
Oracle® JavaScript Extension Toolkit
(Oracle JET)
Using and Extending the Oracle JET Audit
Framework

18.1.0
G26358-01
May 2025

Oracle JavaScript Extension Toolkit (Oracle JET) Using and Extending the Oracle JET Audit Framework, 18.1.0

G26358-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Get Started with the Oracle JET Audit Framework

About Auditing Oracle JET Applications 1-1

Typical Workflow for Auditing an Oracle JET Application 1-2

Typical Workflow for Writing Custom Audit Rules 1-2

Install the Oracle JET Audit Framework 1-3

Initialize Oracle JAF and Run an Audit 1-4

Part I Use the Oracle JET Audit Framework

2 Configure the JET Audit Framework

About the Oracle JAF Configuration 2-1

About the Oracle JAF Configuration File Properties 2-1

Configure the Project Scope for the Audit 2-6

Specify Configuration Inheritance 2-8

Configure Audit Rule Runtime Properties 2-11

3 Run Audits on Oracle JET Applications

Audit the Application Using the Command Line 3-1

Audit the Application with Predefined Runtime Options 3-7

Audit with Specific JET and ECMA Script Versions 3-8

Audit with Specific Rules 3-9

Audit with Custom Rule Packs 3-12

Audit Only HTML Files that Contain Oracle JET Components 3-14

Audit JET Custom Web Component Usages 3-14

Audit JET Custom Web Component Projects 3-16

Audit JET Web Component Projects Containing VComponents 3-21

Audit CSS Styles and Web Components Styles 3-22

Audit for Oracle JET Deprecated Functionality 3-28

iii

4 Fine Tune the Audit

Restrict Audit Rule Severity Level 4-1

Alter the Severity Level of an Audit Rule 4-2

Suppress Auditing Linked Content 4-3

Suppress Audit Messages 4-4

Adjust the Tab Value Used to Report Line and Column Issues 4-4

Comment Source Code for Fine-Grained Audit Control 4-6

5 Work with the Output of Audits

About Audit Output 5-1

Display Details About a Rule 5-1

Toggle the Default Format of Audit Messages 5-2

Display Rule Names with Audit Messages 5-2

Customize the Presentation of the Audit Messages 5-4

Format a Title for the Audit Report 5-5

Output Audit Messages in JSON Format 5-6

Part II Extend the Oracle JET Audit Framework

6 Understand the JAF Audit Engine

About the JAF Audit Engine 6-1

Understand the Structure of Custom Audit Rules 6-1

Audit Rule Entry Point Method Structure 6-3

Audit Rule Listener Function Structure 6-4

7 Get Started Writing Custom Audit Rules

Set up the Custom Audit Rules Test Project 7-1

Define the Runtime Properties of Custom Audit Rules 7-5

Define the Message ID of Custom Audit Rules 7-7

Implement the Custom Audit Rules 7-9

Reference the Custom Audit Rules in an Audit 7-16

8 Implement Custom Node Rules

About AST Rule Nodes in CSS Auditing 8-1

Walkthrough of Sample HTML and JSON Audit Rules 8-7

Walkthrough of a Sample CSS Audit Rule 8-10

Walkthrough of a Sample Markdown Audit Rule 8-12

iv

Walkthrough of a Sample JavaScript/TypeScript Audit Rule 8-15

Walkthrough of a Sample Virtual DOM TSX Audit Rule 8-16

Report Position Information in an Issue for a TSX Audit 8-18

9 Implement Custom Hook Rules

About Hook Rule Invocation 9-1

Implement Custom Rules on the File Context 9-2

Implement Custom Rules Using the Audit Lifecycle 9-2

Walkthrough of a Sample Audit Hook Rule 9-4

10

Access Oracle JET Metadata

11

Create the Audit File Set at Runtime

12

Reference: Custom Audit Rule Listener Types

Listener Types for HTML and JSON Rules 12-1

Listener Types for CSS Rules 12-7

Listener Types for Markdown Rules 12-8

Listener Types for JavaScript/TypeScript Rules 12-11

Listener Types for TSX Rules 12-15

13

Reference: Custom Audit Rule Context Object Properties

Context Object Members Passed to the Register Function 13-1

Context Object Properties Available to Registered Listeners 13-2

Context Object Properties Available to Markdown Rule Listeners 13-3

Context Object Properties Available to CSS Rule Listeners 13-7

14

Reference: Custom Audit Rule Context Object Methods

RulePack Class Methods 14-1

Rule Issue Class Methods 14-3

Rule Reporter Class Methods 14-5

v

15

Reference: Custom Audit Rule Utility Libraries

MetaLib: JET Metadata Access Functions 15-1

Oracle JET Audit Metadata Interface Library Metadata Methods 15-1

Oracle JET Audit Metadata Interface Library Tag Methods 15-3

Utils: General Non-File System Functions 15-12

FsUtils: File System Functions 15-13

SemVerUtils: Semantic Version Functions 15-16

DomUtils: Node Object Functions 15-17

ConfigLib: Configuration Library 15-20

JafLib: JAF Core Access Methods 15-21

JafLib: Configuration Object Property Getter Methods 15-22

MsgLib: Message Display Functions 15-23

CssUtils: CSS Utility Functions 15-23

AstUtils: JavaScript File Helper Functions 15-24

SevLib: Severity Support Helper Functions 15-25

TsxUtils: TSX Utility Functions 15-26

Use TSX Functions 15-31

vi

Preface

Using and Extending the Oracle JET Audit Framework describes how to use and extend audits
with the Oracle JET Audit Framework.

Topics:

• Audience

• Documentation Accessibility

• Related Resources

• Conventions

Audience
Using and Extending the Oracle JET Audit Framework is intended for Oracle JET application
developers who want to use and extend the Oracle JET Audit Framework to audit their
applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
For more information, see these Oracle resources:

• Developing Oracle JET Apps Using MVVM Architecture

• Oracle JET Web Site

• API Reference for Oracle® JavaScript Extension Toolkit (Oracle JET)

• Oracle® JavaScript Extension Toolkit (JET) Keyboard and Touch Reference

• Oracle® JavaScript Extension Toolkit (JET) Styling Reference

Conventions
The following text conventions are used in this document:

7

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/webfolder/technetwork/jet/index.html
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJACC
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Conventions

8

1
Get Started with the Oracle JET Audit
Framework

The Oracle JET Audit Framework (JAF) is a command-line utility and supporting API that
allows you to audit JET applications by using a rich set of built-in audit diagnostic rules. The
API supports extending JAF with custom audit rules that you write to meet specific diagnostic
requirements of your application.

About Auditing Oracle JET Applications
Oracle JET Audit Framework (JAF) is dynamic and performs an audit of Oracle JET project
files based on runtime options it finds in a configuration file.

To get started with JAF, the initial creation of the configuration file is automated to help you get
up and running quickly. After a default configuration file is created, you have many options to
tailor the audit to your project needs.

With Oracle JAF installed, audits that you perform against your JET project run in a command-
line interface, similar to the Oracle JET CLI. The installation of JAF provides a lint-style
command-line utility named ojaf that audits JET application files (currently HTML, JS, TS,
TSX, CSS, and JSON) by applying rules that perform a static analysis from an Oracle JET
perspective.

The audit diagnostic messages returned by invocation of the ojaf utility result from built-in rule
sets that are specific to the Oracle JET release version of the application. As new versions of
Oracle JET are released, you can update JAF and keep current with the latest applicable audit
rules. For this reason, you will want to update JAF regularly.

The audit rules that are specific to each version of Oracle JET are called the built-in rules.
Additionally, you can configure the audit to run with custom, user-defined rules. Both the built-in
rules and rules that you may write yourself, are logically and physically grouped together in a
rule pack.

Like an Oracle JET installation, installation of Oracle JAF requires that Node.js is installed as a
prerequisite. The ojaf utility will report if the Node.js version does not meet the minimum node
version requirement.

Before you run the audit, you use the JET tooling to initialize Oracle JAF and to scaffold a
default JAF configuration file, oraclejafconfig.json. You can customize the properties of the
Oracle JAF configuration to control many aspects of both the rule set (the set of active rules)
and the file set (the set of files to be audited) for a specific audit run:

• Any rule may be disabled.

• One or more rules may be designated by name to be run and all others excluded.

• Rule groups may be specified (for example, only run rules related to HTML).

• Rules may selected by severity of the issue they report.

• All built-in rules may be suppressed (allowing only user-defined rules to run).

• All rules specified in a defined rule pack may be disabled.

1-1

• The target file set can be defined easily, including by using glob support for both inclusion
and overriding exclusion.

• Multiple configuration files can created for specific runtime criteria or projects. The
configuration files are JSON format, but JavaScript/TypeScript style comments are
permitted for documentation purposes. The configuration file to be used can be specified
on the command-line.

If the built-in audit rules provided with the JAF installation do not meet all the diagnostic
requirements of your application, you can write custom audit rules to extend JAF. You
implement user-defined audit rules as JavaScript files. The JAF API allows you to register
event listeners and handle the audit context created by JAF on the file set of your JET projects.
Custom audit rules can be assembled into distributable rule packs and invoked by developers
on any Oracle JET application.

Typical Workflow for Auditing an Oracle JET Application
Understand auditing options for Oracle JET web and hybrid mobile applications.

To audit the source files in an Oracle JET application, refer to the typical workflow described in
the following table:

Task Description More Information

Initialize the Oracle JET
Audit Framework (JAF) and
perform an audit dry-run

Create a default
oraclejafconfig.json file and run
a dryrun report to verify the files that
will be audited.

Initialize Oracle JAF and Run an Audit

Configure JAF Edit the oraclejafconfig.json file
to limit the scope of the audit to the
desired file set or rule severity level, for
example.

