
Oracle® Fusion Middleware
Integrating Oracle Coherence

14c (14.1.2.0.0)
F79651-01
December 2024

Oracle Fusion Middleware Integrating Oracle Coherence, 14c (14.1.2.0.0)

F79651-01

Copyright © 2008, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Documents vii

Conventions vii

1 Using JPA with Coherence

Overview of the JPA CacheStore and CacheLoader Implementations 1-1

Obtaining a JPA Provider Implementation 1-2

Configuring a Coherence JPA Cache Store 1-2

Mapping the Persistent Classes 1-3

Configuring JPA 1-3

Configuring a Coherence Cache for JPA 1-3

Configuring the Persistence Unit 1-5

2 Integrating with Oracle Coherence GoldenGate HotCache

About Oracle Coherence GoldenGate HotCache 2-2

How Does HotCache Work 2-3

Overview of How HotCache Works 2-4

How the GoldenGate Java Delivery Adapter Uses JPA Mapping Metadata 2-5

Supported Database Operations 2-6

JPA Relationship Support 2-6

Prerequisites 2-6

Configuring GoldenGate 2-7

Monitor Table Changes 2-7

Filter Changes Made by the Current User 2-8

Configuring HotCache 2-9

Create a Properties File with GoldenGate for Java Properties 2-9

Add JVM Boot Options to the Properties File 2-11

Java Classpath Files 2-11

HotCache-related Properties 2-12

iii

Coherence-related Properties 2-12

Logging Properties 2-12

Provide Coherence*Extend Connection Information 2-12

Configuring the GoldenGate Big Data Java Delivery Adapter 2-14

Edit the HotCache Replicat Parameter File 2-14

Configuring the Coherence Cache Servers 2-14

Using Portable Object Format with HotCache 2-15

Configuring HotCache JPA Properties 2-16

EnableUpsert Property 2-16

HonorRedundantInsert Property 2-17

SyntheticEvent Property 2-17

eclipselink.cache.shared.default Property 2-18

Warming Caches with HotCache 2-18

Create and Run an Initial Load Extract 2-18

Create and Run a Cache Warmer Replicat 2-18

Capturing Changed Data While Warming Caches 2-20

Implementing High Availability for HotCache 2-20

Support for Oracle Data Types 2-21

Support for SDO_GEOMETRY 2-21

Support for XMLType 2-22

Configuring Multi-Threading in HotCache 2-23

Managing HotCache 2-24

CoherenceAdapterMXBean 2-25

Understanding the HotCache Report 2-26

Monitoring HotCache Using the Coherence VisualVM Plug-In 2-28

3 Integrating Hibernate and Coherence

4 Integrating Coherence Applications with Coherence*Web

Merging Coherence Cache and Session Information 4-1

5 Using Memcached Clients with Oracle Coherence

Overview of the Oracle Coherence Memcached Adapter 5-1

Setting Up the Memcached Adapter 5-2

Define the Memcached Adapter Socket Address 5-2

Define Memcached Adapter Proxy Service 5-3

Connecting to the Memcached Adapter 5-4

Securing Memcached Client Communication 5-4

Performing Memcached Client Authentication 5-5

iv

Performing Memcached Client Authorization 5-5

Sharing Data Between Memcached and Coherence Clients 5-5

Configuring POF for Memcached Clients 5-6

Create a Memcached Client that Uses POF 5-7

6 Integrating Spring with Coherence

7 Integrating Micronaut with Coherence

8 Using Kubernetes with Coherence

9 Using Coherence MicroProfile Configuration

Enabling the Use of Coherence MicroProfile Configuration 9-1

Configuring Coherence Using MP Configuration 9-2

Using Coherence Cache as a Configuration Source 9-3

Examples Using Helidon MicroProfile with Coherence 9-4

10

Using Coherence MicroProfile Health

Enabling the Use of Coherence MP Health 10-1

11

Using Coherence MicroProfile Metrics

Enabling the Use of Coherence MP Metrics 11-1

Coherence Global Tags 11-1

12

Enabling ECID in Coherence Logs

v

Preface

Integrating Oracle Coherence describes how to integrate Oracle Coherence with
Coherence*Web, EclipseLink JPA, Hibernate, Spring, memcached adapters, and Coherence
GoldenGate HotCache.

This preface includes the following sections:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This guide is for software developers and architects who will be integrating Coherence with
TopLink-Grid, JPA, Hibernate, Spring, memcached adapters, and Coherence GoldenGate
HotCache.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://support.oracle.com/portal/ or visit Oracle
Accessibility Learning and Support if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Related Documents
For more information about Oracle Coherence, see the following:

• Installing Oracle Coherence

• Release Notes for Oracle Coherence

• Managing Oracle Coherence

• Developing Applications with Oracle Coherence

• Developing Oracle Coherence Applications for Oracle WebLogic Server

• Securing Oracle Coherence

• Integrating Oracle Coherence

• Administering HTTP Session Management with Oracle Coherence*Web

• Developing Remote Clients for Oracle Coherence

• Java API Reference for Oracle Coherence

• C++ API Reference for Oracle Coherence

• .NET API Reference for Oracle Coherence

• REST API for Managing Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

1
Using JPA with Coherence

Coherence provides native, entity-based implementations of the CacheStore and CacheLoader
interfaces that use the Java Persistence API (JPA) to load and store objects to a database.
Before using JPA with Coherence, you should be familiar with the CacheStore and
CacheLoader interfaces. These interfaces are used to cache data sources. See Caching Data
Sources.

Note:

Only resource-local and bootstrapped entity managers can be used with Coherence
and JPA. Container-managed entity managers and those that use Java Transaction
Architecture (JTA) transactions are not currently supported.

This chapter includes the following sections:

• Overview of the JPA CacheStore and CacheLoader Implementations

• Obtaining a JPA Provider Implementation
A JPA provider allows you to work directly with Java objects, rather then with SQL
statements. You map, store, update and retrieve data, and the provider performs the
translation between database entities and Java objects.

• Configuring a Coherence JPA Cache Store
Using JPA with Coherence requires configuring persistence properties and defining a
cache that uses the JpaCacheStore implementation.

Overview of the JPA CacheStore and CacheLoader
Implementations

Oracle Coherence provides two implementations of the CacheStore and CacheLoader
interfaces which can be used with JPA: a generic JPA implementation and an EclipseLink-
specific implementation. For both implementations, the entities must be mapped to the data
store and a JPA persistence unit configuration must exist. A JPA persistence unit is defined as
a logical grouping of user-defined entity classes that can be persisted and their settings. The
JPA run-time configuration file, persistence.xml, and the default JPA Object-Relational
mapping file, orm.xml, are typically provided as part of a JPA solution.
Table 1-1 describes the JPA implementations provided by Coherence.

1-1

Table 1-1 JPA-Related CacheStore and CacheLoader API Included with Coherence

Class Name Location Description

JpaCacheStore COHERENCE_HOME\lib\cohe
rence-jpa.jar

A JPA implementation of the Coherence CacheStore
interface. Use this class as a full load and store
implementation. It can use any JPA implementation to load
and store entities to and from a data store.

Note: The persistence unit is assumed to be set to use
RESOURCE_LOCAL transactions.

JpaCacheLoader A JPA implementation of the Coherence CacheLoader
interface. Use this class as a load-only implementation. It can
use any JPA implementation to load entities from a data
store.

Use the JpaCacheStore class for a full load and store
implementation.

EclipseLinkJPACacheStor
e

ORACLE_HOME\oracle_comm
on\modules\oracle.topli
nk\toplink-grid.jar

An EclipseLink specific JPA implementation of the
Coherence CacheStore interface. This implementation is
intended to be used where the application uses Coherence
directly and the cache store and loader is used behind the
scene to persist and load data.

Note: To use this implementation, make sure no cache
interceptors or query redirectors from the EclipseLink-
Coherence integration are set within the persistence unit for
the specific class.

EclipseLinkJPACacheLoad
er

An EclipseLink specific JPA implementation of the
Coherence CacheLoader interface.

Note: To use this implementation, make sure no cache
interceptors or query redirectors from the EclipseLink-
Coherence integration are set within the persistence unit for
the specific class.

Obtaining a JPA Provider Implementation
A JPA provider allows you to work directly with Java objects, rather then with SQL statements.
You map, store, update and retrieve data, and the provider performs the translation between
database entities and Java objects.

Oracle recommends using EclipseLink JPA– the reference implementation for the JPA 2.0
specification and also the JPA provider used in Oracle TopLink. EclipseLink provides a high-
performance JPA implementation with many advanced features for caching, threading, and
overall performance.

The EclipseLink JAR files (eclipselink.jar) is included in the Coherence installation and can
be found in the ORACLE_HOME\oracle_common\modules\oracle.toplink folder.

Configuring a Coherence JPA Cache Store
Using JPA with Coherence requires configuring persistence properties and defining a cache
that uses the JpaCacheStore implementation.

This section includes the following topics:

• Mapping the Persistent Classes

Chapter 1
Obtaining a JPA Provider Implementation

1-2

• Configuring JPA

• Configuring a Coherence Cache for JPA

• Configuring the Persistence Unit

Mapping the Persistent Classes
Map the entity classes to the database. This will allow you to load and store objects through
the JPA cache store. JPA mappings are standard, and can be specified in the same way for all
JPA providers.

You can map entities either by annotating the entity classes or by adding an orm.xml or other
XML mapping file. See the JPA provider documentation for more information about how to map
JPA entities.

Configuring JPA
Edit the persistence.xml file to create the JPA configuration. This file contains the properties
that dictate run-time operation.

Set the transaction type to RESOURCE_LOCAL and provide the required JDBC properties for your
JPA provider (such as driver, url, user, and password) with the appropriate values for
connecting and logging into your database. List the classes that are mapped using JPA
annotations in <class> elements. Example 1-1 illustrates a sample persistence.xml file with
the typical properties that you can set.

Example 1-1 Sample persistence.xml File for JPA

<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance" version="1.0"
xmlns="http://java.sun.com/xml/ns/persistence">
<persistence-unit name="EmpUnit" transaction-type="RESOURCE_LOCAL">
 <provider>
 org.eclipse.persistence.jpa.PersistenceProvider
 </provider>
 <class>com.oracle.coherence.handson.Employee</class>
 <properties>
 <property name="eclipselink.jdbc.driver"
value="oracle.jdbc.OracleDriver"/>
 <property name="eclipselink.jdbc.url"
value="jdbc:oracle:thin:@localhost:1521:XE"/>
 <property name="eclipselink.jdbc.user" value="scott"/>
 <property name="eclipselink.jdbc.password" value="tiger"/>
 </properties>
</persistence-unit>
</persistence>

Configuring a Coherence Cache for JPA
Create a coherence-cache-config.xml file to override the default Coherence settings and
define a caching scheme. The caching scheme includes a <cachestore-scheme> element that
lists the JPA implementation class and includes the following parameters.

• The entity name of the entity being stored. Unless it is explicitly overridden in JPA, this is
the unqualified name of the entity class. Example 1-2 uses the built-in Coherence macro
{cache-name} that translates to the name of the cache that is constructing and using the
cache store. This works because a separate cache must be used for each type of

Chapter 1
Configuring a Coherence JPA Cache Store

1-3

persistent entity and Coherence ensures that the name of each cache is set to the name of
the entity that is being stored in it.

• The fully qualified name of the entity class. If the classes are all in the same package and
use the default JPA entity names, then you can again use the {cache-name} macro for the
part that is variable across the different entity types. In this way, the same caching scheme
can be used for all of the entities that are cached within the same persistence unit.

• The persistence unit name. This should be the same as the name specified in the
persistence.xml file.

The various named caches are then directed to use the JPA caching scheme. Example 1-2 is a
sample coherence-cache-config.xml file that defines a cache named Employee that caches
instances of the Employee class. The cache is configured to use the JpaCacheStore
implementation. To define additional entity caches for more classes, add more <cache-
mapping> elements to the file.

Example 1-2 Assigning Named Caches to a JPA Caching Scheme

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <!-- Set the name of the cache to be the entity name. -->
 <cache-name>Employee</cache-name>
 <!-- Configure this cache to use the following defined scheme. -->
 <scheme-name>jpa-distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <distributed-scheme>
 <scheme-name>jpa-distributed</scheme-name>
 <service-name>JpaDistributedCache</service-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>
 <!- Define the cache scheme. -->
 <cachestore-scheme>
 <class-scheme>
 <class-name>
 com.tangosol.coherence.jpa.JpaCacheStore
 </class-name>
 <init-params>

 <!-- This param is the entity name. -->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>

 <!-- This param is the fully qualified entity class. -->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>com.acme.{cache-name}</param-value>
 </init-param>

 <!-- This param should match the value of the -->
 <!-- persistence unit name in persistence.xml. -->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>EmpUnit</param-value>

Chapter 1
Configuring a Coherence JPA Cache Store

1-4

 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

Configuring the Persistence Unit
When using a JPA cache store or loader implementation, configure the persistence unit to
ensure that no changes are made to entities when they are inserted or updated. Any changes
made to entities by the JPA provider are not reflected in the Coherence cache. This means that
the entity in the cache will not match the database contents. In particular, entities should not
use ID generation, for example, @GeneratedValue, to obtain an ID. IDs should be assigned in
application code before an object is put into Coherence. The ID is typically the key under which
the entity is stored in Coherence.

