that supports this version.

• Common Properties

Common Properties
Table 4-11 lists common driver properties that are indicative of the capabilities of this driver for
use by the messaging engine when routing outbound messages. Some properties are set by
the driver developer and do not normally require modification, while others can be modified by
the administrator to change the routing behavior. For detailed description of these properties,
refer to Table 4-2. For the complete list of available values, see User Messaging Service Java
API Reference.

Table 4-11 Common SMPP Properties

Name Mandatory Default Value

InstanceName Yes SMPP-Driver

Capability Yes Both

SupportedDeliveryTypes Yes SMS

SupportedContentTypes Yes text/plain

SupportedStatusTypes No DELIVERY_TO_GATEWAY_SUCCESS,
DELIVERY_TO_GATEWAY_FAILURE

Cost No N/A

Speed No N/A

SupportedCarriers No N/A

Configuration Level Yes Server/Cluster

Supported Protocols No N/A

SenderAddresses No N/A

DefaultSenderAddress No N/A

Supported Application Names No Empty

• SMPP Custom Properties

Chapter 4
Configuring User Messaging Service Drivers

4-32

SMPP Custom Properties

Table 4-12 lists properties specific to this driver and generally associated with configuring
access to the remote gateway and certain protocol or channel-specific behavior.

Table 4-12 Custom SMPP Properties

Name Description Mandatory Default Value

SmsAccountId This value indicates the
addresses that the SMPP driver
is requesting messages for from
the server. The value is
specified as a UNIX Regular
Expression. For example, "555"
would specify a single address,
and "^123|^789" would indicate
all addresses starting with 123
or 789.

Yes N/A

SmsServerHost The name (or IP address) of the
SMS-C server.

Yes N/A

TransmitterSystemId The account ID that is used to
send messages.

Yes N/A

ReceiverSystemId The account ID that is used to
receive messages.

Yes N/A

TransmitterSystemTy
pe

The type of transmitter system.
The default is Logica.

Yes The default value is
Logica.

ReceiverSystemType The type of receiver system.
The default is Logica.

Yes The default value is
Logica.

TransmitterSystemPa
ssword

The password of the transmitter
system. This includes Type of
Password (choose from Indirect
Password/Create New User,
Indirect Password/Use Existing
User, and Use Cleartext
Password) and Password.

Yes N/A

ReceiverSystemPassw
ord

The password for the receiver
system. This includes Type of
Password (choose from Indirect
Password/Create New User,
Indirect Password/Use Existing
User, and Use Cleartext
Password) and Password.

Yes N/A

ServerTransmitterPo
rt

The TCP port number of the
transmitter server.

Yes N/A

ServerReceiverPort The TCP port number of the
receiver server.

Yes N/A

Chapter 4
Configuring User Messaging Service Drivers

4-33

Table 4-12 (Cont.) Custom SMPP Properties

Name Description Mandatory Default Value

DefaultEncoding Used for incoming messages. If
the SMS-C specifies the
encoding to SMSC Default
Alphabet, then this is the
encoding that SMPP driver will
assume.

Choose from the drop-down list
among the following: IA5, UCS2,
GSM_DEFAULT, ISO-8859-1

No IA5

PreferredEncoding Used for outgoing messages. If
set, the text will be encoded
according to the
PreferredEncoding parameter. If
the encoding fails (i.e. a
character cannot be encoded
using the specified encoder)
then the driver uses the 16-bit
encoding UCS2.

If not set, the driver will attempt
to derive an encoding from the
UMS Message Content-Type
header.

Choose from the drop-down list
among the following: IA5, UCS2,
GSM_DEFAULT, ISO-8859-1

No IA5

LocalSendingPort The local TCP port used by the
SMPP driver to send messages
to the SMS-C.

No N/A

LocalReceivingPort The local TCP port used by the
SMPP driver to receive
messages from the SMS-C.

No N/A

LocalAddress The hostname (or IP address) of
the server that hosts the SMPP
driver.

No N/A

WindowSize The window size for SMS. This
value must be a positive
number. Default is 1.

No 1

EnquireInterval The interval, in seconds, to send
an enquire message to the
SMS-C. The default is 30
seconds.

No 30

ThrottleDelay The delay, in seconds, between
throttles. The default is 30.

No 30

BindRetryDelay The minimum delay, in seconds,
between bind entry attempts.
Default is 30.

No 30

ResponseTimer Time lapse allowed between
SMPP request and response, in
seconds. The default is 30.

No 30

Chapter 4
Configuring User Messaging Service Drivers

4-34

Table 4-12 (Cont.) Custom SMPP Properties

Name Description Mandatory Default Value

RegisteredDeliveryM
ask

The registered delivery bit
mask. The default is 0xFF,
which does not change the
delivery flag value.

No 0xFF

RangeSetNull Set to true to set the address
range field of BIND_RECEIVER
to null. Set to false (the default
value) to set the address range
field to SmsSystemId. The
default is Disabled.

No Disabled

PriorityAllowed The highest priority the SMPP
Driver will set on a message to
the SMS-C. The UMS Message
priority set by the client
application is translated into
SMPP priority, but limited by
PriorityAllowed. The range is 0
(normal) to 3 (highest). The
default is 0.

No 0

BulkSending Set this value to enabled (the
default) to enable sending
messages in bulk to the SMS-C.

No. Enabled

PayloadSending If you enable this property, the
SMPP driver always uses the
message_payload parameter
that is defined in the SMPP
specification, while sending a
message to the SMS-C. The
default is Disabled.

No Disabled

SourceTon The type of number (TON) for
ESME address(es) served
through SMPP receiver session.
The default is 0.

No 0

SourceNpi The numbering plan indicator
(NPI) for ESME address(es)
served through the SMPP
receiver session. The default is
0.

No 0

DestinationTon The TON for destination. The
default is 0.

No 0

DestinationNpi The NPI for destination. The
default is 0.

No 0

MaxChunks The maximum SMS chunks for
a message. The default is -1 (no
maximum).

No -1 (no maximum)

ChunkSize The maximum size of each SMS
message chunk. Default is 160.

No 160

Chapter 4
Configuring User Messaging Service Drivers

4-35

Table 4-12 (Cont.) Custom SMPP Properties

Name Description Mandatory Default Value

LongMessageSending Supports sending long
messages by setting the
optional SMPP parameters
sar_msg_ref_num,
sar_total_segments and
sar_segment_seqnum for
fragmented messages. The
default value is Enabled.

No Enabled

DatagramMessageMode Supports datagram message
mode. The default is Disabled.

No Disabled

Optional Params Supports passing of additional
parameters (TLVs) along with
SMS.

No Empty

Configuring the XMPP Driver
The XMPP Driver provides unidirectional or bidirectional access from Oracle Fusion
Middleware to end users for real-time IM through the Extensible Messaging and Presence
Protocol (XMPP). This driver enables end users to receive alert notifications or interactively
chat with applications through their IM client of choice.

Perform the following tasks to configure the XMPP Driver.

Task 1: Setting Up Ejabberd

XMPP driver must be set up with Ejabberd which is an XMPP server (Jabber server), MQTT
broker, and SIP gateway built to create real time services such as massive chat and instant
communication.

For information about how to set up Ejabberd, see Installing ejabberd.

The admin account details that include SERVERNAME, USERNAME, and PASSWORD are
configured to set up the driver.

To disable the SSL, the configuration file for Ejabberd ejabberd.yml in /opt/ejabberd/
conf/ must be modified:

listen:
 -
 port: 5222
 ip: "::"
 module: ejabberd_c2s
 max_stanza_size: 262144
 shaper: c2s_shaper
 access: c2s
 starttls_required: false

Task 2: Configure XMPP Driver in UMS

If you use EM to configure the driver in UMS, you must create or update the driver properties.