Configure the JET Audit Framework

Run an audit Report the diagnostic messages
discovered by the rule set for a specific
Oracle JET version.

Run Audits on Oracle JET Applications

Fine-tune audit results Hide diagnostic messages emitted by
specified rules or comment source
code with JAF comment commands to
limit the scope.

Fine Tune the Audit

Customize audit reports Format the optional JSON output of the
audit in a custom report.

Work with the Output of Audits

Typical Workflow for Writing Custom Audit Rules
Understand how to interact with the Oracle JAF API and work the various utility libraries to
create user-defined, custom audit rules that extend JAF.

To write custom audit rules and assemble your JavaScript implementation files as a rule pack
that you can share with JET application developers, refer to the typical workflow described in
the following table:

Chapter 1
Typical Workflow for Auditing an Oracle JET Application

1-2

Task Description More Information

Understand the JAF
concepts for writing custom
rules

Learn about the various JAF audit
context events and the properties that
you can access on the context object
passed at runtime to your audit rules
by the JAF audit engine.

About the JAF Audit Engine

Understand the custom audit
rule implementation

Learn how you can handle the audit
context object by registering a listener
to respond to context events and learn
about the miscellaneous helper
functions provided by JAF utility
libraries that you can access on the
context object.

Understand the Structure of Custom Audit Rules

and

Reference: Custom Audit Rule Utility Libraries

Understand the requirements
to create and to distribute
custom rules

Set up a JET development
environment to implement your custom
rules before you distribute the rules as
a rule pack.

Get Started Writing Custom Audit Rules

Write custom rules that audit
file data parsed by JAF

Review sample custom (node) rules
that show how to audit for data nodes
returned on your application's target
file set, including HTML, JSON,
JavaScript/TypeScript, and CSS files.

Implement Custom Node Rules

Write custom rules that work
with the phases of the JAF
lifecycle

Review sample custom (hook) rules
that show how you can invoke an audit
at various stages of the JAF audit
lifecycle, such as upon audit startup.

Implement Custom Hook Rules

Install the Oracle JET Audit Framework
Use npm to install the Oracle JET Audit Framework (JAF).

• Like an Oracle JET installation, installation of Oracle JAF requires that Node.js is installed
as a prerequisite. For additional information, see Install Node.js.

• At the command prompt, enter the following command as Administrator on Windows or
use sudo on Macintosh and Linux machines:

[sudo] npm install -g @oracle/oraclejet-audit

It may not be obvious that the installation succeeded. Enter ojaf -v to verify that the
installation succeeded. If you do not see the Oracle JAF version, scroll through the install
command output to locate the source of the failure.

– If you receive an error that your version of Node.js is outdated, download and install
the recommended version.

– If you receive an error related to a network failure, verify that you have set up your
proxy correctly if needed.

– If you receive an error that your version of npm is outdated, type the following to update
the version: [sudo] npm install -g npm.

Chapter 1
Install the Oracle JET Audit Framework

1-3

Initialize Oracle JAF and Run an Audit
If you have an Oracle JET application you created using the JET command-line interface, then
you can auto-configure an audit for the application and run the audit in the command prompt
window.

In the JET application, open a command prompt and, from the root directory, use the Oracle
JET Audit Framework (JAF) command to initialize a default JAF configuration for the
application.

ojaf --init

When you initialize Oracle JAF, the JET tooling scaffolds a default JAF configuration file named
oraclejafconfig.json. The tooling creates the JAF configuration file in the root directory and
defines the default configuration settings based on the JET application configuration file
oraclejetconfig.json, also located in the application root directory.

Before you audit the application for the first time, you can confirm the default configuration for
the application files that JAF will audit. This command is called a dry-run because it does not
audit the application but confirms the files to be audited based on current JAF configuration
settings.

ojaf --dryrun

To perform an audit of your application, enter the command to invoke the JAF audit utility.

ojaf

When you run the audit, Oracle JAF searches the directory in which you initiated the audit for
the JAF configuration file oraclejafconfig.json. If no configuration file is found there, then
JAF processes only HTML files found in the current directory and will always use the default
JAF configuration for the audit.

On subsequent invocations of ojaf, a check is made to see if the Oracle JET configuration file
(oraclejetconfig.json) has changed since the last ojaf invocation. If changes are detected,
such as might occur when you migrate your application to a new JET version, then JAF
updates certain settings in the JAF configuration file automatically. The configuration property
settings that JAF monitors and updates based on JET configuration file changes are:

• jetVer specifies the JET version to be audited against.

• files specifies the file paths or URLs used to determine the input file set to be audited.

• exclude specifies the files paths which should be excluded from the audit.

• components specifies paths to folders where user-defined custom web component
metadata (component.json) can be found. This provides the ability for rules to inspect the
component metadata and to validate custom element attributes.

• theme specifies the Oracle theme (redwood, alta, stable, or none) and affects rules that
are theme dependent. In particular, the attribute label-edge if not used will have a default
value that is dependent on the theme. The Redwood theme is the default if the theme
property is not specified, and stable is considered a synonym for redwood.

Note that you may freeze a JAF configuration and prevent further automatic updates by editing
the oraclejafconfig.json file and setting the property update as follows.

Chapter 1
Initialize Oracle JAF and Run an Audit

1-4

"ojet": {
 "update": false,
 ...
 }

All other configuration properties remain unchanged, however, you may customize your
application audit, by updating the configuration file oraclejafconfig.json in a text editor and
adding or amending JAF properties. A full description of the configuration options are found in
About the Oracle JAF Configuration File Properties.

Additionally, you can obtain a complete list of ojaf command line flags by entering the
following command.

ojaf --help

See also Configure the JET Audit Framework and Run Audits on Oracle JET Applications.

Chapter 1
Initialize Oracle JAF and Run an Audit

1-5

Part I
Use the Oracle JET Audit Framework

Run Oracle JAF audits against the application files of your JET project and perform a static
analysis of the source code from an Oracle JET perspective.

Topics:

• Configure the JET Audit Framework

• Run Audits on Oracle JET Applications

• Fine Tune the Audit

• Specify Configuration Inheritance

• Work with the Output of Audits

2
Configure the JET Audit Framework

You can modify some basic settings of the default Oracle JAF configuration to set up an audit
for your application.

About the Oracle JAF Configuration
Oracle JET Audit Framework (JAF) relies on the configuration file created by the JET tooling
when you invoke the JAF initialization command ojaf --init in a Command Prompt window
on the JET application.

The oraclejafconfig.json file that you create when you initialize Oracle JAF the first time
defines the properties that you can use to control many aspects of your JET application audit.
For example, by configuring the JAF audit, you can perform the following.

• Specify the JET version when you want to use audit rules that are specific to a JET
version. This is configured by default as the JET version of the application to be audited.

• Specify the file set when you want to exclude application directories and file types. This is
configured by default to include all files of the application to be audited.

• Invoke custom audit rules that are user-defined and assembled as a JAF rule pack for
distribution.

• Prevent specific audit rules from running in the audit or limiting the audit to only rules of a
certain severity level.

• Include the metadata of Oracle JET Web Components to audit the HTML files of your
application's custom components.

• Control the JavaScript/TypeScript source code to audit based on JAF comments that you
embed in your source files.

• Work with the output of the audit to customize the presentation of audit messages or to
suppress audit messages.

The properties in the oraclejafconfig.json file configuration settings are up to you to specify.
By doing so, you can fine-tune the audit to focus audit results on only the source that you
intend. Multiple configuration files can created for specific runtime criteria or projects. The
configuration files are JSON format, but JavaScript style comments are permitted for
documentation purposes. The configuration file to be used can be specified on the command-
line.

Each time you run the audit from a Command Prompt window, Oracle JAF searches the
directory in which you initiated the audit for the JAF configuration file oraclejafconfig.json. If
no configuration file is found there, then JAF processes only HTML files found in the current
directory. In that case, the default JAF configuration settings are used for the audit.

About the Oracle JAF Configuration File Properties
Oracle JET Audit Framework (JAF) configuration file is a JSON format document with
properties that define the runtime behavior of the JAF audit.

2-1

The oraclejafconfig.json file that you create when you initialize JAF the first time contains
the properties that you can use to control many aspects of the JET application audit. The file
lets you define the following properties.