Optimistic locking (for example, @Version) should not be used because it might lead to the
failure of a database transaction commit transaction.

When using a JPA cache store or loader implementation, L2 (shared) caching should be
disabled in your persistence unit. See the documentation for your provider. In EclipseLink, this
can be specified on an individual entity with @Cache(shared=false) or as the default in the
persistence.xml file with the following property:

<property name="eclipselink.cache.shared.default" value="false"/>

Chapter 1
Configuring a Coherence JPA Cache Store

1-5

2
Integrating with Oracle Coherence
GoldenGate HotCache

Applications that use Coherence caches can leverage the Oracle Coherence GoldenGate
HotCache (HotCache) integration to allow external changes to a database to be propagated to
objects in Coherence caches.
A detailed description of Oracle GoldenGate is beyond the scope of this documentation. If you
are new to GoldenGate, install the appropriate Oracle GoldenGate for your database
environment. See the GoldenGate documentation library at Oracle GoldenGate for Big Data
21c.

In addition, see the following documents:

• Preparing the Database for Oracle GoldenGate in Using Oracle GoldenGate with Oracle
Database.

• Installing Oracle GoldenGate Classic for Big Data in Installing and Upgrading Oracle
GoldenGate for Big Data.

• Oracle GoldenGate Java Delivery in Administering Oracle GoldenGate for Big Data.

• Configuring Java Delivery documents in the Oracle GoldenGate for Big Data 21c
documentation library.

Note:

To use HotCache, you must have licenses for Oracle GoldenGate and Coherence
Grid Edition. A HotCache Extend Client can be used with Oracle GoldenGate for Big
Data 12c/19c and run with Java 8. For a HotCache client running as a cluster
member, the cluster member must run with Java 17 or higher. The minimum release
of Oracle GoldenGate for Big Data that is certified to run with Java 17 is 21.11.0.0.0.
Oracle recommends that you use the latest available patch. Examples of configuring
Oracle GoldenGate scripts and properties in this chapter refer to Oracle GoldenGate
for Oracle Database and Oracle GoldenGate for Big Data 21c.

This chapter includes the following sections:

• About Oracle Coherence GoldenGate HotCache

• How Does HotCache Work

• Prerequisites

• Configuring GoldenGate

• Configuring HotCache

• Configuring the GoldenGate Big Data Java Delivery Adapter

• Configuring the Coherence Cache Servers

• Using Portable Object Format with HotCache

• Configuring HotCache JPA Properties

2-1

https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/index.html
https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/index.html
https://docs.oracle.com/en/middleware/goldengate/big-data/21.1/java-delivery.html

• Warming Caches with HotCache

• Implementing High Availability for HotCache

• Support for Oracle Data Types

• Configuring Multi-Threading in HotCache

• Managing HotCache

About Oracle Coherence GoldenGate HotCache
Third-party updates to the database can cause Coherence applications to work with data which
could be stale and out-of-date. HotCache solves this problem by monitoring the database and
pushing any changes into the Coherence cache. HotCache employs an efficient push model
which processes only stale data. Low latency is assured because the data is pushed when the
change occurs in the database.
HotCache can be added to any Coherence application. Standard JPA is used to capture the
mappings from database data to Java objects. The configuration can be captured in XML
exclusively or in XML with annotations.

The following scenario describes how HotCache could be used to work with the database and
with applications that use Coherence caches. Figure 2-1 illustrates the scenario.

1. Start GoldenGate Extract, also referred to as Capture. GoldenGate monitors the
transaction log for changes of interest. These changes will be placed into a "trail file". See
GoldenGate Extract in the Oracle GoldenGate Microservices Documentation.

2. Start the Coherence cache server and warm the cache, if required.

3. Start HotCache so that it can propagate changes in the trail file into the cache. If changes
occur during cache warming, then they will be applied to the cache once HotCache is
started so no changes are lost.

4. Start an application client. As part of its operation, assume that the application performs
repeated queries on the cache.

5. A third-party application performs a direct database update.

6. GoldenGate detects the database change which is then propagated to the Coherence
cache by HotCache.

7. The application client detects the change in cache.

Chapter 2
About Oracle Coherence GoldenGate HotCache

2-2

Figure 2-1 How HotCache Propagates Database Changes to the Cache

7

5 2

3

1

Application
Client

Coherence Coherence
GoldenGate
HotCache

GoldenGate
Java Client

Cache
Warmer

GoldenGate
Database

3rd Party
Application

Query Put

Monitor

4

6

Put

Query
Insert
Event

Insert

How Does HotCache Work
Before implementing a HotCache solution, take some time to understand HotCache
fundamentals and supported features.
This section includes the following topics:

• Overview of How HotCache Works

• How the GoldenGate Java Delivery Adapter Uses JPA Mapping Metadata

• Supported Database Operations

• JPA Relationship Support

Chapter 2
How Does HotCache Work

2-3

Overview of How HotCache Works
HotCache processes database change events delivered by GoldenGate and maps those
changes onto the affected objects in the Coherence cache. It is able to do this through the use
of Java Persistence API (JPA) mapping metadata. JPA is the Java standard for object-
relational mapping in Java and it defines a set of annotations (and corresponding XML) that
describe how Java objects are mapped to relational tables. As Example 2-1 illustrates,
instances of an Employee class could be mapped to rows in an EMPLOYEE table with the
following annotations.

Example 2-1 Mapping Instances of Employee Class to Rows with Java Code

@Entity
@Table(name="EMPLOYEE")
Public class Employee {
 @Id
 @Column(name="ID")
 private int id;
 @Column(name="FIRSTNAME")
 private String firstName;
…
}

The @Entity annotation marks the Employee class as being persistent and the @Id annotation
identifies the id field as containing its primary key. In the case of Coherence cached objects,
the @Id field must also be the key under which the object is cached. The @Table and @Column
annotations associate the class with a named table and a field with a named column,
respectively.

For simplification, JPA assumes a number of default mappings such as table name=class
name and column name=field name so many mappings need only be specified when the
defaults are not correct. In Example 2-1, both the table and field names match the Java names
so the @Table and @Column can be removed to make the code more compact, as illustrated in
Example 2-2.

Example 2-2 Simplified Java Code for Mapping Instances of Employee Class to Rows

@Entity
Public class Employee {
 @Id
 private int id;
 private String firstName;
…
}

Note that the Java code in the previous examples can also be expressed as XML. Example 2-3
illustrates the XML equivalent of the Java code in Example 2-1.

Example 2-3 Mapping Instances of Employee Class to Rows with XML

<entity class="Employee">
 <table name="EMPLOYEE"/>
 <attributes>
 <id name="id">
 <column name="ID"/>
 </id>
 <basic name="firstName"/>
 <column name="FIRSTNAME"/>
 </basic>

Chapter 2
How Does HotCache Work

2-4

 ...
 </attributes>
</entity>

Similarly, Example 2-4 illustrates the XML equivalent for the simplified Java code in
Example 2-2.

Example 2-4 Simplified XML for Mapping Instances of Employee Class to Rows

<entity class="Employee">
 <attributes>
 <id name="id"/>
 <basic name="firstName"/>
 ...
 </attributes>
</entity>

How the GoldenGate Java Delivery Adapter Uses JPA Mapping Metadata
JPA mapping metadata provides mappings from object to relational; however, it also provides
the inverse relational to object mappings which HotCache can use. Given the Employee
example, consider an update to the FIRSTNAME column of a row in the EMPLOYEE table.
Figure 2-2 illustrates the EMPLOYEE table before the update, where the first name John is
associated with employee ID 1, and the EMPLOYEE table after the update where first name Bob
is associated with employee ID 1.

Figure 2-2 EMPLOYEE Table Before and After an Update

With GoldenGate monitoring changes to the EMPLOYEE table and HotCache configured on the
appropriate trail file, the adapter processes an event indicating the FIRSTNAME column of the
EMPLOYEE row with primary key 1 has been changed to Bob. The adapter will use the JPA
mapping metadata to first identify the class associated with the EMPLOYEE table, Employee, and
then determine the column associated with an Employee's ID field, ID. With this information, the

Chapter 2
How Does HotCache Work

2-5

adapter can extract the ID column value from the change event and update the firstName field
(associated with the FIRSTNAME column) of the Employee cached under the ID column value.

Supported Database Operations
Database INSERT, UPDATE, and DELETE operations are supported by the GoldenGate Java
Delivery Adapter. INSERT operations into a mapped table result in the addition of a new
instance of the associated class populated with the data from the newly inserted row. Changes
applied through an UPDATE operation are propagated to the corresponding cached object. If the
cache does not contain an object corresponding to the updated row, then the cache is
unchanged by default. To change the default behavior, see EnableUpsert Property. A DELETE
operation results in the removal of the corresponding object from the cache, if one exists.

JPA Relationship Support
HotCache does not support the JPA relationship mappings one-to-one, one-to-many, many-to-
one, and many-to-many. However HotCache does support JPA embeddable classes and JPA
element collections. Embeddable classes and element collections can be used with HotCache
to model relationships between domain objects. Domain objects used with HotCache may also
refer to each other by an identifier (analogous to foreign keys in a relational database).

As a performance optimization, when using JPA element collections with HotCache, it is
suggested to configure GoldenGate with an ADD TRANDATA command specifying the column in
the element collection table that is the foreign key to the parent table. The optimization allows
HotCache to efficiently find the cache entry to update when a row in the element collection
table changes.

Prerequisites
Ensure that you complete the prerequisites prior to using Oracle Coherence GoldenGate
HotCache. The instructions assume that you have set up your database to work with
GoldenGate.
Setting up a database includes:

• creating a database and tables

• granting user permissions

• enabling logging

• provisioning the tables with data

Example 2-5 illustrates a list of sample commands for the Oracle Database that creates a user
named csdemo and grants user permissions to the database.

Note the ALTER DATABASE ADD SUPPLEMENTAL LOG DATA command. When supplemental logging
is enabled, all columns are specified for extra logging. At the very least, minimal database-level
supplemental logging must be enabled for any change data capture source database. If the
values of primary key columns in a database table can change, it is important to include the
following commands for Oracle Database: ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
(PRIMARY KEY) COLUMNS; and ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE)
COLUMNS;.

Example 2-5 Sample Commands to Create a User, Grant Permissions, and Enable
Logging

CREATE USER csdemo IDENTIFIED BY csdemo;
GRANT DBA TO csdemo;

Chapter 2
Prerequisites

2-6

grant alter session to csdemo;
grant create session to csdemo;
grant flashback any table to csdemo;
grant select any dictionary to csdemo;
grant select any table to csdemo;
grant select any transaction to csdemo;
grant unlimited tablespace to csdemo;
ALTER SYSTEM SET ENABLE_GOLDENGATE_REPLICATION=TRUE;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

The instructions also assume that you have installed Oracle GoldenGate and started the
manager. This includes the following tasks:

• downloading and installing Oracle GoldenGate

• running ggsci to create the GoldenGate subdirectories

• creating a manager parameter (mgr.prm) file, specifying the listener port

• adding JVM libraries to the libraries path

• starting the manager

A detailed description of these tasks is beyond the scope of this documentation. See:

• Installing Oracle GoldenGate in the Oracle GoldenGate Microservices Documentation.

• Installing Oracle GoldenGate for Big Data in Installing and Upgrading Oracle GoldenGate
for Big Data.

• Configuring Oracle GoldenGate for Oracle Database in the Oracle GoldenGate
Microservices Documentation.

• Oracle GoldenGate Java Delivery in Administering Oracle GoldenGate for Big Data.

Configuring GoldenGate
Updating a cache from a GoldenGate trail file requires configuring GoldenGate and HotCache.
You then enable HotCache by configuring the GoldenGate Java Delivery.

Note:

The sample scripts provided in this section are intended only to be introductory. For a
comprehensive list of configuration tasks, see Configuring Oracle GoldenGate for
Oracle in the Oracle GoldenGate Microservices Documentation and Getting Started
with Oracle GoldenGate (Classic) for Big Data in Using Oracle GoldenGate for Big
Data.

