Oracle® Fusion Middleware

Integrating Big Data with Oracle Data
Integrator

12 ¢ (12.2.1.4.0)
E95631-01
September 2019

ORACLE"

Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator, 12 ¢ (12.2.1.4.0)
E95631-01

Copyright © 2014, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience iX

Documentation Accessibility iX

Related Documents iX

Conventions X
1 Big Data Integration with Oracle Data Integrator

Overview of Hadoop Data Integration 1-1

Big Data Knowledge Modules Matrix 1-2
2 Hadoop Data Integration Concepts

Hadoop Data Integration with Oracle Data Integrator 2-1

Generate Code in Different Languages with Oracle Data Integrator 2-1

Leveraging Apache Oozie to execute Oracle Data Integrator Projects 2-2

Oozie Workflow Execution Modes 2-2

Lambda Architecture 2-3

3 Setting Up the Environment for Integrating Big Data

Configuring Big Data technologies using the Big Data Configurations Wizard 3-1
General Settings 3-3
HDFS Data Server Definition 3-4
HBase Data Server Definition 3-4
Kafka Data Server Definition 3-5
Kafka Data Server Properties 3-6

Creating and Initializing the Hadoop Data Server 3-6
Hadoop Data Server Definition 3-7
Hadoop Data Server Properties 3-8

Creating a Hadoop Physical Schema 3-17

Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs 3-17

Configuring Oracle Loader for Hadoop 3-17

ORACLE iii

Configuring Oracle Data Integrator to Connect to a Secure Cluster 3-18

Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local
Agent 3-23

4 Integrating Hadoop Data

Integrating Hadoop Data 4-1
Setting Up File Data Sources 4-2
Setting Up HDFS Data Sources 4-3
Setting Up Hive Data Sources 4-4
Setting Up HBase Data Sources 4-5
Setting Up Kafka Data Sources 4-5
Setting Up Cassandra Data Sources 4-6
Importing Hadoop Knowledge Modules 4-7
Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra
Tables, and HDFS Files 4-7
Creating a Model 4-7
Reverse-Engineering Hive Tables 4-8
Reverse-Engineering HBase Tables 4-11
Reverse-Engineering HDFS Files 4-12
Reverse-Engineering Cassandra Tables 4-13
Reverse-Engineering Support for Kafka 4-13
Password Handling in Hadoop 4-14
Loading Data from Files into Hive 4-14
Loading Data from Hive to Files 4-15
Loading Data from HBase into Hive 4-15
Loading Data from Hive into HBase 4-16
Loading Data from an SQL Database into Hive, HBase, and File using SQOOP 4-16
Loading Data from an SQL Database into Hive using SQOOP 4-17
Loading Data from an SQL Database into HDFS File using SQOOP 4-17
Loading Data from an SQL Database into HBase using SQOOP 4-18
Validating and Transforming Data Within Hive 4-18
Loading Data into an Oracle Database from Hive and File 4-19
Loading Data into an SQL Database from Hbase, Hive, and File using SQOOP 4-19
Loading Data from Kafka to Spark Processing Engine 4-20
5 Executing Oozie Workflows
Executing Oozie Workflows with Oracle Data Integrator 5-1
Setting Up and Initializing the Oozie Runtime Engine 5-1
Oozie Runtime Engine Definition 5-2
Oozie Runtime Engine Properties 5-3

ORACLE iv

Creating a Logical Oozie Engine 5-3

Executing or Deploying an Oozie Workflow 5-4
Auditing Hadoop Logs 5-4
Userlib jars support for running ODI Oozie workflows 5-5
6 Using Query Processing Engines to Generate Code in Different
Languages
Query Processing Engines Supported by Oracle Data Integrator 6-1
Setting Up Hive Data Server 6-2
Hive Data Server Definition 6-2
Hive Data Server Connection Details 6-2
Creating a Hive Physical Schema 6-3
Setting Up Pig Data Server 6-3
Pig Data Server Definition 6-4
Pig Data Server Properties 6-5
Creating a Pig Physical Schema 6-5
Setting Up Spark Data Server 6-5
Spark Data Server Definition 6-6
Spark Data Server Properties 6-6
Creating a Spark Physical Schema 6-7
Generating Code in Different Languages 6-8

7 Working with Spark

Spark Usage 7-1
Creating a Spark Mapping 7-1
Pre-requisites for handling Avro and Delimited files in Spark Mappings 7-2

Spark Design Considerations 7-3
Batch or Streaming 7-3
Resilient Distributed Datasets (RDD) or DataFrames 7-3
Infer Schema Knowledge Module Option 7-4
Expression Syntax 7-4

Spark Streaming Support 7-7
Spark Checkpointing 7-7
Spark Windowing and Stateful Aggregation 7-7
Spark Repartitioning and Caching 7-8
Configuring Streaming Support 7-9

Spark Streaming DataServer Properties 7-9
Extra Spark Streaming Data Properties 7-11
Executing Mapping in Streaming Mode 7-12

ORACLE Y

Switching between RDD and DataFrames in ODI 7-12
Components that do not support DataFrame Code Generation 7-12
Adding Customized Code in the form of a Table Function 7-13

8 Working with Unstructured Data

Working with Unstructured Data 8-1

9 Working with Complex Datatypes and HDFS File Formats

HDFS File Formats 9-1
Working with Complex Datatypes in Mappings 9-2
Hive Complex Datatypes 9-3

Using Flatten for Complex Types in Hive Mappings 9-3
Cassandra Complex Datatypes 9-5

How ODI deals with Cassandra Lists and User Defined Types 9-6
Loading Data from HDFS File to Hive 9-8
Loading Data from HDFS File to Spark 9-9

A Hive Knowledge Modules

LKM SQL to Hive SQOOP A-2
LKM SQL to File SQOOP Direct A-3
LKM SQL to HBase SQOOP Direct A-5
LKM File to SQL SQOOP A-7
LKM Hive to SQL SQOOP A-8
LKM HBase to SQL SQOOP A-10
LKM HDFS File to Hive Load Data A-11
LKM HDFS File to Hive Load Data (Direct) A-12
IKM Hive Append A-12
IKM Hive Incremental Update A-13
LKM File to Hive LOAD DATA A-13
LKM File to Hive LOAD DATA Direct A-15
LKM HBase to Hive HBASE-SERDE A-16
LKM Hive to HBase Incremental Update HBASE-SERDE Direct A-16
LKM Hive to File Direct A-17
XKM Hive Sort A-17
LKM File to Oracle OLH-OSCH A-18
LKM File to Oracle OLH-OSCH Direct A-20
LKM Hive to Oracle OLH-OSCH A-23
LKM Hive to Oracle OLH-OSCH Direct A-26
RKM Hive A-29

ORACLE vi

RKM HBase A-30
IKM File to Hive (Deprecated) A-31
LKM HBase to Hive (HBase-SerDe) [Deprecated] A-34
IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated] A-34
IKM SQL to Hive-HBase-File (SQOOP) [Deprecated] A-35
IKM Hive Control Append (Deprecated) A-37
CKM Hive A-37
IKM Hive Transform (Deprecated) A-38
IKM File-Hive to Oracle (OLH-OSCH) [Deprecated] A-40
IKM File-Hive to SQL (SQOOP) [Deprecated] A-43
B Pig Knowledge Modules
LKM File to Pig B-1
LKM Pig to File B-3
LKM HBase to Pig B-4
LKM Pig to HBase B-6
LKM Hive to Pig B-6
LKM Pig to Hive B-6
LKM SQL to Pig SQOOP B-7
XKM Pig Aggregate B-8
XKM Pig Distinct B-9
XKM Pig Expression B-9
XKM Pig Filter B-9
XKM Pig Flatten B-9
XKM Pig Join B-9
XKM Pig Lookup B-10
XKM Pig Pivot B-10
XKM Pig Set B-10
XKM Pig Sort B-10
XKM Pig Split B-10
XKM Pig Subquery Filter B-10
XKM Pig Table Function B-10
XKM Pig Unpivot B-10
C Spark Knowledge Modules
LKM File to Spark C-2
LKM Spark to File C-3
LKM Hive to Spark C-5
LKM Spark to Hive C-6

ORACLE

Vii

LKM HDFS to Spark C-7

LKM Spark to HDFS C-8
LKM Kafka to Spark C-8
LKM Spark to Kafka C-9
LKM SQL to Spark C-10
LKM Spark to SQL C-11
LKM Spark to Cassandra C-13
RKM Cassandra C-13
XKM Spark Aggregate C-13
XKM Spark Distinct C-14
XKM Spark Expression C-14
XKM Spark Filter C-14
XKM Spark Input Signature and Output Signature C-15
XKM Spark Join C-15
XKM Spark Lookup C-15
XKM Spark Pivot C-16
XKM Spark Set C-16
XKM Spark Sort C-16
XKM Spark Split C-17
XKM Spark Table Function C-17
IKM Spark Table Function C-17
XKM Spark Unpivot C-18

D Component Knowledge Modules

XKM Oracle Flatten D-1
XKM Oracle Flatten XML D-1
XKM Spark Flatten D-2
XKM Jagged D-2

E Considerations, Limitations, and Issues

Considerations, Limitations, and Issues E-1

ORACLE viii

Preface

Audience

This manual describes how to develop Big Data integration projects using Oracle Data
Integrator.

This preface contains the following topics:..

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

This document is intended for anyone interested in using Oracle Data Integrator (ODI)
to develop Big Data integration projects. It provides conceptual information about the
Big Data related features and functionality of ODI and also explains how to use the
ODI graphical user interface to create integration projects.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

ORACLE

For more information, see the following documents in the Oracle Data Integrator
Library.

* Release Notes for Oracle Data Integrator

e Understanding Oracle Data Integrator

» Developing Integration Projects with Oracle Data Integrator
e Administering Oracle Data Integrator

e Installing and Configuring Oracle Data Integrator

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/middleware/12213/odi/index.html
http://docs.oracle.com/middleware/12213/odi/index.html

Preface

* Upgrading Oracle Data Integrator
» Application Adapters Guide for Oracle Data Integrator
* Developing Knowledge Modules with Oracle Data Integrator

* Connectivity and Knowledge Modules Guide for Oracle Data Integrator
Developer's Guide

* Migrating From Oracle Warehouse Builder to Oracle Data Integrator

* Oracle Data Integrator Tools Reference

» Data Services Java API Reference for Oracle Data Integrator

* Open Tools Java API Reference for Oracle Data Integrator

* Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator
e Java API Reference for Oracle Data Integrator

* Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator

* Oracle Data Integrator 12c¢ Online Help, which is available in ODI Studio through
the JDeveloper Help Center when you press F1 or from the main menu by
selecting Help, and then Search or Table of Contents.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLSs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE X

Big Data Integration with Oracle Data
Integrator

This chapter provides an overview of Big Data integration using Oracle Data
Integrator. It also provides a compatibility matrix of the supported Big Data
technologies.

This chapter includes the following sections:

e Overview of Hadoop Data Integration

e Big Data Knowledge Modules Matrix

Overview of Hadoop Data Integration

ORACLE

Oracle Data Integrator combined with Hadoop, can be used to design the integration
flow to process huge data from non-relational data sources.

Apache Hadoop is designed to handle and process data that is typically from data
sources that are non-relational and data volumes that are beyond what is handled by
relational databases.

You can use Oracle Data Integrator to design the ‘what' of an integration flow and
assign knowledge modules to define the 'how' of the flow in an extensible range of
mechanisms. The 'how' is whether it is Oracle, Teradata, Hive, Spark, Pig, etc.

Employing familiar and easy-to-use tools and preconfigured knowledge modules
(KMs), Oracle Data Integrator lets you to do the following:

e Reverse-engineer non-relational and relational data stores like Hive, HBase, and
Cassandra.

For more information, see Creating ODI Models and Data Stores to represent
Hive, HBase and Cassandra Tables, and HDFS Files.

e Load data into Hadoop directly from Files or SQL databases.
For more information, see Integrating Hadoop Data.

e Validate and transform data within Hadoop with the ability to make the data
available in various forms such as Hive, HBase, or HDFS.

For more information, see Validating and Transforming Data Within Hive.

e Load the processed data from Hadoop into Oracle database, SQL database, or
Files.

For more information, see Integrating Hadoop Data.
e Execute integration projects as Oozie workflows on Hadoop.

For more information, see Executing Oozie Workflows with Oracle Data Integrator.
e Audit Oozie workflow execution logs from within Oracle Data Integrator.

For more information, see Auditing Hadoop Logs.

1-1

Chapter 1
Big Data Knowledge Modules Matrix

* Generate code in different languages for Hadoop, such as HiveQL, Pig Latin, or
Spark Python.

For more information, see Generating Code in Different Languages

Big Data Knowledge Modules Matrix

Big Data Knowledge Modules Matrix depicts the Big Data Loading and Integration
KMs that are provided by Oracle Data Integrator.

Depending on the source and target technologies, you can use the KMs shown in the
following table in your integration projects. You can also use a combination of these
KMs. For example, to read data from SQL into Spark, you can load the data from SQL
into Spark first using LKM SQL to Spark, and then use LKM Spark to HDFSto
continue.

The Big Data knowledge modules that start with LKM File for example, LKM File to
SQL SQOOP support both OS File and HDFS File, as described in this matrix. We
provide additional KMs, starting with LKM HDFS to Spark, LKM HDFS File to Hive.
These support HDFS files only, unlike the other KMs, however, they have additional
capabilities, for example, Complex Data can be described in an HDFS data store and
used in a mapping using the flatten component.

The following table shows the Big Data Loading and Integration KMs that Oracle Data
Integrator provides to integrate data between different source and target technologies.

Table 1-1 Big Data Loading and Integration Knowledge Modules
|

Source Target Knowledge Module

OS File HDFS File NA
Hive LKM File to Hive LOAD DATA Direct
HBase NA
Pig LKM File to Pig
Spark LKM File to Spark

SQL HDFS File LKM SQL to File SQOOP Direct
Hive LKM SQL to Hive SQOOP
HBase LKM SQL to HBase SQOOP Direct
Pig LKM SQL to Pig SQOOP
Spark LKM SQL to Spark

HDFS Kafka NA

HDFS Spark LKM HDFS to Spark

HDFS File OS File NA
SQL LKM File to SQL SQOOP

LKM File to Oracle OLH-OSCH Direct
HDFS File NA

Hive LKM File to Hive LOAD DATA Direct
LKM HDFS File to Hive Load Data
LKM HDFS File to Hive Load Data (Direct)

HBase NA

ORACLE 1-2

Chapter 1
Big Data Knowledge Modules Matrix

Table 1-1 (Cont.) Big Data Loading and Integration Knowledge Modules

Source Target Knowledge Module
Pig LKM File to Pig
Spark LKM HDFS to Spark
Hive OS File LKM Hive to File Direct
SQL LKM Hive to SQL SQOOP
LKM Hive to Oracle OLH-OSCH Direct
HDFS File LKM Hive to File Direct
Hive IKM Hive Append
IKM Hive Incremental Update
HBase LKM Hive to HBase Incremental Update HBASE-SERDE Direct
Pig LKM Hive to Pig
Spark LKM Hive to Spark
HBase OS File NA
SQL LKM HBase to SQL SQOOP
HDFS File NA
Hive LKM HBase to Hive HBASE-SERDE
HBase NA
Pig LKM HBase to Pig
Spark NA
Pig OS File LKM Pig to File
HDFS File LKM Pig to File
Hive LKM Pig to Hive
HBase LKM Pig to HBase
Pig NA
Spark NA
Spark OS File LKM Spark to File
SQL LKM Spark to SQL
HDFS File LKM Spark to File
LKM Spark to HDFS
Hive LKM Spark to Hive
HBase NA
Pig NA
Spark IKM Spark Table Function
Kafka LKM Spark to Kafka
Cassandra LKM Spark to Cassandra

The following table shows the Big Data Reverse Engineering KMs provided by ODI.

ORACLE

1-3

ORACLE

Chapter 1
Big Data Knowledge Modules Matrix

Table 1-2 Big Data Reverse-Engineering Knowledge Modules

Technology Knowledge Module
HBase RKM HBase

Hive RKM Hive
Cassandra RKM Cassandra

1-4

Hadoop Data Integration Concepts

The chapter provides an introduction to the basic concepts of Hadoop Data integration
using Oracle Data Integrator.
This chapter includes the following sections:

e Hadoop Data Integration with Oracle Data Integrator

e Generate Code in Different Languages with Oracle Data Integrator

e Leveraging Apache Oozie to execute Oracle Data Integrator Projects
* Oozie Workflow Execution Modes

e Lambda Architecture

Hadoop Data Integration with Oracle Data Integrator

When you implement a big data processing scenario, the first step is to load the data
into Hadoop. The data source is typically in Files or SQL databases.

When the data has been aggregated, condensed, or processed into a smaller data set,
you can load it into an Oracle database, other relational database, HDFS, HBase, or
Hive for further processing and analysis. Oracle Loader for Hadoop is recommended
for optimal loading into an Oracle database.

After the data is loaded, you can validate and transform it by using Hive, Pig, or Spark,
like you use SQL. You can perform data validation (such as checking for NULLS and
primary keys), and transformations (such as filtering, aggregations, set operations, and
derived tables). You can also include customized procedural snippets (scripts) for
processing the data.

A Kafka cluster consists of one to many Kafka brokers handling and storing messages.
Messages are organized into topics and physically broken down into topic partitions.
Kafka producers connect to a cluster and feed messages into a topic. Kafka
consumers connect to a cluster and receive messages from a topic. All messages on a
specific topic need not have the same message format, it is a good practice to use
only a single message format per topic. Kafka is integrated into ODI as a new
technology.

For more information, see Integrating Hadoop Data .

Generate Code in Different Languages with Oracle Data

Integrator

ORACLE

Oracle Data Integrator can generate code for multiple languages. For Big Data, this
includes HiveQL, Pig Latin, Spark RDD, and Spark DataFrames.

The style of code is primarily determined by the choice of the data server used for the
staging location of the mapping.

2-1

Chapter 2
Leveraging Apache Oozie to execute Oracle Data Integrator Projects

It is recommended to run Spark applications on yarn. Following this recommendation
ODI only supports yarn-client and yarn-cluster mode execution and has introduced a
run-time check.

In case you are using any other Spark deployment modes, which is not supported in
ODI, the following dataserver property must be added to the Spark dataserver:

odi . spar k. enabl eUnsuppor t edSpar kMbdes = true

For more information about generating code in different languages and the Pig and
Spark component KMs, see the following:

* Pig Knowledge Modules .
* Spark Knowledge Modules .

» Using Query Processing Engines to Generate Code in Different Languages.

Leveraging Apache Oozie to execute Oracle Data Integrator

Projects

Apache Oozie is a workflow scheduler system that helps you orchestrate actions in
Hadoop. It is a server-based Workflow Engine specialized in running workflow jobs
with actions that run Hadoop MapReduce jobs.

Implementing and running Oozie workflow requires in-depth knowledge of Oozie.

However, Oracle Data Integrator does not require you to be an Oozie expert. With
Oracle Data Integrator you can easily define and execute Oozie workflows.

Oracle Data Integrator enables automatic generation of an Oozie workflow definition
by executing an integration project (package, procedure, mapping, or scenario) on an
Oozie engine. The generated Oozie workflow definition is deployed and executed into
an Oozie workflow system. You can also choose to only deploy the Oozie workflow to
validate its content or execute it at a later time.

Information from the Oozie logs is captured and stored in the ODI repository along with
links to the Oozie Uls. This information is available for viewing within ODI Operator
and Console.

For more information, see Executing Oozie Workflows.

Oozie Workflow Execution Modes

ORACLE

You can execute Oozie workflows through Task and Session modes. Task mode is the
default mode for Oozie workflow execution.

ODI provides the following two modes for executing the Oozie workflows:
e TASK

Task mode generates an Oozie action for every ODI task. This is the default
mode.

The task mode cannot handle the following:

— KMs with scripting code that spans across multiple tasks.

2-2

Chapter 2
Lambda Architecture

— KMs with transactions.
— KMs with file system access that cannot span file access across tasks.
— ODI packages with looping constructs.
+ SESSION
Session mode generates an Oozie action for the entire session.
ODI automatically uses this mode if any of the following conditions is true:
— Any task opens a transactional connection.
— Any task has scripting.
— A package contains loops.

Loops in a package are not supported by Oozie engines and may not function
properly in terms of execution and/or session log content retrieval, even when
running in SESSION mode.

Note:

This mode is recommended for most of the use cases.

By default, the Oozie Runtime Engines use the Task mode, that is, the default value of
the OOZI E_WF_GEN_MAX_DETAI L property for the Oozie Runtime Engines is TASK.

You can configure an Oozie Runtime Engine to use Session mode, irrespective of
whether the conditions mentioned above are satisfied or not. To force an Oozie
Runtime Engine to generate session level Oozie workflows, set the

OQzZI E_WF_GEN_MAX_DETAI L property for the Oozie Runtime Engine to SESSION.

For more information, see Oozie Runtime Engine Properties.

Lambda Architecture

ORACLE

Lambda architecture is a data-processing architecture designed to handle massive
guantities of data by taking advantage of both batch and stream processing methods.

Lambda architecture has the following layers:

1. Batch Layer: In this layer, fresh data is loaded into the system at regular intervals
with perfect accuracy containing complete detail. New data is processed with all
available data when generating views.

2. Speed Layer: In this layer, real-time data is streamed into the system for
immediate availability at the expense of total completeness (which is resolved in
the next Batch run).

3. Serving Layer: In this layer, views are built to join the data from the Batch and
Speed layers.

With ODI Mappings, you can create a single Logical Mapping for which you can
provide multiple Physical Mappings. This is ideal for implementing Lambda
Architecture with ODI.

2-3

Logical Mapping

Chapter 2
Lambda Architecture

In the following figure, the ACT datastore is defined as a Generic data store. The same
applies to the TRG node. These can be created by copying and pasting from a
reverse-engineered data store with the required attributes.

Figure 2-1 Logical Mapping in Lambda Architecture

(=] ACT

visitorld
8= sessionld =

custamerld L
date_time
activityType =
destination
cliemCountry
channel =
hoteltd

starCategery -

checkin

travelType
amountPayable L
bookingld

-

CUST
CUSTOMER_ID =
NAME
CENDER
PROFESSION
ADDRESE_ID
ANNUAL_INCOME
FREQUENT_FLYER
EMAILID 3
ACE = 5
LOOKUP

Fo

FILTER

FFNIN

B3R B

EXPRESSION
loyalty_progrz
ne_nen_prem)
no_nen_prem

[¥ ¥ 1)

no_premium_ uh
no_premium_
sessionid
boaking_amoi =
channel =

customerid m

BFFSERD

AGGREGATE
customer_id =
session_id L

age L
booking_am o =
channel L

loyalty_progrz s |-

no_non_prem B
no_nen_prem B
no_premium_ o
no_prem ium_ m

IR Y

customer_id
session_id

age
booking_amount
channel
Ioyalty_programs_e
MO_non_premium_c
mo_non_premium_c
no_premium_class_
no_premium_class_

Batch Physical Mapping

As seen in the figure below, for Batch Physical Mapping, ACT has a File Data Store
and TRG_1 has a Hive Data Store.

Figure 2-2 Batch Physical Mapping in Lambda Architecture

FFOURCE CROUP_L
< Oracle___SRCI_UHNI
B |

CUST

- FILE_SPAR.}S__HDFS_II\

ACT

(7%
®
)
E s
T acT AP FILTER
F Y :—| Y
CUST_AP

TARGET_GROUP_1

Hive__ DWH1_UNIT

:-;',n‘ = = "3 » [
~ LoOKUP EXPRESSION AGGREGATE TRG_1

Streaming Physical Mapping

As seen in the figure below, Streaming Physical Mapping has a Kafka Data Store for
ACT and a Cassandra Data Store for TRG.

ORACLE

2-4

Chapter 2
Lambda Architecture

Figure 2-3 Streaming Physical Mapping in Lambda Architecture

E?SOURCE_CROUP_l

% Kafka__SRCL_UNIT ol TS
== 1 i Spark_Yarn_Client_Default_UNIT ¥ TARGET_GROUP_1
T ssandra___SRCI_UNIT
ACT e RETZ (]
ACT_AP FILTER MEA—E
3 M=l Iy l—1T
ey RN L AGGREGA TRG
% Oracle__SRCLUNF ~ Lookup EXPRESSION AGGREGATE
el
el CUST_AP
cusT

Any changes made to the logical mapping will be synced to each physical mapping,
thus reducing the complexity of Lambda architecture implementations.

ORACLE 2-5

Setting Up the Environment for Integrating
Big Data

This chapter provides information on the steps you need to perform to set up the
environment to integrate Big Data.
This chapter includes the following sections:

e Configuring Big Data technologies using the Big Data Configurations Wizard
e Creating and Initializing the Hadoop Data Server

e Creating a Hadoop Physical Schema

e Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs

e Configuring Oracle Loader for Hadoop

e Configuring Oracle Data Integrator to Connect to a Secure Cluster

e Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local
Agent

Configuring Big Data technologies using the Big Data
Configurations Wizard

The Big Data Configurations wizard provides a single entry point to set up multiple
Hadoop technologies. You can quickly create data servers, physical schema, logical
schema, and set a context for different Hadoop technologies such as Hadoop File
System or HDFS, HBase, Oozie, Spark, Hive, Pig, etc

The default metadata for different distributions, such as properties, host names, port
numbers, etc., and default values for environment variables are pre-populated for you.
This helps you to easily create the data servers along with the physical and logical
schema, without having in-depth knowledge about these technologies.

After all the technologies are configured, you can validate the settings against the data
servers to test the connection status.

" Note:

If you do not want to use the Big Data Configurations wizard, you can set
up the data servers for the Big Data technologies manually using the
information mentioned in the subsequent sections.

To run the Big Data Configurations Wizard:

1. In ODI Studio, select File and click New... or

Select Topology tab — Topology Menu — Big Data Configurations.

ORACLE 3-1

ORACLE

10.

11.
12.

Chapter 3
Configuring Big Data technologies using the Big Data Configurations Wizard

In the New Gallery dialog, select Big Data Configurations and click OK.
The Big Data Configurations wizard appears.

In the General Settings panel of the wizard, specify the required options.
See General Settings for more information.

Click Next.

Data server panel for each of the technologies you selected in the General
Settings panel will be displayed.

In the Hadoop panel of the wizard, do the following:
* Specify the options required to create the Hadoop data server.
See Hadoop Data Server Definition for more information.
* In Properties section, click the + icon to add any data server properties.

» Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

Click Next.
In the HDFS panel of the wizard, do the following:
* Specify the options required to create the HDFS data server.
See HDFS Data Server Definition for more information.
* Inthe Properties section, click + icon to add any data server properties.

» Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

Click Next.
In the HBase panel of the wizard, do the following:
* Specify the options required to create the HBase data server.
See HBase Data Server Definition for more information.
* Inthe Properties section, click + icon to add any data server properties.

» Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

In the Spark panel of the wizard, do the following:
» Specify the options required to create the Spark data server.
See Spark Data Server Definition for more information.
* Inthe Properties section, click + icon to add any data server properties.

» Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

Click Next.

In the Kafka panel of the wizard, do the following:

* Specify the options required to create the Kafka data server.
See Kafka Data Server Definition for more information.

* Inthe Properties section, click + icon to add any data server properties.

3-2

13.
14.

15.
16.

17.
18.

19.
20.

21.

Chapter 3
Configuring Big Data technologies using the Big Data Configurations Wizard

» Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

Click Next.
In the Pig panel of the wizard, do the following:
» Specify the options required to create the Pig data server.
See Pig Data Server Definition for more information.
* Inthe Properties section, click + icon to add any data server properties.

» Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

Click Next.
In the Hive panel of the wizard, do the following:
» Specify the options required to create the Hive data server.
See Hive Data Server Definition for more information.
* Inthe Properties section, click + icon to add any data server properties.

» Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

Click Next.
In the Oozie panel of the wizard, do the following:
» Specify the options required to create the Oozie run-time engine.
See Oozie Runtime Engine Definition for more information.
* Under Properties section, review the data server properties that are listed.

Note: You cannot add new properties or remove listed properties. However, if
required, you can change the value of listed properties.

See Oozie Runtime Engine Properties for more information.

» Select an existing logical agent and context or enter new names for the logical
agent and context.

Click Next.

In the Validate all settings panel, click Validate All Settings to initialize
operations and validate the settings against the data servers to ensure the
connection status.

Click Finish.

General Settings

The following table describes the options that you need to set on the General
Settings panel of the Big Data Configurations wizard.

ORACLE

Table 3-1 General Settings Options

__|
Option Description

Prefix Specify a prefix. This prefix is attached to the data server name,

logical schema name, and physical schema name.

3-3

Chapter 3
Configuring Big Data technologies using the Big Data Configurations Wizard

Table 3-1 (Cont.) General Settings Options

Option Description

Distribution Select a distribution, either Manual or Cloudera Distribution
for Hadoop (CDH) <version>.

Base Directory Specify the directory location where CDH is installed. This base
directory is automatically populated in all other panels of the
wizard.

Note: This option appears only if the distribution is other than
Manual.
Distribution Type Select a distribution type, either Normal or Kerberized.
Technologies Select the technologies that you want to configure.

Note: Data server creation panels are displayed only for the
selected technologies.

Configuring Big Data technologies using the Big Data Configurations Wizard.

HDFS Data Server Definition

The following table describes the options that you must specify to create a HDFS data
server.

" Note:

Only the fields required or specific for defining a HDFS data server are
described.

Table 3-2 HDFS Data Server Definition
]

Option Description

Name Type a name for the data server. This name appears in Oracle Data
Integrator.

User/Password HDFS currently does not implement User/Password security. Leave

this option blank.

Hadoop Data Server Hadoop data server that you want to associate with the HDFS data
server.

Additional Classpath Specify additional jar files to the classpath if needed.

HBase Data Server Definition

ORACLE

The following table describes the options that you must specify to create an HBase
data server.

Note: Only the fields required or specific for defining a HBase data server are
described.

3-4

Chapter 3
Configuring Big Data technologies using the Big Data Configurations Wizard

Table 3-3 HBase Data Server Definition
]

Option Description

Name Type a name for the data server. This name appears in Oracle
Data Integrator.

HBase Quorum ZooKeeper Quorum address in hbase-site.xml . For example,
| ocal host: 2181.

User/Password HBase currently does not implement User/Password security.
Leave these fields blank.

Hadoop Data Server Hadoop data server that you want to associate with the HBase
data server.

Additional Classpath Specify any additional classes/jar files to be added.
The following classpath entries will be built by the Base Directory
value:

e [usr/liblhbase/*
e Jusr/libl/hbase/lib

Configuring Big Data technologies using the Big Data Configurations Wizard.

Kafka Data Server Definition

The following table describes the options that you must specify to create a Kafka data
server.

Note:

Only the fields required or specific for defining a Kafka data server are
described.

Table 3-4 Kafka Data Server Definition
]

Option Description
Name Type a name for the data server.
User/Password User name with its password.

Hadoop Data Server Hadoop data server that you want to associate with the Kafka data
server.

If Kafka is not running on the Hadoop server, then there is no need to
specify a Hadoop Data Server. This option is useful when Kafka runs
on its own server.

ORACLE 3-5

Chapter 3
Creating and Initializing the Hadoop Data Server

Table 3-4 (Cont.) Kafka Data Server Definition

Option

Description

Additional Classpath Specify any additional classes/jar files to be added.

The following classpath entries will be built by the Base Directory
value:

* [opt/clouderal/parcel s/ COH |i b/ kafka/libs/*
If required, you can add more additional classpaths.

If Kafka is not running on the Hadoop server, then specify the
absolute path of Kafka libraries in this field.

Note:

This field appears only when you are
creating the Kafka Data Server using
the Big Data Configuration wizard.

Kafka Data Server Properties

The following table describes the Kafka data server properties that you need to add on
the Properties tab when creating a new Kafka data server.

Table 3-5 Kafka Data Server Properties

Key

Value

metadata.broker.li
st

This is a comma separated list of Kafka metadata brokers. Each broker is
defined by host name: port . The list of brokers can be found in the
server. properti es file, typically located in / et ¢/ kaf ka/ conf .

oracle.odi.prefer.d
ataserver.package
s

Retrieves the topic and message from Kafka server. The address is
scala, kafka, oracle.odi.kafka.client.api.impl, org.apache.log4j.

security.protocol

Protocol used to communicate with brokers. Valid values are:
PLAINTEXT, SSL, SASL_PLAINTEXT, and SASL_SSL.

zookeeper.connec
t

Specifies the ZooKeeper connection string in the form host nane: port,
where host and port are the host and port of a ZooKeeper server. To
allow connecting through other ZooKeeper nodes when a ZooKeeper
machine is down you can also specify multiple hosts in the form

host namel: port 1, host name2: port 2, host name3: port 3.

Creating and Initializing the Hadoop Data Server

Configure the Hadoop Data Server Definitions and Properties, to create and initialize
Hadoop Data Server.

ORACLE

To create and initialize the Hadoop data server:

1. Click the Topology tab.

3-6

Chapter 3
Creating and Initializing the Hadoop Data Server

2. In the Physical Architecture tree, under Technologies, right-click Hadoop and then

click New Data Server.

3. In the Definition tab, specify the details of the Hadoop data server.

See Hadoop Data Server Definition for more information.

4. In the Properties tab, specify the properties for the Hadoop data server.

See Hadoop Data Server Properties for more information.

5. Click Initialize to initialize the Hadoop data server.

Initializing the Hadoop data server creates the structure of the ODI Master
repository and Work repository in HDFS.

6. Click Test Connection to test the connection to the Hadoop data server.

Hadoop Data Server Definition

The following table describes the fields that you must specify on the Definition tab
when creating a new Hadoop data server.

Note: Only the fields required or specific for defining a Hadoop data server are

described.

Table 3-6 Hadoop Data Server Definition
|

Field

Description

Name
Data Server

User/Password

Authentication Method

HDFS Node Name URI

Resource Manager/Job
Tracker URI

ORACLE

Name of the data server that appears in Oracle Data Integrator.
Physical name of the data server.

Hadoop user with its password.

If password is not provided, only simple authentication is
performed using the username on HDFS and Oozie.

Select one of the following authentication methods:

e Simple Username Authentication (unsecured)

* Kerberos Principal Username/Password (secured)
e Kerberos Credential Ticket Cache (secured)

< Note:

The following link helps determine
if the Hadoop cluster is secured:

https://www.cloudera.com/
documentation/cdh/5-0-x/CDH5-
Security-Guide/
cdh5sg_hadoop_security_enable.h
tml

URI of the HDFS node name.
hdfs://1ocal host: 8020

URI of the resource manager or the job tracker.
| ocal host : 8032

3-7

https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hadoop_security_enable.html
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hadoop_security_enable.html
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hadoop_security_enable.html
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hadoop_security_enable.html
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hadoop_security_enable.html

Chapter 3
Creating and Initializing the Hadoop Data Server

Table 3-6 (Cont.) Hadoop Data Server Definition

__|
Field Description

ODI HDFS Root Path of the ODI HDFS root directory.
[user/ <l ogi n_user name>/ odi _hone.

