Oracle® Fusion Middleware
Solutions Guide for Oracle TopLink

12¢ (12.2.1.4.0)
F16475-01
September 2019

ORACLE"

Oracle Fusion Middleware Solutions Guide for Oracle TopLink, 12¢ (12.2.1.4.0)
F16475-01
Copyright © 2014, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XVil
Documentation Accessibility XVili
Related Documents Xviii
Conventions Xviil

What's New in This Guide

New and Changed Features for 12¢ (12.1.3) XiX
Other Significant Changes in this Document for 12c¢ (12.1.3) XiX
New and Changed Features for 12¢ (12.1.2) XiX
Other Significant Changes in this Document for 12c (12.1.2) XX
1 Introduction
About This Guide 1-1
About the Terminology Used in this Documentation 1-1
What You Need to Know First 1-1
The Use Cases 1-2

2 Installing Oracle TopLink

Introduction 2-1
Task 1: Prerequisites 2-1
Task 2: Download TopLink 2-1
Task 3: Run the Installer 2-2
Additional Resources 2-2

3 Using TopLink with WebLogic Server

Introduction to the Solution 3-2
Advantages to Using TopLink with WebLogic Server 3-2
TopLink and Other Fusion Middleware Products 3-3

ORACLE" iii

Implementing the Solution 3-3
Task 1: Prerequisites 3-4
Optional Task: Update the Release of EclipseLink in WebLogic Server
(Optional) 3-4
Task 3: Configure JMX MBean Extensions in WebLogic Server 3-6
Task 4: Use or Reconfigure the Logging Integration 3-7

How the Logging Integration Works 3-8
Viewing Persistence Unit Logging Levels in the Administration Console 3-8
Overriding the Default Logging Integration 3-9
Configuring WebLogic Server to Expose EclipseLink Logging 3-9
Other Considerations 3-9
Task 5: Add Persistence to Your Java Application Using EclipseLink 3-10
Task 6: Configure a Data Source 3-10
Ways to Configure Data Sources for JPA Applications 3-11
Configure a Globally Scoped JTA Data Source 3-11
Create the Data Source in WebLogic Server 3-11
Configure the persistence.xml File 3-12
Configure an Application-Scoped JTA Data Source 3-12
Specify that the Data Source Is Application-Scoped 3-12
Add the JDBC Module to the WebLogic Server Application Configuration 3-13
Configure the JPA Persistence Unit to Use the JTA Data Source 3-13
Configure a non-JTA Data Source and Manage Transactions in the
Application 3-14
Ensure the Settings Match 3-14
Task 7: Extend the Domain to Use Advanced Oracle Database Features 3-15
Task 8: Start WebLogic Server and Deploy the Application 3-16
Task 9: Run the Application 3-16
Task 10: Configure and Monitor Persistence Settings in WebLogic Server 3-16
Additional Resources 3-17
4 Using TopLink with GlassFish Server

Introduction to the Solution 4-1
Advantages to Using TopLink with GlassFish Server 4-2
Relationship of GlassFish Server and TopLink to Fusion Middleware Products 4-3

Implementing the Solution 4-4
Task 1: Prerequisites 4-4
Task 2: Install GlassFish Server 4-5
Task 3: Set Up the Data Source 4-5

Integrate the JDBC Driver for Oracle Database into GlassFish Server 4-6
Create a JDBC Connection Pool for the Resource 4-6
Create the JDBC Resource 4-7

ORACLE

Task 4: Create the persistence.xml File 4-7
Specify the Persistence Provider 4-8
Specify an Oracle Database 4-9
Specify Logging 4-9
Task 5: Set Up GlassFish Server for JPA 4-10
Task 6: Create the Application 4-10
Task 7: Deploy the Application to GlassFish Server 4-10
Task 8: Run the Application 4-10
Task 9: Monitor the Application 4-11
Additional Resources 4-11
5 Using TopLink with JBoss 7 Application Server
Introduction to the Solution 5-1
Implementing the Solution 5-2
Task 1: Prerequisites 5-2
Task 2: Configure EclipseLink as a Module in JBoss 5-3
Task 3: Add ojdbcé6.jar as a Module in JBoss 5-4
Task 4: Create the Driver Definition and the Datasource 5-4
Task 5: Create Users 5-5
Task 6: Modify JBoss Properties 5-5
Task 7: Other Requirements 5-5
Task 8: Start JBoss 5-5
Additional Resources 5-6
6 Using TopLink with IBM WebSphere Application Server
Introduction to the Solution 6-2
Implementing the Solution 6-2
Task 1: Prerequisites 6-2
Task 2: Configure Persistence Units 6-3
Task 3: Configure the Server and the Application to Use EclipseLink 6-4
Modify Server to Make EclipseLink Available Globally 6-4
Package EclipseLink in the Application EAR 6-4
Package EclipseLink in the WAR 6-5
Additional Resources 6-5
7 Migrating from Native TopLink
Introduction to the Solution 7-1
Implementing the Solution 7-2
Task 1: Prerequisites 7-3

ORACLE

Task 2: Replace Deprecated and Removed Native APIs 7-3
APIs Replaced 7-4
Deprecated APIs 7-7
Removed API 7-8
Miscellaneous API Changes 7-8
JPA Persistence Provider Implementation 7-9
Session Finalizers Disabled by Default 7-9
Vector and Hashtable Return Types Changed to List or Map 7-9

Task 3: Rename Packages 7-9

Task 4: Convert XML Configuration Files 7-10
Sessions XML 7-10
Deployment XML 7-10
Persistence XML 7-10
ORM XML 7-11

Task 5: Convert Oracle TopLink Workbench Projects (Optional) 7-11

8 Migrating from Hibernate to TopLink
Introduction to the Solution 8-1
Main Tasks 8-2

Task 1: Prerequisites 8-2

Task 1: Convert the Hibernate Entity Annotation 8-2
Convert the SelectBeforeUpdate, dynamiclnsert and dynamicUpdate
Attributes 8-3
Convert the OptimisticLock Attribute 8-3

Task 2: Convert the Hibernate Custom Sequence Generator Annotation 8-4

Task 3: Convert Hibernate Mapping Annotations 8-4
Convert the @ForeignKey Annotation 8-5
Convert the @Cache Annotation 8-5

Task 4: Modify the persistence.xml File 8-5
Modified persistence.xml File 8-6
Drop and Create the Database Tables 8-6
Create or Extend Database Tables 8-6

Task 5: Convert Hibernate API to EclipseLink API 8-7

Additional Resources 8-8

O Using Multiple Databases with a Composite Persistence Unit
Introduction to the Solution 9-2
Composite Persistence Unit Requirements 9-3
Implementing the Solution 9-4
Task 1: Configure the Composite Persistence Unit 9-4

ORACLE

Vi

Task 2: Use Composite Persistence Units 9-4

Task 3: Deploy Composite Persistence Units 9-5
Additional Resources 9-5
Related Javadoc 9-5

10 Scaling Applications in Clusters

Introduction to the Solution 10-2
Implementing the Solution 10-2
Task 1: Configure Cache Consistency 10-3
Disabling Entity Caching 10-3
Refreshing the Cache 10-3

Setting Entity Caching Expiration 10-4

Setting Optimistic Locking 10-4

Using Cache Coordination 10-5

Setting Cache Synchronization 10-5
Configuring JMS Cache Coordination Using Persistence Properties 10-6
Configuring RMI Cache Coordination Using Persistence Properties 10-6

Cache Coordination and Oracle WebLogic 10-7

Cache Coordination and Glassfish 10-8

Cache Coordination and IBM WebSphere 10-8
Configuring Cache Coordination Using the Cache Coordination API 10-8

Task 2: Ensure EclipseLink Is Enabled 10-8
Task 3: Ensure All Application Servers Are Part of the Cluster 10-8
Using Data Partitioning to Scale Data 10-9
Clustered Databases and Oracle RAC 10-11
Additional Resources 10-11

11 Providing Software as a Service

Introduction to the Solution 11-1

12 Making JPA Entities and JAXB Beans Extensible

Making JPA Entities Extensible 12-1
Main Tasks for Creating and Supporting an Extensible JPA Entity 12-2
Task 1: Configure the Entity 12-2
Annotate the Entity Class with @VirtualAccessMethods 12-2

Add get and set Methods to the Entity 12-3

Define Virtual Attribute Storage 12-3

Use XML 12-4

Task 2: Design the Schema 12-4

ORACLE vii

Task 3: Provide Additional Mappings 12-5

Task 4: Externalizing Extensions Using a MetaDataSource 12-5
Configure the persistence.xml File 12-5
Configure EntityManagerFactory and the Metadata Repository 12-5
Refresh the Metadata Repository 12-6

Code Examples 12-6
Making JAXB Beans Extensible 12-8
Main Steps 12-8
Task 1: Configure the Bean 12-8
Annotate the Bean Class with @Xml VirtualAccessMethods 12-8

Add get and set Methods to the Bean 12-9

Define Virtual Attribute Storage 12-9

Use XML 12-9

Task 2: Provide Additional Mappings 12-10

Code Examples 12-10
Basic Setup 12-10

Define the Tenants 12-12
Additional Resources 12-16

13 Using an External MetaData Source

Introduction to the Solution 13-1
Using the eclipselink-orm.xml File Externally 13-2
Main Tasks 13-2
Task 1: Configure the Persistence Unit 13-2
Task 2: Configure the Server 13-2
Additional Resources 13-2

14 Tenant Isolation Using TopLink

Introduction to the Solution 14-2
Using Single-Table Multi-Tenancy 14-2
Main Tasks for Using Single-Table Multi-Tenancy 14-3
Task 1: Prerequisites 14-3

Task 2: Enable Single-Table Multi-Tenancy 14-3

Using the @Multitenant Annotation 14-4

Using the <multitenant> Element 14-4

Task 3: Specify Tenant Discriminator Columns 14-4

Use the @TenantDiscriminatorColumn Annotation 14-5

Use the <tenant-discriminator-column> Element 14-6

Map Tenant Discriminator Columns 14-6

ORACLE viii

Define Persistence Unit and Entity Mappings Defaults 14-7
Configure Context Properties and Caching Scope 14-8
Configure a Shared Entity Manager 14-9
Configure a Non-Shared Entity Manager 14-9
Configure an Entity Manager 14-10

Task 4: Perform Operations and Queries 14-10

Task 5: Use Single-Table Multi-Tenancy in an Inheritance Hierarchy 14-11

Using Table-Per-Tenant Multi-Tenancy 14-11
Main Tasks for Using Table-Per-Tenant Multi-Tenancy 14-12
Task 1: Prerequisites 14-12

Task 2: Enable Table-Per-Tenant Multi-Tenancy 14-12

Using the @Multitenant and @TenantTableDiscriminator Annotations 14-12

Using the <multitenant> Element 14-13

Task 3: Specify Tenant Table Discriminator 14-13

Using the @TenantTableDiscriminator Annotation 14-13

Using the <tenant-table-discriminator> Element 14-14

Task 4: Specify a Context Property at Runtime 14-14

Task 5: Perform Operations and Queries 14-14

Using VPD Multi-Tenancy 14-15
Main Tasks for Using VPD Multi-Tenancy 14-15
Task 1: Prerequisites 14-16

Task 2: Configure the Virtual Private Database 14-16

Task 3: Configure the Entity or Mapped Superclass 14-16

Task 4: Disable Criteria Generation 14-17

Task 5: Configure persistence.xml 14-17
Additional Resources 14-17

15 Mapping JPA to XML

Introduction to the Solution 15-2
Understanding XML Binding 15-2
Understanding JAXB 15-2
Understanding MOXy 15-3
Understanding an XML Data Representation 15-3
Binding JPA Entities to XML 15-4
Binding JPA Relationships to XML 15-4
Task 1: Define the Accessor Type and Import Classes 15-4

Task 2: Map Privately-Owned Relationships 15-4
Mapping a One-to-One and Embedded Relationship 15-4

Task 3: Map the Shared Reference Relationship 15-6
Mapping a Many-to-One Shared Reference Relationship 15-6

ORACLE

Mapping a Many-to-Many Shared Reference Relationship 15-7

JPA Entities 15-8
Binding Compound Primary Keys to XML 15-9
Taskl: Define the XML Accessor Type 15-9
Task 2: Create the Target Object 15-9
Task 3: Create the Source Object 15-11
Binding Embedded ID Classes to XML 15-12
Taskl: Define the XML Accessor Type 15-12
Task 2: Create the Target Object 15-12
Task 3: Create the Source Object 15-13
Task 5: Implement the DescriptorCustomizer as PhoneNumberCustomizer
Class 15-14
Using the EclipseLink XML Binding Document 15-14
Mapping Simple Java Values to XML Text Nodes 15-15
Mapping a Value to an Attribute 15-15
Mapping from the Java Object 15-15
Defining the Mapping in OXM Metadata Format 15-16
Mapping a Value to a Text Node 15-16
Mapping a Value to a Simple Text Node 15-16
Mapping by Using JAXB Annotations 15-17
Defining the Mapping in OXM Metadata Format 15-17
Mapping Values to a Text Node in a Simple Sequence 15-18
Mapping by Using JAXB Annotations 15-18
Defining the Mapping in OXM Metadata Format 15-19
Mapping a Value to a Text Node in a Sub-element 15-19
Mapping by Using JAXB Annotations 15-19
Defining the Mapping in OXM Metadata Format 15-20
Mapping Values to a Text Node by Position 15-20
Mapping by Using JAXB Annotations 15-21
Using XML Metadata Representation to Override JAXB Annotations 15-22
Task 1: Define Advanced Mappings in the XML 15-22
Task 2: Configure Usage in JAXBContext 15-23
Task 3: Specify the MOXy as the JAXB Implementation 15-23
Using XPath Predicates for Mapping 15-23
Understanding XPath Predicates 15-24
Mapping Based on Position 15-24
Mapping Based on an Attribute Value 15-24
Task 1: Create the Customer Entity 15-25
Task 2: Create the Address Entity 15-26
Task 3: Create the PhoneNumber Entity 15-26
"Self" Mappings 15-27

ORACLE X

Using Dynamic JAXB/MOXy 15-28

Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema 15-28
Bootstrapping from an XML Schema 15-28
The XML Schema 15-29
Handling Schema Import/Includes 15-29
Implementing and Passing an EntityResolver 15-30
Error Handling 15-31
Specifying a ClassLoader 15-31

Task 2: Create Dynamic Entities and Marshal Them to XML 15-31
Creating the Dynamic Entities 15-31
Marshalling the Dynamic Entities to XML 15-32

Task 3: Unmarshal the Dynamic Entities from XML 15-32
Unmarshal DynamicEntities from XML 15-32
Get Data from the Dynamic Entity 15-32
Use DynamicType to Introspect Dynamic Entity 15-32

Additional Resources 15-33

16 Converting Objects to and from JSON Documents

Introduction to the Solution 16-2
Implementing the Solution 16-2
Task 1: Marshalling and Unmarshalling JISON Documents 16-2
Task 2: Specifying JSON Bindings 16-3
Task 3: Specifying JSON Data Types 16-5
Task 4: Supporting Attributes 16-5
Task 5: Supporting no Root Element 16-6
Task 5 Using Namespaces 16-6
Task 6: Using Collections 16-7
Task 7: Mapping Root-Level Collections 16-8
Task 8: Wrapping Text Values 16-8
Additional Resources 16-10

17 Testing JPA Outside a Container

Understanding JPA Deployment 17-1
Using EntityManager 17-2
Configuring the persistence.xml File 17-2
Main Tasks 17-3
Task 1: Use the persistence.xml File 17-3

Task 2: Instantiate EntityManagerFactory 17-3

Using a Property Map 17-3

ORACLE Xi

Main Tasks 17-3

Task 1: Configure the persistence.xml File 17-4

Task 2: Configure the Bootstrapping API 17-4

Task 3: Instantiate the EntityManagerFactory 17-5

Using Weaving 17-5
How to Disable or Enable Weaving in a Java SE Environment 17-5
How to Disable or Enable Weaving in a Java EE Environment 17-5
Additional Resources 17-6
Related Javadoc 17-6

18 Enhancing Performance

Performance Features 18-1
Object Caching 18-2
Caching Annotations 18-2
Using the @Cache Annotation 18-2
Querying 18-3
Read-only Queries 18-3
Join Fetching 18-3
Batch Reading 18-4
Fetch Size 18-4
Pagination 18-4
Cache Usage 18-4
Mapping 18-5
Indirection ("Lazy Loading") 18-5
Read-Only Objects 18-5
Weaving 18-5
Transactions 18-6
Database 18-6
Connection Pooling 18-6
Parameterized SQL and Statement Caching 18-7
Batch Writing 18-7
Serialized Object Policy 18-8
Automated Tuning 18-12
Tools 18-12
Monitoring and Optimizing EclipseLink-Enabled Applications 18-12
Performance Optimization Recommendations and Tips 18-13
Task 1: Measure EclipseLink Performance with the EclipseLink Profiler 18-13
Enabling the EclipseLink Profiler 18-14
Accessing and Interpreting Profiler Results 18-15
Task 2: Measure EclipseLink Performance in the Server Environment 18-15

ORACLE Xii

Task 3: Measure Fetch Group Field Usage 18-16
Task 4: Identify Sources of Application Performance Problems 18-16
Task 5: Modify Poorly-Performing Application Components 18-17
Identifying General Performance Optimizations 18-17
Schema 18-17
Mappings and Descriptors 18-18
Cache 18-18
Data Access 18-18
Queries 18-19
Application Server and Database Optimization 18-19
Task 6: Measure Performance Again 18-19
19 Scaling JPA Applications Using TopLink Grid with Oracle
Coherence
Introduction to the Solution 19-1
Implementing the Solution 19-2
Additional Resources 19-2
20 Exposing JPA Entities Through RESTful Data Services
Introduction to the Solution 20-2
Implementing the Solution 20-2
Step 1: Prerequisites 20-3
Step 2: Create and Configure the Application 20-4
Step 3: Understand RESTful Data Services URI Basics 20-4
Step 4: Represent Entities Using JPA, JAXB, or JSON 20-5
Relationships 20-6
Step 5: Issue Client Calls for Operations on the Persistence Unit 20-9
Specify Media Format in the Header 20-9
About Logging 20-9
Step 6: Implement Security 20-10
Step 7: Understand the Structure of RESTful Data Services Responses 20-10
Basic Data Types 20-10
Links and Relationships 20-11
Additional Resources 20-12
RESTful Data Services API Reference 20-12
Entity Operations 20-13
FIND 20-13
PERSIST 20-14
MERGE 20-15
ORACLE Xiii

DELETE 20-15
Entity Operations on Relationships 20-16
READ 20-16
ADD 20-16
REMOVE 20-18
Query Operations 20-18
Query Returning List of Results 20-19
Update/Delete Query 20-20
Single Result Queries 20-21
Base Operations 20-21
List Existing Persistence Units 20-21
Metadata Operations 20-22
List Types in a Persistence Unit 20-22
List Queries in a Persistence Unit 20-23
Describe a Specific Entity 20-26
21 Keeping Data Fresh Using TopLink Live Data Queries
Introduction to the Solution 21-1
About Oracle Database CQN and TopLink Cache Tracking 21-2
Creating and Using TopLink Live Data Queries 21-2
Implementing the Solution 21-3
Step 1: Prerequisites 21-3
Step 2: Grant Database Privileges 21-3
Step 3: Create the Live Data Query and CQN Subscription 21-3
Additional Resources 21-5
22 Using Database Events to Invalidate the Cache

Introduction to the Solution 22-2
Implementing the Solution 22-3
Task 1: Set up the Database and Tables 22-3
Task 2: Grant User Permissions 22-3
Task 3: Set the Classpath 22-4
Task 4: Identify Classes that will Participate in Change Notification 22-4
Task 5: Add the Database Event Listener 22-4
Task 6: Edit the Java Files 22-5
Set Optimistic Locking 22-5
Exclude Classes from Change Notification (Optional) 22-6

Track Changes in Secondary Tables (Optional) 22-6
Limitations on the Solution 22-6

ORACLE

Xiv

Additional Resources 22-7
23 Using TopLink with NoSQL Databases
Introduction to the Solution 23-2
Implementing the Solution 23-2
Task 1: Prerequisites 23-2
Task 2: Mapping the Data 23-2
Task 3: Defining IDs 23-3
Task 4: Defining Mappings 23-4
Task 5: Using Locking 23-5
Task 6: Defining Queries 23-6
JPQL Queries 23-6
Native Queries 23-7
Task 7: Connecting to the Database 23-7
Additional Resources 23-8
24 Using Oracle TopLink with the Oracle Database
Introduction to the Solution 24-2
Implementing the Solution 24-2
Using Oracle Platform-Specific APIs 24-2
Using Oracle PL/SQL With EclipseLink 24-3
Executing an Oracle PL/SQL Stored Function 24-4
Main Tasks 24-4
Task 1: Create an Oracle Stored Function That Returns a PL/SQL Record
Type 24-4
Task 2: Define an Object Type Mirror 24-4
Task 3: Define a Java Class Mapping The OBJECT Type 24-5
Task 4: Execute a PL/SQL Stored Function Using JpaEntityManager 24-5
Task 5: Define a Stored Function Using
@NamedPLSQLStoredFunctionQuery 24-5
Task 6: Use the Stored Function in a Query 24-6
Handling PL/SQL arguments for Oracle Stored Procedures 24-6
Using the PLSQLStoredProcedureCall Class 24-6
Mixing JDBC Arguments With Non JDBC Arguments 24-7
Handling IN and OUT Arguments 24-8
Handling IN OUT Arguments 24-9
Using Oracle Virtual Private Database 24-10
Using Oracle Proxy Authentication 24-11
Main Tasks: 24-11
Caching and security 24-12

ORACLE

XV

Using Oracle Virtual Private Database for Row-Level Security 24-13

Using EclipseLink with Oracle RAC 24-13
Accessing a RAC-Enabled database from Java EE Applications 24-13

Task 1: Configure a Multi Data Source or GridLink Data Source 24-14

Task 2: Configure the Persistence Unit 24-14

Task 3: Include the Required JARs 24-14
Accessing a RAC-Enabled Database from Standalone Applications 24-14

Task 1: Create a UCP Data Source 24-14

Task 2: Use the UCP Data Source 24-15

Task 3: Include the Required JARS 24-15

Using Oracle Spatial and Graph 24-15
Additional Resources 24-16

25 Optimizing Persistence Applications for Oracle Exalogic

Introduction to the Solution 25-1
Implementing the Solution 25-2
Task 1: Enable the Exalogic Automated Tuner 25-2
Task 2: Use Serialized Object Policy on Exalogic 25-3
Task 3: Use Cache Coordination with WebLogic Server Clusters on Exalogic 25-4
Task 4: Configure Heterogeneous Batch Writing on Exalogic 25-4
Additional Resources 25-5

ORACLE

XVi

Preface

Audience

ORACLE

Oracle TopLink, with its core features provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation, delivers a standards-based
enterprise Java solution for all of your relational, XML, and JSON persistence
requirements, based on high performance and scalability, developer productivity, and
flexibility in architecture and design.

EclipseLink delivers a standards-based enterprise Java solution for all of your
relational, XML, and JSON persistence requirements, based on high performance and
scalability, developer productivity, and flexibility in architecture and design.

A variety of engineers use TopLink. Users of TopLink are expected to be proficient in
the use of technologies and services related to TopLink (for example, Java
Persistence API). This guide does not include details about related common tasks, but
focuses on TopLink functionality.

Users of this guide include:

» Developers who want to develop applications using any of the following
technologies for persistence services:

— Java Persistence API (JPA) 2.n plus EclipseLink JPA extensions

— Java Architecture for XML Binding 2.n (JAXB) plus EclipseLink Object-XML
extensions

— EclipseLink Database Web Services (DBWS)

Developers should be familiar with the concepts and programming practices of
Java Platform, Standard Edition (Java SE platform), and Java Platform, Enterprise
Edition (Java EE platform).

Developers using EclipseLink JPA should be familiar with the concepts and
programming practices of JPA 2.1, as specified in the Java Persistence
Architecture 2.1 specification at htt p://j cp. org/ en/jsr/detail ?i d=338.

Developers using EclipseLink Object-XML should be familiar with the concepts
and programming practices of JAXB 2.0, as specified in the Java Architecture for
XML Binding 2.0 specification at ht t p: //j cp. or g/ about Java/

comuni t yprocess/ pfd/jsr222/index. htm .

Developers using EclipseLink DBWS should be familiar with the concepts and
programming practices of JAX-WS 2.0, as specified in the Java API for XML-
Based Web Services 2.0 specification at htt p: //j cp. or g/ about Java/

comuni typrocess/ pfd/jsr222/index. htm .

* Administrators and deployers who want to deploy and manage applications using
TopLink persistence technologies. These users should be familiar with basic
operations of the chosen application server.

XVii

http://jcp.org/en/jsr/detail?id=338
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html

Preface

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. cont pl s/ t opi ¢/ | ookup?

ct x=accé&i d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=accid=info or visit http://www.oracle.com/pls/topic/lookup?ctx=accid=trs if
you are hearing impaired.

Related Documents

For more information, see the following documents:

Understanding Oracle TopLink

Java Persistence API (JPA) Extensions Reference for Oracle TopLink

Developing Persistence Architectures Using Oracle TopLink Database Web

Services

Developing Persistence Architectures Using Oracle Toplink Document Data

Bindings

Java API Reference for Oracle TopLink

EclipseLink Documentation Center at htt p: / / ww. ecl i pse. or g/ ecl i psel i nk/

docunent ati on/

Integrating Oracle Coherence

Release Notes for Oracle TopLink

Conventions

The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code

bol d nonospace

in examples, text that appears on the screen, or text that you enter.

Bold monospace type is used in code examples to emphasize certain
items.

ORACLE

XViii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.eclipse.org/eclipselink/documentation/
http://www.eclipse.org/eclipselink/documentation/

What's New Iin This Guide

The following topics introduce the new and changed features of Oracle TopLink and
other significant changes that are described in this guide, and provides pointers to
additional information. This book is the new edition of the formerly titled Solution Guide
for Oracle TopLink.

The following topics introduce the new and changed features of EclipseLink and other
significant changes that are described in this guide, and provides pointers to additional
information.

New and Changed Features for 12¢ (12.1.3)

Oracle TopLink 12¢ (12.1.3) includes the following new and changed features that are
documented in this book. This list does not necessarily include all new or changed
features in this release. It only includes the new features that are documented in this
book.

» Serialized object policy, for storing a serialized version of an entity into a single
column in the database. See "Serialized Object Policy".

* Auomated tuning, for a dynamic single tuning option. See "Automated Tuning" on
page 18-8.

Other Significant Changes in this Document for 12¢ (12.1.3)

For 12¢ (12.1.3), this guide has been updated in several ways. Following are the
sections that have been added or changed.

* Added new chapter, Optimizing Persistence Applications for Oracle Exalogic , that
describes how to configure and enable features when deploying on Oracle
Exalogic.

New and Changed Features for 12¢ (12.1.2)

ORACLE

Oracle TopLink 12c (12.1.2) includes the following new and changed features that are
documented in this book. This list does not necessarily include all new or changed
features in this release. It only includes the new features that are documented in this
book.

EclipseLink 2.4.2 includes the following new and changed features that are
documented in this book. This list does not necessarily include all new or changed
features in this release. It only includes the new features that are documented in this
book.

* Quick installer, which installs TopLink into a location of your choice, including over
an existing Oracle home. See Installing Oracle TopLink.

XiX

ORACLE

What's New in This Guide

Client isolation, where multiple application tenants may share database tables and
schemas. This allows applications to manage entities for multiple tenants in the
same application. See Tenant Isolation Using TopLink.

JSON bindings, for converting objects directly to and from JavaScript Object
Notation (JSON). This can be useful when creating RESTful services, using JSON
messages with Java API for RESTful Web Services (JAX-RS) services. See
Converting Objects to and from JSON Documents,

RESTful persistence, where Java Persistence API (JPA) entities can be exposed
through standards-based RESTful services such as JAX-RS, using either JSON or
XML media. See Exposing JPA Entities Through RESTful Data Services.

Support for TopLink Database Change Notification (DCN), which allows the
database to notify TopLink of database changes so that cached objects can be
invalidated in the shared cache. See Using Database Events to Invalidate the
Cache.

NoSQL database support, allowing objects to be mapped to non-relational
(NoSQL) data sources. See Using TopLink with NoSQL Databases,.

For a complete list of the changes in this release, see htt p: // ww. or acl e. conl
t echnet wor k/ mi ddl ewar e/ t opl i nk/ overvi ew i ndex. htm .

For a complete list of the changes in this release, see http: // ww. ecl i pse. or g/
ecl i pselink/rel eases/2.5. php.

Other Significant Changes in this Document for 12¢ (12.1.2)

For 12c¢ (12.1.2), this guide has been updated in several ways. Following are the
sections that have been added or changed.

For this release of EclipseLink, this guide has been updated in several ways. Following
are the sections that have been added or changed.

Moved installation information from appendix to Installing Oracle TopLink, and
replaced old information with information about the new quick installer.

Moved installation information from appendix to Installing Oracle TopLink,.

Added new chapter, Using TopLink with JBoss 7 Application Server, to describe
how TopLink can be used with applications deployed to JBoss Application Server
7.1.

Added new chapter, Using TopLink with IBM WebSphere Application Server, to
describe how TopLink can be used with applications deployed to IBM WebSphere
Application Server

Added new chapter, Migrating from Native TopLink, to describe migrate
applications using "native" TopLink object-relational mapping (ORM) APIs to the
current EclipseLink APIs, which have been the core libraries in TopLink staring
with TopLink 119, Release 1 (11.1.1).

Added new chapter, Migrating from Native TopLink, to describe migrate
applications using "native" TopLink object-relational mapping (ORM) APIs to the
current EclipseLink APIs.

Added information about data partitioning in Scaling Applications in Clusters .

Split Providing Software as a Service . into four chapters:

XX

http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.eclipse.org/eclipselink/releases/2.5.php
http://www.eclipse.org/eclipselink/releases/2.5.php

ORACLE

What's New in This Guide

— Providing Software as a Service . This is now just an overview of the following
three chapters.

— Making JPA Entities and JAXB Beans Extensible
— Using an External MetaData Source

— Tenant Isolation Using TopLink and also updated this chapter with information
about Virtual Private Database (VPD) multi-tenancy and table-per-tenant multi-
tenancy

Added new chapter, Converting Objects to and from JSON Documents, to
describe how to convert objects directly to and from JSON

Added information about weaving to Testing JPA Outside a Container, to describe
how to use the persistence unit JAR file to test an application outside the container
(for instance, in applications for the Java Platform, Standard Edition (Java SE
platform)).

Added new chapter, Scaling JPA Applications Using TopLink Grid with Oracle
Coherence, to describe how applications can use TopLink Grid to achieve high
availability and increase performance.

Added new chapter, Exposing JPA Entities Through RESTful Data Services, to
describe how to expose JPA entities through Java Persistence API-RESTful
Services (JPA-RS), using either JSON or XML media.

Added new chapter, Using Database Events to Invalidate the Cache, to describe
how to use EclipseLink Database Change Notification (DCN) for shared caching in
a JPA environment. DCN allows the database to notify EclipseLink of database
changes. The changed objects are invalidated in the EclipseLink shared cache.
Stale data can be discarded, even if other applications access the same data in
the database.

Added new chapter, Using Oracle TopLink with the Oracle Database , to describe
how to use the Oracle Database features that are supported by TopLink.

XXi

Introduction

Oracle TopLink is a powerful and flexible Java persistence framework for storing Java
objects in a data store, such as a relational database or a NoSQL database, and for
converting Java objects to XML or JSON documents.

TopLink provides APIs and a run-time environment for implementing the persistence
layer of Java Platform, Standard Edition (Java SE platform), and Java Platform,
Enterprise Edition (Java EE platform) applications.

TopLink's core functionality is provided by EclipseLink, the open source persistence
framework from the Eclipse Foundation. EclipseLink implements Java Persistence API
(JPA), Java Architecture for XML Binding (JAXB), and other standards-based
persistence technologies, plus extensions to those standards. TopLink includes all of
EclipseLink, plus additional features, including Oracle TopLink Grid, which integrates
EclipseLink JPA with the Oracle Coherence cache..

For more information about the EclipseLink project, see Eclipse Persistence Services
Project (EclipseLink) home at htt p: // ww. ecl i pse. org/ ecl i pselink/.

About This Guide

This guide, Solutions Guide for Oracle TopLink, documents a number of scenarios, or
use cases, that illustrate TopLink features and typical TopLink development
processes. These are not tutorials that lead you step-by-step through every task
required to complete a project. Rather, they document general processes and key
details for solving particular problems and then provide links to other documentation
for more information.

About the Terminology Used in this Documentation

"Oracle TopLink" and "TopLink" describe the full Oracle product, including all the
included EclipseLink libraries, features, and APIs, plus the additional Oracle features.
The names "Oracle TopLink" and "TopLink" are used in a general way in this
documentation to refer to the whole product and at times more specifically to the
Oracle-only features. The term "EclipseLink" is used when referring to the EclipseLink
features included in TopLink.

What You Need to Know First

ORACLE

To make good use of this guide, you should already be familiar with the following:

* The concepts and programming practices of the Java SE platform and the Java
EE platform. In the current release, TopLink supports Java EE 6. For more
information, see the following.

Java

— Java home page: http: //ww. oracl e. conf us/ t echnol ogi es/ j ava/
i ndex. htm

1-1

http://www.eclipse.org/eclipselink/
http://www.oracle.com/us/technologies/java/index.html
http://www.oracle.com/us/technologies/java/index.html

Chapter 1
The Use Cases

— Java EE 5 Tutorial: htt p: // downl oad. or acl e. conl j avaee/ 5/t ut ori al / doc/
bnbpy. ht m

— Java EE 6 Tutorial: http: //downl oad. oracl e. conl j avaee/ 6/ tut ori al / doc/
bnbpy. ht m

— Any of the thousands of books and websites devoted to Java.
Oracle Java EE Application Servers

— Oracle WebLogic Server home page: http: // www. or acl e. com t echnet wor k/
m ddl ewar e/ webl ogi ¢/ overvi ew i ndex. ht m

— Oracle GlassFish Server home page: htt p: // www. or acl e. conml t echnet wor k/
m ddl ewar e/ gl assfi sh/ overvi ew i ndex. ht m

Oracle Java EE Integrated Development Environments

— Oracle JDeveloper: htt p: // www. or acl e. com t echnet wor k/ devel oper -t ool s/
j dev/ overvi ew i ndex. ht m

— Oracle Enterprise Pack for Eclipse: htt p: // www. or acl e. cont t echnet wor k/
devel oper-tool s/ eclipse/overvi ew i ndex. htn

If you are working with EclipseLink JPA, you should be familiar with the concepts
and programming practices of JPA 2.1, as specified in the Java Persistence API,
Version 2.1 specification at http: //j cp. org/ en/j sr/ detail ?i d=338.

If you are working with EclipseLink JAXB, you should be familiar with the concepts
and programming practices of JAXB 2.0, as specified in the The Java Architecture
for XML Binding (JAXB) 2.0 specification athttp://jcp.org/en/jsr/detail ?

i d=222.

If you are using JSON data-interchange format, you should be familiar with the
concepts and programming practices of JSON, as described at http://
www. j son. or g/ . For XML, see htt p: //wwv. w3. or g/ XM/

If you are working with EclipseLink DBWS, you should be familiar with the
concepts and programming practices of JAX-WS 2.0, as specified in the Java API
for XML-Based Web Services (JAX-WS) 2.0 specification at http://
jcp.orglen/jsr/detail ?i d=224.

If you are working with REpresentational State Transfer (REST) service, you
should be familiar with concepts and programming practices of REST, as specified
in "JSR 311: JAX-RS: The Java API for RESTful Web Services" at http://
jcp.org/en/jsr/detail ?i d=311.

The Use Cases

The use cases documented in this guide are as follows:

ORACLE

Installing Oracle TopLink - How to download and install standalone TopLink.
Installing Oracle TopLink - How to download and install EclipseLink.

Using TopLink with WebLogic Server - How to use TopLink with WebLogic Server.
Using TopLink with GlassFish Server - How to use TopLink with GlassFish Server.

Using TopLink with JBoss 7 Application Server - How to use TopLink with JBoss 7
Application Server.

1-2

http://download.oracle.com/javaee/5/tutorial/doc/bnbpy.html
http://download.oracle.com/javaee/5/tutorial/doc/bnbpy.html
http://download.oracle.com/javaee/6/tutorial/doc/bnbpy.html
http://download.oracle.com/javaee/6/tutorial/doc/bnbpy.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html
http://jcp.org/en/jsr/detail?id=338
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222
http://www.json.org/
http://www.json.org/
http://www.w3.org/XML/
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=311
http://jcp.org/en/jsr/detail?id=311

Chapter 1
The Use Cases

e Using TopLink with IBM WebSphere Application Server - How to use TopLink with
IBM WebSphere Application Server.

* Migrating from Native TopLink - How to how to migrate applications using native
TopLink object-relational mapping (ORM) API to the current EclipseLink API.

* Migrating from Hibernate to TopLink - How to migrate applications from using
Hibernate JPA to using EclipseLink JPA.

» Using Multiple Databases with a Composite Persistence Unit - How to expose
multiple persistence units (each with unique sets of entity types) as a single
persistence context.

» Scaling Applications in Clusters - How to configure EclipseLink applications to
ensure scalability in clustered application server environments.

» Providing Software as a Service - Overview of TopLink Software as a Service
(SaaSs) features..

* Providing Software as a Service - Overview of EclipseLink Software as a Service
(SaaSs) features..

* Making JPA Entities and JAXB Beans Extensible - How to make JPA entities or
JAXB beans extensible.

» Using an External MetaData Source - How to use an external metadata source.

* Tenant Isolation Using TopLink - How to support multiple application tenants who
share data sources, including tables and schemas.

* Mapping JPA to XML - How to map JPA entities to XML using EclipseLink JAXB.
* Mapping JPA to XML - How to map JPA entities to XML using EclipseLink MOXy.

* Testing JPA Outside a Container - How to test your EclipseLink JPA application
outside the container.

» Enhancing Performance - Getting the best performance out of TopLink.

» Exposing JPA Entities Through RESTful Data Services - How to expose entities
through RESTful services using EclipseLink Java Persistence API for RESTful
Services (JPA-RS).

» Scaling JPA Applications Using TopLink Grid with Oracle Coherence - How to use
TopLink Grid to achieve high availability and increase performance.

» Using Database Events to Invalidate the Cache - How to use EclipseLink
Database Change Notification (DCN) for caching with a shared database in JPA.

* Using TopLink with NoSQL Databases - How to use EclipseLink to map objects to
non-relational (that is, no SQL) data sources.

ORACLE 1-3

Installing Oracle TopLink

This chapter describes how to install Oracle TopLink.

The instructions below tell how to install TopLink using the quick installer jar file
available from the download site. A zip file is also available. If you choose to download
and install using the zip file, instead of the quick installer, follow the instructions in the
readme file included with the zip file.

This chapter includes the following sections:

e Introduction

e Task 1: Prerequisites

e Task 2: Download TopLink
* Task 3: Run the Installer

e Additional Resources

Introduction

TopLink is integrated with several Oracle products, including Oracle WebLogic Server,
Glassfish Server, Oracle JDeveloper, and Oracle Coherence. You can also download
the standalone distribution of TopLink to integrate with other application servers and
use as the persistence provider in your applications. This chapter describes how to
install the standalone distribution.

Task 1: Prerequisites

The complete product requirements list and the latest certification information for the
current version of TopLink are available at:

https://ww. oracl e. coni t echnet wor k/ ni ddl ewar e/ t opl i nk/ overvi ew i ndex. ht m

TopLink requires a Java Virtual Machine (JVM) compatible with JDK 1.6 (or higher).
TopLink also requires internet access to use URL-based schemas and hosted
documentation.

Task 2: Download TopLink

ORACLE

To download a TopLink distribution that is not part of another Oracle download,

1. Go tothe TopLink download page at htt p://ww. or acl e. conl t echnet wor k/
m ddl ewar e/ t opl i nk/ downl oads/ i ndex. ht ni .

2. Select Accept License Agreement to accept the license agreement.

3. Find the version of TopLink you want, and download it to your computer.

2-1

https://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html

Chapter 2
Task 3: Run the Installer

TopLink is available as a Java quick installer named
fmw_version_toplink_quick.jar, where versi on is the TopLink release number.
These instructions explain how to install using the quick installer.

You can download it to any directory.

Task 3: Run the Installer

You can install TopLink into any empty directory. To run the quick installer,

1.

Create a directory where you want to install TopLink, for example C:\topl i nk. The
directory must be completely empty.

Open a command window in the new directory.
Run the command to unarchive the jar file, as described below.
e IfaJRE or JDK is in the path, run the following:
java -jar path\fmw version_toplink quick.jar
where pat h\ is the path to the directory where you downloaded the JAR file.

e Ifavalid JRE or JDK is not in the path, or if you want to use a specific one, run
the following:

JAVA HOVE\java -jar path\fmw version_toplink quick.jar

In the directory structure created from the installation, the TopLink libraries,
schemas, utilities, and documentation are in TOPLI NK_HOME\ or acl e_common
\'modul es\ oracl e. topl i nk_versi on_numand in TOPLI NK_HOVE\t opl i nk.

Additional Resources

See the following for more information about the technologies and tools used to
implement the solutions in this chapter:

ORACLE

For information about using Maven to install TopLink and other Oracle Fusion
Middleware products, see Developing Applications Using Continuous Integration.

For information about installing Oracle WebLogic Server, see Installing and
Configuring Oracle WebLogic Server and Coherence.

For information about installing Oracle Glassfish Server, see Oracle GlassFish
Server Installation Guide.

2-2

https://docs.oracle.com/cd/E26576_01/doc.312/e24935/toc.htm
https://docs.oracle.com/cd/E26576_01/doc.312/e24935/toc.htm

Using TopLink with WebLogic Server

ORACLE

This chapter describes how to use Oracle TopLink as the persistence provider for
applications deployed to Oracle WebLogic Server.
The chapter includes the following sections:

e Introduction to the Solution
* Implementing the Solution

» Additional Resources

Use Case

WebLogic Server developers, administrators, and user want to take advantage of all
the persistence and transformation services provided by TopLink.

Solution

While WebLogic Server can use other persistence providers and TopLink can be used
with other application servers, using WebLogic Server with TopLink provides a number
of advantages.

Components

e WebLogic Server 12c or later. WebLogic Server includes TopLink.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

* A compliant Java Database Connectivity (JDBC) database including Oracle
Database, Oracle Express, MySQL, and so on.

* While it is not required, you may want to use a Java EE integrated development
environment (IDE) for convenience during development.

Samples
See the following EclipseLink samples for related information:
e http://wki.eclipse.org/EclipseLink/Exanpl es/ JPA/ WebLogi c_ Wb _Tutori al

e http://wiki.eclipse.org/EclipseLink/Exanpl es/ JPA
W.S AppScoped_Dat aSour ce

e http://wiki.eclipse.org/EclipseLink/Exanpl es/Distributed

3-1

http://wiki.eclipse.org/EclipseLink/Examples/JPA/WebLogic_Web_Tutorial
http://wiki.eclipse.org/EclipseLink/Examples/JPA/WLS_AppScoped_DataSource
http://wiki.eclipse.org/EclipseLink/Examples/JPA/WLS_AppScoped_DataSource
http://wiki.eclipse.org/EclipseLink/Examples/Distributed

Chapter 3
Introduction to the Solution

Introduction to the Solution

WebLogic Server is a scalable, enterprise-ready Java Platform, Enterprise Edition
(Java EE platform) application server. WebLogic Server's complete implementation of
the Java EE 6 specification provides a standard set of APIs for creating distributed
Java applications that can access a wide variety of services, such as databases,
messaging services, and connections to external enterprise systems. In addition to the
Java EE implementation, WebLogic Server enables enterprises to deploy critical
applications in a robust, secure, highly available, and scalable environment. These
features allow enterprises to configure clusters of WebLogic Server instances to
distribute load, and provide extra capacity in case of hardware or other failures. For
more details about these and other WebLogic Server features, see Introduction to
WebL ogic Server.

TopLink provides APIs and a run-time environment for implementing the persistence
layer of Java EE applications (as well as Java SE applications).

Advantages to Using TopLink with WebLogic Server

While WebLogic Server can use other persistence providers and TopLink can be used
with other application servers, using WebLogic Server with TopLink provides a number
of advantages:

e EclipseLink is the default persistence provider for WebLogic Server domains, with
support for JPA 2.1.

e The EclipseLink implementation of Java Architecture for XML Binding (JAXB) is
the default JAXB implementation in WebLogic Server. EclipseLink fully implements
JAXB and also includes other advanced features. By default, you can take
advantage of EclipseLink JAXB in Java API for XML Web Services (JAX-WS) and
Java API for RESTful Web Services (JAX-RS) applications.

e Oracle WebLogic Suite includes Oracle Coherence, which is a Java-based in-
memory data-grid product that provides data caching, data replication, and
distributed computing services. WebLogic Server and Coherence are tightly
integrated to allow applications to use Coherence data caches. EclipseLink
applications deployed to WebLogic Server can use Oracle TopLink Grid to
integrate EclipseLink JPA with Coherence, using it as a level 2 (L2) cache and
persistence layer for entities. See Developing Applications with Oracle Coherence
and Integrating Oracle Coherence for more information.

¢ Note:

You can also obtain Coherence as a separately licensed product to use
WebLogic Server Standard Edition and WebLogic Server Enterprise
Edition.

* EclipseLink logging integration in WebLogic Server provides a comprehensive,
integrated logging infrastructure. See Task 4: Use or Reconfigure the Logging
Integration.

* WebLogic Server supports Oracle Application Development Framework (Oracle
ADF), an end-to-end Java EE framework, based on Struts and JavaServer Faces

ORACLE 3-2

https://docs.oracle.com/middleware/12213/coherence/integrate/toc.htm

Chapter 3
Implementing the Solution

(JSF). Oracle ADF simplifies application development by providing infrastructure
services and a visual and declarative development experience. TopLink and
Oracle ADF together provide a complete Java EE application infrastructure. How
to use Oracle ADF is beyond the scope of this guide. See Developing Fusion Web
Applications with Oracle Application Development Framework.

WebLogic Server, TopLink, and Oracle ADF are all integrated with Oracle
JDeveloper, Oracle's integrated development environment (IDE) that provides
support for modeling, developing, debugging, optimizing, and deploying Java EE
applications, including applications that use TopLink as the persistence provider
and that are deployed to WebLogic Server. How to use JDeveloper is beyond the
scope of this guide. See htt p: // www. or acl e. com t echnet wor k/ devel oper -

t ool s/j dev/ overvi ew i ndex. ht M for general information about JDeveloper. For
information about JDeveloper tasks, see the JDeveloper online help in the
JDeveloper IDE.

TopLink and Other Fusion Middleware Products

Figure 3-1 shows how WebLogic Server and TopLink are related to and used with
other Oracle products. You might use the products together as follows:

Use JDeveloper (or Oracle Enterprise Pack for Eclipse or NetBeans) to develop
Java EE applications.

Use EclipseLink as the persistence provider.

Use Oracle Coherence (via TopLink Grid integration) for data caching, data
replication and distributed computing services.

Use WebLogic as the application server.

Use the Oracle database for persisting data from EclipseLink JPA applications or
XML for persisting data from EclipseLink JAXB applications.

Figure 3-1 Relationship of WebLogic Server, TopLink, and Related Products

Implementing the Solution

To run EclipseLink JPA applications in WebLogic Server, you must configure
WebLogic Server and coordinate certain settings in it and in your application, as
described in the following tasks:

ORACLE

Task 1: Prerequisites
Optional Task: Update the Release of EclipseLink in WebLogic Server (Optional)
Task 3: Configure JIMX MBean Extensions in WebLogic Server

Task 4: Use or Reconfigure the Logging Integration

3-3

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

Chapter 3
Implementing the Solution

» Task 5: Add Persistence to Your Java Application Using EclipseLink

» Task 6: Configure a Data Source

e Task 7: Extend the Domain to Use Advanced Oracle Database Features
» Task 8: Start WebLogic Server and Deploy the Application

e Task 9: Run the Application

* Task 10: Configure and Monitor Persistence Settings in WebLogic Server

Task 1: Prerequisites

This document is based on the following products and tools, although the principles
apply to any supported database or development environment. It is assumed that the
software is already installed, except where noted in later sections.

* WebLogic Server 12c or later.

For more information and downloads, see htt p://ww. or acl e. coni t echnet wor k/
m ddl ewar e/ webl ogi ¢/ overvi ew i ndex. ht m on the Oracle Technology Network.

e Any compliant Java Database Connectivity (JDBC) database including Oracle
Database, Oracle Express, MySQL, and so on.

For Oracle Database, see http://ww. oracl e. coni t echnet wor k/ dat abase/
enterprise-edition/overview index. htnl. For Oracle Database, Express
Edition, see htt p: // ww. or acl e. conf t echnet wor k/ dat abase/ express-edi ti on/
overvi ew i ndex. ht m . For MySQL, see http://ww. oracl e. cont us/ product s/
nysql /i ndex. htm .

e While it is not required, you may want to use a Java development environment
(IDE) for convenience during development. For example JDeveloper, Oracle
Enterprise Pack for Eclipse, and NetBeans all provide sophisticated Java EE
development tools. Both JDeveloper and Oracle Enterprise Pack for Eclipse
include embedded versions of WebLogic Server, although this guide describes a
standalone instance of WebLogic Server.

For JDeveloper, see htt p: // ww. oracl e. conf t echnet wor k/ devel oper -t ool s/

j dev/ downl oads/ i ndex. ht nl . For Oracle Enterprise Pack for Eclipse, see http://
www. or acl e. cond t echnet wor k/ devel oper -t ool s/ ecl i pse/ overvi ew i ndex. htm .
For NetBeans, see https://wwv. oracl e. coni t ool s/t echnol ogi es/ net beans-
ide. htni.

Optional Task: Update the Release of EclipseLink in WebLogic Server

(Optional)

ORACLE

If you have an older version of WebLogic Server, you can upgrade the version of
EclipseLink used in it. Obtain ecl i psel i nk. j ar from a newer TopLink distribution and
then use the WebLogic Server filtering class loader and the shared library feature, as
described in the instructions below.

The Fil teringC assLoader class provides a mechanism for configuring deployment
descriptors to specify that certain packages are always loaded from the application,
rather than being loaded by the system class loader. You can use this mechanism to
specify that a newer release of EclipseLink be used by an application. For more
information about filtering class loaders in WebLogic Server, see "Using a Filtering
Classloader" in Developing Applications for Oracle WebLogic Server.

3-4

http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.oracle.com/us/products/mysql/index.html
http://www.oracle.com/us/products/mysql/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html
https://www.oracle.com/tools/technologies/netbeans-ide.html
https://www.oracle.com/tools/technologies/netbeans-ide.html

ORACLE

Chapter 3
Implementing the Solution

A shared library is a Java EE module that can be shared by multiple enterprise
applications. A shared library is deployed to a WebLogic Server target, and it can then
be referenced by applications. Upon deployment, WebLogic Server merges the
contents of the shared library with the application. In addition, because shared libraries
can be packaged as standard Java EE archives, any descriptors are also merged with
the application at deployment. For more information about WebLogic Server shared
libraries, see "Creating Shared Java EE Libraries and Optional Packages" in
Developing Applications for Oracle WebLogic Server.

For what is supported in various releases, see the following:

e "Oracle TopLink: JPA Certification" at ht t ps: // www. or acl e. coni t echnet wor k/
m ddl ewar e/ i as/ resour ces-i ndex- 082615. ht m

e "Oracle TopLink and WebLogic Support" at htt ps: // ww. or acl e. com
t echnet wor k/ mi dd| ewar e/ t opl i nk/ overvi ew i ndex. ht m

To update the release of EclipseLink in WebLogic Server, do the following:

1. Download the TopLink version you want from ht t p: / / ww. or acl e. com
t echnet wor k/ mi ddl ewar e/ t opl i nk/ downl oads/ i ndex. ht M and find the
eclipselink.jar file. In the directories created by using the TopLink quick
installer, the ecl i psel i nk. jar file is in oracl e_conmon\ modul es
\oracl e.toplink _version_no. For more information about the quick installer, see
Installing Oracle TopLink.

2. Puttheeclipselink.jar fileinthelib directory of your application.

3. Prepare the shared library as a standard Java EE Enterprise Archive (EAR),
named, for example, ecl i psel i nk-shared-1i b. ear, containing the following
items:

META- | NF/ webl ogi c- appl i cation. xm
META- | NF/ appl i cati on. xm
I'ibl/eclipselink.jar

For more information about creating EARs, see "Creating and Configuring Web
Applications" in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

4. In the application's webl ogi c-appl i cation. xm descriptor file, add a prefer-
appl i cati on- packages element, with the subelement <package-
name>or g. ecl i pse. persi stence. *</ package- nane>, as follows:

<webl ogi c-appl i cati on>
<prefer-application-packages>
<package- nane>or g. ecl i pse. persi st ence. *</ package- name>
</ prefer-application-packages>
</ webl ogi c-appl i cation>

5. Create an appl i cation.xnl file for the application. This file is necessary to
support the runtime library merging. The minimum configuration is as follows:

<application>
<di spl ay- name>ecl i psel i nk- shar ed- | i b</ di spl ay- name>
<nmodul e>
<j ava></java>
</ modul e>
</ application>

3-5

https://www.oracle.com/technetwork/middleware/ias/resources-index-082615.html
https://www.oracle.com/technetwork/middleware/ias/resources-index-082615.html
https://www.oracle.com/technetwork/middleware/toplink/overview/index.html
https://www.oracle.com/technetwork/middleware/toplink/overview/index.html
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html

Chapter 3
Implementing the Solution

6. Add the extension name, the specification version, and the implementation version
to the EAR's META- | NF/ MANI FEST. MF file. For example, if you are using Apache
Ant, you can do the following:

<target name="package" depends="prepare">
<jar destfile="dist/${ant.project.name}.ear">
<metainf dir="etc" includes="*.xm"/>
<mani f est >
<attribute name="Extension-Name" val ue="eclipselink"/>
<attribute name="Specification-Version" value="2.0"/>
<attribute name="Inpl enentation-Version" val ue="2.2.0"/>

</ mani f est >
<fileset dir="build" includes="**/*"[>
</jar>
</target>

At deployment time, WebLogic Server uses the attributes as metadata for the
deployed shared library.

The final EAR file should look like this:

META- | NF/

META- | NF/ MANI FEST. MF

META- | NF/ appl i cation. xm

META- | NF/ webl ogi c- appl i cation. xn
l'ib/

I'ibl/eclipselink.jar

7. Deploy the eclipselink-shared-1ib. ear file to WebLogic Server. This results in
a new library being available on the server, ecl i psel i nk#2. 0@. 2. 0.

8. Inthe webl ogi c-application.xm file of any applications that will use the updated
release of EclipseLink, add a reference to the shared library, as follows:

<webl ogi c-appl i cati on>
<library-ref>
<li brary-name>eclipselink</library-name>
<speci fi cation-version>2. 0</ speci fi cati on-versi on>
<i npl enent ati on-versi on>2. 2. 0</i npl enent at i on- ver si on>
</library-ref>
</ webl ogi c- appl i cation>

Task 3: Configure JMX MBean Extensions in WebLogic Server

WebLogic Server uses Java Management Extensions (JMX) MBeans to configure,
monitor, and manage WebLogic Server resources. For EclipseLink applications,
MBeans are used to monitor and configure aspects of persistence units and are also
used for logging.

Note:

When deployed to WebLogic Server, EclipseLink applications deploy
MBeans when they connect to the database, not at deployment time.

ORACLE 3-6

Chapter 3
Implementing the Solution

For information about how MBeans are used in WebLogic Server, see Developing
Custom Management Utilities Using JMX for Oracle WebLogic Server and Developing
Manageable Applications Using JMX for Oracle WebLogic Server.

For information about EclipseLink logging in WebLogic Server, see Task 4: Use or
Reconfigure the Logging Integration.

By default, when you deploy an EclipseLink application to WebLogic Server, the
EclipseLink runtime deploys the following JMX MBeans to the WebLogic Server IMX
service for each EclipseLink session:

e org.eclipse.persistence.services. Devel opnent Servi ces - This class provides
facilities for managing an EclipseLink session internal to EclipseLink over JMX.

e org.eclipse.persistence. services. Runti meServi ces - This class provides
facilities for managing an EclipseLink session external to EclipseLink over JMX.

Use the API that this IMX MBean exposes to access and configure your EclipseLink
sessions at runtime, using JMX code that you write, or to integrate your EclipseLink
application with a third-party JMX management application, such as JConsole.

To find out how to access information about custom MBeans, you must first enable
anonymous lookup and then use a separate tool to access the MBean information.

To enable anonymous lookup in the WebLogic Server Administration Console, do the
following:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

In the left pane, select your domain to open the Settings page for your domain.
Expand Security > General.

Select Anonymous Admin Lookup Enabled.

g o W D

To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

For the information about accessing the MBean information using various tools, see
"Accessing Custom MBeans," in Developing Manageable Applications Using JMX for
Oracle WebLogic Server.

For information about monitoring custom MBeans in the Administration Console, see
"Monitor Custom MBeans" in Oracle WebLogic Server Administration Console Online
Help.

Task 4: Use or Reconfigure the Logging Integration

ORACLE

By default, EclipseLink logging is integrated into the WebLogic Server logging
infrastructure. Details about how the integration works and how to override it are
described in the following sections. For detailed information about WebLogic Server
logging, see the following:

e Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic
Server

e Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

e The logging topics in Oracle WebLogic Server Administration Console Online Help

3-7

Chapter 3
Implementing the Solution

For information about configuring logging for JPA persistence units, see "How to
Configure Logging" in the EclipseLink documentation at htt p: //wi ki . ecl i pse. or g/
Ecl i pseLi nk/ Exanpl es/ JPA/ Loggi ng.

How the Logging Integration Works

By default, the WebLogic Server logging implementation is injected into the
persistence context, which results in all EclipseLink logging messages being produced
according to the WebLogic Server logging configuration.

As a result of this integration, EclipseLink logging levels are converted to WebLogic
Server logging levels as shown in Table 3-1.

Table 3-1 Mapping of EclipseLink Logging Levels to WebLogic Server Logging
Levels

EclipseLink Logging Levels WebLogic Server Logging Levels
ALL, FINEST, FINER, FINE DEBUG

CONFIG INFO

INFO NOTICE

WARNING WARNING

SEVERE ALERT

OFF OFF

WebLogic Server logging levels are mapped to EclipseLink levels as shown in
Table 3-2.

Table 3-2 Mapping of WebLogic Server Logging Levels to EclipseLink Logging
Levels

___|
WebLogic Server Logging Levels EclipseLink Logging Levels

TRACE, DEBUG FINEST
INFO CONFIG
NOTICE INFO
WARNING WARNING
ERROR, CRITICAL, ALERT SEVERE
EMERGENCY, OFF OFF

Viewing Persistence Unit Logging Levels in the Administration Console

ORACLE

You can see the EclipseLink logging level defined for the persistence unit in the
Administration Console, as described in Task 10: Configure and Monitor Persistence
Settings in WebLogic Server. However, be aware that this logging level, set in the
per si st ence. xn file, is overridden when the default WebLogic Server and
EclipseLink logging integration is used. For information about overriding the
integration, see Overriding the Default Logging Integration.

3-8

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Logging
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Logging

Chapter 3
Implementing the Solution

When the default integration is used, the Enterprise JavaBeans (EJB) logging options
for persistence are mapped through and control EclipseLink’s logging output in the
Administration Console.

Overriding the Default Logging Integration

You set EclipseLink logging levels in the per si st ence. xnl file. However, when you
accept the default logging integration with WebLogic Server, those settings are
ignored, and the logging configuration set in WebLogic Server is used. The
EclipseLink logging levels are used only when you use the native EclipseLink logging
implementation.

You can override the default logging integration by setting the
eclipselink.logging.|ogger property name to a different setting. For example, to
enable the default EclipseLink logging, set the ecl i psel i nk. | oggi ng. | ogger property
as follows:

<property name="eclipselink.|ogging.|ogger" val ue="Defaul t Logger"/>

You can also use a different logging implementation for EclipseLink messages, for
example the j ava. util .| oggi ng package:

<property nanme="eclipselink.|ogging.|ogger" val ue="JavalLogger"/>

Configuring WebLogic Server to Expose EclipseLink Logging

If you use the native EclipseLink logging implementation, you can still display
EclipseLink logging messages in the WebLogic Server domain's log files by
configuring WebLogic Server to redirect Java Virtual Machine (JVM) output to the
registered log destinations.

For more information and instructions for redirecting, see "Redirecting JVM Output" in
Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server. To set
this option in the Administration Console, see "Redirect JVM output” in Oracle
WebLogic Server Administration Console Online Help.

Other Considerations

ORACLE

Other things to consider include the following:

* The message ID 2005000 is used for all EclipseLink log messages.

e Some logging messages handled by the WebLogic Server integrated logger may
show up in the WebLogic Server console or the server log (depending on the
settings of logging levels) during deployment, even though at runtime the
application's entity manager factory will use only the EclipseLink logging
infrastructure and only the EclipseLink logging settings.

e If you use a different release of EclipseLink than the release bundled in your
WebLogic Server installation (by using a filtering class loader), then trying to use
the default integrated logging can lead to errors, due to classloading conflicts. To
work around this issue, explicitly set the ecl i psel i nk. | oggi ng. | ogger property to
something other than the integrated WebLogic Server logger.

3-9

Chapter 3
Implementing the Solution

Task 5: Add Persistence to Your Java Application Using EclipseLink

Using EclipseLink JPA to provide persistence for an application is the fundamental
task presumed by all the other tasks described in this chapter; yet the actual JPA
programming practice is mostly outside the scope of this guide. WebLogic Server
imposes no special requirements on your EclipseLink application, other than the
details described in this chapter.

This chapter describes features, settings, and tasks that are specific to using
EclipseLink (runtime and API) with WebLogic Server. For information about
developing, packaging, and deploying a Java application using JPA, see the following:

e The EclipseLink project wiki at htt p: // wi ki . ecl i pse. or g/ Ecl i pseLi nk

* The EclipseLink Documentation Center at http: //w ki . ecl i pse. or g/
Ecl i pseLi nk/ Docunment ati on_Cent er

* The Java Persistence API, Version 2.1 specification at http://jcp.org/en/jsr/
detai |l ?i d=317

e "PartV, Persistence" in "The Java EE 6 Tutorial" at http://
downl oad. or acl e. com j avaee/ 6/ t ut ori al / doc/ bnbpy. ht m

* Any third-party book that describes programming Java applications using JPA

For more information about TopLink features and concepts, see Introduction and
Understanding Oracle TopLink.

For related WebLogic Server programming topics, see any book in the WebLogic
Server documentation set, in particular the following:

» Developing Enterprise JavaBeans for Oracle WebLogic Server
» Developing Applications for Oracle WebLogic Server

» Deploying Applications to Oracle WebLogic Server

» Developing JDBC Applications for Oracle WebLogic Server

Task 6: Configure a Data Source

In WebLogic Server, you configure database connectivity by adding JDBC data
sources to WebLogic Server domains. Each WebLogic data source contains a pool of
database connections. Applications look up the data source on the Java Naming and
Directory Interface (JNDI) tree or in the local application context and then reserve a
database connection with the get Connecti on() method. Data sources and their
connection pools provide connection management processes to keep the system
running efficiently.

For information about using JDBC with WebLogic Server, see the following:

e For complete documentation about working with JDBC in WebLogic Server, see
Administering JDBC Data Sources for Oracle WebLogic Server, in particular:

— Configuring WebLogic JDBC Resources
— Configuring JDBC Data Sources

ORACLE 3-10

http://wiki.eclipse.org/EclipseLink
http://wiki.eclipse.org/EclipseLink/Documentation_Center
http://wiki.eclipse.org/EclipseLink/Documentation_Center
http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=317
http://download.oracle.com/javaee/6/tutorial/doc/bnbpy.html
http://download.oracle.com/javaee/6/tutorial/doc/bnbpy.html

Chapter 3
Implementing the Solution

» For information about working with JDBC data sources in the WebLogic Server
Administration Console, see the topics under Configure JDBC in Oracle WebLogic
Server Administration Console Online Help.

