
Oracle® Fusion Middleware
Securing Oracle Coherence

14c (14.1.2.0.0)
F79655-01
December 2024

Oracle Fusion Middleware Securing Oracle Coherence, 14c (14.1.2.0.0)

F79655-01

Copyright © 2008, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion viii

Related Documents viii

Conventions viii

1 Introduction to Oracle Coherence Security

Conceptual Overview of Oracle Coherence Security 1-1

Coherence Security Quick Start 1-2

Overview of Security Configuration 1-2

2 Enabling General Security Measures

Using the Java Security Manager 2-1

Enable the Java Security Manager 2-1

Specify Permissions 2-2

Programmatically Specifying Local Permissions 2-2

Using Host-Based Authorization 2-3

Overview of Host-Based Authorization 2-4

Specify Cluster Member Authorized Hosts 2-4

Specify Extend Client Authorized Hosts 2-5

Use a Filter Class to Determine Authorization 2-5

Managing Rogue Clients 2-6

3 Using an Access Controller

Overview of Using an Access Controller 3-1

Using the Default Access Controller Implementation 3-4

Enable the Access Controller 3-4

Create a Keystore 3-4

Include the Login Module 3-5

Create a Permissions File 3-5

iii

Create an Authentication Callback Handler 3-6

Enable Security Audit Logs 3-6

Using a Custom Access Controller Implementation 3-7

4 Authorizing Access to Server-Side Operations

Overview of Access Control Authorization 4-1

Creating Access Control Authorization Implementations 4-2

Declaring Access Control Authorization Implementations 4-4

Enabling Access Control Authorization on a Partitioned Cache 4-5

5 Securing Extend Client Connections

Using Identity Tokens to Restrict Client Connections 5-1

Overview of Using Identity Tokens 5-1

Creating a Custom Identity Transformer 5-3

Enabling a Custom Identity Transformer 5-4

Creating a Custom Identity Asserter 5-4

Enabling a Custom Identity Asserter 5-5

Using Custom Security Types 5-5

Understanding Custom Identity Token Interoperability 5-6

Associating Identities with Extend Services 5-6

Implementing Extend Client Authorization 5-7

Overview of Extend Client Authorization 5-7

Create Authorization Interceptor Classes 5-8

Enable Authorization Interceptor Classes 5-11

6 Using SSL/TLS to Secure Communication

Overview of SSL/TLS 6-2

Coherence Socket Providers 6-4

Configuring the Identity Manager 6-5

Configuring a Trust Manager 6-7

Resolving the Socket Provider URL 6-8

Using a Socket Provider in Configuration 6-8

Configure a Socket Provider at Runtime 6-9

Using SSL to Secure Cluster Communication 6-10

Cluster Communication Using mTLS 6-11

Cluster Communication with One-Way SSL 6-12

Using SSL to Secure Extend and gRPC Client Communication 6-14

Configuring a Cluster-Side Extend Proxy SSL Socket Provider 6-14

Configuring the Cluster-Side gRPC Proxy SSL Socket Provider 6-17

iv

Configuring a Java Extend or gRPC Client SSL Socket Provider 6-17

Configure a Default Socket Provider for a Cache Configuration File 6-22

Configuring a .NET Client-Side Stream Provider 6-24

Securing the C++ Client with SSL/TLS 6-25

Using SSL to Secure Federation Communication 6-26

Federation with mTLS 6-27

Federation with One-Way SSL 6-28

Coherence PeerX509 Algorithm 6-29

Specifying a Global Socket Provider 6-29

Specifying Passwords in Socket Provider Configuration 6-31

Specify Plain Text Passwords 6-32

Passwords From Java System Properties 6-32

Reading Passwords From a URL 6-33

Custom Password Providers 6-33

Controlling Cipher Suite and Protocol Version Usage 6-38

Using Host Name Verification 6-38

Using the Default Coherence Host Name Verifier 6-38

Using a Custom Host Name Verifier 6-40

Configuring Client Authentication 6-40

Using Private Key and Certificate Files 6-41

Configuring an Identity Manager 6-42

Configuring a Trust Manager 6-42

7 Securing Oracle Coherence in Oracle WebLogic Server

Overview of Securing Oracle Coherence in Oracle WebLogic Server 7-1

Securing Coherence using SSL/TLS 7-1

Extended Usage Certificates 7-2

Configure Coherence Cluster Traffic Using mTLS 7-2

Configure Coherence Cluster Traffic Using One-Way SSL/TLS 7-3

Using a Custom Coherence Operational Configuration File 7-4

Configure the Coherence Global Socket Provider 7-5

WebLogic Server Secured Production Mode 7-7

Configure Coherence for One-Way SSL/TLS in Secured Production Mode 7-7

Disable Coherence SSL/TLS in Secured Production Mode 7-8

Securing Oracle Coherence Cluster Membership 7-8

Enabling the Oracle Coherence Security Framework 7-9

Specifying an Identity for Use by the Security Framework 7-9

Authorizing Oracle Coherence Caches and Services 7-10

Specifying Cache Authorization 7-10

Specifying Service Authorization 7-11

Securing Extend Client Access with Identity Tokens 7-11

v

Enabling Identity Transformers for Use in Oracle WebLogic Server 7-12

Enabling Identity Asserters for Use in Oracle WebLogic Server 7-13

8 Securing Oracle Coherence REST

Overview of Securing Oracle Coherence REST 8-1

Using HTTP Basic Authentication with Oracle Coherence REST 8-1

Specify Basic Authentication for an HTTP Acceptor 8-1

Specify a Login Module 8-2

Using SSL Authentication With Oracle Coherence REST 8-2

Specify Basic Authentication for an HTTP Acceptor 8-3

Configure an HTTP Acceptor SSL Socket Provider 8-3

Access Secured REST Services 8-4

Using SSL and HTTP Basic Authentication with Oracle Coherence REST 8-7

Implementing Authorization For Oracle Coherence REST 8-7

9 Securing Oracle Coherence HTTP Management Over REST Server

About Securing Oracle Coherence HTTP Management Server 9-1

Basic Authentication for Coherence HTTP Management Server HTTP Acceptor 9-1

Specify the Basic Authentication for Coherence HTTP Management Server HTTP
Acceptor 9-1

Specify a Coherence HTTP Management Server Login Module 9-2

Using SSL Authentication With Oracle Coherence HTTP Management Server 9-2

Configure a Coherence HTTP Management Acceptor SSL Socket Provider 9-2

10

Securing Oracle Coherence Metrics

About Securing Oracle Coherence Metrics 10-1

Basic Authentication for Coherence Metrics Http Acceptor 10-1

Specify Basic Authentication for Coherence Metrics HTTP Acceptor 10-1

Specify a Coherence Metrics Login Module 10-1

Specify Basic Authentication for a Coherence Metrics HTTP Client 10-2

Using SSL Authentication With Oracle Coherence Metrics 10-2

Configure a Coherence Metrics HTTP Acceptor SSL Socket Provider 10-2

vi

Preface

Securing Oracle Coherence explains key security concepts and provides instructions for
implementing various levels of security for Oracle Coherence clusters, Oracle Coherence
REST, and Oracle Coherence*Extend clients.

This preface includes the following sections:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This guide is intended for the following audiences:

• Primary Audience – Application developers and operators who want to secure an Oracle
Coherence cluster and secure Oracle Coherence*Extend client communication with the
cluster

• Secondary Audience – System architects who want to understand the options and
architecture for securing an Oracle Coherence cluster and Oracle Coherence*Extend
clients

The audience must be familiar with Oracle Coherence, Oracle Coherence REST, and Oracle
Coherence*Extend to use this guide effectively. In addition, users must be familiar with Java
and Secure Socket Layer (SSL). The examples in this guide require the installation and use of
the Oracle Coherence product, including Oracle Coherence*Extend. The use of an integrated
development environment (IDE) is not required, but it is recommended to facilitate working
through the examples.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
For more information, see the following documents in the Oracle Coherence documentation
set:

• Administering HTTP Session Management with Oracle Coherence*Web

• Administering Oracle Coherence

• Developing Applications with Oracle Coherence

• Developing Remote Clients for Oracle Coherence

• Installing Oracle Coherence

• Integrating Oracle Coherence

• Managing Oracle Coherence

• Java API Reference for Oracle Coherence

• C++ API Reference for Oracle Coherence

• .NET API Reference for Oracle Coherence

• Release Notes for Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii

1
Introduction to Oracle Coherence Security

Oracle Coherence includes many security features that provide varying levels of security.
Understanding the security features and the uses cases they cover are important first steps
when learning how to secure a Coherence solution.
This chapter includes the following sections:

• Conceptual Overview of Oracle Coherence Security

• Coherence Security Quick Start

• Overview of Security Configuration

Conceptual Overview of Oracle Coherence Security
Oracle Coherence provide security features that support standards such as Java policies and
Secure Sockets Layer (SSL) and also includes features that are native to Oracle Coherence.
Evaluate the security feature descriptions and determine which features to use based on your
security requirements, concerns, and tolerances.
The security features are presented from basic security measures to more advanced security
measures.

Java Policy Security

A Java security policy file is provided that contains the minimum set of security permissions
necessary to run Oracle Coherence. Edit the file to change the permissions based on an
application's requirement. The security policy protects against malicious use and alterations of
the Oracle Coherence library and configuration files. See Using the Java Security Manager.

Host-Based Authorization

Host-based authorization explicitly specifies which hosts become members of a cluster and
which extend clients connect to a cluster. This type of access control is ideal in environments
where host names (or IP addresses) are known in advance. Host-based authorization protects
against unauthorized hosts joining or accessing a cluster. See Using Host-Based
Authorization.

Client Suspect Protocol

The client suspect protocol automatically determines if an extend client is acting malicious and
blocks the client from connecting to a cluster. The suspect protocol protects against denial of
service attacks. See Managing Rogue Clients.

Client Identity Tokens

Client identity tokens control which extend clients access the cluster. A proxy server allows a
connection only if the client presents a valid token. Identity tokens are application-specific and
typically reuse existing client authentication implementations. Identity tokens protect against
unwanted or malicious clients accessing the cluster. See Using Identity Tokens to Restrict
Client Connections.

1-1

Client Authorization

Client authorization controls which actions a particular client can perform based on its access
control rights. A proxy server performs the authorization check before an extend client
accesses a resource (cache, cache service, or invocation service). Client authorization is
application-specific and protects against unauthorized use of cluster resources. See
Implementing Extend Client Authorization.

Access Controller Security Framework

The access controller manages access to clustered resources, such as clustered services and
caches, and controls which operations a user can perform on those resources. Cluster
members use login modules to provide proof of identity; while, encrypting and decrypting
communication acts as proof of trustworthiness. The framework requires the use of a keystore
and defines permissions within a permissions file. The access controller prevents malicious
cluster members from accessing and creating clustered resources. See Using an Access
Controller .

SSL

SSL secures the Tangosol Cluster Management Protocol (TCMP) communication between
cluster nodes. SSL also secures the TCP communication between Oracle Coherence*Extend
clients and proxies. SSL uses digital signatures to establish identity and trust, and key-based
encryption to ensure that data is secure. SSL is an industry standard that protects against
unauthorized access and data tampering by malicious clients and cluster members. See Using
SSL/TLS to Secure Communication .

Coherence Security Quick Start
Coherence security features are disabled by default and are enabled as required to address
specific security requirements or concerns. Different levels of security can be achieved based
on the security features that are enabled. You can quickly get started securing Coherence by
configuring a solution to use file permissions, SSL, and role-based authorization.

• Configure file system permissions and Java policy permissions to protect against reads
and writes of Coherence files. See Using the Java Security Manager.

• Configure and enable SSL to secure communication between cluster members and protect
against unauthorized members joining the cluster. See Using SSL to Secure Cluster
Communication.

• When using Coherence*Extend or Coherence REST, configure and enable SSL to secure
communication between external clients and Coherence proxy servers. SSL protects
against unauthorized clients from using cluster services. See Using SSL to Secure Extend
and gRPC Client Communication and Using SSL Authentication With Oracle Coherence
REST, respectively.

• Implement authorization policies to restrict client access to specific Coherence operations
based on user roles. See Implementing Extend Client Authorization.

Overview of Security Configuration
Coherence security requires the use of multiple configuration files. The configuration files
enable, control, and customize security features as required. See Understanding Configuration
in Developing Applications with Oracle Coherence.
The following files are used to configure security:

Chapter 1
Coherence Security Quick Start

1-2

• Operational Override File – The tangosol-coherence-override.xml file overrides the
operational deployment descriptor, which specifies the operational and runtime settings
that maintain clustering, communication, and data management services. This file includes
security settings for cluster members.

• Cache Configuration File – The coherence-cache-config.xml file is the default cache
configuration file. It specifies the various types of caches within a cluster. This configuration
file includes security settings for cache services, proxy services, and Coherence*Extend
clients.

Chapter 1
Overview of Security Configuration

1-3

2
Enabling General Security Measures

You can use general security measures to help protect against unauthorized use of Oracle
Coherence APIs, system resources, and cluster connections. General security measures are
often enabled as a first step when securing Coherence solutions.
This chapter includes the following sections:

• Using the Java Security Manager

• Using Host-Based Authorization

• Managing Rogue Clients

Using the Java Security Manager
You can control which system resources Coherence accesses and uses by enabling the Java
security manager. The security manager uses a policy file that explicitly grants permissions for
each resource. The COHERENCE_HOME/lib/security/security.policy policy configuration file
specifies a minimum set of permissions that are required for Coherence. Use the file as
provided, or modify the file to set additional permissions. A set of local (non-clustered)
permissions is also provided.
The section includes the following topics:

• Enable the Java Security Manager

• Specify Permissions

• Programmatically Specifying Local Permissions

Enable the Java Security Manager
To enable the Java security manager and use the COHERENCE_HOME/lib/security/
security.policy file, set the following properties on a cluster member:

1. Set the java.security.manager property to enable the Java security manager. For
example:

-Djava.security.manager
2. Set the java.security.policy property to the location of the policy file. For example:

-Djava.security.manager
-Djava.security.policy=/coherence/lib/security/security.policy

3. Set the coherence.home system property to COHERENCE_HOME. For example:

-Djava.security.manager
-Djava.security.policy=/coherence/lib/security/security.policy
-Dcoherence.home=/coherence

2-1

Note:

The security policy file assumes that the default Java Runtime Environment (JRE)
security permissions have been granted. Therefore, you must be careful to use a
single equal sign (=) and not two equal signs (==) when setting the
java.security.policy system property.

Specify Permissions
Modify the COHERENCE_HOME/lib/security/security.policy file to include additional
permissions as required. See Permissions in the Java Development Kit (JDK) in Java SE
Security.

To specify additional permissions in the security.policy file:

1. Edit the security.policy file and add a permission for a resource. For example, the
following permission grants access to the coherence.jar library:

grant codeBase "file:${coherence.home}/lib/coherence.jar"
 {
 permission java.security.AllPermission;
 };

2. When you declare binaries, sign the binaries using the JDK jarsigner tool. The following
example signs the coherence.jar resource declared in the previous step:

jarsigner -keystore ./keystore.jks -storepass password coherence.jar admin

Add the signer in the permission declaration. For example, modify the original permission
as follows to add the admin signer.

grant SignedBy "admin" codeBase "file:${coherence.home}/lib/coherence.jar"
 {
 permission java.security.AllPermission;
 };

3. Use operating system mechanisms to protect all relevant files from malicious
modifications.

Programmatically Specifying Local Permissions
The com.tangosol.net.security.LocalPermission class provides a way to set permissions
for local (non-clustered) Coherence API operations. Clients are either allowed or not allowed to
perform the declared operations (referred to as targets). For example:

LocalPermission lp = new LocalPermission("Cluster.shutdown");

To use local permissions, the Java security manager must be enabled. See Enable the Java
Security Manager.

Table 2-1 lists and describes the target names that can be declared.

Chapter 2
Using the Java Security Manager

2-2

https://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html

Table 2-1 Local Permission Targets

Target Name Description

CacheFactory.setCacheFactoryBuilder Protects the programmatic installation of a custom
cache factory builder. Special consideration should be
given when granting this permission. Granting this
permission allows code to set a cache factory builder
and intercept any access or mutation requests to any
caches and also allows access to any data that flows
into and from those caches.

Cluster.shutdown Protects all services from being shutdown. Granting
this permission allows code to programmatically
shutdown the cluster node.

BackingMapManagerContext.getBackingMa
p

Protects direct access to backing maps. Special
consideration should be given when granting this
permission. Granting this permission allows code to
get a reference to the backing map and access any
stored data without any additional security checks.

BackingMapManagerContext.setClassLoad
er

Protect changes to class loaders used for storage. The
class loader is used by the cache service to load
application classes that might not exist in the system
class loader. Granting this permission allows code to
change which class loader is used for a particular
service.

Service.getInternalService Protects access to an internal service, cluster or
cache reference. Granting this permission allows code
to obtain direct access to the underlying service,
cluster or cache storage implementation.

Service.registerResource Protects service registries. Granting this permission
allows code to re-register or unregister various
resources associated with the service.

Service.registerEventInterceptor Protects the programmatic installation of interceptors.
Special consideration should be given when granting
this permission. Granting this permission allows code
to change or remove event interceptors associated
with the cache service thus either getting access to
underlying data or removing live events that are
designed to protect the data integrity.

Using Host-Based Authorization
Host-based authorization is a type of access control that allows you to specify which hosts
(based on host name or IP address) can connect to a cluster. The feature is available for both
cluster member connections and extend client connections.
This section includes the following topics:

• Overview of Host-Based Authorization

• Specify Cluster Member Authorized Hosts

• Specify Extend Client Authorized Hosts

• Use a Filter Class to Determine Authorization

Chapter 2
Using Host-Based Authorization

2-3

Overview of Host-Based Authorization
Host-based authorization uses the host name and IP address of a cluster member or extend
client to determine whether a connection to the cluster is allowed. Specific host names,
addresses, and address ranges can be defined. For custom processing, a custom filter can be
created to validate hosts.

Host-based authorization is ideal for environments where known hosts with relatively static
network addresses are joining or accessing the cluster. In dynamic environments, or when
updating a DNS server, IP addresses can change and cause a cluster member or extend client
to fail authorization. Cache operations may not complete if cluster members or extend clients
are no longer authorized. Extend clients are more likely to have access problems because of
their transient nature.

When using host-based authorization, consider the dynamic nature of the network
environment. The need to reconfigure the list of authorized hosts may become impractical. If
possible, always use a range of IP addresses instead of using a specific host name. Or, create
a custom filter that is capable of resolving address that have changed. If host-based
authorization becomes impractical, consider using extend client identity tokens or SSL. See
Using Identity Tokens to Restrict Client Connections and Using SSL/TLS to Secure
Communication , respectively.

Specify Cluster Member Authorized Hosts
The default behavior of a cluster allows any host to connect to the cluster and become a
cluster member. Host-based authorization changes this behavior to allow only hosts with
specific host names or IP addresses to connect to the cluster.

Configure authorized hosts in an operational override file using the <authorized-hosts>
element within the <cluster-config> element. Enter specific addresses using the <host-
address> element or a range of addresses using the <host-range> element. The <host-
address> and <host-range> elements support an id attribute for uniquely identifying multiple
elements.

The following example configures a cluster to accept only cluster members whose IP address
is either 192.168.0.5, 192.168.0.6, or within the range of 192.168.0.10 to 192.168.0.20 and
192.168.0.30 to 192.168.0.40.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-operational-config
 coherence-operational-config.xsd">
 <cluster-config>
 <authorized-hosts>
 <host-address id="1">192.168.0.5</host-address>
 <host-address id="2">192.168.0.6</host-address>
 <host-range id="1">
 <from-address>192.168.0.10</from-address>
 <to-address>192.168.0.20</to-address>
 </host-range>
 <host-range id="2">
 <from-address>192.168.0.30</from-address>
 <to-address>192.168.0.40</to-address>
 </host-range>
 </authorized-hosts>

Chapter 2
Using Host-Based Authorization

2-4

 </cluster-config>
</coherence>

Specify Extend Client Authorized Hosts
The default behavior of an extend proxy server allows any extend client to connect to the
cluster. Host-based authorization changes this behavior to allow only hosts with specific host
names or IP addresses to connect to the cluster.

Configure authorized hosts in a cache configuration file using the <authorized-hosts>
element within the <tcp-acceptor> element of a proxy scheme definition. Enter specific
addresses using the <host-address> element or a range of addresses using the <host-range>
element. The <host-address> and <host-range> elements support an id attribute for uniquely
identifying multiple elements.

The following example configures an extend proxy to accept only client connections from
clients whose IP address is either 192.168.0.5, 192.168.0.6, or within the range of
192.168.0.10 to 192.168.0.20 and 192.168.0.30 to 192.168.0.40.

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count>5</thread-count>
 <acceptor-config>
 <tcp-acceptor>
 ...
 <authorized-hosts>
 <host-address id="1">192.168.0.5</host-address>
 <host-address id="2">192.168.0.6</host-address>
 <host-range id="1">
 <from-address>192.168.0.10</from-address>
 <to-address>192.168.0.20</to-address>
 </host-range>
 <host-range id="2">
 <from-address>192.168.0.30</from-address>
 <to-address>192.168.0.40</to-address>
 </host-range>
 </authorized-hosts>
 ...
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Use a Filter Class to Determine Authorization
A filter class determines whether to accept a particular host connection. Both extend client
connections and cluster member connections support using filter classes. A filter class must
implement the com.tangosol.util.Filter interface. The evaluate() method of the interface
is passed the java.net.InetAddress of the host. Implementations should return true to
accept the connection.

To enable a filter class, enter a fully qualified class name using the <class-name> element
within the <host-filter> element. Set initialization parameters using the <init-params>
element.

The following example configures a filter named MyFilter, which determines if a host
connection is allowed.

Chapter 2
Using Host-Based Authorization

2-5

<authorized-hosts>
 <host-address id="1">192.168.0.5</host-address>
 <host-address id="2">192.168.0.6</host-address>
 <host-range id="1">
 <from-address>192.168.0.10</from-address>
 <to-address>192.168.0.20</to-address>
 </host-range>
 <host-filter>
 <class-name>package.MyFilter</class-name>
 <init-params>
 <init-param>
 <param-name>sPolicy</param-name>
 <param-value>strict</param-value>
 </init-param>
 </init-params>
 </host-filter>
</authorized-hosts>

Managing Rogue Clients
You can use the suspect protocol to safeguard against rogue extend clients that operate
outside of acceptable limits. Rogue clients are slow-to-respond clients or abusive clients that
attempt to overuse a proxy— as is the case with denial of service attacks. In both cases, the
potential exists for a proxy to run out of memory and become unresponsive.
The suspect algorithm monitors client connections looking for abnormally slow or abusive
clients. When a rogue client connection is detected, the algorithm closes the connection to
protect the proxy server from running out of memory. The protocol works by monitoring both
the size (in bytes) and length (in messages) of the outgoing connection buffer backlog for a
client. Different levels determine when a client is suspect, when it returns to normal, or when it
is considered rogue.