Additional Class Path Specify additional classpaths.
Add the following additional classpaths:
e Jusr/liblhadoop/*
e Jusr/lib/hadoop/client/*
e Jusr/lib/hadoop/lib/*
e [usr/lib/hadoop- hdfs/*
e [usr/lib/hadoop- mapreduce/ *
* [usr/lib/hadoop-yarn/*
e Jusr/libl/hbasellib/*
e Jusr/lib/hivellib/*
* Jusr/liblooziellib/*
* [etc/hadoop/ conf/
* [etc/hbase/conf
» [etc/hive/conf
* lopt/oracle/orahdfs/jlib/*

Creating and Initializing the Hadoop Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard.

Hadoop Data Server Properties

The following table describes the properties that you can configure in the Properties
tab when defining a new Hadoop data server.

Note:

By default, only the or acl e. odi . pref er. dat aser ver. packages property is
displayed. Click the + icon to add the other properties manually.

These properties can be inherited by other Hadoop technologies, such as
Hive or HDFS. To inherit these properties, you must select the configured
Hadoop data server when creating data server for other Hadoop
technologies.

Table 3-7 Hadoop Data Server Properties Mandatory for Hadoop and Hive

|
Property Group Property Description/Value

General HADOOP_HOME Location of Hadoop dir. For
example, / usr/1i b/ hadoop

ORACLE 3-8

ORACLE

Chapter 3

Creating and Initializing the Hadoop Data Server

Table 3-7 (Cont.) Hadoop Data Server Properties Mandatory for Hadoop and

Hive

Property Group

Property

Description/Value

User Defined

Hive

User Defined

General

General

HADOOP_CONF

HIVE_HOME

HIVE_CONF

HADOOP_CLASSPATH

HADOOP_CLIENT_OPTS

Location of Hadoop
configuration files such as
core-default.xml, core-site.xml,
and hdfs-site.xml. For
example, / hone/ shar ed/
hadoop- conf

Location of Hive dir. For
example, /usr/1i b/ hive

Location of Hive configuration
files such as hive-site.xml. For
example, / hone/ shar ed/

hi ve- conf

$HI VE_HOVE/ | i b/ hi ve-
met ast or e-

*. jar: $H VE_HOVE | i b/
libthrift-

*.jar:$H VE_HOWE/ i b/
l'ibfb*.jar:$H VE_HOVE |
i b/ hi ve-exec-

*. jar: $H VE_CONF

- Dl og4j . debug -

Dhadoop. root . | ogger =I NF
O consol e -

Dl og4j . configuration=fi
| e:/etc/hadoop/

conf. cl oudera. yarn/

| og4j . properties

3-9

ORACLE

Chapter 3
Creating and Initializing the Hadoop Data Server

Table 3-7 (Cont.) Hadoop Data Server Properties Mandatory for Hadoop and
Hive

___|
Property Group Property Description/Value

Hive HIVE_SESSION_JARS $H VE_HOME/ | i b/ hi ve-
contrib-*.jar:<QODl
library directory>/
w hive. jar

e Actual path of
w hi ve.jar can be
determined under ODI
installation home.

. Include other JAR files as
required, such as custom
SerDes JAR files. These
JAR files are added to
every Hive JDBC session
and thus are added to
every Hive MapReduce
job.

e List of JARs is separated
by ":", wildcards in file
names must not evaluate
to more than one file.

* Follow the steps for
Hadoop Security models,
such as Apache Sentry,
to allow the Hive ADD
JAR call used inside ODI
Hive KMs:

— Define the
environment variable
HIVE_SESSION_JA
RS as empty.

— Add all required jars
for Hive in the global
Hive configuration
hive-site.xml.

Table 3-8 Hadoop Data Server Properties Mandatory for HBase (In addition to
base Hadoop and Hive Properties)
|
Property Group Property Description/Value
HBase HBASE_HOME Location of HBase dir. For
example, / usr/1i b/ hbase
General HADOOP_CLASSPATH $HBASE_HOME/ | i b/ hbase-
*.jar:$H VE_HOWE/ i b/
hi ve- hbase-
handl er*. j ar: $HBASE_HOM
E/ hbase. j ar

3-10

Chapter 3
Creating and Initializing the Hadoop Data Server

Table 3-8 (Cont.) Hadoop Data Server Properties Mandatory for HBase (In
addition to base Hadoop and Hive Properties)

___|
Property Group Property Description/Value

Hive HIVE_SESSION_JARS $HBASE_HOVE/
hbase. j ar : $HBASE_HOWE/ |
i b/ hbase- sep- api -
*.jar: $HBASE_HOVE/ | i b/
hbase- sep-i npl -
hbase. j ar: / $HBASE HOM
E/I'i b/ hbase- sep-i npl -
conmon-
*.jar:/$HBASE HOWE/ | b/
hbase- sep-t ool s-
*.jar:$H VE_HOW/ |i b/
hi ve- hbase- handl er -
* jar

4N
o
t

CODPDUMT OO0OQY T-O PTLT O® WO TSSO =0T

ORACLE 3-11

Chapter 3
Creating and Initializing the Hadoop Data Server

Table 3-8 (Cont.) Hadoop Data Server Properties Mandatory for HBase (In
addition to base Hadoop and Hive Properties)

___|
Property Group Property Description/Value

4

W —d oo 3< o

LK ST TS ONO®SO0YWT >V TOC O

C =920 PPCgUPDP< "TIO®DTFTSO =90 -

ORACLE 3-12

ORACLE

Chapter 3
Creating and Initializing the Hadoop Data Server

Table 3-8 (Cont.) Hadoop Data Server Properties Mandatory for HBase (In
addition to base Hadoop and Hive Properties)

___|
Property Group Property Description/Value

4

WZRO TI—QODPL— VS —Qdon

<_I('D_CTQ)_'“Q><""3('DBDO“_'<DCD(DD""'('DD_'_"('DU

3-13

ORACLE

Chapter 3
Creating and Initializing the Hadoop Data Server

Table 3-8 (Cont.) Hadoop Data Server Properties Mandatory for HBase (In
addition to base Hadoop and Hive Properties)

___|
Property Group Property Description/Value

m

ZO0 - unwunmuwnl

<~"T 300D NI

SHSTO< TS OO ST QO TCcOo T T Tooa)

3-14

Chapter 3
Creating and Initializing the Hadoop Data Server

Table 3-8 (Cont.) Hadoop Data Server Properties Mandatory for HBase (In
addition to base Hadoop and Hive Properties)

___|
Property Group Property Description/Value

4

Table 3-9 Hadoop Data Server Properties Mandatory for Oracle Loader for
Hadoop (In addition to base Hadoop and Hive properties)
|
Property Group Property Description/Value
OLH/OSCH OLH_HOME Location of OLH installation.

For example, / u01/
connectors/ol h

ORACLE 3-15

O~ —un ' 0O< TSSO T -STCcCQ TS OO0 TIT T TO QO

-3 x -

Chapter 3
Creating and Initializing the Hadoop Data Server

Table 3-9 (Cont.) Hadoop Data Server Properties Mandatory for Oracle Loader
for Hadoop (In addition to base Hadoop and Hive properties)

Property Group Property Description/Value
OLH/OSCH OLH_FILES usr/lib/hivelliblhive-
contrib-1.1.0-
cdh5.5. 1. jar
OLH/OSCH ODCH_HOME Location of OSCH installation.

For example, / u01/
connect or s/ osch

General HADOOP_CLASSPATH $OLH HOVE/ j |i b/
*: $OSCH HOVE/ j I i b/ *
OLH/OSCH OLH_JARS Comma-separated list of all

JAR files required for custom
input formats, Hive, Hive
SerDes, and so forth, used by
Oracle Loader for Hadoop. All
filenames have to be
expanded without wildcards.

For example:

$HI VE_HOVE/ |i b/ hi ve-

met ast ore- 0. 10. 0-
cdh4.5.0.jar, $H VE_HOME
[lib/libthrift-0.9.0-
cdh4-1.jar, $H VE_HOWH |
i b/ 1ibfb303-0.9.0.jar

OLH/OSCH OLH_SHAREDLIBS $OLH HOVE/ i b/

(deprecated) l'ibol h12. so, $OLH HOVE/ |
i b/libclntsh. so.
12.1, $OLH HOVE/ 1i b/
libnnzl2. so, $OLH HOVE/ |
i b/
l'i boci ei . so, $OLH_HOVHE/ |
i b/libclntshcore. so.
12.1, $OLH HOVE/ |'i b/
l'i bons. so

Table 3-10 Hadoop Data Server Properties Mandatory for SQOOP (In addition
to base Hadoop and Hive properties)

Property Group Property Description/Value

SQOOP SQOOP_HOME Location of Sqoop directory.
For example, /usr/lib/
sqgoop

SQOOP SQOOP_LIBJARS Location of the SQOOP library
jars. For example, usr/ i b/
hi ve/ li b/ hi ve-
contrib.jar

Creating and Initializing the Hadoop Data Server

ORACLE 3-16

Chapter 3
Creating a Hadoop Physical Schema

Creating a Hadoop Physical Schema

To create a physical schema for Hadoop, first create a logical schema for the same
using the standard procedure.

Create a Hadoop physical schema using the standard procedure, as described in the
Creating a Physical Schema section in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in the Creating a Logical Schema section in Administering Oracle Data
Integrator and associate it in a given context.

Configuring the Oracle Data Integrator Agent to Execute
Hadoop Jobs

You must configure the Oracle Data Integrator agent to execute Hadoop jobs.

For information on creating a physical agent, see the Creating a Physical Agent
section in Administering Oracle Data Integrator.

To configure the Oracle Data Integrator agent:

1. If the ODI agent is not installed on one of the Hadoop Cluster nodes, then you
must install the Hadoop Client libraries on that computer.

For instructions on setting up a remote Hadoop client in Oracle Big Data
Appliance, see the Providing Remote Client Access to CDH section in the Oracle
Big Data Appliance Software User's Guide .

2. Install Hive on your Oracle Data Integrator agent computer.
3. Install SQOOP on your Oracle Data Integrator agent computer.
4. Set the base properties for Hadoop and Hive on your ODI agent computer.

These properties must be added as Hadoop data server properties. For more
information, see Hadoop Data Server Properties.

5. If you plan to use HBase features, set the properties on your ODI agent computer.
You must set these properties in addition to the base Hadoop and Hive properties.

These properties must be added as Hadoop data server properties. For more
information, see Hadoop Data Server Properties.

Configuring Oracle Loader for Hadoop

ORACLE

If you want to use Oracle Loader for Hadoop, you must install and configure Oracle
Loader for Hadoop on your Oracle Data Integrator agent computer.

Oracle Loader for Hadoop is an efficient and high-performance loader for fast loading
of data from a Hadoop cluster into a table in an Oracle database.

To install and configure Oracle Loader for Hadoop:

1. Install Oracle Loader for Hadoop on your Oracle Data Integrator agent computer.

3-17

Chapter 3
Configuring Oracle Data Integrator to Connect to a Secure Cluster

See the Installing Oracle Loader for Hadoop section in Oracle Big Data
Connectors User's Guide.

To use Oracle SQL Connector for HDFS (OLH_CUTPUT_MODE=DP_OSCH or OSCH), you
must first install it.

See the Oracle SQL Connector for Hadoop Distributed File System Setup section
in Oracle Big Data Connectors User's Guide.

Set the properties for Oracle Loader for Hadoop on your ODI agent computer. You
must set these properties in addition to the base Hadoop and Hive properties.

These properties must be added as Hadoop data server properties. For more
information, see Hadoop Data Server Properties.

Configuring Oracle Data Integrator to Connect to a Secure

Cluster

ORACLE

To run the Oracle Data Integrator agent on a Hadoop cluster that is protected by
Kerberos authentication, you must configure a Kerberos-secured cluster.

To use a Kerberos-secured cluster:

1.

Log in to the node of the Oracle Big Data Appliance, where the Oracle Data
Integrator agent runs.

Set the environment variables by using the following commands. The user name in
the following example is oracle. Substitute the appropriate values for your
appliance:

$ export KRBSCCNAME=Ker beros-ti cket-cache-directory
$ export KRB5_CONFI G=Ker ber os-configuration-file

$ export HADOOP_OPTS="$HADOOP_OPTS -

D avax. xm . par sers. Docunent Bui | der Fact or y=com sun. or g. apache. xerces.in
ternal . jaxp.Document Buil der Fact oryl npl

O ava. security. krb5. conf =Ker ber os- confi guration-file"

In this example, the configuration files are named krb5* and are located in /tmp/
oracle_krb/:

$ export KRB5CCNAME=/t np/ or acl e_kr b/ krb5cc_1000
$ export KRB5_CONFI G=/t mp/ oracl e_kr b/ krb5. conf

$ export HADOOP_OPTS="$HADOOP_OPTS -

D avax. xm . par sers. Docunent Bui | der Fact or y=com sun. or g. apache. xerces.in
ternal . jaxp.DocumentBuil der Fact oryl npl

D ava. securi ty. krb5. conf=/tnp/ oracl e_kr b/ krb5. conf"

Generate a new Kerberos ticket for the oracle user. Use the following command,
replacing realm with the actual Kerberos realm name.

$ kinit oracle@eal m

ODI Studio: To set the VM for ODI Studio, add AddVMoption in odi . conf in the
same folder as odi . sh.

3-18

Chapter 3
Configuring Oracle Data Integrator to Connect to a Secure Cluster

Kerberos configuration file location:

AddVMXpt i on - Dj ava. security. krb5. conf =/ et ¢/ krb5. conf
AddVMpti on -Dsun. security. krb5. debug=true
AddVMpti on -Dsun. security. krb5. princi pal =odi deno

5. Redefine the JDBC connection URL, using syntax like the following:

Table 3-11 Kerberos Configuration for Dataserver
]

Technolo Configuration Example
gy
Hadoop No specific configuration to be done, general settings

is sufficient.

ORACLE 3-19

ORACLE

Chapter 3

Configuring Oracle Data Integrator to Connect to a Secure Cluster

Table 3-11 (Cont.) Kerberos Configuration for Dataserver

Technolo Configuration Example
gy
Hive $MN HOVE/ or acl e_conmon/ modul es/ Example of

dat adi rect/ JDBCDri ver Logi n. conf
ODI Studio Configuration:

Add the following content to bi n/ odi . conf file:

AddVMDption -

Dj ava. security. auth. | ogin. confi g=<ORACLE_
HOVE>/ or acl e_conmon/ nodul es/ dat adi rect /
JDBCDx i ver Logi n. conf

ODI J2EE Agent Configuration:

Add the following content to <DOVAI N_HOVE>/ bi n/
set Domai nEnv. sh: file:

export KRB5_CONFI G-/ et ¢/ kr b5. conf
export KRB5CCNAME=/t np/ kr b5cc_500
export ODI _ADDI TI ONAL_JAVA_ OPTI ONS="-

Dj ava. security. krb5. conf =/ et ¢/ kr b5. conf
-Djava. security. auth.login. config=/
scrat ch/ Oracl e/ M ddl ewar e/ Oracl e_Home/
oracl e_comon/ nodul es/ dat adi rect /
JDBCDr i ver Logi n. conf

-Dsun. security.jgss. debug=true -

Dsun. security. krb5. debug=t rue

-Dj ava. security. krb5. r eal m=SHARED. BDA. COM

Dj ava. security. krb5. kdc=scaj 43bda05. us. or
acl e. com 88

Dj avax. security. aut h. useSubj ect CredsOnl y=
fal se"

JAVA PROPERTI ES="${ JAVA_PROPERTI ES} $
{W.P_JAVA PROPERTI ES}

${ CDI _ADDI TI ONAL_JAVA OPTI ONS}"

export JAVA PROPERTI ES

JAVA_OPTI ONS="${ JAVA_OPTI ONS} $
{ JAVA_PROPERTI ES}"
export JAVA_OPTI ONS

configuration file

JDBC DRI VER 01 {
com sun. security.
aut h. modul e. Kr b5L
ogi nModul e
required

debug=t rue
useTi cket Cache=tr
ue

ticket Cache="/tnp
/ krb5cc_500"

doNot Pronpt =t rue

}s

Example of Hive URL
j dbc: webl ogi c: hive
./ <host nane>:
10000; Dat abaseNane
=defaul t; Authentic
at i onMet hod=ker ber
0s; Servi cePrinci pa
| Name=<user name>/
<fully.qualified.d
omai n. nane>@YOUR-
REALM>. COM

3-20

Chapter 3
Configuring Oracle Data Integrator to Connect to a Secure Cluster

Table 3-11 (Cont.) Kerberos Configuration for Dataserver
]

Technolo Configuration Example

gy

HBase export HBASE HOVE=/ scrat ch/ Example of Hbase
fully.qualified. domai n. name/ et ¢/ hbase/ configuration file:
conf
export HBASE_CONF_DI R = $HBASE_HOVE/ hbase-client.|aas
conf Cient {
export HBASE_OPTS ="- com sun. security.
Dj ava. security. auth. | ogin. confi g=$HBASE_C aut h. modul e. Kr b5L
ONF_DI R/ hbase-client.jaas" ogi nModul e
export HBASE_MASTER COPTS ="- required
Dj ava. security. auth.login.config=$HBASE_C useKeyTab=f al se
ONF_DI R/ hbase- server. j aas" useTi cket Cache=tr

ue;

ODI Studio Configuration: b
AddVMpti on -

Dj ava. security. auth. | ogin. confi g=$HBASE_C
ONF_DI R/ hbase-client.jaas"

Spark Spark Kerberos configuration is done through spark ~ Example of spark-
submit parameters submit command:
--principal // define principle name spark-submit --
--keytab /1 location of keytab file master yarn --py-

files [tnp/

pyspark_ext.py --
execut or - menory

1G --driver-
menmory 512M - -
executor-cores 1
--driver-cores 1
--num execut or s

2 --principa
fully.qualified.d
omai n. nane @OUR-
REALM com - -
keytab /tnp/
fully.qualified.d
omai n.nane.tab --
queue

default /tnp/
New_Mappi ng_Phys
cal . py

ORACLE 3-21

ORACLE

Chapter 3
Configuring Oracle Data Integrator to Connect to a Secure Cluster

Table 3-11 (Cont.) Kerberos Configuration for Dataserver
]

Technolo Configuration Example

gy

Kafka Kafka Kerberos configuration is done through kafka- Example of Kafka
client.jaas file: The configuration file is placed in configuration file:

Kafka configuration folder.
Kaf kad i ent {

com sun. security.
aut h. modul e. Krb5L
ogi nModul e
required
useKeyTab=f al se

useTi cket Cache=tr
ue

ticket Cache="/tnp
' krb5cc_1500"

servi ceName="kaf k

a,

}s

The location of Kafka
configuration file is set
in ODI Studio VM
option

AddVMDption -

Dj ava. security. aut
h.login.config="/e
t ¢/ kaf ka-

j aas. conf"

Pig/Oozie Pig and Ooize will extend the Kerberos configuration
of linked Hadoop data server and does not require
specific configuration.

For more information on these properties and settings, see "HiveServer2 Security
Configuration" in the CDH5 Security Guide at the following URL:

https://ww. cl oudera. conf docunent at i on/ cdh/ 5- 0- x/ CDH5- Securi t y- Qui de/
cdh5sg_hi veserver2 security. htm

Renew the Kerberos ticket for the Oracle user on a regular basis to prevent
disruptions in service.

Download the unlimited strength JCE security jars.

For instructions about managing Kerberos on Oracle Big Data Appliance, see the
About Accessing a Kerberos-Secured Cluster section in Oracle Big Data
Appliance Software User's Guide .

3-22

https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hiveserver2_security.html
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hiveserver2_security.html

Chapter 3
Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

Configuring Oracle Data Integrator Studio for Executing
Hadoop Jobs on the Local Agent

ORACLE

Perform the following configuration steps to execute Hadoop jobs on the local agent of
Oracle Data Integrator Studio.

For executing Hadoop jobs on the local agent of an Oracle Data Integrator Studio
installation, follow the configuration steps in Configuring the Oracle Data Integrator
Agent to Execute Hadoop Jobs with the following change:

Copy the following Hadoop client jar files to the local machines.

[usr/1iblhadoop/*.jar
[usr/1iblhadoop/lib/*.jar
lusr/1iblhadoop/client/*.jar
[usr/1iblhadoop-hdfs/*.jar
[usr/1ib/ hadoop- mapreduce/ *.jar
[usr/1iblhadoop-yarn/*.jar
[usr/liblooziellibl*.jar
fusr/1iblhivel*. jar
fusr/1iblhivellibl*.jar
[usr/1iblhbasel/*.jar
[usr/1iblhbase/libl*.jar

Add the above classpaths in the addi ti onal _pat h. t xt file under the userlib
directory.

For example:
Linux: SUSER_HOME/ . odi / or acl edi / user | i b directory.
Windows: C: \ User s\ <USERNAME>\ AppDat a\ Roamni ng\ odi \ or acl edi \ user| i b directory

3-23

Integrating Hadoop Data

This chapter provides information about the steps you need to perform to integrate
Hadoop data.
This chapter includes the following sections:

e Integrating Hadoop Data

e Setting Up File Data Sources

e Setting Up HDFS Data Sources

e Setting Up Hive Data Sources

e Setting Up HBase Data Sources

e Setting Up Kafka Data Sources

e Setting Up Cassandra Data Sources

e Importing Hadoop Knowledge Modules

e Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra

Tables, and HDFS Files
e Password Handling in Hadoop
» Loading Data from Files into Hive
e Loading Data from Hive to Files
e Loading Data from HBase into Hive
e Loading Data from Hive into HBase
e Loading Data from an SQL Database into Hive, HBase, and File using SQOOP
e Loading Data from an SQL Database into Hive using SQOOP
e Loading Data from an SQL Database into HDFS File using SQOOP
e Loading Data from an SQL Database into HBase using SQOOP
e Validating and Transforming Data Within Hive
e Loading Data into an Oracle Database from Hive and File
e Loading Data into an SQL Database from Hbase, Hive, and File using SQOOP

* Loading Data from Kafka to Spark Processing Engine

Integrating Hadoop Data

ORACLE

To integrate Hadoop data, set up data sources, import Hadoop knowledge modules
create oracle data integrator models and design mappings to load, validate, and
transform Hadoop data.

The following table summarizes the steps for integrating Hadoop data.

4-1

Chapter 4
Setting Up File Data Sources

Table 4-1 Integrating Hadoop Data

Step

Description

Set Up Data Sources

Import Hadoop Knowledge
Modules

Create Oracle Data
Integrator Models

Configure Hadoop
Credential Provider

Integrate Hadoop Data

Set up the data sources to create the data source models. You
must set up File, Hive, HDFS, and HBase data sources.

See Setting Up File Data Sources

See Setting Up Hive Data Sources

See Setting Up HBase Data Sources
See Setting Up Kafka Data Sources

See Setting Up Cassandra Data Sources
See Setting Up HDFS Data Sources

Import the Hadoop KMs into Global Objects or a project.

See Importing Hadoop Knowledge Modules

Reverse-engineer the Hive and HBase models to create Oracle
Data Integrator models.

See Creating ODI Models and Data Stores to represent Hive,
HBase and Cassandra Tables, and HDFS Files

Configure Hadoop Credential Provider and define the password.
See Password Handling in Hadoop.

Design mappings to load, validate, and transform Hadoop data.
See Loading Data from Files into Hive

See Loading Data from HBase into Hive

See Loading Data from Hive into HBase

See Loading Data from an SQL Database into Hive, HBase, and
File using SQOOP

See Validating and Transforming Data Within Hive

See Loading Data into an Oracle Database from Hive and File
See Loading Data into an SQL Database from Hbase, Hive, and
File using SQOOP

See Loading Data from Kafka to Spark Processing Engine

See Loading Data from HDFS File to Hive

See Loading Data from HDFS File to Spark

See Loading Data from Hive to Files

Setting Up File Data Sources

To setup file data sources, you need to create a data server object under File
technology along with a physical and logical schema for every directory to be

ORACLE

accessed.

In the Hadoop context, there is a distinction between files in Hadoop Distributed File
System (HDFS) and local files (outside of HDFS).

To define a data source:

1. Create a Data Server object under File technology.

2. Create a Physical Schema object for every directory to be accessed.

3. Create a Logical Schema object for every directory to be accessed.

4-2

Chapter 4
Setting Up HDFS Data Sources

4. Create a Model for every Logical Schema.

5. Create one or more data stores for each different type of file and wildcard name
pattern.

6. HDFS Files are now created using the HDFS Technology as seen in Setting Up
HDFS Data Sources. However, for backward compatibility, there are some Big
Data File Knowledge Modules that support HDFS Files. To define HDFS files, you
must select HDFS File and define the Hadoop DataServer reference. Alternatively,
you can create a Data Server object under File technology by entering the HDFS
name node in the field JDBC URL and leave the JDBC Driver name empty. For
example:

hdfs: //bdalnode0l. exanpl e. com 8020

Test Connection is not supported for this Data Server configuration.

Integrating Hadoop Data

Setting Up HDFS Data Sources

To setup HDFS data sources, you need to create a data server object under HDFS
technology along with a physical and logical schema for every directory to be
accessed.

This topic provides steps in Oracle Data Integrator that are required for connecting to a
HDFS system.

1. Create a Data Server object under HDFS technology.

" Note:
HDFS data server should reference an existing Hadoop data server.
Create a Physical Schema object for every directory to be accessed.

Create a Logical Schema object for every directory to be accessed.

Create a Model for every Logical Schema

AN

Create one or more data stores for each different type of file.

The definition tab has a Resource Name field that enables you to specify which file
or files it represents. If wildcards are used, the files must have the same schema
and be of the same format (all JSON or all Avro).

6. Select the appropriate Storage Format and the Schema File.
The contents of the schema are displayed.

7. Select the Attributes Tab to either enter, or reverse-engineer the Attributes from
the supplied schema.

ORACLE 4.3

Chapter 4
Setting Up Hive Data Sources

Setting Up Hive Data Sources

To setup Hive data sources, you need to create a data server object under Hive
technology. Oracle Data Integrator connects to Hive by using JDBC.

The following steps in Oracle Data Integrator are required for connecting to a Hive
system.

Oracle Data Integrator connects to Hive by using JDBC.

To set up a Hive data source:

1.
2.

8.
9.

Create a Data Server object under Hive technology.

Set the following locations under JDBC:

JDBC Driver: webl ogi c. j dbc. hi ve. H veDri ver

JDBC URL: j dbc: webl ogi c: hi ve: //<host>: <port>[; property=value[;...]]

For example, j dbc: webl ogi c: hi ve://1 ocal host:
10000; Dat abaseNanme=def aul t ; User =def aul t ; Passwor d=def aul t

Note:

Usually User ID and Password are provided in the respective fields of an
ODI Data Server. In case where a Hive user is defined without
password, you must add passwor d=def aul t as part of the JIDBC URL
and the password field of Data Server shall be left blank.

Set the following under on the definition tab of the data server:
Hive Metastore URIs: for example, thrift://BDA: 10000
Ensure that the Hive server is up and running.

Test the connection to the Data Server.

Create a Physical Schema. Enter the name of the Hive schema in both schema
fields of the Physical Schema definition.

Create a Logical Schema object.
Import RKM Hive into Global Objects or a project.

Create a new model for Hive Technology pointing to the logical schema.

10. Perform a custom reverse-engineering operation using RKM Hive.

Reverse-engineered Hive table populates the attribute and storage tabs of the data
store.

Integrating Hadoop Data

ORACLE

4-4

Chapter 4
Setting Up HBase Data Sources

Setting Up HBase Data Sources

To setup HBase data sources, you need to create a data server object under HBase
technology along with a physical and logical schema object.

The following steps in Oracle Data Integrator are required for connecting to a HBase
system.

To set up a HBase data source:

1. Create a Data Server object under HBase technology.
JDBC Driver and URL are not available for data servers of this technology.
2. Set the following under on the definition tab of the data server:

HBase Quorum: Quorum of the HBase installation. For example:
zkhost 1. exanpl e. com zkhost 2. exanpl e. com zkhost 3. exanpl e. com

3. Ensure that the HBase server is up and running.

¢ Note:

You cannot test the connection to the HBase Data Server.

Create a Physical Schema.
Create a Logical Schema object.
Import RKM HBase into Global Objects or a project.

Create a new model for HBase Technology pointing to the logical schema.

©® N o o p

Perform a custom reverse-engineering operation using RKM HBase.

Note:

Ensure that the HBase tables contain some data before performing
reverse-engineering. The reverse-engineering operation does not work if
the HBase tables are empty.

At the end of this process, the HBase Data Model contains all the HBase tables with
their columns and data types.

Integrating Hadoop Data

Setting Up Kafka Data Sources

ORACLE

To setup kafka data sources, you need to create a data server object under Kafka
technology along with a physical and logical schema object. Create one or more data
sources for each different topic and then test the connection to the Data Server.

This following procedure describes how to connect to a Kafka system in Oracle Data
Integrator.

4-5

g o W D

Chapter 4
Setting Up Cassandra Data Sources

Create a Data Server object under Kafka technology.

For information on creating a Kafka data server, see Kafka Data Server Definition
and Kafka Data Server Properties.

Create a Physical Schema object.

Create a Logical Schema object.

Create a Model for every Logical Schema

Create one or more data stores for each different topic.

Resource Name in the definition tab of data store indicates the Kafka topic . Kafka
topic name can be either entered by the user or selected from the list of available
Kafka topics in the Kafka cluster. There are two ways to load data from Kafka
topics which are receiver-based and direct and LKM Kafka to Spark supports both
approaches.

Test the connection to the Data Server.

For information on Kafka Integration, see Hadoop Data Integration with Oracle
Data Integrator.

The Kafka data model contains all the Kafka topics with their columns and data types.

Setting Up Cassandra Data Sources

To setup Cassandra data sources, you need to create a data server object under
Casssandra technology. Oracle Data Integrator connects to Cassandra by using
JDBC.

ORACLE

This following procedure describes how to connect to a Cassandra system in Oracle
Data Integrator.

1.
2.

® N o g »

Create a Data Server object under Cassandra technology.
Set the following locations under JDBC:

Add the Cassandra JDBC Driver to the Driver List.
JDBC Driver: webl ogi c. j dbc. cassandra. Cassandr aDri ver

JDBC URL: j dbc: webl ogi c: cassandra: //
<host >: <port>[; property=val ue[:...]]

For example, j dbc: webl ogi c: cassandra: // cassandr a. exanpl e. com
9042; KeyspaceNane=nykeyspace

" Note:

Latest driver uses the binary protocol and hence uses default port 9042.

Ensure that the Cassandra server is up and running.
Test the connection to the Data Server.

Create a Physical Schema obiject.

Create a Logical Schema object.

Import RKM Cassandra into Global Objects or a project.

Create a Model for every Logical Schema

4-6

Chapter 4
Importing Hadoop Knowledge Modules

9. Perform a custom reverse-engineering operation using RKM Cassandra.

Importing Hadoop Knowledge Modules

Unlike other built-in Big Data Knowledge Modules, you need to import RKMs and
CKMs into your project or as global objects before you use them.

Most of the Big Data Knowledge Modules are built-in the product. The exceptions are
the RKMs and CKMs, and these will need to be imported into your project or as global
objects before you use them. They are:

* CKM Hive

* RKM Hive

¢ RKM HBase

* RKM Cassandra
Integrating Hadoop Data

Creating ODI Models and Data Stores to represent Hive,
HBase and Cassandra Tables, and HDFS Files

You must create ODI models to hold the data stores that represent HDFS files or Hive,
HBase and Cassandra tables. The reverse-engineering process creates Hive, HBase
and Cassandra data stores for the corresponding Hive, HBase and Cassandra tables.
You can use these data stores as source or target in your mappings.

This section contains the following topics:

e Creating a Model

* Reverse-Engineering Hive Tables

* Reverse-Engineering HBase Tables

* Reverse-Engineering HDFS Files

* Reverse-Engineering Cassandra Tables

* Reverse-Engineering Support for Kafka

Creating a Model

ORACLE

To create a model that is based on the technology hosting Hive, HBase, Cassandra, or
HDFS and on the logical schema created when you configured the Hive, HBase,
Cassandra, HDFS or File connection, follow the standard procedure described in
Developing Integration Projects with Oracle Data Integrator.

For backward compatibility, the Big Data LKMs reading from Files (LKM File to Hive
LOAD DATA), also support reading from HDFS, however the source data store must
be from a file model. If reading from HDFS, it is preferable to use KMs like the LKM
HDFS to File LOAD DATA . In this case, the source data store must be from an HDFS
model.

4-7

Chapter 4
Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

Reverse-Engineering Hive Tables

RKM Hive is used to reverse-engineer Hive tables and views. To perform a
customized reverse-engineering of Hive tables with RKM Hive, follow the usual
procedures, as described in Developing Integration Projects with Oracle Data
Integrator. This topic details information specific to Hive tables.

The reverse-engineering process creates the data stores for the corresponding Hive
table or views. You can use the data stores as either a source or a target in a

mapping.

For more information about RKM Hive, see RKM Hive.

Hive data stores contain a storage tab allowing you to see how data is stored and
formatted within Hive. If the Hive table has been reverse-engineered, then these fields
will be automatically populated. If you created this data store from the beginning, with

the intention of creating the table when running a mapping (using create target table),
then you can choose how the data is formatted by editing these fields.

The target Hive table is created based on the data provided in the Storage and
Attribute panels of the Hive data store as shown in Table 4-2 and Table 4-3.

Table 4-2 Hive Data Store Storage Panel Properties
|

Property Description

Table Type Select one of the following as the type of Hive
table to be created:
« Managed

« External
. <Undefined>

Storage Type Select one of the following as the type of Data
storage:
* Native
* Non-Native
¢ <Undefined>

Row Format This property appears when Native is selected
as the Storage Type.

Select one of the following as the Row Format:

. Built-In
. Delimited
e SerDe

<Undefined>

Record Separator This property appears when Delimited is
selected as the Row Format.

Fill in the following fields:

e Fields Terminated By

e Fields Escaped By

e Collection Items Terminated By
* Map Keys Terminated By

e Lines Terminated By

e File Null value

ORACLE 4-8

Chapter 4

Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

Table 4-2 (Cont.) Hive Data Store Storage Panel Properties

Property

Description

SerDe

This property appears when SerDe is selected
as the Row Format.

Fill in the SerDe Class field.

Storage Format

This longer Storage Format section appears
when Native is selected as the Storage Type.