Chapter 4
Configuring User Messaging Service Drivers

4-36

https://docs.ejabberd.im/admin/installation/#administration-account

Perform the following steps to update the Drivers Properties:

1. Log into EM.

2. Click EM, select User Messaging Service, click usermessagingdriver-xmpp, select
Driver Properties, and then click Create.

3. In the Driver Properties page, update the following fields:

Table 4-13 Driver Properties

Field Update

Name APPNAME

IM Server Host SERVERNAME

IM Server Port 5222

IM Server Username USERNAME@SERVERNAME

IM Server Password IM Server Password section.

Type of Password Use Cleartext Password.

Password Enter the password configured in Ejabberd.

Security Mode None

Enable SASL Authentication Disabled

If you are not using EM to configure the driver in UMS, add the XMPP driver configuration to
the configuration file as follows:

<ns1:Property name="IMServerHost" value="SERVERNAME"/>
<ns1:Property name="IMServerPort" value="5222"/>
<ns1:Property name="IMServerUsername" value="USERNAME@SERVERNAME"/>
<ns1:Property name="IMServerPassword" value="PASSWORD"/>
<ns1:Property name="SecurityMode" value="None"/>
<ns1:Property name="SASLAuthenticationEnabled" value="false"/>

Task 3: Validate and Test the Driver

You must validate the driver to ensure the configuration is correct. After validating, test the
driver using the Ejabberd supported clients such as Coccinella.

• Common Properties

Common Properties
Table 4-14 lists the common driver properties that are indicative of the capabilities of this driver
for use by the messaging engine when routing outbound messages. Some properties are set
by the driver developer and do not normally require modification, while others can be modified
by the administrator to change the routing behavior. For detailed description of these
properties, see Table 4-2. For the complete list of available values, see User Messaging
Service Java API Reference.

Table 4-14 Common XMPP Properties

Name Mandatory Default Value

InstanceName Yes usermessagingdriver-xmpp

Chapter 4
Configuring User Messaging Service Drivers

4-37

Table 4-14 (Cont.) Common XMPP Properties

Name Mandatory Default Value

Capability Yes SEND, RECEIVE

SupportedDeliveryTypes Yes IM

SupportedContentTypes Yes text/plain

SupportedStatusTypes No DELIVERY_TO_GATEWAY_SUCCESS,
DELIVERY_TO_GATEWAY_FAILURE

Cost No N/A

Speed No N/A

SupportedCarriers No N/A

Configuration Level Yes Server/Cluster

Supported Protocols No XMPP

Supported Application Names No Empty

Driver Type Yes User Messaging XMPP Driver

SenderAddresses No N/A

DefaultSenderAddress No N/A

• XMPP Custom Properties

XMPP Custom Properties

Table 4-15.lists the custom properties included in the XMPP Driver.

Table 4-15 Custom XMPP Properties

Name Description Mandatory Default Values

IM Server Host Jabber/XMPP server hostname. Yes

IM Server Port Corresponding Jabber/XMPP server
port.

Yes 5222

IM Server Username Enter Jabber/XMPP user name to log in.
You can also enter a complete Jabber ID
if its domain name is different from the
Jabber/XMPP server hostname.

Yes

IM Server Password Corresponding password for the
username.

No Indirect
Password,
Create New
User

SecurityMode Security mode to use when establishing
connection to the server. Available
options include the following:
• None (Security is disabled and only

un-encrypted connections are used)
• TLS (Security via TLS encryption is

used whenever it is available)
• SSL (Security via SSL encryption is

used)

No TLS

Chapter 4
Configuring User Messaging Service Drivers

4-38

Table 4-15 (Cont.) Custom XMPP Properties

Name Description Mandatory Default Values

Enable SASL
Authentication

Whether or not to use SASL
authentication when logging into the
server. If SASL authentication fails, then
the driver uses non-SASL
authentication.

No Enabled

Configuring the APNS Driver
The Apple Push Notification Service (APNS) driver is a UMS driver that communicates with the
APNS API server. The certificates that you get from Apple for your application needs to be
saved in the WLS server, in the OPSS subsystem. For more information on pre-requisites for
configuring the APNS driver, see Prerequisites for Configuring APNS Driver.

• Prerequisites for Configuring APNS Driver

• Common Properties

• APNS Custom Properties

Prerequisites for Configuring APNS Driver
To send push notification using the APNS driver, the driver needs access to the iOS
application-specific certificates. The certificates (public and private keys) are obtained from
Apple's developer portal.

Task 1: Installing a Trust Certificate from the Entrust

You must obtain the APNS keys (.p12) and certificate for the app from the mobile app team.
To carry out any development tasks, use the sandbox keys and certificate provided for UMS.

Task 2: Importing the Certificate in the Domain

Run the following command to extract the alias name for the certificate:

keytool -list -v -keystore ent1_ums_demo.p12 -storetype PKCS12
The certificates are packaged in a PKCS #12 file (file extension p12 or pfx). Before the
certificates can be imported into the Keystore service, the archive must be converted to a
JavaKeyStore file (file extension jks).

Run the following command to convert the archive using the keytool command (which is part
of the JDK):

keytool -importkeystore -destkeystore apns-prod-server-testapns-21112023.jks -
srckeystore ent1_ums_demo.p12 -srcstoretype PKCS12 -destalias apns-prod-server-
testapns-21112023 -deststorepass welcome1 -destkeypass welcome1 -alias
ent1_ums_demo
UMS comes with a predefined keystore called apns must be used for the imported certificates.

The following sample describes how the certificate can be imported into the Keystore service
using WSLT:

getOpssService(name='KeyStoreService').importKeyStore(appStripe='ums',
name='apns', password='welcome1', aliases='apns-prod-server-testapns-21112023',

Chapter 4
Configuring User Messaging Service Drivers

4-39

keypasswords='welcome1', type='JKS', permission=true, filepath="/scratch/
anegupta/keysncerts/apns-prod-server-testapns-21112023.jks")

Note:

The value aliases parameter (in the above command) must match both the alias
property in the APNS driver configuration and the keystore name.

If a different keystore than apns is used, then UMS must be granted additional permission
using the same appstripe value used to create the new keystore.

The UMS shared library oracle.sdp.client must be granted the
oracle.security.jps.service.keystore.KeyStoreAccessPermission permission using the
very same appstripe.

Run the following command to import the apns certificate to WebLogic’s configured keystore
(select the keystore configured in the environment):

keytool -importcert -keystore "..fmwhome12/wlserver/server/lib/DemoTrust.jks" -
storepass DemoTrustKeyStorePassPhrase -file apns.cer -alias "apns.cer"
Task 3: Update the New Alias in UMS DB in the Table driverproperties:

Updating driver properties in UMS can be done using MBean as described below:

MBean Name

oracle.ucs.messaging:Location=ESS_SOAServer_1,name=UserPrefsAdministration,type=S
DPMessagingRuntime

Note:

Any instance of SOA server can be used to invoke this MBean other than
ESS_SOAServer_1.

Operation Name

saveDriverProperties
Parameters

P1 - driverName

P2 - propertyName

P3 - propertyValue

For example, saveDriverProperties ("usermessagingdriver-apns-HCM", "Alias","apns-prod-
server-hcm-12122023").

Example

mBean =
ObjectName("oracle.ucs.messaging:Location=ESS_SOAServer_1,name=UserPrefsAdmini
stration,type=SDPMessagingRuntime")

Chapter 4
Configuring User Messaging Service Drivers

4-40

set_param = ['usermessagingdriver-apns-HCM', 'Alias', 'apns-prod-server-
hcm-12122023']
set_type = ["java.lang.String", "java.lang.String", "java.lang.String"]
mbs.invoke(mBean, "saveDriverProperties", set_param, set_type)

Task 4: Import AAA Certificate for APNS Remote Notification Server

Establish a trusted connection with APNs to set up a remote notification server. To create a
trusted connection, you must install the AAA Certificate Services root certificate on each
server.

