
Oracle® Fusion Middleware
Administering Oracle Enterprise Data Quality

12c (12.2.1.4.0)
E95654-05
March 2024



Oracle Fusion Middleware Administering Oracle Enterprise Data Quality, 12c (12.2.1.4.0)

E95654-05

Copyright © 2018, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc


Contents

 Preface

Audience vii

Documentation Accessibility vii

Related Documents vii

Conventions viii

1   Using Autorun to Execute Startup Tasks

1.1 Understanding Autorun 1-1

1.2 Using the Autorun Chores 1-1

1.3 Using the Autorun Scripts 1-2

1.3.1 Examples 1-2

1.4 Understanding the Chore and Rules Schemas 1-4

1.4.1 Understanding the Chores Schema 1-4

1.4.2 Understanding the Rules Schema 1-9

2   Configuring EDQ Email Notifications

2.1 Using SMTP to Send Email Notifications 2-1

2.2 Configuring Email Sessions in WebLogic Administration Console 2-1

2.3 Ensuring that Email is Configured 2-2

3   Configuring EDQ Web Push Notifications

3.1 Setting Up and Registering for Web Push Notifications 3-1

3.2 Generating Web Push Notifications 3-2

3.3 Example Trigger Script 3-3

3.4 REST API for Web Push Notifications 3-4

4   Configuring EDQ Case Management

4.1 Understanding and Adding Extended Attributes 4-1

4.1.1 Default Extended Attributes 4-1

iii



4.1.2 Adding New Extended Attributes 4-2

4.2 Configuring Data Entry Validation 4-2

4.2.1 Checking Predefined List Restrictions 4-3

4.2.2 Checking Regular Expression Restriction 4-3

4.3 Understanding Case Management Configuration Properties 4-5

5   Tuning EDQ Performance

5.1 Understanding the Properties File 5-1

5.2 Tuning for Batch Processing 5-2

5.3 Tuning for Real-Time Processing 5-2

5.3.1 Tuning Batch Processing On Real-Time Systems 5-2

5.3.2 Tuning Real-Time Thread Numbers 5-3

5.3.3 Tuning I/O Heavy Real-Time Processes 5-3

5.3.4 Example of Tuning Real-Time Processes 5-3

5.4 Tuning JVM Parameters 5-3

5.4.1 Setting the Maximum Heap Memory 5-4

5.5 Tuning Database Parameters 5-4

5.6 Adjusting the Client Heap Size 5-4

5.7 Designing Fast Jobs: General Performance Options 5-5

5.7.1 Streaming Data and Disabling Staging 5-5

5.7.2 Minimized Results Writing 5-9

5.7.3 Disabling Sorting and Filtering 5-10

5.7.4 Resource-Intensive Processors 5-12

5.8 Performance Tuning for Parsing and Matching 5-13

5.8.1 Place Parse and Match processors in their own Processes 5-13

5.8.2 Parsing performance options 5-13

5.8.3 Matching performance options 5-14

5.8.3.1 Optimized Clustering 5-14

5.8.3.2 Disabling Sort/Filter options in Match processors 5-15

5.8.3.3 Minimizing Output 5-16

5.8.3.4 Streaming Inputs 5-17

5.9 Performance Tuning for Address Verification 5-17

5.10 What Makes Processes Slow? Common Pitfalls 5-18

5.10.1 Poor Matching Processor Configuration 5-18

5.10.2 Unnecessary Merge Data Streams Processors 5-18

5.10.3 Doing Too Much in a Single Process 5-18

5.10.4 Using the Script Processor when You Could Use a Core Processor 5-18

5.10.5 Using Matching Processors Unnecessarily 5-18

5.11 Tuning EDQ's Platform 5-19

5.11.1 The Application Server and the Database Repository 5-19

iv



5.11.1.1 Relative Importance of the Application Server and the Database
Repository 5-19

5.11.1.2 Database Tuning 5-20

5.11.2 Processor Cores and Process Threads 5-20

5.11.2.1 Process Threads 5-20

6   Using JMX Extensions to Monitor EDQ

6.1 Understanding JMX Binding 6-1

6.2 Understanding JMX Bean Naming 6-1

6.2.1 Reviewing the Example 6-2

6.3 Monitoring Real-Time Processes 6-2

6.3.1 Monitoring the Real-Time Web Service MBeans 6-2

6.3.2 Monitoring the Real-Time MBeans 6-3

7   Using Triggers

7.1 Overview of the Triggers Functionality 7-1

7.1.1 About Predefined Triggers 7-1

7.1.2 About Custom Triggers 7-1

7.2 Required Skills to Use Triggers 7-2

7.3 Storing Triggers 7-2

7.4 Configuring Triggers Using the Script Trigger API 7-2

7.5 Extending the Configuration of Triggers Using Properties Files 7-3

7.6 Understanding EDQ Trigger Points 7-4

7.7 Understanding TriggerInfo Methods 7-9

7.8 Setting Trigger Levels 7-10

7.9 Using JMS in Triggers 7-10

7.10 Exposing Triggers in a Job Configuration 7-11

7.11 Trigger Examples 7-12

8   Using Case Management Scripting

8.1 Overview of the Case Management Script Library 8-1

8.1.1 casemanager object properties 8-1

8.1.2 case bean properties 8-3

8.1.3 case history bean properties 8-5

8.1.4 Source Data Object properties 8-6

8.2 Case Management Trigger Environment 8-7

v



9   Using Scripting for User Cache Queries

10  
 

Accessing EDQ Files Remotely

10.1 Using FTP and SFTP Server to Access EDQ Files 10-1

11  
 

Defining Housekeeping Rules

11.1 For the Event Log Table 11-1

11.2 For the Task Status Table 11-1

12  
 

Third-Party License Attributions

13  
 

Limits in EDQ

14  
 

Backing Up and Restoring EDQ Server

15  
 

Configuring Schema Password Expiry Warnings and Wallet Refresh

15.1 Configuring Schema Password Expiry Warnings 15-1

15.2 Configuring Schema Password Reset 15-3

15.3 Configuring Automatic Wallet Refresh 15-6

16  
 

Updating Database Passwords using setpws.jar

17  
 

Using the Local Web Content Directory

17.1 Location of the Local Web Content Directory 17-1

17.2 Populating the Local Web Content Directory 17-1

17.3 Examples 17-2

vi



Preface

This document describes how to administer and configure Oracle Enterprise Data Quality.
You can perform a variety of administration tasks to extend the default EDQ configuration.

Audience
This document is intended for system administrators or application developers who are
installing the Oracle Enterprise Data Quality. It is assumed that you have a basic
understanding of core EDQ concepts, application server and web technology and have a
general understanding of Linux, UNIX, and Windows platforms.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documents
For more information about EDQ, see the Oracle Enterprise Data Quality documentation set.

EDQ Documentation Library

Find the latest version of the EDQ guides and all of the Oracle product documentation at

https://docs.oracle.com

Online Help

Online help is provided for all EDQ user applications. It is accessed in each application by
pressing the F1 key or by clicking the Help icons. The main nodes in the Director project
browser have integrated links to help pages. To access them, either select a node and then
press F1, or right-click on an object in the Project Browser and then select Help. The EDQ
processors in the Director Tool Palette have integrated help topics, as well. To access them,
right-click on a processor on the canvas and then select Processor Help, or left-click on a
processor on the canvas or tool palette and then press F1.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com


Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii



1
Using Autorun to Execute Startup Tasks

This chapter provides an introduction to the EDQ autorun functionality, which allows EDQ to
load projects and run jobs when the application server starts up. It explains how the autorun
functionality is configured, introduces the chore types that can be performed by using the
autorun facility and provides examples of autorun scripts.
This chapter includes the following sections:

• Understanding Autorun

• Using the Autorun Chores

• Using the Autorun Scripts

• Understanding the Chore and Rules Schemas

1.1 Understanding Autorun
EDQ can be configured to do the following automatically at startup:

• Perform a range of tasks when the application server starts up. Each task, which is
composed of chores, can be configured to be performed every time the application server
is started, or just once the next time the application server is started.

• Load and apply purge rules that override the purge settings that are stored in the EDQ
server.

To use autorun processing, you place autorun scripts, written in XML, that specify tasks in
one of two specific directories in the EDQ installation:

• startup directory: Scripts in the startup directory are processed every time the EDQ
application server starts up.

• onceonly directory: Scripts in the onceonly directory are processed when the EDQ
application server next starts up, and are then moved to the complete subdirectory within
onceonly. Scripts in the complete directory are not processed on subsequent start ups.

When the application server starts up, EDQ checks the onceonly and startup directories for
autorun scripts and processes any that are present.

The startup and onceonly directories are located in the EDQ autorun directory in the local
configuration directory of the application server, oedq.local.home.

1.2 Using the Autorun Chores
Various kinds of autorun chores are available in EDQ, each with a set of XML attributes
specific to its function. The chore types and their available attributes are defined by the
autorun file XML schema, see Understanding the Chore and Rules Schemas. The chores
available are listed in the following table:

1-1



Chore Type What the Chore Does

httpget Downloads files from a web server.

package Loads a project from a .dxi file into the server, or saves a project on the
server into a .dxi file. If no nodes are specified then the contents of the whole
file, including system level components, are loaded into the server.

load Loads a file, for example a purge rules configuration file. This chore is valid
only in the startup directory. See Example 3, #unique_23/
unique_23_Connect_42_BABCGHFA for how to use the load chore with the
Rules schema to load purge rules.

runjob Runs an existing job from Director. Any run labels in a run profile specified in
this chore are ignored. (Use runopsjob to run a job based on a run label.)

runopsjob Runs an existing job from the EDQ Server Console and requires a run label to
be set, either in the run profile or with the runlabel attribute.

dbscript Runs a database script against the Director database. This kind of chore must
only be used with extreme care, as inappropriately applied scripts may corrupt
the underlying database.

sleep Waits for a specified interval before proceeding.

1.3 Using the Autorun Scripts
Autorun scripts are files that contain XML code. The main part of an autorun script
consists of a list of chores, each bounded by <chores> tags. Each chore is of one of
the autorun chore types listed in Using the Autorun Chores and includes a set of
attributes that specify the chore to be performed. The attributes available depend on
the chore type selected.

The XML schema that is used to structure autorun scripts is shown in full in 
Understanding the Chore and Rules Schemas.

1.3.1 Examples
This section shows some examples of autorun scripts.

Example 1
The following XML code shows a sample autorun script that instructs EDQ to:

• Download the 23People.dxi file, overwriting any existing file with the same name.

• Import the 23People project from the 23People.dxi file, overwriting any existing
project with the same name.

• Run the 23People Excel.23People job with the rp1 run profile. Any run label
specified in the profile will be ignored, because this is not a runopsjob chore.

<?xml version="1.0" encoding="UTF-8"?>
 <chores version="1">
  <!-- Get the dxi file -->
    <httpget overwrite="true" todir="dxiland" tofile="23People.dxi">
      <url>http://svn/repos/dev/trunk/benchmark/ benchmark/dxis/23People.dxi</
url>
  </httpget>

Chapter 1
Using the Autorun Scripts

1-2



  <!-- Import the project from the dxi -->
    <package direction="in" dir="dxiland" file="23People.dxi" overwrite="true">
      <node type="project" name="23People"/>
    </package>
    <!-- Run the jobs -->
    <runjob project="23People" job="23People Excel.23People" runprofile="rp1"
      waitforcompletion="true"/>
 </chores>

Example 2
The following XML code shows a sample autorun script that shows four different ways to use
a runjob or runopsjob chore to run a job.

<?xml version="1.0" encoding="UTF-8"?>
<chores version="1">
  <!-- runs a director job with no runlabel -->
  <runjob project="merge" job="tester" waitforlocks="false" 
    waitforcompletion="false" runprofile="x"/>
  <!-- runs an ops job with the runlabel from the runprofile -->
  <runopsjob project="merge" job="tester" waitforlocks="false"
    waitforcompletion="false" runprofile="x" />
  <!-- runs an ops job with the runlabel from the runlabel attribute-->
  <runopsjob project="merge" job="tester" waitforlocks="false"
     waitforcompletion="false" runprofile="x" runlabel="chooseme" />
  <!-- runs an ops job with the runlabel from the runlabel attribute-->
  <runopsjob project="merge" job="tester" waitforlocks="false"
     waitforcompletion="false" runlabel="onlychoice" />
</chores>

Example 3
The following XML code shows how to use a load chore to load purge rules.

<?xml version="1.0" encoding="UTF-8" ?> 
<chores version="1">
  <load file="purgerules.xml" dir="autorun" type="purgeRules" /> 
</chores>

The following are the purge rules in the purgerules.xml file that is loaded in the chore
specification:

<?xml version="1.0" encoding="UTF-8" ?>
- <rules>
  - <rule displayName="testa" enabled="true">
      <purgePeriod period="1" unit="HOURS" />
      <project>aa</project>
      <job>12345</job>
      <runlabelMatcher regex="false" runlabel="ABCD" />
  </rule>
  - <rule displayName="testb" enabled="true">
      <purgePeriod period="1" unit="HOURS" />
      <project>aa</project>
      <job>ABCD</job>
      <runlabelMatcher regex="true" runlabel="^\d{5}$" />
  </rule>
- <rule displayName="testc" enabled="true">
  <purgePeriod period="2" unit="HOURS" />
      <project />
      <job />
      <runlabelMatcher regex="true" runlabel="TEST" />

Chapter 1
Using the Autorun Scripts

1-3



  </rule>
- <rule displayName="testd" enabled="true">
      <purgePeriod period="3" unit="WEEKS" />
      <project />
      <job />
      <runlabelMatcher regex="true" runlabel="TEST" />
  </rule>
  - <rule displayName="teste" enabled="false">
      <purgePeriod period="999" unit="MONTHS" />
      <project />
      <job />
      <runlabelMatcher regex="true" runlabel="^\d{5}$" />
  </rule>
  - <rule displayName="testf" enabled="true">
      <purgePeriod period="1" unit="HOURS" />
      <project />
      <job />
      <runlabelMatcher regex="true" runlabel="^\d{5}$" />
  </rule>
  - <rule displayName="testg" enabled="true">
      <purgePeriod period="1" unit="DAYS" />
      <project />
      <job />
      <runlabelMatcher regex="false" runlabel="ABCD" />
  </rule>
</rules>

1.4 Understanding the Chore and Rules Schemas
This section shows the Chores and Rules XML schemas.

1.4.1 Understanding the Chores Schema
This schema explains the chores listed in Using the Autorun Chores.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 
  <!-- Chores -->
  <xs:element name="chores">
    <xs:complexType>
    
      <!-- 
      List of chores that need to be performed.  The chores will be performed 
      in the order
      specified in the xml file
      -->
      <xs:choice minOccurs="0" maxOccurs="unbounded">
 
        <xs:element name="httpget"     type="httpgetType"/>
        <xs:element name="package"     type="packageType"/>
        <xs:element name="runjob"      type="runjobType"/>
        <xs:element name="runopsjob"   type="runopsjobType"/>
        <xs:element name="dumpdb"      type="dumpdbType"/>
        <xs:element name="dbscript"    type="dbScriptType"/>
        <xs:element name="sleep"       type="sleepType"/>
        <xs:element name="load"        type="loadType"/>
      </xs:choice>
      

Chapter 1
Understanding the Chore and Rules Schemas

1-4



      <!-- Schema version number -->
      <xs:attribute name="version" type="xs:positiveInteger" use="required"/>
      
    </xs:complexType>
  </xs:element>
 
  <!-- Base type for chores -->
  <xs:complexType name="choreType">
  
    <!-- Flag indicating whether we should wait for completion before moving 
    on to the next chore. -->
    <xs:attribute name="waitforcompletion" type="xs:boolean" 
    use="optional" default="true"/>
  </xs:complexType>
  
  <!-- HTTP Get chore.  Download the specified urls. -->
  <xs:complexType name="httpgetType">
    
    <xs:complexContent>
      <xs:extension base="choreType">
      
        <xs:sequence minOccurs="1" maxOccurs="1">
          <!-- URL to download. -->
          <xs:element name="url" type="xs:string"/>
        </xs:sequence>
        
        <!-- Filename to download to. -->
        <xs:attribute name="tofile" type="xs:string" use="required"/>
        
        <!-- 
        Directory to download the files to.
          - relative path is relative to the config dir
          - absolute path is used as is
          - no path indicates the config dir   
        -->
        <xs:attribute name="todir" type="xs:string" use="optional"/>
        
        <!-- If true existing files are overwritten, otherwise download is 
        not performed. -->
        <xs:attribute name="overwrite" type="xs:boolean" use="optional"
        default="true"/>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <!-- dxi file control chore.  Import or export to/from a dxi file. -->
  <xs:complexType name="packageType">
    
    <xs:complexContent>
      <xs:extension base="choreType">
 
        <!-- List of root level nodes to import/export.  
        An empty list indicates 'all'. -->      
        <xs:sequence minOccurs="0" maxOccurs="unbounded">
          <xs:element name="node" type="packageNodeType"/>
        </xs:sequence>
        