It contains the following properties:

* Predefined File Format

¢ Input Format (appears when
INPUTFORMAT is selected as the
Predefined File Format.)

e Output Format (appears when
INPUTFORMAT is selected as the
Predefined File Format.)

e Location (appears when External is
selected as the Table Type.)

Select one of the following as the Predefined

File Format:

¢ INPUTFORMAT

° SEQUENCEFILE

« PARQUET
« TEXTFILE
« ORC

« JSON

« RCFILE

« AVRO

. <Undefined>

Storage Handler

This property appears when Non-Native is
selected as the Storage Type.

Fill in the Storage Handler Class field.

Storage Format

This shorter Storage Format section appears
when Non-Native is selected as the Storage

Type.
Fill in the Location field.

Table 4-3 Hive Data Store Attribute Panel Properties

Property

Description

Order

Order in which attributes are sequenced.

Name

Name of the attribute.

Type

Data type of the attribute.

ORACLE

4-9

ORACLE

Chapter 4

Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

Table 4-3 (Cont.) Hive Data Store Attribute Panel Properties
|

Property

Description

Data Format

Data Format of the attribute.

" Note:

This field is only
used for
attributes with a
data type of
"Complex". The
content is
populated during
reverse-
engineering and
will contain a
definition of the
Complex Type.

Length Physical length of the attribute.
Scale Scale of the numeric attribute.
Not Null Specifies if the attribute can be null or not.

SCD Behavior

This is not used for Hive data stores.

Partition By

Select if it is a partition column.

Cluster By

Select if it is a bucketed column.

4-10

Chapter 4
Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

Table 4-3 (Cont.) Hive Data Store Attribute Panel Properties

__|
Property Description

Sort By

Select to sort data on this column within the
bucket.

Note:

You must set the
position of this
column in the
SORTED BY
clause. The
column whose
Sort By value is
smaller will get
the higher
priority. For
example,
consider three
columns, C1 with
Sort By =5, C2
with Sort By = 2,
C3 with Sort By
=8. The
SORTED BY
clause will be
SORTED BY
(C2, C1, C3).

Sort Direction Select to sort data in the ascending (ASC) or

descending (DESC) order.

The data provided above can also be used to create a Hive DDL when the
CREATE_TARG_TABLE option is selected in the LKMs and IKMs.

To fully use the Hive format and storage information, one or more of the following KMs
must be used:

* IKM Hive Append

e |KM Hive Incremental Update

» LKM File to Hive LOAD DATA Direct

e LKM HDFS File to Hive LOAD DATA Direct

Reverse-Engineering HBase Tables

ORACLE

RKM HBase is used to reverse-engineer HBase tables. To perform a customized
reverse-engineering of HBase tables with RKM HBase, follow the usual procedures,
as described in Developing Integration Projects with Oracle Data Integrator. This topic
details information specific to HBase tables.

4-11

Chapter 4
Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

The reverse-engineering process creates the data stores for the corresponding HBase
table. You can use the data stores as either a source or a target in a mapping.

Note:

Ensure that the HBase tables contain some data before performing reverse-
engineering. The reverse-engineering operation does not work if the HBase
tables are empty.

For more information about RKM HBase, see RKM HBase.

Reverse-Engineering HDFS Files

ORACLE

HDFS files are represented using data stores based on HDFS technology. The HDFS
data stores contain the storage format (JSON, Delimited, etc.), attributes, datatypes,
and datatype properties.

In previous versions of ODI, File technology was used to represent HDFS Files, but
the storage format information was specified in the mappings. If you have existing
mappings that use Knowledge Modules such as LKM File to Hive or LKM File to
Spark, then you should continue to represent your HDFS files with File technology.

Note:

The preferred method of representing HDFS files is by using the HDFS
technology.

Reverse-Engineering HDFS Files into HDFS Data Stores
To reverse-engineer an HDFS file, perform the following steps:

1. Create a HDFS data store.

2. From the Storage Tab, select the Storage Format from the Storage Format drop-
down list and specify the complete path of the schema file in the Schema File
field.

The schema file should be located in the local file system.

3. Click Reverse Engineer operation from the Attributes Tab of the HDFS data store.

< Note:

e There is no need to import an RKM into the project.

e HDFS reverse-engineering requires a Schema (JSON, Parquet, or Avro),
hence HDFS files with a Delimited format cannot be reverse-engineered.

For more information, see the Reverse-engineer a File Model section in Connectivity
and Knowledge Modules Guide for Oracle Data Integrator Developer's Guide .

4-12

Chapter 4
Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra
Tables, and HDFS Files

Reverse-Engineering HDFS Files in File Data Stores

HDFS files can be reverse-engineered like regular files. To reverse-engineer HDFS
files, you must copy them to your File System and follow the same process as that to
reverse-engineer regular files.

Note:

If the file is large for your local File System, retrieve the first N records from
HDFS and place them in a local file.

Reverse-Engineering Cassandra Tables

RKM Cassandra is used to reverse-engineer Cassandra tables. To perform a
customized reverse-engineering of Cassandra tables with RKM Cassandra, follow the
usual procedures, as described in Developing Integration Projects with Oracle Data
Integrator.

The reverse-engineering process creates the data stores for the corresponding
Cassandra table. For more information about RKM Cassandra, see RKM Cassandra.

Reverse-Engineering Support for Kafka

Reverse-engineering for Kafka is very similar to reverse-engineering HDFS files.

Create a model based on Kafka technology. Create a data store in that model as
mentioned below:

1. Go to the Definition panel and enter Name and Resource Name.

2. Go to the Storage panel, select the Storage Format and specify the path of the
Schema File.

The Schema File has to be locally accessible.

" Note:

The Storage Format can be AVRO, JSON, or PARQUET. The
DELIMITED Storage Format is not supported for reverse-engineering.
Use Data Store Editor to create a Kafka data store with DELIMITED
Storage format.

3. Go to the Attribute panel and click Reverse Engineer.

All the attributes specified in the Schema File are listed here.

ORACLE 4-13

Chapter 4
Password Handling in Hadoop

Password Handling in Hadoop

Before using LKM SQL to Spark, LKM Spark to SQL, and LKM Spark to Cassandra,
the Hadoop Credential Provider has to be configured and the password has to be
defined.

To use these KMs, it is mandatory to follow the below procedure:

1.

Configure the Hadoop Credential Provider.

JDBC connection passwords are stored using the Hadoop Credential API. This
requires the Hadoop cluster to be configured with at least one Credential Provider.

Below is an example:
<property>
<name>hadoop. security. credential . provi der. pat h</ name>

<val ue>user:///,jceks://fileltnmp/test.]ceks,]jceks://hdf s@lusterl-
ns/ny/ path/ test.|jceks</val ue>

</ property>

Note:

The property in the example above should be defined in core-site.xml or
its equivalent.

For the proper configuration applicable to your system and security configuration/
needs, see CredentialProvider AP| Guide.

Create a password alias in Hadoop Credential Provider.

Once the Hadoop cluster is configured, you must create a credential for each
password that Spark will be using to connect to the SQL source or target. ODI will
assume the following format for credential alias names:

odi . <user _name>. <dat aser ver _nanme>. passwor d

The user _name and dat aser ver _name are obtained from the ODI topology
DataServer properties.

The example below shows the creation of a password alias in Hadoop Credential
Provider where the user name is or acl e and dataserver is Hadoop_CDH5 5.

hadoop credential create odi.oracle. Hadoop_CDH5 5. password

Loading Data from Files into Hive

To load data from files into Hive, create data stores for local and HDFS files and
create a mapping after which you can select the option LKM file to Hive Load data, to
load data from flat files to Hive.

ORACLE

The LKM File to Hive KMs support loading data from HDFS Files and, also local Files.
However, if you are using HDFS files, the preferred way is to use the HDFS KMs, as
described in Loading Data from HDFS into Hive.

4-14

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CredentialProviderAPI.html

Chapter 4
Loading Data from Hive to Files

1. Create the data stores for local files and HDFS files.

For information on reverse-engineering and configuring local file data sources, see
Connectivity and Knowledge Modules Guide for Oracle Data Integrator
Developer's Guide.

2. Create a mapping using the file data store as the source and the corresponding
Hive table as the target.

3. Use the LKM File to Hive LOAD DATA or the LKM File to Hive LOAD DATA Direct
knowledge module specified in the physical diagram of the mapping.

These integration knowledge modules load data from flat files into Hive, replacing
or appending any existing data.

For more information about the KMs, see the following sections:

« LKM File to Hive LOAD DATA
» LKM File to Hive LOAD DATA Direct

Loading Data from Hive to Files

To load data from Hive tables to local file system or HDFS files, create data store for
the Hive tables and create a mapping after which you can select the option LKM Hive
to File Direct Knowledge module, to load data from Hive to flat files.

To load data from Hive tables to a local file system or a HDFS file:

1. Create a data store for the Hive tables that you want to load in flat files.

For information about reverse-engineering and configuring Hive data sources, see
Setting Up Hive Data Sources.

2. Create a mapping using the Hive data store as the source and the corresponding
File data source as the target.

3. Use the LKM Hive to File Direct knowledge module, specified in the physical
diagram of the mapping.

This integration knowledge module loads data from Hive into flat Files.

For more information about LKM Hive to File Direct, see LKM Hive to File Direct.

Loading Data from HBase into Hive

To load data from HBase table into Hive, create data store for the HBase table and
create a mapping after which you can select the option LKM HBase to Hive HBASE-
SERDE knowledge module, to load data from HBase table into Hive.

To load data from an HBase table into Hive:

1. Create a data store for the HBase table that you want to load in Hive.

For information about reverse-engineering and configuring HBase data sources,
see Setting Up HBase Data Sources.

2. Create a mapping using the HBase data store as the source and the
corresponding Hive table as the target.

3. Use the LKM HBase to Hive HBASE-SERDE knowledge module, specified in the
physical diagram of the mapping.

ORACLE 4-15

Chapter 4
Loading Data from Hive into HBase

This knowledge module provides read access to an HBase table from Hive.

For more information about LKM HBase to Hive HBASE-SERDE, see LKM HBase to
Hive HBASE-SERDE.

Loading Data from Hive into HBase

To load data from Hive to HBase table, create data store for the Hive tables and create
a mapping after which you can select the option LKM Hive to HBase Incremental
Update HBASE-SERDE Direct knowledge module, to load data from Hive table into
HBase.

To load data from a Hive table into HBase:

1. Create a data store for the Hive tables that you want to load in HBase.

For information about reverse-engineering and configuring Hive data sources, see
Setting Up Hive Data Sources.

2. Create a mapping using the Hive data store as the source and the corresponding
HBase table as the target.

3. Use the LKM Hive to HBase Incremental Update HBASE-SERDE Direct
knowledge module, specified in the physical diagram of the mapping.

This integration knowledge module loads data from Hive into HBase and supports
inserting new rows and, also updating existing data.

For more information about LKM Hive to HBase Incremental Update HBASE-SERDE
Direct, see LKM Hive to HBase Incremental Update HBASE-SERDE Direct.

Loading Data from an SQL Database into Hive, HBase, and
File using SQOOP

To load data from an SQL Database into Hive, HBase, and File using SQOOP create
a data store for the SQL source and create a mapping after which you can select the

option IKM SQL to Hive-HBase-File (SQOOP) knowledge module, to load data from a
SQL source into Hive, HBase, or Files target using SQOOP.

To load data from an SQL Database into a Hive, HBase, and File target:

1. Create a data store for the SQL source that you want to load into Hive, HBase, or
File target.

For information about reverse-engineering and configuring SQL data sources, see
Connectivity and Knowledge Modules Guide for Oracle Data Integrator
Developer's Guide.

2. Create a mapping using the SQL source data store as the source and the
corresponding HBase table, Hive table, or HDFS files as the target.

3. Use the IKM SQL to Hive-HBase-File (SQOOP) knowledge module, specified in
the physical diagram of the mapping.

ORACLE 4-16

Chapter 4
Loading Data from an SQL Database into Hive using SQOOP

< Note:

The IKM SQL to Hive-HBase-File (SQOOP) is not seeded and has to be
manually imported.

This integration knowledge module loads data from a SQL source into Hive,
HBase, or Files target. It uses SQOOP to load the data into Hive, HBase, and File
targets. SQOOP uses parallel JIDBC connections to load the data.

For more information about IKM SQL to Hive-HBase-File (SQOOP), see IKM SQL to
Hive-HBase-File (SQOOP) [Deprecated].

Loading Data from an SQL Database into Hive using

SQOOP

To load data from an SQL Database into Hive using SQOOP create a data store for
the SQL source and create a mapping after which you can select the option LKM SQL
to Hive SQOOP knowledge module, to load data from a SQL source into Hive using
SQOOP.

To load data from an SQL Database into a Hive target:

1. Create a data store for the SQL source that you want to load into Hive target.

For information about reverse-engineering and configuring SQL data sources, see
Connectivity and Knowledge Modules Guide for Oracle Data Integrator
Developer's Guide.

2. Create a mapping using the SQL source data store as the source and the
corresponding Hive table as the target.

3. Use the LKM SQL to Hive SQOOP knowledge module, specified in the physical
diagram of the mapping.

This KM loads data from a SQL source into Hive. It uses SQOOP to load the data
into Hive. SQOOP uses parallel JIDBC connections to load the data.

For more information about LKM SQL to Hive SQOOP, see LKM SQL to Hive
SQOOP.

Loading Data from an SQL Database into HDFS File using

SQOOP

ORACLE

To load data from an SQL Database into a HDFS File target:

1. Create a data store for the SQL source that you want to load into HDFS File
target.

For information about reverse-engineering and configuring SQL data sources, see
Connectivity and Knowledge Modules Guide for Oracle Data Integrator
Developer's Guide.

2. Create a mapping using the SQL source data store as the source and the
corresponding HDFS files as the target.

4-17

3.

Chapter 4
Loading Data from an SQL Database into HBase using SQOOP

Use the LKM SQL to File SQOOP Direct knowledge module, specified in the
physical diagram of the mapping.

This integration knowledge module loads data from a SQL source into HDFS Files
target. It uses SQOOP to load the data into File targets. SQOOP uses parallel
JDBC connections to load the data.

For more information about IKM SQL to Hive-HBase-File (SQOOP), see IKM SQL to
Hive-HBase-File (SQOOP) [Deprecated].

Loading Data from an SQL Database into HBase using

SQOOP

To load data from an SQL Database into a HBase target:

1.

Create a data store for the SQL source that you want to load into HBase target.

For information about reverse-engineering and configuring SQL data sources, see
Connectivity and Knowledge Modules Guide for Oracle Data Integrator
Developer's Guide.

Create a mapping using the SQL source data store as the source and the
corresponding HBase table as the target.

Use the LKM SQL to HBase SQOOP Direct knowledge module, specified in the
physical diagram of the mapping.

This integration knowledge module loads data from a SQL source into HBase
target. It uses SQOOP to load the data into HBase targets. SQOOP uses parallel
JDBC connections to load the data.

For more information about LKM SQL to HBase SQOOP Direct, see LKM SQL to
HBase SQOOP Direct.

Validating and Transforming Data Within Hive

After loading data into Hive, you can validate and transform the data using the
following knowledge modules.

ORACLE

" Note:

IKM Hive Control Append, CKM Hive, and IKM Hive Transform have to be
imported.

IKM Hive Control Append

For more information, see IKM Hive Append.

IKM Hive Append

For more information, see IKM Hive Append.

IKM Hive Incremental Update

For more information, see IKM Hive Incremental Update.
CKM Hive

4-18

Chapter 4
Loading Data into an Oracle Database from Hive and File

For more information, see CKM Hive.
e |IKM Hive Transform

For more information, see IKM Hive Transform (Deprecated).

Loading Data into an Oracle Database from Hive and File

Use the knowledge modules listed in the following table to load data from an HDFS file
or Hive source into an Oracle database target using Oracle Loader for Hadoop.

Table 4-4 Knowledge Modules to load data into Oracle Database

Knowledge Module Use To...
IKM File-Hive to Oracle Load data from an HDFS file or Hive source into an Oracle
(OLH-OSCH) database target using Oracle Loader for Hadoop.

For more information, see IKM File-Hive to Oracle (OLH-OSCH)

[Deprecated].

Note:
This KM has to be imported.

LKM File to Oracle OLH- Load data from an HDFS file into an Oracle staging table using
OSCH Oracle Loader for Hadoop.

For more information, see LKM File to Oracle OLH-OSCH.
LKM File to Oracle OLH- Load data from an HDFS file into an Oracle database target
OSCH Direct using Oracle Loader for Hadoop.

For more information, see LKM File to Oracle OLH-OSCH Direct.
LKM Hive to Oracle OLH- Load data from a Hive source into an Oracle staging table using
OSCH Oracle Loader for Hadoop.

For more information, see LKM Hive to Oracle OLH-OSCH.
LKM Hive to Oracle OLH- Load data from a Hive source into an Oracle database target
OSCH Direct using Oracle Loader for Hadoop.

For more information, see LKM Hive to Oracle OLH-OSCH

Direct.

Loading Data into an SQL Database from Hbase, Hive, and
File using SQOOP

Use the knowledge modules listed in the following table to load data from a HDFS file,
HBase source, or Hive source into an SQL database target using SQOOP.

ORACLE 4-19

Chapter 4
Loading Data from Kafka to Spark Processing Engine

Table 4-5 Knowledge Modules to load data into SQL Database

Knowledge Module Use To...
IKM File-Hive to SQL Load data from an HDFS file or Hive source into an SQL
(SQOO0P) database target using SQOOP.
For more information, see IKM File-Hive to SQL (SQOOP)
[Deprecated].

< Note:

This KM has to be imported.

LKM HBase to SQL SQOOP Load data from an HBase source into an SQL database target
using SQOOP.

For more information, see LKM HBase to SQL SQOOP.

LKM File to SQL SQOOP Load data from an HDFS file into an SQL database target using
SQOOP.

For more information, see LKM File to SQL SQOOP.

LKM Hive to SQL SQOOP Load data from a Hive source into an SQL database target using
SQOOP.

For more information, see LKM Hive to SQL SQOOP.

Loading Data from Kafka to Spark Processing Engine

Loading data from Kafka to Spark.

1. Create a data store for the Kafka tables that you want to load in Spark.
For configuring Kafka data sources, see Setting Up Kafka Data Sources.

2. Create a mapping using the Kafka data store as the source and the File/
HDFS/SQL/Hive/Kafka data store as the target. Use Spark Python Physical
Schema as the staging location.

For more information, see Creating a Spark Physical Schema.

3. Use the Storage function KM option with the value cr eat eSt r eamfor a receiver-
based connection or the value cr eat eDi r ect St r eamfor a direct connection as
specified in the physical diagram of the mapping.

Set the zookeeper . connect and net adat a. br oker . | i st Kafka data server
properties for the appropriate connection.

This knowledge module loads data from Kafka into the Spark processing engine.
You can use other knowledge modules to load data from Spark into File/
HDFS/SQL/Hive/Kafka.

ORACLE 4-20

Chapter 4
Loading Data from Kafka to Spark Processing Engine

< Note:

Every Kafka source in an ODI mapping allocates a Spark executor. A
Spark Kafka mapping hangs if the number of available executors is low.
The number of executors must be atleast n+1 where n is the number of
Kafka sources in the mapping. For additional information, refer to Spark
Documentation.

For more information about LKM Kafka to Spark, see LKM Kafka to Spark.

ORACLE 4-21

https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html

Executing Oozie Workflows

This chapter provides information about how to set up the Oozie Engine and explains
how to execute Oozie Workflows using Oracle Data Integrator. It also explains how to
audit Hadoop logs.

This chapter includes the following sections:

» Executing Oozie Workflows with Oracle Data Integrator
e Setting Up and Initializing the Oozie Runtime Engine

e Creating a Logical Oozie Engine

e Executing or Deploying an Oozie Workflow

e Auditing Hadoop Logs

e Userlib jars support for running ODI Oozie workflows

Executing Oozie Workflows with Oracle Data Integrator

To execute oozie workflows with oracle data integrator, setup the Oozie runtime
engine, execute or deploy an Oozie workflow and then audit the Hadoop Logs.

The following table summarizes the steps you need to perform to execute Oozie
Workflows with Oracle Data Integrator.

Table 5-1 Executing Oozie Workflows

Step Description

Set up the Oozie runtime Set up the Oozie runtime engine to configure the connection to

engine the Hadoop data server where the Oozie engine is installed. This
Oozie runtime engine is used to execute ODI Design Objects or
Scenarios on the Oozie engine as Oozie workflows.

See Setting Up and Initializing the Oozie Runtime Engine .
Execute or deploy an Oozie Run the ODI Design Objects or Scenarios using the Oozie

workflow runtime engine created in the previous step to execute or deploy
an Oozie workflow.

See Executing or Deploying an Oozie Workflow.

Audit Hadoop Logs Audit the Hadoop Logs to monitor the execution of the Oozie
workflows from within Oracle Data Integrator.

See Auditing Hadoop Logs.

Setting Up and Initializing the Oozie Runtime Engine

ORACLE

Before you set up the Oozie runtime engine, ensure that the Hadoop data server
where the Oozie engine is deployed is available in the topology. The Oozie engine
must be associated with this Hadoop data server.

To set up the Oozie runtime engine:

5-1

6.

Chapter 5
Setting Up and Initializing the Oozie Runtime Engine

In the Topology Navigator, right-click the Agents Tree node in the Physical
Architecture navigation tree and click New Oozie Engine.

In the Definition tab, specify the values in the fields for the defining the Oozie
runtime engine.

See Oozie Runtime Engine Definition for the description of the fields.
In the Properties tab, specify the properties for the Oozie Runtime Engine.
See Oozie Runtime Engine Properties for the description of the properties.

Click Test to test the connections and configurations of the actual Oozie server
and the associated Hadoop data server.

Click Initialize to initialize the Oozie runtime engine.

Initializing the Oozie runtime engine deploys the log retrieval workflows and
coordinator workflows to the HDFS file system and starts the log retrieval
coordinator and workflow jobs on the actual Oozie server. The log retrieval flow
and coordinator for a repository and oozie engine will have the names

Qdi Ret ri evelLog_<Engi neName>_<Reposl| d>_F and

(di LogRet ri ever _<Engi neNane>_<Reposl| d>_Crespectively.

It also deploys the ODI libraries and classes.
Click Save.

Executing Oozie Workflows with Oracle Data Integrator

Oozie Runtime Engine Definition

The following table describes the fields that you need to specify on the Definition tab
when defining a new Oozie runtime engine. An Oozie runtime engine models an actual
Oozie server in a Hadoop environment.

ORACLE

Table 5-2 Oozie Runtime Engine Definition
|

Field Values

Name Name of the Oozie runtime engine that appears in Oracle Data
Integrator.

Host Name or IP address of the machine on which the Oozie runtime

agent has been launched.

Port Listening port used by the Oozie runtime engine. Default Oozie

port value is 11000.

Web application context Name of the web application context. Type 00zi € as the value

of this field, as required by the Oozie service process running in
an Hadoop environment.

Protocol Protocol used for the connection. Possible values are htt p or

htt ps. Defaultis ht t p.

Hadoop Server Name of the Hadoop server where the oozie engine is installed.

This Hadoop server is associated with the oozie runtime engine.

Poll Frequency Frequency at which the Hadoop audit logs are retrieved and

stored in ODI repository as session logs.

The poll frequency can be specified in seconds (s), minutes (m),
hours (h), days (d), and years (d). For example, 5m or 4h.

5-2

Chapter 5
Creating a Logical Oozie Engine

Table 5-2 (Cont.) Oozie Runtime Engine Definition

]
Field Values

Lifespan Time period for which the Hadoop audit logs retrieval coordinator
stays enabled to schedule audit logs retrieval workflows.
Lifespan can be specified in minutes (m), hours (h), days (d),
and years (d). For example, 4h or 2d.

Schedule Frequency Frequency at which the Hadoop audit logs retrieval workflow is
scheduled as an Oozie Coordinator Job.

Schedule workflow can be specified in minutes (m), hours (h),
days (d), and years (d). For example, 20m or 5h.

Setting Up and Initializing the Oozie Runtime Engine

Configuring Big Data technologies using the Big Data Configurations Wizard

Oozie Runtime Engine Properties

The following table describes the properties that you can configure on the Properties
tab when defining a new Oozie runtime engine.

Table 5-3 Oozie Runtime Engine Properties

Field Values

OOZIE_WF_GEN_MAX_DE Limits the maximum detail (session level or fine-grained task

TAIL level) allowed when generating ODI Oozie workflows for an
QOozie engine.

Set the value of this property to TASK to generate an Oozie
action for every ODI task or to SESSION to generate an Oozie
action for the entire session.

Setting Up and Initializing the Oozie Runtime Engine

Configuring Big Data technologies using the Big Data Configurations Wizard

Creating a Logical Oozie Engine

To create a logical oozie agent:

1. In Topology Navigator, right-click the Agents node in the Logical Architecture
navigation tree.

2. Select New Logical Oozie Engine.
3. Fillin the Name.

4. For each Context in the left column, select an existing Physical Agent in the right
column. This Physical Agent is automatically associated to the Logical Oozie
Engine in this context.

5. From the File menu, click Save.

Setting Up and Initializing the Oozie Runtime Engine

ORACLE 5-3

Chapter 5
Executing or Deploying an Oozie Workflow

Executing or Deploying an Oozie Workflow

You can run an ODI design-time object such as a Mapping or a runtime object such as
a Scenario using an Oozie Workflow. When running the ODI design object or scenario,
you can choose to only deploy the Oozie workflow without executing it.

Note:

To enable SQOOP logging when executing an Oozie workflow, add the
below property to the data server —

HADOOP_CLI ENT_OPTS="- Dl 0g4j . debug -

Dhadoop. r oot . | ogger =l NFO, consol e - Di og4j . configuration=file:/etc/
hadoop/ conf. cl ouder a. yarn/ | og4j . properties"”

To execute an ODI Oozie workflow:

1. From the Projects menu of the Designer navigator, right-click the mapping that you
want to execute as an Oozie workflow and click Run.

2. From the Logical Agent drop-down list, select the Oozie runtime engine.
3. Click OK.
The Information dialog appears.

4. Check if the session started and click OK on the Information dialog.
To deploy an ODI Oozie workflow:

1. From the Load Plans and Scenarios menu of the Designer navigator, right-click
the scenario that you want to deploy as an Oozie workflow and click Run.

2. From the Logical Agent drop-down list, select the Oozie runtime engine.

3. Select Deploy Only to process the scenario, generate the Oozie workflow, and
deploy it to HDFS.

4. Click OK.
The Information dialog appears.

5. Check if the session started and click OK on the Information dialog.

Executing Oozie Workflows with Oracle Data Integrator

Auditing Hadoop Logs

ORACLE

When the ODI Oozie workflows are executed, log information is retrieved and captured
according to the frequency properties on the Oozie runtime engine. This information
relates to the state, progress, and performance of the Oozie job.

You can retrieve the log data of an active Oozie session by clicking the Retrieve Log
Data in the Operator menu. Also, you can view information regarding the oozie
session in the oozie webconsole or the MapReduce webconsole by clicking the URL
available in the Definition tab of the Session Editor.

5-4

Chapter 5
Userlib jars support for running ODI Oozie workflows

The Details tab in the Session Editor, Session Step Editor, and Session Task Editor
provides a summary of the oozie and MapReduce job.

Executing Oozie Workflows with Oracle Data Integrator

Userlib jars support for running ODI Oozie workflows

ORACLE

Support of userlib jars for ODI Oozie workflows allows a user to copy jar files into a
userlib HDFS directory, which is referenced by ODI Oozie workflows that are
generated and submitted with the oozi e. | i bpat h property.

This avoids replicating the i bs/ | ar s in each of the workflow app's lib HDFS directory.
The userlib directory is located in HDFS in the following location:

<ODI HDFS Root >/ odi _<version>/userlib

Executing Oozie Workflows with Oracle Data Integrator

5-5

Using Query Processing Engines to
Generate Code in Different Languages

This chapter describes how to set up the query processing engines that are supported
by Oracle Data Integrator to generate code in different languages.
This chapter includes the following sections:

Query Processing Engines Supported by Oracle Data Integrator
Setting Up Hive Data Server

Creating a Hive Physical Schema

Setting Up Pig Data Server

Creating a Pig Physical Schema

Setting Up Spark Data Server

Creating a Spark Physical Schema

Generating Code in Different Languages

Query Processing Engines Supported by Oracle Data

Integrator

ORACLE

Hadoop provides a framework for parallel data processing in a cluster. There are
different languages that provide a user front-end. Oracle Data Integrator supports the
following query processing engines to generate code in different languages:

Hive

The Apache Hive warehouse software facilitates querying and managing large
datasets residing in distributed storage. Hive provides a mechanism to project
structure onto this data and query the data using a SQL-like language called
HiveQL.

Pig

Pig is a high-level platform for creating MapReduce programs used with Hadoop.
The language for this platform is called Pig Latin.

Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can
run in Hadoop clusters through YARN or Spark's standalone mode, and it can
process data in HDFS, HBase, Cassandra, Hive, and any Hadoop Input Format.

To generate code in these languages, you need to set up Hive, Pig, and Spark data
servers in Oracle Data Integrator. These data servers are to be used as the staging
area in your mappings to generate HiveQL, Pig Latin, or Spark code.

Generate Code in Different Languages with Oracle Data Integrator

6-1

Chapter 6
Setting Up Hive Data Server

Setting Up Hive Data Server

To set up the Hive data server:

1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Hive and then
click New Data Server.

3. In the Definition tab, specify the details of the Hive data server.
See Hive Data Server Definition for more information.

4. Inthe JDBC tab, specify the Hive data server connection details.
See Hive Data Server Connection Details for more information.

5. Click Test Connection to test the connection to the Hive data server.

Hive Data Server Definition

The following table describes the fields that you need to specify on the Definition tab
when creating a new Hive data server.

Note: Only the fields required or specific for defining a Hive data server are described.

Table 6-1 Hive Data Server Definition
]

Field Description

Name Name of the data server that appears in Oracle Data Integrator.
Data Server Physical name of the data server.

User/Password Hive user with its password.

Metastore URI Hive Metastore URIs: for example, t hri ft://BDA: 10000.
Hadoop Data Server Hadoop data server that you want to associate with the Hive

data server.

Additional Classpath Additional classpaths.

Setting Up Hive Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard

Hive Data Server Connection Details

The following table describes the fields that you need to specify on the JDBC tab when
creating a new Hive data server.

Note: Only the fields required or specific for defining a Hive data server are described.

ORACLE 6-2

Chapter 6
Creating a Hive Physical Schema

Table 6-2 Hive Data Server Connection Details

Field

Description

JDBC Driver

JDBC URL

Apache Hive DataDirect Driver
Use this JDBC driver to connect to the Hive Data Server. The
driver documentation is available at the following URL:

http://media.datadirect.com/download/docs/jdbc/alljdbc/
help.html#page/jdbcconnect%2Fthe-driver-for-apache-hive.html
%23

j dbc: webl ogi c¢: hi ve: // <host >; <port>[;

property=val ue[;...]]

For example, j dbc: webl ogi c: hive:/ /| ocal host :

10000; Dat abaseName=def aul t ; User =def aul t ; Passwor d=d
efaul t

Kerberized: j dbc: webl ogi c: hive://

<host >: <port >; Dat abaseName=<val ue>; Aut henti cati onM
et hod=ker ber os; Servi cePri nci pal Nane=<val ue>

For example, j dbc: webl ogi c: hive:/ /| ocal host :

10000; Dat abaseNanme=def aul t ; Aut henti cati onMet hod=ke
rberos; Servi cePrinci pal Nane=hi ve

Setting Up Hive Data Server

Creating a Hive Physical Schema

Create a Hive physical schema using the standard procedure, as described in the
Creating a Physical Schema section in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in the Creating a Logical Schema section in Administering Oracle Data
Integrator and associate it in a given context.

Setting Up Hive Data Server

Setting Up Pig Data Server

To set up the Pig data server:

ORACLE

1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Pig and then click

New Data Server.

3. In the Definition tab, specify the details of the Pig data server.

See Pig Data Server Definition for more information.

4. In the Properties tab, add the Pig data server properties.

See Pig Data Server Properties for more information.

5. Click Test Connection to test the connection to the Pig data server.

6-3

http://media.datadirect.com/download/docs/jdbc/alljdbc/help.html#page/jdbcconnect/the-driver-for-apache-hive.html%23
http://media.datadirect.com/download/docs/jdbc/alljdbc/help.html#page/jdbcconnect/the-driver-for-apache-hive.html%23
http://media.datadirect.com/download/docs/jdbc/alljdbc/help.html#page/jdbcconnect/the-driver-for-apache-hive.html%23

Pig Data Server Definition

Chapter 6
Setting Up Pig Data Server

The following table describes the fields that you need to specify on the Definition tab
when creating a new Pig data server.

Note: Only the fields required or specific for defining a Pig data server are described.

Table 6-3 Pig Data Server Definition

Field

Description

Name

Data Server

Process Type

Hadoop Data Server

Additional Classpath

User/Password

Name of the data server that will appear in Oracle Data
Integrator.

Physical name of the data server.

Choose one of the following:
* Local Mode
Select to run the job in local mode.

In this mode, pig scripts located in the local file system are
executed. MapReduce jobs are not created.

« MapReduce Mode
Select to run the job in MapReduce mode.

In this mode, pig scripts located in the HDFS are executed.
MapReduce jobs are created.

Note: If this option is selected, the Pig data server must be
associated with a Hadoop data server.

Hadoop data sever that you want to associate with the Pig data
server.

Note: This field is displayed only when the MapReduce Mode

option is set to Process Type.

Specify additional classpaths.

Add the following additional classpaths:

Local Mode

e [<dir name>/pig/pig.jar

MapReduce Mode

* [etcl/ hbase/ conf

 Jusr/lib/pig/lib

e Jusr/lib/pigl/pig-0.12.0-cdh<version>.jar
Replace <version> with the Cloudera version you have. For
example, / usr/lib/ pi g/ pi g-0.12. 0-cdh5. 10. 0. j ar.

e [usr/lib/hive-hcatal og/share/hcat al og

 Jusr/liblhbase/lib

e lusr/lib/hbase

For pig-hcatalog-hive, add the following classpath in addition to
the ones mentioned above:

[usr/liblhive-hcatal aog/ share/ hcat al og

Pig user with its password.

Setting Up Pig Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard

ORACLE

6-4

Chapter 6
Creating a Pig Physical Schema

Pig Data Server Properties

The following table describes the Pig data server properties that you need to add on
the Properties tab when creating a new Pig data server.

Table 6-4 Pig Data Server Properties

Key Value
hive.metastore.uris thrift://bigdatalite.local domain: 9083
pig.additional.jars [usr/1iblhive-hcatal og/ share/ hcat al og/

*. jar:/usr/lib/hivel

hbase.defaults.for.version. Set to true to skip the hbase.defaults.for.version check. Set
skip this boolean to true to avoid seeing the RuntimException issue.

hbase.zookeeper.quorum Quorum of the HBase installation. For example, | ocal host :

2181.