Download the certificate from the following link:

Setting up a remote notification server

After downloading the certificate, run the following command to import the certificate to the
WebLogic configured keystore:

keytool -importcert -keystore "../fmwhome12/wlserver/server/lib/DemoTrust.jks" -
storepass DemoTrustKeyStorePassPhrase -file AAACertificateServices.crt -alias
"AAACertificateServices.crt"

Note:

Select the keystore configured in the environment.

Task 5: Configure APNS Driver in UMS

If you use EM to configure the driver in UMS, you must create or update the driver properties.

Perform the following steps to update the Drivers Properties:

1. Log into EM.

2. Click EM, select User Messaging Service, click usermessagingdriver-xmpp, select
Driver Properties, and then click Create.

3. In the Drivers Properties page, update the following fields:

Table 4-16 Driver Properties

Field Value

Name APPNAME

Sender Address URI:APNS:UMS_SENDERNAME

Service Mode Sandbox

Keystore Name apns

Alias apns-sand-server

Mobile App Topic com.oraclecorp.ums.demo

If you are not using EM to configure the driver in UMS, you must add the following APNS driver
configuration to the configuration file:

<ns1:Property name="SenderAddresses" value="URI:APNS:UMS_SENDERNAME"/>
<ns1:Property name="ServiceMode" value="sandbox"/>

Chapter 4
Configuring User Messaging Service Drivers

4-41

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/#2943333

<ns1:Property name="KeyStoreName" value="apns"/>

#This Alias should be the same which is provided while importing CRM keys to
the weblogic’s keystore
<ns1:Property name="Alias" value="apns-sand-server"/>

#Name of the mobile app topic to which push notification will be send. APNs
uses the app's bundle ID as the default topic, e.g.
'com.oraclecorp.example.myapp'.
<ns1:Property name="AppTopic" value="com.oraclecorp.ums.demo"/>

Task 6: Validate and Test the Driver

You must validate the driver to ensure the configuration is correct. After completing validation,
the driver must be tested.

For information about saving driver properties, see Saving Driver Properties.

Common Properties
Table 4-17 shows common driver properties that are indicative of the capabilities of this driver
for use by the messaging engine when routing outbound messages. Some properties are set
by the driver developer and do not normally require modification, while others can be modified
by the administrator to change the routing behavior. For detailed description of these
properties, refer to Table 4-2. For the complete list of available values, see User Messaging
Service Java API Reference.

Table 4-17 Common Properties of the APNS Driver

Name Mandatory Default Values

InstanceName Yes usermessagingdriver-apns

Capability Yes SEND, RECEIVE

SupportedDeliveryTypes Yes URI

SupportedContentTypes Yes text/plain, application/json

SupportedStatusTypes Yes DELIVERY_TO_GATEWAY_FAILURE,DE
LIVERY_TO_GATEWAY_SUCCESS,DELI
VERY_TO_DEVICE_FAILURE

Cost No N/A

Speed No N/A

SupportedCarriers Yes N/A

Configuration Level Yes Server/Cluster

Supported Protocols No apns

Supported Application Names No Empty

Driver Type No User Messaging APNS Driver

SenderAddresses No N/A

DefaultSenderAddress No N/A

APNS Custom Properties
Table 4-18 lists configurable properties specific to the APNS driver.

Chapter 4
Configuring User Messaging Service Drivers

4-42

Table 4-18 Custom Properties of the APNS Driver

Name Description Mandatory Default Values

Service Mode Determines the APNs
production environment

Yes

Keystore Name Name of the keystore in
KSS which holds the private
key and certificated used for
communication with APNs.
UMS must be granted read
permission to the keystore if
a non-default keystore is
used.

Yes apns

Alias Alias for the private key
certificate pair in the
keystore.

Yes

Mobile App Topic Name of the mobile app
topic (or apple mobile app
ID) to which push
notification is sent. APNs
uses the app's bundle ID as
the default topic.

Yes

Configuring GCM Driver
Google Cloud Messaging (GCM) driver is a UMS driver for mobile push notification service. It
can send mobile push notifications to Android applications.

You must perform the following tasks to configure the GCM Driver.

Task 1: Obtaining Private Key File for App Service Account

GCM driver must be set up with the service account which is done by obtaining a private key
file (JSON file). Perform the following steps to obtain the private key file:

1. Open Firebase Console using the following URL:
https://console.firebase.google.com

2. Click the Project Settings icon.
The Project Settings page is displayed.

3. Select Service Accounts.

4. In the Firebase Admin SDK dialog box, click Generate new private key.
A JSON file is generated with details of the private key.

5. Save the JSON file.

Task 2: Configuring GCM Driver in UMS

If you use EM to configure the driver in UMS, you must create or update the driver properties.

Perform the following steps to update the Drivers Properties:

1. Navigate to the Drivers Properties page as shown below:
EM, and then User Messaging Service, and then usermessagingdriver-apns, and then
Driver Properties, and then Create

2. In the Drivers Properties page, update the following fields:

Chapter 4
Configuring User Messaging Service Drivers

4-43

https://console.firebase.google.com

Table 4-19 Driver Properties

Field Update

Name GCM_APPNAME

Sender Address URI:GCM:APPNAME

Service Mode Production

FCM Service Account JSON

Type of Password Indirect Password, Create new User

Indirect Username/Key APPNAMEKEY

Password Enter details of the Private key file (JSON file)
obtained in Task 1. The file is added to
WebLogic’s credential store.

If you are not using EM to configure the driver in UMS, you must add the private key to the
credential store.

Run the following WLST command to add the private key to the credential store:

createCred(map="UCS", key="UMSDriver.GCM_APPNAME.ApiKey.APPNAMEKEY",
user="UMSDriver.GCM_APPNAME.ApiKey.APPNAMEKEY", password="<content of private key
file obtained in Task 1>", desc="")
For more information, see OPSS Security Store WLST Commands.

Add the GCM driver configuration to the configuration file to configure the driver in UMS as
follows:

<ns1:Property name="SenderAddresses" value="URI:GCM:APPNAME"/>
<ns1:Property name="ApiKey" value="-
>UCS:UMSDriver.GCM_APPNAME.ApiKey.APPNAMEKEY"/>
<ns1:Property name="ServiceMode" value="production"/>

Task 3: Validate and Test the Driver

You must validate the driver to ensure the configuration is correct. After completing validation,
the driver must be tested.

• Common Properties

Common Properties
Table 4-20 lists common driver properties that are indicative of the capabilities of this driver for
use by the messaging engine when routing outbound messages. Some properties are set by
the driver developer and do not normally require modification, while others can be modified by
the administrator to change the routing behavior. For detailed description of these properties,
refer to Table 4-2. For the complete list of available values, see User Messaging Service Java
API Reference.

Table 4-20 Common Properties GCM Driver

Name Mandatory Default Values

InstanceName Yes usermessagingdriver-gcm

Capability Yes SEND

Chapter 4
Configuring User Messaging Service Drivers

4-44

https://docs.oracle.com/middleware/12213/opss/IDMCR/security_wlst.htm#IDMCR1438

Table 4-20 (Cont.) Common Properties GCM Driver

Name Mandatory Default Values

SupportedDeliveryTypes Yes URI

SupportedContentTypes Yes text/plain

SupportedStatusTypes Yes DELIVERY_TO_GATEWAY_FAILURE,DE
LIVERY_TO_GATEWAY_SUCCESS,DELI
VERY_TO_DEVICE_FAILURE

Cost No N/A

Speed No N/A

SupportedCarriers Yes N/A

Configuration Level Yes Server/Cluster

Supported Protocols No gcm

Supported Application Names No Empty

Driver Type No User Messaging GCM Driver

SenderAddresses No N/A

DefaultSenderAddress No N/A

• GCM Custom Properties

GCM Custom Properties

Table 4-21 lists properties specific to this driver and generally associated with configuring
access to the remote gateway and certain protocol or channel-specific behavior.