Configuration Property Description

rulePacks Optional. Specifies sets of user-defined rules to include into an audit. The
property specifies the zip files or folders for the rules that make up a custom
rule pack. For an example, see Audit with Custom Rule Packs.

builtinJetRules Optional. Default is true. If false, all the built-in JET rules in the internal rule
set with prefix JET are disabled. This is a convenience property since it
obviates having to specify all the JET rules and individually marking them
disabled if only user-defined rules in custom rule packs are to be run. For an
example, see Audit with Custom Rule Packs.

builtinJetWcRules Optional. Default is false. If true, all the built-in rules in the internal rule set
with prefix JETWC for audits by custom Web Component authors are
enabled. This is a convenience property since it obviates having to specify all
the JET Web Component rules and individually marking them enabled. For an
example, see Audit JET Custom Web Component Projects.

ruleMods Optional. Enables/disables rules and can also override or define any rule's
options in any rulePack, such as the built-in JET rules in the internal rulePack
JET. Rules may be enabled/disabled by use of the enable/disable properties,
whose values are the rule names or group names. The override options are
grouped by the configuration property rulePacks sub-property prefix. Each
entry is a name/value pair, where the property name is a rule name and the
property value object supplies the option(s) for the rule. See JAF configuration
property rulePacks. For an example, see Configure Audit Rule Runtime
Properties . Note that rules marked with the property $required set to true
cannot be disabled via configuration properties.

severity Optional. Specifies the rule severity levels to which issues will be restricted. If
omitted, the default is all (all issues found are reported). The default severity
levels accepted are (in descending priority order): blocker, critical, major,
minor, info. (If these have been redefined by using the configuration property
sevMap, then a redefined severity may also be used here.) For an example,
Restrict Audit Rule Severity Level.

sevMap Optional. Allows reassignment of the severity level of any audit rule message
from any rule pack. It can also be used to redefine the set of severity levels
used by Oracle JAF when security level identifiers other than the default ones
are preferred. For an example, Alter the Severity Level of an Audit Rule .

groups Optional. Specifies one or more groups that will be used to form the active
rule set. If omitted the default is all. If this property is used, only the rule
groups defined in it are active. Note that this property is mutually exclusive
with the JAF configuration property ruleNames. For an example, Audit with
Specific Rules.

defGroups Optional. Allows custom groups to be defined and used in the JAF
configuration property groups definition. For an example, see Audit with
Specific Rules.

ruleNames Optional. Specifies the specific rules and, optionally, rule groups that will form
the active rule set. This property is mutually exclusive with JAF configuration
property groups. If this property is used, only the rules or rule groups defined
in it are active. For an example, see Audit with Specific Rules.

base Optional. Specifies the base directory used to resolve any relative file paths
found in the JAF configuration file. If omitted, the location of the configuration
file is used. The macro $jafcwd may be used, and its value is the directory in
which the audit is invoked. For an example, see Configure the Project Scope
for the Audit.

Chapter 2
About the Oracle JAF Configuration File Properties

2-2

Configuration Property Description

files Optional. Specifies an array of directory paths, file paths, or URLs used to
determine the input file set to be audited. Globs may be specified in a file
path. If any file path is relative, it is considered to be relative to the location
specified by the JAF configuration property base. Note that forward slashes
may be used to specify file paths regardless of the platform (Microsoft
Windows users can avoid using double backslashes, making the file paths
more readable). See also the JAF configuration property exclude. For an
example, see Configure the Project Scope for the Audit.

exclude Optional. Specifies an array of file paths which should be excluded from the
audit. Globs may be specified. If any file path is relative, it is considered to be
relative to the JAF configuration property base. Note that forward slashes
may be used to specify file paths regardless of the platform (Microsoft
Windows users can avoid using double backslashes, making the file paths
more readable). For an example, see Configure the Project Scope for the
Audit.

jetPagesOnly Optional. If true, this property suppresses auditing of an HTML file if the page
does not contain any JET custom elements. Default is false. For an example,
see Audit Only HTML Files that Contain Oracle JET Components.

theme Optional. Specifies the Oracle theme - may be redwood, alta, stable, or
none. If the property is omitted, redwood is assumed as the default. Note
that Stable is treated as a synonym for Redwood.

The theme setting affects rules that are theme dependent. In particular, the
attribute label-edge if unspecified has a default value that is dependent on
the theme. Refer to the JET API, for description of this attribute in <oj-
input-*>, <oj-select-*>, and <oj-combobox-*> elements.

format Optional. Specifies the type of audit output generated. May be prose for
standard report style text output, line for a flattened-out text style, or json for
JSON output format. If not specified, the default output is prose style. For an
example, see Toggle the Default Format of Audit Messages.

proseFormat Optional. If format has been specified as prose, this property defines a
custom presentation format (template) for the displayed issues. May use a list
of template tokens that may be specified in any order. For examples, see
Customize the Presentation of the Audit Messages.

lineFormat Optional. If JAF configuration property format has been specified as line, this
property defines a custom presentation format (template) for the displayed
issue. May use a list of template tokens that may be specified in any order.
This property is useful for reconfiguring the output when used in a Microsoft
Visual Code terminal window. For an example, see Customize the
Presentation of the Audit Messages.

outPath Optional. Specifies the file path to which the audit output (specified as either
prose or JSON) will be written. If the file path is relative, it is considered to be
relative to the location specified by the JAF configuration property base. If
omitted, the output is written to stdout. For an example, see Output Audit
Messages in JSON Format.

tabs Optional. Specifies the tab settings to be used when reporting line/column
issues found during an audit. If omitted, the default assumes that each tab
character represents 4 spaces. For an example, see Adjust the Tab Value
Used to Report Line and Column Issues.

messages Optional. Controls which messages are reported. It can specify the message
IDs to reject, or alternatively those to be accepted only. For an example, see
Suppress Audit Messages.

Chapter 2
About the Oracle JAF Configuration File Properties

2-3

Configuration Property Description

markupOptions Optional. This property can be used to modify the reporting of links found in
markup files. If true is specified (or the option is omitted), ojaf looks for URL-
like text that has not been marked-up as a link. This can be useful when
analyzing .md text for compliance. It is possible for false positives to be
generated, since text such as foo.html or foo.in are considered links, and
the rule should inspect the link for validity. If false is specified, links not
formally declared using markup syntax will not be reported as links.

typescript Optional. This property must be set to true to enable the auditing of TSX files.
Otherwise, the files will be skipped. For more information, see Audit JET Web
Component Projects Containing VComponents.

addFileList Optional. If set to true, and the JAF configuration property format is set to
json, this property causes the audited file set to appear in an additional
fileset section (as an array of full file path strings) of the JSON output. This
can be useful when creating custom reports from the audit's output JSON,
since it allows access to the full file set that was audited. For an example, see
Output Audit Messages in JSON Format.

title Optional. Specifies one or more strings used to customize a title for an audit
report. The strings will be displayed when the audit is run with prose format,
or the strings will be inserted into JSON output for the audit with JSON
format. Macros are available to insert values such as the Oracle JET version,
or date and time into the title strings. For an example, see Format a Title for
the Audit Report.

jetVer Optional. Specifies the Oracle JET version to be audited against. Can be a full
or partial semantic version (semver) with the format "[x [.y[. z]]", such
as "8.2.0" (a quoted string). For an example, see Audit with Specific JET and
ECMA Script Versions.

components Optional. Specifies paths to folders where metadata in the component.json
file of user-defined Oracle JET Web Components can be found. This provides
the ability for rules to inspect the Web Component metadata to validate
custom element attributes. (Note that this is for user-defined Web
Components only; it is not used for Oracle JET HTML components.) For an
example, see Audit JET Custom Web Component Usages.

componentOptions Optional. Specifies controlling options for the associated components and
componentUrls properties. If the neither property is specified,
componentOptions is ignored. This can be used to disable the application of
metadata schema extracted by JAF from component.json files and used to
validate web components. This may be useful to prevent JAF-INIT messages
from being displayed if the schema pass identifies component metadata
issues. For an example, see Audit JET Custom Web Component Usages.

nameSpaces Optional. Specifies the list of namespaces that are not allocated by Oracle
and that are user defined to allow JAF to successfully audit user-defined
custom Web Components. For an example, see Audit JET Custom Web
Component Usages.

stylesets Optional. Specifies an allowed list of valid user-defined Web Component style
names. This permits Oracle JAF to report on invalid style names in HTML and
CSS and to distinguish those styles from valid JET core styles. For an
example, see Audit CSS Styles and Web Components Styles.

comments Optional. If true, this property enables JavaScript commenting with JAF
comment commands when you want to limit audit scope at the level of the
source code. Default value is false. For an example, see Comment Source
Code for Fine-Grained Audit Control.

Chapter 2
About the Oracle JAF Configuration File Properties

2-4

Configuration Property Description

followLinks Optional. If true, <link> and <script> elements in HTML that refer to
external stylesheet and JavaScript files are followed, and the files are audited.
Specify false to prevent externally linked files from being audited. The default
value if not specified is true. For an example, see Suppress Auditing Linked
Content.

ecmaVer Optional. Specifies the ECMA script version for JavaScript auditing. May be 5,
6, 7, 8, 9, 10, or 11 (a number, without quotes) or the corresponding ES
version year (for example 2015, 2016, 2017, and so on). Support for ES
version 11 (2020) requires JAF version 2.9.20 or later. If omitted, the default is
ES version 11 (2020) as of Oracle JAF version 2.9.48 and ES version 10
(2019) is the default starting in Oracle JAF version 2.9.11. For an example,
see Audit with Specific JET and ECMA Script Versions.

tempDir Optional. Specifies the file path to the directory in which Oracle JAF should
create its internal work folder (jaftmp@). Intermediate directories are created
if necessary. If omitted, the default value is the current working directory. This
can be used when the default value cannot be used due to permission
restrictions on file creation. The path can be absolute or relative. If relative,
the path is considered to be relative to the current working directory

ruleDescriptions Optional. This property takes the following values: none, all, short, or long,
and causes an additional descriptions section to appear in the output JSON.
This property applies only if JSON output format has been specified (using
JAF configuration property "format" : "json"). For an example, see Output
Audit Messages in JSON Format.

userDefs Optional. Specifies a user-defined property (typically an object) that is passed
in context.userDefs to a fired rule. (This property is not examined nor
used by the audit.)

The userDefs property should be limited to specific, simple cases only.
Generally, and especially when multiple non-JET rulepacks are used, run-time
data should be maintained in a rulepack extension (see startupRP and
closedownRP in Implement Custom Rules Using the Audit Lifecycle.

options Optional. Defines miscellaneous runtime options. The property can be used
to reduce clutter on the command line when running an audit using the
Command Line Interface. For an example, see Audit the Application with
Predefined Runtime Options.

extends Optional. Specify a configuration file whose properties are to be inherited. If
the path is relative, it is resolved via the base property or the location of the
configuration file in which it is specified. A configuration may also extend a
JAF standard profile, a list of which can be viewed by using the command
ojaf -prof. For an example, see Specify Configuration Inheritance.

extendOptions Optional. Specify one or more properties that should not be inherited from the
configuration specified by the property extends. For an example, see Specify
Configuration Inheritance.