Configure the suspect protocol within the <tcp-acceptor> element of a proxy scheme
definition. See tcp-acceptor in Developing Applications with Oracle Coherence. The suspect
protocol is enabled by default.

The following example demonstrates configuring the suspect protocol and is similar to the
default settings. When the outgoing connection buffer backlog for a client reaches 10 MB or
10000 messages, the client is considered suspect and is monitored. If the connection buffer
backlog for a client returns to 2 MB or 2000 messages, then the client is considered safe and
the client is no longer monitored. If the connection buffer backlog for a client reaches 95 MB or
60000 messages, then the client is considered unsafe and the proxy closes the connection.

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count>5</thread-count>
 <acceptor-config>
 <tcp-acceptor>
 ...
 <suspect-protocol-enabled>true</suspect-protocol-enabled>
 <suspect-buffer-size>10M</suspect-buffer-size>
 <suspect-buffer-length>10000</suspect-buffer-length>
 <nominal-buffer-size>2M</nominal-buffer-size>
 <nominal-buffer-length>2000</nominal-buffer-length>
 <limit-buffer-size>95M</limit-buffer-size>
 <limit-buffer-length>60000</limit-buffer-length>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Chapter 2
Managing Rogue Clients

2-6

3
Using an Access Controller

You can enable an access controller to help protect against unauthorized use of cluster
resources. The default access controller implementation is based on the key management
infrastructure that is part of the HotSpot JDK and uses Java Authentication and Authorization
Service (JAAS) for authentication.
This chapter includes the following sections:

• Overview of Using an Access Controller

• Using the Default Access Controller Implementation

• Using a Custom Access Controller Implementation

Overview of Using an Access Controller
Coherence includes an access controller that is used to secure access to cluster resources
and operations. A local login module is used to authenticate a caller, and an access controller
on one or more cluster nodes verifies the access rights of the caller. See LoginModule in Java
Authentication and Authorization Service (JAAS) Reference Guide.
An access controller:

• Grants or denies access to a protected clustered resource based on the caller's
permissions

• Encrypts outgoing communications based on the caller's private credentials

• Decrypts incoming communications based on the caller's public credentials

A default access controller implementation is provided. The implementation is based on the
key management infrastructure that ships as a standard part of the HotSpot JDK. See Using
the Default Access Controller Implementation.

Figure 3-1 shows a conceptual view of securing two cluster members using access controllers.

3-1

http://download.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html#LoginModule

Figure 3-1 Conceptual View of Access Controller Security

Junior Cluster Member Senior Cluster Member

Clustered
Service

Clustered
Service

Access
Controller

Access
Controller

Login Module PermissionsJKS JKS

Encrypt/
Decrypt

Understanding the Security Context

Each clustered service maintains the concept of a senior service member that serves as a
controlling agent for a particular service. The senior member does not consult with other
members when accessing a clustered resource. However, juniors member that want to join a
service must request and receive a confirmation from the senior member. The senior member
notifies all other cluster members about the joining member.

The security subsystem is designed to operate in a partially hostile environment because data
is distributed among cluster members. Every member is considered to be a malicious member.
That is, members are assumed to lack sufficient credentials to join a clustered service or obtain
access to a clustered resource.

File system mechanisms and standard Java security policies guarantee the trustworthiness of
a single node. However, there are two scenarios to consider with member communication:

• A malicious node surpasses the local access check and attempts to join a clustered
service or gain access to a clustered resource that a trusted node controls.

• A malicious node creates a clustered service or clustered resource and becomes its
controller.

The security subsystem uses a two-way encryption algorithm to prevent either of these two
scenarios from occurring. All client requests must establish proof of identity, and all service
responses must establish proof of trustworthiness.

Chapter 3
Overview of Using an Access Controller

3-2

Proof of Identity

The following client code sample authenticates a caller and performs necessary actions:

import com.tangosol.net.security.Security;
import java.security.PrivilegedAction;
import javax.security.auth.Subject;

...

Subject subject = Security.login(sName, acPassword);
PrivilegedAction action = new PrivilegedAction()
 {
 public Object run()
 {
 // all processing here is taking place with access
 // rights assigned to the corresponding Subject
 // for example:
 CacheFactory.getCache().put(key, value);
 ...
 }
 };
Security.runAs(subject, action);

The caller is authenticated using JAAS on the caller's node during the login call. If the
authentication is successful, the local access controller:

• Determines whether the local caller has sufficient rights to access the protected clustered
resource (local access check)

• Encrypts the outgoing communications regarding the access to the resource with the
caller's private credentials retrieved during the authentication phase

• Decrypts the result of the remote check using the requester's public credentials

• Verifies whether the responder has sufficient rights to be granted access

The encryption step provides proof of identity for the responder and blocks a malicious node
that pretends to pass the local access check phase.

There are two additional ways to provide the client authentication information. First, pass a
reference to a CallbackHandler class instead of the user name and password. Second, use a
previously authenticated Subject. The latter approach is ideal when a Java EE application
uses Oracle Coherence and retrieves an authenticated Subject from the application container.

If a caller's request does not include any authentication context, a CallbackHandler
implementation is instantiated and called. The implementation is declared in an operational
override file and retrieves the appropriate credentials. However, this lazy approach is much
less efficient, because without an externally defined call scope every access to a protected
clustered resource forces repetitive authentication calls.

Proof of Trustworthiness

Cluster members use explicit API calls to create clustered resources. The senior service
member retains the private credentials that are presented during a call as a proof of
trustworthiness. When the senior service member receives an access request to a protected
clustered resource, the local access controller:

• Decrypts the incoming communication using the remote caller's public credentials

• Encrypts the access check response using the private credentials of the service.

Chapter 3
Overview of Using an Access Controller

3-3

• Determines whether the remote caller has sufficient rights to access the protected
clustered resource (remote access check).

Using the Default Access Controller Implementation
Coherence includes a default access controller implementation that uses a standard Java
keystore for authentication. The implementation class is the
com.tangosol.net.security.DefaultController class. It is configured within the <security-
config> element in the operational deployment descriptor. See security-config in Developing
Applications with Oracle Coherence.
This section includes the following topics:

• Enable the Access Controller

• Create a Keystore

• Include the Login Module

• Create a Permissions File

• Create an Authentication Callback Handler

• Enable Security Audit Logs

Enable the Access Controller
To enable the default access controller implementation within the <security-config> element,
add an <enabled> element that is set to true. For example:

<security-config>
 <enabled system-property="coherence.security">true</enabled>
</security-config>

The coherence.security system property also enables the access controller. For example:

-Dcoherence.security=true

Note:

When access controller security is enabled, every call to the
CacheFactory.getCache() or ConfigurableCacheFactory.ensureCache() API
causes a security check. This negatively affects an application's performance if these
calls are made frequently. The best practice is for the application to hold on to the
cache reference and reuse it so that the security check is performed only on the initial
call. With this approach, ensure that your application only uses the references in an
authorized way.

Create a Keystore
An access controller requires a keystore that is used by both the controller and login module.
Create a keystore with necessary principals using the Java keytool utility. Ensure that the
keystore is found on the classpath at runtime, or use the coherence.security.keystore
system property to explicitly enter the name and location of the keystore. For example:

-Dcoherence.security.keystore=keystore.jks

Chapter 3
Using the Default Access Controller Implementation

3-4

The following example creates three principals: admin (to be used by the Java Security
framework), manager, and worker (to be used by Oracle Coherence).

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias admin
-keypass password -dname CN=Administrator,O=MyCompany,L=MyCity,ST=MyState

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias manager
-keypass password -dname CN=Manager,OU=MyUnit

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias worker
-keypass password -dname CN=Worker,OU=MyUnit

Include the Login Module
Oracle Coherence includes the COHERENCE_HOME/lib/security/coherence-login.jar Java
keystore (JKS) login module, which depends only on standard Java run-time classes. Place
the library in the JRE lib/ext (standard extension) directory. The name in the <login-module-
name> element, within the <security-config> element, serves as the application name in the
COHERENCE_HOME/lib/security/login.config login module file. The login module declaration
contains the path to the keystore. Change the keyStorePath variable to the location of the
keystore.

// LoginModule Configuration for Oracle Coherence
Coherence {
 com.tangosol.security.KeystoreLogin required
 keyStorePath="${user.dir}${/}security${/}keystore.jks";
};

Create a Permissions File
An access controller requires a permissions.xml file that declares access rights for principals.
See the COHERENCE_HOME/lib/security/permissions.xsd schema for the syntax of the
permissions file. Ensure that the file is found on the classpath at runtime, or use the
coherence.security.permissions system property to explicitly enter the name and location of
the permissions file. For example:

-Dcoherence.security.permissions=permissions.xml

The following example assigns all rights to the Manager principal, only join rights to the Worker
principal for caches that have names prefixed by common, and all rights to the Worker principal
for the invocation service named invocation.

<?xml version='1.0'?>
<permissions>
 <grant>
 <principal>
 <class>javax.security.auth.x500.X500Principal</class>
 <name>CN=Manager,OU=MyUnit</name>
 </principal>
 <permission>
 <target>*</target>
 <action>all</action>
 </permission>
 </grant>
 <grant>
 <principal>
 <class>javax.security.auth.x500.X500Principal</class>
 <name>CN=Worker,OU=MyUnit</name>
 </principal>

Chapter 3
Using the Default Access Controller Implementation

3-5

 <permission>
 <target>cache=common*</target>
 <action>join</action>
 </permission>
 <permission>
 <target>service=invocation</target>
 <action>all</action>
 </permission>
 </grant>
</permissions>

Create an Authentication Callback Handler
An access controller uses an authentication callback handler to authenticate a client when all
other authentication methods have been unsuccessful. To create a callback handler, implement
the javax.security.auth.callback.CallbackHandler interface.

Note:

the handler approach is much less efficient since without an externally defined call
scope every access to a protected clustered resource forces repetitive authentication
calls.

To configure a custom callback handler within the <security-config> element, add a
<callback-handler> element that includes the fully qualified name of the implementation
class. The following example configures a callback handler named MyCallbackHandler.

<security-config>
 <callback-handler>
 <class-name>package.MyCallbackHandler</class-name>
 </callback-handler>
</security-config>

Enable Security Audit Logs
Security audit logs are used to track the cluster operations that are being performed by each
user. Each operation results in a log message being emitted. For example:

"Destroy" action for cache "Accounts" has been permitted for the user "CN=Bob,
OU=Accounting".

Security audit logs are not enabled by default. To enable audit logs within the <security-
config> element, override the security log initialization parameter within the <access-
controller> element and set the parameter value to true. For example,

<security-config>
 <access-controller>
 <init-params>
 <init-param id="3">
 <param-type>boolean</param-type>
 <param-value system-property="coherence.security.log">
 true</param-value>
 </init-param>
 </init-params>
 </access-controller>
</security-config>

Chapter 3
Using the Default Access Controller Implementation

3-6

The coherence.security.log system property also enables security audit logs. For example:

-Dcoherence.security.log=true

Using a Custom Access Controller Implementation
You can create a custom access controller implementation if you have specific security
requirements that are not addressed by the default implementation. Custom access controllers
must implement the com.tangosol.net.security.AccessController interface.
To configure a custom access controller within the <security-config> element, add an
<access-controller> element that includes the fully qualified name of the implementation
class. The following example configures a custom access controller called
MyAccessController.

<security-config>
 <enabled system-property="coherence.security">true</enabled>
 <access-controller>
 <class-name>package.MyAccessController</class-name>
 </access-controller>
</security-config>

Specify any required initialization parameters by using the <init-params> element. The
following example includes parameters to pass the MyAccessController class a keystore and
a permissions file.

<security-config>
 <enabled system-property="coherence.security">true</enabled>
 <access-controller>
 <class-name>package.MyAccessController</class-name>
 <init-params>
 <init-param>
 <param-type>java.io.File</param-type>
 <param-value>./keystore.jks</param-value>
 </init-param>
 <init-param>
 <param-type>java.io.File</param-type>
 <param-value>./permissions.xml</param-value>
 </init-param>
 </init-params>
 </access-controller>
</security-config>

Chapter 3
Using a Custom Access Controller Implementation

3-7

4
Authorizing Access to Server-Side Operations

Coherence supports server-side authorization to ensure that only specific users can perform
certain operations. Authorization is often used together with authentication to provide
increased security assurances.
This chapter includes the following sections:

• Overview of Access Control Authorization

• Creating Access Control Authorization Implementations

• Declaring Access Control Authorization Implementations

• Enabling Access Control Authorization on a Partitioned Cache

Overview of Access Control Authorization
Access control authorization allows applications to define their own authorization logic to limit
access to cluster operations. Authorization is based on identities that are represented as a
Principal within a Subject.Applications are responsible for ensuring that the Subject is
present for caller threads. If the Subject is missing or cannot be retrieved, then the operation
fails with a SecurityException error.
Applications implement the StorageAccessAuthorizer interface to provide authorization logic.
The implementations are declared in the operational override configuration file and must also
be enabled on a partitioned cache by configuring the backing map of a distributed scheme in a
cache configuration file. Access control authorization is only available for partitioned caches.

The StorageAccessAuthorizer interface provides methods that are used to perform read,
write, read any, and write any authorization checks. Coherence assumes that there is a logical
consistency between authorization decisions made by StorageAccessAuthorizer
implementations. That is, for a given Subject, the write authorization implies the read
authorization for a given entry; the read any authorization implies read authorization for all
entries; and, the write any authorization implies write and read authorization for all entries.

Table 4-1 lists which authorization checks are caused by NamedCache API and BinaryEntry API
methods.

Table 4-1 Authorization Checks for Common Methods

Authorizatio
n Check

NamedCache API Methods BinaryEntry API Methods

None • containsKey
• containsValue
• isEmpty
• size
• lock
• unlock

4-1

Table 4-1 (Cont.) Authorization Checks for Common Methods

Authorizatio
n Check

NamedCache API Methods BinaryEntry API Methods

Read • get
• getAll

• getValue
• getBinaryValue
• extract
• getOriginalValue
• getOriginalBinaryValue

Write • invoke
• put
• putAll
• remove
• removeAll

• setValue
• update
• updtaeBinaryValue
• remove
• expire

Read Any • addMapListener1

• aggregate
• entrySet
• keySet
• removeMapListener1

Write Any • addIndex
• clear
• invokeAll
• removeIndex
• values

1 If a listener is a MapTriggerListener, then a Write Any authorization check is performed instead.

Creating Access Control Authorization Implementations
Access control authorization requires an authorizer implementation that contains user-defined
authorization logic.

To create access control authorization implementations, create a class that implements the
com.tangosol.net.security.StorageAccessAuthorizer interface. The implementation should
define which callers (based on the Subject) are authorized to access entries and backing map
contexts (BinaryEntry and BackingMapManagerContext, respectively).

Note:

The BinaryEntry and BackingMapManagerContext API provide the ability to retrieve
the cache name, the service name, and full access to the service and cluster
registries.

Example 4-1 Provides a sample StorageAccessAuthorizer implementation that emits a log
message for each authorization request. It is based on the AuditingAuthorizer class that is
provided with Coherence and used by the default access controller implementation.

Chapter 4
Creating Access Control Authorization Implementations

4-2

Example 4-1 Sample StorageAccessAuthorizer Implementation

package com.examples.security;

import com.tangosol.net.BackingMapContext;
import com.tangosol.net.CacheFactory;
import com.tangosol.net.security.StorageAccessAuthorizer;
import com.tangosol.util.BinaryEntry;

import javax.security.auth.Subject;

public class MyLogAuthorizer implements StorageAccessAuthorizer
{
 public MyLogAuthorizer()
 {
 this(false);
 }

 public MyLogAuthorizer(boolean fStrict)
 {
 f_fStrict = fStrict;
 }

 @Override
 public void checkRead(BinaryEntry entry, Subject subject, int nReason)
 {
 logEntryRequest(entry, subject, false, nReason);

 if (subject == null && f_fStrict)
 {
 throw new SecurityException("subject is not provided");
 }
 }

 @Override
 public void checkWrite(BinaryEntry entry, Subject subject, int nReason)
 {
 logEntryRequest(entry, subject, true, nReason);

 if (subject == null && f_fStrict)
 {
 throw new SecurityException("subject is not provided");
 }
 }

 @Override
 public void checkReadAny(BackingMapContext context, Subject subject,
 int nReason)
 {
 logMapRequest(context, subject, false, nReason);

 if (subject == null && f_fStrict)
 {
 throw new SecurityException("subject is not provided");
 }
 }

 @Override
 public void checkWriteAny(BackingMapContext context, Subject subject,
 int nReason)
 {
 logMapRequest(context, subject, true, nReason);

Chapter 4
Creating Access Control Authorization Implementations

4-3

 if (subject == null && f_fStrict)
 {
 throw new SecurityException("subject is not provided");
 }
 }

 protected void logEntryRequest(BinaryEntry entry, Subject subject,
 boolean fWrite, int nReason)
 {
 CacheFactory.log('"' + (fWrite ? "Write" : "Read")
 + "\" request for key=\""
 + entry.getKey()
 + (subject == null ?
 "\" from unidentified user" :
 "\" on behalf of " + subject.getPrincipals())
 + " caused by \"" + nReason + "\""
 , CacheFactory.LOG_INFO);
 }

 protected void logMapRequest(BackingMapContext context, Subject subject,
 boolean fWrite, int nReason)
 {
 CacheFactory.log('"' + (fWrite ? "Write-any" : "Read-any")
 + "\" request for cache \""
 + context.getCacheName() + '"'
 + (subject == null ?
 " from unidentified user" :
 " on behalf of " + subject.getPrincipals())
 + " caused by \"" + nReason + "\""
 , CacheFactory.LOG_INFO);
 }

 private final boolean f_fStrict;
 }

Declaring Access Control Authorization Implementations
Access control authorization implementations must be declared so that the class is loaded
when a cluster starts. Multiple authorization implementations can be created and are
referenced using a unique identification.
To declare access control authorizer implementations, edit the operational override file and
include a <storage-authorizers> element, within the <cluster-config> element, and declare
each authorization implementation using a <storage-authorizer> element. See storage-
authorizer in Developing Applications with Oracle Coherence. Each declaration must include a
unique id attribute that is used by a partitioned cache to select an implementation. For
example:

<cluster-config>
 <storage-authorizers>
 <storage-authorizer id="LogAuthorizer">
 <class-name>package.MyLogAuthorizer</class-name>
 </storage-authorizer>
 </storage-authorizers>
</cluster-config>

As an alternative, the <storage-authorizer> element supports the use of a <class-factory-
name> element to use a factory class that is responsible for creating instances and a <method-
name> element to specify the static factory method on the factory class that performs object
instantiation. For example:

Chapter 4
Declaring Access Control Authorization Implementations

4-4

<cluster-config>
 <storage-authorizers>
 <storage-authorizer id="LogAuthorizer">
 <class-factory-name>package.MyAuthorizerFactory</class-factory-name>
 <method-name>getAuthorizer</method-name>
 </storage-authorizer>
 </storage-authorizers>
</cluster-config>

Any initialization parameters that are required for an implementation can be specified using the
<init-params> element. For example:

<cluster-config>
 <storage-authorizers>
 <storage-authorizer id="LogAuthorizer">
 <class-name>package.MyLogAuthorizer</class-name>
 <init-params>
 <init-param>
 <param-name>f_fStrict</param-name>
 <param-value>true</param-value>
 </init-param>
 </init-params>
 </storage-authorizer>
 </storage-authorizers>
</cluster-config>

Enabling Access Control Authorization on a Partitioned Cache
A partition cache service must be configured to use an access control authorization
implementation. The implementation is enabled in the cache definition and is reference by
name.
To enable access control authorization on a partitioned cache, edit the cache configuration file
and add a <storage-authorizer> element, within the <backing-map-scheme> element of a
distributed scheme, whose value is the id attribute value of an authorization implementation
that is declared in the operational override file. For example:

<distributed-scheme>
 ...
 <backing-map-scheme>
 <storage-authorizer>LogAuthorizer</storage-authorizer>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

Chapter 4
Enabling Access Control Authorization on a Partitioned Cache

4-5

5
Securing Extend Client Connections

You can use identity tokens and interceptor classes to provide authentication and authorization
for Oracle Coherence*Extend clients. Identity tokens protect against unauthorized access to an
extend proxy. Interceptor classes control which operations are available to an authenticated
client.
This chapter includes the following sections:

• Using Identity Tokens to Restrict Client Connections

• Associating Identities with Extend Services

• Implementing Extend Client Authorization

Using Identity Tokens to Restrict Client Connections
Identity tokens are used to control which clients can access a cluster. The token is sent
between extend clients and extend proxies whenever a connection is attempted. Only extend
clients that pass a valid identity token are allowed to access the cluster.
This section includes the following topics:

• Overview of Using Identity Tokens

• Creating a Custom Identity Transformer

• Enabling a Custom Identity Transformer

• Creating a Custom Identity Asserter

• Enabling a Custom Identity Asserter

• Using Custom Security Types

• Understanding Custom Identity Token Interoperability

Overview of Using Identity Tokens
Identity token security uses an identity transformer implementation to create identity tokens
and an identity asserter implementation to validate identity tokens. These implementations are
described as follows:

• Identity transformer – a client-side component that converts a Subject, or Principal, into
an identity token that is passed to an extend proxy. An identity token can be any type of
object that is useful for identity validation; it is not required to be a well-known security
type. In addition, clients can connect to multiple proxy servers and authenticate to each
proxy server differently.

• Identity asserter – A cluster-side component that resides on the cache server that is
hosting an extend proxy service. The asserter validates an identity token that is created by
an identity transformer on the extend client. The asserter validates identity tokens unique
for each proxy service to support multiple means of token validation. The token is passed
when an extend client initiates a connection. If the validation fails, the connection is
refused and a security exception is thrown. The transformer and asserter are also invoked
when a new channel within an existing connection is created.

5-1

Figure 5-1 shows a conceptual view of restricting client access using identity tokens.

Figure 5-1 Conceptual View of Identity Tokens

Extend Client
(Java, C++,C#)

Cluster
Proxy

TCP
Initiator

Identity
Transformer

TCP
Acceptor

Authentication

Identity
Asserter

Validation

TCP

An identity transformer (DefaultIdentityTransformer) and identity asserter
(DefaultIdentityAsserter) are provided and enabled by default. The implementations simply
use the Subject (Java) or Principal (.NET) as the identity token. The default behavior is
overridden by providing custom identity transformer and identity asserter implementations and
enabling them in the operational override file.

