
Oracle® GoldenGate
Stream Analytics Documentation

F18429-19
November 2024

Oracle GoldenGate Stream Analytics Documentation,

F18429-19

Copyright © 2018, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Overview

1.1 Introduction 1-1

1.2 Key Features of GGSA 1-1

1.3 GGSA Architecture 1-2

1.4 Steps to build Continuous-ETL and Realtime-Analytics Pipelines 1-3

2 Install

2.1 Planning Your Installation 2-1

2.2 Installing GoldenGate Stream Analytics 2-2

2.3 Configuring the Metadata Store 2-4

2.3.1 Configuring ATP/ADW as Metadata Store 2-7

2.4 Initializing Metadata Store 2-8

2.5 Jetty Properties File 2-9

2.6 Adjusting Jetty Threadpool 2-10

2.7 Integrating Stream Analytics with Oracle GoldenGate 2-11

2.8 Maven Setting for GoldenGate Big Data Handlers 2-11

2.8.1 Set the Maven Home Path 2-11

2.8.2 Configure Maven Proxy Settings 2-12

2.9 GoldenGate Stream Analytics Hardware Requirements for Enterprise Deployment 2-12

2.10 Retaining https and Disabling http 2-15

2.11 Setting up Runtime for GoldenGate Stream Analytics Server 2-15

2.12 Validating Data Flow to GoldenGate Stream Analytics 2-19

2.13 Terminating GoldenGate Stream Analytics 2-19

2.14 Upgrading GoldenGate Stream Analytics 2-20

3 Configure

3.1 Configure Runtime Environment 3-1

3.1.1 Mandatory Configurations 3-1

3.1.1.1 Configuring Kafka 3-1

3.1.1.2 Configuring the Runtime Server 3-3

3.1.2 Optional Configurations 3-12

3.1.2.1 Configuring Pipeline Preferences 3-12

iii

3.1.2.2 Configuring Network Proxy 3-13

3.1.2.3 Configuring Kafka Preferences 3-14

3.1.2.4 Configuring GG Preferences 3-14

3.1.2.5 Configuring SQL Preferences 3-14

3.1.2.6 Changing Spark Work Directory 3-15

3.1.2.7 Changing Spark Log Rollover based on Time 3-15

3.2 Configure Users 3-16

3.2.1 Managing Users 3-16

3.2.1.1 Adding Users 3-17

3.2.1.2 Changing Password 3-19

3.2.1.3 Removing Users 3-19

3.2.1.4 Configuring LDAP for User Authentication and Management 3-20

3.2.2 Configuring User Preferences 3-22

4 Manage

4.1 Connections 4-1

4.1.1 Create Connections 4-1

4.1.1.1 Creating a Connection to ADW or ATP 4-2

4.1.1.2 Creating a Connection to AWS S3 4-3

4.1.1.3 Creating a Connection to Coherence 4-3

4.1.1.4 Creating a Connection to Druid 4-4

4.1.1.5 Creating a Connection to Elasticsearch 4-4

4.1.1.6 Creating a Connection to GoldenGate 4-5

4.1.1.7 Creating a Connection to HBase 4-6

4.1.1.8 Creating a Connection to HDFS 4-7

4.1.1.9 Creating a Connection to Hive 4-7

4.1.1.10 Creating a connection to Ignite Cache 4-8

4.1.1.11 Creating a Connection to JMS 4-9

4.1.1.12 Creating a Connection to Kafka 4-9

4.1.1.13 Creating a Connection to Microsoft Azure Data Lake-Gen2 4-10

4.1.1.14 Creating a Connection to MongoDB 4-11

4.1.1.15 Creating a Connection to MySQL Database 4-12

4.1.1.16 Creating a Connection to OCI Object Store 4-13

4.1.1.17 Creating a Connection to ONS 4-14

4.1.1.18 Creating a Connection to Oracle AQ 4-15

4.1.1.19 Creating a Connection to Oracle Database 4-16

4.1.1.20 Creating a Connection to OSS 4-16

4.1.2 Manage Connections 4-17

4.2 Streams 4-18

4.2.1 Create Streams 4-18

4.2.1.1 Creating a File Stream 4-18

iv

4.2.1.2 Creating a GoldenGate Stream 4-19

4.2.1.3 Creating a JMS Stream 4-20

4.2.1.4 Creating a Kafka Stream 4-23

4.2.2 Manage Streams 4-24

4.2.2.1 Application Timestamp 4-25

4.2.2.2 Supported Timestamp Formats in an Input Stream 4-25

4.2.2.3 Predefined CSV Data Formats 4-26

4.3 References 4-27

4.3.1 Create References 4-27

4.3.1.1 Creating a Coherence Reference 4-27

4.3.1.2 Creating a Database Reference 4-28

4.3.1.3 Creating an Ignite Reference 4-29

4.3.2 Manage References 4-30

4.3.2.1 Coherence Reference 4-31

4.4 Targets 4-34

4.4.1 Create Targets 4-34

4.4.1.1 Creating an AWS S3 Target 4-35

4.4.1.2 Creating an Azure DataLake Gen-2 Target 4-36

4.4.1.3 Creating a Coherence Target 4-37

4.4.1.4 Creating a Database Target 4-38

4.4.1.5 Creating an Elasticsearch Target 4-39

4.4.1.6 Creating an HBase Target 4-40

4.4.1.7 Creating HDFS Target 4-41

4.4.1.8 Creating a Hive Target 4-42

4.4.1.9 Creating an Ignite Cache Target 4-43

4.4.1.10 Creating a JMS Target 4-44

4.4.1.11 Creating a Kafka Target 4-46

4.4.1.12 Creating a MongoDB Target 4-47

4.4.1.13 Creating a Network File System (NFS) Target 4-48

4.4.1.14 Creating a Notification Target 4-49

4.4.1.15 Creating an OCI Object Store Target 4-50

4.4.1.16 Creating an OSS Target 4-51

4.4.1.17 Creating a REST Target 4-53

4.4.2 Manage Targets 4-55

4.4.2.1 Coherence Target 4-55

4.5 Pipelines 4-56

4.5.1 Create a Pipeline 4-57

4.5.2 Manage Pipelines 4-57

4.5.2.1 Using the Pipeline Editor 4-57

4.5.2.2 Publishing a Pipeline 4-57

4.5.2.3 Unpublishing a Pipeline 4-58

4.5.2.4 Exporting and Importing a Pipeline and Its Dependent Artifacts 4-58

v

4.5.2.5 Working with Live Output Table 4-60

4.5.2.6 Using the Topology Viewer 4-60

4.6 GoldenGate Change Stream 4-62

4.6.1 Getting a GoldenGate Change Stream into a Kafka Topic 4-62

4.6.2 Manage GG Change Data Stream 4-63

4.6.2.1 Starting a GoldenGate Change Stream 4-63

4.6.2.2 Stopping a GG Change Data Stream 4-64

4.6.2.3 Purging the GoldenGate Trail Files 4-64

4.6.2.4 Streaming GoldenGate Full Records 4-65

4.7 Embedded Ignite Cache 4-65

4.7.1 Starting a Cache Cluster 4-65

4.7.2 Stopping a Cache Cluster 4-66

4.7.3 Restarting a Cache Cluster 4-66

4.7.4 Monitoring Cache in the Cache Cluster 4-66

4.8 Ignite Cluster on OCI GGSA 4-67

4.8.1 Starting an Ignite Cluster 4-67

4.8.2 Scaling an Ignite Cluster 4-67

4.8.3 Deleting Storage 4-67

4.8.4 Stopping an Ignite Cluster 4-68

4.9 GGBD Cluster on OCI GGSA 4-68

4.9.1 Starting a GGBD Cluster 4-68

4.9.2 Stopping a GGBD Cluster 4-68

5 Transform

5.2 Correlating Streams and References 5-1

5.2.1 Joining Mutiple Streams 5-1

5.2.2 Joining a Stream with a Reference or an External Source 5-2

5.3 Applying Window Functions to a Stream 5-2

5.3.1 Applying a Time Window with Slide 5-2

5.3.2 Applying a Time Window without Slide 5-3

5.3.3 Applying a Row Window with Slide 5-3

5.3.4 Applying a Row Window without Slide 5-4

5.3.5 Applying a window with current year, month, day, or hour 5-4

5.3.6 Applying your own Window using Field from Payload 5-5

5.3.7 Applying a Row window with Partition without Range 5-5

5.3.8 Applying a Row Window with Partition with Range without Slide 5-5

5.3.9 Applying a Row Window with Partition with Slide and Range 5-6

5.1 Adding Stages to a Pipeline 5-6

5.1.1 Adding a Query Stage 5-6

5.1.2 Adding a Filter to a Query Stage 5-6

5.1.3 Adding a Summary to a Query Stage 5-7

vi

5.1.4 Adding a Summary with Group By 5-7

5.1.5 Adding a Query Group Stage 5-8

5.1.5.1 Adding Query Group: Stream 5-8

5.1.5.2 Adding Query Group: Table 5-9

5.1.6 Adding a Rule Stage 5-9

5.1.7 Adding a Pattern Stage 5-10

5.1.8 Adding a Scoring Stage 5-10

5.1.9 Adding a Target Stage 5-10

5.1.10 Adding a Custom CQL Stage 5-11

5.4 Applying Functions to Create a New Column 5-11

5.4.1 Using Bessel Functions 5-12

5.4.1.1 BesselI0 5-13

5.4.1.2 BesselIO_exp 5-13

5.4.1.3 BesselI1(value1) 5-13

5.4.1.4 BesselI1_exp(value1) 5-13

5.4.1.5 BesselK0_exp(value1) 5-14

5.4.1.6 BesselIK1_exp(value1) 5-14

5.4.1.7 BesselY(value1, value2) 5-14

5.4.1.8 BesselJ(value1, value2) 5-14

5.4.1.9 BesselK(value1,value2) 5-15

5.4.2 Using Conversion Functions 5-15

5.4.2.1 bigdecimal(value1) 5-15

5.4.2.2 boolean(value1) 5-15

5.4.2.3 double(value1) 5-16

5.4.2.4 float(value1) 5-16

5.4.2.5 int(value1) 5-16

5.4.2.6 long() 5-16

5.4.2.7 string(value1, value2) 5-17

5.4.3 Using Date Functions 5-17

5.4.3.1 Acceptable Formats for Timestamp Values 5-17

5.4.3.2 Day(date) 5-19

5.4.3.3 eventtimestamp(value1) 5-19

5.4.3.4 hour(date) 5-19

5.4.3.5 minute(date) 5-19

5.4.3.6 month(date) 5-20

5.4.3.7 nanosecond(value1) 5-20

5.4.3.8 systemtimestamp(value1) 5-20

5.4.3.9 timeformat(value1, value2) 5-20

5.4.3.10 Year(date) 5-21

5.4.4 Using Geometry Functions 5-21

5.4.4.1 CreatePoint(value1, value2, value3) 5-21

5.4.4.2 distance(lat1, long1, lat2, long2,SRID) 5-22

vii

5.4.5 Using Interval Functions 5-22

5.4.5.1 dsintervaltonum(value1, value 2) 5-23

5.4.5.2 numtodsinterval(value1, value2) 5-23

5.4.5.3 numtoyminterval(value1, value 2) 5-24

5.4.5.4 to_dsinterval(value1) 5-24

5.4.5.5 to_yminterval(value1) 5-24

5.4.5.6 ymintervaltonum(value1, value2) 5-25

5.4.6 Using Math Functions 5-25

5.4.6.1 IEEEremainder(value1, value1) 5-27

5.4.6.2 abs(value1) 5-27

5.4.6.3 acos(value1) 5-27

5.4.6.4 asin(value1) 5-27

5.4.6.5 atan(value1) 5-28

5.4.6.6 atan2 5-28

5.4.6.7 binomial(base, power) 5-28

5.4.6.8 bitMaskWithBitsSetFromTo(value1, value2) 5-28

5.4.6.9 cbrt() 5-29

5.4.6.10 ceil() 5-29

5.4.6.11 copySign() 5-29

5.4.6.12 cos(value1) 5-29

5.4.6.13 cosh(value1) 5-29

5.4.6.14 exp(value1, value2) 5-30

5.4.6.15 expm1(value1) 5-30

5.4.6.16 factorial(value1) 5-30

5.4.6.17 floor(value1) 5-30

5.4.6.18 GetExponent(value1) 5-30

5.4.6.19 getSeedAtRowColumn(value1, value2) 5-31

5.4.6.20 hash(value1) 5-31

5.4.6.21 hypot(value1, value2) 5-31

5.4.6.22 LeastSignificantBit(value1) 5-31

5.4.6.23 log(value1, value2) 5-32

5.4.6.24 log1(value1) 5-32

5.4.6.25 log10(value1) 5-32

5.4.6.26 log2(value1) 5-32

5.4.6.27 logFactorial(value1) 5-33

5.4.6.28 long() 5-33

5.4.6.29 longFactorial(value1) 5-33

5.4.6.30 minimum(value1, value2) 5-33

5.4.6.31 mod(value1, value2) 5-34

5.4.6.32 mostSignificantBit(value1) 5-34

5.4.6.33 nextAfter(value1, value2) 5-34

5.4.6.34 nextDown(value1, value2) 5-34

viii

5.4.6.35 nextUp(value1) 5-35

5.4.6.36 pow(value1, value2) 5-35

5.4.6.37 rint(value1) 5-35

5.4.6.38 round(value1) 5-35

5.4.6.39 scalb(5-36

5.4.6.40 signum(value1) 5-36

5.4.6.41 sin(value1) 5-36

5.4.6.42 sinh(value1) 5-36

5.4.6.43 sqrt(value1) 5-37

5.4.6.44 stirlingCorrection(value1) 5-37

5.4.6.45 tan(value1) 5-37

5.4.6.46 tanh(value1) 5-37

5.4.6.47 toDegrees(value1) 5-37

5.4.6.48 toRadians(value1) 5-38

5.4.6.49 ulp(value1) 5-38

5.4.7 Using Null-related Functions 5-38

5.4.7.1 nvl(value1, value2) 5-38

5.4.8 Using Statistical Functions 5-39

5.4.8.1 beta1(value1, value2, value3) 5-40

5.4.8.2 betacomplemented(value1, value2, value3) 5-40

5.4.8.3 binomial2(value1, value2, value3) 5-40

5.4.8.4 binomialcomplemented(value1, value2, value3) 5-41

5.4.8.5 chiSquare(value1, value2) 5-41

5.4.8.6 chiSquareComplemented(value1, value2) 5-41

5.4.8.7 errorFunction(value1) 5-41

5.4.8.8 errorFunctionComplemented(value1) 5-42

5.4.8.9 gamma(value1, value2, value3) 5-42

5.4.8.10 gammacomplemented(value1, value2, value3) 5-42

5.4.8.11 incompleteBeta(value1, value2, value3) 5-43

5.4.8.12 incompleteGamma(value1, value2) 5-43

5.4.8.13 incompleteGammaComplement(value1, value2) 5-43

5.4.8.14 logGamma(value1) 5-43

5.4.8.15 negativeBinomial(value1, value2, value3) 5-44

5.4.8.16 negativeBinomialComplemented(value1, value2, value3) 5-44

5.4.8.17 normal(value1, value2, value3) 5-44

5.4.8.18 normalInverse(value1) 5-45

5.4.8.19 poisson(value1, value2) 5-45

5.4.8.20 poissonComplemented(value1, value2) 5-45

5.4.8.21 studentT(value1, value2) 5-45

5.4.8.22 studentTInverse(value1, value2) 5-46

5.4.9 Using String Functions 5-46

5.4.9.1 coalesce(value1,...) 5-47

ix

5.4.9.2 Concat(value1,...) 5-47

5.4.9.3 indexof(value1, value2) 5-47

5.4.9.4 initcap(value1) 5-48

5.4.9.5 length(value1) 5-48

5.4.9.6 like(string, pattern) 5-48

5.4.9.7 lower(value1) 5-49

5.4.9.8 lpad(value1, value2, value3) 5-49

5.4.9.9 ltrim(value1, value2) 5-49

5.4.9.10 replace(string, match, replacement) 5-50

5.4.9.11 rpad(value1, value2, value3) 5-50

5.4.9.12 rtrim(value1, value2) 5-50

5.4.9.13 substr() 5-51

5.4.9.14 substring(string, from, to) 5-51

5.4.9.15 translate(expression, from_string, to_string) 5-51

5.4.9.16 upper(value1) 5-52

5.5 Adding Custom Functions and Custom Stages 5-52

5.5.1 Creating a Custom Jar 5-52

5.5.2 Adding Custom Functions 5-52

5.5.3 Implementing Custom Functions 5-53

5.5.3.1 Sample: Encrypt a Column 5-53

5.5.4 Adding a Custom Stage 5-53

5.5.4.1 Sample: Encrypt a Column 5-54

5.5.4.2 Sample: Invoke a REST Service 5-55

5.5.4.3 Sample: Invoke a SOAP Service 5-58

5.5.5 Limitations 5-60

5.5.6 Mapping of Data Types 5-61

5.6 Writing CQL Queries 5-61

5.6.1 Sample Queries 5-61

5.6.1.1 A Followed By B 5-62

5.6.1.2 A Not Followed by B 5-64

5.6.1.3 Detect Duplicates 5-64

5.6.1.4 Change Event 5-65

5.6.1.5 Eliminate Duplicates 5-66

6 Analyze

6.1 Using Geofences for Location-based Analytics 6-1

6.1.1 Selecting a Tile Layer 6-1

6.1.1.1 Elocation Tile Layer 6-1

6.1.1.2 Open Street Maps Tile Layer 6-2

6.1.1.3 Google Maps Tile Layer 6-3

6.1.1.4 Custom Tile Layer 6-4

x

6.1.2 Managing Geofences using the Map Editor 6-6

6.1.2.1 Creating a Geo Fence 6-6

6.1.2.2 Deleting a Geofence 6-7

6.1.3 Importing a Geofence from a Database 6-7

6.1.4 Using Spatial Patterns in Pipeline Stages 6-7

6.1.4.1 Clearing Objects Outside a Geo Fence 6-7

6.1.4.2 Tracking Objects using a Geo Fence 6-8

6.1.4.3 Getting Direction of a Moving Object 6-8

6.1.4.4 Obtaining Geographic Coordinates 6-9

6.1.4.5 Calculating Distance between Objects in a Stream 6-9

6.1.4.6 Calculating Distance between Objects in Two Streams 6-10

6.1.4.7 Creating Geo Fence 6-10

6.1.4.8 Monitoring Proximity between Objects in a Stream 6-10

6.1.4.9 Monitoring Proximity between Objects in Two Streams 6-11

6.1.4.10 Obtaining the Proximity of an Object from a Geo Fence 6-11

6.1.4.11 Finding Nearest Place using the Geographical Coordinates 6-12

6.1.4.12 Finding Nearest Place Details using the Geographical Coordinates 6-12

6.1.4.13 Determining Average Speed 6-13

6.2 Transforming and Analyzing Data using Patterns 6-13

6.2.1 Adding a Pattern Stage 6-15

6.2.2 Detecting Missing Events 6-15

6.2.3 Calculating Quantile Value 6-15

6.2.4 Identifying Correlation between Two Numeric Patterns 6-16

6.2.5 Detecting Duplicate Events 6-16

6.2.6 Eliminating Duplicate Events 6-17

6.2.7 Detecting Event Value Changes 6-17

6.2.8 Detecting Data Field Value Changes 6-18

6.2.9 Monitoring Sequence of Events 6-19

6.2.10 Outputting Highest Value Events 6-19

6.2.11 Outputting Lowest Value Events 6-20

6.2.12 Monitoring Invariably Increasing Numeric Values 6-20

6.2.13 Monitoring Invariably Decreasing Numeric Values 6-21

6.2.14 Identifying the Missing First Event in a Sequence 6-22

6.2.15 Identifying the Second Missing Event in a Sequence 6-22

6.2.16 Analyzing Data using Double Bottom Charts 6-23

6.2.17 Analyzing Data using Double Top Charts 6-23

6.2.18 Correlating Current and Previous Events 6-24

6.2.19 Delaying Delivery of Events to Downstream Node 6-25

6.2.20 Outputting Contents to Downstream Node 6-25

6.2.21 Outputting Unexpired Contents to Downstream Node 6-25

6.2.22 Merging Two Streams having Identical Shapes 6-26

6.2.23 Joining Flows with Streams and References 6-26

xi

6.2.24 Transforming Events into JSON 6-26

6.2.25 Transforming a Single Event from a Stage into Multiple Events 6-27

6.2.26 Merging Two Continuous Events into a Single Event 6-27

6.2.27 Applying OML Models to get the Scoring of Events (Preview Feature) 6-27

6.2.28 Detecting Contiguous Events 6-28

6.2.29 Creating Pivot Columns 6-28

6.3 Using Machine Learning Models for Scoring and Prediction 6-29

6.3.1 Importing a Predictive Model 6-29

6.3.2 Adding a Scoring Stage 6-29

6.4 Integrating with Druid Timeseries Database for Realtime Interactive Analytics 6-30

6.4.1 Creating a Connection to Druid 6-30

6.4.2 Creating a Cube 6-30

6.4.3 Exploring a Cube 6-32

7 Visualize

7.1 Adding Realtime Charts 7-1

7.1.1 Adding an Area Chart 7-1

7.1.2 Adding a Bar Chart 7-2

7.1.3 Adding a Bubble Chart 7-2

7.1.4 Adding a Line Chart 7-3

7.1.5 Adding a Pie Chart 7-4

7.1.6 Adding a Scatter Plot 7-4

7.1.7 Adding a Stacked Bar Chart 7-5

7.1.8 Adding a Thematic Map 7-5

7.1.9 Updating Visualizations 7-6

7.2 Creating and Managing Dashboards 7-6

7.2.1 Adding a Dashboard 7-6

7.2.2 Editing a Dashboard 7-7

7.2.3 Sharing a Dashboards with Peers 7-10

7.2.4 Deleting a Dashboard 7-10

7.2.5 Importing a Dashboard with all its Dependencies 7-10

7.2.6 Exporting a Dashboard with all its Dependencies 7-10

8 Monitor

8.1 Execution and HA Statistics 8-1

8.2 Detailed Query Analysis 8-3

8.3 Complete CQL Engine Statistics 8-4

xii

9 Reference

9.1 Pipeline Details 9-1

9.2 Stage Details 9-2

9.3 Query Details 9-3

9.4 Internal Kafka Topics 9-4

10

Troubleshoot

10.1 Pipeline Debug and Monitoring Metrics 10-1

10.1.1 Spark Standalone 10-1

10.1.2 Spark on YARN 10-1

10.1.3 Pipeline Details 10-3

10.1.4 Stage Details 10-4

10.1.5 Query Details 10-5

10.1.6 Execution and HA Statistics 10-6

10.1.7 Detailed Query Analysis 10-8

10.1.8 Complete CQL Engine Statistics 10-9

10.1.9 Internal Kafka Topics 10-10

10.2 Common Issues and Remedies 10-10

10.2.1 Pipeline 10-11

10.2.2 Pipeline 10-11

10.2.2.1 Pipelines are not running as expected 10-11

10.2.2.2 GGSA Pipeline getting Terminated 10-12

10.2.2.3 Live Table Shows Listening Events with No Events in the Table 10-12

10.2.2.4 Live Table Still Shows Starting Pipeline 10-13

10.2.2.5 Time-out Exception in the Spark Logs when you Unpublish a Pipeline 10-14

10.2.2.6 Piling up of Queued Batches in HA mode 10-14

10.2.2.7 Null Record from Summary in Query Stage 10-14

10.2.3 Stream 10-15

10.2.3.1 Cannot See Any Kafka Topic or a Specific Topic in the List of Topics 10-15

10.2.3.2 Input Kafka Topic is Sending Data but No Events Seen in Live Table 10-15

10.2.4 Connection 10-15

10.2.4.1 Database Connection Failure 10-15

10.2.4.2 Druid Connection Failure 10-16

10.2.4.3 Coherence Connection Failure 10-16

10.2.4.4 JNDI Connection Failure 10-16

10.2.5 Target 10-16

10.2.5.1 Cannot see any Events in Targets 10-17

10.2.6 Geofence 10-17

10.2.6.1 Name and Description Fields are not displayed for the DB-based
Geofences 10-17

10.2.6.2 DB-based Geofence is not Working 10-17

xiii

10.2.7 Cube 10-17

10.2.7.1 Unable to Explore Cube which was Working Earlier 10-17

10.2.7.2 Cube Displays "Datasource not Ready" 10-17

10.2.8 Dashboard 10-18

10.2.8.1 Visualizations Appearing Earlier are No Longer Available in Dashboard 10-18

10.2.8.2 Dashboard Layout Reset after You Resized/moved the Visualizations 10-18

10.2.8.3 Streaming Visualizations Do not Show Any Data 10-18

10.2.9 Live Output 10-18

10.2.9.1 Issues with Live Output 10-19

10.2.9.2 Missing Events due to Faulty Data 10-20

10.2.10 Pipeline Deployment Failure 10-21

xiv

1
Overview

Introduction

Key Features of GGSA

GGSA Architecture

Steps to build Continuous-ETL and Realtime-Analytics Pipelines

1.1 Introduction
The Oracle GoldenGate Stream Analytics (GGSA) runtime component is a complete solution
platform for building applications to filter, correlate, and process events in real-time. With
flexible deployment options of stand-alone Spark or Hadoop-YARN, it proves to be a versatile,
high-performance event processing engine. GGSA enables Fast Data and Internet of Things
(IOT) – delivering actionable insight and maximizing value on large volumes of high velocity
data from varied data sources in real-time. It enables distributed intelligence and low latency
responsiveness by pushing business logic to the network edge.

1.2 Key Features of GGSA
• Natively integrated with Oracle GoldenGate to process and analyze transaction streams

from relational databases

• Interactive pipeline designer with live results to instantly validate your work

• Zero-code environment to build continuous ETL and analytics workflows

• Pattern library for advanced data transformation and real-time analytics

• Extensive support for processing geospatial data

• Secured connectivity to diverse data sources and sinks

• Built-in support for real-time visualizations and dashboards

• Automatic application state management

• Automatic configuration of pipelines for high availability and reliability

• Automatic configuration of pipelines for lower latency and higher throughput

• Automatic log management of pipelines for better disk space utilization

1-1

1.3 GGSA Architecture

Acquiring data

Stream Analytics can acquire data from any of the following on-premises and cloud-native data
sources:

• GoldenGate: Natively integrated with Oracle GoldenGate, Stream Analytics offers data
replication for high-availability data environments, real-time data integration, and
transactional change data capture.

• Oracle Cloud Streaming: Ingest continuous, high-volume data streams that you can
consume or process in real-time.

• Kafka: A distributed streaming platform used for metrics collection and monitoring, log
aggregation, and so on.

• Java Message Service: Allows java-based applications to send, receive, and read
distributed communications.

Processing data

With Stream Analytics, you can filter, correlate, and process events in real-time.

Perform actions on the data
After Stream Analytics processes the data, you can output the results to any one of the
following external target data sources:

• Coherence

• Kafka

• Oracle Cloud Streaming

• Java Message Service

• Database

• Notification

• REST

Chapter 1
GGSA Architecture

1-2

1.4 Steps to build Continuous-ETL and Realtime-Analytics
Pipelines

Step Action Description

Step 1 Create a Connection You must create a connection to an
external system, to be

Supported stream sources:
• Kafka
• OCI Streaming Service
• JMS
• Oracle Advanced Queuing

See Create Connections.

Step 2 Create a Stream From the Catalog, create a Stream
using the Connection from Step 1.

Supported stream definitions:
• File
• Kafka
• JMS
• AQ
• GoldenGate

See Create Streams.

Step 3 Create a Pipeline From the Catalog, create a Pipeline
using the Stream from Step 2.

See Create a Pipeline.

Step 4 Add Business Logic Transform the input data stream, add
business logic to the pipeline to analyze
the input data stream.

See Transform.

See Analyze.

Step 5 Publish the Pipeline See Publishing a Pipeline.

Chapter 1
Steps to build Continuous-ETL and Realtime-Analytics Pipelines

1-3

2
Install

2.1 Planning Your Installation
To plan the installation of GoldenGate Stream Analytics (GGSA) 19.1.0.0.* efficiently, ensure
that you have the required hardware and software. You should also perform the prerequisite
procedures before starting the installation process.

You can use the information in the certification matrix before installing GoldenGate Stream
Analytics 19.1.0.0.*. The certification matrix provides you useful links to support pages,
supported software, and system requirements in general. The following software is required for
operation of GGSA:

• Oracle JDK 8 Update 131 and higher versions

• Repository Database

– Oracle Database versions 12.2.0.1 or higher, 12.1.0.1 or higher, and 11.2.0.4 or higher

– Else, you can use MySQL version 5.6 or 5.7

• A running Kafka cluster:

– Version 0.10.2 to 2.2.1 for releases 19.1.0.0.1 to 19.1.0.0.7.

– Version 0.10.2 to 3.4.0 for release 19.1.0.0.8.

– Versions 3.2.0 to 3.7.0 for release 19.1.0.0.9.

• Locally installed Spark Libraries. GGSA does not package the Spark client libraries, so you
will also need locally installed Spark:

For releases 19.1.0.0.0 to 19.1.0.0.7:

– Spark release: 2.4.3
– Package type: Pre-built for Apache Hadoop 2.7 and later
– Download Spark: spark-2.4.3-bin-hadoop2.7.tgz
For release 19.1.0.0.8:

– Spark release: 3.4.0
– Package type: Pre-built for Apache Hadoop 3.3 and later
– Download Spark: spark-3.4.0-bin-hadoop3.tgz
For release 19.1.0.0.9:

2-1

https://www.oracle.com/integration/goldengate/certifications/

Spark Release Package Type Download Spark Kafka Compatibility

3.4.0 Pre-built for
Apache Hadoop 3.3
and later

spark-3.4.0-bin-
hadoop3.tgz

– Kafka 3.7.0 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

– Kafka 3.6.1 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

– Kafka 3.5.1 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

– Kafka 3.2.0 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4

3.5.0 Pre-built for
Apache Hadoop 3.3
and later

spark-3.5.0-bin-
hadoop3.tgz

– Kafka 3.7.0 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

– Kafka 3.6.1 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

– Kafka 3.5.1 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

– Kafka 3.2.0 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4

• Note:

Install Spark and JDK in the same node on which you plan to install Oracle
Stream Analytics. See Installing GoldenGate Stream Analytics.

• Google Chrome browser with version 6.0 or higher

2.2 Installing GoldenGate Stream Analytics
After you have reviewed the above software prerequisites, please follow the steps below to
install GoldenGate Stream Analytics 19.1.0.0.*:

1. Create a directory, for example, spark-downloads, and download Apache Spark into the
newly created folder and as specified by versions below:

For releases 19.1.0.0.0 to 19.1.0.0.7:

• Spark release: 2.4.3

Chapter 2
Installing GoldenGate Stream Analytics

2-2

https://archive.apache.org/dist/spark/

• Package type: Pre-built for Apache Hadoop 2.7 and later
• Download Spark: spark-2.4.3-bin-hadoop2.7.tgz
For release 19.1.0.0.8 :

• Spark release: 3.4.0
• Package type: Pre-built for Apache Hadoop 3.3 and later
• Download Spark: spark-3.4.0-bin-hadoop3.tgz
For release 19.1.0.0.9:

Spark Release Package Type Download Spark Kafka Compatibility

3.4.0 Pre-built for
Apache Hadoop 3.3
and later

spark-3.4.0-bin-
hadoop3.tgz

• Kafka 3.7.0 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

• Kafka 3.6.1 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

• Kafka 3.5.1 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

• Kafka 3.2.0 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4

3.5.0 Pre-built for
Apache Hadoop 3.3
and later

spark-3.5.0-bin-
hadoop3.tgz

• Kafka 3.7.0 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

• Kafka 3.6.1 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

• Kafka 3.5.1 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4,
Yarn 2.7.1

• Kafka 3.2.0 works
with Spark
standalone, Yarn
3.3.6, Yarn 3.3.4

2. Extract the Spark archive to a local directory.

You can see a subfolder, spark-*.*.*-bin-hadoop*.*.

3. Create a new directory, for example, OSA-19 and download OSA-19.1.0.0.*.zip from
Oracle eDelivery and extract it into the newly created folder.

You can find the OSA-19.1.0.0.*-README.txt file in the OSA-19.1.0.0.* zip file.

Chapter 2
Installing GoldenGate Stream Analytics

2-3

https://edelivery.oracle.com/osdc/faces/SoftwareDelivery

4. Extract the downloaded file. You should now see a subfolder OSA-19.1.0.0.*.

5. Review the file OSA-19.1.0.0.*-README.txt in the OSA-19 folder.

6. Set the environment variables:

• Set the SPARK_HOME environment variable in the OSA-19.1.0.0.*/osa-base/etc/osa-
env.sh file to point to the directory where you have extracted the Spark archive. For
example:

SPARK_HOME=/products/spark-downloads/spark-*.*.*-bin-hadoop*.*
7. Set the JDK_HOME environment variable in the OSA-19.1.0.0.*/osa-base/etc/osa-env.sh

file to point to the directory where you have extracted the JDK archive. For example:

JDK_HOME=/products/java-downloads/jdk1.8.0_131

2.3 Configuring the Metadata Store
Please follow steps below for configuring your metadata store.

1. Configure your data source in OSA-19.1.0.0.*/osa-base/etc/jetty-osa-datasource.xml
as per instructions below. This step is essential for creating OSA’s database schema. The
OSA database user referred to in the document will be created by the installation process.

2. Uncomment and edit one of the two Data source configurations, either for Oracle Database
or MySQL depending on the database you want to use as metadata store. The
uncommented fragment for Oracle database is shown below: a.

<New id="osads"
class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg>
 <Ref refid="wac"/>
 </Arg>
 <Arg>jdbc/OSADataSource</Arg>
 <Arg>
 <New class="oracle.jdbc.pool.OracleDataSource">
 <Set
name="URL">jdbc:oracle:thin:@myhost.example.com:1521:OSADB</Set>
 <Set name="User">OSA_USER</Set>
 <Set name="Password">
 <Call class="org.eclipse.jetty.util.security.Password"
name="deobfuscate">
 <Arg> OBF:OBFUSCATED_PASSWORD</Arg>
 </Call>
 </Set>
 <Set name="connectionCachingEnabled">true</
Set>
 <Set name="connectionCacheProperties">
 <New class="java.util.Properties">
 <Call name="setProperty"><Arg>MinLimit</Arg><Arg>1</Arg></
Call>
 <Call name="setProperty"><Arg>MaxLimit</Arg><Arg>15</
Arg></Call>
 <Call name="setProperty"><Arg>InitialLimit</Arg><Arg>1</
Arg></Call>
 </New>
 </Set>

Chapter 2
Configuring the Metadata Store

2-4

 </New>
 </Arg>
 </New>

3. Decide on an OSA schema username and a plain-text password. For illustration, say osa
as schema user name and alphago as password.
Change directory to top-level folder OSA-19.1.0.0.* and execute the following
command:java -cp ./lib/ jetty-util-9.4.17.v20190418.jar
org.eclipse.jetty.util.security.Password osa <your password>
For example, java -cp ./lib/ jetty-util-9.4.17.v20190418.jar
org.eclipse.jetty.util.security.Password osa alphago
You should see results like below on console:

2019-06-18 14:14:45.114:INFO::main: Logging initialized @1168ms to
org.eclipse.jetty.util.log.StdErrLogalphago
OBF:<obfuscated password>
MD5:34d0a556209df571d311b3f41c8200f3
CRYPT:osX/8jafUvLwA

4. Note down the obfuscated password string that is displayed (shown in bold), by copying it
to clipboard or notepad.

5. Change database host, port, SID, osa schema user name and osa schema password
fields marked in bold in the code in Step 2a.
Example - jdbc:oracle:thin:@myhost.example.com:1521:ORCL

SAMPLE JETTY-OSA-DATASOURCE.XML

<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN" "http://www.eclipse.org/
jetty/configure_9_3.dtd">

<!-- === -->
<!-- Configure jdbc/OSADataSource data source -->
<!-- === -->
<Configure id="Server" class="org.eclipse.jetty.server.Server">

 <!-- SAMPLE OSA DATASOURCE CONFIGURATION FOR ORACLE-->
 <New id="osads" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg>
 <Ref refid="wac"/>
 </Arg>
 <Arg>jdbc/OSADataSource</Arg>
 <Arg>
 <New class="oracle.jdbc.pool.OracleDataSource">
 <Set
name="URL">jdbc:oracle:thin:@myhost.example.com:1521:OSADB</Set>
 <Set name="User">osa_prod</Set>
 <Set name="Password">
 <Call class="org.eclipse.jetty.util.security.Password"
name="deobfuscate">

<Arg>OBF:1ggz1j1u1k8q1leq1v2h1w8v1v1x1lcs1k5g1iz01gez</Arg>
 </Call>
 </Set>

Chapter 2
Configuring the Metadata Store

2-5

 <Set name="connectionCachingEnabled">true</Set>
 <Set name="connectionCacheProperties">
 <New class="java.util.Properties">
 <Call name="setProperty"><Arg>MinLimit</Arg><Arg>1</
Arg></Call>
 <Call name="setProperty"><Arg>MaxLimit</Arg><Arg>15</
Arg></Call>
 <Call name="setProperty"><Arg>InitialLimit</
Arg><Arg>1</Arg></Call>
 </New>
 </Set>
 </New>
 </Arg>
 </New>

 <!-- SAMPLE OSA DATASOURCE CONFIGURATION FOR ADW-->
 <!--
 <New id="osads" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg>
 <Ref refid="wac"/>
 </Arg>
 <Arg>jdbc/OSADataSource</Arg>
 <Arg>
 <New class="oracle.jdbc.pool.OracleDataSource" type="adw">
 <Set name="URL">jdbc:oracle:thin:@oracletestdb_high?
TNS_ADMIN=/scratch/oracletest/Wallet_oracletestdb</Set>
 <Set name="User">{OSA_USER}</Set>
 <Set name="Password">
 <Call class="org.eclipse.jetty.util.security.Password"
name="deobfuscate">
 <Arg>{OBF:OBFUSCATE_PASSWORD}</Arg>
 </Call>
 </Set>
 <Set name="connectionCachingEnabled">true</Set>
 <Set name="connectionCacheProperties">
 <New class="java.util.Properties">
 <Call name="setProperty"><Arg>MinLimit</Arg><Arg>1</
Arg></Call>
 <Call name="setProperty"><Arg>MaxLimit</Arg><Arg>15</
Arg></Call>
 <Call name="setProperty"><Arg>InitialLimit</
Arg><Arg>1</Arg></Call>
 </New>
 </Set>
 </New>
 </Arg>
 </New>
 -->
 <!-- SAMPLE OSA DATASOURCE CONFIGURATION FOR MYSQL-->
 <!--

 <New id="osads" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg>
 <Ref refid="wac"/>
 </Arg>

Chapter 2
Configuring the Metadata Store

2-6

 <Arg>jdbc/OSADataSource</Arg>
 <Arg>
 <New class="com.mysql.cj.jdbc.MysqlConnectionPoolDataSource">
 <Set name="URL">jdbc:mysql://examplehost.com:3306/OSADB</Set>
 <Set name="User">{OSA_USER}</Set>
 <Set name="Password">
 <Call class="org.eclipse.jetty.util.security.Password"
name="deobfuscate">
 <Arg>{OBF:OBFUSCATE_PASSWORD}</Arg>
 </Call>
 </Set>
 </New>
 </Arg>
 </New>
-->

</Configure>

Note:

Do not use a hyphen in the OSA metadata username, in the jetty-osa-datasource.xml

.

2.3.1 Configuring ATP/ADW as Metadata Store
GoldenGate Stream Analytics creates the metadata schema, as part of initial configuration of
the system, using the script: ${OSA_HOME}/osa-base/bin/configure.sh
dbroot=<sys user of database> dbroot_password=<sys user password of
the database>
However, before running the above script, you must configure the datasource in the
datasource configuration file at${OSA_HOME}/osa-base/etc/jetty-osa-
datasource.xml.

To configure ATP/ADW as metadata store, first comment the Oracle and MYSQL sections,
while uncommenting the ADW/APT section in jetty-osa-datasource.xml file.

Below is the template for the datasource configuration for ATP/ADW database:

jetty-osa-datasource.xml

<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN" "http://www.eclipse.org/
jetty/configure_9_3.dtd">
<Configure id="Server" class="org.eclipse.jetty.server.Server">
 <New id="osads" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg>
 <Ref refid="wac"/>
 </Arg>
 <Arg>jdbc/OSADataSource</Arg>
 <Arg>
 <New class="oracle.jdbc.pool.OracleDataSource" type="adw">
 <Set name="URL">jdbc:oracle:thin:@{service_name}?

Chapter 2
Configuring the Metadata Store

2-7

TNS_ADMIN={wallet_absolute_path}</Set>
 <Set name="User">{osa_db_user}</Set>
 <Set name="Password">
 <Call class="org.eclipse.jetty.util.security.Password"
name="deobfuscate">
 <Arg>{obfuscated_password}</Arg>
 </Call>
 </Set>
 <Set name="connectionCachingEnabled">true</Set>
 <Set name="connectionCacheProperties">
 <New class="java.util.Properties">
 <Call name="setProperty"><Arg>MinLimit</Arg><Arg>1</
Arg></Call>
 <Call name="setProperty"><Arg>MaxLimit</Arg><Arg>15</
Arg></Call>
 <Call name="setProperty"><Arg>InitialLimit</
Arg><Arg>1</Arg></Call>
 </New>
 </Set>
 </New>
 </Arg>
 </New>
</Configure>

Note:

In the above template, replace the variables in {} as below:

• {service_name} - one of the service names listed in the tnsnames.ora file inside
the wallet

• {wallet_absolute_path} - the absolute path of wallet folder on the machine where
OSA is installed

• {osa_db_user} - the username to create the osa metadata. This username and
schema will be created by the 'dbroot' user provided in above script.

• {obfuscated_password} - the Obfuscated password for {osa_db_user}

2.4 Initializing Metadata Store

 This topic applies only to Oracle user-managed services.

After installing GGSA, you need to configure the metadata store with the database admin
credential details and the version of GGSA as required.

To initialize the metadata store, you need database admin credentials with sysdba privileges:

1. Change directory to OSA-19.1.0.0.*/osa-base/bin.

2. Execute the following command:./start-osa.sh dbroot=<db sys user>
dbroot_password=<db sys password> For example, ./start-osa.sh dbroot=AlphaUser
dbroot_password=AlphaPassword

Chapter 2
Initializing Metadata Store

2-8

3. Following console messages will be displayed indicating the OSA schema was created
and prompting for password for osaadmin user.

The following console messages indicates that the GGSA schema is created and the
metadata store is successfully initialized:

JAVA_HOME: JAVA_HOME: /<jdk install path>/jdk1.8.0_121.
 SPARK_HOME: /<Spark install path>/spark-*.*.*-bin-hadoop*.*
 The RELEASE file exists:
 /<Spark install path>/spark-*.*.*-bin-hadoop*.*/RELEASE
 SPARK_VERSION: Spark *.*.* built for Hadoop *.*
 2019-06-23 08:48:51.444:INFO::main:
 Logging initialized @305ms to org.eclipse.jetty.util.log.StdErrLog
 OSA DB user created:osa
 The OSA application administrative user with the predefined name
"osaadmin" is going to be created
 You have not specified a password
 for the "osaadmin" user on the command line. Please enter it
below.

4. Enter password:

5. Re-enter password:

6. Run ./stop-osa.sh to complete schema creation and metadata initialization.

7. If you don’t see the above messages, check the OSA-19.1.0.0.*/osa-base/logs folder to
identify the cause and potential solution.

Note:

If you do not have the database admin credentials, ask your database
administrator to create a GoldenGate Stream Analytics database user by using
the SQL scripts available in the OSA-19.1.0.0.*/osa-base/sql folder. The
GoldenGate Stream Analytics database username must match the one
configured in jetty-osa-datasource.xml.

2.5 Jetty Properties File
Use the jetty properties available at OSA-19.1.0.0.*/osa-base/etc/jetty.properties, to
modify certain security features.

Note:

It is recommended that you configure these properties at the installation stage, to
avoid restarting your server, if configured at a later stage.

Following are the available properties:

• jetty.session.timeout
You can set the timeout for OSA web session. This sets the timeout for OSA web session.
By default the timeout is set to 30 minutes. The value can be changed to any integer
greater than 1.

Chapter 2
Jetty Properties File

2-9

• host.headers.whitelist
You can restrict the x-forwarded-host header values to the values defined with this
property.

Example: host.headers.whitelist= www.oracle.com, www.microsoft.com,
localhost:9080
Here the value of the host header can be only of these three domains listed. Commenting
out this property with a # will allow all values for the header.

Note:

If you do not specify explicitly the host header in your request, the default value is
host-server:port, where the OSA jetty server is running. Hence you must
specify the port number along with the server address.

• xforwarded.host.headers.whitelist
You can restrict the x-forwarded-host header values to the values defined with this
property.

Example: xforwarded.host.headers.whitelist= www.oracle.com, www.microsoft.com,
localhost
Here the value of the x-forwarded-host header can be only of these three domains listed.
Commenting out this property with a # will allow all values for the header. If no domain is
entered, that is, if the value of the property is empty, then this header is not supported.

• response.headers.list
A comma separated list of response headers, which will be sent along with response for
every request.

Example: response.headers.list="x-frame-options: sameorigin, X-Content-Type-
Options: nosniff"
By default the above 2 response headers are set.

– x-frame-options: sameorigin will prevent clickjack attacking.

– X-Content-Type-Options: nosniff will prevent sniffing of the response content by the
browsers.

2.6 Adjusting Jetty Threadpool
Edit OSA-19.1.0.0.*/etc/jetty-threadpool.xml to change minimum and maximum thread
configuration to 100 and 2000 respectively. Sample shown below.

<New id="threadPool"
 class="org.eclipse.jetty.util.thread.QueuedThreadPool">
 <Set name="minThreads" type="int"><Property
name="jetty.threadPool.minThreads"
 deprecated="threads.min" default="100"/></Set>
<Set name="maxThreads" type="int"><Property name="jetty.threadPool.maxThreads"
 deprecated="threads.max" default="2000"/></Set>
<Set name="reservedThreads" type="int"><Property
 name="jetty.threadPool.reservedThreads" default="-1"/></Set>
 <Set name="idleTimeout" type="int"><Property
 name="jetty.threadPool.idleTimeout" deprecated="threads.timeout"
 default="60000"/></Set>

Chapter 2
Adjusting Jetty Threadpool

2-10

<Set name="detailedDump" type="boolean"><Property
 name="jetty.threadPool.detailedDump" default="false"/></Set>
</New>
</Configure>

2.7 Integrating Stream Analytics with Oracle GoldenGate
Follow the below steps to integrate Oracle Goldengate with Stream Analytics:

1. Download and install Oracle GoldenGate Big Data. For a compatible version of Oracle
GoldenGate Big Data, see the latest certification matrix.

Note:

Install Oracle GoldenGate Big Data on the same machine and with the same
user as OSA.

2. Set the following environment variables:

• KAFKA_HOME – set this variable to the path where Kafka is installed.
Example :export KAFKA_HOME=/u01/app/kafka.

• LD_LIBRARY_PATH – set this variable to the directory path that contains JVM shared
library.
Example: export LD_LIBRARY_PATH=/u01/app/java/jre/lib/amd64/
server:$LD_LIBRARY_PATH

• GGBD_HOME – set this variable to the path where Goldengate for Bigdata is installed.
Example: export GGBD_HOME=/u01/app/
OGG_BigData_Linux_x64_19.1.0.0.0

3. Start the manager process on port 7801.

For installation steps, see Installing GoldenGate for Big Data.

2.8 Maven Setting for GoldenGate Big Data Handlers
Maven is required to download third-party client libraries for the GGBD handlers to work.

2.8.1 Set the Maven Home Path
To configure maven home:

Update the OSA-19.1.0.0.*/osa-base/bin/configure-osa.sh with the correct
M2_HOME path, as below:
Change the path from

OSA_HOME="$(cd "$(dirname "../../")" >/dev/null 2>&1 ; pwd -P)"
to

OSA_HOME="$(cd "$(dirname "../../../")" >/dev/null 2>&1 ; pwd -P)"

Chapter 2
Integrating Stream Analytics with Oracle GoldenGate

2-11

https://www.oracle.com/middleware/technologies/fusion-certification.html

Note:

Update the maven home path before initialization of the metadata store, or you will
have to restart GGSA after this update.

2.8.2 Configure Maven Proxy Settings
If your GGSA installation is behind proxy, to use the GGBD handlers, you have to configure the
settings.xml that comes with the Maven distribution.

Update the <OSA_INSTALLATION_PATH>/apache-maven-3.6.3/conf/settings.xml
with the correct proxy entries in the <proxies> </proxies> section, as shown below:

<proxy>
 <id>optional</id>
 <active>true</active>
 <protocol>http</protocol>
 <username>proxyuser</username>
 <password>proxypass</password>
 <host>proxy.host.net</host>
 <port>80</port>
 <nonProxyHosts>local.net|some.host.com</nonProxyHosts>
 </proxy>

Note:

Username and password field is required if the proxy is protected.

Note:

Update the settings.xml before initialization of the metadata store, or you will
have to restart GGSA after this update.

2.9 GoldenGate Stream Analytics Hardware Requirements for
Enterprise Deployment

This chapter provides the hardware requirements for GoldenGate Stream Analytics Design and
Data tiers.

Design Tier

GoldenGate Stream Analytics' Design-tier is a multi-user environment that allows users to
implement and test dataflow pipelines. The design-tier also serves dashboards for streaming
data. Multiple users can build, test, and deploy pipelines based on the capacity of the Runtime-
tier (YARN/Spark cluster) simultaneously.

Chapter 2
GoldenGate Stream Analytics Hardware Requirements for Enterprise Deployment

2-12

GGSA uses Jetty as the web-server with support for HA. For production deployments of GGSA
Design-tier, you require the minimum hardware configuration listed below:

• Web server – Jetty with High Availability (HA) support

• 2 nodes with 4+ cores and 32+ GB of RAM for running two instances of Jetty.

• 1 node with 4+ cores and 16+ GB of RAM for running MySQL or Oracle meta-store.

• 2 nodes with 4+ cores and 16+ GB of RAM for running two instances of Kafka and 3
instances of ZooKeeper. Please note this is a separate Kafka cluster for GGSA’s internal
use and for interactively designing pipelines. ZooKeeper end-point of this Kafka cluster
must be specified in GGSA’s system settings UI.

Note:

The two-node Kafka cluster can be avoided if customer already has a Kafka cluster in
place and is fine with OSA leveraging that cluster for its internal usage.

Based on the above estimates, total cores for design-tier is 12 and approximate memory is 112
GB RAM. Jetty instances can be independently scaled as the number of users increase.
Diagram below illustrates GGSA’s Design-tier topology.

Data Tier

The deployed pipelines are run on the YARN or Spark cluster. You can use existing YARN/
Spark clusters if you have sufficient spare capacity.

Sizing Guidelines

Use the following sizing guidelines to run GGSA pipelines. Ensure that the pipelines are
deployed on shared storage, so that the pipeline code and libraries are accessible from all

Chapter 2
GoldenGate Stream Analytics Hardware Requirements for Enterprise Deployment

2-13

nodes in the YARN/Spark cluster. GGSA supports NFS for shared storage but if you want to
use HDFS, the hardware needs two more nodes.

• – 2 nodes with 4+ cores, 16+GB RAM, and 500 GB local disk to run HDFS cluster, two
instances of HDFS name and data nodes.

The Spark tier is where work happens and the Spark cluster size depends on

• Number of pipelines that will simultaneously run

• Logic in each pipeline

• Desired degree of parallelism

For each streaming pipeline the number of cores and memory gets computed based on a
required degree of parallelism. As an example, consider a pipeline ingesting data from
customer’s Kafka topic T with 3 partitions using direct ingestion. Direct ingestion is where no
Spark Receivers are used. In this case, the minimum number of processes that you need to
run for optimal performance is as follows: 1 Spark Driver Process + 3 Executor processes, 1
for each Kafka Topic partition. Each Executor process needs a minimum of 2 cores.