This section includes the following topics:

• Monitor Table Changes

• Filter Changes Made by the Current User

Monitor Table Changes
Indicate the table that you want to monitor for changes by using the ADD TRANDATA command.
The ADD TRANDATA command can be used on the command line or as part of a ggsci script. For
example, to monitor changes to tables in the csdemo schema, use the following command:

Chapter 2
Configuring GoldenGate

2-7

ADD TRANDATA csdemo.*

Sample GoldenGate Capture ggsci Script to Monitor Table Changes illustrates a sample ggsci
script named cs-cap.ggsci.

• The script starts the manager and logs into the database. It stops and deletes any running
extract named cs-cap.

• The ADD TRANDATA command instructs the extract that tables named csdemo* should be
monitored for changes.

• The SHELL command deletes all trail files in the dirdat directory to ensure that if the
extract is being recreated, there will be no old trail files. Note that the rm -f command is
platform-specific. An extract named cs-cap is created using parameters from the
dirprm/cs-cap.prm file. A trail is added at dirdat/cs from the extract cs-cap file.

• The start command starts the cs-cap.ggsci script.

• The ADD EXTRACT command automatically uses the cs-cap.prm file as the source of
parameters, so a PARAMS dirprm/cs-cap.prm, statement is not necessary.

Example 2-6 Sample GoldenGate Capture ggsci Script to Monitor Table Changes

start mgr
DBLOGIN USERID csdemo, PASSWORD csdemo
STOP EXTRACT cs-cap
DELETE EXTRACT cs-cap
ADD TRANDATA csdemo.*
ADD EXTRACT cs-cap, integrated tranlog, begin now
SHELL rm -f dirdat/cs*
ADD EXTTRAIL dirdat/cs, EXTRACT cs-cap
start cs-cap

Filter Changes Made by the Current User
Configure GoldenGate to ignore changes made by the user that the Coherence CacheStores
are logged in as. This avoids GoldenGate processing any changes made to the database by
Coherence that are already in the cache.

The TranLogOptions excludeUSER command can be used on the command line or in a ggsci
script. For example, the following command instructs GoldenGate extract process to ignore
changes to the database tables made by the Coherence CacheStore user logged in as csdemo.

TranLogOptions excludeUser csdemo

Sample Extract .prm File for the GoldenGate Capture illustrates a sample extract .prm file
named cs-cap.prm. The user that the Coherence CacheStore is logged in as is csdemo. The
EXTRAIL parameter identifies the trail as dirdat/cs. The BR BROFF parameter controls the
Bounded Recovery (BR) feature. The BROFF value turns off Bounded Recovery for the run and
for recovery. The GETUPDATEBEFORES parameter indicates that the before images of updated
columns are included in the records that are processed by Oracle GoldenGate. The TABLE
parameter identifies csdemo.* as the tables that should be monitored for changes. The
TranLogOptions excludeUSER parameter indicates that GoldenGate should ignore changes to
the tables made by the Coherence CacheStore user logged in as csdemo.

Chapter 2
Configuring GoldenGate

2-8

Note:

The OverwriteMode option is not applicable in Oracle GoldenGate for Big Data.

Example 2-7 Sample Extract .prm File for the GoldenGate Capture

EXTRACT cs-cap
USERID csdemo, PASSWORD csdemo
LOGALLSUPCOLS
UPDATERECORDFORMAT COMPACT
EXTTRAIL dirdat/cs
BR BROFF
getUpdateBefores
TABLE csdemo.*;
TranLogOptions excludeUser csdemo --ignore changes made by csuser

For details on available configuration options for capture, see Extract in the Oracle GoldenGate
Microservices Documentation.

Configuring HotCache
HotCache is configured with system properties, EclipseLink JPA mapping metadata, and a JPA
persistence.xml file. See How Does HotCache Work. The connection from HotCache to the
Coherence cluster can be made by using Coherence*Extend (TCP), or the HotCache JVM can
join the Coherence cluster as a member.
The following sections describe the properties needed to configure HotCache and provide
details about connecting with Coherence*Extend:

• Create a Properties File with GoldenGate for Java Properties

• Add JVM Boot Options to the Properties File

• Provide Coherence*Extend Connection Information

Create a Properties File with GoldenGate for Java Properties
Create a text file with the filename extension .properties. In the file, enter the configuration
for HotCache. A minimal configuration should contain the list of event handlers and the fully-
qualified Java class of the event handler.

Note:

The path to the .properties file must be set in the HotCache replicat TARGETDB
parameter in a .prm file, for example:

TARGETDB LIBFILE libggjava.so SET property=/home/oracle/gg/hotcache.properties

See Edit the HotCache Replicat Parameter File.

Example 2-8 illustrates a .properties file that contains the minimal configuration for a
HotCache project. The following properties are used in the file:

Chapter 2
Configuring HotCache

2-9

• gg.handlerlist=hotcache
The gg.handlerlist property specifies a comma-separated list of active handlers. This
example defines the logical name hotcache as database change event handler. The name
of a handler can be defined by the user, but it must match the name used in the
gg.handler.{name}.type property in the following bullet.

• gg.handler.hotcache.type=[oracle.toplink.goldengate.CoherenceAdapter|
oracle.toplink.goldengate.CoherenceAdapter1220]
The gg.handler.{name}.type property defines the handler for HotCache. The {name} field
should be replaced with the name of an event handler listed in the gg.handlerlist
property. The only handlers that can be set for HotCache are
oracle.toplink.goldengate.CoherenceAdapter or
oracle.toplink.goldengate.CoherenceAdapter1220. Use
oracle.toplink.goldengate.CoherenceAdapter1220 with GoldenGate Application
Adapters release 12.2.0 or later. Use oracle.toplink.goldengate.CoherenceAdapter
with GoldenGate Application Adapters releases earlier than 12.2.0.

• gg.classpath files

The following is a list of directories and JAR files for gg.handler(s) and their dependencies.

– coherence-hotcache.jar - contains the Oracle Coherence GoldenGate HotCache
libraries.

– jakarta.persistence.jakarta.persistence-api.jar - contains the Java persistence
libraries.

– eclipselink.jar - contains the EclipseLink libraries

– jakarta.xml.bind-api.jar - contains the JAXB API

– jaxb-impl.jar - contains the JAXB implementation

– jaxb-xjc.jar - contains the JAXB Binding Compiler

– jaxb-core.jar - contains the old JAXB Core module

– ojdbc11.jar - contains the com.oracle.database.jdbc module for an Oracle
database

For non-Oracle databases, use the equivalent JDK 11 certified JDBC driver .jar for
your chosen database.

– toplink-grid.jar – contains the Oracle TopLink libraries required by HotCache.

– Domain classes – the JAR file or directory containing the user classes cached in
Coherence that are mapped with JPA for use in HotCache. Also, the Coherence
configuration files, persistence.xml file, and any orm.xml file.

There are many other properties that can be used to control the behavior of the GoldenGate
Java Delivery. See Java Delivery Properties in Administering Oracle GoldenGate for Big Data.

Example 2-8 .properties File for a HotCache Project

==
List of active event handlers
==
gg.handlerlist=hotcache

==
HotCache event handler
==
gg.handler.hotcache.type=oracle.toplink.goldengate.CoherenceAdapter1220

Chapter 2
Configuring HotCache

2-10

======================================
HotCache handler dependency jars
======================================
Set gg.classpath with following:
persistence unit name, application jar(s), directory containing coherence
configuration files,
$GGBD_HOME/dirprm, coherence.jar, coherence-hotcache, jar, eclipselink.jar,
jakarta.persistence.jakarta.persistence-api.jar, and toplink-grid.jar from a
Coherence
installation, as well as a JDBC driver jar for your database.
gg.classpath=<list of jars and directories separated by OS specific classpath separator>

======================================
Options for HotCache JVM
======================================
jvm.bootoptions=-Djava.class.path=dirprm:ggjava/ggjava.jar -Xmx512M -Xms32M -
Dtoplink.goldengate.persistence-unit=employee -Dcoherence.distributed.localstorage=false
-Dcoherence.cacheconfig=/home/oracle/cgga/workspace/CacheStoreDemo/client-cache-
config.xml

Note that if you are using a windows machine, you need to replace the : with a ; for
both gg.classpath and java.class.path.

Add JVM Boot Options to the Properties File
This section describes the properties that must appear in the JVM boot options section of
the .properties file. These options are defined by using the jvm.bootoptions property. A
sample jvm.bootoptions listing is illustrated in JVM boot options section of Example 2-8.

This section includes the following topics:

• Java Classpath Files

• HotCache-related Properties

• Coherence-related Properties

• Logging Properties

Java Classpath Files
The following is a list of directories and JAR files that should be included in the
java.class.path property.

• ggjava.jar – contains the GoldenGate Java Delivery Adapter libraries

• dirprm – the GoldenGate dirprm directory

Note:

The dirprm directory is included here since it could include custom logging
properties file required for logging initialization that occurs before gg.classpath
is added to classloader. This directory can be moved to gg.classpath if it does
not include any logging property or jar files. See Configuring Java Delivery.

Chapter 2
Configuring HotCache

2-11

HotCache-related Properties
The toplink.goldengate.persistence-unit property is required as it identifies the
persistence unit defined in persistence.xml file that HotCache should load. The persistence
unit contains information such as the list of participating domain classes, configuration options,
and optionally, database connection information.

The toplink.goldengate.on-error property is optional. It controls how the adapter responds
to errors while processing a change event. This response applies to both expected optimistic
lock exceptions and to unexpected exceptions. This property is optional, as its value defaults to
"Refresh". Refresh causes the adapter to attempt to read the latest data for a given row from
the database and update the corresponding object in the cache. Refresh requires a database
connection to be specified in the persistence.xml file. This connection will be established
during initialization of HotCache. If a connection cannot be made, then an exception is thrown
and HotCache will fail to start.

The other on-error strategies do not require a database connection. They are:

• Ignore—Log the exception only. The cache may be left with stale data. Depending on
application requirements and cache eviction policies this may be acceptable.

• Evict—Log a warning and evict the object corresponding to the change database row
from the cache

• Fail—Throw an exception and exit HotCache

Coherence-related Properties
Any Coherence property can be passed as a system property in the Java boot options. The
coherence.distributed.localstorage system property with a value of false is the only
Coherence property that is required to be passed in the Java boot options. Like all Coherence
properties, precede the property name with the -D prefix in the jvm.bootoptions statement, for
example:

-Dcoherence.distributed.localstorage=false

Logging Properties
To configure Java Delivery logging for Oracle GoldenGate for Big Data, see Logging Properties
in Administering Oracle GoldenGate for Big Data . In the Oracle GoldenGate for Big Data
installation directory, examples of logging properties files are available for jdk, logback, and
log4j2 under the AdapterExamples/java-delivery/sample-dirprm directory.

Provide Coherence*Extend Connection Information
The connection between HotCache and the Coherence cluster can be made with
Coherence*Extend. For more information on Coherence*Extend, see Developing Remote
Clients for Oracle Coherence.

The Coherence configuration files must be in a directory referenced by the gg.classpath entry
in the .properties file. For an example, see the gg.classpath files.

Example 2-9 illustrates the section of a client cache configuration file that uses
Coherence*Extend to connect to the Coherence cluster. In the client cache configuration file,
Coherence*Extend is configured in the <remote-cache-scheme> section. For additional options

Chapter 2
Configuring HotCache

2-12

for configuring a remote-cache-scheme, see Overview of Configuring Extend Clients in
Developing Remote Clients for Oracle Coherence.

Example 2-9 Coherence*Extend Section of a Client Cache Configuration File

<cache-config>
 ...
 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>CustomRemoteCacheScheme</scheme-name>
 <service-name>CustomExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 ...
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 ...
</cache-config>

Example 2-10 illustrates the section of a server cache configuration file that listens for
Coherence*Extend connections. In the server cache configuration file, Coherence*Extend is
configured in the <proxy-scheme> section. By default, the listener port for Coherence*Extend is
9099.