Chapter 5
Using Identity Tokens to Restrict Client Connections

5-2

Note:

• At runtime, identity transformer implementation classes must be located on the
extend client's classpath and identity asserter implementation classes must be
located on the extend proxy server's classpath.

• You can use security object types other than the types that are predefined in
Portable Object Format (POF). See Using Custom Security Types.

Creating a Custom Identity Transformer
A default identity transformer implementation (DefaultIdentityTransformer) is provided that
simply returns a Subject or Principal that is passed to it. If you do not want to use the default
implementation, you can create your own custom transformer implementation.

Note:

At runtime, identity tokens are automatically serialized for known types and sent as
part of the extend connection request. For .NET and C++ clients, the type must be a
POF type. You can use security object types other than the predefined POF types.
See Using Custom Security Types.

For Java and C++, create a custom identity transformer by implementing the
IdentityTransformer interface. C# clients implement the IIdentityTransformer interface.

Example 5-1 demonstrates a Java implementation that restricts client access by requiring a
client to supply a password to access the proxy. The implementation gets a password from a
system property on the client and returns it as an identity token.

Example 5-1 A Sample Identity Transformer Implementation

import com.tangosol.net.security.IdentityTransformer;
import javax.security.auth.Subject;
import com.tangosol.net.Service;

public class PasswordIdentityTransformer
 implements IdentityTransformer
 {
 public Object transformIdentity(Subject subject, Service service)
 throws SecurityException
 {
 return System.getProperty("mySecretPassword");
 }
 }

One possible solution for preexisting client authentication implementations is to add a new
Principal to the Subject with the Principal name as the password. Add the password
Principal to the Subject during JAAS authentication by modifying an existing JAAS login
module or by adding an additional required login module that adds the password Principal.
The JAAS API allows multiple login modules, each of which modifies the Subject. Similarly,
in .NET, add a password identity to the Principal. The asserter on the cluster side then

Chapter 5
Using Identity Tokens to Restrict Client Connections

5-3

validates both the Principal and the password Principal. See Creating a Custom Identity
Asserter.

Enabling a Custom Identity Transformer
To enable a custom identity transformer implementation, edit the client-side tangosol-
coherence-override.xml file and add an <identity-transformer> element within the
<security-config> node. The element must include the full name of the implementation class.
For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-operational-config
 coherence-operational-config.xsd">
 <security-config>
 <identity-transformer>
 <class-name>com.my.PasswordIdentityTransformer</class-name>
 </identity-transformer>
 </security-config>
</coherence>

Creating a Custom Identity Asserter
A default identity asserter implementation (DefaultIdentityAsserter) is provided that asserts
that an identity token is a Subject or Principal. If you do not want to use the default
implementation, you can create your own custom asserter implementation.

For Java and C++, create an identity asserter by implementing the IdentityAsserter
interface. C# clients implement the IIdentityAsserter interface.

Example 5-2 is a Java implementation that checks a security token to ensure that a valid
password is given. In this case, the password is checked against a system property on the
cache server. This asserter implementation is specific to the identity transformer sample in
Example 5-1.

Example 5-2 A Sample Identity Asserter Implementation

import com.tangosol.net.security.IdentityAsserter;
import javax.security.auth.Subject;
import com.tangosol.net.Service;

public class PasswordIdentityAsserter
 implements IdentityAsserter
 {
 public Subject assertIdentity(Object oToken, Service service)
 throws SecurityException
 {
 if (oToken instanceof String)
 {
 if (((String) oToken).equals(System.getProperty("mySecretPassword")))
 {
 return null;
 }
 }
 throw new SecurityException("Access denied");
 }
 }

Chapter 5
Using Identity Tokens to Restrict Client Connections

5-4

There are many possible variations when you create an identity asserter. For example, you can
create an asserter that rejects connections based on a list of principals, that checks role
principals, or validates the signed principal name. The asserter blocks any connection attempts
that do not prove the correct identity.

Enabling a Custom Identity Asserter
To enable a custom identity asserter implementation, edit the cluster-side tangosol-
coherence-override.xml file and add an <identity-asserter> element within the <security-
config> node. The element must include the full name of the implementation class. For
example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-operational-config
 coherence-operational-config.xsd">
 <security-config>
 <identity-asserter>
 <class-name>com.my.PasswordIdentityAsserter</class-name>
 </identity-asserter>
 </security-config>
</coherence>

Using Custom Security Types
Security objects are automatically serialized and deserialized using Portable Object Format
(POF) when they are passed between extend clients and extend proxies. Security objects that
are predefined in POF require no configuration or programming changes. However, security
objects that are not predefined in POF (for example, when an application uses Kerberos
authentication) cause an error. For custom security types, an application must convert the
custom type or define the type in POF. There are two approaches for using unsupported types.

Converting the Type

The custom identity transformer implementation converts a custom security object type to a
type that is predefined for POF, such as a character array or string, before returning it as an
object token. On the proxy server, the custom identity asserter implementation converts the
object back (after validation) to a Subject.

For example, a subject may contain credentials that are not serialized. The identity transformer
implementation extracts the credential and converts it to a character array, returning that array
as the token. On the proxy server, the identity asserter converts the character array to the
proper credential type, validates it, and then constructs a Subject to return.

Defining the Custom Type in POF

You can define the custom security types in both the client's and the proxy's POF configuration
file. For detailed information about using POF with Java, see Using Portable Object Format in
Developing Applications with Oracle Coherence. For more information about using POF with
C++ and C#, see Building Integration Objects (C++) and Building Integration Objects (.NET),
respectively in Developing Remote Clients for Oracle Coherence.

Chapter 5
Using Identity Tokens to Restrict Client Connections

5-5

Understanding Custom Identity Token Interoperability
Solutions that use a custom identity token must always consider what tokens may be sent by
an extend client and what tokens may be received by an extend proxy. This is particularly
important during rolling upgrades and when a new custom identity token solution is
implemented.

Oracle Coherence Upgrades

Interoperability issues may occur during the process of upgrading. In this scenario, different
client versions may interoperate with different proxy server versions. Ensure that a custom
identity asserter can handle identity tokens sent by an extend client. Conversely, ensure that a
custom identity transformer sends a token that the extend proxy can handle.

Custom Identity Token Rollout

Interoperability issues may occur between extend clients and extend proxies during the roll out
a custom identity token solution. In this scenario, as extend proxies are migrated to use a
custom identity asserter, some proxies continue to use the default asserter until the rollout
operation is completed. Likewise, as extend clients are migrated to use a custom identity
transformer, clients continue to use the default transformer until the rollout operation is
completed. In both cases, the extend clients and extend proxies must be able to handle the
default token type until the rollout operation is complete.

One strategy for such a scenario is to have a custom identity asserter that accepts the default
token types temporarily as clients are updated. The identity asserter checks an external source
for a policy that indicates whether those tokens are accepted. After all clients have been
updated to use a custom token, change the policy to accept the custom tokens.

Associating Identities with Extend Services
Subject scoping allows remote cache and remote invocation service references that are
returned to a client to be associated with the identity from the current security context. By
default, subject scoping is disabled, which means that remote cache and remote invocation
service references are globally shared.
With subject scoping enabled, clients use their platform-specific authentication APIs to
establish a security context. A Subject or Principal is obtained from the current security
context whenever a client creates a NamedCache and InvocationService instance. All requests
are then made for the established Subject or Principal.

Note:

You can use security object types other than the types that are predefined in POF.
See Using Custom Security Types.

For example, if a user with a trader identity calls CacheFactory.getCache("trade-cache") and
a user with the manager identity calls CacheFactory.getCache("trade-cache"), each user
gets a different remote cache reference object. Because an identity is associated with that
remote cache reference, authorization decisions can be made based on the identity of the
caller. See Implementing Extend Client Authorization.

Chapter 5
Associating Identities with Extend Services

5-6

For Java and C++ clients, enable subject scope in the client-side tangosol-coherence-
override.xml file using the <subject-scope> element within the <security-config> node. For
example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-operational-config
 coherence-operational-config.xsd">
 <security-config>
 <subject-scope>true</subject-scope>
 </security-config>
</coherence>

For .NET clients, enable subject scope in the client-side tangosol-coherence-override.xml
file using the <principal-scope> element within the <security-config> node. For example:

<?xml version='1.0'?>

<coherence xmlns="http://schemas.tangosol.com/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/cache
 assembly://Coherence/Tangosol.Config/coherence.xsd">
 <security-config>
 <principal-scope>true</principal-scope>
 </security-config>
</coherence>

Implementing Extend Client Authorization
Oracle Coherence*Extend authorization controls which operations can be performed on a
cluster based on an extend client's access rights. Authorization logic is implementation-specific
and is enabled on a cluster proxy. The code samples in this section are based on the Java
authorization example, which is included in the examples that are delivered as part of the
distribution. The example demonstrates a basic authorization implementation that uses the
Principal obtained from a client request and a role-based policy to determine whether to allow
operations on the requested service. Download the examples for the complete implementation.
This section includes the following topics:

• Overview of Extend Client Authorization

• Create Authorization Interceptor Classes

• Enable Authorization Interceptor Classes

Overview of Extend Client Authorization
Interceptor classes provide the ability to implement client authorization. An extend proxy calls
the interceptor classes before a client accesses a proxied resource (cache, cache service, or
invocation service). Interceptor classes are implementation-specific. They must provide the
necessary authorization logic before passing the request to the proxied resources.

Figure 5-2 shows a conceptual view of extend client authorization.

Chapter 5
Implementing Extend Client Authorization

5-7

Figure 5-2 Conceptual View of Extend Client Authorization

Extend Client
(Java, C++,C#)

Cluster
Proxy

TCP
Initiator

TCP
Acceptor

Authentication Interceptor
Classes

Cluster
Resources

TCP

Create Authorization Interceptor Classes
To create interceptor classes for both a proxied cache service and a proxied invocation service,
implement the CacheService and InvocationService interfaces, respectively. Or, as is more
common, extend a set of wrapper classes: com.tangosol.net.WrapperCacheService (with
com.tangosol.net.cache.WrapperNamedCache) and
com.tangosol.net.WrapperInvocationService. The wrapper classes delegate to their
respective interfaces and provide a convenient way to create interceptor classes that apply
access control to the wrapped interface methods.

Example 5-3 is taken from the Oracle Coherence examples. The example demonstrates
creating an authorization interceptor class for a proxied invocation service by extending
WrapperInvocationService. It wraps all InvocationService methods on the proxy and applies
access controls based on the Subject passed from an extend client. The implementation

Chapter 5
Implementing Extend Client Authorization

5-8

allows only a Principal with a specified role name to access the InvocationService
methods.

Example 5-3 Extending the WrapperCacheService Class for Authorization

public class EntitledCacheService
 extends WrapperCacheService
 {
 public EntitledCacheService(CacheService service)
 {
 super(service);
 }

 public NamedCache ensureCache(String sName, ClassLoader loader)
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_READER);
 return new EntitledNamedCache(super.ensureCache(sName, loader));
 }

 public void releaseCache(NamedCache map)
 {
 if (map instanceof EntitledNamedCache)
 {
 EntitledNamedCache cache = (EntitledNamedCache) map;
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_READER);
 map = cache.getNamedCache();
 }
 super.releaseCache(map);
 }

 public void destroyCache(NamedCache map)
 {
 if (map instanceof EntitledNamedCache)
 {
 EntitledNamedCache cache = (EntitledNamedCache) map;
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_ADMIN);
 map = cache.getNamedCache();
 }
 super.destroyCache(map);
 }
}

Notice that the EntitledCacheService class requires a named cache implementation. The
WrapperNamedCache class is extended and wraps each method of the NamedCache instance.
This allows access controls to be applied to different cache operations.

Note:

Much of the functionality that is provided by the WrapperNamedCache class is also
covered by the StorageAccessAuthorizer interface, which provides a better and
simplified way to authorize cluster operations. See Authorizing Access to Server-Side
Operations .

Example 5-4 is a code excerpt taken from the Oracle Coherence examples. The example
demonstrates overriding the NamedCache methods and applying access checks before allowing
the method to be executed. See the examples for the complete class.

Chapter 5
Implementing Extend Client Authorization

5-9

Example 5-4 Extending the WrapperNamedCache Class for Authorization

public class EntitledNamedCache
 extends WrapperNamedCache
 {
 public EntitledNamedCache(NamedCache cache)
 {
 super(cache, cache.getCacheName());
 }

 public Object put(Object oKey, Object oValue, long cMillis)
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_WRITER);
 return super.put(oKey, oValue, cMillis);
 }

 public Object get(Object oKey)
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_READER);
 return super.get(oKey);
 }

 public void destroy()
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_ADMIN);
 super.destroy();
 }
...

Example 5-5 is taken from the Oracle Coherence examples. The example demonstrates
creating an authorization interceptor class for a proxied cache service by extending the
WrapperCacheService class. It wraps all CacheService methods on the proxy and applies
access controls based on the Subject passed from an extend client. The implementation
allows only a Principal with the specified role to access the CacheService methods

Example 5-5 Extending the WrapperInvocationService Class for Authorization

public class EntitledInvocationService
 extends WrapperInvocationService
 {
 public EntitledInvocationService(InvocationService service)
 {
 super(service);
 }

 public void execute(Invocable task, Set setMembers, InvocationObserver
 observer)
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_WRITER)
 super.execute(task, setMembers, observer);
 }

 public Map query(Invocable task, Set setMembers)
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_WRITER)
 return super.query(task, setMembers);
 }
}

When a client attempts to use a remote invocation service, the proxy calls the query() method
on the EntitledInvocationService class, rather than on the proxied InvocationService

Chapter 5
Implementing Extend Client Authorization

5-10

instance. The EntitledInvocationService class decides to allow or deny the call. If the call is
allowed, the proxy then calls the query() method on the proxied InvocationService instance.

Enable Authorization Interceptor Classes
To enable interceptor classes for a proxied cache service and a proxied invocation service, edit
a proxy scheme definition and add a <cache-service-proxy> element and <invocation-
service-proxy> element, respectively. Use the <class-name> element to enter the fully
qualified name of the interceptor class. Specify initialization parameters using the <init-
params> element. See cache-service-proxy and invocation-service-proxy in Developing
Applications with Oracle Coherence for detailed information about using these elements.

The following example demonstrates enabling interceptor classes for both a proxied cache
service and a proxied invocation service. The example uses the interceptor classes from
Example 5-3 and Example 5-5.

<proxy-scheme>
 ...
 <proxy-config>
 <cache-service-proxy>
 <class-name>
 com.tangosol.examples.security.EntitledCacheService
 </class-name>
 <init-params>
 <init-param>
 <param-type>com.tangosol.net.CacheService</param-type>
 <param-value>{service}</param-value>
 </init-param>
 </init-params>
 </cache-service-proxy>
 <invocation-service-proxy>
 <class-name>
 com.tangosol.examples.security.EntitledInvocationService
 </class-name>
 <init-params>
 <init-param>
 <param-type>com.tangosol.net.InvocationService</param-type>
 <param-value>{service}</param-value>
 </init-param>
 </init-params>
 </invocation-service-proxy>
</proxy-config>

Chapter 5
Implementing Extend Client Authorization

5-11

6
Using SSL/TLS to Secure Communication

Oracle Coherence supports using the Transport Layer Security (TLS) protocol to secure
communication between entities (typically clients and servers) over a network. TLS supersedes
the now deprecated Secure Sockets Layer (SSL) protocol.

In Coherence, TLS is configured using Socket Providers, which you can modify to meet your
specific security scenarios. Examples for these configuration options are provided throughout
this chapter.

Note:

Although the terms TLS, SSL, and SSL/TLS are used interchangeably throughout
Coherence documentation, it is expected and encouraged that you use a currently
supported version of TLS, not SSL, to secure communication in Coherence.

This chapter includes the following sections:

• Overview of SSL/TLS
SSL/TLS is a security protocol that secures communication between entities (typically,
clients and servers) over a network. SSL/TLS works by authenticating clients and servers
using digital certificates and by encrypting and decrypting communication using unique
keys that are associated with authenticated clients and servers.

• Coherence Socket Providers
Coherence communication is configured using Socket Providers. The <socket-providers>
section of the operational configuration file contains zero or more named <socket-
provider> elements.

• Resolving the Socket Provider URL
Some elements in a socket provider configuration are URLs. For example, the <url>
element within the <key-store> element.

• Using a Socket Provider in Configuration
You can configure various places in Coherence configuration files using <socket-
provider>. You can configure <socket-provider> in one of two ways: either a named
reference to a named socket provider in the operational configuration file, or as an in-line
socket-provider configuration.

• Using SSL to Secure Cluster Communication
In a Coherence cluster, all the cluster members communicate with each other over TCP in
a peer-to-peer network. Each JVM is both a server that receives connections from other
cluster members and a client that connects to other cluster members.

• Using SSL to Secure Extend and gRPC Client Communication
Oracle Coherence supports SSL to secure communication between Coherence Extend
and gRPC clients and a cluster side Extend or gRPC proxy.

• Configure a Default Socket Provider for a Cache Configuration File
You can configure a socket provider in the <defaults> section of the cache configuration
file. This socket provider will then apply to all the schemes in that configuration file that do

6-1

not specifically configure their own socket provider, such as any remote cache services,
remote invocation services, proxy services, gRPC services, and so on.

• Configuring a .NET Client-Side Stream Provider

• Securing the C++ Client with SSL/TLS
The Coherence C++ Extend Client does not officially support SSL/TLS. However, you can
use one of the following options to work around this limitation to run C++ extend clients
securely against an SSL/TLS enabled Coherence proxy server.

• Using SSL to Secure Federation Communication
Oracle Coherence supports using SSL to secure communication between cluster
participants in a federated cluster. Communication is secured between federated service
members and requires SSL to be configured on each cluster participant.

• Coherence PeerX509 Algorithm
Oracle Coherence includes a proprietary peer trust algorithm, PeerX509, which works by
assuming trust (and only trust) of the certificates that are in the trust manager keystore. It
also leverages the peer-to-peer protocol features of TCMP. Specifically, for the SSL
negotiation to succeed, the certificate received must be the same as one of the certificates
held by the trust manager .

• Specifying a Global Socket Provider
You can configure a global socket provider in the Coherence operational configuration file.
When set, every server or client socket that Coherence creates will use this configuration
unless it has been overridden with a specific socket provider of its own.

• Specifying Passwords in Socket Provider Configuration
Java keystores and private keys can be secured with credentials, typically a password.
The socket provider configuration provides several ways to specify a password. It is up to
the application developer to choose the most suitable approach based on the required
level of security versus simplicity of configuration.

• Controlling Cipher Suite and Protocol Version Usage

• Using Host Name Verification

• Configuring Client Authentication
You can use the <client-auth> element to specify whether a SSL/TLS socket provider
should use one-way or two-way SSL/TLS authentication.

• Using Private Key and Certificate Files

Overview of SSL/TLS
SSL/TLS is a security protocol that secures communication between entities (typically, clients
and servers) over a network. SSL/TLS works by authenticating clients and servers using digital
certificates and by encrypting and decrypting communication using unique keys that are
associated with authenticated clients and servers.

This section covers a brief description of SSL/TLS and some of the terms that will be used in
the rest of this chapter.

Establishing Identity

The identity of an entity is established by using a digital certificate and public and private
encryption keys. The digital certificate contains general information about the entity and
contains the public encryption key embedded within it.

In Coherence, identity is controlled by an identity manager, which corresponds to an identity
manager in a Java SSL context.

Chapter 6
Overview of SSL/TLS

6-2

Establishing Trust

A digital certificate is verified by a Certificate Authority (CA) and signed using the CA's digital
certificate. The CA's digital certificate establishes trust that the entity is authentic. When a
connection is made, the received certificate is verified against the CA certificate's configured
trust store or the JVM's default trust store.

In Coherence, trust is controlled by a trust manager configuration, which corresponds to a trust
manager in a Java SSL context.

Encrypting and Decrypting Data

The digital certificate for an entity contains a public encryption key that is paired with a private
encryption key. Certificates are passed between entities during an initial connection. Data is
then encrypted using the public key. Data that is encrypted using the entity public key can only
be decrypted using the entity private key. This ensures that only the entity that owns the public
encryption key can decrypt the data.

One-Way Authentication and Two-Way Authentication

SSL communication between clients and servers is set up using either one-way or two-way
authentication.

In one-way authentication, a server is required to identify itself to a client by sending its digital
certificate for authentication. The client is not required to send the server a digital certificate
and remains anonymous to the server.

In two-way authentication, both the client and the server must send their respective digital
certificates to each other for mutual authentication. Two-way authentication provides stronger
security by assuring that the identity on each side of the communication is known. Two-way
TLS is also called mutual TLS (mTLS).

Oracle Coherence supports both one-way and two-way SSL. Configuration depends on
various factors, such as whether this is for cluster membership, Extend or gRPC proxies, or
Extend or gRPC clients.

Certificates With Extended Usage

You can add a extended usage field to restrict the uses of a certificate. The extended usage is
typically one or more values. When securing Coherence communication, the extended usage
must include the correct usage, typically either serverAuth or clientAuth.

The values of extended usage will differ depending on the type of Coherence communication
and the specific SSL scenario. If an application only has access to certificates that are single
use (that is, only serverAuth or only clientAuth), then this restricts which available SSL
configurations can be used and whether mTLS or one-way TLS can be used.

The following list shows the extended usage required for certificates used to secure different
parts of Coherence.

• Cluster Membership using mTLS requires both serverAuth and clientAuth
• Cluster Membership using one-way SSL requires serverAuth
• Extend or gRPC proxies require serverAuth
• Extend or gRPC clients require clientAuth
• Federation using mTLS requires both serverAuth and clientAuth
• Federation using one-way SSL requires serverAuth

Chapter 6
Overview of SSL/TLS

6-3

• Management over REST HTTP endpoint requires serverAuth
• Metrics HTTP endpoint requires serverAuth
• Coherence REST HTTP proxies require serverAuth
Coherence has a custom trust protocol called PeerX509 which is similar to mTLS but does not
validate extended usage. Socket providers configured with this algorithm will work with any
extended usage certificate. See Coherence PeerX509 Algorithm.

Coherence Socket Providers
Coherence communication is configured using Socket Providers. The <socket-providers>
section of the operational configuration file contains zero or more named <socket-provider>
elements.

To name the <socket-providers> element, set its id attribute. For example, if you specify
<socket-providers id="ssl-config">, the socket provider configuration is named ssl-
config and it can then be referenced from other parts of the Coherence operational or cache
configuration files.