Ways to Configure Data Sources for JPA Applications

You can configure data sources for JPA applications deployed to WebLogic Server in
a variety of ways, including the following:

e Configure a Globally Scoped JTA Data Source
» Configure an Application-Scoped JTA Data Source

* Configure a non-JTA Data Source and Manage Transactions in the Application

Configure a Globally Scoped JTA Data Source

The most common data source configuration is a globally-scoped JNDI data source,
using Java Transaction APl (JTA) for transaction management, specified in the

persi stence. xni file. Configuration is straightforward, as shown in the following steps,
and multiple applications can access the data source:

* Create the Data Source in WebLogic Server

e Configure the persistence.xml File

Create the Data Source in WebLogic Server

To set up a globally scoped JNDI data source in the WebLogic Server Administration
Console, do the following:

1. Create a new data source, as described in Configure JDBC generic data sources
in Oracle WebLogic Server Administration Console Online Help.

Note:

EclipseLink is compatible with any WebLogic Server data source that
can be accessed using standard JNDI data source lookup by name.
These instructions describe the wizard for a generic data source.

2. Enter values in the Create a New JDBC data source wizard, according to your
requirements. For more information, see Create a JDBC Data Source in Oracle
WebLogic Server Administration Console Online Help.

" Note:

The value used for INDI Name (on the JDBC Datasource Properties
page must be the same as the value used for the <j t a- dat a- sour ce>
element in the per si st ence. xnl file.

3. Configure connection pools, as described in Configuring Connection Pool
Features in Administering JDBC Data Sources for Oracle WebLogic Server. The
connection pool configuration can affect EclipseLink’s ability to handle concurrent

ORACLE 3-11

Chapter 3
Implementing the Solution

requests from the application. Properties should be tuned in the same way any
connection pool would be tuned to optimize resources and application
responsiveness.

Configure the persistence.xml File

In the persi stence. xnl file, specify that transacti on-type is JTA, and provide the
name of the data source in the j t a- dat a- sour ce element (prefaced by j dbc/ or not),
as shown in Example 3-1:

Example 3-1 persistence.xml File With JNDI Data Source Using JTA

<persistence-unit name="exanple" transaction-type="JTA">

<provi der>org. ecl i pse. persi stence. j pa. Persi st enceProvi der </ provi der>

<j ta-dat a- sour ce>JDBC Data Source- 1</t a-data-source>

<cl ass>org. ecl i pse. persi stence. exanpl e. j pa. server. busi ness. Cel | </ cl ass>

<cl ass>org. ecl i pse. persi stence. exanpl e. j pa. server. busi ness. Cel | Attri but e</cl ass>
</ persi stence-unit>

Configure an Application-Scoped JTA Data Source

To configure an application-scoped data source that uses JTA for transaction
management, perform the following steps:

1. Specify that the Data Source Is Application-Scoped
2. Add the JDBC Module to the WebLogic Server Application Configuration
3. Configure the JPA Persistence Unit to Use the JTA Data Source

Specify that the Data Source Is Application-Scoped

To define an application-scoped data source, create a name-j dbc. xni JDBC module
file and place it in the META- | NF folder of the application's EAR file. In that file, add
<scope>Appl i cation</ scope> to the j dbc- dat a- sour ce- par ans section, as shown in
Example 3-2.

Example 3-2 JDBC Data Source Defined in the name-jdbc.xml File

<j dbc-dat a-source ...>

<j dbc- dat a- sour ce- par ams>
<j ndi - name>Si npl eAppScopedDS</ j ndi - name>
<scope>Appl i cati on</ scope>
</j dbc- dat a- sour ce- par ans>
</j dbc- dat a- sour ce>

ORACLE 3-12

Chapter 3
Implementing the Solution

Note:

You can create the framework for the a name- j dbc. xnl file by creating a
globally scoped data source from the WebLogic Server Administration
Console, as described in Configure a Globally Scoped JTA Data Source,
with these differences:

* Do not associate the data source with a server.

e Add the <scope> element manually.

For more information about JDBC module configuration files and j dbc- dat a- sour ce
(including <j dbc-dri ver - par ans> and <j dbc- connect i on- pool - par ans>), see
Configuring WebLogic JDBC Resources in Administering JDBC Data Sources for
Oracle WebLogic Server.

Add the JDBC Module to the WebLogic Server Application Configuration

Add a reference to the JDBC module in the / META- | NF/ webl ogi c- appl i cati on. xm
application deployment descriptor in the EAR file, as shown in Example 3-3. This
registers the data source for use in the application.

Example 3-3 JDBC Module Defined in the weblogic-application.xml File

<w s: nodul e>

<w s: name>Si npl eAppScopedDS</ W s: name>

<w s: type>JDBC</ W s: type>

<w s: pat h>META- | NF/ si npl e-j dbc. xm </ wi s: pat h>
</w s: modul e>

For more information about webl ogi c- appl i cati on. xm application deployment
descriptors, see Understanding Application Deployment Descriptors in Deploying
Applications to Oracle WebLogic Server and Enterprise Application Deployment
Descriptor Elements in Developing Applications for Oracle WebLogic Server.

Configure the JPA Persistence Unit to Use the JTA Data Source

ORACLE

To make it possible for EclipseLink runtime to lazily look up an application-scoped data
source, you must specify an additional data source property in the definition of the
persistence unit in the persi st ence. xm file. For a JTA data source, add a fully
qualified j avax. per si st ence. j t aDat aSour ce property, with the value j ava: / app/

j dbc/ dat a_sour ce_nane, as shown in Example 3-4.

The values of the <j t a- dat a- sour ce> and <j avax. persi stence. j t aDat aSour ce>
properties must match.

Example 3-4 JTA Data Source Definition in the persistence.xml File

<?xm version="1.0" encodi ng="w ndows- 1252" ?>
<persistence xmns:xsi="http://ww. w3. org/ 2001/ XM.Schena- i nst ance"
xsi : schemalLocation="http://java.sun.com xm / ns/ persi stence http://
j ava. sun. conmf xm / ns/ per si st ence/ persi stence_1_0. xsd"
version="1.0" xm ns="http://java.sun.con xm /ns/ persi stence">
<persi stence-unit name="enpl oyee" transaction-type="JTA">
<provi der >or g. ecl i pse. persi stence. j pa. Persi st enceProvi der </ provi der >

3-13

Chapter 3
Implementing the Solution

<j ta- dat a- sour ce>j ava: / app/ j dbc/ Si npl eAppScopedDS</ j t a- dat a- sour ce>
<properties>
<property name="javax. persi stence.|taDataSource"
val ue="j ava:/ app/ j dbc/ Si mpl eAppScopedDS" />
</ properties>
</ persi stence-unit>
</ persi st ence>

Configure a non-JTA Data Source and Manage Transactions in the Application

To configure a non-JTA data source managed by the application, follow the
procedures described in Configure an Application-Scoped JTA Data Source, but
configure the JPA persistence unit to use a non-JTA data source by specifying a not-
JTA data source, as shown in Example 3-5.

Example 3-5 non-JTA Data Source Definition in the persistence.xml File

<?xm version="1.0" encodi ng="w ndows- 1252" ?>
<persistence xmns:xsi="http://ww. w3. org/ 2001/ XM.Schena- i nst ance"
xsi : schemalLocation="http://]ava. sun.com xm / ns/ persi stence http://
j ava. sun. com xm / ns/ per si st ence/ persi stence_1_0. xsd"
version="1.0" xm ns="http://java. sun.com xm / ns/ persi st ence" >
<persi stence-unit name="enpl oyee" transaction-type="RESOURCE LOCAL">
<provi der >or g. ecl i pse. persi stence. j pa. Persi st enceProvi der </ provi der >
<non- j t a- dat a- sour ce>0Or acl eDS</ non-j t a- dat a- sour ce>
<properties>
<property name="j avax. persi st ence. nonJt aDat aSour ce"
val ue="0Oracl eDS" />
</ properties>
</ persi st ence-unit >
</ persi st ence>

Write the code in your application to handle the transactions as described, for
example, in Transactions in EJB Applications in Developing JTA Applications for
Oracle WebLogic Server.

Ensure the Settings Match

ORACLE

Certain settings in the data source configuration must match certain settings in the
application's ej bMbdul e/ META- | NF/ per si st ence. xm file. For the data source
configuration in WebLogic Server, you can check the settings in the configuration files
or in the Administration Console.

In the Administration Console, review the settings as follows:

1. Inthe Domain Structure tree, expand Services, then select Data Sources.
2. Onthe Summary of JDBC Data Sources page, click the name of the data source.

3. On the Settings for data_source_name > Configuration > General page, find
the value for JINDI Name, for example localDS. If you are using JTA, then the
name must match <j t a- dat a- sour ce> in the persi st ence. xn file.

4. On the Settings for data_source_name > Configuration > Connection Pool
page, review these settings:

e The value for URL must match the j avax. persi st ence. j dbc. url value in the
persi stence. xm file, for example, j dbc: oracl e: thin: @27. 0. 0. 1: 1521: XE.

3-14

Chapter 3
Implementing the Solution

The value for Driver Class Name must match the

j avax. persi stence. jdbc. driver value in the persi stence. xn file, for
example (for a JTA data source),

oracle.jdbc. xa.client. O acl eXADat aSour ce.

Example 3-6 Server Domain config.xml File

<domain...>
<j dbc- syst em r esour ce>
<nane>| ocal JTA</ name>
<t ar get >Admi nSer ver, ManagedSer ver _1, ManagedSer ver _2</target >
<descriptor-file-name>j dbc/ | ocal JTA-4636- dbc. xm </ descri ptor-file-name>
</j dbc-systemresour ce>
</ domai n>

Example 3-6 shows the values that must be shared in the domain's confi g. xnl file
and the application's per si st ence. xn file.

Task 7: Extend the Domain to Use Advanced Oracle Database

Features

ORACLE

To fully support Oracle Spatial and Oracle XDB mapping capabilities (in both
standalone WebLogic Server and the JDeveloper Integrated WebLogic Server), you
must use the t opl i nk-spatial -tenpl ate. | ar file and the t opl i nk-xdb-tenpl ate.jar
file to extend the WebLogic Server domain to support Oracle Spatial and Oracle XDB,
respectively.

To extend your WebLogic Server domain;

1. Download the toplink-spatial -tenpl ate.jar (to support Oracle Spatial) and
topl i nk-xdb-tenpl ate.jar (to support Oracle XDB) files from:

e http://downl oad. oracl e. confotn/javaltoplink/111110/toplink-spati al -
tenplate.jar

http://downl oad. oracl e. conf ot n/java/toplink/ 111110/t opl i nk- xdb-
tenplate.jar

2. Copy the files, as shown in Table 3-3 and Table 3-4.

Table 3-3 File to Support Oracle Spatial

|
File From... To...

sdoapi . j ar ORACLE_DATABASE HOVE/ md/jlib W._HOME/ server/lib

Table 3-4 Files to Support Oracle XDB
]

File From... To...

xdb. jar ORACLE_DATABASE_HOVE/ rdbms/jlib W_HOWE server/lib
xm . jar ORACLE_DATABASE HOME/ i b W. HOVE/ server/lib
xm parserv2.jar ORACLE DATABASE HOVE/li b W. HOVE/ server/lib

3. Start the Config wizard (W._HOVE/ common/ bi n/ confi g. sh (or . bat)).

3-15

http://download.oracle.com/otn/java/toplink/111110/toplink-spatial-template.jar
http://download.oracle.com/otn/java/toplink/111110/toplink-spatial-template.jar
http://download.oracle.com/otn/java/toplink/111110/toplink-xdb-template.jar
http://download.oracle.com/otn/java/toplink/111110/toplink-xdb-template.jar

N o g »

8.

Chapter 3
Implementing the Solution

Select Extend an existing WebLogic domain.
Browse and select your WebLogic Server domain.
Select Extend my domain using an existing extension template.

Browse and select the required template JAR file (t opl i nk-spati al -
tenpl ate. jar for Oracle Spatial, t opl i nk- xdb-tenpl ate. j ar for Oracle XDB).

Complete the remaining pages of the wizard.

For information about using WebLogic Server domain templates, see Domain
Template Reference.

Task 8: Start WebLogic Server and Deploy the Application

For information about deploying to WebLogic Server, see Deploying Applications to
Oracle WebLogic Server. See also Deploying Fusion Web Applications in Developing
Fusion Web Applications with Oracle Application Development Framework.

Task 9: Run the Application

For instructions for starting a deployed application from the WebLogic Server
Administration Console, see "Start and stop a deployed Enterprise application” in
Oracle WebLogic Server Administration Console Online Help.

Task 10: Configure and Monitor Persistence Settings in WebLogic

Server

In the WebLogic Server Administration Console, you can configure a persistence unit
and configure JTA and non-JTA data sources of a persistence unit, as follows:

1.

N o g » » Db

ORACLE

If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

In the left pane of the Administration Console, select Deployments.

In the right pane, select the application or module you want to configure.
Select Configuration.

Select Persistence.

Select the persistence unit that you want to configure from the table.

Review and edit properties on the configuration pages. For help on any page, click
the Help link at the top of the Administration Console.

Properties that can be viewed include:
* Name

* Provider

e Description

e Transaction type

» Data cache time out

* Fetch batch size

» Default schema name

3-16

Chapter 3
Additional Resources

* Values of persistence unit properties defined in the per si st ence. xn file, for
example, ecl i psel i nk. sessi on- nane, ecl i psel i nk. | oggi ng. | evel , and
eclipselink.target-server

You can also set attributes related to the transactional and non-transactional data
sources of a persistence unit, on the Data Sources configuration page.

8. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

For links to other help topics about working with persistence in the Administration
Console, search for "Persistence” in the Table of Contents of Oracle WebLogic Server
Administration Console Online Help.

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

* Oracle WebLogic Server documentation
» Java API Reference for Oracle TopLink, including:
— org.eclipse.persistence
— org.eclipse.persistence.|pa. PersistenceProvider

— org.eclipse.persistence. services. nbean

ORACLE 3-17

Using TopLink with GlassFish Server

This chapter describes how to use Oracle TopLink as the persistence provider for
applications deployed to Oracle GlassFish Server.
This chapter includes the following sections:

e Introduction to the Solution
* Implementing the Solution

* Additional Resources

Use Case

Users want to run applications that employ JPA on Oracle GlassFish Server.

Solution

The Oracle GlassFish platform provides full support for EclipseLink. Developers writing
applications for the GlassFish Server platform can achieve full Java-to-data source
integration that complies with the Java Persistence API (JPA) 2.0 specification.
EclipseLink allows you to integrate Java applications with any data source, without
compromising ideal application design or data integrity.

Components

e GlassFish Server 3.1.2.
e TopLink 12c¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

» EclipseLink 2.3.0 or later.

* Any compliant JDBC database including Oracle Database, Oracle Database
Express Edition, MySQL, and so on.

* While it is not required, you may want to use a Java EE integrated development
environment (IDE) for convenience during development.

Introduction to the Solution

Oracle GlassFish Server is the reference implementation of the Java Platform,
Enterprise Edition (Java EE platform) specification. Built using the GlassFish Server

ORACLE 4-1

Chapter 4
Introduction to the Solution

Open Source Edition, GlassFish Server delivers a flexible, lightweight, and production-
ready Java EE platform.

GlassFish Server is part of the Oracle Fusion Middleware application grid portfolio of
products and is ideally suited for applications requiring lightweight infrastructure with
the most up-to-date implementation of the Java EE platform. GlassFish Server
complements Oracle WebLogic Server, which is designed to run the broader portfolio
of Oracle Fusion Middleware and large-scale enterprise applications.

Advantages to Using TopLink with GlassFish Server

ORACLE

By adding TopLink support, developers writing applications for the GlassFish Server
platform can achieve full Java-to-data source integration that complies with the Java
Persistence API (JPA) 2.0 specification. TopLink allows you to integrate Java
applications with any data source, without compromising ideal application design or
data integrity. In addition, TopLink gives your GlassFish Server platform applications
the ability to store (that is, persist) and retrieve business domain objects using a
relational database or an XML data source as a repository.

While GlassFish Server can use other persistence providers and TopLink can be used
with other application servers, using GlassFish Server with TopLink provides a number
of advantages:

* TopLink is included in all GlassFish Server distributions and is the default JPA
provider.

* TopLink allows applications running on GlassFish Server to use Oracle Coherence
caches. Coherence is a Java-based in-memory application grid product that
provides data caching, data replication, and distributed computing services.
TopLink includes features that allow deployed applications to use Coherence data
caches and to incorporate TopLink Grid as an object-to-relational persistence
framework. How to use this feature is beyond the scope of this guide. See
Integrating Oracle Coherence for more information.

* TopLink logging integration in GlassFish Server provides a comprehensive,
integrated logging infrastructure.

» EclipseLink JAXB is also included in GlassFish versions 3.1.2 and later. Although
it is not the default JAXB implementation, it can be used in JAX-WS and JAX-RS
applications. For more information, see: htt p: // bl og. bdoughan. conf 2012/ 02/
gl assfish-312-is-full-of-noxy. htm

» EclipseLink MOXYy is also included in GlassFish versions 3.1.2 and later. Although
it is not the default JAXB implementation, it can be used in JAX-WS and JAX-RS
applications. For more information, see: htt p: // bl og. bdoughan. cont 2012/ 02/
gl assfish-312-is-full-of-noxy. htm

» GlassFish Server supports the Oracle Application Development Framework
(Oracle ADF), an end-to-end Java EE framework, based on Struts and JavaServer
Faces (JSF). Oracle ADF simplifies application development by providing
infrastructure services and a visual and declarative development experience.
TopLink and Oracle ADF together provide a complete Java EE application
infrastructure. Oracle ADF is beyond the scope of this guide. See Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

4-2

http://blog.bdoughan.com/2012/02/glassfish-312-is-full-of-moxy.html
http://blog.bdoughan.com/2012/02/glassfish-312-is-full-of-moxy.html
http://blog.bdoughan.com/2012/02/glassfish-312-is-full-of-moxy.html
http://blog.bdoughan.com/2012/02/glassfish-312-is-full-of-moxy.html

Chapter 4
Introduction to the Solution

Relationship of GlassFish Server and TopLink to Fusion Middleware

Products

ORACLE

Figure 4-1 illustrates how GlassFish Server and TopLink are related to and used with
other Oracle products. The following are examples of using GlassFish Server and
TopLink with other Oracle Middleware products:

Use EclipseLink as the persistence provider.

Use Oracle Coherence (through Oracle TopLink Grid integration) for data caching,
data replication and distributed computing services.

Use GlassFish as the application server.

Use the Oracle database for persisting data.

" Note:

Oracle Coherence and TopLink Grid are beyond the scope of this guide. For
information about Coherence, see Developing Applications with Oracle
Coherence, and follow links to other Coherence documentation. For
information about TopLink Grid, see Integrating Oracle Coherence.

Figure 4-1 GlassFish Server, TopLink and Other Products in the Oracle Fusion
Middleware Stack

| IDE
GlassFish Server
Oracle TopLink
' EclipseLink
NS Toplink |]
B Grid oh :

¢ |

| Data Source/JDEC
e drﬂl?ﬁ
1 =
=
1 ﬂr,m"l?
Database .

4-3

Chapter 4
Implementing the Solution

Implementing the Solution

To run EclipseLink JPA applications in GlassFish Server, you must configure the
server and coordinate certain server and application settings. These are described in
the following tasks.

Task 1: Prerequisites

Task 2: Install GlassFish Server

Task 3: Set Up the Data Source

Task 4: Create the persistence.xml File

Task 5: Set Up GlassFish Server for JPA

Task 6: Create the Application

Task 7: Deploy the Application to GlassFish Server
Task 8: Run the Application

Task 9: Monitor the Application

Task 1. Prerequisites

This document is based on the following products and tools, although the principles
apply to any supported database or development environment. It is assumed that the
software is already installed, except where noted in later sections.

ORACLE

GlassFish Server 3.1.2.

For more information and downloads, see htt p://ww. or acl e. coni t echnet wor k/
m ddl ewar e/ gl assfi sh/ overvi ew i ndex. ht M on the Oracle Technology Network.

EclipseLink 2.4.1.

For more information and downloads, see http://wwv. ecl i pse. or g/
eclipselink/ on the EclipseLink website.

Any compliant JDBC database including Oracle Database, Oracle Database
Express Edition, MySQL, and so on.

For Oracle Database, see http: //wwv. or acl e. com t echnet wor k/ dat abase/
enterprise-edition/overview index.htn .

For Oracle Database Express Edition, see htt p: // ww. or acl e. con t echnet wor k/
dat abase/ express-edition/overview index. htm .

For MySQL, see http://ww. oracl e. conf us/ product s/ mysql /i ndex. htm .

While it is not required, you may want to use a Java EE integrated development
environment (IDE) for convenience during development. For example, Oracle
JDeveloper, Oracle Enterprise Pack for Eclipse, and NetBeans all provide
sophisticated Java EE development tools.

For JDeveloper, see http: // ww. or acl e. cont t echnet wor k/ devel oper -t ool s/
j dev/ downl oads/ i ndex. ht i .

For Oracle Enterprise Pack for Eclipse, see http://wm. oracl e. com
t echnet wor k/ devel oper -t ool s/ ecl i pse/ overvi ew i ndex. htni .

4-4

http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
http://www.eclipse.org/eclipselink/
http://www.eclipse.org/eclipselink/
http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.oracle.com/us/products/mysql/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html

Chapter 4
Implementing the Solution

For NetBeans, see htt ps: //wwv. or acl e. coni t ool s/t echnol ogi es/ net beans-
ide. htn.

Task 2: Install GlassFish Server

EclipseLink is included with the GlassFish Server distribution. You can find instructions
for installing and configuring GlassFish Server at this URL:

http://docs. oracle. com cd/ E26576_01/i ndex. htm
The EclipseLink modules appear as separate JAR files in the modul es directory.

* \glassfish\ nodul es

org.eclipse.persistence. antlr.jar
org.eclipse. persistence.asmjar

org. eclipse. persistence.core.jar
org.eclipse. persistence.jpa.jar

org. eclipse. persistence. j pa. nodel gen. jar
org. eclipse. persistence. noxy. j ar

org. eclipse. persistence.oracle.jar

O O 0O o o o o -

" Note:

e Thetoplink-grid.jar file, which provides support for Coherence
caches, is available only if you purchase the license for Oracle
Coherence. For more information about the functionality provided by the
toplink-grid.jar file, see Integrating Oracle Coherence.

e Theorg.eclipse. persistence.oracle.jar file is available with
GlassFish and provides Oracle Database-specific functionality for
EclipseLink. This file is used only for applications running against an
Oracle Database.

Object-XML (also known as JAXB support) is a component that enables you to bind
Java classes to XML schemas. This support is provided by the
org. eclipse. persi stence. noxy.jar.

Object-XML (also known as JAXB support, or MOXy) is a component that enables you
to bind Java classes to XML schemas. This support is provided by the
org. eclipse. persi stence. moxy. jar.

Task 3: Set Up the Data Source

Configuring an Oracle database as a JDBC resource for a Java EE application
involves the following steps:

1. Integrate the JDBC Driver for Oracle Database into GlassFish Server

2. Create a JDBC Connection Pool for the Resource

ORACLE 4.5

https://www.oracle.com/tools/technologies/netbeans-ide.html
https://www.oracle.com/tools/technologies/netbeans-ide.html
http://docs.oracle.com/cd/E26576_01/index.htm

3.

Chapter 4
Implementing the Solution

Create the JDBC Resource

Integrate the JDBC Driver for Oracle Database into GlassFish Server

To integrate the JDBC driver, copy its JAR file into the domain and then restart the
domain and instances to make the driver available.

1.

Copy the JAR file for the JDBC driver into the domain's | i b subdirectory, for
example:

cd /hone/ gf user/ gl assfish3
cp oracle-jdbc-drivers/ojdbc6.jar glassfish/domains/domainl/lib

Note that you do not have to restart GlassFish Server; the drivers are picked up
dynamically.

If the application uses Oracle Database-specific extensions provided by
EclipseLink, then the driver must be copied to the | i b/ ext directory. For more
information, see Oracle Database Enhancements in the Oracle GlassFish Server
Application Development Guide.

You can use the GlassFish Server Administration Console or the command line to
restart instances in the domain to make the JDBC driver available to the instances.

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, expand the Cluster node. Select
the node for the cluster and on its General Information page, click the Instances
tab. Select the instances you want to restart. For more information, see To Start
Clustered GlassFish Server Instances in GlassFish Server Administration Console
Online Help.

To start a standalone instance, expand the Standalone Instances node. For each
instance that you are starting, select the instance in the Server Instances table.
Click Start. The status of each instance is updated in the Server Instances table
when the instance is started. For more information, see To Start Standalone
GlassFish Server Instances in GlassFish Server Administration Console Online
Help.

To use the command line:

Run the restart-i nst ance subcommand to restart the instances. These
commands assume that your instances are named pnd-i 1 and pnd-i 2.

restart-instance pnd-il
restart-instance pnd-i2

Create a JDBC Connection Pool for the Resource

ORACLE

You can create a JDBC connection pool from the GlassFish Server Administration
Console or from the command line.

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, expand the Common Tasks node,

then click the Create New JDBC Connection Pool button in the Common Tasks

page. Specify the name of the pool, the resource type, the name of the database
provider, the data source and driver class names, and other details. For more
information, see To Create a JDBC Connection Pool in GlassFish Server

Administration Console Online Help.

4-6

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm#giqbi

Chapter 4
Implementing the Solution

To use the command line:

1. Use the create-jdbc-connection-pool subcommand to create the JDBC
connection pool, specifying the database connectivity values. In this command,
note the use of two backslashes (\\) preceding the colons in the URL property
value. These backslashes cause the colons to be interpreted as part of the
property value instead of as separators between property-value pairs, for example:

create-j dbc- connecti on- pool
- - dat asour cecl assnane oracl e. j dbc. pool . Or acl eDat aSour ce
--restype javax.sql.DataSource
--property User=snmith\\:Password=password\\:url=jdbc\\:oracle\\:thin\
\': @ode_nane. exanpl e. com \: 1521\\: smi t hdb
pool bvcal | backbmt

2. Verify connectivity to the database.

pi ng- connect i on- pool pool _name

Create the JDBC Resource

You can use the GlassFish Server Administration Console to create the JDBC
resource or you can use the command line.

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, expand the Resources node, then
the JDBC node, then the JIDBC Resources node to open the JDBC Resources page.
Provide a unique JNDI resource hame and associate the resource with a connection
pool. For more information, see "To Create a JDBC Resource" in the GlassFish Server
Administration Console Online Help.

To use the command line:

Use the creat e-j dbc- resour ce subcommand to create the JDBC resource, and hame
it so that the application can discover it using JNDI lookup, for example:

create-jdbc-resource --connectionpoolid pool bvcal | backbnt jdbc/bvcal | backbnt

Task 4. Create the persistence.xml File

ORACLE

Example 4-1 illustrates a sample per si st ence. xm file that specifies the default
persistence provider for EclipseLink,

org. eclipse. persistence. jpa. Persi st enceProvi der. For more information about
this file, see About the Persistence Unit in Understanding Oracle TopLink.

If you are using the default persistence provider, then you can specify additional
database properties described in Java Persistence API (JPA) Extensions Reference
for Oracle TopLink.

Several of the values you enter in the file must match the values you chose when you
defined the cluster, connection, and connection pool properties in GlassFish Server,
as follows:

JDBC Data Source Properties:

* Name: The name of the data source, which is typically the same as the JNDI
name, for example j dbc/ bvcal | backbnt .

4-7

Chapter 4
Implementing the Solution

* JNDI Name: The JNDI path to where this data source is bound. This must be the
same name as the value for the <j t a- dat a- sour ce> element in per si st ence. xnl ,
for example j dbc/ bvcal | backbnt .

- Database Type: Oracl e

« Database Driver: (default) Oracle's Driver (Thin XA) for Instance connections;
Versions: 9.0.1 and later

Connection Properties:

- Database Name: The name of the database, for example, XE for Oracle Database
Express Edition samples.

e Host Name: The IP address of the database server, for example 127. 0. 0. 1 for a
locally hosted database.

« Port: The port number on which your database server listens for connection
requests, for example, 1521, the default for Oracle Database Express Edition 11g.

- Database User Name: The database account user name used to create database
connections, for example hr for Oracle Database Express Edition 11g samples.

* Password: Your password.

Select Targets:

» Servers | Clusters: Select the administration server, managed servers, or clusters
to which you want to deploy the data source. You can choose one or more.

The sample per si st ence. xnl file in Example 4-1 highlights the properties defining the
persistence provider, the JTA data source, and logging details. In this example, the
logging level is set to FI NE. At this level, SQL code generated by EclipseLink is logged
to the server. | og file. For more information about these properties, see:

» Specify the Persistence Provider.

» Specify an Oracle Database.

* Specify Logging.
Example 4-1 Sample persistence.xml File

<?xm version="1.0" encodi ng="UTF-8"?>
<persistence xm ns="http://java.sun.com xn /ns/ persi stence" version="2.0">
<persi stence-unit name="pul" transaction-type="JTA">
<provi der>org. ecl i pse. persi st ence. j pa. Persi st enceProvi der </ provi der >
<j ta-dat a-source>j dbc/ bvcal | backbnt </ |t a- dat a- sour ce>
<properties>
<property name="eclipselink.|ogging.level" val ue="FINE"/>
<property name="eclipselink.ddl - generation”
val ue="drop- and- creat e-t abl es"/>
</ properties>
</ persi st ence-unit >
</ persi st ence>

Specify the Persistence Provider

ORACLE

The persistence provider defines the implementation of JPA. It is defined in the
provi der element of the persi stence. xn file. Persistence providers are vendor-
specific. The persistence provider for EclipseLink is

org. eclipse. persistence. jpa. Persi stenceProvi der.

4-8

Chapter 4
Implementing the Solution

Specify an Oracle Database

You specify the database connection details in the per si st ence. xnl file. GlassFish
Server uses the bundled Java DB (Derby) database by default, named j dbc/

__defaul t. To use a nondefault database, such as the Oracle Database, either specify
a value for the j t a- dat a- sour ce element, or set the t ransacti on-type element to
RESOURCE_LOCAL and specify a value for the non-j t a- dat a- sour ce element.

If you are using the default persistence provider,

org. eclipse. persistence.j pa. Persi st enceProvi der, then the provider attempts to
automatically detect the database type based on the connection metadata. This
database type is used to issue SQL statements specific to the detected database type.
You can specify the optional ecl i psel i nk. t ar get - dat abase property to guarantee
that the database type is correct.

For more information about specifying database properties in a per si st ence. xm file
for GlassFish Server, see Specifying the Database for an Application in the Oracle
GlassFish Server Application Development Guide.

Specify Logging

ORACLE

EclipseLink provides a logging utility even though logging is not part of the JPA
specification. Hence, the information provided by the log is EclipseLink JPA-specific.
With EclipseLink, you can enable logging to view the following information:

e Configuration details
e Information to facilitate debugging
e The SQL that is being sent to the database

You can specify logging in the persi st ence. xm file. EclipseLink logging properties let
you specify the level of logging and whether the log output goes to a file or standard
output. Because the logging utility is based onj ava. util .| oggi ng, you can specify a
logging level to use.

The logging utility provides nine levels of logging control over the amount and detail of
the log output. Use ecl i psel i nk. | oggi ng. | evel to set the logging level, for example:

<property name="eclipselink.|ogging.level" val ue="FINE"/>

By default, the log output goes to Syst em out or to the console. To configure the
output to be logged to a file, set the property ecl i psel i nk. | oggi ng. fil e, for example:

<property name="eclipselink.logging.file" value="output.log"/>

EclipseLink's logging utility is pluggable, and several different logging integrations are
supported, including j ava. util .| oggi ng. To enable java. util .| oggi ng, set the
property ecl i psel i nk. | oggi ng. | ogger, for example:

<property nane="eclipselink.|ogging.|ogger" val ue="JavalLogger"/>

While running inside GlassFish Server, EclipseLink is configured by GlassFish Server
to use JavalLogger by default. The log is always redirected to the GlassFish Server
server. | og file. For more information, see Setting Log Levels" in Oracle GlassFish
Server Administration Guide.

4-9

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm#gbwmj
http://docs.oracle.com/cd/E26576_01/doc.312/e24928/logging.htm#gklml

Chapter 4
Implementing the Solution

For more information about EclipseLink logging and the levels of logging available in
the logging utility, see Persistence Property Extensions Reference in Java Persistence
API (JPA) Extensions Reference for Oracle TopLink.

Task 5: Set Up GlassFish Server for JPA

GlassFish Server Application Development Guide describes server-specific
considerations on setting up GlassFish Server to run applications that employ JPA:

http://docs. oracl e. con cd/ E26576_01/ doc. 312/ 24930/ j pa. ht m
It provides more information about these topics:

e "Specifying the Database for an Application," for information about database
connection properties

» "Specifying the Persistence Provider for an Application," for setting the default or
non-default persistence provider for an application

e "Primary Key Generation Defaults," for the default persistence provider's primary
key generation defaults

e "Automatic Schema Generation," for information on annotations and options to
manage automatic schema generation

e "Restrictions and Optimizations," for restrictions and performance optimizations
that affect using the Java Persistence API

Task 6: Create the Application

To create an application that uses EclipseLink as its JPA persistence provider, you
may want to use a Java EE IDE for convenience during development. For example,
JDeveloper, Oracle Enterprise Pack for Eclipse, and NetBeans provide sophisticated
Java EE development tools, including support for EclipseLink. See Key Tools in
Understanding Oracle TopLink.

For guidance in writing your application, see these topics from the Configuring the
Java Persistence Provider chapter in Oracle GlassFish Server Application
Development Guide.

Task 7: Deploy the Application to GlassFish Server

For information about deploying to GlassFish Server, see Deploy Applications or
Modules, To Deploy an Enterprise Application, and To Deploy a Web Application in
GlassFish Server Administration Console Online Help. See also Oracle GlassFish
Server Application Deployment Guide, at:

http://docs. oracle. com cd/ E26576_01/i ndex. ht m

Task 8: Run the Application

For instructions for starting a deployed application from the GlassFish Server
Administration Console, see Application Client Launch and To Launch an Application
in GlassFish Server Administration Console Online Help.

ORACLE 4-10

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm
http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm
http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm
http://docs.oracle.com/cd/E26576_01/index.htm

Chapter 4
Additional Resources

Task 9: Monitor the Application

GlassFish Server provides a monitoring service to track the health and performance of
an application. For information about monitoring an application from the console, see
the Monitoring and Monitoring Data topics in GlassFish Server Administration Console
Online Help. For information about monitoring the application from the command line,
see Administering the Monitoring Service in Oracle GlassFish Server Administration
Guide, at:

http://docs. oracl e. con cd/ E26576_01/ doc. 312/ €24928/ moni t ori ng. ht m

Additional Resources

ORACLE

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

e Oracle GlassFish Server Administration Guide
http://docs.oracle.con cd/ E26576_01/ doc. 312/ 24928/t oc. ht m

* Oracle GlassFish Server Application Deployment Guide
http://docs. oracl e. cont cd/ E26576_01/ doc. 312/ e24929/t oc. ht m

e Oracle GlassFish Server Application Development Guide
http://docs. oracle.conf cd/ E26576_01/ doc. 312/ €24930/t oc. ht m

* Oracle GlassFish Server 3.1.2 to 3.1.2.2 Documentation Library
http://docs. oracl e. com cd/ E26576_01/i ndex. ht m

4-11

http://docs.oracle.com/cd/E26576_01/doc.312/e24928/monitoring.htm
http://docs.oracle.com/cd/E26576_01/doc.312/e24928/toc.htm
http://docs.oracle.com/cd/E26576_01/doc.312/e24929/toc.htm
http://docs.oracle.com/cd/E26576_01/doc.312/e24930/toc.htm
http://docs.oracle.com/cd/E26576_01/index.htm

Using TopLink with JBoss 7 Application
Server

This chapter introduces and describes how to use Oracle TopLink as the persistence
provider for applications deployed to JBoss Application Server 7.1.
This chapter includess the following sections:

e Introduction to the Solution
* Implementing the Solution

* Additional Resources

Use Case

TopLink can be used with a number of popular Java EE application servers, including
JBoss Application Server.

Solution

Configure JBoss to use EclipseLink runtime, and deploy applications developed using
EclipseLink APIs.

Components

e TopLink 12c¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

» EclipseLink 2.4 or later.
* JBoss Application Server 7.x.

* A compliant Java Database Connectivity (JDBC) database, such as Oracle
Database, Oracle Express, MySQL, the HSQL database embedded in JBoss
Application Server, etc.

Introduction to the Solution

JBoss Application Server implements the Java Platform, Enterprise Edition (Java EE).
JBoss 7 fully supports Java EE 6, while JBoss 6 officially supports only the Java EE 6
Web Profile.

ORACLE 5-1

Chapter 5
Implementing the Solution

By configuring JBoss to support EclipseLink, you can take advantage of EclipseLink's
full support for Java Persistence API (JPA), Java Architecture for XML Binding (JAXB),
including EclipseLink's extensions to those technologies, as well as EclipseLink
Database Web Services (DBWS) to access to relational database artifacts via a Web
service.

Implementing the Solution

To develop, deploy and run EclipseLink applications in JBoss Application Server 7,
you must create EclipseLink as a module of JBoss. You must also create other
modules, such as a JDBC driver, etc., in order to run applications.

This section contains the following tasks for using EclipseLink with JBoss 7.1:

e Task 1: Prerequisites

e Task 2: Configure EclipseLink as a Module in JBoss

e Task 3: Add ojdbcé6.jar as a Module in JBoss

* Task 4: Create the Driver Definition and the Datasource
* Task 5: Create Users

e Task 6: Modify JBoss Properties

e Task 7: Other Requirements

* Task 8: Start JBoss

Task 1: Prerequisites

ORACLE

Ensure that you have installed the following components:

» JBoss, version 7 or later. These instructions are based on JBoss release 7.1.1.

Download JBoss from htt p: / / ww. j boss. or g/ j bossas/ downl oads/ . The version
of JBoss must be identified as "Certified Java EE6." Version 7.1.1 or later is
recommended.

e TopLink 12c¢ (12.1.2.0.0) or later.

Download TopLink from htt p: // ww. or acl e. coni t echnet wor k/ mi ddl ewar e/
t opl i nk/ downl oads/ i ndex. htni .

EclipseLink 2.4 or later.
Download EclipseLink from htt p: // wwv. ecl i pse. or g/ ecl i psel i nk/ downl oads/ .

» Any compliant Java Database Connectivity (JDBC) database including Oracle
Database, Oracle Express, MySQL, the HSQL database embedded in JBoss
Application Server, and so on.

Note:

Oracle XML DB (XDB) and JBoss Application Server both use port 8080
by default. If you have both available at the same URI, for example

| ocal host , you must reconfigure one or the other to use a different port,
for example 8081.

5-2

http://www.jboss.org/jbossas/downloads/
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.eclipse.org/eclipselink/downloads/

Chapter 5
Implementing the Solution

For the Oracle Database, see htt p://ww. oracl e. conf t echnet wor k/ dat abase/
enterprise-edition/overview index. htm . Forthe Oracle Database, Express
Edition, see http: // wwmv. or acl e. com t echnet wor k/ dat abase/ express-edi ti on/
overvi ew i ndex. ht m . For MySQL, see http://wwmv. oracl e. conf us/ product s/
nysql /i ndex. ht m . For information about the embedded HSQL database, see the
JBoss documentation.

* While it is not required, you may want to use a Java development environment
(IDE) for convenience during development. For example JDeveloper, Oracle
Enterprise Pack for Eclipse, and NetBeans all provide sophisticated Java EE
development tools that support TopLink.

For JDeveloper, see htt p: // ww. or acl e. conf t echnet wor k/ devel oper -t ool s/

j dev/ downl oads/ i ndex. ht ml . For Oracle Enterprise Pack for Eclipse, see http://
www. or acl e. cont t echnet wor k/ devel oper -t ool s/ ecl i pse/ overvi ew i ndex. htni .
For NetBeans, see https://wwv. oracl e. coni t ool s/t echnol ogi es/ net beans-

i de.htn.

Task 2: Configure EclipseLink as a Module in JBoss

To configure EclipseLink as a module in JBoss:

1. Create a directory as follows:
JBOSS_ HOVE\ nodul es\ or g\ ecl i pse\ persi st ence\ mai n

2. Copy eclipselink.jar tothe directory created in step 1. (The ecl i psel i nk. j ar
file is located in the oracl e_conmon\ nodul es\ or acl e. t opl i nk_ver _no directory
created by the TopLink quick installer.)

Copy eclipselink.jar to the directory created in step 1. (The ecl i psel i nk.j ar
file is located in the ecl i psel i nk/j1ib directory of the ecl i psel i nk-ver _no. zip
file.)

3. Create anmodul e. xm file in the directory created in step 1, with the following
content:

<nodul e xm ns="urn: j boss: modul e: 1. 1" nane="org. ecl i pse. persi stence">

<resour ces>
<resource-root path="eclipselink.jar"/>
<l-- Insert resources here -->

</resour ces>

<dependenci es>
<modul e name="j avax. api "/ >
<modul e name="j avax. persi stence. api "/ >
<modul e name="j avax. transaction. api "/ >
<modul e name="j avax. val i dati on. api "/ >
<modul e name="j avax. xnl . bi nd. api "/ >
<modul e name="org. antlr"/>
<nodul e nane="or g. apache. comons. col | ections"/>
<modul e name="org. domdj "/ >
<modul e name="org.j avassist"/>
<modul e name="org.j boss. | oggi ng"/>
<modul e name="com oracl e. oj dbc6"/>

</ dependenci es>

</ modul e>

ORACLE 5-3

http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.oracle.com/us/products/mysql/index.html
http://www.oracle.com/us/products/mysql/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html
http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html
https://www.oracle.com/tools/technologies/netbeans-ide.html
https://www.oracle.com/tools/technologies/netbeans-ide.html

Chapter 5
Implementing the Solution

Task 3: Add ojdbc6.jar as a Module in JBoss

Add the Oracle thin driver oj dbc6. j ar as a module within JBoss, as follows:

1.

Create the module directory:
JBOSS_ HOVE\ nodul es\ conl or acl e\ oj dbc6\ mai n
Copy oj dbcé. j ar to the module directory created in step 1.

Create a modul e. xm file in the module directory created in step 1, with the
following contents:

<modul e xm ns="urn: j boss: modul e: 1. 1" nanme="com or acl e. oj dbc6" >
<resources>
<resource-root path="ojdbc6.jar"/>
<lI-- Insert resources here -->
</resources>
<dependenci es>
<modul e name="j avax. api "/ >
</ dependenci es>
</ modul e>

Task 4: Create the Driver Definition and the Datasource

Create the driver definition and create the datasource.

The following instructions tell how to configure JBoss for running in standalome mode,
using the st andal one. xnl configuration file. For instructions on how to use

domai n. xml to configure JBoss for running in domain mode, see the JBoss
documentation.

1.

In the standalone configuration file JBOSS HOVE\ st andal one\ confi gurati on
\ st andal one. xnl , find the following:

<subsyst em xm ns="urn: j boss: domai n: dat asour ces: 1. 0">

In that section, configure the datasource. The following example shows a
configuration for the Oracle Database, using the Oracle JDBC Thin driver. For
instructions on configuring other datasources, see the JBoss documentation.

<subsyst em xn ns="ur n: j boss: domai n: dat asour ces: 1. 0" >

<dat asour ces>

<dat asource j ndi - name="j ava:/ Ecl i pseLi nkDS"
pool - nane="Ecl i pseLi nkDS"
enabl ed="t rue"
jta="true"
use-j ava-context="true"
use-ccme"true">
<connect i on-url >j dbc: oracl e: t hi n: node_nane. exanpl e. com 1521: TOPLI NK</ connect i on-ur| >
<driver>oracl e</driver>
<transaction-i sol ati on>TRANSACTI ON_READ COWM TTED</transacti on-i sol ati on>

<pool >

<prefill>true</prefill>
<use-strict-mn>fal se</use-strict-mn>
<fl ush-strategy>Fai | i ngConnect i onOnl y</ f | ush- strat egy>

</ pool >

<security>

<user - name>Smi t h</ user - name>

ORACLE

5-4

Chapter 5
Implementing the Solution

<passwor d>passwor d</ passwor d>
</security>
</ dat asour ce>
<driver nanme="oracle" nodul e="com oracl e. oj dbc6" >
<xa- datasour ce-cl ass>oracl e. j dbc. Oracl eDri ver </ xa- dat asour ce- ¢l ass>
</driver>
</ dat asour ces>
</ subsyst en>

Task 5: Create Users

Starting with JBoss Application Server 7.1, you must create an Application User to get
started, because remote access to the JNDI tree is secured by default, and you must
provide login credentials. Therefore, at a minimum, you just create an Application User
to be able to deploy an application to the server. If you want to use the JBoss
administration console for administration tasks, for example to view the JNDI tree, you
must also create an Administration User.

To create user credentials, use the JBoss add- user. bat utility, located in JBOSS_HOVE
\bin\.

For more information about security in JBoss Application Server, refer to the JBoss
documentation.

Task 6: Modify JBoss Properties

Modify JBoss properties, as follows:

JBoss-7.x

server.factory=org.jboss. namng.renote.client.Initial ContextFactory
java. nanming. factory.url.pkgs=org.jboss.ejh.client.namng

server. depend=j boss-client.jar

j boss. server=${j boss. hone}/ st andal one
server.|ib=$%{j boss. hone}/bin/client

server.url =renote://| ocal host: 4447

Server. user=usera

server. pwd=passwor da

jboss. naming.client.ejb.context=true

Task 7: Other Requirements

1. Addjunit.jar inthe ear underthe\lib directory.

2. Because of a classloading issue in JBoss, you must list all your entity classes in
per si st ence. xnm . You can use either <cl ass> elements or a global <excl ude-
unl i st ed- cl asses>f al se</ excl ude- unl i st ed- cl asses> element.

3. Add both jndi.properties andjboss-ejb-client.properties inthe client
classpath.

Task 8: Start JBoss

Start JBoss by running st andal one. bat (for a single-server configuration) or
domai n. bat file (in a clustered environment) in JBOSS_ HOVE\ bi n\ .

For information on different ways to configure and start JBoss, see the JBoss
documentation.

ORACLE 5-5

Chapter 5
Additional Resources

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

e JBoss Community at htt p: // www. j boss. org.

ORACLE 5-6

http://www.jboss.org

Using TopLink with IBM WebSphere
Application Server

ORACLE

This chapter describes how to use Oracle TopLink as the persistence provider for
applications deployed to IBM WebSphere Application Server.
This chapter includes the following sections:

Introduction to the Solution
Implementing the Solution

Additional Resources

Use Case

TopLink can be used with a number of popular Java EE application servers, including
WebSphere Application Server.

Solution

Configure WebSphere to use EclipseLink runtime, and deploy applications developed
using EclipseLink APIs.

Components

TopLink 12¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

EclipseLink 2.4 or later.

WebSphere Application Server 7 or later. These instructions are based on
WebSphere 8.5.

A compliant Java Database Connectivity (JDBC) database, such as Oracle
Database, Oracle Express, MySQL, the Derby database included in WebSphere
Application Server, and so on.

6-1

Chapter 6
Introduction to the Solution

Introduction to the Solution

WebSphere Application Server implements Java Platform, Enterprise Edition (Java
EE). WebSphere V8.5 fully supports Java EE 6 and can support Java Platform,
Standard Edition (Java SE) 7 via a plugin.

By configuring WebSphere support EclipseLink, you can create and deploy
applications that take advantage of EclipseLink's full support for Java Persistence API
(JPA), as well as EclipseLink's many extensions.

Implementing the Solution

To develop, deploy, and run EclipseLink applications in IBM WebSphere, you must
add various modules including EclipseLink to WebSphere, and you must configure
various aspects of WebSphere to support EclipseLink.

This section contains the following tasks for using EclipseLink with IBM WebSphere,
Version 7 or later:

e Task 1: Prerequisites
» Task 2: Configure Persistence Units

» Task 3: Configure the Server and the Application to Use EclipseLink

Task 1: Prerequisites

ORACLE

Ensure that you have installed the following components:

* IBM WebSphere, Version 7 or later. These instructions are based on WebSphere,
Version 8.5.

Obtain IBM WebSphere from ht t p: // ww 01. i bm con sof t war e/ webser ver s/
appserv/ was/ .

e TopLink 12¢ (12.1.2.0.0) or later.

Download TopLink from htt p: // ww. or acl e. coni t echnet wor k/ mi ddl ewar e/
t opl i nk/ downl oads/ i ndex. htni .

You will use the following files:

— eclipselink.jar, located in the oracl e_common\ modul es
\oracl e.toplink_ver _no directory created by the TopLink quick installer

— Javax.persistence_ver_no.jar, located in the oracl e_comon\ nodul es
directory created by the TopLink quick installer

EclipseLink 2.4 or later.

Download EclipseLink from htt p: //ww. ecl i pse. or g/ ecl i psel i nk/ downl oads/ .
You will use the following files:

— eclipselink.jar

— javax.persistence_ver _no.jar

6-2

http://www-01.ibm.com/software/webservers/appserv/was/
http://www-01.ibm.com/software/webservers/appserv/was/
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.eclipse.org/eclipselink/downloads/

Chapter 6
Implementing the Solution

Task 2: Configure Persistence Units

Configure persistence units to use EclipseLink as the persistence provider and to use
WebSphere as the target server.

Example 6-1 shows a sample configuration for a container-managed persistence unit.
Example 6-1 Sample persistence.xml for a container-managed persistence unit

<persi stence xm ns="http://java. sun. conm xnl/ns/ persi st ence"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xsi : schemalLocation="http://java. sun.conl xm / ns/ persi stence persistence_1_0.xsd"
versi on="1.0">
<persistence-unit name="default" transaction-type="JTA">
<provi der>org. ecl i pse. persi stence. j pa. Persi st enceProvi der </ provi der>
<j ta-dat a- sour ce>j dbc/ Ecl i pseLi nkDS</ j t a- dat a- sour ce>
<excl ude-unli st ed- cl asses>f al se</ excl ude-unl i st ed- cl asses>
<properties>
<property name="eclipselink.target-server" val ue="\WebSphere_7"/>
<property name="eclipselink.target-database"
val ue="org. ecl i pse. persi stence. pl at f orm dat abase. oracl e. Oracl el1Pl atfornf'/>
<property name="eclipselink.validate-existence" val ue="true"/>
<property nane="eclipselink.weaving" val ue="true"/>
<property nane="eclipselink.|ogging.|evel" val ue="FI NEST"/>
</ properties>
</ persi st ence-unit>
</ persi st ence>

Example 6-2 shows a sample configuration for an application-managed persistence
unit.

Example 6-2 Sample persistence.xml for an application-managed persistence unit

<persistence xmns="http://java.sun.com xm /ns/persistence" xmns:xsi="http://ww. w3.org/2001/
XM.Schema- i nstance" xsi:schemalLocation="http://java. sun.com xn /ns/ persistence persistence_1_0.xsd"
version="1.0">
<persistence-unit name="default" transaction-type="RESOURCE LOCAL">
<provi der >or g. ecl i pse. persi stence. j pa. Persi st enceProvi der </ provi der >
<non-j t a- dat a- sour ce>j dbc/ ELNonJTADS</ non- j t a- dat a- sour ce>
<excl ude-unl i st ed-cl asses>f al se</ excl ude-unl i st ed- cl asses>
<properties>
<property name="eclipselink.target-server" val ue="\WebSphere_7"/>
<property name="eclipselink.target-database"
val ue="org. ecl i pse. persi stence. pl at f or m dat abase. oracl e. Oracl el1Pl atf orni'/ >
<property name="eclipselink.validate-existence" value="true"/>
<property name="eclipselink.weaving" val ue="true"/>
<property name="eclipselink.|ogging.|evel" val ue="FI NEST"/>
</ properties>
</ persi st ence-unit>
</ persi st ence>

Note the following about the two examples above:

 Theeclipselink.target-server value WebSphere_7 is used for WebSphere
Application Server version 7 and later.

e Specifying persi stence_1 0.xsd" version="1.0" for the persistence schema
version works with both JPA 1 and JPA 2. For a JPA 2.n -only application, you can
change the version to per si stence_2_0.xsd" version="2.n" (WebSphere's
support for JPA 2 began in WebSphere Application Server 7.0.0.9.

ORACLE 6-3

Chapter 6
Implementing the Solution

Task 3: Configure the Server and the Application to Use EclipseLink

The following are typical scenarios for using EclipseLink with the application server:
* Modify Server to Make EclipseLink Available Globally

» Package EclipseLink in the Application EAR

» Package EclipseLink in the WAR

Modify Server to Make EclipseLink Available Globally

You can make EclipseLink available globally for both container-managed and
application-managed persistence units in either of the following ways:

e Option 1: Create a Global Shared Library (Recommended)
e Option 2: Add EclipseLink as a Server Library Extension

Option 1: Create a Global Shared Library (Recommended)

1. Create a global shared library containing the following files:
e eclipselink.jar

Find this file in the TOPLI NK_I| NSTALLATI ON\ or acl e_common\ nodul es
\oracl e.toplink_ver_no directory created by the TopLink quick installer.

e xmparserv2.jar

Find this file in the TOPLI NK_| NSTALLATI ON\ t opl i nk\ modul es directory created
by the s quick installer.

e If you use Oracle Database features such as NCHAR, XMLTYPE, and
MDSYS. SDO_GEOMETRY with JPA, you must also include xdb. j ar and
sdoapi . j ar in the shared library. Those files are available in your Oracle
Database distribution.

See the WebSphere documentation for instructions on how to use WebSphere to
facilitate the creation of shared libraries.

2. Associate the shared library with the application.

See the WebSphere documentation for instructions on how to use WebSphere to
associate the shared library with an application.

Option 2: Add EclipseLink as a Server Library Extension

To add EclipseLink as a server library extension, copy ecl i psel i nk. j ar and the other
JAR file(s) listed in Option 1, above, to the WAS_HOVE\ | i b\ ext directory.

Package EclipseLink in the Application EAR

ORACLE

You can also implement container-managed persistence by adding ecl i psel i nk. j ar
in the application EAR, without making any modifications to the server configuration. In
this case, the persistence unit is managed by @er si st enceCont ext entity manager
proxy injection on a stateless session bean. The following instructions show a example
of this approach.

1. Addeclipselink.jar tothe application EAR in the following location:

6-4

Chapter 6
Additional Resources

EAR ar chi ve/ APP- I NF/ | i b/

2. Add the path to the ecl i psel i nk. j ar to the ej bMbdul e/ META- | NF/ MANI FEST. M-
file(s) in your EJB JAR(S), as shown below:

Mani fest-Version: 1.0
Cl ass-Path: APP-INF/lib/eclipselink.jar

This is the manifest at the root of the entities' location, in this case as part of the
gjb.jar.

3. Configure the class loader to load the classes with the application class loader
first.

4. Deploy and start the application. See the IBM WebSphere documentation for
instructions.

Package EclipseLink in the WAR

If you do not or cannot implement container-managed persistence, as described in the
previous two scenarios, you can create an application managed entity manager. In this
case, all library configuration and classloader scope changes must be done inside the

EAR itself.

1. Addeclipselink.jar andjavax. persistence_ver_no.jar to the web application
archive (WAR) file in the following location:

WAR ar chi ve/ VEB- | NF/ | i b/

2. Configure the class loader order for your application to load the classes with the
application class loader first. See the WebSphere documentation for instructions
on setting class loader order using the Administrative console.

3. Deploy and start the application. See the IBM WebSphere documentation for
instructions.

Additional Resources

ORACLE

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

e WebSphere Application Server at htt p: // ww« 01. i bm cont sof t war e/
webser ver s/ appser v/ was/ .

6-5

http://www-01.ibm.com/software/webservers/appserv/was/
http://www-01.ibm.com/software/webservers/appserv/was/

Migrating from Native TopLink

This chapter describes how to migrate applications using "native" TopLink object-
relational mapping (ORM) APIs to the current EclipseLink APIs.

The EclipseLink libraries have been the core libraries in Oracle TopLink staring with
TopLink 119, Release 1 (11.1.1).

This chapter includes the following sections:

e Introduction to the Solution

e Implementing the Solution

Use Case

A developer wants to upgrade an application that uses the older TopLink native ORM
to use a current EclipseLink ORM implementation.

Solution

Follow the instructions in this chapter to upgrade the application.

Components

e TopLink 12c¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

* EclipseLink 2.4 or later.
* (Optional) EclipseLink Workbench.

Introduction to the Solution

ORACLE

"Native" TopLink ORM refers to the API, configuration files, and tools for object-
relational mapping that evolved in TopLink before the Java Persistence API (JPA)
standardized an object-relational mapping API. Full JPA support was introduced in
Oracle TopLink 10g (10.1.3.1.0), via TopLink Essentials. However, native TopLink
continued to be supported.

Prior to the TopLink 11g (11.1.1) release, Oracle contributed the TopLink source
code--including TopLink JPA and native TopLink--to the Eclipse Foundation, where it
was used to form the basis of the open-source EclipseLink persistence services

7-1

Chapter 7
Implementing the Solution

project. Then, in TopLink 11g Release 1 (11.1.1), Oracle started to include EclipseLink
in TopLink, providing TopLink's core functionality.

TopLink developers using TopLink versions 11.1.1.0.0 though 11.1.1.6.0 have access
to native TopLink ORM in either the proprietary Oracle t opl i nk. j ar orin the
EclipseLink ecl i psel i nk.jar. Intoplink.jar, the classes are in packages whose
names start with or acl e. topl i nk. *. In ecl i psel i nk. j ar, those package names begin
instead with or g. ecl i psel i nk. persi st ence. .

Note:

The toplink.jar file was deprecated in TopLink 11g and is no long shipped
with TopLink 12c. It is recommended that you migrate off or acl e. t opl i nk. *
in TopLink 11g.

You can migrate applications that use or acl e. t opl i nk. * packages fromt opli nk. | ar
to use or g. ecl i psel i nk. persi st ence. packages from ecli pselink.jar. The
application functionality remains the same, but migrating to ecl i psel i nk. j ar provides
the most up-to-date code base. After migrating, you will have access to other TopLink
features and will be better prepared to convert your application to use JPA or one of
the other persistence services included in current versions of TopLink.

This chapter explains how to use the renaming tool that is packaged with stand-alone
TopLink to easily change the package names in your application and how to perform
other actions necessary to migrate to the current code base.

Note:

Following the instructions in this chapter will update your application to use
the current EclipseLink code base. Doing so retains the design and
functionality of your application as originally implemented. However, these
instructions do not describe how to convert a native TopLink-based
application to use JPA or any of the other persistence services in current
versions of TopLink. See the other TopLink documentation sources for that
information.

Implementing the Solution

ORACLE

This section contains the following tasks:

e Task 1: Prerequisites

e Task 2: Replace Deprecated and Removed Native APIs

e Task 3: Rename Packages

e Task 4: Convert XML Configuration Files

e Task 5: Convert Oracle TopLink Workbench Projects (Optional)

7-2

Chapter 7
Implementing the Solution

Task 1: Prerequisites

e TopLink 12¢ (12.1.2.0.0) or later.

All TopLink downloads starting with 11g include the renaming tool discussed in
this chapter.

" Note:

The renaming tool is not included with embedded versions of TopLink,
for example in Oracle WebLogic Server or Oracle Glassfish. You must
download the standalone TopLink installer.

Download TopLink from htt p: // ww. or acl e. coni t echnet wor k/ m ddl ewar e/
t opl i nk/ downl oads/ i ndex. ht m . For installation instructions, see Installing Oracle
TopLink..

» EclipseLink 2.4 or later.
Download EclipseLink from htt p://ww. ecl i pse. or g/ ecl i psel i nk/ downl oads/ .

e (Optional) EclipseLink Workbench. The EclipseLink Workbench is available in
EclipseLink downloads. See the EclipseLink download page at http://
www. ecl i pse. or g/ ecl i psel i nk/ downl oads/ .

Task 2: Replace Deprecated and Removed Native APIs

ORACLE

APIs that were deprecated in releases before TopLink 11g Release 1 (11.1.1) were
removed in EclipseLink and therefore are not included in current versions of TopLink.
If your application uses any of those deprecated APIs or any APIs that were already
replaced or removed from TopLink, you must update the application to use current
APlIs.

APIs that were deprecated in releases before TopLink 11g Release 1 (11.1.1) were
removed in EclipseLink. If your application uses any of those deprecated APIs or any
APIs that were already replaced or removed from TopLink, you must update the
application to use current APIs.

The following sections lists the replaced and removed APIs, with suggested
substitutions:

e APIs Replaced,

e Deprecated APls,
* Removed API,

< Note:

When suggested replacements are in or acl e. t opl i nk. * packages, you
must also change the package names, as described in Task 3: Rename
Packages.

7-3

http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.eclipse.org/eclipselink/downloads/
http://www.eclipse.org/eclipselink/downloads/
http://www.eclipse.org/eclipselink/downloads/

Chapter 7
Implementing the Solution

APIs Replaced

The following tables list the APIs removed as of TopLink 11g Release 1 (11.1.1.1.).
Use the replacement API listed in the tables.

e Table7-1
° Table7-2
¢ Table 7-3
o Table7-4
e Table7-5
¢ Table 7-6
° Table 7-7
¢ Table 7-8
¢ Table 7-9
° Table 7-10
e Table 7-11
° Table 7-12
* Table 7-13
 Table 7-14
* Table 7-15
° Table 7-16

Table 7-1 changetracking (oracle.toplink.descriptors.¥)

L __|]
Class Name Method Name Replacement APIs

ChangeTrack get TopLi nkPropertyChangeL . _persistence_get PropertyChangeLi st ener
er i stener

ChangeTrack setTopLi nkPropertyChangelL _persistence_set PropertyChangeli st ener (PropertyC
er i stener (PropertyChangelLi s hangeli st ener)
tener)

Table 7-2 databaseaccess (oracle.toplink.internal*)

Class Name Method Name Replacement APIs
*Platform Whole class oracl e.toplink.platformdatabase. *Pl atfor
m

Table 7-3 jdo (oracle.toplink.*)

__|
Class Name Method Name Replacement APIs

.jdo Whole package None

ORACLE 7-4

Chapter 7
Implementing the Solution

Table 7-4 mappings (oracle.toplink.*)

Class Name Method Name Replacement APIs

TypeConver si onMappi ng Whole class . mappi ngs. converters. TypeConver si onConvert er
bj ect TypeMappi ng Whole class . mappi ngs. converters. Obj ect TypeConverter
Serial i zedOoj ect Mappi ng Whole class . mappi ngs. converters. Serial i zedQoj ect Converter

Table 7-5 objectrelational (oracle.toplink.*)

Class Name Method Name Replacement APIs

Oracl e8Platform Whole class oracl e.toplink. platform database. oracl e. Oracl e8Pl atform

Table 7-6 oraclespecific (oracle.toplink.*)

Class Name Method Name Replacement APIs

.oracl especi fic. NCharact er Whole class . pl at f or m dat abase. or acl e. NChar act er
.oracl especific.NC ob Whole class . pl at f orm dat abase. oracl e. NCl ob

.oracl especific. NC ob Whole class . pl at f orm dat abase. or acl e. NCl ob

.oracl especific.Oracl e8Pl atform Whole class .pl atform dat abase. oracl e. Oracl e8Pl atform
.oracl especific. Oracl e9Specific1 Whole class . pl at f orm dat abase. oracl e. Oracl e9Specific
.oraclespecific. TopLinkXMLType 2 Whole class None

i

oracl e.toplink.oracl especific. O acl e9Specifi c was moved to an internal package and renamed to
oracle.toplink.internal.platform database. oracl e. Oracl e9Speci fi c. The replacement public API for
oracl e.toplink.oracl especific.Oacle9Specificis

oracl e.toplink. pl atform dat abase. oracl e. Oracl e9Specifi c.

oracl e.toplink.oracl especific. TopLi nkXMLType was a miscellaneous class, which does not have a
replacement API.