@include() Optional. This directive allows a configuration file to include text from another
file. This can be useful when the application file set to be audited is very large,
and permits the audit parameters to be separated from the file list. The
directive specifies the path to a text file which is be included in the
configuration in place of the directive line. The included files may also use
@include(). For an example, see Audit CSS Styles and Web Components
Styles.

Chapter 2
About the Oracle JAF Configuration File Properties

2-5

Configure the Project Scope for the Audit
Use the optional Oracle JAF configuration properties files and excludes to limit audit scope
based on the file set to audit. If the properties are omitted, the default file set is based on the
JET application configuration and includes by default all HTML files in the root directory.

The files property specifies an array of directory paths, file paths, or URLs that the JAF tooling
will use to determine the input file set to audit. The excludes property specifies an array of file
paths which should be excluded from the audit. Here is a basic sample:

/* Comments are supported */
{
 "files" : [<path>/*.html, <path_to_specific_file>, ...] // comments are
supported
}

Globs may be specified in a file path to allow filepath expansion and matching using wildcard
characters. For example, glob matching in the following sample matches any number of
directories at that level in the path hierarchy, and any number of their subdirectories.

{
 "files" : ["D:/apps/components/public_html/js/views/**/*.html"]
}

Both the files and the excludes properties can use relative paths. A relative path is considered
to be relative to the base property if defined, or to the location of the configuration file if the
base property is not defined. If the base property is itself a relative path, it is considered to be
relative to the configuration file location.

{
 "base" : ["./some/filepath"],
 "files" : ["./html/*.html"],
 "exclude" : ["./html/*test[1-9].html"],
 ...
}

In this sample, the files declaration is considered relative to the base property. Here, the base
property itself is also declared as relative, so the base is considered relative to the location of
the configuration file. If base is omitted, the files declarations would be considered to be
relative to the configuration file location.

The top-level base property can also be specified using the macro value $jafcwd. This macro
takes on the value of the directory in which the audit was invoked.

To specify the audit scope based on application paths:

1. To set the scope as a list to include, edit the files property:

"files" : [
 "./pages/html/*.html",
 "./mobile/html/*.html",
 "./pages/static/**",

Chapter 2
Configure the Project Scope for the Audit

2-6

 "http://server:1234/test/app.html
]

Windows users might prefer to use the forward slash file separator as shown to avoid
having to escape the backslashes (by using double backslashes). Glob matching is
supported by wildcards *, **, ? and [].

Note:

When a complex specification of globs is used in the files and excludes
properties of the JAF configuration, it is useful to be able to verify the files that
will be audited. JAF offers the ability to be able to perform a dry-run without
actually invoking the audit rules selected by the configuration. On the command
line, specify the flag --dryrun. This will verify that the configuration file contains
no errors, and will then display only the file paths to the files that would have
been audited, thus obviating the need to inspect the full output.

2. To set the scope as a list to include with reference to a base folder, edit the files property.

"files" : [
 "someFilePath",
 "someFilePath2",
 {
 "base" : "D:/git/trunk/built/apps/components/public_html/
demo",
 "files" : [
 "**/recipe.html",
 "/**/description.html",
 "/**/customHeader.html",
 "demo-dataVisualizations-filtering_element.html",
 "demo-dataVisualizations-
highlighting_element.html",
 "demo-accordion-basicAccordion.html",
 "demo-accordion-events.html",
 "demo-accordion-multiExpandAccordion.html",
 . . .
]
 },

... // multiple file objects can be specified

]

For convenience and clarity where a large number of long file paths need to be specified,
this alternative format is available. This allows an object definition to be used in place of a
simple string file path and defines a base folder for use with the set of files defined in the
object.

3. To set the scope as a list to exclude, edit the files and excludes properties.

{
 "files" : [
 "D:/git/trunk/built/apps/components/public_html/js/

Chapter 2
Configure the Project Scope for the Audit

2-7

views/**/*.html",
 ...
],
 "excludes" : [
 "D:/git/trunk/built/apps/components/public_html/js/
views/**/Test[1-9].html",
 ...
]
}

Sometimes it is more convenient to use generic globs without extremely detailed regular
expressions, and then exclude the exceptions. This can be achieved using the excludes
property as the sample shows.

Note:

Specification of files that should not be audited may cause false positive issues
to be reported by JAF. For example, angular file snippets might be construed with
the JET Custom Web Component attribute expression syntax. The file set should
be tailored to meet the needs of a particular audit. Generally, if you have files that
need to be run through a pre-processor, you should not submit these raw files for
audit. You may check the actual runtime file set generated by a JAF configuration
by using the --dryrun command line flag.

Specify Configuration Inheritance
Use the extends configuration property to allow parent configurations to inherit properties and
property values from child configurations, and use the extendOptions property to define the
actions taken during inheritance.

When multiple configurations need to be maintained by an organization that has different
auditing requirements, some aspects of the configurations may be common and need to be
repeated. To avoid duplication and related synchronization issues, JAF permits a hierarchical
structure to be used, where one configuration can inherit properties or property values from
another. This is performed by use of the extends property.

Primary config_1

 { "extends" : "/path/to/config_2.json"
 . . .
 }

 Child config_2

 { "extends" : "/path/to/config_3.json"
 . . .
 }

 Child config_3

 { . . . // no "extends"
 }

Chapter 2
Specify Configuration Inheritance

2-8

In the above example, the final active configuration is a modified copy of the primary
configuration, config_1, and is the result of a merge of the child configurations and the primary
configuration. The merge sequence starts at the last child, config_3, and moves upwards to
config_1. The sequence is as follows:

1. config_3 is a child configuration and is thus merged into its direct parent, config_2.

2. The result of that merge is a child configuration to its direct parent, config_1 (the primary
configuration), and is merged into config_1.

3. A copy of the updated config_1 becomes the final active configuration for the audit.

Note that circular references are not permitted and are detected by the command ojaf,
resulting in termination of the audit.

If a configuration uses relative file references, these are resolved during the merge with its
direct parent. This resolution is performed in the standard JAF documented sequence:

1. If no base property is declared, the relative paths are considered relative to the location of
their containing configuration file.

2. If a base property is declared, the relative paths are considered relative to the base
property path.

3. If the base property is itself relative, the base property is considered relative to the location
of the containing configuration file.

When two configurations are merged, a parent property either takes precedence over the child
property, or the child property values are merged into the parent property.

1. If the child property does not exist in the parent configuration, the property is transferred
directly to the parent, unless this is overridden by the optional property extendOptions.

2. If the parent property exists, but the child property cannot be merged or is a single value
(such as severity, theme, and jetver), the parent property takes precedence.

3. During an inheritance merge, the base and extends properties of a child are not inherited
by the parent.

4. If a property is considered inheritable, the action taken depends on the specific property.
As illustrated in the following example, the options property result is a direct merge,
assuming that Config2 extends Config1:

Active (final) Config <--- Config2 <--- Config1
--------------------- ------------------

"options" : { options" :
{ "options" : {
 "msgid" : true, "msgid" :
true, "msgid" : true,
 "color" : false, "color" :
false "color" : true,
 "verbose" :
true "verbose" : true
 } }
 }

Optionally, the action taken during inheritance can be controlled by the property
extendOptions. This property is examined only for a parent configuration and is never

Chapter 2
Specify Configuration Inheritance

2-9

inherited. extendOptions declares the action that applies to each property in the direct child
that it refers to.

"extendOptions" : {
 <property> : "ignore" ,
 . . .
}

A property that is declared in a child configuration can be prevented from propagating into the
parent configuration. For example, a parent configuration can specify that the child
configuration property ruleDescriptions should be ignored.

"extendOptions" : {
 "ruleDescriptions" : "ignore" ,
 . . .
}

The configuration properties files and exclude together define the scope of the fileset that will
be audited. As noted in the table below, these properties are inheritable and are merged by
default (unless vetoed by extendOptions). The action taken for these two properties is as
follows:

1. The parent and child files and exclude properties are examined for relative paths, which
are resolved.

2. If a files property contains files or base objects, they are expanded and resolved.

3. The resulting flattened/resolved arrays (with duplicates removed) are merged, and the
result is their union.

Inherited Properties Merged By Default Properties Never Inherited or Propagated

components, componentUrls, exclude, files,
groups, messages, nameSpaces, options,
ruleMods, ruleNames, rulePacks, sevMap

base, extends, tokens

Use the command-line flag -dac (display active configuration) to evaluate the result of
inheritance without actually running the audit life-cycle.

Inheritance from built-in standard profiles is available when using the extends property while
setting up a configuration. JAF provides some standard profiles to enable/disable standard
sets of rules and, in some cases, elevate the severity of errors. You can view the available
profiles by using the -prof command option (see Audit the Application Using the Command
Line).

$ ojaf -prof

--- JAF Profiles ---
* best-practice
 JAF Standard profile configuration enforcing best practice for JET
Application Development.
* redwood-strict (extends 'best-practice')
 JAF Standard profile configuration for strict audit checking of Redwood
applications.

Chapter 2
Specify Configuration Inheritance

2-10

To use one of these profiles as a base for your own configuration, use the extends option but
specify the name of the profile required rather than a path to a specific configuration JSON file.

{
 "extends": {"profile":"redwood-strict"}
 "jetVer": "11.0.0",
 "ecmaVer":"2019",
 "base": "$jafcwd",
 "files": [
 "./src/**/*.html",
 "./src/**/*.js",
 "./src/**/*.css",
 "./src/**/component.json"
],
 ...
}

For example, in the case of the profile redwood-strict above, the severity of rule oj-html-
alta-deprecated is upgraded to blocker because a Redwood application should not use the
Alta theme. You can view specific profiles by using ojaf -prof <profile name> (for example,
ojaf -prof best-practice). To view the full set of rules that are enabled and their severity,
you can use the -dac command option to display the final active configuration that has been
evaluated.