There are different types of socket providers in Coherence, and to use SSL, an <ssl> socket
provider needs to be configured. Depending on the required security scenario, there are
several XML elements that can be added to the <ssl> element. The most common are
<identity-manager> and <trust-manager>.

Example 6-1 shows a basic mTLS <ssl> socket provider that is configured with an <identity-
manager> keystore named server.jks that holds the private key and certificate to establish this
JVMs identity, and a <trust-manager> keystore named trust.jks that holds the CA certificate
to validate the certificates of client connections.

Example 6-1 Basic mTLS socket provider configuration

<socket-provider id="ssl-config">
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
</socket-provider>

Although Example 6-1 uses Java keystores, it is also possible to configure a socket provider to
directly use private key and certificate files as well as plug in custom providers that can obtain
keystores, keys or certificates from any location. See Using Private Key and Certificate Files.

Additionally, Example 6-1 does not configure any passwords for keystores or keys. Configuring
passwords is covered in Specifying Passwords in Socket Provider Configuration.

Chapter 6
Coherence Socket Providers

6-4

• Configuring the Identity Manager
Use the <identity-manager> section of a socket provider to configure the identity of the
socket. An identity manager requires a private key and a corresponding certificate. These
can be provided either in a Java keystore, or individually as separate key and certificate
files.

• Configuring a Trust Manager
When configuring a socket provider, a trust manager requires one or more CA certificates
to verify trust. These can be provided either in a Java keystore, or individually as separate
certificate files.

Configuring the Identity Manager
Use the <identity-manager> section of a socket provider to configure the identity of the
socket. An identity manager requires a private key and a corresponding certificate. These can
be provided either in a Java keystore, or individually as separate key and certificate files.

Note:

Some of the following examples include hard-coded password values. In production
environments, avoid using hard-coded passwords which are insecure. Coherence
provides several alternative ways to provide passwords. See Specifying Passwords
in Socket Provider Configuration.

Using a Java keystore

To use a Java keystore containing the key and certificate pair, configure the <key-store>
element inside the <identity-manager> element.

In Example 6-2, the <identity-manager> loads the key and certificate from a keystore file
named server.jks.

Example 6-2 <identity-manager> configuration

<identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
</identity-manager>

Password Protected keystores

If the keystore is password protected, then specify the password using one of the password
configuration options in the <key-store> element.

In Example 6-3, the configuration uses the <password> element in the <key-store> to set the
password as foo.

Example 6-3 <identity-manager> configuration whose keystore is password protected

<identity-manager>
 <key-store>
 <url>file:server.jks</url>
 <password>foo</password>

Chapter 6
Coherence Socket Providers

6-5

 </key-store>
</identity-manager>

Using Private Key and Certificate Files

To use key and certificate files directly, configure the <key> and <cert> elements inside the
<identity-manager> element.

In Example 6-4, the <identity-manager> loads the private key from a file named server.key
and the certificate from a file named server.cert.

Example 6-4 <identity-manager> configuration that loads private key and certificate
files

<identity-manager>
 <key>server.key</key>
 <cert>server.cert</cert>
</identity-manager>

Password Protected Private Keys

If the private key is encrypted and protected with a password, the credentials need to be
configured in the <identity-manager> configuration using one of the supported password
options.

In Example 6-5, the identity manager is configured to read the private key from a Java keystore
named server.jks. The private key is protected with a password foo, which is supplied using
the <password> element inside the <identity-manager> element.

Example 6-5 <identity-manager> configuration using password protected private keys

<identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 <password>foo</password>
</identity-manager>

Note:

When using Java keystores where both the keystore and private key require a
password, it is important to make sure that the two passwords are not confused in the
configuration. The keystore password is inside the <key-store> element. The private
key password is at the higher level inside the <identity-manager> element.

In Example 6-6, the identity manager is configured to read the private key from a file named
server.key. The private key is protected with a password foo. The password is supplied using
the <password> element inside the <identity-manager> element.

Example 6-6 <identity-manager> configuration using a private key

<identity-manager>
 <key>server.key</key>

Chapter 6
Coherence Socket Providers

6-6

 <cert>server.cert</cert>
 <password>foo</password>
</identity-manager>

Configuring a Trust Manager
When configuring a socket provider, a trust manager requires one or more CA certificates to
verify trust. These can be provided either in a Java keystore, or individually as separate
certificate files.

Note:

Some of the following examples use hard coded password values. In production
environments, avoid using hard coded passwords, which are insecure. Coherence
has several alternative ways to provide passwords. See Specifying Passwords in
Socket Provider Configuration.

Using a Java keystore

To use a Java keystore containing the CA certificates, configure the <key-store> element
inside the <trust-manager> element.

In Example 6-7, the <trust-manager> element loads the CA certificates from a keystore file
named trust.jks.

Example 6-7 <trust-manager> configuration

<identity-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
</identity-manager>

Password Protected keystores

If the keystore is password protected, then specify the password using one of the password
configuration options in the <key-store> element.

In Example 6-8, the configuration uses the <password> element in the <key-store> to set the
password as foo.

Example 6-8 <trust-manager> configuration whose keystore is password protected

<trust-manager>
 <key-store>
 <url>file:server.jks</url>
 <password>foo</password>
 </key-store>
</trust-manager>

Chapter 6
Coherence Socket Providers

6-7

Using Certificate Files

To use the certificate files directly, configure the <cert> elements inside the <trust-manager>
element. The <trust-manager> element can contain multiple <cert> elements.

In Example 6-9, the <trust-manager> loads the certificates from the files named ca-one.cert
and ca-two.cert.

Example 6-9 <trust-manager> configuration using certificate files

<trust-manager>
 <cert>ca-one.cert</cert>
 <cert>ca-two.cert</cert>
</trust-manager>

Resolving the Socket Provider URL
Some elements in a socket provider configuration are URLs. For example, the <url> element
within the <key-store> element.

The following is an explanation of how the values of these elements are processed to locate
the resources they refer to:

1. The value of the XML element is converted to a Java URI.

2. If the value is a valid URI and has a URI scheme, for example file: or http:, then it is
assumed to be a valid URI and Coherence will try to open a stream to this URI to read the
data.

3. If the value has no scheme, then Coherence treats it as a file on the file system or on the
class path. Coherence will first assume that the value is a file name (either fully qualified or
relative to the working directory) and try to locate that file. If this fails, Coherence will try to
find the same file as a resource on the class path.

Using a Socket Provider in Configuration
You can configure various places in Coherence configuration files using <socket-provider>.
You can configure <socket-provider> in one of two ways: either a named reference to a
named socket provider in the operational configuration file, or as an in-line socket-provider
configuration.

Example 6-10 demonstrates an Extend proxy service in a cache configuration file. The proxy
scheme is configured with a <socket-provider> element with a value of mtls which
references the socket provider named mtls in the operational configuration file.

Example 6-10 Extend proxy service that references mtls socket provider

<proxy-scheme>
 <scheme-name>proxy</scheme-name>
 <service-name>Proxy</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <socket-provider>mtls</socket-provider>
 </tcp-acceptor>

Chapter 6
Resolving the Socket Provider URL

6-8

 </acceptor-config>
</proxy-scheme>

Example 6-11 demonstrates an Extend proxy service in a cache configuration file. The proxy
scheme is configured with a <socket-provider> element containing the full socket provider
configuration.

Example 6-11 Extend proxy service with inline socket provider configuration

<proxy-scheme>
 <scheme-name>proxy</scheme-name>
 <service-name>Proxy</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <socket-provider>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </socket-provider>
 </tcp-acceptor>
 </acceptor-config>
</proxy-scheme>

• Configure a Socket Provider at Runtime
When using named socket providers configured in the operational configuration file, you
can change the socket provider used in a configuration at runtime based on Java system
properties.

Configure a Socket Provider at Runtime
When using named socket providers configured in the operational configuration file, you can
change the socket provider used in a configuration at runtime based on Java system
properties.

The optional system-property attribute of the <socket-provider> element specifies the name
of the system property used to obtain the socket provider name at runtime. This allows
flexibility to choose at runtime what sort of sockets are used. For example, developers can use
plain TCP in development testing, without worrying about creating keys and certificates. Then,
later in system testing and production, they can specify an SSL socket provider name.

Example 6-12 shows an Extend proxy service in a cache configuration file. The proxy scheme
is configured with a <socket-provider> element without a value but with a system-property
attribute set to proxy.socket.provider. By default, as the <socket-provider> element has no
value, no provider will be set and the proxy will use plain TCP sockets.

Chapter 6
Using a Socket Provider in Configuration

6-9

Example 6-12 Configuration for an Extend proxy service configured to use plain TCP
sockets

<proxy-scheme>
 <scheme-name>proxy</scheme-name>
 <service-name>Proxy</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <socket-provider system-property="proxy.socket.provider"/>
 </tcp-acceptor>
 </acceptor-config>
</proxy-scheme>

If the JVM is started with the system property set, then that property value will be used as the
socket provider name. For example, starting Coherence with -Dproxy.socket.provider=mtls
will use mtls as the socket provider name (assuming there is a socket provider named mtls
configured in the operational configuration file).

Example 6-13 shows an Extend proxy service in a cache configuration file. The proxy scheme
is configured with a <socket-provider> element with a value of mtls and with a system-
property attribute set to proxy.socket.provider. By default, the socket provider named mtls
from the operational configuration will be used. If the proxy.socket.provider system property
is set, then the property value will be used as the socket provider name.

Example 6-13 Configuration for an Extend proxy service configured to use a
referenced socket provider

<proxy-scheme>
 <scheme-name>proxy</scheme-name>
 <service-name>Proxy</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <socket-provider system-property="proxy.socket.provider">
 mtls
 </socket-provider>
 </tcp-acceptor>
 </acceptor-config>
</proxy-scheme>

Using SSL to Secure Cluster Communication
In a Coherence cluster, all the cluster members communicate with each other over TCP in a
peer-to-peer network. Each JVM is both a server that receives connections from other cluster
members and a client that connects to other cluster members.

In addition, it is important to realize that TCMP is a peer-to-peer protocol that generally runs in
trusted environments where many cluster nodes are expected to remain connected with each
other. SSL negotiation is performed once, when the connection is made, and then the
connection remains connected for the lifetime of the two cluster member JVMs involved. When
configuring SSL, carefully consider the implications on key and certificate administration and
on performance.

The socket provider used to control cluster traffic is configured by setting the <socket-
provider> element inside the <unicast-listener> element of the cluster configuration in the
operational configuration file.

Chapter 6
Using SSL to Secure Cluster Communication

6-10

In Example 6-14, the XML operational configuration file sets the unicast socket provider name
to ssl-config which is a reference to the socket provider named ssl-config in the <socket-
providers> section.

The actual socket provider configuration will depend on the security requirements of the
application.

Example 6-14 Configuration where clusters use a socket provider to configure
SSL/TLS

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
operational-config
 coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <socket-provider>ssl-config</socket-provider>
 </unicast-listener>

 <socket-providers>
 <socket-provider id=ssl-config">
 <ssl>
 <!-- Actual config omitted for brevity -->
 </ssl>
 </socket-provider>
 </socket-providers>
 </cluster-config>
</coherence>

• Cluster Communication Using mTLS
The most common and recommended configuration for using SSL to secure cluster
communication is mTLS (or two-way TLS). To configure an <ssl> socket provider for
mTLS, both identity and trust must be configured.

• Cluster Communication with One-Way SSL
You can configure one-way SSL for cluster members so that a cluster member will verify
trust of a server certificate that it receives when making a connection to another cluster
member. A cluster member will not verify trust for a member that connects to it.

Cluster Communication Using mTLS
The most common and recommended configuration for using SSL to secure cluster
communication is mTLS (or two-way TLS). To configure an <ssl> socket provider for mTLS,
both identity and trust must be configured.

In Example 6-15, the socket provider mtls-config is configured with an <identity-manager>
element containing a keystore named server.jks and a <trust-manager> element containing
a keystore named trust.jks. The <unicast-listener> <socket-provider> element is then
set to mtls-config to reference the SSL socket provider.

Chapter 6
Using SSL to Secure Cluster Communication

6-11

Example 6-15 Configuration for clusters communicating over mTLS

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
operational-config
 coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <socket-provider>mtls-config</socket-provider>
 </unicast-listener>

 <socket-providers>
 <socket-provider id=mtls-config">
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 </socket-providers>
 </cluster-config>
</coherence>

By default, when a <ssl> socket provider is configured with both identity and trust, Coherence
will create a Java SSL context that is configured for mTLS.

Note:

When using a certificate with extended usage set in this configuration, the extended
usage must include both serverAuth and clientAuth. The socket provider
configuration is used to configure a single Java SSL Context used by both the cluster
member's server sockets (used to receive connections from other cluster members)
and its client sockets (used to connect to other cluster members).

Cluster Communication with One-Way SSL
You can configure one-way SSL for cluster members so that a cluster member will verify trust
of a server certificate that it receives when making a connection to another cluster member. A
cluster member will not verify trust for a member that connects to it.

Chapter 6
Using SSL to Secure Cluster Communication

6-12

Only a single socket provider can be configured for the unicast listener, therefore the <ssl>
socket provider must be configured with both identity and trust, the same as with mTLS. To
specify one-way SSL, add a <client-auth> element and set its value ot none.

The <client-auth> element configures the corresponding setting in the Java SSL context
which determines whether the client must send a certificate. It has three possible values:

• none - the client does not send a certificate (even if configured with an identity key and
certificate)

If you want clusters to communicate over one-way SSL, then set <client-auth> to none.

• wanted - the client may send a certificate if it has one

• required - the client must send a certificate.

If you want clusters to communicate over mTLS, then set <client-auth> to required.

Example 6-16 shows the unicast listener configuration for one-way SSL.

Example 6-16 Unicast Listener Configuration for One-way SSL

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
operational-config
 coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <socket-provider>one-way-config</socket-provider>
 </unicast-listener>

 <socket-providers>
 <socket-provider id=one-way-config>
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
<!-- This element changes the configuration to one-way SSL -->
 <client-auth>none<client-auth>
 </ssl>
 </socket-provider>
 </socket-providers>
 </cluster-config>
</coherence>

Chapter 6
Using SSL to Secure Cluster Communication

6-13

Note:

When using a certificate with extended usage set in this configuration, the extended
usage must include serverAuth. In one-way SSL, only the server sends a certificate
to the client, so the certificate must be valid for use as a server certificate.

Using SSL to Secure Extend and gRPC Client Communication
Oracle Coherence supports SSL to secure communication between Coherence Extend and
gRPC clients and a cluster side Extend or gRPC proxy.

When SSL is used to secure communication between clients and proxies, it requires
configuration on both the client side and the cluster side. SSL is supported for both Java
and .NET Extend clients, but not for C++ Extend clients (without additional configuration as
described in Securing the C++ Client with SSL/TLS. SSL is supported for all types of gRPC
client.

Both mTLS and one-way SSL can be configured for clients and proxies.

• Configuring a Cluster-Side Extend Proxy SSL Socket Provider
You can configure SSL in the cluster-side cache configuration file by defining an SSL
socket provider for a proxy service.

• Configuring the Cluster-Side gRPC Proxy SSL Socket Provider
The Coherence gRPC Proxy is configured using an internal proxy cache configuration file.

• Configuring a Java Extend or gRPC Client SSL Socket Provider
You can configure SSL in the Extend or gRPC client cache configuration file by defining an
SSL socket provider for a remote scheme.

Configuring a Cluster-Side Extend Proxy SSL Socket Provider
You can configure SSL in the cluster-side cache configuration file by defining an SSL socket
provider for a proxy service.

There are two options for configuring an SSL socket provider depending on the level of
granularity that is required.

• Configure the socket provider by proxy service, where each proxy service defines an SSL
socket provider configuration or references a predefined configuration that is included in
the operational configuration file.

• Configure all proxy services to use the same SSL socket provider configuration by
configuring a socket provider in the cache configuration <defaults> section.

A proxy service that provides its own configuration overrides the configuration in the
<defaults> section. The socket provider configuration in the <defaults> section can reference
a named socket provider configuration that is included in the operational configuration file or be
a full in-line socket provider configuration.

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

6-14

Note:

When using a certificate with extended usage set in a cluster side proxy socket
provider configuration, the extended usage must include serverAuth. A proxy opens
server sockets to receive client connections so the certificate must be valid for server
use.

Configure an SSL Socket Provider per Extend Proxy Service

To configure an SSL socket provider for an Extend proxy service, add a <socket-provider>
element within the <tcp-acceptor> element of each <proxy-scheme> definition.

Example 6-17 demonstrates a proxy scheme that configures an SSL socket provider directly in
the proxy configuration in the cache configuration file.

Example 6-17 Configuration for an SSL/TLS socket provider per Extend proxy service

<proxy-scheme>
 <service-name>ProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <socket-provider>
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Example 6-18 demonstrates configuring the proxy in the cache configuration to reference a
named socket provider in the operational configuration file. In this case, the proxy will use the
socket provider named ssl-config.

Example 6-18 Configuration for a single SSL/TLS socket provider for all Extend proxy
services

<proxy-scheme>
 <service-name>ProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <socket-provider>ssl-config</socket-provider>
 </tcp-acceptor>
 </acceptor-config>

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

6-15

 <autostart>true</autostart>
</proxy-scheme>

Extend or gRPC Proxy with mTLS

A proxy can be configured for mTLS using a <ssl> socket provider configured with both identity
and trust.

Example 6-19 shows a socket provider configured for mTLS. By default, when a socket
provider has both identity and trust configured, it will configure the SSL context to use two-way
SSL.

Note:

If a proxy is configured for mTLS, then the client must also be configured for mTLS.

Example 6-19 Configuration for an Extend or gRPC Proxy using mTLS

<socket-provider id="mtls-config">
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
</socket-provider>

Extend or gRPC Proxy with One-Way SSL

A proxy can be configured for one-way SSL using a <ssl> socket provider configured with only
identity. In one-way SSL, the server sends a certificate to the client, which the client verifies
against its trust store. When configuring one-way SSL it is important to set the socket provider
configuration correctly, that is, the server only has <identity-manager> configured and the
client has a <trust-manager> configured.

Example 6-20 shows a cluster side proxy socket provider configured for one-way SSL.

Example 6-20 Configuration for an Extend or gRPC Proxy using one-way SSL/TLS

<socket-provider id="oneway-proxy-config">
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

6-16

 </ssl>
</socket-provider>

An alternative way to configure a cluster side proxy to use one-way SSL in a socket provider
configured with both <identity-manager> and <trust-manager> is to set the <client-auth>
element to none.

Example 6-21 shows a cluster side socket provider configured with both identity and trust
which would normally be mTLS, but with the <client-auth> element set to none will be one-
way and not require the client to send a certificate.

If a proxy is configured for one-way SSL, then the client may be configured with either an
mTLS or a one-way configuration. If the client is configured as two-way (that is, it has identity
and trust) it will still connect and verify the server certificate, but it will not send its own
certificate.

Example 6-21 Configuration for an Extend or gRPC Proxy using one-way SSL/TLS by
setting <client-auth> to none

<socket-provider id="one-way-config">
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 <!-- This element changes the configuration to one-way SSL -->
 <client-auth>none<client-auth>
 </ssl>
</socket-provider>

Configuring the Cluster-Side gRPC Proxy SSL Socket Provider
The Coherence gRPC Proxy is configured using an internal proxy cache configuration file.

To configure SSL for the gRPC proxy, configure a named socket provider in the operational
configuration file, then set the coherence.grpc.server.socketprovider system property (or
environment variable) to the name of that socket provider.

The Coherence operational configuration contains a special gRPC socket provider
configuration named grpc-insecure. This configures the default gRPC Java insecure
credentials for use by the proxy or client.

Configuring a Java Extend or gRPC Client SSL Socket Provider
You can configure SSL in the Extend or gRPC client cache configuration file by defining an
SSL socket provider for a remote scheme.

There are two options for configuring an SSL socket provider, depending on the level of
granularity that is required.

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

6-17

• Configure the socket provider per remote scheme, where each remote scheme defines an
SSL socket provider configuration or references a predefined configuration that is included
in the operational configuration file.

• Configure all remote schemes to use the same SSL socket provider configuration by
configuring a socket provider in the cache configuration <defaults> section.

A remote service that provides its own configuration overrides the configuration in the
<defaults> section. The socket provider configuration in the <defaults> section can reference
a named socket provider configuration that is included in the operational configuration file or be
a full in-line socket provider configuration.

Note:

• When using certificate with extended usage set in an Extend or gRPC client
socket provider configuration, the extended usage must include clientAuth.

• If the cluster side proxy is configured to use mTLS, then the client must also be
configured for mTLS. If the cluster side proxy is configured to use one-way SSL,
then the client may be configured as either one-way or mTLS. This is because it
is the server that determines whether a connection is two-way or one-way (that
is, whether the client should send its identity certificate).

Configure an SSL Socket Provider per Remote Service

To configure an SSL socket provider for an Extend remote service, add a <socket-provider>
element within the <tcp-initiator> element of a <remote-cache-scheme> definition or a
<remove-invocation-scheme>.

To configure an SSL socket provider for a gRPC remote service, add a <socket-provider>
element within the <grpc-channel> element of a <remote-grpc-cache-scheme> definition.

Example 6-22 demonstrates an Extend remote cache scheme that configures a socket
provider that uses SSL. This example configures both an identity keystore (server.jks) and a
trust keystore (trust.jks). This is typical of two-way SSL authentication, in which both the
client and proxy must exchange digital certificates and confirm each other's identity.

Example 6-22 Configuration for an SSL/TLS socket provider per remote scheme

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-
config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>remote-cache</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

6-18

 <scheme-name>remote-cache</scheme-name>
 <service-name>RemoteService</service-name>
 <initiator-config>
 <tcp-initiator>
 <socket-provider>
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 </tcp-initiator>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

Example 6-23 demonstrates a gRPC remote cache scheme that configures a socket provider
that uses SSL. This example configures both an identity keystore (server.jks) and a trust
keystore (trust.jks). This is typical of two-way SSL authentication, in which both the client
and proxy must exchange digital certificates and confirm each other's identity.

Example 6-23 Configuration for a gRPC remote cache scheme that configures a socket
provider to use SSL/TLS

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-
config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>remote-cache</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-grpc-cache-scheme>
 <scheme-name>remote-cache</scheme-name>
 <service-name>RemoteService</service-name>
 <grpc-channel>
 <socket-provider>
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

6-19

 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 </grpc-channel>
 </remote-grpc-cache-scheme>
 </caching-schemes>
</cache-config>

Example 6-24 configures remote schemes that references an SSL socket provider
configuration named ssl-client that is defined in the <socket-providers> element of the
operational configuration file.