        <!-- dxi filename. -->
        <xs:attribute name="file" type="xs:string" use="required"/>
        
        <!--  

Chapter 1
Understanding the Chore and Rules Schemas

1-5



        Directory that the dxi is in.
          - relative path is relative to the config dir
          - absolute path is used as is
          - no path indicates the config dir   
        -->
        <xs:attribute name="dir" type="xs:string" use="optional"/>
        
        <!-- If true existing files/nodes are overwritten,
        otherwise no operation. -->
        <xs:attribute name="overwrite" type="xs:boolean" 
        use="optional" default="true"/>
        
        <!-- Direction: in=import out=export -->
        <xs:attribute name="direction" type="packageDirectionEnum"
        use="required"/>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <!-- Package node for import or export from/to a dxi. -->
  <xs:complexType name="packageNodeType">
    
    <!-- the type of the node to process -->
    <xs:attribute name="type" type="nodeTypeEnum" use="required"/>
    
    <!-- the name of the node to process -->
    <xs:attribute name="name" type="xs:string" use="required"/>
  </xs:complexType>
 
  <!-- db script control chore.  Runs db script against the configuration 
database. -->
  <xs:complexType name="dbScriptType">
    
    <xs:complexContent>
      <xs:extension base="choreType">
        
        <!-- db script filename. -->
        <xs:attribute name="file" type="xs:string" use="required"/>
        
        <!--  
        Directory that the db script is in.
          - relative path is relative to the config dir
          - absolute path is used as is
          - no path indicates the config dir   
        -->
        <xs:attribute name="dir" type="xs:string" use="optional"/>
        
        <!-- The database to run the script against -->
        <xs:attribute name="database" type="databaseEnum" use="required"/>
                
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
    
  <!-- Invoke named job chore.  Run a named job -->
  <xs:complexType name="runjobType">
    <xs:complexContent>
      <xs:extension base="choreType">
        
        <!-- Project name -->
        <xs:attribute name="project" type="xs:string" use="required"/>

Chapter 1
Understanding the Chore and Rules Schemas

1-6



        
        <!-- Job name -->
        <xs:attribute name="job" type="xs:string" use="required"/>
        
        <!-- Wait for locks flag - default to true -->
        <xs:attribute name="waitforlocks" type="xs:boolean" 
        use="optional" default="true"/>
        
        <!-- Optional run profile -->
        <xs:attribute name="runprofile" type="xs:string" use="optional"/>
        
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <xs:complexType name="runopsjobType">
    <xs:complexContent>
      <xs:extension base="runjobType">
      
        <!-- Optional run label (will override run profile run label if set) -->
        <xs:attribute name="runlabel" type="xs:string" use="optional"/>
        
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <!--
    Dump the database.
  -->
  <xs:complexType name="dumpdbType">
    <xs:complexContent>
      <xs:extension base="choreType">
        
        <!-- Output JMP file for config database -->
        <xs:attribute name="configout" type="xs:string" use="required"/>
        
        <!-- Output JMP file for results database -->
        <xs:attribute name="resultsout" type="xs:string" use="required"/>
        
        <!--  
        Directory that the JMP files are written to
          - relative path is relative to the config dir
          - absolute path is used as is
          - no path indicates the config dir   
        -->
        <xs:attribute name="dir" type="xs:string" use="optional"/>
        
        <!--
        TODO: Add some filtering to allow dumping of categories of data
        e.g. staged data, results data, case management data, etc.
        -->
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <!-- Load a certain file to do a certain thing. Eg change purge rules. -->
  <xs:complexType name="loadType">
    <xs:complexContent>
      <xs:extension base="choreType">        
        <!-- type of action to run with file -->
        <xs:attribute name="type" type="loadTypeEnum" use="required"/>

Chapter 1
Understanding the Chore and Rules Schemas

1-7



        
        <!-- filename -->
        <xs:attribute name="file" type="xs:string" use="required"/>
        
        <!--  
        Directory that the file is in.
          - relative path is relative to the config dir
          - absolute path is used as is
          - no path indicates the config dir   
        -->
        <xs:attribute name="dir" type="xs:string" use="optional"/>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>
  
  <!--  Enumeration of databases  -->
  <xs:simpleType name="databaseEnum">
    <xs:restriction base="xs:string">
        <xs:enumeration value="director"/>
        <xs:enumeration value="results"/>
    </xs:restriction>
  </xs:simpleType>
  
  <!-- Enumeration of valid node types -->
  <xs:simpleType name="nodeTypeEnum">
    <xs:restriction base="xs:string">
      <xs:enumeration value="project"/>
      <!-- Probably need to do these sometime
      <xs:enumeration value="resource"/>
      <xs:enumeration value="datastore"/>
      -->
    </xs:restriction>
  </xs:simpleType>
  
  <!-- Enumeration of packaging direction. -->
  <xs:simpleType name="packageDirectionEnum">
    <xs:restriction base="xs:string">
      <xs:enumeration value="in"/>
      <xs:enumeration value="out"/>
    </xs:restriction>
  </xs:simpleType>
  
  <!-- Enumeration of types of things that can be loaded. -->
  <xs:simpleType name="loadTypeEnum">
    <xs:restriction base="xs:string">
      <xs:enumeration value="purgeRules"/>
      <!-- <xs:enumeration value="schedule"/> -->
    </xs:restriction>
  </xs:simpleType>
  
    <!-- Sleep chore.  Wait for a while before doing other autorun stuff -->
  <xs:complexType name="sleepType">
    
    <xs:complexContent>
      <xs:extension base="choreType">
        
        <!-- seconds to wait. -->
        <xs:attribute name="time" type="xs:integer" use="required"/>
 
      </xs:extension>
    </xs:complexContent>

Chapter 1
Understanding the Chore and Rules Schemas

1-8



  </xs:complexType>
  
</xs:schema>

1.4.2 Understanding the Rules Schema
This section describes the Rules schema, which provides the basis for structuring an XML
script that specifies EDQ server purge rules. Use the load chore to load the script at EDQ
startup.

<?xml version="1.0" encoding="UTF-8"?>
 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 
  <!-- Common types -->
  <!-- ============ -->
  <xs:include schemaLocation="urn:commontypes.xsd"/>
 
  <xs:element name="rules" type="rulesType">
    <!-- Rule name must be unique -->
    <xs:key name="rule.name">
      <xs:selector xpath="rules/rule"/>
      <xs:field    xpath="@name"/>
    </xs:key>
  </xs:element>
 
  <!--  Rules  -->
 
  <xs:complexType name="rulesType">
    <xs:sequence>
      <xs:element name="rule" type="ruleType" minOccurs="0"
        maxOccurs="unbounded"/>
    </xs:sequence>
    
    <xs:attribute name="schemaversion" type="xs:positiveInteger" 
       use="optional" default="1"/>
  </xs:complexType>
 
  <xs:complexType name="ruleType">
    <xs:sequence>
      <xs:element name="purgePeriod"     type="periodType"   minOccurs="1"
         maxOccurs="1"/>
      <xs:element name="project"         type="xs:string"    minOccurs="0"
         maxOccurs="1"/>
      <xs:element name="job"             type="xs:string"    minOccurs="0"
         maxOccurs="1"/>
      <xs:element name="runlabelMatcher" type="runlabelType" minOccurs="0"
         maxOccurs="1"/>
    </xs:sequence>
    
    <!-- name -->
    <xs:attribute name="displayName"    type="xs:string"  use="required"/>
    <!-- whether this rule should be applied -->
    <xs:attribute name="enabled" type="xs:boolean" use="required"/>
  </xs:complexType>
  
  <!-- Runlabel -->
  
  <xs:complexType name="runlabelType">
    <xs:attribute name="regex"    type="xs:boolean" use="required"/>

Chapter 1
Understanding the Chore and Rules Schemas

1-9



    <xs:attribute name="runlabel" type="xs:string"  use="required"/>
  </xs:complexType>
 
  <!-- Purge Period -->
  
  <xs:complexType name="periodType">
    <xs:attribute name="period" type="xs:int" use="optional"/>
    <xs:attribute name="unit" type="periodUnitType" use="required"/>
  </xs:complexType>
 
  <!-- Purge Unit types -->
 
  <xs:simpleType name="periodUnitType">
    <xs:restriction base="xs:string">
      <xs:enumeration value="IMMEDIATE"/>
      <xs:enumeration value="HOURS"/>
      <xs:enumeration value="DAYS"/>
      <xs:enumeration value="WEEKS"/>
      <xs:enumeration value="MONTHS"/>
      <xs:enumeration value="NEVER"/>
    </xs:restriction>
  </xs:simpleType>
 
</xs:schema>

Chapter 1
Understanding the Chore and Rules Schemas

1-10



2
Configuring EDQ Email Notifications

This chapter describes how to configure to produce email notifications in a number of
situations.

• Using SMTP to Send Email Notifications

• Configuring Email Sessions in WebLogic Administration Console

• Ensuring that Email is Configured

Emails can be sent to EDQ users when relevant issues are created or changed, when
relevant cases or alerts in Case Management are added or modified, or when relevant jobs
are finished running.

2.1 Using SMTP to Send Email Notifications
To send email notifications, the Simple Mail Transfer Protocol (SMTP) information for your
EDQ installation must be entered in the mail.properties file. Email authentication from EDQ
works with an SMTP server requiring authentication is now supported via WebLogic
credentials store. Set the SMTP user name and password as the session user name and
password to the property list. This mail.properties file is stored in /oedq_home/
notification/smtp.

1. Copy the mail.properties file from its installed location of edq_home/notification/
smtp to the notification/smtp sub-directory of the local configuration directory
(oedq_local_home by default).

/oedq_local_home/notification/smtp
This file is in the standard Java mail.properties file format, as documented at the
JavaMail API documentation website found at https://javamail.java.net/nonav/
docs/api/.

2. Edit the mail.properties file as follows, supplying the name of your SMTP host at the
site.

enabled = true
mail.transport.protocol = smtp
mail.host = smtp.fully qualified domain name of mail host
auth.username = username
auth.password = password
from.address = edqserver@example.com

2.2 Configuring Email Sessions in WebLogic Administration
Console

You can also send email notifications by creating the configuration for an email session in the
WebLogic console. You can then refer to this by the JNDI name in the mail.properties file. To
configure a JNDI-accessible session, see http://docs.oracle.com/middleware/1221/wls/
WLACH/taskhelp/mail/CreateMailSessions.html.

2-1

https://javamail.java.net/nonav/docs/api/
https://javamail.java.net/nonav/docs/api/


session = JNDI name of session
from.address = edqserver@example.com 
enabled = true

Note:

For email notifications to work correctly, you must ensure that the
from.address property is set to a valid email format for your site. You must
also ensure that each of your users who will be receiving email notifications
has an email address configured in their profile.

2.3 Ensuring that Email is Configured
To check that email notifications are working correctly, create a test issue in Director
and assign it to a user with a configured email address. The user should receive an
email with a link to the issue.

Chapter 2
Ensuring that Email is Configured

2-2



3
Configuring EDQ Web Push Notifications

EDQ 12.2.1.4.4 includes support for web notifications. This chapter describes how to
configure EDQ to trigger web push notifications.
This chapter includes the following sections:

• Setting Up and Registering for Web Push Notifications

• Generating Web Push Notifications

• Example Trigger Script

• REST API for Web Push Notifications

3.1 Setting Up and Registering for Web Push Notifications
Notifications are generated by triggers and therefore can report on job start/stop/error and
other events. These notifications should be used for infrequent events, which may demand
immediate attention from users. Note that these notifications are not meant to replace
existing methods like emails, which you should use for more frequent events such as case
management assignment.

To enable support for web push notifications, add the following setting to director.properties
and restart the server:

web.push.enabled = true
web.push.sub     = mailto:systemadminemailaddress

The email address in the web.push.sub property identifies an administrative contact for the
EDQ installation. It is used only if the browser provider identifies a problem. For example:

web.push.sub     = mailto:systemadmins@example.com

When you set this property, a new Web Interface system permission called Register for web
push notifications is available.

You should enable this permission for any user who can register for notifications. For users
with this permission a new option called Enable Notifications appears in the menu under the
user name in the top right of the Launchpad. Make sure that EDQ uses HTTPS connections
with a valid SSL certificate.

Selecting Enable Notifications will request a subscription from the browser. If this is the first
time for the site the browser will ask for confirmation. After the confirmation is granted the
subscription information is sent to the EDQ server and persisted in the database.

To generate a notification, the EDQ server must make an HTTPS call to an external endpoint.
If a proxy is required to reach the external location, ensure that the Java proxy settings are

3-1



specified. You can set the proxy settings either using command line settings or in
jvm.properties. For example:

https.proxyHost = proxy.example.com
  
https.proxyPort = 80
http.nonProxyHosts = *.example.com|localhost

3.2 Generating Web Push Notifications
A new webpush library is available for use in script triggers. The basic usage is:

addLibrary("webpush")
 
function getPath() {
  return "/job/(start|end)"
}
 
function run(path, id, env, ...) {
  var push = WebPush.create("message")
  WebPush.push(push)
}

The notification object has these attributes:

Attribute Description Default Value

title Notification title. Oracle Enterprise
Data Quality.

message Notification body.

icon Notification icon, relative to EDQ web root. images/logo64.png

image Top image for notification, relative to EDQ web
root.
This attribute is not supported in Mozilla
Firefox and Safari browsers.

requireInteraction If set to true, the notification remains open
and must be closed manually.
This attribute is not supported in Mozilla
Firefox and Safari browsers.

false

usernames User name filter.

userids User ID filter.

groupnames Group name filter.

groupids Group ID filter.

projectID Project ID filter.

Example:

function run(path, id, env, ...) {
  var push = WebPush.create("a message")
 
  push.title = "System notification"
  push.icon  = "local/images/logo.png"

Chapter 3
Generating Web Push Notifications

3-2



 
  WebPush.push(push)
}

Normally the notifications are sent to all registered subscriptions. You can filter subscriptions
by user, group, and project ID. To apply filtering, set options on the notification before
sending. For example:

function run(path, id, env, ...) {
  var push = WebPush.create("a message")
 
  push.title      = "Job notification"
  push.icon       = "images/logo.png"
 
  push.usernames  = ["username"]
  push.userids    = [1]
  push.groupnames = ["Administrators"]
  push.groupids   = [1]
  push.projectID  = 1
 
  push.push()
}

The push will proceed if the user matches any of the user names or IDs, and matches any of
the group names or IDs, and has access to the project. Note that the filtering applies to the
user who created the subscription originally and not the user, if any, that is currently logged
into the site from the browser. The notification image is displayed above the title and
message.

3.3 Example Trigger Script
Here's a trigger script that runs on job completion and sends notifications on error.

addLibrary("jobNotification");
addLibrary("webpush")
 
function getPath() {
  return "/job/end";
}
 
function run(path, id, env, missionbean, map) {
 
  // Report badness
 
  if (map.mission.currentStatus != 'FINISHED') {
    var str       = ""
    var sections  = map.sections;
    var tsections = missionbean.taskSections;
    var nsecs     = tsections.length
 
 
    for (var k = 0; k < nsecs; k++) {
      var sec = tsections[k]

Chapter 3
Example Trigger Script

3-3



      var tasks = sec.tasks;
      var xs   = sections['section' + k]
 
      for (var t = 0; t < tasks.length; t++) {
        var task = tasks[t]
        var tcx  = xs[task.taskId.taskDetail + ":" + 
task.taskId.version]
 
        if (tcx != null) {
          var tc = tcx.taskcontext
 
          str += "Phase: " + sec.sectionName + " task: " + 
task.taskId.taskType + "/" + task.taskId.taskDetail + ": status: " + 
tc.currentStatus + "\n"
 
          if (tc.currentStatusMessage) {
            str += "Message: " + tc.currentStatusMessage.getMessage() 
+ "\n"
          }
 
          str += "\n"
        }
      }
    }
 
    var push = WebPush.create(str)
 
    push.title     = "Job error"
    push.projectID = missionbean.projectID
 
    WebPush.push(push)
  }
}

Here's an example notification generated by the script:
 

 

3.4 REST API for Web Push Notifications
You can use a system administration REST API to trigger push notifications.
Administrators can use this to notify users of important events such as an impending
shutdown. To trigger push notifications, use the following interface:

POST http://server/edq/admin/web/push

Chapter 3
REST API for Web Push Notifications

3-4



The user must have the administer system permission. The payload is a JSON object with
the same attributes as the script push object described in Generating Web Push Notifications.

Example:

{ "title"              : "Sys admin",
  "message"            : "System Admin notification",
  "image"              : "local/agamemnon.jpg",
  "requireInteraction" : true
}

Chapter 3
REST API for Web Push Notifications

3-5



4
Configuring EDQ Case Management

This chapter describes how to configure to use Case Management.
This chapter includes the following sections:

• Understanding and Adding Extended Attributes

• Configuring Data Entry Validation

• Understanding Case Management Configuration Properties

Case Management supports the manual investigation of results from data quality processes.
Using Case Management, privileged users can manage and review matching results using
highly configurable workflows.