Setting Up Pig Data Server

Creating a Pig Physical Schema

Create a Pig physical schema using the standard procedure, as described in the
Creating a Physical Schema section in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in the Creating a Logical Schema section in Administering Oracle Data
Integrator and associate it in a given context.

Setting Up Pig Data Server

Setting Up Spark Data Server

To set up the Spark data server:

ORACLE

1.
2.

Click the Topology tab.

In the Physical Architecture tree, under Technologies, right-click Spark Python and
then click New Data Server.

In the Definition tab, specify the details of the Spark data server.

See Spark Data Server Definition for more information.

In the Properties tab, specify the properties for the Spark data server.
See Spark Data Server Properties for more information.

Click Test Connection to test the connection to the Spark data server.

< Note:

The test connection button is disabled because Spark and Pig are not
testable.

6-5

Chapter 6
Setting Up Spark Data Server

Spark Data Server Definition

The following table describes the fields that you need to specify on the Definition tab
when creating a new Spark Python data server.

Note: Only the fields required or specific for defining a Spark Python data server are
described.

Table 6-5 Spark Data Server Definition
|

Field Description

Name Name of the data server that will appear in Oracle Data
Integrator.

Master Cluster (Data Physical name of the master cluster or the data server.

Server)

User/Password Spark data server or master cluster user with its password.

Hadoop DataServer Hadoop data server that you want to associate with the Spark

data server.

Note: This field appears only when you are creating the Spark

Data Server using the Big Data Configurations wizard.
Additional Classpath The following additional classpaths are added by default:

e Jusr/liblspark/*

e Jusr/liblspark/libl*

If required, you can add more additional classpaths.

Note: This field appears only when you are creating the Spark
Data Server using the Big Data Configuration wizard.

Setting Up Spark Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard

Spark Data Server Properties

The following table describes the properties that you can configure on the Properties
tab when defining a new Spark data server.

Note: Other than the properties listed in the following table, you can add Spark
configuration properties on the Properties tab. The configuration properties that you
add here are applied when mappings are executed. For more information about the
configuration properties, refer to the Spark documentation available at the following
URL:

http://spark.apache.org/docs/latest/configuration.html

Table 6-6 Spark Data Server Properties

]
Property Description

archives Comma separated list of archives to be extracted into the
working directory of each executor.

ORACLE 6-6

http://spark.apache.org/docs/latest/configuration.html

Chapter 6
Creating a Spark Physical Schema

Table 6-6 (Cont.) Spark Data Server Properties

Property

Description

deploy-mode

driver-class-path

driver-cores
driver-java-options
driver-library-path

driver-memory

executor-cores

executor-memory

jars

num-executors
odi-execution-mode

properties-file

py-files

queue
spark-home-dir
spark-web-port

spark-work-dir

supervise

total-executor-cores
yarn-web-port
principal

keytab

Whether to launch the driver program locally (client) or on one of
the worker machines inside the cluster (cluster).

Classpath entries to pass to the driver. Jar files added with --jars
are automatically included in the classpath.

Number of cores used by the driver in Yarn Cluster mode.
Extra Java options to pass to the driver.
Extra library path entries to pass to the driver.

Memory for driver, for example, 1000M, 2G. The default value is
512M.

Number of cores per executor. The default value is 1 in YARN
mode, or all available cores on the worker in standalone mode.

Memory per executor, for example, 1000M, 2G. The default
value is 1G.

Comma-separated list of local jars to include on the driver and
executor classpaths.

Number of executors to launch. The default value is 2.
ODI execution mode, either SYNC or ASYNC.

Path to a file from which to load extra properties. If not specified,
this will look for conf / spar k- def aul t's. conf .

Additional python file to execute.

The YARN queue to submit to. The default value is default.
Home directory of Spark installation.

Web port of Spark Ul. The default value is 1808.

Working directory of ODI Spark mappings that stores the
generated python file.

If configured, restarts the driver on failure (Spark Standalone
mode).

Total cores for all executors (Spark Standalone mode).
Web port of yarn, the default value is 8088.
Kerberized User name.

Kerberized Password.

Setting Up Spark Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard

Creating a Spark Physical Schema

Create a Spark physical schema using the standard procedure, as described in the
Creating a Physical Schema section in Administering Oracle Data Integrator.

ORACLE

Create for this physical schema a logical schema using the standard procedure, as
described in the Creating a Logical Schema section in Administering Oracle Data
Integrator and associate it in a given context.

6-7

Chapter 6
Generating Code in Different Languages

Setting Up Spark Data Server

Generating Code in Different Languages

ORACLE

Oracle Data Integrator can generate code for multiple languages. For Big Data, this
includes HiveQL, Pig Latin, Spark RDD, and Spark DataFrames. The style of code is
primarily determined by the choice of the data server used for the staging location of
the mapping.

Before you generate code in these languages, ensure that the Hive, Pig, and Spark
data servers are set up.

For more information see the following sections:
Setting Up Hive Data Server

Setting Up Pig Data Server

Setting Up Spark Data Server

To generate code in different languages:

1. Open your mapping.

2. To generate HiveQL code, run the mapping with the default staging location
(Hive).

3. To generate Pig Latin or Spark code, go to the Physical diagram and do one of the
following:

a. To generate Pig Latin code, set the Execute On Hint option to use the Pig
data server as the staging location for your mapping.

b. To generate Spark code, set the Execute On Hint option to use the Spark
data server as the staging location for your mapping.

4. Execute the mapping.

Query Processing Engines Supported by Oracle Data Integrator

Generate Code in Different Languages with Oracle Data Integrator

6-8

Working with Spark

This chapter describes the various concepts involved in working with Spark.

This chapter includes the following sections:

Spark Usage

Spark Design Considerations

Spark Streaming Support

Switching between RDD and DataFrames in ODI
Components that do not support DataFrame Code Generation

Adding Customized Code in the form of a Table Function

Spark Usage

To use Spark engines, a Staging Execution Unit must be created in the Physical
Mapping and the EU execution location must be set to Spark Schema.

Creating a Spark Mapping

To create a Spark mapping, ensure the Spark Logical and Physical Schemas are
already created, and follow the procedure below:

1.
2.

ORACLE

Select Mappings > New Mapping.

Drag the fil e_src and hdf s_t gt Data Stores from the Models tree onto the
Logical Diagram.

Link the mapping connectors together and choose map columns by position.
This will map the columns.
Set the Staging Location Hint to your Spark Logical Schema.

Go to the Physical Diagram and select the white space on the canvas. Ensure that
the Optimization Context is set to the correct Context for running against your
cluster, and that the Preset Staging Location is set to Spark.

Click the SPARKLS STAG NG_NCDE node and set the Loading Knowledge Module
to LKM File to Spark.

Click the FI L_AP node in the Target Group and set the Loading Knowledge
Module to LKM Spark to File.

Click the HDF node and ensure that the Integration Knowledge Module is set to
<Default>.

7-1

Chapter 7
Spark Usage

Pre-requisites for handling Avro and Delimited files in Spark Mappings

ORACLE

You must install external libraries before using Spark mappings with Avro or Delimited
files.

Avro files

For using Avro files in Spark mappings, the Avro . egg file has to be added to the ODI
installation. The . egg file for Avro cannot be downloaded directly, and has to be
generated from the Avro package.

To add the Avro . egg file to the ODI installation:

1. Generate the .egg file from the Avro Package

a. Download avro-1.8.0.tar. gz from avro 1.8.2 : Python Package Index or
Apache Avro™ Releases.

b. Unzip it, and install the Avro Python library as shown below.

$ tar xvf avro-1.8.1.tar.gz

$ cd avro-1.8.1

$ sudo python setup.py install

Installed /usr/liblpython2.6/site-packages/ avro-_AVRO VERSI ON - py2. 6. egg
Processing dependencies for avro===- AVRO- VERSI O\

Fi ni shed processi ng dependencies for avro===- AVRO- VERS| O\

The avro- _AVRO VERSI ON_- py2. 6. egg file can now be found in the Python
installed directory.

For more information, see Apache Avro™ 1.8.0 Getting Started (Python).

2. Copy the . eqgg file to a specific location in ODI
For ODI Agent, copy the . egg file to $DOVAI N_HOVE_PROPERTY/ | i b/ spar k.
For ODI Studio, copy the . egg file to $HOME/ . odi / or acl edi / user|i b/ spark.

Delimited files

For using Delimited files in Spark mappings, external jar files must be added to the
ODI installation.

To add the CSV jar files to the ODI installation:

1. Download the CSV jar files
Download the following jar files from their corresponding links:
e spark-csv_2.10-1.5.0.jar from spark-csv

e commons-csv-1. 2. jar from Commons CSV — Download Apache Commons
Csv

2. Copy the jar file to a specific location in ODI
For ODI Agent, copy the jar files to $DOVAI N_HOVE_PROPERTY/ | i b/ spar k.
For ODI Studio, copy the jar files to $HOVE/ . odi / or acl edi / user | i b/ spark.

7-2

https://pypi.python.org/pypi/avro/
http://avro.apache.org/releases.html
https://avro.apache.org/docs/1.8.0/gettingstartedpython.html
https://spark-packages.org/package/databricks/spark-csv
https://commons.apache.org/proper/commons-csv/download_csv.cgi
https://commons.apache.org/proper/commons-csv/download_csv.cgi

Chapter 7
Spark Design Considerations

Spark Design Considerations

If you have chosen to use Spark as your Transformation Engine, you must take the
following design decisions before writing your Mappings:

* Batch or Streaming
» Resilient Distributed Datasets (RDD) or DataFrames
» Infer Schema Knowledge Module Option

» Expression Syntax

Batch or Streaming

Spark supports two modes of operation — Batch and Streaming. In Streaming mode,
you can ingest data from Kafka Topics, or Files/HDFS Files added to a specified
location. To get the most out of Streaming, see Spark Checkpointing and Spark
Windowing and Stateful Aggregation.

To set the Streaming flag, select Physical Design, click the blank canvas, and select
the Streaming checkbox on the property panel. If the Streaming flag is not set, the
mappings will execute in Batch mode (default).

Resilient Distributed Datasets (RDD) or DataFrames

ORACLE

Spark has more than one set of APIs that can be used to transform data. Resilient
Distributed Datasets (RDD) and DataFrames are APIs that ODI can generate code for.

Resilient Distributed Datasets (RDD)

RDDs are the primary data abstraction in Apache Spark. They are fault tolerant
(Resilient) collections of partitioned data (Dataset) with data residing on multiple nodes
in a cluster (Distributed). The data resides in memory and is cached where necessary.
RDDs are read-only, but can have transformations applied that will create other RDDs.
Lazy evaluation is used, where the data is only available or transformed when
triggered. RDD partitions are the unit of parallelism.

DataFrames

A DataFrame is a read-only distributed collection of data, that (unlike RDDs) is
organized into named columns. The abstraction level is higher, making the processing
of large datasets even easier, such as in allowing the use of SparkSQL queries.
DataFrames are built on top of the Spark SQL engine, allowing for much better
performance and space optimization.

¢ Note:

If Streaming is used, RDD is the only option available.

7-3

Chapter 7
Spark Design Considerations

Infer Schema Knowledge Module Option

Spark can infer or deduce the Schema of a dataset by looking at the data. Although
this can be advantageous, there are some circumstances where datatypes may not be
mapped as expected. If this happens, there is an inferSchema option on applicable
Spark KMs that can be set to False, turning off this functionality. If you see runtime
errors related to datatype mismatches, you may need to adjust the value of the Infer
Schema option. This option can be set on reading or writing LKMs.

Note:

Spark uses this option only while creating DataFrames. If inferSchema is set
to False, ODI will generate a schema definition based on mapping data store
metadata and this structure will be used to create DataFrame API.

The Infer Schema option can be seen in the figure below.

Figure 7-1 Physical Mapping with InferSchema KM Option

[cleanrealEstateRDDPython | () flextool.groovy . B FILTER_AP - Properties

® S w00x ~ 53 B o BEH YD Q

5 SOURCE_CROUF) TARCET_CROUP_1 il General

% AGSCOTT_HDFS_File [Spark_Yarn_Client_Default_UNIT 99 TARGET_GROUP
+ Attr ibutes
AGSCOTT_HDFS_Files_UNI
= G =
- -
] P < Loading Knowledge Module
REA2_1 REA_AP @) @ 9 9
} a — .5 e Loading Knowledge Module: |LKM Spark 1o HDFS.CLOBAL
i L8 FILTER_AF REAL
JOINL FILTER Style
= T Options Description
REA REA2_AP Options
Mame Description Help Value
Delete Spark Mapping Files Delete temporary objectsat ... () False
inferschema Infer DataFrame schemafro.. (@) False

& DataFrames
[Performance

Expression Syntax

When you need to write expressions, for example, in a Join or Filter condition, or an
Attribute expression, you have options that can be used for the Expression Syntax. If
you have decided to have ODI generate RDD code, then your expressions must be
written in Python. If, however, you have decided to generate DataFrames, then you
can choose to write your expressions in SQL or Python. You can specify your chosen
syntax by setting SQL_EXPRESSI ONS to True/False.

The combinations of possible code generation style are:

e RDD with Python expressions
e DataFrames with Python expressions

e DataFrames with SQL expressions

Since Python expressions are defined differently in RDD and DataFrames, the Python
syntax for these two styles of code generation can be different. Therefore, not all
Python expressions will work for both RDD and DataFrame code generation styles.

ORACLE 7-4

Chapter 7
Spark Design Considerations

RDD with Python expressions

For information on the syntax and functions that can be used in Python expressions,
see The Python Standard Library.

DataFrames with Python expressions

For information on the list of Python functions available to Column objects, see
Pyspark.sqgl.module.

DataFrames with SQL expressions

The generic SQL functions and operators can be viewed in the Expression editor on
selecting generic SQL language.

Consider an example that shows multiple expressions being used in mappings.

Mapping Description

In this example, a source (REA) containing Real Estate Transactions is combined with a
second source (REA2) containing City and Population data. A filter is then applied to
select only large transactions. This creates a target file (REA1) which contains the
combined and filtered information as shown in the figure below.

Figure 7-2 Mapping with Multiple Expressions

=] REAZ =] REA1{Changed)
City = = Street
Population = =y City
.3 Zip
=3 Population
=) REA o State
Street = L B Beds
City % B Flo— Baths
Zip B " o o =3 SqFt
State = FILTER o Type
Beds = =3 SaleDate
Baths = B Price
SqFt = A Ceolocation
Type -
SaleDate =
Frice =
geolat =
geolong =

ORACLE

Mapping Definitions
The mapping is defined as follows:

* JOIN: Joins the Real Estate Transaction Table (REA) with the City Population table
(REA2) using City as the Key. The City names in REAL are in uppercase, whereas in
REA2 they are in lowercase.

7-5

https://docs.python.org/2.7/library/index.html
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#module-pyspark.sql.functions

ORACLE

Chapter 7
Spark Design Considerations

e FILTER: Selects rows that have a price greater or equal to $500,000, and ignores
transactions where Type is Multi-Family.

» City: City names should be in lowercase except for the first letter of each word.

» GeoLocation: This should be in the form "<longitude>, <latitude>". The quotes
should be included in the string.

* Population: Rounds off to the nearest thousand.
Mapping Expressions for each Codegen Style

The following table describes the mapping expressions for each codegen style.

Table 7-1 Mapping Expressions for each Codegen Style
|

Mapping Expression RDD with Python DataFrames with DataFrames with

for the Codegen Expressions Python Expressions SQL Expressions

Style

Join Condition REA Gty == REA Gty == REA Gty =
(REA2. City).upper() upper(REA2.City) UPPER(REA2. Ci ty)

Filter Syntax REA Type<> Milti- REA Type<> Milti- REA Type<>' Milti-
Fami |y’ Family' and Family' and
and REA. Price REA. Price >=500000 REA Price >=500000
>=500000

;a:gz:(Column # Gty - note: this # Gty -- Gty

y only capitalizes initcap(lower(REA C | NI TCAP(LOWER(REA. Ci

the first word! ty)) ty))
(REA.City).capitaliz # GeolLocation -- Geolocation
e() concat (REA. geol at ,| CONCAT(REA. geol at, ',
Geolocation it(", ", REA geol ong)
REA. geolat + ", " "), REA. geol ong) # Popul ation
+ REA geol ong # Popul ation ROUND(REA2. Popul ati o
Popul ation round(REA2. Popul atio n,-3)
i nt (round(REA2. Popul n, -3)
ation,-3))

Importing Libraries

As you'll see from this example, not all the same built-in functions are available across
these differing styles. In this case, the i ni t cap built-in function is not available in RDD.
The capwor ds() function does what is required, but it requires import statements to be
added to the script. The Spark EKM has a multi line option called
customPythonIimports that lets you specify the Import Statements for the script,
thereby allowing extra functions to be available in the expressions.

To contain the list of imports, the customPythonimports EKM option will be written as

fromstring inport *
fromtine inport localtine

The Target Column expression would then be written as

#Cty
capwor ds(REA. G ty)

7-6

Chapter 7
Spark Streaming Support

Spark Streaming Support

This section provides information about streaming modes of operation on data sets. It
also provides information on Checkpointing.

Note:

Spark 2.0 Streaming using Kafka is no longer supported for Data Platforms
such as Cloudera CDH 6.0, Hortonworks 3.1 and later.

This section includes the following sub-sections:
* Spark Checkpointing

* Spark Windowing and Stateful Aggregation
* Spark Repartitioning and Caching

* Configuring Streaming Support

» Executing Mapping in Streaming Mode

Spark Checkpointing

A streaming application must operate 24/7 and hence should be resilient to failures.
Spark Streaming needs to checkpoint information to a fault tolerant storage system so
that it can recover from failures.

Checkpointing is enabled for applications recovering from failures of the driver running
the application. Checkpointing only ensures that the Spark application will restart from
where it left if a checkpoint is found.

For additional information on checkpointing, refer to Spark Streaming Programming
Guide.

Spark Windowing and Stateful Aggregation

ORACLE

Spark's Windowing feature allows aggregation (and other transformations) to be
applied not just to the current RDD, but also include data from several previous RDDs
(window duration).

The Spark KMs support batch and, also streaming transformations. While the Python
code for non-streaming operates on RDD or DataFrame objects, the streaming code
works on DStream objects. Aggregation in batch mode is simple: there is a single set
of input records (RDD), which are aggregated to form the output data, which is then
written into some target. In streaming mode the continuously incoming data is
discretized into a flow of RDDs. By default each RDD is aggregated independently.

Spark windowing works well for calculating things like running sum or running
averages. But it comes with two restrictions:

e Older RDDs must be retained

e Data falling into the window is recalculated for every new RDD.

7-7

http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing

Chapter 7
Spark Streaming Support

This is the reason why windowing is not suitable for aggregation across an entire data
stream. This can only be achieved by stateful aggregation.

Windowing enabled KMs have the following optional KM Options:

* Window Duration: Duration of window defined in number of batch intervals.

e Sliding Interval: Interval at which the window operation is performed defined in
number of batch intervals.

Windowing is supported by:
* XKM Spark Aggregation
* XKM Spark Join

* XKM Spark Set

* XKM Spark Distinct

For additional information, refer to Spark Streaming Programming Guide.

Stateful Aggregation

When data must be aggregated across all data of a stream, stateful aggregation is
required. In stateful aggregation Spark builds called state stream containing the
aggregated values for all keys. For every incoming RDD this state is updated, for
example aggregated sums are updated based on new incoming data.

By default a state stream will output all stored values for every incoming RDD. This is
useful in case the stream output is a file and the file is expected to always hold the
entire set of aggregate values.

Stateful processing is supported by:

* XKM Spark Aggregate
e XKM Spark Lookup

Spark Repartitioning and Caching

ORACLE

Caching

In ODI, the Spark caching mechanism is leveraged by providing two additional Spark
base KM options.

e Cache data: If this option set to true a storage invocation is added to the
generated pyspark code of the component.

e Cache storage level: This option is hidden if cache data is set to false.

Repartitioning

If the source is a HDFS file, the number of partitions is initially determined by the data
block of the source HDFS system. The platform resource is not fully used if the
platform that runs the Spark application has more available slots for running tasks than
the number of partitions loaded. In such cases, the RDD.repartition() api can be used
to change the number of partitions.

Repartitioning can be done in any step of the whole process, even immediately after
data is loaded from source or after processing the filter component. ODI has Spark
base KM options which let you decide whether and where to do repartitioning.

7-8

https://spark.apache.org/docs/1.6.3/streaming-programming-guide.html#window-operations

Chapter 7
Spark Streaming Support

* Repartition: If this option is set to true, repartition is applied after the
transformation of component.

* Level of Parallelism: Number of partitions and the default is 0. When the default
value is set, spark.default.parallelism will be used to invoke the repartition()
function.

* Sort Partitions: If this option is set to true, partitions are sorted by key and the key
is defined by a Lambda function.

» Partitions Sort Order: Ascending or descending. Default is ascending.

» Partition Keys: User defined partition keys represented as a comma separated
column list.

» Partition Function: User defined partition Lambda function. Default value is a
pyspark defined hash function por t abl e_hash, which simply computes a hash
base on the entire RDD row.

Configuring Streaming Support

Configuring Streaming Support is performed in two parts:
1. Topology
a. Click the Topology tab.

b. Inthe Physical Architecture tree, under Technologies, right-click Spark Python
and then click New Data Server.

c. Inthe Definition tab, specify the details of the Spark data server.
See Spark Data Server Definition for more information.

d. Inthe Properties tab, specify the properties for the Spark data server.
See Spark Data Server Properties for more information.

e. Click Test Connection to test the connection to the Spark data server.

2. Mapping Design
® To edit your mapping, select Physical Design, click the blank canvas, and

select the Streaming checkbox on the property panel.

ODI generates code that allows the mapping to run in Streaming mode,
instead of Batch mode.

Spark Streaming DataServer Properties

ORACLE

Provides the Spark Technology-specific streaming properties that are default for the
Spark Execution Unit properties.

Table 7-2 Spark Streaming DataServer Properties

|
Key Value

spark.check This property defines the base directory for checkpointing. Every mapping under
pointingBase this base directory will create a sub-directory.
Dir Example: hdfs://cluster-ns1/user/oracle/spark/checkpoints

7-9

ORACLE

Chapter 7
Spark Streaming Support

Table 7-2 (Cont.) Spark Streaming DataServer Properties

Key

Value

spark.check
pointingInter
val
spark.restart
FromCheckp
oint

spark.batch
Duration

spark.remem
berDuration
spark.check
pointing
spark.stream
ing.timeout
odi-
execution-
mode

spark.ui.ena
bled

spark.eventL
og.enabled

principal
keytab

odi.spark.en

ableUnsupp

ortedSparkM
odes

Displays the time in seconds

- If setto true, the Spark Streaming application will restart from an existing
checkpoint.

« If setto false, the Spark Streaming application will ignore any existing
checkpoints.

e If there is no checkpoint, it will start normally.
Displays the duration in seconds of a streaming interval.

Displays the time in seconds and sets the Spark Streaming context to remember
RDDs for this duration.

Enables Spark checkpointing.

Displays the timeout in seconds before stopping a Streaming application.
Default is 60.

e SYNCHRONOUS: Spark application is submitted and monitored through
Qdi OsCommand.

« ASYNCHRONOUS: Spark application is submitted asynchronously through
Qdi OSCommrand and then monitored through Spark REST APIs.

Enables the Spark Live REST API.

¢ Note:

Set to true for asynchronous execution.

Enables Spark event logs. This allows the logs to be accessible by the Spark
History Server.

< Note:

Set to true for asynchronous execution.

Kerberized User name.

The location of the keytab file that contains pairs of kerberos principal and
encrypted keys.
Example: /tmp/oracle.keytab

This check is introduced, as only yarn-client and yarn-cluster are supported.

7-10

Chapter 7
Spark Streaming Support

Extra Spark Streaming Data Properties

ORACLE

Provides the extra spark streaming properties that are specific to Spark technology
that are added to the asynchronous Spark execution unit.

Table 7-3 Extra Spark Streaming Properties

__|
Key Value

spark-webui- Maximum number of retries while waiting for the Spark WebUI to come-up.
startup-

polling-

retries

spark-webui- Displays the time in seconds between retries.
startup-

polling-

interval

spark-webui-

startup-

polling-

persist-after-

retries

spark-webui- Timeout in second used for REST calls on Spark WebUI.
rest-timeout

spark-webui- Time in seconds between two polls on the Spark WebUI.
polling-

interval

spark-webui-

polling-

persist-after-

retries

spark- Timeout in seconds used for REST calls on Spark History Server.
history-

server-rest-

timeout

spark- Maximum number of retries while waiting for the Spark History Server to make
history- the Spark Event Logs available.
server-

polling-

retries

spark- Time in seconds between retries.
history-

server-

polling-

interval

spark-

history-

server-

polling-

persist-after-

retries

spark- Maximum number of retries while waiting for the spark-submit OS process to
submit- complete.

shutdown-

polling-

retries

7-11

Chapter 7
Switching between RDD and DataFrames in ODI

Table 7-3 (Cont.) Extra Spark Streaming Properties

__|
Key Value

spark- Time in seconds between retries.
submit-
shutdown-
polling-
interval
spark-
submit-
shutdown-
polling-
persist-after-
retries

Executing Mapping in Streaming Mode

This topic provides the steps to enable executing the mapping in the streaming mode.
Streaming needs checkpointing information for a fault-tolerant storage system to
recover from failures.

1. To enable streaming support, see Configuring Streaming Support.

2. In physical design of the mapping, select staging execution unit, and enable
checkpointing options on the EKM. Enable checkpointing by setting the value of
spar k. checkpoi nti ng to True and set the Checkpointing directory in the
spar k. checkpoi ntingBaseDi r property.

Every mapping will have its unique checkpointing directory.

3. Execute the mapping and set the context for physical design.

< Note:

In the User Interface Designer by default, the Last execut ed
physi cal design in the nappi ng execution dial ogis pre-
selected.

Switching between RDD and DataFrames in ODI

You can switch between generating DataFrame code and RDD code by setting the
EKM option spar k. useDat aFr anes to either True or False on the Spark Execution Unit.

Components that do not support DataFrame Code
Generation

ORACLE

Some components do not support DataFrame code generation. If even a single
mapping component does not support DataFrames, a validation error is shown (asking
you to set the Spark Execution Unit property spark.useDataFrames to false) and you
will need to switch back to RDD.

7-12

Chapter 7

Adding Customized Code in the form of a Table Function

The following components do not support DataFrame code generation:

* Pivot
* Unpivot
* Input Signature

e Output Signature

Adding Customized Code in the form of a Table Function

The TableFunction component allows you to add your own code segment into the
mapping in the form of a reference to an external script, or some inline code.

Consider an example where the TABLEFUNCTION component is utilized to parse and
transform a source log file. The mapping will produce a target file with data as-is from

the source file, modified data, and new data such as timestamps.

To build the mapping containing a table function and add input and output attributes to

it, follow the below procedure:

1. Create a mapping by adding the source and target data stores along with a table
function component named 'TABLEFUNCTION'.

Figure 7-3 Mapping with Source, Target, and Table Function

Uﬁ'ﬂ LogParsing

@ 8 100%

.

’
AT |
\;I:sns[:::ld] TAELEFUNCTION
customerld ™ OUTPUTL
date_time
activityType
destination
clientCountry
channel
hotelld
starCategory
checkin
travelType
amountPayable
bookingld

* .

O eryie _Logici Phyzical

=) TGT
visitorld
channel
clientCountry
E= newsessionld
timestamp

Compone. ..
kadl

=]

Q-

Logical

Fivaot

Split
i

Subgquery
Filter

&
Tahle
Function

&
Unpivot

0

o

ORACLE

2. Connect the source data store’s output connector to the input connector of the

TABLEFUNCTION component.
Input attributes will now be added directly to TABLEFUNCTION.

7-13

Chapter 7
Adding Customized Code in the form of a Table Function

< Note:
e Aninput group 'INPUT1' is created automatically containing all the
attributes from the source data store as shown in the figure below.

* For each additional source data store, a new input group will be
added.

Figure 7-4 Input Group added to TABLEFUNCTION
. & L]
= ACT £ TABLEFUNCTION =] ToT
visngrm ,._, ;{‘; INE‘UTl = G
E== sessionld -A : wsnc.nrld ", R
custnmerld z!- -: sessionld =, clientCountry
dat.e_.tlme -A a: custol.nerld -, G i e
au:tw_lty'l'_':.fpe i - dat_e__tlme =, timestamp
destination [} = activityType
clientCountry W -3 destination
channel B e clientCauntre -
hotelld) ™ OUTPUTL
starCategory =
checkin i
travelType =
amountPayable e k
boakingld
L] & L]
3. Connect the target data store’s input connector to the output connector of the
TABLEFUNCTION component.
Output attributes will now be added directly to TABLEFUNCTION.
Note:

e An output group 'OUTPUTL1' is created automatically containing all
the attributes from the target data store as shown in the figure below.

e The output attributes in 'OUTPUT1' can be renamed or deleted.

e The expression for each output attribute will be set grammatically by
the script embedded in the TABLEFUNCTION component and
doesn’t need to be set individually.

ORACLE 7-14

Chapter 7
Adding Customized Code in the form of a Table Function

Figure 7-5 Mapping with Source, Target, and Table Function connected

_@ ACT f TABLEFUMCTION a=: TcT
visitorld = == IMPUTL GiERETd
B sessionld visitorld channel
customerld = sessionld b clientCountry
date_time customerld j o b~ Hensessionld
k activity Ty pe ® date_time / = timestamp
————dactination activityType
nuntr\y ® I destination
channel - clientCountre -
hotelld 5 ™ OUTPUTL
starCategory visitorld E
checkin 5. channel]
travelType cliemtCountry &
am ountPayable = newSessionld &
bookingld = timestamp

Configure the mapping by following the procedure below:

1. Go to the Logical tab and select Spark-Local_Default as the Staging Location
Hint.

2. Go to the Physical tab. Under Extract Options, specify the script to use for the
TABLEFUNCTION component by entering / t np/ xknt f . py as the value for the
SPARK_SCRIPT_FILE KM option. The xnkt f . py script contains the following
content:

i mport sys
import datetinme
#get the upstream object using the input connector point nane
upstreanrsys. argv[0][' I NPUTL']
#A val ue nust be calculated for every TF output attribute
TABLEFUNCTI ON = upstream map(| anbda input: Row(**{"visitorld":input.visitorld,
"channel ":input.channel, "clientCountry":input.clientCountry,
"newSessionl d":' Prefix' +i nput.sessionld, "tinmeStanp":now. strftime("%-%n% %
%w1))
Here, the input group 'INPUTL1' of the TABLEFUNCTION component is passed
through sys.argv to the Spark-Python script xknt f. py.
Alternatively, you can directly specify the script to use for the TABLEFUNCTION
component by entering the following content as the value for the SPARK_SCRIPT
KM option:
inport datetinme
now = datetine. datetime. now()
#A val ue nust be calculated for every TF output attribute
TABLEFUNCTI ON = ACT. map(| anbda i nput: Row(**{"visitorld":input.visitorld,
"channel ":input.channel, "clientCountry":input.clientCountry,
"newSessi onl d":' Prefix' +i nput.sessionld, "tineStanp":now. strftime("%-%n% %
W)1))

ORACLE 7-15

ORACLE

Chapter 7
Adding Customized Code in the form of a Table Function

There are two types of Spark Scripts for TableFunction:

» External TableFunction Script

* Inline TableFunction Script

External TableFunction Script

This can be dynamically executed from within ODI mapping code. If necessary, use
sys.argv to send in RDDs/DataFrames for processing with the external script.

For example, consider a TableFunction component inserted with the following
properties:

e Name — TABLEFUNCTION

* Input connector - INPUT1

« Inputfields - IN_ATTR_1 and IN_ATTR_2

« Output attributes - OUT_ATTR_1, OUT_ATTR_2, and OUT_ATTR_3

As seen in the external script below, the upstream RDD/DataStream object is obtained
using the input connector point name. The resulting RDD/DStream is then calculated,
where a value is calculated for every TableFunction output attribute name.

i mport sys

inport datetinme

upstreanrsys. argv[0][' I NPUTL']

now = datetinme. datetime. now()

TABLEFUNCTI ON = upstream map(| anbda input: Row(**{" OUT_ATTR 1":i nput. sessi onl d,
"QUT_ATTR 2":input.custonmerld, "OUT_ATTR 3":now. strftime("%-%n% %L 9M)}))

To dynamically execute this external script, ODI generates the following mapping
code. The result of the external script execution is stored as TABLEFUNCTION.

sys. argv=[di ct (1 NPUT1=ACT)]
execfile('/tnp/xkntf_300.py")
TABLEFUNCTI ON = TABLEFUNCTI ON. t oDF(.. . .)

Inline TableFunction Script

In inline mode, the actual TableFunction script is stored as an XKM option. You don't
need to use sys.argv to send in any source objects for processing the script.

As seen in the internal script below, the result of the external script execution is
directly referenced.

ACT=ACT.filter("ACT_custonerld = '5001'")
TABLEFUNCTI ON = ACT.toDF(...)

7-16

Working with Unstructured Data

This chapter provides an overview of the Jagged component and the Flatten
component. These components help you to process unstructured data.
This chapter includes the following section:

e Working with Unstructured Data

Working with Unstructured Data

ORACLE

Oracle Data Integrator provides a Jagged component that can process unstructured
data. Source data from sources such as social media or e-commerce businesses is
represented in a key-value free format. Using the jagged component, this data can be
transformed into structured entities that can be loaded into database tables.

For more information using the Jagged component and KMs associated with it, see the
following sections:

* Creating Jagged Components in Developing Integration Projects with Oracle Data
Integrator.

* XKM Jagged.

8-1

Working with Complex Datatypes and
HDFS File Formats

This chapter provides an overview of extended data format support and complex type
support.

This chapter includes the following sections:

* HDFS File Formats

* Working with Complex Datatypes in Mappings
e Hive Complex Datatypes

e Cassandra Complex Datatypes

* Loading Data from HDFS File to Hive

e Loading Data from HDFS File to Spark

HDFS File Formats

Supported Formats

ODI can read and write HDFS file data in a variety of formats. The HDFS file formats
supported are Json, Avro, Delimited, and Parquet. The format is specified on the
Storage Tab of the HDFS data store. When you reverse-engineer Avro, JSON, or
Parquet files, you are required to supply a Schema in the Storage Tab. The reverse-
engineer process will only use the Schema, and not access the HDFS files
themselves. Delimited HDFS files cannot be reverse-engineered, the Attributes (in the
Attributes tab of the HDFS data store) will have to be added manually and the
parameters, such as field separator should be defined on the Storage Tab.