N

Table 7-7 publicinterface (oracle.toplink.*)

Class Name Method Name Replacement APIs

Dat abaseRow Whole class . sessi ons. Dat abaseRecor d

Dat abaseSessi on ! Whole class . sessi ons. Dat abaseSessi on

Descri pt or Whole class .descriptors - O assDescriptor,
Rel ati onal Descri ptor

Descri pt or Event Whole class . descriptors. Descri pt or Event

Descri pt or Event Li st ener Whole class . descri ptors - new interface will not extend old interface

Descri pt or Event Manager ~ Whole class .descriptors

Descri pt or QueryManager Whole class .descriptors

I nheritancePol icy Whole class .descriptors

Sessi on? Whole class . sessi ons. Sessi on

ORACLE e

Chapter 7
Implementing the Solution

Table 7-7 (Cont.) publicinterface (oracle.toplink.*)

Class Name Method Name Replacement APIs

Uni t OF Wor k3 Whole class . sessi ons. Uni t Of Wor k

i

oracl e.toplink. publicinterface. Dat abaseSessi on was moved to an internal package and renamed to

oracl e.toplink.internal.sessions. Dat abaseSessi onl npl . The replacement public AP!I for

oracl e.toplink. publicinterface. Dat abaseSessi onisoracl e.toplink.sessions. Dat abaseSessi on.
oracl e. toplink. publicinterface. Sessi on was moved to an internal package and renamed to

oracl e.toplink.internal.sessions. Abstract Sessi onl npl . The replacement public AP!I for

oracl e. toplink. publicinterface. Sessionisoracle.toplink.sessions. Session.

oracl e.toplink.publicinterface. UnitOf Work was moved to an internal package and renamed to

oracl e.toplink.internal.sessionl.UnitOf Wrkl npl . The replacement public API for

oracl e.toplink.publicinterface. UnitCOf Workisoracle.toplink.sessions. UnitOWrk.

N

w

Table 7-8 sdk (oracle.toplink.*)

Class Name Method Name Replacement APIs

. sdk Whole package .eis

Table 7-9 entitymanager (oracle.toplink.sessions.*)

Class Name Method Name Replacement APIs

All classes All methods JPA: see JPA Persistence Provider Implementation,

Table 7-10 sessionconfiguration (oracle.toplink.tools.*)

Class Name Method Name Replacement APIs
WASXM_Loader All methods None

Table 7-11 xml (oracle.toplink.*)

Class Name Method Name Replacement APIs
.xm Whole package . 0X
.xm stream Whole package . OX
.xm . tools Whole package .0X
.xnl . xerces Whole package . OX
.xm . zip Whole package . OX

Table 7-12 XMLCommandConverter (oracle.toplink.*)

Class Name Method Name Replacement APIs
. renot econmand. XM_CommandConver t er Whole class None
.transform xm . XM_.Sour ce Whole class None

ORACLE 7-6

Chapter 7
Implementing the Solution

Table 7-12 (Cont.) XMLCommandConverter (oracle.toplink.*)

___|]
Class Name Method Name Replacement APIs

.transformxm . XM_.Resul t Whole class None

.internal.localization.i18n. ExceptionLocalizationR "error_loading_resources” None
esour ce

.internal.localization.il8n.ExceptionLocalizationR "error_parsing_resources None
esour ce "

.internal.localization.il8n.ExceptionLocalizationR "unexpect _argument” None
esource

Table 7-13 Remote Protocols (oracle.toplink.*)
]

Class Name Method Name Replacem
ent APIs

. renot e. cor ba. or bi x Whole package None

. renot e. cor ba. vi si broker Whole package None

.renote.ejb Whole package None

.tool s. sessi onconfiguration. TopLi nkSess References for any of JNDI Cl ust eri ngServi ce None

i onsFactory inor bi x, vi si broker and ej b packages.

.tool s.sessionconfiguration. DTD2Sessi on References for any of JNDI Cl ust eri ngServi ce None

Conf i gLoader inorbi x, visibroker and ej b packages.

.tool s. sessionconfiguration. nodel . clust Whole class None

ering. Vi si br oker CORBAJNDI O ust er i ngConf

ig

.tool s. sessionconfiguration. nodel . clust Whole class None

ering. O bi xCORBAINDI Ol ust eri ngConfig

.tool s. sessionconfiguration. nodel.clust Whole class None

ering. EJBIJNDI O ust eringConfig

.tool s. sessi onconfiguration. XM.Sessi onC References for any of JNDI Cl ust eri ngServi ce None
onfi gProj ect inor bi x, vi si broker and ej b packages.

Table 7-14 EJB Mapping for BEA WebLogic 6.1
]

Class Name Method Replacement APIs
Name
t opl i nk- cnp- None A warning will be added at the beginning of:
bean_nane. xn internal .ejb.cnmp.w sll. CMPDepl oyer. readTypeSpeci fi cDat
a()
Deprecated APIs

The following tables list the APIs deprecated in the releases prior to TopLink 11g
Release 1 (11.1.1) and therefore removed in that release, due to the substitution of
EclipseLink libraries. Use the replacement API indicated.

ORACLE 7.7

Chapter 7
Implementing the Solution

Note:

Because deprecated classes and moved classes have the same name, you
may get compile errors if you use i nport * to import classes from both the
old package and the new package. To avoid these errors, use i nport with a
fully qualified package name.

e Table 7-15
e Table 7-16

Table 7-15 mappings (oracle.toplink.*)

L ___|]
Class Name Method Name Replacement APIs

OneToOneMappi ng useJoi ni ng For ei gnRef er enceMappi ng. set Joi nFet ch(int)

Table 7-16 descriptors (oracle.toplink.*)

Class Name Method Name Replacement APIs
O assDescri addMul ti pl eTabl eForei gnKeyFi el d addFor ei gnKeyFi el dFor Mul ti pl eTabl e
pt or
C assDescri addMil tipl eTabl ePri mar yKeyFi el d addFor ei gnKeyFi el dFor Mul ti pl eTabl e
pt or
(O assDescri addMil ti pl eTabl ePri mar yKeyFi el dName addFor ei gnKeyFi el dNameFor Mul ti pl eTabl
pt or e
C assDescri addMil tipl eTabl eFor ei gnKeyFi el dName addFor ei gnKeyFi el dNameFor Ml ti pl eTabl
pt or e
Removed API
The following classes were removed in the release prior to TopLink 11g Release 1
(11.1.2):

e (OTSTransactionControl | er
e QOrSSynchroni zati onLi st ener
e (Oacl eSequenceDefinition (use SequenceChj ect Defi nition instead)

e TinmeTenSequenceDefinition (use Sequencehj ect Defi ni tion instead)

Miscellaneous API Changes

Other API changes include the following:

* JPA Persistence Provider Implementation.
* Session Finalizers Disabled by Default.

* Vector and Hashtable Return Types Changed to List or Map.

ORACLE 7-8

Chapter 7
Implementing the Solution

JPA Persistence Provider Implementation

The persistence provider implementation in all TopLink releases since 119 (11.1.1) is
packaged in ecl i pselink. jar. It replaces all previous implementations, for example:

 toplink.jar

e toplink-essentials.jar

Session Finalizers Disabled by Default

In TopLink 11g (11.1.1) Technology Preview 3, session finalizers were disabled by
default to improve performance. To enable session finalizers, use Session method
set | sFi nal i zer sEnabl ed(true).

Vector and Hashtable Return Types Changed to List or Map

Any Sessi on or C assDescri pt or method that returns Vect or or Hasht abl e will
eventually be changed to return Li st or Map, respectively. To prepare for this change,
cast Vect or and Hasht abl e return types to Li st or Map, respectively. For example,
although the Javadoc for Cl assDescri pt or method get Mappi ngs is j ava. util. Vector,
you should cast the returned value to Li st :

Li st mappings = (List) descriptor.getMappings();
Other changes that now return Map include the following:

e (O assDescriptor.get QueryKeys()

e O assDescriptor.getProperties()

e DescriptorQueryMnager. get Queries()
e ElSInteraction. getProperties()

e Session.getProperties()

e Session.get Queries()

e getAttributesToAl wayslncl ude()

e get Speci al Operations()

e getVal uesToExcl ude() s

Task 3: Rename Packages

ORACLE

Starting with TopLink 119, Release 1 (11.1.1), all EclipseLink libraries are included in
TopLink. EclipseLink provides the core TopLink functionality, which now includes
support for JPA 2.x, JAXB, and other standards-based persistence services, as well as
extensions to those standards. In addition, TopLink continues to support native
TopLink APIs; however, all or acl e. t opl i nk. * packages are now renamed to

org. eclipse. persistence. *.

EclipseLink continues to support native TopLink APIs; however, all or acl e. t opl i nk. *
packages are how renamed to or g. ecl i pse. persi stence. *.

7-9

Chapter 7
Implementing the Solution

To migrate your application to use the new code base, you must rename the packages
in your code. To facilitate this, a package renamer tool is included with the TopLink
installation. Use this tool on all of the following:

* project source code
* project.xn file

e persistence.xm file
e sessions.xn file

The package renamer is located inthe topl i nk_instal | _directory\toplink\utils
\r ename directory. Windows and UNIX/LINUX scripts are included.

To run the package renamer using the scripts, do the following:

1. Find the packageRenane. cmd (Windows) and packageRenane. sh (UNIX/LINUX)
scriptsintoplink install _directory\toplink\utils\rename directory.

2. Run either packageRenane. cmd or packageRenane. sh with the following arguments:
e sourcelocation - The directory containing the files to rename.

e targetlLocation - The destination directory for the renamed files. The package
renamer removes any existing Java and XML files, so it is advisable to specify
an empty directory.

For example:

packageRenane c:/mySourceLocation c:/myDestinationLocation

The package renamer performs a recursive directory search for Java and XML
files to rename. The renamed version of each file is saved in the corresponding
directory in the target location

Task 4. Convert XML Configuration Files

The package renamer can rename TopLink XML configuration files, but depending on
the type of file, you may need to make additional changes.

Sessions XML

You can continue to use sessi ons. xnl files as is. For a more forward-compatible
solution, run the renamer on your sessi ons. xm files.

Deployment XML

Deployment XML files from TopLink 10.1.3 and above can be read by TopLink 11.1.1
and later. You can continue to use those files or for a more forward compatible
solution, run the renamer on these files and replace the version string in the "XML
Header" with the following:

"Eclipse Persistence Services"

Persistence XML

To use TopLink as a persistence provider, you must run the renamer on your
persi st ence. xn files. The renamer updates the persistence provider to be

ORACLE 7-10

ORM XML

Chapter 7
Implementing the Solution

EclipseLink and also update any native TopLink specific properties to the EclipseLink
equivalent.

The Object-Relational (ORM) XML configuration file (or m xnl) is not TopLink-
dependant and does not need to be updated.

Task 5: Convert Oracle TopLink Workbench Projects (Optional)

ORACLE

In releases prior to TopLink 11g Release 1 (11.1.1), a graphical editing tool called
Oracle TopLink Workbench was available for configuring descriptors and mapping
your project. That tool is no longer available from Oracle, but a comparable tool, the
EclipseLink Workbench is available from the Eclipse Foundation. You can convert old
TopLink Workbench projects into EclipseLink Workbench projects and then use the
output in current Oracle TopLink applications. You can also import Workbench projects
into Oracle JDeveloper.

Note:

EclipseLink Workbench is open-source software and is therefore not
supported by Oracle.

To convert Oracle TopLink Workbench (. mwp) project to an EclipseLink Workbench
project:

1. Use the package renamer (as described above) to migrate your Oracle TopLink
Workbench project source.

2. Open the Oracle TopLink Workbench project with EclipseLink Workbench.

3. EclipseLink Workbench detects the project and displays a message asking if you
want to save in the current version of the Workbench.

4. Click Save Now and select a new directory location in which to save the project.

7-11

Migrating from Hibernate to TopLink

This chapter describes how to migrate applications from using Hibernate JPA
annotations and its native and proprietary API to using TopLink's JPA implementation,
provided by EclipseLink. The migration involves converting Hibernate annotations to
EclipseLink annotations, and converting native Hibernate API to EclipseLink JPA in the
application code. Standard JPA annotations and API are left unchanged.

This chapter describes how to migrate applications from using Hibernate JPA
annotations and its native and proprietary API to using EclipseLink JPA. The migration
involves converting Hibernate annotations to EclipseLink annotations, and converting
native Hibernate API to EclipseLink JPA in the application code. Standard JPA
annotations and API are left unchanged.

This chapter includes the following sections:

e Introduction to the Solution
¢ Main Tasks

e Additional Resources

Use Case

A developer wants to migrate applications using Hibernate as the persistence provider
to use TopLink instead.

Solution

Follow the instructions in this chapter to upgrade the application.

Components

e TopLink 12¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

* EclipseLink 2.4 or later.

Introduction to the Solution

ORACLE

Hibernate is an object-relational mapping (ORM) tool for Java environments. It
provides a framework for mapping Java objects to relational database artifacts, and

8-1

Chapter 8
Main Tasks

Java data types to SQL data types. It also provides the ability to query the database
and retrieve data.

For more information about Hibernate, see htt p://ww. hi bernate. or g.

Reasons to Migrate
Reasons why you would want to migrate from Hibernate to TopLink include:

* Performance and scalability: EclipseLink's caching architecture allows you to
minimize object creation and share instances. EclipseLink's caching supports
single-node and clustered deployments.

* Support for leading relation databases: EclipseLink continues to support all
leading relational databases with extensions specific to each. EclipseLink is also
the best ORM solution for Oracle Database.

* A comprehensive persistence solution: While EclipseLink offers industry
leading object-relational support, EclipseLink also uses its core mapping
functionality to deliver Object-XML (JAXB), Service Data Object (SDO), and
Database Web Services (DBWS). Depending on your requirements, you can use
one or more of the persistence services based on the same core persistence
engine.

* JPA Support: EclipseLink is the JPA reference implementation, and it will support
future versions of JPA.

Main Tasks

Complete these tasks to migrate an application that uses Hibernate as its persistence
provider to TopLink.

e Task 1: Convert the Hibernate Entity Annotation

e Task 2: Convert the Hibernate Custom Sequence Generator Annotation
e Task 3: Convert Hibernate Mapping Annotations

e Task 4: Modify the persistence.xml File

e Task 5: Convert Hibernate API to EclipseLink API

Task 1: Prerequisites

TopLink 12¢ (12.1.2.0.0) or later.

Download TopLink from htt p: //ww. or acl e. conl t echnet wor k/ mi ddl ewar e/ t opl i nk/
downl oads/ i ndex. htni .

EclipseLink 2.4 or later.

Download EclipseLink from htt p: // www. ecl i pse. or g/ ecl i psel i nk/ downl oads/ .

Task 1: Convert the Hibernate Entity Annotation

ORACLE

The Hibernate entity annotation, defined by the or g. hi ber nat e. annot ati ons. Entity
class, adds additional metadata beyond what is defined by the JPA standard @ntity
annotation.

8-2

http://www.hibernate.org
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.eclipse.org/eclipselink/downloads/

Chapter 8
Main Tasks

Example 8-1 illustrates a sample Hibernate entity annotation. The example uses the
sel ect Bef or eUpdat e, dynami cl nsert, dynani cUpdat e, opti m sticLock, and

pol ymophi smattributes. Note that the Hibernate entity annotation also defines nut abl e
and per si st er attributes, which are not used in this example.

Example 8-1 Sample Hibernate Entity Annotation

@r g. hi bernate. annotati ons. Entity(
sel ect Bef oreUpdate = true,
dynanmi clnsert = true,
dynanmi cUpdate = true,
optimsticLock = OptimisticLockType. ALL,
pol ymor phi sm = Pol ynor phi snifype. EXPLI Cl T)

The following sections describe how EclipseLink handles selects, locks,
polymorphism, and dynamic updates and inserts. For more information, see
"EclipseLink/Examples/JPA/Migration/Hibernate/V3Annotations" in the Eclipselink
documentation, at:

http://wiki.eclipse.org/EclipseLink/Exanmpl es/ JPA/ M grati on/ H ber nat e/
V3Annot at i ons

Convert the SelectBeforeUpdate, dynamicInsert and dynamicUpdate Attributes

In Hibernate, the sel ect Bef or eUpdat e attribute specifies that Hibernate should never
perform a SQL update unless it is certain that an object is actually modified. The
dynani cl nsert attribute specifies that the | NSERT SQL statement should be generated
at runtime and contain only the columns whose values are not null. The

dynani cUpdat e attribute specifies that the UPDATE SQL statement should be generated
at runtime and can contain only those columns whose values have changed.

By default, EclipseLink will always insert all mapped columns and will update only the
columns that have changed. If alternative operations are required, then the queries
used for these operations can be customized by using Java code, SQL, or stored
procedures.

Convert the OptimisticLock Attribute

In Hibernate, the opt i m sti cLock attribute determines the optimistic locking strategy.

EclipseLink's optimistic locking functionality supports all of the Hibernate locking types
and more. Table 8-1 translates locking types from Hibernate's
@ntity(optimsticlLock) attributes into EclipseLink locking policies. These policies
can be configured either with the EclipseLink @pti m sti cLocki ng annotation or in the
EclipseLink orm xn file. For more information, see @OptimisticLocking.

Table 8-1 Translating Hibernate's OptimisticLock to EclipseLink's OptimisticLocking
- ___]

Hibernate's

Description EclipseLink OptimisticLocking

OptimisticLock Type

NONE No optimistic locking EclipseLink defaults to no optimistic locking.
VERSI ON Use a column version Use the JPA @/er si on annotation or the EclipseLink
annotation:
@t i msticLocking(type =
Opt i mi sti cLocki ngType. VERSI ON_COLUWN)
ORACLE 8-3

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Migration/Hibernate/V3Annotations
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Migration/Hibernate/V3Annotations

Chapter 8
Main Tasks

Table 8-1 (Cont.) Translating Hibernate's OptimisticLock to EclipseLink's OptimisticLocking

Hibernate's Description EclipseLink OptimisticLocking
OptimisticLock Type

DI RTY Changed columns are Use the JPA @/er si on annotation or the EclipseLink
compared annotation:
@t i msticLocking(type =
Opti mi sti cLocki ngType. CHANGED COLUMWNS)
ALL All columns are Use the EclipseLink annotation:
compared @t inisticlocking(type =
Opti m sticLocki ngType. ALL_COLUWNS)

Additionally, EclipseLink allows you to compare a specific set of selected columns
using the Opti mi sti cLocki ngType. SELECTED COLUWNS annotation. This allows you to
select the critical columns that should be compared if the CHANGED or ALL strategies do
not meet your needs.

Task 2: Convert the Hibernate Custom Sequence Generator
Annotation

In Hibernate, the @xner at edVal ue annotation defines the identifier generation
strategy. The @zeneri cGenerat or allows you to define a Hibernate-specific ID
generator. Example 8-2 illustrates a custom generator for sequence values.

Example 8-2 Custom Generator for Sequence Values

@d
@ner at edVal ue(generator = "system uuid")
@eneri cGenerator(nane = "systemuuid", strategy = "mypackage. UUl DGenerator")
public String getTransactionGuid()

In EclipseLink, a custom sequence generator can be implemented and registered by
using the @x=ner at edVal ue annotation. For more information, see "How to use Custom
Sequencing" in the EclipseLink documentation, at:

http://wiki.eclipse.org/EclipseLink/Exanpl es/ JPA/ Cust onSequenci ng

Task 3: Convert Hibernate Mapping Annotations

The following sections describe how to convert various Hibernate annotations to
EclipseLink annotations.

ORACLE 8-4

http://wiki.eclipse.org/EclipseLink/Examples/JPA/CustomSequencing
http://wiki.eclipse.org/EclipseLink/Examples/JPA/CustomSequencing
http://wiki.eclipse.org/EclipseLink/Examples/JPA/CustomSequencing

Chapter 8
Main Tasks

Convert the @ForeignKey Annotation

In Hibernate, the @or ei gnKey annotation allows you to define the name of the foreign
key to be used during schema generation.

EclipseLink does generate reasonable names for foreign keys, but does not provide an
annotation or ecl i psel i nk-orm xm support for specifying the name to use. When
migrating, the recommended solution is to have EclipseLink generate the schema
(DDL) commands to a script file instead of directly on the database. The script can
then be customized to use different names prior to being executed.

Note:

The foreign key name is not used by EclipseLink at runtime, but is required if
EclipseLink attempts to drop the schema. In this case, the drop script should
be generated to a file and customized to match the foreign key names used
during creation.

Convert the @Cache Annotation

In Hibernate, the @ache annotation configures the caching of entities and
relationships. Because EclipseLink uses an entity cache instead of a data cache, the
relationships are automatically cached. In these cases, the @ache annotation should
be removed during migration.When the @ache annotation is used on an entity, its
behavior is similar to the EclipseLink @ache annotation. For more information about
the @ache annotation and equivalent ecl i psel i nk- orm xm configuration values, see
Java Persistence API (JPA) Extensions Reference for Oracle TopLink.

Task 4. Modify the persistence.xml File

ORACLE

The persi stence. xm file is the deployment descriptor file for JPA persistence. It
specifies the persistence units, and declares the managed persistence classes, the
object-relational mapping, and the database connection details. Example 8-3
illustrates a per si st ence. xm file for an application that uses Hibernate. Hibernate-
specific values appear in bold font.

Example 8-3 Persistence File for an Application that Uses Hibernate

<persi st ence>
<persi stence-unit name="hel | oworl d">
<provi der>or g. hi bernat e. ej b. H ber nat ePer si st ence</ provi der >
<j ta-dat a-source>j ava: / Def aul t DS</j t a- dat a- sour ce>
<properties>
<property nanme="hi bernate. dial ect"
val ue="org. hi bernate. di al ect. HSQLDi al ect"/ >
<property name="hi bernat e. hbnddl . aut 0" val ue="create-drop"/>
</ properties>
</ persi st ence-unit>
</ persi st ence>

8-5

Chapter 8
Main Tasks

Modified persistence.xml File

Example 8-4 illustrates a per si st ence. xn file modified for an application that uses
EclipseLink. Key differences include the value for the persistence provider. For
EclipseLink, this value is or g. ecl i pse. per si st ence. j pa. Per si st enceProvi der. The
names of EclipseLink-specific properties are typically be prefixed by ecl i psel i nk, for
example, ecl i psel i nk.t ar get - dat abase. EclipseLink-specific values appear in bold
font.

Example 8-4 Persistence File Modified for EclipseLink

<xm version="1.0" encodi ng="UTF-8"?>
<persistence version="1.0" xm ns="http://java.sun.conl xm /ns/ persistence"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xsi : schemalLocation="http://java. sun.conl xm /ns/ persi stence http://
j ava. sun. cont xm / ns/ persi st ence/ persi stence_1_0. xsd">
<persi stence-unit name="hel | owor|d">
<provi der >or g. ecl i pse. persi st ence. j pa. Persi st encePr ovi der </ provi der >
<j ta-data-source>j ava: / Def aul t DS</j t a- dat a- sour ce>
<I-- For Java SE applications, entity classes nust be specified for EclipseLink
weavi ng. For Java EE applications, the classes are found automatically. -->
<cl ass>Todo</ cl ass>
<properties>
<property name="eclipselink.ddl -generation" val ue="drop-and-create-
tabl es"/>
<property name="eclipselink.ddl -generation. out put - node"
val ue="dat abase"/ >
<property name="eclipselink.|ogging.|evel" value="FINE"/>
</ properties>
</ persi stence-unit>
</ persi st ence>

Drop and Create the Database Tables

For production environments, you would usually have the schema set up on the
database. The following properties defined in the persistence unit are more suitable for
examples and demonstrations. These properties will instruct EclipseLink to
automatically drop and create database tables. Any previously existing tables will be
removed.

To use the Drop and Create Database Tables feature, add the following properties to
the persi stence. xn file.

<property name="eclipselink.ddl -generation" val ue="drop-and-create-tabl es"/>
<property name="eclipselink. ddl - generation. out put-node" val ue="dat abase"/ >

For more information on this feature, see the dr op- and- cr eat e- t abl es entry in ddl-
generation in Java Persistence API (JPA) Extensions Reference for Oracle TopLink.

Create or Extend Database Tables

ORACLE

The Create or Extend Database Tables feature allows you match the database
schema to the object model by creating new database tables or by modifying existing
tables. You can modify existing tables by specifying field name changes and by add
and removing fields.

8-6

Chapter 8
Main Tasks

Note:

In the current release, the Create or Extend Database Tables feature will not
rename or delete existing columns. It will only add missing table columns.

The Create or Extend Database Tables feature reduces the need to repopulate test
data. You avoid the need to use the Drop and Create Database Tables feature when
the schema changes, due to changes in the object model. The Create or Extend
Database Tables feature can also be used with extensibility to add table columns.

To use the Create or Extend Database Tables feature, add the following properties to
the per si st ence. xnl file. When the context is loaded, EclipseLink will query the
database for each table required in the persistence unit and use the results to
determine if the table needs to be created or extended.

<property name="eclipselink.ddl -generation" val ue="create-or-extend-tables" />
<property name="eclipselink.ddl -generation. output-node" val ue="dat abase" />

For more information on this feature, see the cr eat e- or - ext end- t abl es entry in ddl-
generation in Java Persistence APl (JPA) Extensions Reference for Oracle TopLink.

Task 5: Convert Hibernate API to EclipseLink API

Table 8-2 describes the Hibernate classes that are commonly used in a JPA project
and their equivalent EclipseLink (JPA) interfaces. All of the Hibernate classes are in
the or g. hi ber nat e package. All of the JPA interfaces (and the Per si st ence class) are
in the j avax. persi st ence package.

For information about the EclipseLink API, see Java API Reference for Oracle
TopLink.

Table 8-2 Hibernate Classes and Equivalent JPA Interfaces

org.hibernate

javax.persistence Description

cfg. Configuration Persistence Provides a bootstrap class that configures the session

factory (in Hibernate) or the entity manager factory (in
JPA). It is generally used to create a single session (or
entity manager) factory for the JVM.

Sessi onFact ory

EntityManager Factory Provides APIs to open Hibernate sessions (or JPA entity
managers) to process a user request. Generally, a session
(or entity manager) is opened per thread processing client
requests.

Sessi on

Enti t yManager Provides APIs to store and load entities to and from the
database. It also provides APIs to get a transaction and
create a query.

Transaction

EntityTransaction Provides APIs to manage transactions.

Query

Query Provides APIs to execute queries.

ORACLE

8-7

Chapter 8
Additional Resources

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

ORACLE

Hibernate at ht t p: / / www. hi ber nat e. or g.

"EclipseLink/Examples/JPA/Migration/Hibernate" in the EclipseLink
documentation, at htt p: //wi ki . ecl i pse. or g/ Ecl i pseLi nk/ Exanpl es/ JPA/
M gration/ H bernate.

8-8

http://www.hibernate.org
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Migration/Hibernate
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Migration/Hibernate

Using Multiple Databases with a
Composite Persistence Unit

ORACLE

This chapter describes how, with Oracle TopLink, you can expose multiple persistence
units (each with unique sets of entity types) as a single persistence context by using a
composite persistence unit. Individual persistence units that are part of this composite
persistence unit are called composite member persistence units.

With EclipseLink, you can expose multiple persistence units (each with unique sets of
entity types) as a single persistence context by using a composite persistence unit.
Individual persistence units that are part of this composite persistence unit are called
composite member persistence units.

" Note:

TopLink also supports multiple databases through partitioning. See Scaling
Applications in Clusters for more information.

This chapter includes the following sections:
e Introduction to the Solution

* Implementing the Solution

» Additional Resources

Use Case

Users need to map expose multiple persistence units as a single persistence context
within an application.

Solution

TopLink supports a "composite" persistence unit which can include multiple member
persistence units.

Components

e TopLink 12c¢ (12.1.2.0.0) or later.

9-1

Chapter 9
Introduction to the Solution

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

* EclipseLink 2.4.2 or later.

* Multiple databases.

Sample
See the following EclipseLink examples for related information:

e http://wiki.eclipse.org/EclipseLink/Exanpl es/ JPA/ Conposite

Introduction to the Solution

ORACLE

With a composite persistence unit, you can:

* Map relationships among any of the entities in multiple persistence units

e Access entities stored in multiple databases and different data sources

» Easily perform queries and transactions across the complete set of entities

Example 9-1 shows how you can persist data from a single persistence context into
two different databases:

Figure 9-1 illustrates a simple composite persistence unit. EclipseLink processes the
per si st ence. xnl file and detects the composite persistence unit, which contains two
composite member persistence units:

e Class A is mapped by a persistence unit named memberPul located in the
menber 1. j ar file.

» Class B is mapped by a persistence unit named memberPu2 located in the
menber 2. j ar file.

9-2

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Composite

Chapter 9
Introduction to the Solution

Figure 9-1 A Simple Composite Persistence Unit

EntityManager
[|

=

Composite
Persistence Unit

I @Entity class A | I {@Entity class B |
Composite Member Composite Member
Persistence Unit Persistence Unit

Example 9-1 Using Multiple Databases

em persist(new A(..));

em persist(new B(..));

/1 You can insert A into databasel and insert B into database2.
/1 The two databases can be fromdifferent vendors.

em flush();

Composite Persistence Unit Requirements

When using composite persistence units, note the following requirements:

The name of each composite member persistence unit must be unique within the
composite.

The transacti on-type and other properties that correspond to the entire
persistence unit (such as target server, logging, transactions, and so on) should be
defined in the composite persistence unit. If not, the transaction types, target

ORACLE"

9-3

Chapter 9
Implementing the Solution

server information, and logging properties defined with composite members will be
ignored.

Implementing the Solution

This section includes the following tasks:
e Task 1: Configure the Composite Persistence Unit
» Task 2: Use Composite Persistence Units

» Task 3: Deploy Composite Persistence Units

Task 1: Configure the Composite Persistence Unit

Because the composite persistence unit is a regular persistence element, it requires a
persi stence. xn file. Example 9-2 illustrates a sample per si st ence. xm file. Notice
that there are no dat asour ce or j dbc properties.

Example 9-2 The persistence.xml File for a Composite Persistence Unit

<persi stence xm ns="http://java.sun.com xnm /ns/ persistence" xm ns:xsi="http://
www. W3. or g/ 2001/ XMLSchenma- i nst ance" xsi: schemalLocation="http://java. sun. conm xni/ns/
persistence persistence_1 0.xsd" version="1.0">
<persi stence-unit name="conpositePu" transaction-type="JTA">
<provi der >
org. eclipse. persistence. jpa. Persi stenceProvi der
</ provi der>

<jar-file>nenberl.jar</jar-file>

<jar-file>nenber2.jar</jar-file>

<properties>
<property name="eclipselink.conposite-unit" value="true"/>
<property name="eclipselink.target-server" val ue="WbLogic_10"/>

</ properties>

</ persi stence-unit>
</ persi st ence>

You can optionally use the <property name="ecl i pselink.conposite-unit"
val ue="true"/ > property to identify a persistence unit as a composite persistence
unit.

Use the <j ar-fi | e> element to specify the JAR files containing the composite member
persistence units. The composite persistence unit will contain all the composite
member persistence units found in the JAR files specified.

Task 2: Use Composite Persistence Units

ORACLE

You can use a composite persistence unit as you would any other persistence unit; the
Entit yManager could be injected, as follows:

@er si st enceCont ext (uni t Name="conposi t ePu")
EntityManager Factory entityManager Factory;

@er si st enceCont ext (uni t Name="conposi t ePu")
EntityManager entityManager;

Or create it manually:

9-4

Chapter 9
Additional Resources

EntityManager Factory entityManagerFactory =
Per si st ence. creat eEnti t yManager Fact ory("conposi tePu", properties);

Task 3: Deploy Composite Persistence Units

To deploy multiple persistence units, deploy all of the JAR files (the composite
persistence unit and its members) on the same class loader.

* When deploying to Oracle WebLogic Server, package the JAR files in an EAR file
or the VIEB- | NF/ | i b folder of a WAR file.

* When running as a standalone application, add the JAR files to the class path.

For important requirements, see Composite Persistence Unit Requirements.

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

For the following additional information about composite persistence units, see
"@onposi t eMenber " "conposi te. unit," and "conposi t e-unit. menber"” in Java
Persistence API (JPA) Extensions Reference for Oracle TopLink:

* Limitations of composite persistence units.
» Configuring composite member persistence units that contain dependencies.

» All persistence unit properties used by composite persistence units and composite
member persistence units

* How to pass persistence unit properties to composite member persistence units
with the Per si st ence. cr eat eEnt i t yManager Fact or y method, while creating a
composite persistence unit Enti t yManager Fact ory

* All entity manager properties used by composite persistence unit and composite
member persistence units

» How to pass entity manager properties to composite member persistence units
with the enf . cr eat eEnt i t yManager method for the composite persistence unit
Entit yManager Factory

Related Javadoc

For more information, see the following APlIs in Java API Reference for Oracle
TopLink:

e PersistenceUnitProperties class
e Persistence. createEntityManger class

e EntityManager Factory interface

ORACLE 9-5

Scaling Applications in Clusters

ORACLE

This chapter provides instructions for configuring Oracle TopLink applications to
ensure scalability in an application server cluster. The instructions are generic and can
be applied to any application server cluster; however, additional content is provided for
Oracle WebLogic Server and Oracle GlassFish Server. Consult your vendor's
documentation as required.

This chapter provides instructions for configuring EclipseLink applications to ensure
scalability in an application server cluster. The instructions are generic and can be
applied to any application server cluster; however, additional content is provided for
Oracle WebLogic Server and Oracle GlassFish Server. Consult your vendor's
documentation as required.

This chapter includes the following sections:

e Introduction to the Solution
e Implementing the Solution

e Additional Resources

Use Case

Applications must scale to meet client demand.

Solution

The implementation is achieved by using a cache, configuring cache coordination, and
using data partitioning.

Components

e TopLink 12¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

* EclipseLink 2.4 or later.
e Application Server that supports clustering.

* Any compliant JDBC database.

Sample

See Additional Resources, for links to samples.

10-1

Chapter 10
Introduction to the Solution

Introduction to the Solution

EclipseLink applications that are deployed to an application server cluster benefit from
cluster scalability, load balancing, and failover. These capabilities ensure that
EclipseLink applications are highly available and scale as application demand
increases. EclipseLink applications are deployed the same way in application server
clusters as they are in standalone server environments. However, additional planning
and configuration is required to ensure cache consistency in an application server
cluster.

EclipseLink uses a shared (L2) object cache that avoids database access for objects
and their relationships. The cache is enabled by default and enhances application
performance. In an application server cluster, caching can result in consistency issues
(such as stale data) because changes made on one server are not reflected on objects
cached in other servers. Cache consistency is problematic only for objects that are
frequently updated. Read-only objects are not affected by cache consistency. For
more details about caching, see:

http://wiki.eclipse.org/EclipseLink/UserGui de/ JPA/ Basi ¢_JPA Devel opnent/
Cachi ng/ Cachi ng_Overvi ew

Various options are available for addressing cache consistency:

* Use cache coordination. Cache coordination is a feature that broadcasts changes
between the servers in the cluster to update or invalidate changed objects.

e Use distributed caching. TopLink Grid is an integration between TopLink and
Oracle Coherence that addresses many cache consistency issues that result from
operating in a distributed environment. For details on TopLink Grid, see Scaling
JPA Applications Using TopLink Grid with Oracle Coherence.

» Use optimistic locking. Optimistic locking is a feature that prevents updates to stale
objects, and triggers the objects to be invalidated in the cache.

» Refresh the cache. Refreshing a cache loads that latest data in the cache.

» Disable the shared cache for highly volatile entities or limit the cache to read-only
objects.

Implementing the Solution

ORACLE

These tasks provide general instructions for ensuring that a EclipseLink application
scales in an application server cluster. Complete the tasks prior to deploying an
application.

This section contains the following tasks:

e Task 1: Configure Cache Consistency
e Task 2: Ensure EclipseLink Is Enabled
e Task 3: Ensure All Application Servers Are Part of the Cluster

e Using Data Partitioning to Scale Data

10-2

http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_Development/Caching/Caching_Overview
http://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_Development/Caching/Caching_Overview

Chapter 10
Implementing the Solution

Task 1. Configure Cache Consistency

This task includes different configuration options that mitigate the possibility that an
application might use stale data when deployed to an application server cluster. The
cache coordination option is specifically designed for applications that are clustered;
however, evaluate all the options and use them together (if applicable) to create a
solution that results in the best application performance. Properly configuring a cache
can, in some cases, eliminate the need to use cache coordination. For additional
details on these options, see:

http://wiki.eclipse.org/lntroduction_to_Cache_9%8ELUG
9%29#Handl i ng_Stal e_Dat a

The following are the configuration options:
» Disabling Entity Caching

* Refreshing the Cache

e Setting Entity Caching Expiration

e Setting Optimistic Locking

* Using Cache Coordination

" Note:

Oracle provides a TopLink and Coherence integration that allows TopLink to
use Coherence as the L2 cache. For details on TopLink Grid, see Scaling
JPA Applications Using TopLink Grid with Oracle Coherence.

Disabling Entity Caching

Disable the shared cache for highly volatile entities or for all entities as required. To
disable the shared cache for all objects, use the <shar ed- cache- node> element in the
persi stence. xm file. For example:

<shar ed- cache- node>NONE</ shar ed- cache- node>

The default configuration is DI SABLE_SELECTI VE and allows caching to be disabled per
entity. To selectively enable or disable the shared cache, use the shar ed attribute of
the @ache annotation when defining an entity. For example:

@ntity
@ache(shared=fal se)
public class Enployee {

}

Refreshing the Cache

ORACLE

Refreshing a cache reloads the cache from the database to ensure that an application
is using current data. There are different ways to refresh a cache.

The @ache annotation provides the al waysRef resh and r ef reshOnl yl f Newer
attributes which force all queries that go to the database to refresh the cache. The

10-3

http://wiki.eclipse.org/Introduction_to_Cache_%28ELUG%29#Handling_Stale_Data
http://wiki.eclipse.org/Introduction_to_Cache_%28ELUG%29#Handling_Stale_Data

Chapter 10
Implementing the Solution

cache is only actually refreshed if the optimistic lock value in the database is newer
than in the cache.

@ntity
@ache(
al waysRefresh=true,
refreshOnl yl f Newer =t r ue)
public class Enployee {

}

The j avax. per si st ence. Cache interface includes methods that remove stale objects if
the cache is out of date:

 Theevict Al method invalidates all of the objects in the cache.
em get Ent i t yManager Fact ory(). get Cache().evict Al ();

e The evi ct method invalidates specific classes.
em get Enti t yManager Fact ory() . get Cache() . evi ct (MO ass);

The preceding methods are passive and refresh objects only the next time the cache
is accessed. To actively refresh an object, use the Ent i t yManager . r ef r esh method.
The method refreshes a single object at a time.

Another possibility is to use the set H nt method to set a query hint that triggers the
guery to refresh the cache. For example:

Query query = emcreateQuery("Select e from Enpl oyee e");
query. set Hint ("] avax. persi stence. cache. st oreMbde", "REFRESH');

Lastly, native APl methods are also available. For details, see the O assDescri ptor
documentation in Java API Reference for Oracle TopLink.

Setting Entity Caching Expiration

Cache expiration makes a cached object instance invalid after a specified amount of
time. Any attempt to use the object causes the most up-to-date version of the object to
be reloaded from the data source. Expiration can help ensure that an application is
always using the most recent data. There are different ways to set expiration.

The @ache annotation provides the expi ry and expi ryTi meCf Day attributes, which
remove cache instances after a specific amount of time. The expi ry attribute is
entered in milliseconds. The default value if no value is specified is - 1, which indicates
that expiry is disabled. The expi ryTi meCf Day attribute is an instance of the

org. eclipse. persi stence. annot ati ons. Ti meCf Day interface. The following example
sets the object to expire after 5 minutes:

@ntity

@ache(expi ry=300000)
public class Enployee {
}

Setting Optimistic Locking

ORACLE

Optimistic locking prevents one user from writing over another user's work. Locking is
important when multiple servers or multiple applications access the same data and is
relevant in both single-server and multiple-server environments. In a multiple-server
environment, locking is still required if an application uses cache refreshing or cache
coordination. There are different ways to set optimistic locking.

10-4

Chapter 10
Implementing the Solution

The standard JPA @/er si on annotation is used for single valued value and timestamp
based locking. However, for advanced locking features use the @pti ni sti cLocki ng
annotation. The @pt i ni sti cLocki ng annotation specifies the type of optimistic
locking to use when updating or deleting entities. Optimistic locking is supported on an
@ntity or @hppedSuper cl ass annotation. The following policies are available and
are set within the t ype attribute:

e ALL_COLUMWNS: This policy compares every field in the table in the WHERE clause
when performing an update or delete operation.

e CHANGED_COLUMNS: This policy compares only the changed fields in the WHERE
clause when performing an update operation. A delete operation compares only
the primary key.

e SELECTED COLUMNS: This policy compares selected fields in the WHERE clause when
performing an update or delete operation. The fields that are specified must be
mapped and not be primary keys.

* VERSI ON_COLUWN: (Default) This policy allows a single version number to be used
for optimistic locking. The version field must be mapped and not be the primary
key. To automatically force a version field update on a parent object when its
privately owned child object's version field changes, use the cascaded method set
to true. The method is set to f al se by default.

Using Cache Coordination

Cache coordination synchronizes changes among distributed sessions. Cache
coordination is most useful in application server clusters where maintaining consistent
data for all applications is challenging. Moreover, cache consistency becomes
increasingly more difficult as the number of servers within an environment increases.

Cache coordination works by broadcasting notifications of transactional object
changes among sessions (Enti t yManager Fact ory or persistence unit) in the cluster.
Cache coordination is most useful for applications that are primarily read-based and
when changes are performed by the same application operating with multiple,
distributed sessions.

Cache coordination significantly minimizes stale data, but does not completely
eliminate the possibility that stale data might occur because of latency. In addition,
cache coordination reduces the number of optimistic lock exceptions encountered in
distributed architectures, and reduces the number of failed or repeated transactions in
an application. However, cache coordination in no way eliminates the need for an
effective locking policy. To ensure the most current data, use cache coordination with
optimistic or pessimistic locking; optimistic locking is preferred.

Cache coordination is supported over the Remote Method Invocation (RMI) and Java
Message Service (JMS) protocols and is configured either declaratively by using
persistence properties in a per si st ence. xm file or by using the cache coordination
API. System properties that match the persistence properties are available as well.

For additional details on cache coordination see:
Java Persistence API (JPA) Extensions Reference for Oracle TopLink
Setting Cache Synchronization

Cache synchronization determines how notifications of object changes are broadcast
among session members. The following synchronization options are available:

ORACLE 10-5

Chapter 10
Implementing the Solution

e SEND OBJECT_CHANGES: (Default) This option broadcasts a list of changed objects
including data about the changes. This data is merged into the receiving cache.

e | NVALI DATE_CHANGED OBJECTS: This option broadcasts a list of the identities of the
objects that have changed. The receiving cache invalidates the objects rather than
changing any of the data. This option is the lightest in terms of data sent and
processing done in other cluster members.

° SEND NEW OBJECTS W TH_CHANGES: This option is the same as the
SEND_OBJECT_CHANGES option except it also includes any newly created objects
from the transaction.

* NONE: This option does no cache coordination.

The @ache annotation coor di nati onType attribute is used to specify synchronization.
For example:

@ntity
@ache(CacheCoor di nati onType. SEND_NEW OBJECTS_CHANGES)
public class Enployee {

}

The O assDescri pt or. set CacheSynchr oni zat i onType native APl method can also be
used to specify synchronization. For details, see the O assDescri pt or documentation
in Java API Reference for Oracle TopLink.

Configuring JMS Cache Coordination Using Persistence Properties

The following example demonstrates how to configure cache coordination in the

persi stence. xm file and uses JMS for broadcast notification. For JMS, provide a JMS
topic JNDI name and topic connection factory JNDI name. The JMS topic should not
be JTA-enabled and should not have persistent messages.

<property name="eclipselink.cache. coordination.protocol" val ue="jns" />
<property nane="eclipselink.cache. coordination.jns.topic"

val ue="j ns/ Enpl oyeeTopi c" />
<property name="eclipselink.cache.coordination.jns.factory"

val ue="|j ns/ Enpl oyeeTopi cConnecti onFactory" />

Applications that run in a cluster generally do not require a URL because the topic
provides enough to locate and use the resource. For applications that run outside the
cluster, a URL is required. The following example is a URL for a WebLogic Server
cluster:

<property name="eclipselink. cache. coordination.jns. host"
val ue="t3://nyserver:7001/" />

A user name and password for accessing the servers can also be set if required. For
example:

<property name="eclipselink. cache. coordination.jndi.user" value="user" />
<property name="eclipselink.cache.coordination.jndi.password" val ue="password" />

Configuring RMI Cache Coordination Using Persistence Properties

The following example demonstrates how to configure cache coordination in the
per si st ence. xnl file and uses RMI for broadcast natification:

<property name="eclipselink.cache. coordination.protocol" value="rm" />

ORACLE 10-6

Chapter 10
Implementing the Solution

Applications that run in a cluster generally do not require a URL because JNDI is
replicated and servers can look up each other. If an application runs outside of a
cluster, or if JNDI is not replicated, then each server must provide its URL. This could
be done through the per si st ence. xm file; however, different per si st ence. xm files
(thus JAR or EAR) for each server is required, which is usually not desirable. A second
option is to set the URL programmatically using the cache coordination API. For more
details, see Configuring Cache Coordination Using the Cache Coordination API. The
final option is to set the URL as a system property on each application server. The
following example sets the URL for a WebLogic Server cluster using a system

property:

- Decl i psel i nk. cache. coordi nation.jms. host=t 3://nyserver: 7001/

A user name and password for accessing the servers can also be set if required; for
example:

<property nanme="eclipselink. cache. coordination.ndi.user" val ue="user" /><property
nane="ecl i psel i nk. cache. coordi nation.jndi.password" val ue="password" />

RMI cache coordination can use either asynchronous or synchronous broadcasting
notification; asynchronous is the default. Synchronous broadcasting ensures that all of
the servers are updated before a request returns. The following example configures
synchronous broadcasting.

<property name="ecl i pselink. cache. coordi nati on. propagat e- asynchronousl y"
val ue="fal se" />

If multiple applications on the same server or network use cache coordination, then a
separate channel can be used for each application. For example:

<property nane="eclipselink. cache. coordination. channel " val ue="Enpl oyeeChannel " />

Last, if required, change the default RMI multicast socket address that allows servers
to find each other. The following example explicitly configures the multicast settings:

<property name="eclipselink.cache. coordination.rni.announcenent-del ay"
val ue="1000" />
<property name="eclipselink.cache.coordination.rni.nulticast-group"
val ue="239.192.0.0" />
<property name="eclipselink.cache. coordination.rm.nulticast-group.port"”
val ue="3121" />
<property name="eclipselink.cache. coordination. packet-tine-to-live" value="2" />

Cache Coordination and Oracle WebLogic

Both RMI and JMS cache coordination work with Oracle WebLogic Server. When a
WebLogic cluster is used JNDI is replicated among the cluster servers, so a

cache. coordination.rm.url oracache.coordination.jns. host option is not
required. For JMS cache coordination, the JMS topic should only be deployed to only
one of the servers (as of Oracle WebLogic 10.3.6). It may be desirable to have a
dedicated JMS server if the IMS messaging traffic is heavy.

Use of other JMS services in WebLogic may have other requirements.

ORACLE 10-7

Chapter 10
Implementing the Solution

Cache Coordination and Glassfish

JMS cache coordination works with Glassfish Server. When a Glassfish cluster is
used, JNDI is replicated among the cluster servers, so a
cache. coor di nation. j nms. host option is not required.

Use of other JMS services in Glassfish may have other requirements.

RMI cache coordination does not work when the JNDI haming service option is used in
a Glassfish cluster. RMI will work if the ecl i psel i nk. cache. coor di nati on. nani ng-
servi ce option is set to rm . Each server must provide its own

eclipselink.cache. coordination.rm.url option, either by having a different

per si st ence. xn file for each server, or by setting the URL as a System property in
the server, or through a customizer.

Cache Coordination and IBM WebSphere

JMS cache coordination may have issues on IBM WebSphere. Use of a Message
Driven Bean (MDB) may be required to allow access to JMS. To use an MDB with
cache coordination, set the ecl i psel i nk. cache. coor di nati on. protocol option to the
value j ns- publ i shi ng. The application will also have to deploy an MDB that
processes cache coordination messages in its EAR file.

Configuring Cache Coordination Using the Cache Coordination API

The CommandManager interface allows you to programmatically configure cache
coordination for a session. The interface is accessed using the get ConmandManager
method from the Dat abaseSessi on interface.

Task 2: Ensure EclipseLink Is Enabled

Ensure that the EclipseLink JAR files are included on the classpath of each application
server in the cluster to which the EclipseLink application is deployed and configure
EclipseLink as the persistence provider. For detailed instructions about setting up
TopLink with WebLogic Server and GlassFish Server, see Using TopLink with
WebLogic Server, and Using TopLink with GlassFish Server , respectively.

Task 3: Ensure All Application Servers Are Part of the Cluster

ORACLE

Configure an application server cluster that includes each application server that hosts
the EclipseLink application:

¢ Note:

TopLink relies on JMS and RMI and does not use the application server's
cluster communication.

* For WebLogic Server clustering see Administering Clusters for Oracle WebLogic
Server.

* For GlassFish Server clustering, see:

10-8

Chapter 10
Implementing the Solution

http://downl oad. oracl e. con docs/ cd/ E18930_01/ ht ml / 821- 2426/ i ndex. ht m

Using Data Partitioning to Scale Data

Data partitioning allows an application to scale its data across more than one database
machine. Data partitioning is supported at the entity level to allow a different set of
entity instances for the same class to be stored in a different physical database or
different node within a database cluster. Both regular databases and clustered
databases are supported. Data can be partitioned both horizontally and vertically.

Partitioning can be enabled on an entity, a relationship, a query, or a persistence unit.
To configure data partitioning, use the @artiti oned annotation and one or more
partitioning policy annotations. Table 10-1 describes the partitioning policies

Table 10-1 Partitioning Policies

Annotation

Description

@HashPartitioning

@i nnedPartitioning

@RangePartitioning

@ReplicationPartitioning

@RoundRobi nPartitioni ng

@i onPartitioning

@/al uePartitioning

ORACLE

Partitions access to a database cluster by the hash of a
field value from the object, such as the object's ID,
location, or tenant. The hash indexes into the list of
connection pools/nodes. All write or read request for
objects with that hash value are sent to the same server.
If a query does not include the hash field as a parameter,
it can be sent to all servers and unioned, or it can be left
to the session's default behavior.

Pins requests to a single connection pool/node. This
allows for vertical partitioning.

Partitions access to a database cluster by a field value
from the object, such as the object's ID, location, or
tenant. Each server is assigned a range of values. All
write or read requests for objects with that value are sent
to the same server. If a query does not include the field
as a parameter, then it can either be sent to all servers
and unioned, or left to the session's default behavior.

Sends requests to a set of connection pools/nodes. This
policy is for replicating data across a cluster of database
machines. Only modification queries are replicated.

Sends requests in a round-robin fashion to the set of
connection pools/nodes. This policy is used for load
balancing read queries across a cluster of database
machines. It requires that the full database be replicated
on each machine, so it does not support partitioning. The
data should either be read-only, or writes should be
replicated.

Sends queries to all connection pools and unions the
results. This is for queries or relationships that span
partitions when partitioning is used, such as on a
ManyToMany cross partition relationship.

Partitions access to a database cluster by a field value
from the object, such as the object's location or tenant.
Each value is assigned a specific server. All write or read
requests for objects with that value are sent to the same
server. If a query does not include the field as a
parameter, then it can be sent to all servers and unioned,
or it can be left to the session's default behavior.

10-9

http://download.oracle.com/docs/cd/E18930_01/html/821-2426/index.html

ORACLE

Chapter 10
Implementing the Solution

Table 10-1 (Cont.) Partitioning Policies

__|
Annotation Description

@rartitioning Partitions access to a database cluster by a custom
partitioning policy. A class that extends the
Partitioni ngPolicy class must be provided.

Partitioning policies are globally-named objects in a persistence unit and are reusable
across multiple descriptors or queries. This improves the usability of the configuration,
specifically with JPA annotations and XML.

The persistence unit properties support adding named connection pools in addition to
the existing configuration for read/write/sequence. Connection pools are defined in the
persi st ence. xn file for each participating database. Partition policies select the
appropriate connection based on their particular algorithm.

If a transaction modifies data from multiple partitions, JTA should be used to ensure 2-
phase commit of the data. An exclusive connection can also be configured in an
EntityManager implementation to ensure only a single node is used for a single
transaction.

The following example partitions the Enpl oyee data by location. The two primary sites,
Ottawa and Toronto, are each stored on a separate database. All other locations are
stored on the default database. Project is range partitioned by its ID. Each range of ID
values are stored on a different database.

@ntity
@ dd ass(Enpl oyeePK. cl ass)
@Jni onPartitioning(
nane="Uni onPartitioni ngAl | Nodes",
replicateWites=true)
@/al uePartitioning(
name="Val ueParti ti oni ngByLOCATI ON',
partitionCol um=@ol urm(nanme="LCOCATI ON'),
uni onUnpartitionabl eQueries=true,
def aul t Connect i onPool ="def aul t",
partitions={
@/al uePartition(connectionPool ="node2", value="Cttawa"),
@/al uePartition(connectionPool ="node3", val ue="Toronto")
1y
@artitioned("Val uePartitioni ngByLOCATI ON')
public class Enployee {
@d
@ol um(nane = "EMP_ID")
private Integer id;
@d
private String |ocation;

@mnyToMany(cascade = { PERSI ST, MERCE })
@artitioned("UnionPartitioningAl Nodes")
private Col | ection<Project> projects;

10-10

Chapter 10
Additional Resources

The employee/project relationship is an example of a cross partition relationship. To
allow the employees and projects to be stored on different databases a union policy is
used and the join table is replicated to each database.

@ntity
@rangePartitioni ng(
name="RangeParti tioni ngByPRQJ_I D",
partitionCol um=@ol um(name="PRQJ_I D"),
partitionVal ueType=I nteger. cl ass,
uni onUnpartitionabl eQueries=true,
partitions={
@rangePartition(connectionPool ="default", startVal ue="0",
endVal ue="1000"),
@rangePartition(connectionPool ="node2", startVal ue="1000",
endVal ue="2000"),
@rangePartition(connectionPool ="node3", startVal ue="2000")

)
@artitioned("RangePartitioni ngByPRQJ_ID")
public class Project {
@d
@ol um(name="PRQJ_I D")
private Integer id;

}
Clustered Databases and Oracle RAC

Some databases support clustering the database across multiple servers. Oracle Real
Application Clusters (RAC) allows for a single database to span multiple different
server nodes. Oracle RAC also supports table and node partitioning of data. A
database cluster allows for any of the data to be accessed from any node in the
cluster. However, it is generally more efficient to partition the data access to specific
nodes, to reduce cross node communication. Partitioning can be used in conjunction
with a clustered database to reduce cross hode communication, and improve
scalability. For details on using EclipseLink with Oracle RAC, see Using EclipseLink
with Oracle RAC.

Adhere to the following requirements when using data partitioning with a database
cluster:

» Partition policy should not enable replication, as database cluster makes data
available to all nodes.

» Partition policy should not use unions, as database cluster returns the complete
query result from any node.

» A DataSour ce and connection pool should be defined for each node in the cluster.

e The application's data access and data partitioning should be designed to have
each transaction only require access to a single node.

e Usage of an exclusive connection for an Ent i t yManager is recommended to avoid
having multiple nodes in a single transaction and avoid 2-phase commit.

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

ORACLE 10-11

ORACLE

Chapter 10
Additional Resources

The following code sample and JavaDoc resources are available:

Code Samples

http://wiki.eclipse.org/EclipseLink/Exanpl es/ JPA/ CacheCoor di nati on

http://wiki.eclipse.org/EclipseLink/Exanpl es/ JPA/ Cachi ng

See the following APls in Java API Reference for Oracle TopLink.

org.
org.
org.
org.

org.

eclipse
eclipse
eclipse
eclipse
eclipse

. persi stence. annot ations. QptinisticlLocking
. persi stence. annot ati ons. Cache

. persi stence. annotations. Partitioned

. persi stence. descriptors. C assDescri ptor

. persi stence. sessi ons. coor di nati on

10-12

http://wiki.eclipse.org/EclipseLink/Examples/JPA/CacheCoordination
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Caching

Providing Software as a Service

This chapter introduces Oracle TopLink features available for developing shared
applications that run in Software-as-a-Service (SaaS) environments.

This chapter introduces EclipseLink features available for developing shared
applications that run in Software-as-a-Service (SaaS) environments.

Use Case

Users want to establish an SaaS environment, where applications and data are shared
by multiple clients.

Solution

Use TopLink Saas features, such as extensibility, client isolation, and external
metadata sources.

Use EclipseLink Saas features, such as extensibility, client isolation, and external
metadata sources.

Components

e TopLink 12c¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

» EclipseLink 2.4 or later.

Introduction to the Solution

ORACLE

The Oracle platform for SaaS includes TopLink, a part of Oracle Fusion Middleware.
This allows you to build, deploy, and manage SaaS applications. With TopLink, you
can manage persistence in cloud-enabled applications and services. TopLink provides
flexible SaaS solutions that address client isolation, extensibility, and external
metadata sources, while still maintaining high performance and scalability, making the
persistence layer of these applications a critical component.

With EclipseLink, you can manage persistence in cloud-enabled applications and
services. EclipseLink provides flexible SaaS solutions that address multi-tenancy and
extensibility while still maintaining high performance and scalability, making the
persistence layer of these applications a critical component.

11-1

Chapter 11
Introduction to the Solution

These features are discussed in the following chapters:

* Making JPA Entities and JAXB Beans Extensible
» Using an External MetaData Source

e Tenant Isolation Using TopLink

ORACLE 11-2

Making

JPA Entities and JAXB Beans

Extensible

This chapter provides instructions for making JPA entities and JAXB beans extensible.
Mappings can be added or modified externally, without modifying the entity or bean
source file and without redeploying the persistence unit. This feature is useful in a
Software-as-a-Service environment where multiple clients can share applications and
datasources. It is also useful for customizing an application during installation rather
than during development.

This chapter includes the following sections:

* Making JPA Entities Extensible
* Making JAXB Beans Extensible

* Additional Resources

Use Case

Users want to establish a SaaS environment, where applications and datasources are
shared by multiple clients.

Solution

Use the TopLink extensibility feature to extend JPA entities and JAXB beans by using
external mappings.

Use the EclipseLink extensibility feature to extend JPA entities and JAXB beans by
using external mappings.

Components

e TopLink 12c¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

* EclipseLink 2.4 or later.

Making JPA Entities Extensible

ORACLE

Use the @/ rt ual AccessMet hods annotation to specify that an entity is extensible. By
using virtual properties in an extensible entity, you can specify mappings external to

12-1

Chapter 12
Making JPA Entities Extensible

the entity. This allows you to modify the mappings without modifying the entity source
file and without redeploying the entity's persistence unit.

Extensible entities are useful in a multi-tenant (or SaaS) architecture where a shared,
generic application can be used by multiple clients (tenants). Tenants have private
access to their own data, and to data shared with other tenants.

Using extensible entities, you can:

* Build an application where some mappings are common to all users and some
mappings are user-specific.

* Add mappings to an application after it is made available to a customer (even
post-deployment).

» Use the same Enti t yManager Fact or y interface to work with data after mappings
have changed.

» Provide an additional source of metadata to be used by an application.

Main Tasks for Creating and Supporting an Extensible JPA Entity

To create and support an extensible JPA entity:

* Task 1: Configure the Entity
e Task 2: Design the Schema
» Task 3: Provide Additional Mappings

* Task 4: Externalizing Extensions Using a MetaDataSource

Task 1: Configure the Entity

Configure the entity by annotating the entity class with @i rt ual AccessMet hods (or
using the XML <access- net hods>), adding get and set methods for the property
values, and adding a data structure to store the extended attributes and values, as
described in the following sections:

* Annotate the Entity Class with @VirtualAccessMethods
e Add get and set Methods to the Entity

» Define Virtual Attribute Storage

* Use XML

Annotate the Entity Class with @VirtualAccessMethods

Annotate the entity with @/ rt ual AccessMet hods to specify that it is extensible and to
define virtual properties.

Table 12-1 describes the attributes available to the @/ rt ual AccessMet hods
annotation.

ORACLE 12-2

Chapter 12
Making JPA Entities Extensible

Table 12-1 Attributes for the @VirtualAccessMethods Annotation

__|
Attribute Description

get The name of the get ter method to use for the virtual property. This method
must take a single j ava. | ang. St ri ng parameter and return a
j ava. |l ang. Qbj ect parameter.

Default: get
Required? No
set The name of the set ter method to use for the virtual property. This method

must take a j ava. | ang. String and aj ava. | ang. Qbj ect parameter and
return a j ava. | ang. Gbj ect parameter.

Default: set
Required? No

Add get and set Methods to the Entity

Add get (String) and set(String, Object) methods to the entity. The get () method
returns a value by property name and the set () method stores a value by property
name. The default names for these methods are get and set, and they can be
overridden with the @/i rt ual AccessMet hods annotation.

EclipseLink weaves these methods if weaving is enabled, which provides support for
lazy loading, change tracking, fetch groups, and internal optimizations.

Note:

Weaving is not supported when using virtual access methods with OneToOne
mappings. If attempted, an exception will be thrown.

Define Virtual Attribute Storage

ORACLE

Add a data structure to store the extended attributes and values, that is, the virtual
mappings. These can then be mapped to the database. See Task 3: Provide
Additional Mappings.

A common way to store the virtual mappings is in a Map object (as shown in
Example 12-1), but you can also use other strategies.

When using field-based access, annotate the data structure with @r ansi ent so the
structure cannot be used for another mapping. When using property-based access,
@r ansi ent is unnecessary.

Example 12-1 illustrates an entity class that uses property access.
Example 12-1 Entity Class that Uses Property Access
@ntity

@/i rt ual Accesshet hods
public class Customer{

12-3

Use XML

Chapter 12
Making JPA Entities Extensible

@d
private int id;

@r ansi ent
private Map<String, Object> extensions;

public <T> T get(String name) {
return (T) extentions.get(nane);
}

public Object set(String name, Object value) {
return extensions. put(nane, value);
1

As an alternative to, or in addition to, using the @i rt ual AccessMet hods annotation,
you can use an access="VI RTUAL" attribute on a mapping element (such as <basi c¢>),
for example:

<basi ¢ name="i dNumber" access="VI RTUAL" attribute-type="String">
<col um name="FLEX_COL1"/>
</ basi c>

To set virtual access methods as the defaults for the persistence unit, use the
<access> and <access- net hods> elements, for example:

<per si st ence- uni t - net adat a>

<xm - mappi ng- net adat a- conpl et e/ >

<excl ude- def aul t - mappi ngs/ >

<persi stence-uni t-defaul t s>
<access>VI RTUAL</ access>
<access- met hods set-nethod="get" get-nethod="set"/>

</ persi stence-unit-defaul t s>
</ per si st ence- uni t - met adat a>

Task 2: Design the Schema

ORACLE

Provide database tables with extra columns to store virtual attribute values. For
example, the following Cust oner table includes two predefined columns, | D and NAME,
and three columns for storing the attribute values, EXT_1, EXT_2, EXT_3:

CUSTOMER table

e INTEGERID

* VARCHAR NAME
« VARCHAREXT 1
« VARCHAREXT 2
« VARCHAREXT 3

You can then specify which of the FLEX columns should be used to persist an
extended attribute, as described in Task 3: Provide Additional Mappings.

12-4

Chapter 12
Making JPA Entities Extensible

Task 3: Provide Additional Mappings

To provide additional mappings, add the mappings with the col urm and access-
met hods attributes to the ecl i psel i nk-orm xni file, for example:

<basi ¢ name="i dNunber" access="VI RTUAL" attribute-type="String">
<col utm name="FLEX COL1"/>
</ basi c>

Task 4. Externalizing Extensions Using a MetaDataSource

Configure persistence unit properties to indicate that the application should retrieve the
flexible mappings from the ecl i psel i nk-orm xni file. You can set persistence unit
properties using the per si st ence. xm file or by setting properties on the

Enti t yManager Fact ory interface, as described in the following sections.

For more information about external mappings, see Using an External MetaData
Source.

Configure the persistence.xml File

In the persi st ence. xnl file, use the ecl i psel i nk. met adat a- sour ce property to use
the default ecl i psel i nk-orm xni file. Use the ecl i psel i nk. net adat a-
source. xm . url property to use a different file at the specified location, for example:

<property name="eclipselink.metadata-source" val ue="XM"/>
<property nane="eclipselink. netadata-source.xm .url" val ue="foo://bar"/>

Configure EntityManagerFactory and the Metadata Repository

ORACLE

Extensions are added at bootstrap time through access to a metadata repository. The
metadata repository is accessed through a class that provides methods to retrieve the
metadata it holds. EclipseLink includes a metadata repository implementation that
supports XML repositories.

Specify the class to use and any configuration information for the metadata repository
through persistence unit properties. The Enti t yManager Fact ory interface integrates
additional mapping information from the metadata repository into the metadata it uses
to bootstrap.

You can provide your own implementation of the class to access the metadata
repository. Each metadata repository access class must specify an individual set of
properties to use to connect to the repository.