Configure Audit Rule Runtime Properties
Use the Oracle JAF configuration property ruleMods to change the auditing behavior of any
audit rule.

You can customize the audit behavior of individual audit rules by using the ruleMods property
to enable/disable rules and to override or define the auditing options defined by the rule pack
to which the rule belongs. Each entry in the ruleMods property that you define is a name/value
pair, where the property name is a rule name and the property value object supplies the
option(s) for the rule. The override options are grouped by the rulePacks property prefix
(ABCD in the following example). In the case of the built-in JET rule pack, which is enabled by
default, specify the rule pack prefix JET.

"ruleMods": {
 "ABCD": {
 "my-rule": {
 "pageType": "index",
 "companyCode": "acd",
 // user rule with arbitrary runtime properties
 "isMulti": true, . . .
 }
 }
}

Each rule name/value that you define is merged over the properties defined for the rule in its
respective rule pack and overrides the run-time rule behavior. Any rule option may be set. For
more information, see Reference the Custom Audit Rules in an Audit

The properties that you can customize for individual rules are shown in the table.

Chapter 2
Configure Audit Rule Runtime Properties

2-11

Rule Property Description

enabled Enables or disables the audit rule. All rules are enabled by default. See
example below.

severity Classifies the severity level of the audit rule. You may change the level to info,
minor, major, critical (default), blocker when you want to restrict the audit
by rule severity level. Note that these severity levels may be replaced by user-
defined severity levels as required by your organization. See also Alter the
Severity Level of an Audit Rule .

status Associates a development status with the audit rule. You may change the
status to production, alpha, beta, or deprecated.

filetype Specify the file types for which the audit rule will be invoked. You may change
the file type to html and/or css, and/or js and/or json. For example:

"filetype : "html"
or

"filetype" : ["html", "css"]
The filetype property is ignored by hook rules declared for startup/
closedown phases, since these are not file related.

group Specify the group or groups to which the audit rule is assigned. You may
change the rule group when you want to restrict the audit by rule group. For
example:
"group" : "jet-html"
or
"group" : ["jet-html", "jet-aria"]
See also Audit with Specific Rules.

jetver Specifies the Oracle JET release version or versions to be audited against.
You may change the JET release version required to invoke the rule. The
format supports semantic versioning, as used in programs like npm. For
example:

"jetver" : ">=7.1.0"

or

"jetver" : "~7.1.0"

For more information about this property and semantic versioning, see Audit
with Specific JET and ECMA Script Versions.

Chapter 2
Configure Audit Rule Runtime Properties

2-12

Rule Property Description

issueTag Defines a string which is passed through to the output JSON, or custom
proseFormat / lineFormat, whenever the rule to which it is applied fires an
audit issue.

The string may be applied to any rulepack and rule. It is not inspected by JAF,
and could, for example be formatted as a colon-separated key:value pair.
When the rule to which it is applied fires, the issueTag property is passed
through to the output. For JSON formatted output, it appears as Issue
property issueTag, and similarly in the Issue object for API/AMD modes. For
CLI default output, the issueTag string is not displayed, unless a custom
format is defined via the configuration proseFormat or lineFormat
properties. In this case the issueTag string is available as substitution
%symbol %itag.

. . .
 "format": "prose",
 "proseFormat": "%itag",
. . .
 "ruleMods": {
 "JET": {
 "oj-ts-noconsole": {
 "issueTag": "Do not include console
statements"
 }
 }
. . .

Rules may be enabled/disabled by using the enable/disable properties.

"ruleMods" : {
 // can specify rule names and group names
 "enable" : ["rulename1", "rulename2, "groupname1"],
 "disable" : ["rulename3", "rulename4, "groupname2"]
}

Note that since a group name represents a set of rules, group names can be declared in
addition to rule names.

If both enable and disable properties are declared, the enable set is processed first, followed
by the disable set. If a conflict is found, a notification message is generated and the run
abandoned.

To set rule options:
Configurable rules inspect the rule options at start-up time and configure themselves
accordingly. Redefine rule options for these rules, such as their severity level and enabled
status, by editing the oraclejafconfig.json file ruleMods property. Each rule option entry is a
name/value pair, where the property name is a rule name and the property value object
supplies the option(s) for the rule. For instance, to set a desired value for the severity sub-
property and enabled sub-property:

"ruleMods" : {
 "JET" : {
 "oj-html-ojattr" : {"severity": "critical"},

Chapter 2
Configure Audit Rule Runtime Properties

2-13

 "oj-html-lib" : {"enabled": "false"}
 }
}

This example illustrates that any rule option can be set, where the built-in rule oj-html-ojattr
has been overridden as severity level critical and the rule oj-html-lib has been disabled.
However, it is recommended that those particular options are set through the configuration
sevMap and ruleMods enable/disable properties.

Chapter 2
Configure Audit Rule Runtime Properties

2-14

3
Run Audits on Oracle JET Applications

You can run an audit without making changes to the default Oracle JAF configuration or you
can customize a variety of configuration properties to change audit behavior.

Audit the Application Using the Command Line
If you have configured Oracle JAF using the ojaf --init command, you can run an audit in
the Command Prompt window.

In the JET application, open a Command Prompt window and from the root directory, use the
JAF command without any arguments to run an audit based on the current JAF configuration
for the entire application, against all HTML, JS, CSS, and JSON files.

ojaf

The full command line syntax is, with optional flags and an optional space-separated list of
directory and/or file path arguments:

ojaf [<flags>] [<files>]

The audit runs starting at the directory where you invoke the command in the Command-Line
Interface. To audit a subset of the application files, change to the desired starting directory and
invoke the audit command. Alternatively, for a simple audit, you can specify the files and file
paths on the command line, relative to the current working directory:

ojaf myFile1[, myFile2, myFilex]

For example, you can audit two files in the current working directory and also audit all files in
the subfolders of only the test directory like this:

ojaf file1 file2 ./test/**/*

Note that some platforms perform wildcard expansion of command line arguments, so you may
need to quote ojaf argument with wildcard characters to prevent this.

The ojaf command accepts command line flags that you can use to override corresponding
property settings in the JAF configuration file. For example, you can append the --format flag
when you want to override the default flattened-out text output and display standard report
style output for the audit.

ojaf --format prose

3-1

Other command line flags allow you to interact with the ojaf utility to return desired
information. For example, if you want to confirm the Oracle JET version of your application is
among the current versions supported by JAF, append the --jetlist flag.

ojaf --jetlist

You might also use the command line to get more details about a particular issue that your
audit reported. This is supported by appending the --help flag and argument that provides
either the ID of the message or the name of the rule that emitted the message.

ojaf --help msgID

The complete list of command line flags can be displayed using the --help flag without
arguments.

ojaf --help

The --help command displays the command line flag options for the ojaf utility, as described
in the table below. Note that Oracle JAF command line flags are case insensitive.

You can also use the --help flag to display the manual page (manpage) documentation for a
command line flag by appending the flag as an argument to --help or -h, (such as ojaf -h
dr).

Alternatively, you can display the manpage for a flag by ending the command with a ? (such as
ojaf -rc?). Note that for *nix shells, the question mark should be escaped or the argument
enclosed in quotes (ojaf -rc\? or ojaf "-rc?").

OJAF Command Flag (long/short) Description

--help
or

-h

Displays the usage of the command line flags described in
this table.

--help msgId | rulename | command
or

-h msgId | rulename | command

Displays the description for a rule identified by its message
ID or name, or displays the manpage for a command. For
example, the following displays a description for the JAF
audit message ID JET-0160:

ojaf -h JET-0160
The following displays the description for the JAF audit rule
oj-html-binding-attr:

ojaf -h oj-html-binding-attr
The following displays the description for the JAF command
line flag --retcode:

ojaf -h -rc
--<command>? Displays the manpage for a command, as an alternative to

using -h <command>. For example, ojaf -h dr and ojaf
-dr? both bring up the manpage for the command option --
dryrun.
Note that for *nix shells, the question mark should be
escaped or the argument enclosed in quotes (ojaf -rc\?
or ojaf "-rc?") to avoid command line expansion.

Chapter 3
Audit the Application Using the Command Line

3-2

OJAF Command Flag (long/short) Description

--init
or

-i

Scaffold the oraclejafconfig.json file in the current
directory. The configuration file is required to run an audit
and can run with default settings or the settings can be
changed to customize audit behavior.

--initRule rulename
or

-ir rulename

Scaffolds a skeleton custom audit rule implementation file in
the current directory. The argument is followed by the rule
name without the .js file extension. For example, the
following creates a file my_new_rule.js in the current
directory:

ojaf --ir my-new-rule
For details about creating user-defined, custom audit rules,
see Set up the Custom Audit Rules Test Project.

--config filepath
or

-c filepath

Runs the audit with a specified configuration when followed
by a file path to a configuration file.

If omitted, the current directory is searched for the
oraclejafconfig.json file.

--jetver semver
or

-jv semver

Runs the audit for a JET release version when followed by a
partial or full semantic version value representing the JET
release version. Use to match the Oracle JAF rule set to the
version of your application.

Accepts a partial semantic version definition, such that
semver 9 will be promoted by JAF to the latest available
release: 9.x.y. Similarly, semver 9.1 will be promoted by JAF
to the highest patch level 9.1.y. For more semantic value
examples, see Audit with Specific JET and ECMA Script
Versions.