Table 4-21 Custom Properties GCM Driver

Name Description Mandatory Default Values

FCM Service Account JSON Firebase service account
JSON is used to
authenticate Google
Firebase API. This provides
the driver authorized access
to Google Firebase
services.

Yes Indirect Password,
Create New User

Service Mode Determines which
environment the GCM driver
sends notifications.
Production means that
notifications are sent to the
URL Google’s Firebase API.
Local means that
notifications are sent to the
URL specified in parameter
LocalEndpointURL.

Yes Production

Local Endpoint URL URL for the GCM service. It
is used only if the Service
Mode is set to the value
local. The parameter is
mandatory when the
Service Mode is set to local.

No

Chapter 4
Configuring User Messaging Service Drivers

4-45

Configuring User Messaging Service Access to the LDAP User
Profile

As part of the LDAP provider setup in a UMS deployment, you configure the User Name
Attribute through the WebLogic Remote Console. If you configure that attribute with a value
other than the default cn or if the user's email address is stored in an LDAP attribute which is
different from mail, you must make an additional configuration change in Oracle Platform
Security Services (OPSS) for UMS to successfully access the user profile to obtain the list of
communication channels provisioned in LDAP, such as business email.

For more information about Oracle Platform Security Services (OPSS), see Securing
Applications with Oracle Platform Security Services.

To configure access to the LDAP user profile:

1. Configure the Identity Store to use LDAP by following instructions in Fusion Middleware
Enterprise Deployment Guide for Oracle Business Intelligence.

Note:

You may have other properties defined in the Backing Up Configuration Files
section.

2. To use the value of the User Name Attribute while searching the back-end LDAP server for
user profile, add the following element:

<property name="username.attr" value="username_attribute_value"/>

where username_attribute_value is the value of the User Name Attribute property in the
LDAP provider configuration. For instance, if the value of the User Name Attribute is mail,
add the following line:

<property name="username.attr" value="mail"/>

The following sample code shows the above line inserted in the jps-config.xml file:

<!-- JPS WLS LDAP Identity Store Service Instance -->

<serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">

 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvide
r"/>

 <property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool"/>

 <property name="username.attr" value="mail"/>

</serviceInstance>

Chapter 4
Configuring User Messaging Service Access to the LDAP User Profile

4-46

https://docs.oracle.com/middleware/11119/bisuite/BIEDG/toc.htm
https://docs.oracle.com/middleware/11119/bisuite/BIEDG/toc.htm
https://docs.oracle.com/middleware/11119/bisuite/BIEDG/oid.htm#CIHHFAEE

If the LDAP attribute containing the user's business email addresses is something other
than the mail attribute, add the following element:

<property name="PROPERTY_ATTRIBUTE_MAPPING"
value="BUSINESS_EMAIL=attr_containing_email"/>

where attr_containing_email is the attribute name in the LDAP provider that contains
the user's email address. For instance, if the user attribute containing the email address is
externalEmail, add the following line:

<property name="PROPERTY_ATTRIBUTE_MAPPING" value="BUSINESS_EMAIL=externalEmail"/>

The following sample code shows the above line inserted in the jps-config.xml file:

<!-- JPS WLS LDAP Identity Store Service Instance -->

<serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">

 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvide
r"/>

 <property name="CONNECTION_POOL_CLASS"
 value="oracle.security.idm.providers.stdldap.JNDIPool"/>

 <property name="PROPERTY_ATTRIBUTE_MAPPING" value="BUSINESS_
EMAIL=externalEmail"/>

</serviceInstance>

3. Restart your domain.

Using Oracle User Messaging Service for Group Messaging
In addition to supporting bi-directional mutli-channel messaging through a variety of channels,
UMS supports group messaging. This feature includes sending a message to a group of users
by sending it to a group URI, or sending a message to LDAP groups (or enterprise roles) and
application roles.

The group messaging feature enhances the capability of UMS by providing support for the
following:

• Sending messages to a group

• Sending messages to a group through a specific channel

• Sending messages to an application role

• Sending messages to an application role through a specific channel

For more information about sending messages to groups and application roles, see "Sending
Group Messages" in Developing Applications with Oracle User Messaging Service.

The group messaging feature does not require any new configuration of UMS. It reuses the
UMS utility to access the User Role API. Since the User Role API configuration is not possible
in UMS, any such configuration is done outside UMS. The User Role API is automatically
configured to use the first Oracle WebLogic Server authenticator and does not require any
special configuration.

Chapter 4
Using Oracle User Messaging Service for Group Messaging

4-47

Note:

For UMS to be able to resolve an application role, specific security grants are
required. The application deployer must configure these security grants using WLST
commands as shown in the following example:

connect('weblogic','welcome1','t3://host.example.com:7601')

grantPermission(codeBaseURL="file:MW_HOME/user_projects/domains/
DOMAIN_NAME/servers/SERVER_NAME/tmp/_WL_user/
usermessagingserver/-",permClass="oracle.security.jps.service.policyst
ore.PolicyStoreAccessPermission",permTarget="context=APPLICATION,name=
<appStripe>",permActions="getApplicationPolicy"
)

For more information about the security commands, see Infrastructure Security
WLST Command Reference.

Configuring Automatic Message Resend
In 14c, the automatic resend feature can be configured to automate the administrator's resend.
This means that when a message send attempt is classified as a complete failure, then the
message is automatically scheduled for resend.

This is repeated until the message is successfully sent or the configured number of resends is
achieved. The delay time and the maximum number of resends can be configured.
Functionally, this is the same as an administrator manually resending the messages when the
delay time has expired. The purpose of the automatic resend is to resolve temporary network
problems or temporary unavailability of backend services.

The UMS server configuration parameters, ResendDefault, ResendDelay, and ResendMax have
been introduced for configuring this feature. For more information about these parameters, see
Table 4-1.

The number of resend attempts is configured for the server, but may be overridden
programmatically per message by the client. The client can specify the number of resends to
be used per message to override the ResendDefault server configuration parameter. Note that
although overridden, it is limited by the ResendMax configuration parameter.

For more information about setting the number of resend attempts programmatically, see
sections "Using UMS Java API to Specify Message Resends" and "Using UMS Web Service
API to Specify Message Resends" in Developing Applications with Oracle User Messaging
Service.

Chapter 4
Configuring Automatic Message Resend

4-48

Note:

If message resend fails even after automatically trying to resend the message the
maximum number of times, then the administrator can send it manually from the
Enterprise Manager. The resend counter will be reset. If the maximum number of
resends is configured to 0, then the behaviour will be identical to that in 12c, that is
an administrator will have to manually select the failed message and resend it using
the Enterprise Manager.

Securing the Oracle User Messaging Service
The User Communications Preferences User Interface can be secured at the transport-level
using Secure Sockets Layer (SSL). By default, all deployed web services are unsecured. Web
Service Security should be enabled for any services that are deployed in a production
environment.

To enable SSL in the Oracle WebLogic Server, see "Configure SSL for Oracle WebLogic
Server" in the Administering Oracle Fusion Middleware. This step is sufficient to secure the
User Communication Preferences User Interface.

UMS supports the use of Oracle Web Services Manager WS-Security policies to protect UMS
web services. For more information about Oracle Web Services Manager, see "Using Oracle
Web Services Manager Security Policies", in Securing WebLogic Web Services for Oracle
WebLogic Server.

The recommended security configuration for web services uses Security Assertion Markup
Language (SAML) tokens to pass identities between web service clients and UMS. With SAML
tokens, instead of the web service client passing a username and password to UMS, a trust
relationship is established between the client and UMS because of exchanging certificates.
Once this keystore configuration is in place, the web service client passes only the user
identity, and vouches for the fact that it has authenticated the user appropriately.