Example 6-24 Configuration for a remote cache scheme that references a socket
provider

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-
config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>extend-*</cache-name>
 <scheme-name>remote-cache</scheme-name>
 </cache-mapping>

 <cache-mapping>
 <cache-name>grpc-*</cache-name>
 <scheme-name>grpc-cache</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>remote-cache</scheme-name>
 <service-name>RemoteCache</service-name>
 <initiator-config>
 <tcp-initiator>
 <socket-provider>ssl-client</socket-provider>
 </tcp-initiator>
 </remote-cache-scheme>

 <remote-grpc-cache-scheme>
 <scheme-name>grpc-cache</scheme-name>
 <service-name>RemoteGrpcCache</service-name>
 <grpc-channel>
 <socket-provider>ssl-client</socket-provider>
 </grpc-channel>

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

6-20

 </remote-grpc-cache-scheme>
 </caching-schemes>
</cache-config>

Extend or gRPC Client with mTLS

A client can be configured for mTLS using a <ssl> socket provider configured with both identity
and trust.

Example 6-25 shows a socket provider configured for mTLS. If the cluster side proxy is
configured to use mTLS the client certificate from the identity will be sent to the server. In both
two-way and one-way SSL, the CA certificates in the trust store will be used to verify the proxy
server identity.

Example 6-25 Configuration for an Extend or gRPC client with mTLS

<socket-provider id=mtls-config">
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
</socket-provider>

Extend or gRPC Client with One-Way SSL

A client can be configured for one-way SSL using a <ssl> socket provider configured with only
a trust store. The proxy server must also be configured for one-way SSL.

Example 6-26 shows a socket provider configured for one-way SSL. The CA certificates in the
trust store will be used to verify the identity of the server certificate.

Example 6-26 Configuration for an Extend or gRPC client with one-way SSL/TLS

<socket-provider id=one-way-config>
 <ssl>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
</socket-provider>

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

6-21

Configure a Default Socket Provider for a Cache Configuration
File

You can configure a socket provider in the <defaults> section of the cache configuration file.
This socket provider will then apply to all the schemes in that configuration file that do not
specifically configure their own socket provider, such as any remote cache services, remote
invocation services, proxy services, gRPC services, and so on.

In Example 6-27, the <defaults> section of the cache configuration file has a socket provider
that references a provider named mtls from the operational configuration file. The cache
configuration file contains three remote schemes, none of which have a socket provider
configured so they will all use the mtls socket provider.

Example 6-27 Configuration for referencing sockets providers in the <defaults>
section of cache configuration

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-
config
 coherence-cache-config.xsd">

 <defaults>
 <socket-provider>mtls</socket-provider>
 </defaults>

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>remote</scheme-name>
 </cache-mapping>

 <cache-mapping>
 <cache-name>grpc-cache</cache-name>
 <scheme-name>remote-grpc</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>remote</scheme-name>
 <service-name>RemoteService</service-name>
 </remote-cache-scheme>

 <remote-invocation-scheme>
 <scheme-name>invocation</scheme-name>
 <service-name>RemoteInvocation</service-name>
 </remote-invocation-scheme>

 <remote-grpc-cache-scheme>
 <scheme-name>remote-grpc</scheme-name>
 <service-name>RemoteGrpcCache</service-name>

Chapter 6
Configure a Default Socket Provider for a Cache Configuration File

6-22

 </remote-grpc-cache-scheme>
 </caching-schemes>
</cache-config>

In Example 6-28, the <defaults> section of the cache configuration file has a socket provider
that references a provider named mtls from the operational configuration file. The cache
configuration file contains three remote schemes: a remote cache scheme, a remote invocation
scheme, and a remote gRPC cache scheme. The remote cache scheme and the remote
invocation scheme do not specify a socket provider so they use the mtls socket provider.
However, the remote gRPC scheme does have a socket provider configured and so it
references a socket provider named one-way in the operational configuration file.

Example 6-28

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-
config
 coherence-cache-config.xsd"
 xml-override="{coherence.cacheconfig.override}">

 <defaults>
 <socket-provider>mtls-config</socket-provider>
 </defaults>

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>*</cache-name>
 <scheme-name>remote</scheme-name>
 </cache-mapping>

 <cache-mapping>
 <cache-name>grpc-cache</cache-name>
 <scheme-name>remote-grpc</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>remote</scheme-name>
 <service-name>RemoteService</service-name>
 </remote-cache-scheme>

 <remote-invocation-scheme>
 <scheme-name>invocation</scheme-name>
 <service-name>RemoteInvocation</service-name>
 </remote-invocation-scheme>

 <remote-grpc-cache-scheme>
 <scheme-name>remote-grpc</scheme-name>
 <service-name>RemoteGrpcCache</service-name>
 <grpc-channel>
 <socket-provider>one-way</socket-provider>
 </grpc-channel>

Chapter 6
Configure a Default Socket Provider for a Cache Configuration File

6-23

 </remote-grpc-cache-scheme>
 </caching-schemes>
</cache-config>

Configuring a .NET Client-Side Stream Provider
Configure SSL in the .NET client-side cache configuration file by defining an SSL stream
provider for remote services. The SSL stream provider is defined using the <stream-provider>
element within the <tcp-initiator> element.

Note:

Certificates are managed on Window servers at the operating system level using the
Certificate Manager. The sample configuration assumes that the Certificate Manager
includes the extend proxy's certificate and the trusted CA's certificate that signed the
proxy's certificate.

Example 6-29 demonstrates a remote cache scheme that configures an SSL stream provider.
Refer to the cache configuration XML schema (INSTALL_DIR\config\cache-config.xsd) for
details on the elements that are used to configure an SSL stream provider.

Note:

The <protocol> element support any allowed SslProtocols enumeration values as
well as a comma separated list of protocol values. For example:

<protocol>Tls11,Tls12</protocol>

Ensure the protocol is specified in both the client-side and server-side configuration.

Example 6-29 Sample .NET Client-Side SSL Configuration

<?xml version="1.0"?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/cache
 assembly://Coherence/Tangosol.Config/cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpSSLCacheService</service-name>
 <initiator-config>
 <tcp-initiator>

Chapter 6
Configuring a .NET Client-Side Stream Provider

6-24

 <stream-provider>
 <ssl>
 <protocol>Tls12</protocol>
 <local-certificates>
 <certificate>
 <url>C:\</url>
 <password>password</password>
 <flags>DefaultKeySet</flags>
 </certificate>
 </local-certificates>
 </ssl>
 </stream-provider>
 <remote-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>10s</connect-timeout>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

Securing the C++ Client with SSL/TLS
The Coherence C++ Extend Client does not officially support SSL/TLS. However, you can use
one of the following options to work around this limitation to run C++ extend clients securely
against an SSL/TLS enabled Coherence proxy server.

Secure the C++ client using a Load Balancer

You can configure a load balancer such as F5 to perform encryption on behalf of your C++
client and communicate with the SSL/TLS proxy servers behind the load balancer. Refer to the
documentation for the load balancer service for information on how to configure it to provide
data protection.

Secure C++ Client using SSH Tunneling

When SSH tunneling is enabled, the C++ client connects to a port on the local host that the
SSH client listens on. The SSH client then forwards the requests over its encrypted tunnel to
the server. The server connects to the SSL/TLS enabled Coherence proxy server - usually on
the same machine or in the same data center as the SSH server. You can easily find examples
on how to configure an SSH tunnel. Coherence proxy servers are behind the SSH server.

Secure C++ Client in a Cloud

If you are in a cloud environment, such as Oracle Cloud Infrastructure Container Engine for
Kubernetes (OKE), you can configure an NGINX container on the same pod as the C++ client
to serve as an SSL/TLS proxy to communicate with the Coherence SSL/TLS proxy server. You
can also use an Istio sidecar proxy or egress gateway to perform encryption on behalf of the
C++ client. Refer to the corresponding documentation for your cloud environment for
instructions on how to secure data to the upstream servers.

Chapter 6
Securing the C++ Client with SSL/TLS

6-25

Using SSL to Secure Federation Communication
Oracle Coherence supports using SSL to secure communication between cluster participants
in a federated cluster. Communication is secured between federated service members and
requires SSL to be configured on each cluster participant.

To use SSL to secure federation communication, you can configure the <socket-provider>
element in the <federated-scheme>.

The socket provider for federation is similar to the one used for the clusters unicast sockets,
that is, the socket provider configures both server and client sockets. This restricts the types of
configuration that are supported.

Example 6-30 shows a <federated-scheme> with a <socket-provider> configured within the
scheme definition.

Example 6-30 Configuration for using an inline <socket-provider> to configure
SSL/TLS between cluster participants in a federated cluster

<federated-scheme>
 <scheme-name>federated</scheme-name>
 <service-name>federated</service-name>
 <backing-map-scheme>
 <local-scheme />
 </backing-map-scheme>
 <autostart>true</autostart>
 <socket-provider>
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 <topologies>
 <topology>
 <name>MyTopology</name>
 </topology>
 </topologies>
</federated-scheme>

Example 6-31 shows a <federated-scheme> with a <socket-provider> that references a
socket provider named ssl-federation (which has been configured in the <socket-
providers> section of the operational configuration file).

Chapter 6
Using SSL to Secure Federation Communication

6-26

Example 6-31 Configuration for using a referenced <socket-provider> to configure
SSL/TLS between cluster participants in a federated cluster

<federated-scheme>
 <scheme-name>federated</scheme-name>
 <service-name>federated</service-name>
 <backing-map-scheme>
 <local-scheme />
 </backing-map-scheme>
 <autostart>true</autostart>
 <socket-provider>ssl-federation</socket-provider>
 <topologies>
 <topology>
 <name>MyTopology</name>
 </topology>
 </topologies>
</federated-scheme>

• Federation with mTLS
The most common and recommended configuration for using SSL to secure federation is
mTLS. To configure an <ssl> socket provider for mTLS, both identity and trust must be
configured.

• Federation with One-Way SSL
You can configure one-way SSL for federation participants so that a participant will verify
trust of a server certificate that it receives when making a connection to another
participants. A federation participant will not verify trust for a member that connects to it.

Federation with mTLS
The most common and recommended configuration for using SSL to secure federation is
mTLS. To configure an <ssl> socket provider for mTLS, both identity and trust must be
configured.

In Example 6-32, the socket provider is configured with an <identity-manager> element that
contains a keystore named server.jks, and a <trust-manager> element that contains a
keystore named trust.jks. By default, when a <ssl> socket provider is configured with both
identity and trust, Coherence will create a Java SSL context that is configured for mTLS.

Note:

When using certificate with extended usage set in this configuration, the extended
usage must include both serverAuth and clientAuth. The socket provider
configuration is used to configure a single Java SSL Context used by both the
federated scheme server sockets (used to receive connections from other federations
participants) and its client sockets (used to connect to other federations participants).

Example 6-32 Configuration for securing federated cluster communication over mTLS

<socket-provider>
 <ssl>
 <identity-manager>
 <key-store>

Chapter 6
Using SSL to Secure Federation Communication

6-27

 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
</socket-provider>

Federation with One-Way SSL
You can configure one-way SSL for federation participants so that a participant will verify trust
of a server certificate that it receives when making a connection to another participants. A
federation participant will not verify trust for a member that connects to it.

Only a single socket provider can be configured for the federated scheme, therefore, the <ssl>
socket provider must be configured with both identity and trust, the same as with the mTLS
example. To specify one-way SSL, add a <client-auth>element and set its value to none.

The <client-auth> element is used to configure the corresponding setting in the Java SSL
context which determines whether the client must send a certificate. When set to none the
client does not send a certificate (even if configured with an identity key and certificate).

Example 6-33 shows the federated scheme socket provider configuration for one-way SSL.

Note:

When using certificate with extended usage set in this configuration, the extended
usage must include serverAuth. In one-way SSL, only the server sends a certificate
to the client, so the certificate must be valid for use as a server certificate.

Example 6-33 Configuration for securing federated cluster communication over one-
way SSL/TLS

<socket-provider>
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
<!-- This element changes the configuration to one-way SSL -->
 <client-auth>none<client-auth>
 </ssl>
 </socket-provider>

Chapter 6
Using SSL to Secure Federation Communication

6-28

Coherence PeerX509 Algorithm
Oracle Coherence includes a proprietary peer trust algorithm, PeerX509, which works by
assuming trust (and only trust) of the certificates that are in the trust manager keystore. It also
leverages the peer-to-peer protocol features of TCMP. Specifically, for the SSL negotiation to
succeed, the certificate received must be the same as one of the certificates held by the trust
manager .

You can configure PeerX509 by setting the <algorithm> element in the <trust-manager>
element.

In Example 6-34, the trust manager uses the PeerX509 algorithm. Both the identity manager
and the trust manager are configured to use the same keystore. This is a common approach
for PeerX509 when used for to secure cluster membership, because all cluster members use
the same configuration, and the certificate sent by the client or server socket is guaranteed to
be in the trust store.

Note:

• PeerX509 is a Coherence proprietary algorithm and is not compliant with
standards such as Federal Information Processing Standards (FIPS). It may not
be usable in highly restricted environments.

• Trust is verified if the certificate received matches one of those in the trust store.
There is no checking of additional certificate data such as extended usages or if
the certificate is signed.

Example 6-34 Configuration where the trust manager uses the PeerX509 algorithm

<socket-provider>
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <algorithm>PeerX509</algorithm>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
</socket-provider>

Specifying a Global Socket Provider
You can configure a global socket provider in the Coherence operational configuration file.
When set, every server or client socket that Coherence creates will use this configuration
unless it has been overridden with a specific socket provider of its own.

Chapter 6
Coherence PeerX509 Algorithm

6-29

In the Coherence operational configuration file, within the <cluster-config> element, specify
a <global-socket-provider> element.

In Example 6-35, the operational configuration file configures a socket provider named mtls-
config that is configured for mTLS. The <global-socket-provider> element is then set to
mtls-config so that this socket provider will be used everywhere.

Example 6-35 Configuration for specifying a global socket provider

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
operational-config
 coherence-operational-config.xsd">
 <cluster-config>

 <global-socket-provider>mtls-config</global-socket-provider>

 <socket-providers>
 <socket-provider id=mtls-config">
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 </socket-providers>
 </cluster-config>
</coherence>

The default operational configuration file allows the global socket provider to be set using the
system property coherence.global.socketprovider (or the environment variable
COHERENCE_GLOBAL_SOCKET_PROVIDER).

In Example 6-36, the operational configuration configures a socket provider named mtls-
config for two-way SSL, but it does not set the global socket provider element.

Example 6-36 Configuration for a socket provider without a global socket provider

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
operational-config
 coherence-operational-config.xsd">
 <cluster-config>

Chapter 6
Specifying a Global Socket Provider

6-30

 <socket-providers>
 <socket-provider id=mtls-config">
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 </socket-providers>
 </cluster-config>
</coherence>

If Coherence is now started with the system property -
Dcoherence.global.socketprovider=mtls-config, then the mtls-config socket provider will
be used as the global socket provider.

Note:

The global socket provider will be used for all server and client sockets. Therefore,
the configured socket provider must be capable of being used for both server and
client sockets. Typically, this means you should configure the global socket provider
for mTLS, or for one-way SSL as described in Cluster Communication with One-Way
SSL.

Specifying Passwords in Socket Provider Configuration
Java keystores and private keys can be secured with credentials, typically a password. The
socket provider configuration provides several ways to specify a password. It is up to the
application developer to choose the most suitable approach based on the required level of
security versus simplicity of configuration.

• Specify Plain Text Passwords
You can specify a plain text password directly in the XML configuration using the
<password> element.

• Passwords From Java System Properties
You can use the Coherence configuration system property replacement feature to specify a
password using a system property. The <password> element has an optional system-
property attribute that specifies which Java system property to use to obtain the value for
the XML element.

• Reading Passwords From a URL
You can load a password from a URL, such as a file on the file system using the
<password-url element.

Chapter 6
Specifying Passwords in Socket Provider Configuration

6-31

• Custom Password Providers
A password provider allows you to get the SSL passwords from any source, including
those using encryption. Password providers implement the
com.tangosol.net.PasswordProviderinterface. The class has a get method that returns
a password as a Java char array.

Specify Plain Text Passwords
You can specify a plain text password directly in the XML configuration using the <password>
element.

Configuring a plain text password directly in the XML is the least secure way to specify
passwords, but it is simple to use and is often used in cases such as integration testing that
does not access production data. However, hardcoding a password is also inflexible; whenever
the password changes, you need to update the configuration file.

In Example 6-37, the <password> element specifies a plain text password for a key store in an
<identity-manager> element.

Example 6-37 Configuration with a plain text password

<identity-manager>
 <key-store>
 <url>file:server.jks</url>
 </key-store>
 <password>secret</password>
</identity-manager>

Passwords From Java System Properties
You can use the Coherence configuration system property replacement feature to specify a
password using a system property. The <password> element has an optional system-property
attribute that specifies which Java system property to use to obtain the value for the XML
element.

In Example 6-38, the <password> element is configured to read an encrypted private key. Its
system-property attribute is set to key.credentials, so at runtime, when the XML
configuration is parsed, the value of the <password> system property will be used as the
password.

Using system properties is more flexible than plain text, hardcoded passwords, but it is not
particularly secure. The passwords will be injected into the XML after it is loaded and stored in
the Coherence configuration classes in memory in plain text.

Example 6-38 Configuration for specifying a password using Java system properties

<identity-manager>
 <key>server.key</key>
 <cert>server.cert</cert>
 <password system-property=key.credentials/>
</identity-manager>

Chapter 6
Specifying Passwords in Socket Provider Configuration

6-32

Reading Passwords From a URL
You can load a password from a URL, such as a file on the file system using the <password-
url element.

Example 6-39 shows an SSL socket provider configuration that reads the keystore and private
key passwords from files on the file system.

• The identity manager's keystore password is read from /coherence/security/server-
pass.txtfile.

• The private key used by the identity manager is read from /coherence/security/key-
pass.txtfile.

• The keystore password used by the trust manager is read from the /coherence/security/
trust-pass.txtfile.

Although Example 6-39 uses files, you can use any valid URL that is readable, for example, a
simple HTTP URL to get the password from a web server.

Example 6-39 Configuration for retrieving passwords from a URL

<socket-provider>
 <ssl>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 <password-url>
 file:/coherence/security/server-pass.txt
 </password-url>
 </key-store>
 <password-url>
 file:/coherence/security/key-pass.txt
 </password-url>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 <password-url>
 file:/coherence/security/trust-pass.txt
 </password-url>
 </key-store>
 </trust-manager>
 </ssl>
</socket-provider>

Custom Password Providers
A password provider allows you to get the SSL passwords from any source, including those
using encryption. Password providers implement the
com.tangosol.net.PasswordProviderinterface. The class has a get method that returns a
password as a Java char array.

Example 6-40 shows a simple password provider implementation that supplies a password
char array. A real password provider would obtain the password from somewhere more secure
than a hardcoded char array.

Chapter 6
Specifying Passwords in Socket Provider Configuration

6-33

Example 6-40 Custom password provider implementation using a password char array

package com.example.security;

import com.tangosol.net.PasswordProvider;

public class GetPassword implements PasswordProvider {

 public GetPassword() {
 }

 @Override
 public char[] get()
 {
 return new char[]{'s', 'e', 'c', 'r', 'e', 't'};
 }
 }

You can specify custom password providers in a socket provider configuration using the
<password-provider> element. Either provide the full configuration inside the <password-
provider> element, or set the value of the <password-provider> element to the name of a
password provider that is configured in the <password-providers> section of the operational
configuration file.

Example 6-41 uses the password provider in Example 6-40 to obtain the password for a
private key in an identity manager configuration.

Example 6-41 Configuration for using a custom password provider to retrieve a
password

<socket-provider>
 <ssl>
 <identity-manager>
 <key>server.key</key>
 <cert>server.cert</cert>
 <password-provider>
 <class-name>com.example.security.GetPassword</class-name>
 </password-provider>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
</socket-provider>

Named Password Provider References

If a common password provider configuration will be used multiple times, it is simpler to
provide the configuration once in the <password-providers> section of the operational
configuration file and then reference the named provider from the socket provider
configuration.

Example 6-42 shows a password provider specified in the <password-providers> section of
the operational configuration file. The password provider has a name of MyPasswordProvider.

Chapter 6
Specifying Passwords in Socket Provider Configuration

6-34

The named password provider can now be referenced from a socket provider.

Example 6-42 Configuration for naming a password provider for reference from a
socket provider

<?xml version='1.0'?>
<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
operational-config
 coherence-operational-config.xsd">
 <cluster-config>
 <password-providers>
 <password-provider id="MyPasswordProvider">
 <class-name>com.example.security.GetPassword</class-name>
 </password-provider>
 <password-providers>
 </cluster-config>
</coherence>

In Example 6-43, the socket provider uses MyPasswordProvider to provide the credentials for
an encrypted private key file.

This can provide a flexible method of providing passwords. The socket provider configuration
refers to a named password provider, rather than a hardcoded value. At runtime, different
operational configuration files can be used to provide different configurations or
implementations of that named provider.

Example 6-43 Configuration for a socket provider that uses a custom password
provider to provide credentials

<socket-provider>
 <ssl>
 <identity-manager>
 <key>server.key</key>
 <cert>server.cert</cert>
 <password-provider>
 <name>MyPasswordProvider</name>
 </password-provider>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
</socket-provider>

Parameterized Password Providers

A PasswordProvider implementation can be parameterized using constructor arguments or
using a static factory method with arguments.

In Example 6-44, the simple PasswordProvider has a constructor with a single int parameter.
The value of the parameter determines the password returned. A real password provider would
obtain the password from somewhere more secure than a hardcoded char array.

Chapter 6
Specifying Passwords in Socket Provider Configuration

6-35

The password provider can be defined in the <password-providers> section of the operational
configuration file.

Example 6-44 Parameterized password provider implementation for retrieving a
password

package com.oracle.coherence.examples;

import com.tangosol.net.PasswordProvider;

public class GetPassword implements PasswordProvider {

 private final int param;

 public GetPassword(int param) {
 this.param = param;
 }

 @Override
 public char[] get()
 {
 if (param == 0) {
 return new char[]{'s', 'e', 'c', 'r', 'e', 't'};
 }
 return new char[]{'p', 'a', 's', 's', 'w', 'o', 'r', 'd'};
 }
}

In Example 6-45, the password provider in Example 6-44 is configured with a name of
MyPasswordProvider. The <init-params> element is used to specify the constructor
parameters. In this case, a single int parameter named password-id with a value of 0 (zero).

The named password provider can now be referenced from a socket provider.