Example 2-10 Coherence*Extend Section of a Server Cache Configuration File

<cache-config>
 ...
 <caching-schemes>
 ...
 <proxy-scheme>
 <scheme-name>CustomProxyScheme</scheme-name>
 <service-name>CustomProxyService</service-name>
 <thread-count>2</thread-count>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address>localhost</address>
 <port>9099</port>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <load-balancer>proxy</load-balancer>
 <autostart>true</autostart>
 </proxy-scheme>

 </caching-schemes>
</cache-config>

Chapter 2
Configuring HotCache

2-13

Configuring the GoldenGate Big Data Java Delivery Adapter
The GoldenGate Java Delivery Adapter provides a way to process GoldenGate data change
events in Java by configuring an event handler class.The configuration for the GoldenGate
Java Delivery Adapter allows it to monitor an a trail file and to pass data change events to
HotCache. The configuration is provided in a replicat parameter and is described in this
section.
This section includes the following topic:

• Edit the HotCache Replicat Parameter File

Edit the HotCache Replicat Parameter File
This section describes the parameters that can be defined in the replicat .prm file for a
GoldenGate Big Data Java Delivery adapter. The parameters that are illustrated in
Example 2-11 constitute a minimal configuration for a HotCache project.

For details on creating a replicat parameter file, see Basic Parameters for Different Replicat
Modes in the Oracle GoldenGate Microservices Documentation.

• TARGETDB LIBFILE libggjava.so SET property=/home/oracle/gg/hotcache.properties
• GROUPTRANSOPS 1

The GROUPTRANSOPS parameter controls transaction grouping by the GoldenGate replicat
process. A value of 1 tells the GoldenGate replicat process to honor source database
transaction boundaries in the trail file. A value greater than 1 tells the GoldenGate replicat
process to group operations from multiple source database transactions into a single target
transaction. See GROUPTRANSOPS in Reference for Oracle GoldenGate for Windows
and UNIX.

• MAP scott.*, TARGET scott.*;
The MAP parameter tells the GoldenGate replicat process how to map source database
tables to the replication target. The parameter syntax assumes the replication target is a
relational database. For HotCache it is appropriate to specify an identical mapping. See
TABLE and MAP Options in Reference for Oracle GoldenGate.

Sample .prm Parameter File for a GoldenGate Big Data Java Delivery adapter illustrates a
sample .prm file for a GoldenGate Big Data Java Delivery adapter.

Example 2-11 Sample .prm Parameter File for a GoldenGate Big Data Java Delivery
adapter

REPLICAT hotcache
TARGETDB LIBFILE libggjava.so SET property=/home/user/project/hotcache.properties
GROUPTRANSOPS 1
GetUpdateBefores
MAP scott.*, TARGET scott.*;

Configuring the Coherence Cache Servers
You must modify the classpaths of all Coherence cache server JVMs that contain caches that
are refreshed by HotCache. Place the following JAR files, included in the Coherence
installation, on each cache server classpath:

• coherence-hotcache.jar – contains the Oracle Coherence GoldenGate HotCache
libraries.

Chapter 2
Configuring the GoldenGate Big Data Java Delivery Adapter

2-14

• jakarta.persistence.jakarta.persistence-api.jar – contains the Java persistence
libraries.

• eclipselink.jar – contains the EclipseLink libraries.

• jakarta.xml.bind-api.jar - contains the JAXB API.

• jaxb-impl.jar - contains the JAXB implementation.

• jaxb-xjc.jar - contains the JAXB Binding Compiler.

• jaxb-core.jar - contains the old JAXB Core module.

• toplink-grid.jar – contains the Oracle TopLink libraries required by HotCache.

• domain classes – the JAR file or directory containing the user classes cached in
Coherence that are mapped with JPA for use in HotCache.

Using Portable Object Format with HotCache
Serialization is the process of encoding an object into a binary format. It is a critical component
to working with Coherence as data must be moved around the network. Portable Object
Format (also known as POF) is a language-agnostic binary format. POF was designed to be
very efficient in both space and time and has become a cornerstone element in working with
Coherence. POF serialization can be used with HotCache but requires a small update to the
POF configuration file (pof-config.xml) to allow for HotCache and TopLink Grid framework
classes to be registered.
The pof-config.xml file must include the coherence-hotcache-pof-config.xml file and must
register the TopLinkGridPortableObject user type and TopLinkGridSerializer as the
serializer. The <type-id> for each class must be unique and must match across all cluster
instances. See Registering POF Objects in Developing Applications with Oracle Coherence.

The <allow-interfaces> element must be set to true to allow you to register a single class for
all implementors of the TopLinkGridPortableObject interface.

Example 2-12 illustrates a sample pof-config.xml file for HotCache. The value
integer_value represents a unique integer value greater than 1000.

Example 2-12 Sample POF Configuration File for HotCache

<?xml version='1.0'?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-hotcache-pof-config.xml</include>
 <!-- User types must be above 1000 -->
 ...
 <user-type>
 <type-id><integer_value></type-id>
 <class-
name>oracle.eclipselink.coherence.integrated.cache.TopLinkGridPortableObject</class-name>
 <serializer>
 <class-
name>oracle.eclipselink.coherence.integrated.cache.TopLinkGridSerializer</class-name>
 </serializer>
 </user-type>
 ...
 </user-type-list>

Chapter 2
Using Portable Object Format with HotCache

2-15

 <allow-interfaces>true</allow-interfaces>
 ...
</pof-config>

Configuring HotCache JPA Properties
You can customize HotCache using a number of custom JPA properties that can be configured
per JPA entity type. These properties can be configured either by an @Property annotation on
the JPA entity class or by a <property> element in the persistence.xml file. The latter takes
precedence in the event of conflicting configuration.
This section includes the following topics:

• EnableUpsert Property

• HonorRedundantInsert Property

• SyntheticEvent Property

• eclipselink.cache.shared.default Property

EnableUpsert Property
EnableUpsert

The EnableUpsert property controls whether HotCache inserts a cache entry when an update
operation is received in the GoldenGate trail file but no corresponding cache entry is present in
cache at the entity key. By default, HotCache ignores updates to absent entities. Set this
property to true if you want HotCache to insert missing entities into the cache when update
operations are received in the trail file. The default value of this property is false.

Setting this property to true can facilitate warming caches in an event-driven manner if it is
likely that entities will be accessed from the cache after their corresponding records are
updated in the underlying database.

Note:

There are risks to consider when using this property:

• The entity to insert is read from the database, as the trail file may not contain
values for all fields of the entity to be inserted. This can reduce the throughput of
the HotCache process by waiting on database reads.

• Cache capacity can be exhausted if more rows in the DB are updated than the
number of entities in the cache for which capacity was provisioned.

Entity Class Annotation

@Property(name = "EnableUpsert", value = "false",valueType = boolean.class)

Persistence XML Property

<property name="[fully qualified entity class name].EnableUpsert" value="[true|false]"/>

Chapter 2
Configuring HotCache JPA Properties

2-16

HonorRedundantInsert Property
HonorRedundantInsert

The HonorRedundantInsert property controls whether HotCache honors an insert operation in
the GoldenGate trail file when a cache entry at that key is already present. By default,
HotCache ignores a redundant insert operation. However, when a JPA entity is mapped to a
complex materialized view in Oracle Database and a row is updated in a table underlying that
materialized view (thus updating one or more rows of the materialized view), Oracle Database
inserts a new row into the materialized view with the same PK as an existing row but with a
new rowid and deletes the existing row. Therefore, HotCache sees a redundant insert
operation that really represents an update to the cached JPA entity. Users in this situation
should also consider suppressing replication of delete operations on that materialized view
through the use of GoldenGate configuration; otherwise, the cached entity is deleted by
HotCache. The default value of this property is false.

Entity Class Annotation

@Property(name = "HonorRedundantInsert", value = "false",valueType = boolean.class)

Persistence XML Property

<property name="[fully qualified entity class name].HonorRedundantInsert" value="[true|
false]"/>

SyntheticEvent Property
SyntheticEvent

The SyntheticEvent property controls whether cache writes by HotCache are synthetic or not.
Synthetic writes to Coherence caches do not trigger events in Coherence; they do not engage
Federated Caching; and they do not call Coherence CacheStore implementations. Set this
property to false for a JPA entity class if you want cache writes by HotCache for that class to
be non-synthetic so that events are triggered, Federated Caching is engaged, and CacheStore
implementations are called (if any of those are configured for the entity class cache). The
default value of this property is true for every entity class.

Note:

There is a risk of infinite replication loops if the SyntheticEvent is set to true for an
entity class and a CacheStore implementation is configured on that entity class cache
and writing to the same database HotCache is replicating to Coherence. This risk can
be mitigated by filtering transactions by database user. See Filter Changes Made by
the Current User.

Entity Class Annotation

@Property(name = "SyntheticEvent", value = "[true|false]", valueType = boolean.class)

Persistence XML Property

<property name="[fully qualified entity class name].SyntheticEvent" value="[true|
false]"/>

Chapter 2
Configuring HotCache JPA Properties

2-17

eclipselink.cache.shared.default Property
eclipselink.cache.shared.default

The eclipselink.cache.shared.default property is used to enable the EclipseLink internal
shared cache. It is important to disable the internal shared cache in the HotCache JVM by
setting the property to false in the persistence.xml file.

Persistence XML Property

<property name=" eclipselink.cache.shared.default" value="false"/>

Warming Caches with HotCache
HotCache can be used to warm caches by loading an initial dataset. This approach eliminates
the need to write custom cache warming programs because it leverages GoldenGate and
HotCache for initial cache warming.
This section includes the following topics:

• Create and Run an Initial Load Extract

• Create and Run a Cache Warmer Replicat

• Capturing Changed Data While Warming Caches

Create and Run an Initial Load Extract
To create and run and initial load extract:

1. Create a GoldenGate extract parameter file named initload.prm as shown below and
save it to GG_HOME/dirprm. Note that the extract files cannot have filenames longer
than eight characters. A GoldenGate extract process that is run with this parameter file
selects records from the source database (as opposed to capturing changes from the
database’s transaction log) and writes them to a trail file in canonical format.

-- This is an initial load extract initload
-- SOURCEISTABLE parameter indicates source is a table, not redo logs
SOURCEISTABLE
USERID <user>, PASSWORD <password>
-- EXTFILE parameter indicates path and prefix of data files
-- Note: set MEGABYTES parameter to a maximum file size relative
-- to the amount of source data being extracted
EXTFILE GG_HOME/dirdat/IL, maxfiles 9999, MEGABYTES 5, PURGE
TABLE <schema>.*

2. Using the above extract parameters file, run a GoldenGate initial load extract process
directly from the command line as shown in the following example.

cd GG_HOME
extract paramfile GG_HOME/dirprm/initload.prm reportfile GG_HOME/dirrpt/initload.rpt

After running the extract process, there will be one or more trail files named IL0001, IL0002,
etc... in the GG_HOME/dirdat directory. If no files are generated, then review the
GG_HOME/dirrpt/initload.rpt file.

Create and Run a Cache Warmer Replicat
To create and run a cache warmer replicat:

Chapter 2
Warming Caches with HotCache

2-18

1. Create a GoldenGate replicat parameter file named warmcach.prm as shown in the
example below. A GoldenGate replicat process that is run with this parameter file reads the
initial load dataset from the trail files. See Create and Run an Initial Load Extract.

REPLICAT warmcach
TARGETDB LIBFILE libggjava.so SET property=/home/user/project/
warmcach.properties
MAP <schema>.*, TABLE <schema>.*

2. Since the replicat parameter file uses the GoldenGate Java Delivery Adapter, create a
corresponding warmcach.properties file in GGBD_HOME/dirprm as shown in the
example below.

#==
List of active event handlers
gg.handlerlist=hotcache
#==
HotCache handler
gg.handler.hotcache.type=oracle.toplink.goldengate.CoherenceAdapter1220
#==
Options for the HotCache gg.classpath.
gg.classpath=
Obviously the persistence unit name, classpath, and other
options will vary between users and environments. The gg.classpath
must include $GGBD_HOME/dirprm,
coherence.jar, coherence-hotcache, jar, eclipselink.jar,
jakarta.persistence.jakarta.persistence-api.jar, and toplink-grid.jar from a
Coherence
installation, as well as a JDBC driver jar for your database, the JAXB jars listed
in the Create a Properties File with GoldenGate for Java Properties section, and jar(s) with your
cache key and value classes in them.
and a jar with your cache key and value classes in it.
#==
Options for the HotCache JVM
Other system properties may override Coherence operational
configuration elements for cluster addresses and names,
paths to configuration files, etc. You may also wish to provide
non-default JVM heap sizes, logging configuration, etc.
jvm.bootoptions=-Djava.class.path=dirprm:ggjava/ggjava.jar -Xmx512M -Xms32M -
Dtoplink.goldengate.persistence-unit=pu_name -
Dcoherence.distributed.localstorage=false

3. Register the warmcach replicat process with the GoldenGate installation using the
GoldenGate GGSCI command-line interface as shown in the following example.

cd $GGBD_HOME
./ggsci
add replicat warmcach, exttrail GGBD_HOME/dirrpt/IL

The replicat parameter file and properties file above are used by the GoldenGate warmcach
process that reads the trail files created by the initial load extract process.