The recommended policies to use for UMS web services are:

• oracle/wss11_saml_token_with_message_protection_service_policy (server-side)
• oracle/wss11_saml_token_with_message_protection_client_policy (client-side)
• oracle/wss11_saml_token_identity_switch_with_message_protection_client_policy

(client-side)

Chapter 4
Securing the Oracle User Messaging Service

4-49

Note:

The choice of client-side policy depends on the security context in which your
application is executing.

– If the thread that is making the web service call has the intended Subject
associated with it (for example, from a web application that performs user
authentication, or a Jakarta EE module with a run-as identity defined), then
use the policy oracle/
wss11_saml_token_with_message_protection_client_policy.

The current thread Subject is passed through using the SAML Policy WS-
Security headers. In this case you should not specify the parameter
javax.xml.ws.BindingProvider.USERNAME_PROPERTY when creating your
web service client instance.

– If the thread that is making the web service call has an undefined Subject
associated with it, or if you must programmatically supply a different identity,
then use the policy oracle/
wss11_saml_token_identity_switch_with_message_protection_client_po
licy, and specify the parameter
javax.xml.ws.BindingProvider.USERNAME_PROPERTY when creating your
web service client instance. If you want to perform dynamic identity
switching, you must grant additional code permissions to your application.
For more information, see Administering Web Services.

• Web Service Security on Notification

• Enabling UMS Web Service Security

• Enabling Client Security

• Keystore Configuration

• Client Aliases

• Securing JMS Resources

Web Service Security on Notification
The different web services include corresponding notification web services
(MessageNotification) that run on the client side and receive notifications (message delivery
status, message receipt, presence status change) when the appropriate event occurs.

Enabling UMS Web Service Security
To enable a policy for a UMS web service, see Securing WebLogic Web Services for Oracle
WebLogic Server. You must select policy oracle/
wss11_saml_token_with_message_protection_service_policy. This configuration must be
repeated for each service that you want to secure.

Enabling Client Security
Web service client security must be enabled programmatically. When using the client libraries
described in Developing Applications with Oracle User Messaging Service, WS-Security policy
configuration is provided when a client object is constructed. The client constructors take an

Chapter 4
Securing the Oracle User Messaging Service

4-50

argument of type Map<String, Object>. In general when using SAML authentication, the key/
value pairs () should be added to the configuration map in addition to other required properties
such as the endpoint address.

Table 4-22 Client Security Keys

Key Typical Value

oracle.ucs.messaging.ws.ClientConstants.POLICIES oracle/wss11_saml_token_
with_message_protection_
client_policy

javax.xml.ws.BindingProvider.ENDPOINT_ADDRESS_PROP
ERTY

Endpoint URL for the remote UMS WS.
This is typically "http://<host>:<port>/ucs/
messaging/webservice".

javax.xml.ws.BindingProvider.USERNAME_PROPERTY (Optional) <valid username> Note: Do
not specify this key while using oracle/
wss11_saml_token_with_message_pr
otection_client_policy.

oracle.wsm.security.util.SecurityConstants.Conf
ig.KEYSTORE_RECIPIENT_ALIAS_PROPERTY

(optional) keystore alias for target service.
See Client Aliases.

oracle.wsm.security.util.SecurityConstants.ClientC
onstants.WSS_CSF_KEY

Used for OWSM policy attachment.
Specifies a credential store key to use for
looking up remote username/password
information from the Oracle Web Services
Management credential store map.

Example 4-4 Web Service Client Security

HashMap<String, Object> config = new HashMap<String, Object>();
config.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://example.com:8001/ucs/messaging/webservice");
config.put(oracle.ucs.messaging.ws.ClientConstants.POLICIES, new String[]
 {"oracle/wss11_saml_token_with_message_protection_client_policy"});

mClient = new MessagingClient(config);

Keystore Configuration
To use the recommended WS-Security policy, you must configure a keystore containing the
public and private key information required by OWSM. Refer to "Configuring the Credential
Store" in Securing Web Services and Managing Policies with Oracle Web Services Manager
for information on how to configure the keystore and corresponding credential store entries.

• If both your web service client and UMS server are in the same domain, then they share a
keystore and credential store.

• If your web service client and UMS server are in different domains, then you must import
the UMS public key into your client domain's keystore, and must import your client
domain's public key into the UMS keystore.

Client Aliases
When using certain WS-Security policies such as the SAML policy recommended here, the
client must use the server's public key to encrypt the web service request. However, there is

Chapter 4
Securing the Oracle User Messaging Service

4-51

generally only one keystore configured per domain. Therefore, if you have a domain in which
there are web service clients that communicate with web services in multiple other domains,
then you may be required to override the default keystore entry used by OWSM.

For example, if you have a domain in which application "A" is a web service client to a UMS
web service, and application "B" is a web service client to a web service in another domain,
then A's requests must be encrypted using the public key of the UMS domain, and B's
requests must be encrypted using the public key of the other domain. You can accomplish this
goal by overriding the keystore alias used by OWSM for each request:

• Import (for example) the UMS public key with alias "ums_public_key", and the other public
key with alias "other_public_key".

• When creating an UMS Web Service client, specify the recipient keystore alias parameter,
setting the key to
oracle.wsm.security.util.SecurityConstants.Config.KEYSTORE_RECIPIENT_ALIAS_PRO
PERTY and the value to "ums_public_key" as shown in Example 4-5.

• The other web service client similarly must override the keystore alias, but the exact
mechanism may differ. For example if using a JAX-WS client stub directly, then you can
add the override property to the JAX-WS request context. See "Overriding the Policy
Configuration for the Web Service Client" in Oracle Fusion Middleware Securing WebLogic
Web Services for Oracle WebLogic Server for more details.

Example 4-5 Client Aliases

HashMap<String, Object> config = new HashMap<String, Object>();
config.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://example.com:8001/ucs/messaging/webservice");
config.put(ClientConstants.POLICIES, new String[] {"oracle/wss11_saml_token_
identity_switch_with_message_protection_client_policy"});
config.put(BindingProvider.USERNAME_PROPERTY, "user1");
config.put(oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_
LOCATION, oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_LOC_
SUBJECT);
config.put(oracle.wsm.security.util.SecurityConstants.Config.KEYSTORE_RECIPIENT_
ALIAS_PROPERTY, "ums_public_key");
config.put(MessagingConstants.APPLICATION_NAME, "MyUMSWSApp");
mClient = new MessagingClient(config);

Securing JMS Resources
This (optional) procedure enables administrators to restrict access to the UMS' JMS resources
(such as queues) for enhanced security.

To secure the JMS system resources, lock all JMS sub-deployments that start with the name
UMSJMSSystemResource (there may be multiple automatically-created resources for UMS in
a multi-server or cluster deployment) with the role OracleSystemRole. Do this using the
WebLogic Remote Console, or you may run a WLST script (available at MIDDLEWARE_HOME/
oracle_common/communications/bin/secure_jms_system_resource.py) as follows:

MIDDLEWARE_HOME/oracle_common/common/bin/wlst.sh
./secure_jms_system_resource.py
-userConfigFile=<UserConfigFile>, -userKeyFile=<UserKeyFile>
-url=<AdminServer_t3_url> -jmsSystemResource=<JMSSystemResourceName> -
role=<SecurityRoleToUse>

The UserConfigFile shall contain encrypted username and password for the AdminUser. The
key for the encrypted data shall be in UserKeyFile.

Chapter 4
Securing the Oracle User Messaging Service

4-52

By default, the UMS system runs as the user OracleSystemUser for accessing JMS resources.
If the user OracleSystemUser does not exist, or you secure the UMS JMS resources with any
other role that some other user has been granted, you must override the default user identity
used by the UMS system by specifying an alternate username.

Chapter 4
Securing the Oracle User Messaging Service

4-53

5
Monitoring Oracle User Messaging Service

This chapter describes how to monitor Oracle User Messaging Service (UMS) by using Oracle
Enterprise Manager Fusion Middleware Control.

• Monitoring Oracle User Messaging Service
You can monitor UMS logs and metrics using Oracle Enterprise Manager Fusion
Middleware Control.