The complete set of Case Management extended attributes that are used on an server are
configured in the flags.xml file in the oedq_local_home/casemanagement directory. This file
must be modified to add new extended attributes, and to define rules for how these attributes
are populated.

An additional property file named flags.properties accompanies the base flags.xml file
and specifies the labels for the extended attributes as they will appear in the graphical user
interface (GUI). The settings in this file may be overridden for a specific client language by
the creation of additional property files with an ISO 639-1 language code, such as
flags_en.properties (for English) or flags_de.properties (for German). This language
code is described at the ISO website found at http://www.iso.org/iso/home/standards/
language_codes.htm.

If Oracle Watchlist Screening is installed, these files may already exist.

To ensure that Case Management publication works correctly, the flags.xml file is
overwritten whenever a Case Source is imported using the Case Management Administration
application. This is because Case Sources have a dependency on the format of the
flags.xml file and requires the flags to be indexed and specified in the same way as on the
server where the Case Source was defined. Oracle recommends that you back up the file
before importing a Case Source in case there are any existing extended attributes in the
flags.xml file on the server that need to be re-added once the import is complete.

4.1 Understanding and Adding Extended Attributes
This section describes the different types of extended attributes and how to add them for use
in Case Management.

4.1.1 Default Extended Attributes
In an initial installation, the flags.xml file contains the following two extended attribute (flag)
example definitions:

<f:flag index="1" label="%escalation" type="boolean" default="false"
notnull="true"/>
<f:flag index="2" label="%priority.score" type="number" readonly="true"/>

4-1

http://www.iso.org/iso/home/standards/language_codes.htm
http://www.iso.org/iso/home/standards/language_codes.htm


Note:

The order in which these properties appear in each line may not match this
example. The order of properties is immaterial. Also, if Oracle Watchlist
Screening is installed, the contents of the flags.xml file is different.

4.1.2 Adding New Extended Attributes
To add a new extended attribute, add a line immediately after the existing attribute
definitions in the flags.xml file, following the same syntax as the existing lines and
using the following notes for each property:

Property Allowed Values Notes

index Integer Must be unique for each entry in the file

label Any The% character is used to indicate that the label for the
UI should be retrieved from the flags.properties file
for the client locale. If the% character is not used, the
label will always be exactly as stated (in all languages).

type number, boolean, or
string

Controls the data type of the column.

readonly true or false Controls whether or not privileged users can edit the
value of the extended attribute when editing a Case or
Alert

notnull true or false Controls whether or not Null values are allowed in the
extended attribute. If this is undefined, Null values are
allowed (the same as the 'false' setting).

default Any permissible
value

Sets the default value of the extended attribute if not set
to a specific value.

There is a character limit of 80 characters for extended attributes with a type of 'string'.
Values longer than this cannot be inserted as values.

4.2 Configuring Data Entry Validation
You can restrict the format of user-specified data for an extended attribute. The
restriction is checked when users edit extended attributes in the Case Management
GUI, and when defining possible values to set for an extended attribute in the
Workflow editor in Case Management Administration.

The restriction is not checked when cases and alerts are written to Case Management
from a process, so it is possible to write invalid values into an extended attribute. The
invalid values will appear in error, with an appropriate error message. This designed
behavior protects the system against unnecessary job failure.

Restrictions are defined as part of the flags.xml file. There are two types of possible
restrictions:

• Predefined list means that the data to be written is checked against a predefined
list of allowed values.

Chapter 4
Configuring Data Entry Validation

4-2



• Regular expression means that the data to be written is checked against a regular
expression.

4.2.1 Checking Predefined List Restrictions
To check that the data being entered into the extended attribute matches a predefined list of
possible values, add XML elements in the following format after the definition of the extended
attribute (flag):

<f:restrictions>    
<f:predefined>    
<f:value>first value</f:value>    
<f:value>second value</f:value>    
<f:value>third value</f:value>    
</f:predefined>    
</f:restrictions>    
</f:flag>    

For example, the following XML fragment defines a custom 'Status' extended attribute that
allows only the values 'active' and 'inactive':

<f:flag index="6" label="Status" type="string" readonly="false">    
<f:restrictions>    
<f:predefined>    
<f:value>active</f:value>    
<f:value>inactive</f:value>    
</f:predefined>    
</f:restrictions>    
</f:flag>    

The extended attribute appears with a list of the valid values in the Case Management Edit
Case (or Edit Alert) dialog:

Tip:

In this case, the user can specify a Null value for the Status field (as a 'notnull'
condition was not set).

4.2.2 Checking Regular Expression Restriction
To check that data being entered into the extended attribute matches a regular expression,
add XML elements in the following format after the definition of the extended attribute (flag):

Chapter 4
Configuring Data Entry Validation

4-3



<f:restrictions>    
<f:regex ignorecase="false" matchby="w">    
<f:value></f:value>    
</f:regex>    
</f:restrictions>    

Where: the value property defines the regular expression, and the ignorecase and
matchby properties defines how it is matched. The possible values for the matchby
condition are as follows:

Value Description

w WHOLE - The whole value must match the Regular Expression.

s STARTS - The beginning of the value must match the Regular Expression.

e ENDS - The end of the value must match the Regular Expression.

c CONTAINS - The value must contain a string that matches the Regular Expression.

For example, the following XML fragment defines a custom 'National ID' extended
attribute that allows only values in the format NN-NN-NNN (2 digits, hyphen, 2 digits,
hyphen, 3 digits):

<f:flag index="7" label="National ID" type="string" readonly="false" 
notnull="true">    
<f:restrictions>    
<f:regex ignorecase="false" matchby="w">    
<f:value>\d{2}-\d{2}-\d{3}</f:value>    
</f:regex>    
</f:restrictions>    
</f:flag>    

The following shows the error message displayed when a user attempts to add a value
that does not match the regular expression:

It is also possible to customize this error message with the errormessage attribute.
Either enter a simple text string to be displayed as the error message, or begin the
string with a percent (%) symbol to direct the application to look in the
flags.properties file for a localized value.

For example, the following XML fragment causes the e1.message error message to be
retrieved from the flags.properties file when an error occurs:

<f:restrictions><f:regex ignorecase="false" matchby="w" 
errormessage="%e1.message"><f:value>\d{3}-\d{2}-\d{4}</f:value></f:regex></
f:restrictions>

Chapter 4
Configuring Data Entry Validation

4-4



4.3 Understanding Case Management Configuration Properties
This section lists the main parameters in director.properties that are used to configure
Case Management.

Parameter Description0

case.management.fail
.on.long.flags

This property controls the Case Management behavior when flag values
that are longer than 80 characters are generated. If this property is set to
true, the process will generate an error and will stop. If it is set to false,
long flag values will be truncated and a warning will be written to the log
file. This property is set to false by default.

cm.index.queue.limit This property controls the maximum size of the index queue limit.

index.directory This property allows an absolute path for the Lucene index directories to be
configured. By default, the index directories are always created within the
localhome directory. In some circumstances, these directories can
become very large, and storing them in a separate location may facilitate
better management of disk space.

Chapter 4
Understanding Case Management Configuration Properties

4-5



5
Tuning EDQ Performance

This chapter describes the server properties that can be used to optimize the performance of
the system and how these properties should be configured in various circumstances.
This chapter includes the following topics:

• Understanding the Properties File

• Tuning for Batch Processing

• Tuning for Real-Time Processing

• Tuning JVM Parameters

• Tuning Database Parameters

• Adjusting the Client Heap Size

• Designing Fast Jobs: General Performance Options

• Performance Tuning for Parsing and Matching

• Performance Tuning for Address Verification

• What Makes Processes Slow? Common Pitfalls

• Tuning EDQ's Platform

has a large number of properties that are used to configure various aspects of the system. A
relatively small number of these are used to control the performance characteristics of the
system.

Performance tuning in is often discussed in terms of CPU cores. In this chapter, this refers to
the number of CPUs reported by the Java Virtual Machine as returned by a call to the
Runtime.availableProcessors()method.

5.1 Understanding the Properties File
The tuning controls are exposed as properties in the director.properties file. This file is
found in the oedq_local_home configuration directory.

The available tuning properties are as follows:

Properties Description

runtime.threads This property determines the number of threads that will be used for each
batch job which is invoked. The default value of this property is zero, meaning
that the system should start one thread for each CPU core that is available.
You can specify an explicit number of threads by supplying a positive, non-
zero integer as the value of this property. For example, if you know that you
want to start a total of four threads for each batch process, set
runtime.threads to four.

5-1



Properties Description

runtime.intervalth
reads

This property determines the number of threads that will be used by each
process when running in interval mode. This will also define the number of
requests that can be processed simultaneously. The default behavior is to run
a single thread for each process running in interval mode.

Properties Description

workunitexecutor.
outputThreads

This property determines the number of threads that will be used to
write data to the results database. These threads service the queue of
results and output data for the whole system, and so are shared by all
the processes which are running on the system. The default value of
this property is zero, meaning that the system should use one output
thread for each CPU core that is available. You can specify an explicit
number of output threads by supplying a positive, non-zero integer as
the value of this property. For example, if you know that you want to use
a total of four threads for each batch process, set
workunitexecutor.outputThreads to 4.

5.2 Tuning for Batch Processing
The default tuning settings provided with are appropriate for most systems that are
primarily used for batch processing. Enough threads are started when running a job to
use all available cores. If multiple jobs are started, the operating system can schedule
the work for efficient sharing between the cores. It is best practice to allow the
operating system to perform the scheduling of these kinds of workloads.

5.3 Tuning for Real-Time Processing
When a production system is being used for a significant amount of real time
processing, it should not be used for simultaneous batch and real time processing
unless the real time response is not critical. Run batch processing only to process data
that is required by the real time processes.

5.3.1 Tuning Batch Processing On Real-Time Systems
If batch processing must be run on a system that is being used for real time
processing, it is best practice to run the batch work when the real time processes are
stopped, such as during a scheduled maintenance window. In this case, the default
setting of runtime.threads is appropriate.

If it is necessary to run batch processing while real time services are running, set
runtime.threads to a value that is less than the total number of cores. By reducing
the number of threads started for the batch processes, you prevent those processes
from placing a load on all of the available cores when they run. Real time service
requests that arrive when the batch is running will not be competing with it for CPU
time.

Chapter 5
Tuning for Batch Processing

5-2



5.3.2 Tuning Real-Time Thread Numbers
For most production systems the default value of one for runtime.intervalthreads is not
appropriate. The default setting implies that, for any given real-time service handled by a
process running in interval mode, all requests will be processed sequentially. If four requests
for the same service arrive simultaneously, and the average time to process a request is 100
ms, then the first message will be processed after 100 ms, the second after 200 ms, and so
on. In addition, all the work will be performed by a single core, meaning that on a four-core
machine three of the cores are idle. It is best practice to set runtime.intervalthreads to the
same as the number of available cores. This configuration allows incoming requests to be
processed simultaneously, resulting in a more efficient use of resources and a much faster
turnaround speed. The default setting for runtime.intervalthreads is adequate for
development environments.

5.3.3 Tuning I/O Heavy Real-Time Processes
If a process performs significant I/O, you can try increasing the value of
runtime.intervalthreads above the number of available cores. When a process performs
intensive I/O, there will be times when all the threads are waiting for disk activity to complete,
leaving one or more cores idle. By using more active threads than there are cores, you
ensure that when one thread stalls for I/O, another thread can utilize the core that the thread
was using.

5.3.4 Example of Tuning Real-Time Processes
In this example of how to tune real-time processes, a four-core Intel server is being used to
support four different web services. The web services are CPU-intensive and perform minimal
amounts of I/O. Some data used by the web services must be updated on a daily basis,
which includes running a data preparation process in a batch mode. The web services
receive intermittent sets of simultaneous requests. Overnight, the web services are stopped
for maintenance and data preparation.

In this scenario, it is appropriate to leave the runtime.threads property set to its default
value of one thread per CPU core: in this case, four threads. With the goal of performing data
preparation in the quickest possible time, and assuming the process is not likely to become
I/O bound, you can set the runtime.intervalthreads property to four. Using the same
number of threads as processes ensures that the maximum number of requests are
processed at the same time.

Note:

Increasing the value of runtime.intervalthreads means that there will be a
significant increase in the memory requirement, particularly at interval turnover.

5.4 Tuning JVM Parameters
JVM parameters should be configured during the installation of EDQ. For more information,
see Setting Server Parameters to Support Enterprise Data Quality section present in
Installing and Configuring Oracle Enterprise Data Quality guide. If it becomes necessary to

Chapter 5
Tuning JVM Parameters

5-3



tune these parameters post-installation to improve performance, follow the instructions
in this section.

Note:

All of the recommendations in this section are based on EDQ installations
using the Java HotSpot Virtual Machine. Depending on the nature of the
implementations, these recommendations may also apply to other JVMs.

5.4.1 Setting the Maximum Heap Memory
If an OutOfMemory error message is generated in the log file, it may be necessary to
increase the maximum heap space parameter, -Xmx. For most use cases, a setting of
8GB is sufficient. However, large installations may require a higher max heap size, and
therefore setting the -Xmx parameter to a value half that of the server memory is the
normal recommendation.

5.5 Tuning Database Parameters
The most significant database tuning parameter with respect to performance tuning
within is workunitexecutor.outputThreads. This parameter determines the number of
threads, and hence the number of database connections, that will be used to write
results and staged data to the database. All processes that are running on the
application server share this pool of threads, so there is a risk of processing becoming
I/O bound in some circumstances. If there are processes that are particularly I/O
intensive relative to their CPU usage, and the database machine is more powerful than
the machine hosting the application server, it may be worth increasing the value of
workunitexecutor.outputThreads. The additional database threads would use more
connections to the database and put more load on the database.

5.6 Adjusting the Client Heap Size
Under certain conditions, client heap size issues can occur; for example, when:

• attempting to export a large amount of data to a client-side Excel file, or

• opening up Match Review when there are many groups.

allows the client heap size to be adjusted using a property in the
blueprints.properties file.

To double the default maximum client heap space for all Java Web Start client
applications, create (or edit if it exists) the file blueprints.properties in the local
configuration directory of the server. For more information about the EDQ configuration
directories, see "EDQ Directory Requirements" in Installing Oracle Enterprise Data
Quality.

Add the line:

*.jvm.memory = 512m

Chapter 5
Tuning Database Parameters

5-4



Note:

Increasing this value will cause all connecting clients to change their heap sizes to
512MB. This could have a corresponding impact on client performance if other
applications are in use.

To adjust the heap size for a specific application, replace the asterisk, *, with the blueprint
name of the client application from the following list:

• director - (Director)

• matchreviewoverview - (Match Review)

• casemanager - (Case Management)

• casemanageradmin - (Case Management Administration)

• opsui - (Server Console)

• diff - (Configuration Analysis)

• issues - (Issue Manager)

Note:

Dashboard is not a Java Web Start application, and therefore cannot be controlled
using this property.

For example, to double the maximum client heap space for Director, add the following line:

director.jvm.memory = 512m
When doubling the client heap space for more than one application, simply repeat the
property; for example, for Director and Match Review:

director.jvm.memory = 512m
matchreviewoverview.jvm.memory = 512m

5.7 Designing Fast Jobs: General Performance Options
You can use four general techniques to maximize the performance.

See below for more information.

5.7.1 Streaming Data and Disabling Staging
You can develop jobs that stream imported data directly into processes instead of, or as well
as, staging the imported data in the EDQ repository database. Where only a small number of
threads are available to a job, streaming data into that job may enable it to process the data
more quickly. This is because bypassing the staging of imported data reduces a job's I/O
load. Depending on your job's technical and business requirements, and the resources
available to it, you may be able to stream data into it, or stage the data and stream it in, to

Chapter 5
Designing Fast Jobs: General Performance Options

5-5



improve performance. Note, however, that where a large number of threads are
available to a job, it may run more quickly if you snapshot the data, so that it is all
available from the outset. For the avoidance of doubt: you can stream data into a job
with or without staging it. However, you cannot disable the staging of imported data
unless you are streaming data. A job that streams imported data directly into and out
of a process or chain of processes without staging it acts as a pipe, reading records
directly from a data store and writing records to a data target.

Configuration

To stream data into a process:

• Create a job.

• Add both the snapshot and the process as tasks within the same phase of the job,
ensuring that the snapshot is directly connected to the process.

To additionally disable the staging of imported data in the EDQ repository:

• Right-click the snapshot within the job and select Configure Task… or Configure
Connector...

• Within the Configure Task dialog box, de-select the Stage data? check box.

Note:

Any record selection criteria (snapshot filtering or sampling options) will still
apply when streaming data.

To stream an export:

• Create a Process that finishes with a Writer that writes to a Data Interface.

• Create an Export that reads from the same Data Interface.

Chapter 5
Designing Fast Jobs: General Performance Options

5-6



• Within a Job, add the Process and the Export as tasks in the same phase of the Job.

• Ensure that the Process that writes to your Data Interface is directly connected to the
Export.