If you are loading Avro files into Hive, then you will need to copy the Avro Schema file
(-avsc) into the same HDFS location as the Avro HDFS files (using the same file name
that you specified for the Schema in the Storage Panel).

Complex Types

JSON, Avro, and Parquet formats can contain complex data types, such as array or
Object. During the Reverse-Engineering phase, the Datatype field for these Attributes
is set to "Complex" and the definition of the complex type is stored in the Data Format
field for the Attribute. The Syntax of this definition is the same as Avro uses for its
Schema definitions. This information is used by ODI in the Mapping Editor when the
flatten component is added to the Mapping.

ORACLE 9-1

Chapter 9
Working with Complex Datatypes in Mappings

Table 9-1 HDFS File Formats

File Reverse- Complex Load into Load into Write from Spark
Format Engineer Type Hive Spark
Support
Avro Yes (Schema Yes Yes (Schema Yes (Batch Yes
required) required) mode only)
Delimited No No Yes Yes Yes
JSON Yes (Schema Yes Yes Yes Yes
required)
Parquet Yes (Schema Yes Yes Yes (Batch Yes (Batch and
required) mode only) Streaming)

Table 9-2 Complex Types

|
Avro Json Hive Parquet

Record Object Struct Record

enum NA NA enum
array array array array
map NA map map
union NA union union
fixed NA NA fixed

Working with Complex Datatypes in Mappings

ORACLE

Provides information on working with complex, nested, and user defined metadata that
drives the Flatten component.

Oracle Data Integrator provides a Flatten component that can process input data with
a Complex structure and produce a flattened representation of the same data using
standard data types. The input data may be in various formats, such as a Hive table or
a JSON HDFS file.

When you add a Flatten component into a Mapping, you choose the attribute to Flatten
from the component upstream.

The Flatten components for Spark and Hive have some advanced usability features
that do not exist in the other implementations. Namely, once you've chosen the
attribute to flatten from the upstream node, the flattened attributes will be created
automatically. The reason this is possible is that the Reverse-Engineering process for
Hive and HDFS capture the Complex Type definition in the Attribute's "Data Format"
property. You can view this property in the Attribute tab of the Hive or HDFS Data
Store. The Flatten component's Collection and Structure properties are also set
automatically based on the Attribute definition. That leaves just the "Include Nulls"
property to be set manually, based on whether null complex data should be
processed. Some technologies, particularly Spark, can drop records containing null
complex attributes.

9-2

Chapter 9
Hive Complex Datatypes

Table 9-3 Properties for Flatten Component

Flatten Property Description Automatically detected for
Hive and HDFS (if reverse-
engineering was used)

Include Nulls Indicates whether null No
complex data should be
processed.

Collection Indicates whether the Yes

Complex Type attribute is a
collection such as an array.

Structure Indicates whether the Yes
Complex Type is an object,
record, or structure, and not
just a collection of scalar
types.

Each Flatten component can flatten only one Complex Type attribute. You can chain
Flatten components together to flatten more than one attribute, or where nested
datatypes are concerned, to access the next level of nesting.

For more information using the Flatten component and the KMs associated with it, see
the following sections:

* Creating Flatten Components in Developing Integration Projects with Oracle Data
Integrator.

e XKM Oracle Flatten.

The example in Using Flatten for Complex Types in Hive Mappings shows an example
of chaining Flatten components. The Fl atten_Direct or Complex Type Attribute is set
to the upstream MOVI E_DI RECTOR attribute from the MOV node. At that point, NAVE and
ACE are created in Fl att en_Di rect or automatically. Fl att en_Rati ngs follows
Flatten_Director and uses Fl atten_Direct or. RATI NGS as the Complex Type
Attribute, after which rati ng and i nf o attributes are automatically added.

Hive Complex Datatypes

Hive has the following complex data types:

* Arrays
« Maps
e Structs
* Union

Using Flatten for Complex Types in Hive Mappings

The Flatten component is used to handle Complex Types in Hive mappings.
Consider the JSON snippet below which is a source with two Complex Types:

« A MOVIE_DIRECTOR field which is a structure consisting of Name and Age.

ORACLE 9-3

Chapter 9
Hive Complex Datatypes

* A RATINGS field which is an array of ratings, with each rating comprising a rating
and an info field.

{"MVIE_ID': 11, " MOVI E_NAVE': " The Lobster*", " MOVI E_DI RECTOR': { " NAME" : * Yor gos
Lant hi nos”, " AGE": 43}, "RATINGS": [{"rating": 7,"info": "x"}, {"rating": 5 "info": "x"}]}
{"MVIE_ID': 12, " MOVI E_NAVE': " Green Roont, * MOVI E_Di RECTOR': { " NAVE" : " Jer eny
Saul ni er", "AGE": 40}, "RATINGS': [{"rating": 4, "info":"x"},{"rating":3,"info": "x"}]}

{"MVIE_ID': 13, " MM E_NAVE': " Louder Than Bombs", "MV E_DI RECTCR': { " NAVE": " Joachi n
Trier","AGE': 42}, "RATINGS': [{"rating": 1,"info":"x"},{"rating": 2, "info": "x"}]}

The Hive table that is to be populated requires the NAME to be extracted from the
MOVIE_DIRECTOR complex structure along with the average of the rating values
from the RATINGS array.

To accomplish this, a mapping is required which flattens the

« MOVIE_DIRECTOR field so that the NAME can be extracted.

* RATINGS array so that the average of the individual ratings for each row can be
calculated.

The mapping is as shown in the figure below.

Figure 9-1 Mapping to flatten Complex Types

3 Flatten_Rarings
3 Flatten_Director = MOVIE_NAME = 1 =
Je=:] Mov MOVIE_HAME . MOVIE_ID G SEEEATIE R] e
MOVIE_NAME MOVIEID = = MOVIE_DIRECTOR HENI= IS = movie_name
MOVIE_ID o I MOVIE_DIRECTMb | » RATINGS S I MOVIENAME Wb o ooim movie_id
MOVIE_DIRECTOR 5t RATINGS “: = NAME = - NN e movie_director
RATINGS = NAME = L AGE o rang @ average_rating
AGE % rating =
info
Complex Type Attribute: Complex Type Attribute:
MOV MOVIENIRECTOR | | Flatten_Director.RATINGS
MOV - Properties AGGCRECATE_Rating - Properties
a| Q Find @ 5| Q Find @
[=] Attributes =l Artributes
Attributes Q 2@ B- Attributes: Q ‘* x F S B~
MName Data Type Data format Name Data Type Expression Is Group By
MOVIE_NAME string MOVIE_ID INTECER Flatten_Ratings.MOVIE_ID Yes
MOVIE_ID integer MOVIE_MAME STRING Flatten_Ratings.MOVIE_NAME Auto
MOVIE_DIRECTOR comple {"type" " object”,"name” "MOVIE_DIRECTOR" "fields" .. NAME STRING Flatten_Ratings. NAME Auto
RATINGS comple {"type"array" "nam e "RATINGS" "item s" {"ty pe"a... rating VARCHAR AVG(Flatten_Ratings rating) No
The populated Hive table appears as shown in the figure below.

9-4

Figure 9-2 Populated Hive Table

Chapter 9

Cassandra Complex Datatypes

1
2
3
iy
=
6|
7]
8|
9|
10|

0
11]
12|
13|
14
15|

G

|

movie_name
Lord of the Ring=
king King
Diztrict 9
The Birds
Pzycho
Lacal Hera
Restlezs Matives
Trainspotting
The Lobster
Green Room
Louder Than Bombs
The Fit=s
Hell or High Water
Cleazon
Mauntainz May Depart

The Inwitation

movie_id

RT3 & X,

movie_director

1[Peter Jackson
2 Peter Jackzon
3 Peter Jackszon
4 Alfred Hitchcock
5 Alfred Hitchcock
& Bill Forsyth
7 Michael Hoffman
g Danny Boyle
11 Yorgos Lanthimos
12 Jeremy Saulnier
13 Joachin Trier
14 AnnaRose Holmer
15 Dawid Mackenzie
16] Clay Tuweel
17 Jia Zhangke
15 Karyn kuzama

average_rating

[T W R W N A o T L LA = N W N o U) [U TI L U i

Cassandra Complex Datatypes

Cassandra has the following complex data types:

Map
Set
List
Tuple

User-Defined Type

Map

A map is a set of key-value pairs, where the keys are unique. The map is sorted by its
keys.

Set

A set is a collection of unique values. The set is sorted based on the values.

List

A list is a collection of non-unique values which are ordered by their position in the list.

ORACLE

9-5

Chapter 9
Cassandra Complex Datatypes

Tuple

A Tuple comprises fixed-length sets of typed positional fields. It can accommodate
32768 fields, and can be used as an alternative to a User-Defined Type.

User-Defined Type

User-Defined Type (UDT) is a complex data type that can be created, updated, and
deleted.

Cassandra can be used with LKM Spark to Cassandra and generic SQL KMs.

The Apache Cassandra DataDirect JDBC Driver handles Complex Types differently
compared to the Hive JDBC Driver. Due to this, mappings that use Cassandra
Complex Types are written slightly differently compared to Hive mappings. To
demonstrate this, consider a table defined in Cassandra with the use of UDTs and
Lists.

* You can access UDTs through the Apache Cassandra DataDirect JDBC Driver
because the JDBC Driver flattens the UDTs and projects the scalar types as
regular columns of the table. This negates the need to use the Flatten Component
on the mapping. You will see that the extra columns have been flattened
automatically in the Cassandra Data Stores, and can be used directly in mappings.

* You can access collections of values (Lists in Cassandra; Arrays in Hive) through
the Apache Cassandra DataDirect JDBC Driver. The Apache Cassandra
DataDirect JDBC Driver normalizes the structure and projects the collection type
through a child table. When you reverse-engineer the original table, additional data
stores will be created for the collections. The mapping then needs to join these two
tables.

* You cannot access Nested Types in ODI.

How ODI deals with Cassandra Lists and User Defined Types

ORACLE

This is an example that shows how ODI deals with Cassandra Lists and User Defined
Types.

Consider a schema, novi eRat i ng2 containing a UDT and a List:

e Anovie_director attribute which is a UDT consisting of Name and Age.
e Aratings attribute which is a list of integers.

create type director_object (nanme text, age int);

create table novieRating2 (movie_name text, movie_id int PRI MARY KEY, novie_director
frozen<director_object> ratings |ist<int);

I NSERT | NTO novi erating2 (novie_id, novie_nane, movie_director, ratings)
VALUES (1,'Lord of the Rings',('Peter Jackson',32),[1,2]);

I NSERT | NTO novi erating2 (novie_id, novie_nane, novie_director, ratings)
VALUES (2,'King Kong', (' Peter Jackson',32),[1,2]);

I NSERT | NTO movi erating2 (novie_id, novie_nane, movie_director, ratings)
VALUES (3,'District 9', (' Peter Jackson',32),[1,3]);

I NSERT | NTO novi erating2 (novie_id, novie_nane, movie_director, ratings)
VALUES (4,'The Birds',('Alfred Htchcock', 140),[1,4]);

I NSERT | NTO novi erating2 (novie_id, novie_nane, novie_director, ratings)
VALUES (5, ' Psycho', (' Alfred Hitchcock', 140),[1,2,8]);

9-6

ORACLE

Chapter 9
Cassandra Complex Datatypes

I NSERT | NTO novi erating2 (nmovie_id, movie_name, novie director, ratings)
VALUES (6, ' Local Hero',('Bill Forsyth',56),[1,9]);

I NSERT | NTO novi erating2 (novie_id, movie_name, novie director, ratings)
VALUES (7,"' Restless Natives',('Mchael Hoffman',45),[1]);

I NSERT | NTO novi erating2 (novie_id, movie_name, novie director, ratings)
VALUES (8, ' Trainspotting', (' Danny Boyle',12),[1,4]);

On reverse-engineering the novi er at i ng2 table in ODI, it appears as shown in the
figure below.

Figure 9-3 Reverse-engineered novi er ati ng2 table

¥
Definition
Antributes f@ Reverse Engi
Journalizing Qrder Mame Type Length Scale Mot Mull SCD Behavior
e 1 mavie_id int 11 0 El <Undefined>

: 2 movie_director_name wvarchar 2147483647 B <UUndefined:>
Services 3 movie_director_age int 11 0 E <Undefined>
Markers 4 movie_name varchar 2147483647 E <Undefined>
Memo
Version

This table does not contain the r at i ngs attribute. However, the JDBC driver exposes a
virtual table called novi erating2_ratings.

On reverse-engineering this virtual table in ODI, it appears as shown in the figure
below.

Figure 9-4 Reverse-engineered novi erating2 ratings table

L4

Definition

Artributes l@ Reverse Engineer [

Journalizing Order Mame Type Length Scale Mat Mull SCD Behavior

Partitions 1 movierating2_movie_id int 11 i} [<Undefined>
y 2 ratings int 11 o O <Undefined=

herdices 3 current_list_index int 11 0 I <Undefined>

Markers

Memo

Version

Privileges

Flexfields

In this example, the target HDFS file requires that the name is extracted from the
movi e_director UDT along with the average of the values from the rat i ngs list.

To accomplish this, a mapping is required which joins the novi er ati ng2 and
movi erating2_ratings tables, and averages the rati ngs for each movie.

The mapping is as shown in the figure below:

9-7

Chapter 9
Loading Data from HDFS File to Hive

Figure 9-5 Mapping to join novi erati ng2 and novi erating2_rati ngs tables

Qo ~ 1 IEE

= movierating2
- movie_id [
movie_director_narn B
movie_director_age i -
movie_name L 2
=
L

™
| el
JoIN

.
ACCREGATE

movie_id =

movic_director_name =] MOV

N, | movie_director_age LS MOVIE_NAME
- movie_name »iy -+ MOVIE_ID

- = ratings = - DIRECTOR_NAME
B= movierating2_m ovii 5 / = i
B ratings =

o= current_list_index

[F movierating2_ratings

Overview | Logical| Physical il

B AGGREGCATE - Properties

s Q Fnd @

Antributes

Anributes: Q X ¢ LE-
Name Data Type Length Scale Dataformat Expression Execute o... Fixed Exec . Is Group By
movie_id INTECER 11 0 movierating2. movie_id No Hint Yes

Ceneral
Connector Points

movie_director_name NVARCHAR 21474836. m ovierating2.movie_director_name No Hint Auta
movie_director_age INTEGER 11 0 movierating2.movie_director_age No Hint Auta
movie_name HVARCHAR 21474836. movierating2.movie_name Mo Hint Auta
ratings INTEGER 11 0 AVC(movierating2_ratings.ratings) Mo Hint No

The key point here is that for Cassandra Complex Types, the Flatten component is not
required to access the complex fields in the mapping. You'll notice that the similar Hive
mapping in Using Flatten for Complex Types in Hive Mappings is designed differently.

After running the mapping, the target HDFS file looks like this:

hdfs dfs -cat AvgRating.]json/part-r-00000-4984bb6c- dach- 4cel- a474- dc5641385e9f
{"MOVIE_NAME": "District 9","MOVIE_ID":3,"DI RECTOR_NAME": " Peter

Jackson", " AVG_RATI NGS": 2}

{"MOVIE_NAME": "Lord of the Rings","MME_ID":1, "Dl RECTOR_NAME': "Pet er
Jackson", "AVG_RATI NGS": 1}

{"MOVI E_NAME": "The Birds","MOVIE_ID": 4, " DI RECTOR_NAME": "Al fred

Hi t chcock”, " AVG_RATI NGS": 2}

{"MOVI E_NAME": "Rest | ess Natives","MOIE_ID":7," DI RECTOR_NAME": "M chael

Hof f man", " AVG_RATI NGS": 1}

hdfs dfs -cat AvgRating.json/part-r-00001-4984bb6c- dach- 4cel- a474- dc5641385e9f

{"MOVI E_NAME": "Psycho", "M E_I D': 5, "DI RECTOR_NAME": "Al fred Hitchcock", " AVG_RATI NGS':
3}

{"MOVI E_NAME": " Trai nspotting", "MW E_I D': 8, "Dl RECTOR_NAME": " Danny

Boyl e", " AVG_RATI NGS": 2}

{"MOVI E_NAME": "Ki ng Kong","MOVIE_ID": 2, "DI RECTOR_NAME": "Pet er Jackson", " AVG_RATI NGS':
1}

{"MOVI E_NAME": "Local Hero","MOIE_ID":6,"DI RECTOR_NAMVE': "Bill Forsyth","AVG RATI NGS':
5}

Loading Data from HDFS File to Hive

ORACLE

Provides the steps to load data from HDFS file to Hive load data.
1. Create a HDFS Data Model.
2. Create a HDFS Data Store.

See HDFS Data Server Definition for additional information.
3. Inthe Storage panel, set the Storage Format.

A Schema is required for all except for delimited.

9-8

Chapter 9
Loading Data from HDFS File to Spark

< Note:
e If the Row format is set to Delimited, set the Fields Terminated By,
Collection Items Terminated By, and Map Keys Terminated By.

« If the HDFS file is Avro, then the Avro schema must exist in the
same HDFS directory as the HDFS files.

4. Create a mapping with HDFS file as source and Hive file as target.

5. Use the LKM HDFS File to Hive Load Data and IKM Hive specified in the physical
diagram of the mapping.

" Note:

Refer to Reverse-Engineering Hive Tables for information on Reverse-
Engineering.

Loading Data from HDFS File to Spark

Provides the steps to load data from HDFS file to Spark.

Create a Data Model for complex file.

Create a HIVE table Data Store.

In the Storage panel, set the Storage Format.

Create a mapping with HDFS file as source and target.

Use the LKM HDFS to Spark or LKM Spark to HDFS specified in the physical
diagram of the mapping.

g H @0 b P

< Note:

For AVRO format, you can specify the schema file location. Refer to
Reverse-Engineering Hive Tables for information on Reverse-
Engineering. There are two ways of loading Avro file to Spark either with
AVSC file or without AVSC file.

ORACLE 9-9

Hive Knowledge Modules

ORACLE

This appendix provides information about the Hive knowledge modules.

This appendix includes the following sections:

LKM SQL to Hive SQOOP

LKM SQL to File SQOOP Direct

LKM SQL to HBase SQOOP Direct

LKM File to SQL SQOOP

LKM Hive to SQL SQOOP

LKM HBase to SQL SQOOP

IKM Hive Append

LKM File to Hive LOAD DATA

LKM File to Hive LOAD DATA Direct

LKM HBase to Hive HBASE-SERDE

LKM Hive to HBase Incremental Update HBASE-SERDE Direct
LKM Hive to File Direct

XKM Hive Sort

LKM File to Oracle OLH-OSCH

LKM File to Oracle OLH-OSCH Direct

LKM Hive to Oracle OLH-OSCH

LKM Hive to Oracle OLH-OSCH Direct

RKM Hive

RKM HBase

IKM File to Hive (Deprecated)

LKM HBase to Hive (HBase-SerDe) [Deprecated]
IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]
IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]
IKM Hive Control Append (Deprecated)

CKM Hive

IKM Hive Transform (Deprecated)

IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]
IKM File-Hive to SQL (SQOOP) [Deprecated]

A-1

LKM SQL to Hive SQOOP

ORACLE

Appendix A
LKM SQL to Hive SQOOP

This KM integrates data from a JDBC data source into Hive.

Create a Hive staging table.

Create a SQOOP configuration file, which contains the upstream query.

1
2
3. Execute SQOOP to extract the source data and import into Hive
4

Drop the Hive staging table.

This is a direct load LKM and will ignore any of the target IKM.

The following table descriptions the options for LKM SQL to Hive SQOOP.

Table A-1 LKM SQL to Hive SQOOP
|

Option

Description

DELETE_TEMPORARY_O
BJECTS

SQOOP_PARALLELISM

SPLIT_BY

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files
and scripts) after integration. Useful for debugging. Default: true.
Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.
When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

Target column name for splitting the source data.

Specifies the unqualified target column name to be used for
splitting the source data into n chunks for parallel extraction,
where n is SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should
contain homogeneously distributed values.

For calculating the data chunk boundaries a query similar to
SELECT MIN(EMPNO), MAX(EMPNO) from EMPLOYEE EMP
is used. To avoid an extra full table scan the split column should
be backed by an index.

A-2

Appendix A
LKM SQL to File SQOOP Direct

Table A-1 (Cont.) LKM SQL to Hive SQOOP

__|
Option Description

BOUNDARY_QUERY Query to retrieve min/max value for calculating data chunks
using SPLIT_BY column.

For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is retrieved
(KM option SPLIT-BY). In certain situations this may not be the
best boundaries or not the most performant way to retrieve the
boundaries. In such cases this KM option can be set to a SQL
query returning one row with two columns, lowest value and
highest value to be used for split-column. This range will be
divided into SQOOP_PARALLELISM chunks for parallel
extraction.

Example for hard-coded ranges for an Oracle source:
SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names
should be inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM <

%=o0diRef.getObjectName(EMP")%>"
TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE_ MapReduce Output Directory.

DIR This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

USE_GENERIC_JDBC_CO Use SQOOP's generic JDBC connector?

NNECTOR For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

EXTRA_HADOOP_CONF_ Optional generic Hadoop properties.

PROPERTIES Extra optional properties for SQOOP file: section Hadoop
properties.

EXTRA_SQOOP_CONF_P Optional SQOOP properties.

ROPERTIES Extra optional properties for SQOOP file: section SQOOP
properties.

EXTRA_SQOOP_CONNEC Optional SQOOP connector properties.

TOR_CONF_PROPERTIES Extrg optional properties for SQOOP file: section SQOOP
connector properties.

LKM SQL to File SQOOP Direct

This KM extracts data from a JDBC data source into an HDFS file

It executes the following steps:

ORACLE A-3

ORACLE

Appendix A
LKM SQL to File SQOOP Direct

1. Create a SQOOP configuration file, which contains the upstream query.
2. Execute SQOOP to extract the source data and store it as an HDFS file

This is a direct load LKM and must be used without any IKM.

Note:

The entire target directory will be removed before extraction.

The following table descriptions the options for LKM SQL to File SQOOP Direct.

Table A-2 LKM SQL to File SQOOP Direct
|

Option Description
DELETE_TEMPORARY_O Delete temporary objects at end of mapping.
BJECTS Set this option to NO, to retain temporary objects (tables, files

and scripts) after integration. Useful for debugging. Default: true.

SQOOP_PARALLELISM Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.
When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

SPLIT_BY Target column name for splitting the source data.

Specifies the unqualified target column name to be used for
splitting the source data into n chunks for parallel extraction,
where n is SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should
contain homogeneously distributed values.

For calculating the data chunk boundaries a query similar to
SELECT MIN(EMPNO), MAX(EMPNO) from EMPLOYEE EMP
is used. To avoid an extra full table scan the split column should
be backed by an index.

BOUNDARY_QUERY Query to retrieve min/max value for calculating data chunks
using SPLIT_BY column.

For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is retrieved
(KM option SPLIT-BY). In certain situations this may not be the
best boundaries or not the most performant way to retrieve the
boundaries. In such cases this KM option can be set to a SQL
query returning one row with two columns, lowest value and
highest value to be used for split-column. This range will be
divided into SQOOP_PARALLELISM chunks for parallel
extraction.

Example for hard-coded ranges for an Oracle source:
SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names
should be inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM <
%=0diRef.getObjectName(EMP")%>"

A-4

Appendix A
LKM SQL to HBase SQOOP Direct

Table A-2 (Cont.) LKM SQL to File SQOOP Direct
|

Option

Description

TEMP_DIR

MAPRED_OUTPUT_BASE_
DIR

USE_GENERIC_JDBC_CO
NNECTOR

EXTRA_HADOOP_CONF _
PROPERTIES

EXTRA_SQOOP_CONF_P
ROPERTIES

EXTRA_SQOOP_CONNEC
TOR_CONF_PROPERTIES

Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".
MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

LKM SQL to HBase SQOOQP Direct

This KM extacts data from a JDBC data source and imports the data into HBase.

ORACLE

It executes the following steps:

1. Create a SQOOP configuration file, which contains the upstream query.

2. Execute SQOOP to extract the source data and import into HBase.

This is a direct load LKM and must be used without any IKM.

The following table descriptions the options for LKM SQL to HBase SQOOP Direct.

Table A-3 LKM SQL to HBase SQOOP Direct
|

Option

Description

CREATE_TARG_TABLE

TRUNCATE

Create target table?
Check this option, to create the target table.
Replace existing target data?

Set this option to true, to replace any existing target table
content with the new data.

A-5

ORACLE

Appendix A
LKM SQL to HBase SQOOP Direct

Table A-3 (Cont.) LKM SQL to HBase SQOOP Direct
|

Option

Description

DELETE_TEMPORARY_O
BJECTS

SQOOP_PARALLELISM

SPLIT_BY

BOUNDARY_QUERY

TEMP_DIR

MAPRED_OUTPUT_BASE_
DIR

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files
and scripts) after integration. Useful for debugging. Default: true.

Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

Target column name for splitting the source data.

Specifies the unqualified target column name to be used for
splitting the source data into n chunks for parallel extraction,
where n is SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should
contain homogeneously distributed values.

For calculating the data chunk boundaries a query similar to
SELECT MIN(EMPNO), MAX(EMPNO) from EMPLOYEE EMP
is used. To avoid an extra full table scan the split column should
be backed by an index.

Query to retrieve min/max value for calculating data chunks
using SPLIT_BY column.

For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is retrieved
(KM option SPLIT-BY). In certain situations this may not be the
best boundaries or not the most performant way to retrieve the
boundaries. In such cases this KM option can be set to a SQL
query returning one row with two columns, lowest value and
highest value to be used for split-column. This range will be
divided into SQOOP_PARALLELISM chunks for parallel
extraction.

Example for hard-coded ranges for an Oracle source:
SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names
should be inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNOQO) FROM <
%=o0diRef.getObjectName(EMP")%>"

Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".
MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

A-6

Appendix A
LKM File to SQL SQOOP

Table A-3 (Cont.) LKM SQL to HBase SQOOP Direct
|

Option Description
USE_GENERIC_JDBC_CO Use SQOOP's generic JDBC connector?
NNECTOR For certain technologies SQOOP provides specific connectors.

These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

EXTRA_HADOOP_CONF_ Optional generic Hadoop properties.

PROPERTIES Extra optional properties for SQOOP file: section Hadoop
properties.

EXTRA_SQOOP_CONF_P Optional SQOOP properties.

ROPERTIES Extra optional properties for SQOOP file: section SQOOP
properties.

EXTRA_SQOOP_CONNEC Optional SQOOP connector properties.

TOR_CONF_PROPERTIES Extrg optional properties for SQOOP file: section SQOOP
connector properties.

LKM File to SQL SQOOP

ORACLE

This KM integrates data from HDFS files into a JDBC target.
It executes the following steps:

1. Create a SQOOP configuration file

2. Load data using SQOOP into a work table on RDBMS

3. Drop the work table.

The following table descriptions the options for LKM File to SQL SQOOP.

Table A-4 LKM File to SQL SQOOP

__|
Option Description
SQOOP_PARALLELISM Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.
When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

WORK_TABLE_OPTIONS Work table options.

Use this option to override standard technology specific work
table options. When left blank, these options values are used.

Oracle: NOLOGGING

DB2 UDB: NOT LOGGED INITIALLY

Teradata: no fallback, no before journal, no after journal
TERADATA_WORK_TABLE Teradata work table type.
_TYPE Use SET or MULTISET table for work table.

A-7

LKM Hive to SQL SQOOP

ORACLE

Appendix A
LKM Hive to SQL SQOOP

Table A-4 (Cont.) LKM File to SQL SQOOP
|

Option

Description

TERADATA_OUTPUT_MET
HOD

TEMP_DIR

MAPRED_OUTPUT_BASE_
DIR

USE_GENERIC_JDBC_CO
NNECTOR

EXTRA_HADOOP_CONF_
PROPERTIES

EXTRA_SQOOP_CONF_P
ROPERTIES

EXTRA_SQOOP_CONNEC
TOR_CONF_PROPERTIES

Teradata Load Method.

Specifies the way the Teradata Connector will load the data.

Valid values are:

e batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)

e multiple.fastload: multiple FastLoad connections

* internal.fastload: single coordinated FastLoad connections
(most performant)

Please see Cloudera's Teradata Connectors User Guide for

more details.

Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".
MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

This KM integrates data from Hive into a JDBC target.

It executes the following steps:

Unload data into HDFS

1
2. Create a SQOOP configuration file

3. Load data using SQOOP into a work table on RDBMS
4

Drop the work table

The following table descriptions the options for LKM Hive to SQL SQOOP.

A-8

ORACLE

Appendix A
LKM Hive to SQL SQOOP

Table A-5 LKM Hive to SQL SQOOP
|

Option

Description

DELETE_TEMPORARY_O
BJECTS

SQOOP_PARALLELISM

WORK_TABLE_OPTIONS

TERADATA_WORK_TABLE
_TYPE

TERADATA_OUTPUT_MET
HOD

TEMP_DIR

MAPRED_OUTPUT_BASE_
DIR

USE_GENERIC_JDBC_CO
NNECTOR

EXTRA_HADOOP_CONF_
PROPERTIES

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files
and scripts) after integration. Useful for debugging.

Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.
When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

Work table options.

Use this option to override standard technology specific work
table options. When left blank, these options values are used.

Oracle: NOLOGGING
DB2 UDB: NOT LOGGED INITIALLY
Teradata: no fallback, no before journal, no after journal

Teradata work table type.
Use SET or MULTISET table for work table.

Teradata Load Method.

Specifies the way the Teradata Connector will load the data.
Valid values are:

e batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)
e multiple.fastload: multiple FastLoad connections

« internal.fastload: single coordinated FastLoad connections
(most performant)

Please see Cloudera's Teradata Connectors User Guide for
more detalils.

Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp™)?>)".

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

A-9

Appendix A
LKM HBase to SQL SQOOP

Table A-5 (Cont.) LKM Hive to SQL SQOOP
|

Option

Description

EXTRA_SQOOP_CONF_P
ROPERTIES

EXTRA_SQOOP_CONNEC
TOR_CONF_PROPERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

LKM HBase to SQL SQOOP

This KM integrates data from HBase into a JDBC target.

ORACLE

It executes the following steps:

Create a SQOOP configuration file

1
2. Create a Hive table definition for the HBase table

3. Unload data from Hive (HBase) using SQOOP into a work table on RDBMS
4

Drop the work table.

The following table descriptions the options for LKM HBase to SQL SQOOP.

Table A-6 LKM HBase to SQL SQOOP
e

Option

Description

DELETE_TEMPORARY_O
BJECTS

HIVE_STAGING_LSCHEM

A

SQOOP_PARALLELISM

WORK_TABLE_OPTIONS

TERADATA_ WORK_TABLE
_TYPE

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files
and scripts) after integration. Useful for debugging. Default: true.
Logical schema name for Hive-HBase-SerDe table.

The unloading from HBase data is done through Hive. This KM
option defines the Hive database, which will be used for creating
the Hive HBase-SerDe table for unloading the HBase data.
Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.
When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

Work table options.

Use this option to override standard technology specific work
table options. When left blank, these options values are used.

Oracle: NOLOGGING

DB2 UDB: NOT LOGGED INITIALLY

Teradata: no fallback, no before journal, no after journal
Teradata work table type.

Use SET or MULTISET table for work table.

A-10

Appendix A
LKM HDFS File to Hive Load Data

Table A-6 (Cont.) LKM HBase to SQL SQOOP
|

Option Description
TERADATA_OUTPUT_MET Teradata Load Method.
HOD Specifies the way the Teradata Connector will load the data.

Valid values are:

e batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)

e multiple.fastload: multiple FastLoad connections

« internal.fastload: single coordinated FastLoad connections
(most performant)

Please see Cloudera's Teradata Connectors User Guide for

more details.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE_ MapReduce Output Directory.

DIR This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

USE_GENERIC_JDBC_CO Use SQOOP's generic JDBC connector?

NNECTOR For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

EXTRA_HADOOP_CONF_ Optional generic Hadoop properties.

PROPERTIES Extra optional properties for SQOOP file: section Hadoop
properties.

EXTRA_SQOOP_CONF_P Optional SQOOP properties.

ROPERTIES Extra optional properties for SQOOP file: section SQOOP
properties.

EXTRA_SQOOP_CONNEC Optional SQOOP connector properties.

TOR_CONF_PROPERTIES Eyirg optional properties for SQOOP file: section SQOOP
connector properties.

LKM HDFS File to Hive Load Data

This KM will load data only from HDFS file into Hive. The file can be in the format of
JSON, Avro, Parquet, Delimited with complex data.

Table A-7 LKM HDFS File to Hive Load Data
]

Option Description
STOP_ON_FILE_NO This checkbox option defines whether the KM should stop, if no input
T_FOUND file is found.

ORACLE A-11

Appendix A
LKM HDFS File to Hive Load Data (Direct)

Table A-7 (Cont.) LKM HDFS File to Hive Load Data

___|
Option Description

OVERRIDE_ROW_F This option allows to override the entire Hive row format definition of
ORMAT the staging table or the target table.

DELETE_TEMPORA Set this option to No, to retain the temporary objects (tables, files and
RY_OBJECTS scripts) post integration.

LKM HDFS File to Hive Load Data (Direct)

This KM will load data only from HDFS file into Hive Data Direct directly into hive
target table, bypassing the staging table for better performance.

Table A-8 LKM HDFS to Hive Load Data (Direct)

Option Description

STOP_ON_FILE_NO This checkbox option defines whether the KM should stop, if no input
T_FOUND file is found.

OVERRIDE_ROW_F This option allows to override the entire Hive row format definition of
ORMAT the staging table or the target table.

DELETE_TEMPORA Set this option to No, to retain the temporary objects (tables, files and
RY_OBJECTS scripts) post integration.

CREATE_TARG_TAB Create target table?

LE

Check this option, to create the target table.

TRUNCATE Replace existing target data?

Set this option to true, to replace any existing target table content with
the new data.

IKM Hive Append

This KM integrates data into a Hive target table in append or replace (truncate) mode.

The following table descriptions the options for IKM Hive Append.

Table A-9 IKM Hive Append
. ___|
Option Description
CREATE_TARG_TABLE Create target table.

Check this option if you wish to create the target table.
TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

ORACLE A-12

Appendix A
IKM Hive Incremental Update

< Note:

If there is a column containing a Complex Type in the target Hive table, this
must not be left unmapped. Hive does not allow setting null values to
complex columns.

IKM Hive Incremental Update

This IKM integrates data incrementally into a Hive target table. The KM should be
assigned on Hive target node.

Target data store integration type needs to be defined as Incremental Update to get
this KM on the list of available KMs for assignment.

Table A-10 IKM Hive Incremental Update

Option Description

CREATE_TARG_T Create target table.

ABLE Select this option to create the target table.