• Viewing Log Files
You can view log files.

• Viewing Metrics and Statistics
The performance of your applications is reflected in metrics and statistics.

Monitoring Oracle User Messaging Service
You can monitor UMS logs and metrics using Oracle Enterprise Manager Fusion Middleware
Control.

To monitor UMS:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control as an administrator.

2. Expand the User Messaging Service folder. You will see a User Messaging server, and a
list of User Messaging drivers.

3. Select the server or driver of your choice.

If you select a driver, quick statistics are displayed that indicate the state and performance
of the driver.

If you select a server, you see a list of associated drivers, in addition to the quick statistics.
You can select one of the drivers to view its statistics, or you can click the Configure Driver
icon to configure it. For more information on configuring drivers, see Configuring Oracle
User Messaging Service.

4. You can perform a series of actions on the server. Right-click the server to select any of the
actions. Table 5-1 lists the selection and their resultant actions.

Table 5-1 Server Selection and Actions

Selection Action

Home The home page lists the quick statistics for the selected driver

Control Start Up or Shut Down driver

Logs View and configure message logs for the selected driver

Performance Summary Displays performance statistics on a customizable metrics page.
Use this page to view statistics for this driver. Customize this page
using the Metric Palette. The Metric Palette enables you to choose
from all of the available metrics so that you see only the information
that is most valuable to you

5-1

Table 5-1 (Cont.) Server Selection and Actions

Selection Action

Message Status Check the delivery status of messages sent and received, and
resend selected messages. You can filter the search by adding
more search fields and setting the desired operator and search
value. Some fields can be added multiple times to use them with
different and complementary operators, or with the Contains
operator

Messaging Client Applications Messaging client applications registered with UMS can be manually
deregistered in cases where the applications have been undeployed
and are holding onto access points that must be made available to
other applications

Server Properties Configure message storage method and business terms for
message filter creation. For more information, see Configuring
Oracle User Messaging Service.

System MBean Browser System MBean Browser and its configuration settings

Target Information Target Information displays the version, Middleware Home, Domain
Home, Host and Deployed On details for the selected driver

• Using Message Status

• Deregistering Messaging Client Applications

Using Message Status
You can check the delivery status of messages sent and received, delete messages, and
resend selected messages.

Checking message status

To check message status, perform the following tasks:

1. From the navigation tree, navigate to the server page. On the server page, select
Message Status from the drop-down list that appears at the top of the page.

The Message Status page appears.

2. Click Search to search the messages using the default criteria. The search returns a listing
for the messages.

Customizing the Search

You can customize the search by adding more search fields and setting the desired operator
and search value. Some fields can be added multiple times to use them with different and
complementary operators, or with the Contains operator. To customize the search, perform the
following tasks:

1. Click Add Fields.

2. Select the field(s) on which you want to search.

3. Choose operators and fill in variables as needed.

4. Click Search. The customized search is done and results returned.

5. If you want to resend a message, select the message in the list and click Resend.

Chapter 5
Monitoring Oracle User Messaging Service

5-2

Deleting Messages

You can delete selected messages or delete messages in bulk by setting the option for deleting
all messages older than a specific date.

• To delete a selected message, select the message in the list and click Delete Selected.

• To delete all messages older than a specific date, click Delete with Options. In the pop-up
window that appears, you must specify a date that is older than 7 days, and click OK. All
messages before the specified date will be deleted.

Note:

If you choose to delete messages using the date feature in the EM UI, ensure that
you do not have more than 2000 messages to be deleted at any given time. If there
are more than 2000 messages to be deleted, you will see the following error
message:

The specified options result in the deletion of more than 2000 messages.
Please narrow your query and try again.
To delete more than 2000 messages, you must use the DB purge script for Oracle
database.

Deregistering Messaging Client Applications
You can manually deregister Messaging Client Applications after the applications have been
undeployed and are holding onto access points that must be made available to other
applications. To deregister Messaging Client Applications, perform the following tasks:

1. Right-click a target in the navigation tree, and select Messaging Client Applications. The
Messaging Client page appears.

2. Select the message to deregister and click De-register.

A confirmation box appears asking you to confirm. Confirm your choice.

Viewing Log Files
You can view log files.

To view log files:

1. Right-click the driver (or server) for which you want to view log information, then choose
Logs > View Log Files.

The Log Messages page appears.

Use this page to query for log information about a driver (or server). Fields and lists are
used to customize the query.

2. After entering your search criteria, click Log Files. The Log Files page appears.

3. View log information or download the log.

• Configuring Logging

Chapter 5
Viewing Log Files

5-3

Configuring Logging
Use Oracle Enterprise Manager Fusion Middleware Control to configure log levels.

For each logger, set the notification level.

Viewing Metrics and Statistics
The performance of your applications is reflected in metrics and statistics.

To view metrics and statistics:

1. Select the Performance Summary for a driver (or server).

The Performance Summary page appears.

Many metrics are available for capture and display. To get the most valuable, focused
information, use Metric Palette.

2. Click Show Metric Palette to display the Metric Palette.

3. Choose the metrics in which you are most interested. As you select or deselect metrics
from the palette, the metrics display is automatically updated.

Chapter 5
Viewing Metrics and Statistics

5-4

6
Managing Oracle User Messaging Service

This chapter describes how to manage Oracle User Messaging Service (UMS). It discusses
how to deploy, undeploy and register UMS drivers by using Oracle Enterprise Manager Fusion
Middleware Control using the configuration wizard. It also describes the procedure used to
purge database records that are no longer need by the UMS DB schema.

• Deploying Drivers
When you install Oracle UMS, preinstalled drivers are included (Email, XMPP, and SMPP).
Among these drivers, only one or a few drivers are deployed to the WebLogic Server,
depending on the template that is used when creating the domain.

• Using UMS Schema Purge Script
ums_cleanup.purge is a PL/SQL procedure used to purge records that are no longer
needed by the UMS DB schema. The procedure purges DB records from Oracle
databases based on their age. It is highly recommend that the first two or three runs of the
procedure be performed by a certified DBA.

Deploying Drivers
When you install Oracle UMS, preinstalled drivers are included (Email, XMPP, and SMPP).
Among these drivers, only one or a few drivers are deployed to the WebLogic Server,
depending on the template that is used when creating the domain.

You can deploy additional drivers by using the expandable server groups in the Fusion
Middleware Configuration Wizard while updating your domain.

• Deploying Drivers Using the Fusion Middleware Configuration Wizard

Deploying Drivers Using the Fusion Middleware Configuration Wizard
Follow the instructions on this section to deploy drivers using the Configuration Wizard.

• Starting the Configuration Wizard

• Selecting a Configuration Type

• Updating an Existing Domain Using Product Templates

• Assigning User-Expandable Server Groups to Managed Servers

• Completing the Configuration

Task 1 Starting the Configuration Wizard
Start the Configuration wizard as described in "Starting the Configuration Wizard" in Oracle
Fusion Middleware Creating WebLogic Domains Using the Configuration Wizard. The
Configuration Type screen is displayed.

Task 2 Selecting a Configuration Type
On the Configuration Type screen, select Update an Existing Domain.

6-1

Select the domain directory from the Domain Location drop-down list, or click Browse to
navigate to and select the domain directory. Click Next to continue. The Templates screen
appears.

Task 3 Updating an Existing Domain Using Product Templates
On the Templates screen, select Update Domain Using Product Templates and then select
the check box for JRF template to add to your domain.
Click Next and follow the configuration wizard screens till the Managed Servers screen
appears, as described in "Updating WebLogic Domains" in Oracle Fusion Middleware
Creating WebLogic Domains Using the Configuration Wizard.