If you have configured EDQ as outlined above, then, by default, data will not be staged in the
repository. This is because you have not selected a Data Interface Output Mapping that
points at a set of staged data.

If you want to enable staging of the data that is to be exported:

• Create a Data Interface Mapping that points to a set of staged data.

• Right-click the Process within your Job and select Configure Task… or Configure
Connector...

• In the Configure Task dialog, navigate to the Writers tab.

• Ensure that the Enabled? Check-box beside the writer is ticked (it should be ticked by
default).

• Select the Data Interface Mapping that points to a set of staged data.

Chapter 5
Designing Fast Jobs: General Performance Options

5-7



When to Stage Data, and When to Disable Staging

Whilst designing a process, you will often run it against data that has been staged in
the EDQ repository via a snapshot. Streaming data into a job without staging it may be
appropriate when:

• You are dealing with a production environment.

• You have a large number of records to process.

• You always want to use the latest records from the source system.

However, streaming a snapshot without staging it is not always the quickest or best
option. If you need to run several processes on the same set of data, or if you need to
lookup on staged data, it may be more efficient to stage the data via a snapshot as the
first task of a job, and then run the dependent processes. If your job has a large
number of threads available to it, it may run more quickly if all of the data is staged at
the outset. Additionally, if the source system for the snapshot is live, it may be best to
run the snapshot in a phase on its own so that the impact on the source system is
minimized. In this case, the data will not be streamed into a process, since the
snapshot and process need to be directly connected to each other within the same job
phase for streaming to occur.

For the avoidance of doubt: if you connect a process directly to a snapshot, then the
data will always be streamed into that process, regardless of whether it is also staged
in the repository (which is determined by the Stage data? check box). Streaming the
data into EDQ and also staging it may, in some cases, be an efficient approach - for
example, if the data is used again later in the job.

Streaming an Export

When an export of a set of staged data is configured to run in the same job after the
process that writes the staged data, the export will always write records as they are
processed, regardless of whether records are also staged in the repository. However, it

Chapter 5
Designing Fast Jobs: General Performance Options

5-8



is possible to realize a small performance gain by disabling staging so that data is only
streamed to its target.

You may choose to disable staging of output data:

• For deployed data cleansing jobs.

• If you are writing to an external staging database that is shared between applications.
(For example when running a data quality job as part of a larger ETL process, and using
an external staging database to pass the data between EDQ and the ETL tool.)

5.7.2 Minimized Results Writing
Minimizing results writing reduces the amount of Results Drilldown data that EDQ writes to
the repository from processes, and so saves on I/O.

Each process in EDQ runs in one of three Results Drilldown modes:

• All (all records in the process are written in the drilldowns)

• Sample (a sample of records are written at each level of drilldown)

• None (metrics only are written - no drilldowns will be available)

All mode should be used only on small volumes of data, to ensure that all records can be
fully tracked in the process at every processing point. This mode is useful when
processing small data sets, or when debugging a complex process using a small number
of records.

Sample mode is suitable for high volumes of data, ensuring that a limited number of
records are written for each drilldown. The System Administrator can set the number of
records to write per drilldown; by default this is 1000 records. Sample mode is the default
when running processes interactively from the Director User Interface.

None mode should be used to maximize the performance of tested processes that are
running in production, and where users will not need to interact with results. None is the
default when processes are run within jobs.

To change the Results Drilldown mode when executing a process, use the Run
Preferences screen, or create a Job and double click the process task to configure it.

For example, the following process is configured so that it does not write drilldown results
when it is deployed in production via a job (this is the default when a process is run within
a job):

Chapter 5
Designing Fast Jobs: General Performance Options

5-9



The Effect of Run Labels

Note that jobs that are run with run labels from either the Server Console user
interface or the command line do not generate results drill-downs.

5.7.3 Disabling Sorting and Filtering
When working with large data volumes, it can take a long time to index snapshots and
staged data in order to enable users to sort and filter the data in the Results Browser.
In many cases, this sorting and filtering capability will not be needed, or will only be
needed when working with smaller samples of the data.

The system applies intelligent sorting and filtering, where it will enable sorting and
filtering when working with smaller data sets, but will disable sorting and filtering for
large data sets. However, you can choose to override these settings - for example to
achieve maximum throughput when working with a number of small data sets.

Snapshot Sort/Filter options

When a snapshot is created, the default setting is to 'Use intelligent Sort/Filtering
options', so that the system will decide whether or not to enable sorting and filtering
based on the size of the snapshot.

However, if you know that no users will need to sort or filter results that are based on a
snapshot in the Results Browser, or if you only want to enable sorting or filtering at the
point when the user needs to do it, you can disable sorting and filtering on the
snapshot when adding or editing it.

To do this, edit the snapshot, and on the third screen (Column Selection), uncheck the
option to Use intelligent Sort/Filtering, and leave all columns unchecked in the Sort/
Filter column:

Chapter 5
Designing Fast Jobs: General Performance Options

5-10



Alternatively, if you know that sorting and filtering will only be needed on a sub-selection of
the available columns, use the tick boxes to select the relevant columns. Note that any
columns that are used as lookup columns by a Lookup and Return processor should be
indexed to boost performance.Disabling sorting and filtering means that the total processing
time of the snapshot will be less as the additional task to enable sorting and filtering will be
skipped.Note that if a user attempts to sort or filter results based on a column that has not
been enabled, the user will be presented with an option to enable it at that point.

Staged Data Sort/Filter options

When staged data is written by a process, the server does not enable sorting or filtering of
the data by default. The default setting is therefore maximized for performance.

If you need to enable sorting or filtering on written staged data - for example, because the
written staged data is being read by another process which requires interactive data
drilldowns - you can enable this by editing the staged data definition, either to apply intelligent
sort/filtering options (varying whether or not to enable sorting and filtering based on the size
of the staged data table), or to enable it on selected columns (as below):

Chapter 5
Designing Fast Jobs: General Performance Options

5-11



Match Processor Sort/Filter options

It is possible to set sort/filter enablement options for the outputs of matching.

Note:

This should only be enabled if you wish to review the results of match
processing using the Match Review UI.

5.7.4 Resource-Intensive Processors
The following processors are highly resource intensive because they need to write all
of the data they process to the EDQ repository before they work on it:

• Quickstats Profiler

• Record Duplication Profiler

• Duplicate Check

• All match processors

• Group and Merge

• Phrase Profiler

• Merge Data Streams

Chapter 5
Designing Fast Jobs: General Performance Options

5-12



Note:

This processor should only be used to merge records from separate readers; it is
NOT necessary to use it to connect up multiple paths from the same reader.

The following processors work on a record-by-record basis, but are also highly resource
intensive:

• Parse

Note:

This Parse processor's performance is highly dependent upon its configuration,
it can be fast or slow.

• Address Verification

Clearly, there are situations in which you will need to use one or more of these resource-
intensive processors. For example, a de-duplication process requires a match processor.
However, when optimal performance is required, you should avoid their use where possible.
See below for specific guidance on how to tune the matching, Parse and Address Verification
processors.

5.8 Performance Tuning for Parsing and Matching
In the case of Parsing and Matching, a large amount of work is performed by an individual
processor, as each processor has many stages of processing. In these cases, options are
available to optimize performance at the processor level.

See below for more information on how to maximize performance when parsing or matching
data:

5.8.1 Place Parse and Match processors in their own Processes
Both parsing and matching are inherently resource-intensive, and can take time to run. For
this reason, it is advisable to place parse and match processors in processes on their own (or
with only a small number of other processors). This will enable you to isolate and therefore
accurately measure their performance, which should in turn make it easier to tune them.

5.8.2 Parsing performance options
By default, the Parse processor works in Parse and Profile mode. This is useful during
configuration, as the parser will output the Token Checks and Unclassified Tokens results
views. These will help you to define parsing rules. In production, however, when maximum
performance is required from a Parse processor, it should be run in Parse mode, rather than
Parse and Profile mode. To change the Parser's run mode, click its Advanced Options link,
and then set the run mode in the Options dialog box.

Chapter 5
Performance Tuning for Parsing and Matching

5-13



For even better performance where only metrics and data output are required from a
Parse processor, the process that includes the parser may be run with no drilldowns -
see Minimized results writing above.

When designing a Parse configuration iteratively, where fast drilldowns are required, it
is generally best to work with small volumes of data. If a parse processor has
configuration that drives it to generate a number of different patterns for a given input
record, for example it has many classification and reclassification rules, it may be
possible to improve performance by reducing the number of patterns produced using
the Patterns limit option (for example to 8) without altering results. If changing this
option, parsing results should be tested for changes before and after making the
change.

5.8.3 Matching performance options
The following techniques may be used to maximize matching performance:

5.8.3.1 Optimized Clustering
Matching performance may vary greatly depending on the configuration of the match
processor, which in turn depends on the characteristics of the data involved in the
matching process. The most important aspect of configuration to get right is the
configuration of clustering in a match processor.

In general, there is a balance to be struck between ensuring that as many potential
matches as possible are found and ensuring that redundant comparisons (between
records that are not likely to match) are not performed. Finding the right balance may
involve some trial and error - for example, assessment of the difference in match
statistics when clusters are widened (perhaps by using fewer characters of an
identifier in the cluster key) or narrowed (perhaps by using more characters of an
identifier in a cluster key), or when a cluster is added or removed.

The following two general guidelines may be useful:

Chapter 5
Performance Tuning for Parsing and Matching

5-14



• If you are working with data with a large number of well-populated identifiers, such as
customer data with address and other contact details such as e-mail addresses and
phone numbers, you should aim for clusters with a maximum size of 20 for every million
records, and counter sparseness in some identifiers by using multiple clusters rather than
widening a single cluster.

• If you are working with data with a small number of identifiers, for example, where you
can only match individuals or entities based on name and approximate location, wider
clusters may be inevitable. In this case, you should aim to standardize, enhance and
correct the input data in the identifiers you do have as much as possible so that your
clusters can be tight using the data available. In this case, you should still aim for clusters
with a maximum size of around 500 records if possible (bearing in mind that every record
in the cluster will need to be compared with every other record in the cluster - so for a
single cluster of 500 records, there will be 500 x 499 = 249500 comparisons performed).

5.8.3.2 Disabling Sort/Filter options in Match processors
By default, sorting, filtering and searching are enabled on all match results to ensure that they
are available for user review. However, with large data sets, the indexing process required to
enable sorting, filtering and searching may be very time-consuming, and in some cases, may
not be required.

If you do not require the ability to review the results of matching using the Match Review
Application, and you do not need to be able to sort or filter the outputs of matching in the
Results Browser, you should disable sorting and filtering to improve performance. For
example, the results of matching may be written and reviewed externally, or matching may be
fully automated when deployed in production.

The setting to enable or disable sorting and filtering is available both on the individual match
processor level, available from the Advanced Options of the processor (see Sort/Filter
options for match processors for details), and as a process or job level override.

To override the individual settings on all match processors in a process, and disable the
sorting, filtering and review of match results, deselect the option to Enable Sort/Filter in
Match processors in a job configuration, or process execution preferences:

Chapter 5
Performance Tuning for Parsing and Matching

5-15



Note:

Sort / Filter in Match is disabled by default when processes are included in
jobs.

5.8.3.3 Minimizing Output
Match processors may write out up to three types of output:

• Match (or Alert) Groups (records organized into sets of matching records, as
determined by the match processor. If the match processor uses Match Review, it
will produce Match Groups, whereas if uses Case Management, it will produce
Alert Groups.)

• Relationships (links between matching records)

• Merged Output (a merged master record from each set of matching records)

By default, all available output types are written. (Merged Output cannot be written
from a Link processor.)

However, not all the available outputs may be needed in your process. For example
you should disable Merged Output if you only want to identify sets of matching
records.

Note that disabling any of the outputs will not affect the ability of users to review the
results of a match processor.

To disable Match (or Alert) Groups output:

• Open the match processor on the canvas and open the Match sub-processor.

• Select the Match (or Alert) Groups tab at the top.

Chapter 5
Performance Tuning for Parsing and Matching

5-16



• Un-check the option to Generate Match Groups report, or to Generate Alert Groups
report.

Or, if you know you only want to output the groups of related or unrelated records, use
the other tick boxes on the same part of the screen.

To disable Relationships output:

• Open the match processor on the canvas and open the Match sub-processor.

• Select the Relationships tab at the top.

• Un-check the option to Generate Relationships report.

Or, if you know you only want to output some of the relationships (such as only Review
relationships, or only relationships generated by certain rules), use the other tick boxes
on the same part of the screen.

To disable Merged Output:

• Open the match processor on the canvas and open the Merge sub-processor.

• Un-check the option to Generate Merged Output.

Or, if you know you only want to output the merged output records from related records,
or only the unrelated records, use the other tick boxes on the same part of the screen.

5.8.3.4 Streaming Inputs
Batch matching processes require a copy of the data in the EDQ repository in order to
compare records efficiently.

As data may be transformed between the Reader and the match processor in a process, and
in order to preserve the capability to review match results if a snapshot used in a matching
process is refreshed, match processors always generate their own snapshots of data (except
from real time inputs) to work from. For large data sets, this can take some time.

Where you want to use the latest source data in a matching process, therefore, it may be
advisable to stream the snapshot rather than running it first and then feeding the data into a
match processor, which will generate its own internal snapshot (effectively copying the data
twice). See Streaming a Snapshot above.

5.9 Performance Tuning for Address Verification
EDQ's Address Verification processor is a conduit to the Enterprise Data Quality Address
Verification Server (EDQ AV). EDQ AV attempts to match each input record against all of the
addresses that exist for that country in its Global Knowledge Repository. This operation is
inherently resource-intensive, and it does take time to run. For this reason, it is advisable to
place the Address Verification processor in a process on its own, or with only a small number
of other processors. This will enable you to isolate and therefore accurately measure its
performance, which should in turn make it easier to tune. The EDQ Address Verification
server requires a substantial amount of memory outside of the EDQ Application Server's Java
Heap. Address Verification's performance may suffer if insufficient memory is available. See
Application Server Tuning for more information about tuning the EDQ Application Server's
Java Heap. You can adjust Address Verification performance by tuning its caching options.
You can control these parameters using the Address Verification Processor's Additional
Options field, which is available from the processor's Options tab. Two parameters that it may
be beneficial to adjust are:

• ReferenceDatasetCacheSize

Chapter 5
Performance Tuning for Address Verification

5-17



• ReferencePageCacheSize

Full information on the available options is available on Loqate's support site: Setting
options.

You should seek advice from Loqate Support before adjusting these parameters.

In addition to adjusting AV's caching parameters, Address Verification performance
can be significantly improved by creating a different EDQ process for each country that
you want to screen addresses from.

5.10 What Makes Processes Slow? Common Pitfalls
See below for more information.

5.10.1 Poor Matching Processor Configuration
EDQ Match processors are inherently very efficient, and feature many automatic
optimizations. However, performance can be severely compromised by poor
configuration. If a matching process takes a long time to run, this may be caused by its
cluster configuration, as too many large clusters often result in too many comparisons,
which will slow matching down.

5.10.2 Unnecessary Merge Data Streams Processors
A common misconception is that the Merge Data Stream processor is required to join
up multiple paths from the same reader. It is not. Whilst the Merge Data Stream
processor should be used to join up genuinely different data streams from different
readers, any regular EDQ processor can join multiple paths from the same reader, and
will simply work with all the distinct records from all of the joined paths.

5.10.3 Doing Too Much in a Single Process
It can be very difficult to identify the cause of a performance issue in a very large,
complex process. Instead, you should create distinct modular processes for distinct
operations, chaining them together with Data Interfaces. If you take this approach, you
can easily see how long each process takes to run, which makes diagnoses much
easier. An added benefit is that smaller processes are easier to understand and
maintain.

5.10.4 Using the Script Processor when You Could Use a Core
Processor

It is sometimes necessary to use the Script processor, but in nearly all cases this will
result in slower performance than running a core processor, which uses compiled Java
code. Don't use the script processor unless you really have to.

5.10.5 Using Matching Processors Unnecessarily
EDQ's audit and transformation processors work on a single record at a time. They
can do all of their processing in memory, and can scale to as much CPU power as the
application server has at its disposal. EDQ match processors, on the other hand,

Chapter 5
What Makes Processes Slow? Common Pitfalls

5-18

https://www.loqate.com/resources/support/setup-guides/advanced-setup-guide/#setting_options
https://www.loqate.com/resources/support/setup-guides/advanced-setup-guide/#setting_options


operate on sets of data. (This is also true of some profiling processors - see the list of
Resource Intensive processors, above, for details.) In order to assess the similarity of the
records in the data set, match processors write these data sets to the EDQ repository
database. This I/O overhead is a requirement of match processors (and also of the Record
Duplication Profiler, the Quick Stats Profiler, the Record Duplication Check processor and the
Phrase profiler). There are a number of scenarios in which match processors are absolutely
necessary. For example, you should use match processors:

• To identify fuzzy matches in large sets of data.

• To identify matches using multiple fields.

• Where you need to review possible matches.