The number of cores for a pipeline can be computed as

--executor-cores = 1 + Number of Executors * 2

In case of Receiver-based ingestion as in JMS, it is computed as

--executor-cores = 2 + Number of Executors * 2

This is rough estimates and environments where fine-grained scheduling is not available. In
environments like Kubernetes, we have the luxury of more fine-grained scheduling.

The formula for sizing memory is

(Number of Windows * Average Window Range * Event Rate * Event Size) + (Number of
Lookup/Reference Objects being cached * Size of Lookup Object).

Diagram below illustrates GGSA’s Data-tier topology.

If you are considering GGSA for POCs and not production, then you can use the
following configuration:

Design Tier

• An instance of the Jetty running on a 4+ core node with a 32+ GB of RAM.

• An instance of MySQL/Oracle for metadata store on a 4+ core node with a 16+ GB of
RAM.

Chapter 2
GoldenGate Stream Analytics Hardware Requirements for Enterprise Deployment

2-14

• A node of the Kafka cluster running on a 4+ core node with 16+ GB of RAM.

Note:

This is a separate Kafka cluster for GGSA’s internal use and for interactively
designing pipelines.

Data Tier

• A Hadoop Distributed File System (HDFS) cluster node running on 4+ core physical node
with 16+ GB of RAM.

• 2 nodes of the YARN/Spark cluster each running on a 4+ core physical node with a 16+
GB of RAM.

Development Mode Configurations

Design Tier

• 1 node with 4+ cores and 16+ GB of RAM for 1 instance of Jetty, 1 instance of MySQL DB,
and 1 instance of Kafka+ZooKeeper

Data Tier

• 1 node with 4+ cores and 16+ GB of RAM for 1 instance of HDFS and 1 instance of YARN/
Spark.

2.10 Retaining https and Disabling http
1. By default, the GGSA web application is available on both http (port 9080) and https (port

9443). Follow the procedure below if you intend to disable http.

2. Edit file osa-base/start.d/http.ini.

3. Comment out as follows: ##--module=http.

4. Start GGSA web server by running osa-base/bin/start-osa.sh.

2.11 Setting up Runtime for GoldenGate Stream Analytics Server
Before you start using GoldenGate Stream Analytics, you need to specify the runtime server,
environment, and node details. You must do this procedure right after you launch GoldenGate
Stream Analytics (GGSA) for the first time.

1. Change directory to OSA-19.1.0.0.*.*/osa-base/bin and run ./start-osa.sh. You
should see the following message on console.
Supported OSA schema versions are: [18.4.3, 18.1.0.1.0, 18.1.0.1.1,
19.1.0.0.0, 19.1.0.0.1, 19.1.0.0.2, 19.1.0.0.3, 19.1.0.0.5, 19.1.0.0.6,
19.1.0.0.7, 19.1.0.0.8]
The schema is preconfigured and current. No changes or updates are required.
If you do not see the above message, please check the log file in OSA-19.1.0.0.*.*/
osa-base/logs folder.

2. the Chrome browser, enter localhost:9080/osa to access Oracle Stream Analytics login
page, and login using your credentials.

Chapter 2
Retaining https and Disabling http

2-15

Note:

The password is a plain-text password.

3. Click the user name at the top right corner of the screen.

4. Click System Settings.

5. Click Environment.

6. Select the Runtime Server. See the sections below for Yarn and Spark Standalone
runtime configuration details.

Yarn Configuration

1. • YARN Resource Manager URL: Enter the URL where the YARN Resource Manager
is configured.

• Storage: Select the storage type for pipelines. To submit a GGSA pipeline to Spark,
the pipeline has to be copied to a storage location that is accessible by all Spark
nodes.

– If the storage type is WebHDFS:

* Path: Enter the WebHDFS directory (hostname:port/path), where the
generated Spark pipeline will be copied to and then submitted from. This
location must be accessible by all Spark nodes. The user specified in the
authentication section below must have read-write access to this directory.

* HA Namenodes: Set the HA namenodes. If the hostname in the above URL
refers to a logical HA cluster, specify the actual namenodes here, in the
format:Hostname1:Port, Hostname2:Port.

– If storage type is HDFS:

* Path: The path could be <HostOrIPOfNameNode><HDFS Path>. For
example, xxx.xxx.xxx.xxx/user/oracle/ggsapipelines. Hadoop
user must have Write permissions. The folder will automatically be created if it
does not exist.

* HA Namenodes: If the hostname in the above URL refers to a logical HA
cluster, specify the actual namenodes here, in the format:Hostname1:Port,
Hostname2:Port.

– If storage type is NFS:
Path: The path could be /oracle/spark-deploy.

Note:

/oracle should exist and spark-deploy will automatically be created if it
does not exist. You will need Write permissions on the /oracle directory.

2. Hadoop Authentication:

• Simple authentication credentials:

– Protection Policy: Select a protection policy from the drop-down list. This value
should match the value on the cluster.

Chapter 2
Setting up Runtime for GoldenGate Stream Analytics Server

2-16

– Username: Enter the user account to use for submitting Spark pipelines. This user
must have read-write access to the Path specified above.

• Kerberos authentication credentials:

– Protection Policy: Select a protection policy from the drop-down list. This value
should match the value on the cluster.

– Kerberos Realm: Enter the domain on which Kerberos authenticates a user, host,
or service. This value is in the krb5.conf file.

– Kerberos KDC: Enter the server on which the Key Distribution Center is running.
This value is in the krb5.conf file.

– Principal: Enter the GGSA service principal that is used to authenticate the GGSA
web application against Hadoop cluster, for application deployment. This user
should be the owner of the folder used to deploy the GGSA application in HDFS.
You have to create this user in the yarn node manager as well.

– Keytab: Enter the keytab pertaining to GGSA service principal.

– Yarn Resource Manager Principal: Enter the yarn principal. When Hadoop
cluster is configured with Kerberos, principals for hadoop services like hdfs, https,
and yarn are created as well.

3. Yarn master console port: Enter the port on which the Yarn master console runs. The
default port is 8088.

4. Click Save.

Spark Standalone

1. Select the Runtime Server as Spark Standalone, and enter the following details:

• Spark REST URL: Enter the Spark standalone REST URL. If Spark standalone is HA
enabled, then you can enter comma-separated list of active and stand-by nodes.

• Storage: Select the storage type for pipelines. To submit a GGSA pipeline to Spark,
the pipeline has to be copied to a storage location that is accessible by all Spark
nodes.

– If the storage type is WebHDFS:

* Path: Enter the WebHDFS directory (hostname:port/path), where the
generated Spark pipeline will be copied to and then submitted from. This
location must be accessible by all Spark nodes. The user specified in the
authentication section below must have read-write access to this directory.

* HA Namenodes: If the hostname in the above URL refers to a logical HA
cluster, specify the actual namenodes here, in the format:Hostname1:Port,
Hostname2:Port.

– If storage type is HDFS:

* Path: The path could be <HostOrIPOfNameNode><HDFS Path>. For
example, xxx.xxx.xxx.xxx/user/oracle/ggsapipelines. Hadoop
user must have Write permissions. The folder will automatically be created if it
does not exist.

* HA Namenodes: If the hostname in the above URL refers to a logical HA
cluster, specify the actual namenodes here, in the format:Hostname1:Port,
Hostname2:Port.

This field is applicable only when the storage type is HDFS.

Chapter 2
Setting up Runtime for GoldenGate Stream Analytics Server

2-17

– Hadoop Authentication for WebHDFS and HDFS Storage Types:

* Simple authentication credentials:

* Protection Policy: Select a protection policy from the drop-down list.

* Username: Enter the user account to use for submitting Spark pipelines.
This user must have read-write access to the Path specified above.

* Kerberos authentication credentials:

* Protection Policy: Select a protection policy from the drop-down list.

* Kerberos Realm: Enter the domain on which Kerberos authenticates a
user, host, or service. This value is in the krb5.conf file.

* Kerberos KDC: Enter the server on which the Key Distribution Center is
running. This value is in the krb5.conf file.

* Principal: Enter the GGSA service principal that is used to authenticate
the GGSA web application against Hadoop cluster, for application
deployment. This user should be the owner of the folder used to deploy
the GGSA application in HDFS. You have to create this user in the yarn
node manager as well.

* Keytab: Enter the keytab pertaining to GGSA service principal.

* Yarn Resource Manager Principal: Enter the yarn principal. When
Hadoop cluster is configured with Kerberos, principals for hadoop services
like hdfs, https, and yarn are created as well.

– If storage type is NFS:
Path: The path could be /oracle/spark-deploy.

Note:

/oracle should exist and spark-deploy will automatically be created if it
does not exist. You will need Write permissions on the /oracle directory.

2. Spark standalone master console port: Enter the port on which the Spark standalone
console runs. The default port is 8080.

Note:

The order of the comma-separated ports should match the order of the comma-
separated spark REST URLs mentioned in the Path.

3. Spark master username: Enter your Spark standalone server username.

4. Spark master password: Click Change Password, to change your Spark standalone
server password.

Note:

You can change your Spark standalone server username and password in this
screen. The username and password fields are left blank, by default.

5. Click Save.

Chapter 2
Setting up Runtime for GoldenGate Stream Analytics Server

2-18

2.12 Validating Data Flow to GoldenGate Stream Analytics
After you have configured GoldenGate Stream Analytics (GGSA) with the runtime details, you
need to ensure that sample data is being detected and correctly read by GGSA.

To validate data flow into GoldenGate Stream Analytics, use the following steps:

1. Copy the six lines below into a CSV file, for example sample.csv.

ProductLn,ProductType,Product,OrderMethod,CountrySold,QuantitySold,UnitSale
Price
Personal Accessories,Watches,Legend,Special,Brazil,1,240
Outdoor Protection,First Aid,Aloe Relief,E-mail,United States,3,5.23
Camping Equipment,Lanterns,Flicker Lantern,Telephone,Italy,3,35.09
Camping Equipment,Lanterns,Flicker Lantern,Fax,United States,4,35.09
Golf Equipment,Irons,Hailstorm Steel Irons,Telephone,Spain,5,461

2. In the Catalog, as shown in the image below, click Create New Item, and then click
Stream. create a stream of type File.

3. In the Type Properties page of the Create Stream dialog box, provide the Name,
Description, and Tags for the Stream, select the Stream Type as File, and then select
Create Pipeline with this source (Launch Pipeline Editor).

4. Click the Next button to navigate to the Source Details page of the Create Stream dialog
box.

5. In the Source Details page, click Upload file to upload the sample.csv file, and then click
Next to navigate to the Data Format page.

6. In the Data Format page, select the CSV Predefined Format as Default and select the
First record as header, and then click Next to navigate to the Shape page.

7. In the Shape page, verify that the shape of the event is successfully inferred as in the
following image, and then click Save.

8. In the Create Pipeline dialog box, enter the Name, Description, Tags of the pipeline,
select the Stream that you created, and then click Save:

You can see the pipeline editor and you can see the message Starting Pipeline followed
by the message Listening to Events.

Note:

This is the first access of the cluster and it takes time to copy libraries, please be
patient. You should eventually see the screenshot below with single node
representing the stream source.

To complete your pipeline, see Create a Pipeline.

2.13 Terminating GoldenGate Stream Analytics
You can terminate GoldenGate Stream Analytics by running a simple command.

Use the following command to terminate GoldenGate Stream Analytics:

Chapter 2
Validating Data Flow to GoldenGate Stream Analytics

2-19

./stop-osa.sh from OSA-19.1.0.0.*/osa-base/bin folder

2.14 Upgrading GoldenGate Stream Analytics
To upgrading from an existing version of GGSA to newer version:

1. Backup your metadata store using any of Oracle or MySQL backup tools. The backup is
required to restore the tools in case the upgrade fails.

2. Run the ./stop-osa.sh command to stop the GGSA server.

3. Create a OSA-19 folder and download the OSA-19.1.0.0.*.zip file into the newly- created
folder.

4. Unzip to extract the contents of the OSA-19.1.0.0.*.zip file.

5. Copy <YourVersion>/osa-base/etc/osa-env.sh to OSA-19.1.0.0.*/osa-base/etc.

Note:

You can skip this step, if you are upgrading to GGSA version 19.1.0.0.8.

6. Copy <YourVersion>/osa-base/etc/jetty-osa-datasource.xml to OSA-19.1.0.0.*/osa-
base/etc.

7. Run the ./start-osa.sh command to start the OSA server. This performs the schema
migration.

8. To validate the upgrade, see Validating your Installation.

Chapter 2
Upgrading GoldenGate Stream Analytics

2-20

3
Configure

Configure Runtime Environment

Configure Users

3.1 Configure Runtime Environment
Mandatory Configurations

Optional Configurations

3.1.1 Mandatory Configurations
The following configurations are mandatory:

3.1.1.1 Configuring Kafka
Kafka is used as an internal transport to display live output from pipelines, errors, warnings,
etc.

To configure Kafka:

1. Click the user name at the top right corner of the screen.

2. Click System Settings.

3. Click Environment.

4. Enter the Kafka bootstrap URL. Select the one of the available authentication methods:

• SSL: Select SSL to connect to an SSL enabled Kafka cluster.

– Truststore: Locate and upload the truststore file. This field is applicable only to
connect to an SSL enabled Kafka cluster.

– Truststore Password: Enter the truststore password.

• MTLS: Select MLTS to enable 2-way authentication of both the user and the Kafka
broker.

– Truststore: Locate and upload the truststore file. This field is applicable only to
connect to an SSL enabled Kafka cluster.

– Truststore Password: Enter the truststore password.

– Keystore: Locate and upload the keystore file. This field is applicable only to
connect to an SSL enabled Kafka cluster.

– Keystore Password: Enter the keystore password.

• SASL: Select SASL if Kafka broker requires authentication.

– User Name: When using OCI Streaming Kafka compatibility APIs, enter the SASL
username for Kafka broker, in the following format:

tenancyName/username/stream pool id

3-1

Note:

Enter the tenancyName and userName, not tenancy OCID and user
OCID. Similarly, enter the stream pool ID and not the stream pool name.

You can retrieve this information from the OCI console. This field is enabled only if
you have checked the SASL option.

– Password: Enter the SASL password, which is an authentication token that you
can generate on the User Details page, of the OCI console.

Note:

Copy the authentication token when you create it, and save it for future
use. You can not retrieve it at a later stage.

After this configuration, GGSA creates Kafka topics and Group IDs, to be used internally.

3.1.1.1.1 Internal Kafka Topics
The internal Kafka topics and Group ID's used by GGSA are standardized to the following
naming conventions:

Kafka Topics

Topic Resource Operations

sx_backend_notification_<UUID> Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_messages_<UUID> Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_<application_name>_<stage_name>_public Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_<application_name>_<stage_name>_draft Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_<application_name>_public_<offset_number>_<stage_name>_offse
t

Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

Chapter 3
Configure Runtime Environment

3-2

Group IDs

Group ID Resource Operations

sx_<UUID>_receiver Group DESCRIBE,
READ

sx_<UUID> Group DESCRIBE,
READ

sx_<application_name>_public_<offset_number>_<stage_name> Group DESCRIBE,
READ

3.1.1.2 Configuring the Runtime Server
For runtime, you can use a Spark Standalone or Hadoop YARN cluster. Only users with the
Administrator permissions can set the system settings in Oracle GoldenGate Analytics.

3.1.1.2.1 Configuring for Standalone Spark Runtime
To configure for Standalone Spark Runtime:

1. Click the user name at the top right corner of the screen.

2. Click System Settings.

3. Click Environment.

4. Select the Runtime Server as Spark Standalone, and enter the following details:

• Spark REST URL: Enter the Spark standalone REST URL. If Spark standalone is HA
enabled, then you can enter comma-separated list of active and stand-by nodes.

• Storage: Select the storage type for pipelines. To submit a GGSA pipeline to Spark,
the pipeline has to be copied to a storage location that is accessible by all Spark
nodes.

– If the storage type is WebHDFS:

* Path: Enter the WebHDFS directory (hostname:port/path), where the
generated Spark pipeline will be copied to and then submitted from. This
location must be accessible by all Spark nodes. The user specified in the
authentication section below must have read-write access to this directory.

* HA Namenodes: If the hostname in the above URL refers to a logical HA
cluster, specify the actual namenodes here, in the format:Hostname1:Port,
Hostname2:Port.

– If storage type is HDFS:

* Path: The path could be <HostOrIPOfNameNode><HDFS Path>. For
example, xxx.xxx.xxx.xxx/user/oracle/ggsapipelines. Hadoop
user must have Write permissions. The folder will automatically be created if it
does not exist.

* HA Namenodes: If the hostname in the above URL refers to a logical HA
cluster, specify the actual namenodes here, in the format:Hostname1:Port,
Hostname2:Port.

This field is applicable only when the storage type is HDFS.

– Hadoop Authentication for WebHDFS and HDFS Storage Types:

* Simple authentication credentials:

Chapter 3
Configure Runtime Environment

3-3

* Protection Policy: Select a protection policy from the drop-down list.

* Username: Enter the user account to use for submitting Spark pipelines.
This user must have read-write access to the Path specified above.

* Kerberos authentication credentials:

* Protection Policy: Select a protection policy from the drop-down list.

* Kerberos Realm: Enter the domain on which Kerberos authenticates a
user, host, or service. This value is in the krb5.conf file.

* Kerberos KDC: Enter the server on which the Key Distribution Center is
running. This value is in the krb5.conf file.

* Principal: Enter the GGSA service principal that is used to authenticate
the GGSA web application against Hadoop cluster, for application
deployment. This user should be the owner of the folder used to deploy
the GGSA application in HDFS. You have to create this user in the yarn
node manager as well.

* Keytab: Enter the keytab pertaining to GGSA service principal.

* Yarn Resource Manager Principal: Enter the yarn principal. When
Hadoop cluster is configured with Kerberos, principals for hadoop services
like hdfs, https, and yarn are created as well.

– If storage type is NFS:
Path: The path could be /oracle/spark-deploy.

Note:

/oracle should exist and spark-deploy will automatically be created if it
does not exist. You will need Write permissions on the /oracle directory.

5. Spark standalone master console port: Enter the port on which the Spark standalone
console runs. The default port is 8080.

Note:

The order of the comma-separated ports should match the order of the comma-
separated spark REST URLs mentioned in the Path.

6. Spark master username: Enter your Spark standalone server username.

7. Spark master password: Click Change Password, to change your Spark standalone
server password.

Note:

You can change your Spark standalone server username and password in this
screen. The username and password fields are left blank, by default.

8. Click Save.

Chapter 3
Configure Runtime Environment

3-4

3.1.1.2.2 Configuring for Hadoop Yarn Runtime
1. Click the user name at the top right corner of the screen.

2. Click System Settings.

3. Click Environment.

4. Select the Runtime Server as Yarn, and enter the following details:

• YARN Resource Manager URL: Enter the URL where the YARN Resource Manager
is configured.

• Storage: Select the storage type for pipelines. To submit a GGSA pipeline to Spark,
the pipeline has to be copied to a storage location that is accessible by all Spark
nodes.

– If the storage type is WebHDFS:

* Path: Enter the WebHDFS directory (hostname:port/path), where the
generated Spark pipeline will be copied to and then submitted from. This
location must be accessible by all Spark nodes. The user specified in the
authentication section below must have read-write access to this directory.

* HA Namenodes: Set the HA namenodes. If the hostname in the above URL
refers to a logical HA cluster, specify the actual namenodes here, in the
format:Hostname1:Port, Hostname2:Port.

– If storage type is HDFS:

* Path: The path could be <HostOrIPOfNameNode><HDFS Path>. For
example, xxx.xxx.xxx.xxx/user/oracle/ggsapipelines. Hadoop
user must have Write permissions. The folder will automatically be created if it
does not exist.

* HA Namenodes: If the hostname in the above URL refers to a logical HA
cluster, specify the actual namenodes here, in the format:Hostname1:Port,
Hostname2:Port.

– If storage type is NFS:
Path: The path could be /oracle/spark-deploy.

Note:

/oracle should exist and spark-deploy will automatically be created if it
does not exist. You will need Write permissions on the /oracle directory.

5. Hadoop Authentication:

• Simple authentication credentials:

– Protection Policy: Select a protection policy from the drop-down list. This value
should match the value on the cluster.

– Username: Enter the user account to use for submitting Spark pipelines. This user
must have read-write access to the Path specified above.

• Kerberos authentication credentials:

– Protection Policy: Select a protection policy from the drop-down list. This value
should match the value on the cluster.

Chapter 3
Configure Runtime Environment

3-5

– Kerberos Realm: Enter the domain on which Kerberos authenticates a user, host,
or service. This value is in the krb5.conf file.

– Kerberos KDC: Enter the server on which the Key Distribution Center is running.
This value is in the krb5.conf file.

– Principal: Enter the GGSA service principal that is used to authenticate the GGSA
web application against Hadoop cluster, for application deployment. This user
should be the owner of the folder used to deploy the GGSA application in HDFS.
You have to create this user in the yarn node manager as well.

– Keytab: Enter the keytab pertaining to GGSA service principal.

– Yarn Resource Manager Principal: Enter the yarn principal. When Hadoop
cluster is configured with Kerberos, principals for hadoop services like hdfs, https,
and yarn are created as well.

6. Yarn master console port: Enter the port on which the Yarn master console runs. The
default port is 8088.

7. Click Save.

3.1.1.2.3 Configuring for OCI Big Data Service

3.1.1.2.3.1 Topology

In this example, the marketplace GGSA instance and the BDS cluster are in the same regional
subnet. The GGSA instance is accessed using its public IP address. The GoldenGate Stream
Analytics instance seconds as a Bastion Host to your BDS cluster. Once you ssh to GGSA
instance, you can ssh to all your BDS nodes, by copying your ssh private key to GGSA
instance.

Chapter 3
Configure Runtime Environment

3-6

The default security list for the Regional Subnet must allow bidirectional traffic to edge/OSA
node so create a stateful rule for destination port 443. Also create a similar Ingress rule for port
7183 to access the BDS Cloudera Manager via the OSA edge node. An example Ingress rule
is shown below.

You will also be able to access your Cloudera Manager using the same public IP of GGSA
instance by following steps below. Please note this is optional.SSH to GGSA box and run the
following port forward commands so you can access the Cloudera Manager via the GGSA
instance:

sudo firewall-cmd --add-forward-port=port=7183:proto=tcp:toaddr=<IP
address of Utility Node running the Cloudera Manager console>
sudo firewall-cmd --runtime-to-permanent
sudo sysctl net.ipv4.ip_forward=1
sudo iptables -t nat -A PREROUTING -p tcp --dport 7183 -j DNAT --to-
destination <IP address of Utility Node running the Cloudera Manager
console>:7183
sudo iptables -t nat -A POSTROUTING -j MASQUERADE
You should now be able to access the Cloudera Manager using the URL https://<Public
IP of GGSA>:7183.

3.1.1.2.3.2 Prerequisites

1. Retrieve IP addresses of BDS cluster nodes from OCI console as shown in screenshot
below. Alternatively, you can get the FQDN for BDS nodes from the Cloudera Manager as
shown below.

Chapter 3
Configure Runtime Environment

3-7

2. Reconfigure YARN virtual cores using Cloudera Manager as shown below. This will allow
many pipelines to run in the cluster and not be bound by actual physical cores.

• Container Virtual CPU Cores: This is the total virtual CPU cores available to YARN
Node Manager for allocation to Containers. Please note this is not limited by physical
cores and you can set this to a high number, say 32 even for VM standard 2.1.

Chapter 3
Configure Runtime Environment

3-8

• Container Virtual CPU Cores Minimum: This is the minimum vcores that will be
allocated by YARN scheduler to a Container. Please set this to 2 since CQL engine is
a long-running task and will require a dedicated vcore.

Container Virtual CPU Cores Maximum: This is the maximum vcores that will be
allocated by YARN scheduler to a Container. Please set this to a number higher than 2
say 4.

Note:

This change will require a restart of the YARN cluster from Cloudera Manager.

3.1.1.2.3.3 Configuring for Kerberized Big Data Service Runtime

In GGSA System Settings dialog, configure the following:

1. Set Kafka Zookeeper Connection to Private IP of the OSA node or list of Brokers that have
been configured for GGSA’s internal usage. For example, 10.0.0.59:2181.

2. Set Runtime Server to Yarn.

3. Set Yarn Resource Manager URL to Private IPs of all master nodes starting with the one
running active Yarn Resource Manager. For example,
bdsggsamn1.sub03162222470.devintnetwork.oraclevcn.com,
bdsggsamn0.sub03162222470.devintnetwork.oraclevcn.com.

4. Set storage type to HDFS.

5. Set Path to <NameNode Nameservice><HDFS Path>. For example, bdsggsasec-ns/
user/oracle/ggsapipelines. The path will automatically be created if it does not
exist but the Hadoop User must have write permissions. NameNode Nameservice can be
obtained from HDFS configuration as shown in the screenshot below. Use search string
nameservice in the search field.

6. Set HA Namenode to Private IPs or hostnames of all master nodes (comma separated),
starting with the one running active NameNode server. In the next version of GGSA, the
ordering will not be needed. For example,
bdsggsamn0.sub03162222470.devintnetwork.oraclevcn.com,
bdsggsamn1.sub03162222470.devintnetwork.oraclevcn.com.

7. Set Yarn Master Console port to 8088 or as configured in BDS.

Chapter 3
Configure Runtime Environment

3-9

8. Set Hadoop authentication to Kerberos.

9. Set protection policy to privacy. Please note this should match the value in HDFS
configuration property hadoop.rpc.protection.

10. Set Kerberos Realm to BDACLOUDSERVICE.ORACLE.COM.

11. Set Kerberos KDC to private IP or hostname of BDS master node 0. For example,
bdsggsamn0.sub03162222470.devintnetwork.oraclevcn.com.

12. Set principal to bds@BDACLOUDSERVICE.ORACLE.COM. See this documentation to
create a Kerberos principal (e.g. bds) and add it to hadoop admin group, starting with step
Connect to Cluster's First Master Node and through the step Update HDFS
Supergroup.

Note:

You can hop/ssh to the master node using your GGSA node as the Bastion. You
will need your ssh private key to be available on GGSA node though. Restart
your BDS cluster as instructed in the documentation.

[opc@bdsggsa ~]$ ssh -i id_rsa_private_key
opc@bdsggsamn0.sub03162222470.devintnetwork.oraclevcn.com

13. Make sure the newly created principal is added to Kerberos keytab file on the master node
as shown:
bdsmn0 # sudo kadmin.local

kadmin.local: ktadd -k /etc/krb5.keytab bds@BDACLOUDSERVICE.ORACLE.COM

14. Fetch the keytab file using sftp and set Keytab field in system settings by uploading the
same.

15. Set Yarn Resource Manager principal which should be in the format yarn/<FQDN of
BDS MasterNode running Active Resource Manager>@KerberosRealm. For
example, yarn/
bdsggsamn1.sub03162222470.devintnetwork.oraclevcn.com@BDACLOUDSERVI
CE.ORACLE.COM.

Chapter 3
Configure Runtime Environment

3-10

https://martygubar.github.io/bds-getting-started/?lab=create-hadoop-admin-user

Sample System Settings Screen:

3.1.1.2.3.4 Configuring for Non Kerberized Big Data Service Runtime

In GGSA System Settingsdialog, configure the following:

1. Set Kafka Zookeeper Connection to Private IP of the OSA node or list of Brokers that have
been configured for GGSA’s internal usage. For example, 10.0.0.59:2181

2. Set Runtime Server to Yarn.

3. Set Yarn Resource Manager URL to Private IP or Hostname of the BDS Master node. For
example, bdsggsamn0.sub03162222470.devintnetwork.oraclevcn.com.

4. Set storage type to HDFS.

5. Set Path to <PrivateIP or Host Of Master><HDFS Path>. For example, 10.x.x.x/user/
oracle/ggsapipelines or
bdsggsamn0.sub03162222470.devintnetwork.oraclevcn.com/user/oracle/
ggsapipelines .

6. Set HA Namenode to Private IP or Hostname of the BDS Master node. For example,
bdsggsamn0.sub03162222470.devintnetwork.oraclevcn.com.

7. Set Yarn Master Console port to 8088 or as configured in BDS

8. Set Hadoop authentication to Simple and leave Hadoop protection policy at authentication
if available

Chapter 3
Configure Runtime Environment

3-11

9. Set username to oracle.

10. Click Save.

3.1.2 Optional Configurations
The following configurations are optional:

3.1.2.1 Configuring Pipeline Preferences
To set the pipeline configurations:

1. Click the user name in the top right corner of the screen and Select System Settings from
the drop-down list.

2. Click Pipelines and set the following configurations:

• Batch Duration: Set the default duration of the batch for each pipeline.

• Executor Count: Set the default number of executors per pipeline.

• Cores per Executor: Set the default number of cores. A minimum value of 2 is
required.

• Executor Memory: Set the default allocated memory for each executor instance in
megabytes.

• Cores per Driver: Set the default number of cores. A minimum value of 1 is required.

• Driver Memory: Set the default allocated memory per driver instance in megabytes.

• Log Level: Select a log level for unpublished pipelines, from the drop-down list.

Chapter 3
Configure Runtime Environment

3-12

Note:

Reset the default log level of draft pipelines to WARNING, and of published
pipelines, to ERROR.

• High Availability: Set the default HA value for each pipeline

• Pipeline Topic Retention: Set retention period for intermediate stage topics, in
milliseconds. Default is one hour.

• Enable Pipeline Topics: Select this option to enable creation of intermediate kafka
topics. It is selected by default.

• Input Topics Offset: Select the Kafka topic offset value from the drop-down list. The
default value is latest.

Note:

When you publish the pipeline for the first time, the input stream is read
based on the offset value you have selected in this drop-down list. On a
subsequent publish, the value you have selected here is not considered, and
the input stream is read from where it was last left off.

• Reset Offset: Select this option to read the input stream based on the offset value
selected in the Input Topics Offset drop-down list.

Note:

If you are using two Kafka streams as an input to the pipeline, the offset is
not preserved and the pipeline starts from the current timestamp. With a
single stream the offset is maintained and the pipeline can read from the
previous state of it.

3. Click Save.

3.1.2.2 Configuring Network Proxy
To set your Network Proxy:

1. Click the user name in the top right corner of the screen and Select System Settings from
the drop-down list.

2. Click Proxy, and set the following configurations:

• HTTP Proxy: Set HTTP proxy server to access any resource, for example a REST
target, outside your network.

• Port: Enter the port of the HTTP proxy server. Enter a number between 0 and 65,535.

• Use this proxy server for all protocols: Select the option to use a single proxy
server.

• No proxy for: Set a list of hosts that should be reached directly, bypassing the proxy.
This is a list of patterns separated by the delimiter |. The patterns can start or end with
a * for wildcards.

Chapter 3
Configure Runtime Environment

3-13

3. Click Save.

3.1.2.3 Configuring Kafka Preferences
To set your Kafka preferences:

1. Click the user name in the top right corner of the screen and Select System Settings from
the drop-down list.

2. Click Kafka Configuration, and set the following configurations:

• Partition count per Topic: By default, GGSA creates a Kafka topic with partition count
of 3 and a replication factor of 1. Increasing the partition count to higher than 3 will
increase throughput when consuming data from topic. For Kafka targets, you can
select a column as partitioning key.

• Replication factor per Topic: Increasing the replication factor increases the number
of copies of your data thereby making it highly available.

3. Click Save.

3.1.2.4 Configuring GG Preferences
To set your GG preferences:

1. Click the user name in the top right corner of the screen and Select System Settings from
the drop-down list.

2. Click GG Configuration, and set the following configurations:

• Begin: By default, GGSA reads the Goldengate trail file from the latest offset (Now),
but you can change it to read from the beginning.

3. Click Save.

3.1.2.5 Configuring SQL Preferences
When displaying tables and objects in Database reference or target, GGSA by default only
shows the objects that are owned by the user. If you want the system to display all objects the
user has access to, regardless of the owner, enter your own SQL query here.

To set your SQL preferences:

1. Click the user name in the top right corner of the screen and Select System Settings from
the drop-down list.

2. Click SQL Queries Configurations, and set the following configurations:

• Oracle DB Reference and Target:
Enter a SQL query to fetch the table column details, for all the tables to be used for
creating references or targets. The SELECT query must contain the following
attributes for each column: table_name, column_name, data_type, data_length,
data_precision, data_scale, nullable and data_default. WHERE statements can
be used to filter the tables listed.

Example: SELECT table_name, column_name, data_type, data_length,
data_precision, data_scale, nullable, data_default FROM
all_tab_columns WHERE table_name LIKE DEMO ORDER BY table_name.
In this example all the tables with names starting with DEMO will be displayed when
using references or targets.

• Oracle DB Geofence: Enter the query for geofence tables and columns details.

Chapter 3
Configure Runtime Environment

3-14

Enter a SQL query to fetch the table column details, for all the tables to be used for
creating Geofences. The SELECT query must contain the following attributes for each
column: table_name, column_name, data_type, data_length, data_precision,
data_scale. The tables listed in for geofence must have at least one column of the
SDO_GEOMETRY type. Hence the following where clause is mandatory: WHERE
table_name IN (SELECT TABLE_NAME FROM all_tab_columns WHERE
data_type='SDO_GEOMETRY'.

Example: SELECT table_name, column_name, data_type, data_length,
data_precision, data_scale FROM all_tab_columns WHERE table_name
IN (SELECT TABLE_NAME FROM all_tab_columns WHERE
data_type='SDO_GEOMETRY') AND table_name LIKE GEO ORDER BY
table_name desc. In this example, all the tables with names starting with GEO will
be listed in the descending order of the table name.

3. Click Save.

3.1.2.6 Changing Spark Work Directory
To change Spark work directory:

1. Stop Spark service:

a. sudo systemctl stop spark-slave.service
b. sudo systemctl stop spark-master.service

2. Create work directory under u02:

a. Navigate to /u02
b. sudo mkdir spark. Here spark is the work folder name, you can create folder with

the name of your choice.

c. chmod 777 spark, to change permission.

3. Edit spark-env.sh
a. Navigate to SPARK_HOME/conf, and edit spark-env.sh
b. Add SPARK_WORKER_DIR=/u02/spark at the end of the file spark-env.sh to point

to newly created folder under /u02
4. Start Spark service:

a. sudo systemctl start spark-master.service
b. sudo systemctl start spark-slave.service
You will see the application and driver data (files and logs) under /u02/spark when you
publish the pipeline again.

3.1.2.7 Changing Spark Log Rollover based on Time
To change Spark log rollover based on time:

1. Stop Spark service:

a. sudo systemctl stop spark-slave.service
b. sudo systemctl stop spark-master.service

2. Edit spark-env.sh

Chapter 3
Configure Runtime Environment

3-15

a. Navigate to SPARK_HOME/conf, and comment or delete SPARK_WORKER_OPTS variable
and its value.

3. Edit spark-defaults.conf by adding the below lines:

• spark.executor.logs.rolling.maxRetainedFiles 7
• spark.executor.logs.rolling.strategy time
• spark.executor.logs.rolling.time.interval minutely

Note:

You can change spark.executor.logs.rolling.time to daily, hourly,
minutely. This is to enable log rollover based on time.

4. Start Spark service:

a. sudo systemctl start spark-master.service
b. sudo systemctl start spark-slave.service
You will see the application and driver data (files and logs) under /u02/spark when you
publish the pipeline again.

3.2 Configure Users
Managing Users

Configuring User Preferences

3.2.1 Managing Users
After you install GoldenGate Stream Analytics, it is important to authenticate and manage
users who use the application.

User details are stored in a database. When you create a GGSA schema at the time of
installation, the following database tables are populated with one record in each table:

• osa_users — table containing the users

• osa_user_roles — table containing the user names and their associated roles

When you execute a query to pull in all the data from the osa_users table, you can see the
following:

select * from osa_users;

+----+----------+--------------------------------------+
| id | username | pwd |
+----+----------+--------------------------------------+
| 1 | osaadmin | MD5:201f00b5ca5d65a1c118e5e32431514c |
+----+----------+--------------------------------------+

where osaadmin is the pre-configured user along with the encrypted password.

Chapter 3
Configure Users

3-16

When you execute a query to pull in all the data from the osa_user_roles table, you can see
the following:

select * from osa_user_roles;

+---------+---------+
| user_id | role_id |
+---------+---------+
| 1 | 1 |
+---------+---------+

where role_id of value 1 indicates that the user is an administrator.

3.2.1.1 Adding Users
Though you can continue using Oracle GoldenGate Stream Analytics through the pre-
configured user, it is a best practice to create your own users and delete the default pre-
configured user.

When you add a user, it is highly recommended, though not mandatory, to obfuscate or encrypt
the password. You can use the utility provided with the application server (Jetty) to encrypt the
password.

Add Users Through User Interface

You can add/create users through the Oracle GoldenGate Stream Analytics application user
interface.

To add a new user:

1. Go to System Settings.

2. Under the User Management tab, click Add user.

3. Enter details in the Username, Password, and Confirm Password fields.

4. click Create.
You can see the new user along with the predefined user in the list of available users.

Repeat these steps for as many users as you need, based on your requirement. If you try a
user with the same name as that of an existing user, an error A user profile with the user
name <username> already exists. Please specify another user name. pops up.

Add Users Through Code

To add a new user:

1. Open a terminal and navigate to OSA-19.1.0.0.*.*.

This is top-level folder in the folder where you have extracted your zip installer.

Note:

Replace *.* with the current version of GGSA.

Chapter 3
Configure Users

3-17

2. Execute the following command:

java -cp ./lib/jetty-util-9.4.17.v20190418.jar
org.eclipse.jetty.util.security.Password NewUser <password>

where NewUser is the name of the user and <password> is the password that you want to
obfuscate or encrypt.

You will see a similar screen on your terminal:

2018-02-22 17:26:31.259:INFO::main: Logging initialized @100ms to
org.eclipse.jetty.util.log.StdErrLog <password>
OBF:1pbi1vn61unn1z7e1vu91ytc1o4u1o5s1yta1vv11z7o1uob1vnw1pcg
MD5:58d613129c5e71de57ee3f44c5ce16bc
CRYPT:NegJERR2H/a1M

For more information about running the password utility, see Configuring Secure
Password.

3. Connect to the database using the database user credentials that you have configured in /
osa-base/etc/jetty-osa-datasource.xml.

4. Insert a record into the osa_users table using any one of the following commands:

insert into osa_users (id,username,pwd) values
(2,'NewUser','OBF:1pbi1vn61unn1z7e1vu91ytc1o4u1o5s1yta1vv11z7o1uob1vnw1pcg'
);

or

insert into osa_users (id,username,pwd) values
(2,'NewUser','MD5:58d613129c5e71de57ee3f44c5ce16bc');

or

insert into osa_users (id,username,pwd) values
(2,'NewUser','CRYPT:NegJERR2H/a1M');

5. Insert a record into the osa_user_roles table using the following command:

insert into osa_user_roles (user_id, role_id) values (2,1);

Important:

Currently, Oracle GoldenGate Stream Analytics supports only one user role, i.e,
the administrator role. So the role_id value must always be 1.

You can now login to Oracle GoldenGate Stream Analytics as NewUser using <password>.
Repeat these steps to create as many users as you require.

Chapter 3
Configure Users

3-18

https://www.eclipse.org/jetty/documentation/jetty-9/index.html#configuring-security-secure-passwords
https://www.eclipse.org/jetty/documentation/jetty-9/index.html#configuring-security-secure-passwords

3.2.1.2 Changing Password

Change Password Through User Interface

To change a user password:

1. Go to System Settings.

2. Click the User Management tab.

3. Click Change Password next to the required user within the list of available users and
then provide a value for the new password and click Save.

Passwords are stored in MD5 hash form.

Change Password Using Code

To change a user password:

1. Obfuscate or encrypt the new password for the user using the utility provided with the
application server (Jetty).

2. Update the relevant record in the osa_users table. For example:

update osa_users set pwd='CRYPT:NesIZC3VkNGN2' where username='NewUser';

This command updates the password for the NewUser.

Remember to use your updated password the next time you login with NewUser.

3.2.1.3 Removing Users
You may want to remove users when you no longer need them.

Before you proceed to delete any user, make a note of the following:

• If a user who owns draft pipelines is deleted, then the pipelines are either migrated to the
current user or deleted, based on the selection you make at the time of deletion.

• If you attempt to delete yourself, all your draft pipelines are deleted after you confirm. The
current user session is invalidated and you will be signed out of the application
immediately.

Delete Users Through User Interface

To delete a user:

1. Go to System Settings.

2. Click the User Management tab.

3. Click Delete next to the required user within the list of available users and then click OK
within the confirmation dialog.

Delete Users Through Code

To delete a user:

Chapter 3
Configure Users

3-19

1. Execute the following command from SQLPLUS or SQLDeveloper tools to remove a user:

delete from osa_users where id=2;

This command deletes the user with the id value as 2, i.e, the second user in the database.

2. Execute the following command to delete the user role corresponding to the user in the
above step:

delete from osa_user_roles where user_id=2;

3.2.1.4 Configuring LDAP for User Authentication and Management
Oracle GoldenGate Stream Analytics makes use of the LDAP support for Jetty. The
Lightweight Directory Access Protocol (LDAP) is an open source application accepted across
various industries. This application protocol is used for obtaining and maintaining distributed
directory information services over a network using an Internet Protocol (IP). With this feature,
you can use the directory information services for user authentication and management. To
use Microsoft directory services, set up a Microsoft Active Directory.

The user authentication and management can be through either internal LDAP or external
LDAP.

For internal LDAP use the following command to create an LDAP service with default
administrative access:

docker run --name LDAP-service --hostname LDAP-service -p 389:389 --detach
osixia/openLDAP:1.2.1

3.2.1.4.1 Setting Up LDAP
To use LDAP for user authentication:

1. Update etc/override-web.xml to specify ldap role (EMPLOYEE for oracle ldap) and realm
as osa-realm-ldap.
In case you need to switch back to data source from LDAP, you can update etc/
override-web.xml to specify role (admin) and realm as osa-realm-ds. By changing
realm in etc/override-web.xml, you switch between LDAP and data source. You can
keep ldap-login.conf configured to retain LDAP configuration and can toggle between
LDAP and data source by just changing override-web.xml file.

2. Update /osa-base/etc/LDAP-login.conf as per LDAP user/group settings. For
example:
For User role:

osa-demo-LDAP {
 org.eclipse.jetty.jaas.spi.LDAPLoginModule required
 debug="true"
 contextFactory="com.sun.jndi.LDAP.LDAPCtxFactory"
 hostname=<hostname> <!-- hostname of LDAP -->
 port="389"
 authenticationMethod="simple"
 forceBindingLogin="true"
 userBaseDn="l=emea,dc=oracle,dc=com"
 userRdnAttribute="uid"

Chapter 3
Configure Users

3-20

 userIdAttribute="mail"
 userPasswordAttribute="userPassword"
 userObjectClass="person"
 roleBaseDn="l=emea,dc=oracle,dc=com"
 roleNameAttribute="opn_access_level"
 roleMemberAttribute="targetdn"
 roleObjectClass="person";
 };

For Employee role:

osa-demo-LDAP {
 org.eclipse.jetty.jaas.spi.LDAPLoginModule required
 debug="true"
 contextFactory="com.sun.jndi.LDAP.LDAPCtxFactory"
 hostname=<hostname> <!-- hostname of LDAP -->
 port="389"
 authenticationMethod="simple"
 forceBindingLogin="true"
 userBaseDn="l=amer,dc=oracle,dc=com"
 userRdnAttribute="uid"
 userIdAttribute="mail"
 userPasswordAttribute="userPassword"
 userObjectClass="person"
 roleBaseDn="l=amer,dc=oracle,dc=com"
 roleNameAttribute="employeetype"
 roleMemberAttribute="targetdn"
 roleObjectClass="organizationalPerson";
 };

Remember to change userBaseDn and RoleBaseDn as per your locality name.

If in America:

userBaseDn="l=amer,dc=oracle,dc=com"
 roleBaseDn="l=amer,dc=oracle,dc=com"

If in Asia Pacific:

userBaseDn="l=apac,dc=oracle,dc=com"
 roleBaseDn="l=apac,dc=oracle,dc=com"

If in Europe:

userBaseDn="l=emea,dc=oracle,dc=com"
 roleBaseDn="l=emea,dc=oracle,dc=com"

3. (Re) start the application.

3.2.1.4.2 Setting Up Microsoft Active Directory
To setup Microsoft Active Directory 2016:

Chapter 3
Configure Users

3-21

1. Ensure that role name is updated in the web.xml file located at /osa-base/etc/
override-web.xml:

<auth-constraint>
 <role-name>developer</role-name>
 </auth-constraint>

2. Update /osa-base/etc/ldap-login.conf as per LDAP user/group settings. For
example:

osa_demo_ldap {
 org.eclipse.jetty.jaas.spi.LdapLoginModule required
 debug="true"
 contextFactory="com.sun.jndi.ldap.LdapCtxFactory"
 hostname=<hostname> <!-- this is the active directory server
hostname -->
 port="389" <!-- this is the active directory server port -->
 bindDn="CN=Administrator,CN=Users,DC=corp,DC=oradev,DC=com"
 bindPassword=<password> <!-- If the active directory server
allows anonymous login, no need to provide bindDn and bindPassword. Else,
set the active directory server admin DN and password -->
 authenticationMethod="simple" <!-- if the active directory
server allows anonymous login then set to 'none' otherwise set it to
'simple'-->
 forceBindingLogin="true"
 userBaseDn="l=amer,dc=oracle,dc=com" <!-- user attributes as
per user setup in active directory server -->
 userRdnAttribute="uid" <!-- user attributes as per user setup
in active directory server -->
 userIdAttribute="mail" <!-- user attributes as per user setup
in active directory server -->
 userPasswordAttribute="userPassword" <!-- user attributes as
per user setup in active directory server -->
 userObjectClass="person" <!-- user attributes as per user
setup in active directory server -->
 roleBaseDn="l=amer,dc=oracle,dc=com" <!-- role (group)
attributes as per user setup in active directory server -->
 roleNameAttribute="opn_access_level" <!-- role (group)
attributes as per user setup in active directory server -->
 roleMemberAttribute="targetdn" <!-- role (group) attributes as
per user setup in active directory server -->
 roleObjectClass="person"; <!-- role (group) attributes as per
user setup in active directory server -->
 };

3.2.2 Configuring User Preferences
To set or update user preferences:

1. Click the user name at the top right corner of the screen.

2. Select Preferences from the drop-down list.

3. Click General, to set the following general preferences:

• Start Page: Select a start page from the drop-down list.

Chapter 3
Configure Users

3-22

4. Click Notifications, to set the following notification preferences:

• Show Information Notifications: Select this option if you want the information
notifications to appear in the pipeline. This option is selected by default.

• Information Notification duration (in seconds): Set the number of seconds for
which the notifications appear. The default value is 5.

5. Click Catalog, to set the following Catalog page settings:

• Default Sorting Column: Select the column by which you want the columns to be
sorted. This value will be used as the default for all columns until you change the value
again.

• Default Page Size: Select the value to be used as the default page size. Based on the
value selected, the number of records that appear on a page vary. This value will be
used as the default for all pages until you change the value again.

6. Click Pipeline, to set the following pipeline preferences:

• Select Yes, to display the User Assistance text for the pipelines in the Pipeline Editor.

• Click Live Output Stream, to set the default table size, for the data in the Live Output
Stream table, of a pipeline.

• Click Timestamp, to set the following timestamp function and format preferences:

– Timestamp Function: Select a value from the drop-down list.

– Timestamp Format: Select a format to display the timestamp type fields.

7. Click Map, to select a tile layer from the drop-down list.

8. Click Save.

Chapter 3
Configure Users

3-23

4
Manage

Manage Connections

Manage Streams

Manage References

Manage Targets

Manage GG Change Data Stream

Embedded Ignite Cache

Manage Pipelines

4.1 Connections
Create Connections

Manage Connections

4.1.1 Create Connections
A connection is a collection of metadata (such as URLs, credentials, etc.,) required to connect
to an external system. A connection is the basis for creation of sources (Streams, References,
or Geo Fences) and Targets. You can reuse connections to create and access multiple
sources, targets, or both, in the same system. For example, different Kafka topics in the same
Kafka cluster, or different database tables in the same Oracle database.

GGSA supports the following connection types:

Connection Types Supported Artifacts

ADW or ATP • Reference
• Target

AWS S3 • Target

Coherence • Reference
• Target

Druid • Target

Elasticsearch • Target

GoldenGate • Stream (Microservices only)

HBase • Target

HDFS • Target

Hive • Target

Ignite Cache • Reference
• Target

4-1

Connection Types Supported Artifacts

JMS • Stream
• Target

Kafka • Stream
• Target

Microsoft Azure Data Lake-Gen2 • Target

MongoDB • Target

MySQL DB • Reference

OCI • Target

ONS • Target

Oracle AQ • Stream

Oracle DB • Reference
• Target

OSS • Stream
• Target

4.1.1.1 Creating a Connection to ADW or ATP
To create a connection to Autonomous Data Warehouse (ADW) and Autonomous Transaction
Processing (ATP):

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select Oracle Database from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• Connect using: Select Wallet from the drop-down list.

• Service name/SID: Enter the name of the Service, SID, or Wallet that you want to
connect to.

• Wallet Archive > Upload File: Upload the archive wallet file stored in your local
machine.

If you do not have the wallet file, you can download it from the OCI Autonomous
Database console.

After you have successfully uploaded the wallet file, all the database services
configured under the wallet's tnsnames.ora will be displayed in the service list. Select
one of the services based on your requirements.

• Username: Enter the database account user name.

Chapter 4
Connections

4-2

• Password: Enter the password for your database account.

Note:

Special characters in the password are treated as wildcard patterns, causing
the connection to fail . If your password contains special characters, enclose
the password within double quotes (the double quotes with ASCII Value 34).

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

4.1.1.2 Creating a Connection to AWS S3
Prerequisites:

• An AWS account with S3 access, bucket creation and write data permission. See AWS
Account Creation.

• A Client ID and Client Secret to access AWS programmatically. See Programmatic Access.

To create a connection to AWS S3:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select AWS S3 from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• Client ID: Enter the Access Key ID obtained from AWS.

• Client Secret: Enter the Secret access key obtained from AWS.

• Region: Region in which the S3 Bucket is already created, or in which you want to
create a new bucket. See Regions and Endpoints.

6. Click Test Connection, to ensure credentials are correct and to download the third party
libraries required to connect to AWS S3.
The download will take some time to complete, because these jars will be downloaded
from maven repository, for the first time. You can track the progress in jetty logs. For the
subsequent Test Connection or OSA pipeline deployment, third party jars will be available
locally.

7. Click Save.

4.1.1.3 Creating a Connection to Coherence
To create a connection to a Coherence:

Chapter 4
Connections

4-3

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/general/latest/gr/s3.html

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select Coherence from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• Server Url(s): Enter the server url(s) of the coherence cache server(s) in the following
format:
Host1:Port1,Host2:Port2
The port is the Coherence Extend Proxy Services TCP/IP Server Socket port.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

4.1.1.4 Creating a Connection to Druid
To create a connection to Druid:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select Druid from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• Zookeepers: Enter the zookeeper URL.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

4.1.1.5 Creating a Connection to Elasticsearch
To create a connection to ElasticSearch:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select Elastic Search from the submenu.

Chapter 4
Connections

4-4

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• Server Url(s):Enter the server url(s) for the ElasticSearch server, in the format
host1:port1, host2:port2.

• Authentication Type

– None: Select this option to disable security for the ElasticSearch cluster.

– Basic: Select this option to secure the ElasticSearch cluster with Basic
Authentication.

* User Name: Set the authentication username.

* Password: Set the authentication password.

– SSL: Select this option to secure and enable ElasticSearch cluster communication
over HTTPS.

* User Name: Set the authentication username

* Password: Set the authentication password.

* Trust Store: Upload the truststore file.

* Truststore Password: Set the truststore password.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

4.1.1.6 Creating a Connection to GoldenGate
To create a connection to GoldenGate:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select GoldenGate from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

Chapter 4
Connections

4-5

• Service Manager Host: Enter the name or IP address of the GoldenGate Service
Manager.