4. Run the GoldenGate warmcach replicat process by issuing the following commands through
the GoldenGate GGSCI command-line interface.

cd $GGBD_HOME
./ggsci
start mgr
start replicat warmcach

Chapter 2
Warming Caches with HotCache

2-19

After the warmcach replicat process has finished running, the contents of the initial load trail
files will have been transformed into JPA entities and put into Coherence caches.

5. Stop and unregister the warmcach replicat, using the following GGSCI commands.

stop replicat warmcach
delete replicat warmcach

Capturing Changed Data While Warming Caches
HotCache was developed to refresh Coherence caches as underlying database transactions
occur. Using HotCache for initial cache warming is an added benefit. It is possible to capture
changed data in the database while initial cache warming takes place and refresh Coherence
caches with that changed data by following a carefully sequenced procedure. The necessary
sequence of operations is as follows:

1. Start the normal source extract process that captures change data from the database’s
redo logs, but do not start the normal HotCache replicat process that refreshes Coherence
caches with that change data.

2. Start the initial load extract process to select the initial data set from the database.

3. Run the cache warming replicat process to warm Coherence caches with the initial data
set.

4. Verify that the initial load has completed correctly by comparing the number of rows
extracted from the database by GoldenGate (see initload.rpt) with the number of
entries in the target Coherence caches according to Coherence MBeans or command-line
interface commands.

5. Start the normal HotCache replicat process to refresh Coherence caches with change
data.

Implementing High Availability for HotCache
HotCache is a client of Coherence cache services and invokes the services to insert, update,
or evict cache entries in response to transactions in an underlying database. As a cache client,
HotCache can be configured either as a Coherence cluster member or as a Coherence*Extend
client connecting to a Coherence proxy service in the cluster.
In best-practice deployments, Coherence cache services and proxy services are already highly
available due to redundancy of service members (for example, multiple cache server
processes and multiple proxy server processes) and due to built-in automatic failover
capabilities within Coherence. For example, if a proxy server should fail, then
Coherence*Extend clients that are using the proxy server automatically fail over to another
proxy server. Likewise, if a cache server should fail then another cache server assumes
responsibility for its data and client interactions with that data automatically redirect to the new
cache server owning the data.

Making the HotCache client itself highly available relies on standard GoldenGate HA
techniques since the HotCache JVM runs embedded in a GoldenGate process.

GoldenGate implements “single server” HA through AUTOSTART and AUTORESTART
parameters enforced by the Manager process in a GoldenGate installation. The Manager
process automatically starts registered GoldenGate processes configured with AUTOSTART. It
also detects the death of (and automatically restarts), registered GoldenGate processes
configured with AUTORESTART.

Chapter 2
Implementing High Availability for HotCache

2-20

To protect against failure of the Manager process itself or the host on which it runs or the
network connecting that host, GoldenGate relies on Oracle Clusterware to detect the death of
the active GoldenGate installation and fail over to a passive GoldenGate installation.

Support for Oracle Data Types
HotCache uses EclipseLink as its JPA provider. It is reasonable to expect HotCache to support
Oracle-specific data types supported by EclipseLink. For example, EclipseLink supports data
types specific to Oracle Database, such as SDO_GEOMETRY from the Oracle Spatial and Graph
option for Oracle Database and XMLType in all Oracle Database editions.
It is important to understand that data is presented to EclipseLink differently when used in
HotCache than when used in the typical JPA scenario. In the typical JPA scenario, EclipseLink
interacts with the database through a JDBC connection and EclipseLink consumes data as
presented by the JDBC API and driver-specific extensions (for example an SDO_GEOMETRY
column is represented as an instance of java.sql.Struct). Whereas in HotCache, data is
read from a GoldenGate trail file; there is no JDBC connection involved. Therefore EclipseLink
consumes the GoldenGate representation of data as opposed to the JDBC representation of
data. For example, GoldenGate represents an SDO_GEOMETRY column as an XML document and
not as an instance of java.sql.Struct.

These differences in data representation may necessitate the use of HotCache-specific
EclipseLink converters when using EclipseLink within HotCache that take the place of standard
EclipseLink converters used in typical JPA scenarios. See @Converter in Java Persistence
API (JPA) Extensions Reference for EclipseLink. The following sections describe HotCache
support for specific Oracle Database data types supported by EclipseLink and how to configure
EclipseLink within HotCache to use those data types.

• Support for SDO_GEOMETRY

• Support for XMLType

Support for SDO_GEOMETRY
EclipseLink supports the Oracle Spatial and Graph option of Oracle Database by mapping
SDO_GEOMETRY columns to instances of oracle.spatial.geometry.JGeometry (the Java class
shipped with the Oracle Spatial and Graph option). See Using Oracle Spatial and Graph in
Solutions Guide for EclipseLink.

Therefore, HotCache supports mapping columns of type SDO_GEOMETRY to instances of
oracle.spatial.geometry.JGeometry bound to fields of JPA entities. This support requires
configuring a HotCache-specific EclipseLink Converter of class
oracle.toplink.goldengate.spatial.GoldenGateJGeometryConverter as shown in the
following example.

import jakarta.persistence.Access;
import jakarta.persistence.AccessType;
import jakarta.persistence.Convert;
import jakarta.persistence.Converter;
import jakarta.persistence.Entity;

import oracle.spatial.geometry.JGeometry;

import oracle.toplink.goldengate.spatial.GoldenGateJGeometryConverter;

@Entity

Chapter 2
Support for Oracle Data Types

2-21

https://www.eclipse.org/eclipselink/documentation/2.6/jpa/extensions/annotations_ref.htm#CHDEHJEB
http://www.eclipse.org/eclipselink/documentation/2.6/solutions/oracledb002.htm#CHDJBFIJ

@Converter(name=”JGeometry”, converterClass=
GoldenGateJGeometryConverter.class)
public class SpatialEntity {

 private JGeometry geometry;

 @Access(AccessType.PROPERTY)
 @Convert(“JGeometry”)
 public JGeometry getGeometry() {
 return geometry;
 }

This converter converts the GoldenGate XML representation of an SDO_GEOMETRY column into
an instance of oracle.spatial.geometry.JGeometry bound to a field of a JPA entity. The
GoldenGateJGeometryConverter class is contained in coherence-hotcache.jar which should
already be on the classpath of the HotCache JVM and Coherence cache server JVMs used in
HotCache deployments (along with the eclipselink.jar file on which it depends). However
the JGeometry class is contained in sdoapi.jar from an installation of Oracle Spatial and
Graph option. The sdoapi.jar file must be on the classpath of the HotCache JVM, and any
other JVM where the JPA entity containing a JGeometry field will be deserialized.

The oracle.spatial.geometry.JGeometry class implements java.io.Serializable, so JPA
entities with JGeometry fields cached in Coherence can be serialized with
java.io.Serializable without any additional configuration. To use Coherence’s Portable
Object Format (POF) to serialize a JPA entity with a JGeometry field, the JGeometrySerializer
must be added to the POF configuration file used in the Coherence deployment, as in the
following example.

<user-type>
 <type-id>1001</type-id><!—use a type-id value above 1000 that doesn’t
conflict with other POF type-ids-->
 <class-name>oracle.spatial.geometry.JGeometry</class-name>
 <serializer>
 <class-name>oracle.spatial.geometry.JGeometryPofSerializer</class-name>
 </serializer>
</user-type>

The oracle.spatial.geometry.JGeometryPofSerializer class is contained in coherence-
hotcache.jar, which must be on the classpath of any JVM that will serialize or deserialize a
JPA entity with a JGeometry field using POF.

Support for XMLType
EclipseLink supports the Oracle Database XMLType data type by mapping XMLType columns to
instances of java.lang.String or org.w3c.dom.Document (depending on the type of the
mapped field in the JPA entity). See DirectToXMLTypeMapping in EclipseLink API Reference
and Mapping XMLTYPE in the On Persistence blog.

Therefore, HotCache supports mapping columns of type XMLType to instances of
java.lang.String or org.w3c.dom.Document bound to fields of JPA entities. This support
requires configuring a standard EclipseLink DirectToXMLTypeMapping .

Chapter 2
Support for Oracle Data Types

2-22

https://www.eclipse.org/eclipselink/api/2.6/org/eclipse/persistence/mappings/xdb/DirectToXMLTypeMapping.html
http://onpersistence.blogspot.in/2011/08/mapping-xmltype.html

GoldenGate must be configured to use integrated capture mode for support of XMLType
columns. See Details of Support for Oracle Data Types and Objects in Using Oracle
GoldenGate with Oracle Database.

Configuring Multi-Threading in HotCache
HotCache can use multiple threads to apply trail file operations to Coherence caches. Multiple
threads can increase the throughput of a HotCache process as compared to using a single
thread to apply trail file operations. Before configuring multi-threading, evaluate whether
concurrently applying trail file operations poses data correctness risks in the Coherence
caches and the system using HotCache.
Transactions and their operations appear in the trail file in the order in which they were
committed in the source database. By default, HotCache applies operations one at a time on a
single thread to ensure the operations are applied to the cache in the exact same order in
which they were applied to the source database. When using multi-threading, operations can
be applied in a different order than that in which they were applied to the source database
tables and can result in correctness risks.

When determining the potential risk, consider the following examples:

• If one database transaction inserts a row in a table and the next database transaction
deletes that row, then applying operations out of order can leave an object in the cache
whose corresponding database row is deleted.

• If one database transaction updates a column to an older value and the next database
transaction updates that column to a newer value, then applying operations out of order
can leave the older value in the cached object instead of the newer value. (You can use
the JPA optimistic locking features, which are supported by HotCache, to mitigate this
particular update risk).

If you determine that using multiple threads to apply trail file operations to Coherence caches
poses no data correctness risks in the system using HotCache, then HotCache can be
configured to use multi-threading as follows:

1. Edit the GoldenGate Java Delivery Adapter properties file and configure the HotCache
event handler to use transaction mode:

gg.handlerlist=hotcache
goldengate.handler.hotcache.type=oracle.toplink.goldengate.CoherenceAdapter
1220
goldengate.handler.hotcache.mode=tx

By default, GoldenGate Java Delivery Adapter event handlers use operation mode. In
operation mode (op), event handlers process operations one at a time. In transaction mode
(tx), event handlers process all operations in a transaction at a time.

2. Edit the GoldenGate Java Delivery Adapter properties file and set the
coherence.hotcache.concurrency system property on the HotCache JVM with a value
between one and eight times the number of cores on the JVM host, inclusive (as reported
by java.lang.Runtime.getAvailableProcessors()). For example:

jvm.bootoptions=-Dcoherence.hotcache.concurrency=16 …

The value of this property determines the number of threads HotCache uses to
concurrently apply trail file operations to Coherence caches.

Chapter 2
Configuring Multi-Threading in HotCache

2-23

3. Edit the HotCache replicat .prm file and set the GROUPTRANOPS property. A value of 1
causes source database transaction boundaries to be honored. A value greater than 1
causes transaction grouping within the GoldenGate replicat. The default value is 1000.

Summary of Hot Cache Thread Behavior

Assuming HotCache is run in a GoldenGate replicat process as recommended, the risks
stemming from conflicting source database transactions only materialize if the GROUPTRANOPS
property is configured to a value other than one 1. A value of 1 causes the source database
transaction boundaries and sequencing to be honored by the HotCache replicat. Therefore, the
operations in one transaction are applied in parallel followed by the operations in the next
transaction and so on. The GROUPTRANOPS property default is 1000, which groups trail file
operations from multiple successive source database transactions into one target transaction
of at least 1,000 operations. The likelihood of data correctness risks materializing when the
GROUPTRANOPS parameter is set to greater than one is equivalent to the likelihood of conflicting
operations within the grouped source database transactions, given the magnitude of the
GROUPTRANOPS property value and the write rate and volume of the source database. See
GROUPTRANSOPS in Reference for Oracle GoldenGate for Windows and UNIX.

The following table summarizes the HotCache thread behavior depending on the values of the
GoldenGate Java Delivery Adapter mode property and the coherence.hotcache.concurrency
property.