However, if you simply need to return records in which a single field matches exactly, the
Lookup and Return processor is likely to run more quickly than a match processor.

5.11 Tuning EDQ's Platform
Beyond designing efficient processes, EDQ itself does not require extensive tuning. There
are only a few parameters you can usefully alter, and in most cases you can simply leave
these set to their default values. (See the 'Oracle Fusion Middleware Administering Oracle
Enterprise Data Quality' guide for more information). However, EDQ exists within an
ecosystem. Aside from the physical hardware and network infrastructure, the most critical
aspect of this ecosystem is the platform that EDQ runs on: specifically its application server
and its database repository. Most performance issues are caused by sub-optimal process and
job configuration, and it is not necessary to tune the platform to resolve them. However, in
some cases, a few simple platform optimization steps can provide a performance boost.
Before we discuss tuning the platform, let's just note that, when configuring a new EDQ
installation, you should run a realistic load of test data through your system and observe the
results before you finalize your settings.

5.11.1 The Application Server and the Database Repository
See below for more information.

5.11.1.1 Relative Importance of the Application Server and the Database Repository
Tuning the application server's maximum Java heap size can provide performance benefits.
When tuning the maximum Java Heap size, please bear the following points in mind:

• The more processor cores (and therefore threads) available, the more memory you
should allocate to the Java Heap. We recommend that, for optimal performance, you
should allocate 2GB of memory for each runtime thread. (Note that EDQ will employ a
runtime thread for every logical CPU that it detects).

• For most use cases, a setting of 8 GB is sufficient.

Note:

EDQ Customer Data Services Pack (CDS) has intensive memory requirements,
and may require more than 8 GB.

• Note that allocating too much of your server's overall memory to the Java Heap can
cause performance problems, as there may not be enough spare memory left to run

Chapter 5
Tuning EDQ's Platform

5-19



applications that require non-Java Heap memory (an example is the EDQ Address
Verification Server). Each thread also requires non-Java Heap memory, and so
where EDQ has access to many threads, this will also increase the non-Java Heap
memory requirement. As a rule of thumb, you should not allocate more than two
thirds of your server's overall memory to the Java Heap.

For more information about tuning the application server, see the Oracle Fusion
Middleware Administering Oracle Enterprise Data Quality guide.

5.11.1.2 Database Tuning
Whilst EDQ does require optimal database I/O to perform certain operations, such as
matching, efficiently, how to tune your database depends on your specific use case
and circumstances. It is, however, possible to offer some general advice. Database
Administrators should:

• Ensure that they allocate sufficient Tablespace for EDQ. (You can find guidelines
about Tablespaces sizes and other Database settings in the 'Oracle Fusion
Middleware Installing and Configuring Oracle Enterprise Data Quality' guide.)

• Adopt an experiential approach to tuning the database's I/O performance.

• Set important settings such as PGA, SGA, Processes and Sessions as specified in 
Configuring Oracle Database to Support EDQ section in EDQ Installation Guide.

It also may be worth noting that on WebLogic, the configured Data Sources control
the maximum number of connections to the database. On large systems running
many threads, it may be necessary to adjust the maximum connections to the
Results database (where data is written and read by EDQ processes) from the
default value of 200. A value of 500 is sufficient for nearly all use cases.

• Archive (redo) logging is resource expensive. In some cases, where all EDQ
processing on a server is entirely stateless and the server can be re-provisioned
automatically with no loss of service, it may be appropriate to turn off archive
logging in the database for better performance. Or, if this is not possible, you may
be able to mount redo log files on separate disks to improve performance.

5.11.2 Processor Cores and Process Threads
EDQ will create a runtime thread for each logical CPU (or 'core') that it detects. It will,
where possible, divide processing amongst parallel threads. In general, process run
times decrease as cores are added. However, after a certain number of cores have
been made available to the Java Virtual Machine (JVM), the decrease in processing
time for each extra core tends to become marginal, as the increased processing power
is offset by greater contention. This is the case even when other aspects of your
system, such as reading and writing to files and databases, have been optimized. In
typical batch processing, improvements in run-times for each core added to the JVM
became marginal when the total number of cores used by the JVM exceeded 16.

5.11.2.1 Process Threads
The number of process threads used to execute jobs is automatically set to the
number of available cores, and should not usually be changed. However, when EDQ is
installed on servers that have more than 16 cores and which are running heavy batch
processing workloads, you may want to manually set the number of threads used by
EDQ to 16. This is because a higher number of threads may lead to contention for
resources when the threads have finished their work.

Chapter 5
Tuning EDQ's Platform

5-20



In order to set the number of threads manually, amend the following parameters in the
director.properties file, which should be located in your EDQ instance's
oedq.local.home folder:

• runtime.threads = 16

• runtime.indexingthreads = 16

• workunitexecutor.outputThreads = 16

When EDQ is installed on servers with more than 16 cores, you can scale by adding
additional managed servers. Every managed server should be placed within the same
WebLogic Cluster, but each will run within a separate Java Virtual Machine. For more
information about how to add additional managed servers see the High Availability section of
the Understanding Oracle Enterprise Data Quality guide. A single EDQ batch job will always
run on a single managed server, so adding managed servers will not necessarily enable
individual jobs to run more quickly. The advantage of having multiple managed servers is that
it enables different jobs to run on different managed servers concurrently.

Note that the database server may be remote from the application server where EDQ will run,
but it must be on a fast network connection.

Chapter 5
Tuning EDQ's Platform

5-21



6
Using JMX Extensions to Monitor EDQ

This chapter describes the Java Management Extensions (JMX) interface that can be used to
monitor and manage many details of its operation. JMX is a Java technology designed for
remote administration and monitoring of Java components
This chapter includes the following topics:

• Understanding JMX Binding

• Understanding JMX Bean Naming

• Monitoring Real-Time Processes

6.1 Understanding JMX Binding
EDQ can use either an internal JMX server or one that is provided in the WebLogic or Tomcat
application server. This topic explains how to control which JMX server is used.

• A default installation of EDQ on Apache Tomcat uses an internal JMX server.

• A default installation of EDQ on Oracle WebLogic Server uses the JMX tree in the
WebLogic Server application server.

The default configuration contains a Remote Method Invocation (RMI) registry, which is used
by the EDQ command line interface as well as by JMX clients. The RMI listening port number
is specified by the management.port property, defined in the director.properties file. The
default is 8090. This property controls access to both the internal JMX Server and the RMI
API that is used by the command line tools.

You can change the JMX configuration as follows:

• If you do not want to use the command line interface, and you want to have JMX Beans
appear in the Tomcat application server JMX tree (not the internal JMX server), change
the management.port property to 0:

management.port=0
When management.port is set to zero, the RMI registry does not listen on any port. This
means that the internal JMX Server will not be used and that the RMI API will also not be
available. The command line tools will therefore not work if management.port is set to 0.

• If you are using Oracle WebLogic Server, and you want to use the command line
interface as well as have JMX Beans appear in the WebLogic Server JMX tree, add the
following property to the director.properties file in the configuration directory. Retain
the setting of 8090 for management.port so that the RMI API can be used by the
command line tools.

management.jndiname=java:comp/env/jmx/runtime

6.2 Understanding JMX Bean Naming
The naming scheme used for the JMX Beans is designed to work well with Jconsole.
However, other JMX Clients may require a modified naming scheme.

6-1



The names used for the JMX Beans can be customized by writing and placing an
appropriate JavaScript or Groovy file in the configuration directory and setting the
management.namemaker.scriptfile property in the director.properties to indicate
its existence

6.2.1 Reviewing the Example
This example demonstrates how to modify the default JMX Bean naming scheme to
add a type attribute to the end of the name. The type attribute will be based on the
Java Bean class.

1. Create a file named jmxnames.js in the configuration directory and add the
following JavaScript to it:

/**    
* Adds a type attribute to the name of a JMX Beans.    
* 
* @param beanclass The bean class name    
* @param domain The domain name    
* @param names The name strings 
* 
* @return The name string    
*/    
function objectNameFor(beanclass, domain, names) 
{    
var type = beanclass == null ? "*" : 
beanclass.substring(beanclass.lastIndexOf('.') + 1); 
var out;    
/*    
* The names array always has 2 elements.    
*/    
out = domain + ":" + "component=" + escape(names[0]) + ",name=" + 
escape(names[1]);    
for (var i = 2; i < names.length; i++)    
{    
var index = i-1    
out += "," + "name" + index + "=" + escape(names[i]);    
}    
return out + ",type=" + type;    
}    

2. Add the following line to the director.properties file:

management.namemaker.scriptfile = jmxnames.js
3. Restart the EDQ application server.

The JMX Beans will now include a type qualifier at the end of their names.

6.3 Monitoring Real-Time Processes
is provided with a built-in JMX server that can be used to monitor many aspects of its
operation. Many of the objects and resources that make up the EDQ application
provide MBeans to the JMX server, including the real-time Web services.

6.3.1 Monitoring the Real-Time Web Service MBeans
Each real-time Web service registers an MBean for its reader and one for its writer in
the JMX tree.

Chapter 6
Monitoring Real-Time Processes

6-2



Readers are registered at:

Runtime/Data/Buckets/Realtime/Projects/Project Name/readers/Web service name

Writers are registered at:

Runtime/Data/Buckets/Realtime/Projects/Project Name/writers/Web service name

In each case, the path to the MBean includes the name of the Web service that owns it and
the project that contains the web service.

Global Web services (those deployed in a .jar file in the oedq_local_home/webservices
directory) have a different path name. Simply replace Projects/Project Name in the path
above with Global.

The port for the internal JMX server is controlled by the management.port property, defined in
the director.properties file.

6.3.2 Monitoring the Real-Time MBeans
A general JMX console, such as JConsole, can be used to interact with MBeans. Each
MBean exposes:

• Attributes, whose values can be read.

• Operations that can be invoked to perform some action with the MBean.

• An interface that allows clients to subscribe to notifications of events that occur on the
MBean.

The EDQ real-time web service MBeans uses the following attributes:

Attributes Description

closetime The time at which the bucket was last closed.

concurrent The current number of synchronous requests.

maxConcurrent The maximum number of concurrent synchronous requests since the bucket
was opened.

maxConcurrentMax The maximum number of concurrent synchronous requests since startup.

messages The number of messages processed since the bucket was opened.

open Indicates whether the bucket is open or closed.

openCount The number of times the bucket has been opened since startup.

opentime The time when the bucket was last opened.

processtime The time when the last message was processed.

records The number of records processed since the bucket was opened.

threads The number of threads that used the bucket when it was last opened.

totalMessages The number of messages processed since startup.

totalRecords The number of records processed since startup.

The EDQ real-time web service MBeans exposes the following operation:

Chapter 6
Monitoring Real-Time Processes

6-3



Attribute Description

closedown Shutdown the reader or writer using this
bucket.

Chapter 6
Monitoring Real-Time Processes

6-4



7
Using Triggers

This chapter describes how to use the trigger functionality in . This document describes
where triggers are installed, how to call them, and how you can use them.
This chapter contains the following topics:

• Overview of the Triggers Functionality

• Required Skills to Use Triggers

• Storing Triggers

• Configuring Triggers Using the Script Trigger API

• Extending the Configuration of Triggers Using Properties Files

• Understanding EDQ Trigger Points

• Understanding TriggerInfo Methods

• Setting Trigger Levels

• Using JMS in Triggers

• Exposing Triggers in a Job Configuration

• Trigger Examples

7.1 Overview of the Triggers Functionality
Triggers in are scripts (JavaScript or Groovy) that can be called at various trigger points in the
EDQ system. There are two types of triggers: predefined triggers and custom triggers.

7.1.1 About Predefined Triggers
Predefined triggers are included with the EDQ installation. They are visible in the Director
user interface and can be used in a job configuration to start the job, shut down web services,
send email notifications, and run another job from within a job. Director users can set these
triggers to run at the following trigger points: the start of a job, the end of a job, or both. You
can learn more about predefined triggers in the Director online help system.

7.1.2 About Custom Triggers
Custom triggers can be written by someone skilled in Javascript or Groovy to extend the
functionality of EDQ to achieve specific workflow objectives. You can use custom triggers to
perform tasks such as:

• sending an email message

• sending a JMS message

• calling a web service

• writing a file

7-1



• sending a text message

You can run custom triggers at any of the following predefined trigger points:

• Before running a job phase

• After running a job phase

• On making a match decision

• On making a transition in Case Management

• When a job completes

Each of these trigger point has a unique path and a set of defined arguments that are
passed to the trigger through a special API. For more information, see Understanding
EDQ Trigger Points.

Custom triggers are described in the rest of this document.

7.2 Required Skills to Use Triggers
Knowledge of Javascript or Groovy is required to create and deploy custom triggers in
EDQ.

7.3 Storing Triggers
Custom triggers must be stored in the triggers subdirectory of the EDQ config
(configuration) directory. New or updated triggers are loaded automatically without
requiring a system restart.

7.4 Configuring Triggers Using the Script Trigger API
You can use the functions of the script API to create your triggers. These functions are
defined in the trigger code. Although the examples in this document are JavaScript,
the same API is available in Groovy.

The following are descriptions of each function in this API.

getPath()
Returns a string that defines the path that the trigger will handle. Each trigger point
has a unique path. Any trigger that matches a given path is executed when the trigger
point is reached. For more information about trigger points, see Understanding EDQ
Trigger Points.
This function is a regular expression. For example, the path /log/
com\.datanomic\..* would match any logging path where the logger name contains
the string datanomic (in other words, any logger defined in EDQ, the word
"datanomic" being another name for EDQ).

run(path, id, env, arg1, arg2 ...)
Executes the trigger. For more information about what is returned by the trigger API
for each of these variables, see Understanding EDQ Trigger Points.

path
The path of the trigger, for example /runtime/engine/interval/end.

Chapter 7
Required Skills to Use Triggers

7-2



id
The trigger ID. The ID is set when the trigger is configured in the Director user interface.
The ID is null for simple triggers.

env
The trigger environment in the form of one or more key/value pairs, for example
env.project = project name. The env input is specific to the trigger point. These
values are exposed as properties of the env object in the script. Most trigger points will
pass in the associated EDQ project ID and project name.

arg
Extra arguments that are specific to the trigger point. For example, the Interval end
trigger point returns the following: Task context object, process options, interval number
(>= 1), execution statistics.

filter(path, env)
(Optional function) Filters out the trigger before it can be executed. Use this filter to avoid the
overhead of executing a trigger that will not be needed. Return true to enable the trigger or
false to disable it.

path
The path of the trigger.

env
The trigger environment in the form of one or more key/value pairs. The env input is
specific to the trigger point. These values are exposed as properties of the env object in
the script. Most trigger points will pass in the associated EDQ project ID and project
name. In the following example, the trigger is enabled only if the associated project is
named "My project."

function filter(path, env) {
  return env.project == 'My project';
}

getLevel()
(Optional function) Returns the maximum level the trigger will accept. For example, the
following statement allows the trigger to accept all levels, regardless of other settings in the
trigger system. For more information about setting levels, see Setting Trigger Levels.

function getLevel() {
  return Level.SEVERE;
}

getTriggerNames(path, env)
(Optional function) Returns an array of TriggerName objects for display in the Director user
interface. For more information, see Exposing Triggers in a Job Configuration. Getting trigger
names and exposing them in the Director interface is only possible with the job configuration
screen.

7.5 Extending the Configuration of Triggers Using Properties
Files

You can specify additional configuration for script triggers in properties files. Access to these
properties is by means of a predefined object named config, which is available in all triggers.

Chapter 7
Extending the Configuration of Triggers Using Properties Files

7-3



The base directory in EDQ for these properties files is the subdirectory config within
the triggers directory. The following are useful methods for the config object.

config.getTriggerConfigFiles(base, pattern)
Returns an array of file objects whose names match a search pattern within a
specified directory in the triggers/config directory.

base
The name of a directory within the triggers/config directory.

pattern
A regular expression (regex) that defines the search pattern to match.

config.loadProps(file)
Loads a specified Java properties file and return it as a JavaScript object.

file
The name of the Java properties file.

7.6 Understanding EDQ Trigger Points
This section describes the trigger points within EDQ at which you can call custom
triggers.

Log Message
Called whenever a log message is generated in the system.

Component Description

Path /log/loggername
Env null
Arguments java.util.logging.LogRecord

Syslog Message
Called whenever a high-level syslog log message is generated. The source argument
is a Java object that contains details of the event source. It can be converted to string
for display.

Component Description

Path /syslog
Env env.event = event_name

env.source =
event_source_as_string

Arguments event_name, source, message

Process start
Called when a process starts. The arguments are Java objects that contain
information on the process configuration.

Component Description

Path /runtime/engine/task/start

Chapter 7
Understanding EDQ Trigger Points

7-4



Component Description

Env env.project = project_name
env.projectID = project_ID
env.missionname = job_name
env.processname = process_name

Arguments Task_context_object,
process_options

Note:

When specifying the path for starting a task, the trigger script must include
addLibrary('runtime') to avoid the trigger script from throwing an error.

Process end
Called when a process stops. The arguments are Java objects that contain information on
the process configuration.