You can subclass either of the following classes:
e org.eclipse.persistence.internal.jpa.extensions. MetadataRepository
e org.eclipse.persistence.internal.jpa.extensions. XM_.Met adat aRepository

In the following example, the properties that begin with com f 0o are subclasses
defined by the developer.

<property name="eclipselink.metadata-source" val ue="com f 0oo. Met adat aReposi tory"/>
<property name="com fo0o. Met adat aRepository.|ocation" val ue="foo://bar"/>
<property name="com fo0o. Met adat aRepository. extra-data" val ue="foo-bar"/>

12-5

Chapter 12
Making JPA Entities Extensible

Refresh the Metadata Repository

If you change the metadata and you want an Ent i t yManager instance based on the
new metadata, you must call the r ef reshMet adat a() method on the

EntityManager Fact ory interface to refresh the data. The next Enti t yManager instance
will be based on the new metadata.

The ref reshMet adat a() method takes a map of properties that can be used to
override the properties previously defined for the net adat a- sour ce element.

Code Examples

Example 12-2 illustrates the following:

* Field access is used for non-extension fields.

e Virtual access is used for extension fields, using defaults (get (String) and
set(String, Object)).

e Theget(String) andset(String, Object) methods will be woven, even if no
mappings use them, because of the presence of @/ rt ual AccessMet hods.

These items are illustrated in bold font.
Example 12-2 Virtual Access Using Default get and set Method Names

@ntity
@i rt ual AccessMet hods
public class Address {

@d
private int id;

@r ansi ent
private Map<String, Object> extensions;

public int getld(){
return id,

}

public <T> T get(String name) {
return (T) extentions.get(name);
1

public Object set(String nane, bject value) {
return extensions. put(name, value);

}

Example 12-3 illustrates the following:

* Field access is used for non-extension fields.

e The @irtual AccessMet hods annotation overrides methods to be used for getting
and setting.

ORACLE 12-6

ORACLE

Chapter 12
Making JPA Entities Extensible

e Theget(String) andset(String, Object) methods will be woven, even if no
mappings use them, because of the presence of @/ rt ual AccessMet hods.

* The XML for extended mapping indicates which get () and set () method to use.

These items are illustrated in bold font.
Example 12-3 Overriding get and set Methods

@ntity
@/i rt ual AccessMet hods(get =" get Ext ensi on", set="set Extension")
public class Address {

@d

private int id;

@r ansi ent
private Map<String, Cbject> extensions;

public int getld(){
return id;

}

public <T> T getExtension(String nanme) {
return (T) extensions.get(nanme);
}

public Object setExtension(String name, Chject value) {
return extensions. put(name, value);

}

<basi ¢ nane="nane" access="VIRTUAL" attribute-type="String">
<col um nane="FLEX 1"/>
</ basi c>

Example 12-4 illustrates the following:

» Property access is used for non-extension fields.

» Virtual access is used for extension fields, using defaults (get (String) and
set(String, Object)).

* The extensions are mapped in a portable way. @t ansi ent is not required,
because property access is used.

e Theget(String) andset(String, Object) methods will be woven, even if no
mappings use them, because of the presence of @/ rt ual AccessMet hods.

These items are illustrated in bold font.
Example 12-4 Using Property Access
@ntity

@i rtual AccessMet hods

public class Address {

private int id;

private Map<String, Cbject> extensions;

12-7

Chapter 12
Making JAXB Beans Extensible

@d

public int getld(){
return id;

}

public <T> T get(String name) {
return (T) extensions.get(nanme);
}

public Object set(String nane, bject value) {
return extensions. put(name, value);
}

Making JAXB Beans Extensible

Use the @n Vi rt ual AccessMet hods annotation to specify that a JAXB bean is
extensible. By using virtual properties in an extensible bean, you can specify mappings
external to the bean. This allows you to modify the mappings without modifying the
bean source file and without redeploying the bean's persistence unit.

In a multi-tenant (or SaaS) architecture, a single application runs on a server, serving
multiple client organizations (tenants). Good multi-tenant applications allow per-tenant
customizations. When these customizations are made to data, it can be difficult for the
binding layer to handle them. JAXB is designed to work with domain models that have
real fields and properties. EclipseLink extensions to JAXB introduce the concept of
virtual properties which can easily handle this use case. Virtual properties are defined
by the Object-XML metadata file, and provide a way to extend a class without
modifying the source.

This section has the following subsections:

* Main Steps

e Code Examples

Main Steps

To create and support an extensible JAXB bean:

e Task 1: Configure the Bean

e Task 2: Provide Additional Mappings

Task 1: Configure the Bean

Configure the bean by annotating the bean class with the @ Vi rt ual AccessMet hods,
adding get and set methods for the property values, and adding a data structure to
store the extended attributes and values. Alternatively, you can use the <xni -vi rtual -
access- met hods> element in ecl i psel i nk-orm xni .

Annotate the Bean Class with @Xml VirtualAccessMethods

Annotate the bean with @nl Vi r t ual AccessMet hods to specify that it is extensible and
to define virtual properties.

ORACLE 12-8

Chapter 12
Making JAXB Beans Extensible

Table 12-2 describes the attributes available to the @nl Vi rt ual AccessMet hods
annotation.

Table 12-2 Attributes for the @XmlVirtualAccessMethods Annotation

|
Attribute Description

get The name of the getter method to use for the virtual property.
This method must take a single j ava. | ang. St ri ng parameter
and return a j ava. | ang. Cbj ect.

Default: get
Required? No

set The name of the setter method to use for the virtual property.
This method must take a j ava. |l ang. String and a
j ava. |l ang. Cbj ect parameter and return a
j ava. |l ang. Cbj ect parameter.
Default: set

Required? No

Add get and set Methods to the Bean

Add get (String) and set(String, Object) methods tothe bean. The get () method
returns a value by property name and the set () method stores a value by property
name. The default names for these methods are get and set, and they can be
overridden with the @m Vi rt ual AccessMet hods annotation.

Define Virtual Attribute Storage

Use XML

ORACLE

Add a data structure to store the extended attributes and values, that is, the virtual
mappings. These can then be mapped to the database. See Task 2: Provide
Additional Mappings.

A common way to store the virtual mappings is in a Map, but you can use other ways,
as well. For example you could store the virtual mappings in a directory system.

When using field-based access, annotate the data structure with @nl Transi ent so it
cannot use it for another mapping. When using property-based access, @ Tr ansi ent
iS unnecessary.

As an alternative to, or in addition to, using @m Vi rt ual AccessMet hods, you can use
the XML equivalents, for example:

XML to enable virtual access methods using get and set :
<xn -virtual -access- net hods/ >
XML to enable virtual access methods using put instead of set (default):
<xm -virtual - access- nmet hods set-net hod="put"/>
e XML to enable virtual access methods using retri eve instead of get (default):

<xm -virtual -access-met hods get-nethod="retrieve"/>

12-9

Chapter 12
Making JAXB Beans Extensible

XML to enable virtual access methods using retri eve and put instead of get and
set (default):

<xm -virtual -access-met hods get-nethod="retrieve" set-nethod="put"/>

Task 2: Provide Additional Mappings

To provide additional mappings, add the mappings to the ecl i psel i nk- oxm xni file,
for example:

<xn -el ement java-attribute="idNurmber"/>

Code Examples

Basic Setup

ORACLE

The examples in this section illustrate how to use extensible JAXB beans. The
example begins with the creation of a base class that other classes can extend. In this
case the extensible classes are for Cust oner s and PhoneNunber s. Mapping files are
created for two separate tenants. Even though both tenants share several real
properties, they will define virtual properties that are unique to their requirements.

Example 12-5 illustrates a base class, Ext ensi bl eBase, which other extensible classes
can extend. In the example, the use of the @ Transi ent annotation prevents

Ext ensi bl eBase from being mapped as an inheritance relationship. The real properties
represent the parts of the model that will be common to all tenants. The per-tenant
extensions will be represented as virtual properties.

Example 12-5 A Base Class for Extensible Classes

package exanpl es.virtual;

inport java.util.HashMap;
inport java.util.Mp;

import javax.xnl.bind. annotation. Xm Transient;
inport org.eclipse.persistence. oxm annotations. Xm Virtual AccessMet hods;

@n Transi ent
@m Vi rtual AccessMet hods(set Met hod="put")
public class Extensibl eBase {

private Map<String, Cbject> extensions = new HashMap<String, Object>();

public <T> T get(String property) {
return (T) extensions.get(property);
}

public void put(String property, Cbject value) {
extensions. put (property, val ue);
}

}

Example 12-6 illustrates the definition of a Cust omer class. The Cust oner class is
extensible because it inherits from a domain class that has been annotated with
@n Vi rtual AccessMet hods.

12-10

ORACLE

Chapter 12
Making JAXB Beans Extensible

Example 12-6 An Extensible Customer Class

package exanples.virtual;
i mport javax.xnl.bind.annotation. Xm Root El enent ;

@ Root El enent
public class Customer extends Extensibl eBase {

private String firstNane;
private String |astName;
private Address billingAddress;

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstNane = firstNane;

}

public String getLastName() {
return | ast Nang;

}

public void setLastName(String |astNane) {
this.lastName = | ast Nane;

}

public Address getBillingAddress() {
return billingAddress;

}

public void setBillingAddress(Address billingAddress) {
this.billingAddress = billingAddress;

}
}

Example 12-7 illustrates an Addr ess class. It is not necessary for every class in your
model to be extensible. In this example, the Addr ess class does not have any virtual
properties.

Example 12-7 A Nonextensible Address Class
package exanpl es.virtual;
public class Address {

private String street;

public String getStreet() {

return street;
}

public void setStreet(String street) {
this.street = street;

}

12-11

Chapter 12
Making JAXB Beans Extensible

Example 12-8 illustrates a PhoneNunber class. Like Cust oner, PhoneNunber will be an
extensible class.

Example 12-8 An Extensible PhoneNumber Class
package exanpl es.virtual;
import javax.xnl.bind. annotation. Xm Val ue;
public class PhoneNumber extends Extensibl eBase {
private String nunber;
@ Val ue

public String getNunber() {
return nunber;
}

public void setNunber(String nunber) {
t hi s. nunber = nunber;
}

}

Define the Tenants

ORACLE

The examples in this section define two separate tenants. Even though both tenants
share several real properties, the corresponding XML representation can be quite
different due to virtual properties.

Tenant 1

The first tenant is an online sporting goods store that requires the following extensions
to its model:

e Customer ID

* Customer's middle name

e Shipping address

e A collection of contact phone numbers

e Type of phone number (that is, home, work, or cell)

The metadata for the virtual properties is captured in the ecl i psel i nk- oxm xm
mapping file or in files using the ecl i psel i nk- orm xm schema.. Virtual properties are
mapped in the same way as real properties. Some additional information is required,
including type (since this cannot be determined through reflection), and for collection
properties, a container type. The virtual properties defined below for Cust oner are
m ddl eNarre, shi ppi ngAddr ess, and phoneNunber s. For PhoneNunber , the virtual
property is the t ype property.
Example 12-9 illustrates the bi ndi ng- t enant 1. xm mapping file.
Example 12-9 Defining Virtual Properties for Tenant 1
<?xm version="1.0"?>
<xn - bi ndi ngs

xm ns="http://ww. eclipse. org/eclipselink/xsds/persistence/ oxnf

package- nane="exanpl es. virtual ">
<j ava-types>

12-12

ORACLE

Chapter 12
Making JAXB Beans Extensible

<j ava-type nane="Custoner">
<xm -type prop-order="firstNane niddl eNane | astName billingAddress
shi ppi ngAddr ess phoneNunbers"/ >
<java-attributes>
<xm -attribute
java-attribute="id"
type="java.lang. I nteger"/>
<xn - el enent
java-attribute="m ddl eNane"
type="java.lang. String"/>
<xn - el enent
java-attribute="shi ppi ngAddr ess"
type="exanpl es. virtual . Address"/>
<xn - el enent
java-attribut e="phoneNurbers"
nane="phoneNunber "
type="exanpl es. vi rtual . PhoneNunber "
container-type="java.util.List"/>
</java-attributes>
</java-type>
<j ava-type nane="PhoneNurber " >
<java-attributes>
<xm -attribute
java-attribute="type"
type="java.lang. String"/>
</java-attributes>
</java-type>
</java-types>
</ xm - bi ndi ngs>

The get and set methods are used on the domain model to interact with the real
properties and the accessors defined on the @m Vi rt ual AccessMet hods annotation
are used to interact with the virtual properties. The normal JAXB mechanisms are
used for marshal and unmarshal operations. Example 12-10 illustrates the Cust oner
class code for tenant 1 to obtain the data associated with virtual properties.

Example 12-10 Tenant 1 Code to Provide the Data Associated with Virtual
Properties

Customer customer = new Custoner();

/1Set Customer's real properties
cust oner. set Fi r st Nanme(" Jane")
cust oner. set Last Nane(" Doe");

Address billingAddress = new Address()
billingAddress.setStreet("1 Billing Street")
custoner. setBi | | i ngAddr ess(bi | | i ngAddr ess)

//Set Customer's virtual 'middleNane' property
cust oner. put (" m ddl eNane", "Anne")

/1Set Customer's virtual 'shippingAddress' property
Addr ess shi ppi ngAddress = new Address()

shi ppi ngAddr ess. set Street ("2 Shi ppi ng Road")

cust oner. put ("shi ppi ngAddr ess", shi ppi ngAddr ess)

Li st <PhoneNurber > phoneNunbers = new ArrayLi st <PhoneNunber >()
cust oner. put (" phoneNunbers", phoneNunbers)

12-13

ORACLE

Chapter 12
Making JAXB Beans Extensible

PhoneNunber wor kPhoneNurmber = new PhoneNunber ();
wor kPhoneNunber . set Nunber (" 555- WORK") ;

//Set the PhoneNunber's virtual 'type' property
wor kPhoneNurber . put ("type", "WORK");

phoneNunber s. add(wor kPhoneNunber) ;

PhoneNunber homePhoneNunber = new PhoneNunber ();
honePhoneNunber . set Nunber (" 555- HOVE") ;

//Set the PhoneNunber's virtual 'type' property
honePhoneNunber . put ("type", "HOMVE");

phoneNunber s. add(honePhoneNunber) ;

Map<String, Object> properties = new HashMap<String, Object>();

properties. put (JAXBCont ext Fact ory. ECLI PSELI NK_OXM XM._KEY, "exanpl es/
virtual /binding-tenant1l. xm");

JAXBCont ext jc¢ = JAXBCont ext.new nstance(new O ass[] {Custoner.class,

Address. cl ass}, properties);

Marshal | er marshal ler = jc.createMarshaller();
mar shal | er. set Property(Marshal | er. JAXB_FORVMATTED_OUTPUT, true);
mar shal | er. marshal (custoner, Systemout);

Example 12-11 illustrates the XML output from the Cust oner class for tenant 1.

Example 12-11 XML Output from the Customer Class for Tenant 1

<?xm version="1.0" encodi ng="UTF-8"?>
<cust oner >
<firstName>Jane</firstNane>
<mi ddl eName>Anne</ mi ddl eNare>
<l ast Nane>Doe</ | ast Name>
<bi I I i ngAddr ess>
<street>1 Billing Street</street>
</ bi I'l'i ngAddr ess>
<shi ppi ngAddr ess>
<street>2 Shipping Road</street>
</ shi ppi ngAddr ess>
<phoneNunber type="WORK" >555- WORK</ phoneNunber >
<phoneNunber type="HOVE" >555- HOVE</ phoneNunber >
</ cust omer >

Tenant 2

The second tenant is a streaming media provider that offers on-demand movies and
music to its subscribers. It requires a different set of extensions to the core model:

* A single contact phone number

For this tenant, the mapping file is also used to customize the mapping of the real
properties.

Example 12-12 illustrates the bi ndi ng- t enant 2. xm mapping file.
Example 12-12 Defining Virtual Properties for Tenant 2
<?xml version="1.0"?>
<xnl - bi ndi ngs
xm ns="http://ww. ecl i pse. org/ ecl i psel i nk/ xsds/ persi st ence/ oxn!

package- name="exanpl es. virtual ">
<xnl - schema nanespace="urn:tenant 1" el enent-form defaul t="QUALI FI ED'/ >

12-14

Chapter 12
Making JAXB Beans Extensible

<j ava-types>
<j ava-type nane="Custoner">
<xm -type prop-order="firstName |astName billingAddress phoneNunber"/>
<java-attributes>
<xm -attribute java-attribute="firstName"/>
<xm-attribute java-attribute="lastName"/>
<xm -el ement java-attribute="hillingAddress" nane="address"/>
<xm - el enent
java-attribute="phoneNurber"
type="exanpl es. vi rtual . PhoneNunber "/ >
</java-attributes>
</java-type>
</java-types>
</ xm - bi ndi ngs>

Example 12-13 illustrates the tenant 2 Cust omer class code to obtain the data
associated with virtual properties.

Example 12-13 Tenant 2 Code to Provide the Data Associated with Virtual
Properties

Customer customer = new Custoner();
cust oner. set Fi r st Name(" Jane");
cust oner. set Last Nanme(" Doe");

Address billingAddress = new Address();
billingAddress.setStreet("1 Billing Street");
custoner. setBi | | i ngAddr ess(bi | | i ngAddress);

PhoneNunber phoneNunber = new PhoneNunber ();
phoneNunber . set Nunmber (" 555- WORK") ;
cust oner. put (" phoneNunber", phoneNunber);

Map<String, Object> properties = new HashMap<String, Object>();

properties. put (JAXBCont ext Fact ory. ECLI PSELI NK_OXM XM__KEY, "exanpl es/
vi rtual / bi ndi ng-tenant2. xm");

JAXBCont ext jc = JAXBCont ext.new nstance(new C ass[] {Custoner.class,

Address. cl ass}, properties);

Marshal | er marshal ler = jc.createMarshaller();
mar shal | er. set Property(Marshal | er. JAXB_FORMATTED_QUTPUT, true);
mar shal | er. mar shal (cust oner, System out);

Example 12-14 illustrates the XML output from the Cust omer class for tenant 2.

Example 12-14 XML Output from the Customer Class for Tenant 2

<?xm version="1.0" encodi ng="UTF-8"?>
<custoner xm ns="urn:tenant1" firstNane="Jane" | ast Name="Doe" >
<addr ess>
<street>1 Billing Street</street>
</ addr ess>
<phoneNunber >555- WORK</ phoneNunber >
</ cust oner >

ORACLE 12-15

Chapter 12
Additional Resources

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

e Code Sample
— http://wiKki.eclipse.org/EclipseLink/Exanpl es/ MySports

* @/irtual AccessMet hods in Java Persistence API (JPA) Extensions Reference for
Oracle TopLink.)

e Configuring Virtual Access Methods in Developing Persistence Architectures
Using Oracle Toplink Document Data Bindings

ORACLE 12-16

http://wiki.eclipse.org/EclipseLink/Examples/MySports

Using an External MetaData Source

This chapter provides instructions for storing mapping information in a metadata
source that is external to the running application, so you can dynamically override or
extend mappings in a deployed application.

This chapter includes the following sections:

e Introduction to the Solution
e Using the eclipselink-orm.xml File Externally
e Main Tasks

* Additional Resources

Use Case

Users want to establish a SaaS environment, where applications are shared by
multiple clients.

Solution

Employ TopLink SaaS features, such as extensibility, multi-tenancy, and external
metadata sources.

Components

e TopLink 12¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

» EclipseLink 2.4 or later.

Introduction to the Solution

You can store your mapping information in a metadata source that is external to the
running application. Because the mapping information is retrieved when the
application creates the persistence unit, you can dynamically override or extend
mappings in a deployed application.

ORACLE 13-1

Chapter 13
Using the eclipselink-orm.xml File Externally

Using the eclipselink-orm.xml File Externally

With EclipseLink, you can use the ecl i psel i nk-orm xn file to support advanced
mapping types and options. This file can override the standard JPA or m xml mapping
configuration file.

Main Tasks

To use an external metadata source for your mapping information, perform the
following tasks:

e Task 1: Configure the Persistence Unit

e Task 2: Configure the Server

Task 1: Configure the Persistence Unit

In your persistence unit, specify the external metadata source by defining an
ecl i psel i nk. net adat a. sour ce property and assign as its value a class that
implements or g. ecl i pse. per si st ence. j pa. et adat a. Met adat aSour ce. For example:

<property name="eclipselink.nmetadat a- source" val ue="nypackage. M/Met adat aSour ce"/ >
You are free to provide the metadata location in your class as you choose, for
example:

public class Adni nMet adat aSource extends XM.Met adataSource {

@verride
public XM.EntityMappings get EntityMappi ngs(Map<String, Object> properties,
Cl assLoader classLoader, SessionLog |og) {
String |eagueld = (String) properties.get(LEAGUE CONTEXT);
properties. put (PersistenceUnitProperties. METADATA_SOURCE XML_URL, "http://
myserverlocation/rest/" + | eagueld + "/orni);
return super.getEntityMappings(properties, classLoader, |0g);

}
}

Task 2: Configure the Server

To access the metadata file, the server must provide URL access to the mapping file
by using any of the following:

e Static file serving

e A server-based solution with its own mapping file or a mapping file built on-
demand from stored mapping information

e Some other web technology.

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter.

ORACLE 13-2

Chapter 13
Additional Resources

» For additional information about JPA deployment, see the following sections of the
JPA Specification (http://jcp.org/en/jsr/detail ?i d=317):

— Bootstrapping in Java SE Environments
— Container and Provider Contracts for Deployment and Bootstrapping

e For more information about persistence unit properties, see
Per si st enceUni t Properti es class in Java APl Reference for Oracle TopLink.

* For more information about the APIs, see the following in Java Persistence API
(JPA) Extensions Reference for Oracle TopLink:

— netadata-source

— netadata-source.properties.file

— netadat a- sour ce. send-ref resh- command
— nmetadata-source.xn .file

— netadata-source. xnl . url

ORACLE 13-3

http://jcp.org/en/jsr/detail?id=317

Tenant Isolation Using TopLink

ORACLE

This chapter describes how, with Oracle TopLink, you can develop a single application
and then deploy it for different clients, or "tenants," with varying degrees of application
and data isolation and of tenant-specific functionality. For example, a large company
may develop a single payroll application to be used by multiple divisions. Each division
has access to its own data and to shared data, but they cannot see any other division's
data.

With EclipseLink, you can develop a single application and then deploy it for different
clients, or "tenants," with varying degrees of application and data isolation and of
tenant-specific functionality. For example, a large company may develop a single
payroll application to be used by multiple divisions. Each division has access to its own
data and to shared data, but they cannot see any other division's data.

This chapter includes the following sections:
* Introduction to the Solution

e Using Single-Table Multi-Tenancy

e Using Table-Per-Tenant Multi-Tenancy
e Using VPD Multi-Tenancy

e Additional Resources

Use Case

Multiple application clients must share data sources, with private access to their data,
for example in a Software as a Service (SaaS) environment.

Solution

Decide on a strategy for tenant isolation; then use TopLink's tenant isolation features
to implement the strategy.

Components

e TopLink 12¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

* EclipseLink 2.4 or later.

14-1

Chapter 14
Introduction to the Solution

* A compliant Java Database Connectivity (JDBC) database, such as Oracle
Database, Oracle Express, or MySQL.

Introduction to the Solution

EclipseLink offers considerable flexibility in how you can design and implement
features for isolating tenants. Possibilities include the following:

Application Isolation options

e Separate container/server

e Separate application within the same container/server

e Separate entity manager factory and shared cache within the same application
e Shared entity manager factory with tenant isolation per entity manager

Data isolation options

* Separate database

e Separate schema/tablespace

e Separate tables

* Shared table with row isolation

* Query filtering

* Oracle Virtual Private Database (VPD)

EclipseLink includes the following options for providing multi-tenancy in the data
source:

* Single-table multi-tenancy allows tenants to share tables. Each tenant has its
own rows, identified by discriminator columns, and those rows are invisible to
other tenants. See Using Single-Table Multi-Tenancy.

* With table-per-tenant multi-tenancy, each tenant has its own table or tables,
identified by table tenant discriminators, and those tables are invisible to other
users. See Using Table-Per-Tenant Multi-Tenancy.

* With (VDP) multi-tenancy, tenants use a VDP database, which provides the
functionality to support multiple tenants sharing the same table. See Using VPD
Multi-Tenancy.

EclipseLink further provides tenant-specific extensions through extensible entities
using extensible entities and Met adat aSour ce. For information about those features,
see Making JPA Entities and JAXB Beans Extensible, and Using an External
MetaData Source.

Using Single-Table Multi-Tenancy

ORACLE

With single-table multi-tenancy, any table (Tabl e or Secondar yTabl e) to which an
entity or mapped superclass maps can include rows for multiple tenants. Access to
tenant-specific rows is restricted to the specified tenant.

Tenant-specific rows are associated with the tenant by using one or more tenant
discriminator columns. Discriminator columns are used with application context values
to limit what a persistence context can access.

14-2

Chapter 14
Using Single-Table Multi-Tenancy

The results of queries on the mapped tables are limited to the tenant discriminator
value(s) provided as property values. This applies to all insert, update, and delete
operations on the table. When multi-tenant metadata is applied at the mapped
superclass level, it is applied to all subentities unless they specify their own multi-
tenant metadata.

Note:

In the context of single-table multi-tenancy, “single-table" means multiple
tenants can share a single table, and each tenant's data is distinguished
from other tenants' data via the discriminator column(s). It is possible to use
multiple tables with single-table multi-tenancy; but in that case, an entity's
persisted data is stored in multiple tables, and multiple tenants can share all
the tables.

Main Tasks for Using Single-Table Multi-Tenancy

The following tasks provide instructions for using single-table multi-tenancy:

Task 1: Prerequisites

Task 2: Enable Single-Table Multi-Tenancy
Task 3: Specify Tenant Discriminator Columns
Task 4: Perform Operations and Queries

Task 5: Use Single-Table Multi-Tenancy in an Inheritance Hierarchy

Task 1. Prerequisites

To implement and use single-table multi-tenancy, you need:

TopLink 12¢ (12.1.2.0.0) or later.

Download TopLink from htt p: // ww. or acl e. coni t echnet wor k/ m ddl ewar e/
t opl i nk/ downl oads/ i ndex. htni .

EclipseLink 2.4 or later.
Download EclipseLink from htt p: //ww. ecl i pse. or g/ ecl i psel i nk/ downl oads/ .

Any compliant Java Database Connectivity (JDBC) database, including Oracle
Database, Oracle Database Express Edition (Oracle Database XE), or MySQL.
These instructions are based on Oracle Database XE 11g Release 2.

For the certification matrix, see htt ps: //ww. or acl e. com t echnet wor k/
m ddl ewar e/ t opl i nk/ over vi ew i ndex. ht m

Task 2: Enable Single-Table Multi-Tenancy

Single-table multi-tenancy can be enabled declaratively using the @ul tit enant
annotation, in an Object Relational Mapping (ORM) XML file using the <nul ti t enant >
element, or by using annotations and XML together.

ORACLE

14-3

http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.eclipse.org/eclipselink/downloads/
https://www.oracle.com/technetwork/middleware/toplink/overview/index.html
https://www.oracle.com/technetwork/middleware/toplink/overview/index.html

Chapter 14
Using Single-Table Multi-Tenancy

Using the @Multitenant Annotation

To use the @l titenant annotation, include it with an @ntity or @/appedSuper cl ass
annotation. For example:

@ntity

@abl e(name="EMP")

@l titenant (SI NGLE_TABLE)
public class Enployee {

}

Note:
Single-table is the default multi-tenancy type, so SI NGLE_TABLE does not
have to be included in @l titenant.

Note:
The @abl e annotation is not required, because the discriminator column is
assumed to be on the primary table. However, if the discriminator column is
defined on a secondary table, you must identify that table using
@econdar yTabl e.

Using the <multitenant> Element

To use the <nul ti t enant > element, include the element within an <enti t y> element.
For example:

<entity class="nodel . Enpl oyee">
<multitenant type="SINGLE TABLE'>

</mltitenant>

<lentity>

Task 3: Specify Tenant Discriminator Columns

Discriminator columns are used together with an associated application context to
indicate which rows in a table an application tenant can access.

Tenant discriminator columns can be specified declaratively using the
@enant Di scri ni nat or Col uim annotation or in an object-relational (ORM) XML file
using the <t enant - di scri mi nat or - col um> element.

The following characteristics apply to discriminator columns:

* Tenant discriminator column(s) must always be used with @l titenant (or
<nul titenant>in the ORM XML file). You cannot specify the tenant discriminator
column(s) only.

ORACLE 14-4

Chapter 14
Using Single-Table Multi-Tenancy

* The tenant discriminator column is assumed to be on the primary table unless
another table is explicitly specified.

* On persist, the values of tenant discriminator columns are populated from their
associated context properties.

* When a multi-tenant entity is specified, the tenant discriminator column can
default. Its default values are:

— Name = TENANT I D (the database column name)

— Context property = ecl i psel i nk. tenant. i d (the context property used to
populate the database column)

* Tenant discriminator columns are application definable. That is, the discriminator
column is not tied to a specific column for each shared entity table. You can use
TENANT_I D, T_I D, etc.

e There is no limit on the number of tenant discriminator columns an application can
define.

* Any name can be used for a discriminator column.
* Generated schemas include specified tenant discriminator columns.
e Tenant discriminator columns can be mapped or unmapped:

— When a tenant discriminator column is mapped, its associated mapping
attribute must be marked as read only.

— Both mapped and unmapped properties are used to form the additional criteria
when issuing a SELECT query.

Use the @TenantDiscriminatorColumn Annotation

ORACLE

To use the @enant Di scri m nat or Col unm annotation, include it with @l ti t enant
annotation on an entity or mapped superclass, and optionally include the nane and
cont ext Property attributes. If you do not specify these attributes, the defaults nane =
"TENANT- | D' and cont ext Property = "eclipselink.tenant-id" are used.

For example:

@ntity

@ul titenant (SI NGLE_TABLE)

@enant Di scrimi nat or Col uim(name = "TENANT", contextProperty = "nultitenant.id")
public class Enployee {

}

To specify multiple tenant discriminator columns, include multiple

@enant Di scri m nat or Col utm annotations within the @enant Di scri m nat or Col ums
annotation, and include the table where the column is located if it is not located on the
primary table. For example:

@ntity
@abl e(name = "EMPLOYEE")
@econdar yTabl e(name = "RESPONS| Bl LI TI ES")
@aul titenant (S| NGLE_TABLE)
@enant Di scri m nat or Col ums({
@enant Di scri m nat or Col um(name = "TENANT_I D',
context Property = "enpl oyee-tenant.id", length = 20)
@enant Di scri m nat or Col um(name = " TENANT_CODE",
cont ext Property = "enpl oyee-tenant.code", discrininatorType = STRING
tabl e = "RESPONSI BI LI TI ES")

14-5

Chapter 14
Using Single-Table Multi-Tenancy

}
)
publ i c Enpl oyee() {

}

Use the <tenant-discriminator-column> Element

To use the <t enant - di scri m nat or - col um> element, include the element within a
<nul titenant > element and optionally include the nane and cont ext - property
attributes. If you do not specify these attributes, the defaults name = "TENANT- | D' and
context Property = "eclipselink.tenant-id" are used.

For example:

<entity class="nodel . Enpl oyee">
<nul titenant>
<tenant - di scri m nator-col um nane="TENANT"
context-property="nultitenant.id"/>
</mltitenant>

<lentity>

To specify multiple columns, include additional <t enant - di scri m nat or - col urm>
elements, and include the table where the column is located if it is not located on the
primary table. For example:

<entity class="nodel . Enpl oyee">
<mul titenant type="S|I NGLE_TABLE">
<t enant - di scri minator-col urm nanme="TENANT_| D'
cont ext - property="enpl oyee-tenant.id" |ength="20"/>
<tenant-di scri ninat or-col unmn nane="TENANT_CODE"
cont ext - property="enpl oyee-tenant.id" discrimnator-type="STRI NG'
t abl e=" RESPONSI BI LI TI ES"/ >
</mul titenant>
<t abl e name="EMPLOYEE"/ >
<secondary-tabl e nanme="RESPONSI BI LI TI ES"/ >

<lentity>

Map Tenant Discriminator Columns

ORACLE

Tenant discriminator columns can be mapped to a primary key or to another column.
The following example maps the tenant discriminator column to the primary key on the
table during DDL generation:

@ntity

@abl e(name = " ADDRESS")

@ul titenant

@enant Di scrim nat or Col um(name = "TENANT", contextProperty = "tenant.id",
primryKey = true)

public Address() {

}

The following example uses the ORM XML file to map the tenant discriminator column
to a primary key:

<entity class="nodel . Address">
<mul titenant>

14-6

Chapter 14
Using Single-Table Multi-Tenancy

<tenant - di scri m nator-col um nane="TENANT"
context-property="nultitenant.id" primry-key="true"/>
</mltitenant>
<t abl e nane="ADDRESS"/ >

<lentity>

The following example maps the tenant discriminator column to another column
named AGE:

@ntity

@abl e(name = "Pl ayer")

@ul titenant

@enant Di scrim nat or Col um(name = "AGE", contextProperty = "tenant.age")
public Player() {

@asi ¢
@ol urm(name="ACGE", insertable="fal se", updatabl e="false")
public int age;

}

The following example uses the ORM XML file to map the tenant discriminator column
to another column named AGE:

<entity class="nodel.Pl ayer">
<nul titenant>
<tenant-di scrimnator-col um name="AGE" context-property="tenant.age"/>
</mul titenant>
<tabl e name="PLAYER'/ >

<attributes>
<basi ¢ nanme="age" insertabl e="fal se" updatabl e="fal se">
<col um nane="AGE"/ >
</ basi c>
</attributes>

<lentity>

Define Persistence Unit and Entity Mappings Defaults

ORACLE

In addition to configuring discriminator columns at the entity and mapped superclass
levels, you can also configure them at the persi stence-unit-defaults andentity-
mappi ngs levels to provide defaults. Defining the metadata at the these levels follows
similar JPA metadata defaulting and overriding rules.

Specify default tenant discriminator column metadata at the per si st ence- uni t -
defaul t s level in the ORM XML file. When defined at this level, the defaults apply to
all entities of the persistence unit that have specified a multi-tenant type of

SI NGLE_TABLE minus those that specify their own tenant discriminator metadata. For
example:

<per si st ence- uni t - net adat a>
<persi stence-uni t-defaul t s>
<tenant - di scrimnator-col um nane="TENANT_| D" context-property="tenant.id"/>
</ persi stence-unit-defaul ts>
</ persi st ence-uni t - net adat a>

14-7

Chapter 14
Using Single-Table Multi-Tenancy

You can also specify tenant discriminator column metadata at the ent i t y- mappi ngs
level in the ORM XML file. A setting at this level overrides a persistence unit default
and applies to all entities with a multi-tenant type of SI NGLE_TABLE of the mapping file,
minus those that specify their own tenant discriminator metadata. For example:

<entity- mappi ngs>

<tenant-di scrininator-col um name="TENANT_| D' context-property="tenant.id"/>

</ entity- mappi ngs>

Configure Context Properties and Caching Scope

ORACLE

Runtime context properties are used in conjunction with the multi-tenancy
configuration on an entity (or mapped superclass) to implement the multi-tenancy
strategy. For example, the tenant ID assigned to a tenant discriminator column for an
entity is used at runtime (via an entity manager) to restrict access to data, based on
that tenant's ownership of (or access to) the rows and tables of the database.

At runtime, multi-tenancy properties can be specified in a persistence unit definition or
passed to a create entity manager factory call.

The order of precedence for tenant discriminator column properties is as follows:
1. EntityManager

2. EntityManagerFactory

3. Application context (when in a Java EE container)

For example, to set the configuration on a persistence unit in per si st ence. xni :

<persi stence-unit name="nultitenant">

<properties>
<property name="tenant.id" val ue="707"/>

</ properties>
</ persi st ence-unit>

Alternatively, to set the properties programmatically:

HashMap properties = new HashMap();
properties.put(“tenant.id", "707");

EntityManager em = Persistence. createEntityManager Factory("nulti-tenant",
properties).createEntityMnager();

¢ Note:

Swapping tenant IDs during a live Ent i t yManager is not allowed.

14-8

Chapter 14
Using Single-Table Multi-Tenancy

Configure a Shared Entity Manager

By default, tenants share the entity manager factory. A single application instance with
a shared Ent i t yManager Fact ory for a persistence unit can be responsible for handling
requests from multiple tenants.

The following example shows a shared entity manager factory configuration:

EntityManager em = createEntityManager (MJLTI _TENANT_PU);
em get Transaction(). begin();
em set Property(EntityManager Properties. MULTI TENANT _PROPERTY DEFAULT, "ny_id");

When using a shared entity manager factory, the L2 cache is by default not shared,
and therefore multi-tenant entities have an | SOLATED cache setting.

To share the cache, set the ecl i psel i nk. nul titenant.tenants-share-cache
property to t r ue. This results in multi-tenant entities having a PROTECTED cache
setting.

Caution:

Queries that use the cache may return data from other tenants when using
the PROTECTED setting.

Configure a Non-Shared Entity Manager

ORACLE

To create an entity manager factory that is not shared, set the
eclipselink.nultitenant.tenants-share-enf property to fal se.

When the entity manager factory is not shared, you must use the

ecl i psel i nk. sessi on- nane property to provide a unique session name, as shown in
the following example. This ensures that a unique server session and cache are
provided for each tenant. This provides full caching capabilities. For example,

HashMap properties = new HashMap();
properties.put(“tenant.id", "707");
properties. put("eclipselink.session-name", "nulti-tenant-707");

EntityManager em = Persistence. createEntityManagerFactory("nultitenant",
properties).createEntityMnager();

Another example:

HashMap properties = new HashMap();
properties. put(PersistenceUnitProperties. MULTI TENANT_SHARED EMF, "fal se");
properties. put(PersistenceUnitProperties. SESSI ON_NAME, "non-shared-enf-for-this-

enp");

properties. put (PersistenceUnitProperties. MULTI TENANT_PROPERTY_DEFAULT, "this-enmp");

EntityManager em = Persistence. createEntityManager Factory("nmul ti-tenant-pu",
properties).createEntityManager();

14-9

Chapter 14
Using Single-Table Multi-Tenancy

An example in the persistence unit definition:
<persistence-unit name="nul ti-tenant-pu">
<properties>
<property nane="eclipselink.nultitenant.tenants-share-enf" value="false"/>
<property nane="ecli pselink. sessi on- nane"

val ue="non- shared-enf-for-this-em"/>
<property nane="eclipselink.tenant-id" value="this-enp"/>

</ properties>
</ persi st ence-unit>

Configure an Entity Manager

When configuring properties at the level of the entity manager, you must specify the
caching strategies, because the same server session can be used for each tenant. For
example, you can set up an isolation level (L1 cache) to ensure no shared tenant
information exists in the L2 cache. These settings are set when creating the entity
manager factory.

HashMap tenant Properties = new HashMap();
properties.put(“tenant.id", "707");

HashMap cacheProperties = new HashMap();

properties. put ("eclipselink.cache. shared. Enpl oyee", "false");
properties. put ("eclipselink.cache.size. Address", "10");
properties. put ("eclipselink.cache.type.Contract”, "NONE');

EntityManager em = Persistence. createEntityManagerFactory("nultitenant",
cacheProperties).createEntityManager(tenantProperties);

Task 4. Perform Operations and Queries

The tenant discriminator column is used at runtime through entity manager operations
and querying. The tenant discriminator column and value are supported through the
following entity manager operations:

e persist()
o find()
o refresh()

The tenant discriminator column and value are supported through the following
gueries:

* Named queries
* Update all

* Delete all

ORACLE 14-10

Chapter 14
Using Table-Per-Tenant Multi-Tenancy

Note:

Multi-tenancy is not supported through named native queries. To use named
native queries in a multi-tenant environment, manually handle any multi-
tenancy issues directly in the query. In general, it is best to avoid named
native queries in a multi-tenant environment.

Task 5: Use Single-Table Multi-Tenancy in an Inheritance Hierarchy

Inheritance strategies are configured by specifying the inheritance type
(@ avax. persi stence. I nheri t ance). Single-table multi-tenancy can be used in an
inheritance hierarchy, as follows:

* Multi-tenant metadata can be applied only at the root level of the inheritance
hierarchy when using a SI NGLE_TABLE or JO NED inheritance strategy.

* You can also specify multi-tenant metadata within a TABLE_PER CLASS inheritance
hierarchy. In this case, every entity has its own table, with all its mapping data
(which is not the case with SI NGLE_TABLE or JO NED strategies). Consequently, in
the TABLE PER CLASS strategy, some entities of the hierarchy may be multi-tenant,
while others may not be. The other inheritance strategies can only specify multi-
tenancy at the root level, because you cannot isolate an entity to a single table to
build only its type.

Using Table-Per-Tenant Multi-Tenancy

ORACLE

Table-per-tenant multi-tenancy allows multiple tenants of an application to isolate their
data in one or more tenant-specific tables. Multiple tenants' tables can be in a shared
schema, identified using a prefix or suffix naming pattern; or they can be in separate,
tenant-specific schemas. Table-per-tenant entities can be mixed with other multi-
tenant type entities within the same persistence unit.

The table-per-tenant multi-tenant type is used in conjunction with:

* Atenant table discriminator that specifies the type of discriminator (schema or
name with prefix or suffix)

* Atenant ID to identify the user (configured per entity manager or at the entity
manager factory, if isolating the table-per-tenant per persistence unit.)

A single application instance with a shared Ent i t yManager Fact ory for a persistence
unit can be responsible for handling requests from multiple tenants.

Alternatively, separate Ent i t yManager Fact or y instances can be used for each tenant.
(This is required when using extensions per tenant.) In this case, tenant-specific
schema and table names are defined in an ecl i psel i nk-orm xnl configuration file. A
Met adat aSour ce must be registered with a persistence unit. The Met adat aSour ce is
used to support additional persistence unit metadata provided from outside the
application.

For information about Met adat aSour ce, see Using an External MetaData Source. See
also net adat a- sour ce in Java Persistence APl (JPA) Extensions Reference for Oracle
TopLink.

14-11

Chapter 14
Using Table-Per-Tenant Multi-Tenancy

The table-per-tenant multi-tenant type enables individual tenant table(s) to be used at
the entity level. A tenant context property must be provided on each entity manager
after a transaction has started.

The table(s) (Tabl e and Secondar yTabl e) for the entity are individual tenant tables
based on the tenant context. Relationships within an entity that uses a join or a
collection table are also assumed to exist within the table-per-tenant context.

Multi-tenant metadata can only be applied at the root level of the inheritance
hierarchy when using a SI NGLE_TABLE or JO NED inheritance strategy. Multi-tenant
metadata can be specified in a TABLE _PER CLASS inheritance hierarchy

Main Tasks for Using Table-Per-Tenant Multi-Tenancy

The following tasks provide instructions for using table-per-tenant multi-tenancy:

Task 1: Prerequisites
Task 2: Enable Table-Per-Tenant Multi-Tenancy
Task 3: Specify Tenant Table Discriminator

Task 4: Specify a Context Property at Runtime

Task 1: Prerequisites

To implement and use table-per-tenant multi-tenancy, you need:

TopLink 12¢ (12.1.2.0.0) or later.

Download TopLink from htt p: // www. or acl e. coni t echnet wor k/ m ddl ewar e/
t opl i nk/ downl oads/ i ndex. htni .

EclipseLink 2.4 or later.
Download EclipseLink from htt p://ww. ecl i pse. or g/ ecl i psel i nk/ downl oads/ .

Any compliant Java Database Connectivity (JDBC) database, including Oracle
Database, Oracle Database Express Edition (Oracle Database XE), or MySQL.
These instructions are based on Oracle Database XE 11g Release 2.

For the certification matrix, see htt ps://ww. oracl e. conl t echnet wor k/
m ddl ewar e/ t opl i nk/ over vi ew/ i ndex. ht m

Task 2: Enable Table-Per-Tenant Multi-Tenancy

Table-per-tenant multi-tenancy can be enabled declaratively using the @l tit enant
annotation; or in an Object Relational Mapping (ORM) XML file using the
<nul tit enant > element, or using annotations and XML together.

Using the @Multitenant and @ TenantTableDiscriminator Annotations

ORACLE

To use the @l titenant annotation, include the annotation with an @ntity or
@mbppedSuper ¢l ass annotation and include the TABLE PER TENANT attribute.

For example:

@ntity
@aul titenant (TABLE PER TENANT

)

14-12

http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.eclipse.org/eclipselink/downloads/
https://www.oracle.com/technetwork/middleware/toplink/overview/index.html
https://www.oracle.com/technetwork/middleware/toplink/overview/index.html

Chapter 14
Using Table-Per-Tenant Multi-Tenancy

public class Enployee {
}

The TABLE _PER TENANT attribute states that clients have a dedicated table or tables
(Tabl e and Secondar yTabl e) associated with the entity.

Using the <multitenant> Element

To use the <nul ti t enant > element, include the element within an <enti t y> element.
For example:

<entity class="nodel . Enpl oyee">
<mul titenant type="TABLE PER TENANT" >

</mltitenant>

<lentity>

Task 3: Specify Tenant Table Discriminator

The tenant table discriminator describes the type of table discriminator to use in a
table-per-tenant multi-tenancy strategy. The tenant table discriminator is identified by a
property. You can define your own identifier or use the default property:

org. eclipse. persi stence. config. PersistenceUnitProperties. MILTI TENANT _PROPE
RTY _DEFAULT = "eclipselink.tenant-id"

The tenant table discriminator can be specified at the entity or mapped superclass
level, and it must always be accompanied with a Mil ti t enant (TABLE_PER TENANT)
specification. It is not sufficient to specify only a tenant table discriminator.

The tenant table discriminator is used together with an associated application context
to indicate which table or tables an application tenant can access.

Using the @TenantTableDiscriminator Annotation

ORACLE

Use the @enant Tabl eDi scri ni nat or annotation to specify which tables are
associated with which tenants. The tenant table discriminator must include a type and
a context property:

» Use the t ype attribute to identify what type of discriminator to use:

— Use PREFI X to apply the tenant table discriminator as a prefix to all multi-
tenant tables.

— Use SUFFI X to apply the tenant table discriminator as a suffix to all multi-tenant
tables.

— Use SCHEMA to apply the tenant table discriminator as a schema to all multi-
tenant tables. This strategy requires appropriate database provisioning.

* Use the cont ext Property attributes to identify the user. The value of the context
property is a tenant ID that identifies the user. This can be configured for an entity
manager or, if you want to isolate the table-per-tenant per persistence unit, an
entity manager factory.

For example:

@ntity
@abl e(name="EMP")

14-13

Chapter 14
Using Table-Per-Tenant Multi-Tenancy

@ul titenant (TABLE_PER TENANT)
@enant Tabl eDi scri m nat or (t ype=SCHEMA, cont ext Property="eclipselink-tenant.id")
public class Enployee {

}

Using the <tenant-table-discriminator> Element

To use the <t enant - t abl e- di scri ni nat or > element, include the element within a
<nul titenant > element and include the nane and cont ext - proper ty attributes. For
example:

<entity class="Enpl oyee">
<nul titenant type="TABLE_PER TENANT" >
<tenant-tabl e-di scrim nator type="SCHEMA"
cont ext - property="ecl i pselink-tenant.id"/>
</mul titenant>
<tabl e name="EM">

<lentity>

Task 4. Specify a Context Property at Runtime

At runtime, specify the context property using a persistence unit definition passed to
an entity manager factory or set on an individual entity manager. For example:

<persistence-unit name="nul titenant">

<properties>
<property name="tenant.id" val ue="707"/>

</ properties>
</ persi st ence-unit>

To specify a context property at runtime programmatically:

HashMap properties = new HashMap();

properties. put (PersistenceUnitProperties. MULTI TENANT_PROPERTY_DEFAULT, "707");

EntityManager em = Persistence. createEntityMinager Factory("nultitenant-pu",
properties).createEntityMnager();

An entity manager property definition follows:

EntityManager em =
Persi st ence. creat eEntit yManager Factory("mul titenant-pu").createEntityManager();
em begi nTransaction();
em set Property("other.tenant.id.property", "707");
em set Property(EntityManager Properties. MULTI TENANT_PROPERTY_DEFAULT, "707");

Task 5: Perform Operations and Queries

ORACLE

The tenant discriminator column is used at runtime through entity manager operations
and querying. The tenant discriminator column and value are supported through the
following entity manager operations:

e persist()
o find()

14-14

Chapter 14
Using VPD Multi-Tenancy

o refresh()

The tenant discriminator column and value are supported through the following
queries:

* Named queries

e Update all
* Delete all
Note:

Multi-tenancy is not supported through named native queries. To use named
native queries in a multi-tenant environment, manually handle any multi-
tenancy issues directly in the query. In general, it is best to avoid named
native queries in a multi-tenant environment.

Using VPD Multi-Tenancy

A Virtual Private Database (VPD) uses security controls to restrict access to database
objects based on various parameters.

For example, the Oracle Virtual Private Database supports security policies that
control database access at the row and column level. Oracle VPD adds a dynamic
WHERE clause to SQL statements issued against the table, view, or synonym to which
the security policy was applied.

Oracle Virtual Private Database enforces security directly on the database tables,
views, or synonyms. Because security policies are attached directly to these database
objects, and the policies are automatically applied whenever a user accesses data,
there is no way to bypass security.

When a user directly or indirectly accesses a table, view, or synonym that is protected
with an Oracle Virtual Private Database policy, Oracle Database dynamically modifies
the SQL statement of the user. This modification creates a WHERE condition (called a
predicate) returned by a function implementing the security policy. Oracle Virtual
Private Database modifies the statement dynamically, transparently to the user, using
any condition that can be expressed in or returned by a function. Oracle Virtual Private
Database policies can be applied to SELECT, INSERT, UPDATE, INDEX, and
DELETE statements.

When using EclipseLink VPD Multitenancy, the database handles the tenant filtering
on all SELECT, INSERT, UPDATE, INDEX and DELETE queries.

To use EclipseLink VPD multi-tenancy, you must first configure VPD in the database
and then specify multi-tenancy on the entity or mapped superclass, as shown in the
following example, using @/l titenant and @enant Di scri ni nat or Col um:

Main Tasks for Using VPD Multi-Tenancy

The following tasks provide instructions for using VPD multi-tenancy with Oracle
Virtual Private Database:

e Task 1: Prerequisites

ORACLE 14-15

Chapter 14
Using VPD Multi-Tenancy

e Task 2: Configure the Virtual Private Database
e Task 3: Configure the Entity or Mapped Superclass
e Task 4: Disable Criteria Generation

» Task 5: Configure persistence.xml

Task 1: Prerequisites

To implement and use VPD multi-tenancy, you need:
e TopLink 12¢ (12.1.2.0.0) or later.

Download TopLink from htt p: // www. or acl e. conf t echnet wor k/ ni ddl ewar e/
t opl i nk/ downl oads/ i ndex. htnl .

EclipseLink 2.4 or later.
Download EclipseLink from htt p: //www. ecl i pse. or g/ ecl i psel i nk/ downl oads/ .

* Any compliant Java Database Connectivity (JDBC) database that supports VDP,
for example, Oracle Virtual Private Database.

For the certification matrix, see htt ps: // www. or acl e. conm t echnet wor k/
m ddl ewar e/ t opl i nk/ overvi ew i ndex. ht m

Task 2: Configure the Virtual Private Database

In this example, an Oracle Virtual Private Database is configured with a policy and a
stored procedure. The policy is a call to the database that tells the database to use a
stored function to limit the results of a query. In this example, the function is called

i dent _func, and it is run whenever a SELECT, UPDATE or DELETE is performed on the
SCOTT. TASK table. The policy is created as follows:

CALL DBMS_RLS. ADD POLICY ('SCOTT', "TASK', 'todo_list_policy', 'SCOIT,
"ident_func', 'select, update, delete'));

The function defined below is used by VPD to limit the data based on the identifier that
is passed in to the connection. The function uses the USER_|I D column in the table to
limit the rows. The rows are limited, based on what is setin the client i dentifier
variable in the user env context.

CREATE OR REPLACE FUNCTI ON i dent _func (p_schema IN VARCHAR2 DEFAULT NULL, p_object
I'N VARCHAR2 DEFAULT NULL)
RETURN VARCHAR2
AS
BEG N
RETURN ' USER_I D = sys_context (' 'userenv'', ''client_identifier'")";
END;

Task 3: Configure the Entity or Mapped Superclass

ORACLE

As described above, VPD is configured to use the USER_| D column to limit access to
rows. Therefore, you must tell EclipseLink to auto-populate the USER | D column on
inserts. The following code uses EclipseLink multi-tenancy and specifies that the client
identifier is passed in to the entity managers using a property called t enant . i d.
Because the filtering is done by VPD on the database, you must turn off caching on
this entity to avoid leakage across users.

14-16

http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html
http://www.eclipse.org/eclipselink/downloads/
https://www.oracle.com/technetwork/middleware/toplink/overview/index.html
https://www.oracle.com/technetwork/middleware/toplink/overview/index.html

Chapter 14
Additional Resources

@ntity

@ul titenant (VPD)

@enant Di scri m nat or Col um(nanme = "USER I D', contextProperty = "tenant.id")
@acheabl e(fal se)

public class Task inplenents Serializable {

Task 4: Disable Criteria Generation

When single-table and table-per-tenant multi-tenancy are enabled, a client identifier is
auto appended to any generated SQL. However, when VPD is used to limit the access
to data, the auto-appending of the identifier should be turned off.

Beginning with TopLink 12c (12.1.2.0.0), disable criteria generation as follows:
Beginning with EclipseLink 2.4, disable criteria generation as follows:

@ul titenant (includeCriteria=false)
@enant Di scrim nat or Col um(name = "USER | D', contextProperty = "tenant.id")

In EclipseLink 2.3.1, you must run the following codefrom a Sessi onCust oni zer:

sessi on. get Descri pt or (Task. cl ass) . get Quer yManager (). setl ncl udeTenant Criteria(fal se);

Task 5: Configure persistence.xml

Add the following properties to per si st ence. xm .
Include the following to set and clear the VPD identifier:

<property name="eclipselink.session-event-listener" val ue="exanpl e. VPDSessi onEvent Adapter" />

Include the following to provide one connection per entity manager:

<property name="eclipselink.jdbc.excl usive-connection.node" val ue="Al ways" />

Include the following to allow native queries to be runnable from EclipseLink. This is
required for creating VPD artifacts:

<property name="eclipselink.jdbc.allownative-sql-queries" value="true" />
</ properties>

For example:

<properties>
<property name="ecl i pselink.session-event-listener" val ue="exanpl e. VPDSessi onEvent Adapter" />
<property name="eclipselink.jdbc. excl usi ve-connection. node" val ue="A ways" />
<property name="eclipselink.jdbc.allownative-sqgl-queries" value="true" />

</ properties>

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

e Code Sample

ORACLE 14-17

ORACLE

http://wiki.eclipse.org/EclipseLink/Exanpl es/ MySports

Chapter 14

Additional Resources

See the following in Java Persistence API (JPA) Extensions Reference for Oracle
TopLink.)

@l titenant
@enant Di scri m nat or Col um
@enant Di scri m nat or Col utms

@enant Tabl eDi scri mi nat or

14-18

http://wiki.eclipse.org/EclipseLink/Examples/MySports

Mapping JPA to XML

ORACLE

This chapter describes how to use JPA with the Java Architecture for XML Binding
(JAXB)—the Java EE standard for mapping POJOs (Plain Old Java Objects) to XML—
and its Mapping Objects to XML (MOXYy) extensions to map JPA entities to XML.
Mapping JPA entities to XML is useful when you want to create a data access service
with Java API for Restful Web Services (JAX-RS), Java API for XML Web Services
(JAX-WS), or Spring.

This chapter includes the following topics:

Introduction to the Solution

Binding JPA Entities to XML

Mapping Simple Java Values to XML Text Nodes

Using XML Metadata Representation to Override JAXB Annotations
Using XPath Predicates for Mapping

Using Dynamic JAXB/MOXy

Use Case

Users need to map JPA entities to XML.

Solution

TopLink provides support for the JAXB standard through EclipseLink JAXB
extensions.

EclipseLink provides support for the JAXB standard through EclipseLink MOXy
extensions.

Components

TopLink 12¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

EclipseLink 2.4 or later.
XML document

15-1

Chapter 15
Introduction to the Solution

Sample
See the following EclipseLink and JAXB examples for related information:

e http://wki.eclipse.org/EclipseLink/Exanpl es/ MOXy

 http://java.sun.conf devel oper/technical Articl es/ \WebServi ces/ | axb/
i ndex. htm

Introduction to the Solution

This chapter demonstrates some typical techniques for mapping JPA entities to XML.
Working with the examples that follow requires some understanding of such high-level
JPA-to-XML mapping concepts, such as JAXB, MOXy, XML binding, and how to
override JAXB annotations. The following sections will give you a basic understanding
of these concepts:

e Understanding XML Binding
e Understanding JAXB
e Understanding MOXy

e Understanding an XML Data Representation

Understanding XML Binding

XML binding is how you represent information in an XML document as an object in
computer memory. This allows applications to access the data in the XML from the
object rather than using the Domain Object Model (DOM), the Simple API for XML
(SAX) or the Streaming API for XML (StAX) to retrieve the data from a direct
representation of the XML itself. When binding, JAXB applies a tree structure to the
graph of JPA entities. Multiple tree representations of a graph are possible and will
depend on the root object chosen and the direction the relationships are traversed.

You can find examples of XML binding with JAXB in Binding JPA Entities to XML.

Understanding JAXB

ORACLE

JAXB is a Java API that allows a Java program to access an XML document by
presenting that document to the program in a Java format. This process, called
binding, represents information in an XML document as an object in computer
memory. In this way, applications can access the data in the XML from the object
rather than using the Domain Object Model (DOM) or the Streaming API for XML
(SAX) to retrieve the data from a direct representation of the XML itself. Usually, an
XML binding is used with JPA entities to create a data access service by leveraging a
JAX-WS or JAX-RS implementation. Both of these Web Service standards use JAXB
as the default binding layer. This service provides a means to access data exposed by
JPA across computers, where the client computer might or might not be using Java.

JAXB uses an extended set of annotations to define the binding rules for Java-to-XML
mapping. These annotations are subclasses of the j avax. xni . bi nd. * packages in the
EclipseLink API. For more information about these annotations, see Java AP/
Reference for Oracle TopLink.

For more information about JAXB, see "Java Architecture for XML Binding (JAXB)" at:

15-2

http://wiki.eclipse.org/EclipseLink/Examples/MOXy
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/index.html
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/index.html

Chapter 15
Introduction to the Solution

https://ww. eclipse.org/eclipselink/#nmoxy

Understanding MOXy

MOXYy is EclipseLink's JAXB implementation. It allows you to map a POJO model to an
XML schema, greatly enhancing your ability to create JPA-to-XML mappings. MOXy
supports all the standard JAXB annotations in the j avax. xm . bi nd. annot at i on
package plus has its own extensions in the

org. ecli pse. persi stence. oxm annot at i ons package. You can use these latter
annotations in conjunction with the standard annotations to extend the utility of JAXB.
Because MOXy represents the optimal JAXB implementation, you still implement it
whether or not you explicitly use any of its extensions. MOXy offers these benefits:

* It allows you to map your own classes to your own XML schema, a process called
"Meet in the Middle Mapping". This avoids static coupling of your mapped classes
with a single XML schema,

» It offers specific features, such as Xpath-based mapping, JSON binding, and
compound key mapping and mapping relationships with back-pointers to address
critical JPA-to-XML mapping issues.

* It allows you to map your existing JPA models to industry standard schema.

* It allows you to combine MOXy mappings and EclipseLink's persistence
framework to interact with your data through JCA.

» It offers superior performance in several scenarios.

For more information about MOXy, see the MOXy FAQ at:
http://wiki.eclipse.org/EclipseLink/FAQ Wat | sMOXy

Understanding an XML Data Representation

ORACLE

Annotations are not always the most effective way to map JPA to XML. For example,
you would not use JAXB if:

* You want to specify metadata for a third-party class but do not have access to the
source.

* You want to map an object model to multiple XML schemas, because JAXB rules
preclude applying more than one mapping by using annotations.

* Your object model already contains too many annotations—for example, from
such services as JPA, Spring, JSR-303, and so on—and you want to specify the
metadata elsewhere.

Under these and similar circumstances, you can use an XML data representation by
exposing the ecl i psel i nk_oxm xm file.

XML metadata works in two modes:

e It adds to the metadata supplied by annotations. This is useful when:

— Annotations define version one of the XML representation, and you use XML
metadata to tweak the metadata for future versions.

— You use the standard JAXB annotations, and use the XML metadata for the
MOXy extensions. In this way you don't introduce new compile time
dependencies in the object model.

15-3

https://www.eclipse.org/eclipselink/#moxy
http://wiki.eclipse.org/EclipseLink/FAQ/WhatIsMOXy

Chapter 15
Binding JPA Entities to XML

* It completely replaces the annotation metadata, which is useful when you want to
map to different XML representations.

To see how to use XML data representation, see Using XML Metadata Representation
to Override JAXB Annotations

Binding JPA Entities to XML

The following examples demonstrate how to bind JPA entities to XML by using JAXB
annotations. For more information about binding, see Understanding XML Binding for
more information about JAXB, see Understanding JAXB

* Binding JPA Relationships to XML
* Binding Compound Primary Keys to XML
« Binding Embedded ID Classes to XML

Binding JPA Relationships to XML

The following exercise demonstrate show to use JAXB to derive an XML
representation from a set of JPA entities, a process called "binding" (read about XML
binding in Binding JPA Entities to XML). These examples will show how to bind two
common JPA relationships:

e Privately-owned relationships

e Shared reference relationships

to map an Employee entity to that employee's phone number, address, and
department.

Task 1: Define the Accessor Type and Import Classes

Since all of the following examples use the same accessor type, Fl ELD, define it at the
package level by using the JAXB annotation @m Accessor Type. At this point, you
would also import the necessary classes:

@ Accessor Type(Xm AccessType. FI ELD)
package com exanpl e. nodel ;

import javax.xnl.bind. annotation. Xm AccessType;
import javax.xnl.bind. annotation. Xm Accessor Type;

Task 2: Map Privately-Owned Relationships

A "privately-owned" relationship occurs when the target object is only referenced by a
single source object. This type of relationship can be either one-to-one and embedded
or one-to-many.

This Task shows how to create bi-directional mappings for both of these types of
relationships between the Enpl oyee entity and the Addr ess and PhoneNunber entities.

Mapping a One-to-One and Embedded Relationship

The JPA @neTone and @nbedded annotations indicate that only one instance of the
source entity is able to refer to the same target entity instance. This example shows

ORACLE 15-4

Chapter 15
Binding JPA Entities to XML

how to map the Enpl oyee entity to the Addr ess entity and back. This is considered a
one-to-one mapping because the employee can be associated with only one address.
Since this relationship is bi-directional—that is, Enpl oyee points to Addr ess, which
must point back to Enpl oyee—it uses the EclipseLink extension

@ | nver seRef er ence to represent the back-pointer.

To create the one-to-one and embedded mapping:

1. Ensure that the accessor type Fl ELD has been defined at the package level, as
described in Task 1: Define the Accessor Type and Import Classes.

2. Map one direction of the relationship, in this case, the enpl oyee property on
Addr ess, by inserting the @neToOne annotation in the Enpl oyee entity:

@neToOne(mappedBy="resi dent")
private Address residence;

The mappedBy argument indicates that the relationship is owned by the r esi dent
field.

3. Map the return direction—that is, the addr ess property on Enpl oyee—by inserting
the @neToOne and @ | nver seMappi ng annotations into the Address entity:

@neTolne

@oi nCol utm(name="E_I D")

@ | nver seRef er ence(mappedBy="r esi dence")
private Enpl oyee resident;

The mappedBy field indicates that this relationship is owned by the r esi dence field.
@oi nCol unn identifies the column that will contain the foreign key.

The entities should look like those shown in Example 15-1 and Example 15-2.

Mapping a One-to-Many Relationship

ORACLE

The JPA @neToMany annotation indicates that a single instance of the source entity
can refer to multiple instances of the same target entity. For example, one employee
can have multiple phone numbers, such as a land line, a mobile number, a desired
contact number, and an alternative workplace number. Each different number would
be an instance of the PhoneNunber entity and a single Enpl oyee entity could point to
each instance.

This Task maps the employee to one of that employee's phone numbers and back.
Since the relationship between Enpl oyee and PhoneNunber is bi-directional, the
example again uses the EclipseLink extension @ | nver seRef er ence to map the
back-pointer.