Example 6-45 Configuration for specifying constructor parameters

<?xml version='1.0'?>
<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
operational-config
 coherence-operational-config.xsd">
 <cluster-config>
 <password-providers>
 <password-provider id="MyPasswordProvider">
 <class-name>com.example.security.GetPassword</class-name>
 <init-params>
 <init-param>
 <param-name>password-id</param-type>
 <param-value>0</param-value>
 </init-param>
 </init-params>
 </password-provider>
 <password-providers>
 </cluster-config>
</coherence>

Chapter 6
Specifying Passwords in Socket Provider Configuration

6-36

In Example 6-46, the socket provider uses MyPasswordProvider to provide the credentials for
an encrypted private key file. In this case, the password provider is configured with a
parameter of 0 (zero), so an int value of 0 will be passed to the constructor.

Example 6-46 Configuration for using a parameterized password provider to retrieve a
password

<socket-provider>
 <ssl>
 <identity-manager>
 <key>server.key</key>
 <cert>server.cert</cert>
 <password-provider>
 <name>MyPasswordProvider</name>
 </password-provider>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
</socket-provider>

In Example 6-47, MyPasswordProvider is used again but this time the password-id parameter
is overridden to be a 1, so an int value of 1 will be passed to the password provider
constructor.

Example 6-47 Configuration for using a parameterized password provider to retrieve a
password with an inline parameter override

<socket-provider>
 <ssl>
 <identity-manager>
 <key>server.key</key>
 <cert>server.cert</cert>
 <password-provider>
 <name>MyPasswordProvider</name>
 <init-params>
 <init-param>
 <param-name>password-id</param-name>
 <param-value>1</param-value>
 </init-param>
 </init-params>
 </password-provider>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 </key-store>
 </trust-manager>
 </ssl>
</socket-provider>

Chapter 6
Specifying Passwords in Socket Provider Configuration

6-37

Controlling Cipher Suite and Protocol Version Usage
An SSL socket provider can be configured to control the use of potentially weak ciphers or
specific protocol versions. To control cipher suite and protocol version usage, edit the SSL
socket provider definition and include the <cipher-suites> element and the <protocol-
versions> elements, respectively, and enter a list of cipher suites and protocol versions using
the name element. Include the usage attribute to specify whether the cipher suites and protocol
versions are allowed (value of white-list) or disallowed (value of black-list). The default
value for the usage attribute if no value is specified is white-list.
For example:

<socket-provider>
 <ssl>
 ...
 <cipher-suites usage="black-list">
 <name>TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256</name>
 </cipher-suites>
 <protocol-versions usage="black-list">
 <name>SSLv3</name>
 </protocol-versions>
 ...
 </ssl>
</socket-provider>

Using Host Name Verification
Learn how to configure host name verification in Oracle Coherence. A host name verifier
ensures that the host name in the URL to which the client connects matches the host name in
the digital certificate that the server sends back as part of the SSL connection.
A host name verifier is useful when an SSL client (for example, Coherence acting as an SSL
client) connects to a cache server on a remote host. It helps to prevent man-in-the-middle
attacks.

Coherence includes a default host name verifier, and provides the ability to create and use a
custom host name verifier.

This section includes the following topics:

• Using the Default Coherence Host Name Verifier
If you are using the default Coherence host name verifier, the host name verification
passes if the host name in the certificate matches the host name to which the client tries to
connect.

• Using a Custom Host Name Verifier
When using a custom host name verifier, the class that implements the custom host name
verifier must be specified in the CLASSPATH of Coherence (when acting as an SSL client)
or a standalone SSL client.

Using the Default Coherence Host Name Verifier
If you are using the default Coherence host name verifier, the host name verification passes if
the host name in the certificate matches the host name to which the client tries to connect.

The default host name verifier verifies host name in two phases:

• Verification with wildcarding.

Chapter 6
Controlling Cipher Suite and Protocol Version Usage

6-38

• Verification without wildcarding, if verification with wildcarding fails.

By default, the host name verifier is not enabled for backward compatibility. However, it is
enabled in the secured production mode by default. To enable or disable the default host name
verifier, see the description for the <hostname-verifier> element in ssl.

Verification with Wildcarding

If the the host name in the server certificate of the SSL session supports wildcarding, the
CommonName attribute must meet the following criteria:

• Have at least two dot ('.') characters.

• Must start with "*."

• Have only one "*" character.

In addition, the non-wildcarded portion of the CommonName attribute must equal the domain
portion of the urlhostname parameter in a case-sensitive string comparison. The domain
portion of urlhostname string is the urlhostname substring that remains after the
hostname substring is removed. The hostname portion of urlhostname is the substring up
to and excluding the first '.' (dot) of the urlhostname parameter string.

For example:

urlhostname: mymachine.oracle.com
CommonName: *.oracle.com
.oracle.com will compare successfully with .oracle.com.

urlhostname: mymachine.uk.oracle.com
CommonName: *.oracle.com
.uk.oracle.com will not compare successfully with .oracle.com

DNSNames obtained from the server certificate's SubjectAlternativeNames extension may be
wildcarded.

Verification without Wildcarding

If wildcarded host name verification fails, the default host name verifier performs non-
wildcarded verification. It verifies the CommonName attribute of the server certificate's
SubjectDN or the DNSNames of the server certificate's SubjectAlternativeNames extension
against the host name in the client URL (urlhostname). The certificate attribute must
match the urlhostname (not case sensitive) parameter. The SubjectDN CommonName
attribute is verified first, and if successful, the SubjectAlternativeNames attributes are not
verified.

If the server certificate does not have a SubjectDN, or the SubjectDN does not have a
CommonName attribute, then the SubjectAlternativeName attributes of type DNSNames are
compared to the urlhostname parameter. The verification passes upon the first successful
comparison to a DNSName. For a successful verification, the urlhostname must be equal to
the certificate attribute being compared.

If urlhostname is localhost, you can set the coherence.security.ssl.allowLocalhost
system property to true to enable 127.0.0.1, or the default IP address of the local machine to
pass.

Chapter 6
Using Host Name Verification

6-39

Using a Custom Host Name Verifier
When using a custom host name verifier, the class that implements the custom host name
verifier must be specified in the CLASSPATH of Coherence (when acting as an SSL client) or a
standalone SSL client.

For more information about using a custom host name verifier, see the description for the
<hostname-verifier> element in ssl.

Configuring Client Authentication
You can use the <client-auth> element to specify whether a SSL/TLS socket provider should
use one-way or two-way SSL/TLS authentication.

To apply <client-auth>, you must configure a socket provider with both an <identity-
manager> and a <trust-manager> element in its XML configuration. If no <trust-manager> is
configured, then only one-way authentication can be used. When a <trust-manager> is
configured, Coherence will default to using two-way authentication.

<client-auth> is an enumeration with three valid values.

Value Description

none The socket provider does not request an authentication certificate
from the client.

wanted The socket provider requests an authentication certificate from the
client, but the client is not required to send one.
Corresponds to the want client auth setting in the Java
SSL/TLS engine created by Coherence to manage SSL/TLS
sockets.

required The socket provider requires that the client send an authentication
certificate.
Corresponds to the need client auth setting in the Java
SSL/TLS engine created by Coherence to manage SSL/TLS
sockets.

Example 6-48 Sample One-Way SSL/TLS Authentication

The <client-auth> element is set to none so Coherence uses one-way SSL/TLS
authentication, even though a trust manager has been configured.

In this case, on the SSL/TLS Engine, both want client auth and need client auth would be
set to false .

...
<cluster-config>
 <socket-providers>
 <socket-provider id="mySSLConfig">
 <ssl>
 <protocol>TLS</protocol>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 <password>password</password>
 </key-store>

Chapter 6
Configuring Client Authentication

6-40

 <password>password</password>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 <password>password</password>
 </key-store>
 </trust-manager>
 <client-auth>none</client-auth>
 </ssl>
 </socket-provider>
 </socket-providers>
</cluster-config>

Example 6-49 Sample Optional Client Auth

The <client-auth> element is set to wanted so the client may send a certificate but is not
required to.

In this case, on the SSL/TLS Engine, want client auth would be set to true and need
client auth would be set to false .

...
<cluster-config>
 <socket-providers>
 <socket-provider id="mySSLConfig">
 <ssl>
 <protocol>TLS</protocol>
 <identity-manager>
 <key-store>
 <url>file:server.jks</url>
 <password>password</password>
 </key-store>
 <password>password</password>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 <password>password</password>
 </key-store>
 </trust-manager>
 <client-auth>wanted</client-auth>
 </ssl>
 </socket-provider>
 </socket-providers>
</cluster-config>

Using Private Key and Certificate Files
Coherence also supports using private key and certificate files directly, instead of loading them
into a keystore. The examples in Specifying Passwords in Socket Provider Configuration used
Java keystore files to store the private key and certificates used to establish trust and identity
in Coherence SSL.

Chapter 6
Using Private Key and Certificate Files

6-41

Note:

Out of the box, Coherence only supports file formats supported by the JDK. These
are private key files in PEM format (that is, a file with a header of -----BEGIN RSA
PRIVATE KEY----- or -----BEGIN ENCRYPTED PRIVATE KEY-----) and X509
certificate files (that is, a file with a header of -----BEGIN CERTIFICATE-----).

• Configuring an Identity Manager

• Configuring a Trust Manager

Configuring an Identity Manager
When configuring an <identity-manager> element of a socket provider, instead of the
<keystore> element, the <key> and <cert> elements can be used to supply the private key a
certificate file locations. The value for both the <key> and <cert> element is a URL from which
to load the key or certificate data.

Example 6-50 shows an <identity-manager> configuration that uses a private key loaded
from the /coherence/security/client.pem file and a certificate loaded from the /
coherence/security/client.cert file.

Example 6-50 Sample Identity Manager Using a Private Key and a Certificate File

<socket-provider>
 <ssl>
 <identity-manager>
 <key>file:/coherence/security/client.pem</key>
 <cert>file:/coherence/security/client.cert</cert>
 </identity-manager>
 </ssl>
</socket-provider>

When configuring an <identity-manager> element, the <keystore> element, and the <key>
and <cert> elements are mutually exclusive; either configure a keystore, or a key and
certificate. The Coherence operational configuration XSD validation does not allow both.

Configuring a Trust Manager
When configuring a <trust-manager> element of a socket provider, instead of the <keystore>
element, one or more <cert> elements can be used to supply the certificate file locations. The
value for the <cert> element is a URL from which to load the certificate data.

Example 6-51 shows a <trust-manager> configuration that uses a certificate loaded from the /
coherence/security/server-ca.cert file.

Example 6-51 Sample Trust Manager Using a Certificate File

<socket-provider>
 <ssl>
 <trust-manager>
 <cert>file:/coherence/security/server-ca.cert</cert>
 </trust-manager>

Chapter 6
Using Private Key and Certificate Files

6-42

 </ssl>
</socket-provider>

When configuring a <trust-manager> element, the <keystore> element and the <cert>
elements are mutually exclusive; either configure a keystore, or one or more certificates. The
Coherence operational configuration XSD validation does not allow both.

Chapter 6
Using Private Key and Certificate Files

6-43

7
Securing Oracle Coherence in Oracle
WebLogic Server

Authentication and authorization can be used to secure Coherence in an Oracle WebLogic
Server domain.

This chapter includes the following sections:

• Overview of Securing Oracle Coherence in Oracle WebLogic Server

• Securing Coherence using SSL/TLS
You can use SSL/TLS to secure Managed Coherence servers in a WebLogic Server
domain. WebLogic Server will create Java keystores for identity and trust and create a
Coherence socket provider configuration that Coherence will be configured to use.

• Securing Oracle Coherence Cluster Membership

• Authorizing Oracle Coherence Caches and Services

• Securing Extend Client Access with Identity Tokens

Overview of Securing Oracle Coherence in Oracle WebLogic
Server

Several security features are used to secure cluster members, caches and services, and
extend clients when deploying Coherence within an Oracle WebLogic Server domain. The
default security configuration allows any server to join a cluster and any extend client to access
a cluster's resources.
The following security features should be configured to protect against unauthorized use of a
cluster:

• SSL/TLS - enables SSL/TLS for Coherence cluster member connections

• Coherence access controllers - provides authorization between cluster members

• WebLogic Server authorization - provides authorization to Oracle Coherence caches and
services

• Coherence identity tokens - provides authentication for extend clients

Much of the security for Oracle Coherence in a Oracle WebLogic Server domain reuses
existing security capabilities. Knowledge of these existing security components is assumed.
References are provided in this documentation to existing content where applicable.

Securing Coherence using SSL/TLS
You can use SSL/TLS to secure Managed Coherence servers in a WebLogic Server domain.
WebLogic Server will create Java keystores for identity and trust and create a Coherence
socket provider configuration that Coherence will be configured to use.

By default, WebLogic Server will configure managed Coherence servers to use mTLS
authentication, but these settings can be overridden.

7-1

You can only use WebLogic Server to configure SSL/TLS for cluster membership, or globally
for all Coherence sockets. There is no way to configure individual Coherence services, such as
Extend proxies and client, gRPC proxies and client, federation, and so on. If you need to
configure these services differently, see Using SSL/TLS to Secure Communication .

• Extended Usage Certificates
If certificates with extended usage are used, it is important to understand how this affects
the different SSL/TLS configuration choices available for Coherence.

• Configure Coherence Cluster Traffic Using mTLS
Coherence clusters form a peer-to-peer network where each JVM is both a server
receiving connections from other cluster members, and a client connecting to other cluster
members. You can configure Coherence cluster peer-to-peer communication to use
SSL/TLS in a WebLogic Server domain using either WebLogic Remote Console or a
WLST script.

• Configure Coherence Cluster Traffic Using One-Way SSL/TLS
In one-way SSL/TLS, a client authenticates a server certificate, but the server does not
receive a certificate from the client, so the client is anonymous. You can configure
Coherence cluster traffic to use one-way SSL/TLS in a WebLogic Server domain using
either WebLogic Remote Console or a WLST script.

• Using a Custom Coherence Operational Configuration File
As WebLogic Server only supports a limited subset of Coherence configuration options,
occasionally, you may require a custom Coherence operational configuration file (also
known as an override file).

• Configure the Coherence Global Socket Provider
WebLogic Server allows you to configure the Coherence global socket provider. The global
socket provider can be either the WebLogic Server generated socket provider or a socket
provider from the Coherence operational configuration. This may require importing a
custom operational configuration file.

• WebLogic Server Secured Production Mode
When a WebLogic Server domain is in secured production mode, then, by default,
Coherence will be configured to use the WebLogic Server socket provider as the global
socket provider. The default WebLogic socket provider is configured for mTLS. If you do
not require mTLS, then the Coherence configuration can be overridden using WebLogic
Remote Console or a WLST script.

Extended Usage Certificates
If certificates with extended usage are used, it is important to understand how this affects the
different SSL/TLS configuration choices available for Coherence.

By default, WebLogic will configure Coherence to use mTLS, so the extend usage for any
certificates must include both serverAuth and clientAuth. If only serverAuth certificates are
available, Coherence must be configured to use one-way SSL/TLS as described in Configure
Coherence Cluster Traffic Using One-Way SSL/TLS .

Configure Coherence Cluster Traffic Using mTLS
Coherence clusters form a peer-to-peer network where each JVM is both a server receiving
connections from other cluster members, and a client connecting to other cluster members.

Chapter 7
Securing Coherence using SSL/TLS

7-2

You can configure Coherence cluster peer-to-peer communication to use SSL/TLS in a
WebLogic Server domain using either WebLogic Remote Console or a WLST script.

Configure mTLS for Cluster Traffic Using WebLogic Remote Console

1. In the Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit.

3. On the General tab, from the Transport drop-down list, select SSL. Or, if you want to use
datagram as the transport instead of TCMP, then select SSLUDP instead.

4. Click Save.

Configure mTLS for Cluster Traffic Using WLST Script

To configure Coherence to use mTLS for cluster membership using WLST, use the following
script:

Note:

In the script below, replace:

• DOMAIN_HOME with the path to your WebLogic Server domain home.

• defaultCoherenceCluster with the name of your Coherence cluster.

readDomain('DOMAIN_HOME')
cd('CoherenceClusterSystemResource/CoherenceCluster/CoherenceResource/
defaultCoherenceCluster/CoherenceClusterParams/NO_NAME_0')
set('Transport', 'ssl')
updateDomain()
closeDomain()

Configure Coherence Cluster Traffic Using One-Way SSL/TLS
In one-way SSL/TLS, a client authenticates a server certificate, but the server does not receive
a certificate from the client, so the client is anonymous. You can configure Coherence cluster
traffic to use one-way SSL/TLS in a WebLogic Server domain using either WebLogic Remote
Console or a WLST script.

Configure One-Way SSL for Cluster Traffic Using WebLogic Remote Console

1. In the Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit.

3. On the General tab, from the Transport drop-down list, select SSL. Or, if you want to use
datagram as the transport instead of TCMP, then select SSLUDP instead.

4. Click Save.

5. On the Security tab, from the Client Authentication Mode drop-down list, select none.

6. Click Save.

Chapter 7
Securing Coherence using SSL/TLS

7-3

Configure One-Way for Cluster Traffic SSL Using WLST Script

To configure Coherence to use one-way SSL/TLS for cluster traffic using WLST, use the
following script:

Note:

In the script below, replace:

• DOMAIN_HOME with the path to your WebLogic Server domain home.

• defaultCoherenceCluster with the name of your Coherence cluster.

readDomain('DOMAIN_HOME')
cd('CoherenceClusterSystemResource/defaultCoherenceCluster/CoherenceResource/
defaultCoherenceCluster/CoherenceClusterParams/NO_NAME_0')
create("cohKS","CoherenceKeystoreParams")
cd('CoherenceKeystoreParams/NO_NAME_0')
set('Transport', 'ssl')
set('CoherenceClientAuth','none')
updateDomain()
closeDomain()

Using a Custom Coherence Operational Configuration File
As WebLogic Server only supports a limited subset of Coherence configuration options,
occasionally, you may require a custom Coherence operational configuration file (also known
as an override file).

A custom operational configuration file can be imported using either WebLogic Remote
Console or a WLST script.

Before you can import the custom Coherence operational configuration file, you must make
sure that the file exists on the Administration Server and is readable. When you import the
operational configuration file, a copy of the file is placed in the DOMAIN_HOME/config/
coherence/CoherenceClusterName directory, where CoherenceClusterName is a placeholder
that represents the actual name of the Coherence cluster.

Import a Custom Operational Configuration File Using WebLogic Remote Console

1. In the Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit.

3. On the General tab, click the Import Configuration button.

4. Enter the full path to a custom Coherence operational configuration file that is on the
Administration Server.

5. Click Save.

Set a Custom Operational Configuration File Using a WLST Script

The file name is the relative path to the domain home. In the example below, if the full path of
the operational configuration file is /ORACLE_HOME/user_projects/domains/base_domain/

Chapter 7
Securing Coherence using SSL/TLS

7-4

config/coherence/defaultCoherenceCluster/mySSLOverride.xml, the file name would be
config/coherence/defaultCoherenceCluster/mySSLOverride.xml.

Use the following WLST script to configure a custom Coherence operational configuration file.

Note:

In the script below, replace:

• DOMAIN_HOME with the path to your WebLogic Server domain home.

• defaultCoherenceCluster with the name of your Coherence cluster.

• sslSocketProviderName with the name of the socket provider.

readDomain('DOMAIN_HOME')
cd('CoherenceClusterSystemResource/defaultCoherenceCluster/CoherenceResource/
defaultCoherenceCluster')
set('CustomClusterConfigurationFileName', 'config/coherence/
defaultCoherenceCluster/mySSLOverride.xml')
cd('CoherenceClusterParams/NO_NAME_0')
set('GlobalSocketProvider','sslSocketProviderName')
updateDomain()
closeDomain()

Configure the Coherence Global Socket Provider
WebLogic Server allows you to configure the Coherence global socket provider. The global
socket provider can be either the WebLogic Server generated socket provider or a socket
provider from the Coherence operational configuration. This may require importing a custom
operational configuration file.

See Specifying a Global Socket Provider and Using a Custom Coherence Operational
Configuration File.

Set the WebLogic Server Socket Provider as the Global Socket Provider in WebLogic
Remote Console

1. In the Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit.

3. On the Security tab, enable the Secured Production option.

4. Click Save.

The name of the WebLogic Server socket provider will automatically be inserted into the
Global Socket Provider field.

Set WebLogic Socket Provider as the Global Socket Provider Using a WLST Script

Use the following WLST script to configure the WebLogic Server socket provider as the
Coherence global socket provider.

Chapter 7
Securing Coherence using SSL/TLS

7-5

Note:

In the script below, replace:

• DOMAIN_HOME with the path to your WebLogic Server domain home.

• defaultCoherenceCluster with the name of your Coherence cluster.

readDomain('DOMAIN_HOME')
cd('CoherenceClusterSystemResource/defaultCoherenceCluster/CoherenceResource/
defaultCoherenceCluster/CoherenceClusterParams/NO_NAME_0')
set('SecuredProduction', 'true')
updateDomain()
closeDomain()

Set a Custom Socket Provider as the Global Socket Provider in WebLogic Remote
Console

You can configure Coherence to use a custom socket provider as the global socket provider
using WebLogic Remote Console. The named socket provider must be configured in the
Coherence operational configuration.

1. In the Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit.

3. On the Security tab, enter the name of the custom socket provider in the Global Socket
Provider field.

4. Click Save.

Set a Custom Socket Provider as the Global Socket Provider Using WLST Script

You can configure Coherence to use a custom socket provider as the global socket provider
using WLST. The named socket provider must be configured in the Coherence operational
configuration.

Use the following WLST script to set the name of the Coherence global socket provider.

Note:

In the script below, replace:

• DOMAIN_HOME with the path to your WebLogic Server domain home.

• defaultCoherenceCluster with the name of your Coherence cluster.

• sslSocketProviderName with the name of the socket provider.

readDomain('DOMAIN_HOME')
cd('CoherenceClusterSystemResource/defaultCoherenceCluster/CoherenceResource/
defaultCoherenceCluster/CoherenceClusterParams/NO_NAME_0')
set('Transport', 'ssl')
set('GlobalSocketProvider', 'sslSocketProviderName')

Chapter 7
Securing Coherence using SSL/TLS

7-6

updateDomain()
closeDomain()

WebLogic Server Secured Production Mode
When a WebLogic Server domain is in secured production mode, then, by default, Coherence
will be configured to use the WebLogic Server socket provider as the global socket provider.
The default WebLogic socket provider is configured for mTLS. If you do not require mTLS, then
the Coherence configuration can be overridden using WebLogic Remote Console or a WLST
script.

For general information on secured production mode in WebLogic Server, see Understand
How Domain Mode Affects the Default Security Configuration in Securing a Production
Environment for Oracle WebLogic Server.