Task 4 Assigning User-Expandable Server Groups to Managed Servers
On the Managed Servers screen, for each managed server, select the check box for the
server group that corresponds to the driver that shall be targeted to that managed server. It is
possible to select multiple drivers.
For more information about user-expandable server groups, see "Configuration Wizard
Screens" in Oracle Fusion Middleware Creating WebLogic Domains Using the Configuration
Wizard.

Note:

A new driver called GCM (Google Cloud Messaging) Driver is included in UMS in
release 12.2.1. This driver is included as a preview feature in the release and, is not
generally available.

Task 5 Completing the Configuration
Complete the configuration by following the configuration wizard screens described in
"Updating WebLogic Domains" in Oracle Fusion Middleware Creating WebLogic Domains
Using the Configuration Wizard.

Using UMS Schema Purge Script
ums_cleanup.purge is a PL/SQL procedure used to purge records that are no longer needed
by the UMS DB schema. The procedure purges DB records from Oracle databases based on
their age. It is highly recommend that the first two or three runs of the procedure be performed
by a certified DBA.

WARNING:

This procedure will delete DB records from the UMS DB tables and commit instantly.
It is impossible to rollback. The deleted records cannot be recovered. It is
recommended to backup these tables before purging.

The purge reduces inbound and outbound message entries from UMS tables. Table 6-1 shows
the tables in which records are purged:

Table 6-1 Records purged in UMS DB tables

Name of the Table Records Purged

MESSAGE Outbound/Inbound messages and their attributes

Chapter 6
Using UMS Schema Purge Script

6-2

Table 6-1 (Cont.) Records purged in UMS DB tables

Name of the Table Records Purged

ADDRESS Sender and recipient addresses

DELIVERY_ATTEMPT Records of deliveries

STATUS Statuses of message deliveries

DELIVERY_CONTEXT Records of deliveries

• Purging UMS DB Schema Records

Purging UMS DB Schema Records
ums_cleanup.purge() takes a single parameter, that is, days_of_retention.The value of this
parameter is a positive integer or a float number that signifies the number of days. The
procedure deletes any records that are older than the specified number of days from the UMS
DB schema. For example, ums_cleanup.purge(30.5) will delete all records that are older than
30 days and 12 hours.

Note:

The value of days_of_retention must be greater than or equal to seven days.

To purge records in UMS DB schema, perform the following tasks:

1. Shut down all Mid-tier servers that are using the UMS schema.

2. Set SQL Plus Options as shown below:

set serveroutput on
set autocommit off

3. Invoke the procedure with the desired days_of_retention parameter from SQL Plus to
purge records that are no longer needed. To delete entries older than 100 days, run the
following command:

SQL> call ums_cleanup.purge(100);

Note:

If the UMS schema has not been cleaned up for a long time and there are many
rows in the tables, it is recommended that you purge it in multiple small steps.
For example, if the instance has been heavily used for six months and you want
to keep records from the last 30 days, purge the schema gradually in small steps:
170, 160, …, 30.

4. Start all Mid-tier servers that were shut down during the purging process.

Chapter 6
Using UMS Schema Purge Script

6-3

7
Troubleshooting Oracle User Messaging
Service

To debug Oracle User Messaging Service (UMS), first check the server diagnostic logs. The
logs may contain exception, error, or warning messages that provide details about incorrect
behavior along with actions to remedy the problem. Table 7-1 describes additional methods for
debugging common UMS problems.

Table 7-1 Troubleshooting UMS

Symptom Possible Causes Solutions

SSL handshake error. The default keystore
(DemoTrust.jks) for
WebLogic Server may
cause this error.

Change the default keystore for WebLogic
Server. Configure the Custom Identity and
Java Standard Trust keystore for the
WebLogic Server.

For more information, see Oracle WebLogic
Remote Console Online Help.

Email notification is not being
sent.

The Outgoing (SMTP)
Mail Server settings in
the UMS Email Driver
are incorrect.

Check the following settings in the UMS
Email Driver using Oracle Fusion
Middleware Control:

• OutgoingMailServer
• OutgoingMailServerPort
Note: Validate the values by using them in
any email client for connecting to the SMTP
server.

The SMTP server
requires authentication or
a secure connection
(TLS or SSL).

Check the following settings in the UMS
Email Driver using Oracle Fusion
Middleware Control:

• OutgoingUsername
• OutgoingPassword
• OutgoingMailServerSecurity

7-1

Table 7-1 (Cont.) Troubleshooting UMS

Symptom Possible Causes Solutions

Notifications are not being sent
because of error message: No
matching drivers found
for sender address =
<address>

The UMS Driver for the
appropriate channel is
configured with a specific
list of SenderAddresses,
and the message sent by
the application has set a
non-matching Sender
Address.

Note: UMS Server
matches the outbound
message's sender
address, if set, against
the available drivers'
SenderAddresses to find
a matching driver to use
for delivering the
message. If a driver has
set one or more
SenderAddresses, then
the UMS Server only
sends messages with the
matching sender address
to it.

• Check the following settings in the
appropriate UMS Driver using Oracle
Fusion Middleware Control:

SenderAddresses
Note: The format for SenderAddresses
is a comma-delimited list of
<DeliveryType>:<Address>.

For example:

EMAIL:sender@example.com,
EMAIL:sender@example2.com

• Leave this property blank, if you want
this driver to service outbound
messages for all sender addresses for
this channel (delivery type).

• If there are multiple driver instances
deployed for the same channel (delivery
type) with different configurations, use
the SenderAddresses to differentiate
the driver instances. For example, one
instance can be set with a value in
SenderAddresses to only service
outbound messages with that matching
sender address, while the other
instance can keep the
SenderAddresses blank to service all
outbound messages that do not specify
any sender address or one that does
not match that of the first driver
instance.

• SenderAddresses that are configured
with the incorrect syntax (such as
missing <DeliveryType>:) are
ignored by the UMS Server for driver
selection.

The email client inconsistently
receives notifications.

The Incoming Mail
Server settings in the
UMS Email Driver are
configured with the same
email account to which
notifications are being
sent.

If the notification is sent
to the same account, the
UMS Email Driver may
download and process
the email before the
email client can display it.

Use an exclusive email account for
Incoming Mail Server settings. Check the
following settings in the UMS Email Driver
using Oracle Fusion Middleware Control:

• IncomingMailIDs
• IncomingUserIDs

Chapter 7

7-2

Table 7-1 (Cont.) Troubleshooting UMS

Symptom Possible Causes Solutions

The application does not
receive emails.

The Incoming Mail
Server settings in the
UMS Email Driver are
incorrect.

Check the following settings in the UMS
Email Driver using Oracle Fusion
Middleware Control:

• MailAccessProtocol (IMAP or
POP3, in uppercase)

• ReceiveFolder
• IncomingMailServer
• IncomingMailServerPort
• IncomingMailServerSSL
• IncomingMailServerSSL
• IncomingUserIDs
• IncomingUserPasswords
• ImapAuthPlainDisable
Note: Validate the values by using them in
any email client for connecting to an IMAP
or POP3 server.

The mail access protocol
is incorrect.

Check the following settings in the UMS
Email Driver using Oracle Fusion
Middleware Control:

• MailAccessProtocol (IMAP or
POP3, in uppercase)

The email server is SSL-
enabled.

Check the following settings in the UMS
Email Driver using Oracle Fusion
Middleware Control:

• IncomingMailServerSS
The receive folder name
is incorrect.

Check the following settings in the UMS
Email Driver using Oracle Fusion
Middleware Control:

• ReceiveFolder
Note: Some email servers may expect the
value INBOX to be inbox or Inbox (that is,
case-sensitive). Based on your email server,
use an appropriate value.

The application did not
register the
corresponding
AccessPoint.

Register an AccessPoint using the UMS
API.

For more information, see Oracle Fusion
Middleware Developing Applications with
Oracle User Messaging Service.

The connection succeeds but
gets closed immediately since
there is a mismatch in the
subject

The certificate used is
incorrect for the
environment.