Tip:

Use the command ojaf --
jetlist (or ojaf -jl) to
display the current JET release
versions supported by the ojaf
Command-Line utility.

If omitted, the rule set is based on the version specified by
the jetVer configuration property in the
oraclejafconfig.json file.

--groups ruleGroupName1 ruleGroupName2 ...
or

-g ruleGroupName1 ruleGroupName2 ...

Runs the audit with the specified rule set groups. For the list
of built-in rule set groups, see Audit with Specific Rules.

--format prose | line | json
or

-t prose | line | json

Formats audit output when followed by the output display
format: prose for standard report style text output, line for
flattened-out text output, or json for JSON format.

--outPath filepath
or

-o filepath

Writes the output of the audit to a specified directory when
followed by a file path.

If the path is relative, the output directory is resolved relative
to the current directory. If omitted, the audit output directory
is the current directory.

Chapter 3
Audit the Application Using the Command Line

3-3

OJAF Command Flag (long/short) Description

--noout
or

-no

Suppresses output to the file specified in the configuration
file by the outPath configuration property, and causes the
audit output to be directed to the console.

--severity [> | >= | < | <=] blocker |
critical | major | minor | info | all (default)
or

-s [> | >= | < | <=] blocker | critical |
major | minor | info | all (default)
Note: If comparative operators are used, the severity
condition must be enclosed by quotes.

Restricts the severity of the issues reported by the audit
when followed by a severity level. For severity level
descriptions, see Restrict Audit Rule Severity Level.

The optional comparative operators >, >=, <, and <= may
precede the severity level (where the condition must be
enclosed by quotes). For example, the following will display
issues of severity "critical" and "blocker" level.

--severity ">=critical"
If omitted, the audit reports issues of all severity levels. If
these have been redefined by using the configuration
property sevMap, then a redefined severity may also be
used here.

--followlinks
or

-fl

Audit follows the stylesheet <link> elements and JAF will
audit linked-to stylesheets and referenced JavaScript/
TypeScript script files.

If omitted, the audit follows the linked-to stylesheets by
default.

--nofollowlinks
or

-nfl

Audit does not follow the stylesheet <link> elements and
JAF will not audit linked-to stylesheets or referenced
JavaScript/TypeScript script files.

--extra
or

-e

Shows extra details in the output. For example, it includes the
rule that was used to create a particular issue, and the issue
message ID.

--msgid
or

-id

When prose mode is configured, (see --format), the
message ID of reported issues is appended to the displayed
issue text.

A custom format defined by the JAF configuration property
proseFormat overrides this flag.

--dryrun
or

-dr

Performs a full start-up and analysis of the configuration file.
Displays the files that would have been audited, but does not
fire the rules on the file set (as determined by the JAF
configuration property settings files and exclude).

This is useful when you want to verify that the configuration
file contains no errors and particularly useful when the
settings for files and exclude properties are complex.

--jetlist
or

-jl

Displays the current JAF supported versions of JET.

This is useful when you want to verify that the version of JET
used to create your application is among the versions
supported by the current JAF installation.

--profiles
or

-prof [profile name]

Displays the available configuration profiles that can be
inherited. If the command flag is followed by an optional
profile name, the profile is displayed.

Chapter 3
Audit the Application Using the Command Line

3-4

OJAF Command Flag (long/short) Description

--nslist
or

-nsl

Displays the namespaces known to JAF.

This is useful when you want to audit the file set for
references to user-defined custom Web Components and
need to suppress false audit reporting of valid Web
Component references. For details, see Audit JET Custom
Web Component Usages.

--dslist
or

-dl

Displays a list of the rules disabled by default in the JET built-
in rule packs.

May be immediately followed by an optional pack prefix to
limit the output to the pack declared.

--deplist
or

-dpl

Displays a list of the rules that are deprecated.

May be immediately followed by an optional pack prefix to
limit the output to the pack declared.

--grouplist
or

-gl

Displays the built-in JET rule pack groups and their
associated rules.

May be immediately followed by an optional pack prefix name
to filter the output to the specified pack only.

--xgrouplist
or

-xgl

Displays external (non-JET) rule pack groups and their
associated rules.

May be immediately followed by an optional pack prefix name
to filter the output to the specified pack only.

Note that this command requires a configuration file with the
rulePacks property set (that is, use of -c on the command
line).

OJAF only refers to the rulePacks property, so no other
properties need be present.

--amdlist
or

-amd

Displays the availability/unavailability of rules in AMD mode
in JAF built-in rulepacks. An optional rulepack prefix may be
specified to restrict output to just the specified pack.

--loadorder
or

-rlo

Displays the loading order of rules in JAF built-in rulepacks.
An optional rulepack prefix may be specified to restrict output
to just the specified pack.

--betalist
or

-bl

Displays the status of rules in JAF built-in rulepacks. An
optional rulepack prefix may be specified to restrict output to
just the specified pack.

--metahist
or

-mh

Displays the metadata history across all JET versions known
to JAF, for deleted and renamed classes, and deleted class
methods and members.

This is useful for diagnosing problems resulting from
deprecation or name changes. Note JAF reports these in
messages JET-3070 and JET-3071.

--dac
or

-dac

Displays the active configuration file to evaluate the result of
inheritance. No audit is performed.

Chapter 3
Audit the Application Using the Command Line

3-5

OJAF Command Flag (long/short) Description

--deflist
or

--default
or

-def

Displays the current JAF configuration default values for
selected properties.

--debug
or

-d

Enables debug mode to allow very verbose output.

This is useful for diagnosing problems.

--rules
or

-r

Displays the active rules information and their options as text,
but no audit is performed.

Can be used in combination with the --outPath flag to
specify the file path to which rule data will be written. If
omitted, rule data is written to the console.

--rulesjson
or

-rj

Displays the active rules information and their options as
JSON, but no audit is performed.

Can be used in combination with the --outPath flag to
specify the file path to which rule data will be written. If
omitted, rule data is written to the console.

--rulessonar
or

-rs

Displays the active rules information and their options as
XML (SONAR format), but no audit is performed.

Can be used in combination with the --outPath flag to
specify the file path to which rule data will be written. If
omitted, rule data is written to the console.

--retcode auto (default) | errors | x (a
number)
or

-rc auto (default) | errors | x (a number)

Overrides the return code behavior of the OJAF command-
line interface. Specify auto for the default behavior. Specify
errors if the return code should be 0, except in the case of
abnormal termination, where -1 will still be returned as in the
default mode. Specify a number that will be used as the
return code. Requires OJAF version 2.9.11 or later.

--help msgId | rulename
or

-h msgId | rulename

Displays the description for a rule identified by its message
ID or name. For example, the following displays a description
for the JAF audit message ID JET-0160:

ojaf -h JET-0160
The following displays the description for a JAF audit rule
oj-html-binding-attr:

ojaf -h oj-html-binding-attr
--initRule rulename
or

-ir rulename

Scaffolds a skeleton custom audit rule implementation file in
the current directory. The argument is followed by the rule
name without the .js file extension. For example, the
following creates a file my_new_rule.js in the current
directory:

ojaf --ir my-new-rule
For details about creating user-defined, custom audit rules,
see Set up the Custom Audit Rules Test Project.

Chapter 3
Audit the Application Using the Command Line

3-6

Audit the Application with Predefined Runtime Options
Use the optional JAF configuration property options to define runtime options to use each time
you run the audit from the command line.

Instead of invoking the ojaf command with command line flags, you can pre-define various
runtime options by configuring the corresponding settings in the JAF configuration file options
property. For example, instead of appending --extra --nocolor to an ojaf command
invocation each time, you can define the configuration options debug and color.

To configure miscellaneous runtime options:

• To configure runtime options to apply to ojaf invocations, edit the oraclejafconfig.json
file options property.

"options": {
 "debug": true | false, // Set debug mode.
 "verbose": true | false, // Set verbose mode for additional output.
 "color": true | false, // Set color mode for messages and prose
output. (Works best on a black background.)
 "msgid": true | false, // Add message IDs to displayed issues.
(Requires 'format' : 'prose' | 'line'.)
 "ruleName": true | false // Add rule names and msgId's to displayed
issues. (Requires 'format' : 'prose' | 'line'.)
 "retCode" | "rc": "auto" | "errors" | number // Override OJAF CLI
return code. Default if omitted is "auto". See examples below.
}

The command line equivalents are as follows.

"options": {
 "debug": false, // Same as command line -d or -- debug
 "verbose": false, // Same as command line -e or --extra
 "color": false, // Same as command line -nc or --nocolor
 "msgid": true // Same as command line -id or --msgid (Requires
'format' : 'prose' | 'line'.)
}

Examples of the configuration option to override the return code behavior in the OJAF
command-line interface. Requires OJAF version 2.9.11 or later. Note that "rc" and
"retcode" are synonyms.

"options": {
 "rc": 0 // return code will always be zero
}

or

"options": {
 "rc": "errors
 // return code will always be zero, except

Chapter 3
Audit the Application with Predefined Runtime Options

3-7

 // in the event of early/abnormal
}

or

"options": {
 "rc": "auto"
 // default behavior - 0 - nnn -> number of issues found,
 // -1 for early termination
}

Audit with Specific JET and ECMA Script Versions
During an audit, Oracle JAF refers to application-specific metadata to process the JAF rule set.
Use the optional JAF configuration file jetVer property to set the metadata for a JET version
and use the optional ecmaVer property to set the ECMA version. If the properties are omitted,
then JAF processes the rule set by using metadata that is specific to the version of JET used
to create the application.