To create a one-to-many mapping:

1. Ensure that the accessor type Fl ELD has been defined at the package level, as
described in Task 1: Define the Accessor Type and Import Classes.

2. Map one direction of the relationship, in this case, the employee property on
PhoneNunber , by inserting the @neToMany annotation in the Enpl oyee entity:

@neToMany(mappedBy="cont act")
private List<PhoneNunber> contact Nunber;

The mappedBy field indicates that this relationship is owned by the cont act field.

15-5

Chapter 15
Binding JPA Entities to XML

3. Map the return direction—that is, the phone number property on Enpl oyee—by
inserting the @anyToOne and @nl | nver seMappi ng annotations into the
PhoneNunber entity:

@mnyToOne

@oi nCol um(nane="E_I D', referencedCol umNane = "E_ID")
@ | nver seRef er ence(mappedBy="cont act Nunber ")

private Enployee contact;

The mappedBy field indicates that this relationship is owned by the cont act Nunber
field. The @oi nCol um annotation identifies the column that will contain the foreign
key (name="E_I D') and the column referenced by the foreign key

(ref erencedCol umNane = "E_|ID").

The entities should look like those shown in Example 15-1 and Example 15-3.

Task 3: Map the Shared Reference Relationship

A shared reference relationship occurs when target objects are referenced by multiple
source objects. For example, a business might be segregated into multiple
departments, such as IT, human resources, finance, and so on. Each of these
departments has multiple employees of differing job descriptions, pay grades,
locations, and so on. Managing departments and employees requires shared
reference relationships.

Since a shared reference relationship cannot be safely represented as nesting in XML,
we use key relationships. In order to leverage the ID fields on JPA entities, you need
to use the EclipseLink JAXB @nl | D annotation on non-String fields and properties and
@ | DREF on string fields and properties.

This section contains examples that show how to map a many-to-one shared
reference relationship and a many-to-many shared reference relationship.

Mapping a Many-to-One Shared Reference Relationship

ORACLE

In a many-to-one mapping, one or more instances of the source entity are able to refer
to the same target entity instance. This example demonstrates how to map an
employee to one of that employee's multiple phone numbers.

To map a many-to-one shared reference relationship:

1. Ensure that the accessor type Fl ELD has been defined at the package level, as
described in Task 1: Define the Accessor Type and Import Classes.

2. Map one direction of the relationship, in this case the phone number property on
Enpl oyee, by inserting the @/anyToOne annotation in the PhoneNunber entity:

@mnyToOne

@oi nCol um(nane="E_I D', referencedCol umNane = "E_ID")
@n | DREF

private Enployee contact;

The @oi nCol umm annotation identifies the column that will contain the foreign key
(name="E_| D") and the column referenced by the foreign key

(referencedCol umNanme = "E_ID"). The @nl | DREF annotation indicates that this
will be the primary key for the corresponding table.

15-6

Chapter 15
Binding JPA Entities to XML

Map the return direction—that is, the employee property on PhoneNumber —by
inserting the @neToMany and @nl | nver seMappi ng annotations into the Address
entity:

@neToMany(mappedBy="cont act")

@ | nver seRef er ence(mappedBy="cont act")
private List<PhoneNunber> contact Nunber;

The mappedBy field for both annotations indicates that this relationship is owned by
the cont act field.

The entities should look like those shown in Example 15-1 and Example 15-3.

Mapping a Many-to-Many Shared Reference Relationship

ORACLE

The @anyToMany annotation indicates that one or more instances of the source entity
are able to refer to one or more target entity instances. Since the relationship between
Depart ment and Enpl oyee is bi-directional, this example again uses the EclipseLink's
@ | nver seRef er ence annotation to represent the back-pointer.

To map a many-to-many shared reference relationship, do the following:

1.

Ensure that the accessor type FlI ELD has been defined at the package level, as
described in Task 1: Define the Accessor Type and Import Classes.

Create a Depart nent entity by inserting the following code:

@ntity

public class Departnent {

Under this entity define the many-to-many relationship and the entity's join table by
inserting the following code:

@mnyToMany
@oi nTabl e(name="DEPT_EMP", j oi nCol ums =
@oi nCol um(name="D_I D", referencedCol umName = "D |ID"),
i nverseJoi nCol ums = @oi nCol utm(name="E_I D",
ref erencedCol umNanme = "E_ID"))

This code creates a join table called DEPT_EMP and identifies the column that will
contain the foreign key (name="E_| D') and the column referenced by the foreign
key (ref erencedCol utmName = "E | D"). Additionally, it identifies the primary table
on the inverse side of the association.

Complete the initial mapping—in this case, the Depart ment property enpl oyee—
and make it a foreign key for this entity by inserting the following code:

@n | DREF
private List<Enpl oyee> nenber;

In the Enpl oyee entity created in Mapping a One-to-One and Embedded
Relationship, specifying that el d is the primary key for JPA (@ d annotation), and
for JAXB (@m | D annotation) by inserting the following code:

@d

@ol um(nanme="E_| D")
@m 1D

private BigDecimal eld,;

Still within the Enpl oyee entity, complete the return mapping by inserting the
following code:

15-7

Chapter 15
Binding JPA Entities to XML

@mnyToMany(mappedBy="rmenber ")
@ | nver seRef er ence(mappedBy="nenber")
private List<Department> team

The entities should look like those shown in Example 15-1 and Example 15-4.

JPA Entities

Once the mappings are created, the entities should look like those in the following
examples:

* Example 15-1
* Example 15-2
* Example 15-3
* Example 15-4

Note:

In order to save space, package names, import statements, and the get/set
methods have been omitted from the code examples. All examples use
standard JPA annotations.

Example 15-1 Employee Entity

@ntity
public class Enployee {

@d

@ol um(name="E_| D")
private BigDecimal eld;
private String nane;

@neToOne(mappedBy="resi dent")
private Address residence;

@neToMany(mappedBy="cont act")
private List<PhoneNunber> cont act Nunber;

@mnyToMany(mappedBy="nenber ")
private List<Department> team

}
Example 15-2 Address Entity

@ntity
public class Address {

@d
@ol um(nanme="E_I D', insertabl e=fal se, updatabl e=fal se)
private BigDecinal eld;

private String city;

ORACLE 15-8

Chapter 15

Binding JPA Entities to XML

private String street;

@neTone
@oi nCol um(name="E_I D")
private Enpl oyee resident;

}
Example 15-3 PhoneNumber Entity

@ntity
@abl e(name="PHONE_NUVBER")
public class PhoneNunber {

@d
@ol um(name="P_I D")
private BigDecinal pld;

@mknyToOne
@oi nCol um(nane="E_I D", referencedCol umNane = "E_ID")
private Enployee contact;

private String num

}
Example 15-4 Department Entity
@ntity

public class Departnent {

@d
@ol um(nanme="D_| D")
private BigDeci mal did;

private String name;

@mnyToMany
@oi nTabl e(name="DEPT_EMP", j oi nCol ums =
@oi nCol um(name="D_I D", referencedCol umName = "D |ID"),
i nverseJoi nCol ums = @oi nCol utm(name="E_I D",
ref erencedCol umNanme = "E_ID"))
private List<Enpl oyee> nenber;

}

Binding Compound Primary Keys to XML

When a JPA entity has compound primary keys, you can bind it by using JAXB

annotations and certain EclipseLink extensions, as shown in the following example.

Task1: Define the XML Accessor Type

Define the accessor type as Fl ELD, as described in Task 1: Define the Accessor Type

and Import Classes

Task 2: Create the Target Object

To create the target object, do the following:

ORACLE

15-9

ORACLE

Chapter 15
Binding JPA Entities to XML

Create an Enpl oyee entity with a composite primary key class called Enpl oyeel D
to map to multiple fields or properties of the entity:

@ntity
@ dd ass(Enpl oyeel d. cl ass)
public class Enployee {

Specify the first primary key, eld, of the entity and map it to a column:

@d

@ol um(nanme="E_| D")
@m 1D

private BigDecimal eld,;

Specify the second primary key, country. In this instance, you need to use @m Key
to identify the primary key because only one property— el d—can be annotated
with the @m | D.

@d
@ Key
private String country;

The @ Key annotation marks a property as a key that will be referenced by using
a key-based mapping via the @m Joi nNode annotation in the source object. This is
similar to the @n Key annotation except it doesn't require the property be bound to
the schema type ID. This is a typical application of the @nl Key annotation.

Create a many-to-one mapping of the Enpl oyee property on PhoneNunber by
inserting the following code:

@neToMany(mappedBy="cont act")
@ | nver seRef er ence(mappedBy="contact")
private List<PhoneNunber> contact Nunber;

Example 15-5 Employee Entity with Compound Primary Keys

@ntity
@ dd ass(Enpl oyeel d. cl ass)
public class Enployee {

}

@d

@ol um(nanme="E_| D")
@m 1D

private BigDecimal eld,;

@d
@ Key
private String country;

@neToMany(mappedBy="cont act")
@ | nver seRef er ence(mappedBy="cont act ")
private List<PhoneNunber> contact Nunber;

public class Enployeeld {

public BigDeci mal eld,;
public String country;

public Enpl oyeel d(Bi gDecimal eld, String country) {
this.id =id;
this.country = country;;

15-10

Chapter 15
Binding JPA Entities to XML

public bool ean equal s(hj ect other) {
if (other instanceof Enployeeld) {
final Enployeeld otherEnpl oyeeld = (Enpl oyeel d) other;
return (otherEnpl oyeel d.eld.equal s(eld) &&
ot her Enpl oyeel d. country. equal s(country));

}

return fal se;

}
}

The Employee entity should look like Example 15-5

Task 3: Create the Source Object

This Task creates the source object, the PhoneNunber entity. Because the target object
has a compound key, we need to use the EclipseLink's @ Joi nNodes annotation to
set up the mapping.

To create the source object:
1. Create the PhoneNunber entity:

@ntity
public class PhoneNunber {

2. Create a many-to-one relationship and define the join columns:

@mnyToOne
@oi nCol ums({
@oi nCol um(name="E_I D", referencedCol umName = "E_ID"),
@oi nCol um(name="E_COUNTRY", referencedCol umName = " COUNTRY")

b
3. Set up the mapping by using the EclipseLink's @m Joi nNodes annotation

@ Joi nNodes({
@m Joi nNode(xm Pat h="contact/id/text()", referencedXm Path="id/text()"),
@m Joi nNode(xm Pat h="contact/country/text()", referencedXm Path="country/text()")
1y

4. Define the cont act property:

private Enployee contact;

}
Example 15-6 PhoneNumber Entity

@ntity
public class PhoneNumber {

@mnyToOne
@oi nCol ums({
@oi nCol um(nane="E_I D', referencedCol umNane = "E_ID"),
@oi nCol utm(nanme="E_COUNTRY", referencedCol utmNane = " COUNTRY")
1)
@ Joi nNodes({
@ Joi nNode(xm Path="contact/id/text()", referencedXm Path="id/text()"),
@ Joi nNode(xm Pat h="cont act/country/text()", referencedXm Path="country/text()")
1y

private Enployee contact;

ORACLE 15-11

Chapter 15
Binding JPA Entities to XML

The target object should look like Example 15-6.

Binding Embedded ID Classes to XML

An embedded ID defines a separate Enbeddabl e Java class to contain the entity's
primary key. It is defined through the @nhedded| d annotation.The embedded ID's
Enbeddabl e class must define each id attribute for the entity using basic mappings. All
attributes in the embedded Id's Enbeddabl e are assumed to be part of the primary key.
This exercise shows how to derive an XML representation from a set of JPA entities
using JAXB when a JPA entity has an embedded ID class.

Taskl: Define the XML Accessor Type

Define the XML accessor type as Fl ELD, as described in Task 1: Define the Accessor
Type and Import Classes

Task 2: Create the Target Object

ORACLE

The target object is an entity called Enpl oyee and contains the mapping for an
employee's contact phone number. Creating this target object requires implementing a
Descri pt or Cust oni zer interface, so you must include EclipseLink's @ni Cust oni zer
annotation Also, since the relationship is bidirectional, you must also implement the
@n | nver seRef er ence. annotation.

To create the target object:

1. Create the Enpl oyee entity. Use the @ dCl ass annotation to specify that the
Enpl oyeel D class will be mapped to multiple properties of the entity.

@ntity
@ dd ass(Enpl oyeel d. cl ass)
public class Enployee {

}
2. Define the i d property and make it embeddable.
@nbedded| d
@mn Path(".");

private Enmployeeld id;

3. Define a one-to-many mapping—in this case, the enpl oyee property on
PhoneNunber . Because the relationship is bi-directional, use
@m I nver seRef er ence to define the return mapping. Both of these relationships
will be owned by the contact field, as indicated by the mappedBy argument.

@neToMany(mappedBy="cont act")
@ | nver seRef er ence(mappedBy="cont act ")
private List<PhoneNunber> cont act Nunber;

Example 15-7 Employee Entity as Target Object

@ntity

@ dd ass(Enpl oyeel d. cl ass)

@ Cust om zer (Enpl oyeeCust omi zer. cl ass)
public class Enployee {

15-12

Chapter 15
Binding JPA Entities to XML

@nbedded! d
private Enployeeld id;

@neToMany(mappedBy="cont act")

@ | nver seRef er ence(mappedBy="cont act")
private List<PhoneNunber> contact Nunber;

}

The completed target object should look like Example 15-7.

Task 3: Create the Source Object

ORACLE

The source object in this example has a compound key, so you must mark the field
@ Transi ent to prevent a key from being mapped by itself. Use EclipseLink’s
@ Cust oni zer annotation to set up the mapping.

To create the source object, do the following:
1. Create the PhoneNunber entity.

@ntity
public class PhoneNunber {
}

2. Create a many-to-one mapping and define the join columns.

@manyToOne
@oi nCol ums({
@oi nCol um(name="E_I D", referencedCol umName = "E_ID"),
@oi nCol um(name="E_COUNTRY", referencedCol umName = " COUNTRY")

)

3. Define the XML nodes for the mapping, using the EclipseLink @mn Joi nNodes
annotation extension. If the target object had a single ID, you would use the
@ | DREF annotation.

Example 15-8 PhoneNumber Class as Source Object

@ntity
public class PhoneNumber {

@mnyToOne
@oi nCol ums({
@oi nCol um(nane="E_I D', referencedCol umNane = "E_ID"),
@oi nCol um(name="E_COUNTRY", referencedCol ummName = " COUNTRY")
)
@ Joi nNodes({
@ Joi nNode(xm Path="contact/id/text()", referencedXm Path="id/text()"),
@ Joi nNode(xm Pat h="cont act/country/text()", referencedXm Path="country/
text()")

1y

private Enpl oyee contact;
}

@ Joi nNodes({ @ Joi nNode(xm Pat h="contact/id/text()",
referencedXn Path="id/text()"), @ Joi nNode(xm Pat h="cont act/ country/

text()", referencedXm Path="country/text()") 1)
private Enpl oyee contact;

The completed PhoneNunber class should look like Example 15-8.

15-13

Chapter 15
Binding JPA Entities to XML

Task 5: Implement the DescriptorCustomizer as PhoneNumberCustomizer

Class

Code added in Task 4 indicated the need to create the XMLODbjectReferenceMappings
to the new values. This requires to implementing the Descr i pt or Cust omi zer as the
PhoneNunber Cust omi zer and adding the multiple key mappings. To do this:

1.

Implement Descri pt or Cust omi zer as PhoneNunber Cust omi zer . Be sure to import
org. ecl i pse. persi stence. oxm mappi ngs. XM.Qhj ect Ref er enceMappi ng:

i mport org.eclipse. persistence. oxm mappi ngs. XMLChj ect Ref er enceMappi ng;

public class PhoneNumber Cust omi zer inplenents DescriptorCustom zer {
In the cust om ze method, update the following mappings:
e contact Mappi ng. set AttributeNane to "contact".

e contact Mappi ng. addSour ceToTar get KeyFi el dAssoci ati on to " cont act/
@I D', "eld/text()".

e contact Mappi ng. addSour ceToTar get KeyFi el dAssoci ati on to " cont act/
@ountry", "country/text()".

Example 15-9 PhoneNumber Customizer with Updated Key Mappings

import org.eclipse.persistence.config.DescriptorCustoni zer;
import org.eclipse.persistence.descriptors.C assDescriptor;
import org.eclipse. persistence. oxm mappi ngs. XM.Qbj ect Ref er enceMappi ng;

public class PhoneNunber Cust om zer inplenments DescriptorCuston zer {

public void custom ze(C assDescriptor descriptor) throws Exception {
XMLObj ect Ref er enceMappi ng cont act Mappi ng = new XM.Qbj ect Ref er enceMappi ng() ;
cont act Mappi ng. set Att ri but eName(" contact");
cont act Mappi ng. set Ref er enced ass(Enpl oyee. cl ass);
cont act Mappi ng. addSour ceToTar get KeyFi el dAssoci ation("contact/ @ID", "eld/text()");
cont act Mappi ng. addSour ceToTar get KeyFi el dAssoci ation("contact/ @ountry", "country/text()");
descri pt or. addMappi ng(cont act Mappi ng) ;

PhoneNunber Cust omi zer should look like Example 15-9.

Using the EclipseLink XML Binding Document

As demonstrated in the preceding examples, EclipseLink implements the standard
JAXB annotations to map JPA entities to an XML representation. You can also
express metadata by using the EclipseLink XML Bindings document. Not only can you
use XML bindings to separate your mapping information from your actual Java class
but you can also use it for more advanced metadata tasks such as:

ORACLE

Augmenting or overriding existing annotations with additional mapping information.
Specifying all mapping information externally, without using any Java annotations.
Defining your mappings across multiple Bindings documents.

Specifying "virtual" mappings that do not correspond to concrete Java fields

15-14

Chapter 15
Mapping Simple Java Values to XML Text Nodes

For more information about using the XML Bindings document, see XML Bindings in
the JAXB/MOXy documentation at ht t p: //wi ki . ecl i pse. or g/ Ecl i pseLi nk/
User Gui de/ MOXy/ Runt i me/ XM__Bi ndi ngs.

Mapping Simple Java Values to XML Text Nodes

This section demonstrates several ways to map simple Java values directly to XML
text nodes. It includes the following examples:

e Mapping a Value to an Attribute
e Mapping a Value to a Text Node

Mapping a Value to an Attribute

This example maps the i d property in the Java object Cust oner to its XML
representation as an attribute of the <cust oner > element. The XML will be based on
the schema in Example 15-10.

Example 15-10 Example XML Schema

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >

<xsd: el ement name="custonmer" type="custoner-type"/>
<xsd: conpl exType nane="cust oner-type">
<xsd:attribute name="id" type="xsd:integer"/>

</ xsd: conpl exType>

</ xsd: schena>

The following procedures demonstrate how to map the i d property from the Java
object and, alternately, how to represent the value in EclipseLink’'s Object-to-XML
Mapping (OXM) metadata format.

Mapping from the Java Object

ORACLE

The key to creating this mapping from a Java object is the @m Attri but e JAXB
annotation, which maps the field to the XML attribute. To create this mapping:

1. Create the object and import j avax. xm . bi nd. annot ati on. *:

package exanpl e;

i mport javax.xni.bind. annotation.*;

2. Declare the Cust oner class and use the @nl Root El enent annotation to make it
the root element. Set the XML accessor type to Fl ELD:

@ Root El enent
@ Accessor Type(Xm AccessType. Fl ELD)
public class Customer {

3. Map the i d property in the Cust oner class as an attribute:

@m Attribute
private Integer id;

15-15

http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy/Runtime/XML_Bindings
http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy/Runtime/XML_Bindings

Chapter 15
Mapping Simple Java Values to XML Text Nodes

Example 15-11 Customer Object with Mapped id Property

package exanpl e;
i mport javax.xnl.bind.annotation.*;

@ Root El enent
@m Accessor Type(Xm AccessType. FI ELD)
public class Custoner {

@m Attribute

private Integer id;

}

The object should look like Example 15-11.

Defining the Mapping in OXM Metadata Format

If you want to represent the mapping in EclipseLink's OXM metadata format, you need
to use the XML tags defined in the ecl i psel i nk- oxm xn file and populate them with
the appropriate values, as shown in Example 15-12.

Example 15-12 Mapping id as an Attribute in OXM Metadata Format

<j ava-type nanme="Cust oner" >
<xm -root - el enent name="cust oner"/>
<java-attributes>
<xm-attribute java-attribute="id"/>
</java-attributes>
</java-type>

For more information about the OXM metadata format, see Using XML Metadata
Representation to Override JAXB Annotations.

Mapping a Value to a Text Node

EclipseLink makes it easy for you to map values from a Java object to various kinds of
XML text nodes; for example, to simple text nodes, text nodes in a simple sequence, in
a subset, or by position. These mappings are demonstrated in the following examples:

* Mapping a Value to a Simple Text Node
* Mapping Values to a Text Node in a Simple Sequence
* Mapping a Value to a Text Node in a Sub-element

* Mapping Values to a Text Node by Position

Mapping a Value to a Simple Text Node

You can map a value from a Java object either by using JAXB annotations in the Java
object or, alternately, by representing the mapping in EclipseLink's OXM metadata
format.

ORACLE 15-16

Chapter 15
Mapping Simple Java Values to XML Text Nodes

Mapping by Using JAXB Annotations

Assuming the associated schema defines an element called <phone- nunber > which
accepts a string value, you can use the @m Val ue annotation to map a string to the
<phone- nunber > node. Do the following:

1. Create the object and import j avax. xm . bi nd. annot ati on. *:

package exanpl e;

i mport javax.xnl.bind.annotation.*;

2. Declare the PhoneNunber class and use the @ Root El enent annotation to make
it the root element with the name phone-number. Set the XML accessor type to
FI ELD:

@m Root El ement (name="phone- nunber")
@m Accessor Type(Xm AccessType. FI ELD)
public class PhoneNumber {

3. Insert the @m Val ue annotation on the line before the nunber property in the
Customer class to map this value as an attribute:

@ni Val ue
private String number;

Example 15-13 PhoneNumber Object with Mapped number Property
package exanpl e;

import javax.xn .bind. annotation.*;

@ Root El ement (name="phone- nunber")

@m Accessor Type(Xm AccessType. FI ELD)

public class PhoneNumber {

@m Val ue
private String nunber;

}

The object should look like Example 15-13.

Defining the Mapping in OXM Metadata Format

ORACLE

If you want to represent the mapping in EclipseLink's OXM metadata format, you need
to use the XML tags defined in the ecl i psel i nk- oxm xni file and populate them with
the appropriate values, as shown in Example 15-14.

Example 15-14 Mapping humber as an Attribute in OXM Metadata Format

<j ava-type nane="PhoneNurber" >
<xni -root - el ement nane="phone- nunber"/>
<java-attributes>
<xnl -val ue java-attribute="nunber"/>
</java-attributes>
</java-type>

15-17

Chapter 15
Mapping Simple Java Values to XML Text Nodes

Mapping Values to a Text Node in a Simple Sequence

You can map a sequence of values, for example a customer's first and last name, as
separate elements either by using JAXB annotations or by representing the mapping
in EclipseLink's OXM metadata format. The following procedures illustrate how to map
values for a customers' first names and last names

Mapping by Using JAXB Annotations

Assuming the associated schema defines the following elements:

e <cust oner > of the type customer-type, which itself is defined as a conpl exType.

* Sequential elements called <fi r st - name> and <I ast - name>, both of the type
string.

you can use the @m El enent annotation to map values for a customer's first and last
name to the appropriate XML nodes. To do so:

1. Create the object and import j avax. xm . bi nd. annot ati on. *:

package exanpl e;

import javax.xn .bind. annotation.*;

2. Declare the Cust oner class and use the @nl Root El ement annotation to make it
the root element. Set the XML accessor type to Fl ELD:

@ Root El enent
@m Accessor Type(Xm AccessType. FI ELD)
public class Custoner {

3. Define the firstnane and | ast name properties and annotate them with the
@m El enent annotation. Use the nane= argument to customize the XML element
name (if you do not explicitly set the name with nane=, the XML element will match
the Java attribute name; for example, here the <fi r st - nane> element combination
would be specified <fi rst Name> </firstName> in XML).

@ El enent (name="first-name")
private String firstNang;

@ El enent (name="1 ast - nane")
private String |astNane;

Example 15-15 Customer Object Mapping Values to a Simple Sequence

package exanpl e;
import javax.xnl.bind. annotation.*;

@m Root El enent
@m Accessor Type(Xm AccessType. FI ELD)
public class Custoner {
@m El enent (nanme="first-nanme")
private String firstNang;

@n El enent (name="1 ast - nane")
private String |astNane;

ORACLE 15-18

Chapter 15
Mapping Simple Java Values to XML Text Nodes

}

The object should look like Example 15-15.

Defining the Mapping in OXM Metadata Format

If you want to represent the mapping in EclipseLink's OXM metadata format, you need
to use the XML tags defined in the ecl i psel i nk- oxm xn file and populate them with
the appropriate values, as shown in Example 15-16.

Example 15-16 Mapping Sequential Attributes in OXM Metadata Format

<j ava-type nane="Custoner">
<xm -root - el enent nane="cust oner"/>
<java-attributes>
<xnl -el ement java-attribute="firstNane" name="first-nane"/>
<xnl -el ement java-attribute="lastName" nane="| ast-nanme"/>
</java-attributes>
</java-type>

Mapping a Value to a Text Node in a Sub-element

You can map values from a Java object to text nodes that are nested as a subelement
in the XML document by using JAXB annotations or by representing the mapping in
EclipseLink's OXM metadata format. For example, if you want to populate <fi r st -
name> and <| ast - nane> elements, which are sub-elements of a <per sonal -i nf 0>
element under a <cust orer > root, you could use the following procedures to achieve
these mappings.

Mapping by Using JAXB Annotations

ORACLE

Assuming the associated schema defines the following elements:

e <custoner > of the type customer-type, which itself is defined as a complexTpe.
e <personal -info>

e Sub-elements of <per sonal -i nf 0> called <fi r st - name> and <| ast - name>, both of
the type string

you can use JAXB annotations to map values for a customer's first and last name to
the appropriate XML sub-element nodes. Because this example goes beyond a simple
element name customization and actually introduces new XML structure, it uses
EclipseLink's @nl Pat h annotation. To achieve this mapping:

1. Create the object and import j avax. xni . bi nd. annot ati on. * and
org. eclipse. persi stence. oxm annot ati ons. *.

package exanpl e;

import javax.xnl.bind. annotation.*;
inport org.eclipse.persistence.oxm annotations. *;

2. Declare the Cust oner class and use the @nl Root El enent annotation to make it
the root element. Set the XML accessor type to Fl ELD:

15-19

Chapter 15
Mapping Simple Java Values to XML Text Nodes

@m Root El enent
@m Accessor Type(Xm AccessType. FI ELD)
public class Custoner {

3. Define the firstNane and | ast Narme properties.

4. Map the firstNane and | ast Narme properties to the sub-elements defined by the
XML schema by inserting the @nl Pat h annotation on the line immediately
preceding the property declaration. For each annotation, define the mapping by
specifying the appropriate XPath predicate:

@m Pat h("personal -info/first-name/text()")
private String firstNang;

@m Pat h("personal -infol/last-name/text()")
private String |astNanme;

Example 15-17 Customer Object Mapping Properties to Sub-elements

package exanpl e;

import javax.xnl.bind. annotation.*;
inport org.eclipse.persistence.oxm annotations. *;

@ Root El enent

@ Accessor Type(Xm AccessType. FI ELD)

public class Customer {
@ Pat h("personal -info/first-nane/text()")
private String firstNang;

@ Pat h("personal -info/last-name/text()")
private String |astName;

}

The object should look like Example 15-17.

Defining the Mapping in OXM Metadata Format

If you want to represent the mapping in EclipseLink's OXM metadata format, you need
to use the XML tags defined in the ecl i psel i nk- oxm xn file and populate them with
the appropriate values, as shown in Example 15-18.

Example 15-18 Mapping Attributes as Sub-elements in OXM Metadata Format

<j ava-type nane="Cust oner">
<xm -root - el ement name="cust omer"/>
<java-attributes>
<xm -el ement java-attribute="firstName" xnl-path="personal-info/first-nane/text()"/>
<xm -el ement java-attribute="lastName" xni-path="personal -info/last-name/text()"/>
</java-attributes>
</java-type>

Mapping Values to a Text Node by Position

When multiple nodes have the same name, map their values from the Java object by
specifying their position in the XML document. Do this by using mapping the values to
the position of the attribute rather than the attribute's name. You can do this either by

ORACLE 15-20

Chapter 15
Mapping Simple Java Values to XML Text Nodes

using JAXB annotations or by or by representing the mapping in EclipseLink's OXM
metadata format. In the following example, XML contains two <nanme> elements; the
first occurrence of name should represent the Customer's first name, the second name
their last name.

Mapping by Using JAXB Annotations

ORACLE

Assuming an XML schema that defines the following attributes:

e <cust oner > of the type customer-type, which itself is specified as a conpl exType
e <name> of the type String

this example again uses the JAXB @l Pat h annotation to map a customer's first and
last names to the appropriate <name> element. It also uses the @ Type(pr opOr der)
annotation to ensure that the elements are always in the proper positions. To achieve
this mapping:

1. Create the object and import j avax. xn . bi nd. annot ati on. * and
org. eclipse. persi stence. oxm annot ati ons. Xnl Pat h.

package exanpl e;

import javax.xn .bind. annotation.*;
import org.eclipse.persistence. oxm annot ations. Xm Pat h;

2. Declare the Cust oner class and insert the @nl Type(propOrder) annotation with
the arguments "first Nane" followed by "1 ast Nane". Insert the @m Root El enent
annotation to make Cust orer the root element and set the XML accessor type to
FI ELD:

@ Root El enent

@ Type(propOrder={"firstNane", "lastNane"})
@ Accessor Type(Xm AccessType. FI ELD)

public class Customer {

3. Define the properties fi rst Name and | ast Nane with the type Stri ng.

4. Map the properties first Nane and | ast Nane to the appropriate position in the XML
document by inserting the @ Pat h annotation with the appropriate XPath
predicates.

@m Path("name[1] /text()")
private String firstNang;

@m Path("name[2] /text()")
private String |astName;

The predicates, "nane[1] /text ()" and "name[2] /text ()" indicate the <name>
element to which that specific property will be mapped; for example, "nane[1]/
text" will map the fir st Name property to the first <nane> element.

Example 15-19 Customer Object Mapping Values by Position

package exanpl e;
import javax.xni.bind. annotation.*;
import org.eclipse.persistence. oxm annotations. Xm Pat h;

@ Root El enent
@ Type(propOrder={"firstNane", "lastNane"})

15-21

Chapter 15
Using XML Metadata Representation to Override JAXB Annotations

@m Accessor Type(Xm AccessType. FI ELD)
public class Custoner {
@m Path("name[1] /text()")
private String firstNaneg;

@ Path("name[2] /text()")
private String |astName;

}

The object should look like Example 15-19.

For more information about using XPath predicates, see Using XPath Predicates for
Mapping.

Using XML Metadata Representation to Override JAXB
Annotations

In addition to using Java annotations, EclipseLink provides an XML mapping
configuration file called ecl i psel i nk- oxm xn that you can use in place of or to
override JAXB annotations in the source with an XML representation of the metadata.
In addition to allowing all of the standard JAXB mapping capabilities it also includes
advanced mapping types and options.

An XML metadata representation is useful when:

* You cannot modify the domain model because, for example, it come from a third
party).

* You do not want to introduce compile dependencies on JAXB APIs (if you are
using a version of Java that predates Java SE 6).

* You want to apply multiple JAXB mappings to a domain model (you are limited to
one representation with annotations).

e Your object model already contains so many annotations from other technologies
that adding more would make the class unreadable.

This section demonstrates how to use ecl i psel i nk- oxm xnl to override JAXB
annotations

" Note:

While using this mapping file enables many advanced features, it might
prevent you from porting it to other JAXB implementations

Task 1: Define Advanced Mappings in the XML

ORACLE

First, update the XML mapping file to expose the ecl i psel i nk_oxm 2_3. xsd. schema.
Example 15-20 shows how to modify the <xni - bi ndi ngs> element in the mapping file
to point to the correct namespace and leverage the schema. Each Java package can

have one mapping file.

15-22

Chapter 15
Using XPath Predicates for Mapping

Example 15-20 Updating XML Binding Information in the Mapping File

<?xm version="1.0"?>
<xnl - bi ndi ngs

xm ns="htt p://ww. ecl i pse. org/ ecl i psel i nk/ xsds/ per si st ence/ oxn!

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocati on="http://wwm. ecl i pse. org/eclipselink/xsds/persistence/ oxm http://
www. ecl i pse. org/ ecl i pselink/xsds/eclipselink_oxm2 4. xsd"

version="2.4">

</ xn - bi ndi ngs>

Task 2: Configure Usage in JAXBContext

Next, pass the mapping file to JAXBCont ext in your object:

1. Specify the externalized metadata by inserting this code:

Map<String, Object> properties = new HashMap<String, Object>(1);
properties. put (JAXBCont ext Properties. OXM METADATA SOURCE, "or g/ exanpl e/ oxm xn);
JAXBCont ext . new nst ance("org. exanpl ', ad assLoader, properties);

2. Create the properties object to pass to the JAXBCont ext . For this example:

Map<String, Cbj ect> properties = new HashMap<String, Obj ect>();
properties. put (JAXBCont ext Fact ory. ECLI PSELI NK_OXM XM._KEY, netadata);

3. Create the JAXBCont ext . For this example:

JAXBCont ext . new nst ance(" exanpl e. or der: exanpl e. cust omer”, aCl assLoader,
properties);

Task 3: Specify the MOXy as the JAXB Implementation

You must use MOXy as your JAXB implementation. To do so, do the following:
1. Openajaxb. properties file and add the following line:
javax. xnl . bi nd. cont ext. factory=org. ecl i pse. persi st ence. j axb. JAXBCont ext Fact ory

2. Copy thejaxb. properti es file to the package that contains your domain classes.

Using XPath Predicates for Mapping

This section demonstrates how the EclipseLink MOXy API uses XPath predicates to
define an expression that specifiers the XML element's name. An XPath predicate is
an expression that defines a specific object-to-XML mapping. As shown in previous

examples, by default, JAXB will use the Java field name as the XML element name.

This section contains the following subsections:

e Understanding XPath Predicates

e Mapping Based on Position

e Mapping Based on an Attribute Value
e "Self" Mappings

ORACLE 15-23

Chapter 15
Using XPath Predicates for Mapping

Understanding XPath Predicates

As described above, an XPath predicate is an expression that defines a specific
object-to-XML mapping when standard annotations

re not sufficient. For example, the following snippet of XML shows a <dat a> element
with two <node> sub-elements. If you wanted to create this mapping in a Java object,
you would need to specify an XPath predicate for each <node> sub-element; for
example, Node[2] in the following Java:

<java-attributes>
<xnl -el ement java-attribute="node" xnl-path="node[1]/ABC'/>
<xm -el ement java-attribute="node" xm -pat h="node[2]/ DEF"/>
</java-attributes>

would match the second occurrence of the node element (" DEF") in the following XML:

<?xm version="1.0" encodi ng="UTF-8"?>
<dat a>

<node>ABC</ node>

<node>DEF</ node>
</ dat a>

Thus, by using the XPath predicate, you can use the same attribute name for a
different attribute value.

Mapping Based on Position

This mapping technique is described in Mapping Values to a Text Node by Position.

Mapping Based on an Attribute Value

ORACLE

Beginning with EclipseLink MOXy 2.3, you can also map to an XML element based on
an Attribute value. In this exercise, you will annotate the JPA entity to render the XML
document shown in Example 15-21. Note that all of the XML elements are named
node but are differentiated by the value of their name attribute.

Example 15-21

<?xm version="1.0" encodi ng="UTF-8"?>
<node>

<node name="first-nane" >Bob</ node>

<node nanme="| ast - nane">Sni t h</ node>

<node name="address">

<node nane="street">123 A Street </ node>

</ node>

<node name="phone-nunber" type="work">555-1111</ node>

<node name="phone-nunber" type="cel|">555-2222</ node>
</ node>

To attain this mapping, you need to declare three classes, Narme, Addr ess, and
PhoneNunber and then use an XPath in the form of el enent - nane[@ttri but e-
nane='val ue'] to map each Java field.

15-24

Chapter 15
Using XPath Predicates for Mapping

Task 1: Create the Customer Entity

To create the Cust oner class entity:

1. Import the necessary JPA packages by adding the following code:

import javax.xnl.bind. annotation.*;

import org.eclipse.persistence. oxm annotations. Xm Pat h;

2. Declare the Cust oner class and use the @nl Root El ement annotation to make it
the root element. Set the XML accessor type to Fl ELD:

@ Root El enent
@ Accessor Type(Xm AccessType. FI ELD)
public class Customer {

3. Declare local to the Cust orer class these properties:
e firstName (String type)
e | astNane (String)
e Address (Address)

For each property, set the Xpath predicate by preceding the property declaration
with the annotation @ Pat h(el ement - nane[@t t ri but e- name='val ue']) ; for
example, for fir st Name, you would set the XPath predicate with this statement:

@ Pat h("node[@ame="first-name']/text()")

4. Also local to the Cust orrer class, declare the phoneNunber property as a
Li st <PhoneNunber > type and assign it the value new ArrayLi st <PhoneNurber >().

Example 15-22 Customer Object Mapping to an Attribute Value
package exanpl e;

import javax.xnl.bind. annotation.*;

import org.eclipse.persistence. oxm annotations. Xm Pat h;

@ Root El enent (name="node")

@ Accessor Type(Xm AccessType. FI ELD)

public class Customer {

@ Pat h("node[@ame="first-name']/text()")
private String firstNaneg;

@ Pat h(" node[@ane="1ast-name']/text()")
private String |astName;

@ Pat h(" node[@anme=" address']")
private Address address;

@ Pat h(" node[@ane=' phone- number']")
private List<PhoneNunber> phoneNunbers = new ArrayLi st <PhoneNunber >();

}

The Cust orer class should look like the snippet in Example 15-22.

ORACLE 15-25

Chapter 15
Using XPath Predicates for Mapping

Task 2: Create the Address Entity

To create the Addr ess class, do the following:

1.

Import the necessary JPA packages by adding the following code:

import javax.xnl.bind. annotation.*;

import org.eclipse.persistence. oxm annotations. Xm Pat h;

Declare the Addr ess class and set the XML accessor type to Fl ELD:

@m Accessor Type(Xm AccessType. FI ELD)
public class Address {

This instance does not require the @nl Root El ement annotation as in the previous
Tasks because the Addr ess class is root not a root element in the XML document.

Declare local to the Addr ess class the Stri ng property street. Set the XPath
predicate by preceding the property declaration with the annotation
@m Pat h("node[@ame="street']/text()").

Example 15-23 Address Object Mapping to an Attribute Value

package exanpl e;

import javax.xnl.bind. annotation.*;

inport org.eclipse.persistence. oxm annotations. Xm Pat h;

@ Accessor Type(Xm AccessType. FI ELD)
public class Address {

}

@ Pat h("node[@ane="street']/text()")
private String street;

The Addr ess class should look like Example 15-23.

Task 3: Create the PhoneNumber Entity

To create the PhoneNunber entity:

ORACLE

1.

Import the necessary JPA packages by adding the following code:

i mport javax.xnl.bind.annotation.*;

import org.eclipse.persistence. oxm annotations. Xm Pat h;

Declare the PhoneNunber class and use the @m Root El enent annotation to make
it the root element. Set the XML accessor type to Fl ELD:

@m Root El enent
@m Accessor Type(Xm AccessType. FI ELD)
public class Custoner {

15-26

3.

Chapter 15
Using XPath Predicates for Mapping

Create the type and string properties and define their mapping as attributes under
the PhoneNumber root element by using the @m At t ri but e. annotation.

@ Attribute
private String type;

@ Val ue
private String nunber;

Example 15-24 PhoneNumber Object Mapping to an Attribute Value

package exanpl e;

import javax.xnl.bind. annotation.*;

@m Accessor Type(Xm AccessType. FI ELD)
public class PhoneNumber {

}

@m Attribute
private String type;

@ Val ue
private String nunber;

The PhoneNunber object should look like Example 15-24.

"Self" Mappings

A "self" mapping occurs on one-to-one mappings when you set the target object's
XPath to "." (dot) so the data from the target object appears inside the source object's
XML element. This exercise uses the example in Mapping Based on an Attribute Value
to map the Address information to appear directly under the customer element and not
wrapped in its own element.

ORACLE

To create the self mapping:

1.
2.

Repeat Tasks 1 and 2 in Task 1: Create the Customer Entity.
Declare local to the Cust oner class these properties:

o firstName (String type)

e | astNane (String)

e Address (Address)

For the first Name and | ast Name properties, set the XmlPath annotation by
preceding the property declaration with the annotation @m Pat h(el enent -

name[@t tribut e- name="val ue']); for example, for fi r st Name, you would set the
XPath predicate with this statement:

@ Pat h("node[@ame="first-name']/text()")
For the addr ess property, set @ Pat h to "." (dot):

@m Path(".")
private Address address;

15-27

Chapter 15
Using Dynamic JAXB/MOXy

5. Also local to the Cust oner class, declare the phoneNunber property as a
Li st <PhoneNunber > type and assign it the value new ArrayLi st <PhoneNurber >().

Example 15-25 XML Node with Self-Mapped Address Element

<?xm version="1.0" encodi ng="UTF-8"?>
<node>
<node name="first-name">Bob</ node>
<node name="| ast - nane" >Sni t h</ node>
<node name="street">123 A Street</node>
<node name="phone-nunber" type="work">555-1111</ node>
<node name="phone-nunber" type="cel|">555-2222</ node>
</ node>

The rendered XML for the Customer entity would look like Example 15-25.

Using Dynamic JAXB/MOXy

Dynamic JAXB/MOXYy allows you to bootstrap a JAXBCont ext from a variety of
metadata sources and use familiar JAXB APIs to marshal and unmarshal data, without
requiring compiled domain classes. This is an enhancement over static JAXB,
because now you can update the metadata without having to update and recompile
the previously-generated Java source code.

The benefits of using dynamic JAXB/MOXYy entities are:

e Instead of using actual Java classes (for example, Cust oner. cl ass,
Addr ess. cl ass, and so on), the domain objects are subclasses of the
Dynami cEntity.

» Dynamic entities offer a simple get (propert yNane) /set (pr opert yName
propertyVal ue) APIto manipulate their data.

e Dynamic entities have an associated Dynani cType, which is generated in-memory,
when the metadata is parsed.

The following Tasks demonstrate how to use dynamic JAXB:

e Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema
e Task 2: Create Dynamic Entities and Marshal Them to XML

e Task 3: Unmarshal the Dynamic Entities from XML

Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema

This example demonstrates how to bootstrap a dynamic JAXBCont ext from an XML
Schema.

Bootstrapping from an XML Schema

Use the Dynanmi cJAXBCont ext Fact ory to create a dynamic JAXBCont ext .
Example 15-26 to bootstrap a Dynani cJAXBCont ext from the cust oner. xsd schema
(Example 15-27) by using cr eat eCont ext Fr omXSDY) .

Example 15-26 Specifying the Input Stream and Creating the DynamicJAXBContext

inmport java.io.FilelnputStream

ORACLE 15-28

Chapter 15
Using Dynamic JAXB/MOXy

i mport org.eclipse. persistence.jaxb. dynani c. Dynani cJAXBCont ext ;
i mport org.eclipse. persistence.jaxb. dynani c. Dynani cJAXBCont ext Fact ory;

public class Denp {

public static void main(String[] args) throws Exception {
Fi | el nput St ream xsdl nput Stream = new Fi | el nput Strean{"src/ exanpl e/ cust oner. xsd") ;
Dynami cJAXBCont ext jaxbContext =
Dynam cJAXBCont ext Fact ory. cr eat eCont ext Fr onXSD(xsdl nput Stream null, null, null);

The first parameter represents the XML schema itself and must be in one of the
following forms: j ava. i o. | nput St r eam or g. w3c. dom Node, or
javax. xnl . transform Sour ce.

The XML Schema

Example 15-27 shows the cust oner. xsd schema that represents the metadata for the
dynamic JAXBContext you are bootstrapping.

Example 15-27 Sample XML Schema Document

<xsd: schema
xm ns: xsd="http://ww:. w3. or g/ 2001/ XM.Schena"
xm ns="http:// ww. exanpl e. org"
target Namespace="ht t p: / / ww. exanpl e. org"
el enent For nDef aul t ="qual i fi ed" >

<xsd: conpl exType name="address">
<xsd: sequence>
<xsd: el ement name="street" type="xsd:string" mnCccurs="0"/>
<xsd: el ement name="city" type="xsd:string" m nCccurs="0"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: el ement nanme="cust oner">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="nanme" type="xsd:string" m nCccurs="0"/>
<xsd: el ement nanme="address" type="address" m nCccurs="0"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

</ xsd: schena>

Handling Schema Import/Includes

To bootstrap Dynam cJAXBCont ext from an XML schema that contains imports of other
schemas, you need to configure an or g. xnl . sax. Enti t yResol ver to resolve the
locations of the imported schemas and pass the Enti t yResol ver to

Dynani cJAXBCont ext Fact ory.

The following example shows two schema documents, cust oner. xsd (Example 15-28)
and addr ess. xsd Example 15-29). You can see that cust oner . xsd imports
addr ess. xsd by using the statement:

<xsd:inport namespace="http://ww. exanpl e. org/ address" schemalocation="address. xsd"/>

ORACLE 15-29

Chapter 15
Using Dynamic JAXB/MOXy

Example 15-28 customer.xsd

<?xm version="1.0" encodi ng="UTF-8"?>
xm ns: xsd="http: // www. w3. or g/ 2001/ XM_Schena"
xm ns: add="htt p: / / www. exanpl e. or g/ addr ess"
xm ns="htt p: // wwv. exanpl e. or g/ cust omer "
tar get Namespace="ht t p: / / wwv. exanpl e. or g/ cust oner"
el enent For mDef aul t ="qual i fi ed" >

<xsd:inport nanespace="http://ww.exanpl e.org/ address" schemalLocati on="address. xsd"/ >

<xsd: el ement name="cust oner" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="nane" type="xsd:string" mnCccurs="0"/>
<xsd: el ement nanme="address" type="add: address" mi nCccurs="0"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

</ xsd: schema>

Example 15-29 address.xsd

<?xm version="1.0" encodi ng="UTF-8"?>
xm ns: xsd="http://ww. w3. or g/ 2001/ XM.Schena"
xm ns="http://ww. exanpl e. or g/ addr ess"
target Nanespace="htt p: / / www. exanpl e. or g/ addr ess"
el ement For mDef aul t ="qual i fied">

<xsd: conpl exType name="addr ess">
<XS: sequence>
<xs:el ement name="street" type="xs:string"/>
<xs:el ement name="city" type="xs:string"/>
</ xs: sequence>
</ xsd: conpl exType>

</ xsd: schena>

Implementing and Passing an EntityResolver

If you want to bootstrap Dynam cJAXBCont ext from the cust oner. xsd schema, you
need to pass an entity resolver. Do the following:

1. To resolve the locations of the imported schemas, you need to implement an
entityResol ver by supplying the code shown in Example 15-30.

2. After you implement your Dynani cJAXBCont ext , pass the Enti t yResol ver, as
shown in Example 15-31.

Example 15-30 Implementing an EntityResolver

class MyEntityResol ver inplenments EntityResolver {
public InputSource resolveEntity(String publicld, String systemd) throws SAXException,
| CException {
Il Inported schemas are |ocated in ext\appdatalxsd\

[/ Gab only the filename part fromthe full path
String filename = new Fil e(system d). get Name();

ORACLE 15-30

Chapter 15
Using Dynamic JAXB/MOXy

/1 Now prepend the correct path
String correctedld = "ext/appdata/xsd/" + filenaneg;

I nput Source is = new I nput Sour ce(O assLoader. get Syst enResour ceAsSt rean(correctedl d));
i s.setSystemd(correctedld);

return is;

}

Example 15-31 Passing in the Entityresolver

Fi | el nput Stream xsdl nput Stream = new Fi | el nput St rean("src/ exanpl e/ cust oner. xsd");
Dynam cJAXBCont ext jaxbContext =

Dynam cJAXBCont ext Fact ory. cr eat eCont ext Fr onXSD(xsdl nput St ream new MyEntityResol ver (), null,
null);

Error Handling

You might see the following exception when importing another schema:

Internal Exception: org.xn .sax. SAXParseException: schema_reference.4: Failed to read schemadocunent
' <inported-schema-nanme>', because 1) could not find the document; 2) the document coul dnot be read;
3) the root element of the docunent is not <xsd:schema>.

To work around this exception, disable XJC's schema correctness check by setting the
noCor r ect nessCheck Java property. You can set this property one of two ways:

e From within the code, by adding this line:
System set Property("com sun.tool s.xj c.api.inpl.s2j.SchemaConpilerlnpl.noCorrectnessCheck", "true")
e From the command line, by using this command:

-Dcom sun. tool s. xj c. api.inmpl.s2j.SchemaConpil erlnpl. noCorrect nessCheck=true

Specifying a ClassLoader

Use your application's current class loader as the cl assLoader parameter. This
parameter verifies that specified classes exist before new Dynani cTypes are
generated. In most cases you can pass nul | for this parameter and use
Thread. current Thread() . get Cont ext O assLoader () instead.

Task 2: Create Dynamic Entities and Marshal Them to XML

This example shows how to create dynamic entities and marshal then to XML.

Creating the Dynamic Entities

Use the Dynani cJAXBCont ext to create instances of Dynani cEntity. The entity and
property names correspond to the class and property names—in this case, the
cust omer and addr ess—that would have been generated if you had used static JAXB.

Example 15-32 Creating the Dynamic Entity

Dynani cEntity custonmer = jaxbContext.newDynani cEntity("org.exanple. Custoner");
custoner. set ("name", "Jane Doe");

ORACLE 15-31

Chapter 15
Using Dynamic JAXB/MOXy

Dynami cEntity address = jaxbContext.newDynam cEntity("org. exanpl e. Address");
address. set("street", "1 Any Street").set("city", "Any Town");
custoner. set ("address", address);

Marshalling the Dynamic Entities to XML

The marshaller obtained from the Dynani cJAXBCont ext is a standard marshaller and
can be used normally to marshal instances of DynamicEntity.

Example 15-33 Standard Dynamic JAXB Marshaller

Marshal | er marshal | er = jaxbContext.createMarshaller();
mar shal | er. set Property(Marshal | er. JAXB_FORMATTED CUTPUT, true); marshal | er. marshal (customer,
Systemout);

Example 15-34 shows the resultant XML document:
Example 15-34 Updated XML Document Showing <address> Element and Its Attributes

<?xm version="1.0" encodi ng="UTF-8"?>
<customer xm ns="wwmv. exanpl e. org" >
<name>Jane Doe</name>
<addr ess>
<street>1 Any Street</street>
<ci ty>Any Town</city>
</ addr ess>
</ cust omer >

Task 3: Unmarshal the Dynamic Entities from XML

In this example shows how to unmarshal from XML the dynamic entities you created in
Task 2: Create Dynamic Entities and Marshal Them to XML. The XML in reference is
shown in Example 15-34.

Unmarshal DynamicEntities from XML

The Unmarshaller obtained from the Dynam cJAXBCont ext is a standard unmarshaller,
and can be used normally to unmarshal instances of Dynami cEntity.

Example 15-35 Standard Dynamic JAXB Unmarshaller

Fi l el nput Stream xn | nput Stream = new Fi | el nput St rean("src/ exanpl e/ dynani ¢/ cust oner. xm ") ;
Unmar shal | er unmarshal l er = jaxbContext. creat eUnmarshal | er();
Dynani cEntity custonmer = (Dynami cEntity) unmarshaller.unmarshal (xm | nput Stream;

Get Data from the Dynamic Entity

Next, specify which data in the dynamic entity to obtain. Specify this value by using
Systemout. println() and passing in the entity name. Dynani cEnti ty offers
property-based data access; for example, get ("nhanme") instead of get Nane() :

System out. println(custoner.<String>get("nane"));

Use DynamicType to Introspect Dynamic Entity

Instances of Dynani cEnti ty have a corresponding Dynani ¢Type, which you can use to
introspect the Dynam cEntity, as shown in Example 15-36.

ORACLE 15-32

Chapter 15
Additional Resources

Example 15-36

Dynani cType addressType = jaxbCont ext. get Dynam cType("org. exanpl e. Address");

Dynanmi cEntity address = custoner.<Dynam cEntity>get ("address");
for(String propertyName: addressType. get PropertiesNanes()) {
System out. print!|n(address. get (propertyNane));

}

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

e Developing Persistence Architectures Using Oracle Toplink Document Data
Bindings

ORACLE 15-33

Converting Objects to and from JSON
Documents

This chapter describes how Oracle TopLink supports the ability to convert objects to
and from JSON (JavaScript Object Notation). This feature is useful when creating
RESTful services; JAX-RS services can accept both XML and JSON messages.
This chapter describes how EclipseLink MOXy supports the ability to convert objects
to and from JSON (JavaScript Object Notation). This feature is useful when creating
RESTful services; JAX-RS services can accept both XML and JSON messages.

This chapter includes the following sections:

e Introduction to the Solution
e Implementing the Solution

e Additional Resources

Use Case

Users need to convert objects to and from JSON documents.

Solution

TopLink provides JSON support through the EclipseLink MOXy implementation.

Components

e TopLink 12c¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

* EclipseLink 2.4 or later.

* JSON documents.

Sample

See the following EclipseLink samples for related information:

e http://wKki.eclipse.org/EclipseLink/Exanpl es/ MOXy
o http://wiki.eclipse.org/EclipseLink/Exanpl es/ MOXy/ JSON_Met adat a

ORACLE 16-1

http://wiki.eclipse.org/EclipseLink/Examples/MOXy
http://wiki.eclipse.org/EclipseLink/Examples/MOXy/JSON_Metadata

Chapter 16
Introduction to the Solution

e http://wiki.eclipse.org/EclipseLink/Exanpl es/ MOXy/ MOXy_JSON_Pr ovi der

Introduction to the Solution

EclipseLink supports all MOXy object-to-XML options when reading and writing JSON,
including:

» EclipseLink's advanced and extended mapping features (in addition to the JAXB
specification)

» Storing mappings in external bindings files
» Creating dynamic models with Dynamic JAXB

» Building extensible models that support multitenant applications

Implementing the Solution

This section contains the following tasks for converting objects to and from JSON
documents.

e Task 1: Marshalling and Unmarshalling JSON Documents
e Task 2: Specifying JSON Bindings

e Task 3: Specifying JSON Data Types

e Task 4: Supporting Attributes

e Task 5: Supporting no Root Element

* Task 6: Using Collections

e Task 7: Mapping Root-Level Collections

e Task 8: Wrapping Text Values

Task 1. Marshalling and Unmarshalling JSON Documents

ORACLE

Use the eclipselink.media-type property on your JAXB Marshaller or Unmarsaller to
produce and use JSON documents with your application, as shown in Example 16-1.

Example 16-1 Marshalling and Unmarshalling

Marshal | er m = jaxbCont ext.createMarshaller();
m set Property("eclipselink.nedia-type", "application/json");

Unmarshal I er u = jaxbContext. createUnmarshal ler();
u.set Property("eclipselink.media-type", "application/json");

You can also specify the ecl i psel i nk. nedi a- t ype property in the Map of the
properties used when you create the JAXBCont ext , as shown in Example 16-2.

16-2

http://wiki.eclipse.org/EclipseLink/Examples/MOXy/MOXy_JSON_Provider

Chapter 16
Implementing the Solution

Example 16-2 Using a Map

i mport org.eclipse. persistence. jaxb. JAXBCont ext Properti es;
i mport org.eclipse. persistence. oxm Medi aType;

Map<String, Object> properties = new HashMap<String, Object>();
properties.put("eclipselink. media-type", "application/json");

JAXBCont ext ctx = JAXBCont ext.new nstance(new O ass[] { Enployee.class },
properties);

Marshal | er jsonMarshaller = ctx. createMarshaller();

Unmar shal | er j sonUnmarshal | er = ctx. createUnmarshal | er();

When specified in a Map, the Marshallers and Unmarshallers created from the
JAXBCont ent will automatically use the specified media type.

You can also configure your application to use JSON documents by using the
Mar shal | er Properties, Unmarshal | er Properties, and Medi aType constants, as
shown in Example 16-3.

Example 16-3 Using MarshallerProperties and UnarshallerProperties

import org.eclipse.persistence.jaxb. Marshal | er Properti es;
import org.eclipse.persistence.jaxb. Unarshal | erProperties;
import org.eclipse.persistence. oxm Medi aType;

m set Property(Marshal | erProperties. MEDI A TYPE, MediaType. APPLI CATI ON_JSON);
u. set Property(Unmarshal | er Properties. MEDI A TYPE, Medi aType. APPLI CATI ON_JSON) ;

Task 2: Specifying JSON Bindings

ORACLE

Example 16-4 shows a basic JSON binding that does not require compile time
dependencies in addition to those required for normal JAXB usage. This example
shows how to unmarshal JSON from a St r eanSour ce into the user object

Sear chResul t s, add a new Resul t to the collection, and then marshal the new
collection to Syst em out .

Example 16-4 Using Basic JSON Binding

package org. exanpl e;

i mport org. exanpl e. nodel . Resul t;
i mport org. exanpl e. nodel . Sear chResul ts;

inport java.util.Date;

i mport javax.xni.bind. JAXBCont ext ;

i mport javax.xnl.bind. JAXBEl enent;

i mport javax.xnl.bind. Marshal | er;

i mport javax.xni.bind. Unnarshall er;

import javax.xm .transform stream StreanSource;
public class Denp {

public static void main(String[] args) throws Exception {
JAXBCont ext j ¢ = JAXBCont ext.new nstance(SearchResul ts. cl ass);

Unnarshal | er unnarshal l er = jc.createUnmarshal ler();

16-3

ORACLE

Chapter 16
Implementing the Solution

unnar shal | er. set Property("eclipselink.media-type", "application/json");
StreanSource source = new StreanSource("http://search.twitter.con
sear ch. j son?q=j axbh");
JAXBEI ement <Sear chResul t s> j axbEl ement = unmarshal | er. unmar shal (sour ce,
SearchResul ts. cl ass);

Result result = new Result();

result.set Creat edAt (new Date());

resul t.set Fromser("bsnith");

result.set Text ("You can now use EclipselLink JAXB (MOXy) with JSON :)");
j axbEl enent . get Val ue() . get Resul ts().add(result);

Marshal | er marshal ler = jc.createMarshaller();

mar shal | er. set Property(Marshal | er. JAXB_FORMATTED_QUTPUT, true);

mar shal | er. set Property("eclipselink.nedia-type", "application/json");
mar shal | er. marshal (j axbEl ement, Systemout);

}

You can also write MOXy External Bindings files as JSON documents. Example 16-5
shows how to use bi ndi ngs. j son to map Customer and PhoneNumber classes to
JSON.

Example 16-5 Using External Bindings

{
"package- nane" : "org.exanple",
"xn -schema" : {
"el ement-formdefault" : "QUALIFIED",
"namespace” : "http://ww. exanpl e. conl cust onmer”
b
"java-types" : {
"java-type" : [{
"name" @ "Custoner",
"xnl-type" : {
"prop-order” : "firstNane |astNane address phoneNunbers"
¥
"xnm-root-elenent" : {},
"java-attributes" : {
"xm -element" : [
{"java-attribute" : "firstName","name" : "first-nane"},
{"java-attribute" : "lastName", "name" : "last-name"},
{"java-attribute" : "phoneNurmbers","nane" : "phone-nunber"}
]
}
boA
"nane" : "PhoneNurmber",
"java-attributes" : {
"xm-attribute" : |
{"java-attribute" : "type"}
1,
"xm -value" : |
{"java-attribute" : "number"}
]
}
bl
}
}

16-4

Chapter 16
Implementing the Solution

Example 16-6 shows how to use the JSON file (created in Example 16-5) when
bootstrapping a JAXBCont ext .

Example 16-6 Using JSON to Bootstrap a JAXBContext

Map<String, Object> properties = new HashMap<String, Object>(2);

properties. put ("eclipselink.oxm netadata-source”, "org/exanple/binding.json");
properties.put("eclipselink.nedia-type", "application/json");

JAXBCont ext context = JAXBCont ext.new nstance("org. exanpl e",

Custoner. cl ass. get O assLoader () , properties);

Unnarshal | er unnarshal | er = context. createUnmarshal l er();
StreanSource json = new StreanSource(new File("src/org/exanple/input.json"));

Task 3: Specifying JSON Data Types

Although XML has a single datatype, JSON differentiates between strings, numbers,
and booleans. EclipseLink supports these datatypes automatically, as shown in
Example 16-7

Example 16-7 Using JSON Data Types

public class Address {

private int id;
private String city;
private bool ean isMailingAddress;

}
{

idt o

ucityu : “Qta\/\ﬂ",

"i sMai | i ngAddress" : true
}

Task 4: Supporting Attributes

ORACLE

JSON does not use attributes; anything mapped with a @m At t ri but e annotation will
be marshalled as an element. By default, EclipseLink triggers both the attribute and
element events, thereby allowing either the mapped attribute or element to handle the
value.

You can override this behavior by using the JSON_ATTRI BUTE_PREFI X property to
specify an attribute prefix, as shown in Example 16-8. EclipseLink prepends the prefix
to the attribute name during marshal and will recognize it during unmarshal.

In the example below the nunber field is mapped as an attribute with the prefix @.
Example 16-8 Using a Prefix

j sonUnmar shal | er. set Property(Unmarshal | er Properties. JSON_ATTRI BUTE_PREFI X, "@);
j sonMarshal | er. set Property(Marshal | erProperties. JSON ATTRI BUTE_PREFI X, "@) ;

16-5

Chapter 16
Implementing the Solution

{
"phone" : {
"area-code" : "613",
"@unber" : "1234567"
1
}

You can also set the JSON_ATTRI BUTE_PREFI X property in the Map used when creating
the JAXBCont ext , as shown in Example 16-9. All marshallers and unmarshalers
created from the context will use the specified prefix.

Example 16-9 Setting a Prefix in a Map

Map<String, Object> properties = new HashMap<String, Object>();
properties. put (JAXBCont ext Properties. JSON_ATTRI BUTE_PREFI X, "@);

JAXBCont ext ctx = JAXBCont ext.new nstance(new C ass[] { Phone.class }, properties);

Task 5: Supporting no Root Element

EclipseLink supports JSON documents without a root element. By default, if no

@ Root El ement annotation exists, the marshalled JSON document will not have a
root element. You can override this behavior (that is omit the root element from the
JSON output, even if the @n Root El enent is specified) by setting the

JSON_I NCLUDE_ROQOT property when marshalling a document, as shown in

Example 16-10.

Example 16-10 Marshalling no Root Element Documents

mar shal | er. set Property(Marshal | er Properties. JSON_ | NCLUDE_ROOT, false);

When unmarshaling a document with no root elements, you should specify the class to
which to unmarshal, as shown in Example 16-11.

Example 16-11 Unmarshalling no Root Element Documents

unmar shal | er. set Property(Unmar shal | er Properties. JSON_| NCLUDE_ROOT, fal se);
JAXBEI ement <Sear chResul t s> j axbEl ement = unmarshal | er. unmar shal (sour ce,
SearchResul ts. cl ass);

¢ Note:

If the document has no root element, you must specify the class to
unmarshal to.

Task 5 Using Namespaces

ORACLE

Because JSON does not use namespces, by default all namespaces and prefixes are
ignored when marshaling and unmarshaling. In some cases, this may be an issue if
you have multiple mappings with the same local name — there will be no way to
distinguish between the mappings.

With EclipseLink, you can supply a Map of nhamespace-to-prefix (or an instance of
NamespacePr ef i xMapper) to the Marshaller and Unmarshaller. The namespace prefix

16-6

Chapter 16
Implementing the Solution

will appear in the marshalled document prepended to the element name. EclipseLink
will recognize the prefix during an unmarshal operation and the resulting Java objects
will be placed in the proper namespaces.

Example 16-12 shows how to use the NAMESPACE_PREFI X MAPPER property.
Example 16-12 Using Namesapces

Map<String, String> namespaces = new HashMap<String, String>()
nanespaces. put ("namespacel”, "nsl1")

nanespaces. put ("namespace2", "ns2")

j sonMarshal | er. set Property(Marshal | erProperties. NAVESPACE PREFI X_MAPPER, nanespaces)
j sonUnmar shal | er. set Property(Unmarshal | er Properties. JSON_NAVESPACE PREFI X_MAPPER
nanespaces)

The Marshal | er Properti es. NAVESPACE PREFI X MAPPER applies to both XML and
JSON; Unmar shal | er Properties. JSON_NAMESPACE_PREFI X_MAPPER is a JSON-only
property. XML unmarshalling can obtain the namespace information directly from the
document.