• Service Manager Port: Enter the port on the Service Manager, to connect to
GoldenGate.

Set the port to 443 to create a connection to the Goldengate instance running on an
OCI Goldengate stack, because you can access only port 443, by default.

• GG Username: Enter the username to authenticate the GoldenGate connection.

• GG Password: Enter the password for the GoldenGate connection.

• Is SSL?: Select this option if the Goldengate instance uses a SSL based connection

• Is GG Marketplace?: Select this option if the GG instance is running on OCI
Marketplace Goldengate stack.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

4.1.1.7 Creating a Connection to HBase
To create a connection to HBase:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select HBase from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• hbase-site.xml: Upload the hbase-site. xml file. This file is used to create connection
to zookeeper that manages the Hbase cluster. This file must contain zookeeper IP and
port.

• Authentication Type:

– None: Select this option if the Hbase server does not have any authentication
enabled.

– kerberos: Select this option if the kerberos authentication is enabled for the
HBase server.

• Kerberos Principal: Enter the Kerberos principal for the Hbase service.

• Kerberos KeyTab: Enter the kerberos keytab for the Hbase service. The keytab file
has the .keytab extension.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

Chapter 4
Connections

4-6

4.1.1.8 Creating a Connection to HDFS
To create a connection to HDFS:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select HDFS from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• core-site.xml: Upload the core-site.xml file with fs.defaultFS, fs.default.name,
hadoop.security.authentication, and fs.AbstractFileSystem.hdfs.impl
properties.

• hdfs-site.xml : Set client-specific properties. This is an optional field.

• Use Kerberos: To use a kerberized cluster, select this option to enable Kerberos
principal and Kerberos keytab. Provide the following details:

– Kerberos KDC

– Kerberos Realm

– Kerberos Principal: Set HDFS service principal.

– Kerberos Key Tab: Upload the keytab file that has HDFS service principal

6. Click Test Connection, to ensure that you have successfully created a connection, and to
download the third-party libraries required to connect to HDFS. The libraries are also used
by targets to write to HDFS paths.

Note:

Retain the core-site.xml and hdfs-site.xml file names exactly as they are.

7. Click Save.

4.1.1.9 Creating a Connection to Hive
To create a connection to Hive:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select Hive from the submenu.

3. Click Connection, and select from the drop-down list.

4. On the Type Properties screen, enter the following details:

Chapter 4
Connections

4-7

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

5. Click Next.

6. On the Connection Details screen, enter the following details:

• Core Site XML: Upload the core-site.xml file to connect to HDFS, where the files to
create external hive table are loaded. This is a mandatory field..

• Hdfs Site XML: Upload the hdfs-site.xml file to connect to HDFS, where the files to
create external hive table are loaded. This is an optional field.

• Use Kerberos: In case of a kerberized cluster, you can provide the Kerberos principal
and keytab by enabling this option.

• Kerberos KDC: Provide the host having the Key Distribution Center(KDC).

• Kerberos Realm: Provide the kerberos realm.

• Kerberos Principal: Set the Kerberos principal for the hive service.

• Kerberos KeyTab: Upload the kerberos keytab file for the hive service.

• Hive JDBC URL: You can connect to hive database using following jdbc url :
jdbc:hive2://host:port/<DB_NAME>. The default port is 10000 and default database is
"default".

• Hive JDBC Username: Enter the username to connect to hive database. If you are
using the default database, this field can be left blank.

• Hive JDBC Password: Password used to connect to hive database. If you are using
the default database, this field can be left blank.

7. Click Test Connection, to ensure that you have successfully created a connection, and to
download the third-party libraries required to connect to hive database to create an
external table.

8. Click Save.

4.1.1.10 Creating a connection to Ignite Cache
To create a connection to a Ignite Cache:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select Ignite Cache from the submenu.

3. Click Connection, and select from the drop-down list.

4. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

Chapter 4
Connections

4-8

• Connection Type: The selected connection is displayed.

5. Click Next.

6. On the Connection Details screen, enter the following details:

• External cache server url(s): Enter the ignite server IP address. This is a comma-
separated field.

7. Click Test Connection, to ensure that you have successfully created a connection.

8. Click Save.

4.1.1.11 Creating a Connection to JMS
To create a connection to JMS:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select JNDI from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• JNDI Provider: Select WebLogic as the JNDI service provider.

• Server Url(s): Enter the server url(s) for the JNDI connection, in the format
host1:port1, host2:port2.

• Username: Enter the user name for authenticating the JNDI connection.

• Password: Enter the password for the JNDI connection.

• Jndi Other Properties: This is not a required field for a WebLogic JMS connection.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

4.1.1.12 Creating a Connection to Kafka
To create a connection to Kafka:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select Kafka from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

Chapter 4
Connections

4-9

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• Use Bootstrap: Check this box to use a bootstrap based connection.

• Zookeepers: Enter the zookeeper URL. Use this option only if you did not select the
Use Bootstrap box in the previous step.

• Kafka bootstrap: Enter the bootstrap URL.

• SSL: Check this box to connect to an SSL enabled Kafka cluster.

– Truststore Location: Locate and upload the truststore file. This field is applicable
only to connect to an SSL enabled Kafka cluster.

– Truststore Password: Enter the truststore password.

• SASL: Check this box if Kafka broker requires authentication.

– User Name: Enter the SASL username for the Kafka broker.

You can retrieve this information from the OCI console. This field is enabled only if
you have checked the SASL option.

– Password: Enter the SASL password, which is an authentication token that you
can generate on the User Details page, of the OCI console.

Note:

Copy the authentication token when you create it, and save it for future
use. You can not retrieve it at a later stage.

• MTLS: Select MLTS to enable 2-way authentication of both the user and the Kafka
broker.

– Truststore: Locate and upload the truststore file. This field is applicable only to
connect to an SSL enabled Kafka cluster.

– Truststore Password: Enter the truststore password.

– Keystore: Locate and upload the keystore file. This field is applicable only to
connect to an SSL enabled Kafka cluster.

– Keystore Password: Enter the keystore password.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

4.1.1.13 Creating a Connection to Microsoft Azure Data Lake-Gen2
To create a connection to Microsoft Azure Data Lake-Gen2:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select HDFS from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

Chapter 4
Connections

4-10

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• core-site.xml: Upload the core-site.xml file with fs.defaultFS, fs.default.name,
hadoop.security.authentication, and fs.AbstractFileSystem.hdfs.impl
properties.

Note:

Download the files core-site.xml and hdfs-site.xmlfrom the Azure
website.

• hdfs-site.xml : Set client-specific properties. This is an optional field.

• Use Kerberos: To use a kerberized cluster, select this option to enable Kerberos
principal and Kerberos keytab. Provide the following details:

– Kerberos KDC

– Kerberos Realm

– Kerberos Principal: Set HDFS service principal.

– Kerberos Key Tab: Upload the keytab file that has HDFS service principal

6. Click Test Connection, to ensure that you have successfully created a connection, and to
download the third-party libraries required to connect to Azure Data lake-Gen2. The
libraries are also used by targets to write to HDFS paths.

Note:

Retain the core-site.xml and hdfs-site.xml file names exactly as they are.

7. Click Save.

4.1.1.14 Creating a Connection to MongoDB
To create a connection to MongoDB:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select MongoDB from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

Chapter 4
Connections

4-11

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• Connection Mode: Select the connection mode from the drop-down list:

– Server Address List:

* Server Address List: Connection to a list of Replicat set members or mongos.
This field accepts a comma separated list of hostnames:port. For example,
localhost1:27017, localhost2:27018.

* Authentication Mechanism: Select the authentication mechanism for the
connection, from the drop-down list. This is an optional field. Enter the
following details for the mechanism you select:

* Username: Enter the database account user name.

* Password: Enter the password for your database account.

* Credentials Source: Enter the source of the authentication
credentials, typically the database that the credentials have been
created in.

* Write Concern: Enter the value in JSON format. Accepted keys are w
and wtimeout. For example, {"w": "value" , "wtimeout":
"number"}

– Client URI:

* Client URI: Set the client URI in the format: mongodb://
[username:password@]host1[:port1][,host2[:port2],...
[,hostN[:portN]]][/[database][?options]]

* Authentication Mechanism:

* None: Select this option to disable connection authentication.

* SSL Server Certificate Validation:

* Trust Store File: Upload the truststore file.

* Trust Store Password: Set the truststore password.

* SSL Server/Client Certificate Validation:

* Trust Store File: Upload the truststore file.

* Trust Store Password: Set the truststore password.

* Key Store File: Upload the client certificate, for a two-way SSL
communication.

* Key Store Password: Set the keystore password.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

4.1.1.15 Creating a Connection to MySQL Database
To create a connection to a MySQL Database:

1. On the Catalog page, click Create New Item.

Chapter 4
Connections

4-12

2. Hover the mouse over Connection and select Generic Database from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• database: Select a MySQL database to connect to.

• Jdbc url: Enter the JDBC connection url to create a database connection.
The format for a MySQL JDBC url:

jdbc:mysql://<user>:<password>@<host>:<port>/<database>
Replace <user>, <password>, <host>, <port>, <database> with the MySQL
database username, password, hostname or IP of MySQL database server; the
MySQL database server port, and database name respectively.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

4.1.1.16 Creating a Connection to OCI Object Store
To create an OCI Object Store connection:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select OCI from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• OCI User OCID: Enter the OCI user ID.

• OCI Fingerprint : Enter the fingerprint of the API public key file that you uploaded to
OCI. For example, oci_api_key_public.pem.

• OCI Key File: Select the API private key file for signing API calls. For example,
oci_api_key.pem.

• Key Passphrase: Enter the Passphrase for the API private key file. The API key can
be passphrase-protected.

Chapter 4
Connections

4-13

• OCI Tenancy OCID: Enter the OCID of the tenant in which the Object Store bucket is
defined.

• OCI Profile: Set the OCI profile. Default value is DEFAULT.

• OCI Namespace: Enter the OCI namespace that spans all compartments within a
region.

• Region: Enter the region in which tenancy is created. For a list of OCI regions, refer to
the Region Identifier column in the Regions and Availability Domains documentation.

• OCI Compartment OCID: Enter the OCID of the compartment in which the ONS topic
or Object Store is defined.

6. Click Test Connection, to validate the credentials to connect to OCI, and to ensure that
the dependent client libraries are downloaded from maven central repository.

7. Click Save.

4.1.1.17 Creating a Connection to ONS
The OCI Notification Service (ONS) connection option is currently available only on the OCI
Marketplace GGSA instance.

To create an ONS connection:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select OCI from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• OCI User OCID: Enter the OCI user ID.

• OCI Fingerprint : Enter the fingerprint of the API public key file that you uploaded to
OCI. For example, oci_api_key_public.pem.

• OCI Key File: Select the API private key file for signing API calls. For example,
oci_api_key.pem.

• Key Passphrase: Enter the Passphrase for the API private key file. The API key can
be passphrase-protected.

• OCI Tenancy OCID: Enter the OCID of the tenant in which the ONS topic is defined.

• OCI Profile: Set the OCI profile. Default value is DEFAULT.

• OCI Namespace: Enter the OCI namespace that spans all compartments within a
region.

• OCI Region: Enter the region in which tenancy is created.
For a list of OCI regions, refer to the Region Identifier column in the Regions and
Availability Domains documentation.

Chapter 4
Connections

4-14

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm

• OCI Compartment OCID: Enter the OCID of the compartment in which the ONS topic
or Object Store is defined.

6. Click Test Connection, to validate the credentials to connect to OCI, and to ensure that
the dependent client libraries are downloaded from maven central repository.

7. Click Save.

Note:

To integrate with OCI Notification service, you have to define an OCI Notification
service topic. Once you have defined a topic, note down the following parameters
that are required to send Messages from GGSA to OCI Notification:

• My Message: The message that target pushed to OCI Notification service topic.

• Topic: The topic created on OCI Notification service. The OSA target can publish
message to this topic.

• Email, Function, HTTPS, Slack: The subscriptions to the topic. All users who
have subscribed to the topic receive the message.

4.1.1.18 Creating a Connection to Oracle AQ
To create a connection to Oracle Advanced Queue (AQ):

1. On the Catalog page, click Create New Item

2. Hover the mouse over Connection and select JNDI from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• JNDI Provider: Select Oracle AQ as the JNDI service provider.

• Server Url(s): Enter the server url(s) for the JNDI connection, in the format
host1:port1, host2:port2.

• Username: Enter the user name to authenticate the JNDI connection.

• Password: Enter the password for the JNDI connection.

• Jndi Other Properties: This value should always be:

– sid=<sid>. For example, sid=XE
or

– service_name=<service_name> For example, service_name=slc.us.oracle.com.

6. Click Test Connection, to ensure that you have successfully created a connection.

Chapter 4
Connections

4-15

7. Click Save.

4.1.1.19 Creating a Connection to Oracle Database
To create a connection to Oracle Database:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select Oracle Database from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• Connect using: Select the database identifiers from the drop-down list.

• Service name/SID: Enter the name of the Service, SID, or Wallet that you want to
connect to.

• Host name: Enter the host name on which the database is running.

• Port: Enter the port on which the database is running. It is usually 1521.

• Username: Enter the database account user name.

• Password: Enter the password for your database account.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

4.1.1.20 Creating a Connection to OSS
To create a connection to OSS:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select Kafka from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

Chapter 4
Connections

4-16

• Use Bootstrap: Check this box to use a bootstrap based connection. This is
mandatory for OSS connections. Connection to OSS can only be established using the
Bootstrap server option.

• Kafka bootstrap: Enter the bootstrap URL.

• SSL: Do not check this box when connecting to OCI Streaming Service.

• SASL: Check this box if Kafka broker requires authentication. This is mandatory for
OSS connections.

• User Name: Enter the SASL username for the Kafka broker, in the following format:

tenancyName/username/stream pool id

Note:

Enter the tenancyName and userName, not tenancy OCID and user OCID.
Similarly, enter the stream pool ID and not the stream pool name. Ensure
that the auto create topic is enabled for the stream pool ID.

You can retrieve this information from the OCI console. This field is enabled only if you
have checked the SASL option.

• Password — Enter the SASL password, which is an authentication token that you can
generate on the User Details page, of the OCI console.

Note:

Copy the authentication token when you create it, and save it for future use.
You can not retrieve it at a later stage.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

4.1.2 Manage Connections
Updating a Connection

To update a connection:

1. Go to the Catalog page and click the connection that you want to update.

2. On the Edit Connection screen, make the necessary changes.

3. Click Save.

Deleting a Connection

To delete a connection:

1. Go to the Catalog page and hover the mouse over the connection that you want to delete.

2. Click the delete icon that appears to your right side on the screen.

3. On the Delete Confirmation screen, click Delete.

Chapter 4
Connections

4-17

4.2 Streams
Create Streams

Manage Streams

4.2.1 Create Streams
A Stream is a source of continuous and dynamic data. The data can be from a wide variety of
data sources such as IoT sensors, transaction or activity log files, point-of-sale devices, ATM
machines, transactional databases, or information from geospatial services or social networks.

4.2.1.1 Creating a File Stream
To create a File stream:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Stream and select File from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the stream. This is a mandatory field.

• Display Name: Enter a display name for the stream. If left blank, the Name field value
is copied.

• Description

• Tags

• Stream Type: The selected stream is displayed.

4. Click Next.

5. On the Source Details screen, enter the following details:

• File: Upload the CSV or JSON sample file to be used.

Note:

Use File stream only for POCs and quick prototyping

• Read whole content: Select this option to read all the records in the file, at once. If
you uncheck this option, the engine reads one record at a time.

• Number of events per batch: Enter the number of records that you want to process
per batch. The default value is one, but you can specify the number of records to
process in each read. You can use this option only when Read Whole Content is
unchecked.

• Loop: Select this option to process the file in a loop.

• Data Format: Select CSV or JSON as the data format.

6. Click Next.

7. On the Data Format screen, set the attributes for the selected the data format.

• For JSON data format:

Chapter 4
Streams

4-18

– Allow Missing Column Names: Select this option to allow an input stream that
has a column undefined in the shape.

– Array in Multi-lines: Select this option to allow multi-line data formatting.

• For CSV data format:

– CSV Predefined Format: Select one of the predefined data format from the drop-
down list. For more information, see Predefined CSV Data Formats.

– First record as header: Select this option to use the first record as the header
row.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Infer Shape : Select this option to detect the shape automatically from the input data
stream.

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape : Select this option to infer the fields from a stream or file. You can also
update the datatype of the fields.

Note:

– To retrieve the entire JSON payload, add a new field with path $.

– To retrieve the content of the array, add a new field with path $
[arrayField].

In both the cases, the value returned is Text.

• From File: Select this option to infer the shape from a JSON schema file, or a JSON or
CSV data file. You can also save the auto-detected shape and use it later.

10. Click Save.

4.2.1.2 Creating a GoldenGate Stream
Prerequisites:

• A GoldenGate connection.

• GG Change Data

To create a GoldenGate stream:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Stream and select GoldenGate from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the stream. This is a mandatory field.

• Display Name: Enter a display name for the stream. If left blank, the Name field value
is copied.

• Description

• Tags

• Stream Type: The selected stream is displayed.

Chapter 4
Streams

4-19

4. Click Next.

5. On the Source Type page, enter the following details:

• Connection: Select a GG Change Data.

• Table name: Enter a valid table name that includes the period (.) delimiter between
the catalog, schema, and table names. For example, test.dbo.table1

• Generate Full Records: Select this option to stream full data record (value of all
fields), irrespective of the database transactional changes to a single column, a
subset, or all the columns of a row.

– Database Connection: Select a GoldenGate sourced database connection.

– Enable Cache: Select this option to enable caching for GoldenGate Full Records,
to enhance its performance.

6. Click Next.

7. On the Shape screen, select one of the methods to define the shape:

• Infer Shape : Select this option to detect the shape automatically from the input data
stream.

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape : Select this option to manually infer the fields from a stream or file.
You can also update the datatype of the fields.

Note:

– To retrieve the entire JSON payload, add a new field with path $.

– To retrieve the content of the array, add a new field with path $
[arrayField].

In both the cases, the value returned is Text.

• From Stream: Select this option to detect the shape based on the table shape
selected in the previous screen.

• From File: Select this option to infer the shape from a JSON file. You can also save
the auto-detected shape and use it later.

8. Click Save.

Note:

The difference between a Kafka stream and a GoldenGate stream is that the pipeline
constructs, like the Query Group Table, understands the GoldenGate syntax and
associates it with the relevant GoldenGate fields.

4.2.1.3 Creating a JMS Stream
Prerequisite: A JMS connection.

To create a JMS stream:

Chapter 4
Streams

4-20

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Stream and select JMS from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the stream. This is a mandatory field.

• Display Name: Enter a display name for the stream. If left blank, the Name field value
is copied.

• Description

• Tags

• Stream Type: The selected stream is displayed.

4. Click Next.

5. On the Source Type page, enter the following details:

• Connection: Select an existing JNDI connection for the stream

• Connection Factory: Enter a value for the connection factory. A ConnectionFactory
encapsulates connection configuration information, and enables JMS applications to
create a Connection. The default value is weblogic.jms.ConnectionFactory.

Note:

GGSA can read messages from Oracle Advanced Queue. This option is
available as a general JMS connector -
oracle.jms.AQjmsInitialContextFactory.

• Jndi name: Enter the name of the Java interface that reads messages from topics,
distributed topics, queues and distributed queues

• Client ID: Enter the unique client ID to be used for a durable subscriber. If you do not
provide this value, subscriber ID is used as a clientID to create a durable subscriber.

• Message Selector : Set the message selector to filter messages. Message selectors
assign the work of filtering messages to the JMS provider rather than to the
application.

If your messaging application needs to filter the messages it receives, you can use a
JMS API message selector. A message selector is a String that contains an
expression. The syntax of the expression is based on a subset of the SQL92
conditional expression syntax. The message selector in the following example selects
any message that has a NewsType property that is set to the value Sports or Opinion:

NewsType = ’Sports’ OR NewsType = ’Opinion’

The createConsumer and createDurableSubscriber methods allow you to specify a
message selector as an argument when you create a message consumer.

• Subscription ID: Enter the unique subscription ID for durable selector. This value is
essential for durable subscriber.

Chapter 4
Streams

4-21

Note:

When you specify both clientID and subscriberID, you can have only one
running pipeline consuming that stream. If you need multiple subscribers/
pipelines, remove clientID or subscriberName from the stream or create
different streams (with different clientID and subscriberName) for multiple
pipelines.

• Data Format: Select the data format from the drop-down list. The supported formats
are: CSV, JSON, AVRO, MapMessage.

A MapMessage object is used to send a set of name-value pairs. The names are
String objects, and the values are primitive data types in the Java programming
language. The names must have a value that is not null, and not an empty string. The
entries can be accessed sequentially or randomly by name. The order of the entries is
undefined.

6. Click Next.

7. On the Data Format screen, enter the shape details for the stream, based on the data
format you have selected.

• For JSON:

– Allow Missing Column Names: Select this option to allow an input stream that
has a column undefined in the shape.

• For CSV:

– CSV Predefined Format: Select one of the predefined data format from the drop-
down list. For more information, see Predefined CSV Data Formats.

– First record as header: Select this option to use the first record as the header
row.

• For AVRO:

– Schema Namespace: Enter the schema name combined with the namespace, to
uniquely identify the schema within the store.

– Schema (optional): Upload a schema file to infer shape from.

• If you selected MapMessage as the data format, there are no specific attributes to be
set on this screen. The Data Format screen is skipped, and you are redirected to the
Shape screen.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Infer Shape : Select this option to detect the shape automatically from the input data
stream.

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually infer the fields from a stream or file. You
can also update the datatype of the fields.

Chapter 4
Streams

4-22

Note:

– To retrieve the entire JSON payload, add a new field with path $.

– To retrieve the content of the array, add a new field with path $
[arrayField].

In both the cases, the value returned is of type Text.

• From File: Select this option to infer the shape from a JSON schema file, or a JSON or
CSV data file. You can also save the auto-detected shape and use it later.

10. Click Save.

JMS Server Clean-Up

GGSA creates a durable subscription with the JMS provider, when you create a JMS stream
and select the durable subscription option. When you unpublish or kill a pipeline that is using
this stream, the durable subscription still remains on the JMS Server. It is advisable to delete
the durable subscription from the JMS Server and clean up the resources, if you do not intend
to publish the pipeline anymore.

4.2.1.4 Creating a Kafka Stream
Prerequisite: A Kafka connection.

To create a Kafka stream:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Stream and select Kafka from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the stream. This is a mandatory field.

• Display Name: Enter a display name for the stream. If left blank, the Name field value
is copied.

• Description

• Tags

• Stream Type: The selected stream is displayed.

4. Click Next.

5. On the Source Details screen, enter the following details:

• Connection: Select a Kafka connection for the stream.

• Topic name: Enter a name for the kafka topic that will store the stream.

• Data Format: Select CSV, JSON, or AVRO as the data format for the stream.

for each format type:

6. Click Next.

7. On the Data Format screen, enter the shape details for the stream, based on the data
format you have selected.

• For JSON:

Chapter 4
Streams

4-23

– Allow Missing Column Names: Select this option to allow an input stream that
has a column undefined in the shape.

• For CSV:

– CSV Predefined Format: Select one of the predefined data formats from the drop-
down list. For more information, see Predefined CSV Data Formats.

– First record as header: Select this option to use the first record as the header
row.

• For AVRO:

– Schema Namespace: Enter the schema name combined with the namespace, to
uniquely identify the schema within the store.

– Schema (optional): Upload a schema file to infer shape from.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Infer Shape : Select this option to detect the shape automatically from the input data
stream.

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape : Select this option to manually infer the fields from a stream or file.
You can also update the datatype of the fields.

Note:

– To retrieve the entire JSON payload, add a new field with path $.

– To retrieve the content of the array, add a new field with path $
[arrayField].

In both the cases, the value returned is of type Text.

• From Stream: Select this option to detect the shape based on the earliest or the latest
offset of the kafka topic. The default option is earliest. Use latest to infer the shape
based on latest records in the Kafka topic.
This option is currently available only for JSON data format.

• From File: Select this option to infer the shape from Kafka, a JSON schema file, or a
JSON or CSV data file. You can also save the auto-detected shape and use it later.
This option is enabled if you have selected CSV as the data format.

• From Schema: Select this option to infer the shape based on the schema you
selected in Step 6. This option is enabled if you have selected AVRO as the data
format.

10. Click Save.

4.2.2 Manage Streams
Updating a Stream

To update a stream:

1. Go to the Catalog page and click the stream that you want to update.

Chapter 4
Streams

4-24

2. On the Edit Stream screen, click the Edit link corresponding to the following sections, and
make the necessary changes.

• Source Details

• Source Type Parameters

• Data Type Parameters

• Source Shape

3. Click Save.

Deleting a Stream

To delete a stream:

1. On the Catalog page, hover the mouse over the stream that you want to delete.

2. Click the Deleteicon that appears to your right side on the screen.

3. On the Delete Confirmation screen, click Delete.

4.2.2.1 Application Timestamp
When defining a Stream, you can mark one of the fields in the payload, as an Application
Timestamp. To do this, click the clock icon next to the field. This action advances the time by
the application, rather than the system; the window ranges and slides are all controlled by the
selected field. The application timestamp is available only to query stages connecting directly
to the stream source.

4.2.2.2 Supported Timestamp Formats in an Input Stream
The following timestamp formats, in an input stream, are supported:

• 11/21/2005 11:14:23.111 "MM/dd/yyyy HH:mm:ss.SSS"

• 11/21/2005 11:14:23.11 "MM/dd/yyyy HH:mm:ss.SS"

• 11/21/2005 11:14:23.1 "MM/dd/yyyy HH:mm:ss.S"

• 11/21/2005 11:14:23 "MM/dd/yyyy HH:mm:ss"

• 11/21/2005 11:14 "MM/dd/yyyy HH:mm"

• 11/21/2005 11:14 "MM/dd/yyyy HH"

• 11/21/2005 "MM/dd/yyyy"

• 11-21-2005 11:14:23.111 "MM-dd-yyyy HH:mm:ss.SSS"

• 11-21-2005 11:14:23.11 "MM-dd-yyyy HH:mm:ss.SS"

• 11-21-2005 11:14:23.1 "MM-dd-yyyy HH:mm:ss.S"

• 11-21-2005 11:14:23 "MM-dd-yyyy HH:mm:ss"

• 11-21-2005 11:14 "MM-dd-yyyy HH:mm"

• 11-21-2005 11 "MM-dd-yyyy HH"

• 11-21-2005 "MM-dd-yyyy"

• 15-DEC-01 11.14.14.111 AM"dd-MMM-yy hh.mm.ss.SSS"

• 15-DEC-01 11.14.14.11 "dd-MMM-yy hh.mm.ss.SS"

• 15-DEC-01 11.14.14.1 "dd-MMM-yy hh.mm.ss.S"

Chapter 4
Streams

4-25

• 15-DEC-01 11.14.14 "dd-MMM-yy hh.mm.ss"

• 15-DEC-01 11.14 "dd-MMM-yy hh.mm"

• 15-DEC-01 11 "dd-MMM-yy hh"

• 15-DEC-01 "dd-MMM-yy"

• 15/DEC/01 "dd/MMM/yy"

• 2013-10-5 15:16:0.756 "yyyy-MM-dd HH:mm:ss.SSS"

• 2013-10-5 15.16.0.756 "yyyy-MM-dd HH.mm.ss.SSS"

• 2013-10-5 15:16:0 "yyyy-MM-dd HH:mm:ss"

• 2013-10-5 15.16.0 "yyyy-MM-dd HH.mm.ss"

• 2013-10-5 15:16 "yyyy-MM-dd HH:mm"

• 2013-10-5 15.16 "yyyy-MM-dd HH.mm"

• 2013-10-5 15 "yyyy-MM-dd HH"

• 2012-11-10 "yyyy-MM-dd"

• 11:14:14 "HH:mm:ss"

• "yyyy-MM-dd'T'HH:mm:ss'.'SSS"

• "yyyy-MM-dd'T'HH:mm:ss"

• 1/1/2011 "m/d/yyyy"

• 1-1-2011 "m-d-yyyy"

• 3/23/2019 "m/dd/yyyy"

• 3-23-2019 "m-dd-yyyy"

• 12/4/1982 "mm/d/yyyy"

• 12-4-2019 "mm-d-yyyy"

Note:

The input timestamp is truncated to millisecond precision.

4.2.2.3 Predefined CSV Data Formats
Comma Separated Values (CSV) file is one of the data formats you can select for your input
stream. There are variations in the CSV data format due to the different data sources. The
following table lists the available predefined CSV data formats:

CSV Predefined Format Description

DEFAULT Standard comma separated format, as for RFC4180 but allowing empty
lines

EXCEL Excel file format with comma as the value delimiter

Chapter 4
Streams

4-26

CSV Predefined Format Description

INFORMIX_UNLOAD_CSV Default Informix CSV UNLOAD format used by the UNLOAD TO
file_name operation (escaping is disabled.) This is a comma-delimited
format with a LF character as the line separator. Values are not quoted
and special characters are escaped with '\'. The default NULL string is "\
\N".

MYSQL Default MySQL format used by the SELECT INTO OUTFILE and LOAD
DATA INFILE operations. This is a tab-delimited format with a LF
character as the line separator. Values are not quoted and special
characters are escaped with '\'. The default NULL string is "\\N".

POSTGRESQL_CSV Default PostgreSQL CSV format used by the COPY operation. This is a
comma-delimited format with a LF character as the line separator. The
default NULL string is "".

POSTGRESQL_TEXT Default PostgreSQL text format used by the COPY operation. This is a
tab-delimited format with a LF character as the line separator. The
default NULL string is "\\N".

RFC4180 Comma separated format as defined by RFC4180
TDF Tab-delimited format

4.3 References
Create References

Manage References

4.3.1 Create References
A reference is a source of static data that provides contextual information about the event data.
References are used to enrich data that arrives from a stream.

GGSA supports the following reference types:

• Coherence Reference: This is a reference to an external cache that has data from an
external system, and is defined in a coherence cluster.

• Database Reference: This is a reference to a specified table in the database. You can
apply caching to this reference to enhance the static data accessibility. Once you load data
into the cache, the reference fetches data from the cache only. Any update to the reference
table will not be reflected until you set the expiration policy to Never.

• Ignite Cache Reference: This is a reference to an Ignite cache cluster. Ignite reference
enriches the stream data with the Ignite cluster reference data, at query stage. Ignite
reference has data in key-value pair; key is String type and value is a Json object. GGSA
supports only single-value equality join, in query stage to reference.

4.3.1.1 Creating a Coherence Reference
To create a Coherence reference:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Reference and select Coherence from the submenu.

3. On the Type Properties screen, enter the following details:

Chapter 4
References

4-27

• Name: Enter a unique name for the reference. This is a mandatory field.

• Display Name: Enter a display name for the reference. If left blank, the Name field
value is copied.

• Description

• Tags

• Reference Type: The selected reference is displayed.

4. Click Next.

5. On the Source Details page, provide the following details:

• Connection: Select a coherence connection for the reference

.

• Cache name: Enter the name of the coherence cache to enable caching. Caching is
supported only for single equality join condition.

• Data Format: Select POJO or Map as the data format for the reference.

6. Click Next.

7. On the Shape screen, select one of the methods to define the shape :

• If you selected Map as the data format, you have the following options to define the
shape:
Select Existing Shape: Select an existing shape that you want to use for the
reference.

• Manual Shape: Select this option if you want to define your own shape.

8. Click Save.

For information on data mapping in the two coherence reference types, see:

• Data Mapping in Coherence Reference Map Type

• Data Mapping in Coherence Reference POJO Type

4.3.1.2 Creating a Database Reference
To create a Database reference type:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Reference and select Database from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the reference. This is a mandatory field.

• Display Name: Enter a display name for the reference. If left blank, the Name field
value is copied.

• Description

• Tags

• Reference Type: The selected reference is displayed.

4. Provide details for the following fields on the Source Details page and click Next:

• Connection: Select the connection for the database reference.

Chapter 4
References

4-28

• Enable Caching: Select this option to enable caching. Ignite cache is the default
cache for cache-enabled references. So before deploying a pipeline using cache-
enabled references, you have to start the cache cluster from the System Settings tab.

Note:

The Enable Caching option is not supported in the GGSA marketplace
instance.

• Caching Scheme: Select the cache type from the drop-down list.

In a Partitioned Cache the data is partitioned among all the machines of the cluster.

In a Replicated Cache the data is fully replicated to every member of the cluster. Use
Replicated Cache when the number of cache entries are relatively low and do not
need to be updated often.

• Expiry Delay: The duration delay from last update that the entries will be kept by the
cache before being marked as expired. Any attempt to read an expired entry will result
in a reloading of the entry from the configured cache store. This field is enabled only
when caching is enabled.

5. Provide details for the following fields on the Shape page and click Save:

• Shape Name: Select a shape that you want to use for the reference

When the datatype of the table data is not supported, the table columns do not have auto
generated datatype. Only the following datatypes are supported:

• numeric
• interval day to second
• text
• interval year to month
• timestamp (without timezone)

• date time (without timezone)

Note:

The date column cannot be mapped to timestamp. This is a limitation in the
current release.

4.3.1.3 Creating an Ignite Reference
To create an Ignite Cache reference:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Reference and select Ignite Cache from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the reference. This is a mandatory field.

• Display Name: Enter a display name for the reference. If left blank, the Name field
value is copied.

Chapter 4
References

4-29

• Description

• Tags

• Reference Type: The selected reference is displayed.

4. Click Next.

5. On the Source Details page, provide the following details:

• Connection: Select an ignite cache connection for the reference.

• Cache name: Enter the name of the ignite cache to enable caching. Caching is
supported only for single equality join condition.

• Data Format: Select the data format from the drop-down list.

6. Click Next.

7. On the Shape screen, select one of the methods to define the shape:

• Infer Shape: Select this option to detect the shape automatically from the input data
stream.

– From Stream: Select this option to infer shape from a stream.

– From File: Select this option to infer the shape from a JSON schema file, or a
JSON or CSV data file. You can also save the auto-detected shape and use it
later.

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually edit the shape. You can also update the
datatype of the fields.

8. Click Save.

4.3.2 Manage References
Updating a Reference

To update a Reference:

1. Go to the Catalog page and click the reference that you want to update.

2. On the Reference screen, click the Edit link corresponding to the following sections, and
make the necessary changes.

• Source Details

• Source Type Parameters

• Source Shape

3. Click Save.

Deleting a Reference

To delete a reference:

1. Go to the Catalog page and hover the mouse over the reference that you want to delete.

2. Click the delete icon that appears to your right side on the screen.

3. On the Delete Confirmation screen, click Delete.

Chapter 4
References

4-30

4.3.2.1 Coherence Reference

4.3.2.1.1 Configuring Extend Proxy on the Coherence Server
To enable communication between GoldenGate Stream Analytics and the Coherence server,
you must configure extend proxy on the Coherence server or the cluster. GGSA can connect to
the Coherence server only by extending its proxy service. To configure extend proxy on the
Coherence server, define the following configuration in the server’s cache-config.xml, as
in the format below:

<caching-schemes>

 <proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address>{ADDRESS}</address>
 <port>{PORT}</port>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>

</caching-schemes>

4.3.2.1.2 Limitations of Coherence as Reference
The following are the limitations of a Coherence cache as a reference:

• You cannot test the connection

• You need to specify the cache name manually

• You can choose only equal operator to establish a correlation with coherence reference

• You must use manual shape

• You can choose only one look-up condition under sources. This condition will be used for
key look-up.

4.3.2.1.3 Loading Number Type Data on Coherence Cache
When you load big decimal number type data on the coherence cache, ensure that you include
precision and scale. Only when you specify these values, the join functionality works.
Below is a sample in which a number type data is defined, with the scale and precision values
specified:

NamedCache cache = CacheFactory.getCache("externalcachetimestamp");

 java.math.BigDecimal big10 = new java.math.BigDecimal("10",new
MathContext(58)).setScale(56, RoundingMode.HALF_UP);

 Map<String,Object> order1 = new HashMap<String, Object>();

Chapter 4
References

4-31

order1.put("strValue", "Test");
order1.put("intervalValue", "+000000002 03:04:11.330000000");
 order1.put("orderTag", big10);

 cache.put(big10,order1);

4.3.2.1.4 Data Mapping in Coherence Reference Map Type
The Map type coherence reference maps with the cache data in the key-value format. Key is
object type and value is Map<String,Object>. Map<String,Object> is a map of attribute
names and values. The attributes list should match with external event type. GGSA currently
supports only external schema for key and value. Only single value equality join is supported.

4.3.2.1.5 Data Mapping in Coherence Reference POJO Type
The POJO type coherence reference maps with the cache date in the format Map<String,
Object>.

Note:

When you upload the POJO in a jar, you must ensure that the fully-qualified class
name of POJO matches exactly in cache and the custom POJO jar.

For example, if you have loaded com.company.CustomPOJO objects in cache, custom
JAR should have CustomPOJO class inside the com.company package.

If there any mismatch in the class name, then querying the cache for certain type of
objects, does not return a result and you will not see any data in the live output table.

4.3.2.1.6 Datatypes Supported in Correlation Conditions
POJO Coherence Reference supports only some data types as join keys, in correlation
conditions.

Data types that are supported:

• Java.lang.String (Interval and Interval YM)
• java.math.BigDecimal (Number)
• Java.lang.String (Text)
• int (Integer)
• Java.lang.Integer (Integer)
• Java.lang.Long (BigInteger)
• long (BigInteger)
• java.sql.Timestamp (Timestamp)
• double (Double)
• Java.lang.Double (Double)
• float (Float)

Chapter 4
References

4-32

• Java.lang.Float (Float)
• boolean (Boolean)
• Java.lang.Boolean (Boolean)
• Java.math.BigInteger
Data types that are not supported:

• char[]
• char
• BigInteger
• oracle.spatial.geometry.JGeometry(SDO Geometry)
• java.sql.Date (Timestamp)

4.3.2.1.7 Sample POJO Cache Loading in Coherence
The following is a sample POJO cache loading in coherence:

NamedCache<Integer, Object> cache = CacheFactory.getCache

 ("externalcachepojo");

 private void preseedCoherencePOJOReferenceData(NamedCache<Integer,

 Object> cache) {

 OrderPOJO order1 = new OrderPOJO(1,"HP Deskjet v2");
 OrderPOJO order2 = new OrderPOJO(2,"Oracle Database 12");
 OrderPOJO order3 = new OrderPOJO(3,"Apple iPhone6s");
 OrderPOJO order4 = new OrderPOJO(4,"Logitech Mouse");
 cache.put(1, order1);
 cache.put(2, order2);
 cache.put(3, order3);
 cache.put(4, order4);
 }

For this example coherence reference should be created with cache name as
externalcachepojo and can join with stream with orderid.

4.3.2.1.8 Sample POJO Class

public class OrderPOJO implements Serializable{
private String orderId ;
Private String orderDesc;

public String setOrderId(String str1) {
 this.orderId=str1;
}
public String setOrderDesc(String str2) {
 this.orderDesc=str2;
}

public String getOrderId() {

Chapter 4
References

4-33

return orderId;
}
public String getOrderDesc() {
return orderDesc;
}
public boolean equals(Object object) {
if (this == object) return true;
if (object == null || getClass() != object.getClass()) return false;
if (!super.equals(object)) return false;
OrderPOJO that = (OrderPOJO) object;
return java.util.Objects.equals(orderId, this.orderId) &&
java.util.Objects.equals(orderDesc, this.orderDesc);
}
public int hashCode() {
return java.util.Objects.hash(super.hashCode(), orderId, orderDesc);
}
}

Note:

Ensure that the POJO class does not have a GGSA coherence target as a
constructor, because it can instantiate the POJO class using default constructor, and
then access the setXXX and getXXX, and isXXX methods.

4.4 Targets
Create Targets

Manage Targets

4.4.1 Create Targets
A target is an external system to which the stream processing results are ouput. It is an
interface with a downstream system.

The supported target types are:

• AWS S3

• Azure DataLake Gen-2

• Coherence Target

• Database Target

• Elasticsearch Target

• HBase Target

• HDFS Target

• Hive Target

• Ignite Cache Target

• JMS Target

• Kafka Target

Chapter 4
Targets

4-34

• MongoDB Target

• NFS Target

• Notification Target

• Object Storage Target

• OSS Target

• REST Target

4.4.1.1 Creating an AWS S3 Target
To create an AWS S3 target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select AWS S3 from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select an AWS connection from the drop-down list.

• File Name: Enter the name of the file used to save data to the AWS S3 bucket.

• AWS S3 Path: Enter a name for folder to be created in the AWS S3 bucket. A new
folder is created if there is no existing folder.

• Bucket: Enter the name of the bucket to be created. A new bucket is created if there is
no existing bucket in the region.

• Roll Interval: Enter the roll-over interval to write a new file. The interval can be in
1000ms, 10s, 1m, or 1.5h format.

• File Roll Max Size: Enter the roll-over file size to create a new file. The size can be in
1000, 10k, 1m, or 1g format.

• NFS Path: Enter the local file or NFS path where the files are written first and then
uploaded to the AWS S3 bucket.

• Storage Format: Select a storage format from the drop-down list.

6. Click Next.

7. On the Data Format screen, enter the shape details, based on the storage format you
have selected.

• For FILE:

– File Format: Select a file format from the drop-down list.

* JSON Delimiter: Enter the JSON delimiter if you have selected the JSON file
format. This is an optional field.

Chapter 4
Targets

4-35

* Avro Codec: Select a compression codec from the drop-down list. This option
is enabled if you have selected the file format as AVRO or AVRO Object
Container Format.

• For PARQUET:

– PARQUET Compression: Select a compression codec from the drop-down list.

• For ORC:

– ORC Compression: Select a compression codec from the drop-down list.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually infer the fields from a stream or file. You
can also add to, or remove fields from, an existing shape. Enter the following details:

– Shape Name: Enter a name for the shape.

– Clear Fields: Click to delete all the fields in the shape.

– Field Name: Add the necessary fields.

– Field Type: Select the field data type from the drop-down list.

10. Click Save.

4.4.1.2 Creating an Azure DataLake Gen-2 Target
To create Azure DataLake Gen-2 target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select Azure DataLake Gen-2 from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select an HDFS connection from the drop-down list.

• HDFS File: Enter a file name. The file name is appended with current timestamp and
the extension, based on the type of storage format.

• HDFS Path: Enter the HDFS location. Provide full access to this location to enable
users other than the folder owner, to write to this path.

• File Roll Interval: Enter the roll-over interval to write a new file. The interval can be in
1000ms, 10s, 1m, or 1.5h format.

• File Roll Max Size: Enter the roll-over file size to create a new file. The size can be in
1000, 10k, 1m, or 1g format.

Chapter 4
Targets

4-36

• NFS Path: Enter the local file or NFS path where the files are written first and then
uploaded to HDFS.

• Storage Format: Select a storage format from the drop-down list.

6. Click Next.

7. On the Data Format screen, enter the shape details, based on the storage format you
have selected.

• For FILE:

– File Format: Select a file format from the drop-down list.

* JSON Delimiter: Enter the JSON delimiter if you have selected the JSON file
format.

* Avro Codec: Select a compression codec from the drop-down list. This option
is enabled if you have selected the file format as AVRO or AVRO Object
Container Format.

• For PARQUET:

– PARQUET Compression: Select a compression codec from the drop-down list.

• For ORC:

– ORC Compression: Select a compression codec from the drop-down list.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually infer the fields from a stream or file. You
can also add to, or remove fields from, an existing shape. Enter the following details:

– Shape Name: Enter a name for the shape.

– Clear Fields: Click to delete all the fields in the shape.

– Field Name: Add the necessary fields.

– Field Type: Select the field data type from the drop-down list.

10. Click Save.

4.4.1.3 Creating a Coherence Target
To create an Coherence target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select Coherence from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

Chapter 4
Targets

4-37

5. On the Target Details screen, enter the following details:

• Connection: Select a coherence connection.

• Cache Name: Enter a name for the coherence cache.

• Data Format: Select a data format from the drop-down list.

6. Click Next.

7. On the Data Format screen, enter the shape details for the stream, based on the data
format you have selected.

• For JSON:

– Create nested json object: Select this option to create a nested JSON object for
the target.

8. Click Next.

9. On the Shape screen, enter the following details:

• For JSON:

– Shape Name: Enter a name for the shape.

– Clear Fields: Click to clear all the fields from the existing shape.

– Key: Select key fields, based on which data is partitioned. For example, records
containing the same values for the selected key fields will all be stored in the same
Kafka partition.
You can select multiple fields as key. Key selection is not mandatory.

– Field Name: Add the necessary fields.

– Field Path: Enter the field path.

Note:

* To retrieve the entire JSON payload, add a new field with path $.

* To retrieve the content of the array, add a new field with path $
[arrayField].

In both the cases, the value returned is of type Text.

– Field Type: Select the field data type from the drop-down list.

• For POJO:

– Jar Name: Select a jar name from the custom POJO jars, from the drop-down list.

– Class Name: Select the class name from the POJO classes in the chosen jars,
from the drop-down list.

10. Click Save.

4.4.1.4 Creating a Database Target
Prerequisite: A Database connection.

To create a Database target:

1. On the Catalog page, click Create New Item.

Chapter 4
Targets

4-38

2. Hover the mouse over Target and select Database from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select a database connection from the drop-down list.

6. Click Next.

7. On the Shape screen, enter the following details:

• Table Name: Select a database table from the drop-down list.

8. Click Save.

4.4.1.5 Creating an Elasticsearch Target
To create an Elastic Search target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select Elastic Search from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select an Elastic Search connection from the drop-down list.

• Index Name: An Elasticsearch index is a collection of documents with similar
characteristics. You can create an index name only in lowercase.
Example format: index.name, your index in elastic search will beindex_name.

6. Click Next.

7. On the Shape screen, select one of the methods to define the shape:

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually define a shape. You can also add to, or
remove fields from, an existing shape. Enter the following details:

– Shape Name: Enter a name for the shape.

Chapter 4
Targets

4-39

– Clear Fields: Click to delete all the fields in the shape.

– Key: Select one or more fields as key, which will be used as the ID field.
Example:
{"_index":"json_data","_type":"_doc","_id":"2","_score":1.0,"_source":
{"address":"Mumbai","serial":"2","clientName":"Joe"}}]}}

Note:

* Any update to the value will result in new entry rather than updating
previous value.

* If a key has a null value, ElasticSearch will autogenerate the key. In
the example above, ID is 2, because serial is selected as the key
field. If record has null in serial field:
{"address":"Mumbai","serial":null","clientName":"Joe"}, then
ID will be autogenerated by Elasticsearch.

* Index is json_data which is provided in previous step, ID will be value
of each record.

– Field Name: Add the necessary fields.

– Field Type: Select the field data type from the drop-down list.

8. Click Save.

4.4.1.6 Creating an HBase Target
To create HBase target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select HBase from the submenu.

3. On the Type Properties screen, enter the following details:

• Name

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select an HBase connection from the drop-down list.

• Column Family: Provide a column family to group the columns in the HBase table.
GGSA and HBase Handler support only a single column family.

• Table Name: Select an already created table in HBase, or provide a table name for
GGSA to create a table, with default HBase table properties.

6. Click Next.

7. On the Shape screen, select one of the methods to define the shape:

Chapter 4
Targets

4-40

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually define a shape. You can also add to, or
remove fields from, an existing shape. Enter the following details:

– Shape Name: Enter a name for the shape.

– Clear Fields: Click to delete all the fields in the shape.

– Key: Selecting atleast one field in the HBase table as a primary key. A primary key
is mandatory.

– Field Name: Add the necessary fields.

– Field Type: Select the field data type from the drop-down list.

8. Click Save.

4.4.1.7 Creating HDFS Target
To create HDFS target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select HDFS from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select an HDFS connection from the drop-down list.

• HDFS File: Enter a file name. The file name is appended with current timestamp and
the extension, based on the type of storage format.

• HDFS Path: Enter the HDFS location. Provide full access to this location to enable
users other than the folder owner, to write to this path.

• File Roll Interval: Enter the roll-over interval to write a new file. The interval can be in
1000ms, 10s, 1m, or 1.5h format.

• File Roll Max Size: Enter the roll-over file size to create a new file. The size can be in
1000, 10k, 1m, or 1g format.

• NFS Path: Enter the local file or NFS path where the files are written first and then
uploaded to HDFS.

• Storage Format: Select a storage format from the drop-down list.

6. Click Next.

7. On the Data Format screen, enter the shape details, based on the storage format you
have selected.

• For FILE:

– File Format: Select a file format from the drop-down list.

Chapter 4
Targets

4-41

* JSON Delimiter: Enter the JSON delimiter if you have selected the JSON file
format.

* Avro Codec: Select a compression codec from the drop-down list. This option
is enabled if you have selected the file format as AVRO or AVRO Object
Container Format.

• For PARQUET:

– PARQUET Compression: Select a compression codec from the drop-down list.

• For ORC:

– ORC Compression: Select a compression codec from the drop-down list.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually infer the fields from a stream or file. You
can also add to, or remove fields from, an existing shape. Enter the following details:

– Shape Name: Enter a name for the shape.

– Clear Fields: Click to delete all the fields in the shape.

– Field Name: Add the necessary fields.

– Field Type: Select the field data type from the drop-down list.

10. Click Save.

4.4.1.8 Creating a Hive Target
To create Hive target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select Hive from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select a Hive connection from the drop-down list.

• Table Name: Enter a table name for the external hive table to be created. The table is
created in the database mentioned in the JDBC url.

• HDFS Path: Enter the file path to write the Avro_OCF files. Data from these files are
loaded into the external tables.

• Schema File Path: Enter the HDFS path to write the Avro_OCF schema file. This
schema file is used to derive the schema of the external hive table. Ensure that the
Avro_ocf data file path and the schema file path are different.

Chapter 4
Targets

4-42

• File Roll Interval: Enter the roll-over interval to write a new file. The interval can be in
10ms, 10s, 10m, 1hr formats.

• File Roll Max Size: Enter the roll-over file size to create a new file. The size can be in
1000, 10k, 10m, 1g formats.

6. Click Next.

7. On the Shape screen, select one of the methods to define the shape:

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually infer the fields from a stream or file. You
can also add to, or remove fields from, an existing shape. Enter the following details:

– Shape Name: Enter a name for the shape.

– Key: Select key fields, based on which the data is partitioned.

– Clear Fields: Click to delete all the fields in the shape.

– Field Name: Add the necessary fields.

– Field Type: Select the field data type from the drop-down list.

8. Click Save.

4.4.1.9 Creating an Ignite Cache Target
To create an Ignite Cache target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and selectIgnite Cache from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select an Ignite connection. Select an embedded connection if you have
the Internal cache cluster is started.

• Cache Name: Enter a unique cache name for the ignite cluster. This will be verified
when the cache name is validated.

• Expiry Delay: Select the cache expiry period from the drop-down list.

• Caching Scheme: Select a scheme from the drop-down list. This field is not applicable
for an embedded cluster.

– Replicated : If you select this scheme, all the data is replicated to every node in
the cluster.

– Partitioned: If you select this scheme, the entire data set is divided equally into
partitions.

Chapter 4
Targets

4-43

• Backup: Enter the number of backup nodes. This field is not applicable for an
embedded cluster.

• Update Cache Entry: Select this option to update a particular key value with new
data. This option is enabled by default.

• Data Format: Select a data format from the drop-down list.

6. Click Next.

7. On the Data Format screen, enter the shape details for the stream, based on the data
format you have selected.

• For JSON:

– Create nested json object: Select this option to create a nested JSON object for
the target.

8. Click Next.

9. On the Shape screen, enter the following details:

• For JSON:

– Shape Name: Enter a name for the shape.

– Clear Fields: Click to clear all the fields from the existing shape.

– Key: Select a key from the input data to store record.
You can select multiple fields as key. Key selection is mandatory.

– Field Name: Add the necessary fields.

– Field Path: Enter the field path.

– Field Type: Select the field data type from the drop-down list.