• Configure Coherence for One-Way SSL/TLS in Secured Production Mode
If the WebLogic Server domain is in secured production mode, where the WebLogic Server
socket provider defaults to mTLS, you can configure Coherence to use one-way SSL/TLS
instead using WebLogic Remote Console or a WLST script.

• Disable Coherence SSL/TLS in Secured Production Mode
If the WebLogic Server domain is in secured production mode but you need Coherence to
run with plain TCP, then you can configure this behavior using WebLogic Remote Console
or a WLST script.

Configure Coherence for One-Way SSL/TLS in Secured Production Mode
If the WebLogic Server domain is in secured production mode, where the WebLogic Server
socket provider defaults to mTLS, you can configure Coherence to use one-way SSL/TLS
instead using WebLogic Remote Console or a WLST script.

Configure Coherence for One-Way SSL/TLS Using WebLogic Remote Console

1. In the Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit.

3. On the Security tab, from the Client Authentication Mode drop-down list, select none.

4. Click Save.

Configure Coherence for One-Way SSL/TLS Using WLST Script

Use the following script to configure Coherence to use one-way SSL/TLS.

Note:

In the script below, replace:

• DOMAIN_HOME with the path to your WebLogic Server domain home.

• defaultCoherenceCluster with the name of your Coherence cluster.

readDomain('DOMAIN_HOME')
cd('CoherenceClusterSystemResource/defaultCoherenceCluster/CoherenceResource/
defaultCoherenceCluster/CoherenceClusterParams/NO_NAME_0')

Chapter 7
Securing Coherence using SSL/TLS

7-7

create("cohKS","CoherenceKeystoreParams")
cd('CoherenceKeystoreParams/NO_NAME_0')
set('CoherenceClientAuth','none')
updateDomain()
closeDomain()

Disable Coherence SSL/TLS in Secured Production Mode
If the WebLogic Server domain is in secured production mode but you need Coherence to run
with plain TCP, then you can configure this behavior using WebLogic Remote Console or a
WLST script.

Note:

If you disable secured production mode in Coherence, it only affects Coherence and
does not affect the broader aspects of secured production mode in WebLogic Server.

Disable Coherence SSL/TLS in Secured Production Mode Using WebLogic Remote
Console

1. In the Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit.

3. On the Security tab, turn off the Secured Production option.

4. Click Save.

Disable Coherence SSL/TLS in Secured Production Mode Using a WLST Script

Use the following script to configure Coherence to use plain TCP.

Note:

In the script below, replace:

• DOMAIN_HOME with the path to your WebLogic Server domain home.

• defaultCoherenceCluster with the name of your Coherence cluster.

readDomain('DOMAIN_HOME')
cd('CoherenceClusterSystemResource/defaultCoherenceCluster/CoherenceResource/
defaultCoherenceCluster/CoherenceClusterParams/NO_NAME_0')
set('SecuredProduction', 'false')
updateDomain()
closeDomain()

Securing Oracle Coherence Cluster Membership
The Oracle Coherence security framework (access controller) can be enabled within a Oracle
WebLogic Server domain to secure access to cluster resources and operations. The access

Chapter 7
Securing Oracle Coherence Cluster Membership

7-8

controller provides authorization and uses encryption/decryption between cluster members to
validate trust. See Overview of Using an Access Controller.
In Oracle WebLogic Server, access controllers use a managed Coherence server's keystore to
establish a caller's identity between Oracle Coherence cluster members. The Demo Identity
keystore is used by default and contains a default SSL identity (DemoIdentity). The default
keystore and identity require no setup and are ideal during development and testing. Specific
keystores and identities should be created for production environments. See Configuring
Keystores in Administering Security for Oracle WebLogic Server.

This section includes the following topics:

• Enabling the Oracle Coherence Security Framework

• Specifying an Identity for Use by the Security Framework

Enabling the Oracle Coherence Security Framework
To enable the security framework in an Oracle WebLogic Server domain using WebLogic
Remote Console:

1. In the Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit, then select the Security tab.

3. Turn on the Security Framework Enabled option.

4. Click Save.

Specifying an Identity for Use by the Security Framework
The Oracle Coherence security framework requires a principal (identity) when performing
authentication. The SSL Demo Identity keystore is used by default and contains a default SSL
identity (DemoIdentity). The SSL Demo keystore and identity are typically used during
development. For production environments, you should create an SSL keystore and identity.
For example, use the Java keytool utility to create a keystore that contains an admin identity:

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias admin
-keypass password -dname CN=Administrator,O=MyCompany,L=MyCity,ST=MyState

Note:

If you create an SSL keystore and identity, you must configure Oracle WebLogic
Server to use that SSL keystore and identity. In addition, the same SSL identity must
be located in the keystore of every managed Coherence server in the cluster. Use the
Keystores and SSL tabs on the Environment: Servers: myServer: Security tab for a
managed Coherence server to configure a keystore and identity.

To override the default SSL identity and specify an identity for use by the security framework:

1. In the Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit, then select the Security tab.

3. Make sure the Security Framework Enabled option is enabled.

4. Optional: Turn on the Global Socket Provider option. If you enable this option, Coherence
uses the Oracle WebLogic Server's SSL as its global socket provider. For more information
about configuring global SSL socket provider for Coherence, see Configuring a Cluster-
Side Extend Proxy SSL Socket Provider.

Chapter 7
Securing Oracle Coherence Cluster Membership

7-9

5. In the Client Authentication Mode field, specify the client authentication mode for SSL.
The valid values are:

• none
• required
• wanted
The default value is none.

6. In the Private Key Pass Phrase field, enter the password for the identity.

7. Click Save.

Authorizing Oracle Coherence Caches and Services
Oracle WebLogic Server authorization can be used to secure Oracle Coherence resources that
run within a domain. In particular, different roles and policies can be created to control access
to caches and services. Authorization is enabled by default and the default authorization policy
gives all users access to all Oracle Coherence resources. See Overview of Securing WebLogic
Resources in Securing Resources Using Roles and Policies for Oracle WebLogic Server.
Authorization roles and policies are explicitly configured for caches and services. You must
know the cache names and service names that are to be secured. In some cases, inspecting
the cache configuration file may provide the cache names and service names. However,
because of wildcard support for cache mappings in Oracle Coherence, you may need to
consult an application developer or architect that knows the cache names being used by an
application. For example, a cache mapping in the cache configuration file could use a wildcard
(such as * or dist-*) and does not indicate the name of the cache that is actually used in the
application.

Note:

Deleting a service or cache resource does not delete roles and policies that are
defined for the resource. Roles and policies must be explicitly deleted before deleting
a service or cache resource.

This section includes the following topics:

• Specifying Cache Authorization

• Specifying Service Authorization

Specifying Cache Authorization
Oracle WebLogic Server authorization can be used to restrict access to specific Oracle
Coherence caches. To specify cache authorization:

1. In the Edit Tree, go to Environment, then Coherence Clusters, then
myCoherenceCluster, then Coherence Caches.

2. Click New.

3. In the Name field, enter a name for the Coherence cache. The name of the cache must
exactly match the name of the cache used in an application.

4. Click Create and commit your changes.

Chapter 7
Authorizing Oracle Coherence Caches and Services

7-10

5. Define security roles and policies that are scoped to the Coherence cache. See Create a
Scoped Role in Oracle WebLogic Remote Console Online Help.

For example, you can create a policy that allows specific users to access the cache. The
users can be selected based on their membership in a global role, or a Coherence-specific
scoped role can be created and used to define which users can access the cache. See
Overview of Securing WebLogic Resources in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

Specifying Service Authorization
Oracle WebLogic Server authorization can be used to restrict access to Oracle Coherence
services. Specifying authorization on a cache service (for example a distributed cache service)
affects access to all the caches that are created by that service.

To specify service authorization:

1. In the Edit Tree, go to Environment, then Coherence Clusters, then
myCoherenceCluster, then Coherence Services.

2. Click New.

3. In the Name field, enter a name for the Coherence service. The name of the service must
exactly match the name of the service used in an application.

Note:

The exact name must include the scope name as a prefix to the service name.
The scope name can be explicitly defined in the cache configuration file or, more
commonly, taken from the deployment module name. For example, if you deploy
a GAR named contacts.gar that defines a service named ContactsService,
then the exact service name is contacts:ContactsService.

4. Click Create and commit your changes.

5. Define security roles and policies that are scoped to the Coherence service. See Create a
Scoped Role in Oracle WebLogic Remote Console Online Help.

For example, you can create a policy that allows specific users to access the service. The
users can be selected based on their membership in a global role, or a Coherence-specific
scoped role can be created and used to define which users can access the service. See
Overview of Securing WebLogic Resources in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

Securing Extend Client Access with Identity Tokens
Identity tokens are used to protect against unauthorized access to an Oracle Coherence
cluster through an Oracle Coherence proxy server. Identity tokens are used by local (within
WebLogic Server) extend clients and remote (outside of WebLogic Server) Java, C++,
and .NET extend clients.

Only clients that pass a valid identity token are permitted to access cluster services. If a null
identity token is passed (a client connecting without being within the scope of a Subject), then
the client is treated as an Oracle WebLogic Server anonymous user. The extend client is able
to access caches and services that the anonymous user can access.

Chapter 7
Securing Extend Client Access with Identity Tokens

7-11

Note:

Upon establishing and identity, an authorization policy should be used to restrict that
identity to specific caches and services. See Authorizing Oracle Coherence Caches
and Services.

Identity token security requires an identity transformer implementation that creates an identity
token and an identity asserter implementation that validates the identity token. A default
identity transformer implementation (DefaultIdentityTransformer) and identity asserter
implementation (DefaultIdentityAsserter) are provided. The default implementations use a
Subject or Principal as the identity token. However, custom implementations can be created
as required to support any security token type (for example, to support Kerberos tokens). See
Using Identity Tokens to Restrict Client Connections.

This section includes the following topics:

• Enabling Identity Transformers for Use in Oracle WebLogic Server

• Enabling Identity Asserters for Use in Oracle WebLogic Server

Enabling Identity Transformers for Use in Oracle WebLogic Server
An identity transformer associates an identity token with an identity. For local (within Oracle
WebLogic Server) extend clients, the default identity transformer cannot be replaced. The
default identity transformer passes a token of type
weblogic.security.acl.internal.AuthenticatedSubject representing the current Oracle
WebLogic Server user.

For remote (outside of Oracle WebLogic Server) extend clients, the identity transformer
implementation class must be included as part of the application's classpath and the fully
qualified name of the implementation class must be defined in the client operational override
file. See Enabling a Custom Identity Transformer. The following example enables the default
identity transformer:

...
<security-config>
 <identity-transformer>
 <class-name>
 com.tangosol.net.security.DefaultIdentityTransformer</class-name>
 </identity-transformer>
</security-config>
...

Remote extend clients must execute cache operations within the Subject.doAS method. For
example,

Principal principal = new WLSUserImpl("user");
Subject subject = new Subject();
subject.getPrincipals().add(principal);

Subject.doAs(subject, new PrivilegedExceptionAction()
 {
 NamedCache cache = CacheFactory.getCache("mycache");
 ...

Chapter 7
Securing Extend Client Access with Identity Tokens

7-12

Enabling Identity Asserters for Use in Oracle WebLogic Server
Identity asserters must be enabled for an Oracle Coherence cluster and are used to assert
(validate) a client's identity token. For local (within Oracle WebLogic Server) extend clients, an
identity asserter is already enabled for asserting a token of type
weblogic.security.acl.internal.AuthenticatedSubject.

For remote (outside of Oracle WebLogic Server) extend clients, a custom identity asserter
implementation class must be packaged in a GAR. However, an identity asserter is not
required if the remote extend client passes null as the token. If the proxy service receives a
non-null token and there is no identity asserter implementation class configured, a
SecurityException is thrown and the connection attempt is rejected.

You can use WebLogic Remote Console or WLST to enable an identity asserter for a cluster.

• If using WebLogic Remote Console, perform the following steps:

1. In the Edit Tree, go to Environment, then Coherence Clusters, then
myCoherenceCluster, then Coherence Identity Asserter.

2. In the Class Name field, enter the fully qualified name of the asserter class. For
example, to use the default identity asserter, enter
com.tangosol.net.security.DefaultIdentityAsserter.

3. Click Save.

4. If there are any arguments, open the Identity Asserter Constructor Arguments node
and click New to add class constructor arguments.

5. Click Save and then commit your changes.

• If using WLST, perform the following steps:

Invoke WLST and connect to the domain. Then, configure an identity asserter. Use the
script below as an example:

In the script below, replace:

– DOMAIN_HOME with the path to your WebLogic Server domain home.

– defaultCoherenceCluster with the name of your Coherence cluster.

readDomain('DOMAIN_HOME')
cd('CoherenceClusterSystemResource/defaultCoherenceCluster/
CoherenceResource/defaultCoherenceCluster/CoherenceClusterParams/
NO_NAME_0')
set('SecurityFrameworkEnabled', 'true')
cd('CoherenceIdentityAsserter/NO_NAME_0')
set('ClassName',"com.tangosol.net.security.DefaultIdentityAsserter")
updateDomain()
closeDomain()

Restart the cluster servers or redeploy the GAR for the changes to take effect.

Chapter 7
Securing Extend Client Access with Identity Tokens

7-13

8
Securing Oracle Coherence REST

Authentication and authorization can be used to secure Oracle Coherence REST. If you are
new to Coherence REST, See Using Coherence REST in Developing Remote Clients for
Oracle Coherence.
This chapter includes the following sections:

• Overview of Securing Oracle Coherence REST

• Using HTTP Basic Authentication with Oracle Coherence REST

• Using SSL Authentication With Oracle Coherence REST

• Using SSL and HTTP Basic Authentication with Oracle Coherence REST

• Implementing Authorization For Oracle Coherence REST

Overview of Securing Oracle Coherence REST
Oracle Coherence REST security uses both authentication and authorization to restrict access
to cluster resources. Authentication and authorization are disabled by default and are enabled
as required. Authentication support includes: HTTP basic, client-side SSL certificate, and
client-side SSL certificate together with HTTP basic. Authorization is implemented using Oracle
Coherence*Extend-styled authorization, which relies on interceptor classes that provide fine-
grained access for cache service and invocation service operations. Oracle Coherence REST
authentication and authorization reuses much of the existing security capabilities of Oracle
Coherence: references are provided to existing content where applicable.

Using HTTP Basic Authentication with Oracle Coherence REST
You can configure an HTTP acceptor and login module to provide authentication for Coherence
REST. HTTP basic authentication provides authentication using credentials (username and
password) that are encoded and sent in the HTTP authorization request header. HTTP basic
authentication requires a Java Authentication and Authorization Service (JAAS) login module.

This section includes the following topics:

• Specify Basic Authentication for an HTTP Acceptor

• Specify a Login Module

Specify Basic Authentication for an HTTP Acceptor
To specify basic authentication for an HTTP Acceptor:

Add an <auth-method> element, within the http-acceptor element, that is set to basic.

<proxy-scheme>
 <service-name>RestHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 ...

8-1

 <auth-method>basic</auth-method>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Specify a Login Module
HTTP basic authentication requires a JAAS javax.security.auth.spi.LoginModule
implementation that authenticates client credentials which are passed from the HTTP basic
authentication header. The resulting Subject can then be used for both Oracle
Coherence*Extend-style and Oracle Coherence Security Framework authorization as required.
See LoginModule in Java Authentication and Authorization Service (JAAS) Reference Guide.

To specify a login module, modify the COHERENCE_HOME/lib/security/login.config login
configuration file and include a CoherenceREST entry that includes the login module
implementation to use. For example:

CoherenceREST {
 package.MyLoginModule required debug=true;
};

At runtime, specify the login.config file to use either from the command line (using the
java.security.auth.login.config system property) or in the Java security properties file.

As a convenience, a Java keystore (JKS) LoginModule implementation which depends only on
standard Java run-time classes is provided. The class is located in the COHERENCE_HOME/lib/
security/coherence-login.jar file. To use the implementation, either place this library in the
proxy server classpath or in the JRE's lib/ext (standard extension) directory.

Specify the JKS login module implementation in the login.config configuration file as follows:

CoherenceREST {
 com.tangosol.security.KeystoreLogin required
 keyStorePath="${user.dir}${/}security${/}keystore.jks";
};

The entry contains a path to a keystore. Change the keyStorePath variable to the location of a
keystore.

Using SSL Authentication With Oracle Coherence REST
You can use SSL to provide authentication for Coherence REST. SSL provides an
authentication mechanism that relies on digital certificates and encryption keys to establish
both identity and trust. See Overview of SSL/TLS.
Client-side SSL certificates are passed to the HTTP acceptor to authenticate the client. SSL
requires an SSL-based socket provider to be configured for the HTTP acceptor. The below
instructions only describe how to configure SSL and define an SSL socket provider on the
proxy for an HTTP acceptor. Refer to your REST client library documentation for instructions
on setting up SSL on the client side.

This section includes the following topics:

• Specify Basic Authentication for an HTTP Acceptor

• Configure an HTTP Acceptor SSL Socket Provider

• Access Secured REST Services

Chapter 8
Using SSL Authentication With Oracle Coherence REST

8-2

http://download.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html#LoginModule

Specify Basic Authentication for an HTTP Acceptor
To specify basic authentication for an HTTP Acceptor:

Add an <auth-method> element, within the http-acceptor element, that is set to basic.

<proxy-scheme>
 <service-name>RestHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <auth-method>basic</auth-method>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Configure an HTTP Acceptor SSL Socket Provider
Configure an SSL socket provider for an HTTP acceptor when using SSL for authentication. To
configure SSL for an HTTP acceptor, explicitly add an SSL socket provider definition or
reference an SSL socket provider definition that is in the operational override file.

Explicitly Defining an SSL Socket Provider

To explicitly configure an SSL socket provider for an HTTP acceptor, add a <socket-provider>
element within the <http-acceptor> element of each <proxy-scheme> definition. See socket-
provider in Developing Applications with Oracle Coherence.

Example 8-1 demonstrates configuring an SSL socket provider that uses the default values for
the <protocol> and <algorithm> element (TLS and SunX509, respectively). These are shown
for completeness but may be left out when using the default values.

Example 8-1 configures both an identity keystore (server.jks) and a trust keystore
(trust.jks). This is typical of two-way SSL authentication, in which both the client and proxy
must exchange digital certificates and confirm each other's identity. For one-way SSL
authentication, the proxy server configuration must include an identity keystore but need not
include a trust keystore.

Example 8-1 Sample HTTP Acceptor SSL Configuration

<proxy-scheme>
 <service-name>RestHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <socket-provider>
 <ssl>
 <protocol>TLS</protocol>
 <identity-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:server.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 <password>password</password>

Chapter 8
Using SSL Authentication With Oracle Coherence REST

8-3

 </identity-manager>
 <trust-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:trust.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 ...
 <auth-method>cert</auth-method>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Referencing an SSL Socket Provider Definition

The following example references an SSL socket provider configuration that is defined in the
<socket-providers> element of the operational deployment descriptor by specifying the id
attribute (ssl) of the configuration. See socket-providers in Developing Applications with
Oracle Coherence.

Note:

A predefined SSL socket provider is included in the operational deployment
descriptor and is named ssl. The predefined SSL socket provider is configured for
two-way SSL connections and is based on peer trust, in which every trusted peer
resides within a single JKS keystore. See Coherence PeerX509 Algorithm for details.
To configure a different SSL socket provider, use an operational override file to
modify the predefined SSL socket provider or to create a socket provider
configuration as required.

<proxy-scheme>
 <service-name>RestHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <socket-provider>ssl</socket-provider>
 ...
 <auth-method>cert</auth-method>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Access Secured REST Services
The following example demonstrates a Jersey-based client that accesses REST services that
require certificate and HTTP basic authentication.

Client SSL Configuration File

The client SSL configuration file (ssl.xml) configures the client's keystore and trust keystore.

Chapter 8
Using SSL Authentication With Oracle Coherence REST

8-4

<ssl>
 <identity-manager>
 <key-store>
 <url>file:keystore.jks</url>
 <password>password</password>
 </key-store>
 <password>password</password>
 </identity-manager>
 <trust-manager>
 <key-store>
 <url>file:trust.jks</url>
 <password>password</password>
 </key-store>
 </trust-manager>
</ssl>

Sample Jersey SSL Client

package example;
import com.oracle.coherence.common.net.SSLSocketProvider;
import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.ClientResponse;
import com.sun.jersey.api.client.WebResource;
import com.sun.jersey.api.client.config.DefaultClientConfig;
import com.sun.jersey.client.urlconnection.HTTPSProperties;
import com.sun.jersey.api.client.filter.HTTPBasicAuthFilter;
import com.tangosol.internal.net.ssl.LegacyXmlSSLSocketProviderDependencies;
import com.tangosol.run.xml.XmlDocument;
import com.tangosol.run.xml.XmlHelper;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLSession;
import javax.ws.rs.core.MediaType;

public class SslExample
 {
 public static Client createHttpsClient(SSLSocketProvider provider)
 {
 DefaultClientConfig dcc = new DefaultClientConfig();
 HTTPSProperties prop = new HTTPSProperties(new HostnameVerifier()
 {
 public boolean verify(String s, SSLSession sslSession)
 {
 return true;
 }
 }, provider.getDependencies().getSSLContext());
 dcc.getProperties().put(HTTPSProperties.PROPERTY_HTTPS_PROPERTIES, prop);
 return Client.create(dcc);
 }

 public static void PUT(String url, MediaType mediaType, String data)
 {
 process(url, "put", mediaType, data);
 }

 public static void GET(String url, MediaType mediaType)
 {
 process(url, "get", mediaType, null);
 }

 public static void POST(String url, MediaType mediaType, String data)
 {
 process(url, "post", mediaType, data);

Chapter 8
Using SSL Authentication With Oracle Coherence REST

8-5

 }

 public static void DELETE(String url, MediaType mediaType)
 {
 process(url, "delete", mediaType, null);
 }

 static void process(String url, String action, MediaType mediaType, String
 data)
 {
 try
 {
 XmlDocument xml = XmlHelper.loadFileOrResource("/ssl.xml", null);
 SSLSocketProvider provider = new SSLSocketProvider(new
 LegacyXmlSSLSocketProviderDependencies(xml));
 Client client = createHttpsClient(provider);
 ClientResponse response = null;
 WebResource webResource = client.resource(url);

 // If you've specified the "cert+basic" auth-method in your Proxy
 // http-acceptor configuration, initialize and add an HTTP basic
 // authentication filter by
 // uncommenting the following line and changing the username and password
 // appropriately.
 //client.addFilter(new HTTPBasicAuthFilter("username", "password"));

 if (action.equalsIgnoreCase("get"))
 {
 response = webResource.type(mediaType).get(ClientResponse.class);
 }
 else if (action.equalsIgnoreCase("post"))
 {
 response = webResource.type(mediaType).post
 (ClientResponse.class, data);
 }
 else if (action.equalsIgnoreCase("put"))
 {
 response = webResource.type(mediaType).put
 (ClientResponse.class, data);
 }
 else if (action.equalsIgnoreCase("delete"))
 {
 response = webResource.type(mediaType).delete
 (ClientResponse.class, data);
 }
 System.out.println("response status:" + response.getStatus());
 if (action.equals("get"))
 {
 System.out.println("Result: " + response.getEntity(String.class));
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 public static void main(String args[])
 {
 PUT("https://localhost:8080/dist-http-example/1",
 MediaType.APPLICATION_JSON_TYPE, "{\"name\":\"chris\",\"age\":32}");
 PUT("https://localhost:8080/dist-http-example/2",

Chapter 8
Using SSL Authentication With Oracle Coherence REST

8-6

 MediaType.APPLICATION_XML_TYPE,
 "<person><name>admin</name><age>30</age></person>");
 DELETE("https://localhost:8080/dist-http-example/1",
 MediaType.APPLICATION_XML_TYPE);
 GET("https://localhost:8080/dist-http-example/2",
 MediaType.APPLICATION_XML_TYPE);
 }
 }

Using SSL and HTTP Basic Authentication with Oracle
Coherence REST

You can use SSL together with HTTP basic authentication for added protection when securing
Coherence REST. See Using HTTP Basic Authentication with Oracle Coherence REST and
Using SSL Authentication With Oracle Coherence REST, respectively.
To specify the use of both HTTP basic authentication and SSL, add an <auth-method>
element, within the http-acceptor element, that is set to cert+basic.