When JSON is marshalled, the namespaces will be given the prefix from the Map
separated by a dot (.):

{
"nsl. enpl oyee : {
"ns2.id" : 123
}
1

The dot separator can be set to any custom character by using the
JSON_NAMESPACE SEPARATCR property. Here, a colon (:) will be used instead:

j sonMarshal | er. set Property(Marshal | erProperties. JSON NAMESPACE_SEPARATCOR, ':');
j sonUnmar shal | er. set Property(Unmarshal | er Properties. JSON_NAMESPACE_SEPARATOR, ':');

Task 6: Using Collections

ORACLE

By default, when marshalling to JSON, EclipseLink marshals empty collectionsas|[|,
as shown in Example 16-13.

Example 16-13 Marshalling Empty Collections

{
“phone" : {
"nmyList" @ []
}
}

Use the JSON_MARSHAL EMPTY_COLLECTI ONS property to override this behavior (so that
empty collections are not marshalled at all).

j sonMarshal | er. set Property(Marshal | er Properties. JSON_MARSHAL_EMPTY_COLLECTI ONS,
Bool ean. FALSE) ;

{
“phone" : {

}

16-7

Chapter 16
Implementing the Solution

Task 7: Mapping Root-Level Collections

If you use the @nl Root El ement (nane="root") annotation to specify a root level, the
JSON document can be marshaled as:

mar shal | er. mar shal (nyLi st Of Roots, Systemout);

[{
"root" : {
“name” : "aaa"
}
boA
"root" : {
“name" : "bbb"
}

bl

Because the root element js present in the document, you can unmarsal it using:

unmar shal | er. unmar shal (j son);

If the class does not have an @m Root El enent (or if JSON_| NCLUDE_ROOT = false), the
marshal would produce:

Because the root element is not present, you must indicate the class to unmarshal to:

unnar shal | er. unmar shal (j son, Root. cl ass);

Task 8: Wrapping Text Values

ORACLE

JAXB supports one or more @m Attributes on @ Val ue cl asses, as shown in
Example 16-14.

Example 16-14 Using @XmlAttributes

public class Phone {

@m Val ue
public String nunber;

@m Attribute
public String areaCode;

public Phone() {
this("", Il|l);
}

16-8

Chapter 16
Implementing the Solution

public Phone(String num String code) {
this. nunber = num
this. areaCode = code;

}

To produce a valid JSON document, EclipseLink uses a val ue wrapper, as shown in
Example 16-15.

Example 16-15 Using a value Wrapper

{
"enpl oyee" : {
"name" : "Bob Smth",
"mai nPhone" : {
"areaCode" : "613",
"val ug" : "555-5555"
1
"ot her Phones" : [{
"areaCode" : "613",
"val ue" : "123-1234"
oA
"areaCode" : "613",
"val ue" : "345-3456"
|
}
}

By default, EclipseLink uses value as the name of the wrapper. Use the
JSON_VALUE WRAPPER property to customize the name of the value wrapper, as shown
in Example 16-16.

Example 16-16 Customizing the Name of the Value Wrapper

j sonMarshal | er. set Property(Marshal | er Properties. JSON_ VALUE_WRAPPER, "$");
j sonUnmar shal | er. set Property(Unmarshal | er Properties. JSON VALUE WRAPPER, "$");

Would produce:

{
“enpl oyee" : {
"name" : "Bob Smth",
“mai nPhone" : {
"areaCode" : "613",
"$" . "555-5555"
¥
"ot her Phones" : [{
"areaCode" : "613",
"$" . "123-1234"
oA
"areaCode" : "613",
"$" . "345-3456"
P
1
}

You can also specify the JSON_VALUE_WRAPPER property in the Map of the properties
used when you create the JAXBCont ext , as shown in Example 16-17.

ORACLE 16-9

Chapter 16
Additional Resources

Example 16-17 Using a Map

Map<String, bject> properties = new HashMap<String, Object>();
properties. put (JAXBCont ext Properties. JSON VALUE WRAPPER, "$");

JAXBCont ext ctx = JAXBCont ext.new nstance(new O ass[] { Enployee.class },
properties);

Marshal | er jsonMarshal l er = ctx. createMarshaller();

Unmar shal | er j sonUnmarshal | er = ctx. createUnmarshal | er();

When specified in a Map, the Marshallers and Unmarshallers created from the
JAXBCont ent will automatically use the specified value wrapper.

Additional Resources

ORACLE

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

» Developing Persistence Architectures Using Oracle Toplink Document Data
Bindings

16-10

Testing JPA Outside a Container

This chapter describes how, with Oracle TopLink, you can use the persistence unit
JAR file to test your application outside the container (for instance, in applications for
the Java Platform, Standard Edition (Java SE platform)).

This chapter includes the following sections:

e Understanding JPA Deployment

e Configuring the persistence.xml File
e Using a Property Map

e Using Weaving

e Additional Resources

Use Case

Users need to use TopLink both inside and outside the container (such as applications
for the Java SE platform).

Solution

This solution highlights the primary differences when using TopLink outside a
container.

Components

e TopLink 12c¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

» EclipseLink 2.4 or later.

* An application server (such as Oracle WebLogic Server, IBM WebSphere, or
Glassfish)

Understanding JPA Deployment

ORACLE

When deploying outside of a container, use the cr eat eEnt i t yManager Fact ory method
of the j avax. persi st ence. Persi st ence class to create an entity manager factory.
This method accepts a Map of properties and the name of the persistence unit. The
properties that you pass to this method are combined with those specified in the

17-1

Chapter 17
Configuring the persistence.xml File

persi stence. xn file. They may be additional properties or they may override the
value of a property that you specified previously in the per si st ence. xni file.

Tip:

This is a convenient way to set properties obtained from program input, such
as the command line.

Using EntityManager

The Enti t yManager is the access point for persisting an entity bean, loading it from the
database. Usually, the Java Persistence API (JPA) container manages interaction with
the data source. However, if you are using a JTA data source for your JPA persistence
unit, you can access the JDBC connection from the Java EE program container's data
source. Because the managed data source is unavailable, you can pass properties to
creat eEntityManager Fact ory to change the transaction type from JTAto
RESOURCE_LOCAL and to define JDBC connection information, as shown here:

Example 17-1 Changing transaction type and defining connection information

inport static org.eclipse.persistence.jpa.config.PersistenceUnitProperties.*;

Map properties = new HashMap();

/| Ensure RESOURCE_LOCAL transactions is used.
properties. put (TRANSACTI ON_TYPE,
Per si st enceUni t Transact i onType. RESOURCE_LOCAL. nane());

/1 Configure the internal EclipseLink connection pool

properties. put (JDBC DRI VER "oracle.jdbc. OracleDriver");
properties.put (JDBC_URL, "jdbc:oracle:thin: @ocal host: 1521: ORCL");
properties. put (JDBC_USER, "user-name");

properties. put (JDBC_PASSWORD, "password");

properties. put (JDBC_READ CONNECTIONS M N, "1");

properties. put (JDBC_WRI TE_CONNECTIONS M N, "1");

/1 Configure logging. FINE ensures all SQ is shown
properties. put (LOGA NG LEVEL, "FINE");

/] Ensure that no server-platformis configured
properties. put (TARGET_SERVER, Target Server. None);

You also have access to the EclipseLink extensions to the Enti t yManager .

Configuring the persistence.xml File

The persi stence. xm file is the deployment descriptor file for persistence using JPA. It
specifies the persistence units and declares the managed persistence classes, the
object/relation mapping, and the database connection details.

ORACLE 17-2

Chapter 17
Using a Property Map

Main Tasks

To configure the persi st ence. xn file, the following tasks:

* Task 1: Use the persistence.xml File

* Task 2: Instantiate EntityManagerFactory

Task 1: Use the persistence.xml File

Example 17-2 illustrates a per si st ence. xn file for a Java SE platform configuration
(that is, outside a container).

Example 17-2 A persistence.xml File Specifying the Java SE Platform
Configuration

<persi stence xm ns="http://java.sun.com xm /ns/ persistence" xmns:xsi="http://
ww. W3. or g/ 2001/ XMLSchenm- i nst ance" xsi: schemalLocation="http://java. sun. conm xni/ns/
persi stence persistence_1 0.xsd" version="1.0">
<persi stence-unit name="ny-app" transaction-type="RESOURCE_LOCAL">
<provi der>org. ecl i pse. persi stence. j pa. Persi st enceProvi der </ provi der >
<excl ude-unli st ed- cl asses>f al se</ excl ude-unl i st ed- cl asses>
<properties>
<property name="javax. persistence.jdbc.driver"
val ue="oracl e. jdbc. Oracl eDriver"/>
<property name="javax. persistence.jdbc.url"
val ue="j dbc: oracl e: t hi n: @ocal host: 1521: orcl "/ >
<property name="javax. persistence.jdbc.user" val ue="scott"/>
<property name="javax. persistence.|dbc. password" val ue="tiger"/>
</ properties>
</ persi stence-unit>
</ persi st ence>

Task 2: Instantiate EntityManagerFactory

An Enti t yManager Fact ory provides an efficient way to construct Ent i t yManager
instances for a database. You can instantiate the Ent i t yManager Fact or y for the
application (illustrated in Example 17-2) by using:

Per si stence. creat eEnti t yManager Fact ory("ny-app");

Using a Property Map

You can use a property map to override the default persistence properties and use
container deployment.

Main Tasks

To use a property map, perform the following steps:

e Task 1: Configure the persistence.xml File
e Task 2: Configure the Bootstrapping API

e Task 3: Instantiate the EntityManagerFactory

ORACLE 17-3

Chapter 17
Using a Property Map

Task 1: Configure the persistence.xml File

Example 17-3 illustrates a per si st ence. xnl file that uses container deployment.

Example 17-3 A persistence.xml File Specifying the Java SE Platform
Configuration, for use with a Property Map

<persi stence xm ns="http://java.sun.com xm /ns/ persistence" xm ns:xsi="http://
ww. W3. or g/ 2001/ XMLSchena- i nst ance" xsi: schemalLocation="http://java. sun. con xni/ns/
persistence persistence_1 0.xsd" version="1.0">
<persi stence-unit name="enpl oyee" transaction-type="RESOURCE LOCAL">
<non-j t a- dat a- sour ce>j dbc/ MyDS</ non-j t a- dat a- sour ce>
</ persi st ence-unit>
</ persi st ence>

" Note:

There is no data source available when tested outside a container.

Task 2: Configure the Bootstrapping API

ORACLE

To test the persistence unit shown in Example 17-3 outside the container, you must
use the Java SE platform bootstrapping APIl. Example 17-4 contains sample code that
illustrates this bootstrapping.

Example 17-4 Sample Configuration

inport static org.eclipse. persistence.config.PersistenceUnitProperties.*;

Map properties = new HashMap();

/'l Ensure RESOURCE_LOCAL transactions is used.
properties. put (TRANSACTI ON_TYPE,
Per si st enceUni t Transact i onType. RESOURCE_LOCAL. nane());

/1 Configure the internal connection pool

properties. put (JDBC DRI VER, "oracle.jdbc.OracleDriver");
properties. put (JDBC_URL, "jdbc:oracle:thin: @ocal host: 1521; ORCL");
properties. put (JDBC_USER, "scott");

properties. put (JDBC_PASSWORD, "tiger");

/1 Configure logging. FINE ensures all SQ is shown
properties. put (LOGA NG LEVEL, "FINE");

properties. put (LOGA NG_TI MESTAMP, "fal se");
properties. put (LOGA NG_THREAD, "fal se");

properties. put (LOGE NG _SESSION, "fal se");

I/ Ensure that no server-platformis configured
properties. put (TARGET_SERVER, Target Server. None);

17-4

Chapter 17
Using Weaving

Task 3: Instantiate the EntityManagerFactory

An Enti t yManager Fact ory provides an efficient way to construct Ent i t yManager
instances for a database. You can instantiate the Ent i t yManager Fact ory for the
application (illustrated in Example 17-4) by using:

Per si stence
creat eEntityManager Fact ory("unit Name", "properties")

Using Weaving

Weaving is a technique of manipulating the byte-code of compiled Java classes.

EclipseLink uses weaving to enhance Plain Old Java Object (POJO) classes and JPA
entities with many features such lazy loading, change tracking, fetch groups, and
internal optimizations.

How to Disable or Enable Weaving in a Java SE Environment

In a Java SE environment weaving is not enabled by default. This can affect LAZY
One-To-One, Many-To-One and Basic relationships. It also has a major effect on
performance and disable attribute change tracking.

To enable weaving in Java SE, the EclipseLink agent must be used when starting the
Java VM.

java -javaagent:eclipselink.jar

Spring could also be used to allow JPA weaving in Java SE. See http://
wi Ki . eclipse. org/ Ecl i pseLi nk/ Exanpl es/ JPA/ JPASpr i ng for more information.

Static weaving can also be used, by including the following persistence property,

<property nanme="eclipselink.weaving" val ue="static"/>

See "weaving" in Java Persistence API (JPA) Extensions Reference for Oracle
TopLink for more information.

How to Disable or Enable Weaving in a Java EE Environment

ORACLE

In a Java EE environment weaving is enabled by default (on any Java EE 5 or greater
fully compliant application server, such as Weblogic, Webspehere, and Glassfish.
JBoss does not allow weaving so you must use static weaving or Spring).

To disable weaving the weaving persistence unit property can be used,

<property nane="eclipselink.weaving" val ue="fal se">

For more information on weaving see "weaving" in Java Persistence API (JPA)
Extensions Reference for Oracle TopLink.

17-5

http://wiki.eclipse.org/EclipseLink/Examples/JPA/JPASpring
http://wiki.eclipse.org/EclipseLink/Examples/JPA/JPASpring

Chapter 17
Additional Resources

Additional Resources

For additional information about JPA deployment, see the following sections of the
JPA Specification (http://jcp.org/en/jsr/detail ?i d=317):

* Section 7.2, "Bootstrapping in Java SE Environments"

* Chapter 7, "Container and Provider Contracts for Deployment and Bootstrapping"

Related Javadoc

For more information, see the following APIs in Java API Reference for Oracle
TopLink:

e PersistenceUnitProperties class
e EntityManager Fact ory interface

e JpaEntityMnager interface

ORACLE 17-6

http://jcp.org/en/jsr/detail?id=317

Enhancing Performance

This chapter describes Oracle TopLink performance features, provided by EclipseLink,
and how to monitor and optimize EclipseLink-enabled applications.
This chapter includes the following sections:

» Performance Features

e Monitoring and Optimizing EclipseLink-Enabled Applications

Use Case

Users want to improve the performance of their TopLink-enabled application.

Solution

TopLink provides many configuration options that can improve performance, such as
caching. In addition, there are ways to improve the performance of specific functions,
such as using Join Fetching for queries.

Components

e TopLink 12c¢ (12.1.2.0.0) or later.

< Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

» EclipseLink 2.4 or later.

Sample
See the following EclipseLink samples for related information:

o http://wiKki.eclipse.org/EclipseLink/Perfornmnce
 http://wki.eclipse.org/EclipseLink/Exanpl es/ JPA Performance
e http://wiki.eclipse.org/EclipseLink/Exanpl es/ JPA/ Monitoring

Performance Features

EclipseLink includes a number of performance features that make it the industry's best
performing and most scalable JPA implementation. These features include:

e Object Caching

ORACLE 18-1

http://wiki.eclipse.org/EclipseLink/Performance
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Performance
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Monitoring

Chapter 18
Performance Features

* Querying

* Mapping

e Transactions

o Database

e Automated Tuning

e Tools

Object Caching

The EclipseLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values. The cache helps improve performance
by holding recently read or written objects and accessing them in-memory to minimize
database access.

Caching allows you to:

e Set how long the cache lives and the time of day, a process called cache
invalidation.

e Configure cache types (Weak, Soft, SoftCache, HardCache, Full) on a per entity
basis.

e Configure cache size on a per entity basis.

» Coordinate clustered caches.

Caching Annotations

EclipseLink defines these entity caching annotations:
e (@ache

e @i nmeC Day

e (@xistenceChecking

EclipseLink also provides a number of persistence unit properties that you can specify
to configure the EclipseLink cache (see "Persistence Property Extensions Reference”
in Java Persistence API (JPA) Extensions Reference for Oracle TopLink). These
properties might compliment or provide an alternative to the usage of annotations.

Using the @Cache Annotation

ORACLE

EclipseLink uses identity maps to cache objects in order to enhance performance, as
well as maintain object identity. You can control the cache and its behavior by using
the @ache annotation in your entity classes. Example 18-1 shows how to implement
this annotation.

Example 18-1 Using the @Cache Annotation

@ntity
@abl e(name="EMPLOYEE")
@ache (
t ype=CacheType. WEAK,
i sol at ed=f al se,
expi ry=600000,
al waysRef resh=tr ue,

18-2

Querying

Chapter 18
Performance Features

di sabl eHi ts=true,
coor di nati onType=I NVALI DATE_CHANGED _OBJECTS

public class Enployee inplenents Serializable {

}

For more information about object caching and using the @ache annotation, see
"@Cache" in the Java Persistence API (JPA) Extensions Reference for Oracle
TopLink.

The scope of a query, the amount of data returned, and how that data is returned can
all affect the performance of a EclipseLink-enabled application. EclipseLink query
mechanisms enhance query performance by providing these features:

* Read-only Queries
e Join Fetching

* Batch Reading

* Fetch Size

* Pagination

* Cache Usage

This section describes how these features improve performance.

Read-only Queries

Join Fetching

ORACLE

EclipseLink uses the ecl i psel i nk. read- onl y hint, Quer yHi nt (@uer yHi nt) to retrieve
read-only results back from a query. On nontransactional read operations, where the
requested entity types are stored in the shared cache, you can request that the shared
instance be returned instead of a detached copy.

For more information about read-only queries, see the documentation for the read-only
hint in Java Persistence API (JPA) Extensions Reference for Oracle TopLink.

Join Fetching enhances performance by enabling the joining and reading of the related
objects in the same query as the source object. Enable Join Fetching by using the

@oi nFet ch annotation, as shown in Example 18-2. This example shows how the

@oi nFet ch annotation specifies the Enpl oyee field managedEnpl oyees.

Example 18-2 Enabling JoinFetching

@ntity
public class Enpl oyee inplenments Serializable {

@neToMany(cascade=ALL, mappedBy="owner")

@oi nFet ch(val ue=QUTER)

public Col | ection<Enpl oyee> get ManagedEnpl oyees() {
return managedEnpl oyees;

}

18-3

Chapter 18
Performance Features

For more details on Join Fetching, see "@JoinFetch" in Java Persistence API (JPA)
Extensions Reference for Oracle TopLink.

Batch Reading

Fetch Size

Pagination

The ecl i psel i nk. bat ch hint supplies EclipseLink with batching information so
subsequent queries of related objects can be optimized in batches instead of being
retrieved one-by-one or in one large joined read. Batch reading is more efficient than
joining because it avoids reading duplicate data. Batching is only allowed on queries
that have a single object in their select clause.

If you have large queries that return a large number of objects you can improve
performance by reducing the number database hits required to satisfy the selection
criteria. To do this, use the The ecl i psel i nk. j dbc. f et ch-si ze hint. This hint specifies
the number of rows that should be fetched from the database when more rows are
required (depending on the JDBC driver support level). Most JDBC drivers default to a
fetch size of 10, so if you are reading 1000 objects, increasing the fetch size to 256
can significantly reduce the time required to fetch the query's results. The optimal fetch
size is not always obvious. Usually, a fetch size of one half or one quarter of the total
expected result size is optimal. Note that if you are unsure of the result set size,
incorrectly setting a fetch size too large or too small can decrease performance.

Slow paging can result in significant application overhead; however, EclipseLink
includes a variety of solutions for improving paging results; for example, you can:

e Configure the first and maximum number of rows to retrieve when executing a
query.

e Perform a query on the database for all of the ID values that match the criteria and
then use these values to retrieve specific sets.

e Configure EclipseLink to return a Scrol | abl eCur sor object from a query by using
query hints. This returns a database cursor on the query's result set and allows the
client to scroll through the results page by page.

For details on improving paging performance, see "How to use EclipselLink Pagination"
in the EclipseLink online documentation, at:

http://wiki.eclipse.org/EclipseLink/Exanpl es/ JPA/
Pagi nat i on#How t o_use_Ecl i pseLi nk_Pagi nati on

Cache Usage

ORACLE

EclipseLink uses a shared cache mechanism that is scoped to the entire persistence
unit. When operations are completed in a particular persistence context, the results
are merged back into the shared cache so that other persistence contexts can use
them. This happens regardless of whether the entity manager and persistence context
are created in Java SE or Java EE. Any entity persisted or removed using the entity
manager will always be kept consistent with the cache.

18-4

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Pagination#How_to_use_EclipseLink_Pagination
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Pagination#How_to_use_EclipseLink_Pagination

Mapping

Chapter 18
Performance Features

You can specify how the query should interact with the EclipseLink cache by using the
ecl i psel i nk. cache- usage hint. For more information, see "cache usage" in tJava
Persistence API (JPA) Extensions Reference for Oracle TopLink.

Mapping performance is enhanced by these features:
* Indirection ("Lazy Loading")

* Read-Only Objects

* Weaving

This section describes these features.

Indirection ("Lazy Loading")

By default, when EclipseLink retrieves a persistent object, it retrieves all of the
dependent objects to which it refers. When you configure indirection (also known as
lazy loading, lazy reading, and just-in-time reading) for an attribute mapped with a
relationship mapping, EclipseLink uses an indirection object as a place holder for the
referenced object. EclipseLink defers reading the dependent object until you access
that specific attribute. This can result in a significant performance improvement,
especially if the application is interested only in the contents of the retrieved object,
rather than the objects to which it is related.

EclipseLink supports a variety of types of indirection, including: value holder
indirection, transparent indirect container indirection, and proxy indirection.

Read-Only Objects

Weaving

ORACLE

When you declare a class read-only, clones of that class are neither created nor
merged greatly improving performance. You can declare a class as read-only within
the context of a unit of work by using the addReadOnl yCl ass() method.

* To configure a read-only class for a single unit of work, specify that class as the
argument to addReadOnl yd ass():

myUni t of Wor k. addReadOnl yCl ass(B. cl ass);

* To configure multiple classes as read-only, add them to a vector and specify that
vector as the argument to addReadOnl yC ass() :

myUni t Of Wor k. addReadOnl yd asses(nyVect or O G asses);

For more information about using read-only objects to enhance performance, see
"@ReadOnly" in Java Persistence API (JPA) Extensions Reference for Oracle
TopLink.

Weaving is a technique of manipulating the byte-code of compiled Java classes. The
EclipseLink JPA persistence provider uses weaving to enhance both JPA entities and
Plain Old Java Object (POJO) classes for such things as lazy loading, change
tracking, fetch groups, and internal optimizations.Weaving can be performed either
dynamically at runtime, when entities are loaded, or statically at compile time by post-
processing the entity . cl ass files. By default, EclipseLink uses dynamic weaving

18-5

Chapter 18
Performance Features

whenever possible. This includes inside an Java EE 5/6 application server and in Java
SE when the EclipseLink agent is configured. Dynamic weaving is recommended as it
is easy to configure and does not require any changes to a project's build process

For details on how to use weaving to enhance application performance, see "weaving"
in Java Persistence API (JPA) Extensions Reference for Oracle TopLink.

Transactions

Database

To optimize performance during data transactions, use change tracking,. Change
tracking allows you to tune the way EclipseLink detects changes that occur during a
transaction. You should choose the strategy based on the usage and data modification
patterns of the entity type as different types may have different access patterns and
hence different settings, and so on.

Enable change tracking by using the @hangeTr acki ng annotation, as shown in
Example 18-3.

Example 18-3 Enabling Change Tracking

@ntity

@abl e(name="EMPLOYEE")

@hangeTr acki ng(OBJECT) (

public class Enployee inplenents Serializable {

}

For more details on change tracking, see "@ChangeTracking" in Java Persistence API
(JPA) Extensions Reference for Oracle TopLink.

Database performance features in EclipseLink include:

* Connection Pooling

» Parameterized SQL and Statement Caching
e Batch Writing

* Serialized Object Policy

This section describes these features.

Connection Pooling

ORACLE

Establishing a connection to a data source can be time-consuming, so reusing such
connections in a connection pool can improve performance. EclipseLink uses
connection pools to manage and share the connections used by server and client
sessions. This feature reduces the number of connections required and allows your
application to support many clients.

By default, EclipseLink sessions use internal connection pools. These pools allow you
to optimize the creation of read connections for applications that read data only to
display it and only infrequently modify data. The also allow you to use Workbench to
configure the default (write) and read connection pools and to create additional
connection pools for object identity or any other purpose.

18-6

Chapter 18
Performance Features

In addition to internal connection pools, you can also configure EclipseLink to use any
of these types of connection pools:

» External connection pools; you must use this type of connection pool to integrate
with external transaction controller (JTA).

o Default (write) and read connection pools;

» Sequence connection pools; Use these types of pools when your application
requires table sequencing (that is, non-native sequencing) and you are using an
external transaction controller. Application-specific connection pools; These are
connection pools that you can create and use for any application purpose,
provided you are using internal EclipseLink connection pools in a session.

For more information about using connection pools with EclipseLink, see the following
topics in Understanding Oracle TopLink:

e "Understanding Connections"

e "Understanding Connection Pools"

Parameterized SQL and Statement Caching

Batch Writing

ORACLE

Parameterized SQL can prevent the overall length of an SQL query from exceeding
the statement length limit that your JDBC driver or database server imposes. Using
parameterized SQL along with prepared statement caching can improve performance
by reducing the number of times the database SQL engine parses and prepares SQL
for a frequently called query

By default, EclipseLink enables parameterized SQL but not prepared statement
caching. You should enable statement caching either in EclipseLink when using an
internal connection pool or in the data source when using an external connection pool
and want to specify a statement cache size appropriate for your application.

To enable parameterized SQL, add this line to the per si st ence. xn file that is in the
same path as your domain classes:

<property name="eclipselink.|dbc. bi nd-parameters" val ue="true"/>

To disable parameterized SQL, change val ue=to f al se.

For more information about using parameterized SQL and statement caching, see
"jdbc.bind-parameters" in Java Persistence API (JPA) Extensions Reference for
Oracle TopLink.

Heterogeneous batch writing is an optimization that allows EclipseLink to send multiple
heterogeneous dynamic SQL statements to the database to be executed as a single
batch. Batch writing is best used for applications that perform multiples writes in each
transaction.

To configure batch writing, include the ecl i psel i nk. j dbc. bat ch-wri ting and
eclipselink.jdbc. batch-witing.size properties in the persi stence. xm file. The
following example enables Oracle's native batch writing feature that is available with
the Oracle JDBC driver and configures the batch size to 150 statements:

<property name="eclipselink.jdbc.batch-witing" val ue="0racl e-JDBC'/ >
<property nanme="eclipselink.jdbc.batch-witing.size" val ue="150"/>

18-7

Chapter 18
Performance Features

Different batch options are supported and custom batch implementations can also be
used. For a detailed reference of the batch writing properties, see the bat ch-writing
and bat ch-writing. si ze documentation in Java Persistence API (JPA) Extensions
Reference for Oracle TopLink.

For details on using batch writing on Exalogic, see Task 4: Configure Heterogeneous
Batch Writing on Exalogic.

Serialized Object Policy

Serialized object policy is an optimization that allows EclipseLink to write out the whole
entity object with its privately owned (and nested privately owned) entities and element
collections into an additional field in the database. Serialized object policy optimizes
fetching from the database, provides faster database reads, and reduces middle tier
CPU and network access in certain situations.

Serialized object policy is best for read-only or read-mostly applications and should
only be used for entities that load all their dependent entities or element collections.
When using serialized object policy, database write operations (insert and update) are
slower and queries for objects without private-owned data are slower. See A Simple
Serialized Object Policy Example that demonstrates when serialized object policy is
best used to increase performance.

Consider using serialized object policy only for complex objects with numerous
aggregation as characterized by:

e Multiple database rows mapped to a single Java object

* When the object is read from the database all these rows are read at once (no
indirection, or all indirection always triggered). There may be un-triggered
indirection for other fields that are not included in the serialized object policy field

« If versionning is used, then updating or deleting any mapped row (or inserting of a
new one) should result in incrementing of the object's version

» Object deletion causes all the rows to be deleted.

e Irregular structure of the aggregation makes it less possible to use other common
optimizations (such as join fetching and batch reading).

Serialized Object Policy Configuration

Serialized object policy is enabled by using the @eri al i zedChj ect annotation on an
entity or mapped superclass and passing in an implementation of the

Serial i zedQbj ect Pol i cy interface. You must provide an implementation of this
interface; there is no default implementation. The annotations also includes a field to
define the column name for the object in the database. The default column name is
SOP.

Example 18-4 enables serialized object policy, overrides the default column name, and
sets optimistic locking to cascade, which can increase performance by keeping the
serialized object policy field in the database up-to-date.

ORACLE 18-8

ORACLE

Chapter 18
Performance Features

Note:

If serialized object policy is set on an entity, then policies with the same fields
are set on all inheriting entities.

Example 18-4 Enabling Serialized Object Policy Using Annotations

@ntity

@erial i zedObj ect (MySeri al i zedQbj ect Pol i cy. cl ass)
@pti m sticlocki ng(cascade = true)

public class Enployee inplenents Serializable {

@ntity

@erial i zedObj ect (MySeri al i zedObj ect Pol i cy. class, col um = @ol um(name="ADDR_SOP"))
@pti m sticlLocki ng(cascade = true)

public class Address inplements Serializable {

Example 18-5 enables serialized object policy in the ecl i psel i nk-orm xn file

Example 18-5 Enabling Serialized Object Policy Using eclipselink-orm.xml
<entity class="Enpl oyee">
<optimstic-locking cascade="true">

<serialized-object class="MSerializedQhjectPolicy">
<lentity>

<entity class="Address">
<optimstic-locking cascade="true">
<serialized-object class="MSerializedQhjectPolicy">
<col um nanme="ADDR_SOP"/ >

</serialized-object>
<lentity>

Example 18-6 enables serialized object policy in a customizer (either session or
descriptor):

Example 18-6 Enabling Serialized Object Policy in a Customizer

if (descriptor.hasSerializedOjectPolicy()) {

MySerial i zedObj ect Policy sop = (M/SerializedQbjectPolicy)descriptor.
get Serial i zedQvj ect Policy();

/1 to conpare pk cached in SOP Chject with pk read directly fromthe row from
[Ipk field(s) (false by default):

sop. set Shoul dVeri fyPri maryKey(true);

/1 to NOT conpare version cached in SOP Gbject with version read directly from
/1 the rowfromversion field (true by default):

sop. set Shoul dVeri fyVersion(fal se);

/1 to define recoverable SOP (false by default):

18-9

ORACLE

Chapter 18
Performance Features

sop. set | sRecoverabl e(true);

}

To use a descriptor customizer, define the class and specify it using the @ust om zer
annotation:

public class MyDescriptorCustom zer inplenents
org. eclipse. persistence. config. DescriptorCustom zer {
public void custom ze(C assDescriptor descriptor) throws Exception

{

}
}

@ust oni zer (MyDescri pt or Cust omi zer. cl ass)
public class Enployee inplenents Serializable {...

To use a session customizer to reach all descriptors at once, specify it in a persistence
unit property:

public class MySessionCustonizer inplenents
org. eclipse. persistence. config. Sessi onCust om zer {
public void custom ze(Sessi on session) throws Exception

{

for (C assDescriptor descriptor : session.getDescriptors().values()) {

}
}

<property name="eclipselink.session.custom zer" val ue="MSessi onCust onmi zer"/>

Read queries (including find and refresh) automatically use a serialized object if
serialized object policy is enabled. If the serialized object column contains nul |, or an
obsolete version of the object, then a query using a serialized object policy would
either throw an exception or, if all other fields have been read as well, build the object
using these fields (exactly as in the case where a serialized object policy is not used).

To disable querying the serialized object, set the SERI ALI ZED OBJECT property to f al se
as part of a query hint. For example:

Query query = em creat eQuery("SELECT e FROM Enpl oyee e")
.set Hi nt (QueryHi nts. SERI ALI ZED OBJECT, "false");

The following example demonstrates disabling searching for a serialized object:

Map hints = new HashMap();
hints. put("eclipselink.serialized-object", "false");
Empl oyee emp = em find(Enpl oyee. class, id, hints);

Applications that use serialized object policy should also consider using the result set
access optimization. Use the optimization when querying to avoid the costly reading of
the serialized object policy field (which can be large) if it is already cached and the
query is not a refresh query. The optimization ensures that only the primary key is
retrieved from the result set and only gets additional values if the cached object cannot
be used. To enable the result set access optimization, set the
eclipselink.jdbc.result-set-access-optin zation persistent unit property totrue
in the per si stence. xn file. For example:

<property name="eclipselink.jdbc.result-set-access-optinization" value="true"/>

18-10

ORACLE

Chapter 18
Performance Features

A Simple Serialized Object Policy Example
Consider the following example object model:

@ntity(name="SOP_Part Or Vol e")
@abl e(name="SOP_PART_OR WHOLE")
@nheritance(strategy=IlnheritanceType. SI NGLE TABLE)
@ ndex(col utmNanes={" LEFTPART_I D', "RI GHTPART_I D'})
public abstract class PartO \Wole inplements Serializable {
@d
@:=ener at edVal ue(strategy=CenerationType. TABLE)
public long id;

protected String description ="";

@neToOne(cascade=CascadeType. ALL, orphanReroval =true)
protected Part leftPart;
@neToOne(cascade=CascadeType. ALL, orphanReroval =true)
protected Part rightPart;

}

@ntity(name="SOP_Wol e")

@i scrimnatorVal ue("W)

@erializedObj ect (MySeri al i zedObj ect Pol i cy. cl ass)

@anmedQueri es({
@anmedQuery(name="fi ndWol e", query="Select w from SOP_Wole w where w.id =
(id", hints= @ueryH nt(name="eclipselink.serialized-object", value="false")),
@anmedQuer y(name="fi ndWol eSOP", query="Sel ect w from SOP_Whole w where w.id =
cid"),

)

public class Wol e extends Part O Wol e {

}

@ntity(name="SOP_Part")
@i scrimnatorVal ue("P")
public class Part extends PartO Wole {

}

The above data model allows the construction of a Wol e object with any number of
(nested) Part objects. For example:

* 1 level — A Wol e object contains left and right Part objects (3 objects all together)

« 2 levels — A Wol e object contains left and right Part objects; each of the Part
objects has left and right Part objects (7 objects all together)

« 3levels — A Wol e object contains left and right Part object; each of the Part
objects has a left and right Part objects; which each have a left and right Part
objects (15 objects all together)

* nlevels —(2n+1 - 1 objects all together)

Performance for the above data model increases as the number of levels in the model
increases. For example:

e 1 level — performance is slower than without serialized object policy.
« 2 levels — performance is only slightly faster than without serialized object policy.

» 5 levels — performance is 7 times faster than without serialized object policy.

18-11

Chapter 18
Monitoring and Optimizing EclipseLink-Enabled Applications

* 10 levels — performance is more than 25 times faster than without serialized object
policy.

For details on using serialized object policy on Exalogic, see Task 2: Use Serialized
Object Policy on Exalogic.

Automated Tuning

Tools

Automated tuning is an optimization that allows applications to automatically tune JPA
and session configuration for a specific purpose. Multiple configuration options can be
configured by a single tuner and different configurations can be specified before and
after application deployment and after application metadata has been processed but
before connecting the session. Automated tuning simplifies configuration and allows a
dynamic single tuning option.

Tuners are created by implementing the
org. eclipse. persi stence. tool s.tuning. Sessi onTuner interface. Two tuner
implementations are provided and custom tuners can be created as required:

e Standard (St andar dTuner) — The standard tuner is enabled by default and does
not change any of the default configuration settings.

» Safe (Saf eMbdeTuner) — The safe tuner configures the persistence unit for
debugging. It disables caching and several performance optimizations to provide a
simplified debugging and development configuration:

WEAVI NG | NTERNAL = fal se

WEAVI NG_CHANGE_TRACKI NG = fal se
CACHE_SHARED DEFAULT = fal se
JDBC_BI ND_PARAMETERS = fal se
ORM SCHEMA VALI DATI ON = true
TEMPORAL_MJTABLE = true
ORDER_UPDATES = true

To enable a tuner, specify a predefined tuner or enter the fully qualified name of a
Sessi onTuner implementation as the value of the ecl i psel i nk. t uni ng property in the
per si st ence. xnl file. The following example enables the safe tuner.

<property nane="eclipselink.tuning" val ue="Safe"/>

For a detailed reference of the t uni ng property, see Java Persistence API (JPA)
Extensions Reference for Oracle TopLink.

For details on using the Exalogic automated tuner, see Task 1: Enable the Exalogic
Automated Tuner.

EclipseLink provides monitoring and optimization tools, as described in Monitoring and
Optimizing EclipseLink-Enabled Applications.

Monitoring and Optimizing EclipseLink-Enabled Applications

ORACLE

The most important challenge to performance tuning is knowing what to optimize. To
improve the performance of your application, identify the areas of your application that
do not operate at peak efficiency. This section contains information about these
subjects:

18-12

Chapter 18
Monitoring and Optimizing EclipseLink-Enabled Applications

* Performance Optimization Recommendations and Tips

* Task 1: Measure EclipseLink Performance with the EclipseLink Profiler
* Task 2: Measure EclipseLink Performance in the Server Environment
* Task 3: Measure Fetch Group Field Usage

» Task 4: Identify Sources of Application Performance Problems

* Task 5: Modify Poorly-Performing Application Components

» Task 6: Measure Performance Again

Performance Optimization Recommendations and Tips

EclipseLink provides a diverse set of features to measure and optimize application
performance. You can enable or disable most features in the descriptors or session,
making any resulting performance gains global.Performance considerations are
present at every step of the development cycle. Although this implies an awareness of
performance issues in your design and implementation, it does not mean that you
should expect to achieve the best possible performance in your first pass.

For example, if optimization complicates the design, leave it until the final development
phase. You should still plan for these optimizations from your first iteration, to make
them easier to integrate later.

The most important concept associated with tuning your EclipseLink application is the
idea of an iterative approach. The most effective way to tune your application is to do
the following tasks:

» Task 1: Measure EclipseLink Performance with the EclipseLink Profiler.
* Task 2: Measure EclipseLink Performance in the Server Environment

* Task 3: Measure Fetch Group Field Usage

» Task 4: Identify Sources of Application Performance Problems.

* Task 5: Modify Poorly-Performing Application Components.

» Task 6: Measure Performance Again.

Task 1. Measure EclipseLink Performance with the EclipseLink Profiler

ORACLE

The EclipseLink performance profiler helps you identify performance problems by
logging performance statistics for every executed query in a given session. Use the
performance profiler to monitor a single query, or simple single-threaded use case.

The EclipseLink performance profiler logs the following information to the log file.

Table 18-1 Information Logged by the EclipseLink Performance Profiler
|

Information Logged Description

Query Class Query class name.

Domain Class Domain class name.

Total Time Total execution time of the query, including any nested queries

(in milliseconds).

18-13

Chapter 18
Monitoring and Optimizing EclipseLink-Enabled Applications

Table 18-1 (Cont.) Information Logged by the EclipseLink Performance Profiler

__|
Information Logged Description

Local Time Execution time of the query, excluding any nested queries (in
milliseconds).

Number of Objects The total number of objects affected.

Number of Objects Handled How many objects were handled per second of transaction time.
per Second

Logging the amount of time spent printing logging messages (in
milliseconds).
SQL Prepare The amount of time spent preparing the SQL script (in

milliseconds).

SQL Execute The amount of time spent executing the SQL script (in
milliseconds).

Row Fetch The amount of time spent fetching rows from the database (in
milliseconds)

Cache The amount of time spent searching or updating the object
cache (in milliseconds)

Object Build The amount of time spent building the domain object (in
milliseconds)

query Prepare the amount of time spent to prepare the query prior to execution
(in milliseconds)

SQL Generation the amount of time spent to generate the SQL script before it is
sent to the database (in milliseconds)

Enabling the EclipseLink Profiler

ORACLE

The EclipseLink performance profiler is an instance of
org. eclipse. persistence.tools.profiler.PerformanceProfiler class. To enable
it, add the following line to the persi st ence. xm file:

<property name="eclipselink.profiler" val ue="PerformanceProfiler.logProfiler"/>

In addition to enabling the EclipseLink profiler, The Per f or manceProf i | er class public
API also provides the functionality described in Table 18-2:

Table 18-2 Additional PerformanceProfiler Functionality

|
To... Use...

Disable the profiler dont LogProfile

Organize the profiler log into a summary of all the individual | ogPr of i | eSummary
operation profiles including operation statistics like the

shortest time of all the operations that were profiled, the total

time of all the operations, the number of objects returned by

profiled queries, and the total time that was spent in each

kind of operation that was profiled

Organize the profiler log into a summary of all the individual | ogPr of i | eSummar yByQuery
operation profiles by query

18-14

Chapter 18
Monitoring and Optimizing EclipseLink-Enabled Applications

Table 18-2 (Cont.) Additional PerformanceProfiler Functionality

|
To... Use...

Organize the profiler log into a summary of all the individual | ogPr of i | eSummar yByd ass
operation profiles by class.

Accessing and Interpreting Profiler Results

You can see profiling results by opening the profile log in a text reader, such as
Notepad.

The profiler output file indicates the health of a EclipseLink-enabled application.
Example 18-7 shows an sample of the EclipseLink profiler output.
Example 18-7 Performance Profiler Output

Begin Profile of{

ReadAl | Query(com denos. enpl oyee. domai n. Enpl oyee)

Profile(ReadAl | Query, # of obj=12, tine=139923809, sql execute=21723809,
pr epar e=49523809, row fetch=39023809, ti ne/ohj=11623809, obj/sec=8)

} End Profile

Example 18-7 shows the following information about the query:

e ReadAl | Query(com denps. enpl oyee. domai n. Enpl oyee) : specific query profiled,
and its arguments.

* Profile(ReadAl | Query: start of the profile and the type of query.

e # of obj=12: number of objects involved in the query.

* time=139923809: total execution time of the query (in milliseconds).

* sgl execute=21723809: total time spent executing the SQL statement.
e prepare=49523809: total time spent preparing the SQL statement.

* row fetch=39023809: total time spent fetching rows from the database.
e tine/obj=116123809: number of nanoseconds spent on each object.

* obj/sec=8: number of objects handled per second.

Task 2: Measure EclipseLink Performance in the Server Environment

ORACLE

Use the Performance Monitor to provide detailed profiling and monitoring information
in a multithreaded server environment. Use the performance monitor to monitor a
server, multiple threads, or long running processes.

Enable the monitor in persi stence. xm file as follows:

<property name="eclipselink.profiler" val ue="PerformanceMnitor"/>

The performance monitor can also be enabled through code using a
Sessi onCust omi zer.

The performance monitor will output a dump of cumulative statistics every minute to
the EclipseLink log. The statistics contains three sets of information:

18-15

Chapter 18
Monitoring and Optimizing EclipseLink-Enabled Applications

* Info; statistics that are constant informational data, such as the session name, or
time of login.

* Counter; statistics that are cumulative counters of total operations, such as cache
hits, or query executions.

» Timer; statistics that are cumulative measurements of total time (in nano seconds)
for a specific type of operation, reading, writing, database operations.

Statistics are generally grouped in total and also by query type, query class, and query
name. Counters and timers are generally recorded for the same operations, so the
time per operation could also be calculated.

The time between statistic dumps can be configured by using the set DunpTi me(| ong)
method in the Per f or mancelbni t or class. If dumping the results is not desired, then
the dunpTi e attribute can be set to be very large such as Long. MAX_VALUE. The
statistic can also be accessed in a Java program with the get Oper ati onTi ne(Stri ng)
method.

The performance monitor can also be configured with a profile weight. The profile
weights are defined in the Sessi onProfi | er class and used by the
PerformanceMonitor class. The weights include:

« NONE—No statistics are recorded.
NORMAL—Informational statistics are recorded.
* HEAVY—Informational, counter and timer statistics are recorded.

e ALL—AII statistics are recorded (this is the default).

" Note:

In the current release, the performance monitor responds with the same
information for the HEAVY and ALL values.

Task 3: Measure Fetch Group Field Usage

Use the Fetch Group Monitor to measure fetch group field usage. This can be useful
for performance analysis in a complex system.

Enable this monitor by using the system property
org. eclipse. persistence. fet chgrouproni tor=true.

The monitor outputs the attribute used for a class every time a new attribute is
accessed.

Task 4: Identify Sources of Application Performance Problems

ORACLE

Areas of the application where performance problems could occur include the
following:

* Identifying General Performance Optimization
* Schema

e Mappings and Descriptors

18-16

Chapter 18
Monitoring and Optimizing EclipseLink-Enabled Applications

e Sessions

e Cache

» Data Access

e Queries

e Unit of Work

* Application Server and Database Optimization

Task 5: Modify Poorly-Performing Application Components provides some guidelines
for dealing with problems in each of these areas.

Task 5: Modify Poorly-Performing Application Components

For each source of application performance problems listed in Task 4: Identify Sources
of Application Performance Problems, you can try specific workarounds, as described
in this section.

|dentifying General Performance Optimizations

Schema

ORACLE

Avoid overriding EclipseLink default behavior unless your application requires
it. Some of these defaults are suitable for a development environment; you should
change these defaults to suit your production environment. These defaults may
include:

* Batch writing — See "jdbc.batch-writing" in Java Persistence API (JPA) Extensions
Reference for Oracle TopLink.

» Statement caching — See "jdbc.cache-statements" in Java Persistence APl (JPA)
Extensions Reference for Oracle TopLink.

* Read and write connection pool size — See "connection-pool" in Java Persistence
API (JPA) Extensions Reference for Oracle TopLink.

* Session cache size — See "maintain-cache" in Java Persistence API (JPA)
Extensions Reference for Oracle TopLink.

Use the Workbench rather than manual coding. These tools are not only easy to
use: the default configuration they export to deployment XML (and the code it
generates, if required) represents best practices optimized for most applications.

Optimization is an important consideration when you design your database schema
and object model. Most performance issues occur when the object model or database
schema is too complex, as this can make the database slow and difficult to query. This
is most likely to happen if you derive your database schema directly from a complex
object model.

To optimize performance, design the object model and database schema together.
However, allow each model to be designed optimally: do not require a direct one-to-
one correlation between the two.

Possible ways to optimize the schema include:

* Aggregating two tables into one

e Splitting one table into many

18-17

Chapter 18
Monitoring and Optimizing EclipseLink-Enabled Applications

* Using a collapsed hierarchy
e Choosing one out of many

See "Data Storage Schema" in Understanding Oracle TopLink for additional
information.

Mappings and Descriptors

Cache

Data Access

ORACLE

If you find performance bottlenecks in your mapping and descriptors, try these
solutions:

* Always use indirection (lazy loading). It is not only critical in optimizing database
access, but also allows EclipseLink to make several other optimizations including
optimizing its cache access and unit of work processing. See "cache-usage" in
Java Persistence API (JPA) Extensions Reference for Oracle TopLink.

* Avoid using method access in your EclipseLink mappings, especially if you have
expensive or potentially dangerous side-effect code in your get or set methods;
use the default direct attribute access instead. See "Using Method or Direct Field
Access" in the Understanding Oracle TopLink.

» Avoid using the existence checking option checkCacheThenDatabase on
descriptors, unless required by the application. The default existence checking
behavior offers better performance. See "@ExistenceChecking" in Java
Persistence API (JPA) Extensions Reference for Oracle TopLink.

* Avoid expensive initialization in the default constructor that EclipseLink uses to
instantiate objects. Instead, use lazy initialization or use an EclipseLink
instantiation policy to configure the descriptor to use a different constructor. See
"@InstantiationCopyPolicy" in Java Persistence API (JPA) Extensions Reference
for Oracle TopLink.

You can often improve performance through caching, even in a clustered environment
by implementing cache coordination. Cache coordination allows multiple, possibly
distributed instances of a session to broadcast object changes among each other so
that each session's cache can be kept up-to-date. For detailed information about
optimizing cache behavior, see "Understanding Caching" in Understanding Oracle
TopLink and the following examples:

e http://wKki.eclipse.org/EclipseLink/Exanpl es/ JPA/ Cachi ng
e http://wiki.eclipse.org/EclipseLink/Exanpl es/ JPA CacheCoor di nati on
e http://wKki.eclipse.org/EclipseLink/Exanpl es/ JPA/ DCN

Depending on the type of data source your application accesses, EclipselLink offers a
variety of Logi n options that you can use to tune the performance of low level data
reads and writes. For optimizing higher-level data reads and writes, "Understanding
Data Access" in Understanding Oracle TopLink offers several techniques to improve
data access performance for your application. These techniques show you how to:

e Optimize JDBC driver properties.

e Optimize data format.

18-18

http://wiki.eclipse.org/EclipseLink/Examples/JPA/Caching
http://wiki.eclipse.org/EclipseLink/Examples/JPA/CacheCoordination
http://wiki.eclipse.org/EclipseLink/Examples/JPA/DCN

Queries

Chapter 18
Monitoring and Optimizing EclipseLink-Enabled Applications

Use batch writing for optimization.
Use Outer-Join Reading with Inherited Subclasses.

Use Parameterized SQL (Parameter Binding) and Prepared Statement Caching
for Optimization.

EclipseLink provides an extensive query API for reading, writing, and updating data.
"Understanding EclipseLink Queries" in Understanding Oracle TopLink offers several
techniques to improve query performance for your application. These techniques show
you how to:

Use parameterized SQL and prepared statement caching for optimization.
Use named queries for optimization.

Use batch and join reading for optimization.

Use partial object queries and fetch groups for optimization.

Use read-only queries for optimization.

Use JDBC fetch size for optimization.

Use cursored streams and scrollable cursors for optimization.

Use result set pagination for optimization.

It also includes links to read and write optimization examples.

Application Server and Database Optimization

To optimize the application server and database performance, consider these
techniques:

Configuring your application server and database correctly can have a big impact
on performance and scalability. Ensure that you correctly optimize these key
components of your application in addition to your EclipseLink application and
persistence.

For your application or Java EE server, ensure your memory, thread pool and
connection pool sizes are sufficient for your server's expected load, and that your
JVM has been configured optimally.

Ensure that your database has been configured correctly for optimal performance
and its expected load.

Task 6. Measure Performance Again

Finally, after identifying possible performance bottlenecks and taking some action on
them, rerun your application, again with the profiler enabled (see Enabling the
EclipseLink Profiler). Review the results and, if more action is required, follow the
procedures outlined in Task 5: Modify Poorly-Performing Application Components.

ORACLE

18-19

Scaling JPA Applications Using TopLink
Grid with Oracle Coherence

This chapter introduces TopLink Grid and provides an overview of how it can be used
to achieve high availability and to scale out applications. For details on using TopLink
Grid, see Integrating Oracle Coherence.

This chapter includes the following sections:

e Introduction to the Solution
* Implementing the Solution

* Additional Resources

Use Case

JPA applications must scale out to meet demand and also achieve high availability.

Solution

The implementation is achieved by using TopLink Grid: an integration between
TopLink and Coherence.

Components

e TopLink 12¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

e TopLink Grid

 Coherence

Sample

See Additional Resources, for links to sample applications.

Introduction to the Solution

Oracle TopLink Grid is a feature of Oracle TopLink that provides integration between
the EclipseLink JPA and Coherence. Standard JPA applications interact directly with
their primary data store, typically a relational database. However, with TopLink Grid

ORACLE 19-1

Chapter 19
Implementing the Solution

you can store some or all of your domain model in the Coherence data grid. This
configuration is also known as JPA on the Grid.

You can configure TopLink Grid to use Coherence as the primary data store, execute
gueries against the grid, and allow Coherence to manage the persistence of new and
modified data. Coherence provides the layer between JPA and the data store, where
direct database calls can be offloaded from every application instance. This makes it
possible for clustered application deployments to scale beyond the bounds of standard
database operations.

These are the typical TopLink Grid configurations that applications can use:

Grid Cache configuration, which uses Coherence as the TopLink L2 (shared)
cache. This configuration applies the Coherence data grid to JPA applications that
rely on database-hosted data that cannot be entirely preloaded into a Coherence
cache. Some reasons why it might not be able to be preloaded include extremely
complex queries that exceed the feature set of Coherence Filters, third-party
database updates that create stale caches, reliance on native SQL queries, stored
procedures or triggers, and so on.

In this configuration, you can scale TopLink up into large clusters while avoiding
the requirement to coordinate local L2 caches. Updates made to entities are
available in all Coherence cluster members immediately, upon committing a
transaction.

Grid Entity configuration, which is optimal for applications that require fast access
to large amounts of (fairly stable) data and perform relatively few updates. This
configuration can be combined with a Coherence cache store using write-behind
to improve application response time by performing database updates
asynchronously.

Grid Read configuration, which is optimal for entities that require fast access to
large amounts of (fairly stable) data and must write changes synchronously to the
database. In these entities, cache warming could be used to populate the
Coherence cache, but individual queries could also be directed to the database if
necessary.

Implementing the Solution

For complete details on configuring Toplink Grid and developing applications with
TopLink Grid, see Integrating Oracle Coherence.

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

ORACLE

Code Samples can be downloaded from:

https://ww. oracl e. coni t echnet wor k/ mi ddl ewar e/ i as/ exanpl es-
i ndex-092244. ht m

See the oracl e. ecl i psel i nk. coherence. * APIs in Oracle® Fusion Middleware
Java API Reference for Oracle TopLink

19-2

https://www.oracle.com/technetwork/middleware/ias/examples-index-092244.html
https://www.oracle.com/technetwork/middleware/ias/examples-index-092244.html

Exposing JPA Entities Through RESTful
Data Services

This chapter describes how to expose JPA persistence units using RESTful Data
services.
This chapter includes the following sections:

e Introduction to the Solution

* Implementing the Solution

* Additional Resources

e RESTful Data Services API Reference

Use Case

Expose persistent data model and application logic over REST for the development of
Thin Server Architecture (TSA) clients including HTML5/JavaScript and mobile
technologies.

Solution

Use RESTful Data Services to expose entities using a RESTful service, without writing
JAX-RS code.

Components

e A Java EE application server with the following:
— TopLink 12¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open
source persistence framework from the Eclipse Foundation.
EclipseLink implements Java Persistence API (JPA), Java
Architecture for XML Binding (JAXB), and other standards-based
persistence technologies, plus extensions to those standards.
TopLink includes all of EclipseLink, plus additional functionality from
Oracle.

— EclipseLink 2.4 or later.

— Support for Java API for RESTful Web Services (JAX-RS) 1.0, for example the
JAX-RS reference implementation, Jersey (see http://jersey.java.net/).

e A compliant Java Database Connectivity (JDBC) database, such as Oracle
Database, Oracle Express, or MySQL

ORACLE 20-1

http://jersey.java.net/

Chapter 20
Introduction to the Solution

Introduction to the Solution

REpresentational State Transfer (REST) defines a set of architectural principles for
distributed systems, in which Web Services are viewed as resources. Those resources
are identified by URIs and can be addressed and transferred using the HTTP protocol.
REST can be used with a number of technologies, including JPA. HTTP methods are
used to access and perform operations on resources.

The Java API for RESTful Web Services (JAX-RS) is an API designed to make it easy
to develop Java applications that use the REST architecture. With JAX-RS, you use
annotations to define resources and the actions that can be performed on those
resources.

While it is possible to use JAX-RS directly to interact with JPA persistence units in a
RESTful application, RESTful Data Services provide an API that makes it easier to
implement REST for JPA persistence,. You can use this API to interact with JPA
persistence units without explicitly writing JAX-RS code, thus providing a simple way
to expose persistence units through REST.

¢ Note:

For an example that uses JAX-RS directly to implement JPA persistence in a
RESTful application, see "RESTful Service Example" at http://

wi ki . eclipse. org/ Ecli pseLi nk/ Exanpl es/ REST/ GettingStart ed. For
information about simplifying that process by using RESTful Data Services,
continue reading this chapter.

RESTful Data Services are made available via a web fragment, which extends the
capabilities of a web application. The REST functionality is made available by
including the RESTful Data Services JAR file in the WEB- I NF/ | i b folder of a web
application.

The RESTful Data Services runtime provides access to all persistence units packaged
in the application in which it is running, as well as any dynamic persistence units that
are provisioned within it.

Implementing the Solution

ORACLE

This section contains the following tasks for exposing JPA entities using RESTful Data
Services:

e Step 1: Prerequisites

e Step 2: Create and Configure the Application

e Step 3: Understand RESTful Data Services URI Basics

e Step 4: Represent Entities Using JPA, JAXB, or JSON

e Step 5: Issue Client Calls for Operations on the Persistence Unit

e Step 6: Implement Security

e Step 7: Understand the Structure of RESTful Data Services Responses

20-2

http://wiki.eclipse.org/EclipseLink/Examples/REST/GettingStarted
http://wiki.eclipse.org/EclipseLink/Examples/REST/GettingStarted

Chapter 20
Implementing the Solution

Step 1. Prerequisites

To implement and use RESTful Data Services, you need:

ORACLE

Oracle WebLogic Server 12¢ (12.1.3) or later, which includes:
— EclipseLink 2.4 or later, configured as the persistence provider.

— Jersey, the reference implementation of the Java API for RESTful Web
Services (JAX-RS) 1.0 specification.

Either of the following Java EE application servers:
— Oracle WebLogic Server 12¢ (12.1.3) or later.

— Glassfish Server 3.1.2 or later.

Note:

With Glassfish Server 3.1.2, you must upgrade the EclipseLink
version to use the version of the RESTful Data Services shipped in
EclipseLink 2.4.2 (and must also include DBWS). See http://
wwwv. ecl i pse. org/ ecl i psel i nk/ downl oads/ for EclipseLink
downloads.

Those servers include the following:
— EclipseLink 2.4 or later, configured as the persistence provider.

— Jersey, the reference implementation of the Java API for RESTful Web
Services (JAX-RS) 1.0 specification.

The t opl i nk- dat aservi ces-web. j ar file. This file is included in the TopLink
distribution under TOPLI NK_HOME\ or acl e_conmon\ nodul es
\oracle.toplink_rel ease_num where TOPLI NK_HOME is the location where you
installed TopLink, and r el ease_numis the TopLink release number, such as
oracle.toplink_12.1.2.

The org. ecl i pse. persi stence. jpars_version_numjar file, where versi on_num
is the version of the jpars file, for example,

org. eclipse. persistence.jpars_2.4.1.v20121003- ad44345. | ar. This file is
included in the EclipseLink distributions from the Eclipse foundation, at http://
www. ecl i pse. org/ ecl i psel i nk/ downl oads/ :

— Inthe installer distribution, the file is located in ecl i psel i nk\j i b\j pa\.
— In the bundles distribution, the file is located with the other bundles.

Any compliant Java Database Connectivity (JDBC) database, including Oracle
Database, Oracle Database Express Edition (Oracle Database XE), or MySQL.
These instructions are based on Oracle Database XE 11g Release 2.

For the certification matrix, see htt ps: //ww. oracl e. com t echnet wor k/
m ddl ewar e/ t opl i nk/ over vi ew i ndex. ht m

20-3

http://www.eclipse.org/eclipselink/downloads/
http://www.eclipse.org/eclipselink/downloads/
http://www.eclipse.org/eclipselink/downloads/
http://www.eclipse.org/eclipselink/downloads/
https://www.oracle.com/technetwork/middleware/toplink/overview/index.html
https://www.oracle.com/technetwork/middleware/toplink/overview/index.html

Chapter 20
Implementing the Solution

Step 2: Create and Configure the Application

RESTful Data Services are designed to function with standard JPA applications, with
little extra work required beyond enabling the service, as described below:

1. Develop an application using one or more standard JPA persistence units,
package it in a Web ARchive (WAR) file, and deploy it normally.

Note:

The fragment must be placed inside a WAR, because it offers Web
services. That WAR may optionally be packaged inside an Enterprise
Archive (EAR) file.

< Note:

Weaving is required for several RESTful Data Services features to work:
providing relationships as links, editing relationships, and dealing with
lazy many-to-one relationships. Therefore, for those features, you must
either deploy to a Java EE compliant server or statically weave your
classes.

2. Include the RESTful Data Services servlet in the WAR containing the application.
(For instructions on downloading, see.Step 1: Prerequisites)

" Note:

The RESTful Data Services JAR file includes a web- f ragment . xnl file
that identifies the servlet and defines the root URI for the RESTful
service.

Add the t opl i nk- dat aservi ces-web. j ar file to the WAR containing the
application, under VEB- | NF/ | i b.

Add the or g. ecl i pse. persi stence. jpars_version_numjar file to the WAR
containing the application, under VEB- | NF/ | i b.

Step 3: Understand RESTful Data Services URI Basics

URIs used for making REST calls for RESTful Data Services follow these standard
patterns:

* The base URI for an application is: http://server: port/application-nane/
per si st ence/ {versi on}

ORACLE 20-4

ORACLE

Chapter 20
Implementing the Solution

Note:

The version of RESTful Data Services in TopLink 12.1.2 is v1. 0, and that
version number should be used to make REST requests to RESTful
Data Services. For example, the base URI for RESTful Data Services in
an application using the current version of RESTful Data Services would
be something like htt p: / /1 ocal host : 8080/ exanpl eApp/ per si st encel/
v1.0.

¢ Note:

As of EclipseLink 2.4.2, support for using RESTful Data Services URIs
without a version number is deprecated and will be removed in future
releases. The version of RESTful Data Services in EclipseLink 2.4.2 is
v1. 0, and that version number should be used to make REST requests
to RESTful Data Services.

For base operations on the persistence unit, add the persistence unit name:
[persi stence/ {version}/{unit-name}

For specific types of operations, add the type of operation, for example:

— Entity operations: / per si stence/ {versi on}/{unit-name}/entity

— Query operations: / per si st ence/ {versi on}/{unit-nane}/query

— Single result query operations: / per si st ence/ {versi on}/{uni t-name}/
singl eResul t Query

— Persistence unit level metadata operations: / per si st ence/ { versi on}/{unit-
nane}/ met adat a

— Base operations: / per si st ence/ { versi on}

For complete documentation on how to construct these URIs, see RESTful Data
Services API Reference.

Step 4. Represent Entities Using JPA, JAXB, or JSON

Entities in RESTful Data Services are represented in two ways:

As JPA Entities - The mappings of the JPA entities must be represented in the
typical JPA fashion, using either annotations or XML files. These mappings are
used to interact with the data source.

As JAXBIJSON - No specific mapping information is required when using JAXB/
JSON. By default, RESTful Data Services use the JAXB defaults (defined in the
JAXB specification) to map to JAXB/JSON. You can optionally provide JAXB
annotations on the classes to alter the way the objects are mapped. Additionally,
the persistence unit property ecl i psel i nk. j pa-rs. oxmcan be specified in a
persistence unit's per si st ence. xm to specify XML-defined JAXB mappings.

20-5

Chapter 20
Implementing the Solution

Relationships

In general, JAXB default mappings are sufficient to allow information exchange using
JSON/JAXB. There are, however, some special cases when dealing with relationships.

Bidirectional Relationships and Cycles

Bidirectional relationships are typical in JPA and are easy to represent in a database
using foreign keys. They are more difficult to represent in an XML or JSON document
using standard JAXB. However, the EclipseLink JAXB implementation provides a way
to define an inverse relationship. Inverse relationships are not directly written to XML
or JSON but are populated when the XML or JSON is unmarshalled. The way this is
handled is as follows:

JPA bidirectional relationships are defined to have an owning side and a hon-owning
side. The entity that has the table with a foreign key in the database is the owning
entity. The other table--the one pointed to--is the inverse (non-owning) entity. JPA
mapping provides a mapped-by attribute that defines which is which. The mappedBy
attribute must be on the inverse side. RESTful Data Services default the owning side
to be an inverse relationship. As a result, when an object with an owned relationship is
read or written, that relationship is ignored.

Consider the following pseudo-code:

@ntity
QO assA{

@d
int id

@neTolne
myB

@ntity
C assB{

@d
int id

@neToOne(mappedby="nyB")
nmyA

}

If the objects are identified as follows...

e Al withid=1andnyB = Bl

e Blwithid=11and nyA = Al

...the following JSON corresponds to those objects:
A {

id1
1

ORACLE 20-6

Chapter 20
Implementing the Solution

B {
id 11
A {
id 1
}
}

Passing By Value vs. Passing By Reference

RESTful Data Services allow relationship objects to be passed either by value or by
reference in the REST request. JSON attributes hold resource references (see "Pass
By Value™), while _rel ati onshi ps have "navigation” links (see "Pass By Reference").