10. Click Save.

Note:

You cannot edit an Ignite target once created. This restriction avoids cache data
corruption because only one target from the GGSA platform is allowed to write to only
one cache in the ignite server.

4.4.1.10 Creating a JMS Target
Prerequisite: A JMS connection.

To create a JMS target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select JMS from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

Chapter 4
Targets

4-44

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select a JNDI connection.

• JNDI name: Enter a name for the JNDI topic.

• Data Format: Select a data format from the drop-down list.

6. Click Next.

7. On the Data Format screen, enter the shape details, based on the data format you have
selected.

• For JSON:

– Create nested json object: Select this option to create a nested JSON object for
the target.

• For CSV:

– CSV Predefined Format: Select one of the predefined data formats from the drop-
down list. For more information, see Predefined CSV Data Formats.

– First record as header: Select this option to use the first record as the header
row.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Infer Shape: Select this option to detect the shape automatically from the input data
stream.

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually infer the fields from a stream or file. You
can also add to, or remove fields from, an existing shape. Enter the following details:

– For JSON:

* Shape Name: Enter a name for the shape.

* Clear Fields: Click to remove all the fields from the shape.

* Key: Select key fields, based on which data is partitioned. For example,
records containing the same values for the selected key fields will all be stored
in the same Kafka partition.
You can select multiple fields as key. Key selection is not mandatory.

* Field Name: Add the necessary fields.

* Field Path: Enter the field path.

Note:

* To retrieve the entire JSON payload, add a new field with path $.

* To retrieve the content of the array, add a new field with path $
[arrayField].

In both the cases, the value returned is of type Text.

Chapter 4
Targets

4-45

* Field Type: Select the field data type from the drop-down list.

– For CSV, AVRO, and MapMessage:

* Shape Name: Enter a name for the shape.

* Clear Fields: Click to delete all the fields from the shape.

* Field Name: Add the necessary fields.

* Field Type: Select the field data type from the drop-down list.

10. Click Save.

4.4.1.11 Creating a Kafka Target
Prerequisite: A Kafka connection.

To create a Kafka target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select Kafka from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select a Kafka connection.

• Topic name: Enter a name for the Kafka topic.

• Data Format: Select a data format from the drop-down list.

6. Click Next.

7. On the Data Format screen, enter the shape details, based on the data format you have
selected.

• For JSON:

– Create nested json object: Select this option to create a nested JSON object for
the target.

• For CSV:

– CSV Predefined Format: Select one of the predefined data formats from the drop-
down list. For more information, see Predefined CSV Data Formats.

– First record as header: Select this option to use the first record as the header
row.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Infer Shape: Select this option to detect the shape automatically from the input data
stream.

Chapter 4
Targets

4-46

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually infer the fields from a stream or file. You
can also add to, or remove fields from, an existing shape. Enter the following details:

– For JSON:

* Shape Name: Enter a name for the shape.

* Clear Fields: Click to remove all the fields from the shape.

* Key: Select key fields, based on which data is partitioned. For example,
records containing the same values for the selected key fields will all be stored
in the same Kafka partition.
You can select multiple fields as key. Key selection is not mandatory.

* Field Name: Add the necessary fields.

* Field Path: Enter the field path.

Note:

* To retrieve the entire JSON payload, add a new field with path $.

* To retrieve the content of the array, add a new field with path $
[arrayField].

In both the cases, the value returned is of type Text.

* Field Type: Select the field data type from the drop-down list.

– For CSV and AVRO:

* Shape Name: Enter a name for the shape.

* Clear Fields: Click to delete all the fields in the shape.

* Field Name: Add the necessary fields.

* Field Type: Select the field data type from the drop-down list.

10. Click Save.

4.4.1.12 Creating a MongoDB Target
To create an MongoDB target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select MongoDB from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

Chapter 4
Targets

4-47

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select a MongoDB connection from the drop-down list.

• Database: Enter the name of the database to be used for the target.

• Collection: Enter the name of the collection to insert documents.

6. Click Next.

7. On the Shape screen, select one of the methods to define the shape:

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually define a shape. You can also add to, or
remove fields from, an existing shape. Enter the following details:

– Shape Name: Enter a name for the shape.

– Clear Fields: Click to delete all the fields in the shape.

– Key: Select none, or one or more fields as key. This key will be the ID field.

– Field Name: Add the necessary fields.

– Field Type: Select the field data type from the drop-down list.

8. Click Save.

4.4.1.13 Creating a Network File System (NFS) Target
To create an NFS target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select NFS from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• File Name: Enter the name of the file to be stored on the local file system or NFS. The
file name is prefixed with timestamp and extension, when finally stored.

• NFS Path: Enter the shared file path which is accessible from the Spark cluster nodes.

• File Roll Interval: Enter the roll-over interval to write a new file. The interval can be in
1000ms, 10s, 1m, or 1.5h format.

• File Roll Max Size: Enter the roll-over file size to create a new file. The size can be in
1000, 10k, 1m, or 1g format.

• Storage Format: Select a storage format from the drop-down list.

6. Click Next.

Chapter 4
Targets

4-48

7. On the Storage Format screen, enter the shape details, based on the storage format you
have selected.

• For FILE:

– File Format: Select a file format from the drop-down list.

– Avro Codec: Select a compression codec from the drop-down list. This option is
enabled if you have selected the file format as AVRO or AVRO Object Container
Format.

• For PARQUET:

– PARQUET Compression: Select a compression codec from the drop-down list.

• For ORC:

– ORC Compression: Select a compression codec from the drop-down list.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually infer the fields from a stream or file. You
can also add to, or remove fields from, an existing shape. Enter the following details:

– Shape Name: Enter a name for the shape.

– Clear Fields: Click to delete all the fields in the shape.

– Field Name: Add the necessary fields.

– Field Type: Select the field data type from the drop-down list.

10. Click Save.

Note:

In case of JSON, AVRO, AVRO OCF schema files would be written under NFS
Path/SCHEMA folder.

4.4.1.14 Creating a Notification Target
Prerequisite: An OCI connection.

To create a Notification target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select Notification from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

Chapter 4
Targets

4-49

5. On the Target Details screen, enter the following details:

• Connection: Select an OCI connection from the drop-down list.

• Topic: Enter the OCID of the topic.

• Data Format: Select a data format. Currently, OSA supports only JSON data format.

6. Click Next.

7. On the Shape screen, you do not have the option to define a shape. An already populated
shape is displayed. Enter the following details:

• Header: Enter the message header.

• Body: Enter the message body.

8. Click Save.

Note:

ONS connection type is no longer supported in GGSA. Recreate older Notification
type targets in the pipeline, using an OCI connection.

4.4.1.15 Creating an OCI Object Store Target
To create an OCI Object Store target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select Object Storage from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection:

• Object Storage File Name: Enter the name of the file written to the Object Storage
bucket.

• Object Storage File Path: Enter the name of the folder to be created in the Object
Storage bucket. A new folder is created if there is no existing folder.

• Object Storage Bucket: Enter the OCI Object Storage bucket.

• File Roll Interval: Enter the roll-over interval to write a new file. The interval can be in
1000ms, 10s, 1m, or 1.5h format.

• File Roll Max Size: Enter the roll-over file size to create a new file. The size can be in
1000, 10k, 1m, or 1g format.

Chapter 4
Targets

4-50

• NFS Path: Enter the local file or NFS path where the files are written first and then
uploaded to the Object Storage.

• Storage Format: Select a storage format from the drop-down list.

6. Click Next.

7. On the Data Format screen, enter the shape details, based on the storage format you
have selected.

• For FILE:

– File Format: Select a file format from the drop-down list.

* JSON Delimiter: Enter the JSON delimiter if you have selected the JSON file
format.

* Avro Codec: Select a compression codec from the drop-down list. This option
is enabled if you have selected the file format as AVRO or AVRO Object
Container Format.

• For PARQUET:

– PARQUET Compression: Select a compression codec from the drop-down list.

• For ORC:

– ORC Compression: Select a compression codec from the drop-down list.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually infer the fields from a stream or file. You
can also add to, or remove fields from, an existing shape. Enter the following details:

– Shape Name: Enter a name for the shape.

– Clear Fields: Click to delete all the fields in the shape.

– Field Name: Add the necessary fields.

– Field Type: Select the field data type from the drop-down list.

10. Click Save.

4.4.1.16 Creating an OSS Target
Prerequisite: A Kafka connection.

To create a Kafka target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select Kafka from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

Chapter 4
Targets

4-51

4. Click Next.

5. On the Target Details screen, enter the following details:

• Connection: Select a Kafka connection.

• Topic name: Enter a name for the kafka topic.

• Data Format: Select a data format from the drop-down list.

6. Click Next.

7. On the Data Format screen, enter the shape details, based on the data format you have
selected.

• For JSON:

– Create nested json object: Select this option to create a nested JSON object for
the target.

• For CSV:

– CSV Predefined Format: Select one of the predefined data formats from the drop-
down list. For more information, see Predefined CSV Data Formats.

– First record as header: Select this option to use the first record as the header
row.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Infer Shape: Select this option to detect the shape automatically from the input data
stream.

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually infer the fields from a stream or file. You
can also add to, or remove fields from, an existing shape. Enter the following details:

– For JSON:

* Shape Name: Enter a name for the shape.

* Clear Fields: Click to clear all the fields from the existing shape.

* Key: Select key fields, based on which data is partitioned. For example,
records containing the same values for the selected key fields will all be stored
in the same Kafka partition.
You can select multiple fields as key. Key selection is not mandatory.

* Field Name: Add the necessary fields.

* Field Path: Enter the field path.

Note:

* To retrieve the entire JSON payload, add a new field with path $.

* To retrieve the content of the array, add a new field with path $
[arrayField].

In both the cases, the value returned is of type Text.

* Field Type: Select the field data type from the drop-down list.

Chapter 4
Targets

4-52

– For CSV and AVRO:

* Shape Name: Enter a name for the shape.

* Clear Fields: Click to clear all the fields from the existing shape.

* Field Name: Add the necessary fields.

* Field Type: Select the field data type from the drop-down list.

10. Click Save.

4.4.1.17 Creating a REST Target
To create a REST target:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Target and select REST from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the target. This is a mandatory field.

• Display Name: Enter a display name for the target. If left blank, the Name field value
is copied.

• Description

• Tags

• Target Type: The selected target is displayed.

4. Click Next.

5. On the Target Details screen, enter the following details:

• URL: Enter the REST service URL.

• Use SSL: Select this option to enable SSL and basic authentication.

• Trust Store File > Upload File: Click to upload the Truststore file.

• Trust Store Password: Enter the truststore password.

If you do not have the Truststore file and password, click Trust password to connect
the REST end point.

Note:

The Trust Store File and Trust Store Password options allow the use of
untrusted certificates for REST connections, resulting in an insecure
connection.

• Trust Anyway: Select this option to supersede the TrustStoreFile selection.

• Custom HTTP headers: Set the custom headers for HTTP in the format
key=value[,key2=value2,], without quotes. If the end point requires
authentication, you can pass it as a custom header field.

An example custom header would be Authorization=Basic XXXXXXXX, where
XXXXXXXX is a base64-encoded string of username:password.

Chapter 4
Targets

4-53

• Batch processing: Select this option to process batch events as a single request.
Enable this option for high throughput pipelines. For example,

Eg: [{"address":
 { "street" : xxxxxxx }
},{"address":
 { "street" : xxxxxxa }]

• HTTP Method: Select this option for the REST target to send requests to REST end-
point, using Http POST and PUT methods. Default is set to POST.

• Data Format: Select a data format from the drop-down list.

6. Click Next.

7. On the Data Format screen, enter the shape details, based on the data format you have
selected.

• For JSON:

– Create nested json object: Select this option to create a nested JSON object for
the target. For example, if the target shape is defined as

field:attribute_street, field_path:address/street.
}

then output json is

{"address":
 { "street" : xxxxxxx }

• For CSV:

– CSV Predefined Format: Select one of the predefined data formats from the drop-
down list. For more information, see Predefined CSV Data Formats.

– First record as header: Select this option to use the first record as the header
row.

8. Click Next.

9. On the Shape screen, select one of the methods to define the shape:

• Infer Shape: Select this option to detect the shape automatically from the input data
stream.

• Select Existing Shape: Select one of the existing shapes from the drop-down list.

• Manual Shape: Select this option to manually infer the fields from a stream or file. You
can also add to, or remove fields from, an existing shape. Enter the following details:

– For JSON:

* Shape Name: Enter a name for the shape.

* Clear Fields: Click to remove all the fields from the shape.

* Key: Select key fields, based on which data is partitioned. For example,
records containing the same values for the selected key fields will all be stored
in the same Kafka partition.
You can select multiple fields as key. Key selection is not mandatory.

* Field Name: Add the necessary fields.

Chapter 4
Targets

4-54

* Field Path: Enter the field path.

Note:

* To retrieve the entire JSON payload, add a new field with path $.

* To retrieve the content of the array, add a new field with path $
[arrayField].

In both the cases, the value returned is of type Text.

* Field Type: Select the field data type from the drop-down list.

– For CSV:

* Shape Name: Enter a name for the shape.

* Clear Fields: Click to delete all the fields in the shape.

* Field Name: Add the necessary fields.

* Field Type: Select the field data type from the drop-down list.

10. Click Save.

4.4.2 Manage Targets
Coherence Target

4.4.2.1 Coherence Target

4.4.2.1.1 Datatypes supported in the POJO class
The following data types are supported in the POJO class:

• java.lang.String

• java.lang.Integer

• java.lang.Long

• java.lang.Float

• java.lang.Double

• java.lang.Boolean

• java.math.BigDecimal

• java.math.BigInteger

4.4.2.1.2 Sample POJO Class

public class OrderPOJO implements Serializable{
private String orderId ;
Private String orderDesc;

public String setOrderId(String str1) {
 this.orderId=str1;

Chapter 4
Targets

4-55

}
public String setOrderDesc(String str2) {
 this.orderDesc=str2;
}

public String getOrderId() {
return orderId;
}
public String getOrderDesc() {
return orderDesc;
}
public boolean equals(Object object) {
if (this == object) return true;
if (object == null || getClass() != object.getClass()) return false;
if (!super.equals(object)) return false;
OrderPOJO that = (OrderPOJO) object;
return java.util.Objects.equals(orderId, this.orderId) &&
java.util.Objects.equals(orderDesc, this.orderDesc);
}
public int hashCode() {
return java.util.Objects.hash(super.hashCode(), orderId, orderDesc);
}
}

Note:

Ensure that the POJO class does not have a GGSA coherence target as a
constructor, because it can instantiate the POJO class using default constructor, and
then access the setXXX and getXXX, and isXXX methods.

4.4.2.1.3 Sample Code Snippet to declare a Method which returns Boolean
If a method in the POJO class returns a Boolean value, prefix the method name with is instead
of get, while defining the POJO class.

Class Abc {

private boolean var1;

public setVar1(boolean aa){
this.var1 = aa;
}
public boolean isVar1(){
return var1;
}
}

4.5 Pipelines
Create a Pipeline

Manage Pipelines

Chapter 4
Pipelines

4-56

4.5.1 Create a Pipeline
To create a pipeline:

1. On the Catalog page, click Create New Item, and select Pipeline from the drop-down list.

2. On the Type Properties screen, enter the following details:

• Name

• Description

• Tags

• Stream: Select a stream from the drop-down list.

3. Click Save.

4.5.2 Manage Pipelines

4.5.2.1 Using the Pipeline Editor
The canvas on which you edit a pipeline and add different stages to the pipeline is called
Pipeline Editor.

In the Pipeline Editor, you can:

• Adjust the pipeline pane, editor pane, and the live output table pane using the resizing
arrows

• See the relationship and dependencies between various stages of the pipeline

• Add any type of stage to any of the existing stages in the pipeline.
To add a stage:

1. Right-click the stage after which you want to add the new stage.

2. Click Add a Stage, and select the stage type to add.

3. Provide the details for the new stage.

4. Click Save.

• Expand or collapse a pipeline.

– To expand a pipeline, click the

• Switch the layout of the pipeline to vertical or horizontal.

• Zoom to fit a pipeline

4.5.2.2 Publishing a Pipeline
You must publish a pipeline to make the pipeline available for all the users of Oracle Stream
Analytics and send data to targets.

A published pipeline will continue to run on your Spark cluster after you exit the Pipeline Editor,
unlike the draft pipelines which are undeployed to release resources.

To publish a pipeline:

1. Open a draft pipeline in the Pipeline Editor.

2. Click Publish.

Chapter 4
Pipelines

4-57

The Pipeline Settings dialog box opens.

3. Update any required settings. See Configuring Pipeline Preferences.

Note:

Make sure to allot more memory to executors in the scenarios where you have
large windows.

4. Click Publish to publish the pipeline.

A confirmation message appears when the pipeline is published.

You can also publish a pipeline from the Catalog using the Publish option in the Actions
menu.

4.5.2.3 Unpublishing a Pipeline

Unpublishing a pipeline from the Catalog page

1. Go to the Catalog page and hover the mouse over the pipeline that you want to unpublish.

2. Click the Unpublish icon that appears to your right side on the screen.

3. On the Warning screen, click OK.

Unpublishing a pipeline from the Pipeline Editor

1. Click the Unpublish button at the top right corner of the pipeline editor.

2. On the Warning screen, click OK.

4.5.2.4 Exporting and Importing a Pipeline and Its Dependent Artifacts
The export and import features let you migrate your pipeline and its contents between Oracle
Stream Analytics systems (such as development and production). You also have the option to
migrate only select artifacts. You can import a pipeline developed with the latest version of
Oracle Stream Analytics. On re-import, the existing metadata is overwritten with the newly
imported metadata if the pipeline is not published. You can delete the imported artifacts by
right-clicking them and selecting Delete.

To export a pipeline:

1. On the Catalog page, hover the mouse over, or select the pipeline that you want to export
to another GGSA instance.

2. Click the Export option that appears to your right side on the screen.

3. The selected pipeline and its dependent artifacts are exported as a JSON zip file, to your
computer's default Downloads folder.

To import a pipeline:

1. Go to the GGSA instance to which you want to import the exported metadata.

2. On the Catalog page, click Import.

3. In the Import dialog box, click Select, to locate and select the exported zip file on your
computer.

Chapter 4
Pipelines

4-58

4. On the Import Resources tab, you can select an existing connection from the catalog, or
use the imported connection.

5. Click Import.

The imported pipeline and its dependent artifacts are available on the Catalog page.

Note:

• Each pipeline should have a unique name. If you are importing an updated
version of a pipeline, you can retain the same name. If you are importing a new
pipeline and if a pipeline with the same name already exists in the catalog,
change the name of the pipeline that you are importing.

• If you have already exported a pipeline with the same name, update the pipeline
name as below:

1. Create a directory exportUpdate.

2. Copy the exported zip, say exportNameUpdateExample.zip, to the folder
exportUpdate.

3. Unzip the file exportNameUpdateExample.zip.

4. Open the json file in edit mode.

5. Search for pipeline/ artifact name in the json file. For example, if Nano
pipeline was the name given to the pipeline, update it to Nano pipeline
updated.

6. Update the json file in exportNameUpdateExample.zip.

7. Import this zip.

8. The pipeline is automatically assigned a name, using the display name.

9. The draft pipeline and publish pipeline topic are created as below:

a. sx_Nanopipelineupdated_Nano_Stream_draft
b. sx_Nanopipelineupdated_Nano_Stream_public

Chapter 4
Pipelines

4-59

4.5.2.5 Working with Live Output Table
The streaming data in the pipeline appears in a live output table. Select any stage in the
pipeline to see its output.

Hide/Unhide Columns

In the live output table, right-click a column and click Hide to hide that column from the output.
This option only hides the columns from the UI and does not remove them from the output. To
unhide the hidden columns, click Columns and then click the eye icon to make the columns
visible in the output.

Select/Unselect the Columns

Click the Columns link at the top of the output table to view all the columns available. Use the
arrow icons to either select or unselect individual columns or all columns. Only the columns
that you select appear in the output table and in the actual output when the pipeline is
published.

Pause/Restart the Table

Click Pause/Resume to pause or resume the streaming data in the output table.

Perform Operations on Column Headers

Right-click on any column header to perform the following operations:

• Hide: Hides the column from the output table. Click the Columns link and unhide the
hidden columns.

• Remove from output: Removes the column from the output table. Click the Columns link
and select the columns to be included in the output table.

• Rename: Renames the column to the specified name.

• Function: Captures the column in Expression Builder using which you can perform various
operations through the in-built functions.

Add a Timestamp

Include timestamp in the live output table by clicking the clock icon in the output table.

Reorder the Columns

Click and drag the column headers to right or left in the output table to reorder the columns.

4.5.2.6 Using the Topology Viewer
Topology is a graphical representation and illustration of the connected entities and the
dependencies between the artifacts.

The topology viewer helps you in identifying the dependencies that a selected entity has on
other entities. Understanding the dependencies helps you in being cautious while deleting or
undeploying an entity. Oracle Stream Analytics supports two contexts for the topology —
Immediate Family and Extended Family.

You can launch the Topology viewer in any of the following ways:

• Select the Show topology icon next to the Pipeline to launch the Topology Viewer for the
selected entity.

Chapter 4
Pipelines

4-60

• Click the Show Topology icon in the Pipeline Editor.

Click the Show Topology icon at the top-right corner of the editor to open the topology viewer.
By default, the topology of the entity from which you launch the Topology Viewer is displayed.
The context of this topology is Immediate Family, which indicates that only the immediate
dependencies and connections between the entity and other entities are shown. You can
switch the context of the topology to display the full topology of the entity from which you have
launched the Topology Viewer. The topology in an Extended Family context displays all the
dependencies and connections in the topology in a hierarchical manner.

Note:

The entity for which the topology is shown has a grey box surrounding it in the
Topology Viewer.

Immediate Family

Immediate Family context displays the dependencies between the selected entity and its child
or parent.

The following figure illustrates how a topology looks in the Immediate Family.

Extended Family

Extended Family context displays the dependencies between the entities in a full context, that
is if an entity has a child entity and a parent entity, and the parent entity has other
dependencies, all the dependencies are shown in the Full context.

The following figure illustrates how a topology looks in the Extended Family.

Chapter 4
Pipelines

4-61

4.6 GoldenGate Change Stream
Getting a GoldenGate Change Stream into a Kafka Topic

Manage GG Change Data Stream

4.6.1 Getting a GoldenGate Change Stream into a Kafka Topic
To create a GG Change Data:

1. On the Catalog page, click Create New Item and select GG Change Data from the drop-
down list.

2. On the Type Properties screen, enter the following details:

• Name

• Description

• Tags

• GG Type: Select Change Data from the drop-down list.

3. Click Next.

4. On the GG Deployment Details page, enter the following details:

• Connection: Select a GG connection form the drop-down list.

• Deployments: Select a deployment from the drop-down list.

• Deployment Username: Enter the GoldenGate username of the deployment.

• Deployment Password: Enter the GoldenGate password of the deployment.

Note:

The GoldenGate username and password of the deployment should be of the
user with access to create a new distribution path from the Goldengate instance.

Chapter 4
GoldenGate Change Stream

4-62

5. Click Next.

6. On the GG Change Data Details page, enter the following details:

• GG Extracts: Select a GG stream from the drop-down list.

• Target Trail: Enter a two character name for the Goldengate trail file.

• Kafka Connection: Select a Kafka connection from the drop-down list.

• GG Change Data name: Enter a name for the goldengate stream (maximum 8
characters). This name will be used for the replicat process that puts the change data
from trail file to Kafka topics.

7. Click Save.

Note:

The following template parameter files for the replicat process are located at osa-
base/etc/:

• kafka.props.template
• replicat.prm.template
• custom_kafka_producer.properties.template
You can modify these template files to customize the replicat process before
proceeding to the next step.

4.6.2 Manage GG Change Data Stream
Starting a GoldenGate Change Stream

Stopping a GG Change Data Stream

Purging the GoldenGate Trail Files

Streaming GoldenGate Full Records

4.6.2.1 Starting a GoldenGate Change Stream

To start a GG Change Data stream:

1. Go to the Catalog page and hover the mouse over the GG Change Data stream that you
want to start.

2. Click the Start GG Change Data icon that appears to your right side on the screen.

3. On the warning dialog box, click OK.

Chapter 4
GoldenGate Change Stream

4-63

Note:

When you start a GG Change Data replicat process, it creates kafka topics, and
starts pushing changed data to the new topics. For example, if there are 10 tables in
the extract process that you chose while creating the GG Change Data, 10 new
topics will be created.

The names of the topics created are in the following format:

GGChangeDataName_fullyQualifiedTableName

You can use these topics to create a new stream (with Goldengate as stream type),
and in pipelines, similar to using a Kafka stream.

4.6.2.2 Stopping a GG Change Data Stream

To stop a GG Change Data stream:

1. Go to the Catalog page and hover the mouse over the GG Change Data stream that you
want to stop.

2. Click the Stop GG Change Data icon that appears to your right side on the screen..

3. On the warning dialog box, click OK.

4.6.2.3 Purging the GoldenGate Trail Files
The trail files are not needed once the replicat has finished processing them. You can purge
the trail files to save disk space.

The default settings are as follows: PURGEOLDEXTRACTS /location-of-trail-files
MINKEEPHOURS 1, FREQUENCYMINUTES 10.

The trail files, after being processed completely by the replicat process, and after one hour of
inactivity, will be purged. The files will be checked for purging every 10 minutes.

You can modify the above rule, in an OCI GGSA VM, following the steps below:

1. Stop the manager process by running the command sudo systemctl stop ggbd-
mgr.

2. Modify the rules in the file /u01/app/ggbd/OGG_BigData_Linux_x64_19.1.0.0.0/
dirprm/mgr.prm.

3. Start the manager process by running the command sudo systemctl start ggbd-
mgr.

For more information on rules about purging the trail files, see PURGEOLDEXTRACTS for
Manager.

Chapter 4
GoldenGate Change Stream

4-64

4.6.2.4 Streaming GoldenGate Full Records
The GoldenGate Extract process captures either full data records or transactional data
changes, depending on the configuration parameters. To minimize the overhead or
performance impact on the transactional database, GGSA users configure the Extract to
capture only the transactional changes. This also helps to reduce payload size needs to
transfer over the network, thus increasing the performance and security. But a few customers
also need the unchanged columns (full data records), making them available to the processes
that require up-to-date data feed, or to replicate this data to various big data targets for
analysis.

To enable streaming of full data record (value of all fields), GGSA provides the Generate Full
Records option while creating a GoldenGate stream. Enable this option to stream all the
records, irrespective of the database transactional changes made to a single row, a subset or
all the columns of a row.

Note:

Full Records option is not supported in the GGSA marketplace instance.

4.7 Embedded Ignite Cache
GGSA implements an Embedded Ignite Cache. Ignite can be used as a target or a reference
for any pipeline, to persist events. In case of GoldenGate, the pipeline persists incoming
events containing full record, and also updates the cache with modified events, making
available the latest modified records.

Note:

Ignite Caching is not supported in the GGSA marketplace instance.

4.7.1 Starting a Cache Cluster
To start an Embedded Cache Cluster:

1. Open System Settings and click the Cache Cluster tab.

2. Update the Persistence Store Path to a preferred accessible location. This path will be
the persistence storage for cached data. Default is set as /tmp/ignite/persistence.

Note:

NFS mounted path is the preferred persistence store path, to enable cache
rehydration, on restart of a cluster or a node.

3. Click Start Cluster.

Chapter 4
Embedded Ignite Cache

4-65

Note:

When you start a cache cluster for the first time, an embedded Ignite Connection is
created with connection type as Ignite Cache and Connection Name as Embedded.
This connection is not editable connection, and connection details are not shown, but
you can select this connection while creating an Ignite Target and an Ignite
Reference.

4.7.2 Stopping a Cache Cluster
To stop a running Embedded Cache Cluster:

1. Open System Settings and click the Cache Cluster tab.
The Cluster Status shows previous valid status, by default. The status is updated with the
current status from server. You will see a green icon, indicating a running server status.

Persistence Store Path is not editable, if the cluster is in running state.

2. Click Stop Cluster.

On a successful stop action, the cluster status changes to Stopped, and the persistence store
path becomes editable.

4.7.3 Restarting a Cache Cluster
To restart a running Embedded Cache Cluster:

1. Open System Settings and click the Cache Cluster tab.
The Cluster Status shows previous valid status, by default. The status is updated with the
current status from server. You will see a red icon, indicating a killed server status.

2. Click Restart Cluster.

On a successful cluster restart, the status changes to Running, and the persistence store path
is not editable.

4.7.4 Monitoring Cache in the Cache Cluster
You can monitor the caches in both the internal (embedded) and external clusters, using the
Monitor option on the GGSA application's homepage.

To monitor a cache:

1. Click Monitor on the homepage.

2. On the Cache Management screen, select a cache connection from the drop-down list.

The Cache Management page is populated with the following details for the selected
cache connection:

• All the Cache connections created using ignite, which includes both internal and
external caches, are listed. Internal caches created from the System Settings tab are
marked Embedded.

• By default, all the caches created using the first connection in the list are displayed. If
you select another connection from drop-down list, the corresponding caches will be
retrieved and listed.

• The Created Target column lists all the targets created using a cache.

Chapter 4
Embedded Ignite Cache

4-66

• The Referred By column lists the references created using a cache.

• Click the Reset Cache icon to clear all the cache entries.

• Click the Reload Cache icon to reload the cache size.

• The caches are displayed in the ascending order of their names, by default. Use the
Sort By option, to sort the caches by name or size.

4.8 Ignite Cluster on OCI GGSA
Starting an Ignite Cluster

Scaling an Ignite Cluster

Deleting Storage

Stopping an Ignite Cluster

4.8.1 Starting an Ignite Cluster
To start an Ignite Cluster:

1. Open System Settings, select Manage Clusters, and expand the Ignite Cluster option to
set the following parameters:

2. Number of Cluster instances: Specify the number of cluster instances that you require .
The default value is 2. You can add up to 5 cluster instances.

3. Memory Limit: Enter the memory to allocate to the cluster instance.

4. CPU Limit: Enter the CPU limit to allocate to the cluster instance.

5. Click Start Cluster.

6.

The Cluster Status changes to In Progress. You will see a status message to refresh the
page. Close the System Settings page and reopen it. The Cluster Status changes to
Running.

4.8.2 Scaling an Ignite Cluster
To start an Ignite Cluster:

1. Open System Settings, select Manage Clusters, and from the Ignite Cluster drop-down,
set the following parameters:

2. Number of Cluster instances: Update this value to increase or decrease the number of
cluster instances. The default value is 2. You can add up to 5 cluster instances.

3. Click Scale Cluster.

The Cluster Status changes to In Progress. You will see a status message to refresh the
page. Close the System Settings page and reopen it. The Cluster Status changes to
Running. The cluster

4.8.3 Deleting Storage
To delete the storage allocated to the cluster instance:

1. Open System Settings, select Manage Clusters, and expand the Ignite Cluster option.

Chapter 4
Ignite Cluster on OCI GGSA

4-67

2. Select Delete Storage.

Note:

• The Delete Storage option is available only while the Ignite Cluster is running.

• If you leave the box unselected, the cached values are retained for the next
restart.

4.8.4 Stopping an Ignite Cluster
To stop an Ignite Cluster:

1. Open System Settings, select Manage Clusters, and expand the Ignite Cluster option.

2. Click Stop Cluster.

The Cluster Status changes to Stopped.

4.9 GGBD Cluster on OCI GGSA
OCI GoldenGate Stream Analytics embeds a GoldenGate Big Data environment to receive a
change stream from GoldenGate extracts.

Starting a GGBD Cluster

Stopping a GGBD Cluster

4.9.1 Starting a GGBD Cluster
To start a GGBD Cluster:

1. Open System Settings, select Manage Clusters, and expand the GGBD Cluster option
to set the following parameters:

2. Memory Limit: Enter the maximum memory to allocate to the cluster instance.

3. CPU Limit: Enter the maximum CPU limit to allocate to the cluster instance.

4. Click Start Cluster.

The Cluster Status changes to In Progress. You will see a status message to refresh the
page. Close the System Settings page and reopen it. The Cluster Status changes to
Running.

4.9.2 Stopping a GGBD Cluster
To stop an GGBD Cluster:

1. Open System Settings, select Manage Clusters, and expand the GGBD Cluster option.

2. Click Stop Cluster.

The Cluster Status changes to Stopped.

Chapter 4
GGBD Cluster on OCI GGSA

4-68

5
Transform

Adding Stages to a Pipeline

Correlating Streams and References

Applying Window Functions to a Stream

Applying Functions to Create a New Column

Adding Custom Functions and Custom Stages

Writing CQL Queries

5.2 Correlating Streams and References
A correlation is used to enrich the incoming event in the data stream with static data in a
database table or with data from other streams.

For example, if the event in the data stream only includes SensorId and Sensor Temperature,
the event could be enriched with data from a table to obtain SensorMake, SensorLocation,
SensorThreshold, and many more.

Correlating an event with other sources requires the join condition to be based on a common
key. In the above example, the SensorId from the stream cand be used to correlate with
SensorKey in the database table. The following query illustrates the above data enrichment
scenario producing sensor details for all sensors whose temperature exceeds their pre-defined
threshold.

Select T.SensorId, T.Temperature, D.SensorName, D.SensorLocation
From TemperatureStream[Now] T, SensorDetailsTable D
Where T.SensorId = D.SensorKey And T.Temperature > D.SensorThreshold

Queries like above and more complex queries can be automatically generated by configuring
sources and filter sections of the query stage.

5.2.1 Joining Mutiple Streams
You can correlate a stream with another stream.

Stream-to-stream Correlation

• A Stream is an unbounded sequence of events. To correlate a Stream with another
Stream, first convert both streams to a Relation or a bounded sequence of events, by
applying window functions.

• After applying window functions on both streams, define a correlation condition that
evaluates to true or false.

The output from stream-to-stream correlation is a subset of the Cartesian product of tuples
from both windows, where the correlation condition is true.

5-1

5.2.2 Joining a Stream with a Reference or an External Source
You can join a stream with external data in a Database or a Coherence Cache.

Stream-to-Database Table Correlation

• Convert the Stream to a bounded sequence of events, by applying a window function.

• After applying the window function on the stream, define a correlation condition that
evaluates to true or false.

The output from Stream-to-database correlation is the Cartesian product of tuples from window
and the database table, where the correlation condition is true.

Stream-to-Cache Correlation

• Convert the Stream to a bounded sequence of events, by applying a window function.

• After applying the window function on the stream, define a correlation condition that
evaluates to true of false.

The output from Stream-to-Cache is the Cartesian product of tuples from window and the
cache, where the correlation condition is true. Currently, OSA supports only Coherence cache.

5.3 Applying Window Functions to a Stream
Apply window functions, to specify time and event based windows, to process your stream.

To apply a Window function:

1. Open a pipeline in the Pipeline Editor.

2. Select the query stage to apply the window function.

3. Click the Sources tab.

4. Click the clock icon, and select the required window type from the Window Type drop-
down list.

5.3.1 Applying a Time Window with Slide
• Range value: Integer

• Range unit: nanoseconds, microseconds, milliseconds, seconds, minutes, hours

• Slide value: Integer

• Slide unit: nanoseconds, microseconds, milliseconds, seconds, minutes, hours

• Applicable on: Query Stage

The CQL example is as follows:

[range 5 MINUTES slide 30 SECONDS]

In the above example, the data is retained for 5 minutes but the query is evaluated every 30
seconds.

Chapter 5
Applying Window Functions to a Stream

5-2

Note:

There will be an output only if the current results of the query is different from the
previous results. This avoids sending duplicates to downstream applications.

If you set the slide to same as range, it will create a tumbling window instead of a sliding
window. For example,

[Range 5 MINUTES slide 5 MINUTES]

will only retain 5 minutes of data and the query will only execute every 5 minutes.

Note:

Use the tumbling window to batch output results before sending to downstream
systems. For example, you may want to create a file on object store only after you
have accumulated at least 10000 events. This would avoid the small-file problem in
Big-Data systems. Similarly, you may want to avoid multiple writes to a database
system and instead perform a single write, after sufficient events have been
accumulated.

5.3.2 Applying a Time Window without Slide
• Range value: Integer

• Range unit: nanoseconds, microseconds, milliseconds, seconds, minutes, hours

• Applicable on: Query Stage, Query Group Stream Stage and Query Group Table Stage

The CQL example is as follows:

[range 1 minutes]

In the example above, the default slide value which is same as spark streaming batch interval
is used.

Note:

If you do not specify a slide value, it will take the default slide, which is same as the
Spark batch interval.

5.3.3 Applying a Row Window with Slide
• Rows value: Integer

• Applicable on: Query Stage, Query Group Stream Stage and Query Group Table Stage

The CQL example is as follows:

[rows 10 slide 1]

Chapter 5
Applying Window Functions to a Stream

5-3

Maximum window size is 10 events, but Slide of 1 implies the query is executed on the arrival
of every new event.

5.3.4 Applying a Row Window without Slide
• Rows value: Integer

• Applicable on: Query Stage, Query Group Stream Stage and Query Group Table Stage

The CQL example is as follows:

[rows 10]

Last 10 events is used to evaluate the query. Default slide value is used.

5.3.5 Applying a window with current year, month, day, or hour
CurrentYear

• Applicable on: Query Stage, Detect Duplicates Pattern, Eliminate Duplicate Pattern

The CQL example is as follows:

[CurrentYear]

Data is retained until end of the current year. Default slide value is used.

CurrentMonth

• Applicable on: Query Stage, Detect Duplicates Pattern, Eliminate Duplicate Pattern

The CQL example is as follows:

[CurrentMonth]

Data is retained until the end of the current month. Default slide value is used.

CurrentDay

• Applicable on: Query Stage, Detect Duplicates Pattern, Eliminate Duplicate Pattern

The CQL example is as follows:

[CurrentDay]

CurrentHour

• Supported types of shape fields: timestamp, int, bigint

• Applicable on: Query Stage, Detect Duplicates Pattern, Eliminate Duplicate Pattern

The CQL example is as follows:

[CurrentHour]

Data is retained until the end of the current hour. Default slide value is used.

Chapter 5
Applying Window Functions to a Stream

5-4

5.3.6 Applying your own Window using Field from Payload
• Interval value: interval

• Supported types of shape fields: timestamp

• Applicable on: Query and Query Group Stream Stage and Query Group Table Stage

The CQL example is as follows:

[range "DS_INTERVAL" on c1]

Here the range is based on a field value in the payload.

Use this window type to aggregate data using a timestamp column from payload. For example,

[range INTERVAL "2 0:0:0.0" DAY TO SECOND on EventCaptureTime]

will only retain events from the last 2 days, based on the timestamp value in
EventCaptureTime field.

5.3.7 Applying a Row window with Partition without Range
• Shape fields of Partition by: MultiSelect

• Rows value: Integer

• Applicable on: Query Stage

The CQL example is as follows:

[partition by F1, F2 rows 10]

Last 10 events for each partition value. For example [partition by stockSymbol rows 10] will use
last 10 quotes for ORCL, last 10 quotes for AMZN, etc.

Query is evaluated on the arrival of new events and not on time ticks.

Default slide value is used.

5.3.8 Applying a Row Window with Partition with Range without Slide
• Shape fields of Partition by: MultiSelect

• Rows value: Integer

• Range value: Integer

• Range unit: nanoseconds, microseconds, milliseconds, seconds, minutes, hours

• Applicable on: Query Stage

The CQL example is as follows:

[partition by F1, F2 rows 10 range 15 seconds]

Events may be evicted from the window even when it is not full with all 10 rows, but 15
seconds have elapsed since the event arrived.

Chapter 5
Applying Window Functions to a Stream

5-5

5.3.9 Applying a Row Window with Partition with Slide and Range
• Shape fields of Partition by: MultiSelect

• Rows value: Integer

• Range value: Integer

• Range unit: nanoseconds, microseconds, milliseconds, seconds, minutes, hours

• Slide Value: Integer

• Slide unit: nanoseconds, microseconds, milliseconds, seconds, minutes, hours

• Applicable on: Query Stage

The CQL example is as follows:

[partition by F1, F2 rows 10 range 15 seconds slide 1 second]

5.1 Adding Stages to a Pipeline

5.1.1 Adding a Query Stage
You can include simple or complex queries on the data stream without any coding to obtain
refined results in the output.

1. Open a pipeline in the Pipeline Editor.

2. Right-click the stage after which you want to add a query stage, click Add a Stage, and
then select Query.

3. Enter a Name and Description for the Query Stage.

4. Click Save.

5.1.2 Adding a Filter to a Query Stage
You can add filters in a pipeline to obtain more accurate streaming data.

To add a filter:

1. Open a pipeline in the Pipeline Editor.

2. Select the required query stage.

3. Navigate to the Filters tab.

4. Click Add a Filter.

5. Select the required column and a suitable operator and value.

You can also calculate fields within filters.

Chapter 5
Adding Stages to a Pipeline

5-6

Note:

IN operator is available as an operator in the drop-down list. This operator is not
supported for Interval, Interval YM, Timestamp, and SDO Geometry datatypes.
You can use the IN filter to refer to a column in a database table. When you
change the database column values at runtime, the pipeline picks up the latest
values from the DB column, without republishing the pipeline.

6. Click Add a Condition to add and apply a condition to the filter.

7. Click Add a Group to add nested conditions.

8. Repeat these steps for as many filters, conditions, or groups as you want to add.

You can create blocks without adding condition expression, which you can add at any later
stage.

Link the blocks using AND/ OR

Define complex conditions.

Example:

5.1.3 Adding a Summary to a Query Stage

To add a summary:

1. Open a pipeline in the Pipeline Editor.

2. Select the required query stage and click the Summaries tab.

3. Click Add a Summary.

4. Select the suitable function and the required column.

5. Repeat the above steps to add as many summaries you want.

5.1.4 Adding a Summary with Group By

To add a group by:

1. Open a pipeline in the Pipeline Editor.

2. Select the required query stage and click the Summaries tab.

3. Click Add a Group By.

4. Click Add a Field and select the column on which you want to group by.

When you create a group by, the live output table shows the group by column alone by default.
Turn ON Retain All Columns to display all columns in the output table.

Chapter 5
Adding Stages to a Pipeline

5-7

You can add multiple group by's.

5.1.5 Adding a Query Group Stage
A query group is a combination of summaries (aggregation functions), group-bys, filters and a
range window. Different query groups process your input in parallel and the results are
combined in the query group stage output. You can also define input filters that process the
incoming stream before the query group logic is applied, and result filters that are applied on
the combined output of all query groups together.

A query group stage of the stream type applies processing logic to a stream. It is in essence
similar to several parallel query stages grouped together for the sake of simplicity.

A query group stage of the table type can be added to a stream containing transactional
semantic. For example, change data capture stream produced by the Oracle GoldenGate
BigData plugin. The stage of this type will recreate the original database table in memory using
the transactional semantics contained in the stream. You can then apply query groups to this
table in memory, to run real-time analytics on your transactional data, without affecting the
performance of your database.

5.1.5.1 Adding Query Group: Stream
You can apply aggregate functions with different groupbys and window ranges to your
streaming data.

To add a query group stage of type stream:

1. Open a pipeline in the Pipeline Editor.

2. Right-click the stage after which you want to add a query group stage, click Add a Stage,
select Query Group, and then Stream.

You can add a query stage group only at the end of the pipeline.

3. Enter a name and a description for the query group stage of the type stream and click
Save.

The query group stage of the type stream appears in the pipeline.

4. On the Input Filters tab, click Add a Filter. See Adding a Filter to a Query Stage.

These filters process data before it enters the query group stage. Hence, you can only see
fields of the original incoming shape.

5. On the Groups tab, click Add a Group. A group can consist one or many of summaries,
filters, and group bys.

See Adding a Summary to a Query Stage and Adding a Summary with GroupBy.

6. Repeat the previous step to add as many groups as you want.

7. On the Result Filters tab, click Add a Filter to filter the results.

These filters process data before it exits the query group stage. Hence, you can see a
combined set of fields in the outgoing shape.

8. On the Visualizations tab, click Add a Visualization and add the required type of
visualization. See Adding Chart Visualizations.

Chapter 5
Adding Stages to a Pipeline

5-8

5.1.5.2 Adding Query Group: Table
You can apply aggregate functions with different groupbys and window ranges to a database
table data recreated in memory.

To add a query group stage of the type table:

1. Open a pipeline in the Pipeline Editor.

2. Right-click the stage after which you want to add a query group stage, click Add a Stage,
select Query Group, and then Table.

3. Enter a name and a description for the Query Group Table and click Next.

4. On the Transactions Settings screen, select a column in the Transaction Field drop-
down list.

The transaction column is a column from the output of the previous stage that carries the
transaction semantics (insert/update/delete). Make sure that you use the values that
correspond to your change data capture dataset. The default values work for Oracle
GoldenGate change data capture dataset.

5. On the Field Mappings screen, select the columns that carry the before and after
transaction values from the original database table. For example, in case of Oracle
GoldenGate, the before and after values have before_ and after_ as prefixes,
respectively. Specify a column as primary key in the table.

6. Click Save to create a query group stage of the type table.

You can see the table configuration that you have specified while creating the table stage
in the Table Configuration tab.

7. On the Input Filters tab, click Add a Filter. See Adding a Filter to a Query Stage.

8. On the Groups tab, click Add a Group. A group can consist one or many of summaries,
filters, and groupbys.

See Adding a Summary to a Query Stage and Adding a Summary with GroupBy.

9. Repeat the previous step to add as many groups as you want.

10. On the Result Filters tab, click Add a Filter to filter the results.

11. On the Visualizations tab, click Add a Visualization and add the required type of
visualization. See Adding Chart Visualizations.

5.1.6 Adding a Rule Stage
Using a rule stage, you can add the IF-THEN logic to your pipeline. A rule is a set of conditions
and actions applied to a stream. There is no specific sequence to add rules.

To add a rule stage:

1. Open a pipeline in the Pipeline Editor.

2. Right-click the stage after which you want to add a rule stage, click Add a Stage, and then
select Rule.

3. Enter a Name and Description for the rule stage.

4. Click Add a Rule.

5. Enter Rule Name and Description for the rule and click Done to save the rule.

Chapter 5
Adding Stages to a Pipeline

5-9

6. Select a suitable condition in the IF statement, THEN statement, and click Add Action to
add actions within the business rules.

Actions can also be expressions. For example, SET Revenue TO =-Revenue, will convert
the current value of Revenue to a negative number.

Expressions must always start with a '=' sign. For a constant text value, just type in the
text. For example, SET CustomerType TO GOLD.

The rules are applied to the incoming events one by one and actions are triggered if the
conditions are met.

5.1.7 Adding a Pattern Stage
A pattern is a template of an Oracle GoldenGate Stream Analytics application, with a business
logic built into it. You can create pattern stages within the pipeline. Patterns are not stand-alone
artifacts, they need to be embedded within a pipeline.

For detailed information about the various type of patterns, see Transforming and Analyzing
Data using Patterns.

To add a pattern stage:

1. Open a pipeline in the Pipeline Editor.

2. Right-click the stage after which you want to add a pattern stage, click Add a Stage, and
then select Pattern.

3. Choose the required pattern from the list of available patterns.

4. Enter a Name and Description for the pattern stage.

The selected pattern stage is added to the pipeline.

5. Click Parameters and provide the required values for the parameters.

6. Click Visualizations and add the required visualizations to the pattern stage.

5.1.8 Adding a Scoring Stage

To add a scoring stage:

1. Open the required pipeline in Pipeline Editor.

2. Right-click the stage after which you want to add a scoring stage, click Add a Stage, and
then select Scoring.

3. Enter a meaningful name and suitable description for the scoring stage and click Save.

4. In the stage editor, enter the following details:

a. Model name: Select the predictive model that you want to use in the scoring stage

b. Model Version: Select the version of the predictive model

c. Mapping: Select the corresponding model fields that appropriately map to the stage
fields

You can add multiple scoring stages based on your use case.

5.1.9 Adding a Target Stage

To add a target stage:

Chapter 5
Adding Stages to a Pipeline

5-10

1. Open the required pipeline in Pipeline Editor.

2. Right-click the stage after which you want to add a target stage, click Add a Stage, and
then select Target.

3. Enter a name and suitable description for the target.

4. Click Save.

For more information on creating different target types, see #unique_200.

5.1.10 Adding a Custom CQL Stage
To add a custom stage:

1. Open the required pipeline in Pipeline Editor.

2. Right-click the stage after which you want to add a custom stage. Click Add a Stage, and
Custom, and then select Custom CQL.

3. Enter a name and suitable description for the custom stage and click Save.

4. Type your custom CQL query in the right pane of the pipeline editor.

5.4 Applying Functions to Create a New Column
You can perform calculations on the data streaming in the pipeline, and also add new fields
into the stream using in-built functions of the Expression Builder.

To launch the Expression Builder, click fx in the Live Output table.

Note:

Currently, you can use expressions only within a query stage.

Adding a Constant Value Column

A constant value is a simple string or number. No calculation is performed on a constant value.
Enter a constant value directly in the expression builder to add it to the live output table.

Using Functions

You can select a CQL Function from the list of available functions and select the input
parameters. Make sure to begin the expression with ”=”. Click Apply to apply the function to
the streaming data.

Example expression using functions:

=float((CanceledOrdersFloat/NewOrdersFloat) * 100.0)

Chapter 5
Applying Functions to Create a New Column

5-11

You can see custom functions in the list of available functions when you add/import a custom
jar in your pipeline.

For a list of supported functions, see #unique_202 .

5.4.1 Using Bessel Functions
The mathematical cylinder functions for integers are known as Bessel functions.

The following Bessel functions are supported in this release:

Function Name Description

BesselI0(x) Returns the modified Bessel function of order 0 of the double
argument as a double

BesselI0_exp(x) Returns the exponentially scaled modified Bessel function of order
0 of the double argument as a double

BesselI1(x) Returns the modified Bessel function of order 1 of the double
argument as a double

BesselI1_exp(x) Returns the exponentially scaled modified Bessel function of order
1 of the double argument as a double

BesselJ(x,x) Returns the Bessel function of the first kind of order n of the
argument as a double

BesselK(x,x) Returns the modified Bessel function of the third kind of order n of
the argument as a double

BesselK0_exp(x) Returns the exponentially scaled modified Bessel function of the
third kind of order 0 of the double argument as a double

Chapter 5
Applying Functions to Create a New Column

5-12

Function Name Description

BesselK1_exp(x) Returns the exponentially scaled modified Bessel function of the
third kind of order 1 of the double argument as a double

BesselY(x) Returns the Bessel function of the second kind of order n of the
double argument as a double

5.4.1.1 BesselI0
Returns the modified Bessel function of order 0 of the input argument.

The input arguments can be one of the following data types: double, float.

Returned value type will be double.

Function Result

besselIO(65) 8.403039845625433E26

besselIO(3125.2) 1.07389541368045088E17

5.4.1.2 BesselIO_exp
Returns the exponentially scaled modified Bessel function of order 0 of the double argument as
a double.

The input argument can be one of the following data type: double, integer, float. Returned
value type will be double.

Function Result

besselIO_exp(1451.44) 8.113723742037748E23

5.4.1.3 BesselI1(value1)
Function returns the modified Bessel function of order 1 of the double argument.

The input arguments can be one of the following data types: double, integer, float.

The returned value type will be double.

Function Result

besselI1(432.98) 2.1043808863643512E186

besselI1(31) 2.055972795294565E12

5.4.1.4 BesselI1_exp(value1)
Function returns the exponentially scaled modified Bessel function of order 1, of the input
argument.

The input arguments can be one of the following types: double, integer, float.

Returned value type will be double.

Chapter 5
Applying Functions to Create a New Column

5-13

Function Result

besselI1_exp(99) 0.03994284829937756

5.4.1.5 BesselK0_exp(value1)
Function returns the exponentially scaled modified Bessel function of the third kind of order 0.

Input value can be one of the following types: double, integer, float.

Returned value type will be double.

Function Result

Besselk0_exp(3.6) 0.6404559726736455

5.4.1.6 BesselIK1_exp(value1)
Function returns the exponentially scaled modified Bessel function of the third kind of order 1.

Input value can be one of the following types: double, integer, float.

Returned value type will be double.