The JAF built-in audit rule set works against metadata that is optimized for a specific version of
JET and a specific JavaScript ECMA implementation. By default, JAF derives the rules
metadata from the JET JavaScript API reference documentation that is specific to your
application. However, you can customize the audit to process the built-in rule set for versions
of JET and JavaScript/TypeScript other than your application.

• A quoted string, such as "14.0.0" is a valid setting for JET metadata when you want to
reference an Oracle JET version. Note, if you happen to need to run with a JET release
candidate, trailing characters are permitted, such as "14.0.0-rc3".

• For the JavaScript ECMA, versions 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 (a number, without
quotes) are valid and may be specified by the ECMA version number or ES version year,
such as 2023 for ES14.

To change the application-specific metadata to use for an audit:

1. To set the metadata for an Oracle JET release version by specifying a semantic version
value, edit the oraclejafconfig.json file jetVer property.

{
 ...
 "jetVer" : "18.0.0"
 ...
}

Use the command ojaf --jetlist (or ojaf -jl) to display the current Oracle JET release
versions supported by the ojaf CLI utility.

The specification is treated by JAF as a semantic version value, where partial version
specifications are valid. Generally speaking, only the major and minor release values are
required (for example, "18" or "17.1"), since the patch number will be supplied by JAF. JAF
promotes the specified jetVer value to the latest available JET release that corresponds to
the semantic version (refer to the output of command ojaf -jl for the current default for
the version of JAF you are using). For example, assume that JET release versions 18.1.1,
18.1.2, 18.2.1, and 18.2.2 are supported, then JAF promotes semantic version values for
jetVer as follows.

Chapter 3
Audit with Specific JET and ECMA Script Versions

3-8

jetVer Value Promoted To JET Release

"18" 18.2.2

"18.1" 18.1.2

"18.2" 18.2.2

"18.2.0" 18.2.2

Note:

For more information about semantic versioning, visit the SemVer org website at
https://semver.org.

2. To set the metadata for a specific JavaScript implementation, edit the
oraclejafconfig.json file ecmaVer property.

{
 ...
 "ecmaVer" : 11
 ...
}

A version number with or without quotes in the version range 5 to 14 (5, 6, and so on), or
the year range 2015 to 2023 (2015, 2016, and so on).

Starting in JAF version 2.9.15, the ECMA version can also be specified as an ES version
year with or without quotes, such as 2020, 2019, and so on.

Official Name / Version JAF ecmaVer Property JAF Version Required

ES2023 / ES14 14 or "14" or 2023 or "2023" 6.9.0 or later

ES2022 / ES13 13 or "13" or 2022 or "2022" 5.9.0 or later

ES2021 / ES12 12 or "12" or 2021 or "2021" 5.9.0 or later

ES2020 / ES11 11 or "11" or 2020 or "2020" 2.9.20 or later

ES2019 / ES10 10 or "10" or 2019 or "2019" 2.9.11 or later

ES2018 / ES9 9 or "9" or 2018 or "2018" 2.8.21 or later

ES2017 / ES8 8 or "8" or 2017 or "2017" 2.8.21 or later

ES2016 / ES7 7 or "7" or 2016 or "2016" 2.8.21 or later

ES2015 / ES6 6 or "6" or 2015 or "2015" 2.8.20 or earlier

na / ES5 5 or "5" na

Audit with Specific Rules
The audit rule set invoked by JAF can be optionally conditioned by the use of the configuration
properties groups, ruleNames, and ruleMods. These properties provide different ways to
enable and disable rules in the runtime rule set to specify a list of rules that will be run, and
thus indirectly disable all other rules.

All JAF rules are defined in rule packs. Some rule packs are built-in to JAF and can simply be
selected by setting the configuration properties starting with builtin. For example,
builtinJetRules can be set to true, and all (enabled) rules defined in it now become available
to JAF. (Note that builtinJetRules is true by default if omitted, and thus nothing needs to be
declared to perform a standard audit using the JET built-in rules.) For rule packs that are not

Chapter 3
Audit with Specific Rules

3-9

https://semver.org

among the JET built-in rule packs, the configuration property rulePacks can be used to
declare which external rule packs are to be loaded.

So, by default, the built-in Oracle JAF rule pack is enabled and, optionally, external rule packs
may be loaded, and all rules within these rule packs are enabled to run in an audit. It is
possible to disable rules in the rule pack to prevent the rule from running, but if the requirement
is to run only a few rules, you may find it easier to state which rules are to be run rather than
disable all those not required.

Use the JAF configuration property ruleNames to specify a list of specific rules and rule
groups to run, and thus indirectly disable all other rules. Alternatively, use the property groups
to specify a list of rule groups to run, and thus indirectly disable all other rule groups. Only the
named rules or rule groups will be invoked in the JAF audit.

Note that the groups and ruleNames configuration properties alone do not enable rules, they
only declare rules that you intend to use. Whether these rules are run or not may depend on
the audit configuration. If, for example, a group is specified, but its containing rule pack is not
loaded, the group's rules will not be run. Similarly, if a rule that's declared in ruleNames is
disabled by default (or is disabled elsewhere via the ruleMods property), the rule will not run.

Thus, the ruleNames and groups property give you a convenient way to temporarily override
an existing configuration of loaded rule packs without resorting to editing or commenting out
configuration entries. This is particularly useful during rule development or debugging. These
properties are also useful sometimes to state the rules to be run, rather than disable the rules
you don't want run.

To audit with specific rules:

1. To declare subsets of the rules to run, edit the oraclejafconfig.json file groups property.

{ "groups" : ["ruleGroup1", "ruleGroup2", ...],
}

In the case of the JET built-in rules, you can specify the rules to run by declaring the group
name for the built-in JET rule pack subset as described below. For example, where the
group name jet-html defines the HTML rules and the group name jet-js defines the
JavaScript/TypeScript rules, then the sample enables only the rules belonging to the group
jet-html.

{ "groups" : ["jet-html"],
}

Built-in Rule
Group Name

Usage

jet-html Rules check HTML.

jet-css Rules check CSS.

jet-js Rules check JavaScript.

jet-ts Rules check TypeScript.

jet-tsx Rules check TypeScript with JSX.

jet-md Rules that check Markdown.

jet-json Rules check JSON.

jet-override Rules that check for CSS overrides.

jet-perf Rules that check performance.

jet-aria Rule check accessibility compliance.

Chapter 3
Audit with Specific Rules

3-10

Built-in Rule
Group Name

Usage

jet-deprecated Rules check deprecated status.

jet-deleted Rules checking deleted status.

jet-bp Rules enforce JET development best practices.

jet-redwood-bp Rules that enforce best practices for Redwood.

jet-csp Rules check for Content Security Policy (CSP) violations.

html5 Rules check for obsolete tags and attributes for HTML5.

jet-cca Enforces rules defined by Web Component metadata whether they exist in the
application or on Oracle Component Exchange.

2. Optionally, to declare custom rule groups to run, edit the oraclejafconfig.json file
defGroups property and add the custom group name to the groups property.

"groups": [
 "pages"
] // references a custom group

"defGroups": [
 {
 "pages": [
 "jet-html",
 "jet-css"
]
 },
 ...
]

In the sample, the custom group pages is defined in the defGroups property and enabled
for auditing in the groups property.

3. To declare a list of specific rules and rule groups to run, edit the oraclejafconfig.json file
ruleNames property.

{ "ruleNames" : ["ruleName1", "ruleName2, "ruleGroup1", ...],
}

A rule or rule group name may be declared using a regular expression string that includes
wildcard characters (requires JAF version 2.9.29 or later).

{ "ruleNames" : ["oj-ruleName-*", ...],
}

The ruleNames property and the groups property are mutually exclusive. If the
ruleNames property is configured, only the rules and rule groups defined in it are active.

4. To enable or disable specific rules and rule groups, edit the oraclejafconfig.json file
ruleMods property and set the desired list of rules and rule groups on the enable and
disable sub-properties.

"ruleMods": {
 "enable": [
 "rule1",

Chapter 3
Audit with Specific Rules

3-11

 "rule2",
 "rulegroup1"
],
 "disable": [
 "rule3",
 "rule4",
 "rulegroup2"
]
}

Note that because a rule group name represents a set of rules, the group name can be
declared. If both enable and disable properties are declared, the enable set is processed
first, followed by the disable set.

Alternatively, if you are overriding rule options with ruleMods, then you can specify the
enabled property of the desired rule as true or false on the rule definition. In this example,
the rule is disabled.

"ruleMods": {
 "JET": {
 "oj-html-ko-databind": {
 "enabled": false
 },
 ...
 }
}

Audit with Custom Rule Packs
Use the Oracle JAF configuration property rulePacks to include sets of user-defined, custom
audit rules in an Oracle JAF audit.

You can optionally enable sets of user-defined, custom audit rules by using the rulePacks
property. The property specifies the zip file or folder containing the rules. For details about how
to use Oracle JAF to create user-defined rules, see Extend the Oracle JET Audit Framework.

"rulePacks": [
 {
 "path": "path/to/myrulepack.zip",
 "enabled": [
 true (default) | false
]
 "status": [
 "all" (default),
 "production",
 "deprecated",
 "beta",
 "alpha"
]
 },
 {
 "path": "path/to/my/rulepack/folder",
 "enabled": [
 true (default) | false
]

Chapter 3
Audit with Custom Rule Packs

3-12

 "status": [
 "all" (default),
 "production",
 "deprecated",
 "beta",
 "alpha"
]
 },
 ...
]

The enabled property is optional and provides the ability to easily disable a complete rule
pack. If omitted, the default is enabled.

The specified path can be relative. If relative, it is considered to be relative to the location of
the configuration file, or the configuration file's base property, if defined.

To audit with specific rule packs:

1. To enable custom rule packs to run, edit the oraclejafconfig.json file rulePacks
property, specify path as location of the rule pack and set the desired value for the optional
status sub-property.