Pass By Value

To pass an object by value, create typical JSON or XML that represents the object.
The following JSON passes nyA by value:

B {
id: 11
nyA {
id 1
}
!

Pass By Reference

To pass an object by reference, use a _| i nk. The link represents the RESTful Data
Services call necessary to get that object. The following JSON passes nyA by

reference:
B {
id:11
myA {
_link:{
href: "http://1ocal host: 8080/ app/ persi stence/vl. 0/ pu/entity/ A/ 1"
met hod: " GET"
rel: "self"
1
}

}

Alink consists of href , met hod and r el attributes.

* The href (Hypertext REFerence) is the URI of the entity linked to. The hr ef
uniquely identifies the linked entity or attribute.

e The net hod identifies the operation the hr ef is to be used for.

* Therel represents the relationship between the containing entity and the entity
linked to.

Lists can mix and match items represented by reference and by value. The
corresponding entity must exist if an item is represented by reference in a request;
otherwise RESTful Data Services returns an error.

The following example shows JSON that can be sent to RESTful Data Services as a
request, in a regular-expression-like syntax:

"nunericAttribute": 1
"stringAttribute": "auctionl"

ORACLE 20-7

Chapter 20
Implementing the Solution

"dateAttribute": 12-09-16
"singl eRel atedl tem': RELATED | TEM?
"listRelatedltent:

{
}

RELATED_| TEM

RELATED_| TEM =

{

"numericAttribute": 11
"stringAttribute": "myName"

}
R
" link" {
"rel"="sel f",
"href" = "LI NK_HREF",
" et hod” =" GET"
}
The following JSON represents an entity called Auct i on with several directly mapped
fields and a collection of an entity called Bi d.
{

"description": "Auction 1",
“endPrice": O,

"id" 2,
"imge": "auctionl.jpg",
“nane": "Al",

"sold": fal se,
“startPrice": 100,

"bids": [
{
"_link": {
“href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/auction/entity/Bid/ 5",
"met hod": "GET",
"rel": "self"
}
1
{
"_link": {
“href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistence/vl. 0/auction/entity/Bid/ 6",
"met hod": "GET",
"rel": "self"
}

}
]
}

XML representation mimics the JSON representation. The following is sample XML for
an entity called Auct i on, with several directly mapped attributes and a list of an entity
called Bi d.

<?xm version="1.0" encodi ng="UTF-8"?>
<Auct i on>
<description>Auction 1</description>
<endPri ce>0. 0</ endPri ce>

ORACLE 20-8

Chapter 20
Implementing the Solution

<id>2</id>
<i mage>auctionl. j pg</i mge>
<nane>Al</ nane>
<sol d>f al se</ sol d>
<startPrice>100.0</startPrice>
<bi ds>
<_link href="http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/auction/
entity/Bid/5" nethod="CET" rel ="self" />
</ bi ds>
<bi ds>
<_link href="http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/auction/
entity/Bid/ 6" nethod="CET" rel ="self" />
</ bi ds>
</ Aucti on>

Step 5: Issue Client Calls for Operations on the Persistence Unit

Clients use HTTP calls to perform operations on persistence units in a deployed
application. The requirements and options for constructing the calls are described in
RESTful Data Services API Reference.

Specify Media Format in the Header

This REST interface can handle both XML and JSON representations of data. The
caller is responsible for using HTTP header values to indicate the format of the
content:

e Content-Type = application/json indicates that the content being sent is JSON

» Content-Type = application/xm indicates that the content being sent is XML

e Accept = application/json indicates that the expected format of the result is
JSON

e Accept = application/xm indicates that the expected format of the result is XML

If no header value is specified, JSON is used by default. If Cont ent - t ype is specified
and Accept is not specified, the returned format matches the Cont ent - t ype passed in.

Note:

In many REST utilities, the Accept value is defaulted to appl i cation/xm . In
those cases, you must configure this value explicitly if you want JSON.

About Logging

Messages related to RESTful Data Services operations are logged to a logger called
org. eclipse. persi stence. j pars. Most messages are logged at the FI NE level.
Exception stacks are logged at FI NER.

Messages related to operations within Ent i t yManager s, Ent i t yManager Fact orys and
JAXBCont ext s are logged in the same manner as other EclipseLink logging.

ORACLE 20-9

Chapter 20
Implementing the Solution

Step 6: Implement Security

Secure RESTful Data Services through typical REST security mechanisms.

Step 7: Understand the Structure of RESTful Data Services

Responses

The RESTful Data Services response messages, either in XML or in JSON, contain
following categories:

e Basic data types, such asint, doubl e, String, | nt eger, Doubl e, Bool ean, etc.
» Relationships (links and relationships)

The next sections explain the semantic and syntactic details of each category of data.

There is also a minor generic difference between the XML and JSON responses (other
than format). The JSON responses do not include the root name of an entity, while
XML responses do. See the enpl oyee root/grouping name in the XML response below.
The root name is derived from the name of the entity it represents.

JSON

{
"firstNane":"John",

"l ast Name": "Smth",

}
XML

<?xm version="1.0" encodi ng="UTF-8"?>
<enpl oyee>

<firstName>John</firstName>

<l ast Nane>Sni t h</| ast Nane>

</ enpl oyee>

Basic Data Types

ORACLE

In the RESTful Data Services responses, basic data types and primitives are
presented as simple JSON or XML fields. For example:

JSON

{
"firstNane":"John",

"l ast Name": "Smth",

}
XML

<?xm version="1.0" encodi ng="UTF-8"?>
<enpl oyee>

<firstName>John</firstName>

<l ast Name>Sni t h</| ast Nane>

20-10

Chapter 20
Implementing the Solution

</ enpl oyee>

Links and Relationships

RESTful Data Services operations return all relationships by reference, with the
exception of JPA embeddables and element collections.

The rel ati onshi ps are links pointing to the (JPA) relationships of an entity, such as
one-to-one and one-to-many. For example, assume that an employee has multiple
phone numbers (one-to-many). When the employee is read, the response will contain
a relationship link pointing to the relationship between the employee and the phone
entities, plus a list of the links, with each link pointing to a (unique) phone number that
the employee owns. For example:

{
"firstName": "Jacob",
"gender": "Male",
"id": 743627,
"l ast Name": "Smth",
"version": 1,
" relationships": [
{
" link": {
"href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistencelhr/entity/Enployeel
743627/ phoneNunber s",
"rel": "phoneNunbers"
}
1
1,
"phoneNunbers": [
{
" link": {
"href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistence/ hr/entity/PhoneNunber/
743627+cel | ",
“met hod": "GET",
"rel": "self"
}
|3
{
" link": {
"href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistence/ hr/entity/PhoneNunber/
743627+wor k",
“met hod": "GET",
"rel": "self"
}
1
]
1

Embedded objects and element collections are strictly privately-owned (dependent)
objects.They have no identity, and there is no cascade option on an

El enent Col | ecti on. The target objects are always persisted, merged, and removed
with their parent. Therefore, RESTful Data Services embeds these objects directly in
responses, rather than providing links to them. For example, assume the Enpl oyee
object has Enpl oynent Peri od defined as Enbedded. When the Enpl oyee is read, the
response will contain Enpl oynent Peri od as an embedded object, not a link to it.

ORACLE 20-11

Chapter 20
Additional Resources

Relationships are currently not supported for embedded attributes. See the example
below:

{
“firstNane": "John",

"l astName": "Smith",

"enpl oynment Period": {
“startDate": "2010-04-23T14:12: 03. 905- 04: 00",
"endDat e": "2013-01-23T12: 00: 02. 301- 04: 00",
"_relationships": []
b
}

Similarly, element collections are also directly contained in RESTful Data Services
responses as collections, not as links. For example, assume the Enpl oyee object has a
"certifications" attribute defined as a collection of Certifi cati on objects. When
the Enpl oyee is read, the response will contain list of Certi fi cati on objects, not links:

{
"firstNane": "John",
"l ast Name": "Smth",
“certifications": [
{
"issueDate": "2013-04-23T15:02:23.071-04: 00",
"nang": "Java"
¥
{
"issueDate": "2010-05-23T11:02:23. 033-04: 00",
"name": "Webl ogic"
1
1,
}

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

e "Building RESTful Web Services with JAX-RS" in The Java EE 6 Tutorial at
http://docs.oracle.contjavaeel/ 6/tutorial/doc/giepu.htn.

* "RESTful Service Example" athttp://w ki .eclipse. org/ EclipseLi nk/
Exanpl es/ REST/ GettingStarted.

e JSR 311: JAX-RS: The Java API for RESTful Web Services" athttp://
jcp.org/en/jsr/detail ?i d=311

e Jersey project at http://jersey.java.net/.

RESTful Data Services AP| Reference

The following types of RESTful operations can be used with JPA via HTTP when using
RESTful Data Services:

e Entity Operations

ORACLE 20-12

http://docs.oracle.com/javaee/6/tutorial/doc/giepu.html
http://wiki.eclipse.org/EclipseLink/Examples/REST/GettingStarted
http://wiki.eclipse.org/EclipseLink/Examples/REST/GettingStarted
http://jcp.org/en/jsr/detail?id=311
http://jcp.org/en/jsr/detail?id=311
http://jersey.java.net/

Chapter 20
Entity Operations

» Entity Operations on Relationships
* Query Operations
* Base Operations

* Metadata Operations

Entity Operations

FIND

ORACLE

Entity operations are those performed against a specific entity type within the
persistence unit.

The base URI for entity operations is as follows:
[persi stence/ {version}/{unit-name}/entity/{type}/*
The {type} value refers to the type name (descriptor alias).

Supported entity operations are:

« FIND

« PERSIST
« MERGE
- DELETE

HTTP Request Syntax

CET /persistence/{version}/{unit-nane}/entity/{type}/{id}?{hints}
where:

e {id} isastring

* hints are specified using HTTP query parameters, with the key being the name of
the EclipseLink query hint

Example

CGET http://1ocal host: 8080/ exanpl eApp/ per si st ence/ v1. 0/ Exanpl ePU
entity/Foo/ 1

Produces

JSON or XML

Response
* (K, with a payload containing the entity
e NOT_FOUND if the entity does not exist

20-13

PERSIST

ORACLE

Chapter 20
Entity Operations

Usage

Composite Keys

Composite keys are supported. The + character is reserved and therefore cannot be
used in fields that represent keys. Composite keys are separated using the + character
and should be specified in an order corresponding to the Java default sorting of the
attribute names.

For example, consider an entity Phone, with attributes ext B=123 and ext A=321. The
URL to find the entity is:

http://1ocal host: 8080/ exanpl eApp/ persi st ence/ v1. 0/ Exanpl ePU enti t y/ Phone/
321+123

The 321 comes before the 123 because ext A comes before ext B when sorted in Java.

Result Caching

Default EclipseLink and HTTP caching is enabled and configured through standard
means.

Refresh

The Enti t yManager . r ef r esh operation can be invoked using the fi nd with the query
hint for Ref r esh.

Attributes

Navigating into the attributes of an entity (for example, to get the Addr ess entity
associated with an employee in a single REST request) is supported to one level, for
example:

[persistence/vl. 0/{unit-nane}/entity/{type}/{id}/{relationship} wil work
while

[persistence/vl. 0/{unit-nane}/entity/{type}/{id}/{relationship}/{index}/
{relationshi p2} will not

HTTP Request Syntax

PUT / persi stence/{version}/{unit-name}/entity/{type}

Example

PUT http://1 ocal host: 8080/ exanpl eApp/ persi st ence/ v1. 0/ Exanpl ePU entity/ Foo

Consumes

JSON or XML

Payload
Entity

20-14

MERGE

DELETE

ORACLE

Chapter 20
Entity Operations

Produces

JSON or XML

Response

Payload containing the entity returned by the persist operation

Usage

PUT is required to be idempotent. As a result, it will fail if called with an object that
expects the server to provide an ID field. Typically this will occur if the metadata
specifies a generated key and the field that contains that key is unpopulated.

HTTP Request Syntax

POST / persistence/{version}/{unit-nane}/entity/{type}

Example

POST http://1ocal host: 8080/ exanpl eApp/ persi stence/ v1. 0/ Exanpl ePU
entity/ Foo

Consumes

JSON or XML

Payload
Entity

Produces

JSON or XML

Response
Payload containing the entity returned by the merge operation.

Merge takes an object graph and makes it part of the persistence context through
comparison. It compares the object and all related objects to the ones that already
exist and issues | NSERTs, UPDATES, and DELETESs to put the object in the persistence
context.

HTTP Request Syntax
DELETE / persistence/{version}/{unit-nane}/entity/{type}{id}

where {i d} is defined using a string

20-15

Chapter 20
Entity Operations on Relationships

Example

DELETE http://1ocal host: 8080/ exanpl eApp/ persi stence/ v1. 0/ Exanpl ePU
entity/Foo/ 1

Response

0.4

Entity Operations on Relationships

READ

ADD

ORACLE

The base URI for relationship operations is as follows:
/ persistence/{version}/{unit-name}/entity/{entity}/{id}/{relationship}

Supported relationship operations are:

* READ
- ADD
* REMOVE

Use this operation to get the values of a relationship.

HTTP Request Syntax

CET /persistence/{version}/{unit-nane}/entity/{type}/{id}/{relationship}
where:

e {id} isastring.

e {rel ationship} is the JPA name of the relationship.

Example

CGET http://1ocal host: 8080/ exanpl eApp/ per si st ence/ v1. 0/ Exanpl ePU
entity/ Foo/ 1/ myRel ati onshi p

Produces

JSON or XML

Response
* (K, Payload containing an entity or a list of entities.

e NOT_FOUND if the entity does not exist

Use this operation to add to a list or replace the value of a many-to-one relationship.

20-16

ORACLE

Chapter 20
Entity Operations on Relationships

HTTP Request Syntax

PCST [/ persistence/{version}/{unit-nane}/entity/{type}/{id}/{relationship}?
{partner}

" Note:

part ner must be specified as a query parameter. Do not specify part ner as
a matrix parameter.

Note:

As of EclipseLink 2.4.2, part ner should be specified as a query parameter.
Specifying par t ner as a matrix parameter is deprecated.

Examples
For unidirectional relationships, { part ner} is not required, for example:

POST http://1ocal host: 8080/ exanpl eApp/ persi stence/ v1. 0/ Exanpl ePU
entity/ Foo/ 1/ myRel ati onshi p

For bi-directional relationships, you must provide the name of the attribute that makes
up the opposite side of the relationship. For example, to update an Auct i on. bi d where
the opposite side of the relationship is Bi d. auct i on, use the following:

POST http://1ocal host: 8080/ exanpl eApp/ persi stence/ v1. 0/ Exanpl ePU
entity/ Foo/ 1/ myRel ati onshi p?part ner =hi d

Consumes

JSON or XML

Payload

Entity with the new value.

" Note:

Relationship objects can be passed by value or by reference. See Passing
By Value vs. Passing By Reference.

Produces

JSON or XML

Response

Payload containing the entity with the added element

20-17

REMOVE

Chapter 20
Query Operations

Use this operation to remove a specific entity from the list or a null on a many-to-one
relationship.

HTTP Request Syntax

DELETE / persistence/{version}/{unit-nanme}/entity/{type}/{id}/
{rel ationshi p}?{relationshipListlten d}

where rel ati onshi pLi stltenl d is an optional query parameter. The

rel ationshipListlten dis meaningful only when the {rel ati onshi p} to be removed
is alist. The rel ati onshi pLi st1ten d should be set to the i d of a member in the
relationship list when only that member of the relationship list needs to be removed.
The entire list specified by the {rel ati onshi p} will be removed when

rel ationshipListlten dis not specified.

Example

DELETE http://1 ocal host: 8080/ exanpl eApp/ persi stence/ v1. 0/ Exanpl ePU
entity/ Foo/ 1/ myRel ati onshi p

Consumes

JSON or XML

Note:

Relationship objects can be passed by value or by reference. See Passing
By Value vs. Passing By Reference.

Produces

JSON or XML

Response
« OK

» Payload containing the entity with the removed element

Query Operations

ORACLE

The base URI for query operations is as follows:
CET / persistence/ {version}/{unit-nane}/query/{nane}{parans}
The following query operations are supported:

Named queries doing reads can be run two ways in JPA. Both are supported in the
REST API. They are:

* Query Returning List of Results

20-18

Chapter 20
Query Operations

* Update/Delete Query

Query Returning List of Results

HTTP Request Syntax
CET /persistence/{version}/{unit-nane}/query/{name};{paranmeters}? {hints}
where:

e paraneters are specified using HTTP matrix parameters

e hints are specified using HTTP query parameters and with the key being the
name of the EclipseLink query hint

Examples

CGET http://1ocal host: 8080/ exanpl eApp/ persi st ence/ v1. 0/ Exanpl ePU query/
Foo. f i ndByNane; nane=nynane

GET http://1ocal host: 8080/ exanpl eApp/ persi st ence/ v1. 0/ Exanpl ePU query/
Foo. f i ndByName; name=nmynanme?ecl i psel i nk. j dbc. max-resul t s=500

Produces

JSON or XML

Response

A payload containing a list of entities. An XML response contains a Li st as a grouping
name for a collection of items and i t emas a grouping name for each member of a
collection returned. JSON responses use square brackets [] to encapsulate a
collection and curly braces {} to encapsulate each member of a collection. For
example:

XML Example

<?xm version="1.0" encodi ng="UTF-8"?>
<List>
<itemp
<firstName>M | es</first Name>
<| ast Name>Davi s</ | ast Nane>
<manager >
<firstName>Charlie</firstName>
<| ast Name>Par ker </ | ast Name>
<gender >Mal e</ gender >
<i d>26</id>
</ manager >
<litem
<itemp
<firstName>Charlie</firstName>
<| ast Name>Par ker </ | ast Name>
<manager >
<firstName>Loui s</firstName>
<l ast Name>Ar st r ong</ | ast Nane>
<gender >Mal e</ gender >
<id>27</id>
</ manager >
<item
</ List>

ORACLE 20-19

Chapter 20
Query Operations

JSON Example
(

{
"firstName": "M/les",
"| ast Name": "Davis",
"manager": {
"firstName": "Charlie",
"| ast Name": "Parker",
"gender": "Male",
"id": 26
}
¥
{
"firstName": "Charlie",
"| ast Name": "Parker",
"manager": {
"firstNanme": "Louis",
"l ast Name": "Arnstrong”,
"gender": "Male",
"id 27
}
1

]

Update/Delete Query

HTTP Request Syntax
POST / persistence/{version}/{unit-nane}/query/{name}; paraneters?hints
where:

e paraneters are specified using HTTP matrix parameters

e hints are specified using HTTP query parameters and with the key being the
name of the EclipseLink query hint

Examples

POST http://local host: 8080/ exanpl eApp/ persi st ence/ v1. 0/ Exanpl ePU query/
Foo. del et eAl | ByNane; name=nynane

POST http://1ocal host: 8080/ exanpl eApp/ persi st ence/ v1. 0/ Exanpl ePU query/
Foo. updat eName; nane=nyname?ecl i psel i nk. j dbc. max-resul t s=500

Produces

JSON or XML

Response

A payload containing the number of entities updated or deleted

ORACLE 20-20

Chapter 20
Single Result Queries

Single Result Queries

HTTP Request Syntax

CGET /persistence/{version}/{unit-nane}/singleResul t Query/{nane};
{ paramet er s} ?{ hi nt s}

where:

e paraneters are specified using HTTP matrix parameters

e hints are specified using HTTP query parameters and with the key being the
name of the EclipseLink query hint

Example

GET http://1ocal host: 8080/ exanpl eApp/ per si st ence/ v1. 0/ Exanpl ePU
si ngl eResul t Query/ Foo. fi ndByNane; nanme=nynarne

Produces

JSON, XML, or application/octet-stream

Response

A payload containing an entity

Base Operations

Base operations are:

e List Existing Persistence Units

List Existing Persistence Units

" link": {

ORACLE

HTTP Request Syntax

GET / persi stence/ {versi on}

Example

CGET http://1ocal host: 8080/ exanpl eApp/ per si stence/v1.0

Produces

JSON or XML

Response

A payload containing a list of persistence unit names and links to metadata about
them. For example:

20-21

Chapter 20
Metadata Operations

"href": "http://local host: 8080/ exanpl eApp/ persi stence/ v1. 0/ enpl oyee/ met adat a",
"met hod": "application/json",

"rel": "enpl oyee"
1
1
{
" link": {
"href": "http://local host: 8080/ exanpl eApp/ persi stence/v1l.0/travel er/ metadata",
"nmet hod": "application/json",
"rel": "traveler"
1
1

]

Metadata Operations

The following metadata operations are supported:

e List Types in a Persistence Unit
e List Queries in a Persistence Unit

» Describe a Specific Entity

List Types in a Persistence Unit

HTTP Request Syntax

CET /persistence/ {version}/{unit-nanme}/ metadata

Example

CET http://1ocal host: 8080/ exanmpl eApp/ per si st ence/ v1. 0/ Exampl ePU et adat a

Produces
JSON
Response
e (K, with a payload containing a list of types, with links to more detailed metadata,
for example:
{
"persi stenceUni t Nane": "hr",
"types": [
" link": {

"href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/
met adat a/ enti ty/ Enpl oyee",

"nmethod": "application/json",

"rel": "Enpl oyee"

" link": {
"href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/
met adat a/ ent i t y/ PhoneNunber ",
"nmethod": "application/json",

ORACLE 20-22

Chapter 20
Metadata Operations

"rel": "PhoneNunmber"

* NOT_FOUND if the persistence unit is not found

List Queries in a Persistence Unit

HTTP Request Syntax

CET / persistence/{version}/{unit-nane}/netadatal query

Example

CGET http://1ocal host: 8080/ exanpl eApp/ persi st ence/ v1. 0/ Exanpl ePU net adat a/
query

Produces

JSON

Response

(K with a payload containing a list of all available queries, for example:

"queryNanme": "Enpl oyee. count",
"returnTypes": [

"Long"

1.

"linkTenpl ate": {
"nmethod": "get"

"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. count ",
"rel": "execute"
}

"jpgl": "SELECT count(e) FROM Enpl oyee e"

"queryNanme": "Enpl oyeeAddress. get Regi on",
"returnTypes": [

" St I’I ngu ,
" St I’I ngu ,
"String"

1.

"linkTenpl ate": {
"method": "get",

"href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyeeAddr ess. get Regi on",
"rel": "execute"
}

"jpgl": "SELECT u.postal Code, u.province, u.street FROM Enpl oyeeAddress u"

"queryNanme": "Enpl oyee. get PhoneNurber s",
"returnTypes": [
" St r | ngu ,

ORACLE 20-23

Chapter 20
Metadata Operations

"String",
"PhoneNunber "
1.
"linkTenpl ate": {
"nmethod": "get",
"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. get PhoneNunbers",
"rel": "execute"
IS
"jpgl": "SELECT e.firstName, e.lastName, pn FROM Enpl oyee e JO N e. phoneNunbers pn"

"queryNanme": "Enpl oyeeAddress. get Pi cture",
"returnTypes": [

"byte[]"

1.

"linkTenpl ate": {
"nmethod": "get",

"href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyeeAddr ess. get Pi cture;id={id}",
"rel": "execute"

h
"jpgl": "SELECT u.areaPicture FROM Enpl oyeeAddress u where u.id = :id"

"queryName": "Enpl oyeeAddress. updat ePost al Code",
"returnTypes": [
"Enpl oyeeAddr ess"
1
"linkTenpl ate": {
"nmethod": "post",
"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyeeAddr ess. updat ePost al Code; post al Code={ post al Code} ;i d={id}",
"rel": "execute"
h
"jpgl": "UPDATE Enpl oyeeAddress u SET u. postal Code = :postal Code where u.id = :id"

"queryName": "Enpl oyee. sal aryMax",
"returnTypes": [

"int",
"(bj ect”

1

"linkTenpl ate": {
"method": "get",

"href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. sal ar yMax",
"rel": "execute"

h
"jpgl": "SELECT e.id, max(e.salary) AS nax_salary from Enployee e GROUP BY e.id, e.salary"

"queryNanme": "Enpl oyeeAddress. getAll",
"returnTypes": [

"Enpl oyeeAddr ess”
1,
"linkTenpl ate": {

"nmethod": "get",

"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enmpl oyeeAddr ess. get Al l ",

"rel": "execute"

ORACLE 20-24

Chapter 20
Metadata Operations

h
"jpgl": "SELECT u FROM Enpl oyeeAddress u"

"queryNanme": "Enpl oyeeAddress. get Byl d",
"returnTypes": [
"Enpl oyeeAddr ess”
1
"linkTenpl ate": {
"nmethod": "get",
"href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyeeAddr ess. get Byl d; i d={i d}",
"rel": "execute"
h
"jpgl": "SELECT u FROM Enpl oyeeAddress u where u.id = :id"

"queryNanme": "Enpl oyee. get Manager Byl d",
"returnTypes": [

"String",
"String",
"Enpl oyee"

1

"linkTenpl ate": {
"method": "get",

"href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. get Manager Byl d; i d={i d}",
"rel": "execute"

I3

"jpgl": "select u.firstName, u.lastNane, u.manager from Enployee u where u.id = :id"

"queryName": "Enpl oyee.findAl",
"returnTypes": [

"Enpl oyee"

1

"linkTenpl ate": {
"method": "get",

"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. findA 1",
"rel": "execute"

h
"jpgl": "SELECT e FROM Enpl oyee e ORDER BY e.id"

"queryName": "Enpl oyee. get Manager",
"returnTypes": [

"String",
"String",
"Enpl oyee"

1.

"linkTenpl ate": {
"nmethod": "get",

"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. get Manager ",
"rel": "execute"
h

"jpgl": "select u.firstName, u.lastNane, u.manager from Enployee u"

ORACLE 20-25

* NOT_FOUND if persistence unit is not found

Describe a Specific Entity

HTTP Request Syntax

CET /persistence/{version}/{unit-nane}/netadatal/entity/ type

Example

Chapter 20
Metadata Operations

CGET http://1ocal host: 8080/ Cust onmer App/ per si st ence/ v1. 0/ | nvent ory/ met adat a/
entity/ Custoner

Produces

JSON

Response

* (K, with a payload containing details about the entity and available operations on
it, for example,

"name": "Enpl oyee",

"attributes": [

{

ORACLE

"nane":
"type":

"nane":
"type":

"nane":
"type":

"nane":
"type":

"nane":
"type":

"nane":
"type":

"nane":
"type":

"nane":
"type":

"nane":
"type":

ui d",
ui nt "

"firstNane",
"String"

"gender",
"Gender"

"| ast Nanme",
"String"

"sal ary",
"doubl e"

"version",
"Long"

"period",
" Enpl oyment Peri od"

"manager",
"Enpl oyee"

"of fice",
"Office"

20-26

Chapter 20
Metadata Operations

¥
{
"name": "address",
"type": "Enpl oyeeAddress"”
¥
{
"name": "certifications",
"type": "List<Certification>"
¥
{
"name": "responsibilities",
"type": "List<String>"
¥
{ .
"name": "projects",
"type": "List<Project>"
¥
{ .
"name": "expertiseAreas",
"type": "List<Expertise>"
¥
{
"name": "managedEnpl oyees",
"type": "List<Enpl oyee>"
¥
{
"name": "phoneNurmbers",
"type": "List<PhoneNunber>"
}

1
"linkTenpl ates": [
{
"method": "get",
"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/entity/
Enpl oyee/ { pri maryKey}",

“rel": "find"
¥
{
“method": "put",
"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/entity/
Enpl oyee",
"rel": "persist"
¥
{
"nmethod": "post",
"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/entity/
Enpl oyee",
"rel": "update"
¥
{

"nmethod": "del ete",
"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/entity/
Enpl oyee/ { pri maryKey}",
"rel": "delete"
}

1,
"queries": [
{
"queryNanme": "Enpl oyee. count”
"returnTypes": [
"Long"

ORACLE 20-27

Chapter 20
Metadata Operations

1,
"linkTenpl ate": {
"method": "get",
"href": "http://1ocal host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. count ",
"rel": "execute"
¥
"jpgl": "SELECT count(e) FROM Enpl oyee e"

"queryNanme": "Enpl oyee. get PhoneNurber s",
"returnTypes": [
"String",
"String",
"PhoneNunber "
1,
"linkTenpl ate": {
"nmethod": "get",
"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. get PhoneNunbers",
"rel": "execute"
¥
"jpgl": "SELECT e.firstName, e.lastName, pn FROM Enpl oyee e JO N e. phoneNunbers pn"

"queryName": "Enpl oyee. sal aryMax",
"returnTypes": [

"int",
"(bj ect”

1

"linkTenpl ate": {
"method": "get",

"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. sal ar yMax",
"rel": "execute"
¥
"jpagl": "SELECT e.id, max(e.salary) AS nax_salary from Enpl oyee e GROUP BY e.id,
e.salary"
¥
{
"queryNanme": "Enpl oyee. get Manager Byl d",
"returnTypes": [

"String",
"String",
"Enpl oyee"

1

"linkTenpl ate": {
"method": "get",

"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. get Manager Byl d; i d={i d}",
"rel": "execute"

B

"jpgl": "select u.firstName, u.lastName, u.manager from Enployee u where u.id = :id"

"queryName": "Enpl oyee.findAl",
"returnTypes": [

"Enpl oyee"

1

"linkTenpl ate": {
"method": "get",

ORACLE 20-28

Chapter 20
Metadata Operations

"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. findAl ",
"rel": "execute"

h
"jpgl": "SELECT e FROM Enpl oyee e ORDER BY e.id"

"queryName": "Enpl oyee. get Manager ",
"returnTypes": [

"String",
"String",
"Enpl oyee"

1,

"linkTenpl ate": {
"nmethod": "get",

"href": "http://local host: 8080/ eclipselink.jpars.test/persistence/vl. 0/ hr/query/
Enpl oyee. get Manager ",
"rel": "execute"

I3

"jpgl": "select u.firstName, u.lastNane, u.manager from Enployee u"

* NOT_FOUND if the persistence unit is not found

ORACLE 20-29

Keeping Data Fresh Using TopLink Live
Data Queries

This chapter describes how to use TopLink Live Data queries ("live queries") to
monitor the backing data store for changes and then asynchronously deliver any
modified data to the client application.

This chapter includes the following sections:

e Introduction to the Solution
* Implementing the Solution

* Additional Resources

Use Case

Data in a backing data store is added, changed, or deleted after a TopLink-enabled
application executes a query on it. It is important for the application to receive
notification of the updates, without having to re-execute the query.

Solution

Use TopLink live queries in combination with Oracle Database Continuous Query
Notification (CQN) and cache merge tracking to notify the client of data changes.

Components

e Oracle 11gR2 (11.2) (or higher) database
e TopLink 12c¢ (12.1.2.0.0) or later.

Note:

While TopLink's core functionality is provided by EclipseLink, the open
source persistence framework from the Eclipse Foundation, TopLink Live
Data is available only in Oracle TopLink.

Sample

For an example that illustrates the use of TopLink live queries with Oracle WebLogic
Server Web Sockets, see the t1 ds. | ive. ws example from http://ww. or acl e. conl
toplink/.

Introduction to the Solution

TopLink live data queries are used with Oracle Database Continuous Query
Notification (CQN) and TopLink cache merge tracking to asynchronously notify the
client application of changes in the backing data store. The database (and, optionally,

ORACLE 21-1

Chapter 21
Introduction to the Solution

the cache) are monitored for changes to data that match the criteria of the query, and
those changes are returned to the client.

About Oracle Database CQN and TopLink Cache Tracking

COQN is a feature in the Oracle Database that allows an application to register queries
with the database for change notifications. A query can be registered so that the
database notifies the application whenever a transaction changes the result of the
guery. This kind of CQN noatification is called a Query Result Change Notification
(QRCN.)

" Note:

In Oracle Database releases before 11g, the change notification feature was
called Database Change Natification (DCN). In release 11g, the name was
changed to Oracle Database Continuous Query Notification (CQN).

TopLink live queries take advantage of QRCN, so that any changes to data matching
the criteria specified in the query are returned to the application through the
implementation of a client notifier.

" Note:

You must run the initial query and subscribe to changed results in two
operations.

For more information about CQN and QRCN, see "Using Continuous Query
Notification (CQN) in Oracle Database Development Guide. In particular, see Query
Result Change Notification (QRCN).

Cache subscriptions are provided through the
oracl e.toplink. dataservices.|ivedata.cache. CacheSubscri ptionProvider class.

Creating and Using TopLink Live Data Queries

ORACLE

Provide the name of the query, subscribe to notifications based on events in the
database (and, optionally in the cache), configure the subscription through a properties
object

The key steps in setting up a live data query are:

e Define an implementation of the Cl i ent Noti fi er interface.

e Create a properties object to configure a QRCN subscription.
e Subscribe to the QRCN natification.

» Specify the name of the named query to use. See Using Continuous Query
Notification (CQN)" in Oracle Database Development Guide for guidelines on the
kinds of queries supported by QRCN.

» Specify the parameters for the query.

21-2

Chapter 21
Implementing the Solution

» Create the subscription.
* Add your implementation of Cl i ent Noti fi er to the subscription.
e Create and add an implementation of Cl i ent Noti fier.

In addition to subscribing to notifications based on events in the database, you can
also subscribe to notifications based on events in the cache. Create the cache
subscription with the same query, parameters and C i ent Noti fi er as are used for the
database subscription.

Implementing the Solution

This section contains the following tasks for setting up and using TopLink live queries
to notify the client of data changes:

* Step 1: Prerequisites
e Step 2: Grant Database Privileges

* Step 3: Create the Live Data Query and CQN Subscription

Step 1. Prerequisites

To use live queries, you must have the following:

e Oracle Database 11.2.0.2 or later
e TopLink 12c¢ (12.1.2.0.0) or later.

Step 2: Grant Database Privileges

Among other permissions, the database user must be granted the CHANGE
NOTI FI CATI ON privilege. To do this, you must have a DBA privilege, such as SYS, or
have your database administrator apply it:

grant change notification to user

For information about granting Oracle Database privileges, see "Configuring Privilege
and Role Authorization" in Oracle Database Security Guide.

Step 3: Create the Live Data Query and CQN Subscription

Create the live data query and the CQN subscription as exemplified in Example 21-1.
This example shows the portion of a class definition that defines a subscription for a
CQN notification with a given Per si st enceCont ext .

Note:

A complete class definition would also include code for notifying the client
and, optionally, logging. That is outside the scope of this chapter.

ORACLE 21-3

Chapter 21
Implementing the Solution

Example 21-1 Subscribing a TopLink Live Data Query to a CQN Notification

/'l 1mport TopLink Live Data classes

i mport oracl e.toplink.dataservices. Dat aServi cePer si st enceCont ext ;

i mport oracl e.toplink.dataservices.|ivedata. Subscription;

i mport oracl e.toplink.dataservices.|ivedata. SubscriptionFactory;

i mport oracl e.toplink. dataservices.|ivedata.cache. CacheSubscri pti onProvi der;
i mport oracle.toplink.dataservices.|ivedata. notification. CientNotifier;

i mport oracle.toplink.dataservices.|ivedata. notification.Notification;

i mport oracle.toplink.dataservices.|ivedata. notification.NotificationType;

i mport oracl e.toplink.dataservices.|ivedata. gcn. QCNSubscri pti onProvi der;

i mport webl ogi c. websocket . WebSocket Connect i on;

/1 dient notifier code---
class Notifier inplenents ClientNotifier {
/1 The inplenmentation of the client notifier)

/1 Notification subscription code---

/1 The nane of the query.
private String queryNang;

/'l The paraneters associated with the query.
private Map<String, String> paraneters;

/'l The persistence context that this CQN notifier listens to.
private DataServicePersistenceContext persistenceContext;

Il Returns the query paraneters associated with this notifer.
Map<String, String> getParaneters() {
return this. paraneters;

}

/1 Returns the nane of the query that this notifier listens to.
String get QueryNanme() {
return this. queryNane;

}

/'l Subscribe with the associated PersistenceContext, to listen to query result change events.
public void subscribe() {

/'l properties object for configuation of the subscription
Map<String, Object> properties = new HashMap<String, Object>();

/'l subscribe to notifcation through Oracle CON
properties. put (SubscriptionFactory. SUBSCRI PTI ON_TYPE, QCNSubscri ptionProvi der. QCN);
properties. put (CacheSubscri ptionProvi der. QUERY_PARAMETERS, this. paraneters);
properties. put (CacheSubscriptionProvi der. QUERY_NAME, this.queryNane);
Subscription subscription = this.persistenceContext.getSubscriptionFactory().

get Or Creat eSubscri ption(this.queryNane, properties);
/1 Register for QRCN subscription
subscription.addCientNotifier(this);

properties. put (SubscriptionFactory. SUBSCRI PTI ON_TYPE, CacheSubscri ptionProvi der. CACHE);
subscription = this.persistenceContext.get SubscriptionFactory().
get Or Creat eSubscri ption(this.queryName, properties);
/'l Register for cache subscription
subscription.addCientNotifier(this);

ORACLE 21-4

Chapter 21
Additional Resources

}

public String toString() {
return "Notifier [query =" + this.queryName + "]";

}

/1 Unsubscribe fromthe PersistenceContext listening to query result change events.
*|

public void unsubscribe() {
Map<String, Object> properties = new HashMap<String, Object>();
properties. put (SubscriptionFact ory. SUBSCRI PTI ON_TYPE, QCNSubscri ptionProvi der. QCN);
properties. put (CacheSubscri ptionProvi der. QJERY_PARAMVETERS, this. paraneters);
properties. put (CacheSubscriptionProvider. QUERY_NAME, this.queryNane);
Subscription subscription =

thi s. persistenceCont ext. get Subscri ptionFactory().getSubscription(this.queryNane, this.paraneters);
subscription.removeCdientNotifier(this);

}

/1 Update the object with changes

public void updat edObj ect (Ohj ect updatedj ect) {
sendMessage(updat edChj ect, NotificationType. UPDATE);
}

Additional Resources

See the following for more information about TopLink live data queries:

» Using Continuous Query Notification (CQN) in the Oracle Database Development
Guide for more information about using change notifications in the Oracle
Database.

ORACLE 21-5

Using Database Events to Invalidate the
Cache

This chapter describes TopLink Database Change Notification (DCN), which allows
you to use caching with a shared database in JPA.
This chapter includes the following sections:

e Introduction to the Solution
* Implementing the Solution
e Limitations on the Solution

* Additional Resources

Use Case

Users want to use a shared cache with their JPA application, however, external
applications update the same database data, or the cache is in a clustered
environment. The cache may retain stale data.

Solution

TopLink provides an APl which allows the database to notify TopLink of database
changes. The changed objects can then be invalidated in the TopLink shared cache.
Stale data can be discarded, even if other applications access the same data in the
database.

Components

e Oracle 11gR2 (11.2) (or higher) database
e TopLink 12¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

EclipseLink 2.4 or later.
— EclipseLink library: eclipselink.jar
— JDBC library: oj dbcé. j ar .

— JPAlibrary: persi stence.jar.

ORACLE 22-1

Chapter 22
Introduction to the Solution

Sample

For sample files that illustrate the use of Database Change Notification and shared
caching in an application that uses JPA, see "EclipseLink/Examples/JPA/DCN" in the
EclipseLink documentation.

http://wiki.eclipse.org/EclipseLink/Exanpl es/ JPA/ DCN

Introduction to the Solution

ORACLE

EclipseLink provides a shared (L2) object cache that can reduce database access for
objects and their relationships. This cache is enabled by default which is normally not
a problem, unless the contents of the database are modified directly by other
applications, or by the same application on other servers in a clustered environment.
This may result in stale data in the cache.

If the contents of the database are modified, then a mechanism is needed to ensure
that the contents of the cache are synchronized with the database. That mechanism is
provided by EclipseLink Database Change Notification. DCN allows shared caching to
be used in the JPA environment.

" Note:

Database Change Notification extends the functionality provided by the
Oracle Database Continuous Query Notification feature. For more
information, see "Continuous Query Notification" in Oracle Database JDBC
Developer's Guide.

EclipseLink Database Change Notification extends the functionality provided by the
Oracle Database Continuous Query Notification. One of the features of Continuous
Query Notification is that it allows database events to be raised when rows in a table
are modified.

To detect modifications, EclipseLink DCN uses the ROA D to inform of row level
changes in the primary table. EclipseLink includes the RON D in all queries for a DCN-
enabled class. EclipseLink also selects the object's RON D after an insert operation.
EclipseLink maintains a cache index on the RON D, in addition to the object's | d.
EclipseLink also selects the database transaction ID once for each transaction to avoid
invalidating the cache on the server that is processing the transaction.

EclipseLink DCN is enabled through the Oracl eChangeNot i fi cati onLi st ener

(org. eclipse. persistence. pl at f orm dat abase. or acl e. dcn. Oracl eChangeNoti fi ca
tionLi st ener) listener class. This listener integrates with Oracle JDBC to receive
database change events. To enable the listener, specify the full path to the

Oracl eChangeNot i ficationLi stener class as the value of the

eclipselink.cache. dat abase- event -1 i st ener property in the persi stence. xn file.

By default, all entities in the domain are registered for change notification. However,
you can selectively disable change natification for certain classes by tagging them in
the Java files with the dat abaseChangeNoti fi cati onType

(org. eclipse. persi stence. annot ati ons. Dat abaseChangeNot i fi cati onType)
attribute of the Cache annotation. The value of this attribute determines the type of

22-2

http://wiki.eclipse.org/EclipseLink/Examples/JPA/DCN

Chapter 22
Implementing the Solution

database change notification an entity should use. The default value of the
dat abaseChangeNot i fi cati onType attribute is | nval i dat e. To disable change
natification for a class, set the value of the attribute to None.

The dat abaseChangeNot i fi cati onType attribute is relevant only if the persistence unit
has been configured with a database event listener, such as the

Oracl eChangeNot i fi cati onLi st ener class, that receives database change events.
This allows the EclipseLink cache to be invalidated or updated from database
changes.

Oracle strongly suggests that you use optimistic locking (writes on stale data will fail
and automatically invalidate the cache) in your transactions. If you include an

@/er si on annotation in your entity, then the version column in the primary table will
always be updated, and the object will always be invalidated.

Implementing the Solution

This section contains the following tasks to enable shared caching in a JPA
environment:

e Task 1: Set up the Database and Tables

e Task 2: Grant User Permissions

e Task 3: Set the Classpath

* Task 4: Identify Classes that will Participate in Change Notification
e Task 5: Add the Database Event Listener

* Task 6: Edit the Java Files

Task 1: Set up the Database and Tables

The solution presumes that you are working with an Oracle 11gR2 (11.2) or higher
database that contains the tables that you are interested in.

Task 2: Grant User Permissions

ORACLE

Among other permissions, the database user must be granted the CHANGE
NOTI FI CATI ON privilege. To do this, you must have a DBA privilege, such as SYS, or
have your database administrator apply it:

grant change notification to user

The following example illustrates granting the change notification privilege to user
SCOTT.

define user="SCOTT"

define pass="tiger"

grant create session, alter session to &&user
/

grant resource, connect to &&user

/

grant select any dictionary to &&user

/

grant select any table to &&user

/

22-3

Chapter 22
Implementing the Solution

grant change notification to &user
/

Task 3: Set the Classpath

Ensure that the ecl i psel i nk. j ar EclipseLink library, the oj dbcé. j ar JDBC library, the
per si stence. j ar JPA library, and the domain classes are present on the classpath.

Task 4 Identify Classes that will Participate in Change Notification

By default, all entities in the domain will participate in change notification. There are
several different ways to limit the entities that will participate. For example, the entity
classes can be indicated by the <entity class ...>elementinthe orm xm file,
indicated with the <excl ude- unl i st ed- cl asses> element in the persi st ence. xm file,
or contained in a JAR file.

Note:

The <excl ude- unl i st ed- cl asses> element is not intended for use in the
Java SE environment.

Entity classes can also be excluded by using a Cache annotation attribute in the Java
files. For more information, see Exclude Classes from Change Notification (Optional) .

Another way to identify the entity classes is to use the <cl ass> element in the

per si st ence. xnl file. The following example indicates that the Or der, Or der Li ne, and
Cust oner classes in the nodel package will participate in change notification. For an
example of a complete per si st ence. xn file, see Example 22-1.

<cl ass>model . Or der </ cl ass>
<cl ass>nodel . Or der Li ne</ cl ass>
<cl ass>nodel . Cust oner </ ¢l ass>

Task 5: Add the Database Event Listener

ORACLE

Use the ecl i psel i nk. cache. dat abase- event -1 i st ener property to identify the
database event listener. The

org. eclipse. persistence. pl at f orm dat abase. oracl e. dcn. Or acl eChangeNot i fi cat
i onLi st ener class is the listener for EclipseLink Database Change Notification. This
allows the EclipseLink cache to be invalidated by database events.

The following example illustrates the ecl i psel i nk. cache. dat abase- event -1 i st ener
property configured with the Or acl eChangeNot i fi cati onLi stener class. For an
example of a complete per si st ence. xn file, see Example 22-1.

<properties>
<property name="ecli pselink. cache. dat abase-event-1|istener"
val ue="org. ecl i pse. persi stence. pl at f orm dat abase. or acl e. dcn. Oracl eChangeNot i fi cationL
istener"/>

22-4

Chapter 22
Implementing the Solution

</ properties>

Note that you can also use:

<property nanme="eclipselink. cache. dat abase-event-|istener" val ue="DCN'>

Example 22-1 illustrates an example of a complete per si st ence. xni file. The classes
that will participate in change notification are the Or der, Or der Li ne, and Cust onmer
classes from the nodel package. The ecli psel i nk. cache. dat abase-event-1i stener
property is set to the full path of the Or acl eChangeNot i fi cati onLi st ener class.

Note:

A <provi der > tag is optional if running in a container where EclipseLink is
the default provider.

Example 22-1 Sample persistence.xml File

<?xm version="1.0" encodi ng="UTF-8"?>
<persistence xm ns="http://java.sun. com xm / ns/ persi stence"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schema- i nst ance”
xsi:schemalLocation="http://java. sun. com xm / ns/ persi stence
persi stence_2_0. xsd"
version="2.0">
<persistence-unit name="acne" transaction-type="RESCURCE_LOCAL" >
<provi der >or g. ecl i pse. persi stence. j pa. Persi st enceProvi der </ provi der >
<cl ass>nodel . Or der </ cl ass>
<cl ass>model . Or der Li ne</ cl ass>
<cl ass>nodel . Cust omer </ cl ass>
<excl ude-unli st ed-cl asses>f al se</ excl ude-unl i st ed-cl asses>
<properties>
<property name="eclipselink. cache. dat abase-event-|istener" val ue="DCN'/>
</ properties>
</ persi st ence-unit>
</ persi st ence>

Task 6: Edit the Java Files

Typically, to participate in change notification, no changes are needed to the Java
classes which correspond to database tables. However, setting optimistic locking with
the @/er si on annotation is strongly suggested.

If you want to exclude classes that are listed in the persistence unit, you can tag them
in the Java files. EclipseLink tracks changes only to the primary table. If you want
changes to secondary tables to also be tracked, you can indicate this in the Java files.

Set Optimistic Locking

ORACLE

Oracle strongly suggests that you use optimistic locking: writes on stale data will fail
and automatically invalidate the cache. Include an @/er si on annotation in your entity;
the version column in the primary table will always be updated, and the older version
of the object will always be invalidated.

22-5

Chapter 22
Limitations on the Solution

In Example 22-2 the @/er si on annotation is defined for the entity Cust omer . Note that
getters and setters are defined for the ver si on variable.

Example 22-2 Defining the @Version Annotation

@ntity
@abl e(name="DBE_CUSTOMER")
public class Customer inplenents Serializable {
@d
@xener at edVal ue(gener at or =" CUST_SEQ")
@abl eGener at or (name="CUST_SEQ')
@ol um(name="CUST_NUMBER")
private long id;

@/ersion
private |ong version;

public long getVersion() {
return version;

}

public void setVersion(long version) {
this.version = version;

}

Exclude Classes from Change Notification (Optional)

Use the dat abaseChangeNoti fi cati onType attribute of the Cache annotation to identify
the classes for which you do not want change notifications. To exclude a class from
change notification, set the attribute to Dat abaseChangeNot i fi cati onType. NONE, as
illustrated in the following example.

@nt ity
@ache(dat abaseChangeNoti fi cati onType=Dat abaseChangeNoti fi cati onType. NONE)
public class Oder {

Track Changes in Secondary Tables (Optional)

EclipseLink tracks changes only to the primary table. If any updates occur in a
secondary table, EclipseLink will not invalidate the object. If you want changes to
secondary tables to be tracked as well, add the @/er si on annotation to the entity.

Oracle DCN listens only for events from the primary table. It does not track changes in
secondary tables, or relationships tables. The reason for this is that Oracle DCN only
tracks the ROW D, so there is no correlation from the ROA D of the primary, secondary
and relationship tables. Thus, to receive events when a secondary or relationship table
changes, the version in the primary table must change so that the event is returned.

Limitations on the Solution

ORACLE

EclipseLink Database Change Notification has the following limitations:

22-6

Chapter 22
Additional Resources

Changes to an object's secondary tables will not trigger it to be invalidate unless a
@/er si on annotation is used and updated in the primary table.

Changes to an object's OneToMany, ManyToMany, and El enent Col | ecti on
relationships will not trigger it to be invalidate, unless an @/er si on annotation is
used and updated in the primary table.

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

ORACLE

"Continuous Query Notification" in Oracle Database JDBC Developer's Guide.

"EclipseLink/Examples/JPA/DCN"—This page describes an example of cache
sharing in a JPA environment that employs DCN. Sample files and instructions for
running the example are included. See the EclipseLink documentation:

http://wiki.eclipse.org/EclipseLink/Exanpl es/ JPA/ DCN

22-7

http://wiki.eclipse.org/EclipseLink/Examples/JPA/DCN

Using TopLink with NoSQL Databases

This chapter describes how Oracle TopLink supports the ability to map objects to
NoSQL database systems such as internet databases, object databases, XML
databases, and even legacy databases.

This chapter includes the following sections:

e Introduction to the Solution
* Implementing the Solution

* Additional Resources

Use Case

Users need to use TopLink with NoSQL data sources.

Solution

TopLink provides support for multiple NoSQL data sources. This solution illustrates
using Oracle NoSQL and MongoDB.

Components

e TopLink 12¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

* EclipseLink 2.4 or later

* NoSQL datasource.

» JCA Adapter.

Sample

See the following EclipseLink samples for related information:

e http://wiKki.eclipse.org/EclipseLink/Exanpl es/ JPA/ NoSQL

ORACLE 23-1

http://wiki.eclipse.org/EclipseLink/Examples/JPA/NoSQL

Chapter 23
Introduction to the Solution

Introduction to the Solution

EclipseLink supports access to NoSQL data through the JavaEE Connector
Architecture. You must use a JCA adapter (provided by EclipseLink, a third party, or
custom built).

Most NoSQL data is hierarchical in form so using embeddable objects is common.
Some NoSQL adaptors support XML data, so NoSQL mapped objects can use XML
mappings when mapping to XML.

Implementing the Solution

This section contains the following tasks for converting objects to and from JSON
documents.

e Task 1: Prerequisites

e Task 2: Mapping the Data
e Task 3: Defining IDs

e Task 4: Defining Mappings
e Task 5: Using Locking

e Task 6: Defining Queries

e Task 7: Connecting to the Database

Task 1: Prerequisites

Task 2: Mapping the Data

ORACLE

You can configure mappings to NoSQL data with the EclipseLink @oSQ. annotation
and <no- sql > XML element. The @oSQL annotation defines the class as mapping to
non-relational data. You can use @oSQ. with JPA Entity or Embeddable classes.

The @oSQ. annotation allows you to specify the dat aType and dat aFor mat of the data.
The dat aType will vary, depending on your NoSQL datasource:

e For MongoDB, dat aType is the collection name that the JSON documents are
stored to.

* For Oracle NoSQL, dat aType is the first part of the major key value.

The dat aFor mat depends on the type structure (data format) of data being stored.

e For MongoDB, use MAPPED for its structured database.

* For Oracle NoSQL, use MAPPED (for key/value data) or XM (for a single XML
document).

Example 23-1 illustrates how to use @oSQ with @nt ity and @nbeddabl e classes.

23-2

Example 23-1 Using @NoSql Annotation with JSON

@ntity

@oSQL(dat aType="orders", dat aFor mat =Dat aFor mat Type. MAPPED)

public class Oder {
@d
@=ener at edVal ue
@i el d(nanme="_i d")
private long id,;
@gasi ¢
@i el d(nanme="description")
private String description;
@nbedded
@i el d(nanme="del i ver yAddr ess")
private Address deliveryAddress
@l ement Col | ection
@i el d(name="or der Li nes")
private List<OrderLine> orderlLines;
@mnyToOne
@oi nFi el d(nane="cust oner | d")
private Custoner custoner;

}

@nbeddabl e
@oSQL(dat aFor mat =Dat aFor mat Type. MAPPED)
public class OderlLine {

@i el d(name="11i neNunber")

private int |ineNunber;

@i el d(name="i t enNare")

private String itenmNane;

@i el d(name="quantity")

private int quantity;

Task 3: Defining IDs

With EclipseLink, you can use any field (or set of fields) as your ID when using a non-
relational database, just like any other relational Entity. You can use a natural ID (that
is, assigned by the application) or a generated ID (that is, assigned by EclipseLink).

ORACLE

MongoDB also requires an _i d field in every document. If no _i d field is present,
Mongo will automatically generate and assign the _i d field using an OID (object
identifier), which is similar to a UUID (universally unique identifier).

Chapter 23
Implementing the Solution

* To use a natural ID as the Mongo ID, simply name the field as _i d by using the

@i el d (or @ol um) annotation without any of the relational details.

For example:

@i el d(name="_i d")
private long id;

e To use the generated Mongo OID as your ID, simply include @d,

@xner at edVal ue, and @i el d(name="_i d") annotations in the object's ID field

mapping.

The @=ener at edVal ue tells EclipseLink to use the Mongo OID to generate this ID

value. To use a UUID instead of the Mongo OID, use the @UUIDGenerator

annotation.

23-3

Chapter 23
Implementing the Solution

Note:

MongoDB does not support @equenceCGener at or or @abl eGener at or
nor the | DENTI TY, TABLE, and SEQUENCE generation types.

The ID of the Mongo OID or UUID is not a numerical value; you must
map itasa String orbyte[].

For example:

@d

@=xner at edVal ue
@i el d(name="_i d")
private String id;

Task 4: Defining Mappings

With non-relational databases, EclipseLink maps objects to structured data such as
XML or JSON. NoSQL supports all existing JPA mapping annotations and XML,
including embedded data and embedded collections. If you do not define a mapping
annotation (or XML) for an attribute EclipseLink uses the default mapping.

Basic Mappings

Because the NoSQL defaults follow the JPA defaults, most simple mappings do not
require any configuration. Field names used in the Mongo BSON document will mirror
the object attribute names (in uppercase). To use a different BSON field name, use the
@i el d annotation.

¢ Note:

Do not use @ol um or @oi nCol um. Instead use @i el d and @oi nFi el d.
Additionally, the @oi nTabl e and @ol | ecti onTabl e annotations are not
supported or required.

Embedded Values

Use the @nbedded annotation to persist embedded values and the

@ enment Col | ecti on annotation for embedded collections. Because all data is stored
in the XML document, no separate table (that is, @ol | ecti onTabl e) is needed.
Additionally, because embedded objects are nested in the document and do not
require unique field names, the @\t t ri but eOverri de attribute is not needed.

ORACLE 23-4

Chapter 23
Implementing the Solution

Note:

Normally, you will not need to use the @nbedded annotation, since it will
default correctly.

However, EclipseLink does not default @l ement Col | ecti on mappings,
therefore you must include that annotation.

Relationships

You should use the relationship annotations (such as @neToOne, @hanyToOne,
@neToMany and @knyToMany) only with external relationships. Relationships within the
document should use the Embedded Values.

EclipseLink fully supports external relationships to other documents by using a foreign
key. The ID of the target object is stored in the source object's document. For a
collection, a collection of IDs is stored. Use the @oi nFi el d annotation to define the
name of the foreign key field in the BSON document.

Note:

EclipseLink does not support the nappedBy option for relationships with non-
relational databases, as the foreign keys would need to be stored on both
sides.

You can also define a relationship mapping by using a query. However you must use a
Descri pt or Cust oni zer instead of an annotation.

Example 23-2 Sample Mappings
@asi ¢

private String description;

@asi c

private double total Cost = 0;
@nbedded

private Address billingAddress;
@nbedded

private Address shi ppi ngAddress;
@l ement Col | ection

private List<OrderLine> orderLines = new ArrayList<OrderLine>();
@manyToOne(f et ch=Fet chType. LAZY)
private Customer custoner;

Task 5: Using Locking

Locking support is dependent on the NoSQL platform. Some NoSQL platforms may
offer support for optimistic version locking.

e Oracle NoSQL — Locking is not supported.

e MongoDB - Version locking is supported.

ORACLE 23-5

Chapter 23
Implementing the Solution

Note:

MongoDB does not support transactions. If a lock error occurs during a
transaction, any objects that have been previously written will not be
rolled back.

If the NoSQL platform does not support locking, you can use the @/er si on annotation
(as shown in Example 23-3) to validate objects on mer ge() operations.

Example 23-3 Using @Version

@/ersion
private long version;

Task 6: Defining Queries

Querying in NoSQL is dependent on the NoSQL platform. Some NoSQL data-sources
may support dynamic querying through their own query language, others may not
support querying at all.

JPQL Queries

ORACLE

The Java Persistence Query Language (JPQL) is the query language defined by JPA.
JPQL can be used for reading (SELECT), as well as bulk updates (UPDATE) and deletes
(DELETE). You can use JPQL in a NanedQuery (through annotations or XML) or in
dynamic queries using the EntityManager cr eat eQuery() API.

e Oracle NoSQL — Supports fi nd() and JPQL and Criteria by Id or with no WHERE
clause.

e MongoDB - Supports JPQL and Criteria queries, with some restrictions: joins,
sub-selects, group by and certain database functions are not supported.

Example 23-4 Oracle NoSQL JPQL Examples

Example 23-5 MongoDB JPQL Examples

Query query = emcreateQuery("Select o fromOrder o where o.total Cost > 1000");
Li st<Order> orders = query. getResul tList();

Query query = emcreateQuery("Select o fromOrder o where o.description |ike 'Pinball
%"
Li st<Order> orders = query.getResul tList();

Query query = emcreateQuery("Select o fromOrder o join o.orderLines | where
| . description = :desc");

query. set Paranet er ("desc", "shipping");

Li st<Order> orders = query.getResul tList();

23-6

Chapter 23
Implementing the Solution

Query query = emcreateQuery("Select o.total Cost from Order 0");
Li st <Bi gDeci mal > orders = query. getResul tList();

Native Queries

Native SQL queries are not translated, and passed directly to the database. SQL
gueries can be used for advanced queries that require database specific syntax.

Although native SQL queries are not supported with NoSQL, some NoSQL platforms
have their own, native query language. EclipseLink supports JPA native queries using
that language.

* MongoDB - Supports JPA native queries by using the MongoDB native command
language.

Example 23-6 Oracle NoSQL Native Query

Example 23-7 MongoDB Native Query

Query query = emcreateNativeQuery("db. ORDER. findOne({\"_id\":\"" + oid + "\"})",
O der. class);
Order order = (Order)query. get Singl eResult();

Task 7: Connecting to the Database

ORACLE

EclipseLink connects to NoSQL databases through the persistence.xml file. Use the
<ecl i psel i nk. t ar get - dat abase> property to define the specific NoSQL platform. You
must also define a connection with the <ecl i psel i nk. nosql . connecti on- spec>
property. Additional connection values (such as the db, port, and host can also be
defined.

Note:

To connect to a cluster of Mongo databases, enter a comma, separated list
of values for the host and port.

Example 23-8 Oracle NoSQL persistence.xml Example

Example 23-9 MongoDB persistence.xml Example

<persistence xmns="http://java.sun.cont xm /ns/ persistence" xm ns:xsi="http://
waww. W3. or g/ 2001/ XMLSchena- i nst ance" xsi : schemalLocation="http://java. sun.com xm /ns/
persistence persistence_2_0.xsd" version="2.0">
<persi stence-unit name="acne" transaction-type="RESCURCE_LOCAL" >
<provi der>org. ecl i pse. persi stence. j pa. Persi st enceProvi der </ provi der>
<excl ude-unli st ed- cl asses>f al se</ excl ude- unl i st ed- cl asses>
<properties>
<property name="eclipselink.target-database"
val ue="org. ecl i pse. persi st ence. nosql . adapt er s. mongo. MongoP! at f or ni'/ >
<property nanme="eclipselink.nosgl.connection-spec"
val ue="org. ecl i pse. persi st ence. nosql . adapt er s. nongo. MongoConnect i onSpec"/ >

23-7

Chapter 23
Additional Resources

<property nanme="eclipselink.nosql.property.nmongo.port" val ue="27017
27017/ >

<property name="eclipselink.nosql.property.nongo. host" val ue="host1,
host 2"/>
<property name="eclipselink.nosql.property.nongo.db" val ue="acnme"/>
</ properties>
</ persi stence-unit>
</ persi st ence>

Additional Resources

ORACLE

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

e Developing Persistence Architectures Using Oracle Toplink Document Data
Bindings

e Java Persistence API (JPA) Extensions Reference for Oracle TopLink

e EclipseLink Extensions Incubator: http://w ki . ecl i pse. or g/ Ecl i pseLi nk/

Devel opnent /I ncubat or/ Pl atform

23-8

http://wiki.eclipse.org/EclipseLink/Development/Incubator/Platform
http://wiki.eclipse.org/EclipseLink/Development/Incubator/Platform

Using Oracle TopLink with the Oracle
Database

ORACLE

This chapter provides instructions for understanding and using EclipseLink features in
Oracle TopLink that are designed specifically to support the Oracle Database platform.
This chapter provides instructions for understanding and usingEclipseLink features
that are designed specifically to support the Oracle Database platform.

This chapter includes the following sections:
* Introduction to the Solution

e Implementing the Solution

e Additional Resources

Use Case

Oracle TopLink offers a persistence solution that is designed to work with any
database. However, applications that plan to use the Oracle Database platform can
take advantage of enhanced support for the Oracle Database.

Solution

The solution is achieved by using various TopLink APIs and Oracle products.
Applications choose to implement different Oracle TopLink APIs based on the Oracle
Database feature or products being used.

Components

e TopLink 12¢ (12.1.2.0.0) or later.

Note:

TopLink's core functionality is provided by EclipseLink, the open source
persistence framework from the Eclipse Foundation. EclipseLink
implements Java Persistence API (JPA), Java Architecture for XML
Binding (JAXB), and other standards-based persistence technologies,
plus extensions to those standards. TopLink includes all of EclipseLink,
plus additional functionality from Oracle.

* EclipseLink 2.4 or later.
* Oracle Database

» Additional Oracle Database and Middleware products are required depending on
the features that an application chooses to use.

24-1

Chapter 24
Introduction to the Solution

Introduction to the Solution

EclipseLink includes enhanced support for the Oracle Database platform. Applications
that have standardized on the Oracle Database can take advantage of this support to
gain ease-of-use, increase performance and scalability, and enhance security.
EclipseLink includes support for native Oracle JDBC-specific APIs, PL/SQL, Oracle
Real Application Clusters (RAC), Oracle Virtual Private Database, Oracle Proxy
Authentication, and Oracle Spatial and Graph. Refer to the Oracle Database
documentation for details on these technologies.

Much of the Oracle Database platform support is contained in the
org. eclipse. persistence. pl atf orm dat abase. or acl e* package. For details on the
APIs, see Java API Reference for Oracle TopLink.

Implementing the Solution

The solution in this section is organized according to technology. The organization
allows developers to easily understand the different parts of the solution and choose
specific parts to implement.

This section includes the following topics:

e Using Oracle Platform-Specific APls

e Using Oracle PL/SQL With EclipseLink
e Using Oracle Virtual Private Database
e Using Oracle Proxy Authentication

e Using EclipseLink with Oracle RAC

e Using Oracle Spatial and Graph

Using Oracle Platform-Specific APIs

Oracle Database platform support is provided in the

org. eclipse. persistence. pl at f orm dat abase. O acl ePl at f or mclass, the

org. eclipse. persistence. pl at f orm dat abase. oracl e* packages, and the

org. ecl i pse. persi stence. mappi ngs. xdb package for Oracle XML Database support.
For details on the API, see Java API Reference for Oracle TopLink. For details on
specific Oracle SQL types, see Oracle Database JDBC Java API Reference.