Function Result

BesselIK1_exp(72) 0.14847048263652857

BesselIK1_exp(3.6) 0.7244606719817783

5.4.1.7 BesselY(value1, value2)
Function returns the Bessel function of the second kind of order n of the input argument.

Value 1 can be of the following types: integer.

Value 2 can be of the following types: double, integer, float.

Returned value type will be double.

Function Result

BesselY(30,2.2) -1.6816755062290252E29

5.4.1.8 BesselJ(value1, value2)
Function returns the Bessel function of the first kind of order n of the argument.

The input arguments can be one of the following data types:

• Value1 can be one of the following types: integer.

• Value 2 can be one of the following types: double, integer, float.

Returned value type will be double.

Chapter 5
Applying Functions to Create a New Column

5-14

Function Result

besselJ(4,3.3) 0.1742753869717833

5.4.1.9 BesselK(value1,value2)
Function returns the modified Bessel function of the third kind of order n of the input argument.

Value1 can be one of the following types: integer.

Value 2 can be one of the following types: double, integer, float.

Returned value type will be double.

Function Result

BesselK(30,2) 4.271125754887687E30

5.4.2 Using Conversion Functions
The conversion functions help in converting values from one data type to other.

The following conversion functions are supported in this release:

Function Name Description

bigdecimal(value1) Converts the given value to bigdecimal

boolean(value1) Converts the given value to logical

date(value1,value2) Converts the given value to datetime

double(value1) Converts the given value to double

float(value1) Converts the given value to float

int(value1) Converts the given value to integer

long(value1) Converts the given value to long

string(value1,value2) Converts the given value to string

5.4.2.1 bigdecimal(value1)
Converts the input argument value to big decimal. The input argument can be one of the
following data types: big integer, number, double, integer, text, float. Returned value type will
be number.

Function Result

bigdecimal(60) 6E+1

bigdecimal(32) 32

5.4.2.2 boolean(value1)
Converts the input argument value to logical. The input argument can be one of the following
data type: big integer or integer. Returned value type will be Boolean.

Chapter 5
Applying Functions to Create a New Column

5-15

Examples

Function Result

boolean(5) TRUE

boolean(0) FALSE

boolean(NULL) TRUE

boolean() TRUE

boolean(-5) TRUE

5.4.2.3 double(value1)
Converts the input argument value to double. The input argument can be one of the following
data types: integer, big integer, double, text or float. Returned value type will be double.

Examples

Function Result

double(3.1406) 3.1405999660491943

double(1234.56) 1234.56005859375

5.4.2.4 float(value1)
Converts the input argument value to float. The input argument can be one of the following
data types: integer, big integer, double, text or float. Returned value will be a single-precision
floating-point number.

Examples

Function Result

float(1.67898989395) 1.6789899

float(1.796709289) 1.7967093

float(12.60508090750) 12.605081

5.4.2.5 int(value1)
Converts the input argument value to integer. The input argument can be one of the following
types: integer, text. Returned value type will be integer.

Function Result

int(50/3) 16

5.4.2.6 long()
Converts the input argument value to long. The input argument can be one of the following
types: big integer, integer, text, float, timestamp. Returned value type will be big integer.

Chapter 5
Applying Functions to Create a New Column

5-16

Function Result

long(5039505078907524) 5039505078907524

long(22) 22

5.4.2.7 string(value1, value2)
Conversion to string.

Value 1 can be one of the following types: intervalym, big integer, number, boolean, double,
interval, integer, float, timestamp. Required.

Value 2 is output date format. It's required argument for value1 of type timestamp. Value can
be one of the following types: text. Optional.

Returned value will be of type text.

Function Result

string(transaction_time,"hh-mm-ss") ,
where transaction_time is 12/19/2016 12:23:04

12-23-04

string(transaction_time,"M-DD-YY") ,
where transaction_time is 12/19/2016 12:23:04

12-19-16

5.4.3 Using Date Functions

The following date functions are supported in this release:

Function Name Description

day(date) Returns day of the date

eventtimestamp() Returns event timestamp from stream

hour(date) Returns hour of the date

minute(date) Returns minute of the date

month(date) Returns month of the date

nanosecond(date) Returns nanosecond of the date

second(date) Returns second of the date

systimestamp() Returns the system’s timestamp on which the application is
running

timeformat(value1,value2) Returns the provided timestamp in required time format

year(date) Returns year of the date

5.4.3.1 Acceptable Formats for Timestamp Values

This sections lists the acceptable formats for timestamp values in Oracle Stream Analytics.

Chapter 5
Applying Functions to Create a New Column

5-17

Format Example Values

MM/dd/yyyy HH:mm:ss.SSSS 3/21/2018 11:14:23.1111

MM/dd/yyyy HH:mm:ss.SSS 3/21/2018 11:14:23.111

MM/dd/yyyy HH:mm:ss.SS 3/21/2018 11:14:23.11

MM/dd/yyyy HH:mm:ss.S 3/21/2018 11:14:23.1

MM/dd/yyyy HH:mm:ss 3/21/2018 11:14:23

MM/dd/yyyy HH:mm 3/21/2018 11:14

MM/dd/yyyy HH 3/21/2018 11

MM/dd/yyyy 3/21/2018

MM-dd-yyyy HH:mm:ss.SSSS 11-21-2018 11:14:23.1111

MM-dd-yyyy HH:mm:ss.SSS 11-21-2018 11:14:23.111

MM-dd-yyyy HH:mm:ss.SS 11-21-2018 11:14:23.11

MM-dd-yyyy HH:mm:ss.S 11-21-2018 11:14:23.1

MM-dd-yyyy HH:mm:ss 11-21-2018 11:14:23

MM-dd-yyyy HH:mm 11-21-2018 11:14

MM-dd-yyyy HH 11-21-2018 11

MM-dd-yyyy 11-21-2018

dd-MMM-yy hh.mm.ss.SSSSSS a 11-Jan-18 11.14.23.111111 AM

dd-MMM-yy hh.mm.ss.SSSS 11-Jan-18 11.14.23.1111

dd-MMM-yy hh.mm.ss.SSS 11-Jan-18 11.14.23.111

dd-MMM-yy hh.mm.ss.SS 11-Jan-18 11.14.23.11

dd-MMM-yy hh.mm.ss.S 11-Jan-18 11.14.23.1

dd-MMM-yy hh.mm.ss 11-Jan-18 11.14.23

dd-MMM-yy hh.mm 11-Jan-18 11.14

dd-MMM-yy hh 11-Jan-18 11

dd-MMM-yy 11-Jan-18

dd/MMM/yy 15/MAR/18

yyyy-MM-dd HH:mm:ss.SSSSSS 2018-03-5 15:16:0.756000 +5:30, 2018-03-5 15:16:0.756000

yyyy-MM-dd HH.mm:.ss.SSSSSS 2018-03-5 15.16.0.756000 +5:30, 2018-03-5 15.16.0.756000

yyyy-MM-dd HH:mm:ss 2018-03-5 15:16:0; 2018-03-5 15:16:0 +5:30

yyyy-MM-dd HH.mm.ss 2018-03-5 15.16.0; 2018-03-5 15.16.0 +5:30

yyyy-MM-dd HH:mm 2018-03-5 15:16; 2018-03-5 15:16 +5:30

yyyy-MM-dd HH.mm 2018-03-5 15.16; 2018-03-5 15.16 +5:30

yyyy-MM-dd HH 2018-03-5 15

yyyy-MM-dd 2018-03-5

HH:mm:ss 11:14:14 PST

yyyy-MM-dd'T'HH:mm:ss'.'SSS 2018-03-04T12:08:56.235

yyyy-MM-
dd'T'HH:mm:ss'.'SSSZ

2018-03-04T12:08:56.235-0700

Chapter 5
Applying Functions to Create a New Column

5-18

Format Example Values

yyyy-MM-
dd'T'HH:mm:ss'.'SSSz

2018-03-04T12:08:56.235 PDT

yyyy-MM-dd'T'HH:mm:ss 2018-03-04T12:08:56

yyyy-MM-dd'T'HH:mm:ssZ 2018-03-04T12:08:56-0700

yyyy-MM-dd'T'HH:mm:ssz 2018-03-04T12:08:56 PDT

5.4.3.2 Day(date)
day(date) function takes as an argument any one of the following data types: time interval or
timestamp. The returned value represents the day in the timestamp represented by this date
object. Returns a big integer indicating the day represented by this date.

Examples

Function Result

day(transaction-time), where
transaction_time is 12/19/2016 12:22:48

19

5.4.3.3 eventtimestamp(value1)
Event timestamp from stream.

Returned value will be of type timestamp.

Function Result

eventtimestamp()
,

4/4/2019 16:40:57

5.4.3.4 hour(date)
hour(date) function takes as an argument any one of the following data types: time interval or
timestamp. The returned value represents the hour in the time represented by this date object.
Returns a big integer indicating the hour of the time represented by this date.

Examples

Function Result

hour(12/06/17 09:15:22 AM) 09

hour(2015:07:21 12:45:35 PM) 12

5.4.3.5 minute(date)
minute(date) function takes as an argument any one of the following data types: time interval
or timestamp. The returned value represents the minutes in the time represented by this date
object. Returns a big integer indicating the minutes of the time represented by this date.

Chapter 5
Applying Functions to Create a New Column

5-19

Examples

Function Result

minute(12/06/17 09:15:22 AM) 15

minute(2015:07:21 12:45:35 PM) 45

5.4.3.6 month(date)
month(date) function takes as an argument any one of the following data types: time interval
or timestamp. The returned value represents the month of the year that contains or begins with
the instant in time represented by this date object. Returns a big integer indicating the month of
the year represented by this date.

Examples

Function Result

month(12/06/17 09:15:22 AM) 12

month(2017:09:23 11:20:25 AM) 9

5.4.3.7 nanosecond(value1)
Extracts and returns the current fractional part of second from date.

Value 1 can be one of the following types: timestamp.

Returned value will be of type big integer.

Function Result

nanosecond(transaction_time), 12/19/2016
12:22:57

719978080

5.4.3.8 systemtimestamp(value1)
Returns the current system time.

Returned value will be of type timestamp.

Function Result

systemtimestamp()
,

4/4/2019 17:06:14

5.4.3.9 timeformat(value1, value2)
Event Formatted time.

Value 1 can be one of the following types: timestamp.

Value 2 can be one of the following types: text.

Returned value will be of type text.

Chapter 5
Applying Functions to Create a New Column

5-20

Function Result

timeformat(transaction_time, "M-dd-yy"),
where calc is 12/19/2016 12:22:46

12-19-16

timeformat(transaction_time, "DAY"),
where transaction_time is 12/19/2016 12:22:44

Monday

5.4.3.10 Year(date)
year(date) function takes as an argument any one of the following data types: time interval or
time stamp. The returned value represents the year of the instant in time represented by this
date object. Returns a big integer indicating the year represented by this date.

Examples

Function Result

year(12/06/17 09:15:22 AM) 17

year(2015:07:21 12:45:35 PM) 2015

5.4.4 Using Geometry Functions
The Geometry functions allow you to convert the given values into a geometrical shape.

The following interval functions are supported in this release:

Function Name Description

CreatePoint(lat,long,SRID) Returns a 2–dimensional point type geometry from
the given latitude and longitude. The default SRID
is 8307.

The return value is of the datatype sdo geometry.

distance(lat1,long1,lat2,long2,SRID) Returns distance between the first set of latitude,
longitude and the second set of latitude, longitude
values. The default SRID is 8307.

Note:

Only SRID 8307 is
supported in the
current release.

The return value is of the datatype double.

5.4.4.1 CreatePoint(value1, value2, value3)
createPoint(lat,long,SRID) - Function Returns a 2d point type geometry, default SRID is 8307.

Value 1: Latitude - Value can be one of the following types: number, double, float. Required.

Value 2: Longitude - Value can be one of the following types: number, double, float.

Chapter 5
Applying Functions to Create a New Column

5-21

Value 3: SRID - Value can be one of the following types: integer.

Returned value type will be sdo geometry.

Function Result

CreatePoint(78995333342435,-122.4005650
002481937,8307)

point

5.4.4.2 distance(lat1, long1, lat2, long2,SRID)
Function Returns distance between lat1/long1 and lat2/long2, default SRID is 8307.

Value 1: Latitude1 - Value can be one of the following types: number, double, float.

Value 2: Longitude1 - Value can be one of the following types: number, double, float.

Value 3: Latitude2 - Value can be one of the following types: number, double, float.

Value 4: Longitude2 - Value can be one of the following types: number, double, float.

Value 5: SRID - Value can be one of the following types: integer.

Returned value will be of type double.

Function Result

distance(37.78371333337545,
-122.4052500001069, 37.78371333337545,
37.78371333337545, 8307)

1.1394718018250743E7

5.4.5 Using Interval Functions
The Interval functions help you in calculating time interval from given values.

The following interval functions are supported in this release:

Function Name Description

dsintervaltonum (c1 INTERVAL DAY TO
SECOND, c2 char)

Converts the given value to a numeric value. User
must provide unit for the output numeric value as
second argument to this function. Allowed values
for the unit is: DAY,HOUR,MINUTE,SECOND

numtodsinterval(n,interval_unit) Converts the given value to an INTERVAL DAY TO
SECOND literal. The value of the interval_unit
specifies the unit of n and must resolve to one of
the string values: DAY, HOUR, MINUTE, or
SECOND.

The return value is of the datatype interval.

numtoyminterval(n,interval_unit) Converts the given value to an INTERVAL YEAR
TO MONTHliteral. The value of the
interval_unitspecifies the unit of nand must
resolve to one of the following string values: YEAR,
MONTH.

Chapter 5
Applying Functions to Create a New Column

5-22

Function Name Description

to_dsinterval(string) Converts a string in format DD HH:MM:SS into a
INTERVAL DAY TO SECOND data type. The DD
indicates the number of days between 0 to 99. The
HH:MM:SS indicates the number of hours, minutes
and seconds in the interval from 0:0:0 to
23:59:59.999999. The seconds part can accept
upto six decimal places.

The return value is of the datatype interval.

to_yminterval(string) Converts a string in format YY-MM into a INTERVAL
YEAR TO MONTH data type. The YYpart indicates
the number of years between 0 to 99. The MMpart
indicates the number of months between 0-11.

The return value is of the datatype interval.

ymintervaltonum(c1 INTERVAL YEAR TO
MONTH, c2 char)

Converts the given value to a numeric value. User
must provide unit for the output numeric value as
second argument to this function. Allowed values
for the unit is: YEAR,MONTH

5.4.5.1 dsintervaltonum(value1, value 2)
DSINTERVALTONUM(c1 INTERVAL DAY TO SECOND, c2 char) - Function will convert
interval value(c1) into a numeric value. User must provide unit for the output numeric value as
second argument to this function. Allowed values for the unit is: DAY,HOUR,MINUTE,SECOND

Input value 1 can be one of the following types: interval.

Input value 2 can be one of the following types: text.

Returned value will be of type double.

Function Result

dsintervaltonum(calc_7, "MINUTE")
,

301.0

dsintervaltonum(calc_7, "DAY") 5.016666666666667

5.4.5.2 numtodsinterval(value1, value2)
Function converts n to an INTERVAL DAY TO SECOND literal.The value for interval_unit
specifies the unit of n and must resolve to one of the following string
values:DAY,HOUR,MINUTE,SECOND.

Value 1 can be one of the following types: big integer, double, integer, float.

Value 2 can be one of the following types: text.

Returned value will be of type interval.

Function Result

numtodsinterval(34, "MONTH") 2 yy 10 mm

numtodsinterval(26.5, "HOUR") 1 dd 2 hr 30 mm 0 sec

Chapter 5
Applying Functions to Create a New Column

5-23

Function Result

numtodsinterval(1230, "MINUTE") 00 dd 20 hr 30 mm 0 sec

numtodsinterval(1, "DAY") 1 dd 0 hr 0 mm 0 sec

5.4.5.3 numtoyminterval(value1, value 2)
NUMTOYMINTERVAL(n,interval_unit) - Function converts n to an INTERVAL YEAR TO
MONTH literal. The value for interval_unit specifies the unit of n and must resolve to one of the
following string values:YEAR, MONTH.

Value 1 can be one of the following types: big integer, double, integer, float.

Value 2 can be one of the following types: text.

Returned value will be of type intervalym.

Function Result

numtoyminterval(10.5, "YEAR") 10 yy 6 mm

numtoyminterval(34, "MONTH") 2 yy 10 mm

5.4.5.4 to_dsinterval(value1)
Function converts a string in format 'DD HH:MM:SS' into a INTERVAL DAY TO SECOND data
type. The DD part indicates the number of days between 0 to 99. The HH:MM:SS part
indicates the number of hours, minutes and seconds in the interval from 0:0:0 to
23:59:59.999999. The second part can accept upto 6 decimal places.

Input value can be one of the following types: text.

Returned value will be of type interval.

Function Result

to_dsinterval("02 23:34:12") 2 dd 23hr 34mm 12 sec

5.4.5.5 to_yminterval(value1)
Function converts a string in format 'YY-MM' into a INTERVAL YEAR TO MONTH data
type.The YY part indicates the number of years between 0 to 99. The MM part indicates the
number of months between 0-11.

Value can be one of the following types: text.

Returned value type will be intervalym.

Function Result

to_yminterval("94-3") 94 yy 3 mm

Chapter 5
Applying Functions to Create a New Column

5-24

5.4.5.6 ymintervaltonum(value1, value2)
Function converts interval value(c1) into a numeric value. You must provide the unit for the
output numeric value as the second argument to this function. Allowed values for the unit are:
YEAR,MONTH.

Value 1 can be one of the following types: intervalym.

Value 2 can be one of the following types: text.

Returned value type will be double.

Function Result

ymintervaltonum(94yy 5mm,"MONTH') 1133.0

5.4.6 Using Math Functions
The math functions allow you to perform various mathematical operations and calculations
ranging from simple to complex.

The following math functions are supported in this release:

Function Name Description

IEEEremainder(value1,value2
)

Computes the remainder operation on two arguments as
prescribed by the IEEE 754 standard

abs(value1) Returns the absolute value of a number

acos(value1) Returns arc cosine of a value

asin(value1) Returns arc sine of a value

atan(value1) Returns arc tangent of a value

atan2(arg1,arg2) Returns polar angle of a point (arg2, arg1)

binomial(base,power) Returns binomial coefficient of the base raised to the specified
power

bitMaskWithBitsSetFromTo(x)

BitMask with BitsSet (From, To)

cbrt(value1) Returns cubic root of the specified value

ceil(value1) Rounds to ceiling

copySign(value1,value2) Returns the first floating-point argument with the sign of the second
floating-point argument

cos(value1) Returns cosine of a value

cosh(value1) Returns cosine hyperbolic of a value

exp(x) Returns exponent of a value

expm1(x) More precise equivalent of exp(x); Returns 1 when x is around
zero

factorial(value1) Returns factorial of a natural number

floor(value1) Rounds to floor

getExponent(value1) Returns the unbiased exponent used in the representation of a
double

Chapter 5
Applying Functions to Create a New Column

5-25

Function Name Description

getSeedAtRowColumn(value1,v
alue2)

Returns a deterministic seed as an integer from a (seemingly
gigantic) matrix of predefined seeds

hash(value1) Returns an integer hashcode for the specified double value

hypot(value1,value2) Returns square root of sum of squares of the two arguments

leastSignificantBit(value1) Returns the least significant 64 bits of this UUID's 128 bit value

log(value1,value2) Calculates the log value of the given argument to the given base,
where value 1 is the value and value 2 is the base

log1(value1) Returns the natural logarithm of a number

log10(value1) Calculates the log value of the given argument to base 10

log2(value1) Calculates the log value of the given argument to base 2

logFactorial(value1) Returns the natural logarithm (base e) of the factorial of its integer
argument as a double

longFactorial(value1) Returns the factorial of its integer argument (in the range k >= 0 &&
k < 21) as a long

maximum(value1,value2) Returns the maximum of 2 arguments

minimum(value1,value2) Returns the minimum of 2 arguments

mod(value1,value2) Returns modulo of a number

mosttSignificantBit(value1)

Returns the most significant 64 bits of this UUID's 128 bit value

nextAfter(value1,value2) Returns the floating-point number adjacent to the first argument in
the direction of the second argument

nextDown(value1) Returns the floating-point value adjacent to the input argument in
the direction of negative infinity

nextUp(value1) Returns the floating-point value adjacent to the input argument in
the direction of positive infinity

Pow(m,n) Returns m raised to the nth power

rint(value1) Returns the double value that is closest in value to the argument
and is equal to a mathematical integer

round(value1) Rounds to the nearest integral value

Scalb(d,scaleFactor) Returns d × 2scaleFactor rounded as if performed by a single
correctly rounded floating-point multiply to a member of the double
value set

signum(value1) Returns signum of an argument as a double value

sin(value1) Returns sine of a value

sinh(value1) Returns sine hyperbolic of a value

sqrt(value1) Returns square root of a value

stirlingCorrection(value1) Returns the correction term of the Stirling approximation of the
natural logarithm (base e) of the factorial of the integer argument
as a double

tan(value1) Returns tangent of a value

tanh(value1) Returns tangent hyperbolic of a value

toDegrees(value1) Converts the argument value to degrees

Chapter 5
Applying Functions to Create a New Column

5-26

Function Name Description

toRadians(value1) Returns the measurement of the angle in radians

ulp(value1) Returns the size of an ulp of the argument

5.4.6.1 IEEEremainder(value1, value1)
Computes the remainder operation on two arguments as prescribed by the IEEE 754
standard : IEEEREMAINDER

Value 1 can be one of the following types: double.

Value 2 can be one of the following types: double

Returned value type will be double.

Function Result

IEEEremainder(8809,8808) -1.0

5.4.6.2 abs(value1)
Returns the Absolute value of the input argument.

Input value can be one of the following types: number, big integer, double, integer, float.

Returned value type will be the same as the input argument type.

Function Result

abs(1234.560789) 1234.56078

abs(0.67) 0.6700000166893005

5.4.6.3 acos(value1)
Returns the Arc cosine of a value.

Value can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

acos(0.5) 1.0471975511965979

5.4.6.4 asin(value1)
Computes the arc sine of a value.

Value 1 can be one of the following types: big integer, double, integer, float.

Returned value type will be double.

Chapter 5
Applying Functions to Create a New Column

5-27

Function Result

asin(0.5) 0.5235987755982989

5.4.6.5 atan(value1)
Returns the arc tangent of the input value.

Input value can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

atan(34) 1.5413930385908916

5.4.6.6 atan2
Returns the polar angle of a point (value2, value1).

Value 1 can be one of the following types: big integer, double, integer, float.

Value 2 can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

atan2(8681.44, 8682.44) 0.7853405725825559

5.4.6.7 binomial(base, power)
Returns the Binomial coefficient of the input base and power values.

Value 1 can be one of the following types: big integer, double, integer, float.

Value 2 can be one of the following types: big integer, integer.

Returned value will be of type double.

Function Result

binomial(8609.4, 38) 5.955734227594785E104

5.4.6.8 bitMaskWithBitsSetFromTo(value1, value2)
Value 1 can be one of the following types: integer.

Value 2 can be one of the following types: integer.

Returned value will be of type double.

Function Result

bitMaskWithBitsSetFromTo(23, 23) 8388608.0

Chapter 5
Applying Functions to Create a New Column

5-28

5.4.6.9 cbrt()
Returns the cubic root of a value.

Value 1 can be one of the following types: big integer, double, integer, float.

Returned value type will be double.

Function Result

cbrt(27) 3

5.4.6.10 ceil()
Round to ceiling.

The input arguments can be one of the following data types: double, float.

Returned value type will be float.

Function Result

ceil(65) 65.0

5.4.6.11 copySign()
Function returns the first floating-point argument with the sign of the second floating-point
argument.

Value1 can be one of the following types: double, float.

Returned value type will be double, float.

Function Result

copySign(3.0, -4.0)) -3.0

5.4.6.12 cos(value1)
Returns the cosine of a value

Value 1 can be one of the following types: big integer, double, integer, float.

Returned value type will be double.

Function Result

cos(7740.8) 0.9964325256163951

5.4.6.13 cosh(value1)
Returns the Cosine hyperbolic of a value.

Value 1 can be one of the following types: big integer, double, integer, float.

Chapter 5
Applying Functions to Create a New Column

5-29

Function Result

cosh(0.5) 1.1276259652063807

5.4.6.14 exp(value1, value2)
Returns the exponent of a value.

Value 1 can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

exp(10) 22026.465794806718

5.4.6.15 expm1(value1)
Returns the more precise equivalent of Exp(x)-1 when x is around zero.

Value can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

expm1(0.7) 1.0137526834646737

5.4.6.16 factorial(value1)
Returns the Factorial of a natural.

Value 1 can be one of the following types: integer.

Returned value type will be double.

Function Result

factorial(6) 720.0

5.4.6.17 floor(value1)
Value can be one of the following types: big integer, double, integer, float.

Returned value will be of type float.

Function Result

floor(0.567) 0.0

5.4.6.18 GetExponent(value1)
Function returns the unbiased exponent used in the representation of a double.

Value 1 can be one of the following types: double, float.

Chapter 5
Applying Functions to Create a New Column

5-30

Returned value will be of type integer.

Function Result

getExponent(10.0) 3.0

5.4.6.19 getSeedAtRowColumn(value1, value2)
Returns a deterministic seed as an integer from a (seemingly gigantic) matrix of predefined
seeds : GETSEEDATROWCOLUMN

Value 1 can be one of the following types: integer.

Value 2 can be one of the following types: integer.

Returned value will be of type integer.

Function Result

getSeedAtRowColumn(48, 2) 443210610

5.4.6.20 hash(value1)
Function returns an integer hashcode for the specified value.

Value can be one of the following types: big integer, double, integer, float.

Returned value will be of type integer.

Function Result

hash(8.1) 1.33589862E9

5.4.6.21 hypot(value1, value2)
Square root of sum of squares of the two arguments.

Value 1 can be one of the following types: big integer, double, integer, float.

Value 2 can be one of the following types: big integer, double, integer, float.

Returned value type will be double.

Function Result

hypot(2,4) 4.47213595499958

5.4.6.22 LeastSignificantBit(value1)
Method is used to return the least significant 64 bits of this UUID's 128 bit value.

Value 1 can be one of the following types: integer.

Returned value will be same as the input argument.

Chapter 5
Applying Functions to Create a New Column

5-31

Function Result

LeastSignificantBit(2) 1.0

5.4.6.23 log(value1, value2)
Logarithm(base, arg)

Value 1 can be one of the following types: big integer, double, integer, float.

Value 2 can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

log(20,3) 0.3667257913420846

5.4.6.24 log1(value1)
Function returns the natural logarithm of a number.

Value 1 can be one of the following types: double, integer, float.

Returned value will be of type double.

Function Result

log1(20) 2.995732273553991

5.4.6.25 log10(value1)
Logarithm(10, arg)

Value 1 can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

log10(20) 1.301029995663981

5.4.6.26 log2(value1)
Logarithm(2, arg)

Value 1 can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

log2(20) 4.321928094887362

Chapter 5
Applying Functions to Create a New Column

5-32

5.4.6.27 logFactorial(value1)
Function returns the natural logarithm (base e) of the factorial of its integer argument as a
double.

Value 1 can be one of the following types: double, integer, float.

Returned value will be of type double.

Function Result

logFactorial(20) 42.335616460753485

5.4.6.28 long()
Converts the input argument value to long. The input argument can be one of the following
types: big integer, integer, text, float, timestamp. Returned value type will be big integer.

Function Result

long(5039505078907524) 5039505078907524

long(22) 22

5.4.6.29 longFactorial(value1)
Function returns the natural logarithm (base e) of the factorial of its integer argument as a
double.

Value 1 can be one of the following types: double, integer, float.

Returned value will be of type double.

Function Result

longFactorial(10) 15.104412573075516

5.4.6.30 minimum(value1, value2)
Returns the minimum of two arguments. The first argument is a value to compare with the
second argument’s value and can be any one of the following data type: big integer, double,
interval, integer, float. The second argument is a value to compare with the first argument’s
value and can be any one of the following data type: big integer, double, interval, integer, float.

Examples

Function Result

minimum(16324, 16321) 16321

minimum(3.16, 3.10) 3.10

Chapter 5
Applying Functions to Create a New Column

5-33

Note:

If the user provides two different data types as arguments, then Stream Analytics
does implicit conversion to convert one argument to the other argument’s type.

5.4.6.31 mod(value1, value2)
Functions returns Modulo of a number

Value 1 can be one of the following types: big integer, double, integer, float.

Value 2 can be one of the following types: big integer, double, integer, float.

Returned value will be of the same type as the first argument.

Function Result

mod(10,3) 1.0

5.4.6.32 mostSignificantBit(value1)
Function returns the most significant 64 bits of this UUID's 128 bit value .

Value 1 can be one of the following types: integer.

Returned value will be of the same type as the first argument.

Function Result

mostSignificantBit(10) 3.0

5.4.6.33 nextAfter(value1, value2)
Function returns the floating-point number adjacent to the first argument in the direction of the
second argument.

Value 1 can be one of the following types: double, float.

Value 2 can be one of the following types: double, float.

Returned value will be the same type as the first argument.

Function Result

nextAfter()

5.4.6.34 nextDown(value1, value2)
Function returns the floating-point number adjacent to the first argument in the direction of the
second argument.

Value 1 can be one of the following types: double, float.

Value 2 can be one of the following types: double, float.

Returned value will be the same type as the first argument.

Chapter 5
Applying Functions to Create a New Column

5-34

Function Result

nextDown()

5.4.6.35 nextUp(value1)
Function returns the floating-point number adjacent to the first argument in the direction of the
second argument.

Value 1 can be one of the following types: double, float.

Returned value will be the same type as the first argument.

Function Result

nextUp()

5.4.6.36 pow(value1, value2)
Power function returns m raised to the nth power.

Value 1 can be one of the following types: double, integer, float.

Value 2 can be one of the following types: double, integer, float.

Returned value will be of type double.

Function Result

pow(12,2) 144

5.4.6.37 rint(value1)
Returns the double value that is closest in value to the argument and is equal to a
mathematical integer.

Value can be one of the following types: double.

Returned value will be of type double.

Function Result

rint()

5.4.6.38 round(value1)
Rounds the argument value to the nearest integer value. The input argument can be of the
following data types: big integer, double, integer, float.

Examples

Function Result

round(7.16) 7

round(38.941) 39

Chapter 5
Applying Functions to Create a New Column

5-35

Function Result

round(3.5) 4

5.4.6.39 scalb(
Function Return d × 2scaleFactor rounded as if performed by a single correctly rounded
floating-point multiply to a member of the double value set.

Value 1 can be one of the following types: double, float.

Value 2 can be one of the following types: integer.

Returned value will be the same type as the first argument.

Function Result

scalb(10.0,2) 40.0

5.4.6.40 signum(value1)
Signum of an argument as a double value.

Value 1 can be one of the following types: number, big integer, double, integer, float.

Returned value will be of type integer.

Function Result

signum(10) 1.0

5.4.6.41 sin(value1)
Returns the sine of the input value.

Value 1 can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

sin(7740.8) 0.08419864005868474

5.4.6.42 sinh(value1)
Returns the Sine hyperbolic of a value.

Value 1 can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

sinh(0.5) 0.5210953054937474

Chapter 5
Applying Functions to Create a New Column

5-36

5.4.6.43 sqrt(value1)
Returns the Square root of the input value.

Value 1 can be one of the following types: big integer, double, integer, float.

Returned value will be of the type double.

Function Result

sqrt(7434.73) 86.22488040003303

5.4.6.44 stirlingCorrection(value1)
Returns the correction term of the Stirling approximation of the natural logarithm (base e) of the
factorial of the integer argument as a double: STIRLINGCORRECTION

Value 1 can be one of the following types: integer.

Returned value will be of the type double.

Function Result

stirlingCorrection(70) 0.0011904680924708464

5.4.6.45 tan(value1)
Returns the Tangent of a value.

Value 1 can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

tan(60) 0.320040389379563

5.4.6.46 tanh(value1)
Returns the Tangent hyperbolic of a value.

Value 1 can be one of the following types: big integer, double, integer, float.

Returned value will be of type double.

Function Result

tanh(1) 0.7615941559557649

5.4.6.47 toDegrees(value1)
Converts the argument value to degrees. The input argument is an angle in radians and can be
of type double. The returned value will be the measurement of the angle in degrees and is of
type double.

Chapter 5
Applying Functions to Create a New Column

5-37

Examples

Function Result

toDegrees(3.14) 180.0

toDegrees(0.785) 45.0

5.4.6.48 toRadians(value1)
Converts the argument value to radians. The input argument is an angle in degrees and can be
of type double. The returned value will be the measurement of the angle in radians and is of
type double.

Examples

Function Result

toRadians(180.0) 3.14

toRadians(45.0) 0.785

5.4.6.49 ulp(value1)
Returns the returns the size of an ulp of the argument: ULP.

The input arguments can be one of the following data types: double, float.

Returned value type will be the same as the input value type.

Function Result

ulp(1451.54) 2.2737367544323206E-13

5.4.7 Using Null-related Functions

The following null-related functions are supported in this release:

Function Name Description

nvl(value1,value2) Replaces null with a value of the same type

5.4.7.1 nvl(value1, value2)
nvl lets you replace null (returned as a blank) with a value of the same type as the first
argument. For example, in a list of employees and commission, you can substitute Not
Applicable if the employee receives no commission using the nvl(value1,value2) function as
nvl(Not Applicable,Commission).

Chapter 5
Applying Functions to Create a New Column

5-38

Example

Function Result

nvl(Not Applicable,Commission) Not Applicable

5.4.8 Using Statistical Functions
Statistical functions help you in calculating the statistics of different values.

The following statistical functions are supported in this release:

Function Name Description

beta1(value1,value2,value3) Returns the area from zero to value3 under the beta density
function

betaComplemented(value1,val
ue2,value3)

Returns the area under the right hand tail (from value3 to infinity)
of the beta density function

binomial2(value1,value2,val
ue3)

Returns the sum of the terms 0 through value1 of the Binomial
probability density. All arguments must be positive.

binomialComplemented(value1
,value2,value3)

Returns the sum of the terms value1+1 through value2 of the
binomial probability density. All arguments must be positive.

chiSquare(value1,value2) Returns the area under the left hand tail (from 0 to value2) of the
chi square probability density function with value1 degrees of
freedom. The arguments must both be positive.

chiSquareComplemented(value
1,value2)

Returns the area under the right hand tail (from value2 to infinity)
of the chi square probability density function with value1 degrees
of freedom. The arguments must both be positive.

errorFunction(value1) Returns the error function of the normal distribution

errorFunctionComplemented(v
alue1)

Returns the complementary error function of the normal distribution

gamma(value1,value2,value3) Returns the gamma function of the arguments

gammaComplemented(value1,va
lue2,value3)

Returns the integral from value3 to infinity of the gamma
probability density function

incompleteBeta(value1,value
2,value3)

Returns the incomplete beta function evaluated from zero to
value3

incompleteGamma(value1,valu
e2)

Returns the incomplete gamma function

incompleteGammaComplement(v
alue1,value2)

Returns the complemented incomplete gamma function

logGamma(value1) Returns the natural logarithm of the gamma function

negativeBinomial(value1,val
ue2,value3)

Returns the sum of the terms 0 through value1 of the negative
binomial distribution. All arguments must be positive.

negativeBinomialComplemente
d(value1,value2,value3)

Returns the sum of the terms value1+1 to infinity of the negative
binomial distribution. All arguments must be positive.

normal(value1,value2,value3
)

Returns the area under the normal (Gaussian) probability density
function, integrated from minus infinity to value1 (assumes mean
is zero, variance is one)

Chapter 5
Applying Functions to Create a New Column

5-39

Function Name Description

normalInverse(value1) Returns the value for which the area under the normal (Gaussian)
probability density function is equal to the argument value1
(assumes mean is zero, variance is one)

poisson(value1,value2) Returns the sum of the first value1 terms of the Poisson
distribution. The arguments must both be positive.

poissonComplemented(value1,
value2)

Returns the sum of the terms value1+1 to infinity of the poisson
distribution

studentT(value1,value2) Returns the integral from minus infinity to value2 of the Student-t
distribution with value1 > 0 degrees of freedom

studentTInverse(value1,valu
e2)

Returns the value, for which the area under the Student-t
probability density function is equal to 1-value1/2. The function
uses the studentT function to determine the return value iteratively.

5.4.8.1 beta1(value1, value2, value3)
Returns the area from zero to value3 under the beta density function.

The input arguments can be one of the following data types: double, float. Returned value is of
type double.

Values 1 and 2 must be greater than 0.0. Value 3 must be greater than 0 and less than 1.

Function Result

beta1(0.1, 1.1, 0.2) 0.8620112116492348

beta1(316.13, 316.13, 0.2) 1.40801423421089E-63

5.4.8.2 betacomplemented(value1, value2, value3)
Returns the area under the right hand tail (value 3 to infinity) of the beta density function.

The input arguments can be one of the following data types: double, float. Returned value is of
type double.

Values 1 and 2 must be greater than 0.0. Value 3 must be greater than 0 and less than 1.

Function Result

betacomplemented(0.1, 1.1, 0.2) 0.017407170120127144

5.4.8.3 binomial2(value1, value2, value3)
Returns the sum of the terms 0 through value1 of the Binomial probability density.

The input arguments can be one of the following data types:

• Value 1 - The end term. Data Type: Integer.

• Value 2 - The number of trials. Data type: Integer.

• Value 3 - The probability of success. Value must be between 0.0 and 1.0. Data type:
Double, float.

Chapter 5
Applying Functions to Create a New Column

5-40

Function Result

beta1(2, 2, 0.5) 1.0

5.4.8.4 binomialcomplemented(value1, value2, value3)
Returns the sum of the terms value1 + 1 through value 2, of the Binomial probability density.

The input arguments can be one of the following data types:

• Value 1 - The end term. Data Type: Integer.

• Value 2 - The number of trials. Data type: Integer.

• Value 3 - The probability of success. Value must be between 0.0 and 1.0. Data type:
Double, float.

The returned value is of the type double.

Function Result

binomialcomplemented(2, 3, 0.5) 0.125

5.4.8.5 chiSquare(value1, value2)
Returns the area under the left hand tail (from 0 to value2) of the Chi square probability density
function with value1 degrees of freedom. The arguments must both be positive.

Value 1: The degrees of freedom. Value can be one of the following types: double, float.

Value 2: The integration end point. Value can be one of the following types: double, float.

Returned value type will be double.

Function Result

chiSquare(3.0, 5.0) 0.8282028557032665

5.4.8.6 chiSquareComplemented(value1, value2)
Returns the area under the right hand tail (from value2 to infinity) of the Chi square probability
density function with value1 degrees of freedom. The arguments must both be positive.

Value 1 is the degrees of freedom. Value can be one of the following types: double, float.

Value 2 is the Chi-square variable. Value can be one of the following types: double, float.

Returned value type will be double.

Function Result

chiSquareComplemented(value1, value2) 0.1717971442967335

5.4.8.7 errorFunction(value1)
Returns the error function of the normal distribution.

Value 1 can be one of the following types: double, float.

Chapter 5
Applying Functions to Create a New Column

5-41

Returned value type will be double.

Function Result

errorFunction(5.0) 0.9999999999984626

5.4.8.8 errorFunctionComplemented(value1)
Returns the complementary Error function of the normal distribution.

Value 1 can be one of the following types: double, float.

Returned value type will be double.

Function Result

errorFunctionComplemented(5.0) 1.5374597944280347E-12

5.4.8.9 gamma(value1, value2, value3)
Returns the gamma function of the input arguments.

Value1: The paramater a (alpha) of the gamma distribution. Value can be one of the following
types: double, float. Required.

Value 2: The paramater b (beta, lambda) of the gamma distribution. Value can be one of the
following types: double, float. Optional.

Value 3: The integration end point. Value can be one of the following types: double, float.
Optional.

Returned value type will be double.

Function Result

gamma(1.0,2.0,5.0) 0.04042768199451279

5.4.8.10 gammacomplemented(value1, value2, value3)
Returns the integral from value3 to infinity of the gamma probability density function.

Value1: The paramater a (alpha) of the gamma distribution. Value can be one of the following
types: double, float.

Value 2: The paramater b (beta, lambda) of the gamma distribution. Value can be one of the
following types: double, float. R

value3The integration end point. Value can be one of the following types: double, float.

Returned value type will be double.

Function Result

gammacomplemented(1.0, 2.0, 5.0) 0.04042768199451279

Chapter 5
Applying Functions to Create a New Column

5-42

5.4.8.11 incompleteBeta(value1, value2, value3)
Returns the Incomplete Beta Function evaluated from zero to value3. Where values must be in
range (Value1 && Value2 > 0.0) and (Value3 > 0 && Value3 < 1).

Value1: The alpha parameter of the beta distribution. Value can be one of the following types:
double, float. Required.

Value2: The beta parameter of the beta distribution. Value can be one of the following types:
double, float. Required.

Value3: The integration end point. Value can be one of the following types: double, float.
Required.

Returned value type will be double.

Function Result

incompleteBeta(1.0,2.0,0.5) 0.75

5.4.8.12 incompleteGamma(value1, value2)
Returns the Incomplete Gamma function.

Value1: The parameter of the gamma distribution. Value can be one of the following types:
double, float. Required.

Value2: The integration end point. Value can be one of the following types: double, float.
Required.

Returned value type will be double.

Function Result

incompleteGamma(1.0,2.0) 0.8646647167633873

5.4.8.13 incompleteGammaComplement(value1, value2)
Returns the Complemented Incomplete Gamma function.

Value1: The parameter of the gamma distribution. Value can be one of the following types:
double, float. Required.

Value2: The integration start point. Value can be one of the following types: double, float.
Required.

Returned value type will be double.

Function Result

incompleteGammaComplement(1.0, 2.0) 0.1353352832366127

5.4.8.14 logGamma(value1)
Returns the natural logarithm of the gamma function

Value can be one of the following types: double, float.

Chapter 5
Applying Functions to Create a New Column

5-43

Returned value will be of type double.

Function Result

logGamma(7795.6) 62059.66356433673

5.4.8.15 negativeBinomial(value1, value2, value3)
Returns the sum of the terms 0 through value1 of the Negative Binomial Distribution. All
arguments must be positive.

Value1: The end term. Value can be one of the following types: integer. Required.

Value2: The number of trials. Value can be one of the following types: integer. Required.

Value3: The probability of success [must be in (0.0,1.0)]. Value can be one of the following
types: double, float. Required.

Returned value type will be double.

Function Result

negativeBinomial(1,2,0.5) 0.5

5.4.8.16 negativeBinomialComplemented(value1, value2, value3)
Returns the sum of the terms value1+1 to infinity of the Negative Binomial distribution. All
arguments must be positive.

Value1: The end term. Value can be one of the following types: integer. Required.

Value2: The number of trials. Value can be one of the following types: integer. Required.

Value3: The probability of success [must be in (0.0,1.0)]. Value can be one of the following
types: double, float. Required.

Returned value type will be double.

Function Result

negativeBinomialComplemented(1.0, 2.0,
0.5)

0.5

5.4.8.17 normal(value1, value2, value3)
Returns the area under the Normal (Gaussian) probability density function, integrated from
minus infinity to value1 (assumes mean is zero, variance is one).

Value1: The mean of the normal distribution. Value can be one of the following types: double,
float. Required.

Value2: The variance of the normal distribution. Value can be one of the following types:
double, float. Optional.

Value3: The integration limit. Value can be one of the following types: double, float. Optional.

Returned value type will be double.

Chapter 5
Applying Functions to Create a New Column

5-44

Function Result

normal(5.0,3.0,0.5) 0.004687384229717484

5.4.8.18 normalInverse(value1)
Returns the value for which the area under the Normal (Gaussian) probability density function
is equal to the argument value1 (assumes mean is zero, variance is one).

Input value should be between 0 and 1. The value can be one of the following types: double,
float. Required.

Returned value type will be double.

Function Result

normalInverse(0.5) 0.0

5.4.8.19 poisson(value1, value2)
Returns the sum of the first value1 terms of the Poisson distribution. Both the arguments must
be positive.

Value1: The number of terms. Value can be one of the following types: integer. Required.

Value2: The mean of the poisson distribution. Value can be one of the following types: double,
float. Required.

Returned value type will be double.

Function Result

poisson(61,123.75) 3.0509714140892473E-10

5.4.8.20 poissonComplemented(value1, value2)
Returns the sum of the terms value1+1 to Infinity of the Poisson distribution.

Value1: The start term. Value can be one of the following types: integer. Required.

Value2: The mean of the poisson distribution. Value can be one of the following types: double,
float. Required.

Returned value type will be double.

Function Result

poissonComplemented(5,3.0) 0.08391794203130347

5.4.8.21 studentT(value1, value2)
Returns the integral from minus infinity to 'value2' of the Student-t distribution with value1 > 0
degrees of freedom.

Value1: The degrees of freedom. Value can be one of the following types: double, float.
Required.

Chapter 5
Applying Functions to Create a New Column

5-45

Value2: The integration end point. Value can be one of the following types: double, float.
Required.

Returned value type will be double.

Function Result

studentT(2.0,5.0) 0.9811252243246882

5.4.8.22 studentTInverse(value1, value2)
Returns the value, for which the area under the Student-t probability density function is equal
to 1-value1/2. The function uses the studentT function to determine the return value iteratively.

Value1: The probability. Value can be one of the following types: double, float. Required.

Value2: The size of data set. Value can be one of the following types: integer. Required.

Returned value type will be double.

Function Result

studentTInverse(0.5, 10) 0.6998121397488263

5.4.9 Using String Functions

The following String functions are supported in this release:

Function Name Description

coalesce(value1,...) Returns the first non-null expression in the list. If all expressions
evaluate to null, then the COALESCE function will return null

concat(value1,...) Returns concatenation of values converted to strings

indexof(string,match) Returns first index of \'match\' in \'string\'or 1 if not found

initcap(value1) Returns a specified text expression, with the first letter of each
word in uppercase and all other letters in lowercase

length(value1) Returns the length of the specified string

like(value1,value2) Returns a matching pattern

lower(value1) Converts the given string to lower case

lpad(value1,value2,value3) Pads the left side of a string with a specific set of characters (when
string1 is not null)

ltrim(value1,value2) Removes all specified characters from the left hand side of a string

replace(string,match,replac
ement)

Replaces all \'match\' with \'replacement\' in \'string\'

rpad(value1,value2,value3) Pads the right side of a string with a specific set of characters
(when string1 is not null)

rtrim(value1,value2) Removes all specified characters from the right hand side of a
string

substr(string,from) Returns substring of a 'string' when indices are between 'from'
(inclusive) and up to the end of the string

Chapter 5
Applying Functions to Create a New Column

5-46

Function Name Description

substring(string,from,to) Returns substring of a \'string\' when indices are between \'from\'
(inclusive) and \'to\' (exclusive)

translate(value1,value2,val
ue3)

Replaces a sequence of characters in a string with another set of
characters. However, it replaces a single character at a time.

upper(value1) Converts given string to uppercase

5.4.9.1 coalesce(value1,...)
coalesce returns the first non-null expression in the list of expressions. You must specify at
least two expressions. If all expressions evaluate to null then the coalesce function will return
null.

For example:

In coalesce(expr1,expr2):

• If expr1 is not null then the function returns expr1.

• If expr1 is null then the function returns expr2.

• If expr1 and expr2 are null then the function returns null.

In coalesce(expr1,expr2,......,exprn)
• If expr1 is not null then the function returns expr1.

• If expr1 is null then the function returns expr2.

• If expr1 and expr2 are null then the function returns the next non-null expression.

5.4.9.2 Concat(value1,...)
Concat(value1,...) - Concatenation of values converted to strings

Value1: A part of string to concatenate with others. Value can be one of the following types: big
integer, number, double, text, integer, float, timestamp. Required.

Vararg1: A part of string to concatenate with others. Value can be one of the following types:
big integer, number, double, text, integer, float, timestamp. Optional.

Returned value will be of type text.

Function Result

Concat(client_name, card_number) Declan BENNETT0142354466948788

5.4.9.3 indexof(value1, value2)
Returns first index of 'match' in 'string' or -1 if not found

Value1: First argument. Value can be one of the following types: text. Required.

Value2: Second argument. Value can be one of the following types: text. Required.

Returned value type will be integer.

Chapter 5
Applying Functions to Create a New Column

5-47

Function Result

indexof(client_name,"c"), where client name
is Alphonse Gabriel Capone

17

indexof(client_name,"c"), where client name
is Braden Gray

-1

5.4.9.4 initcap(value1)
Function returns a specified text expression, with the first letter of each word in uppercase and
all other letters in lowercase : INITCAP

Value1: A text expression. Value can be one of the following types: text.

Returned value will be of type text.

Function Result

initcap(client_name), where client name is
Owen TAYLOR

Owen Taylor

5.4.9.5 length(value1)
Returns the length in characters of the string passed as an input argument. The input
argument is of the data type text. The returned value is an integer representing the total length
of the string.

If value1 is null, then length(value1) returns null.

If value1 is an empty string, then length(value1) returns null.

Examples

Function Result

length(“one”) 3

length() ERROR: Function has invalid parameters.

length(“john”) 4

length(” “) NULL

length(null) NULL

length(“firstname.lastname@example.com”
)

30

5.4.9.6 like(string, pattern)
Function returns 'true' or 'false' based on the string matching the supplied pattern. .

Value 1 can be one of the following types: text.

Value 2 can be one of the following types: text.

Returned value type will be boolean.

Chapter 5
Applying Functions to Create a New Column

5-48

Function Result

like(client_name, "ADAMS"),
where client name is Cameron Adams

True

like(client_name, "ADAMS"),
where client name is Levi Gray

False

5.4.9.7 lower(value1)
Converts a string to all lower-case characters. The input argument is of the data type text. The
returned value is the lowercase of the specified string.

Examples

Function Result

lower(“PRODUCT”) product

lower(“ABCdef”) abcdef

lower(“abc”) abc

5.4.9.8 lpad(value1, value2, value3)
LPad(text-exp , length [,pad-exp]) - Function pads the left-side of a string with a specific set of
characters (when string1 is not null). : LPAD

Value1: text-exp - A text expression that you want to pad. Value can be one of the following
types: text.

Value 2: length - The total length of the return value as it is displayed on your screen. Value
can be one of the following types: integer.

Value 3: pad-exp - A text expression that specifies the padding characters. The default value of
pad-exp is a single blank. Value can be one of the following types: text.

Returned value type will be text.

Function Result

lpad("David",10,"e") eeeeeDavid

5.4.9.9 ltrim(value1, value2)
The ltrim() function removes all specified characters from the left-hand side of a string : LTRIM.

Value 1 can be one of the following types: text.

Value 2 can be one of the following types: text.

Returned value type will be text.

Function Result

ltrim(client_name, "A"), where client_name
is Alphonse Gabriel CAPONE

lphonse Gabriel CAPONE

Chapter 5
Applying Functions to Create a New Column

5-49

5.4.9.10 replace(string, match, replacement)
Replaces all match characters in a string with replacement characters. The first input argument
is the string and is of the data type text. The second argument is the match and is of the data
type text. The third argument is replacement and is of data type text. The returned value is a
text in which the third string argument (replacement) replaces the second string argument
(match).

If match is not found in the string, then the original string will be returned.

Examples

Function Result

replace(“aabbccdd”,”cc”,”ff”) aabbffdd

replace(“aabbcccdd”,”cc”,”ff”) aabbffcdd

replace(“aabbddee”,”cc”,”ff”) aabbddee

5.4.9.11 rpad(value1, value2, value3)
RPad(text-exp , length [,pad-exp]) - Function pads the right-side of a string with a specific set
of characters (when string1 is not null). : RPAD

Value 1: text-exp - A text expression that you want to pad. Value can be one of the following
types: text.

Value 2: length - The total length of the return value as it is displayed on your screen. Value
can be one of the following types: integer.

Value 3: pad-exp - A text expression that specifies the padding characters. The default value of
pad-exp is a single blank. Value can be one of the following types: text.

Returned value will be of type text.