Component Description

Path /runtime/engine/task/end
Env env.project = project_name

env.projectID = project_ID
env.missionname = job_name
env.processname = process_name

Arguments Task_context_object,
process_options

Note:

When specifying the path for ending a task, the trigger script must include
addLibrary('runtime') to avoid the trigger script from throwing an error.

Interval end
Called at the end of a normal process or at the end of each interval of a process that is run in
interval mode. Returns statistics on the number of records executed, etc.

Component Description

Path /runtime/engine/interval/end
Env env.project = project_name

env.projectID = project_ID
env.missionname = job_name
env.processname = process_name

Arguments Task_context_object,
process_options, interval_number
(>= 1), execution_statistics

Chapter 7
Understanding EDQ Trigger Points

7-5



Before job phase
Called in a job configuration for 'pre phase' execution.

Component Description

Path /missions/phase/pre
Env env.project = project_name

env.projectID = project_ID
env.missionname = job_name
env.processname = process_name

Arguments None

After job phase
Called in a job configuration for 'post phase' execution.

Component Description

Path /missions/phase/post
Env env.project = project_name

env.projectID = project_ID
env.missionname = job_name
env.processname = process_name

Arguments None

On match decision
Called when EDQ must make a decision about a potential match. This is known as a
relationship decision trigger. Relationship triggers can include methods that return the
relationship and decision data needed to perform matching. This trigger point is
specific to Match Review.

Component Description

Path /matchreview/relationship/
decision/

Env env.project = project_name
Arguments A list of TriggerInfo methods. Each

contains data for one relationship.
See Understanding TriggerInfo
Methods for descriptions of these
methods.

When a case is created
Called when a case is created where the case belongs to the respective case source.

Component Description

Path /casemanagement/create/<case
source name>

Chapter 7
Understanding EDQ Trigger Points

7-6



Component Description

Env env.sourceName = case source
name
env.caseType = the type of
the case or alert
env.currentState = the
current state of the created
case

Arguments com.datanomic.director.casema
nagement.beans.CaseBean

When a case or alert has transitioned
Called after a case or alert has transitioned into the next logical state corresponding to the
respective workflow.

Component Description

Path /casemanagement/transition/
<workflow name>/<transition>

Env env.sourceName = case source
name
env.caseType = the type of the
case, 'case' or 'alert'
env.currentState = the current
state of the created case

Arguments com.datanomic.director.casemanag
ement.beans.CaseBean,java.util.L
ist<com.datanomic.director.casem
anagement.beans.CaseHistoryBean>
,comment,restrictingPermission
Where comment is entered by the user
and restrictingPermission is the
permission required to access the
comment.

When a case or alert has been updated
Called when a case or alert is updated by a user. This includes assignment, state change,
priority change, or performing any other edit.

Component Description

Path /casemanagement/update/<case
source name>

Env env.sourceName = case source
name
env.caseType = the type of the
case, 'case' or 'alert'
env.currentState = the current
state of the created case

Chapter 7
Understanding EDQ Trigger Points

7-7



Component Description

Arguments com.datanomic.director.casemanag
ement.beans.CaseBean,java.util.L
ist<com.datanomic.director.casem
anagement.beans.CaseHistoryBean>
,comment,restrictingPermission
Where comment is entered by the user
and restrictingPermission is the
permission required to access the
comment

When a comment is added for a case or alert
Called when a comment is added for a case or alert.

Component Description

Path /casemanagement/commented/
<case source name>

env.sourceName = case source
name
Env

env.caseType = the type of
the case, 'case' or 'alert'
env.currentState = the
current state of the created
case

Arguments com.datanomic.director.casema
nagement.beans.CaseBean,java.
util.List<com.datanomic.direc
tor.casemanagement.beans.Case
HistoryBean>,comment,restrict
ingPermission
Where comment is the user entered
comment and
restrictingPermission is the
permission required to access the
comment.

After a system update occurs
Called after a case or alert is updated as part of an escalation or bulk update.

Component Description

Path /casemanagement/systemupdate/
<case source name>

Env env.sourceName = case source
name
env.caseType = the type of
the case, 'case' or 'alert'
env.currentState = the
current state of the created
case

Chapter 7
Understanding EDQ Trigger Points

7-8



Component Description

Arguments com.datanomic.director.casema
nagement.beans.CaseBean,java.
util.List<com.datanomic.direc
tor.casemanagement.beans.Case
HistoryBean>,comment,restrict
ingPermission
Where comment is the user entered
comment and
restrictingPermission is the
permission required to access the
comment.

7.7 Understanding TriggerInfo Methods
This section explains each of the methods that are associated with the TriggerInfo trigger
point. These methods are specific to the TriggerInfo trigger point for use in Match Review.

Table 7-1    Methods Associated with the TriggerInfo Trigger Point

Method Data Returned Description

getPreviousMatchStatus(
)

String Returns the match status prior to the
decision.

getPreviousRealtionship
ReviewStatus()

String Returns the relationship review status prior
to the decision.

getRelationshipId() Integer Returns the relationship ID.

getRecordId() Integer Returns the ID of the first record.

getInputId() Integer Returns the ID of the first input.

getRelatedRecordId() Integer Returns the ID of the second record.

getRelatedInputId() Integer Returns the ID of the second input.

getReviewStatus() String Returns the review status of the new
relationship.

getMatchStatus() String Returns the new match status.

getRuleName() String Returns the name of the rule that generated
the relationship.

getCommentUser() String Returns the user name of the person that
made the comment.

getReviewComment() String Returns any comment that was made.

getCommentDate() Date Returns the date and time that the comment
was made (if comment is present).

getReviewedUser() String Returns the name of the user who performed
the review.

getReviewDate() Date Returns the date and time that the review
was performed.

Chapter 7
Understanding TriggerInfo Methods

7-9



Table 7-1    (Cont.) Methods Associated with the TriggerInfo Trigger Point

Method Data Returned Description

SourceAttribute
getRecordSourceAttribut
es()

List Returns all the source attributes (columns)
that make up the first record.

SourceAttribute
getRelatedRecordSourceA
ttributes()

List Returns all the source attributes (columns)
that make up the second record.

getRecordAttributeValue(
SourceAttribute sa)

Value Returns the value of the given source
attribute (column) of the first record.

getRelatedRecordAttribu
teValue(SourceAttribute
sa)

Value Returns the value of the given source
attribute (column) of the second record.

7.8 Setting Trigger Levels
Every trigger point has an associated level, which is a java.util.logging.Level
value. By default trigger calls with a level lower than INFO are ignored.

One way to modify the level is to create a file named levels.properties in the
triggers subdirectory of the config directory. This file can contain both a default level
and one or more override levels for individual paths. Example 7-1 sets the default level
to FINE and sets the level for the path /runtime/engine/.* to FINER. You can define
your own prefix for the pattern and level properties.

Another way to modify the level is to define a getLevel function in the trigger. See 
Configuring Triggers Using the Script Trigger API for a description.

Example 7-1    Setting Trigger Levels

default = fine
runtime.pattern = /runtime/engine/.*
runtime.level   = finer

7.9 Using JMS in Triggers
To enable Java Message Service (JMS) within a trigger file, follow these steps.

1. Load the internal JavaScript JMS library.

addLibrary("jms");
2. Load properties that define the JMS configuration. These properties are

augmented with the JMS settings from the standard realtime.properties file that
is shipped in the EDQ configuration directory. The default version of this file
defines properties for the open-source ActiveMQ message broker that is bundled
with EDQ. At minimum, the trigger should supply a value for the destination
property, which names the JMS topic or queue to use.

3. Create a JMS object.

var jms = JMS.open(props);

Chapter 7
Setting Trigger Levels

7-10



4. Send a text message.

jms.send(str)
5. Send a JMS map message built from a script object.

jms.sendMap(jsobj)
6. Create a text message. Properties and header values can be set on the message before

transmission.

var msg = jms.createTextMessage(str)
7. Create a map message. Properties and header values can be set on the message before

transmission.

var msg = jms.createMapMessage(jsobj)
8. Send a message that was created by one of the two preceding methods.

jms.sendMessage(msg)

7.10 Exposing Triggers in a Job Configuration
Triggers are selected for use in a job when configuring a job phase in Director. They can be
set to run before or after a job phase. To make triggers available for selection on the
configuration screen, each trigger must be able to return a list of names. This allows one
trigger to perform multiple tasks as needed.

A trigger name has the following components:

• an internal ID that is passed to the trigger run function. See Configuring Triggers Using
the Script Trigger API for a description of this function.

• a visible label

• a group name

Trigger names with the same group are shown as a single node in the job configuration
screen.

To create a new trigger name:

var n1 = new TriggerName(id, label)
n1.group = "My group";

To return trigger names from a trigger:

To return trigger names, use the getTriggerNames function as shown in this example.

function getTriggerNames(path, env) {
  var n1 = new TriggerName(id1, label1);
  var n2 = new TriggerName(id2, label2);
  ...
  n1.group = "My group";
  n2.group = "My group";
  ...
  return [n1, n2 ...]
}

See Configuring Triggers Using the Script Trigger API for more information about
getTriggerNames.

Chapter 7
Exposing Triggers in a Job Configuration

7-11



7.11 Trigger Examples
The following are examples of how you can use custom triggers.

Note:

The examples in this document are JavaScript, but the same API is available
in Groovy.

Example 1 Use a Trigger to Send Log Messages Via JMS
In this example, the logging library imports a logging object that can be used to format
and output the message. The JMS properties file is loaded from triggers/
config/jms/jms.properties in the EDQ configuration directory.

// Test trigger for task running with JMS
addLibrary("logging");
addLibrary("jms");
 
function getPath() {
  return "/log/com\.datanomic\..*";
}
function run(path, id, env, logrecord) {
 
  var pfiles = config.getTriggerConfigFiles("jms", 
                           "jms\\.properties");
 
  if (pfiles.length > 0) {
    var props = config.loadProps(pfiles[0]);
 
    var jms = JMS.open(props);
    var msg = logging.format(logrecord);
    var len = msg.length;

// Remove trailing newlines
 
    while (len > 0) {
      var c = msg.charAt(len - 1);
 
      if (c != '\n' && c != '\r') {
        break;
      }
 
      len--;
    }

    jms.send(msg.substring(0, len));
    jms.close();
  }
}

Example 2 Use a Trigger to Send Syslog Messages Via JMS
In this example, the special id directive on the first line (#! id : syslog) defines the
internal ID of the trigger. If there is more than one trigger definition with the same ID,
the later one replaces the former one. In a standard EDQ install, there is a predefined

Chapter 7
Trigger Examples

7-12



syslog trigger that logs messages through the standard logging API. Adding the id directive
in this example causes the JMS syslog trigger to replace the predefined trigger.

#! id : syslog
 
// Test trigger for task running with JMS
 
addLibrary("logging");
addLibrary("jms");
 
function getPath() {
  return "/syslog";
}
 
function getLevel() {
  return Level.SEVERE;
}

function run(path, id, env, level, event, source, message) {
 
  var pfiles = config.getTriggerConfigFiles("jms", 
                "jms\\.properties");
  var props  = null;
 
  if (pfiles.length == 0) {
    logger.log(Level.WARNING, "syslogger called but no properties");
  } else {
 
    props = config.loadProps(pfiles[0]);
 
    var jms    = JMS.open(props);
    var xml    = <syslog level={level}><source>{source}</source><message>{message}</
message></syslog>
 
    logger.log(Level.INFO, "xml = {0}", xml.toXMLString());
    jms.send(xml.toXMLString());
    jms.close();
  }
}

Example 3 Use a Trigger for Mission Phase Notification
In this example, a couple of trigger names are defined and are exposed to the job
configuration screen. The trigger writes a log message in this example, but it could also be
configured to send JMS notifications.

// Test trigger for misssion phase notification
 
addLibrary("logging");
 
function getPath() {
  return "/missions/phase/.*";
}
 
function run(path, id, env) {
 logger.log(Level.INFO, "phase called with path {0} and id {1}", path, id);
}

function getTriggerNames(path, env) {
  var n1 = new TriggerName("logme", "logme2");

Chapter 7
Trigger Examples

7-13



  n1.group = "logmegroup";
 
  var n2 = new TriggerName("n2", "n2");
  n2.group = "logmegroup";
  return [n1, n2];
}

Chapter 7
Trigger Examples

7-14



8
Using Case Management Scripting

EDQ 12.2.1.4.4 introduces a case management script library that you can use to interact with
cases and alerts. This chapter describes how to use the case management script library.
This chapter contains the following topics:

• Overview of the Case Management Script Library

• casemanager object properties

• case bean properties

• case history bean properties

• Source Data Object properties

• Case Management Trigger Environment

8.1 Overview of the Case Management Script Library
You can use the case management script library in EDQ triggers and script processors, to
access Case Management data and a number of functions in a supported manner.

To use the library, add this line to the top of the script:

addLibrary("casemanagement")

The library publishes an object named casemanager in the script. See casemanager object
properties for more information.

Note:

The case management script library has an implicit dependency on the user cache
script library so that the usercache object and functions are available. See Using
Scripting for User Cache Queries for more information.

8.1.1 casemanager object properties
The casemanager object exposes the following constant values:

Name Description Value

CaseManagement.CASE_TY
PE

The internal type for cases. case

CaseManagement.ALERT_T
YPE

The internal type for alerts. issue

CaseManagement.PRIO_NO
NE

Integer value corresponding to the None
priority setting.

0

8-1



Name Description Value

CaseManagement.PRIO_LO
W

Integer value corresponding to the Low
priority setting.

1

CaseManagement.PRIO_ME
DIUM

Integer value corresponding to the Medium
priority setting.

2

CaseManagement.PRIO_HIG
H

Integer value corresponding to the High
priority setting.

3

CaseManagement,UNASSIG
NED

Use this object to "unassign" a case or alert. Unassigned user object

The casemanager object exposes the following functions:

Name Description

bean = casemanager.loadCaseById(id) Load case or alert by internal ID.

bean =
casemanager.loadCaseByExternalId(extid)

Load case or alert by external ID. The external
ID is shown in the UI.

bean = casemanager.getChildCases(id) Return array of alert beans corresponding to
the case with the given internal ID.

bean = casemanager.getRelatedCases(bean) If the bean is a case, return array containing it
along with the child alerts. Else return array
containing the parent case bean and its child
alerts.

bean =
casemanager.updateAssignedUser(casebean,
user, [dotrigger])

Update assigned user for case/alert. The user
object is obtained from the user cache library
methods. Use null or
CaseManager.UNASSIGNED to "unassign" the
case or alert. Execute update triggers if
dotrigger is omitted or is true. Return the
updated case bean.

bean = casemanager.updateCase(bean,
[dotrigger])

Save changes to the case or alert. Execute
update triggers if dotrigger is omitted or is
true. Return the updated bean.

bean = casemanager.updateState(bean,
transition, comment, permission, [dotrigger])

Update the current state of the case or alert.
transition is the transition name, comment
is the comment to associate with the change
and permission is the restricting permission
for the comment. Execute update triggers if
dotrigger is omitted or is true. Return the
updated bean.

bean = casemanager.addComment(bean,
comment, restrictingpermission, [dotrigger])

Add a comment to the case or alert. Execute
update triggers if dotrigger is omitted or is
true. Return the updated bean.

extstate =
casemanager.getExternalState(source,
casetype, state)

Get the "external" state (such as
AWAITING_REVIEW) corresponding to the
given source, case type, and case state.

sd = getSD(id) Load source data for the alert with the given
ID. The structure of the result is described in 
Source Data Object properties.

Chapter 8
Overview of the Case Management Script Library

8-2



Name Description

bool = CaseManagement.isLockError(e) Check whether an error indicates that a case
or alert had been modified elsewhere between
loading and saving. You can use this to
support retries in a script.

The argument to the isLockError function is an error from a script catch clause.

Example:

var cb = casemanager.loadCaseById(caseid)
 
cb.priority = CaseManagement.PRIO_HIGH
 
try {
  cb.save();
} catch (e) {
  if (CaseManagement.isLockError(e)) {
    ... retry logic  ...
  }
}

8.1.2 case bean properties
The case bean passed to trigger calls and used in casemanager function has the following
properties:

Property Type Is Writable Description

id Number No Internal ID of the case/
alert.

parentId Number No For alerts, internal ID of
the parent case.

version Number No Internal version number
of the case/alert.

caseGroup String No Case "group" (such as
"match").

caseType String No Type: "case" for cases
and "issue" for alerts.

externalId String No The external ID of the
case/alert, as seen in
the user interface.

sourceName String No Case source name.

sourceId String No Internal source "id".

caseKey String No Case/alert key.

keyLabel String No Display version of case
key.

flagKey String No Flag key.

description String Yes Description string.