<proxy-scheme>
 <service-name>RestHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <socket-provider>
 <ssl>
 ...
 </ssl>
 </socket-provider>
 ...
 <auth-method>cert+basic</auth-method>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Implementing Authorization For Oracle Coherence REST
Oracle Coherence REST relies on the Oracle Coherence*Extend authorization framework to
restrict which operations a REST client performs on a cluster. For detailed instructions on
implementing Oracle Coherence*Extend-style authorization, see Implementing Extend Client
Authorization.
Oracle Coherence*Extend-style authorization with REST requires basic HTTP authentication
or HTTP basic authentication together with SSL authentication. That is, when implementing
authorization, both HTTP basic authentication and SSL can be used together for added
protection. For details on using HTTP basic authentication, see Using HTTP Basic
Authentication with Oracle Coherence REST. For details on using SSL with HTTP Basic
Authentication, see Using SSL and HTTP Basic Authentication with Oracle Coherence REST.

Note:

When using SSL and HTTP basic authentication together, make sure that SSL is
setup as shown in Using SSL Authentication With Oracle Coherence REST in
addition to setting up HTTP basic authentication.

Chapter 8
Using SSL and HTTP Basic Authentication with Oracle Coherence REST

8-7

9
Securing Oracle Coherence HTTP
Management Over REST Server

Oracle Coherence HTTP Management Server security is used to restrict HTTP access to
Coherence MBeans exposed as REST resources.
This chapter includes the following sections:

• About Securing Oracle Coherence HTTP Management Server

• Basic Authentication for Coherence HTTP Management Server HTTP Acceptor

• Using SSL Authentication With Oracle Coherence HTTP Management Server

About Securing Oracle Coherence HTTP Management Server
Coherence HTTP Management Server authentication and authorization are disabled by default
and are enabled as required.
Coherence HTTP Management Server authentication support includes: HTTP basic, client-side
SSL certificate, and client-side SSL certificate together with HTTP basic.

See Accessing Management Information Using REST in Managing Oracle Coherence.

Basic Authentication for Coherence HTTP Management Server
HTTP Acceptor

You can configure an HTTP acceptor to provide authentication for Coherence HTTP
Management Server.
HTTP basic authentication provides authentication using credentials (user name and
password) that are encoded and sent in the HTTP authorization request header.

This section includes the following topics:

• Specify the Basic Authentication for Coherence HTTP Management Server HTTP Acceptor

• Specify a Coherence HTTP Management Server Login Module

Specify the Basic Authentication for Coherence HTTP Management Server
HTTP Acceptor

The default management-http-config.xml is in coherence-management.jar.

To specify basic authentication for an HTTP Management Acceptor, set the
coherence.management.http.auth system property to the value basic or override the default
management-http-config.xml and specify <auth-method> child xml element to the value
basic.

9-1

Specify a Coherence HTTP Management Server Login Module
HTTP basic authentication requires a JAAS javax.security.auth.spi.LoginModule
implementation that authenticates client credentials which are passed from the HTTP basic
authentication header. The resulting Subject can then be used for Oracle Coherence Security
Framework authorization as required. See LoginModule in Java Authentication and
Authorization Service (JAAS) Reference Guide.

To specify a login module, modify the COHERENCE_HOME/lib/security/login.config
login configuration file and include a Coherence entry that includes the login module
implementation to use. For example:

CoherenceManagement {
 package.MyLoginModule required;
};

At runtime, specify the login.config file to use either from the command line (using the
java.security.auth.login.config system property) or in the Java security properties file.

As a convenience, a Java keystore (JKS) LoginModule implementation which depends only on
standard Java run-time classes is provided. The class is located in the
COHERENCE_HOME/lib/security/coherence-login.jar file. To use the implementation,
place this library either in the proxy server classpath or in the JRE's lib/ext (standard
extension) directory.

Specify the JKS login module implementation in the login.config configuration file as follows:

CoherenceManagement {
 com.tangosol.security.KeystoreLogin required
 keyStorePath="${user.dir}${/}security${/}keystore.jks";
};

The entry contains a path to a keystore. Change the keyStorePath variable to the location of a
keystore.

Using SSL Authentication With Oracle Coherence HTTP
Management Server

You can use SSL to provide authentication for Coherence HTTP Management Server. SSL
provides an authentication mechanism that relies on digital certificates and encryption keys to
establish both identity and trust. See Overview of SSL/TLS.
Client-side SSL certificates are passed to the HTTP acceptor to authenticate the client. SSL
requires an SSL-based socket provider to be configured for the HTTP acceptor.

This section includes the following topics:

• Configure a Coherence HTTP Management Acceptor SSL Socket Provider

Configure a Coherence HTTP Management Acceptor SSL Socket Provider
Configure an SSL socket provider for an HTTP acceptor when using SSL for authentication. To
configure SSL for an HTTP acceptor, explicitly add an SSL socket provider definition or
reference an SSL socket provider definition that is in the operational override file.

Chapter 9
Using SSL Authentication With Oracle Coherence HTTP Management Server

9-2

http://download.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html#LoginModule

Explicitly Defining an SSL Socket Provider

To explicitly configure an SSL socket provider for an HTTP acceptor, add a <socket-provider>
element within the <http-acceptor> element of each <proxy-scheme> definition. See socket-
provider in Developing Applications with Oracle Coherence. You can override the default
values by extracting management-http-config.xml from coherence.jar, modifying the file and
then placing it before coherence.jar on the class path. You can also specify the socket
provider by using the override -Dcoherence.management.http.provider=your-socket-
provider.

Example 10-1 demonstrates configuring an SSL socket provider that uses the default values
for the <protocol> and <algorithm> element (TLS and SunX509, respectively). These are
shown for completeness but may be left out when using the default values.

Example 10-1 configures both an identity keystore (server.jks) and a trust keystore
(trust.jks). This is typical of two-way SSL authentication, in which both the client and proxy
must exchange digital certificates and confirm each other's identity. For one-way SSL
authentication, the proxy server configuration must include an identity keystore but need not
include a trust keystore.

Example 9-1 Sample HTTP Acceptor SSL Configuration

<proxy-scheme>
 <service-name>ManagementHttpProxy</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <socket-provider>
 <ssl>
 <protocol>TLS</protocol>
 <identity-manager>
 <algorithm>SunX509</algorithm>
 <provider system-
property="coherence.management.http.security.keystore.provider"/>
 <key-store>
 <url system-
property="coherence.management.http.security.keystore">file:server.jks</url>
 <password system-
property="coherence.management.http.security.keystore.password"/>
 <type>JKS</type>
 </key-store>
 <password system-
property="coherence.management.http.security.identitymanager.password”/>
 </identity-manager>
 <trust-manager>
 <algorithm/>SunX509</algorithm>
 <provider system-
property="coherence.management.http.security.truststore.provider"/>
 <key-store>
 <url system-
property="coherence.management.http.security.truststore">file:truststore.jks</url>
 <password system-
property="coherence.management.http.security.truststore.password"/>
 <type>JKS</type>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 ...
 <auth-method>cert</auth-method>

Chapter 9
Using SSL Authentication With Oracle Coherence HTTP Management Server

9-3

 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Referencing an SSL Socket Provider Definition Using Coherence HTTP Management
Over REST

The following example references an SSL socket provider configuration that is defined in the
<socket-providers> element of the operational deployment descriptor by specifying the id
attribute (ssl) of the configuration. See socket-providers in Developing Applications with
Oracle Coherence.

Note:

A predefined SSL socket provider is included in the operational deployment
descriptor and is named ssl. The predefined SSL socket provider is configured for
two-way SSL connections and is based on peer trust, in which every trusted peer
resides within a single JKS keystore. See Coherence PeerX509 Algorithm. To
configure a different SSL socket provider, use an operational override file to modify
the predefined SSL socket provider or to create a socket provider configuration as
required.

<proxy-scheme>
 <service-name>ManagementHttpProxy</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <socket-provider>ssl</socket-provider>
 ...
 <auth-method>cert</auth-method>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

For configuring HTTP client access, see Access Secured REST Services.

Chapter 9
Using SSL Authentication With Oracle Coherence HTTP Management Server

9-4

10
Securing Oracle Coherence Metrics

Oracle Coherence Metrics security is used to restrict access to metrics data through
authentication and authorization configuration.
This chapter includes the following sections:

• About Securing Oracle Coherence Metrics

• Basic Authentication for Coherence Metrics Http Acceptor

• Using SSL Authentication With Oracle Coherence Metrics

About Securing Oracle Coherence Metrics
Coherence Metrics authentication and authorization are disabled by default and are enabled as
required.
Coherence Metrics authentication support includes: HTTP basic, client-side SSL certificate,
and client-side SSL certificate together with HTTP basic.

See Using Coherence Metrics in Managing Oracle Coherence.

Basic Authentication for Coherence Metrics Http Acceptor
You can configure an HTTP acceptor to provide authentication for Coherence Metrics. HTTP
basic authentication provides authentication using credentials (user name and password) that
are encoded and sent in the HTTP authorization request header.
This section includes the following topics:

• Specify Basic Authentication for Coherence Metrics HTTP Acceptor

• Specify a Coherence Metrics Login Module

• Specify Basic Authentication for a Coherence Metrics HTTP Client

Specify Basic Authentication for Coherence Metrics HTTP Acceptor
The default metrics-http-config.xml is in coherence-metrics.jar.

To specify basic authentication for an HTTP Acceptor, set the system property
cohererence.metrics.http.auth to the value basic or override the default metrics-http-
config.xml and specify <auth-method> child xml element to the value basic.

Specify a Coherence Metrics Login Module
HTTP basic authentication requires a JAAS javax.security.auth.spi.LoginModule
implementation that authenticates client credentials which are passed from the HTTP basic
authentication header. The resulting Subject can then be used for Oracle Coherence Security
Framework authorization as required. See LoginModule in Java Authentication and
Authorization Service (JAAS) Reference Guide.

10-1

http://download.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html#LoginModule

To specify a login module, modify the COHERENCE_HOME/lib/security/login.config login
configuration file and include a Coherence entry that includes the login module implementation
to use. For example:

CoherenceMetrics {
 package.MyLoginModule required;
};

At runtime, specify the login.config file to use either from the command line (using the
java.security.auth.login.config system property) or in the Java security properties file.

As a convenience, a Java keystore (JKS) LoginModule implementation which depends only on
standard Java run-time classes is provided. The class is located in the COHERENCE_HOME/lib/
security/coherence-login.jar file. To use the implementation, either place this library in the
proxy server classpath or in the JRE's lib/ext (standard extension) directory.

Specify the JKS login module implementation in the login.config configuration file as follows:

CoherenceMetrics {
 com.tangosol.security.KeystoreLogin required
 keyStorePath="${user.dir}${/}security${/}keystore.jks";
};

The entry contains a path to a keystore. Change the keyStorePath variable to the location of a
keystore.

Specify Basic Authentication for a Coherence Metrics HTTP Client
Prometheus is an HTTP client metrics gathering system that can be configured to scrape
metrics data from a Coherence metrics endpoint.

See Prometheus <scrape_config> configuration for parameters on configuring scheme to
https, basic_auth with username and password.

Using SSL Authentication With Oracle Coherence Metrics
You can use SSL to provide authentication for Coherence Metrics. SSL provides an
authentication mechanism that relies on digital certificates and encryption keys to establish
both identity and trust. See Overview of SSL/TLS.
Client-side SSL certificates are passed to the HTTP acceptor to authenticate the client. SSL
requires an SSL-based socket provider to be configured for the HTTP acceptor.

This section includes the following topics:

• Configure a Coherence Metrics HTTP Acceptor SSL Socket Provider

Configure a Coherence Metrics HTTP Acceptor SSL Socket Provider
Configure an SSL socket provider for an HTTP acceptor when using SSL for authentication. To
configure SSL for an HTTP acceptor, explicitly add an SSL socket provider definition or
reference an SSL socket provider definition that is in the operational override file.

Explicitly Defining an SSL Socket Provider

To explicitly configure an SSL socket provider for an HTTP acceptor, add a <socket-provider>
element within the <http-acceptor> element of each <proxy-scheme> definition. See socket-
provider in Developing Applications with Oracle Coherence. You can override the default

Chapter 10
Using SSL Authentication With Oracle Coherence Metrics

10-2

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config

metrics-http-config.xml by making a copy of it and placing the revised metrics-http-
config.xml in classpath before coherence-metrics.jar occurs.

Example 10-1 demonstrates configuring an SSL socket provider that uses the default values
for the <protocol> and <algorithm> element (TLS and SunX509, respectively). These are
shown for completeness but may be left out when using the default values.

Example 10-1 configures both an identity keystore (server.jks) and a trust keystore
(trust.jks). This is typical of two-way SSL authentication, in which both the client and proxy
must exchange digital certificates and confirm each other's identity. For one-way SSL
authentication, the proxy server configuration must include an identity keystore but need not
include a trust keystore.

Example 10-1 Sample HTTP Acceptor SSL Configuration

<proxy-scheme>
 <service-name>MetricsHttpProxyService</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <socket-provider>
 <ssl>
 <protocol>TLS</protocol>
 <identity-manager>
 <algorithm>SunX509</algorithm>
 <provider system-property="coherence.metrics.security.keystore.provider"/>
 <key-store>
 <url system-
property="coherence.metrics.security.keystore">file:server.jks</url>
 <password system-
property="coherence.metrics.security.keystore.password"/>
 <type>JKS</type>
 </key-store>
 <password system-
property="coherence.metrics.security.identitymanager.password”/>
 </identity-manager>
 <trust-manager>
 <algorithm/>SunX509</algorithm>
 <provider system-
property="coherence.metrics.security.truststore.provider"/>
 <key-store>
 <url system-
property="coherence.metrics.security.truststore">file:truststore.jks</url>
 <password system-
property="coherence.metrics.security.truststore.password"/>
 <type>JKS</type>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 ...
 <auth-method>cert</auth-method>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Referencing an SSL Socket Provider Definition Using Coherence Metrics

The following example references an SSL socket provider configuration that is defined in the
<socket-providers> element of the operational deployment descriptor by specifying the id

Chapter 10
Using SSL Authentication With Oracle Coherence Metrics

10-3

attribute (ssl) of the configuration. See socket-providers in Developing Applications with
Oracle Coherence.

Note:

A predefined SSL socket provider is included in the operational deployment
descriptor and is named ssl. The predefined SSL socket provider is configured for
two-way SSL connections and is based on peer trust, in which every trusted peer
resides within a single JKS keystore. See Coherence PeerX509 Algorithm. To
configure a different SSL socket provider, use an operational override file to modify
the predefined SSL socket provider or to create a socket provider configuration as
required.

<proxy-scheme>
 <service-name>MetricsHttpProxy</service-name>
 <acceptor-config>
 <http-acceptor>
 ...
 <socket-provider>ssl</socket-provider>
 ...
 <auth-method>cert</auth-method>
 </http-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Configuring HTTP Client-Side in Prometheus Configuration

Prometheus is an HTTP client metrics gathering system that is used to scrape the Coherence
Metrics endpoints. See Prometheus <scrape_config> configuration for parameters to configure
scheme to https and basic_auth with username and password. See Prometheus <tls_config>
configuration to configure TLS connections.

Chapter 10
Using SSL Authentication With Oracle Coherence Metrics

10-4

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#tls_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#tls_config

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Introduction to Oracle Coherence Security
	Conceptual Overview of Oracle Coherence Security
	Coherence Security Quick Start
	Overview of Security Configuration

	2 Enabling General Security Measures
	Using the Java Security Manager
	Enable the Java Security Manager
	Specify Permissions
	Programmatically Specifying Local Permissions

	Using Host-Based Authorization
	Overview of Host-Based Authorization
	Specify Cluster Member Authorized Hosts
	Specify Extend Client Authorized Hosts
	Use a Filter Class to Determine Authorization

	Managing Rogue Clients

	3 Using an Access Controller
	Overview of Using an Access Controller
	Using the Default Access Controller Implementation
	Enable the Access Controller
	Create a Keystore
	Include the Login Module
	Create a Permissions File
	Create an Authentication Callback Handler
	Enable Security Audit Logs

	Using a Custom Access Controller Implementation

	4 Authorizing Access to Server-Side Operations
	Overview of Access Control Authorization
	Creating Access Control Authorization Implementations
	Declaring Access Control Authorization Implementations
	Enabling Access Control Authorization on a Partitioned Cache

	5 Securing Extend Client Connections
	Using Identity Tokens to Restrict Client Connections
	Overview of Using Identity Tokens
	Creating a Custom Identity Transformer
	Enabling a Custom Identity Transformer
	Creating a Custom Identity Asserter
	Enabling a Custom Identity Asserter
	Using Custom Security Types
	Understanding Custom Identity Token Interoperability

	Associating Identities with Extend Services
	Implementing Extend Client Authorization
	Overview of Extend Client Authorization
	Create Authorization Interceptor Classes
	Enable Authorization Interceptor Classes

	6 Using SSL/TLS to Secure Communication
	Overview of SSL/TLS
	Coherence Socket Providers
	Configuring the Identity Manager
	Configuring a Trust Manager

	Resolving the Socket Provider URL
	Using a Socket Provider in Configuration
	Configure a Socket Provider at Runtime

	Using SSL to Secure Cluster Communication
	Cluster Communication Using mTLS
	Cluster Communication with One-Way SSL

	Using SSL to Secure Extend and gRPC Client Communication
	Configuring a Cluster-Side Extend Proxy SSL Socket Provider
	Configuring the Cluster-Side gRPC Proxy SSL Socket Provider
	Configuring a Java Extend or gRPC Client SSL Socket Provider

	Configure a Default Socket Provider for a Cache Configuration File
	Configuring a .NET Client-Side Stream Provider
	Securing the C++ Client with SSL/TLS
	Using SSL to Secure Federation Communication
	Federation with mTLS
	Federation with One-Way SSL

	Coherence PeerX509 Algorithm
	Specifying a Global Socket Provider
	Specifying Passwords in Socket Provider Configuration
	Specify Plain Text Passwords
	Passwords From Java System Properties
	Reading Passwords From a URL
	Custom Password Providers

	Controlling Cipher Suite and Protocol Version Usage
	Using Host Name Verification
	Using the Default Coherence Host Name Verifier
	Using a Custom Host Name Verifier

	Configuring Client Authentication
	Using Private Key and Certificate Files
	Configuring an Identity Manager
	Configuring a Trust Manager

	7 Securing Oracle Coherence in Oracle WebLogic Server
	Overview of Securing Oracle Coherence in Oracle WebLogic Server
	Securing Coherence using SSL/TLS
	Extended Usage Certificates
	Configure Coherence Cluster Traffic Using mTLS
	Configure Coherence Cluster Traffic Using One-Way SSL/TLS
	Using a Custom Coherence Operational Configuration File
	Configure the Coherence Global Socket Provider
	WebLogic Server Secured Production Mode
	Configure Coherence for One-Way SSL/TLS in Secured Production Mode
	Disable Coherence SSL/TLS in Secured Production Mode

	Securing Oracle Coherence Cluster Membership
	Enabling the Oracle Coherence Security Framework
	Specifying an Identity for Use by the Security Framework

	Authorizing Oracle Coherence Caches and Services
	Specifying Cache Authorization
	Specifying Service Authorization

	Securing Extend Client Access with Identity Tokens
	Enabling Identity Transformers for Use in Oracle WebLogic Server
	Enabling Identity Asserters for Use in Oracle WebLogic Server

	8 Securing Oracle Coherence REST
	Overview of Securing Oracle Coherence REST
	Using HTTP Basic Authentication with Oracle Coherence REST
	Specify Basic Authentication for an HTTP Acceptor
	Specify a Login Module

	Using SSL Authentication With Oracle Coherence REST
	Specify Basic Authentication for an HTTP Acceptor
	Configure an HTTP Acceptor SSL Socket Provider
	Access Secured REST Services

	Using SSL and HTTP Basic Authentication with Oracle Coherence REST
	Implementing Authorization For Oracle Coherence REST

	9 Securing Oracle Coherence HTTP Management Over REST Server
	About Securing Oracle Coherence HTTP Management Server
	Basic Authentication for Coherence HTTP Management Server HTTP Acceptor
	Specify the Basic Authentication for Coherence HTTP Management Server HTTP Acceptor
	Specify a Coherence HTTP Management Server Login Module

	Using SSL Authentication With Oracle Coherence HTTP Management Server
	Configure a Coherence HTTP Management Acceptor SSL Socket Provider

	10 Securing Oracle Coherence Metrics
	About Securing Oracle Coherence Metrics
	Basic Authentication for Coherence Metrics Http Acceptor
	Specify Basic Authentication for Coherence Metrics HTTP Acceptor
	Specify a Coherence Metrics Login Module
	Specify Basic Authentication for a Coherence Metrics HTTP Client

	Using SSL Authentication With Oracle Coherence Metrics
	Configure a Coherence Metrics HTTP Acceptor SSL Socket Provider