Function Result

rpad("Levi Cruz", 25, "a") Levi Cruzaaaaaaaaaaaaaaaa

5.4.9.12 rtrim(value1, value2)
The rtrim() function removes all specified characters from the right-hand side of a string :
RTRIM.

Value 1 can be one of the following types: text.

Value 2 can be one of the following types: text.

Returned value type will be text.

Function Result

rtrim(client_name, "S"), where client_name
is Cooper DAVIS

Cooper DAVI

Chapter 5
Applying Functions to Create a New Column

5-50

5.4.9.13 substr()
Substr(string, from) - Substring of a 'string' when indices are between 'from' (inclusive) and up
to the end of the string.

Value 1 can be one of the following types: text.

Value 2 can be one of the following types: integer.

Returned value type will be text.

Function Result

substr(client_name, 4),where client_name is
Logan THOMPSON

n THOMPSON

5.4.9.14 substring(string, from, to)
Returns a substring of a string when indices are between from (inclusive) and to (exclusive).
The first input argument is the string and is of the data type text. The second argument is the
start index and is an integer. The third argument is the finish index and is an integer. The
returned value is a substring and is of type text.

Examples

Function Result

substring(“abcdefgh”,3,7) cdef

substring(“abcdefgh”,1,6) abcde

5.4.9.15 translate(expression, from_string, to_string)
Function replaces a sequence of characters in a string with another set of characters.
However, it replaces a single character at a time.

Vallue1: exp - A text expression in which you want to replace characters. Value can be one of
the following types: text.

Value2: from_string - A text expression that is the characters you want to replace. Value can be
one of the following types: text.

Value3: to_string - A text expression that is the characters that you want to use for replacement
in the order of from_string. When you include fewer characters in this argument than are in
from_string, the function removes the extra characters in from_string from the return value.
Value can be one of the following types: text.

Returned value type will be text.

Function Result

translate(client_name, "JONES",
"Mark"), where the value for
client_name is Cooper JONES.

Cooper Mark

Chapter 5
Applying Functions to Create a New Column

5-51

5.4.9.16 upper(value1)
Converts a string to all upper-case characters. The input argument is of the data type text. The
returned value is the uppercase of the specified string.

Examples

Function Result

upper(“name”) NAME

upper(“abcdEFGH”) ABCDEFGH

upper(“ABCD”) ABCD

5.5 Adding Custom Functions and Custom Stages
Custom functions are user-defined functions that are custom implementations to an
application's built-in functions.

5.5.1 Creating a Custom Jar
A custom jar is a user-supplied Jar archive containing Java classes for custom stage types or
custom functions that will be used within a pipeline.

To create a Custom Jar:

1. On the Catalog page, click Create New Item, and select Custom Jar from the drop-down
list.

1. On the Type Properties screen, enter the following details:

• Name

• Description

• Tags

• Custom Jar Type: Select Custom Jar, from the drop-down list.

2. Click Next.

3. On the Custom Jar Details page, click Upload file, select the jar file that you want to
import into the application.

4. Click Save.

Your custom Java/Scala class must implement the BatchEventProcessor interface as defined
in the Javadoc.

5.5.2 Adding Custom Functions
The custom functions get installed, when you add a custom jar file.

The custom functions will be available in the Expression Builder after they get installed. The
custom functions will be listed under the Custom category.

Chapter 5
Adding Custom Functions and Custom Stages

5-52

https://docs.oracle.com/en/middleware/fusion-middleware/osa/19.1/osaja/

5.5.3 Implementing Custom Functions
For a custom function, apply the @OsaFunction annotation to a method in any class, including a
class implementing a custom stage type. For more information, see the Javadoc and the
Sample.

Note:

Functions with same name within same package/class/method in same/different jar
are not supported.

5.5.3.1 Sample: Encrypt a Column

This sample class defines a custom function that takes one textual field and produces an MD5
hash for it.

package com.oracle.osacs;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import com.oracle.cep.api.annotations.OsaFunction;

public class CustomMD5Function {

 @OsaFunction(name = "md5", description = "Create an md5 hex from a
string")
 public static String md5(String message) {
 String result = null;

 try {
 MessageDigest md = MessageDigest.getInstance("MD5");
 md.update(message.getBytes());
 byte[] digest = md.digest();
 result =
javax.xml.bind.DatatypeConverter.printHexBinary(digest);
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }

 return result;
 }

}

5.5.4 Adding a Custom Stage
To add a custom stage:

1. Open the required pipeline in Pipeline Editor.

Chapter 5
Adding Custom Functions and Custom Stages

5-53

https://www.oracle.com/pls/topic/lookup?ctx=osa181000&id=OSAJA

2. Right-click the stage after which you want to add a custom stage. Click Add a Stage, and
Custom, and then select Custom Stage from Custom Jars.

3. Enter a name and suitable description for the custom stage and click Save.

4. In the stage editor, enter the following details:

a. Custom Stage Type: Select the custom stage that was previously installed though a
custom jar

b. Input Mapping: Select the corresponding column from the previous stage for every
input parameter

You can add multiple custom stages based on your use case.

5.5.4.1 Sample: Encrypt a Column
This sample class defines a custom stage that takes one textual field and produces an MD5
hash for it.

package com.oracle.osacs;

import com.oracle.cep.api.event.*;
import com.oracle.cep.api.annotations.OsaStage;
import com.oracle.cep.api.stage.EventProcessor;
import com.oracle.cep.api.stage.ProcessorContext;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.HashMap;
import java.util.Map;

@SuppressWarnings("serial")
@OsaStage(name = "md5", description = "Create an md5 hex from a string",
inputSpec = "input, message:string", outputSpec = "output, message:string,
md5:string")
public class CustomMD5Stage implements EventProcessor {

 EventFactory eventFactory;
 EventSpec outputSpec;

 @Override
 public void init(ProcessorContext ctx, Map<String, String> config) {
 eventFactory = ctx.getEventFactory();
 OsaStage meta = CustomMD5Stage.class.getAnnotation(OsaStage.class);
 String spec = meta.outputSpec();
 outputSpec = TupleEventSpec.fromAnnotation(spec);
 }

 @Override
 public void close() {
 }

 @Override
 public Event processEvent(Event event) {
 Attr attr = event.getAttr("message");
 Map<String, Object> values = new HashMap<String, Object>();
 if (!attr.isNull()) {
 String val = (String) attr.getObjectValue();

Chapter 5
Adding Custom Functions and Custom Stages

5-54

 String md5 = null;
 try {
 MessageDigest md = MessageDigest.getInstance("MD5");
 md.update(val.getBytes());
 byte[] digest = md.digest();
 md5 = javax.xml.bind.DatatypeConverter.printHexBinary(digest);
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 values.put("message", val);
 values.put("md5", md5);
 } else {
 values.put("message", "empty");
 values.put("md5", "empty");
 }
 Event outputEvent = eventFactory.createEvent(outputSpec, values,
event.getTime());
 return outputEvent;
 }
}

5.5.4.2 Sample: Invoke a REST Service

package com.oracle.osacs;

import com.oracle.cep.api.event.*;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.oracle.cep.api.annotations.OsaStage;
import com.oracle.cep.api.stage.EventProcessor;
import com.oracle.cep.api.stage.ProcessorContext;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
import java.util.Random;

import org.apache.http.HttpHost;
import org.apache.http.HttpResponse;
import org.apache.http.StatusLine;
import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.config.RequestConfig;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.client.methods.HttpRequestBase;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClientBuilder;
import org.apache.http.util.EntityUtils;

class BookResult {
 String isbn;
 String title;
 String publishedDate;
 String publisher;
}

Chapter 5
Adding Custom Functions and Custom Stages

5-55

@SuppressWarnings("serial")
@OsaStage(name = "RestBooks", description = "Provide info for a given book",
inputSpec = "input, isbn:string", outputSpec = "output, isbn:string,
title:string, publishedDate:string, publisher:string")
public class CustomStageRest implements EventProcessor {

 EventFactory eventFactory;
 EventSpec outputSpec;

 static Properties props = new Properties();

 static {
 try {
 props.load(CustomStageRest.class.getResourceAsStream("/
CustomStageRest.properties"));
 } catch (IOException ioex) {
 ioex.printStackTrace();
 }
 }

 @Override
 public void init(ProcessorContext ctx, Map<String, String> config) {
 eventFactory = ctx.getEventFactory();
 OsaStage meta = CustomStageRest.class.getAnnotation(OsaStage.class);
 String spec = meta.outputSpec();
 outputSpec = TupleEventSpec.fromAnnotation(spec);
 }

 @Override
 public void close() {
 }

 @Override
 public Event processEvent(Event event) {
 Attr isbnAttr = event.getAttr("isbn");

 Map<String, Object> values = new HashMap<String, Object>();
 if (!isbnAttr.isNull()) {
 String isbn = (String) isbnAttr.getObjectValue();

 BookResult result = getBook(isbn);

 values.put("isbn", isbn);
 values.put("title", result.title);
 values.put("publishedDate", result.publishedDate);
 values.put("publisher", result.publisher);

 } else {
 values.put("isbn", "");
 values.put("title", "");
 values.put("publishedDate", "");
 values.put("publisher", "");
 }
 Event outputEvent = eventFactory.createEvent(outputSpec, values,
event.getTime());

Chapter 5
Adding Custom Functions and Custom Stages

5-56

 return outputEvent;
 }

 /**
 * Calls the Google Books REST API to get book information based on the
ISBN ID
 * @param isbn
 * @return BookResult book information
 */
 public BookResult getBook(String isbn) {
 HttpRequestBase request;
 BookResult result = null;

 String uri = "https://www.googleapis.com/books/v1/volumes?q=isbn:" +
isbn;

 request = new HttpGet(uri);

 CloseableHttpClient client = HttpClientBuilder.create().build();

 String proxyHost = props.getProperty("proxyHost");
 String proxyPort = props.getProperty("proxyPort");
 if (proxyHost != null && proxyPort != null) {
 int proxyPortInt = Integer.parseInt(proxyPort);
 HttpHost proxy = new HttpHost(proxyHost, proxyPortInt);
 RequestConfig config =
RequestConfig.custom().setProxy(proxy).build();
 request.setConfig(config);
 }

 try {
 HttpResponse response = client.execute(request);
 String resultJson = EntityUtils.toString(response.getEntity());
 StatusLine sl = response.getStatusLine();
 int code = sl.getStatusCode();
 if (code < 200 || code >= 300) {
 System.err.println("" + code + " : " + sl.getReasonPhrase());
 }

 ObjectMapper mapper = new ObjectMapper();
 JsonNode root = mapper.readValue(resultJson, JsonNode.class);
 JsonNode bookArray = root.path("items");

 if (bookArray.size() > 0) {
 result = new BookResult();
 JsonNode book = bookArray.path(0).path("volumeInfo"); // We
only consider the first book for this ISBN
 result.isbn = isbn;
 result.title = book.path("title").asText();
 result.publishedDate = book.path("publishedDate").asText();
 result.publisher = book.path("publisher").asText();
 return result;
 } else {
 return null; // No book found
 }

Chapter 5
Adding Custom Functions and Custom Stages

5-57

 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }
}

Note:

Following third-party jars are required for compilation of REST sample,

• httpclient-4.5.6.jar

• httpcore-4.4.10.jar

• jackson-databind-2.9.10.jar

The above jars are required only at compile time and need not be packaged along
with custom jar. These libraries and their dependencies are already packaged with
OSA distribution.

5.5.4.3 Sample: Invoke a SOAP Service

 import java.net.MalformedURLException;
 import java.net.URL;
 import java.util.ArrayList;
 import java.util.HashMap;
 import java.util.Iterator;
 import java.util.List;
 import java.util.Map;
 import javax.xml.namespace.QName;
 import javax.xml.ws.Service;
 import com.oracle.cep.api.annotations.OsaStage;
 import com.oracle.cep.api.event.Attr;
 import com.oracle.cep.api.event.Event;
 import com.oracle.cep.api.event.EventFactory;
 import com.oracle.cep.api.event.EventSpec;
 import com.oracle.cep.api.event.TupleEventSpec;
 import com.oracle.cep.api.stage.BatchEventProcessor;
 import com.oracle.cep.api.stage.ProcessorContext;

 @SuppressWarnings("serial")
 @OsaStage(name = "CustomSoapBatchCall", description = "Call a Hello World
Soap WS", inputSpec = "input, message:string", outputSpec = "output,
message:string, result:string")
 public class CustomSoapBatchCall implements BatchEventProcessor {

 EventFactory eventFactory;
 EventSpec outputSpec;
 URL url;
 QName qname;
 Service service;
 HelloWorldServer server;

Chapter 5
Adding Custom Functions and Custom Stages

5-58

 @Override
 public void init(ProcessorContext ctx, Map<String, String> config) {
 eventFactory = ctx.getEventFactory();
 OsaStage meta =
CustomSoapBatchCall.class.getAnnotation(OsaStage.class);
 String spec = meta.outputSpec();
 outputSpec = TupleEventSpec.fromAnnotation(spec);
 try {
 url = new URL("http://hostname:9879/hw?wsdl");
 } catch (MalformedURLException e) {
 e.printStackTrace();
 }
 qname = new QName("http://ws.osa.oracle.com/",
 "HelloWorldServerImplService");
 service = Service.create(url, qname);
 server = (HelloWorldServer) service.getPort(HelloWorldServer.class);
 }

 @Override
 public void close() {
 }

 @Override
 public Iterator<Event> processEvents(Iterator<Event> iterator) {
 List<String> reqs = new ArrayList<String>();
 while(iterator.hasNext()){

reqs.add((String)iterator.next().getAttr("message").getObjectValue());

 }

 String[] ress = server.sayHelloBatch(reqs.toArray(new
String[reqs.size()]));

 return new Iterator<Event>() {
 int i = 0;
 @Override
 public boolean hasNext() {
 return i++ < ress.length;

 }

 @Override
 public Event next() {
 Map<String, Object> values = new HashMap<String, Object>();
 values.put("message",reqs.get(i-1));
 values.put("result",ress[i-1]);
 return
eventFactory.createEvent(outputSpec,values,System.currentTimeMillis());

 }

 };

 }

Chapter 5
Adding Custom Functions and Custom Stages

5-59

 @Override
 public Event processEvent(Event event) {
 Attr attr = event.getAttr("message");
 Map<String, Object> values = new HashMap<String, Object>();
 if (!attr.isNull()) {
 String val = (String) attr.getObjectValue();
 String result = callSoap(val);
 values.put("message", val);
 values.put("result", result);
 } else {
 values.put("message", "empty");
 values.put("result", "empty");
 }
 Event outputEvent = eventFactory.createEvent(outputSpec,
values,event.getTime());
 return outputEvent;
 }

 public String callSoap(String myName) {
 return server.sayHello(myName);
 }

 }

5.5.5 Limitations

The limitations and restrictions of the custom stages and custom functions are listed in this
section.

Custom stage type and custom functions must:

• only be used for stateless transformations. Access to state from previous calls to stage
type or function methods cannot be guaranteed and might change based on optimizations.

• not use any blocking invocations.

• not start a new thread.

• not use any thread synchronization primitives, including the wait() method, which could
potentially introduce deadlocks.

• have/be in a fully-qualified class name.

When you use the custom stages or custom functions, be careful about the heap space usage.

Note:

The resulting jar must include all the required dependencies and third-party classes
and the size of the jar file must be less than 160 MB.

Chapter 5
Adding Custom Functions and Custom Stages

5-60

5.5.6 Mapping of Data Types

The following table lists the data types that can be used by custom stage types and custom
functions.

Oracle Stream Analytics Data
Type

Java Data Type Comment

BOOLEAN boolean
INT int
BIGINT long
FLOAT float
DOUBLE double
STRING String
BIGDECIMAL BigDecimal
TIMESTAMP long (in nanoseconds) Can only be used in Custom

Stage Types

INTERVAL long Can only be used in Custom
Stage Types

5.6 Writing CQL Queries
You can add a Custom CQL stage for pipelines, to write a CQL query to perform any Select
operation on the data of the previous stage. Currently, creating certain business rules are not
supported by the existing pipeline stages or patterns stages. You can use the CQL query as
part of the Custom CQL stage, for such requirements.

To learn more about the CQL, see CQL Reference Guide.

5.6.1 Sample Queries
This section lists sample queries, apart from the standard Select and Where clause queries.

The sample queries use the following sample data sets. Copy the data sets, and save them as
csv files.

Sample: Data_A_Followed_B

Trans_id order_id order_status order_revenue

1 1 BOOKED 2345.98

2 2 BOOKED 4345.98

3 3 BOOKED 3468.87

4 1 PAID 2345.98

5 2 PAID 4345.98

6 1 SHIPPED 4345

7 3 PAID 3468.87

8 3 SHIPPED 3468.87

9 4 BOOKED 3456

10 5 BOOKED 6546

Chapter 5
Writing CQL Queries

5-61

https://docs.oracle.com/en/middleware/fusion-middleware/osa/19.1/cqlreference/

11 6 BOOKED 76547

12 2 SHIPPED 4345.98

Sample: Change_Detector

Msg_ID Stock_ID Stock_Price

1 1 87

2 1 87

3 1 87

4 1 87

5 2 41

6 3 65

7 3 65

8 3 65

9 3 65

10 3 65

11 2 41

12 2 41

13 2 41

14 2 41

15 2 41

16 2 41

17 1 91

18 1 91

19 1 91

20 1 105

21 1 105

22 1 105

23 1 105

24 2 112

25 2 112

26 2 112

27 2 112

28 3 176

29 3 176

30 3 176

5.6.1.1 A Followed By B

Note:

In the sample query below, update q1 to the correct name of the previous stage:
Replace FROM q1 to FROM <previous-stage-name>.

Chapter 5
Writing CQL Queries

5-62

Use the sample data file: Data_A_Followed_B.

SELECT

order_id AS order_id,
abInterval AS abInterval,
Trans_id AS Trans_id,
aState_Trans_id AS aState_Trans_id,
order_status AS order_status,
aState_order_status AS aState_order_status,
order_revenue AS order_revenue,
aState_order_revenue AS aState_order_revenue
FROM q1

MATCH_RECOGNIZE (
PARTITION BY
order_id
MEASURES

B.Trans_id AS Trans_id,
B.order_id AS order_id,
B.order_status AS order_status,
B.order_revenue AS order_revenue,
A.Trans_id AS aState_Trans_id,
A.order_status AS aState_order_status,
A.order_revenue AS aState_order_revenue,
(to_timestamp(B.ELEMENT_TIME) - to_timestamp(A.ELEMENT_TIME)) AS abInterval
PATTERN(A C*? B)
WITHIN 1 minutes
DEFINE
A as A.order_status like ".*BOOKED.*" ,
B as B.order_status like ".*SHIPPED.*"

) as M

Output

{"order_id":1,"abInterval":"+000000000
00:00:05.000000000","Trans_id":6,"aState_Trans_id":1,"order_status":"SHIPPED",
"aState_order_status":"BOOKED","order_revenue":4345.0,"aState_order_revenue":2
345.98}
{"order_id":3,"abInterval":"+000000000
00:00:05.000000000","Trans_id":8,"aState_Trans_id":3,"order_status":"SHIPPED",
"aState_order_status":"BOOKED","order_revenue":3468.87,"aState_order_revenue":
3468.87}
{"order_id":2,"abInterval":"+000000000
00:00:10.000000000","Trans_id":12,"aState_Trans_id":2,"order_status":"SHIPPED"
,"aState_order_status":"BOOKED","order_revenue":4345.98,"aState_order_revenue"
:4345.98}

Chapter 5
Writing CQL Queries

5-63

5.6.1.2 A Not Followed by B

Note:

In the sample query below, update q1 to the correct name of the previous stage:
Replace FROM q1 to FROM <previous-stage-name>.

Use the sample data: Data_A_Followed_B.

SELECT

Trans_id AS Trans_id,
order_id AS order_id,
order_status AS order_status,
order_revenue AS order_revenue
FROM q1

MATCH_RECOGNIZE (
PARTITION BY
order_id
MEASURES

A.Trans_id AS Trans_id,
A.order_id AS order_id,
A.order_status AS order_status,
A.order_revenue AS order_revenue
INCLUDE TIMER EVENTS
PATTERN(A B*)
DURATION 1 minutes
DEFINE
A as A.order_status like ".*BOOKED.*" ,
B as NOT (B.order_status like ".*SHIPPED.*")

) as M

Output

{"Trans_id":9,"order_id":4,"order_status":"BOOKED","order_revenue":3456.0}
{"Trans_id":10,"order_id":5,"order_status":"BOOKED","order_revenue":6546.0}
{"Trans_id":11,"order_id":6,"order_status":"BOOKED","order_revenue":76547.0}

5.6.1.3 Detect Duplicates

Note:

In the sample query below, update q1 to the correct name of the previous stage:
Replace FROM q1 to FROM <previous-stage-name>.

Chapter 5
Writing CQL Queries

5-64

Use the sample data file: Data_A_Followed_B.

RSTREAM(SELECT

count(*) AS Number_of_Duplicates,
eventSource.order_id AS order_id,
current(eventSource.Trans_id) AS Trans_id,
current(eventSource.order_status) AS order_status,
current(eventSource.order_revenue) AS order_revenue
FROM q1 [now] as eventSource,
q1 [range 1 minutes] as dup

WHERE
eventSource.order_id = dup.order_id
GROUP BY
eventSource.order_id HAVING count(*) > 1)

Output

{"Number_of_Duplicates":2,"order_id":1,"Trans_id":4,"order_status":"PAID","ord
er_revenue":2345.98}
{"Number_of_Duplicates":2,"order_id":2,"Trans_id":5,"order_status":"PAID","ord
er_revenue":4345.98}
{"Number_of_Duplicates":3,"order_id":1,"Trans_id":6,"order_status":"SHIPPED","
order_revenue":4345.0}
{"Number_of_Duplicates":2,"order_id":3,"Trans_id":7,"order_status":"PAID","ord
er_revenue":3468.87}
{"Number_of_Duplicates":3,"order_id":3,"Trans_id":8,"order_status":"SHIPPED","
order_revenue":3468.87}
{"Number_of_Duplicates":3,"order_id":2,"Trans_id":12,"order_status":"SHIPPED",
"order_revenue":4345.98}

5.6.1.4 Change Event

Note:

In the sample query below, update q1 to the correct name of the previous stage:
Replace FROM q1 to FROM <previous-stage-name>.

Use the sample data file: change_detector.

SELECT

Stock_ID AS Stock_ID,
Stock_Price AS Stock_Price,
orig_Stock_Price AS orig_Stock_Price,
Msg_ID AS Msg_ID,
orig_Msg_ID AS orig_Msg_ID
FROM q1

MATCH_RECOGNIZE (

Chapter 5
Writing CQL Queries

5-65

PARTITION BY
Stock_ID
MEASURES

Z.Stock_ID AS Stock_ID,
last(X.Stock_Price) AS Stock_Price,
Z.Stock_Price AS orig_Stock_Price,
last(X.Msg_ID) AS Msg_ID,
Z.Msg_ID AS orig_Msg_ID
PATTERN(Z X+)
WITHIN 1 minutes
DEFINE X as X.Stock_Price != Z.Stock_Price
) as M

Output

{"Stock_ID":1,"Stock_Price":105,"orig_Stock_Price":87,"Msg_ID":23,"orig_Msg_ID
":4}
{"Stock_ID":2,"Stock_Price":112,"orig_Stock_Price":41,"Msg_ID":27,"orig_Msg_ID
":16}
{"Stock_ID":3,"Stock_Price":176,"orig_Stock_Price":65,"Msg_ID":30,"orig_Msg_ID
":10}

5.6.1.5 Eliminate Duplicates

Note:

In the sample query below, update q1 to the correct name of the previous stage:
Replace FROM q1 to FROM <previous-stage-name>.

Use the sample data file: change_detector.

ISTREAM(SELECT

Msg_ID AS Msg_ID,
Stock_ID AS Stock_ID,
Stock_Price AS Stock_Price
FROM q1 [range 1 minutes]
) DIFFERENCE USING (Stock_Price)

Output

{"Msg_ID":1,"Stock_ID":1,"Stock_Price":87}
{"Msg_ID":5,"Stock_ID":2,"Stock_Price":41}
{"Msg_ID":6,"Stock_ID":3,"Stock_Price":65}
{"Msg_ID":17,"Stock_ID":1,"Stock_Price":91}
{"Msg_ID":20,"Stock_ID":1,"Stock_Price":105}
{"Msg_ID":24,"Stock_ID":2,"Stock_Price":112}
{"Msg_ID":28,"Stock_ID":3,"Stock_Price":176}

Chapter 5
Writing CQL Queries

5-66

6
Analyze

Using Geofences for Location-based Analytics

Transforming and Analyzing Data using Patterns

Using Machine Learning Models for Scoring and Prediction

Integrating with Druid Timeseries Database for Realtime Interactive Analytics

6.1 Using Geofences for Location-based Analytics
A geo fence is a virtual boundary in a real world geographical area. This virtual boundary can
be used to find the object's position or location, with respect to the geo fence.

For example, the object position can be:

• Near to geo fence

• Exit geo fence

• Based on Stay Duration in geo fence

• Enters geo fence

• Present inside geo fence

6.1.1 Selecting a Tile Layer
Tile layer is the base map that provides immediate geographic context. Tiles are stored in the
map tile server. These tile layers contains huge amount of data pertaining to:

• Roads, railways, waterways, etc.

• Restaurants, shops, stations, ATMs, and more

• Walking and cycling paths

• Buildings, campuses, etc.

Oracle GoldenGate Stream Analytics supports four types of tile layers.

6.1.1.1 Elocation Tile Layer
Elocation tile layer is an Oracle tile layer.

To apply the Elocation Tile Layer:

1. Click the user name in the top right corner of the screen.

2. Click Preferences. The Preferences page opens.

3. Click Map.

4. Under Tile Layer, choose Elocation Tile Layer option from the drop-down list.

6-1

5. Click Save. The map looks like this:

6.1.1.2 Open Street Maps Tile Layer
Open Street Maps tile layer is a free map.

To apply the Open Street Maps Tile Layer:

1. Click the user name in the top right corner of the screen.

2. Click Preferences. The Preferences page opens.

3. Click Map.

4. Under Tile Layer, choose Open Street Maps Tile Layer option from the drop-down list.

Chapter 6
Using Geofences for Location-based Analytics

6-2

5. Click Save. The map looks like this:

6.1.1.3 Google Maps Tile Layer
Oracle Stream Analytics has added the support for Google tile layer which displays Google
maps in Spatial patterns and visualizations.

To apply the Google Tile Layer:

1. Click the user name in the top right corner of the screen.

2. Click Preferences. The Preferences page opens.

3. Click Map.

4. Under Tile Layer, choose Google Maps Tile Layer option from the drop-down list.

Chapter 6
Using Geofences for Location-based Analytics

6-3

5. Provide details for the following fields:

• Lib URL — the Google maps javascript lib url.

Note:

If you do not provide the Lib Url, Oracle maps uses the default Lib Url:

https://maps.google.com/maps/api/js?v=3&sensor=false

• Authentication Type:

– API key — API key for authentication which you can get from Google. The URL
would look like this: https://maps.googleapis.com/maps/api/js?
key=YOUR_API_KEY&callback=initMap.

– Client ID — your client ID which identifies you as a Maps API for Business
customer

6. Click Save.

Note:

To use Google maps tile layer, the usage of the maps must meet the terms of service
defined by Google (http://code.google.com/apis/maps/faq.html#tos).

6.1.1.4 Custom Tile Layer
Oracle Maps, by default, supports Elocation tile layer which has limited zoom levels. Oracle
Stream Analytics now allows you to customize the zoom levels for a tile layer, in specific cases
where you need a detailed, higher zoom view of confined spaces such as, restaurants,
airports, etc.

Chapter 6
Using Geofences for Location-based Analytics

6-4

https://maps.google.com/maps/api/js?v=3&sensor=false
https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY&callback=initMap
https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY&callback=initMap
http://code.google.com/apis/maps/faq.html#tos

To apply the Custom Tile Layer:

1. Click the user name in the top right corner of the screen.

2. Click Preferences. The Preferences page opens.

3. Click Map.

4. Under Tile Layer, choose Custom Tile Layer option from the drop-down list.

5. Provide details for the following fields:

• Map Viewer Url — http://yourmapviewer => another address where you have an
Oracle map viewer running

• Data Source — a connection to a database where you define your style. It should be
an OSA data source, or a custom one which allows to define our maps via mapbuilder.

• Tile Layer Name — name of the defined tile layer

6. Click Save. The map looks like this:

Chapter 6
Using Geofences for Location-based Analytics

6-5

Note:

Once you have modified the global parameters to customize the tile layer, the map is
updated to use the custom tile layer. These customizations, will then be applied to all
geofences.

6.1.2 Managing Geofences using the Map Editor
You can create, edit, and update manual geofence using the built-in map editor. Only polygon
geo fences are allowed.

6.1.2.1 Creating a Geo Fence
To create a manual geo fence:

1. On the Catalog page, click Create New Item and select Geo Fence from the drop-down
list.

2. On the Type Properties screen, enter the following details:

• Name

• Description

• Tags

• Geo Fence Type: Select Manually Created Geo Fence from the drop-down list.

3. Click Save.

In the Geo Fence Editor:

• You can create the geo fence.

• Navigate through the map using the zoom icons

• Zoom a specific area on the map, using the Marquee Zoom tool. Mark an area using
the marquee zoom and that area in map is zoomed.

• Mark the area around a region to create a geo fence, using the Polygon Tool.

• Save the changes made to your geofence.

Chapter 6
Using Geofences for Location-based Analytics

6-6

6.1.2.2 Deleting a Geofence
To delete a Manual Geofence:

1. Go to the Catalog page and hover the mouse over the geofence that you want to delete.

2. Click the delete icon that appears to your right side on the screen.

3. On the Delete Confirmation screen, click Delete.

6.1.3 Importing a Geofence from a Database
To import a geo fence from a database:

1. On the Catalog page, Create New Item and then select Geo Fence from the drop-down
list.

2. On the Type Properties screen, enter the following details:

• Name

• Description

• Tags

• Geo Fence Type: Select Geo Fence from Database from the drop-down list.

3. Click Next.

4. On the Geo Fence Details screen, select a Connection.

5. Click Next.

6. On the Shape screen, select a database table from the drop-down list. Only the database
tables that contain SDO Geometry type fields are available in the drop-down list.
You can also define or change the key fields on this screen.

7. Click Save.

You can see all the geo fences contained in the selected database.

Note:

You cannot edit or update database-based geo fences.

6.1.4 Using Spatial Patterns in Pipeline Stages
Spatial patterns enables analysis of streams that contain geolocation data. Use them to
determine how events relate to predefined geo fences in your maps.

6.1.4.1 Clearing Objects Outside a Geo Fence
Use the Geo Filter pattern to filter out objects that are not inside the Geofence.

For example, if users move from one geographical location to another, you can send
promotional messages to the users when they are inside a specified geo fence.

To use this pattern, provide suitable values for the following parameters:

• Geo Fence: Select a geo fence to analyze.

Chapter 6
Using Geofences for Location-based Analytics

6-7

• Latitude: Select a field containing the latitude value.

• Longitude: Select a field containing the longitude value.

• Object Key: Select a field that uniquely identifies the object. This field is the partitioning
criteria and is also the unique object identifier.

• Coordinate System: Enter the default value 8307. This is the only value supported.

The outgoing shape displays Status and PlaceName as two extra columns in the output along
with the incoming shape, where Status is Inside if the object is inside geo fence (else the
event is not considered) and PlaceName is the name of geo fence with which status is being
evaluated.

6.1.4.2 Tracking Objects using a Geo Fence
Use the Geo Fence pattern to track object relation with a virtual boundary called geo fence.

Relations can be Enter, Exit, Stay, or Near with respect to a geo fence. For example, you can
trigger an alert when an object enters the geo fence. You can also analyze a stream containing
geo-location data. It helps in determining how events are related to a polygon in a geo fence.

To use this pattern, provide suitable values for the following parameters:

• Geo Fence: Select a geo fence to analyze.

• Latitude: Select the field containing latitude value.

• Longitude: Select the field containing longitude value.

• Object Key: Select the object key field. This field is used as the partitioning criteria and
also used to uniquely identify objects

• Tracking Events: Select the appropriate value.

• Coordinate system: The default and the supported value is 8307.

• Distance Buffer: This parameter is enabled only if you select Near option in Tracking
Events. This field is a buffer for filtering results. Only those events or objects which are
within the specified distance from the geo fence are displayed in events table with status
as Near. This value must be less than 10000 kilometers.

• Stay Duration: This parameter is enabled only if you select Stay in Tracking Events. You
can specify the stay duration. This duration is a filter for objects inside the geo fence. If an
object stays for a duration more than the specified duration, only then the events are
considered, else events are filtered out.

The outgoing shape displays Status and PlaceName as two extra columns in the output along
with the incoming shape, where Status is one of Enter, Exit, Stay, or Near based on how the
object behaves with geo fence. PlaceName is the name of geo fence with which status is
being evaluated.

6.1.4.3 Getting Direction of a Moving Object
Use the Direction pattern to get the direction of a moving object.

For example, you can evaluate the direction of a moving truck.

To use this pattern, provide suitable values for the following parameters:

• Latitude: Select the field containing latitude value.

• Longitude: Select the field containing longitude value.

Chapter 6
Using Geofences for Location-based Analytics

6-8

• Object Key: Select field that uniquely identifies object. E.g. Vehicle Id.

• Coordinate System: The default value is 8307 and this is the only value supported.

Note:

Make sure that you do not use any names for the fields that are already part of the
incoming stream.

The outgoing shape displays direction as one of the columns, which is of type String along
with the incoming shape.

6.1.4.4 Obtaining Geographic Coordinates

Use the Geo Code pattern to get geographic coordinates (like latitude and longitude) for an
address or a zip code.

Ensure that you have set the proxy details in System Settings.

To use this pattern, provide suitable values for the following parameters:

• Name: Select the place name.

• Street: Select the street name.

• City: Select the city name.

• Region: Select the region.

• Country: Select the country. You can hard code the value such as US for United States
and IN for India.

• Postal Code: Select the zip or postal code.

The output from the pattern are the latitude and longitude corresponding to the input.

6.1.4.5 Calculating Distance between Objects in a Stream
Use the Interaction: Single Stream pattern to get interaction of an object with every other
object in a stream.

For example, you can see if a set of sailing ships are too close to each other.

To use this pattern, provide suitable values for the following parameters:

• Geometry: Select the field that contains the shape of the object and is of type
SDO_GEOMETRY.

• Object Key: Select the field used to uniquely identify an object and is used for partitioning
of data where supported.

• Coordinate System: The default value is 8307 and this is the only value supported.

The outgoing shape contains two more fields along with the incoming shape: isInteract and
distance. isInteract is trueif two shapes interact with each other, i.e., any or some portion of
the two objects overlap. distance between them is 0, if no overlapping is observed;
isInteract is false and distance is shown between those two objects as a positive number.

Chapter 6
Using Geofences for Location-based Analytics

6-9

6.1.4.6 Calculating Distance between Objects in Two Streams
Use the Interaction: Two Stream pattern to get interaction of an object in one stream with
objects in another stream. Two shapes are said to interact with each other if any part of the
shape overlaps. If two shapes interact, the distance between them is zero.

To use this pattern, provide suitable values for the following parameters:

• Geometry: Select a suitable value for geometry.

• Object Key: Select the object key.

• Event Stream 2: Select the second event stream.

• Geometry: Select a value for geometry within the second stream.

• Object Key: Select the object key within the second stream.

• Coordinate System: The default value is 8307 and this is the only value supported.

The outgoing shape contains two additional fields along with the incoming shape: isInteract
and distance. isInteract is trueif two shapes interact with each other, i.e., any or some
portion of the two objects overlap. distance between them is 0, if no overlapping is observed;
isInteract is false and distance is shown between those two objects as a positive number.

6.1.4.7 Creating Geo Fence
Use the Point to Polygon pattern to create a Geo Fence using the default coordinate system,
given the latitude, longitude, width, and length.

For example, if you know the length and breadth of a group of a fleet of ships, you can get the
shape of a ship using the position coordinates, where the coordinates keep changing as the
ship moves.

To use this pattern, provide suitable values for the following parameters:

• Latitude: Select the field containing latitude value.

• Longitude: Select the field containing the longitude value.

• Object Key: Select a suitable value for the object key.

• Length: Select field that contains the length of the object.

• Width: Select a field that contains the width of the object.

• Coordinate System: The default value is 8307 and this is the only value supported.

• Buffer: Enter a positive value to be used as the geometry buffer.

The outgoing shape contains derived shape (Rectangle/Polygon of type SDO_Geometry) of an
event based on its coordinate (latitude,longitude) and dimension (length, width).

6.1.4.8 Monitoring Proximity between Objects in a Stream
Use the Proximity: Single Stream pattern to get proximity of each object with every other
object in a stream.

For example, if there is stream of flying airplanes and the distance buffer is 1000 meters. You
can raise an alert as the two planes come into a proximity of 1000 meters or less.

To use this pattern, provide suitable values for the following parameters:

Chapter 6
Using Geofences for Location-based Analytics

6-10

• Latitude: Select field that contains the latitude value.

• Longitude: Select field that contains the longitude value.

• Object Key: Select field that uniquely identifies the object in the stream.

• Coordinate System: The default value is 8307 and this is the only value supported.

• Distance Buffer: Enter a proximity value for the distance buffer. Proximity of objects will
be output only when they are within the specified distance buffer. Select an appropriate
unit for the distance. This value must be less than 10000 kilometers.

The outgoing shape displays distance as another column, which is the distance between two
object under consideration along with the incoming shape.

6.1.4.9 Monitoring Proximity between Objects in Two Streams
Use the Proximity: Two Stream pattern to determine the proximity between object in stream 1
with all other objects in stream 2.

The distance buffer acts as a filter in this pattern stage. For example, if there is a driver and
passenger stream, you can get the proximity of each passenger with every other driver using a
filter criteria of within a distance of 1 km.

To use this pattern, provide suitable values for the following parameters:

• Latitude: Select field containing latitude value from stream 1.

• Longitude: Select field containing longitude value from stream 1.

• Object Key: Select field that uniquely identifies object in stream 1.

• Event Stream 2: Select the second event stream.

• Latitude: Select field containing latitude value from stream 2.

• Longitude: Select field containing longitude value from stream 2.

• Object Key: Select field that uniquely identifies object in stream 2.

• Coordinate System: The default value is 8307 and this is the only value supported.

• Distance Buffer: Enter a proximity value for the distance buffer. This field acts as a filter
criteria of two objects and the objects that do not fall in this distance (distance between
them is more than chosen distance buffer) are filtered from result set. This value must be
less than 10000 kilometers.

Note:

When a pipeline with this pattern has a database reference with cache enabled, the
pattern does not display any output in the live output stream.

The outgoing shape displays distance as another column, which is the distance between two
object under consideration along with the incoming shape.

6.1.4.10 Obtaining the Proximity of an Object from a Geo Fence
Use the Proximity: Stream with Geo Fence pattern to get proximity of an object with a virtual
boundary or geo fence.

Chapter 6
Using Geofences for Location-based Analytics

6-11

For example, if you have certain stores in the city of California, you can send promotional
messages as soon as the customer comes into a proximity of 1000 meters from any of the
stores.

To use this pattern, provide suitable values for the following parameters:

• Geo Fence: Select a geo fence that you like to analyze.

• Latitude: Select the field containing latitude value.

• Longitude: Select the field containing longitude value.

• Object Key: Select the field that uniquely identifies object. Example, Vehicle Id.

• Coordinate System: The default value is 8307 and this is the only value supported.

• Distance Buffer: Enter a proximity value for the distance buffer. This field acts as a filter
criteria for events and the events that do not fall in this distance (distance between them is
more than chosen distance buffer) are filtered from result set. This value must be less than
10000 kilometers.

The outgoing shape displays distance as another column, which is the distance between the
object and geo fence under consideration along with the incoming shape.

6.1.4.11 Finding Nearest Place using the Geographical Coordinates
Use the Reverse Geo Code: Near By pattern to obtain nearest place for the specified
geographical coordinates.

Ensure that you have set the proxy details in System Settings.

To use this pattern, provide suitable values for the following parameters:

• Latitude: Select the latitude.

• Longitude: Select the longitude.

• Object Key: Select the object key.

• Coordinate system: The default value is 8307 and this is the only value supported.

The outgoing shape displays PlaceName as an additional column along with the incoming
shape. This column is the nearest place for specified longitude and latitude.

6.1.4.12 Finding Nearest Place Details using the Geographical Coordinates
Use the Reverse Geo Code: Near By Place pattern to obtain the near by location with
granular information like city, country, street etc. for the specified latitude and longitude.

Ensure that you have set the proxy details in System Settings.

To use this pattern, provide suitable values for the following parameters:

• Latitude: Select a field containing the latitude value.

• Longitude: Select a field containing the longitude value.

• Object Key: Select a field that uniquely identifies the object.

• Coordinate system: The default value is 8307 and this is the only value supported.

The outgoing shape displays additional columns for place corresponding to the coordinates
(latitude,longitude)- houseNumber, street, city, region, country, and postal code.

Chapter 6
Using Geofences for Location-based Analytics

6-12

6.1.4.13 Determining Average Speed
Use the Spatial: Speed pattern to determine the average speed using all data points from a
time window. This pattern uses the default slide value. For example, to analyze the average
speed of a car.

To use this pattern, provide suitable values for the following parameters:

• Latitude: Select field name that contains the latitude value.

• Longitude: Select field name that contains the longitude value.

• Object Key: Select a suitable value for the object key. Example of object key is Vehicle ID,
or anything that uniquely differentiates the moving object.

• Coordinate System: The default value is 8307 and this is the only value supported.

• Window Range: Select a time range over which the speed is being calculated for an
event. For example, if window range=5 seconds and object key is vehicle ID, then all the
events with same vehicle ID received over last 5 seconds are used to calculate the
average speed of that event.

The outgoing shape contains speed as an added field along with the incoming fields. This is a
numeric field, but the speed is measured in miles per hour.

6.2 Transforming and Analyzing Data using Patterns
The visual representation of the event stream varies from one pattern type to another based on
the key fields you choose. A pattern provides you with a simple way to explore event streams,
based on common business scenarios.

To access the available patterns:

• On the Home page, click Patterns.

To view all the available patterns:

• Click View All under the Show Me panel.

To view a specific category of patterns:

• Click the category name(s) in the Show Me panel. All the patterns in the selected
categories are displayed.

• Category Pattern

Enrichment Reverse Geo Code: Near By

Left Outer Join

Outlier Fluctuation

Inclusion Union

Left Outer Join

Missing Event 'A' Not Followed by 'B'

Detect Missing Event

Chapter 6
Transforming and Analyzing Data using Patterns

6-13

Category Pattern

Spatial Proximity: Stream with Geo Fence

Geo Fence

Spatial: Speed

Interaction: Single Stream

Reverse Geo Code: Near By

Geo Code

Spatial: Point to Polygon

Interaction: Two Stream

Proximity: Two Stream

Direction

Reverse Geo Code: Near By Place

Proximity: Single Stream

Geo Filter

Filter Eliminate Duplicates

Fluctuation

State 'A' Not Followed by 'B'

Inverse W

Detect Missing Event

W

'A' Followed by 'B'

‘B’ Not Preceded by ‘A’

Delay Event

Time Window Snapshot

Row Window Snapshot

Current And Previous Pattern

Finance Inverse W

W

Shape Detector Inverse W

W

Trend 'A' Not Followed by 'B'

Top N

Change Detector

Up Trend

Detect Missing Event

Down Trend

'A' Followed by 'B'

Detect Duplicates

Bottom N

Machine Learning Oracle Machine Learning Service

Statistical Correlation

Quantile

Transform ToJson

Split

Chapter 6
Transforming and Analyzing Data using Patterns

6-14

6.2.1 Adding a Pattern Stage
A pattern is a template of an Oracle GoldenGate Stream Analytics application, with a business
logic built into it. You can create pattern stages within the pipeline. Patterns are not stand-alone
artifacts, they need to be embedded within a pipeline.

For detailed information about the various type of patterns, see Transforming and Analyzing
Data using Patterns.

To add a pattern stage:

1. Open a pipeline in the Pipeline Editor.

2. Right-click the stage after which you want to add a pattern stage, click Add a Stage, and
then select Pattern.

3. Choose the required pattern from the list of available patterns.

4. Enter a Name and Description for the pattern stage.

The selected pattern stage is added to the pipeline.

5. Click Parameters and provide the required values for the parameters.

6. Click Visualizations and add the required visualizations to the pattern stage.

6.2.2 Detecting Missing Events
Use the Detect Missing Event pattern to detect missing events. For example, if a feed has
multiple sensors sending readings every 5 seconds, this pattern detects sensors that have
stopped sending readings. This also indicates that the sensors are either broken or
disconnected.

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: Select a field as a partition criterion.

For example, your stream contains events issues by a number of sensors. All sensors
send the same but individual data. You would want to compare readings of a sensor to
previous readings of the same sensor and not just a previous event in your stream, which
is very likely to be from a different sensor. Select a field that would uniquely identify your
sensors, such as sensor id. This field is optional. For example, if your stream contains
readings from just one sensor, you do not need to partition your data.

• Window: Enter a time period, within which missing events are detected. If there is no
event from a sensor within this specified time interval after the last event, an alert is
triggered.

Outgoing Shape

The outgoing shape is the same as incoming shape. If there are no missing heartbeats, no
events are output. If there is a missing heartbeat, the previous event, which was used to
calculate the heartbeat interval is output.

6.2.3 Calculating Quantile Value
Use the Quantile pattern to calculate the value of quantile function. It returns the percentile
value of all data in the specified window range. For example, a 25th percentile of a dataset is a
value where 25% of data points are less than the value returned from the 25th percentile.

Chapter 6
Transforming and Analyzing Data using Patterns

6-15

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: Select a field as the partition criteria.

• Observable Parameter: Select as field as the parameter to calculate the quantile.

• Phi-quantile: Select the percentile value to calculate the quantile of the selected event
stream. Values can only be from 1 to 99.

• Window: Select the range that determines the amount of data to consider.

• Slide: Select the frequency for newly updated output to be pushed downstream and into
the browser.

The outgoing shape is the same as the incoming shape.

6.2.4 Identifying Correlation between Two Numeric Patterns
Use the Correlation Pattern pattern to identify the correlation between two numeric
parameters. The output will define if the two parameters are positively correlated (value of 1),
or negatively correlated (-1), or not correlated(value of 0).

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: Select a field that uniquely identifies the object, for example, Sensor ID.

• Observable Parameter 1: Select first field to correlate.

• Observable Parameter 2: Select second field to correlate.

• Window: Select a time range to retain the data, while identifying the correlation between
parameter 1 and parameter 2. Default slide value is used when no slide value is specified.
A slide value same as window range will output the correlation at the end of the time
window. Slide value less than the window range will output more frequently.

• Slide: Set the frequency at which you want to refresh the data.

The outgoing shape is same as the incoming shape.

6.2.5 Detecting Duplicate Events
The Detect Duplicates pattern detects duplicate events in your stream according to the criteria
you specify and within a specified time window. Events may be partially or fully equivalent to be
considered duplicates.

For example, when you suspect that your aggregates are offset, you can check your stream for
duplicate events.

To use this pattern, provide suitable values for the following parameters:

• Duplicate Criteria: Select the fields to be compared. If all the configured fields have
identical values, the incoming event will be considered a duplicate and an outgoing event
will be fired.

• Window: Select the time period within which to search for duplicates.

For example, if you set the window to 10 seconds, a duplicate event that arrives 9 seconds
after the first one will trigger an outgoing event, while a duplicate event that arrives 11
seconds after the first one will not do so.

Chapter 6
Transforming and Analyzing Data using Patterns

6-16

Outgoing Shape

The outgoing shape is the same as the incoming shape with one extra field:
Number_of_Duplicates. This extra field will carry the number of duplicate events that have
been discovered. All the other fields will have values of the last duplicate event.

6.2.6 Eliminating Duplicate Events
Use the Eliminate Duplicates pattern to look for duplicate events in your stream within a
specified time window, and remove all but the first occurrence. A duplicate event is an event
that has one or more field values identical to values of the same field(s) in another event. You
can specify what fields are analyzed for duplicate values. You can configure the pattern to
compare just one field or the whole event.

For example, use it when you know that your stream contains duplicates that might offset your
aggregates, such as counts.

To use this pattern, provide suitable values for the following parameters:

• Duplicate Criteria: Select the fields to be compared. If all the configured fields have
identical values, the second, third, and subsequent events will be dropped.

• Window: Select a time period, within which the duplicates should be discarded.

For example, if you set the window to 10 seconds, a duplicate event that arrives 9 seconds
after the first one will be discarded, while a duplicate event that arrives 11 seconds after
the first one will be accepted and let through.

The outgoing shape is the same as the incoming shape.

6.2.7 Detecting Event Value Changes
Use the Change Detector pattern to look for changes in the values of your event fields and
report the changes once they occur within a specified range window. For example, if an event
arrives with value value1 for field field1, and any of the following incoming events, within a
specified range window, contains a value different from value1, an alert is triggered. You can
designate more than one field to look for changes.

For example, a sensor reading that is supposed to be the same for certain periods of time and
changes in readings may indicate issues.

The default configuration of this pattern stage is to alert on change of any selected fields.

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: Select the partition criteria.

For example, your stream contains events issued by a number of sensors. All sensors
send the same but individual data. You would want to compare readings of a sensor to
previous readings of the same sensor and not just a previous event in your stream, which
is very likely to be from a different sensor. Select a field that would uniquely identify your
sensors, such as sensor Id. This field is optional. For example, if your stream contains
readings from just one sensor, you do not need to partition your data.

• Window range: Select a time period within which the values of designated fields are
compared for changes.

For example, if you set the window range to 10 seconds, an event with changes in
observed fields will trigger an alert if it arrives within 10 seconds after the initial event. The
clock starts at the initial event.

Chapter 6
Transforming and Analyzing Data using Patterns

6-17

• Change Criteria: Select a list of fields to be compared. If the fields contain no changes, no
alerts will be generated.

• Alert on group changes: Select this option default group changes support. If it is OFF,
then alert on at least one field changes. If it is ON, then sends alert on every field change.

Outgoing Shape

The outgoing shape is based on the incoming shape, the difference being that all the fields
except the one in the partition criteria parameter will be duplicated to carry both the initial event
values and the change event values.

Example:

Your incoming event contains the following fields:

• sensor_id
• temperature
• pressure
• location
Normally, you would use sensor_id to partition your data, to look for changes in temperature.
So, select sensor_id in the partition criteria parameter and temperature in the change criteria
parameter. Use a range window that fits your use case. In this scenario, you will have the
following outgoing shape:

• sensor_id
• temperature
• orig_temperature
• pressure
• orig_pressure
• location
• orig_location
The orig_ fields carry values from the initial event. In this scenario, temperature and
orig_temperature values are different, while pressure and orig_pressure, location, and
orig_location may have identical values.

6.2.8 Detecting Data Field Value Changes
Use the Fluctuation pattern to detect when an event data field value changes in a specific
upward or downward fashion within a specific time window. For example, use this pattern to
identify the variable changes in an Oil Pressure value are maintained within acceptable ranges.

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: Select the fields to be used as partition criteria.

• Tracking Value: Select a field value to track the event data and create a pattern in the live
output stream.

• Window: Select a rolling time period, the frequency at which you want to refresh the data.

• Deviation Threshold %: Select the percentage of deviation you want to be included in the
pattern. This is the interval in which the pipeline looks for a matching pattern.

Chapter 6
Transforming and Analyzing Data using Patterns

6-18

The outgoing shape is same as the incoming shape.

6.2.9 Monitoring Sequence of Events
Use the 'A' Followed by 'B' pattern to look for particular events following one another and to
output an event when the specified sequence of events occurs.

Use it when you need to be aware of a certain succession of events happening in your flow.
For example, if an order status BOOKED is followed by an order status SHIPPED (skipping status
PAID), you need to raise an alert.

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: Select the fields to be used as partition criteria. In the order example
above, it may be order_id.

• State A: field: Select an initial state field, whose value will be used in the comparison of
two events. In our example, it will be order_status.