TRUNCATE Replace all target table data.
Set this option to true, to replace the target table content with the new
data.

LKM File to Hive LOAD DATA

Integration from a flat file staging area to Hive using Hive's LOAD DATA command.
This KM executes the following steps:

1. Create a flow table in Hive

2. Declare data files to Hive (LOAD DATA command)

3. Load data from Hive staging table into target table

The KM can handle filename wildcards (*, ?).">

The following table describes the options for LKM File to Hive LOAD DATA.

Table A-11 LKM File to Hive LOAD DATA

|
Option Description

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.

ORACLE A-13

ORACLE

Appendix A
LKM File to Hive LOAD DATA

Table A-11 (Cont.) LKM File to Hive LOAD DATA
|

Option

Description

EXTERNAL_TABLE

FILE_IS_LOCAL

STOP_ON_FILE_NOT_FO
UND

OVERRIDE_ROW_FORMA
T

Preserve file in original location?

Defines whether to declare the target/staging table as externally
managed.

Default: false

For non-external tables Hive manages all data files. That is, it
will *move* any data files into <hive.metastore.warehouse.dir>/
<table_name>. For external tables Hive does not move or delete
any files. It will load data from the location given by the ODI
schema.

If EXTERNAL_TABLE is set to true:

All files in the directory given by the physical data schema will be
loaded. So any filename or wildcard information from the source
data store's resource name will be ignored.

The directory structure and file names must follow Hives
directory organization for tables, for example, for partitioning and
clustering.

The directory and its files must reside in HDFS.

No Hive LOAD-DATA-statements are submitted and thus loading
of files to a specific partition (using a target-side expression) is
not possible.

Is this a local file?

Defines whether the source file is to be considered local (=
outside of the current Hadoop cluster).

Default: true

If FILE_IS_LOCAL is set to true, the data file(s) are copied into
the Hadoop cluster first.

If FILE_IS_LOCAL is set to false, the data file(s) are moved into
the Hadoop cluster and therefore will no longer be available at
their source location. If the source file is already in HDFS,
FILE_IS_LOCAL=false results in just a file rename and therefore
very fast operation. This option only applies, if
EXTERNAL_TABLE is set to false.

Stop if no input file was found?

This checkbox option defines whether the KM should stop, if no
input file has been found.

Custom row format clause.

This option allows to override the entire Hive row format
definition of the staging table (in case USE_STAGE_TABLE is
set to true) or the target table (in case USE_STAGE_TABLE is
set to false). It contains the text to be used for row format
definition.

Example for reading Apache Combined WebLog files:
ROW FORMAT SERDE

‘org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
<EOL>WITH SERDEPROPERTIES (<EOL> input.regex" =

1) 1) (@ 1) CNEWTW) (@ VPIVTYTAY) (I[0-91%) (+[0-91%)
(\"*2\7) (20 (\x2\)"

A-14

Appendix A
LKM File to Hive LOAD DATA Direct

LKM File to Hive LOAD DATA Direct

Direct integration from a flat file into Hive without any staging using Hive's LOAD
DATA command.

This is a direct load LKM and must be used without any IKM.
The KM can handle filename wildcards (*, ?).

The following table describes the options for LKM File to Hive LOAD DATA Direct.

Table A-12 LKM File to Hive LOAD DATA Direct
__|
Option Description
CREATE_TARG_TABLE Create target table.

Check this option if you wish to create the target table.
TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.
EXTERNAL_TABLE Preserve file in original location?
Defines whether to declare the target/staging table as externally
managed.

Default: false

For non-external tables Hive manages all data files. That is, it
will *move* any data files into <hive.metastore.warehouse.dir>/
<table_name>. For external tables Hive does not move or delete
any files. It will load data from the location given by the ODI
schema.

If EXTERNAL_TABLE is set to true:
All files in the directory given by the physical data schema will be

loaded. So any filename or wildcard information from the source
data store's resource name will be ignored.

The directory structure and file names must follow Hives
directory organization for tables, for example, for partitioning and
clustering.

The directory and its files must reside in HDFS.

No Hive LOAD-DATA-statements are submitted and thus loading
of files to a specific partition (using a target-side expression) is
not possible.

ORACLE A-15

Appendix A
LKM HBase to Hive HBASE-SERDE

Table A-12 (Cont.) LKM File to Hive LOAD DATA Direct
|

Option

Description

FILE_IS_LOCAL

STOP_ON_FILE_NOT_FO
UND

OVERRIDE_ROW_FORMA
T

Is this a local file?

Defines whether the source file is to be considered local (=
outside of the current Hadoop cluster).

Default: true

If FILE_IS_LOCAL is set to true, the data file(s) are copied into
the Hadoop cluster first.

If FILE_IS_LOCAL is set to false, the data file(s) are moved into
the Hadoop cluster and therefore will no longer be available at
their source location. If the source file is already in HDFS,
FILE_IS_LOCAL=false results in just a file rename and therefore
very fast operation. This option only applies, if
EXTERNAL_TABLE is set to false.

Stop if no input file was found?

This checkbox option defines whether the KM should stop, if no
input file has been found.

Custom row format clause.

This option allows to override the entire Hive row format
definition of the staging table (in case USE_STAGE_TABLE is
set to true) or the target table (in case USE_STAGE_TABLE is
set to false). It contains the text to be used for row format
definition.

Example for reading Apache Combined WebLog files:

ROW FORMAT SERDE
‘org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
<EOL>WITH SERDEPROPERTIES (<EOL> input.regex" =
1) (1) (1) CINEWTWND ([YTNVTVTA) (II0-9%) (-10-91%)
(220 (\x2\) ()"

LKM HBase to Hive HBASE-SERDE

This LKM provides read access to a HBase table from the Hive.

Direct

ORACLE

This is achieved by defining a temporary load table definition on Hive which represents
all relevant columns of the HBase source table.

LKM Hive to HBase Incremental Update HBASE-SERDE

This LKM loads data from Hive into HBase and supports inserting new rows and, also

updating existing data.

This is a direct load LKM and must be used without any IKM.

The following table describes the options for LKM Hive to HBase Incremental Update

HBASE-SERDE Direct.

A-16

Appendix A
LKM Hive to File Direct

Table A-13 LKM Hive to HBase Incremental Update HBASE-SERDE Direct
|

Option

Description

CREATE_TARG_TABLE

TRUNCATE

HBASE_WAL

DELETE_TEMPORARY_O
BJECTS

Create target table.
Check this option to create the target table.

Replace all target table data.

Set this option to true, to replace the target table content with the
new data.

Disable Write-Ahead-Log.

HBase uses a Write-Ahead-Log to protect against data loss. For
better performance, WAL can be disabled. This setting applies to
all Hive commands executed later in this session.

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files
and scripts) after integration. Useful for debugging.

LKM Hive to File Direct

This LKM unloads data from Hive into flat files.

This is a direct load LKM and must be used without any IKM.

The following table describes the options for LKM Hive to File Direct.

Table A-14 LKM Hive to File Direct
]

Option

Description

FILE_IS_LOCAL

STORED_AS

Is this a local file?

Defines whether the target file is to be considered local (outside
of the current Hadoop cluster).

File format.

Defines whether the target file is to be stored as plain text file
(TEXTFILE) or compressed (SEQUENCEFILE).

XKM Hive Sort

This XKM sorts data using an expression.

The following table describes the options for XKM Hive Sort.

Table A-15 XKM Hive Sort
]

Option

Description

SORT_MODE

Select the mode the SORT operator will generate code for.

ORACLE

A-17

Appendix A
LKM File to Oracle OLH-OSCH

LKM File to Oracle OLH-OSCH

This KM integrates data from an HDFS file into an Oracle staging table using Oracle
Loader for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH).

The KM can handle filename wildcards (*, ?).

The following table describes the options for LKM File to Oracle OLH-OSCH.

Table A-16 LKM File to Oracle OLH-OSCH

Option Description

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, to retain temporary objects (tables, files
and scripts) after integration. Useful for debugging.

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and
OSCH.

e JDBC output mode: The data is inserted using several direct
insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

e OCI output mode: The data is inserted using several direct
insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_OPTIONS
must explicitly specify partitioning: for example, PARTITION
BY HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

e DP_COPY output mode: OLH creates several DataPump
export files. These files are transferred by a "Hadoop fs -
copyToLocal" command to the local path specified by
EXT_TAB_DIR_LOCATION. - Please note that the path
must be accessible by the Oracle Database engine. Once
the copy job is complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions and, also in external
table definitions.

ORACLE A-18

ORACLE

Appendix A
LKM File to Oracle OLH-OSCH

Table A-16 (Cont.) LKM File to Oracle OLH-OSCH
|

Option

Description

EXT_TAB_DIR_LOCATION

WORK_TABLE_OPTIONS

OVERRIDE_INPUTFORMA
T

Directory for ext tab data files.

File system path of the external table.

Note:

e Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH

For OLH_OUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

e For OLH_OUTPUT_MODE = DP_*: the name of the
external directory object is the 1$ table name.

e For OLH_OUTPUT_MODE = DP_COPY: ODI agent will use
hadoop-fs command to copy dp files into this directory.

e For OLH_OUTPUT_MODE = DP_*|OSCH: this path will
contain any external table log/bad/dsc files.

« ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

Option for Flow table creation.

Use this option to specify the attributes for the integration table

at create time and used for increasing performance.

This option is set by default to NOLOGGING.

This option may be left empty.

Class name of InputFormat.

By default the InputFormat class is derived from the source Data
Store/Technology (DelimitedTextinputFormat or
HiveToAvrolnputFormat). This option allows the user to specify
the class name of a custom InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=0SCH.

For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

A-19

Appendix A
LKM File to Oracle OLH-OSCH Direct

Table A-16 (Cont.) LKM File to Oracle OLH-OSCH
|

Option Description
EXTRA_OLH_CONF_PROP Optional extra OLH properties.
ERTIES

MAPRED_OUTPUT_BASE_
DIR

TEMP_DIR

Allows adding extra parameters to OLH. For example, for
changing the default OLH date format:

<property>
<name>oracle.hadoop.loader.defaultDateFormat</name>
<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are provided
in the OLH configuration file. This KM option allows adding extra
properties to the OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=0SCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>
<name>oracle.hadoop.loader.input.regexPattern</name>
<value>([* 1) ([* T9) ([J9) GINENTAD (O \FIVTVTA) ¢(II0-91%) (¢
[0-9]%) (\".*2\") (\".*\") (\".*?\")</value>

<description>RegEx for Apache WebLog format</description>
<[property>"

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

LKM File to Oracle OLH-OSCH Direct

This KM integrates data from an HDFS file into an Oracle target using Oracle Loader
for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH)

The KM can handle filename wildcards (*, ?).

This is a direct load LKM (no staging) and must be used without any IKM.

The following table describes the options for LKM File to Oracle OLH-OSCH Direct.

ORACLE

A-20

Appendix A
LKM File to Oracle OLH-OSCH Direct

Table A-17 LKM File to Oracle OLH-OSCH Direct

__|
Option Description
CREATE_TARG_TABLE Create target table.
Check this option to create the target table.

TRUNCATE Replace all target table data.
Set this option to true, to replace the target table content with the
new data.

DELETE_ALL Delete all rows.
Set this option to true, to replace the target table content with the
new data.

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, to retain temporary objects (tables, files
and scripts) after integration. Useful for debugging.

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and
OSCH.

e JDBC output mode: The data is inserted using several direct
insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

e OCI output mode: The data is inserted using several direct
insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_OPTIONS
must explicitly specify partitioning: for example, PARTITION
BY HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

 DP_COPY output mode: OLH creates several DataPump
export files. These files are transferred by a "Hadoop fs -
copyToLocal" command to the local path specified by
EXT_TAB_DIR_LOCATION. - Please note that the path
must be accessible by the Oracle Database engine. Once
the copy job is complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions and, also in external
table definitions.

ORACLE A-21

ORACLE

Appendix A
LKM File to Oracle OLH-OSCH Direct

Table A-17 (Cont.) LKM File to Oracle OLH-OSCH Direct
|

Option

Description

EXT_TAB_DIR_LOCATION

WORK_TABLE_OPTIONS

OVERRIDE_INPUTFORMA
T

Directory for ext tab data files.

File system path of the external table.

Note:

e Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH

e For OLH_OUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

e For OLH_OUTPUT_MODE = DP_*: the name of the
external directory object is the 1$ table name.

e For OLH_OUTPUT_MODE = DP_COPY: ODI agent will use
hadoop-fs command to copy dp files into this directory.

e For OLH_OUTPUT_MODE = DP_*|OSCH: this path will
contain any external table log/bad/dsc files.

« ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

Option for Flow table creation.

Use this option to specify the attributes for the integration table

at create time and used for increasing performance.

This option is set by default to NOLOGGING.

This option may be left empty.

Class name of InputFormat.

By default the InputFormat class is derived from the source Data
Store/Technology (DelimitedTextInputFormat or
HiveToAvrolnputFormat). This option allows the user to specify
the class name of a custom InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=0SCH.

For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

A-22

Appendix A
LKM Hive to Oracle OLH-OSCH

Table A-17 (Cont.) LKM File to Oracle OLH-OSCH Direct
|

Option Description

EXTRA_OLH_CONF_PROP Optional extra OLH properties.

ERTIES Allows adding extra parameters to OLH. For example, for
changing the default OLH date format:
<property>

<name>oracle.hadoop.loader.defaultDateFormat</name>
<value>yyyy-MM-dd HH:mm:ss</value>
</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are provided
in the OLH configuration file. This KM option allows adding extra
properties to the OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=0SCH
Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>
<name>oracle.hadoop.loader.input.regexPattern</name>
<value>([* 1) ([* T9) ([J9) GINENTAD (O \FIVTVTA) ¢(II0-91%) (¢
[0-9]%) (\".*2\") (\".*2\") (\".*?\")</value>

<description>RegEx for Apache WebLog format</description>

</property>"
MAPRED_OUTPUT_BASE_ MapReduce Output Directory.
DIR This option specifies an hdfs directory, where SQOOP will create

subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.
TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

LKM Hive to Oracle OLH-OSCH

This KM integrates data from a Hive query into an Oracle staging table using Oracle
Loader for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH).

The following table describes the options for LKM Hive to Oracle OLH-OSCH.

ORACLE A-23

Appendix A
LKM Hive to Oracle OLH-OSCH

Table A-18 LKM Hive to Oracle OLH-OSCH
]

Option Description
USE_HIVE_STAGING_TAB Use intermediate Hive staging table?
LE By default the Hive source data materializes in a Hive staging

table before extraction by OLH. If USE_HIVE_STAGING_TABLE
is set to false, OLH directly accesses the Hive source data.

USE_HIVE_STAGING_TABLE=0 is only possible, if all these

conditions are true.

e Only a single source table

* No transformations, filters, joins.

* No datasets

USE_HIVE_STAGING_TABLE=0 provides better
performance by avoiding an extra data transfer step.

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, to retain temporary objects (tables, files
and scripts) after integration. Useful for debugging.
OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and
OSCH.

« JDBC output mode: The data is inserted using several direct
insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

e OCI output mode: The data is inserted using several direct
insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_OPTIONS
must explicitly specify partitioning: for example, PARTITION
BY HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

DP_COPY output mode: OLH creates several DataPump
export files. These files are transferred by a "Hadoop fs -
copyToLocal" command to the local path specified by
EXT_TAB_DIR_LOCATION. The path must be accessible
by the Oracle Database engine. Once the copy job is
complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions and, also in external
table definitions.

ORACLE A-24

ORACLE

Appendix A
LKM Hive to Oracle OLH-OSCH

Table A-18 (Cont.) LKM Hive to Oracle OLH-OSCH
|

Option

Description

EXT_TAB_DIR_LOCATION

WORK_TABLE_OPTIONS

OVERRIDE_INPUTFORMA
T

Directory for ext tab data files.

File system path of the external table.

Note:

e Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH

e For OLH_OUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

e For OLH_OUTPUT_MODE = DP_*; the name of the
external directory object is the 1$ table name.

e For OLH_OUTPUT_MODE = DP_COPY: ODI agent will use
hadoop-fs command to copy dp files into this directory.

e For OLH_OUTPUT_MODE = DP_*|OSCH: this path will
contain any external table log/bad/dsc files.

« ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

Option for Flow table creation.

Use this option to specify the attributes for the integration table

at create time and used for increasing performance.

This option is set by default to NOLOGGING.

This option may be left empty.

Class name of InputFormat.

By default the InputFormat class is derived from the source Data
Store/Technology (DelimitedTextInputFormat or
HiveToAvrolnputFormat). This option allows the user to specify
the class name of a custom InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=0SCH.

For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

A-25

Appendix A
LKM Hive to Oracle OLH-OSCH Direct

Table A-18 (Cont.) LKM Hive to Oracle OLH-OSCH
|

Option Description
EXTRA_OLH_CONF_PROP Optional extra OLH properties.
ERTIES Allows adding extra parameters to OLH. For example, for

changing the default OLH date format:

<property>
<name>oracle.hadoop.loader.defaultDateFormat</name>
<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are provided
in the OLH configuration file. This KM option allows adding extra
properties to the OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=0SCH
Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>
<name>oracle.hadoop.loader.input.regexPattern</name>
<value>([* 1) ([* T9) ([J9) GINENTAD (O \FIVTVTA) ¢(II0-91%) (¢
[0-9]%) (\".*2\") (\".*2\") (\".*\")</value>

<description>RegEx for Apache WebLog format</description>

<[property>"
MAPRED_OUTPUT_BASE_ MapReduce Output Directory.
DIR This option specifies an hdfs directory, where SQOOP will create

subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.
TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

LKM Hive to Oracle OLH-OSCH Direct

This KM integrates data from a Hive query into an Oracle target using Oracle Loader
for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH)

This is a direct load LKM and must be used without any IKM.

The following table describes the options for LKM Hive to Oracle OLH-OSCH.

ORACLE A-26

Appendix A
LKM Hive to Oracle OLH-OSCH Direct

Table A-19 LKM Hive to Oracle OLH-OSCH Direct

__|
Option Description

CREATE_TARG_TABLE Create target table.
Check this option to create the target table.

TRUNCATE Replace all target table data.
Set this option to true, to replace the target table content with the
new data.

DELETE_ALL Delete all rows.
Set this option to true, to replace the target table content with the
new data.

USE_HIVE_STAGING_TAB Use intermediate Hive staging table?

LE By default the Hive source data materializes in a Hive staging

table before extraction by OLH. If USE_HIVE_STAGING_TABLE
is set to false, OLH directly accesses the Hive source data.

USE_HIVE_STAGING_TABLE=0 is only possible, if all these

conditions are true.

e Only a single source table

* No transformations, filters, joins.

* No datasets

e USE_HIVE_STAGING_TABLE=0 provides better
performance by avoiding an extra data transfer step.

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, to retain temporary objects (tables, files
and scripts) after integration. Useful for debugging.
OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and
OSCH.

e JDBC output mode: The data is inserted using several direct
insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

e OCI output mode: The data is inserted using several direct
insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_OPTIONS
must explicitly specify partitioning: For example,
PARTITION BY HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

« DP_COPY output mode: OLH creates several DataPump
export files. These files are transferred by a "Hadoop fs -
copyToLocal" command to the local path specified by
EXT_TAB_DIR_LOCATION. - Please note that the path
must be accessible by the Oracle Database engine. Once
the copy job is complete.

ORACLE A-27

Appendix A
LKM Hive to Oracle OLH-OSCH Direct

Table A-19 (Cont.) LKM Hive to Oracle OLH-OSCH Direct

__|
Option Description

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions and, also in external
table definitions.

EXT_TAB_DIR_LOCATION Directory for ext tab data files.
File system path of the external table.

Note:

e Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH

e For OLH_OUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

e For OLH_OUTPUT_MODE = DP_*: the name of the
external directory object is the 1$ table name.

e For OLH_OUTPUT_MODE = DP_COPY: ODI agent will use
hadoop-fs command to copy dp files into this directory.

e For OLH_OUTPUT_MODE = DP_*|OSCH: this path will
contain any external table log/bad/dsc files.

e ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.
WORK_TABLE_OPTIONS Option for Flow table creation.

Use this option to specify the attributes for the integration table
at create time and used for increasing performance.

This option is set by default to NOLOGGING.
This option may be left empty.

OVERRIDE_INPUTFORMA Class name of InputFormat.

T By default the InputFormat class is derived from the source Data
Store/Technology (DelimitedTextlnputFormat or
HiveToAvrolnputFormat). This option allows the user to specify
the class name of a custom InputFormat.
Default: <empty>.
Cannot be used with OLH_OUTPUT_MODE=0SCH.
For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

ORACLE A-28

Appendix A
RKM Hive

Table A-19 (Cont.) LKM Hive to Oracle OLH-OSCH Direct
|

Option Description
EXTRA_OLH_CONF_PROP Optional extra OLH properties.
ERTIES

MAPRED_OUTPUT_BASE_
DIR

TEMP_DIR

Allows adding extra parameters to OLH. For example, for
changing the default OLH date format:

<property>
<name>oracle.hadoop.loader.defaultDateFormat</name>
<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are provided
in the OLH configuration file. This KM option allows adding extra
properties to the OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=0SCH
Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>
<name>oracle.hadoop.loader.input.regexPattern</name>
<value>([* 1) ([* T9) ([T9) GINENTAD (O \FIVTVTA) ¢(II0-91%) (¢
[0-9]%) (\".*2\") (\".*\") (\".*?\")</value>

<description>RegEx for Apache WebLog format</description>
<[property>"

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

RKM Hive

RKM Hive reverses these metadata elements:

e Hive tables and views as data stores.

Specify the reverse mask in the Mask field, and then select the tables and views to
reverse. The Mask field in the Reverse Engineer tab filters reverse-engineered
objects based on their names. The Mask field cannot be empty and must contain
at least the percent sign (%).

e Hive columns as attributes with their data types.

» Information about buckets, partitioning, clusters, and sort columns are set in the
respective flex fields in the data store or column metadata.

ORACLE

A-29

Appendix A
RKM HBase

RKM HBase

RKM HBase reverses these metadata elements:

 HBase tables as data stores.

Specify the reverse mask in the Mask field, and then select the tables to reverse.
The Mask field in the Reverse Engineer tab filters reverse-engineered objects
based on their names. The Mask field cannot be empty and must contain at least
the percent sign (%).

» HBase columns as attributes with their data types.

» HBase unique row key as attribute called key.

¢ Note:

This RKM uses the or acl e. odi . kmlogger for logging. You can enable
logging by changing log level for or acl e. odi . kmlogger to TRACE:16 in ODI -
| oggi ng- confi g.xm as shown below:

<l ogger nane="oracl e. odi . knl' | evel =" TRACE: 16" useParent Handl ers="true"/>
<l ogger nane="oracl e. odi . st udi 0. nessage. | ogger . proxy" | evel =" TRACE: 16"
usePar ent Handl ers="f al se"/>

For more information about logging configuration in ODI, see the Runtime
Logging for ODI components section in Administering Oracle Data Integrator.

The following table describes the options for RKM HBase.

Table A-20 RKM HBase Options

Option Description

SCAN_NMAX_ROAS Specifies the maximum number of rows to be scanned during
reversing of a table. The default value is 10000.

SCAN_START_ROW Specifies the key of the row to start the scan on. By default the

scan will start on the first row. The row key is specified as a Java
expressions returning an instance of

org. apache. hadoop. hbase. util . Byt es. Example:

Byt es. t oByt es(?EMPO000017?) .

SCAN_STOP_ROW Specifies the key of the row to stop the scan on? By default the
scan will run to the last row of the table or up to SCAN_MAX_ROWS
is reached. The row key is specified as a Java expressions
returning an instance of
org. apache. hadoop. hbase. uti | . Byt es. Example:

Byt es. t oByt es(?EMP0009997?) .

Only applies if SCAN_START _ROWis specified.
SCAN ONLY_FAM LY Restricts the scan to column families, whose name match this

pattern. SQL-LIKE wildcards percentage (% and underscore ()
can be used. By default all column families are scanned.

ORACLE A-30

Appendix A
IKM File to Hive (Deprecated)

IKM File to Hive (Deprecated)

Note: This KM is deprecated and only used for backward compatibility.
IKM File to Hive (Load Data) supports:

e One or more input files. To load multiple source files, enter an asterisk or a
guestion mark as a wildcard character in the resource name of the file data store
(for example, webshop_*. | og).

e File formats:
— Fixed length
— Delimited
— Customized format
* Loading options:
— Immediate or deferred loading
— Overwrite or append
— Hive external tables

The following table describes the options for IKM File to Hive (Load Data). See the
knowledge module for additional details.

Table A-21 IKM File to Hive Options

|
Option Description
CREATE_TARG _TABLE Check this option, if you wish to create the target table. In case
USE_STAG NG TABLE is set to f al se, the data will only be read

correctly, if the target table definition, particularly the row format
and file format details, are correct.

TRUNCATE Set this option to true, if you wish to replace the target table/
partition content with the new data. Otherwise the new data will
be appended to the target table. If TRUNCATE and
USE STAG NG TABLE are set to f al se, all source file names
must be unique and must not collide with any data files already
loaded into the target table.

FILE_ I S_LOCAL Defines whether the source file is to be considered local (outside
of the current Hadoop cluster). If this option is setto t r ue, the
data file(s) are copied into the Hadoop cluster first. The file has
to be accessible by the Hive server through the local or shared
file system. If this option is set to f al se, the data file(s) are
moved into the Hadoop cluster and therefore will no longer be
available at their source location. If the source file is already in
HDFS, setting this option is set to f al se results in just a file
rename, and therefore the operation is very fast.

This option only applies, if EXTERNAL_TABLE is set to f al se.

ORACLE A-31

ORACLE

Appendix A
IKM File to Hive (Deprecated)

Table A-21 (Cont.) IKM File to Hive Options
|

Option

Description

EXTERNAL_TABLE

Defines whether to declare the target/staging table as externally
managed. For non-external tables Hive manages all data files.
That is, it will move any data files into

<hi ve. net ast or e. war ehouse. di r >/ <t abl e_name>. For
external tables Hive does not move or delete any files. It will load
data from the location given by the ODI schema.

If this option is setto t r ue:

e Allfiles in the directory given by the physical data schema
will be loaded. So any filename or wildcard information from
the source data store's resource name will be ignored.

e The directory structure and file names must several Hives
directory organization for tables, for example, for partitioning
and clustering.

e The directory and its files must reside in HDFS.

* No Hive LOAD-DATA-statements are submitted and thus
loading of files to a specific partition (using a target-side
expression) is not possible.

USE_STAG NG_TABLE

Defines whether an intermediate staging table will be created.

A Hive staging table is required if:

e Target table is partitioned, but data spreads across
partitions

e Target table is clustered

e Target table (partition) is sorted, but input file is not

e Target table is already defined and target table definition
does not match the definition required by the KM

e Target column order does not match source file column
order

e There are any unmapped source columns

e There are any unmapped non-partition target columns

e The source is a fixed length file and the target has non-
string columns

In case none of the above is t r ue, this option can be turned off

for better performance.

DELETE_TEMPORARY_CBJEC
TS

Removes temporary objects, such as tables, files, and scripts
after integration. Set this option to No if you want to retain the
temporary files, which might be useful for debugging.

A-32

Appendix A
IKM File to Hive (Deprecated)

Table A-21 (Cont.) IKM File to Hive Options

__|
Option Description

DEFER_TARGET_LOAD Defines whether the file(s), which have been declared to the
staging table should be loaded into the target table now or during
a later execution. Permitted values are START, NEXT, END or

<enpty>.
This option only applies if USE_STAGE_TABLE is setto t r ue.

The typical use case for this option is when there are multiple
files and each of them requires data redistribution/sorting and
the files are gathered by calling the interface several times. For
example, the interface is used in a package, which retrieves
(many small) files from different locations and the location,
stored in an Oracle Data Integrator variable, is to be used in a
target partition column. In this case the first interface execution
will have DEFER_TARGET_LQOAD set to START, the next interface
executions will have DEFER_TARGET_LOAD set to NEXT and set
to END for the last interface. The interfaces having DEFER _
TARGET _LOAD set to START/ NEXT will just load the data file into
HDFS (but not yet into the target table) and can be executed in
parallel to accelerate file upload to cluster.

OVERRI DE_ROW FORVAT Allows to override the entire Hive row format definition of the
staging table (in case USE_STAGE_TABLE is set to t r ue) or the
target table (in case USE_STAGE TABLE is setto f al se). It
contains the text to be used for row format definition.Example for
reading Apache Combined WebLog files:

ROW FORVAT SERDE

' or g. apache. hadoop. hi ve. contrib. serde2. RegexSer De'
W TH SERDEPROPERTIES ("input.regex" = "(["]*)
(0~ 1) (0 1) GGIWEEMATTNT) (0~ Ve
V) (H110-9]%) (-1[0-9]%) (A" xA) (AN.FNT)
(\".*2A")", "output.format.string" = "%%s %$s
18%s YA$s %bSs %BSs WPs YBSs W@Ps 9d0$s") STCRED
AS TEXTFI LE

The list of columns in the source data store must match the list
of input groups in the regular expression (same number of
columns and appropriate data types). If USE_STAGE_TABLE is
set to f al se, the number of target columns must match the
number of columns returned by the SerDe, in the above
example, the number of groups in the regular expression. The
number of source columns is ignored (At least one column must
be mapped to the target.). All source data is mapped into the
target table structure according to the column order, the SerDe's
first column is mapped to the first target column, the SerDe's
second column is mapped to the second target column, and so
on. If USE_STAGE_TABLE is set to t r ue, the source data store
must have as many columns as the SerDe returns columns.
Only data of mapped columns will be transferred.

STOP_ON_FI LE_NOT_FOUND Defines whether the KM should stop, if input file is not found.

ORACLE A-33

Appendix A
LKM HBase to Hive (HBase-SerDe) [Deprecated]

Table A-21 (Cont.) IKM File to Hive Options

__|
Option Description

H VE_COVPATI BI LE Specifies the Hive version compatibility. The values permitted for
this option are 0.7 and 0.8.

e 0.7: Simulates the append behavior. Must be used for Hive
0.7 (CDH3).

e 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

LKM HBase to Hive (HBase-SerDe) [Deprecated]

Note: This KM is deprecated and only used for backward compatibility.

LKM HBase to Hive (HBase-SerDe) supports:

* Asingle source HBase table.

The following table describes the options for LKM HBase to Hive (HBase-SerDe). See
the knowledge module for additional details.

Table A-22 LKM HBase to Hive (HBase-SerDe) Options

Option Description
DELETE_TEMPORARY_OBJEC Deletes temporary objects such as tables, files, and scripts post
TS data integration. Set this option to NO, to retain the temporary

objects, which might be useful for debugging.

IKM Hive to HBase Incremental Update (HBase-SerDe)
[Deprecated]

Note: This KM is deprecated and only used for backward compatibility.
IKM Hive to HBase Incremental Update (HBase-SerDe) supports:

» Filters, Joins, Datasets, Transformations and Aggregations in Hive
e Inline views generated by IKM Hive Transform

* Inline views generated by IKM Hive Control Append

The following table describes the options for IKM Hive to HBase Incremental Update
(HBase-SerDe). See the knowledge module for additional details.

Table A-23 IKM Hive to HBase Incremental Update (HBase-SerDe) Options
|

Option Description
CREATE_TARG_TABLE Creates the HBase target table.
TRUNCATE Replaces the target table content with the new data. If this option

is set to f al se, the new data is appended to the target table.

ORACLE A-34

Appendix A
IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]

Table A-23 (Cont.) IKM Hive to HBase Incremental Update (HBase-SerDe)
Options

Option

Description

DELETE_TEMPORARY_OBJEC

Deletes temporary objects such as tables, files, and scripts post

TS data integration. Set this option to NO, to retain the temporary
objects, which might be useful for debugging.
HBASE_ WAL Enables or disables the Write-Ahead-Log (WAL) that HBase

uses to protect against data loss. For better performance, WAL
can be disabled.

IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]

Note: This KM is deprecated and only used for backward compatibility.

IKM SQL to Hive-HBase-File (SQOOP) supports:

Mappings on staging

Joins on staging

Filter expressions on staging

Datasets
Lookups

Derived tables

The following table describes the options for IKM SQL to Hive-HBase-File (SQOOP).
See the knowledge module for additional details.

Table A-24

IKM SQL to Hive-HBase-File (SQOOP) Options

Option

Description

CREATE_TARG TABLE

Creates the target table. This option is applicable only if the
target is Hive or HBase.

TRUNCATE

Replaces any existing target table content with the new data. For
Hive and HBase targets, the target data is truncated. For File
targets, the target directory is removed. For File targets, this
option must be settotrue.

SQOOP_PARALLELI SM

Specifies the degree of parallelism. More precisely the number
of mapper processes used for extraction.

If SQOOP_PARALLEL| SMoption is set to greater than 1,

SPLI T_BY option must be defined.

SPLIT_BY

Specifies the target column to be used for splitting the source
data into n chunks for parallel extraction, where n is
SQOOP_PARALLELI SM To achieve equally sized data chunks the
split column should contain homogeneously distributed values.
For calculating the data chunk boundaries a query similar to
SELECT M N(EMP. EMPNO), MAX(EMP. EMPNO) from
EMPLOYEE EMP is used. To avoid an extra full table scan the split
column should be backed by an index.

ORACLE

A-35

ORACLE

Appendix A
IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]

Table A-24 (Cont.) IKM SQL to Hive-HBase-File (SQOOP) Options
|

Option

Description

BOUNDARY_QUERY

For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is retrieved
(KM option SPLI T- BY). In certain situations this may not be the
best boundaries or not the most optimized way to retrieve the
boundaries. In such cases this KM option can be set to a SQL
query returning one row with two columns, lowest value and
highest value to be used for split-column. This range will be
divided into SQOOP_PARALLELI SMchunks for parallel extraction.
Example for hard-coded ranges for an Oracle source:

SELECT 1000, 2000 FROM DUAL

For preserving context independence, regular table names
should be inserted through odi Ref . get Obj ect Nane calls. For
example:

SELECT M N(EMPNO), MAX(EMPNO) FROM <

%odi Ref . get bj ect Narmre(" EMP") %

TEMP_DIR

Specifies the directory used for storing temporary files, such as
sqoop script, stdout and stderr redirects. Leave this option blank
to use system's default temp directory:

<?=System get Property("java.io.tnmp")?>

MAPRED OUTPUT BASE DI R

Specifies an hdfs directory, where SQOOP creates
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

DELETE_TEMPORARY_OBJEC
TS

Deletes temporary objects such as tables, files, and scripts after
data integration. Set this option to NO, to retain the temporary
objects, which might be useful for debugging.

USE_HI VE_STAG NG _TABLE

Loads data into the Hive work table before loading into the Hive

target table. Set this option to f al se to load data directly into the

target table.