The following support is provided for the Oracle Database:

» Batch writing with optimistic locking
* Native SQL for byte[], Date, Ti me, Ti mest anp and Cal endar

e Support for BLOB and CLOB database types using Oracle JDBC specific LOBLocat or
for large values

ORACLE 24-2

Chapter 24
Implementing the Solution

Note:

For non-Oracle thin JDBC drivers or applications environments where
the thin driver is wrapped, it is possible to turn off LOBLocat or usage
using set Shoul dUseLocat or For LOBW i t e(bool ean) on the platform
instance.

Native support for outer join syntax (+) =

Native Sequencing (SELECT SEQ NAME. NEXTVAL FROM DUAL)

Native SQL/ROWNUM support for MaxRows and Fi r st Resul t filtering.
Hierarchical selects (connect by prior)

Returning clause

Custom expression functions (REGEXP_LI KE, LOCATE, ATAN2, LOG, CONCAT, SYSDATE
(Date, Time, Today), EXCEPT)

PLSQL data types, stored functions, stored procedure syntax for invoking and
parameter passing, output parameters and output cursors. See Using Oracle
PL/SQL With EclipseLink.

Timestamp query for use in optimistic locking using SYSDATE and SYSTI MESTAMP
Multi-byte support of NCHAR, NSTRI NG, and NCLOB
Support of TI MESTAMP, TI MESTAMPTZ, and TI MESTAMPLTZ

Oracle XML Database support of XM_Type field and custom XSQL functions
(extract, extract Val ue, exi st sNode, i sFragnent, get Stringval , and
get Nunber Val)

XDK XML parser
Flashback Querying in Historical Sessions

Object-relational Mappings (ReferenceMapping, StructureMapping,
NestedTableMapping, ArrayMapping, ObjectArrayMapping)

Oracle AQ
Oracle Real Application Clusters. See Using EclipseLink with Oracle RAC.

Virtual Private Database (VPD), including Oracle Label Security. Using Oracle
Virtual Private Database.

Proxy Authentication. See Using Oracle Proxy Authentication.

Using Oracle PL/SQL With EclipseLink

ORACLE

EclipseLink includes APIs for use with Oracle PL/SQL. The APIs are located in the
org. eclipse. persistence. pl at f orm dat abase. oracl e. pl sql package and the
org. eclipse. persistence. pl atf orm dat abase. or acl e. annot at i ons package.

This Section contains the following topics:

Executing an Oracle PL/SQL Stored Function

Handling PL/SQL arguments for Oracle Stored Procedures

24-3

Chapter 24
Implementing the Solution

Executing an Oracle PL/SQL Stored Function

Oracle PL/SQL stored functions can be used to return complex PL/SQL data-types
such as RECORD types and TABLE types. PL/SQL types are not supported by Oracle
JDBC, so these types must be translated to Oracle OBJECT types and VARRAY types.
OBJECT types are returned as j ava. sql . Struct and VARRAY as j ava. sql . Array types
in JDBC.

Executing PL/SQL stored functions or procedures requires defining mirror OBJECT and
VARRAY types for the RECORD and TABLE types. OBJECT types can be mapped to classes
annotated with either @nt ity or @nbeddabl e using the @t ruct annotation. Typically,
classes annotated with @nbeddabl e are used, unless the OBJECT type defines an | d
and can be stored in a table. Nested OBJECT and VARRAY types are mapped using the
@t ruct ure and @\ ray annotations.

Use the PLSQLSt or edFuncti onCal | class or the @anedPLSQLSt or edFunct i onQuery
annotation to call a stored function using PL/SQL types. The

PLSQLSt or edProcedur eCal | class and the @NamedPLSQLSt or edPr ocedur eQuery
annotation also exist for stored procedures. Use the St or edFuncti onCal | class, the
@anedSt or edFunct i onQuery annotation, the St or edPr ocedur eCal | class, and the
@anedSt or edPr ocedur eQuer y annotation for stored functions and procedure that do
not return complex PL/SQL types.

Main Tasks

To execute an Oracle PL/SQL stored function:

e Task 1: Create an Oracle Stored Function That Returns a PL/SQL Record Type
e Task 2: Define an Object Type Mirror

» Task 3: Define a Java Class Mapping The OBJECT Type

e Task 4: Execute a PL/SQL Stored Function Using JpaEntityManager

» Task 5: Define a Stored Function Using @NamedPLSQLStoredFunctionQuery

e Task 6: Use the Stored Function in a Query

Task 1: Create an Oracle Stored Function That Returns a PL/SQL Record Type

CREATE OR REPLACE PACKAGE ENP_PKG AS

TYPE EMP_REC | S RECORD (F_NAME VARCHAR2(30), L_NAME VARCHARZ(30),
SALARY NUMBER(10, 2));

FUNCTI ON GET_EMP RETURN ENP_REC,

END EMP_PKG

CREATE OR REPLACE PACKAGE BODY EMP_PKG AS

FUNCTI ON GET_EMP RETURN EMP_REC AS
P_EMP EMP_REC;
BEGIN P_EMP.F_NAME : = 'Bob'; P_EMP.F_NAME := 'Smith'; P_EMP. SALARY := 30000;
RETURN P_EMP;

END;

END EMP_PKG

Task 2: Define an Object Type Mirror

ORACLE 24-4

Chapter 24
Implementing the Solution

CREATE OR REPLACE TYPE ENP_TYPE AS OBJECT (F_NAME VARCHAR2(30),
L_NAVE VARCHARZ(30), SALARY NUMBER(10, 2))

Task 3: Define a Java Class Mapping The OBJECT Type

@nbeddabl e
@t ruct (name="EMP_TYPE", fields={"F_NAME', "L_NAME", "SALARY"})
public class Enployee {

@Col urm(name="F_NAME")

private String firstNane;

@Col urm(name="L_NAME")

private String |astName;

@ol urm(name="SALARY")

private BigDeci mal salary;

}

Task 4: Execute a PL/SQL Stored Function Using JpaEntityManager

i nport javax. persistence. Query;

import org.eclipse. persistence. pl atform dat abase. orcl e. pl sql .
PLSQLSt or edFunctionCal | ;

import org.eclipse.persistence. queries. ReadAl | Query;

Dat aReadQuery dat abaseQuery = new Dat aReadQuery();

dat abaseQuery. set Resul t Type(Dat aReadQuery. VALUE) ;
PLSQLrecord record = new PLSQLrecord();

record. set TypeNane(" EMP_PKG EMP_REC') ;

record. set Conpat i bl eType("EMP_TYPE");

record. set JavaType(Enpl oyee. cl ass);

record. addFi el d("F_NAME", JDBCTypes. VARCHAR TYPE, 30);
record. addFi el d("L_NAME", JDBCTypes. VARCHAR TYPE, 30);
record. addFi el d(" SALARY", JDBCTypes. NUMERI C_TYPE, 10, 2);
PLSQ.St oredFunctionCal | call = new PLSQSt or edFunctionCal |l (record);
cal | . set Procedur eName(" EMP_PKG GET_EMP");

dat abaseQuery. setCal | (cal I');

Query query = ((JpaEntityManager)entityManager. getDel egate()).
creat eQuery(dat abaseQuery);
Enpl oyee result = (Enpl oyee)query. get Singl eResul t();

Task 5: Define a Stored Function Using @NamedPLSQLStoredFunctionQuery

ORACLE

@anmedPLSQLSt or edFunct i onQuer y(nane="get Enpl oyee", functi onNane="EMP_PKG GET_EM",
ret ur nPar anet er =@LSQLPar anet er (name="RESULT", dat abaseType="EMP_PKG EMP_REC"))
@nbeddabl e
@truct (name="EMP_TYPE", fiel ds={"F_NAVE", "L_NAVE", "SALARY"})
@LSQLRecor d(nane="EMP_PKG. EMP_REC', conpati bl eType="EMP_TYPE",
j avaType=Enpl oyee. cl ass, fi el ds={ @LSQ.Par anet er (nane="F_NAME"),
@LSQLPar anet er (name="L_NAME"), @LSQLParanet er (nane="SALARY",
dat abaseType="NUMERI C_TYPE") })

public class Enployee {

}...

24-5

Chapter 24
Implementing the Solution

Task 6: Use the Stored Function in a Query

Query query = entityManager. creat eNamedQuery(" get Enpl oyee");
Enpl oyee result = (Enpl oyee)query. get Singl eResul t();

Handling PL/SQL arguments for Oracle Stored Procedures

The standard way of handling a stored procedure is to build an instance of the

St or edProcedur eCal | class. However, the arguments must be compatible with the
JDBC specification. To handle Oracle PL/SQL arguments (for example, BOOLEAN,
PLS | NTEGER, PL/SQL record, and so on), use the PLSQLSt or edPr ocedur eCal | class.

4

Note:

the PLSQLSt or edPr ocedur eCal | class is only supported on Oracle8 or higher.

Using the PLSQLStoredProcedureCall Class

The following example demonstrates handling PL/SQL arguments using the
PLSQLSt or edProcedur eCal | class. The example is based on the following target
procedure:

ORACLE

PROCEDURE bool _in_test(x I N BOOLEAN)

Example of Using the PLSQLStoredProcedureCall Class

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

java.util.List;
java.util.ArrayList;

org. ecl i pse.
org. ecl i pse.
org. eclipse.
org. eclipse.
org. eclipse.
org. eclipse.
org. ecl i pse.
org. eclipse.
org. ecl i pse.
org. eclipse.

persi st ence.
persi st ence.
persi st ence.
persi st ence.
per si st ence.
per si st ence.
per si st ence.
per si st ence.
per si st ence.
per si st ence.

public class Testd ass {

| oggi ng. Sessi onLog;

pl at f or m dat abase. j dbc. JDBCTypes;

pl at f orm dat abase. oracl e. Oracl e10Pl atform

pl at f orm dat abase. oracl e. Oracl ePLSQLTypes;

pl at f orm dat abase. oracl e. PLSQLSt or edPr ocedureCal | ;
queri es. Dat aMbdi fyQuery;

sessi ons. Dat abaselogi n;

sessi ons. Dat abaseSessi on;

sessi ons. Proj ect;

sessi ons. Sessi on;

public static String DATABASE USERNAME = "username";

public static String DATABASE PASSWORD = "password";

public static String DATABASE_URL = "jdbc: oracl e: thin: @ocal host: 1521: ORCL";
public static String DATABASE DRI VER = "oracle.jdbc. driver.COracl eDriver";

public static void main(String[] args) {

Project project = new Project();

Dat abaseLogi n | ogi n = new Dat abaseLogi n();

| ogi n. set User Nane(DATABASE_USERNAME) ;

| ogi n. set Passwor d(DATABASE_PASSWORD) ;

| ogi n. set Connect i onSt ri ng(DATABASE_URL) ;

| ogi n. set Driver O assName(DATABASE_DRI VER) ;

| ogi n. set Dat asour cePl at f or n{ new Oracl el0Pl atform());

24-6

Chapter 24
Implementing the Solution

proj ect . set Dat asour ceLogi n(| ogi n);

Session s = project.createDat abaseSessi on();
s. set LoglLevel (Sessi onLog. FI NE);

((Dat abaseSession)s). | ogin();

PLSQLSt or edProcedureCal | call = new PLSQLSt or edProcedureCal | ();
cal I . set Procedur eNane("bool _in_test");

cal I . addNanedAr gument (" X", Oracl ePLSQLTypes. PLSQ.Bool ean);

Dat aMbdi fyQuery query = new Dat aMbdi fyQuery();

query. addAr gunent (" X");

query.setCall (call);

Li st queryArgs = new ArrayList();

quer yArgs. add(I nt eger. val ueC(1));

s. execut eQuery(query, queryArgs);

}

The following log excerpt shows the target procedure being invoked from an
anonymous PL/SQL block:

...[EclipseLink I'nfo]: 2007.11.23 01:03: 23. 890- - Dat abaseSessi onl npl (15674464) - -
Thread(Thread[main, 5, main])-- |ogin successful

[EclipseLink Fine]: 2007.11.23 01:03: 23. 968- - Dat abaseSessi onl npl (15674464) - -
Connect i on(5807702) - - Thr ead(Thr ead[mai n, 5, mai n]) - -

DECLARE

X_TARGET BOCLEAN : = SYS. SQLJUTL. I NT2BOOL(: 1);
BEG N

bool _i n_t est (X=>X_TARGET);
END;

bind = [:1 => 1]

" Note:

Notice the conversion of the Integer to a PL/SQL BOOLEAN type in the
DECLARE stanza (as a similar conversion is used for OUT BOOLEAN
arguments).

Mixing JDBC Arguments With Non JDBC Arguments

ORACLE

A Stored Procedure may have a mix of regular and non JDBC arguments. Use the
PLSQLSt or edPr ocedur eCal | class when at least one argument is a non JDBC type. In
addition, some additional information may be required for the JDBC type (length, scale
or precision) because the target procedure is invoked from an anonymous PL/SQL
block. The example is based on the following target procedure:

PROCEDURE two_arg_test(x |N BOOLEAN, y I N VARCHAR)

Example of Mixing JDBC Arguments With NonJDBC Arguments

i mport org.eclipse. persistence. pl at f orm dat abase. j dbc. JDBCTypes;

PLSQLSt or edProcedureCal | call = new PLSQLSt or edProcedureCal | ();
cal | . set ProcedureNane("two_arg_test");

cal | . addNanedAr gument (" X", Oracl ePLSQLTypes. PLSQLBool ean) ;

cal | . addNanedAr gument ("Y', JDBCTypes. VARCHAR TYPE, 40);

Dat aMbdi f yQuery query = new Dat aMbdi f yQuery();

query. addAr gument (" X");

24-7

Chapter 24
Implementing the Solution

query. addAr gument ("Y");
query.setCall (call);

Li st queryArgs = new ArrayList();
quer yArgs. add(I nt eger. val ue(0));
queryArgs. add("test");

bool ean worked = fal se;

String msg = null;

s. execut eQuery(query, queryArgs);

The following log excerpt shows the target procedure being invoked from an
anonymous PL/SQL block:

[EclipseLink Fine]: 2007.11.23 02:54: 46. 109- - Dat abaseSessi onl npl (15674464) - -
Connect i on(5807702) - - Thr ead(Thr ead[mai n, 5, mai n]) - -
DECLARE
X_TARGET BOCLEAN : = SYS. SQLJUTL. I NT2BOOL(: 1);
Y_TARGET VARCHAR(40) := :2;
BEG N
two_arg_test(X=>X_TARGET, Y=>Y_TARGET);
END;
bind =>[:1=>0, :2 => test]

Handling IN and OUT Arguments

ORACLE

The following example demonstrates a stored procedure that contain both | Nand OUT
arguments and is based on the following target procedure:

PROCEDURE two_arg_in_out (x OUT BINARY_INTEGER, y IN VARCHAR) AS
BEG N

X .= 33;
END;

Example of Handling IN and OUT Arguments

import static org.eclipse.persistence. platform database. oracl e. Oracl ePLSQLTypes.
Bi naryl nt eger;

PLSQ.St or edProcedureCal | call = new PLSQLStoredProcedureCal | ();
cal | . set ProcedureName("two_arg_in_out");
cal | . addNamedCQut put Ar gunent (" X", Oracl ePLSQLTypes. Bi naryl nt eger);
cal | . addNamedAr gurent ("Y', JDBCTypes. VARCHAR TYPE, 40);
Dat aReadQuery query = new Dat aReadQuery();
query.setCall(call);
query. addAr gunent ("Y");
Li st queryArgs = new ArrayList();
quer yArgs. add("t est sdf sdf asdf sdf sdf sdf sdf sdf df sdf sdf f ds") ;
bool ean worked = fal se;
String msg = null;
List results = (List)s.executeQuery(query, queryArgs);
Dat abaseRecord record = (DatabaseRecord)results.get(0);
Bi gDeci mal x = (BigDecimal)record.get("X");
if (x.intValue() !'= 33) {
Systemout. printIn("wong x value");

}

The following log excerpt shows the target procedure being invoked from an
anonymous PL/SQL block:

[EclipseLink Fine]: 2007.11.23 03: 15: 25. 234- - Dat abaseSessi onl npl (15674464) - -
Connect i on(5807702) - - Thr ead(Thr ead[mai n, 5, mai n]) - -
DECLARE

24-8

Chapter 24
Implementing the Solution

Y_TARGET VARCHAR(40) := :1;
X_TARGET Bl NARY | NTEGER;

BEG N
two_arg_i n_out (X=>X_TARGET, Y=>Y_TARGET);
12 = X_TARGET;

END,

bind => [:1 => testsdfsdf asdf sdf sdf sdf sdf sdf df sdf sdf fds, X => :2]

Note:

The order in which arguments are bound at runtime must be altered.
Anonymous PL/SQL blocks must process the ordinal markers (: 1,: 2) for all
the IN arguments first, then the OUT arguments. Inside the block, the
arguments are passed in the correct order for the target procedure, but the
bind order is managed in the DECLARE stanza and after the target procedure
has been invoked.

Handling IN OUT Arguments

ORACLE

Anonymous PL/SQL blocks cannot natively handle | N QUT arguments. The arguments
must be split into two parts: an IN-half and an OUT-half. The following example
demonstrates a stored procedure that handles IN OUT arguments and is based on the
following target procedure:

PROCEDURE two_args_i nout (x VARCHAR, y I N OUT BOOLEAN) AS
BEG N

y := FALSE,
END;

Example of Handling IN OUT Arguments

PLSQLSt or edProcedureCal | call = new PLSQLSt or edProcedureCal | ();
cal | . set Procedur eNanme("two_args_i nout");
cal | . addNanedAr gument (" X", JDBCTypes. VARCHAR TYPE, 20);
cal | . addNaned| nQut put Ar gument ("Y", Oracl ePLSQLTypes. PLSQLBool ean) ;
Dat aReadQuery query = new Dat aReadQuery();
query. addAr gument (" X");
query. addAr gument ("Y");
query.setCall (call);
Li st queryArgs = new ArraylList();
queryArgs. add("test");
quer yArgs. add(I nt eger.val ued(1));
List results = (List)s.executeQuery(query, queryArgs);
Dat abaseRecord record = (DatabaseRecord)results.get(0);
Integer bool2int = (Integer)record.get("Y");
if (bool2int.intValue() !'=0) {
Systemout. println("wong bool 2i nt val ue");
}

The following log excerpt shows the target procedure being invoked from an
anonymous PL/SQL block:

[EclipseLink Fine]: 2007.11.23 03:39: 55. 000- - Dat abaseSessi onl npl (25921812) - -

Connect i on(33078541) - - Thr ead(Thr ead[mai n, 5, mai n]) - -
DECLARE

24-9

Chapter 24
Implementing the Solution

X_TARGET VARCHAR(20) := :1;

Y_TARGET BOOLEAN := SYS. SQLJUTL. | NT2BOOL(: 2);
BEG N

two_args_i nout (X=>X_TARGET, Y=>Y_TARGET);

:3 1= SYS. SQLJUTL. BOOL2I NT(Y_TARGET) ;
END;

bind = [:1 =>test, :2 =>1, Y = :3]

Note:

The Y argument is split in two using the : 2 and : 3 ordinal markers.

Using Oracle Virtual Private Database

EclipseLink supports Oracle Virtual Private Database (VPD). Oracle VPD is a server-
enforced, fine-grained access control mechanism. Oracle VPD ties a security policy to
a table by dynamically appending SQL statements with a predicate to limit data access
at the row level. You can create your own security policies, or use Oracle's custom
implementation called Oracle Label Security (OLS). For details about Oracle VPD, see
Oracle Database Security Guide. For details about Oracle Label Security, see Oracle
Label Security Administrator's Guide.

For details about using Oracle VPD with Multitenancy, see Using VPD Multi-Tenancy.

To use the Oracle Database VPD feature in an EclipseLink application, an isolated
cache should be used. Any entity that maps to a table that uses Oracle VPD should
have the descriptor configured as isolated. In addition, you typically use exclusive
connections.

To support Oracle VPD, you must implement session event handlers that the are
invoked during the persistence context's life cycle. The session event handler you
must implement depends on whether or not you are using Oracle Database proxy
authentication.

Oracle VPD with Oracle Database Proxy Authentication

By using Oracle Database proxy authentication, you can set up Oracle VPD support
entirely in the database. That is, rather than session event handlers to execute SQL,
the database performs the required setup in an after login trigger using the proxy
session_user.

For details on using Oracle proxy authentication, see Using Oracle Proxy
Authentication.

Oracle VPD Without Oracle Database Proxy Authentication

If you are not using Oracle Database proxy authentication, implement session event
handlers for the following session events:

e post Acqui reExcl usi veConnecti on: used to perform Oracle VPD setup at the time
a dedicated connection is allocated to an isolated session and before the isolated
session user uses the connection to interact with the database.

ORACLE 24-10

Chapter 24
Implementing the Solution

* preRel easeExcl usi veConnect i on: used to perform Oracle VPD cleanup at the
time the isolated session is released and after the user is finished interacting with
the database.

In the implementation of these handlers, you can obtain the required user credentials
from the associated session's properties.

Using Oracle Proxy Authentication

Main Tasks:

ORACLE

JPA and EclipseLink are typically used in a middle tier/server environment with a
shared connection pool. A connection pool allows database connections to be shared
to avoid the cost of reconnecting to the database. Typically, the user logs into the
application but does not have their own database login as a shared login is used for
the connection pool. The provides a mechanism to set a proxy user on an existing
database connection. This allows for a shared connection pool to be used, but to also
gives the database a user context.

Oracle proxy authentication is configured using the following persistence unit
properties on an Enti t yManager object:

e "eclipselink.oracle.proxy-type" :
oracl e.jdbc. O acl eConnecti on. PROXYTYPE_USER NAME,
PROXYTYPE_CERTI FI CATE, PROXYTYPE_DI STI NGUI SHED NAMVE

e oracle.jdbc. Oacl eConnection. PROXY_USER NAME : user_nhame

e oracle.jdbc. O acl eConnection. PROXY_USER _PASSWORD : password
e oracle.jdbc. Oacl eConnecti on. PROXY_DI STI NGUI SHED NAME

e oracle.jdbc. Oacl eConnecti on. PROXY_CERTI FI CATE

e oracle.jdbc. O acl eConnecti on. PROXY_ROLES

Note:

This connection is only used for writing by default; reads still use the shared
connection pool. To force reads to also use the connection, the
eclipselink.jdbc. exclusive-connection. mde property should be set to
Al ways, but this depends on if the application wishes to audit writes or reads
as well. The ecl i pselink.jdbc. excl usi ve-connection.is-|azy property
configures whether the connection should be connected up front, or only
when first required. If only writes are audited, then lazy connections allow for
the cost of creating a new database connection to be avoided unless a write
occurs.

To setup proxy authentication, create an Ent it yManager object and set the persistence
unit properties. Three examples are provided:

Task: Audit Only Writes

To configure proxy authentication when auditing only writes:

24-11

Chapter 24
Implementing the Solution

Map properties = new HashMap();
properties.put("eclipselink.oracle.proxy-type",

oracl e.jdbc. Oracl eConnecti on. PROXYTYPE_USER NAME) ;
properties. put (oracle.jdbc. Oracl eConnection. PROXY_USER NAME, user);
properties. put (oracle.jdbc. Oracl eConnecti on. PROXY_USER_PASSWORD, password);
properties. put ("eclipselink.jdbc.exclusive-connection. node", "Transactional");
properties.put ("eclipselink.jdbc.exclusive-connection.is-lazy", "true");
EntityManager em = factory. createEntityMinager(properties);

Task: Audit Reads and Writes
To configure proxy authentication when auditing reads and writes:

Map properties = new HashMap();
properties. put("eclipselink.oracle.proxy-type",

oracl e. jdbc. Oracl eConnect i on. PROXYTYPE_USER NAME) ;
properties. put(oracle.jdbc. Oracl eConnection. PROXY_USER NAME, user);
properties. put(oracle.jdbc. Oracl eConnecti on. PROXY_USER_PASSWORD, password);
properties.put("eclipselink.jdbc.exclusive-connection. node", "A ways");
properties.put("eclipselink.jdbc.exclusive-connection.is-lazy", "false");
EntityManager em = factory.createEntityManager(properties);

Task: Configure Proxy Authentication in Java EE Applications

If a JEE and JTA managed entity manager is used, specifying a proxy user and
password can be more difficult, as the entity manager and JDBC connection is not
under the applications control. The persistence unit properties can still be specified on
an Ent it yManager object as long as this is done before establishing a database
connection.

If using JPA 2.n, the set Property API can be used:

em set Property("eclipselink.oracle. proxy-type",
oracl e.jdbc. Oracl eConnecti on. PROXYTYPE_USER NAME) ;
em set Property(oracle.jdbc. Oracl eConnecti on. PROXY_USER NAME, user);
em set Property(oracle.jdbc. Oracl eConnecti on. PROXY_USER _PASSWORD, password);
em set Property("eclipselink.jdbc.exclusive-connection. mode", "Al ways");
em set Property("eclipselink.jdbc.exclusive-connection.is-lazy", "false");

Otherwise, the get Del egat e API can be used:

Map properties = new HashMap();
properties.put("eclipselink.oracle. proxy-type",
oracl e.jdbc. Oracl eConnecti on. PROXYTYPE_USER _NAME) ;
properties. put(oracle.jdbc. Oracl eConnection. PROXY_USER NAME, user);
properties. put (oracle.jdbc. Oracl eConnecti on. PROXY_USER_PASSWORD, password);
properties.put("eclipselink.jdbc.exclusive-connection. node", "A ways");
properties.put ("eclipselink.jdbc.exclusive-connection.is-lazy", "false");
((org.eclipse.persistence.internal.jpa.EntityManager!npl)em getDel egate()).
set Properties(properties);

Caching and security

ORACLE

By default, EclipseLink maintains a shared (L2) object cache. This is fine for auditing,
but if Oracle VPD or user based security is used to prevent the reading of certain
tables/classes, then the cache may need to be disabled for these secure classes. To
disable the shared cache, see Disabling Entity Caching.

If the database user is used to check security for reads, then set the
eclipselink.jdbc. excl usive-connection. mode property to | sol at ed to only use the

24-12

Chapter 24
Implementing the Solution

user connection for reads for the classes whose shared cache has been disabled
(isolated).

Using Oracle Virtual Private Database for Row-Level Security

The Oracle Virtual Private Database (VPD) feature allows for row level security within
the Oracle database. Typically, database security only allows access privileges to be
assigned per table. Row level security allows different users to have access to
different rows within each table.

The Oracle proxy authentication features in EclipseLink can be used to support Oracle
VPD. The proxy user allows for the row level security to be checked. When using
Oracle VPD, it is also important to disable shared caching for the secured objects as
these objects should not be shared. To disable the shared cache, see Disabling Entity
Caching.

Using EclipseLink with Oracle RAC

Oracle Real Application Clusters (RAC) extends the Oracle Database so that you can
store, update, and efficiently retrieve data using multiple database instances on
different servers at the same time. Oracle RAC provides the software that manages
multiple servers and instances as a single group. Applications use Oracle RAC
features to maximize connection performance and availability and to mitigate down-
time due to connection problems. Applications have different availability and
performance requirements and implement Oracle RAC features accordingly. For
details on Oracle RAC, see the Oracle Real Application Clusters Administration and
Deployment Guide.

The Oracle Database and the Oracle WebLogic Server both provide connection pool
implementations that can create connections to a RAC database and take advantage
of various Oracle RAC features. The features include Fast Connection Failover (FCF),
Run-Time Connection Load Balancing (RCLB), and connection affinity. In WebLogic
Server, applications create JDBC data sources (Multi Data Source or GridLink Data
Source) to connect to a RAC-enabled database. Standalone applications use the
Universal Connection Pool (UCP) JDBC connection pool API (ucp. j ar) to create data
sources. Both connection pool implementations require the Oracle Notification Service
library (ons. j ar). This library is the primary means by which the connection pools
register for, and listen to, RAC events. For those new to these technologies, refer to
the Oracle Universal Connection Pool for IDBC Developer's Guide and the
Administering JDBC Data Sources for Oracle WebLogic Server.

This sections assumes that you have an Oracle JDBC driver and Oracle RAC-enabled
database. Make sure that the RAC-enabled database is operational and that you know
the connection URL. In addition, download the database Oracle Client software that
contains the ons. j ar file. The ucp. j ar file is included with the Oracle Database.

Accessing a RAC-Enabled database from Java EE Applications

The tasks in this section are used to connect to a RAC-enabled database from a
persistence application implemented in Oracle WebLogic Server.

ORACLE 24-13

Chapter 24
Implementing the Solution

Task 1: Configure a Multi Data Source or GridLink Data Source

Refer to Using TopLink with WebLogic Server, and Administering JDBC Data Sources
for Oracle WebLogic Server for details about configuring a data source in WebLogic
Server for Oracle RAC.

Task 2: Configure the Persistence Unit

Edit the per si stence. xm file and include the name of the data source within a
persistence unit configuration. For example:

<persi stence-unit nane="0Or der Management ">
<j ta-dat a- sour ce>j dbc/ MyOrder DB</ j t a- dat a- sour ce>

</ persi st ence-unit>

Task 3: Include the Required JARS

Ensure that the ons. j ar is in the WebLogic Server classpath.

Accessing a RAC-Enabled Database from Standalone Applications

The tasks in this section are used to connect to a RAC database from a standalone
persistence application. The tasks demonstrate how to use UCP data sources which
are required for advanced RAC features.

Task 1: Create a UCP Data Source

A UCP data source is used to connect to a RAC database. The data source can
specify advanced RAC configuration. For details on using advanced RAC features with
UCP, see Oracle Universal Connection Pool for IDBC Developer's Guide. The
following example creates a data source and enables FCF and configures ONS.

Pool Dat aSour ce dat asource = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;
dat asour ce. set ONSConf i gur ati on(“nodes=host 1: 4200, host 2: 4200") ;
dat asour ce. set Fast Connect i onFai | over Enabl ed(true);
dat asour ce. set Connect i onFact oryC assName(“oracl e. j dbc. pool . Oracl eDat aSour ce") ;
dat asource. set URL(“j dbc: oracl e: t hi n: @ESCRI PTI ON=
(LOAD_BALANCE=0n)
ADDRESS=(PROTOCOL=TCP) (HOST=host 1)
ADDRESS=(PROTOCOL=TCP) (HOST=host 2) (PORT=1521
()

(PORT=1521))
())
(ADDRESS=(PROTOCOL=TCP) (HOST=host 3) (PORT=1521))
())
(

Py

ADDRESS=(PROTOCOL=TCP) (HOST=host 4) (PORT=1521
CONNECT_DATA=(SERVI CE_NAME=ser vi ce_nane)))");

Applications that do not require the advanced features provided by RAC and UCP can
connect to a RAC-enabled database using the native connection pool in EclipseLink.
In this case, edit the persi st ence. xn file for you applications and add the RAC URL
connection string for a persistence unit. For example:

<persistence xm ns="http://java.sun.com xm /ns/ persi stence"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xsi: schemalLocation="http://]ava. sun.com xm / ns/ persi st ence
persistence_1 _0.xsd" version="1.0">
<persi stence-unit name="ny-app" transaction-type="RESOURCE_LOCAL" >
<provi der>org. ecl i pse. per si stence. j pa. Persi st enceProvi der </ provi der >

ORACLE 24-14

Chapter 24
Implementing the Solution

<excl ude-unli st ed- cl asses>f al se</ excl ude- unl i st ed- cl asses>
<properties>
<property name="javax. persistence.jdbc.driver"
val ue="oracl e. jdbc. Oracl eDriver"/>
<property name="javax. persi stence.jdbc.url"
val ue="j dbc: oracl e: t hi n@DESCRI PTI ON= "+ " (LOAD_BALANCE=o0n) " +
" (ADDRESS=(PROTOCOL=TCP) (HOST=r ac_node) (PORT=1521))"+
" (ADDRESS=(PROTOCOL=TCP) (HOST=r acnode2) (PORT=1521))"+
" (CONNECT_DATA=(SERVI CE_NAME=ser vi ce_nane))")"/>
<property name="javax. persistence.jdbc.user" val ue="user_name"/>
<property name="javax. persistence.jdbc. password" val ue="password"/>
</ properties>
</ persi stence-unit>
</ persi st ence>

To use the persistence unit, instantiate an Ent i t yManager Fact ory as follows:

Per si st ence. creat eEnti t yManager Fact ory(" ny-app");

Task 2: Use the UCP Data Source

To use the UCP data source, instantiate an Ent i t yManager Fact ory an pass in the
data source as follows:

Map properties = new HashMap();
properties.add("javax. persistence. nonJtaDat aSour ce", datasource);
Persi st ence. creat eEnt i t yManager Fact ory(properties);

Task 3: Include the Required JARS

Ensure that both ucp. j ar and ons. j ar are in the application classpath.

Using Oracle Spatial and Graph

EclipseLink provides added support for querying Oracle Spatial and Graph data in the
Oracle Database. Oracle Spacial and Graph is used to location-enable applications. It
provides advanced features for spatial data and analysis and for physical, logical,
network, and social and semantic graph applications. The spatial features provide a
schema and functions that facilitate the storage, retrieval, update, and query of
collections of spatial features in an Oracle database. For details about developing
Oracle Spacial and Graph applications, see Oracle Spatial and Graph Developer's
Guide. To use Oracle Spatial and Graph within WebLogic Server, see Task 7: Extend
the Domain to Use Advanced Oracle Database Features,

EclipseLink applications can construct expressions that use Oracle Spacial and Graph
operators. See the org. ecl i pse. persi stence. expressi ons. spati al API for details.
For Example:

Expressi onBui | der bui | der = new Expressi onBui | der ();

Expression withinDi stance = Spati al Expressions. w thi nDi stance(nyJGeonetryl,
myJCeonetry2, "DI STANCE=10");

session. readAl | Obj ect s(Geomet ryHol der. cl ass, withinDi stance);

The above expression requires a or acl e. spati al . geonet ry. JGeonet ry object. Use
the EclipseLink

org. eclipse. persistence. pl atf orm dat abase. oracl e. converters. JGeonet ryConve
rter converter to convert the JGeonet ry object as it is read and written from the
Oracle database. The JGeonet ryConvert er object must be added to the Oracle

ORACLE 24-15

Chapter 24
Additional Resources

Database platform either with the addSt r uct Converter (Struct Converter) method or
specified in the sessi ons. xnl file. The JGeonet ry type must also be available on the
classpath.

The following example demonstrates how to use the FUNCTI ON JPA extension to
perform Oracle Spatial queries. For details on the FUNCTI ON extension, see Java
Persistence API (JPA) Extensions Reference for Oracle TopLink:

SELECT a FROM Asset a, Geography geo WHERE geo.id = :id AND a.id IN:id_list AND
FUNCTI ON(' ST_I NTERSECTS', a. geonetry, geo.geonetry) = ' TRUE

SELECT s FROM Si npl eSpatial s WHERE FUNCTI ON(' MDSYS. SDO RELATE', s.|j Geonetry,
;otherCGeonetry, :parans) = 'TRUE ORDER BY s.id ASC

Additional Resources

ORACLE

See the following links for additional resources about the solutions discussed in this
chapterolink: TLJAR.

e Java API Reference for Oracle TopLink

e Java Persistence API (JPA) Extensions Reference for Oracle TopLink
* Oracle Database JDBC Java API Reference

e Oracle Database PL/SQL Language Reference

* Oracle Database Security Guide

e Oracle Label Security Administrator's Guide

* Administering JDBC Data Sources for Oracle WebLogic Server

* Oracle Real Application Clusters Administration and Deployment Guide
* Oracle Universal Connection Pool for IDBC Developer's Guide

e Oracle Spatial and Graph Developer's Guide

24-16

Optimizing Persistence Applications for
Oracle Exalogic

This chapter provides instructions for enabling and configuring features that can
optimize how persistence applications perform on Oracle Exalogic.
This chapter includes the following sections:

e Introduction to the Solution
* Implementing the Solution
e Additional Resources

Use Case

Applications want to increase performance by taking advantage of the extreme
performance and scalability of the Oracle Exalogic platform.

Solution

The implementation is achieved by enabling Exalogic optimizations as required.

Components

e Oracle Exalogic

e TopLink 12c (12.1.3.0.0) or later

e WebLogic Server 12c¢ (12.1.3.0.0) or later

Samples

See Additional Resources for links to samples.

Introduction to the Solution

Oracle Exalogic provides a foundation for extreme performance, reliability, and
scalability. Persistence applications can take advantage of this foundation by using
optimizations that provide increased performance and better resource utilization. The
optimizations include: an Exalogic-specific tuner and profiler, an Exalogic-specific
batch writer, an Exalogic-specific serialized object policy implementation, and
Exalogic-specific cache coordination enhancements.

ORACLE 25-1

Chapter 25
Implementing the Solution

Note:

< Exalogic optimizations are designed to address specific application use
cases and may not increase the performance of all applications.

* Oracle Exalogic optimizations are not intended to replace general tuning
recommendations. Applications should always be properly tuned before
testing the Exalogic optimizations. For details about performance tuning,
see Enhancing Performance .

Implementing the Solution

The tasks in this section provide general instructions for using optimizations that take
advantage of the extreme performance and scalability of the Oracle Exalogic platform.

" Note:

Performance tests should always be used to validate the optimization for a
deployed application.

e Task 1: Enable the Exalogic Automated Tuner
* Task 2: Use Serialized Object Policy on Exalogic
* Task 3: Use Cache Coordination with WebLogic Server Clusters on Exalogic

e Task 4: Configure Heterogeneous Batch Writing on Exalogic

Task 1. Enable the Exalogic Automated Tuner

ORACLE

Automated tuning is an optimization that allows applications to automatically tune JPA
and session configuration for a specific purpose. Automated tuning facilitates a one-
flag configuration option for configuring multiple settings or for performing dynamic
tuning. The use of automated tuning in micro-benchmark tests that contained a mix of
insert updates and reads showed a reduction in CPU (both on the middle tier and
database tier) and a reduction in memory usage. The use of automated tuning in
CRUD and query micro-benchmark tests showed an increase in performance against
tests that did not use the optimization. For details about automated tuning, see
Automated Tuning.

TopLink includes an automated tuner that provides an optimized configuration for the
Exalogic platform. It enables multiple performance features and enables an Exalogic-
specific profiler. The profiler monitors the startup phase of the application and detects
queries that trigger the n+1 query execution problem. It then optimizes these queries
to use batch fetching. For dynamic queries that cannot use batch fetching, it further
analyses these queries and defines a runtime state machine to detect and optimize
these queries. For details about profilers, see Performance Optimization
Recommendations and Tips.

When using the Exalogic tuner, the following persistence unit properties are set prior
to deployment:

25-2

Chapter 25
Implementing the Solution

Note:

If a property is explicitly set (such as in the persi st ence. xn file), then it
takes precedence over the properties that are automatically set by the
Exalogic tuner.

VEAVI NG EACGER = true

CACHE_S| ZE_DEFAULT = 1000

QUERY_CACHE = true

ORDER_UPDATES = true

BATCH WRI TI NG = JDBC

PERSI STENCE_CONTEXT CLOSE ON COM T = true

PERS| STENCE_CONTEXT FLUSH MODE = Conmi t

DDL_GENERATI ON_| NDEX_FOREI GN_KEYS = true

PROFI LER = oracl e. topl i nk. exal ogi c. t uni ng. Tuni ngAgent
FREE_METADATA = true

If connection pooling is used, then statement caching for the session is automatically
enabled. In addition, after deploying and connecting to the session, the Exalogic tuner
automatically sets the session to use the Exalogic-specific

Dynani cPar anet eri zedHybri dBat chW i ti ngMechani smbatch writer. For details about
batch writing, see Task 4: Configure Heterogeneous Batch Writing on Exalogic.

To enable the Exalogic tuner, specify ExaLogi ¢ as the value of the
ecl i psel i nk. t uni ng property in the persi st ence. xn file. For example:

<property name="eclipselink.tuning" val ue="ExalLogic"/>

On Oracle WebLogic Server, the Exalogic automated tuner can be enabled with the
console using the domain Configuration | General tab and selecting the Enable
Exalogic Optimizations option, or it can be enabled through the

Donai nMBean. Exal ogi cOpti m zat i onsEnabl ed MBean attribute.

Task 2: Use Serialized Object Policy on Exalogic

ORACLE

Serialized object policy allows TopLink to write out the whole entity object (in binary
format) with its privately owned (and nested privately owned) entities and element
collections into an additional field in the database. Serialized object policy is best for
read-only or read-mostly applications and should only be used for entities that load all
their dependent entities or element collections. The greatest increase in performance
is for data models with many graph levels. For most simple objects, the use of
serialized object policy degrades performance.

For detailed information about configuring serialized object policy and when it is best
used, see Serialized Object Policy.

TopLink includes the or acl e. t opl i nk. exal ogi c. sop. Seri al i zedObj ect Pol i cy
implementation for use on the Exalogic platform. To use the policy, include the
@eri al i zedbj ect annotation on an entity or mapped superclass and pass in the
implementation. For example:

@ntity

@erial i zedObj ect (oracl e. toplink. exal ogi c. sop. Seri al i zedObj ect Pol i cy. cl ass)
@ptim sticlLocking(cascade = true)

public class Enployee inplenents Serializable {...

25-3

Chapter 25
Implementing the Solution

@ntity

@erial i zedbj ect (oracl e. toplink. exal ogi c. sop. Seri al i zedObj ect Pol i cy. cl ass,
col um = @ol um(name="ADDR_SOP"))

@t i m sticlocking(cascade = true)

public class Address inplements Serializable {...

Task 3: Use Cache Coordination with WebLogic Server Clusters on

Exalogic

Cache coordination synchronizes changes among distributed sessions. Cache
coordination is most useful in application server clusters to maintain consistent data
across all applications. For details about using cache coordination, see Using Cache
Coordination.

Cache coordination has been optimized for Exalogic and WebLogic Server and
naturally benefits from running on these platforms. Integration with WebLogic Server
JMS (when using cache coordination with JIMS) takes advantage of improvements with
JMS on Exalogic. In addition, Exalogic allows TopLink applications to automatically
use WebLogic Server clusters for cache coordination without any additional
configuration. This allows applications to take advantage of WebLogic Server cluster
messaging, which has been optimized to run over Infiniband.

Lastly, cache coordination on WebLogic Server can be configured to use Portable
Object Format (POF) serialization. POF serialization is designed to be more efficient in
both space and time than other serialization formats.

To use POF with cache coordination, include the
eclipselink.cache. coordination.serializer property in the persi stence. xm file
and setittotoplink. exal ogic. serializers. POFSerializer. For example:

<property name="eclipselink.cache.coordination.serializer"
val ue="t opl i nk. exal ogi c. seri alizers. POFSerializer"/>

Task 4. Configure Heterogeneous Batch Writing on Exalogic

ORACLE

Heterogeneous batch writing is an optimization that allows multiple heterogeneous
dynamic SQL statements to be sent to the database and executed as a single batch.
Heterogeneous batch writing is best used for transactions that involve multiple writes
and reduces network access for write operations. The use of heterogeneous batch
writing in micro-benchmark tests showed an improvement in performance against tests
that did not use the optimization. For details about batch writing, see Batch Writing.

TopLink includes two batch writing implementations for Exalogic that allow multiple
heterogeneous parameterized SQL statements to be sent to the database and
executed as a single batch. JDBC batch writing does not allow this, so a
parameterized anonymous block of SQL is used instead. A counter output parameter
is used to return the row count for optimistic locking. The implementations are:

e oracle.toplink.exal ogic. batch. Dynam cParanet eri zedBat chWi ti ngMechani s
m

e oracle.toplink.exal ogi c. bat ch. Dynani cParanet eri zedHybri dBat chWi ti nghe
chani sm

25-4

Chapter 25
Additional Resources

Note:

The Dynami cPar anet eri zedHybr i dBat chW i t i ngMechani smbatch writer
implementation is automatically enabled when using the Exalogic automated
tuner. See Task 1: Enable the Exalogic Automated Tuner.

To explicitly enable the Dynamni cPar anet eri zedHybr i dBat chWi ti ngMechani smbatch
writing implementation, include the ecl i psel i nk. j dbc. bat ch-wri ti ng property set to
ExalLogi ¢ and the ecl i pselink. jdbc. batch-writing. size properties in the

persi stence. xm file. For example:

<property name="eclipselink.jdbc.batch-witing" val ue="Exalogic"/>
<property nanme="eclipselink.jdbc.batch-witing.size" value="150"/>

The implementations can also be explicitly entered as the value of the property. For
example:

<property name="eclipselink.jdbc. batch-witing"
val ue="oracl e. topl i nk. exal ogi c. bat ch.
Dynami cPar anet eri zedHybri dBat chWi ti ngMechani snf'/ >
<property name="eclipselink.jdbc.batch-witing.size" val ue="150"/>

Additional Resources

See the following resources for more information about the technologies and tools
used to implement the solutions in this chapter:

The following code sample and JavaDoc resources are available:
e Code Samples

— http://wki.eclipse.org/EclipseLink/Exanpl es/ JPA/ CacheCoor di nati on
» See the following APIs in Java API Reference for Oracle TopLink.

— oracle.toplink.exal ogi c.tuning. Exal ogi cTuner

— oracle.toplink.exal ogi c.tuning. Tuni ngAgent

— oracle.toplink.exal ogic.sop. SerializedOhjectPolicy

— org.eclipse.persistence. annotations. Cache

— org.eclipse.persistence. sessions. coordination

— oracle.toplink.exal ogic. renote. QJVMConnecti on

— oracle.toplink.exal ogi c. bat ch. Dynani cPar amet eri zedHybri dBat chWitin
gMechani sm

ORACLE 25-5

http://wiki.eclipse.org/EclipseLink/Examples/JPA/CacheCoordination

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.1.3)
	Other Significant Changes in this Document for 12c (12.1.3)
	New and Changed Features for 12c (12.1.2)
	Other Significant Changes in this Document for 12c (12.1.2)

	1 Introduction
	About This Guide
	About the Terminology Used in this Documentation
	What You Need to Know First
	The Use Cases

	2 Installing Oracle TopLink
	Introduction
	Task 1: Prerequisites
	Task 2: Download TopLink
	Task 3: Run the Installer
	Additional Resources

	3 Using TopLink with WebLogic Server
	Introduction to the Solution
	Advantages to Using TopLink with WebLogic Server
	TopLink and Other Fusion Middleware Products

	Implementing the Solution
	Task 1: Prerequisites
	Optional Task: Update the Release of EclipseLink in WebLogic Server (Optional)
	Task 3: Configure JMX MBean Extensions in WebLogic Server
	Task 4: Use or Reconfigure the Logging Integration
	How the Logging Integration Works
	Viewing Persistence Unit Logging Levels in the Administration Console
	Overriding the Default Logging Integration
	Configuring WebLogic Server to Expose EclipseLink Logging
	Other Considerations

	Task 5: Add Persistence to Your Java Application Using EclipseLink
	Task 6: Configure a Data Source
	Ways to Configure Data Sources for JPA Applications
	Configure a Globally Scoped JTA Data Source
	Create the Data Source in WebLogic Server
	Configure the persistence.xml File
	Configure an Application-Scoped JTA Data Source
	Specify that the Data Source Is Application-Scoped
	Add the JDBC Module to the WebLogic Server Application Configuration
	Configure the JPA Persistence Unit to Use the JTA Data Source
	Configure a non-JTA Data Source and Manage Transactions in the Application
	Ensure the Settings Match

	Task 7: Extend the Domain to Use Advanced Oracle Database Features
	Task 8: Start WebLogic Server and Deploy the Application
	Task 9: Run the Application
	Task 10: Configure and Monitor Persistence Settings in WebLogic Server

	Additional Resources

	4 Using TopLink with GlassFish Server
	Introduction to the Solution
	Advantages to Using TopLink with GlassFish Server
	Relationship of GlassFish Server and TopLink to Fusion Middleware Products

	Implementing the Solution
	Task 1: Prerequisites
	Task 2: Install GlassFish Server
	Task 3: Set Up the Data Source
	Integrate the JDBC Driver for Oracle Database into GlassFish Server
	Create a JDBC Connection Pool for the Resource
	Create the JDBC Resource

	Task 4: Create the persistence.xml File
	Specify the Persistence Provider
	Specify an Oracle Database
	Specify Logging

	Task 5: Set Up GlassFish Server for JPA
	Task 6: Create the Application
	Task 7: Deploy the Application to GlassFish Server
	Task 8: Run the Application
	Task 9: Monitor the Application

	Additional Resources

	5 Using TopLink with JBoss 7 Application Server
	Introduction to the Solution
	Implementing the Solution
	Task 1: Prerequisites
	Task 2: Configure EclipseLink as a Module in JBoss
	Task 3: Add ojdbc6.jar as a Module in JBoss
	Task 4: Create the Driver Definition and the Datasource
	Task 5: Create Users
	Task 6: Modify JBoss Properties
	Task 7: Other Requirements
	Task 8: Start JBoss

	Additional Resources

	6 Using TopLink with IBM WebSphere Application Server
	Introduction to the Solution
	Implementing the Solution
	Task 1: Prerequisites
	Task 2: Configure Persistence Units
	Task 3: Configure the Server and the Application to Use EclipseLink
	Modify Server to Make EclipseLink Available Globally
	Package EclipseLink in the Application EAR
	Package EclipseLink in the WAR

	Additional Resources

	7 Migrating from Native TopLink
	Introduction to the Solution
	Implementing the Solution
	Task 1: Prerequisites
	Task 2: Replace Deprecated and Removed Native APIs
	APIs Replaced
	Deprecated APIs
	Removed API
	Miscellaneous API Changes
	JPA Persistence Provider Implementation
	Session Finalizers Disabled by Default
	Vector and Hashtable Return Types Changed to List or Map

	Task 3: Rename Packages
	Task 4: Convert XML Configuration Files
	Sessions XML
	Deployment XML
	Persistence XML
	ORM XML

	Task 5: Convert Oracle TopLink Workbench Projects (Optional)

	8 Migrating from Hibernate to TopLink
	Introduction to the Solution
	Main Tasks
	Task 1: Prerequisites
	Task 1: Convert the Hibernate Entity Annotation
	Convert the SelectBeforeUpdate, dynamicInsert and dynamicUpdate Attributes
	Convert the OptimisticLock Attribute

	Task 2: Convert the Hibernate Custom Sequence Generator Annotation
	Task 3: Convert Hibernate Mapping Annotations
	Convert the @ForeignKey Annotation
	Convert the @Cache Annotation

	Task 4: Modify the persistence.xml File
	Modified persistence.xml File
	Drop and Create the Database Tables
	Create or Extend Database Tables

	Task 5: Convert Hibernate API to EclipseLink API

	Additional Resources

	9 Using Multiple Databases with a Composite Persistence Unit
	Introduction to the Solution
	Composite Persistence Unit Requirements

	Implementing the Solution
	Task 1: Configure the Composite Persistence Unit
	Task 2: Use Composite Persistence Units
	Task 3: Deploy Composite Persistence Units

	Additional Resources
	Related Javadoc

	10 Scaling Applications in Clusters
	Introduction to the Solution
	Implementing the Solution
	Task 1: Configure Cache Consistency
	Disabling Entity Caching
	Refreshing the Cache
	Setting Entity Caching Expiration
	Setting Optimistic Locking
	Using Cache Coordination
	Setting Cache Synchronization
	Configuring JMS Cache Coordination Using Persistence Properties
	Configuring RMI Cache Coordination Using Persistence Properties
	Cache Coordination and Oracle WebLogic
	Cache Coordination and Glassfish
	Cache Coordination and IBM WebSphere
	Configuring Cache Coordination Using the Cache Coordination API

	Task 2: Ensure EclipseLink Is Enabled
	Task 3: Ensure All Application Servers Are Part of the Cluster
	Using Data Partitioning to Scale Data
	Clustered Databases and Oracle RAC

	Additional Resources

	11 Providing Software as a Service
	Introduction to the Solution

	12 Making JPA Entities and JAXB Beans Extensible
	Making JPA Entities Extensible
	Main Tasks for Creating and Supporting an Extensible JPA Entity
	Task 1: Configure the Entity
	Annotate the Entity Class with @VirtualAccessMethods
	Add get and set Methods to the Entity
	Define Virtual Attribute Storage
	Use XML
	Task 2: Design the Schema
	Task 3: Provide Additional Mappings
	Task 4: Externalizing Extensions Using a MetaDataSource
	Configure the persistence.xml File
	Configure EntityManagerFactory and the Metadata Repository
	Refresh the Metadata Repository

	Code Examples

	Making JAXB Beans Extensible
	Main Steps
	Task 1: Configure the Bean
	Annotate the Bean Class with @Xml VirtualAccessMethods
	Add get and set Methods to the Bean
	Define Virtual Attribute Storage
	Use XML
	Task 2: Provide Additional Mappings

	Code Examples
	Basic Setup
	Define the Tenants

	Additional Resources

	13 Using an External MetaData Source
	Introduction to the Solution
	Using the eclipselink-orm.xml File Externally
	Main Tasks
	Task 1: Configure the Persistence Unit
	Task 2: Configure the Server

	Additional Resources

	14 Tenant Isolation Using TopLink
	Introduction to the Solution
	Using Single-Table Multi-Tenancy
	Main Tasks for Using Single-Table Multi-Tenancy
	Task 1: Prerequisites
	Task 2: Enable Single-Table Multi-Tenancy
	Using the @Multitenant Annotation
	Using the <multitenant> Element
	Task 3: Specify Tenant Discriminator Columns
	Use the @TenantDiscriminatorColumn Annotation
	Use the <tenant-discriminator-column> Element
	Map Tenant Discriminator Columns
	Define Persistence Unit and Entity Mappings Defaults
	Configure Context Properties and Caching Scope
	Configure a Shared Entity Manager
	Configure a Non-Shared Entity Manager
	Configure an Entity Manager
	Task 4: Perform Operations and Queries
	Task 5: Use Single-Table Multi-Tenancy in an Inheritance Hierarchy

	Using Table-Per-Tenant Multi-Tenancy
	Main Tasks for Using Table-Per-Tenant Multi-Tenancy
	Task 1: Prerequisites
	Task 2: Enable Table-Per-Tenant Multi-Tenancy
	Using the @Multitenant and @TenantTableDiscriminator Annotations
	Using the <multitenant> Element
	Task 3: Specify Tenant Table Discriminator
	Using the @TenantTableDiscriminator Annotation
	Using the <tenant-table-discriminator> Element
	Task 4: Specify a Context Property at Runtime
	Task 5: Perform Operations and Queries

	Using VPD Multi-Tenancy
	Main Tasks for Using VPD Multi-Tenancy
	Task 1: Prerequisites
	Task 2: Configure the Virtual Private Database
	Task 3: Configure the Entity or Mapped Superclass
	Task 4: Disable Criteria Generation
	Task 5: Configure persistence.xml

	Additional Resources

	15 Mapping JPA to XML
	Introduction to the Solution
	Understanding XML Binding
	Understanding JAXB
	Understanding MOXy
	Understanding an XML Data Representation

	Binding JPA Entities to XML
	Binding JPA Relationships to XML
	Task 1: Define the Accessor Type and Import Classes
	Task 2: Map Privately-Owned Relationships
	Mapping a One-to-One and Embedded Relationship
	Mapping a One-to-Many Relationship

	Task 3: Map the Shared Reference Relationship
	Mapping a Many-to-One Shared Reference Relationship
	Mapping a Many-to-Many Shared Reference Relationship
	JPA Entities

	Binding Compound Primary Keys to XML
	Task1: Define the XML Accessor Type
	Task 2: Create the Target Object
	Task 3: Create the Source Object

	Binding Embedded ID Classes to XML
	Task1: Define the XML Accessor Type
	Task 2: Create the Target Object
	Task 3: Create the Source Object
	Task 5: Implement the DescriptorCustomizer as PhoneNumberCustomizer Class

	Using the EclipseLink XML Binding Document

	Mapping Simple Java Values to XML Text Nodes
	Mapping a Value to an Attribute
	Mapping from the Java Object
	Defining the Mapping in OXM Metadata Format

	Mapping a Value to a Text Node
	Mapping a Value to a Simple Text Node
	Mapping by Using JAXB Annotations
	Defining the Mapping in OXM Metadata Format
	Mapping Values to a Text Node in a Simple Sequence
	Mapping by Using JAXB Annotations
	Defining the Mapping in OXM Metadata Format
	Mapping a Value to a Text Node in a Sub-element
	Mapping by Using JAXB Annotations
	Defining the Mapping in OXM Metadata Format
	Mapping Values to a Text Node by Position
	Mapping by Using JAXB Annotations

	Using XML Metadata Representation to Override JAXB Annotations
	Task 1: Define Advanced Mappings in the XML
	Task 2: Configure Usage in JAXBContext
	Task 3: Specify the MOXy as the JAXB Implementation

	Using XPath Predicates for Mapping
	Understanding XPath Predicates
	Mapping Based on Position
	Mapping Based on an Attribute Value
	Task 1: Create the Customer Entity
	Task 2: Create the Address Entity
	Task 3: Create the PhoneNumber Entity

	"Self" Mappings

	Using Dynamic JAXB/MOXy
	Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema
	Bootstrapping from an XML Schema
	The XML Schema
	Handling Schema Import/Includes
	Implementing and Passing an EntityResolver
	Error Handling
	Specifying a ClassLoader

	Task 2: Create Dynamic Entities and Marshal Them to XML
	Creating the Dynamic Entities
	Marshalling the Dynamic Entities to XML

	Task 3: Unmarshal the Dynamic Entities from XML
	Unmarshal DynamicEntities from XML
	Get Data from the Dynamic Entity
	Use DynamicType to Introspect Dynamic Entity

	Additional Resources

	16 Converting Objects to and from JSON Documents
	Introduction to the Solution
	Implementing the Solution
	Task 1: Marshalling and Unmarshalling JSON Documents
	Task 2: Specifying JSON Bindings
	Task 3: Specifying JSON Data Types
	Task 4: Supporting Attributes
	Task 5: Supporting no Root Element
	Task 5 Using Namespaces
	Task 6: Using Collections
	Task 7: Mapping Root-Level Collections
	Task 8: Wrapping Text Values

	Additional Resources

	17 Testing JPA Outside a Container
	Understanding JPA Deployment
	Using EntityManager

	Configuring the persistence.xml File
	Main Tasks
	Task 1: Use the persistence.xml File
	Task 2: Instantiate EntityManagerFactory

	Using a Property Map
	Main Tasks
	Task 1: Configure the persistence.xml File
	Task 2: Configure the Bootstrapping API
	Task 3: Instantiate the EntityManagerFactory

	Using Weaving
	How to Disable or Enable Weaving in a Java SE Environment
	How to Disable or Enable Weaving in a Java EE Environment

	Additional Resources
	Related Javadoc

	18 Enhancing Performance
	Performance Features
	Object Caching
	Caching Annotations
	Using the @Cache Annotation

	Querying
	Read-only Queries
	Join Fetching
	Batch Reading
	Fetch Size
	Pagination
	Cache Usage

	Mapping
	Indirection ("Lazy Loading")
	Read-Only Objects
	Weaving

	Transactions
	Database
	Connection Pooling
	Parameterized SQL and Statement Caching
	Batch Writing
	Serialized Object Policy

	Automated Tuning
	Tools

	Monitoring and Optimizing EclipseLink-Enabled Applications
	Performance Optimization Recommendations and Tips
	Task 1: Measure EclipseLink Performance with the EclipseLink Profiler
	Enabling the EclipseLink Profiler
	Accessing and Interpreting Profiler Results

	Task 2: Measure EclipseLink Performance in the Server Environment
	Task 3: Measure Fetch Group Field Usage
	Task 4: Identify Sources of Application Performance Problems
	Task 5: Modify Poorly-Performing Application Components
	Identifying General Performance Optimizations
	Schema
	Mappings and Descriptors
	Cache
	Data Access
	Queries
	Application Server and Database Optimization

	Task 6: Measure Performance Again

	19 Scaling JPA Applications Using TopLink Grid with Oracle Coherence
	Introduction to the Solution
	Implementing the Solution
	Additional Resources

	20 Exposing JPA Entities Through RESTful Data Services
	Introduction to the Solution
	Implementing the Solution
	Step 1: Prerequisites
	Step 2: Create and Configure the Application
	Step 3: Understand RESTful Data Services URI Basics
	Step 4: Represent Entities Using JPA, JAXB, or JSON
	Relationships

	Step 5: Issue Client Calls for Operations on the Persistence Unit
	Specify Media Format in the Header
	About Logging

	Step 6: Implement Security
	Step 7: Understand the Structure of RESTful Data Services Responses
	Basic Data Types
	Links and Relationships

	Additional Resources
	RESTful Data Services API Reference
	Entity Operations
	FIND
	PERSIST
	MERGE
	DELETE

	Entity Operations on Relationships
	READ
	ADD
	REMOVE

	Query Operations
	Query Returning List of Results
	Update/Delete Query

	Single Result Queries
	Base Operations
	List Existing Persistence Units

	Metadata Operations
	List Types in a Persistence Unit
	List Queries in a Persistence Unit
	Describe a Specific Entity

	21 Keeping Data Fresh Using TopLink Live Data Queries
	Introduction to the Solution
	About Oracle Database CQN and TopLink Cache Tracking
	Creating and Using TopLink Live Data Queries

	Implementing the Solution
	Step 1: Prerequisites
	Step 2: Grant Database Privileges
	Step 3: Create the Live Data Query and CQN Subscription

	Additional Resources

	22 Using Database Events to Invalidate the Cache
	Introduction to the Solution
	Implementing the Solution
	Task 1: Set up the Database and Tables
	Task 2: Grant User Permissions
	Task 3: Set the Classpath
	Task 4: Identify Classes that will Participate in Change Notification
	Task 5: Add the Database Event Listener
	Task 6: Edit the Java Files
	Set Optimistic Locking
	Exclude Classes from Change Notification (Optional)
	Track Changes in Secondary Tables (Optional)

	Limitations on the Solution
	Additional Resources

	23 Using TopLink with NoSQL Databases
	Introduction to the Solution
	Implementing the Solution
	Task 1: Prerequisites
	Task 2: Mapping the Data
	Task 3: Defining IDs
	Task 4: Defining Mappings
	Task 5: Using Locking
	Task 6: Defining Queries
	JPQL Queries
	Native Queries

	Task 7: Connecting to the Database

	Additional Resources

	24 Using Oracle TopLink with the Oracle Database
	Introduction to the Solution
	Implementing the Solution
	Using Oracle Platform-Specific APIs
	Using Oracle PL/SQL With EclipseLink
	Executing an Oracle PL/SQL Stored Function
	Main Tasks
	Task 1: Create an Oracle Stored Function That Returns a PL/SQL Record Type
	Task 2: Define an Object Type Mirror
	Task 3: Define a Java Class Mapping The OBJECT Type
	Task 4: Execute a PL/SQL Stored Function Using JpaEntityManager
	Task 5: Define a Stored Function Using @NamedPLSQLStoredFunctionQuery
	Task 6: Use the Stored Function in a Query
	Handling PL/SQL arguments for Oracle Stored Procedures
	Using the PLSQLStoredProcedureCall Class
	Mixing JDBC Arguments With Non JDBC Arguments
	Handling IN and OUT Arguments
	Handling IN OUT Arguments

	Using Oracle Virtual Private Database
	Using Oracle Proxy Authentication
	Main Tasks:
	Caching and security
	Using Oracle Virtual Private Database for Row-Level Security

	Using EclipseLink with Oracle RAC
	Accessing a RAC-Enabled database from Java EE Applications
	Task 1: Configure a Multi Data Source or GridLink Data Source
	Task 2: Configure the Persistence Unit
	Task 3: Include the Required JARs
	Accessing a RAC-Enabled Database from Standalone Applications
	Task 1: Create a UCP Data Source
	Task 2: Use the UCP Data Source
	Task 3: Include the Required JARs

	Using Oracle Spatial and Graph

	Additional Resources

	25 Optimizing Persistence Applications for Oracle Exalogic
	Introduction to the Solution
	Implementing the Solution
	Task 1: Enable the Exalogic Automated Tuner
	Task 2: Use Serialized Object Policy on Exalogic
	Task 3: Use Cache Coordination with WebLogic Server Clusters on Exalogic
	Task 4: Configure Heterogeneous Batch Writing on Exalogic

	Additional Resources