• State A: value: Select the initial field state value. In our example, BOOKED.

• State B: field: Select a consecutive state field, whose value will be used in the comparison
of two events. In our example, it will be order_status again.

• State B: value: Select the consecutive field state value. In our example, SHIPPED.

• Duration: Select the time period within which to look for state changes.

Outgoing Shape

The outgoing shape is based on the incoming shape. A new abInterval field is added to carry
the value of the time interval between the states in nanosecond. Also, all but the partition
criteria fields are duplicated to carry values from both a and b states. For example, if you have
the following incoming shape:

• order_id
• order_status
• order_revenue
You will get the following outgoing shape:

• order_id
• abInterval
• order_status (this is the value by which you partition your stream)

• aState_order_status (this is the value of order_status in state A, in our example
'BOOKED')

• order_revenue (this is the value of order_revenue in state B)

• aState_order_revenue (this is the value of order_revenue in state A)

6.2.10 Outputting Highest Value Events
Use the Top N pattern to output N events with highest values from a collection of events,
arriving within a specified time window. The events here are sorted the way you specify, and
not in the default order of arrival.

For example, use it to get N highest values of pressure sensor readings.

Chapter 6
Transforming and Analyzing Data using Patterns

6-19

To use this pattern, provide suitable values for the following parameters:

• Window Range: Select a rolling time period within which the events will be collected and
ordered per your ordering criteria.

• Window Slide: Select the frequency for the newly updated output to be pushed
downstream and into the browser.

• Order by Criteria: Select a list of fields to use to order the collection of events.

• Number of Events: Select the number of top value events to output.

The outgoing shape is the same as the incoming shape.

6.2.11 Outputting Lowest Value Events
Use the Bottom N pattern to output N events with lowest values from a collection of events,
arriving within a specified time window. The events here are sorted the way you specify and
not in the default order of arrival.

For example, use it to get N lowest values of pressure sensor readings.

To use this pattern, provide suitable values for the following parameters:

• Window Range: Select a rolling time period within which the events will be collected and
ordered per your ordering criteria.

• Window Slide: Select the frequency for newly updated output to be pushed downstream
and into the browser.

• Order by Criteria: Select a list of fields to use to order the collection of events.

• Number of Events: Select the number of bottom value events to output.

The outgoing shape is the same as the incoming shape.

6.2.12 Monitoring Invariably Increasing Numeric Values
Use the Up Trend pattern to detect an invariably increasing numeric value, over a period of
time.

Use the pattern if you need to detect situations of a constant increase in one of your numeric
values. For example, detect a constant increase in pressure from one of your sensors.

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: Select fields to be used as partition criteria.

For example, your stream contains events issues by a number of sensors. All sensors
send the same but individual data. You would want to compare readings of a sensor to
previous readings of the same sensor and not just a previous event in your stream, which
is very likely to be from a different sensor. Select a field that would uniquely identify your
sensors, such as sensor id. This field is optional. For example, if your stream contains
readings from just one sensor, you do not need to partition your data.

• Duration: Select a time period within which the values of the designated field are analyzed
for the upward trend.

• Tracking value: Select a field to be analyzed for upward trend.

Chapter 6
Transforming and Analyzing Data using Patterns

6-20

Outgoing Shape

The outgoing shape is based on the incoming shape with an addition of two new fields. For
example, if your incoming event contains the following fields:

• sensor_id
• temperature
• pressure
• location
Normally, you would use sensor_id to partition your data and say you want to look for the
upward trend in temperature. So, select sensor_id in the partition criteria parameter and
temperature in the tracking value parameter. Use a duration that fits your use case. In this
scenario, you will have the following outgoing shape:

• sensor_id
• startValue (this is the value of temperature that starts the trend)

• endValue (this is the value of temperature that ends the trend)

• temperature (the value of the last event)

• pressure (the value of the last event)

• location (the value of the last event)

6.2.13 Monitoring Invariably Decreasing Numeric Values
Use the Down Trend pattern to detect an invariably decreasing a numeric value, over a period
of time.

For example, detect a constant drop in pressure from one of your sensors.

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: Select a field to be used as a partition criterion.

For example, your stream contains events issues by a number of sensors. All sensors
send the same but individual data. You would want to compare readings of a sensor to
previous readings of the same sensor and not just a previous event in your stream, which
is very likely to be from a different sensor. Select a field that would uniquely identify your
sensors, such as sensor id. This field is optional. For example, if your stream contains
readings from just one sensor, you do not need to partition your data.

• Duration: Select a time period within which the values of the designated field are analyzed
for the downward trend.

• Tracking value: Select a field to be analyzed for downward trend.

Outgoing Shape

The outgoing shape is based on the incoming shape with an addition of two new fields. Let's
look at an example. Your incoming event contains the following fields:

• sensor_id
• temperature
• pressure

Chapter 6
Transforming and Analyzing Data using Patterns

6-21

• location
Normally, you would use sensor_id to partition your data and say you want to look for the
downward trend in temperature. So, select sensor_id in the partition criteria parameter and
temperature in the tracking value parameter. Use a duration that fits your use case. In this
scenario, you will have the following outgoing shape:

• sensor_id
• startValue (this is the value of temperature that starts the trend)

• endValue (this is the value of temperature that ends the trend)

• temperature (the value of the last event)

• pressure (the value of the last event)

• location (the value of the last event)

The pattern is visually represented based on the data you have entered/selected.

6.2.14 Identifying the Missing First Event in a Sequence
The 'B' Not Preceded by 'A' pattern will look for a missing event in a particular combination of
events and will output the first event which is found where the first event is not preceded by the
second event.

Use it when you need to be aware of a specific event not preceded by another event in your
flow. For example, if an order status BOOKED is not preceded by an order status PAID within a
certain time period, you may need to raise an alert.

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: (Optional) a field to partition your stream by. In the order example
above, it may be order_id.

• State A: Field: an initial state field, whose value will be used in the comparison of two
events. In our example, it will be order_status.

• State A: Value: the initial field state value. In our example, BOOKED.

• State B: Field: a consecutive state field, whose value will be used in the comparison of
two events. In our example, it will be order_status again.

• State B: Value: the consecutive field state value. In our example, PAID.

• Duration: the time period, within which to look for state changes.

Outgoing Shape

The outgoing shape is the same as incoming shape. If the second (state B) event does not
arrive within the specified time window, the first (state A) event is pushed to the output.

6.2.15 Identifying the Second Missing Event in a Sequence
The 'A' Not Followed by 'B' pattern will look for a missing second event in a particular
combination of events and will output the first event when the expected second event does not
arrive within the specified time period.

Use it when you need to be aware of a specific event not following its predecessor in your flow.
For example, if an order status BOOKED is not followed by an order status PAID within a certain
time period, you may need to raise an alert.

Chapter 6
Transforming and Analyzing Data using Patterns

6-22

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: (Optional) a field to partition your stream by. In the order example
above, it may be order_id.

• State A: field: an initial state field, whose value will be used in the comparison of two
events. In our example, it will be order_status.

• State A: value: the initial field state value. In our example, BOOKED.

• State B: field: a consecutive state field, whose value will be used in the comparison of two
events. In our example, it will be order_status again.

• State B: value: the consecutive field state value. In our example, SHIPPED.

• Duration: the time period, within which to look for state changes.

Outgoing Shape

The outgoing shape is the same as incoming shape. If the second (state B) event does not
arrive within the specified time window, the first (state A) event is pushed to the output.

6.2.16 Analyzing Data using Double Bottom Charts
Use the W pattern for technical analysis of financial trading markets. This pattern is also known
as a double bottom chart pattern.

Use this pattern to detect when an event data field value rises and falls in “W” fashion over a
specified time window. For example, use this pattern when monitoring a market data feed stock
price movement to determine a buy/sell/hold evaluation.

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: Select a field to be used as a partition criterion. For example, a ticker
symbol.

• Window: Select a time period within which the values of the designated field are analyzed
for the W shape.

• Tracking value: Select a field to be analyzed for the W shape.

Outgoing Shape

The outgoing shape is based on the incoming shape with an addition of five new fields. The
new fields are:

• firstW
• firstValleyW
• headW
• secondValleyW
• lastW
The new fields correspond to the tracking value terminal points of the W shape discovered in
the feed. The original fields correspond to the last event in the W pattern.

6.2.17 Analyzing Data using Double Top Charts
Use the Inverse W pattern for the technical analysis of financial trading markets, and to see
the financial data in a graphical form. This pattern is also known as a double top chart pattern.

Chapter 6
Transforming and Analyzing Data using Patterns

6-23

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: Select a field to be used as a partition criterion. For example, a ticker
symbol.

• Window: Select a time period within which the values of the designated field are analyzed
for the inverse W shape.

• Tracking value: Select a field to be analyzed for the inverse W shape.

Outgoing Shape

The outgoing shape is based on the incoming shape with an addition of five new fields. The
new fields are:

• firstW
• firstPeakW
• headInverseW
• secondpeakW
• lastW
The new fields correspond to the tracking value terminal points of the inverse W shape
discovered in the feed. The original fields correspond to the last event in the inverse W pattern.

6.2.18 Correlating Current and Previous Events
Use the Current and Previous Events pattern to automatically correlate the current and
previous events.

To use this pattern, provide suitable values for the following parameters:

• Partition Criteria: Select the fields to be used the partition criteria.

Input Schema or Payload Shape [DiskID, Usage]
Output schema/payload from this pattern for non-partitioned input is [DiskID, Usage,
PREV_DiskId, PREV_Usage].

For input partitioned by DiskID, the output schema from the pattern is [DiskID, Usage,
PREV_Usage].

Below is an example with values:

For non-partitioned input:

Input - [Disk1, 40gb], [Disk2, 60gb], [Disk1, 45gb]
Output - [Disk2, 60gb, Disk1, 40gb], [Disk1, 45gb, Disk2, 60gb]
For input partitioned by Disk ID :

Input - [Disk1, 40gb], [Disk2, 60gb], [Disk1, 45gb]
Output [Disk1, 45gb, 40gb]. There is no output for Disk2 until another event for Disk2
arrives.

Chapter 6
Transforming and Analyzing Data using Patterns

6-24

6.2.19 Delaying Delivery of Events to Downstream Node
Use the Delay Event pattern to delay delivering an event to downstream node in the pipeline,
for a specified number of seconds. A practical use case is to wind up a campaign event or
promotion.

To use this pattern, provide suitable values for the following parameters:

• Delay in Seconds: Select a time period for which you want to delay the processing of an
event.

6.2.20 Outputting Contents to Downstream Node
Use the Row Window Snapshot pattern to output entire window contents to a downstream
node, on the arrival of a new event, based on the specified maximum number of events a
window can hold.

For example:

• To rebuild an ML model in real-time

• To continually use the last X values in a time-series forecasting algorithm, to predict future
values

To use this pattern, provide suitable values for the following parameters:

• Maximum number of rows the window will hold

• Key fields for partitioning the window

• Time in seconds before event in the window expires

[PARTITION BY StockSymbol, ROWS 500, RANGE 1 MINUTE] will dump the entire window
contents on the arrival of a new event. The window will hold a maximum of 500 events. An
event will expire after a minute, allowing newer events.

Partitioning key creates separate window for each value of the key. For example, a separate
window for 500 Oracle quote events, 500 Microsoft quote events and so on.

6.2.21 Outputting Unexpired Contents to Downstream Node
Use the Time Window Snapshot pattern to output entire window contents to a downstream
node, on the arrival of a new event, based on the time window specified for each event.

To use this pattern, provide suitable values for the following parameters:

• Window range in seconds or duration in seconds before event expires

• Frequency in seconds for window snapshot output

[RANGE 10 MINUTES] will dump entire window contents to downstream node on the arrival of
a new event. Event will expire from the window after 10 minutes.

Note:

Window will automatically dump contents either when a new event arrives or when an
event expires.

Chapter 6
Transforming and Analyzing Data using Patterns

6-25

6.2.22 Merging Two Streams having Identical Shapes
Use the Union pattern to merge two streams having identical shapes.

For example, you have two similar sensors sending data into two different streams, and you
want to process the streams simultaneously, in one pipeline.

To use this pattern, provide suitable values for the following parameters:

• Second event stream: Select the stream you want to merge with your primary stream.
Make sure you select a stream with an identical shape.

The outgoing shape is the same as the incoming shape.

6.2.23 Joining Flows with Streams and References
Use the Left Outer join pattern to join a stream or a reference, using the left outer join
semantics.

The result of this pattern always contains the data of the left table even if the join-condition
does not find any matching data in the right table.

To use this pattern, provide suitable values for the following parameters:

• Enriching Reference/Stream: Select the stream or reference you want to join to your flow.

• Correlation Criteria: Select the fields based on which the stream/ reference will be joined.

• Window Range of the Primary Stream: Select a rolling time window to make a collection
of events in your primary flow, to be joined with the enriching stream/ reference.

• Window Slide of the Primary Stream: Select the frequency for data to be pushed
downstream and to the UI.

• Window Range of the Enriching Stream: Select a rolling time window to make a
collection of events in your enriching stream, to be joined with the primary flow. Disabled, if
a reference is used.

• Window Slide for the Enriching Stream: Select the frequency for the data to be pushed
downstream and to the UI. Disabled, if a reference is used.

The outgoing shape is a sum of two incoming shapes.

6.2.24 Transforming Events into JSON
Use the ToJson pattern to transform event(s) coming from a stage in the pipeline into a JSON
text.

Use this pattern to transform multiple events into a single JSON document, and send it to a
downstream system through OSA pipeline targets. For example, you can configure a Database
target after the toJson pattern stage, to write the json payload (of a single or multiple events),
into a database table

To use this pattern, provide suitable values for the following parameters:

• Enable batching: Select this option to transform multiple events as an array of single
JSON document and output it as JSON text. By Default, it uses all the events of a partition,
within the batch duration, to transform as an array of JSON document.

• Batch Size: Select the number of events to be included in a batch.

Chapter 6
Transforming and Analyzing Data using Patterns

6-26

If the size is configured to the value greater than 0 (say n), it will transform maximum n
events as a JSON array of single JSON document and output as a JSON text.

If the size is set to the default 0, all the events of a partition within the batch duration will be
transformed as an array of single JSON document and output as JSON text.

• Upload Json File: You can upload a sample JSON file to be used to infer JSON path for
field mapping.

• Field Mapping:

– Json Path: Lists all the paths in uploaded JSON file.

– Fields: Lists all the fields from the previous stage. You can map the JSON path with
one of the fields from the drop-down list.

6.2.25 Transforming a Single Event from a Stage into Multiple Events
Use the Split pattern to transform a single event from a stage into multiple events, by splitting
the value field. For example, you can flatten an array of json element or json object from the
source, to individually process it and also to push it to some targets.

The output of this pattern, is one or more events, corresponding to each single event of the
previous stage. The output events are a clone of the source event. The attribute of the selected
field is split into an array, based on the selected type. Each value of an array correspond to an
output event with the new value of the selected attribute.

To use this pattern, provide suitable values for the following parameters:

• Split: Select one of the fields from the previous event, to split.

• Type: Select the value type of the split field, from the drop-down list.

• Separator: Set the text separator for delimited text type. Default separator is comma.

6.2.26 Merging Two Continuous Events into a Single Event
Use the Continuous Merge pattern to merge two or more continuous events into a single
event, based on the key attributes.

The output of this pattern, is a single event corresponding to two or more merged events of the
previous stage. The attribute of the selected field is merged into an array, based on the
selected type. Each value of an array correspond to an output event with the new value of the
selected attribute.

To use this pattern, provide suitable values for the following parameters:

• Key Fields: Select one or more attributes from the previous stage.

• Merged Field Name: Enter a name for the merged, output field.

6.2.27 Applying OML Models to get the Scoring of Events (Preview Feature)
Use the Oracle Machine Learning Service pattern to use OML models to apply the scoring
on the ingested events.

To use this pattern, provide suitable values for the following parameters:

• OML server url: Enter the OML service endpoint where the autonomous data warehouse
is located for the Machine Learning model in the region.

• Tenant: Enter the tenant ID hosting the OML model.

Chapter 6
Transforming and Analyzing Data using Patterns

6-27

• OML Service Name.: Provide the OML Service Name.

• Username: Username for the OML service or the ADW database, for the OML user.

• Password: Password for the OML service or the ADW database, for the OML user.

• OML Model: Select an OML model that you want to apply to the current stage.

• Input Fields: Choose the input parameter fields to map with the OML model.

6.2.28 Detecting Contiguous Events
Use the Segment Detector pattern to detect contiguous events (range/segment) having
unchanged values for the selected attributes, over a specified period of time.

For example, to detect the range of stability over a period of time in:

• The range of constant speed of a vehicle

• The range of constant/ stable temperature of an electric appliance

To use this pattern, provide suitable values for the following parameters:

• Event Stream: Event stream is the stream (previous stage) over which the pattern will be
applied.

• Time Window: Time window specifies the period of time during which this pattern detect
the segment.

• Equality Criteria: Enter the attributes (criteria) to detect the segment.

• Partition Criteria: Enter the attributes (criteria) to partition the output.

• Alert on group changes: Select for notifications on all observable parameters changes.

The Segment Detector pattern outputs the attribute values of the first and last event in the
detected segment (range). Each of the attributes of the first event is prefixed with orig_ in the
output shape, whereas the attribute of the last event name is same as in the previous stage.

6.2.29 Creating Pivot Columns
Use the Pivot pattern to pivot all or selected attributes of an incoming event, into new columns,
based on the selected pivot value and key provided.

To use this pattern, provide suitable values for the following parameters:

• Event Stream: Event stream is the stream (previous stage) over which the pattern will be
applied.

• Time Window: Time window specifies the period of time during which the pivot value for
the pivot key gets memorized.

• Pivot Value: Select the attributes to pivot.

• Pivot Key: Select the values of the selected attributes in Pivot Value,that will be displayed
as new attributes in the output.

• Partition Criteria: Enter the attributes (criteria) to partition the output.

• Retain pivoted columns: When selected, it includes the pivoted column (pivot value) in
the output

• Keep all events: When selected, it outputs all the events from the previous stage.

Chapter 6
Transforming and Analyzing Data using Patterns

6-28

6.3 Using Machine Learning Models for Scoring and Prediction
The predictive model is an algorithm that you apply to streaming data to predict outcomes. In a
pipeline, you use a predictive model in a scoring stage to do probability scoring.

In GoldenGate Stream Analytics, a predictive model is an ONNX file, that you upload and store
in the system:

• GGSA supports ONNX models with single-dimensional outputs of size 1. The output
should be of int, float, double or Boolean datatype.

6.3.1 Importing a Predictive Model
To import a predictive model:

1. On the Catalog page, click Create New Item, and select Predictive Model from the drop-
down list.

2. On the Type Properties screen, enter the following details and click Next :

• Name

• Description

• Tags

• Predictive Model Type

• On the Predictive Model Details, enter the following details and click Save:

1. For Predictive Model URL, upload your ONNX file.

2. In the Model Version field, enter the version of this artifact. For example, 1.0.

3. (Optional) In the Version Description, enter a meaningful description for your model.

4. In the Algorithm field, accept the default. The algorithm is derived from the model you
have uploaded.

5. (Optional) In the Tool drop-down list, select the tool with which you created your
model.

6.3.2 Adding a Scoring Stage

To add a scoring stage:

1. Open the required pipeline in Pipeline Editor.

2. Right-click the stage after which you want to add a scoring stage, click Add a Stage, and
then select Scoring.

3. Enter a meaningful name and suitable description for the scoring stage and click Save.

4. In the stage editor, enter the following details:

a. Model name: Select the predictive model that you want to use in the scoring stage

b. Model Version: Select the version of the predictive model

c. Mapping: Select the corresponding model fields that appropriately map to the stage
fields

You can add multiple scoring stages based on your use case.

Chapter 6
Using Machine Learning Models for Scoring and Prediction

6-29

6.4 Integrating with Druid Timeseries Database for Realtime
Interactive Analytics

A cube is a data structure that helps you to quickly analyze data, on multiple dimensions.
GoldenGate Stream Analytics cubes are powered by Druid, which is a distributed, in-memory
OLAP data store.

A pipeline outputs the processed data into the Kafka streams which in turn feeds the cube.

You can use cubes for:

• Interactive analysis of historical data

• Analysis of univariate, bivariate, and multivariate data

• Exploration of historical data, using a rich set of 30 visualizations. These visualizations
range from simple table, line, bar to the advanced visualizations such as sankey, boxplot,
maps, etc. You can save the result of the cube explorations to use them with dashboards,
for both the operational and strategical analysis needs of the business users.

6.4.1 Creating a Connection to Druid
To create a connection to Druid:

1. On the Catalog page, click Create New Item.

2. Hover the mouse over Connection and select Druid from the submenu.

3. On the Type Properties screen, enter the following details:

• Name: Enter a unique name for the connection. This is a mandatory field.

• Display Name: Enter a display name for the connection. If left blank, the Name field
value is copied.

• Description

• Tags

• Connection Type: The selected connection is displayed.

4. Click Next.

5. On the Connection Details screen, enter the following details:

• Zookeepers: Enter the zookeeper URL.

6. Click Test Connection, to ensure that you have successfully created a connection.

7. Click Save.

6.4.2 Creating a Cube
Druid must be running, prior to creating a cube. Visit http://druid.io/downloads.html, to
download and install Druid.

To create a cube:

1. On the Catalog page, click Create New Item, and select Cube from the drop-down list.

2. On the Type Properties screen, enter the following details:

Chapter 6
Integrating with Druid Timeseries Database for Realtime Interactive Analytics

6-30

http://druid.io/downloads.html

• Name

• Description

• Tags

• Source Type: Select Published Pipeline from the drop-down list.

3. Click Next.

4. On the Ingestion Details screen, enter the following details:

• Connection: Select a connection from the drop-down list.

• Pipeline: Select a pipeline from the drop-down list.

• Kafka Target Select a Kafka target from the drop-down list.

• Timestamp: Select a column from the pipeline to be used as the timestamp.

• Timestamp format: Select or set a suitable format for the timestamp using Joda time
format. This is a mandatory field. The default value is auto.

• Metrics: Select metrics for creating measures.

• Dimensions: Select dimensions for group by.

• High Cardinality Dimensions: Select high cardinality dimensions such as unique IDs.
Hyperlog approximation will be used.

5. Click Next.

6. Select the required values for the metric on the Metric Capabilities screen.

7. On the Advanced Settings screen, enter the following details:

• Segment granularity: Select the granularity with which you want to create segments

• Query granularity: Select the minimum granularity to be able to query results and the
granularity of the data inside the segment

• Task count: Select the maximum number of reading tasks in a replica set. This means
that the maximum number of reading tasks is taskCount*replicas and the total
number of tasks (reading + publishing) is higher than this. The number of reading tasks
is less than taskCount if taskCount > {numKafkaPartitions}.

• Task duration: Select the length of time before tasks stop reading and begin
publishing their segment. The segments are only pushed to deep storage and loadable
by historical nodes when the indexing task completes.

• Maximum rows in memory: Enter a number greater than or equal to 0. This number
indicates the number of rows to aggregate before persisting. This number is the post-
aggregation rows, so it is not equivalent to the number of input events, but the number
of aggregated rows that those events result in. This is used to manage the required
JVM heap size. Maximum heap memory usage for indexing scales with
maxRowsInMemory*(2 + maxPendingPersists).

• Maximum rows per segment: Enter a number greater than or equal to 0. This is the
number of rows to aggregate into a segment; this number is post-aggregation rows.

• Immediate Persist Period: Select the period that determines the rate at which
intermediate persists occur. This allows the data cube is ready for query earlier before
the indexing task finishes.

• Report Parse Exception: Select this option to throw exceptions encountered during
parsing and halt ingestion.

Chapter 6
Integrating with Druid Timeseries Database for Realtime Interactive Analytics

6-31

• Advanced IO Config: Specify name-value pair in a CSV format. Available
configurations are replicas, startDelay, period, useEarliestOffset,
completionTimeout, and lateMessageRejectionPeriod.

• Advanced Tuning Config: Specify name-value pair in CSV format. Available
configurations are maxPendingPersists, handoffConditionTimeout,
resetOffsetAutomatically, workerThreads, chatThreads, httpTimeout, and
shutdownTimeout.

8. Click Save.

6.4.3 Exploring a Cube

When you create druid based cube, you can explore data in it.

To explore a cube:

1. In the Catalog, click the cube that you want to explore.

2. On the Cube Explorationscreen, construct a query by setting the following parameters:

• Visualization Type: Select a visualization type from the drop-down list.

• Time: Set the time-related form attributes such as time granularity, origin (starting point
of time), and time range

.

• Group By: Select the parameters to aggregate the query data

.

• Not Grouped By: Select the parameters to query atomic rows.

.

• Options

• Filters — columns that you can use in filters

• Result Filters — columns that you can use in result filters

3. Click Query to run the query with the defined parameters.

4. Click Save As to save the cube exploration. You can save it as a visualization, choose to
add it to an existing dashboard, not to add it to a dashboard, or add it to a new dashboard.

Chapter 6
Integrating with Druid Timeseries Database for Realtime Interactive Analytics

6-32

7
Visualize

Visualizations are graphical representations of the streaming data in a pipeline. You can add
visualizations on all the stages in a pipeline, except on a target stage.

Adding Realtime Charts

Creating and Managing Dashboards

7.1 Adding Realtime Charts

7.1.1 Adding an Area Chart
Area visualization represents data as a filled-in area. Area visualization requires at least two
groups of data along an axis. The X-axis is a single consecutive dimension, such as a date-
time field, and the data lines are unlikely to cross. Y axis represents the metrics (measured
value). X axis can also have non date-time categories. This visualization is mainly suitable for
presenting accumulative value changes over time.

To add an area visualization:

1. Open a pipeline in the Pipeline Editor.

2. Select the required stage and click the Visualizations tab.

3. Click Add a Visualization and then click Area Chart.

4. Enter/select values for the following fields:

• Name: a suitable name for the visualization. This is a mandatory field.

• Description: a suitable description. This is an optional field.

• Tags: suitable tags to for easy identification. This is an optional field.

• Y Axis Field Selection: the column to be used as the Y axis. This is a mandatory
field.

• Axis Label: a label for the Y axis. This is an optional field.

• X Axis Field Selection: the column to be used as the X axis. This is a mandatory
field.

• Axis Label: a label for the X axis. This is an optional field.

• Orientation: select this check box if you want the visualization to appear with a
horizontal orientation in the Pipeline Editor. This is optional and you can decide based
on your usecase or requirement if you want to change the orientation.

• Data Series Selection: the column to be used as the data series. This is an optional
field.

5. Click Create.

The visualization is created and you can see the data populated in it.

7-1

7.1.2 Adding a Bar Chart
Bar visualization is one of the widely used visualization types which represents data as a
series of vertical bars. It is best suited for comparison of the values represented along y axis
where different categories are spread across x axis. In a Bar visualization vertical columns
represent metrics (measured values). The horizontal axis displays multiple or non-consecutive
categories.

To add a bar visualization:

1. Open a pipeline in the Pipeline Editor.

2. Select the required stage and click the Visualizations tab.

3. Click Add a Visualization and then click Bar Chart.

4. Enter/select values for the following fields:

• Name: a suitable name for the visualization. This is a mandatory field.

• Description: a suitable description. This is an optional field.

• Tags: suitable tags to for easy identification. This is an optional field.

• Y Axis Field Selection: the column to be used as the Y axis. This is a mandatory
field.

• Axis Label: a label for the Y axis. This is an optional field.

• X Axis Field Selection: the column to be used as the X axis. This is a mandatory
field.

• Axis Label: a label for the X axis. This is an optional field.

• Orientation: select this check box if you want the visualization to appear with a
horizontal orientation in the Pipeline Editor. This is optional and you can decide based
on your usecase or requirement if you want to change the orientation.

5. Click Create.

The visualization is created and you can see the data populated in it.

7.1.3 Adding a Bubble Chart
A bubble chart is a good option when you want to add an additional dimension to a scatter plot
chart. Scatter charts compare two values, but you can add bubble size as the third variable in a
bubble chart and thus enable comparison. A good example to use bubble chart is to show
marketing expenditures vs revenue vs profit.

To add a bubble chart:

1. Open a pipeline in the Pipeline Editor.

2. Select the required stage and click the Visualizations tab.

3. Click Add a Visualization and then click Bubble Chart.

4. Enter/select values for the following fields:

• Name: a suitable name for the visualization. This is a mandatory field.

• Description: a suitable description. This is an optional field.

• Tags: suitable tags to for easy identification. This is an optional field.

Chapter 7
Adding Realtime Charts

7-2

• Y Axis Field Selection: the column to be used as the Y axis. This is a mandatory
field.

• Axis Label: a label for the Y axis. This is an optional field.

• X Axis Field Selection: the column to be used as the X axis. This is a mandatory
field.

• Axis Label: a label for the X axis. This is an optional field.

• Bubble Size Field Selection: select the field that you want to use as the bubble size.
This is a mandatory field.

5. Click Create.

The visualization is created and you can see the data populated in it.

7.1.4 Adding a Line Chart
Line visualization represents data as a line, as a series of data points, or as data points that
are connected by a line. Line visualization require data for at least two points for each member
in a group. The X-axis is a single consecutive dimension, such as a date-time field, and the
data lines are likely to cross. X axis can also have non date-time categories. Y axis represents
the metrics (measured value). It is preferred to use line visualization when data set is
continuous in nature. It is best suited for trend-based plotting of data over a period of time.

To add a line visualization:

1. Open a pipeline in the Pipeline Editor.

2. Select the required stage and click the Visualizations tab.

3. Click Add a Visualization and then click Line Chart.

4. Enter/select values for the following fields:

• Name: a suitable name for the visualization. This is a mandatory field.

• Description: a suitable description. This is an optional field.

• Tags: suitable tags to for easy identification. This is an optional field.

• Y Axis Field Selection: the column to be used as the Y axis. This is a mandatory
field.

• Axis Label: a label for the Y axis. This is an optional field.

• X Axis Field Selection: the column to be used as the X axis. This is a mandatory
field.

• Axis Label: a label for the X axis. This is an optional field.

• Orientation: select this check box if you want the visualization to appear with a
horizontal orientation in the Pipeline Editor. This is optional and you can decide based
on your usecase or requirement if you want to change the orientation.

• Data Series Selection: the field that you want to use for data selection series.

5. Click Create.

The visualization is created and you can see the data populated in it.

Chapter 7
Adding Realtime Charts

7-3

7.1.5 Adding a Pie Chart
A pie chart is a circular graph that represents statistical data in slices. The size of each slice is
proportional to the quantity of the value it represents.

To add a pie chart:

1. Open a pipeline in the Pipeline Editor.

2. Select the required stage and click the Visualizations tab.

3. Click Add a Visualization and then click Pie Chart.

4. Enter/select values for the following fields:

• Name: a suitable name for the visualization. This is a mandatory field.

• Description: a suitable description. This is an optional field.

• Tags: suitable tags to for easy identification. This is an optional field.

• Measure: the field to be used as the measure of the visualization. This is a mandatory
field.

• Group: the field to be used as the group for the visualization. This is a mandatory field.

• Use 3D rendering: select this check box if you want to render the visualization with a
3D effect. This is an optional field.

5. Click Create.

The visualization is created and you can see the data populated in it.

7.1.6 Adding a Scatter Plot
Scatter charts are primarily used for correlation and distribution analysis. This type of chart is
good for showing the relationship between two different variables where one correlates to
another.

To add a scatter visualization:

1. Open a pipeline in the Pipeline Editor.

2. Select the required stage and click the Visualizations tab.

3. Click Add a Visualization and then click Scatter Chart.

4. Enter/select values for the following fields:

• Name: a suitable name for the visualization. This is a mandatory field.

• Description: a suitable description. This is an optional field.

• Tags: suitable tags to for easy identification. This is an optional field.

• Y Axis Field Selection: the column to be used as the Y axis. This is a mandatory
field.

• Axis Label: a label for the Y axis. This is an optional field.

• X Axis Field Selection: the column to be used as the X axis. This is a mandatory
field.

• Axis Label: a label for the X axis. This is an optional field.

• Data Series Selection: the field that you want to use for data series selection. This is
an optional field.

Chapter 7
Adding Realtime Charts

7-4

5. Click Create.

The visualization is created and you can see the data populated in it.

7.1.7 Adding a Stacked Bar Chart
A stacked visualization displays sets of values stacked in a single segmented column instead
of side-by-side in separate columns. It is used to show a composition. Bars for each set of data
are appended to previous sets of data. The size of the stack represents a cumulative data
total.

To add a stacked visualization:

1. Open a pipeline in the Pipeline Editor.

2. Select the required stage and click the Visualizations tab.

3. Click Add a Visualization and then click Stacked Bar Chart.

4. Enter/select values for the following fields:

• Name: a suitable name for the visualization. This is a mandatory field.

• Description: a suitable description. This is an optional field.

• Tags: suitable tags to for easy identification. This is an optional field.

• Y Axis Field Selection: the column to be used as the Y axis. This is a mandatory
field.

• Axis Label: a label for the Y axis. This is an optional field.

• X Axis Field Selection: the column to be used as the X axis. This is a mandatory
field.

• Axis Label: a label for the X axis. This is an optional field.

• Orientation: select this check box if you want the visualization to appear with a
horizontal orientation in the Pipeline Editor. This is optional and you can decide based
on your usecase or requirement if you want to change the orientation.

5. Click Create.

The visualization is created and you can see the data populated in it.

7.1.8 Adding a Thematic Map
A thematic map is used to represent a particular theme in data connected to a geographical
area. This type of map depicts the political, cultural, agricultural, sociological, and many other
aspects of the geographic region, be it a city, state, country, ore region.

To add a thematic map:

1. Open a pipeline in the Pipeline Editor.

2. Select the required stage and click the Visualizations tab.

3. Click Add a Visualization and then click Thematic Map.

4. Enter/select values for the following fields:

• Name: a suitable name for the visualization. This is a mandatory field.

• Description: a suitable description. This is an optional field.

• Tags: suitable tags to for easy identification. This is an optional field.

Chapter 7
Adding Realtime Charts

7-5

• Map Type: the map of the region that you want to use. This is a mandatory field.

• Location Field: the field that you want to use as the location. This is a mandatory
field.

• Data Field: the field that you want to use as the data field. This is a mandatory field.

• Show Data Value: select this check box if you want to display the data value as
marker on the visualization. This is an optional field.

5. Click Create.

The visualization is created and you can see the data populated in it.

7.1.9 Updating Visualizations
You can perform the following edit and delete operations on the visualizations:

Edit Visualization

To edit a visualization:

1. On the stage that has visualizations, click the Visualizations tab.

2. Identify the visualization that you want to edit and click the pencil icon next to the
visualization name.

3. In the Edit Visualization dialog box that appears, make the changes you want. You can
even change the Y Axis and X Axis selections. When you change the Y Axis and X Axis
values, you will notice a difference in the visualization as the basis on which the graph is
plotted has changed.

The following are the other updates you can make to the visualizations:

• Maximize Visualizations: You can open the visualization in a new window/tab using the
Maximize Visualizations icon in the visualization canvas.

• Change Orientation: Based on the data that you have in the visualization or your
requirement, you can change the orientation of the visualization. You can toggle between
horizontal and vertical orientations by clicking the Flip Chart Layout icon in the
visualization canvas.

• Delete Visualization: You can delete the visualization if you no longer need it in the
pipeline. In the visualization canvas, click the Delete icon available beside the visualization
name to delete the visualization from the pipeline. Be careful while you delete the
visualization, as it is deleted with immediate effect and there is no way to restore it once
deleted.

• Delete All Visualizations: You can delete all the visualizations in the stage if you no
longer need them. In the visualization canvas, click the Delete All icon to delete all the
visualizations of the stage at one go. Be careful while you delete the visualizations, as the
effect is immediate and there is no way to restore the deleted visualizations.

7.2 Creating and Managing Dashboards

7.2.1 Adding a Dashboard
1. On the Catalog page, click Create New Item and selectDashboard from the drop-down

list.

2. On the Type Properties screen, enter the following details:

Chapter 7
Creating and Managing Dashboards

7-6

• Name

• Description

• Tags

3. Click Next.

4. On the Source Details page, enter the following details:

• Begin: Select this option to build a dashboard from Beginning or Latest offset.
Available options are latest and earliest. If you select the latest option, the dashboard
shows only the new records that have been received after opening the dashboard. If
you select the earliest option, then the records are read from the beginning of the
OSA pipeline topics.

• CSS: Enter a custom stylesheet for the dashboard.

5. Click Save.

7.2.2 Editing a Dashboard
1. On the Catalog page click the dashboard that you want to edit.

The dashboard opens in the View Mode.

2. Click Edit Dashboard to view the dashboard editing options under Actions.

3. Click Force Refresh to force refresh the dashboard.

Chapter 7
Creating and Managing Dashboards

7-7

4. Click Set autorefresh to select the refresh frequency for the dashboard. This is applicable
only for cube based visualizations not applicable for streaming charts created out of
pipeline.

This is just a client side setting and is not persisted.

Note:

The Refresh options work only for druid-based visualizations, and not for
streaming visualizations because they have continuous data flow.

5. Click the Save icon to save the changes you have made to the dashboard.

6. Click the Edit CSS icon to edit and apply a CSS to the dashboard. You can also edit the
CSS in the live editor.

You can email the dashboard link to someone using the Email the link icon.

7. Click Add visualizations to see a list of existing visualizations. Visualizations from the
pipelines and as well as from the cube explorations appear here. Go through the list, select
one or more visualizations and add them to the dashboard.

8. Hover over the added visualization, click the Explore chart icon to open the chart editor of
the visualization.

You can see the metadata of the visualization. You can also move the chart around the
canvas, refresh it, or remove it from the dashboard.

A cube exploration looks like the following:

Chapter 7
Creating and Managing Dashboards

7-8

The various options like time granularity, group by, table timestamp format, row limit, filters,
and result filters add more granularity and details to the dashboard.

Chapter 7
Creating and Managing Dashboards

7-9

9. Click Save as, to make the following changes to the dashboard:

• Overwrite the visualization

• Overwrite the current visualization with a different name

• Add the visualization to an existing dashboard

• Add the visualization to a new dashboard

7.2.3 Sharing a Dashboards with Peers
To share a dashboard:

1. On the Catalog page, click the dashboard you want to share.

2. Copy the URL of the dashboard from the browser's address bar. Share this URL with users
who want to access the dashboard.

7.2.4 Deleting a Dashboard
To delete a dashboard:

1. Go to the Catalog page and hover the mouse over the dashboard that you want to delete.

2. Click the delete icon that appears to your right side on the screen.

3. On the Delete Confirmation screen, click Delete.

7.2.5 Importing a Dashboard with all its Dependencies
1. On the Catalog page, click Import.

2. In the Import dialog box, click Select, to locate and select the exported zip file on your
computer.

3. Click Import.

The imported dashboard and its dependent artifacts are available on the Catalog page.

7.2.6 Exporting a Dashboard with all its Dependencies
1. On the Catalog page, hover the mouse over, or select the dashboard that you want to

export another GGSA instance.

2. Click the Export option that appears to your right side on the screen.

3. The selected dashboard and its dependent artifacts are exported as a JSON zip file, to
your computer's default Downloads folder.

You can share, or import this zip file on the required user instances, to add the dashboard with
all its dependencies.

Chapter 7
Creating and Managing Dashboards

7-10

8
Monitor

Execution and HA Statistics

Detailed Query Analysis

Complete CQL Engine Statistics

8.1 Execution and HA Statistics
Click on a Query, in the CQL Engine Summary page.

You can view the Execution and HA statistics, in the CQL Engine Query details page that is

displayed.

• Following are the details displayed on this page:

• Query ID: System generated identifier for query

• Query Text: Query String

8-1

• Number of Partitions: This fields shows the degree of parallelism of the query. The
degree of parallelism is defined by total number of input partitions processed by a
query.

Degree of parallelism depends on the many factors such as query constructs, number
of input kafka partitions and number of executors assigned to application.

• Execution Statistics Table: This section shows the detailed execution statistics of
each operator.

– Partition ID: Partition Sequence Id

– CQL Engine ID: Sequence ID of CQL Engine on which the partition is being
processed.

– Total Output Events: Number of output events emitted by CQL query for each
partition.

– Total Output Heartbeats: Number of heartbeat events emitted by CQL query for
each partition. Please note that heartbeats are special events which ensures
timestamp progression in Oracle Stream Analytics pipeline.

– Throughput: Ratio of total number of events processed and total time spent in
processing for each partition.

– Latency: Average turnaround time taken to process a partition of stream.

• HA Statistics: This table shows the real-time statistics about query's HA operations.
Note that unit of time is in MILLISECONDS.

– Partition ID: Partition Sequence ID

– CQL Engine ID: Sequence ID of CQL Engine on which the partition is being
processed.

– Total Full Snapshots Created: Total number of times the full state of query is
serialized and saved.

– Avg Full Snapshot Creation Time: Average time spent in serializing and saving the
full state of query.

– Total Full Snapshots Loaded: Total number of times the full state of query is de-
serialized and loaded in query plan.

– Avg Full Snapshot Load Time: Average time spent in de-serializing and loading the
full state of query.

– Total Journal Snapshots Created: Total number of times the journaled state of
query is serialized and saved.

– Avg Journal Snapshot Creation Time: Average time spent in serializing and saving
the journaled state of query.

– Total Journal Snapshots Loaded: Total number of times the journaled state of
query is de-serialized and loaded in query plan.

– Avg Journal Snapshot Load Time: Average time spent in de-serializing and loading
the journaled state of query.

Full Snapshot is the complete state of query. The query state represent the internal
data structure and state of each operator in query plan. Journal snapshot is partial
and incremental snapshot having a start time and end time. Oracle Stream
Analytics optimizes the state preservation by using Journal snapshot if possible.

Chapter 8
Execution and HA Statistics

8-2

8.2 Detailed Query Analysis
Click on a specific partition in Execution Statistics table, the CQL Engine Detailed Query
Analysis page is displayed.

This page contains details about each execution operator of CQL query for a particular
partition of a stage in pipeline.

• Query ID: System generated identifier for query

• Query Text: Query String

• Partition ID: All operator details are corresponding to this partition id.

• Operator Statistics:

– Operator ID: System Generated Identifiers

– Total Input Events: Total number of input events received by each operator.

– Total Output Events: Total number of output events generated by each operator.

– Total Input Heartbeats: Total number of heartbeat events received by each operator.

– Total Output Heartbeats: Total number of heartbeat events generated by each
operator.

– Throughput(events/second): Ratio of total input events processed and total time spent
in processing for each operator.

– Latency(ms): Total turnaround time to process an event for each operator.

• Operator DAG: This is visual representation of the query plan. The DAG will show the
parent-child details for each operator. You can further drill down the execution statistics of
operator. Please click on the operator which will open CQL Operator Details Page.

Chapter 8
Detailed Query Analysis

8-3

8.3 Complete CQL Engine Statistics
Click on the CQL Engine tab, to view the complete CQL engine statistics for all stages and all
queries in the Pipeline.

This page contains additional information about each execution operator, apart from the CQL
Engine Query Details page, provides all essential metrics for each operator.

Pipeline ID: Unique pipeline id in Spark Cluster

Pipeline Name: Name of Oracle Stream Analytics Pipeline given by user in Oracle Stream
Analytics UI.

Stage ID: Unique stage ID in DAG of stages for Oracle Stream Analytics Pipeline.

Running Queries: This section displays list of CQL queries running to compute the CQL
transformation for a stage. This table displays a system-generated Query ID and Query Text.
Check Oracle Continuous Query Language Reference for CQL Query syntax and semantics.
To see more details about query, click on the query id hyperlink in the table entry to open CQL
Engine Query Details page.

Registered Sources: This section displays internal CQL metadata about all the input sources
which the query is based upon. For every input stream of the stage, there will be one entry in
this table.

Each entry contains source name, source type, timestamp type and stream attributes.
Timestamp type can be PROCESSING or EVENT timestamped. If stream is PROCESSING
timestamped, then timestamp of each event will be defined by system. If stream is EVENT
timestamped, then timestamp of each event is defined by one of the stream attribute itself. A
source can be Stream or Relation.

External Sources: This section displays details about all external sources with which input
stream is joined. The external source can be a database table or coherence cache.

CQL Engines: This section displays a table having details about all instances of CQL engines
used by the pipeline. Here are details about each field of the table:

• CQLEngine Id: System generated id for a CQL engine instance.

• ExecutorId: Executor Id with which the CQL engine is associated.

• Executor Host: Address of the cluster node on which this CQL engine is running.

Chapter 8
Complete CQL Engine Statistics

8-4

• Status: Current Status of CQL Engine. Status can be either ACTIVE or INACTIVE. If it is
ACTIVE, it means that CQL Engine instance is up and running, Otherwise CQL Engine is
stopped explicitly.

Chapter 8
Complete CQL Engine Statistics

8-5

9
Reference

Pipeline Details

Stage Details

Query Details

Internal Kafka Topics

9.1 Pipeline Details
Click the Pipeline tab to view the Pipeline details page.

This page has following information about a pipeline:

• Pipeline ID: Unique pipeline id in Spark Cluster

• Pipeline Name: Name of Oracle Stream Analytics Pipeline given by user in Oracle Stream
Analytics UI.

• Pipeline Stages Table: This section displays a table having detailed runtime metrics of
each pipeline stage. Each entry in the table is corresponding to a pipeline stage in Oracle
Stream Analytics UI pipeline graph.

• Pipeline DAG: This is a visual representation of all stages in form of a DAG where it
displays the parent-child relation various pipeline stages. This diagram also shows the
information about the transformations in each of the pipeline stage.

• The Pipeline Stages table contains the following columns.

• Total Number of Transformations: This measurement is number of spark
transformations applied to compute each stage.

9-1

Oracle Stream Analytics supports various types of stages e.g. Query Stage, Pattern Stage,
Custom Stage etc. For each pipeline stage, Oracle Stream Analytics defines a list of
transformations which will be applied on the input stream for the stage. The output from
final transformation will be the output of stage.

• Total Output Partitions: This measurement is total number of partitions in the output
stream of each stage.

Every pipeline stage has its own partitioning requirements which are determined from
stage configurations. For example, If a QUERY stage defines a summary function and
doesn't define a group-by column, then QUERY stage will have only one partition because
there will be no partitioning criteria available.

• Total Output Events: This measurement is total number of output events (not micro-
batches) emitted by each stage.

• Average Output Rate: This measurement is the rate at which each stage has emitted
output events so far. The rate is a ratio of total number of output events so far and total
application execution time.

If the rate is ZERO, then it doesn't always mean that there is ERROR in stage processing.
Sometime stage doesn't output any record at all (e.g. No event passed the Filter in Query
stage).This can happen if rate of output events is less than 1 events/second.

• Current Output Rate: This measurement is the rate at which each stage is emitting output
events. The rate is ratio of total number of output events and total application execution
time since last metrics page refresh. To get better picture of current output rate, please
refresh the page more frequently.

9.2 Stage Details
Click a Name in the Name column of the Pipeline Stages table to navigate to stage details

page.

This page provides details about all the transformations in specific stage.

• Pipeline ID: Unique pipeline id in Spark Cluster

• Pipeline Name: Name of Oracle Stream Analytics Pipeline given by user in Oracle Stream
Analytics UI.

• Stage ID: Unique stage id in DAG of stages for Oracle Stream Analytics Pipeline.

Chapter 9
Stage Details

9-2

• Stage DAG: This is a visual representation of all transformations in form of a DAG where it
displays the parent-child relation various pipeline transformations.

Note Oracle Stream Analytics allows different transformation types including Business
Rules but drilldowns are allowed only on CQLDStream transformations. Inside
CQLDStream transformation, the input data is transformed using a continuously running
query (CQL) in a CQL Engine. Note that there will be one CQL engine associated with one
Executor.

• Stage Transformations Table:This table displays details about all transformations being
performed in a specific stage. Each entry in the table is corresponding to a transformation
operation used in computation of the stage. You can observe that final transformation in
every stage is MonitorDStream. The reason is that MonitorDStream pipes output of stage
to Oracle Stream Analytics UI Live Table.

– Transformation Name: Name of output DStream for the transformation. Every
transformation in spark results into an output dstream.

– Transformation Type: This is category information of each transformation being used
in the stage execution. If transformation type is "Oracle", it is based on Oracle's
proprietary transformation algorithm. If the transformation type is "Native", then
transformation is provided by Apache Spark implementation.

CQLDStream transformation allows further drill down as described in the Query Details
section.

9.3 Query Details
In the Stage Transformation table, click on a CQLDStream transformation to open CQL
Engine Summary page for query-specific details.

The CQL Engine Summary page for the query has details like query text, stream sources
feeding the query, external sources if any and all CQL engines with which the query is
registered.

Chapter 9
Query Details

9-3

9.4 Internal Kafka Topics
The internal Kafka topics and Group ID's used by GGSA are standardized to the following
naming conventions:

Kafka Topics

Topic Resource Operations

sx_backend_notification_<UUID> Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_messages_<UUID> Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_<application_name>_<stage_name>_public Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_<application_name>_<stage_name>_draft Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_<application_name>_public_<offset_number>_<stage_name>_off
set

Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

Group IDs

Group ID Resource Operations

sx_<UUID>_receiver Group DESCRIBE,
READ

sx_<UUID> Group DESCRIBE,
READ

sx_<application_name>_public_<offset_number>_<stage_name> Group DESCRIBE,
READ

Chapter 9
Internal Kafka Topics

9-4

10
Troubleshoot

Pipeline Debug and Monitoring Metrics

Common Issues and Remedies

10.1 Pipeline Debug and Monitoring Metrics
For every running Oracle Stream Analytics pipeline, there is a corresponding spark application
deployed to the Spark Cluster. If Oracle Stream Analytics pipeline is deployed and running in
draft mode or published mode, user can monitor and analyze the corresponding Spark
application using real-time metrics provided by Oracle Stream Analytics. These metrics provide
detailed run-time insights for every pipeline stage and user can drill down to operator level
details. Note that these metrics are in addition to metrics provided by Spark. For each
application, Oracle Stream Analytics provides detailed monitoring metrics which user can use
to analyze if pipeline is working as per expectation.

The following topics explain how to access monitoring and debug metrics.

10.1.1 Spark Standalone
When running on Spark Standalone, the Spark Master URL is same as the host name in
Spark REST URL field plus the Spark standalone master console port field. Spark Master
URL is http://<Spark REST URL>:< Spark standalone master console port>. You can
obtain Spark Master URL from the System Settings page.

The Spark Master page also displays a list of running applications. Click on an application to
see details such as application ID, name, owner, current status.

For pipelines in 'Published' status, you can navigate to the metrics console from GGSA’s
catalog page as shown in the screenshot below.

You can check the status of a published application on the catalog page, as shown in the
screenshots below:

10.1.2 Spark on YARN
For published pipelines it is easier to navigate to Application Master console from GoldenGate
Stream Analytics' catalog page.

10-1

1. For draft pipelines, you can navigate to YARN Applications page using the YARN
Resource Manager URL and YARN Master console port values in System Settings.

2. Application master url is http://<YARN Resource Manager URL>:<Yarn master Console
Port>.
This page displays all the applications running in YARN:

3. After identifying the application from the list, click the ApplicationMaster link, to open the
Spark Application Details page:

Chapter 10
Pipeline Debug and Monitoring Metrics

10-2

10.1.3 Pipeline Details
Click the Pipeline tab to view the Pipeline details page.

This page has following information about a pipeline:

• Pipeline ID: Unique pipeline id in Spark Cluster

• Pipeline Name: Name of Oracle Stream Analytics Pipeline given by user in Oracle Stream
Analytics UI.

• Pipeline Stages Table: This section displays a table having detailed runtime metrics of
each pipeline stage. Each entry in the table is corresponding to a pipeline stage in Oracle
Stream Analytics UI pipeline graph.

• Pipeline DAG: This is a visual representation of all stages in form of a DAG where it
displays the parent-child relation various pipeline stages. This diagram also shows the
information about the transformations in each of the pipeline stage.

• The Pipeline Stages table contains the following columns.

• Total Number of Transformations: This measurement is number of spark
transformations applied to compute each stage.