Table 2-1 Hot Cache Thread Behavior

Mode Concurrency Behavior

op N/A In op mode, HotCache applies trail file operations one at a time on a
single thread (the GoldenGate Java Delivery Adapter thread) as each
operation is read from the trail file. This is the HotCache default
behavior. The value of the concurrency property is not considered in
operation mode.

tx 1 In tx mode with a concurrency property value of 1, HotCache iterates
and applies a transaction worth of trail file operations on a single thread
(the GoldenGate Java Delivery Adapter thread). The group of operations
comprising the transaction is determined by the value of the GoldenGate
replicat GROUPTRANOPS property. The default value of the concurrency
property is 1. This configuration may exhibit greater throughput than the
operation mode configuration, even though it is still single-threaded and
therefore poses no data correctness risks.

tx >1 In tx mode with a concurrency property value greater than 1, HotCache
applies a transaction worth of operations in parallel on multiple
HotCache threads. The group of operations comprising the transaction is
determined by the value of the GoldenGate replicat GROUPTRANOPS
property. This configuration should exhibit greater throughput than
single-threaded configurations and throughput generally increases with
the number of threads configured to a maximum of eight times the
number of cores on the HotCache host.

Managing HotCache
You can manage HotCache to ensure that cache update operations are performed within
acceptable time limits. HotCache uses JMX to collect management data, which is viewed using
either a JMX browser, a Coherence report, or the Coherence-Java VisualVM plug-in.
Management data includes statistics for the GoldenGate HotCache adapter as a whole in
addition to statistics for specific caches and operation types.

Chapter 2
Managing HotCache

2-24

This section includes the following topics:

• CoherenceAdapterMXBean

• Understanding the HotCache Report

• Monitoring HotCache Using the Coherence VisualVM Plug-In

CoherenceAdapterMXBean
The CoherenceAdapterMXBean MBean represents a Golden Gate HotCache adapter and
provides operational and performance statistics. Zero or more instances of this managed bean
are created: one managed bean instance for each adapter instance.

The object name of the MBean is:

Type=CoherenceAdapter,name=replicat name,member=member name

To view the CoherenceAdapterMXBean MBean from an MBean browser, you must enable
Coherence management. If you are new to Coherence JMX management, see Using JMX to
Manage Oracle Coherence.

Attributes

Table 2-2 describes the attributes for CacheMBean.

Table 2-2 CoherenceAdapterMXBean

Attribute Type Access Description

CacheNames String[] read-only The names of the caches that were refreshed by
the CoherenceAdapter

ExecutionTimePerOperationStatistics LongSumm
aryStati
stics

read-only Summary statistics about the execution time for
each operation in nanoseconds since the
statistics were last reset

ExecutionTimePerTransactionStatistics LongSumm
aryStati
stics

read-only Summary statistics about the execution time for
each transaction in nanoseconds since the
statistics were last reset

InvocationsPerOperationStatistics IntSumma
ryStatis
tics

read-only Summary statistics about the number of
invocations for each operation since the
statistics were last reset

LastExecutionTimePerOperationStatisti
cs

LongSumm
aryStati
stics

read-only Summary statistics about the execution time for
each operation in nanoseconds since this
method was last called

LastOperationReplicationLagStatistics LongSumm
aryStati
stics

read-only Summary statistics about operation replication
lag in milliseconds since this method was last
called

NumberOfOperationsProcessed Long read-only The aggregate number of operations processed
since the statistics were last reset

OperationReplicationLagStatistics LongSumm
aryStati
stics

read-only Summary statistics about operation replication
lag in milliseconds since the statistics were last
reset

OperationsPerTransactionStatistics IntSumma
ryStatis
tics

read-only Summary statistics about the number of
operations for each transaction since the
statistics were last reset

Chapter 2
Managing HotCache

2-25

Table 2-2 (Cont.) CoherenceAdapterMXBean

Attribute Type Access Description

PerCacheStatistics Map read-only Execution time summary statistics in
nanoseconds for each cache for each operation
type

StartTime Date read-only The time at which the CoherenceAdapter was
started

TrailFileName String read-only The name of the trail file currently being read

TrailFilePosition String read-only The position in the trail file of the last
successfully-processed operation

Operations

The CoherenceAdapterMXBean MBean includes a resetStatistics operation that resets all
cache statistics.

Understanding the HotCache Report
The HotCache report includes operational settings and performance statistics. The statistical
data is collected from the CoherenceAdapterMXBean MBean and presented over time making it
ideal for discovering performance trends and troubleshooting potential performance issues.
The name of the HotCache report is timestamp-hotcache.txt where the timestamp is in
YYYYMMDDHH format. For example, a file named 2009013101-hotcache.txt represents a
HotCache report for January 31, 2009 at 1:00 a.m.

To view the HotCache report, you must enable Coherence reporting and you must configure
the report-all report group. If you are new to Coherence reporting, see Using Oracle
Coherence Reporting.

Table 2-3 describes the contents of the HotCache report.

Table 2-3 Contents of the HotCache Report

Column Data Type Description

Batch Counter Long A sequential counter to help integrate information
between related files. This value resets when the
reporter restarts, and is not consistent across
members. However, it is helpful when trying to
integrate files.

Report Time Date A timestamp for each report refresh

Handler Name String The user-given name of the HotCache event
handler from the GoldenGate HotCache
properties file

Member Name String The Coherence member name where the
HotCache adapter runs

Start Time Date The time when the Coherence HotCache adapter
started

Operations Processed Long The number of transaction operations processed

Trail File Name String The name of the Golden Gate trail file that
contains transaction operations

Chapter 2
Managing HotCache

2-26

Table 2-3 (Cont.) Contents of the HotCache Report

Column Data Type Description

Trail File Position String The position in the trail file of the last
successfully-processed operation

Operations per
Transaction Average

IntSummaryStatis
tics

The average number of operations processed for
each transaction

Operations per
Transaction Maximum

IntSummaryStatis
tics

The maximum number of operations processed
for each transaction

Operations per
Transaction Minimum

IntSummaryStatis
tics

The minimum number of operations processed for
each transaction

Invocations per
Operation Average

IntSummaryStatis
tics

The average number of entry processor
invocations that are performed for each operation

Invocations per
Operation Maximum

IntSummaryStatis
tics

The maximum number of entry processor
invocations that are performed for each operation

Invocations per
Operation Minimum

IntSummaryStatis
tics

The minimum number of entry processor
invocations that are performed for each operation

Last Execution Time per
Operation Average (ns)

LongSummaryStati
stics

The average execution time for each operation
since the last sample in nanoseconds

Execution Time per
Operation Average (ns)

LongSummaryStati
stics

The average execution time for each operation in
nanoseconds

Execution Time per
Operation Maximum (ns)

LongSummaryStati
stics

The maximum execution time for each operation
in nanoseconds

Execution Time per
Operation Minimum (ns)

LongSummaryStati
stics

The minimum execution time for each operation
in nanoseconds

Execution Time per
Transaction Average
(ns)

LongSummaryStati
stics

The average execution time for each transaction
in nanoseconds

Execution Time per
Transaction Maximum
(ns)

LongSummaryStati
stics

The maximum execution time for each transaction
in nanoseconds

Execution Time per
Transaction Minimum
(ns)

LongSummaryStati
stics

The maximum execution time for each transaction
in nanoseconds

Last Operation
Replication Lag Average
(ms)

LongSummaryStati
stics

The average time in milliseconds between the
commit of the database transaction and the
processing of the last operation by the HotCache
adapter

Operation Replication
Lag Average (ms)

LongSummaryStati
stics

The average time in milliseconds between the
commit of the database transaction and the
processing of the operation by the HotCache
adapter

Operation Replication
Lag Maximum (ms)

LongSummaryStati
stics

The average time in milliseconds between the
commit of the database transaction and the
processing of the operation by the HotCache
adapter since the last sample

Chapter 2
Managing HotCache

2-27

Table 2-3 (Cont.) Contents of the HotCache Report

Column Data Type Description

Operation Replication
Lag Minimum (ms)

LongSummaryStati
stics

The minimum time in milliseconds between the
commit of the database transaction and the
processing of the operation by the HotCache
adapter

Monitoring HotCache Using the Coherence VisualVM Plug-In
The HotCache tab in the Coherence VisualVM Plug-In provides a graphical view of HotCache
performance statistics. If you are new to the Coherence VisualVM plug-in, see Using the
Coherence VisualVM Plug-In.

The HotCache statistical data is collected from the CoherenceAdapter MBean and presented
over time in both tabular and graph form. The tab displays statistics for each GoldenGate
HotCache member including detail about specific caches refreshed by that HotCache member.
To view data for a specific member, select the member on the member table. To view data for a
specific cache, select the cache on the cache table.

Use the HotCache tab to get a detailed view of performance statistics and to identify potential
performance issues with cache update operations. The HotCache tab includes:

• The minimum, maximum, and average time it takes to update a cache for each operation.

• The minimum, maximum, and average time it takes to update a cache for all the operations
in a transaction.

• The total number of entry processor invocations that are performed for each operation.

• The minimum, maximum, and average time for the last operation.

• The minimum, maximum, and average operation replication lag time for the last operation
since this MBean attribute value was last sampled. Replication lag is the amount of time
between the commit of the database transaction and the processing of the operation by the
HotCache adapter.

• The minimum, maximum, and average operation replication lag time since the statistics
were last reset.

• The minimum, maximum, and average number of operations for each transaction.

• The minimum, maximum, and average time for each operation type for each cache.
Operations include: EVICT, INSERT, PK_CHANGE, READ_FROM_DB, REDUNDANT_INSERT,
REFRESH, UPDATE, and UPSERT.

Chapter 2
Managing HotCache

2-28

3
Integrating Hibernate and Coherence

Oracle Coherence can be integrated with Hibernate, an object-relational mapping tool for Java
environments. The functionality in Oracle Coherence and Hibernate can be combined such
that Hibernate can act as the Coherence cache store or Coherence can act as the Hibernate
L2 cache.

If you are interested in using Coherence with Hibernate, see the Coherence Hibernate
Integration project that is part of the Coherence Community. Coherence Community projects
provide example implementations for commonly used design patterns based on Oracle
Coherence.

3-1

https://github.com/coherence-community/coherence-hibernate
https://github.com/coherence-community/coherence-hibernate

4
Integrating Coherence Applications with
Coherence*Web

You can configure applications running under Coherence*Web so that they can share
Coherence cache and session information.
If you are new to Coherence*Web, see Understanding Coherence*Web in Administering HTTP
Session Management with Oracle Coherence*Web.

This chapter includes the following section:

• Merging Coherence Cache and Session Information

Merging Coherence Cache and Session Information
In Coherence, the cache configuration deployment descriptor provides detailed information
about the various caches that can be used by applications within a cluster. Coherence provides
a sample cache configuration deployment descriptor, named coherence-cache-config.xml, in
the root of the coherence.jar library. In Coherence*Web, the session cache configuration
deployment descriptor provides detailed information about the caches, services, and attributes
used by HTTP session management. Coherence*Web provides a sample session cache
configuration deployment descriptor, named default-session-cache-config.xml, in the
coherence-web.jar library. You can use this file as the basis for any custom session cache
configuration file you may need to write.
At run time, Coherence uses the first coherence-cache-config.xml file that is found in the
classpath, and it must precede the coherence.jar library; otherwise, the sample coherence-
cache-config.xml file in the coherence.jar file is used.

In the case of Coherence*Web, it first looks for a custom session cache configuration XML file
in the classloader that was used to start Coherence*Web. If no custom session cache
configuration XML resource is found, then it will use the default-session-cache-config.xml
file packaged in coherence-web.jar.

If your Coherence applications are using Coherence*Web for HTTP session management, the
start-up script for the application server and the Coherence cache servers must reference the
session cache configuration file—not the cache configuration file. In this case, you must
complete these steps:

1. Extract the session cache configuration file from the coherence-web.jar library.

2. Merge the cache information from the Coherence cache configuration file into the session
cache configuration file.

Note that in the cache scheme mappings in this file, you cannot use wildcards to specify
cache names. You must provide, at least, a common prefix for application cache names.

3. Ensure that modified session cache configuration file is used by the Coherence members
in the cluster.

The cache and session configuration must be consistent across WebLogic Servers and
Coherence cache servers.

4-1

5
Using Memcached Clients with Oracle
Coherence

You can configure an memcached adapter to allow Coherence to be used as a distributed
cache for memcached clients. A simple hello world client that is written using the
spymemcached API is provided for demonstration purposes; howver any existing memcached
client can be used to connect to Coherence.

Note:

The memcached adapter is deprecated as of release 14.1.2.

This chapter includes the following sections:

• Overview of the Oracle Coherence Memcached Adapter

• Setting Up the Memcached Adapter
Memcached adapters are configured within a proxy service using a specific memcached
acceptor. The acceptor configuration defines the socket address and the distributed cache
for use by memcached clients.