Each environment (dev, test, production,
etc.) needs to be provisioned with its own
certificate. Verify that the correct certification
is used for the remote environment.

APNS notifications are not
delivered

A device token retrieved
for production
environment is likely
being used for non-
production.

Use the correct device token retrieved for
each environment. For more information,
see https://developer.apple.com/
library/ios/technotes/tn2265/
_index.html

Chapter 7

7-3

https://developer.apple.com/library/ios/technotes/tn2265/_index.html
https://developer.apple.com/library/ios/technotes/tn2265/_index.html
https://developer.apple.com/library/ios/technotes/tn2265/_index.html

Table 7-1 (Cont.) Troubleshooting UMS

Symptom Possible Causes Solutions

PKIX path building is failing and
is unable to find a valid
certification path to the
requested target for the APNS
driver in Secure mode
environment

The relevant APNS
certificates are not
imported.

To setup a remote notification server, you
must establish a trusted connection to
APNS. To create this connection, you must
install the AAA Certificate Services root
certificate on each of your servers.
Download the certificate from Setting up a
remote notification server.

You must import the downloaded certificate
to the WebLogic’s configured keystore by
using the following command:

keytool -importcert -keystore
"../fmwhome12/wlserver/
server/lib/DemoTrust.jks" -
storepass
DemoTrustKeyStorePassPhrase -
file
AAACertificateServices.crt -
alias
"AAACertificateServices.crt"

Note:

Select the
keystore
configured in
the
environment.

GCM workflow throws an error
while sending messages in
secure mode environment after
successful test connection.

Missing trusted
certificates

The hostnameverifier
configuration in
WebLogic is not
accepting wild
characters.

You must import the global root certificate
with keytool to the custom cert store
configured in WebLogic.

Global sign root certificates can be
downloaded at GlobalSign Root Certificates.

Runtime throws an error after
configuring GCM driver.

Default “BEA Hostname
verifier” does not support
wildcards.

You must verify the hostname for the
Managed Server.

The following setting works for the
hostname verification:

1. None.

2. Wildcard Hostname Verifier.

The following setting does not work for the
hostname verification:

1. BEA Hostname verifier

Chapter 7

7-4

https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/#2943333
https://developer.apple.com/documentation/usernotifications/setting_up_a_remote_notification_server/#2943333
https://support.globalsign.com/ca-certificates/root-certificates/globalsign-root-certificates

A
Configuring User Messaging Service with AQ
JMS

This appendix describes how to configure UMS to use AQ JMS instead of WLS JMS. This can
be achieved through the WebLogic Remote Console.
User Messaging Service (UMS) can be configured to use Oracle Streams Advanced Queuing
(AQ) JMS. AQ JMS uses a database connection and stores JMS messages in a database that
is accessible to an entire WebLogic Server cluster, thus enabling the use of database features
and tooling for data manipulation and backup. A typical use case would be enhanced high
availability (HA), where the standard whole server migration support is not sufficient. If one
UMS node in a cluster fails, then the other nodes will pick messages from the database for the
failing UMS node, causing no loss of messages.

The following tasks describe how to configure UMS with AQ JMS through the WebLogic
Remote Console.

1. Log into Oracle WebLogic Remote Console.

Shutdown all Managed servers in the domain.

2. Click Edit Tree option in the left panel. Expand Environments and select Domains for
configuration changes.

3. Expand the Services node and navigate to JMS system resource. A page listing the JMS
system modules created for this domain is displayed.

4. Select UMSJMSSystemResource and navigate to the Subdeployments tab. Navigate to
the UMSJMSServer running on the cluster you want to reconfigure and un-target all the
UMSJMSServer_auto_x servers. Click Save.

5. Navigate to the Targets tab for UMSJMSSystemResource. Un-target the
UMSJMSSystemResource cluster(s) by deselecting the cluster check box. Click Save.

6. Navigate to UMSAQJMSSystemResource from the JMS Modules table.

7. Navigate to the Targets tab for UMSAQJMSSystemResource and target the
UMSAQJMSSystemResource to the same cluster from which you un-targeted the
UMSJMSSYstemResource.

Save the settings.

8. Click shopping cart on top right corner and select commit changes. Start all Managed
servers in the domain.

A-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	What's New in Oracle User Messaging Service
	New and Changed Features for Release 14c (14.1.2.0.0)

	1 Introduction to Oracle User Messaging Service
	Overview
	Components
	Architecture

	Introduction to Oracle User Messaging Service Configuration

	2 Getting Started with Oracle User Messaging Service
	Installing User Messaging Service
	Upgrading User Messaging Service
	Scalability and High Availability
	Moving from a Test to a Production Environment

	3 Oracle User Messaging Service Drivers
	Email Driver
	Scalability notes
	High Availability notes
	Compatibility notes
	UMS API Programmer notes

	SMS (SMPP) Driver
	Scalability notes
	High Availability notes
	Compatibility notes
	UMS API Programmer notes

	XMPP Driver
	Scalability notes
	High Availability notes
	Compatibility notes
	UMS API Programmer notes

	Extension Driver
	Scalability notes
	High Availability notes
	Compatibility notes
	UMS API Programmer notes

	APNS Driver
	Scalability notes
	High Availability notes
	Compatibility notes
	UMS API Programmer notes
	Send Push Notification
	Send Push Notification With Additional Data
	Send Push Notification With Additional Custom Data
	Send Push Notification With Raw JSON data
	Send Push Notification With Raw JSON data, MDM payload
	Receive unreachable device tokens
	Send Push Notification With Unicode Characters

	4 Configuring Oracle User Messaging Service
	Accessing User Messaging Service Configuration Pages
	Configuring User Messaging Server
	Configuring User Messaging Service Drivers
	Configuring a Driver
	Introduction to Driver Properties
	Securing Passwords
	Saving Driver Properties
	Configuring the Messaging Extension Driver
	Common Properties
	Custom Properties
	Extension Driver Security

	Configuring the Email Driver
	Common Properties
	Email Custom Properties

	Configuring Email Driver with OAuth
	Configuring WebLogic
	Updating Common Properties
	Enabling OAuth for Gmail Accounts
	Prerequisites
	Updating Configuration Properties
	Creating OAuth Client ID
	Generating Tokens
	Verifying Tokens
	Configuring SendAs

	Enabling OAuth for Microsoft 365 Accounts
	Prerequisites
	Updating Configuration Properties
	Generating Tokens Using Authorization Code Flow
	Initiating an App Registration
	Generating Tokens
	Verifying Tokens

	Generating Tokens Using Client Credentials Flow
	Enabling SMTP AUTH
	Configuring SendAsDenied
	Configuring Multiple Inbound Email IDs

	Configuring the SMPP Driver
	Common Properties
	SMPP Custom Properties

	Configuring the XMPP Driver
	Common Properties
	XMPP Custom Properties

	Configuring the APNS Driver
	Prerequisites for Configuring APNS Driver
	Common Properties
	APNS Custom Properties

	Configuring GCM Driver
	Common Properties
	GCM Custom Properties

	Configuring User Messaging Service Access to the LDAP User Profile
	Using Oracle User Messaging Service for Group Messaging
	Configuring Automatic Message Resend
	Securing the Oracle User Messaging Service
	Web Service Security on Notification
	Enabling UMS Web Service Security
	Enabling Client Security
	Keystore Configuration
	Client Aliases
	Securing JMS Resources

	5 Monitoring Oracle User Messaging Service
	Monitoring Oracle User Messaging Service
	Using Message Status
	Deregistering Messaging Client Applications

	Viewing Log Files
	Configuring Logging

	Viewing Metrics and Statistics

	6 Managing Oracle User Messaging Service
	Deploying Drivers
	Deploying Drivers Using the Fusion Middleware Configuration Wizard

	Using UMS Schema Purge Script
	Purging UMS DB Schema Records

	7 Troubleshooting Oracle User Messaging Service
	A Configuring User Messaging Service with AQ JMS