Oracle Stream Analytics supports various types of stages e.g. Query Stage, Pattern Stage,
Custom Stage etc. For each pipeline stage, Oracle Stream Analytics defines a list of
transformations which will be applied on the input stream for the stage. The output from
final transformation will be the output of stage.

• Total Output Partitions: This measurement is total number of partitions in the output
stream of each stage.

Every pipeline stage has its own partitioning requirements which are determined from
stage configurations. For example, If a QUERY stage defines a summary function and
doesn't define a group-by column, then QUERY stage will have only one partition because
there will be no partitioning criteria available.

• Total Output Events: This measurement is total number of output events (not micro-
batches) emitted by each stage.

Chapter 10
Pipeline Debug and Monitoring Metrics

10-3

• Average Output Rate: This measurement is the rate at which each stage has emitted
output events so far. The rate is a ratio of total number of output events so far and total
application execution time.

If the rate is ZERO, then it doesn't always mean that there is ERROR in stage processing.
Sometime stage doesn't output any record at all (e.g. No event passed the Filter in Query
stage).This can happen if rate of output events is less than 1 events/second.

• Current Output Rate: This measurement is the rate at which each stage is emitting output
events. The rate is ratio of total number of output events and total application execution
time since last metrics page refresh. To get better picture of current output rate, please
refresh the page more frequently.

10.1.4 Stage Details
Click a Name in the Name column of the Pipeline Stages table to navigate to stage details

page.

This page provides details about all the transformations in specific stage.

• Pipeline ID: Unique pipeline id in Spark Cluster

• Pipeline Name: Name of Oracle Stream Analytics Pipeline given by user in Oracle Stream
Analytics UI.

• Stage ID: Unique stage id in DAG of stages for Oracle Stream Analytics Pipeline.

• Stage DAG: This is a visual representation of all transformations in form of a DAG where it
displays the parent-child relation various pipeline transformations.

Note Oracle Stream Analytics allows different transformation types including Business
Rules but drilldowns are allowed only on CQLDStream transformations. Inside
CQLDStream transformation, the input data is transformed using a continuously running
query (CQL) in a CQL Engine. Note that there will be one CQL engine associated with one
Executor.

• Stage Transformations Table:This table displays details about all transformations being
performed in a specific stage. Each entry in the table is corresponding to a transformation
operation used in computation of the stage. You can observe that final transformation in
every stage is MonitorDStream. The reason is that MonitorDStream pipes output of stage
to Oracle Stream Analytics UI Live Table.

– Transformation Name: Name of output DStream for the transformation. Every
transformation in spark results into an output dstream.

Chapter 10
Pipeline Debug and Monitoring Metrics

10-4

– Transformation Type: This is category information of each transformation being used
in the stage execution. If transformation type is "Oracle", it is based on Oracle's
proprietary transformation algorithm. If the transformation type is "Native", then
transformation is provided by Apache Spark implementation.

CQLDStream transformation allows further drill down as described in the Query Details
section.

10.1.5 Query Details
In the Stage Transformation table, click on a CQLDStream transformation to open CQL
Engine Summary page for query-specific details.

The CQL Engine Summary page for the query has details like query text, stream sources
feeding the query, external sources if any and all CQL engines with which the query is
registered.

Chapter 10
Pipeline Debug and Monitoring Metrics

10-5

10.1.6 Execution and HA Statistics
Click on a Query, in the CQL Engine Summary page.

You can view the Execution and HA statistics, in the CQL Engine Query details page that is

displayed.

• Following are the details displayed on this page:

• Query ID: System generated identifier for query

• Query Text: Query String

• Number of Partitions: This fields shows the degree of parallelism of the query. The
degree of parallelism is defined by total number of input partitions processed by a
query.

Degree of parallelism depends on the many factors such as query constructs, number
of input kafka partitions and number of executors assigned to application.

• Execution Statistics Table: This section shows the detailed execution statistics of
each operator.

– Partition ID: Partition Sequence Id

– CQL Engine ID: Sequence ID of CQL Engine on which the partition is being
processed.

Chapter 10
Pipeline Debug and Monitoring Metrics

10-6

– Total Output Events: Number of output events emitted by CQL query for each
partition.

– Total Output Heartbeats: Number of heartbeat events emitted by CQL query for
each partition. Please note that heartbeats are special events which ensures
timestamp progression in Oracle Stream Analytics pipeline.

– Throughput: Ratio of total number of events processed and total time spent in
processing for each partition.

– Latency: Average turnaround time taken to process a partition of stream.

• HA Statistics: This table shows the real-time statistics about query's HA operations.
Note that unit of time is in MILLISECONDS.

– Partition ID: Partition Sequence ID

– CQL Engine ID: Sequence ID of CQL Engine on which the partition is being
processed.

– Total Full Snapshots Created: Total number of times the full state of query is
serialized and saved.

– Avg Full Snapshot Creation Time: Average time spent in serializing and saving the
full state of query.

– Total Full Snapshots Loaded: Total number of times the full state of query is de-
serialized and loaded in query plan.

– Avg Full Snapshot Load Time: Average time spent in de-serializing and loading the
full state of query.

– Total Journal Snapshots Created: Total number of times the journaled state of
query is serialized and saved.

– Avg Journal Snapshot Creation Time: Average time spent in serializing and saving
the journaled state of query.

– Total Journal Snapshots Loaded: Total number of times the journaled state of
query is de-serialized and loaded in query plan.

– Avg Journal Snapshot Load Time: Average time spent in de-serializing and loading
the journaled state of query.

Full Snapshot is the complete state of query. The query state represent the internal
data structure and state of each operator in query plan. Journal snapshot is partial
and incremental snapshot having a start time and end time. Oracle Stream
Analytics optimizes the state preservation by using Journal snapshot if possible.

Chapter 10
Pipeline Debug and Monitoring Metrics

10-7

10.1.7 Detailed Query Analysis
Click on a specific partition in Execution Statistics table, the CQL Engine Detailed Query
Analysis page is displayed.

This page contains details about each execution operator of CQL query for a particular
partition of a stage in pipeline.

• Query ID: System generated identifier for query

• Query Text: Query String

• Partition ID: All operator details are corresponding to this partition id.

• Operator Statistics:

– Operator ID: System Generated Identifiers

– Total Input Events: Total number of input events received by each operator.

– Total Output Events: Total number of output events generated by each operator.

– Total Input Heartbeats: Total number of heartbeat events received by each operator.

– Total Output Heartbeats: Total number of heartbeat events generated by each
operator.

– Throughput(events/second): Ratio of total input events processed and total time spent
in processing for each operator.

– Latency(ms): Total turnaround time to process an event for each operator.

• Operator DAG: This is visual representation of the query plan. The DAG will show the
parent-child details for each operator. You can further drill down the execution statistics of
operator. Please click on the operator which will open CQL Operator Details Page.

Chapter 10
Pipeline Debug and Monitoring Metrics

10-8

10.1.8 Complete CQL Engine Statistics
Click on the CQL Engine tab, to view the complete CQL engine statistics for all stages and all
queries in the Pipeline.

This page contains additional information about each execution operator, apart from the CQL
Engine Query Details page, provides all essential metrics for each operator.

Pipeline ID: Unique pipeline id in Spark Cluster

Pipeline Name: Name of Oracle Stream Analytics Pipeline given by user in Oracle Stream
Analytics UI.

Stage ID: Unique stage ID in DAG of stages for Oracle Stream Analytics Pipeline.

Running Queries: This section displays list of CQL queries running to compute the CQL
transformation for a stage. This table displays a system-generated Query ID and Query Text.
Check Oracle Continuous Query Language Reference for CQL Query syntax and semantics.
To see more details about query, click on the query id hyperlink in the table entry to open CQL
Engine Query Details page.

Registered Sources: This section displays internal CQL metadata about all the input sources
which the query is based upon. For every input stream of the stage, there will be one entry in
this table.

Each entry contains source name, source type, timestamp type and stream attributes.
Timestamp type can be PROCESSING or EVENT timestamped. If stream is PROCESSING
timestamped, then timestamp of each event will be defined by system. If stream is EVENT
timestamped, then timestamp of each event is defined by one of the stream attribute itself. A
source can be Stream or Relation.

External Sources: This section displays details about all external sources with which input
stream is joined. The external source can be a database table or coherence cache.

CQL Engines: This section displays a table having details about all instances of CQL engines
used by the pipeline. Here are details about each field of the table:

• CQLEngine Id: System generated id for a CQL engine instance.

• ExecutorId: Executor Id with which the CQL engine is associated.

• Executor Host: Address of the cluster node on which this CQL engine is running.

Chapter 10
Pipeline Debug and Monitoring Metrics

10-9

• Status: Current Status of CQL Engine. Status can be either ACTIVE or INACTIVE. If it is
ACTIVE, it means that CQL Engine instance is up and running, Otherwise CQL Engine is
stopped explicitly.

10.1.9 Internal Kafka Topics
The internal Kafka topics and Group ID's used by GGSA are standardized to the following
naming conventions:

Kafka Topics

Topic Resource Operations

sx_backend_notification_<UUID> Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_messages_<UUID> Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_<application_name>_<stage_name>_public Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_<application_name>_<stage_name>_draft Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

sx_<application_name>_public_<offset_number>_<stage_name>_off
set

Topic CREATE,DEL
ETE,DESCRI
BE,DESCRIB
E_CONFIGS,
READ,WRITE

Group IDs

Group ID Resource Operations

sx_<UUID>_receiver Group DESCRIBE,
READ

sx_<UUID> Group DESCRIBE,
READ

sx_<application_name>_public_<offset_number>_<stage_name> Group DESCRIBE,
READ

10.2 Common Issues and Remedies
This section provides a comprehensive list of items to verify if pipelines are not running as
expected.

Chapter 10
Common Issues and Remedies

10-10

10.2.1 Pipeline
Common issues encountered while deploying pipelines are listed in this section.

10.2.2 Pipeline
Common issues encountered while deploying pipelines are listed in this section.

10.2.2.1 Pipelines are not running as expected
If a pipeline is not running as expected, verify the following:

Ensure that Pipeline is Deployed Successfully

To verify Pipeline Deployment on Apache Spark Installation based Spark Cluster:

1. Open Spark Master console user interface.

2. If you see the status as Running, then the pipeline is currently deployed and running
successfully.

Ensure that the Input Stream is Supplying Continuous Stream of Events to the Pipeline

To check for a continuous supply of events from the input stream:

1. Go to the Catalog.

2. Locate and click the stream you want to troubleshoot.

3. Check the value of the topicName property under the Source Type Parameters section.

4. Since this topic is created using Kafka APIs, you cannot consume this topic with REST
APIs.

Listen to the Kafka topic hosted on a standard Apache Kafka installation.

You can listen to the Kafka topic using utilities from a Kafka Installation. kafka-console-
consumer.sh is a utility script available as part of any Kafka installation.

Follow these steps to listen to Kafka topic:

a. Determine the Zookeeper Address from Apache Kafka Installation based Cluster.

b. Use the following command to listen the Kafka topic:

./kafka-console-consumer.sh --zookeeper IPAddress:2181 --topicName

Ensure that the Output Stream is available in the Monitor Topic

To check if the output stream is available in monitor topic:

1. Navigate to Catalog.

2. Open the required pipeline.

3. Ensure that you stay in pipeline editor and do not click Done. Otherwise the pipeline gets
undeployed.

4. Right-click anywhere in the browser and select Inspect.

5. Go to WS tab under the Network tab.

6. Refresh the browser.

Chapter 10
Common Issues and Remedies

10-11

New websocket connections are created.

7. Locate a websocket whose URL has a parameter with the name topic.

The value of topic param is the name of Kafka Topic where the output of this stage (query
or pattern) is pushed.

The topic name is AppName_StageId. The pipeline name can be derived from topic name
by removing the _StageID from topic name. In the above snapshot, the pipeline name is
sx_2_49_12_pipe1_draft.

Ensure that Caching is Working if a Pipeline is Correlating a Stream with Reference

1. Go to Spark application master UI.

2. Open Pipeline Summary Page after clicking on Pipeline Tab. The pipeline summary page
shows a table of stages with various metrics.

3. Click on the stage id corresponding to the Query stage of the pipeline in which you're
correlating stream with reference.

4. In the Pipeline Stage Details page, click the CQLDStream stage to open CQL Engine
Summary page.

5. In the CQL Engine Summary page, locate the External Sources section. Note the source id
for the reference which is used in stage.

6. Open the CQL Engine Detailed Query Analysis page.

7. Click the operator that has the operator id same as source id to open CQL Engine Detailed
Operator Analysis page. Click the entry corresponding to the operator.

8. Look for the Cache Statistics section. If there is no such section, then caching is not
enabled for the stage. If you see the non-zero entries in Cache Hits and Cache Misses,
then caching is enabled and active for the pipeline stage.

10.2.2.2 GGSA Pipeline getting Terminated
A GGSA pipeline can terminate if the targets and references used the pipeline are unreachable
or resources are unavailable. You can could see following exceptions on the logs:

com.tangosol.net.messaging.ConnectionException
SQLException in the Spark logs.
In case of a kafka source, republish the pipeline to read records from where it left off before
terminating.

10.2.2.3 Live Table Shows Listening Events with No Events in the Table
There can be multiple reasons why status of pipeline has not changed to Listening Events
from Starting Pipeline. Following are the steps to troubleshoot this scenario:

Chapter 10
Common Issues and Remedies

10-12

1. The live table shows output events of only the currently selected stage. At any time, only
one stage is selected. Try switching to a different stage. If you observe output in live table
for another stage, the problem can be associated with the stage. To debug further, go to
step 5.

If there is no output in any stage, then move to step 2.

2. Ensure that the pipeline is still running on Spark Cluster. See Ensure that the Pipeline is
Deployed Successfully

3. If the Spark application for your pipeline is killed or aborted, then it suggests that the
pipeline has crashed. To troubleshoot further, you may need to look into application logs.

4. If application is in ACCEPTED, NEW or SUBMITTED state, then application is waiting for
cluster resource and not yet started. If there are not enough resources, check the number
of VCORES in Big Data Cloud Service Spark Yarn cluster. For a pipeline, Stream Analytics
requires minimum 3 VCORES.

5. If application is in RUNNING state, use the following steps to troubleshoot further:

a. Ensure that the input stream is pushing events continuously to the pipeline.

b. If the input stream is pushing events, ensure that each of the pipeline stages is
processing events and providing outputs.

c. If both of the above steps are verified successfully, then ensure that the pipeline is able
to push the output events of each stage to its corresponding monitor topic:

i. Determine the monitor topic for the stage, where the output of stage is being
pushed into. See Determine the Topic Name where Output of Pipeline Stage is
Propagated .

ii. Listen to the monitor topic and ensure that the events are continuously being
pushed in topic. To listen to the Kafka topic, you must have access to Kafka cluster
where topic is created. You can listen to the Kafka topic using utilities from a Kafka
Installation. kafka-console-consumer.sh is a utility script available as part of any
Kafka installation.

iii. If you don't see any events in the topic, then this can be an issue related to writing
output events from stage to monitor topic. Check the server logs and look for any
exception and then report to the administrator.

iv. If you can see outputs events in monitor topic, then the issue can be related to
reading output events in web browser.

Determine the Topic Name where Output of Pipeline Stage is Propagated

Here are the steps to find the topic name for a stage:

1. Open the Pipeline Summary Page for your pipeline. If you don't know the corresponding
application name for this pipeline, see Ensure that the Output Stream is available in the
Monitor Topic for instructions.

2. This page will provide the Pipeline Name and various stage ids. For every pipeline stage,
you will see an entry in the table.

3. For every stage, the output topic id will be PipelineName_StageID.

4. Click Done in the pipeline editor and then go back to Catalog and open the pipeline again.

10.2.2.4 Live Table Still Shows Starting Pipeline
There can be multiple reasons why status of pipeline has not changed to Listening Events
from Starting Pipeline. Following are the steps to troubleshoot this scenario:

Chapter 10
Common Issues and Remedies

10-13

1. Ensure that the pipeline has been successfully deployed to Spark Cluster. For more
information, see Ensure that Pipeline is Deployed Successfully . Also ensure that the
Spark cluster is not down and is available.

2. If the deployment failed, check the Jetty logs to see the exceptions related to the
deployment failure and fix the issues.

3. If the deployment is successful, verify that OSA webtier has received the pipeline
deployment from Spark.

4. Click Done in the pipeline editor and then go back to Catalog and open the pipeline again.

Ensure that a Pipeline Stage is Still Processing Events

To verify if a particular pipeline stage is still processing events:

1. Go to Spark application master UI.

2. Open Pipeline Summary Page after clicking on Pipeline Tab. The pipeline summary page
shows a table of stages with various metrics.

3. Check if Total Output Events is a non-zero value. Refresh the page to see if the value
increases or stays the same. If the value remains same and doesn't change for a long
time, then drill down into stage details.

10.2.2.5 Time-out Exception in the Spark Logs when you Unpublish a Pipeline
In the Jetty log look for the following message:

OsaSparkMessageQueue:182 - received:
oracle.wlevs.strex.spark.client.spi.messaging.AcknowledgeMessage Undeployment
Ack: oracle.wlevs.strex.spark.client.spi.messaging.AcknowledgeMessage
During an application shutdown, a pipeline may take several minutes to unpublish completely.

So, if you do not see the above message, then you may need to increase the
osa.spark.undeploy.timeout value accordingly.

Also in the High Availability mode, at the time of unpublishing a pipeline, the snapshot folder is
deleted.

In HA mode, if you do not receive the above error message on time, and see the following
error:

Undeployment couldn't be complete within 60000 the snapshot folder may not be
completely cleaned.

it only means that the processing will not be impacted, but some disk space will be occupied.

10.2.2.6 Piling up of Queued Batches in HA mode
If a GGSA pipeline is deployed in the High Availability mode in a Spark Standalone cluster,
every time there is a target or reference failure, Spark spins off new drivers. In case these
targets and references are not recoverable, it results in a loop of queued up batches.
To resolve this issue, you have to unpublish the application manually.

10.2.2.7 Null Record from Summary in Query Stage
When you publish a pipeline for the first time, with a summary in one of the Query stages, the
first record is null on all columns. This causes the pipeline to fail, if it has targets where key is
necessary.

Chapter 10
Common Issues and Remedies

10-14

To solve this issue, check if there is a summary stage added before a target stage, and add a
query stage with a filter checking for null values for the cache keys.

10.2.3 Stream
Common issues encountered with streams are listed in this section.

10.2.3.1 Cannot See Any Kafka Topic or a Specific Topic in the List of Topics
Use the following steps to troubleshoot:

1. Go to Catalog and select the Kafka connection which you are using to create the stream.

2. Click Next to go to Connection Details tab.

3. Click Test Connection to verify that the connection is still active.

4. Ensure that topic or topics exist in Kafka cluster. You must have access to Kafka cluster
where topic is created. You can list all the Kafka topics using utilities from a Kafka
Installation. kafka-console-consumer.sh is a utility script available as part of any Kafka
installation.

5. If you can't see any topic using above command, ensure that you create the topic.

6. If the test connection failed, and you see error message like OSA-01266 Failed to
connect to the ZooKeeper server, then the Kafka cluster is not reachable. Ensure that
Kafka cluster is up and running.

10.2.3.2 Input Kafka Topic is Sending Data but No Events Seen in Live Table
This can happen if the incoming events are not adhered to the expected shape for the Stream.
To check if the events are dropped due to shape mismatch, use the following steps to
troubleshoot:

1. Verify if lenient parameter under Source Type Properties for the Stream is selected. If it is
FALSE, then the event may have been dropped due to shape mismatch. To confirm this,
check the application logs for the running application.

2. If the property is set to TRUE, debug further:

a. Make sure that Kafka Cluster is up and running. Spark cluster should be able to
access Kafka cluster.

b. If Kafka cluster is up and running, obtain the application logs for further debugging.

10.2.4 Connection
Common issues encountered with connections are listed in this section.

10.2.4.1 Database Connection Failure
To test a Database connection:

1. From the Catalog page, select the database connection that you want to test.

2. Click Next.

3. On the Connection Details tab, click Test Connection.

• If the test is successful, it indicates that the connection is active.

Chapter 10
Common Issues and Remedies

10-15

• If the test fails, the following error messages are displayed:

– OSA-01260 Failed to connect to the database. IO Error: The Network
Adapter could not establish the connection: This error message indicates
that the DB host is not reachable from GGSA design time.

– OSA-01260 Failed to connect to the database. ORA-01017: invalid
username/password; logon denied: This error message indicates that your login
credentials are incorrect.

10.2.4.2 Druid Connection Failure
To test a Druid connection:

1. From the Catalog page, select the Druid connection that you want to test.

2. Click Next.

3. On the Connection Details tab, click Test Connection.

• If the test is successful, it indicates that the connection is active.

• If the test fails, the following error message is displayed:

OSA-01460 Failed to connect to the druid services at zooKeeper server: This
error indicates that the druid zookeeper is not reachable. Ensure that the
druid services and zookeeper cluster are up and running.

10.2.4.3 Coherence Connection Failure
GGSA does not provide a Test connection option for a coherence cluster. Refer to Oracle
Coherence documentation to find utilities and tools to test a coherence connection.

10.2.4.4 JNDI Connection Failure
To test a JNDI connection:

1. From the Catalog page, select the JNDI connection that you want to test.

2. Click Next.

3. On the Connection Details tab, click Test Connection.

• If the test is successful, it indicates that the connection is active.

• If the test fails, the following error messages are displayed:

– OSA-01707 Communication with server failed. Ensure that server is up
and server url(s) are specified correctly: This error indicates that either the
server is down or server url(s) is incorrectly specified. Server url should be of the
format host1:port1,host2:port2.

– OSA-01706 JNDI connection failed. User: weblogic, failed to be
authenticated: This error indicates that the login credentials are incorrect.

10.2.5 Target
Common issues encountered with targets are listed in this section.

Chapter 10
Common Issues and Remedies

10-16

10.2.5.1 Cannot see any Events in Targets
If the pipeline is in the draft mode, it cannot push events to targets. Only published pipelines
can push events to targets.

10.2.6 Geofence
Common issues encountered with geofences are listed in this section.

10.2.6.1 Name and Description Fields are not displayed for the DB-based Geofences
If name and description fields are not displayed for database-based geofence, ensure to follow
steps mentioned below:

1. Go to Catalog and click Edit for the required database-based geofence.

2. Click Edit for Source Type Properties and then Next.

3. Ensure that the mapping for Name and Description is defined in Shape section.

4. Once these mappings are defined, you can see the name and description for the geofence.

10.2.6.2 DB-based Geofence is not Working
To ensure that a database-based geofence is working:

1. Go to Catalog and open the required database-based geofence.

2. Ensure that the connection used in geofence is active by clicking test button in database
connection wizard.

3. Ensure that table used in geofence is still valid and exists in DB.

4. Go to the geofence page and verify that the issue is resolved.

10.2.7 Cube
Common issues encountered with cubes are listed in this section.

10.2.7.1 Unable to Explore Cube which was Working Earlier
If you are unable to explore a cube which was working earlier, follow the steps mentioned
below:

1. Check if the druid zookeeper or the associate services for indexer, broker, middle manager
or overlord is down.

2. Click the Druid connection and navigate to next page.

3. Test the connection. This step will tell you if the services are down and need to be looked
into.

10.2.7.2 Cube Displays "Datasource not Ready"
If you keep seeing “Datasource not Ready” message when you explore a cube, follow the
steps mentioned below:

1. Go to the druid indexer logs. Generally, it is http:/DRUID_HOST:3090/console.html.

Chapter 10
Common Issues and Remedies

10-17

2. Look for entry in running tasks index_kafka_<cube-name>_<somehash>. If there is no
entry in running tasks, look for the same entry in pending tasks or completed tasks.

3. If the entry lies in pending tasks, it means that workers are running out of capacity and
datasource will get picked for indexing as soon as it's available.

4. In such cases, either wait OR increase the worker capacity and restart druid services OR
kill some existing datasource indexing tasks (they will get started again after sometime).

5. If the entry lies in completed tasks with "FAILED" status, it means that indexing failed either
due to incorrect ingestion spec or due to resource issue.

6. You can find the exact reason by clicking "log (all)" link and navigating to the exception.

7. If it is due to ingestion, try changing the timestamp format. (Druid fails to index, if the
timestamp is not in JODA timeformat OR if the timeformat specified does not match with
format of timestamp value).

10.2.8 Dashboard
Common issues encountered with dashboards are listed in this section.

10.2.8.1 Visualizations Appearing Earlier are No Longer Available in Dashboard
Use the following steps to troubleshoot:

1. For missing streaming visualization, it might be due to the following reasons:

a. Corresponding pipeline/stage for the missing visualizations no longer exists

b. The visualization itself is removed from catalog or the pipeline editor

2. For missing exploration visualization (created from cube), it might happen as cube or
visualization might have been deleted already.

10.2.8.2 Dashboard Layout Reset after You Resized/moved the Visualizations
Use the following steps to troubleshoot:

1. This might happen, if you forget to save the dashboard after movement/ resizing of
visualizations.

2. Make sure to click Save after changing the layout.

10.2.8.3 Streaming Visualizations Do not Show Any Data
Use the following steps to troubleshoot:

1. Go to visualization in pipeline editor and make sure that live output table is displaying data.

2. If there is no output, ensure that the pipeline is deployed and running on cluster. Once you
have the live output table displaying data, it shows up on the streaming visualization.

10.2.9 Live Output
Common issues encountered with live output are listed in this section.

Chapter 10
Common Issues and Remedies

10-18

10.2.9.1 Issues with Live Output
For every pipeline, there will be one Spark streaming pipeline running on Spark Cluster. If a
Stream Analytics pipeline uses one or more Query Stage or Pattern Stage, then the pipeline
will run one or more continuous query for each of these stages.

For more information about continuous query, see Understanding Oracle CQL.

If there are no output events in Live Output Table for Query Stage or Pattern Stage, use the
following steps to determine or narrow down the problem:

• Ensure that the Pipeline is Deployed Successfully

• Ensure that the input Stream is Supplying Continuous Stream of Events to the Pipeline

• Ensure that CQL Queries for each query stage emit output

• Ensure that the output of stage is available

Ensure that CQL Queries for Each Query Stage Emit Output

To check if the CQL queries are emitting output events to monitor CQL Queries using CQL
Engine Metrics:

1. Open CQL Engine Query Details page. For more information, see Access CQL Engine
Metrics.

2. Check that at least one partition has Total Output Events greater than zero under the
Execution Statistics section.

If your query is running without any error and input data is continuously coming, then the
Total Output Events will keep rising.

Ensure that the Output of Stage is Available

1. Ensure that you stay in the Pipeline Editor and do not click Done. Else, the pipeline gets
undeployed.

2. Right-click anywhere in the browser and click Inspect.

3. Select Network from the top tab and then select WS.

4. Refresh the browser.

New websocket connections are created.

Chapter 10
Common Issues and Remedies

10-19

https://docs.oracle.com/middleware/12212/osa/cql-reference/GUID-A63616D2-0937-4C5A-94C4-887382E51274.htm#CQLLR2353

5. Locate a websocket whose URL has a parameter with name topic.

The value of the topic param is the name of the Kafka topic where the output of this stage
is pushed.

6. Listen to the Kafka topic where output of the stage is being pushed.

Since this topic is created using Kafka APIs, you cannot consume this topic with REST
APIs. Follow these steps to listen to the Kafka topic:

a. Listen to the Kafka topic hosted on a standard Apache Kafka installation.

You can listen to the Kafka topic using utilities from a Kafka Installation. kafka-
console-consumer.sh is a utility script available as part of any Kafka installation.

To listen to Kafka topic:

i. Determine the Zookeeper Address from Apache Kafka Installation based Cluster.

ii. Use following command to listen the Kafka topic:

./kafka-console-consumer.sh --zookeeper IPAddress:2181 --topic
sx_2_49_12_pipe1_draft_st60

10.2.9.2 Missing Events due to Faulty Data
If the CQLEngine encounters faulty data in user defined functions, the exceptions of the events
with faulty data are logged in executor logs, and the processing continues uninterrupted.

Sample logs of the dropped events and exceptions:

20/04/02 14:41:42 ERROR spark: Fault in CQL query processing.
Detailed Fault Information [Exception=user defined
function(oracle.cep.extensibility.functions.builtin.math.Sqrt@74a5e306)
runtime error while execution,
 Service-Name=SparkCQLProcessor, Context=phyOpt:1;
queries:sx_SquareRootPipeline_osaadmin_draft1

20/04/02 14:41:42 ERROR spark: Continue on exception by dropping faulty event.

20/04/02 14:41:42 ERROR spark: Dropped event details
<TupleValue><ObjectName>sx_SquareRootPipeline_osaadmin_draft_1</
ObjectName><Timestamp>1585838502000000000</Timestamp>
<TupleKind>PLUS</TupleKind><IntAttribute name="squareNumber"><Value>-2</
Value></IntAttribute><IsTotalOrderGuarantee>true</IsTotalOrderGuarantee></
TupleValue>:

Chapter 10
Common Issues and Remedies

10-20

10.2.10 Pipeline Deployment Failure
Sometimes pipeline deployment fails with the following exception:

Spark pipeline did not start successfully after 60000 ms.
This exception usually occurs when you do not have free resources on your cluster.

Workaround:

Use external Spark cluster or get better machine and configure the cluster with more
resources.

Chapter 10
Common Issues and Remedies

10-21

	Contents
	1 Overview
	1.1 Introduction
	1.2 Key Features of GGSA
	1.3 GGSA Architecture
	1.4 Steps to build Continuous-ETL and Realtime-Analytics Pipelines

	2 Install
	2.1 Planning Your Installation
	2.2 Installing GoldenGate Stream Analytics
	2.3 Configuring the Metadata Store
	2.3.1 Configuring ATP/ADW as Metadata Store

	2.4 Initializing Metadata Store
	2.5 Jetty Properties File
	2.6 Adjusting Jetty Threadpool
	2.7 Integrating Stream Analytics with Oracle GoldenGate
	2.8 Maven Setting for GoldenGate Big Data Handlers
	2.8.1 Set the Maven Home Path
	2.8.2 Configure Maven Proxy Settings

	2.9 GoldenGate Stream Analytics Hardware Requirements for Enterprise Deployment
	2.10 Retaining https and Disabling http
	2.11 Setting up Runtime for GoldenGate Stream Analytics Server
	2.12 Validating Data Flow to GoldenGate Stream Analytics
	2.13 Terminating GoldenGate Stream Analytics
	2.14 Upgrading GoldenGate Stream Analytics

	3 Configure
	3.1 Configure Runtime Environment
	3.1.1 Mandatory Configurations
	3.1.1.1 Configuring Kafka
	3.1.1.1.1 Internal Kafka Topics

	3.1.1.2 Configuring the Runtime Server
	3.1.1.2.1 Configuring for Standalone Spark Runtime
	3.1.1.2.2 Configuring for Hadoop Yarn Runtime
	3.1.1.2.3 Configuring for OCI Big Data Service
	3.1.1.2.3.1 Topology
	3.1.1.2.3.2 Prerequisites
	3.1.1.2.3.3 Configuring for Kerberized Big Data Service Runtime
	3.1.1.2.3.4 Configuring for Non Kerberized Big Data Service Runtime

	3.1.2 Optional Configurations
	3.1.2.1 Configuring Pipeline Preferences
	3.1.2.2 Configuring Network Proxy
	3.1.2.3 Configuring Kafka Preferences
	3.1.2.4 Configuring GG Preferences
	3.1.2.5 Configuring SQL Preferences
	3.1.2.6 Changing Spark Work Directory
	3.1.2.7 Changing Spark Log Rollover based on Time

	3.2 Configure Users
	3.2.1 Managing Users
	3.2.1.1 Adding Users
	3.2.1.2 Changing Password
	3.2.1.3 Removing Users
	3.2.1.4 Configuring LDAP for User Authentication and Management
	3.2.1.4.1 Setting Up LDAP
	3.2.1.4.2 Setting Up Microsoft Active Directory

	3.2.2 Configuring User Preferences

	4 Manage
	4.1 Connections
	4.1.1 Create Connections
	4.1.1.1 Creating a Connection to ADW or ATP
	4.1.1.2 Creating a Connection to AWS S3
	4.1.1.3 Creating a Connection to Coherence
	4.1.1.4 Creating a Connection to Druid
	4.1.1.5 Creating a Connection to Elasticsearch
	4.1.1.6 Creating a Connection to GoldenGate
	4.1.1.7 Creating a Connection to HBase
	4.1.1.8 Creating a Connection to HDFS
	4.1.1.9 Creating a Connection to Hive
	4.1.1.10 Creating a connection to Ignite Cache
	4.1.1.11 Creating a Connection to JMS
	4.1.1.12 Creating a Connection to Kafka
	4.1.1.13 Creating a Connection to Microsoft Azure Data Lake-Gen2
	4.1.1.14 Creating a Connection to MongoDB
	4.1.1.15 Creating a Connection to MySQL Database
	4.1.1.16 Creating a Connection to OCI Object Store
	4.1.1.17 Creating a Connection to ONS
	4.1.1.18 Creating a Connection to Oracle AQ
	4.1.1.19 Creating a Connection to Oracle Database
	4.1.1.20 Creating a Connection to OSS

	4.1.2 Manage Connections

	4.2 Streams
	4.2.1 Create Streams
	4.2.1.1 Creating a File Stream
	4.2.1.2 Creating a GoldenGate Stream
	4.2.1.3 Creating a JMS Stream
	4.2.1.4 Creating a Kafka Stream

	4.2.2 Manage Streams
	4.2.2.1 Application Timestamp
	4.2.2.2 Supported Timestamp Formats in an Input Stream
	4.2.2.3 Predefined CSV Data Formats

	4.3 References
	4.3.1 Create References
	4.3.1.1 Creating a Coherence Reference
	4.3.1.2 Creating a Database Reference
	4.3.1.3 Creating an Ignite Reference

	4.3.2 Manage References
	4.3.2.1 Coherence Reference
	4.3.2.1.1 Configuring Extend Proxy on the Coherence Server
	4.3.2.1.2 Limitations of Coherence as Reference
	4.3.2.1.3 Loading Number Type Data on Coherence Cache
	4.3.2.1.4 Data Mapping in Coherence Reference Map Type
	4.3.2.1.5 Data Mapping in Coherence Reference POJO Type
	4.3.2.1.6 Datatypes Supported in Correlation Conditions
	4.3.2.1.7 Sample POJO Cache Loading in Coherence
	4.3.2.1.8 Sample POJO Class

	4.4 Targets
	4.4.1 Create Targets
	4.4.1.1 Creating an AWS S3 Target
	4.4.1.2 Creating an Azure DataLake Gen-2 Target
	4.4.1.3 Creating a Coherence Target
	4.4.1.4 Creating a Database Target
	4.4.1.5 Creating an Elasticsearch Target
	4.4.1.6 Creating an HBase Target
	4.4.1.7 Creating HDFS Target
	4.4.1.8 Creating a Hive Target
	4.4.1.9 Creating an Ignite Cache Target
	4.4.1.10 Creating a JMS Target
	4.4.1.11 Creating a Kafka Target
	4.4.1.12 Creating a MongoDB Target
	4.4.1.13 Creating a Network File System (NFS) Target
	4.4.1.14 Creating a Notification Target
	4.4.1.15 Creating an OCI Object Store Target
	4.4.1.16 Creating an OSS Target
	4.4.1.17 Creating a REST Target

	4.4.2 Manage Targets
	4.4.2.1 Coherence Target
	4.4.2.1.1 Datatypes supported in the POJO class
	4.4.2.1.2 Sample POJO Class
	4.4.2.1.3 Sample Code Snippet to declare a Method which returns Boolean

	4.5 Pipelines
	4.5.1 Create a Pipeline
	4.5.2 Manage Pipelines
	4.5.2.1 Using the Pipeline Editor
	4.5.2.2 Publishing a Pipeline
	4.5.2.3 Unpublishing a Pipeline
	4.5.2.4 Exporting and Importing a Pipeline and Its Dependent Artifacts
	4.5.2.5 Working with Live Output Table
	4.5.2.6 Using the Topology Viewer

	4.6 GoldenGate Change Stream
	4.6.1 Getting a GoldenGate Change Stream into a Kafka Topic
	4.6.2 Manage GG Change Data Stream
	4.6.2.1 Starting a GoldenGate Change Stream
	4.6.2.2 Stopping a GG Change Data Stream
	4.6.2.3 Purging the GoldenGate Trail Files
	4.6.2.4 Streaming GoldenGate Full Records

	4.7 Embedded Ignite Cache
	4.7.1 Starting a Cache Cluster
	4.7.2 Stopping a Cache Cluster
	4.7.3 Restarting a Cache Cluster
	4.7.4 Monitoring Cache in the Cache Cluster

	4.8 Ignite Cluster on OCI GGSA
	4.8.1 Starting an Ignite Cluster
	4.8.2 Scaling an Ignite Cluster
	4.8.3 Deleting Storage
	4.8.4 Stopping an Ignite Cluster

	4.9 GGBD Cluster on OCI GGSA
	4.9.1 Starting a GGBD Cluster
	4.9.2 Stopping a GGBD Cluster

	5 Transform
	5.2 Correlating Streams and References
	5.2.1 Joining Mutiple Streams
	5.2.2 Joining a Stream with a Reference or an External Source

	5.3 Applying Window Functions to a Stream
	5.3.1 Applying a Time Window with Slide
	5.3.2 Applying a Time Window without Slide
	5.3.3 Applying a Row Window with Slide
	5.3.4 Applying a Row Window without Slide
	5.3.5 Applying a window with current year, month, day, or hour
	5.3.6 Applying your own Window using Field from Payload
	5.3.7 Applying a Row window with Partition without Range
	5.3.8 Applying a Row Window with Partition with Range without Slide
	5.3.9 Applying a Row Window with Partition with Slide and Range

	5.1 Adding Stages to a Pipeline
	5.1.1 Adding a Query Stage
	5.1.2 Adding a Filter to a Query Stage
	5.1.3 Adding a Summary to a Query Stage
	5.1.4 Adding a Summary with Group By
	5.1.5 Adding a Query Group Stage
	5.1.5.1 Adding Query Group: Stream
	5.1.5.2 Adding Query Group: Table

	5.1.6 Adding a Rule Stage
	5.1.7 Adding a Pattern Stage
	5.1.8 Adding a Scoring Stage
	5.1.9 Adding a Target Stage
	5.1.10 Adding a Custom CQL Stage

	5.4 Applying Functions to Create a New Column
	5.4.1 Using Bessel Functions
	5.4.1.1 BesselI0
	5.4.1.2 BesselIO_exp
	5.4.1.3 BesselI1(value1)
	5.4.1.4 BesselI1_exp(value1)
	5.4.1.5 BesselK0_exp(value1)
	5.4.1.6 BesselIK1_exp(value1)
	5.4.1.7 BesselY(value1, value2)
	5.4.1.8 BesselJ(value1, value2)
	5.4.1.9 BesselK(value1,value2)

	5.4.2 Using Conversion Functions
	5.4.2.1 bigdecimal(value1)
	5.4.2.2 boolean(value1)
	5.4.2.3 double(value1)
	5.4.2.4 float(value1)
	5.4.2.5 int(value1)
	5.4.2.6 long()
	5.4.2.7 string(value1, value2)

	5.4.3 Using Date Functions
	5.4.3.1 Acceptable Formats for Timestamp Values
	5.4.3.2 Day(date)
	5.4.3.3 eventtimestamp(value1)
	5.4.3.4 hour(date)
	5.4.3.5 minute(date)
	5.4.3.6 month(date)
	5.4.3.7 nanosecond(value1)
	5.4.3.8 systemtimestamp(value1)
	5.4.3.9 timeformat(value1, value2)
	5.4.3.10 Year(date)

	5.4.4 Using Geometry Functions
	5.4.4.1 CreatePoint(value1, value2, value3)
	5.4.4.2 distance(lat1, long1, lat2, long2,SRID)

	5.4.5 Using Interval Functions
	5.4.5.1 dsintervaltonum(value1, value 2)
	5.4.5.2 numtodsinterval(value1, value2)
	5.4.5.3 numtoyminterval(value1, value 2)
	5.4.5.4 to_dsinterval(value1)
	5.4.5.5 to_yminterval(value1)
	5.4.5.6 ymintervaltonum(value1, value2)

	5.4.6 Using Math Functions
	5.4.6.1 IEEEremainder(value1, value1)
	5.4.6.2 abs(value1)
	5.4.6.3 acos(value1)
	5.4.6.4 asin(value1)
	5.4.6.5 atan(value1)
	5.4.6.6 atan2
	5.4.6.7 binomial(base, power)
	5.4.6.8 bitMaskWithBitsSetFromTo(value1, value2)
	5.4.6.9 cbrt()
	5.4.6.10 ceil()
	5.4.6.11 copySign()
	5.4.6.12 cos(value1)
	5.4.6.13 cosh(value1)
	5.4.6.14 exp(value1, value2)
	5.4.6.15 expm1(value1)
	5.4.6.16 factorial(value1)
	5.4.6.17 floor(value1)
	5.4.6.18 GetExponent(value1)
	5.4.6.19 getSeedAtRowColumn(value1, value2)
	5.4.6.20 hash(value1)
	5.4.6.21 hypot(value1, value2)
	5.4.6.22 LeastSignificantBit(value1)
	5.4.6.23 log(value1, value2)
	5.4.6.24 log1(value1)
	5.4.6.25 log10(value1)
	5.4.6.26 log2(value1)
	5.4.6.27 logFactorial(value1)
	5.4.6.28 long()
	5.4.6.29 longFactorial(value1)
	5.4.6.30 minimum(value1, value2)
	5.4.6.31 mod(value1, value2)
	5.4.6.32 mostSignificantBit(value1)
	5.4.6.33 nextAfter(value1, value2)
	5.4.6.34 nextDown(value1, value2)
	5.4.6.35 nextUp(value1)
	5.4.6.36 pow(value1, value2)
	5.4.6.37 rint(value1)
	5.4.6.38 round(value1)
	5.4.6.39 scalb(
	5.4.6.40 signum(value1)
	5.4.6.41 sin(value1)
	5.4.6.42 sinh(value1)
	5.4.6.43 sqrt(value1)
	5.4.6.44 stirlingCorrection(value1)
	5.4.6.45 tan(value1)
	5.4.6.46 tanh(value1)
	5.4.6.47 toDegrees(value1)
	5.4.6.48 toRadians(value1)
	5.4.6.49 ulp(value1)

	5.4.7 Using Null-related Functions
	5.4.7.1 nvl(value1, value2)

	5.4.8 Using Statistical Functions
	5.4.8.1 beta1(value1, value2, value3)
	5.4.8.2 betacomplemented(value1, value2, value3)
	5.4.8.3 binomial2(value1, value2, value3)
	5.4.8.4 binomialcomplemented(value1, value2, value3)
	5.4.8.5 chiSquare(value1, value2)
	5.4.8.6 chiSquareComplemented(value1, value2)
	5.4.8.7 errorFunction(value1)
	5.4.8.8 errorFunctionComplemented(value1)
	5.4.8.9 gamma(value1, value2, value3)
	5.4.8.10 gammacomplemented(value1, value2, value3)
	5.4.8.11 incompleteBeta(value1, value2, value3)
	5.4.8.12 incompleteGamma(value1, value2)
	5.4.8.13 incompleteGammaComplement(value1, value2)
	5.4.8.14 logGamma(value1)
	5.4.8.15 negativeBinomial(value1, value2, value3)
	5.4.8.16 negativeBinomialComplemented(value1, value2, value3)
	5.4.8.17 normal(value1, value2, value3)
	5.4.8.18 normalInverse(value1)
	5.4.8.19 poisson(value1, value2)
	5.4.8.20 poissonComplemented(value1, value2)
	5.4.8.21 studentT(value1, value2)
	5.4.8.22 studentTInverse(value1, value2)

	5.4.9 Using String Functions
	5.4.9.1 coalesce(value1,...)
	5.4.9.2 Concat(value1,...)
	5.4.9.3 indexof(value1, value2)
	5.4.9.4 initcap(value1)
	5.4.9.5 length(value1)
	5.4.9.6 like(string, pattern)
	5.4.9.7 lower(value1)
	5.4.9.8 lpad(value1, value2, value3)
	5.4.9.9 ltrim(value1, value2)
	5.4.9.10 replace(string, match, replacement)
	5.4.9.11 rpad(value1, value2, value3)
	5.4.9.12 rtrim(value1, value2)
	5.4.9.13 substr()
	5.4.9.14 substring(string, from, to)
	5.4.9.15 translate(expression, from_string, to_string)
	5.4.9.16 upper(value1)

	5.5 Adding Custom Functions and Custom Stages
	5.5.1 Creating a Custom Jar
	5.5.2 Adding Custom Functions
	5.5.3 Implementing Custom Functions
	5.5.3.1 Sample: Encrypt a Column

	5.5.4 Adding a Custom Stage
	5.5.4.1 Sample: Encrypt a Column
	5.5.4.2 Sample: Invoke a REST Service
	5.5.4.3 Sample: Invoke a SOAP Service

	5.5.5 Limitations
	5.5.6 Mapping of Data Types

	5.6 Writing CQL Queries
	5.6.1 Sample Queries
	5.6.1.1 A Followed By B
	5.6.1.2 A Not Followed by B
	5.6.1.3 Detect Duplicates
	5.6.1.4 Change Event
	5.6.1.5 Eliminate Duplicates

	6 Analyze
	6.1 Using Geofences for Location-based Analytics
	6.1.1 Selecting a Tile Layer
	6.1.1.1 Elocation Tile Layer
	6.1.1.2 Open Street Maps Tile Layer
	6.1.1.3 Google Maps Tile Layer
	6.1.1.4 Custom Tile Layer

	6.1.2 Managing Geofences using the Map Editor
	6.1.2.1 Creating a Geo Fence
	6.1.2.2 Deleting a Geofence

	6.1.3 Importing a Geofence from a Database
	6.1.4 Using Spatial Patterns in Pipeline Stages
	6.1.4.1 Clearing Objects Outside a Geo Fence
	6.1.4.2 Tracking Objects using a Geo Fence
	6.1.4.3 Getting Direction of a Moving Object
	6.1.4.4 Obtaining Geographic Coordinates
	6.1.4.5 Calculating Distance between Objects in a Stream
	6.1.4.6 Calculating Distance between Objects in Two Streams
	6.1.4.7 Creating Geo Fence
	6.1.4.8 Monitoring Proximity between Objects in a Stream
	6.1.4.9 Monitoring Proximity between Objects in Two Streams
	6.1.4.10 Obtaining the Proximity of an Object from a Geo Fence
	6.1.4.11 Finding Nearest Place using the Geographical Coordinates
	6.1.4.12 Finding Nearest Place Details using the Geographical Coordinates
	6.1.4.13 Determining Average Speed

	6.2 Transforming and Analyzing Data using Patterns
	6.2.1 Adding a Pattern Stage
	6.2.2 Detecting Missing Events
	6.2.3 Calculating Quantile Value
	6.2.4 Identifying Correlation between Two Numeric Patterns
	6.2.5 Detecting Duplicate Events
	6.2.6 Eliminating Duplicate Events
	6.2.7 Detecting Event Value Changes
	6.2.8 Detecting Data Field Value Changes
	6.2.9 Monitoring Sequence of Events
	6.2.10 Outputting Highest Value Events
	6.2.11 Outputting Lowest Value Events
	6.2.12 Monitoring Invariably Increasing Numeric Values
	6.2.13 Monitoring Invariably Decreasing Numeric Values
	6.2.14 Identifying the Missing First Event in a Sequence
	6.2.15 Identifying the Second Missing Event in a Sequence
	6.2.16 Analyzing Data using Double Bottom Charts
	6.2.17 Analyzing Data using Double Top Charts
	6.2.18 Correlating Current and Previous Events
	6.2.19 Delaying Delivery of Events to Downstream Node
	6.2.20 Outputting Contents to Downstream Node
	6.2.21 Outputting Unexpired Contents to Downstream Node
	6.2.22 Merging Two Streams having Identical Shapes
	6.2.23 Joining Flows with Streams and References
	6.2.24 Transforming Events into JSON
	6.2.25 Transforming a Single Event from a Stage into Multiple Events
	6.2.26 Merging Two Continuous Events into a Single Event
	6.2.27 Applying OML Models to get the Scoring of Events (Preview Feature)
	6.2.28 Detecting Contiguous Events
	6.2.29 Creating Pivot Columns

	6.3 Using Machine Learning Models for Scoring and Prediction
	6.3.1 Importing a Predictive Model
	6.3.2 Adding a Scoring Stage

	6.4 Integrating with Druid Timeseries Database for Realtime Interactive Analytics
	6.4.1 Creating a Connection to Druid
	6.4.2 Creating a Cube
	6.4.3 Exploring a Cube

	7 Visualize
	7.1 Adding Realtime Charts
	7.1.1 Adding an Area Chart
	7.1.2 Adding a Bar Chart
	7.1.3 Adding a Bubble Chart
	7.1.4 Adding a Line Chart
	7.1.5 Adding a Pie Chart
	7.1.6 Adding a Scatter Plot
	7.1.7 Adding a Stacked Bar Chart
	7.1.8 Adding a Thematic Map
	7.1.9 Updating Visualizations

	7.2 Creating and Managing Dashboards
	7.2.1 Adding a Dashboard
	7.2.2 Editing a Dashboard
	7.2.3 Sharing a Dashboards with Peers
	7.2.4 Deleting a Dashboard
	7.2.5 Importing a Dashboard with all its Dependencies
	7.2.6 Exporting a Dashboard with all its Dependencies

	8 Monitor
	8.1 Execution and HA Statistics
	8.2 Detailed Query Analysis
	8.3 Complete CQL Engine Statistics

	9 Reference
	9.1 Pipeline Details
	9.2 Stage Details
	9.3 Query Details
	9.4 Internal Kafka Topics

	10 Troubleshoot
	10.1 Pipeline Debug and Monitoring Metrics
	10.1.1 Spark Standalone
	10.1.2 Spark on YARN
	10.1.3 Pipeline Details
	10.1.4 Stage Details
	10.1.5 Query Details
	10.1.6 Execution and HA Statistics
	10.1.7 Detailed Query Analysis
	10.1.8 Complete CQL Engine Statistics
	10.1.9 Internal Kafka Topics

	10.2 Common Issues and Remedies
	10.2.1 Pipeline
	10.2.2 Pipeline
	10.2.2.1 Pipelines are not running as expected
	10.2.2.2 GGSA Pipeline getting Terminated
	10.2.2.3 Live Table Shows Listening Events with No Events in the Table
	10.2.2.4 Live Table Still Shows Starting Pipeline
	10.2.2.5 Time-out Exception in the Spark Logs when you Unpublish a Pipeline
	10.2.2.6 Piling up of Queued Batches in HA mode
	10.2.2.7 Null Record from Summary in Query Stage

	10.2.3 Stream
	10.2.3.1 Cannot See Any Kafka Topic or a Specific Topic in the List of Topics
	10.2.3.2 Input Kafka Topic is Sending Data but No Events Seen in Live Table

	10.2.4 Connection
	10.2.4.1 Database Connection Failure
	10.2.4.2 Druid Connection Failure
	10.2.4.3 Coherence Connection Failure
	10.2.4.4 JNDI Connection Failure

	10.2.5 Target
	10.2.5.1 Cannot see any Events in Targets

	10.2.6 Geofence
	10.2.6.1 Name and Description Fields are not displayed for the DB-based Geofences
	10.2.6.2 DB-based Geofence is not Working

	10.2.7 Cube
	10.2.7.1 Unable to Explore Cube which was Working Earlier
	10.2.7.2 Cube Displays "Datasource not Ready"

	10.2.8 Dashboard
	10.2.8.1 Visualizations Appearing Earlier are No Longer Available in Dashboard
	10.2.8.2 Dashboard Layout Reset after You Resized/moved the Visualizations
	10.2.8.3 Streaming Visualizations Do not Show Any Data

	10.2.9 Live Output
	10.2.9.1 Issues with Live Output
	10.2.9.2 Missing Events due to Faulty Data

	10.2.10 Pipeline Deployment Failure