• Connecting to the Memcached Adapter

• Securing Memcached Client Communication

• Sharing Data Between Memcached and Coherence Clients

Overview of the Oracle Coherence Memcached Adapter
The memcached adapter provides access to Coherence caches over the memcached binary
protocol and allows Coherence to be used as a drop-in replacement for a memcached server.
The adapter supports any memcached client API that supports the memcached binary
protocol. This allows memcached clients that are written in many different programming
languages to use Coherence.
The memcached adapter is located on a Coherence proxy server and is implemented as a
Coherence*Extend-styled acceptor. Memcached clients connect to the acceptor, which
manages the distributed cache operations on the cluster. The cache operations are performed
as entry processor operations. The acceptor must first be enabled within a proxy service in
order to interact with Coherence cached data. Additional features for securing memcached
client communication and for sharing data with native Coherence clients are provided and can
be configured as required.

Figure 5-1 shows a conceptual view of a memcached client connecting to the memcached
acceptor located on a Coherence proxy server in order to use a distributed cache.

5-1

Figure 5-1 Conceptual View of a Memcached Client Connection

Coherence Proxy Server

Memcached Client

Memcached Acceptor

Distributed Cache

Setting Up the Memcached Adapter
Memcached adapters are configured within a proxy service using a specific memcached
acceptor. The acceptor configuration defines the socket address and the distributed cache for
use by memcached clients.

This section includes the following topics:

• Define the Memcached Adapter Socket Address

• Define Memcached Adapter Proxy Service

Define the Memcached Adapter Socket Address
The memcached adapter uses a socket address (IP, or DNS name, and port) for clients to
connect to. The socket address is configured in an operational override configuration file using
the <address-provider> element. The address is then referenced from a proxy service
definition using the configured id attribute. See address-provider in Developing Applications
with Oracle Coherence.

The following example configures a socket address and uses 198.168.1.5 for the IP address,
9099 for the port, and memcached for the ID.

...
<cluster-config>
 <address-providers>
 <address-provider id="memcached">
 <socket-address>
 <address>198.168.1.5</address>
 <port>9099</port>
 </socket-address>
 </address-provider>
 </address-providers>
</cluster-config>
...

Chapter 5
Setting Up the Memcached Adapter

5-2

Define Memcached Adapter Proxy Service
A proxy service allows remote clients to interact with the caching services of a Coherence
cluster without becoming cluster members. A proxy service for the memcached adapter
includes a specific memcached acceptor that accepts memcached client requests on a defined
socket address and then delegates the requests to a distributed cache.

Note:

The memcached adapter can only use a distributed cache.

To create a proxy service for memcached clients, edit the cache configuration file and add a
<proxy-scheme> element and include the <memcached-acceptor> element within the
<acceptor-config> element. The <memcached-acceptor> element must include the name of
the cache to use and a reference to an address provider definition that defines the socket
address to listen to for memcached client communication. See memcached-acceptor in
Developing Applications with Oracle Coherence.

The following example creates a proxy service and defines a memcached acceptor. The
example references the address provider that was defined in Define the Memcached Adapter
Socket Address.

...
<caching-schemes>
 <proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

The cache name refers to the hello-example cache. The cache name must resolve to a
distributed cache. The following example shows the definition of the hello-example cache and
the distributed scheme to which it maps.

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation=
 "http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>hello-example</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>

Chapter 5
Setting Up the Memcached Adapter

5-3

 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>MemcachedTest</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
 </caching-schemes>
</cache-config>

Connecting to the Memcached Adapter
Memcached clients must specify the address and port of a proxy service for the memcached
adapter. The proxy service address is used in place of the memcached server address. Refer
to your memcached client documentation for details on how to specify the address of a
memcached server.
The following example shows a simple hello world client that uses the spymemcached client
API to connect to the proxy service for the memcached adapter that was defined in Setting Up
the Memcached Adapter.

import net.spy.memcached.AddrUtil;
import net.spy.memcached.BinaryConnectionFactory;
import net.spy.memcached.MemcachedClient;

public class MemcachedExample {
 public static void main(String[] args) throws Exception {
 String key = "k1";
 String value = "Hello World!";

 MemcachedClient c = new MemcachedClient(
 new BinaryConnectionFactory(),
 AddrUtil.getAddresses("198.168.1.5:9099"));

 c.add(key, 0, value);
 System.out.println((String)c.get(key));
 c.shutdown();
 }
}

Securing Memcached Client Communication
The memcached adapter can use both authentication and authorization to restrict access to
cluster resources. Authentication support is provided for the SASL (Simple Authentication and
Security Layer) plain authentication. Authorization is implemented using Oracle
Coherence*Extend-styled authorization, which relies on interceptor classes that provide fine-
grained access for cache service operations. The memcached adapter authentication and

Chapter 5
Connecting to the Memcached Adapter

5-4

authorization features reuses much of the existing security capabilities of Oracle Coherence:
references are provided to existing content where applicable.
This section includes the following topics:

• Performing Memcached Client Authentication

• Performing Memcached Client Authorization

Performing Memcached Client Authentication
Memcached clients can use SASL plain authentication to provide a username and password
when connecting to the memcached adapter. To use SASL plain authentication, you must
create an IdentityAsserter implementation on the proxy. The memcached adapter calls the
IdentityAsserter implementation and passes the
com.tangosol.net.security.UsernameAndPassword object as a token. See Using Identity
Tokens to Restrict Client Connections in Securing Oracle Coherence. Refer to your
memcached client documentation for details on establishing a SASL plain connection.

In addition to an IdentityAsserter implementation, authentication must be enabled on a
memcached adapter to use SASL plain authentication. To enable authentication, edit the proxy
service definition in the cache configuration file and add a <memcached-auth-method> element,
within the <memcached-acceptor> element, and set it to plain.

...
<caching-schemes>
 <proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <memcached-auth-method>plain</memcached-auth-method>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

Performing Memcached Client Authorization
The memcached adapter relies on the Oracle Coherence*Extend authorization framework to
restrict which operations a memcached client performs on a cluster. See Implementing Extend
Client Authorization in Securing Oracle Coherence.

Sharing Data Between Memcached and Coherence Clients
The memcached adapter stores entries in a cache using a binary format. If you intend to share
the data with Coherence clients, then memcached clients must use a serialization format that
Coherence clients also support. Coherence clients typically use Portable Object Format (POF),
which is highlighted in this section. See Using Portable Object Format in Developing
Applications with Oracle Coherence.
This section includes the following topics:

• Configuring POF for Memcached Clients

• Create a Memcached Client that Uses POF

Chapter 5
Sharing Data Between Memcached and Coherence Clients

5-5

Configuring POF for Memcached Clients
To configure POF for Memcached clients:

1. Edit the proxy service definition in the cache configuration file and add an <interop-
enabled> element, within the <memcached-acceptor> element, and set it to true.

...
<proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <interop-enabled>true</interop-enabled>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>
...

2. Enable POF on the distributed cache that is used by the memcached acceptor.

...
<distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>MemcachedTest</service-name>
 <serializer>
 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>String</param-type>
 <param-value>memcached-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </instance>
 </serializer>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

3. Register POF types in the defined POF configuration file. For the above example, the POF
configuration file is named memcached-pof-config.xml. The file must be found on the
classpath before the coherence.jar file. The following example defines a POF user type
for the PofUser object:

<?xml version='1.0'?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>

 <!-- User types must be above 1000 -->
 <user-type>
 <type-id>1001</type-id>

Chapter 5
Sharing Data Between Memcached and Coherence Clients

5-6

 <class-name>memcached.PofUser</class-name>
 </user-type>

 </user-type-list>
</pof-config>

Create a Memcached Client that Uses POF
Many memcached client libraries include the ability to plug in custom serializers. Refer to your
memcached client documentation for details on how to plug in custom serializers. The
following excerpt shows a spymemcached client that adds the PofUser object that was
registered in step 3 and uses a spymemcached transcoder to plug in the POF serializer.

MemcachedClient client = m_client;
String key = "pofKey";
PofUser user = new PofUser("memcached", 1);
PofTranscoder<PofUser> tc = new PofTranscoder("memcached-pof-config.xml");

if (!client.set(key, 0, user, tc).get())
 {
 throw new Exception("failed to set value");
 }

The POF transcoder plug-in is defined as follows:

import com.tangosol.io.pof.ConfigurablePofContext;
import com.tangosol.util.Binary;
import com.tangosol.util.ExternalizableHelper;

import net.spy.memcached.CachedData;
import net.spy.memcached.compat.SpyObject;
import net.spy.memcached.transcoders.Transcoder;

public class PofTranscoder<T> extends SpyObject implements Transcoder<T>
 {

 public PofTranscoder(String sLocator)
 {
 m_ctx = new ConfigurablePofContext(sLocator);
 }

 @Override
 public boolean asyncDecode(CachedData arg0)
 {
 return Boolean.FALSE;
 }

 @Override
 public T decode(CachedData cachedData)
 {
 int nFlag = cachedData.getFlags();
 Binary bin = new Binary(cachedData.getData());
 return (T) ExternalizableHelper.fromBinary(bin, m_ctx);
 }

 @Override
 public CachedData encode(Object obj)
 {

 byte[] oValue = ExternalizableHelper.toByteArray(obj, m_ctx);

Chapter 5
Sharing Data Between Memcached and Coherence Clients

5-7

 return new CachedData(FLAG, oValue, CachedData.MAX_SIZE);
 }

 @Override
 public int getMaxSize()
 {
 return CachedData.MAX_SIZE;
 }

 protected ConfigurablePofContext m_ctx;

 protected static final int FLAG = 4;

Chapter 5
Sharing Data Between Memcached and Coherence Clients

5-8

6
Integrating Spring with Coherence

Oracle Coherence can be integrated with Spring, which is a platform for building and running
Java-based enterprise applications.

If you are interested in using Coherence with Spring, see the Coherence Spring Integration
project that is part of the Coherence Community. Coherence Community projects provide
example implementations for commonly used design patterns based on Oracle Coherence.

6-1

https://github.com/coherence-community/coherence-spring

7
Integrating Micronaut with Coherence

Oracle Coherence can be integrated with Micronaut, which is an open source framework for
building lightweight modular applications and microservices.

If you are interested in using Coherence with Micronaut see the Micronaut Coherence project.

7-1

https://github.com/micronaut-projects/micronaut-coherence

8
Using Kubernetes with Coherence

Oracle provides an open source Coherence Operator, which implements features to assist with
deploying and managing Coherence clusters in a Kubernetes environment.

If you are interested in using Coherence with Kubernetes, see the Coherence Operator project.

8-1

https://github.com/oracle/coherence-operator

9
Using Coherence MicroProfile Configuration

Coherence MicroProfile (MP) Configuration provides support for Eclipse MicroProfile
Configuration within Coherence cluster members. See Eclipse MicroProfile Configuration.
Coherence MP Configuration enables you to configure various Coherence parameters from the
values specified in any of the supported configuration sources, and to use Coherence cache as
another, mutable configuration source.
This chapter includes the following topics:

• Enabling the Use of Coherence MicroProfile Configuration
To use Coherence MP Configuration, you should first declare it as a dependency in the
pom.xml file.

• Configuring Coherence Using MP Configuration

• Using Coherence Cache as a Configuration Source
Coherence MP Configuration also provides an implementation of the Eclipse MP
Configuration ConfigSource interface, which enables you to store configuration
parameters in a Coherence cache.

• Examples Using Helidon MicroProfile with Coherence
There are a number of open source example applications that demonstrate using
Coherence MicroProfile integration with Helidon.

Enabling the Use of Coherence MicroProfile Configuration
To use Coherence MP Configuration, you should first declare it as a dependency in the
pom.xml file.

You can declare Coherence MP Configuration as follows:

<dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence-mp-config</artifactId>
 <version>${coherence.version}</version>
</dependency>

You will also need an implementation of the Eclipse MP Configuration specification as a
dependency. For example, if you are using Helidon, add the following to the pom.xml file:

<dependency>
 <groupId>io.helidon.microprofile.config</groupId>
 <artifactId>helidon-microprofile-config</artifactId>
 <version>2.5.0</version>
</dependency>

<!-- optional: add it if you want YAML config file support -->
<dependency>
 <groupId>io.helidon.config</groupId>
 <artifactId>helidon-config-yaml</artifactId>

9-1

https://microprofile.io/project/eclipse/microprofile-config

 <version>2.5.0</version>
</dependency>

Configuring Coherence Using MP Configuration
Coherence provides a number of configuration properties that you can use to define certain
attributes or to customize cluster member behavior at runtime.