Chapter 8
Overview of the Case Management Script Library

8-3



Property Type Is Writable Description

currentState String No Current state of case/
alert.

externalState String No The 'external' state of
the case/alert, such as
AWAITING_REVIEW.

derivedState String No Derived state.

createdBy Number No ID of user who created
case/alert.

createdDateTime Date No Creation timestamp.

modifiedBy Number No ID of user who last
modified case/alert.

modifiedDateTime Date No Timestamp of last
modification.

assignedUser Number No ID of currently assigned
user.

assignedBy Number No ID of user who
performed last
assignment.

assignedDateTime Date No Timestamp of last
assignment.

priority Number Yes Priority number:

0 = None, 1= Low, 2 =
Medium, 3 = High

permission String Yes Case/alert permission
string.

stateExpiry Date Yes Timestamp of state
expiry. Updates are
ignored if current state
is not enabled for expiry.

stateChangeBy Number No ID of user who last
changed state.

stateChangeDateTime Date No Timestamp of last state
change.

reviewFlag Boolean Yes Review flag.

updatedBy Number No ID of user who last
updated review flag.

updatedDateTime Date No Timestamp of last
review flag update.

groupId String No Internal group ID.

groupLevel Number No Internal group level.

extendedAttributeN String/number/boolean Yes The value of extended
attribute (flag) N.

extendedAttributeNModifiedB
y

Number No ID of user who last
changed extended
attribute (flag) N.

Chapter 8
Overview of the Case Management Script Library

8-4



Property Type Is Writable Description

extendedAttributeNModifiedD
ateTime

Date No Timestamp of last
modification of extended
attribute (flag) N.

The case bean passed to trigger calls and used in casemanager function has the following
functions:

Name Description

value = casebean.getExtendedAttribute(n,
[deflt])

Get the value of extended attribute (flag) N. If deflt is
omitted or true, return the default value if the attribute
has not been set. This function is an alternative to the
extendedAttributeN and allows extended attribute
value to be returned using a computed index.

casebean.setExtendedAttribute(n, v) Set the value of extended attribute (flag) N.

userid =
casebean.getExtendedAttributeModifiedBy(n)

Get the ID of user who last changed extended attribute
(flag) N.

date =
casebean.getExtendedAttributeModifiedDate
Time(n)

Get the Timestamp of last modification of extended
attribute (flag) N.

sd = casebean.getSD() Load source data for the alert. The structure of the
result is described in Source Data Object properties.

casebean.save([dotrigger]) Save the case or alert after modifications. Fire update
triggers if dotrigger is omitted or is true.

8.1.3 case history bean properties
The case history bean passed to trigger calls has the following read only properties:

Property Description

id Internal ID of case history record.

caseId Internal ID of associated case or alert.

sourceName Name of source.

modifiedBy ID of user making change.

modifiedDateTime Timestamp of change.

attribute Attribute name.

oldValue Internal form of previous value.

newValue Internal form of new value.

oldValue2 Display form of previous value.

newValue2 Display form of previous value

For string values, the internal and display values are the same. For the priority attribute the
internal value is numeric and the display form is the corresponding priority name. For
attributes associated with users, the internal form is the user ID and the display form is the
user display name.

Chapter 8
Overview of the Case Management Script Library

8-5



8.1.4 Source Data Object properties
The source data object returned by the getSD functions has the following read only
properties:

Property Description

datasets Array of data sets (sources).

storageTime Timestamp of data storage.

Source datasets are identified by an internal ID (a numeric string or "reln" for
relationship data) and by a label as seen in the user interface. The source data object
has the following functions to extract datasets and values:

Function Description

dataset = dataset(id) Get dataset by internal ID.

dataset =
datasetFromLabel(label)

Get dataset by UI label.

values = values(dsid, itemid) Get values for dataset with internal ID dsid and item with
internal ID itemid. The result is an array with one value for
each source record associated with the alert.

The functions return null if an unknown ID or label is used.

Each dataset object has the following read only properties:

Property Description

id The internal ID of the data set.

label The UI label for the data set.

items Array of data items.

Data items within a dataset are also identified by an internal ID (column name or
relationship attribute) and a label as seen in the UI.

The dataset object has the following functions to extract data items and values:

Function Description

dataitem = item(id) Get data item by internal ID.

dataitem =
itemFromLabel(label)

Get data item by UI label.

values = values(itemid) Get values for the item with internal ID itemid. The result is
an array with one value for each source record associated with
the alert.

The functions return null if an unknown ID or label is used.

Each data item has the following read only properties:

Chapter 8
Overview of the Case Management Script Library

8-6



Property Description

id The internal ID of the data item.

label The UI label of the data item.

values Array of item values, one for each source record associated with the
alert.

The item values are returned as strings, numbers, or dates depending on the source data
column type.

8.2 Case Management Trigger Environment
The third argument to all trigger function calls is the trigger "environment". For example, case
management update triggers are defined with:

function getPath() {
  return "/casemanagement/update/.*";
}
 
function run(path, id, env, casebean, history, comment) {
  ...
}

The environment object for case management triggers contains the following read only
properties:

Property Description

sourceName The source name.

caseType The case type ("case" or "issue").

currentState The current state of the case or alert.

origin The origin of the update.

userid The ID of the user making the update.

The origin property identifies the root cause of the update. It can have one of the following
values:

Property Description

user Change made by user in case management UI.

api REST API call.

bulk Bulk update.

expiry Change caused by automatic state expiry.

creator Case creation.

import Case import.

script Change originated in call made by this script library.

Chapter 8
Case Management Trigger Environment

8-7



9
Using Scripting for User Cache Queries

Job and case management triggers often need to convert user IDs to user names and extract
user attributes such as emails. EDQ 12.2.1.4.4 provides a script library with functions for user
cache and user query. This chapter describes how to use the script library.

To use the library, add this line to the top of the script:

addLibrary("usercache")

The library publishes an object named usercache in the script, which includes the following
functions:

Name Description

user = usercache.getUser(id) Map a numeric ID to a user object. Return null if no user is found.
The user may be retrieved from the record of deleted users.

user = usercache.getLiveUser(id) Map a numeric ID to an existing user. Users recorded as deleted
are not returned.

user =
usercache.lookup(username,
[withid])

Lookup a user by username by searching all configured realms. If
withid is omitted or is true, an internal ID is allocated for the user
if this has not been done before. Internal IDs are required for certain
APIs such as case assignment.

user =
usercache.lookupInRealm(usern
ame, realm, [withid])

Lookup a user by username in a single realm. Use null for the
internal realm.

The user object returned by these method has the following read-only properties:

Property Description

id Internal ID of the user. The user with ID 0 is the special "system
user".

userName The user name.

displayName User display name. Defaults to user identity. userdisplayname
setting in login.properties overrides this value.

realm The user realm. null for the "internal" realm.

identity The internal user identity - username@realm.

fullName The user's full name.

emailAddress The user's email address.

organization The user's organization string.

groups Array of strings representing the user's group membership.

9-1



10
Accessing EDQ Files Remotely

This chapter describes how to access certain directories in the EDQ directory.

10.1 Using FTP and SFTP Server to Access EDQ Files
is supplied with internal File Transfer Protocol (FTP) and Secure File Transfer Protocol
(SFTP) servers. These servers enable remote access to the configuration file area and
landing area files.

The FTP server can be accessed with a third-party FTP client using any valid username and
password, connecting to the port specified by the ftpserver.port in the
director.properties file.

The SFTP server is controlled by the sshd.port property in director.properties. The
default value is 2222.

The following directories are available via the FTP and SFTP servers:

Directory Description

config This corresponds to the EDQ base configuration directory (edqhome).

config1 This corresponds to the EDQ local configuration directory
(edq.local.home).

landingarea This corresponds to the landingarea directory in the EDQ installation.

projectlandingarea This corresponds to the project specific landing areas in the EDQ installation.

commands This corresponds to the commandarea directory in the EDQ local
configuration directory (oedq_local_home).

10-1



11
Defining Housekeeping Rules

Housekeeping tasks help you to remove old and unwanted event log data, produced by the
running of EDQ jobs in a certain time interval. You can schedule these tasks to run regularly
to perform the required functions.

This chapter describes how to define housekeeping rules:

• For the Event Log Table (dn_eventlog2)

• For the Task Status Table (dn_taskstatus)

11.1 For the Event Log Table
When event log data uses a large amount of tablespace, for example when jobs are run very
regularly on a schedule, you can define housekeeping rules for handling the situation.

You can activate this functionality on the server by adding an xml file named eventlog.xml to
the housekeeping subfolder of the EDQ local home directory .

Note:

The housekeeping subfolder is not available in the EDQ local home directory by
default. So you need to create one, to configure this functionality.

The interval units and parameter options together define the time older than which events are
deleted when the purger runs. The interval units (denoted in days, hours, minutes or
seconds) represent the time interval to check, and the parameter value specifies the
measurement older than which events can be deleted.

For example - The below rule runs an event log purging housekeeping task every morning at
2 am (server time) and deletes all events log older than 10 days.

. 
<housekeeping> 
. 
  <task name="eventpurger"> 
    <start>02:00:00</start> 
    <interval units="hours">24</interval>       
    <parameter>10</parameter> 
  </task> 
. 

11.2 For the Task Status Table
When task status data uses a large amount of tablespace, for example when jobs are run
regularly on a schedule, you can define housekeeping rules for handling the situation.

11-1



You can activate this functionality on the server by adding an xml file named
taskstatus.xml to the housekeeping subfolder of the EDQ local home directory. The
task name for the task status housekeeping should be taskstatusdao.

Note:

The housekeeping subfolder is not available in the EDQ local home directory
by default. So you need to create one, to configure this functionality.

The interval units and parameter options together define the time older than which task
statuses are deleted when the purger runs. The interval units (denoted in days, hours,
minutes or seconds) represent the time interval to check, and the parameter value
specifies the measurement older than which task statuses can be deleted.

For example - The below rule runs an task status purging housekeeping task every
morning at 2.30 am (server time) and deletes all task statuses older than 100 days.

<housekeeping>

  <task name="taskstatusdao">
    <start>02:30:00</start>
    <interval units="hours">24</interval>      
    <parameter>100</parameter>
  </task>

</housekeeping> 

Note:

You need not restart the server after changing the housekeeping rules, for
the changes to take effect.

Chapter 11
For the Task Status Table

11-2



12
Third-Party License Attributions

For information on the legal attributions for third party software and components included in
the EDQ product, refer to Oracle Enterprise Data Quality section of Data Integration Products
chapter in the Oracle® Fusion Middleware Licensing Information User Manual.

12-1

https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.4/fmwlc/data-integration-products.html#GUID-49BB3636-93C9-4A29-AAB0-0AD47279CEE3


13
Limits in EDQ

This chapter describes the guidelines on various limits that EDQ applies when reading in and
writing data:

• Oracle VARCHAR Columns in EDQ Results Schema

Oracle databases 12c and later can be configured to support 32767 bytes or 4000 bytes
as the maximum size of VARCHAR columns. When EDQ starts up the maximum size is
detected automatically and all VARCHAR columns in results tables are created with this
size.

EDQ version 12.2.1.4.3 onwards you can configure individual columns to be marked as
"long". Columns marked as long are created as VARCHAR(32767) whereas other
columns are created as VARCHAR(4000).

You can control the default column sizes by setting the following properties in the file
director.properties:

– oracle.default.string.size: Sets the size used for any column not marked as
"long". The default value is 4000.

– oracle.max.string.size: Sets the size used for any column marked as "long". The
default value is 32767 for databases with extended strings enabled, and 4000
otherwise.

Note that the long column selection flags are not shown if the values for
oracle.default.string.size and oracle.max.string.size are equal. This could happen, for
example, with databases that do not have extended strings enabled.

This column size cannot be larger than the limit imposed by the database (4000 or
32767).

When executing a snapshot, values longer than the maximum string size are truncated
automatically, and marked as truncated in the results display for the snapshot. All other
data (processor results and match data, for example) are not truncated and the process
fails with an ORA-01461: can bind a LONG value only for insert into a LONG
column or ORA-12899: value too large for column error, if a written value is longer
than the maximum value.

If a results table column contains long values, indexing for the column fails with an
ORA-01450: maximum key length (string) exceeded error. This is recorded in the EDQ
logs as a warning but will not cause a process to fail.

If you wish to truncate snapshot columns to a length less than the configured maximum,
set the snapshot.max.string.size in the file director.properties. For example:

snapshot.max.string.size = 3000

This is useful in avoiding the ORA-01450 errors on snapshot column indexes or if data
calculated from snapshot column may exceed the limit for results tables.

13-1



Note:

All VARCHAR columns in tables created for exports are limited to 4000
bytes. If you want to export to tables with longer columns, create the
table first before configuring the export.

• Row limit when using the xls format for Microsoft Excel - When configuring a
Microsoft Excel Data Store that uses a .xls extension, exports are limited to 65536
rows. This is because such file types support only up to this specified limit. Larger
volumes of data should always use the .csv export format, though it is also
possible to use the .xlsx format, provided there is sufficient memory.
Go through the best practice guidelines listed below for a better understanding.

• Practical row limits when using Microsoft Excel - EDQ supports direct reading
and writing of Excel files using both client-side and server-side data stores.

Follow the below best practice guidelines:

– The buttons on the Results Browser that enable easy sharing of results to
Excel are designed for sharing any results summaries (results views showing
statistics rather than data) and small samples (up to 1000 records) of data.
They should not be used to attempt to export large volumes of data as this is
very likely to breach client-side memory limits

– Always use CSV file formats for writing out large volumes of data. CSV files
can imported easily into Excel for data viewing.

– If Excel is used, specify an XLSX (not XLS) file extension, and enable the
option to always overwrite the file (stream data) on export. Files are always
streamed during snapshots (during data import). Streaming mode uses
significantly less memory when writing large XLSX files, but does not preserve
worksheets and does not support append mode.

Chapter 13

13-2



14
Backing Up and Restoring EDQ Server

This chapter provides an introduction to backing up and recovering Oracle Enterprise Data
Quality server, including backup and recovery recommendations for performing disaster
recovery.

Each EDQ server (Active/Passive/Production/DR) needs to be installed separately, i.e. has a
separate installation of the Fusion Middleware Infrastructure and (especially) the FMW
repository schemas.

Note:

For backup or restore of an EDQ server running on Tomcat, there is no FMW
Infrastructure, but each server should be installed separately.

The timezone of each EDQ server must be the same in order to ensure that the configuration
logic is identical, as the server timezone can play a role in Date/Time conversions in EDQ
processes.

Perform the following steps for backing up and restoring an instance of EDQ on Oracle
WebLogic server:

To back up an EDQ server:

1. Stop the server (to ensure the database is static).

2. Backup the EDQCONFIG schema.
It is not normally necessary or advisable to backup the EDQSTAGING or EDQRESULTS
schemas as they generally contain only temporary data that can be restored by re-
running jobs. An exception is that EDQRESULTS should be backed up, if you need to see
results (For example- in Director) of previously run jobs, for example any Results Books
that have not been exported. In this case, it is advisable to minimize the size of the
EDQRESULTS schema before backing up by purging any old projects for which results are
not required, and deleting any projects that are no longer needed (backing them up by
packaging them to DXI files first, if required).

3. Backup the files in the EDQ Local Home area, with the exception of the logs directory.

To restore an EDQ server:
For WebLogic server:

1. Stop the server.

2. Restore the EDQCONFIG schema from backup, dropping the "fresh" schema created on the
passive instance by RCU and restoring to the same database name. All other schemas,
including the EDQSTAGING and EDQRESULTS schemas, should be freshly initialized as
created by RCU, but with sufficient tablespace configured to be operational. If
EDQRESULTS was backed up, restore this as well.

3. Restore the files in the EDQ local home, with the exception of the backed up
director.properties file. Settings from this should be merged carefully on to the

14-1



restored instance, to ensure that the pointers to the EDQ databases are correct.
This means, on the Oracle WebLogic server, the configured data sources in the
domain are correct, and the director.properties file can be restored as is, with
no impact.

4. Restart the server and test by running jobs.

For Tomcat server:

1. Stop the server.

2. Restore the EDQCONFIG schema. Restore EDQRESULTS also if this was backed up.
Otherwise, create empty EDQRESULTS schema for a new installation.

3. Restore the files as above, with the exception of director.properties.

4. Ensure the two pointers to EDQCONFIG and EDQRESULTS in director.properties
are correct.

5. Restart EDQ.

Chapter 14

14-2



15
Configuring Schema Password Expiry
Warnings and Wallet Refresh

This chapter describes how to manage schema password expiry and wallet refreshes to
maintain installations that use an Oracle database for the configuration and results schemas.

This chapter contains the following topics:

• Configuring Schema Password Expiry Warnings

• Configuring Schema Password Reset

• Configuring Automatic Wallet Refresh

15.1 Configuring Schema Password Expiry Warnings
When EDQ uses an Oracle database for the configuration and results schemas, a task is run
periodically to check the password expiry time of the schema passwords. If an expiry time is
found within a defined threshold, EDQ can generate warnings.

This topic covers:

• Configuration

• Triggers

Configuration

To configure the password expiry checks and notifications use the following properties in
director.properties within the EDQ local home directory:

Property Description Default
Value

schema.password.expiry.check.in
terval

Interval between expiry checks. Value must
not be less than 60s.