Setting this option to f al se is only possible, if all these

conditions are true:

e All target columns are mapped

e Existing Hive table uses standard hive row separators (\n)
and column delimiter (\01)

Setting this option to f al se provides better performance by

avoiding an extra data transfer step.

This option is applicable only if the target technology is Hive.

USE_GENERI C_JDBC_CONNE
CTCR

Specifies whether to use the generic JDBC connector if a
connector for the target technology is not available.

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector can be used.

EXTRA_HADOOP_CONF_PROP
ERTI ES

Optional generic Hadoop properties.

EXTRA_SQOOP_CONF_PROPE
RTI ES

Optional SQOOP properties.

A-36

Appendix A
IKM Hive Control Append (Deprecated)

Table A-24 (Cont.) IKM SQL to Hive-HBase-File (SQOOP) Options

Option Description

EXTRA_SQOOP_CONNECTOR_ Optional SQOOP connector properties.
CONF_PROPERTI ES

IKM Hive Control Append (Deprecated)

CKM Hive

ORACLE

Note: This KM is deprecated and only used for backward compatibility.

This knowledge module validates and controls the data, and integrates it into a Hive
target table in truncate/insert (append) mode. Invalid data is isolated in an error table
and can be recycled. IKM Hive Control Append supports inline view mappings that use
either this knowledge module or IKM Hive Transform.

The following table describes the options for IKM Hive Control Append.

Table A-25 IKM Hive Control Append Options
|

Option Description

FLOW CONTRCL Activates flow control.

RECYCLE_ERRORS Recycles data rejected from a previous control.

STATI C_CONTROL Controls the target table after having inserted or updated target
data.

CREATE_TARG TABLE Creates the target table.

TRUNCATE Replaces the target table content with the new data. Setting this

option to t r ue provides better performance.

DELETE_TEMPORARY_OBJEC Removes the temporary objects, such as tables, files, and

TS scripts after data integration. Set this option to NO, to retain the
temporary objects, which might be useful for debugging.
HI VE_COVPATI BI LE Specifies the Hive version compatibility. The values permitted for

this option are 0.7 and 0.8.

e 0.7: Simulates the append behavior. Must be used for Hive
0.7 (CDH3).

e 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

This knowledge module checks data integrity for Hive tables. It verifies the validity of
the constraints of a Hive data store and diverts the invalid records to an error table.
You can use CKM Hive for static control and flow control. You must also define these
constraints on the stored data.

The following table describes the options for this check knowledge module.

A-37

Appendix A
IKM Hive Transform (Deprecated)

Table A-26 CKM Hive Options

__|
Option Description

DROP_ERROR_TABLE Drops error table before execution. When this option is set to
YES, the error table will be dropped each time a control is
performed on the target table. This means that any rejected
records, identified and stored during previous control operations,
will be lost. Otherwise previous rejects will be preserved. In
addition to the error table, any table called <error table>_tnp
will also be dropped.

HI VE_COWVPATI BI LE Specifies the Hive version compatibility. The values permitted for
this option are 0.7 and 0.8.
e 0.7: Simulates the append behavior. Must be used for Hive
0.7 (CDH3).
e 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

IKM Hive Transform (Deprecated)

Note: This KM is deprecated and only used for backward compatibility.

This knowledge module performs transformations. It uses a shell script to transform
the data, and then integrates it into a Hive target table using replace mode. The
knowledge module supports inline view mappings and can be used as an inline-view
for IKM Hive Control Append.

The transformation script must read the input columns in the order defined by the
source data store. Only mapped source columns are streamed into the
transformations. The transformation script must provide the output columns in the
order defined by the target data store.

The following table describes the options for this integration knowledge module.

Table A-27 IKM Hive Transform Options
|

Option Description

CREATE_TARG TABLE Creates the target table.

DELETE_TEMPORARY_OBJEC Removes the temporary objects, such as tables, files, and

TS scripts post data integration. Set this option to NO, to retain the

temporary objects, which might be useful for debugging.

ORACLE A-38

Appendix A
IKM Hive Transform (Deprecated)

Table A-27 (Cont.) IKM Hive Transform Options

__|
Option Description

TRANSFORM SCRI PT_NAME Defines the file name of the transformation script. This
transformation script is used to transform the input data into the
output structure. Both local and HDFS paths are supported, for
example:

Local script location: fil e:///tnp/odi/scriptl.pl

HDFS script location: hdf s: / / namenode: nnPor t/ t np/ odi /

scriptl. pl

Ensure that the following requirements are met:

e The path/file must be accessible by both the ODI agent and
the Hive server. Read access for the Hive server is required
as it is the Hive server, which executes the resulting MR job
invoking the script.

* If TRANSFORM _SCRI PT is set (ODI creates the script file
during mapping execution), the path/file must be writable for
the ODI agent, as it is the ODI agent, which writes the script
file using the HDFS Java API.

When the KM option TRANSFORM _SCRI PT is set, the following

paragraphs provide some configuration help:

e For HDFS script locations:

The script file created is owned by the ODI agent user and
receives the group of the owning directory. See Hadoop
Hdfs Permissions Guide for more details. The standard
configuration to cover the above two requirements for HDFS
scripts is to ensure that the group of the HDFS script
directory includes the ODI agent user (let's assume oracle)
and, also the Hive server user (let's assume hive).
Assuming that the group hadoop includes oracle and hive,
the sample command below adjusts the ownership of the
HDFS script directory:
[ogon as hdfs user hdfs dfs -chown
oracl e: hadoop /tnp/odi/nyscriptdir

e For local script locations:
The script file created is owned by the ODI agent user and
receives the ODI agent user's default group, unless SGID
has been set on the script directory. If the sticky group bit
has been set, the file will be owned by the group of the
script directory instead. The standard configuration to cover
the above two requirements for local scripts is similar to the
HDFS configuration by using the SGID:
chown oracl e: hadoop /tnp/odi/nyscriptdir chnod
g+s /tnp/odi/nyscriptdir

ORACLE A-39

Appendix A
IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

Table A-27 (Cont.) IKM Hive Transform Options

__|
Option Description

TRANSFORM SCRI PT Defines the transformation script content. This transformation
script is then used to transform the input data into the output
structure. If left blank, the file given in
TRANSFORM _SCRI PT_NAME must already exist. If not blank, the
script file is created.

Script example (1-to-1 transformation): #! /usr/bin/csh -f
cat

All mapped source columns are spooled as tab separated data
into this script through stdin. This unix script then transforms the
data and writes out the data as tab separated data on stdout.
The script must provide as many output columns as there are
target columns.

TRANSFORM_SCRI PT_MODE Unix/HDFS file permissions for script file in octal notation with
leading zero. For example, full permissions for owner and group:
0770.
Warning: Using wider permissions like 0777 poses a security
risk.
See also KM option description for TRANSFORM _SCRI PT_NAME
for details on directory permissions.

PRE_TRANSFORM DI STRI BU Provides an optional, comma-separated list of source column
TE names, which enables the knowledge module to distribute the
data before the transformation script is applied.

PRE_TRANSFORM_SORT Provides an optional, comma-separated list of source column
names, which enables the knowledge module to sort the data
before the transformation script is applied.

POST_TRANSFORM DI STRI B Provides an optional, comma-separated list of target column
UTE names, which enables the knowledge module to distribute the
data after the transformation script is applied.

POST_TRANSFORM_SORT Provides an optional, comma-separated list of target column
names, which enables the knowledge module to sort the data
after the transformation script is applied.

IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

Note: This KM is deprecated and only used for backward compatibility.

IKM File-Hive to Oracle (OLH-OSCH) integrates data from an HDFS file or Hive source
into an Oracle database target using Oracle Loader for Hadoop. Using the mapping
configuration and the selected options, the knowledge module generates an
appropriate Oracle Database target instance. Hive and Hadoop versions must follow
the Oracle Loader for Hadoop requirements.

ORACLE A-40

¢ See Also:

Appendix A
IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

e Oracle Loader for Hadoop Setup in Oracle Big Data Connectors User's
Guide for the required versions of Hadoop and Hive.

e Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs
for required environment variable settings.

The following table describes the options for this integration knowledge module.

Table A-28 IKM File - Hive to Oracle (OLH-OSCH)

|
Option Description

OLH_COUTPUT_MCDE Specifies how to load the Hadoop data into Oracle. Permitted
values are JDBC, OCI, DP_COPY, DP_OSCH, and OSCH.

JDBC output mode: The data is inserted using several
direct insert JDBC connections. In very rare cases JDBC
mode may result in duplicate records in target table due to
Hadoop trying to restart tasks.

OCI output mode: The data is inserted using several direct
insert OCI connections in direct path mode. If

USE ORACLE_STAGQ NGis set to f al se, target table must be
partitioned. If USE_ORACLE_STAG NGis settot r ue,

FLOW TABLE_OPTI ONS must explicitly specify partitioning,
for example, " PARTI TI ON BY HASH(COL1) PARTI TI ONS
4" . In very rare cases OCI mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.
DP_COPY output mode: OLH creates several DataPump
export files. These files are transferred by a "Hadoop fs -
copyToLocal " command to the local path specified by
EXT_TAB_DI R_LOCATI ON. The path must be accessible by
the Oracle Database engine. Once the copy job is complete,
an external table is defined in the target database, which
accesses the files from EXT_TAB_DI R_LOCATI ON.

DP_OSCH output mode: OLH creates several DataPump
export files. After the export phase an external table is
created on the target database, which accesses these
output files directly through OSCH. The path must be
accessible by the Oracle Database engine. Once the copy
job is complete, an external table is defined in the target
database, which accesses the files from

EXT_TAB DI R_LOCATI ON.

OSCH output mode: In OSCH mode loading, OLH is
bypassed. ODI creates an external table on the target
database, which accesses the input files through OSCH.
Please note that only delimited and fixed length files can be
read. No support for loading from Hive or custom Input
Formats such as RegexInputFormat, as there is no OLH
pre-processing.

ORACLE

A-41

ORACLE

Appendix A
IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

Table A-28 (Cont.) IKM File - Hive to Oracle (OLH-OSCH)
|

Option

Description

REJECT_LIMT

Specifies the maximum number of errors for Oracle Loader for
Hadoop and external table. Examples: UNLI M TED to except all
errors. Integer value (10 to allow 10 rejections) This value is
used in Oracle Loader for Hadoop job definitions and, also in
external table definitions.

CREATE_TARG_TABLE

Creates the target table.

TRUNCATE

Replaces the target table content with the new data.

DELETE_ALL

Deletes all the data in target table.

USE_HI VE_STAG NG_TABLE

Materializes Hive source data before extraction by Oracle
Loader for Hadoop. If this option is set to f al se, Oracle Loader
for Hadoop directly accesses the Hive source data. Setting this
option to f al se is only possible, if all these conditions are true:
e Only a single source table

. No transformations, filters, joins

* No datasets

Setting this option to f al se provides better performance by
avoiding an extra data transfer step.

This option is applicable only if the source technology is Hive.

USE_ORACLE_STAG NG TAB
LE

Uses an intermediate Oracle database staging table.

The extracted data is made available to Oracle by an external
table. If USE_ORACLE_STAG NG _TABLE is set to t r ue (default),
the external table is created as a temporary (I$) table. This I$
table data is then inserted into the target table. Setting this
option to f al se is only possible, if all these conditions are true:
e OLH_QUTPUT_MCDE is set to JDBC or OCl

e All source columns are mapped

e Alltarget columns are mapped

* No target-side mapping expressions

Setting this option to f al se provides better performance by
avoiding an extra data transfer step, but may lead to partial data

being loaded into the target table, as Oracle Loader for Hadoop
loads data in multiple transactions.

EXT_TAB_DI R LOCATI ON

Specifies the file system path of the external table. Please note

the following:

* Only applicable, if OLH_OUTPUT_MODE = DP_* | OSCH

* For OLH_QUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

* For OLH_QUTPUT_MCODE = DP_*: the name of the external
directory object is the 1$ table name.

* For OLH_QUTPUT_MODE = DP_COPY: ODI agent will use
hadoop- f s command to copy dp files into this directory.

* For OLH_OUTPUT_MODE = DP_*| OSCH: this path will contain
any external table log/bad/dsc files.

e ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

A-42

Appendix A
IKM File-Hive to SQL (SQOOP) [Deprecated]

Table A-28 (Cont.) IKM File - Hive to Oracle (OLH-OSCH)
|

Option

Description

TEMP_DIR

Specifies the directory used for storing temporary files, such as
sgoop script, stdout and stderr redirects. Leave this option blank
to use system's default temp directory:

<?=System get Property("java.io.tnp")?>

MAPRED_OUTPUT_BASE DI R

Specifies an HDFS directory, where the Oracle Loader for
Hadoop job will create subdirectories for temporary files/
datapump output files.

FLOW TABLE_CPTI ONS

Specifies the attributes for the integration table at create time
and used for increasing performance. This option is set by
default to NOLOGG NG. This option may be left empty.

DELETE_TEMPORARY_OBJEC
TS

Removes temporary objects, such as tables, files, and scripts
post data integration. Set this option to NO, to retain the
temporary objects, which might be useful for debugging.

OVERRI DE_I NPUTFORVAT

By default the InputFormat class is derived from the source Data
Store/Technology (DelimitedTextinputFormat or
HiveToAvrolnputFormat). This option allows the user to specify
the class name of a custom InputFormat. Cannot be used with
OLH_QUTPUT_MODE=CSCH.

Example, for reading custom file formats like web log files the
OLH RegexInputFormat can be used by assigning the value:
oracl e. hadoop. | oader. lib.input. Regex| nput For mat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

EXTRA OLH_CONF_PROPERT
| ES

Particularly when using custom InputFormats (see KM option
OVERRI DE_I NPUTFORNVAT for details) the InputFormat may
require additional configuration parameters. These are provided
in the OLH configuration file. This KM option allows adding extra
properties to the OLH configuration file. Cannot be used with
OLH_QOUTPUT_MCDE=CSCH.

Example, (loading apache weblog file format): When OLH
RegexInputFormat is used for reading custom file formats, this
KM option specifies the regular expression and other parsing
details:

<property>

<name>or acl e. hadoop. | oader . i nput . regexPat t er n</
name> <value>(["]*) ([1*) ([* 1*) (-I\[[™\]]*
V) (0 ANt (-100-91%) (-1[0-91%)
(\"ox2v) (Ao AM) (V") </ val ue>

<descri ption>RegEx for Apache WbLog format </
description> </property>

IKM File-Hive to SQL (SQOOP) [Deprecated]

Note: This KM is deprecated and only used for backward compatibility.

IKM File-Hive to SQL (SQOOP) supports:

» Filters, Joins, Datasets, Transformations and Aggregations in Hive

ORACLE

A-43

Appendix A
IKM File-Hive to SQL (SQOOP) [Deprecated]

* Inline views generated by IKM Hive Control Append

* Inline views generated by IKM Hive Transform

* Hive-HBase source tables using LKM HBase to Hive (HBase SerDe)
» File source data (delimited file format only)

The following table describes the options for this integration knowledge module.

Table A-29 IKM File-Hive to SQL (SQOOP)
|

Option Description

CREATE_TARG TABLE Creates the target table.

TRUNCATE Replaces the target data store content with new data. If this
option is set to f al se, the new data is appended to the target
data store.

DELETE ALL Deletes all the rows in the target data store.

SQOCP_PARALLELI SM Specifies the degree of parallelism. More precisely the number

of mappers used during SQOOP export and therefore the
number of parallel JDBC connections.

USE TARGET STAG NG TAB By default the source data is staged into a target-side staging

LE - - table, before it is moved into the target table. If this option is set
to f al se, SQOOP loads the source data directly into the target
table, which provides better performance and less need for
tablespace in target RDBMS by avoiding an extra data transfer
step.

For File sources setting this option to f al se is only possible, if

all these conditions are met:

e All source columns must be mapped

e Source and target columns have same order

e First file column must map to first target column

° no mapping gaps

e only 1-to-1 mappings (no expressions)

Please note the following:

e SQOOP uses multiple writers, each having their own JDBC
connection to the target. Every writer uses multiple
transactions for inserting the data. This means that in case
USE TARGET _STAG NG TABLE is set to f al se, changes to
the target table are no longer atomic and writer failures can
lead to partially updated target tables.

e The Teradata Connector for SQOOP always creates an
extra staging table during load. This connector staging table
is independent of the KM option.

USE_GENERI C_JDBC CONNE Specifies whether to use the generic JDBC connector if a
CTOR connector for the target technology is not available.

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector can be used.

ORACLE A-44

Appendix A
IKM File-Hive to SQL (SQOOP) [Deprecated]

Table A-29 (Cont.) IKM File-Hive to SQL (SQOOP)

L __|
Option Description
FLOW TABLE_OPTI ONS When creating the target-side work table, RDBMS-specific table

options can improve performance. By default this option is empty
and the knowledge module will use the following table options:

* For Oracle: NOLOGG NG
* ForDB2: NOT LOGGED I NI TI ALLY

* For Teradata: no fall back, no before journal, no
after journal
Any explicit value overrides these defaults.

TEMP_DI R Specifies the directory used for storing temporary files, such as
sqoop script, stdout and stderr redirects. Leave this option blank
to use system's default temp directory:
<?=System get Property("java.io.tnmp")?>

MAPRED QUTPUT_BASE DI R Specifies an HDFS directory, where SQOOP creates
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

DELETE_TEMPORARY_OBJEC Deletes temporary objects such as tables, files, and scripts after
TS data integration. Set this option to NO, to retain the temporary
objects, which might be useful for debugging.

TERADATA PRI MARY | NDEX Primary index for the target table. Teradata uses the primary
index to spread data across AMPSs. It is important that the
chosen primary index has a high cardinality (many distinct
values) to ensure evenly spread data to allow maximum
processing performance. Please follow Teradata's
recommendation on choosing a primary index.

This option is applicable only to Teradata targets.
TERADATA FLOW TABLE TY Type of the Teradata flow table, either SET or MULTISET.
PE This option is applicable only to Teradata targets.

TERADATA QUTPUT_METHOD Specifies the way the Teradata Connector will load the data.
Valid values are:

* batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)

« mltiple.fastload: multiple FastLoad connections

* internal.fastl oad: single coordinated FastLoad
connections (most performant)

This option is applicable only to Teradata targets.

EXTRA_HADOOP_CONF_PROP Optional generic Hadoop properties.
ERTI ES

EXTRA SQOOP_CONF_PROPE Optional SQOOP properties.
RTI ES

EXTRA SQOOP_CONNECTCOR _ Optional SQOOP connector propetties.
CONF_PROPERTI ES

ORACLE A-45

Pig Knowledge Modules

This appendix provides information about the Pig knowledge modules.
This appendix includes the following sections:

* LKM File to Pig

* LKM Pig to File

« LKM HBase to Pig

* LKM Pig to HBase

* LKM Hive to Pig

* LKM Pig to Hive

« LKM SQL to Pig SQOOP
* XKM Pig Aggregate

* XKM Pig Distinct

* XKM Pig Expression

e XKM Pig Filter

e XKM Pig Flatten

e XKM Pig Join

* XKM Pig Lookup

* XKM Pig Pivot

« XKM Pig Set

« XKM Pig Sort

* XKM Pig Split

* XKM Pig Subquery Filter
* XKM Pig Table Function
* XKM Pig Unpivot

LKM File to Pig

This KM loads data from a file into Pig.
The supported data formats are:

* Delimited

« JSON
* Pig Binary
o Text

ORACLE

ORACLE

e Avro
e Trevni
e Custom

Appendix B
LKM File to Pig

Data can be loaded and written to local file system or HDFS.

The following table describes the options for LKM File to Pig.

Table B-1 LKM File to Pig
|

Option

Description

Storage Function

Schema for Complex Fields

Function Class

Function Parameters

Options

Jars

The storage function to be used to load data.

Select the storage function to be used to load data.

The pig schema for simple/complex fields separated by comma
()

Redefine the datatypes of the fields in pig schema format. This
option primarily allows to overwrite the default datatypes
conversion for data store attributes, for example:
PO_NO:int,PO_TOTAL:long MOVIE_RATING:
{(RATING:double,INFO:chararray)}, where the names of the
fields defined here should match with the attributes names of the
data store.

Fully qualified name of the class to be used as storage function
to load data.

Specify the fully qualified name of the class to be used as
storage function to load data.

The parameters required for the custom function.

Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('"MusicStore', 'movie’, 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be
specified as -rootElement MovieStore -tableName movie -
schema

where,
MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id,
name, etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

Additional options required for the storage function

Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie’, 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace
com.imdb -encoding utf8

The jar containing the storage function class and dependent
libraries separated by colon (:).

Specify the jar containing the storage function class and
dependent libraries separated by colon ().

B-2

Appendix B
LKM Pig to File

Table B-1 (Cont.) LKM File to Pig
|

Option

Description

Storage Convertor

The converter that provides functions to cast from bytearray to
each of Pig's internal types.

Specify the converter that provides functions to cast from
bytearray to each of Pig's internal types.

The supported converter is Utf8StorageConverter.

LKM Pig to File

This KM unloads data to file from pig.

ORACLE

The supported data formats are:

Delimited
JSON

Pig Binary
Text

Avro
Trevni

Custom

Data can be stored in local file system or in HDFS.

The following table describes the options for LKM Pig to File.

Table B-2 LKM Pig to File
|

Option

Description

Storage Function

Store Schema

Record Name

Namespace

Delete Target File

Function Class

The storage function to be used to load data.
Select the storage function to be used to load data.

If selected, stores the schema of the relation using a hidden
JSON file.

The Avro record name to be assigned to the bag of tuples being
stored.

Specify a name to be assigned to the bag of tuples being stored.
The namespace to be assigned to Avro/Trevni records, while
storing data.

Specify a namespace for the bag of tuples being stored.

Delete target file before Pig writes to the file.

If selected, the target file is deleted before storing data. This
option effectively enables the target file to be overwritten.

Fully qualified name of the class to be used as storage function
to load data.

Specify the fully qualified name of the class to be used as
storage function to load data.

B-3

Appendix B
LKM HBase to Pig

Table B-2 (Cont.) LKM Pig to File
|

Option

Description

Function Parameters

Options

Jars

Storage Convertor

The parameters required for the custom function.
Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie’, 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be
specified as -rootElement MovieStore -tableName movie -
schema

where,
MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id,
name, etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

Additional options required for the storage function

Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('"MusicStore', 'movie’, 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace
com.imdb -encoding utf8

The jar containing the storage function class and dependent
libraries separated by colon (:).

Specify the jar containing the storage function class and
dependent libraries separated by colon (:).

The converter that provides functions to cast from bytearray to
each of Pig's internal types.

Specify the converter that provides functions to cast from
bytearray to each of Pig's internal types.

The supported converter is Utf8StorageConverter.

LKM HBase to Pig

This KM loads data from a HBase table into Pig using HBaseStorage function.

The following table describes the options for LKM HBase to Pig.

Table B-3 LKM HBase to Pig
|

Option

Description

Storage Function

ORACLE

The storage function to be used to load data.
HBaseStorage is used to load from a HBase table into pig.

B-4

ORACLE

Appendix B
LKM HBase to Pig

Table B-3 (Cont.) LKM HBase to Pig
|

Option

Description

Load Row Key

Greater Than Min Key

Less Than Min Key

Greater Than Or Equal Min

Key

Less Than Or Equal Min
Key

Limit Rows

Cached Rows

Storage Convertor

Column Delimiter

Timestamp

Min Timestamp

Max Timestamp

Load the row key as the first value in every tuple returned from
HBase.

If selected, Loads the row key as the first value in every tuple
returned from HBase. The row key is mapped to the 'key' column
of the HBase data store in ODI.

Loads rows with key greater than the key specified for this
option.

Specify the key value to load rows with key greater than the
specified key value.

Loads rows with row key less than the value specified for this
option.

Specify the key value to load rows with key less than the
specified key value.

Loads rows with key greater than or equal to the key specified
for this option.

Specify the key value to load rows with key greater than or equal
to the specified key value.

Loads rows with row key less than or equal to the value specified
for this option.

Specify the key value to load rows with key less than or equal to
the specified key value.

Maximum number of row to retrieve per region

Specify the maximum number of rows to retrieve per region.

Number of rows to cache.
Specify the number of rows to cache.

The name of Caster to use to convert values.

Specify the class name of Caster to use to convert values. The
supported values are HBaseBinaryConverter and
Utf8StorageConverter. If unspecified, the default value is
Utf8StorageConverter.

The delimiter to be used to separate columns in the columns list
of HBaseStorage function.

Specify the delimiter to be used to separate columns in the
columns list of HBaseStorage function. If unspecified, the default
is whitespace.

Return cell values that have a creation timestamp equal to this
value.

Specify a timestamp to return cell values that have a creation
timestamp equal to the specified value.

Return cell values that have a creation timestamp less than to
this value.

Specify a timestamp to return cell values that have a creation
timestamp less than to the specified value.

Return cell values that have a creation timestamp less than this
value.

Specify a timestamp to return cell values that have a creation
timestamp greater than or equal to the specified value.

B-5

Appendix B
LKM Pig to HBase

LKM Pig to HBase

This KM stores data into a HBase table using HBaseStorage function.

The following table describes the options for LKM Pig to HBase.

Table B-4 LKM Pig to HBase

]
Option Description

Storage Function The storage function to be used to store data. This is a read-only
option, which cannot be changed.

HBaseStore function is used to load data into HBase table.

Storage Convertor The name of Caster to use to convert values.

Specify the class hame of Caster to use to convert values. The
supported values are HBaseBinaryConverter and
Utf8StorageConverter. If unspecified, the default value is
Utf8StorageConverter.

Column Delimiter The delimiter to be used to separate columns in the columns list
of HBaseStorage function.

Specify the delimiter to be used to separate columns in the
columns list of HBaseStorage function. If unspecified, the default
is whitespace.

Disable Write Ahead Log If it is true, write ahead log is set to false for faster loading into
HBase.

If selected, write ahead log is set to false for faster loading into
HBase. This must be used in extreme caution, since this could
result in data loss. Default value is false.

LKM Hive to Pig

This KM loads data from a Hive table into Pig using HCatalog.

The following table describes the options for LKM Hive to Pig.

Table B-5 LKM Hive to Pig

__|
Option Description

Storage Function The storage function to be used to load data. This is a read-only
option, which cannot be changed.

HCatLoader is used to load data from a hive table.

LKM Pig to Hive

This KM stores data into a hive table using HCatalog.

The following table describes the options for LKM Pig to Hive.

ORACLE B-6

LKM SQL

ORACLE

Appendix B
LKM SQL to Pig SQOOP

Table B-6 LKM Pig to Hive
|

Option

Description

Storage Function

Partition

The storage function to be used to load data. This is a read-only
option, which cannot be changed.

HCatStorer is used to store data into a hive table.

The new partition to be created.

Represents key/value pairs for partition. This is a mandatory
argument when you are writing to a partitioned table and the
partition column is not in the output column. The values for
partition keys should NOT be quoted.

to Pig SQOOP

This KM integrates data from a JDBC data source into Pig.

It executes the following steps:

1. Create a SQOOP configuration file, which contains the upstream query.

2. Execute SQOOP to extract the source data and import into Staging file in csv

format.

3. Runs LKM File To Pig KM to load the Staging file into PIG.

4. Drop the Staging file.

The following table describes the options for LKM SQL to Pig SQOOP.

Table B-7 LKM SQL to Pig SQOOP
e

Option

Description

STAGING_FILE_DELIMITE
R
Storage Function

Schema for Complex Fields

Function Class

Sqoop uses this delimiter to create the temporary file. If not
specified, \\t will be used.

The storage function to be used to load data.
Select the storage function to be used to load data.

The pig schema for simple/complex fields separated by comma
OF

Redefine the datatypes of the fields in pig schema format. This
option primarily allows to overwrite the default datatypes
conversion for data store attributes, for example:
PO_NO:int,PO_TOTAL:long MOVIE_RATING:
{(RATING:double,INFO:chararray)}, where the names of the
fields defined here should match with the attributes names of the
data store.

Fully qualified name of the class to be used as storage function
to load data.

Specify the fully qualified name of the class to be used as
storage function to load data.

B-7

Appendix B
XKM Pig Aggregate

Table B-7 (Cont.) LKM SQL to Pig SQOOP
|

Option

Description

Function Parameters

Options

Jars

Storage Convertor

The parameters required for the custom function.
Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie’, 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be
specified as -rootElement MovieStore -tableName movie -
schema

where,
MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id,
name, etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

Additional options required for the storage function.

Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('"MusicStore', 'movie’, 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace
com.imdb -encoding utf8

The jar containing the storage function class and dependent
libraries separated by colon (:).

Specify the jar containing the storage function class and
dependent libraries separated by colon (:).

The converter that provides functions to cast from bytearray to
each of Pig's internal types.

Specify the converter that provides functions to cast from
bytearray to each of Pig's internal types.

The supported converter is Utf8StorageConverter.

XKM Pig Aggregate

Summarize rows, for example using SUM and GROUP BY.

ORACLE

The following table describes the options for XKM Pig Aggregate.

Table B-8 XKM Pig Aggregate
|

Option

Description

USING_ALGORITHM

PARTITION_BY
PARTITIONER_JAR
PARALLEL_NUMBER

Aggregation type; collected or merge.

Specify the Hadoop partitioner.
Increase the parallelism of this job.

Increase the parallelism of this job.

B-8

Appendix B
XKM Pig Distinct

< Note:

When mapping has Pig staging, i.e when processing is done with Pig, and
there is aggregator component in the Pig staging area, the clause must be
set differently than in regular mappings for SQL based technologies.

XKM Pig Distinct

Eliminates duplicates in data.

XKM Pig Expression

Define expressions to be reused across a single mapping.

XKM Pig Filter

Produce a subset of data by a filter condition.

XKM Pig Flatten

Un-nest the complex data according to the given options.

The following table describes the options for XKM Pig Flatten.

Table B-9 XKM Pig Flatten

__|
Option Description

Default Expression Default expression for null nested table objects, for example,
rating_table(obj_rating('-1', '‘Unknown)).
This is used to return a row with default values for each null
nested table object.

XKM Pig Join

Joins more than one input sources based on the join condition.

The following table describes the options for XKM Pig Join.

Table B-10 XKM Pig Join
|

Option Description

USING_ALGORITHM Join type; replicated or skewed or merge.
PARTITION_BY Specify the Hadoop partitioner.
PARTITIONER_JAR Increase the parallelism of this job.
PARALLEL_NUMBER Increase the parallelism of this job.

ORACLE B-9

Appendix B
XKM Pig Lookup

XKM Pig Lookup

Lookup data for a driving data source.

The following table describes the options for XKM Pig Lookup.

Table B-11 XKM Pig Lookup

]
Option Description

Jars The jar containing the Used Defined Function classes and
dependant libraries separated by colon (3).

XKM Pig Pivot

Takes data in separate rows, aggregates it, and converts it into columns.

XKM Pig Set

Perform UNION, MINUS or other set operations.

XKM Pig Sort

Sort data using an expression.

XKM Pig Split

Split data into multiple paths with multiple conditions.

XKM Pig Subquery Filter

Filter rows based on the results of a subquery.

XKM Pig Table Function

Pig table function access.

The following table descriptions the options for XKM Pig Table Function.

Table B-12 XKM Pig Table Function

]
Option Description

PIG_SCRIPT_CONTENT User specified pig script content.

XKM Pig Unpivot

Transform a single row of attributes into multiple rows in an efficient manner.

ORACLE B-10

Spark Knowledge Modules

This appendix provides information about the Spark knowledge modules.
This appendix includes the following sections:

* LKM File to Spark

* LKM Spark to File

* LKM Hive to Spark

* LKM Spark to Hive

* LKM HDFS to Spark

* LKM Spark to HDFS

* LKM Kafka to Spark

* LKM Spark to Kafka

* LKM SQL to Spark

* LKM Spark to SQL

* LKM Spark to Cassandra
* RKM Cassandra

* XKM Spark Aggregate

e XKM Spark Distinct

* XKM Spark Expression

* XKM Spark Filter

e XKM Spark Flatten

* XKM Spark Input Signature and Output Signature
* XKM Spark Join

e XKM Spark Lookup

* XKM Spark Pivot

* XKM Spark Set

* XKM Spark Sort

e XKM Spark Split

e XKM Spark Table Function
e IKM Spark Table Function
e XKM Spark Unpivot

ORACLE

LKM File to Spark

This KM will load data from a file into a Spark Python variable and can be defined on
the AP between the execution units, source technology File, target technology Spark

ORACLE

Python.

Note:

Appendix C
LKM File to Spark

This KM also supports loading HDFS files, although it's preferable to use
LKM HDFS to Spark for that purpose.

The following tables describe the options for LKM File to Spark.

Table C-1 LKM File to Spark
|

Option

Description

Storage Function

streamingContext

InputFormatClass

KeyClass

ValueClass

The storage function to be used to load/store data.

Choose one of the following storage functions to load data:

* textFileisused toload data from HDFS, a local file
system or any Hadoop-supported file system URI.

* jsonFil e is used to load data from a JSON file where each
line of the files is a JSON object.

* newAPl HadoopFi | e is used to load data from a Hadoop file
with an arbitrary new API InputFormat.

* newAPl HadoopRDD is used to load data from Hadoop-
readable dataset with an arbitrary new API InputFormat.

* hadoopFi | e is used to load data from a Hadoop file with an
arbitrary InputFormat.

* hadoopRDDis used to load data from a Hadoop-readable
dataset.

* sequenceFil e is used to load data from an RDD of key-
value pairs to Spark.
Name of Streaming Context.

Class for reading the format of input data.
For example,

e org.apache.hadoop.mapreduce.lib.input. TextinputFormat
(default)

e org.apache.hadoop.mapred.TextinputFormat (hadoopFile
and hadoopRDD)

Fully qualified classname for keys.

For example,

e org.apache.hadoop.io.LongWritable (default)

e org.apache.hadoop.io.Text

Fully qualified classname for values.

For example,

e org.apache.hadoop.io.Text (default)
e org.apache.hadoop.io.LongWritable

C-2

ORACLE

Appendix C
LKM Spark to File

Table C-1 (Cont.) LKM File to Spark
|

Option

Description

KeyConverter
ValueConverter

Job Configuration

inferSchema

dateFormat

Delete Spark Mapping Files
Cache

Storage Level

Repartition

Level of Parallelism
Sort Partitions
Partition Sort Order
Partition Keys

Partition Function

Fully qualified classname of key converter class.
Fully qualified classname of value converter class.

Hadoop configuration.

For example, {'hbase.zookeeper.quorum': 'HOST',
'hbase.mapreduce.inputtable”: "'TAB'}

Infer DataFrame schema from data.

If set to True (default), the column names and types will be
inferred from source data and DataFrame will be created with
default options.

If set to False, the DataFrame schema will be specified based on
the source data store definition.