For example, you can define attributes such as cluster and role name, as well as define
whether a cluster member should or should not store data, through the use of system
properties:

-Dcoherence.cluster=MyCluster -Dcoherence.role=Proxy -
Dcoherence.distributed.localstorage=false

You can also define most of these attributes within the operational or cache configuration file.
For example, you could define first two attributes, cluster name and role, within the operational
configuration override file:

 <cluster-config>
 <member-identity>
 <cluster-name>MyCluster</cluster-name>
 <role-name>Proxy</role-name>
 </member-identity>
 </cluster-config>

While these two options are more than enough in most cases, there are some issues with them
being the only way to configure Coherence:

• When you are using one of the Eclipse MicroProfile implementations, such as Helidon (see
Helidon as the foundation of your application, Oracle recommends that you define some of
Coherence configuration parameters along with the other configuration parameters, and
not in a separate file or through system properties.

• In some environments, such as Kubernetes, Java system properties are cumbersome to
use, and environment variables are a preferred way of passing configuration properties to
containers.

Unfortunately, neither of the two use cases above is supported out-of-the-box. Coherence MP
Configuration is designed to fill this gap.

As long as you have coherence-mp-config and an implementation of Eclipse MP
Configuration specification to your class path, Coherence will use any of the standard or
custom configuration sources to resolve various configuration options it understands.

Standard configuration sources in MP Configuration include the META-INF/microprofile-
config.properties file, if present in the class path; environment variables; and system
properties (in that order, with the properties in the latter overriding the ones from the former).
These configuration sources directly address the second use case mentioned above, and allow
you to specify Coherence configuration options through environment variables within the
Kubernetes YAML files. For example:

containers:
 - name: my-app
 image: my-company/my-app:1.0.0

Chapter 9
Configuring Coherence Using MP Configuration

9-2

https://helidon.io/

 env:
 - name: COHERENCE_CLUSTER
 value: "MyCluster"
 - name: COHERENCE_ROLE
 value: "Proxy"
 - name: COHERENCE_DISTRIBUTED_LOCALSTORAGE
 value: "false"

The above is just an example. If you are running the Coherence cluster in Kubernetes, you
should really be using Coherence Operator instead, as it will make both the configuration and
the operation of the Coherence cluster much easier.

You can also specify the Coherence configuration properties along with the other configuration
properties of your application, which will enable you to keep everything in one place, and not
scattered across many files. For example, if you are writing a Helidon application, you can
simply add the coherence section to the application.yaml file:

coherence:
 cluster: MyCluster
 role: Proxy
 distributed:
 localstorage: false

Using Coherence Cache as a Configuration Source
Coherence MP Configuration also provides an implementation of the Eclipse MP Configuration
ConfigSource interface, which enables you to store configuration parameters in a Coherence
cache.

This feature has several benefits:

• Unlike pretty much all of the default configuration sources, which are static, configuration
options stored in a Coherence cache can be modified without forcing you to rebuild your
application JARs or Docker images.

• You can change the value in one place, and it will automatically be visible and up to date
on all the members.

While the features above give you incredible amount of flexibility, it may not always be
desirable. Therefore, this feature is disabled by default.

If you want to enable it, you should do so explicitly by registering CoherenceConfigSource as a
global interceptor in the cache configuration file:

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-
cache-config coherence-cache-config.xsd">

 <interceptors>
 <interceptor>
 <instance>
 <class-name>com.oracle.coherence.mp.config.CoherenceConfigSource</
class-name>
 </instance>
 </interceptor>

Chapter 9
Using Coherence Cache as a Configuration Source

9-3

 </interceptors>

 <!-- your cache mappings and schemes... -->

</cache-config>

After you enable the feature, CoherenceConfigSource is activated as soon as the cache factory
is initialized, and injected into the list of available config sources for your application to use
through the standard MP Configuration APIs.

By default, it will be configured with a priority (ordinal) of 500, making it of a higher priority than
all the standard configuration sources, thus allowing you to override the values provided
through configuration files, environment variables, and system properties. However, you have
full control over that behavior and can specify a different ordinal through the
coherence.mp.config.source.ordinal configuration property.

Examples Using Helidon MicroProfile with Coherence
There are a number of open source example applications that demonstrate using Coherence
MicroProfile integration with Helidon.

For more information about example applications, see the following items:

• Helidon Sock Shop

This project is an implementation of a stateful, microservices based application that uses
Oracle Coherence Community Edition as a scalable embedded data store, and Helidon
MP as an application framework

If you are interested in using this, see the Coherence Helidon Sock Shop sample.

• Todo List Example

This repository contains a set of simple task management examples written in various
languages to showcase Coherence Community Edition.

In particular, the Java directory showcases how to integrate Coherence with Helidon
MicroProfile.

If you are interested in using this, see the Todo List example.

Chapter 9
Examples Using Helidon MicroProfile with Coherence

9-4

https://github.com/oracle/coherence-helidon-sockshop-sample
https://github.com/coherence-community/todo-list-example

10
Using Coherence MicroProfile Health

Coherence MicroProfile (MP) Health provides support for Eclipse MicroProfile Health within the
Coherence cluster members.

For more information about MicroProfile Health, see the following documentation:

• Using the Health Check API in Managing Oracle Coherence

• MicroProfile Health

Coherence MP Health is a very simple module that enables you to publish Coherence health
checks into the MicroProfile Health Check Registries available at runtime.

This chapter includes the following topic:

• Enabling the Use of Coherence MP Health
To use Coherence MP Health, you should first declare it as a dependency in the project’s
pom.xml file.

Enabling the Use of Coherence MP Health
To use Coherence MP Health, you should first declare it as a dependency in the project’s
pom.xml file.

You can declare Coherence MP Health as follows:

<dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence-mp-health</artifactId>
 <version>${coherence.version}</version>
</dependency>

Where:

• ${coherence.groupId} is the Maven group ID for the Coherence edition being used:
com.oracle.coherence for the commercial edition or com.oracle.coherence.ce for the
community edition.

• ${coherence.version} is the version of Coherence you are using.

After the module becomes available in the class path, the Coherence HealthCheck producer
CDI bean is automatically discovered and registered as a MicroProfile health check provider.
The Coherence health checks then become available through any health endpoints served by
the application and is included in started, readiness, and liveness checks.

10-1

https://microprofile.io/project/eclipse/microprofile-health

11
Using Coherence MicroProfile Metrics

Coherence MicroProfile (MP) Metrics provides support for Eclipse MicroProfile Metrics within
the Coherence cluster members. See MicroProfile Metrics. Coherence MP Metrics is a very
simple module that enables you to publish Coherence metrics into the MicroProfile Metric
Registries available at runtime, and adds Coherence-specific tags to all the metrics published
within the process, to distinguish them on the monitoring server, such as Prometheus.
This chapter includes the following topics:

• Enabling the Use of Coherence MP Metrics
To use Coherence MP Metrics, you should first declare it as a dependency in the pom.xml
file.

• Coherence Global Tags

Enabling the Use of Coherence MP Metrics
To use Coherence MP Metrics, you should first declare it as a dependency in the pom.xml file.

You can declare Coherence MP Metrics as follows:

<dependency>
 <groupId>${coherence.groupId}</groupId>
 <artifactId>coherence-mp-metrics</artifactId>
 <version>${coherence.version}</version>
</dependency>

After the module becomes available in the class path, Coherence will discover the
MpMetricRegistryAdapter service it provides, and use it to publish all standard Coherence
metrics to the vendor registry, and any user-defined application metrics to the application
registry.

All the metrics will be published as gauges, because they represent point-in-time values of
various MBean attributes.

Coherence Global Tags
There could be hundreds of members in a Coherence cluster, with each member publishing
potentially the same set of metrics. There could also be many Coherence clusters in the
environment, possibly publishing to the same monitoring server instance. To help distinguish
metrics coming from different clusters, as well as from different members of the same cluster,
Coherence MP Metrics automatically adds several tags to all the metrics published within the
process.

Table 11-1 Tags Used by Coherence MP Metrics

Tag Name Tag Value

cluster The name of the cluster.

11-1

https://microprofile.io/project/eclipse/microprofile-metrics

Table 11-1 (Cont.) Tags Used by Coherence MP Metrics

Tag Name Tag Value

site The site to which the member belongs (if set).

machine The machine on which the member is present (if
set).

member The name of the member (if set).

node_id The node ID of the member.

role The member’s role.

Tagging ensures that the metrics published by one member do not collide with and overwrite
the metrics published by other members. Tagging also helps you query and aggregate metrics
based on the values of the tags above, if required.

Chapter 11
Coherence Global Tags

11-2

12
Enabling ECID in Coherence Logs

Oracle Coherence can use an Execution Context ID (ECID). This globally unique ID can be
attached to requests between Oracle components. The ECID allows you to track log messages
pertaining to the same request when multiple requests are processed in parallel.
Coherence logs will include ECID only if the client already has an activated ECID prior to
calling Coherence operations. The ECID may be passed from another component or obtained
in the client code. To activate the context, use the get and activate methods on the
oracle.dms.context.ExecutionContext interface in the Coherence client code. The ECID will
be attached to the executing thread. Use the deactivate method to release the context, for
example:

Example 12-1 Using a DMS Context in Coherence Client Code

...
// Get the context associated with this thread
ExecutionContext ctx = ExecutionContext.get();
ctx.activate();
...
set additional execution context values (optional)
perform some cache operations
...
// Release the context
ctx.deactivate();
...

ECID logging will occur only on the node where the client is running. If a client request is
processed on some other node and an exception is thrown by Coherence, then the remote
error will be returned to the originating node and it will be logged on the Coherence client. The
log message will contain the ECID of the request. Messages logged on the remote node will
not contain the ECID.

To include the ECID in a Coherence log message, see Changing the Log Message Format in
Developing Applications with Oracle Coherence.

12-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Using JPA with Coherence
	Overview of the JPA CacheStore and CacheLoader Implementations
	Obtaining a JPA Provider Implementation
	Configuring a Coherence JPA Cache Store
	Mapping the Persistent Classes
	Configuring JPA
	Configuring a Coherence Cache for JPA
	Configuring the Persistence Unit

	2 Integrating with Oracle Coherence GoldenGate HotCache
	About Oracle Coherence GoldenGate HotCache
	How Does HotCache Work
	Overview of How HotCache Works
	How the GoldenGate Java Delivery Adapter Uses JPA Mapping Metadata
	Supported Database Operations
	JPA Relationship Support

	Prerequisites
	Configuring GoldenGate
	Monitor Table Changes
	Filter Changes Made by the Current User

	Configuring HotCache
	Create a Properties File with GoldenGate for Java Properties
	Add JVM Boot Options to the Properties File
	Java Classpath Files
	HotCache-related Properties
	Coherence-related Properties
	Logging Properties

	Provide Coherence*Extend Connection Information

	Configuring the GoldenGate Big Data Java Delivery Adapter
	Edit the HotCache Replicat Parameter File

	Configuring the Coherence Cache Servers
	Using Portable Object Format with HotCache
	Configuring HotCache JPA Properties
	EnableUpsert Property
	HonorRedundantInsert Property
	SyntheticEvent Property
	eclipselink.cache.shared.default Property

	Warming Caches with HotCache
	Create and Run an Initial Load Extract
	Create and Run a Cache Warmer Replicat
	Capturing Changed Data While Warming Caches

	Implementing High Availability for HotCache
	Support for Oracle Data Types
	Support for SDO_GEOMETRY
	Support for XMLType

	Configuring Multi-Threading in HotCache
	Managing HotCache
	CoherenceAdapterMXBean
	Understanding the HotCache Report
	Monitoring HotCache Using the Coherence VisualVM Plug-In

	3 Integrating Hibernate and Coherence
	4 Integrating Coherence Applications with Coherence*Web
	Merging Coherence Cache and Session Information

	5 Using Memcached Clients with Oracle Coherence
	Overview of the Oracle Coherence Memcached Adapter
	Setting Up the Memcached Adapter
	Define the Memcached Adapter Socket Address
	Define Memcached Adapter Proxy Service

	Connecting to the Memcached Adapter
	Securing Memcached Client Communication
	Performing Memcached Client Authentication
	Performing Memcached Client Authorization

	Sharing Data Between Memcached and Coherence Clients
	Configuring POF for Memcached Clients
	Create a Memcached Client that Uses POF

	6 Integrating Spring with Coherence
	7 Integrating Micronaut with Coherence
	8 Using Kubernetes with Coherence
	9 Using Coherence MicroProfile Configuration
	Enabling the Use of Coherence MicroProfile Configuration
	Configuring Coherence Using MP Configuration
	Using Coherence Cache as a Configuration Source
	Examples Using Helidon MicroProfile with Coherence

	10 Using Coherence MicroProfile Health
	Enabling the Use of Coherence MP Health

	11 Using Coherence MicroProfile Metrics
	Enabling the Use of Coherence MP Metrics
	Coherence Global Tags

	12 Enabling ECID in Coherence Logs