Set to 0 to disable expiry checking.

1d

Valid suffixes
are d (days),
h (hours), m
(minutes), s
(seconds)

If no suffix is
specified, the
default suffix
will be d
(days).

15-1



Property Description Default
Value

schema.password.expiry.warning.
threshold

Generates warnings when the expiry time is
within this interval.

7d

Valid suffixes
are d (days),
h (hours), m
(minutes), s
(seconds)

If no suffix is
specified, the
default suffix
will be d
(days).

schema.password.expiry.warning.
frequency

Specifies the number of expiry checks after
which to generate warnings.

Use this option to limit the number of
warnings generated. For example, if you want
more frequent checks for expiry, but do not
want warnings on every check, set the
following:

schema.password.expiry.check.interv
al = 12h
schema.password.expiry.warning.freq
uency = 4
EDQ will check for password expiry every 12
hours, but generate warnings every other
day.

1

schema.password.expiry.warning.
emails

Space or comma separated list of email
addresses used by built-in trigger.

Triggers

Expiry warnings are generated by running triggers with these paths:

/schema/config/expiring
/schema/results/expiring

There is a built-in trigger that sends mails to the addresses configured with the
schema.password.expiry.warning.emails property. You can specify multiple
addresses by using commas or spaces. Specify SMTP details in mail.properties with
enabled = true for emails to be sent.

You can also define custom triggers for additional flexibility. The arguments to the
trigger are:

• label - Schema label - "config" or "results"

• user - Database username for schema

• date - Expiry time

Chapter 15
Configuring Schema Password Expiry Warnings

15-2



Here's an example that logs a message, generates a push notification, and sends an email:

addLibrary("logging")
addLibrary("webpush")
addLibrary("mail")
 
function getPath() {
 return "/schema/(config|results)/expiring"
}
 
function run(path, id, env, label, user, date) {
  logger.log(Level.INFO, "{0} [{1}] expiring {2}", label, user, date);
 
  var p = WebPush.create(`${label} schema password will expire on ${date}`)
   
  p.title = "Database password expiry warning"
  p.push()
 
  var mh  = Mail.open({enabled : true});
  var msg = mh.newMessage("Database password expiry warning")
 
  msg.text = `${label} schema password will expire on ${date}`
  msg.addTo("admin@example.com")
  msg.type = "text/plain";
  msg.send()
}

15.2 Configuring Schema Password Reset

Note:

This information is applicable to EDQ installations running on Apache Tomcat
environments only.

For EDQ running on Tomcat where the database URLs and credentials are configured in
director.properties, you can change the schema passwords in the database without the need
to edit director.properties and restart the server. You can trigger a schema password reset in
any of the following ways:

• Configuring Automatic Reset of Schema Password

• Resetting Schema Password Using REST API

• Resetting Schema Password Using a Script Library in a Trigger

This topic also covers:

• Triggers

• Clustering Considerations

• Password Strength

Chapter 15
Configuring Schema Password Reset

15-3



Configuring Automatic Reset of Schema Password

To configure automatic password reset, set the property
schema.password.auto.reset.after. This value specifies the number of times
password expiry is detected before the password is reset in the database. To disable
automatic reset, set the value to -1.

Examples
To reset the password immediately when expiry is detected by automatic checks, set
the following:

schema.password.auto.reset.after = 0
To reset the password after 5 warnings, set the following.

schema.password.auto.reset.after = 5
If schema.password.expiry.check.interval is set at one day (the default), this
setting gives the administrator five days to update the password manually before the
automatic reset occurs.

Resetting Schema Password Using REST API

To use a system administration REST API to reset the schema password, use the
following interface. Note that the user must have the system administration permission
to run this request.

POST https://server/edq/admin/schemas/setpassword
The payload to the request contains the attributes listed in the following table:

Attribute Description

label Required. Schema label. The value must be "config" or
"results".

password Required. The new password. Use "" or "%" to specify
a random password.

Resetting Schema Password Using a Script Library in a Trigger

Trigger scripts can update schema passwords using a script library. To use the library,
add this line to the top of the script:

addLibrary("schemas")
The library publishes the following constant fields:

Name Description Value

Schemas.CONFIG Internal label for config schema. config

Schemas.RESULTS Internal label for results schema. results

and an object schemas with the following method:

schemas.updatePassword(label [, password])
This updates the password for one of the schemas. label identifies the schemas and
must be set to "config" or "results". If password is omitted, a random password is used.

Chapter 15
Configuring Schema Password Reset

15-4



The following is an example that uses the expiry warning trigger:

addLibrary("schemas")
 
function getPath() {
 return "/schema/(config|results)/expiring"
}
 
function run(path, id, env, label, user, date) {
  schemas.updatePassword(label);
}

Triggers

Password reset for a schema runs triggers with these paths:

/schema/config/passwordreset
/schema/results/passwordreset

Similar to schema password expiry warnings, there is a built-in trigger that sends mails to the
addresses configured with the schema.password.expiry.warning.emails property. You can
specify multiple addresses by using commas or spaces. Specify SMTP details in
mail.properties with enabled = true for emails to be sent.

You can also define custom triggers for additional flexibility. The arguments to the trigger are:

• label - Schema label - "config" or "results"

• user - Database username for schema

• password - The new password

Note that emails that are generated by the default trigger do not include the new password.

Clustering Considerations

If EDQ is running in a cluster of Tomcat servers, the default update process assumes that the
same director.properties file is shared amongst all the servers. The internal data source
passwords are updated on all servers, but the properties are written on a single server only. If
each server has a distinct director.properties, you need to set the following:

schema.password.shared.properties = false

Password Strength

Random passwords for Oracle are constructed with a fixed length and minimum counts of
upper and lower case letters, and fixed counts of digits and special characters (-_#). The
counts can be overridden using these properties:

Property Description Default
Value

oracle.pw.length Password length. 12

oracle.pw.lower Minimum number of lower case letters. 2

oracle.pw.upper Minimum number of lower case letters. 2

oracle.pw.numeric Number of digits. 2

Chapter 15
Configuring Schema Password Reset

15-5



Property Description Default
Value

oracle.pw.special Number of special characters. 2

15.3 Configuring Automatic Wallet Refresh

Note:

This information is applicable to EDQ installations running on Apache Tomcat
environments only.

If EDQ is using an Autonomous Database instance as its repository database with
mTLS enabled, the wallet files need periodic refresh since the embedded certificates
have a limited lifetime. EDQ can be configured to refresh wallet files that are older than
a defined time.

This topic covers the following:

• Prerequisites to Configure Automatic Wallet Refresh

• Configuring Automatic Wallet Refresh

Prerequisites to Configure Automatic Wallet Refresh

To support automatic wallet refresh, you must configure the OCID of the Autonomous
Database instance using the following properties:

Property Description

dataSource.adb.ocid OCID of configuration schema database.

resultsDataSource.adb.ocid OCID of results schema database.

Additionally, the JDBC URLs must be as follows:

jdbc:oracle:thin:@service?TNS_ADMIN=/pathtowalletdirectory
If both schemas use the same database instance and the same wallet directory, set
only dataSource.adb.ocid. Do not set resultsDataSource.adb.ocid.

Configuring Automatic Wallet Refresh

To enable automatic wallet refresh, set the property
schema.wallet.refresh.interval. This is the minimum wallet age after which a
refresh is performed. The age of a wallet is determined from the modification time of
the cwallet.sso file. The property value is a duration with d/h/m/s suffixes. If no suffix is
present the value is treated as a number of days.

Examples

schema.wallet.refresh.interval = 30d
schema.wallet.refresh.interval = 60

Chapter 15
Configuring Automatic Wallet Refresh

15-6



16
Updating Database Passwords using
setpws.jar

This chapter describes how to use the setpws.jar tool to update database passwords in
director.properties. This information is applicable to Apache Tomcat environments only.

Schema passwords are often stored in an encrypted format in the director.properties file,
which can be difficult to update when schema passwords are refreshed. EDQ 12.2.1.4.3
introduces a tool called setpws.jar that you can use to update EDQ configuration with new
passwords for configuration and results schemas.

Execute the following command to see the usage summary to run the tool:

$ java -jar setpws.jar -help
Updates EDQ configuration with new passwords for configuration and results 
schemas.

Available options:

-confdir          EDQ local configuration directory.
-setdb            Update schema passwords in database.  Current passwords 
must not be expired.
-setdbadmin       Update schema passwords in database using administrator 
account.
-adminpw          Database admin/system password.  Used if -setdbadmin is 
present.
-configpw         New password for configuration schema
                    Use - to leave password unchanged.
                    Use % to generate a random password.
-resultspw        New password for results schema.
                    Use - to leave password unchanged.
                    Use % to generate a random password.

Passwords not specified on the command line can be entered interactively.
The configuration directory defaults to /opt/edq/oedq.local.home on OCI 
systems.

Here,

• -confdir is the location of the EDQ local configuration directory that contains
director.properties and kfile. On OCI systems this defaults to /opt/edq/oedq.local.home,
which is the location used in the Marketplace images.

• -setdb updates the schema passwords in the database along with other changes to
director.properties. This option can be used to refresh passwords in one step.

16-1



Note:

This option will not update schema passwords that have expired. To
change expired passwords use -setdbadmin.

• -setdbadmin updates the schema passwords in the database using an
administrator account (system or admin for Autonomous Database instances). Use
this instead of -setdb if the existing passwords have expired.

• -adminpw lets you specify the database administrator password. Use this along
with -setdbadmin. If this option is omitted, the tool prompts for the new password.

• -configpw lets you specify the new configuration schema password. If the value is
%, a random password is generated. Using random passwords with -setdb or -
setdbadmin is the simplest way to update passwords. Use - to leave the
password unchanged. If this option is omitted, the tool prompts for the new
password.

• -resultspw lets you specify the new results schema password. If this option is
omitted, the tool prompts for the new password.

For EDQ instances that are created from the Oracle Cloud Infrastructure, this tool also
refreshes wallets for Autonomous Database schemas. On such instances, run the tool
using the following command:

$ sudo -u tomcat /opt/java/bin/java -jar /opt/edq/edq/oracle.edq/
setpws.jar ...

Chapter 16

16-2



17
Using the Local Web Content Directory

EDQ 12.2.1.4.4 adds a new "local" web folder to store additional static web content to an
EDQ application installation, for example, to support the display of a custom image in a web
notification, or in an extended user application. This chapter describes how to use the local
web content directory.

The URL for files in the local area is:

http://server:port/edq/local/
This chapter contains the following topics:

• Location of the Local Web Content Directory

• Populating the Local Web Content Directory

• Examples

17.1 Location of the Local Web Content Directory
The default location for the directory containing local content is localcontent in the EDQ
"local home" configuration directory. You can set an alternative location by setting
localcontent.directory in director.properties. If the value is not an absolute location it is
interpreted as a relative path to the local configuration directory.

Examples:

localcontent.directory = /opt/EDQ/content
localcontent.directory = local/branding
If the value of localcontent.directory is empty, the local content web location is not
enabled and references to URLs within /edq/local will return a 404 response.

If the URL path is empty or refers to a directory, the server uses the index.html file. You can
specify alternative "welcome" files with the localcontent.welcome setting in
director.properties. The value is a whitespace or comma separated list of file names.

Example:

localcontent.welcome = index.htm

17.2 Populating the Local Web Content Directory
You can add files to the local content directory using any of these mechanisms:

• Normal OS copy operations
Note that the files and directories must be readable by the user running the application
server.

• The built-in EDQ sshd server, which exposes the directory with the name "localcontent".

• POST or PUT requests to http://server:port/edq/local/path

17-1



The user making the request must have the "upload files" permission. Directories
used in the path are created automatically.

17.3 Examples
A branding image in Watchlist screening:

leftbranding.imagetop    = */local/companylogo.png

Adding an image to a push notification:

var push = WebPush.create("Job complete on " + server.serverInfo.name)

push.title = "Job notification"
push.image = "local/agamemnon.jpg"
...

Chapter 17
Examples

17-2


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Using Autorun to Execute Startup Tasks
	1.1 Understanding Autorun
	1.2 Using the Autorun Chores
	1.3 Using the Autorun Scripts
	1.3.1 Examples

	1.4 Understanding the Chore and Rules Schemas
	1.4.1 Understanding the Chores Schema
	1.4.2 Understanding the Rules Schema


	2 Configuring EDQ Email Notifications
	2.1 Using SMTP to Send Email Notifications
	2.2 Configuring Email Sessions in WebLogic Administration Console
	2.3 Ensuring that Email is Configured

	3 Configuring EDQ Web Push Notifications
	3.1 Setting Up and Registering for Web Push Notifications
	3.2 Generating Web Push Notifications
	3.3 Example Trigger Script
	3.4 REST API for Web Push Notifications

	4 Configuring EDQ Case Management
	4.1 Understanding and Adding Extended Attributes
	4.1.1 Default Extended Attributes
	4.1.2 Adding New Extended Attributes

	4.2 Configuring Data Entry Validation
	4.2.1 Checking Predefined List Restrictions
	4.2.2 Checking Regular Expression Restriction

	4.3 Understanding Case Management Configuration Properties

	5 Tuning EDQ Performance
	5.1 Understanding the Properties File
	5.2 Tuning for Batch Processing
	5.3 Tuning for Real-Time Processing
	5.3.1 Tuning Batch Processing On Real-Time Systems
	5.3.2 Tuning Real-Time Thread Numbers
	5.3.3 Tuning I/O Heavy Real-Time Processes
	5.3.4 Example of Tuning Real-Time Processes

	5.4 Tuning JVM Parameters
	5.4.1 Setting the Maximum Heap Memory

	5.5 Tuning Database Parameters
	5.6 Adjusting the Client Heap Size
	5.7 Designing Fast Jobs: General Performance Options
	5.7.1 Streaming Data and Disabling Staging
	5.7.2 Minimized Results Writing
	5.7.3 Disabling Sorting and Filtering
	5.7.4 Resource-Intensive Processors

	5.8 Performance Tuning for Parsing and Matching
	5.8.1 Place Parse and Match processors in their own Processes
	5.8.2 Parsing performance options
	5.8.3 Matching performance options
	5.8.3.1 Optimized Clustering
	5.8.3.2 Disabling Sort/Filter options in Match processors
	5.8.3.3 Minimizing Output
	5.8.3.4 Streaming Inputs


	5.9 Performance Tuning for Address Verification
	5.10 What Makes Processes Slow? Common Pitfalls
	5.10.1 Poor Matching Processor Configuration
	5.10.2 Unnecessary Merge Data Streams Processors
	5.10.3 Doing Too Much in a Single Process
	5.10.4 Using the Script Processor when You Could Use a Core Processor
	5.10.5 Using Matching Processors Unnecessarily

	5.11 Tuning EDQ's Platform
	5.11.1 The Application Server and the Database Repository
	5.11.1.1 Relative Importance of the Application Server and the Database Repository
	5.11.1.2 Database Tuning

	5.11.2 Processor Cores and Process Threads
	5.11.2.1 Process Threads



	6 Using JMX Extensions to Monitor EDQ
	6.1 Understanding JMX Binding
	6.2 Understanding JMX Bean Naming
	6.2.1 Reviewing the Example

	6.3 Monitoring Real-Time Processes
	6.3.1 Monitoring the Real-Time Web Service MBeans
	6.3.2 Monitoring the Real-Time MBeans


	7 Using Triggers
	7.1 Overview of the Triggers Functionality
	7.1.1 About Predefined Triggers
	7.1.2 About Custom Triggers

	7.2 Required Skills to Use Triggers
	7.3 Storing Triggers
	7.4 Configuring Triggers Using the Script Trigger API
	7.5 Extending the Configuration of Triggers Using Properties Files
	7.6 Understanding EDQ Trigger Points
	7.7 Understanding TriggerInfo Methods
	7.8 Setting Trigger Levels
	7.9 Using JMS in Triggers
	7.10 Exposing Triggers in a Job Configuration
	7.11 Trigger Examples

	8 Using Case Management Scripting
	8.1 Overview of the Case Management Script Library
	8.1.1 casemanager object properties
	8.1.2 case bean properties
	8.1.3 case history bean properties
	8.1.4 Source Data Object properties

	8.2 Case Management Trigger Environment

	9 Using Scripting for User Cache Queries
	10 Accessing EDQ Files Remotely
	10.1 Using FTP and SFTP Server to Access EDQ Files

	11 Defining Housekeeping Rules
	11.1 For the Event Log Table
	11.2 For the Task Status Table

	12 Third-Party License Attributions
	13 Limits in EDQ
	14 Backing Up and Restoring EDQ Server
	15 Configuring Schema Password Expiry Warnings and Wallet Refresh
	15.1 Configuring Schema Password Expiry Warnings
	15.2 Configuring Schema Password Reset
	15.3 Configuring Automatic Wallet Refresh

	16 Updating Database Passwords using setpws.jar
	17 Using the Local Web Content Directory
	17.1 Location of the Local Web Content Directory
	17.2 Populating the Local Web Content Directory
	17.3 Examples