Format for Date or Timestamp input fields.

Delete temporary objects at end of mapping.

Cache RDD/DataFrame across operations after computation.
The storage level to be used to cache data.

Repartition the RDD/DataFrame after transformation of this
component.

Number of partitions.

Sort partitions by a key function when repartitioning.
Sort partitions order.

Define keys for partitions.

Customized partitioning function.

This LKM uses StreamingContext.textFileStream() method to transfer file context as
data stream. The directory is monitored while the Spark application is running. Any
files copied from other locations into this directory is detected.

Table C-2 LKM File to Spark for Streaming
|

Option Description
Storage If STREAMING_MODE is set to true, the load function is changed to
Function textFileStream automatically.

Default is textFile.

Source Data Source data store is a directory and field separator should be defined.

store

LKM Spark to File

This KM will store data into a file from a Spark Python variable and can be defined on
the AP between the execution units, source technology Spark Python, target

technology File.

C-3

ORACLE

< Note:

Appendix C
LKM Spark to File

This KM also supports writing to an HDFS File, although the LKM Spark to

HDFS is preferable.

The following tables describes the options for LKM Spark to File.

Table C-3 LKM Spark to File
|

Option

Description

Storage Function

OutputFormatClass

KeyClass

ValueClass

KeyConverter

Storage function to be used to load/store data.
Choose one of the following storage functions to store data:

e saveAsText Fi | e is used to store the data into HDFS, a
local file system or any Hadoop-supported file system URI.

* saveAsJsonFi | e is used to store the data in JSON format
into HDFS, a local file system or any Hadoop-supported file
system URI.

* saveAsNewAPl HadoopFi | e is used to store the data to a
Hadoop file with an arbitrary new API InputFormat.

* saveAsHadoopFi | e is used to store data to a Hadoop file
with an arbitrary InputFormat.

* saveAsSequenceFi | e is used to store data into key-value
pairs.

Note:

When spark.useDataFrames is set
to True, the data will be saved as
RDD of JSON strings for
saveAsNewAPl HadoopFi | e,
saveAsHadoopFi | e, and
saveAsSequenceFi |l e.

Fully qualified classname for writing the data.

For example,

e org.apache.hadoop.mapreduce.lib.input. TextOutputFormat
(default)

e org.apache.hadoop.mapred.TextOutputFormat
(saveAsHadoopFi | e)

Fully qualified class for keys.

For example,

e org.apache.hadoop.io.NullWritable (default)

e org.apache.hadoop.io.Text

Fully qualified class for values.

For example,

e org.apache.hadoop.io.NullWritable

e org.apache.hadoop.io.Text (default)

Fully qualified classname of key converter class.

C-4

Appendix C
LKM Hive to Spark

Table C-3 (Cont.) LKM Spark to File

Option

Description

ValueConverter

Job Configuration

SQL_EXPRESSIONS
Delete Spark Mapping Files
Cache

Storage Level

Repartition

Level of Parallelism
Sort Partitions
Partition Sort Order
Partition Keys

Partition Function

Fully qualified classname of value converter class.

Allows adding or overriding Hadoop configuration properties.

For example, {'hbase.zookeeper.quorum': 'HOST',
'hbase.mapreduce.inputtable”: "'TAB'}

Use SQL Expressions.

Delete temporary objects at end of mapping.

Cache RDD/DataFrame across operations after computation.
The storage level to be used to cache data.

Repartition the RDD/DataFrame after transformation of this
component.

Number of partitions.

Sort partitions by a key function when repartitioning.
Sort partitions order.

Define keys for partitions.

Customized partitioning function.

Table C-4 LKM Spark to File for streaming
|

Option Description
Storage If STREAMING_MODE is set to true, the load function is changed to
Function textFileStream automatically.

Default is textFile.

LKM Hive to Spark

This KM will load data from a Hive table into a Spark Python variable and can be
defined on the AP between the execution units, source technology Hive, target

ORACLE

technology Spark Python.

The following table describes the options for LKM Hive to Spark:

Table C-5 LKM Hive to Spark
|

Option

Description

Delete Spark Mapping Files

Delete temporary objects at end of mapping.

Cache

Cache RDD/DataFrame across operations
after computation.

Storage Level

The storage level to be used to cache data.

Repartition

Repartition the RDD/DataFrame after
transformation of this component.

Level of Parallelism

Number of partitions.

C-5

Appendix C
LKM Spark to Hive

Table C-5 (Cont.) LKM Hive to Spark
|

Option

Description

Sort Partitions

Sort partitions by a key function when
repartitioning.

Partition Sort Order

Sort partitions order.

Partition Keys

Define keys for partitions.

Partition Function

Customized partitioning function.

LKM Spark to Hive

This KM will store data into a Hive table from a Spark Python variable and can be
defined on the AP between the execution units, source technology Spark, target

ORACLE

technology Hive.

The following table describes the options for LKM Spark to Hive.

Table C-6 LKM Spark to Hive
|

Option

Description

OVERWRITE_TARGET_TA
BLE

Overwrite the target table.

INFER_SCHEMA

Infer target DataFrame schema from RDD data.

Note:

This option is set to True by
default. When set to True, the
column names and types will be
inferred from RDD data and
DataFrame will be created with
default options. If it is set to False,
DataFrame schema will be
specified based on target datastore
definition. Set this option to False
if, you are getting errors such as :
Val ueError: Sone types
cannot be determined by the
first X rows, please try
again with sanpling. This
usually happens if, one or more
target columns receive NULL
values. When using False there
might be execution errors if source
column datatype is different from
target column datatype. In such a
case it is recommended to add
conversion function to attribute

mapping.

C-6

Appendix C
LKM HDFS to Spark

Table C-6 (Cont.) LKM Spark to Hive

Option

Description

SAMPLING_RATIO

The sample ratio of rows used for inferring.

SQL_EXPRESSIONS

Use SQL Expressions.

Delete Spark Mapping Files

Delete temporary objects at end of mapping.

Cache

Cache RDD/DataFrame across operations after computation.

Storage Level

The storage level to be used to cache data.

Repartition

Repartition the RDD/DataFrame after transformation of this
component.

Level of Parallelism

Number of partitions.

Sort Partitions

Sort partitions by a key function when repartitioning.

Partition Sort Order

Sort partitions order.

Partition Keys

Define keys for partitions.

Partition Function

Customized partitioning function.

LKM HDFS to Spark

This KM will load data from HDFS file to Spark.

ORACLE

Table C-7 LKM HDFS to Spark

Option

Description

streamingContext

Name of Streaming Context.

inferSchema

Infer DataFrame schema from data.

Delete Spark Mapping
Files

Delete temporary objects at end of mapping.

Cache

Cache RDD/DataFrame across operations after computation.

Storage Level

The storage level to be used to cache data.

Repartition

Repartition the RDD/DataFrame after transformation of this
component.

Level of Parallelism

Number of partitions.

Sort Partitions

Sort partitions by a key function when repartitioning.

Partition Sort Order

Sort partitions order.

Partition Keys

Define keys for partitions.

Partition Function

Customized partitioning function.

" Note:

formats.

Streaming is enabled when the streaming check box is selected in the
physical schema. Streaming is only supported for the Delimited and JSON

C-7

LKM Spark to HDFS

This KM will load data from Spark to HDFS file.

Appendix C
LKM Spark to HDFS

Table C-8 LKM Spark to HDFS

Option

Description

SQL_EXPRESSION
S

Use SQL Expressions.

Delete Spark
Mapping Files

Delete temporary objects at end of mapping.

Cache

Cache RDD/DataFrame across operations after computation.

Storage Level

The storage level to be used to cache data.

Repartition

Repartition the RDD/DataFrame after transformation of this component.

Level of Parallelism

Number of partitions.

Sort Partitions

Sort partitions by a key function when repartitioning.

Partition Sort Order

Sort partitions order.

Partition Keys

Define keys for partitions.

Partition Function

Customized partitioning function.

Note:

Streaming is enabled when the streaming check box is selected in the
physical schema. Streaming is supported for all formats.

LKM Kafka to Spark

This KM will load data with Kafka source and Spark target and can be defined on the
AP node that exist in Spark execution unit and have Kafka upstream node.

ORACLE

Table C-9 LKM Kafka to Spark for streaming

Option Description
Storage The storage function to be used to load data.
Function

fromOffsets | Per-topic/partition Kafka offsets defining the (inclusive) starting point of the

stream.

KeyDecoder | Converts message key.

ValueDecod | Converts message value.

er

groupld The group id for this consumer.

storageLevel | RDD Storage level.

C-8

Appendix C
LKM Spark to Kafka

Table C-9 (Cont.) LKM Kafka to Spark for streaming

Option Description

numPartition | Number of partitions for each consumer.

s

offsetRange | List of offsetRange to specify topic:partition:[start, end) to consume.

s

leaders Kafka brokers for each TopicAndPartition in offsetRanges.

messageHa | A function used to convert KafkaMessageAndMetadata.

ndler

avroSchema | avroSchema have the content of .avsc file. This file is associated with .avro Data

file.

Delete Spark

Delete temporary objects at end of mapping.

Mapping

Files

Cache Cache RDD/DataFrame across operations after computation.

Storage The storage level to be used to cache data.

Level

Repartition | Repartition the RDD/DataFrame after transformation of this component.
Level of Number of partitions.

Parallelism

Sort Sort partitions by a key function when repartitioning.

Partitions

Partition Sort
Order

Sort partitions order.

Partition Define keys for partitions.

Keys

Partition Customized partitioning function.
Function

LKM Spark to Kafka

LKM Spark to Kafka works in both streaming and batch mode and can be defined on
the AP between the execution units and have Kafka downstream node.

ORACLE

Table C-10 LKM Spark to Kafka
|
Option Description

avroSchema Has the content of .avsc file. This file is associated with .avro Data file.
Delete Delete temporary objects at end of mapping.

Spark

Mapping

Files

Cache Cache RDD/DataFrame across operations after computation.

Storage The storage level to be used to cache data.

Level

C-9

Table C-10

Appendix C
LKM SQL to Spark

(Cont.) LKM Spark to Kafka

Option Description

Repartition Repartition the RDD/DataFrame after transformation of this component.
Level of Number of partitions.

Parallelism

Sort Sort partitions by a key function when repartitioning.
Partitions

Partition Sort partitions order.

Sort Order

Partition Define keys for partitions.

Keys

Partition Customized partitioning function.

Function

LKM SQL to Spark

This KM is designed to load data from Cassandra into Spark, but it can work with other
JDBC sources. It can be defined on the AP node that have SQL source and Spark

ORACLE

target.

To use this KM, it is mandatory to configure the Hadoop Credential Provider and
define the password. For more information, see Password Handling in Hadoop.

Table C-11 LKM SQL to Spark
__|
Option Description

PARTITION Column used for partitioning.

_COLUMN

LOWER_BO Lower bound of the partition column.

UND

UPPER_BO Upper bound of the partition column.

UND

NUMBER_P Number of partitions.

ARTITIONS

PREDICATE List of predicates.

S

Delete Spark Delete temporary objects at end of mapping.

Mapping

Files

Cache Cache RDD/DataFrame across operations after computation.
Storage The storage level to be used to cache data.

Level

Repartition Repartition the RDD/DataFrame after transformation of this component.
Level of Number of partitions.

Parallelism

C-10

Appendix C
LKM Spark to SQL

Table C-11 (Cont.) LKM SQL to Spark

Option Description
Sort Sort partitions by a key function when repartitioning.
Partitions

Partition Sort Sort partitions order.

Order

Partition Define keys for partitions.

Keys

Partition Customized partitioning function.
Function

LKM Spark to SQL

ORACLE

This KM will load data from Spark into JDBC targets and can be defined on the AP
node that have Spark source and SQL target.

To use this KM, it is mandatory to the configure the Hadoop Credential Provider and
define the password. For more information, see Password Handling in Hadoop.

Table C-12 LKM Spark to SQL

Option Description

CREATE_T Create target table.
ARG_TABL
E

TRUNCATE Truncate target table.
_TARG_TAB
LE

DELETE_TA Delete target table.
RG_TABLE

C-11

Appendix C
LKM Spark to SQL

Table C-12 (Cont.) LKM Spark to SQL

__|
Option Description

INFER_SCH Infer target DataFrame schema from RDD data.
EMA

Note:

This option is set to True by default. When set to
True, the column names and types will be inferred
from RDD data and DataFrame will be created with
default options. If it is set to False, DataFrame
schema will be specified based on target datastore
definition. Set this option to False if you are getting
errors such as : Val ueError: Some types
cannot be determined by the first X
rows, please try again with sanpling.
This usually happens if, one or more target
columns receive NULL values. When using False
there might be execution errors if source column
datatype is different from target column datatype.
In such a case it is recommended to add
conversion function to attribute mapping.

SAMPLING_ The sample ratio of rows used for inferring.
RATIO

SQL_EXPR Use SQL Expressions.
ESSIONS

Delete Spark Delete temporary objects at end of mapping.
Mapping
Files

Cache Cache RDD/DataFrame across operations after computation.

Storage The storage level is used to cache data.
Level

Repartition ~ Repartition the RDD/DataFrame after transformation of this component.

Level of Number of partitions.

Parallelism

Sort Sort partitions by a key function when you repartition RDD/DataFrame.
Partitions

Partition Sort Sort partition order.

Order

Partition Define keys of partition.

Keys

Partition Customized partitioning function.

Function

ORACLE C-12

LKM Spark to Cassandra

Appendix C
LKM Spark to Cassandra

To use this KM, it is mandatory to configure the Hadoop Credential Provider and
define the password. For more information, see Password Handling in Hadoop.

Table C-13 LKM Spark to Cassandra

Option

Description

CREATE_TARG_TABLE

Create target table.

TRUNCATE_TARG_TABLE

Truncate target table.

DELETE_TARG_TABLE

Delete target table.

INFER_SCHEMA

Infer target DataFrame schema from RDD
data.

SAMPLING_RATIO

The sample ratio of rows used for inferring.

SQL_EXPRESSIONS

Use SQL Expressions.

Delete Spark Mapping Files

Delete temporary objects at end of mapping.

Cache

Cache RDD/DataFrame across operations
after computation.

Storage Level

The storage level to be used to cache data.

Repartition

Repartition the RDD/DataFrame after
transformation of this component.

Level of Parallelism

Number of partitions.

Sort Partitions

Sort partitions by a key function when
repartitioning.

Partition Sort Order

Sort partitions order.

Partition Keys

Define keys for partitions.

Partition Function

Customized partitioning function.

RKM Cassandra

RKM Cassandra reverses these metadata elements:

e Cassandra tables as data stores.

The Mask field in the Reverse Engineer tab filters reverse-engineered objects
based on their names. The Mask field cannot be empty and must contain at least

the percent sign (%).

» Cassandra columns as attributes with their data types.

XKM Spark Aggregate

Summarize rows, for example, using SUM and GROUP BY.

The following tables describes the options for XKM Spark Aggregate.

ORACLE

C-13

Appendix C
XKM Spark Distinct

Table C-14 XKM Spark Aggregate
|

Option Description
CACHE_DATA Persist the data with the default storage level.
NUMBER_OF_TASKS Task number.

Table C-15 XKM Spark Aggregate for streaming
|

Option Description

WINDOW_A Enable window aggregation.
GGREGATI

ON

WINDOW_L Number of batch intervals.
ENGTH

SLIDING_IN The interval at which the window operation is performed.
TERVAL

STATEFUL_ Enables stateful aggregation.
AGGREGAT

ION

STATE_RET Time in seconds to retain a key or value aggregate in the Spark state object.
ENTION_PE
RIOD

FORWARD_ Modified aggregate values forwarded to downstream components.
ONLY_UPD

ATED_ROW

S

XKM Spark Distinct

Eliminates duplicates in data and functionality is identical to the existing batch
processing.

XKM Spark Expression

Define expressions to be reused across a single mapping.

XKM Spark Filter

ORACLE

Produce a subset of data by a filter condition.

The following tables describes the options for XKM Spark Filter.

Table C-16 XKM Spark Filter

|
Option Description

CACHE_DATA Persist the data with the default storage level.

C-14

Appendix C
XKM Spark Input Signature and Output Signature

XKM Spark Input Signature and Output Signature

Supports code generation for reusable mapping.

XKM Spark Join

Joins more than one input sources based on the join condition.

The following tables describes the options for XKM Spark Join.

Table C-17 XKM Spark Join
|

Option Description
CACHE_DATA Persist the data with the default storage level.
NUMBER_OF_TASKS Task number.

XKM Spark Lookup

Lookup data for a driving data source.

The following tables describes the options for XKM Spark Lookup.

Table C-18 XKM Spark Lookup
|

Option Description

CACHE_DATA Persist the data with the default storage level.
NUMBER_OF_TASKS Task number.

MAP_SIDE Defines whether the KM will do a map-side lookup or a reduce-

side lookup and significantly impacts lookup performance.

KEY_BASED_LOOKUP Only data corresponding to the lookup keys are retrieved.

Table C-19 XKM Spark Lookup for streaming

__|
Option Description

MAP_SIDE MAP_SIDE=true : Suitable for small lookup data sets fitting into memory. This
setting provides better performance by broadcasting the lookup data to all Spark
tasks.

KEY_BASE For any incoming lookup key a Spark cache is checked.

D_LOOKUP . |fthe lookup record is present and not expired, the lookup data is served
from the cache.
e If the lookup record is missing or expired, the data is re-loaded from the
SQL source.

ORACLE C-15

Appendix C
XKM Spark Pivot

Table C-19 (Cont.) XKM Spark Lookup for streaming
|

Option Description
CACHE_RE This option defines when the lookup source data is loaded and refreshed and
LOAD here are the corresponding values:
e NO_RELOAD: The lookup source data is loaded once on Spark application
startup.

« RELOAD_EVERY_BATCH: The lookup source data is reloaded for every
new Spark batch.

* RELOAD_BASE_ON_TIME: The lookup source data is loaded on Spark
application startup and refreshed after the time interval provided by KM
option CacheReloadInterval.

CACHE_RE Defines the time data to be retained in the Spark cache. After this time the
LOAD_INTE expired data or records are removed from cache.
RVAL

XKM Spark Pivot

Take data in separate rows, aggregates it and converts it into columns.

The following tables describes the options for XKM Spark Pivot.

Table C-20 XKM Spark Pivot
|

Option Description
CACHE_DATA Persist the data with the default storage level.
Note:

XKM Spark Pivot does not support streaming.

XKM Spark Set

Perform UNION, MINUS or other set operations.

XKM Spark Sort

Sort data using an expression.

The following tables describes the options for XKM Spark Sort.

Table C-21 XKM Spark Sort
|

Option Description
CACHE_DATA Persist the data with the default storage level.
NUMBER_OF_TASKS Task number.

ORACLE C-16

Appendix C
XKM Spark Split

XKM Spark Split

Split data into multiple paths with multiple conditions.

The following tables describes the options for XKM Spark Spilit.

Table C-22 XKM Spark Split

]
Option Description

CACHE_DATA Persist the data with the default storage level.

XKM Spark Table Function

This KM allows applying custom transformation by executing arbitrary Spark/Python
transformations as part of the overall Spark Python script.

The following table describes the options for XKM Spark Table Function.

Table C-23 XKM Spark Table Function
|

Option Description

SPARK_SCRIPT User specifies the customized code content.

SPARK_SCRIPT_FILE User specifies the path of spark script file.

CACHE_DATA Persist the data with the default storage level.

Note:
Only one of the options, either SPARK_SCRIPT or SPARK_SCRIPT_FILE
must be set.
e If SPARK_SCRIPT_FILE is set, then the specified file will be dynamically
executed.

e If SPARK_SCRIPT is set, its content will be inserted into the main Spark
script.

e If neither SPARK_SCRIPT nor SPARK_SCRIPT_FILE is set, a validation
error is generated stating that at least one of the options must be
specified.

e If both SPARK_SCRIPT and SPARK_SCRIPT_FILE are set, a validation
error is generated stating that only one of the options must be specified.

IKM Spark Table Function

Spark table function as target.

The following tables describes the options for IKM Spark Table Function.

ORACLE C-17

Appendix C
XKM Spark Unpivot

Table C-24 IKM Spark Table Function
|

Option Description
SPARK_SCRIPT_FILE User specifies the path of spark script file.
CACHE_DATA Persist the data with the default storage level.

XKM Spark Unpivot

Transform a single row of attributes into multiple rows in an efficient manner.

The following tables describes the options for XKM Spark Pivot.

Table C-25 XKM Spark Unpivot
|

Option Description
CACHE_DATA Persist the data with the default storage level.
" Note:

XKM Spark Unpivot does not support streaming.

ORACLE C-18

Component Knowledge Modules

This appendix provides information about the knowledge modules for the Flatten and
the Jagged component.

This appendix includes the following sections:

* XKM Oracle Flatten

* XKM Oracle Flatten XML
e XKM Spark Flatten

* XKM Jagged

XKM Oracle Flatten

Un-nest the complex data according to the given options.

¢ Note:

Flatten component is supported only with Spark 1.3.

The following tables describes the options for XKM Oracle Flatten.

Table D-1 XKM Oracle Flatten

Option Description
NESTED_TABLE_ALIAS Alias used for nested table expression.
Default is NST.

DEFAULT_EXPRESSION Default expression for null nested table objects. For example,
rating_table(obj_rating('-1', 'Unknown)).

XKM Oracle Flatten XML

Un-nest the complex data in an XML file according to the given options.

The following tables describes the options for XKM Oracle Flatten XML.

Table D-2 XKM Oracle Flatten XML

Option Description

XML_XPATH Specify XML path for XMLTABLE function. For example, '/
ratings/rating'.

ORACLE D-1

Appendix D
XKM Spark Flatten

Table D-2 (Cont.) XKM Oracle Flatten XML
|

Option Description

XML_IS_ATTRIBUTE Set to True when data is stored as attribute values of record tag.
For example, <row attributel=..." /> "

XML_TABLE_ALIAS Alias used for XMLTABLE expression.

Default is XMLT.

DEFAULT_EXPRESSION Default expression for null XMLTYPE objects. For example,
<row> < attributel/><row/>

This is used to return a row with default values for each null
XMLTYPE object.

XKM Spark Flatten

Un-nest the complex data according to the given options.

The following tables describes the options for XKM Spark Flatten.

Table D-3 XKM Spark Flatten

__|
Option Description

Default Expression Default expression for null nested table objects. For example,
rating_table(obj_rating(’-1', 'Unknown")).

This is used to return a row with default values for each null
nested table object.

CACHE_DATA When set to TRUE, persist the results with Spark default storage
level.

Default is FALSE.

XKM Jagged

ORACLE

Jagged component KMs process unstructured data using meta pivoting. Source data,
represented as key-value free format, will be transformed into more structured entities
in order to be loaded into database tables or file structures. Jagged component has
one input group and one or multiple output groups based on the configuration of the
component. Input group is connected to a source component, which has e key-value
or id-key-value structure. Output groups are connected to the target components
where data is stored in more structured way, that is, keys become column names and
values are stored as table rows. Jagged KM is parsing the source data and is looking
for key data matching the output group attributes. Once the relevant keys are identified
the corresponding data is stored into a row. In case of key-value source each incoming
record is delimited by a key marked as End of Data Indicator. In case of id-key-value
source incoming records are delimited by a new value of the sequence defined as id.
Target records can be consolidated by removing duplicates based on Unique Index
attribute property. Some attributes can be labeled as required, meaning no new record
is stored if any of the required keys is missing. Default values can be defined for some
missing keys.

The following tables describes the options for XKM Jagged.

D-2

ORACLE

Table D-4 XKM Jagged

Appendix D
XKM Jagged

Option

Description

TMP_DIR
FIELD_DELIMITER

DELETE_TEMPORARY_O
BJECTS

Directory for temporary files.
Field delimiter for temporary files.

Delete temporary objects at end of mapping.

D-3

Considerations, Limitations, and Issues

This appendix lists the considerations, limitations, and issues that you must be aware
of while working on Big Data integration projects in ODI.
This appendix includes the following section:

Considerations, Limitations, and Issues

Considerations, Limitations, and Issues

Please note the following when working on Big Data integration projects:

ORACLE

Before ODI 12c¢ (12.2.1.1) any Groovy, Jython, Beanshell code in ODI Procedures/
Custom KMs were not able to access Hadoop/Pig classes, unless these JARs
were added to ODI class path.

Starting with ODI 12¢ (12.2.1.1), the ODI Procedures/Custom KMs can access
Hadoop/Pig classes if they exist in the paths configured on Hadoop/Pig data
servers.

A new property or acl e. odi . pref er. dat aserver. packages is exposed on Hadoop
and Pig data servers, and, also Hive data servers. This property lets you specify
which packages are loaded child-first rather than parent-first.

Note: Upgraded repositories will not show this property on upgraded Hadoop/Pig
data servers. Only new data servers will show this property.

In JEE environment, Agent application may be redeployed. However due to Pig's
shutdown hook, Logging leak, and other undiscovered leaks, the execution
classloader created will not get GC'd. Hence, in ODI 12c (12.2.1), if using Big Data
features, the JEE Agent application must not be re-deployed, instead a server
restart is required.

Any package filter applied to a data server must be as specific as possible. Do not
try to make things easier by specifying the widest possible filter. For example, if
you specify or g. apache as a filter element, you will get ClassCastException on
Beanshell instantiation, XML parsers instantiation, and so on. This happens
because according to Java Language Specification two class instances are
castable only if they are same type declaration and are loaded by the same
classloader. In this example, your interface will be under some sub-package of
or g. apache, for example, or g. apache. util .| M/ nterface. The interface class
loaded by the Studio classloader/web application classloader is the casting target.
When the implementation class is instantiated through reflection, the instance
class's interface class is also loaded by the execution classloader. When JNIEnv
code does the checking to see if the caster and castee share the same type
declaration, it will turn out to be false since the LHS has Studio/web-application
classloader and RHS has execution classloader.

Execution classloader instances are cached. Changing the data server package
filter or data server classpath results in the creation of a new classloader instance.
The old classloader may not be GC'd immediately (or even ever). This can lead to
running out of heap space. The only solution is a JVM restart.

E-1

ORACLE

Appendix E
Considerations, Limitations, and Issues

When using SDK to create Pig, Hadoop, or any other data server having package
filtering property set on it, adding more data server properties requires attention to
one detail. You must retrieve the current set of properties, add your properties to it
and then set it on the data server. Otherwise, the filtering property will be lost.

E-2

Index

D

data integrity checking, A-37
data transformations, A-38
data validation in Oracle Data Integrator, A-38
DataServer objects
creating for Oracle Data Integrator, 4-3
directories
accessible by Oracle Data Integrator, 4-2
for Oracle Loader for Hadoop output, A-45
drivers
JDBC, 4-4

F

file formats for Oracle Data Integrator, A-31

H

Hive data source for Oracle Data Integrator, 4-5
Hive tables
loading data into (Oracle Data Integrator),
4-16
reverse engineering, 4-8, 4-11
reverse engineering in Oracle Data
Integrator, 4-8, 4-11

IKM Hive Control Append, A-37, A-38

ORACLE

IKM Hive Transform, A-37

J

JDBC drivers, 4-4

L

loading data files into Hive, 4-16
loading options for Oracle Data Integrator, A-31

O

Oracle Data Integrator Application Adapter for
Hadoop
creating models, 4-7
loading options, A-31

R

reverse engineering in Hive, 4-8, 4-11
reverse-engineering Hive tables, 4-12
RKM Hive, 4-8, 4-11

wW

wildcard characters
in resource names, A-31
setting up data sources in ODI using, 4-3

Index-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Big Data Integration with Oracle Data Integrator
	Overview of Hadoop Data Integration
	Big Data Knowledge Modules Matrix

	2 Hadoop Data Integration Concepts
	Hadoop Data Integration with Oracle Data Integrator
	Generate Code in Different Languages with Oracle Data Integrator
	Leveraging Apache Oozie to execute Oracle Data Integrator Projects
	Oozie Workflow Execution Modes
	Lambda Architecture

	3 Setting Up the Environment for Integrating Big Data
	Configuring Big Data technologies using the Big Data Configurations Wizard
	General Settings
	HDFS Data Server Definition
	HBase Data Server Definition
	Kafka Data Server Definition
	Kafka Data Server Properties

	Creating and Initializing the Hadoop Data Server
	Hadoop Data Server Definition
	Hadoop Data Server Properties

	Creating a Hadoop Physical Schema
	Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs
	Configuring Oracle Loader for Hadoop
	Configuring Oracle Data Integrator to Connect to a Secure Cluster
	Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

	4 Integrating Hadoop Data
	Integrating Hadoop Data
	Setting Up File Data Sources
	Setting Up HDFS Data Sources
	Setting Up Hive Data Sources
	Setting Up HBase Data Sources
	Setting Up Kafka Data Sources
	Setting Up Cassandra Data Sources
	Importing Hadoop Knowledge Modules
	Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files
	Creating a Model
	Reverse-Engineering Hive Tables
	Reverse-Engineering HBase Tables
	Reverse-Engineering HDFS Files
	Reverse-Engineering Cassandra Tables
	Reverse-Engineering Support for Kafka

	Password Handling in Hadoop
	Loading Data from Files into Hive
	Loading Data from Hive to Files
	Loading Data from HBase into Hive
	Loading Data from Hive into HBase
	Loading Data from an SQL Database into Hive, HBase, and File using SQOOP
	Loading Data from an SQL Database into Hive using SQOOP
	Loading Data from an SQL Database into HDFS File using SQOOP
	Loading Data from an SQL Database into HBase using SQOOP
	Validating and Transforming Data Within Hive
	Loading Data into an Oracle Database from Hive and File
	Loading Data into an SQL Database from Hbase, Hive, and File using SQOOP
	Loading Data from Kafka to Spark Processing Engine

	5 Executing Oozie Workflows
	Executing Oozie Workflows with Oracle Data Integrator
	Setting Up and Initializing the Oozie Runtime Engine
	Oozie Runtime Engine Definition
	Oozie Runtime Engine Properties

	Creating a Logical Oozie Engine
	Executing or Deploying an Oozie Workflow
	Auditing Hadoop Logs
	Userlib jars support for running ODI Oozie workflows

	6 Using Query Processing Engines to Generate Code in Different Languages
	Query Processing Engines Supported by Oracle Data Integrator
	Setting Up Hive Data Server
	Hive Data Server Definition
	Hive Data Server Connection Details

	Creating a Hive Physical Schema
	Setting Up Pig Data Server
	Pig Data Server Definition
	Pig Data Server Properties

	Creating a Pig Physical Schema
	Setting Up Spark Data Server
	Spark Data Server Definition
	Spark Data Server Properties

	Creating a Spark Physical Schema
	Generating Code in Different Languages

	7 Working with Spark
	Spark Usage
	Creating a Spark Mapping
	Pre-requisites for handling Avro and Delimited files in Spark Mappings

	Spark Design Considerations
	Batch or Streaming
	Resilient Distributed Datasets (RDD) or DataFrames
	Infer Schema Knowledge Module Option
	Expression Syntax

	Spark Streaming Support
	Spark Checkpointing
	Spark Windowing and Stateful Aggregation
	Spark Repartitioning and Caching
	Configuring Streaming Support
	Spark Streaming DataServer Properties
	Extra Spark Streaming Data Properties

	Executing Mapping in Streaming Mode

	Switching between RDD and DataFrames in ODI
	Components that do not support DataFrame Code Generation
	Adding Customized Code in the form of a Table Function

	8 Working with Unstructured Data
	Working with Unstructured Data

	9 Working with Complex Datatypes and HDFS File Formats
	HDFS File Formats
	Working with Complex Datatypes in Mappings
	Hive Complex Datatypes
	Using Flatten for Complex Types in Hive Mappings

	Cassandra Complex Datatypes
	How ODI deals with Cassandra Lists and User Defined Types

	Loading Data from HDFS File to Hive
	Loading Data from HDFS File to Spark

	A Hive Knowledge Modules
	LKM SQL to Hive SQOOP
	LKM SQL to File SQOOP Direct
	LKM SQL to HBase SQOOP Direct
	LKM File to SQL SQOOP
	LKM Hive to SQL SQOOP
	LKM HBase to SQL SQOOP
	LKM HDFS File to Hive Load Data
	LKM HDFS File to Hive Load Data (Direct)
	IKM Hive Append
	IKM Hive Incremental Update
	LKM File to Hive LOAD DATA
	LKM File to Hive LOAD DATA Direct
	LKM HBase to Hive HBASE-SERDE
	LKM Hive to HBase Incremental Update HBASE-SERDE Direct
	LKM Hive to File Direct
	XKM Hive Sort
	LKM File to Oracle OLH-OSCH
	LKM File to Oracle OLH-OSCH Direct
	LKM Hive to Oracle OLH-OSCH
	LKM Hive to Oracle OLH-OSCH Direct
	RKM Hive
	RKM HBase
	IKM File to Hive (Deprecated)
	LKM HBase to Hive (HBase-SerDe) [Deprecated]
	IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]
	IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]
	IKM Hive Control Append (Deprecated)
	CKM Hive
	IKM Hive Transform (Deprecated)
	IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]
	IKM File-Hive to SQL (SQOOP) [Deprecated]

	B Pig Knowledge Modules
	LKM File to Pig
	LKM Pig to File
	LKM HBase to Pig
	LKM Pig to HBase
	LKM Hive to Pig
	LKM Pig to Hive
	LKM SQL to Pig SQOOP
	XKM Pig Aggregate
	XKM Pig Distinct
	XKM Pig Expression
	XKM Pig Filter
	XKM Pig Flatten
	XKM Pig Join
	XKM Pig Lookup
	XKM Pig Pivot
	XKM Pig Set
	XKM Pig Sort
	XKM Pig Split
	XKM Pig Subquery Filter
	XKM Pig Table Function
	XKM Pig Unpivot

	C Spark Knowledge Modules
	LKM File to Spark
	LKM Spark to File
	LKM Hive to Spark
	LKM Spark to Hive
	LKM HDFS to Spark
	LKM Spark to HDFS
	LKM Kafka to Spark
	LKM Spark to Kafka
	LKM SQL to Spark
	LKM Spark to SQL
	LKM Spark to Cassandra
	RKM Cassandra
	XKM Spark Aggregate
	XKM Spark Distinct
	XKM Spark Expression
	XKM Spark Filter
	XKM Spark Input Signature and Output Signature
	XKM Spark Join
	XKM Spark Lookup
	XKM Spark Pivot
	XKM Spark Set
	XKM Spark Sort
	XKM Spark Split
	XKM Spark Table Function
	IKM Spark Table Function
	XKM Spark Unpivot

	D Component Knowledge Modules
	XKM Oracle Flatten
	XKM Oracle Flatten XML
	XKM Spark Flatten
	XKM Jagged

	E Considerations, Limitations, and Issues
	Considerations, Limitations, and Issues