"rulePacks": [
 {
 "path": "path/to/myrulepack1.zip",
 },
 {
 "path": "path/to/myrulepack2.zip",
 "status": [
 "deprecated",
 "beta"
]
 }
]

The sample enables the audit to run with custom rule packs specified by the path
properties. The enabled property is by default true and can be omitted. The status
property for myrulepack2.zip in this sample limits the audit to load only rules with the
system property status defined as deprecated or beta in the rules declaration file
rules.json. For more information about system properties defined by a custom rule pack
that you may override, see Configure Audit Rule Runtime Properties .

2. To disable a custom rule pack from running, edit the oraclejafconfig.json file rulePacks
property, specify path as the location of the rule pack and set the value false for the
enabled sub-property.

"rulePacks" : {
 "path" : "path/to/myrulepack1.zip",
 "enabled" : false
 }

"rulePacks": {
 "path": "path/to/myrulepack1.zip",

Chapter 3
Audit with Custom Rule Packs

3-13

 "enabled": false
}

The sample overrides the enabled system property for a rule pack by disabling the rule
pack specified by path.

3. To disable all built-in JET rules and run the audit with only custom rule packs, edit the
oraclejafconfig.json file and set the builtinJetRules property to false, and then edit the
rulePacks property, as described above to enable the desired custom rule packs.

"builtinJetRules" : false

The sample overrides the builtinJetRules property to disable all the JET rules provided
with the Oracle JAF installation.

Audit Only HTML Files that Contain Oracle JET Components
Use the optional Oracle JAF configuration file property jetPagesOnly to surpress auditing of
an HTML file if the page does not contain any Oracle JET custom elements. If the property is
disabled, then JAF processes and reports issues on all HTML files in the application.

When enabling auditing of Oracle JET only pages, JAF examines all elements in the page after
parsing and before firing any rules. Thus enabling the jetPagesOnly property is less
performant than when the property is disabled.

To audit only pages with Oracle JET components:

• To change the audit to ignore pages without JET components and audit only pages with
JET components, edit the oraclejafconfig.json file jetPagesOnly property.

{
 ...
 "jetPagesOnly" : true
 ...
}

Audit JET Custom Web Component Usages
Because Oracle JET Web Components are user-defined, auditing their custom HTML depends
upon processing the Web Component's metadata before auditing can begin. Use the optional
JAF configuration properties components and componentsUrls to enable auditing support
for such custom HTML elements by informing JAF where to find and extract Web Component
metadata.

Oracle JET custom Web Components in your application rely on the component.json file to
define metadata for their API, including their tag names and supported properties, methods,
and events. When you want JAF to process rules specific to Web Components, you must set
the JAF configuration components property for local Web Components to inform JAF where to
find the component.json file.

During its pre-process phase, JAF recursively searches the specified locations to extract the
component metadata. After this initial phase, the configuration properties are no longer needed
and in subsequent phases of the audit, the previously extracted component metadata is used
by the built-in JET rules defined by the jet-cca group to resolve Web Component references.

Chapter 3
Audit Only HTML Files that Contain Oracle JET Components

3-14

Although not a complete review of the JAF rules in the jet-cca group, once properly
configured, JAF will enforce implementation details such as the following.

• Check that components don't use a reserved namespace prefix (such as, oj-).

• Check that for attributes are prefixed and point to an expression.

• Checks that hardcoded element IDs are not used within the component implementation.

Because user-defined Web Components are associated with a namespace to avoid naming
collisions, JAF needs to be informed about the namespace to prevent reporting references in
the audit file set as not valid. By convention, the prefix of the Web Component name identifies
the namespace. To declare the namespace for Web Components not defined by the oj
namespace, you set the JAF configuration property nameSpaces.

To support auditing of Web Components:

1. To set the component.json file path for Web Components that reside within the application,
edit the oraclejafconfig.json file components property.

"components" : ["path/to/my_components"]

The property may be specified as a single string, or as an array of strings, where each
folder is inspected, and a search is made for component.json files at the top level and
recursively down through all child levels.

"components": [
 "path/to/my_components/group1",
 "path/to/my_components/group2"
]

2. Important: Set the file property to include the folder paths of locally referenced Web
Components.

"files": [
 ...
 "./components/**"
]

3. Suppress false reporting of valid references to Web Components by editing the
oraclejafconfig.json file nameSpaces property and declare the list of allowed
namespaces.

"nameSpaces" : ["my-foo", "my-bar", ...]

The namespace of user-defined Web Components is by convention the prefix you
assigned the component to avoid naming collisions. In this example, Web Components
with the prefixes my-foo and my-bar will not be flagged by the JAF audit when referenced
in the file set.

Tip: You can list the namespaces known to the JAF version you are running by entering
this ojaf command:

ojaf --nslist

Chapter 3
Audit JET Custom Web Component Usages

3-15

4. (Optionally) Suppress validation of Web Component metadata if you do not want the
current component.json file schema to be applied during the pre-audit phase.

"components": ... ,
"componentOptions": {
 "applySchema": false
}

This can be useful to prevent JAF-INIT messages from being displayed if the schema pass
identifies component metadata issues.

5. (Optionally) To enforce a maximum number of Web Components to exist in an HTML page,
edit the oraclejafconfig.json file ruleMods property, specify the prefix of the built-in rule
pack JET, and customize the built-in oj-html-cca-count rule specification.

"ruleMods": {
 "JET": {
 "oj-html-cca-count": {
 "thresholds": {
 "oj-table": 5
 }
 }
 }
}

The threshold for allowed Web Components in an HTML page is any number. For
example, this sample checks the number of tables on the page.

Component specifications can include wildcard characters. For example, this sample
checks for all gauges and buttons, in addition to the oj-table component, and also limits the
total number of components used by using the $total property.

"ruleMods": {
 "JET": {
 "oj-html-cca-count": {
 "thresholds": {
 "oj-table": 5,
 "oj-*-gauge": 10,
 "oj-buttonset-*": 10,
 $total: 20
 }
 }
 }
}

An invalid rule option will prevent Oracle JAF from running the oj-html-cca-count rule.
Confirm that the option thresholds has been specified correctly.

Audit JET Custom Web Component Projects
You can run an extended audit over the Web Component project that you created using the
Oracle JET Tooling by enabling the rule set builtinJetWcRules in the JAF configuration file.

Before you share a custom Web Component that you create, you can audit the standalone JET
project that implements the Web Component. The rule set builtinJetWcRules is provided

Chapter 3
Audit JET Custom Web Component Projects

3-16

specifically for component developers to use to validate best practices and other concerns that
guarantee the validity of Web Component implementation details.

The builtinJetWcRules rule set is defined by a number of audit groups that you can enable
individually for fine control over the rules to invoke. For example, you might enable the rule
group jetwc-pre-release just before the cut to production. The rule set also contains rules that
you can configure specific to your project. All rule groups and individual rules with the groups
are defined by the prefix jetwc.

To run the audit on your Web Component project, the project must be a standard JET project
that you created as the source for your custom components. Specifically, the rule set expects
the organization of the project folders to be consistent with the organization created by Oracle
JET CLI when you create a new component or pack of components, using the ojet create
component and create pack commands.

The builtinJetWcRules rule set enforces implementation details such as the following.

• Checks that the folder structure and component names within the folders are as expected
by the Oracle JET Tooling, and checks other such structure-related concerns.

• Checks the validity of dependency relationships between components, including semvar
values, JET version values, requireJS paths, and component API implementations.

• Checks for consistency and correctness of component APIs in the namespace of your
custom component, and that non-template slots are declared, events are declared, and
that properties are nested only to a specified level—to identify just a few of the many API
audit concerns.

• Checks for deprecated API styles, usages, and practices in JET.

• Checks for NLS support to verify the root language bundle location and that translation
bundles have been provided for the specified locales.

• Checks for issues related to theme-able components, such as the presence of the ojcss!
plugin.

• Checks for issues that can effect the usage of your component in Oracle Visual Builder,
such as length limits for a display name that you define and the availability of a specified
icon.

To enable auditing of Web Component projects and configure customizable rules:

1. To enable the builtinJetWcRules, edit the oraclejafconfig.json file. This is a basic
configuration for a Web Components project:

{
 "jetVer": "18.1.0",
 "base": "$jafcwd",
 "files": [
 "./src/**/*.html",
 "./src/**/*.js",
 "./src/**/component.json"
],
 "components": [
 "./src/js/jet-composites"
],
 "builtinJetRules": true,
 "builtinJetWcRules": true,
 "format": "json",
 "outPath": "audit-report.json"
}

Chapter 3
Audit JET Custom Web Component Projects

3-17

The files and components properties specify the paths found in the standard project folder
structure, as generated by the JET Tooling. The $jafcwd macro sets the base directory to
the one in which the audit is invoked.

2. To declare subsets of the rules to run, edit the oraclejafconfig.json file groups property.

{ "groups" : ["ruleGroup1", "ruleGroup2", ...],
}

In the case of the JET built-in rules, you can specify the rules to run by declaring the group
name for the built-in JET rule pack subset as described below. For example, where the
group name jetwc-structure defines the folder structure and jetwc-api defines the API
usage rules, then the sample enables only the rules belonging to those groups.

{ "groups" : ["jetwc-structure", "jetwc-api"],
}

Built-in Web Component Rule Group Name Usage

jetwc-structure Rules that check that the overall disk layout is as
expected by the Oracle JET Tooling. This group
should be enabled for most component sets.

jetwc-dependencies Rules that verify the various dependency
relationships between components both within
and across packs. This group should be enabled
for all component sets.

jetwc-pre-release Rules to be run before you cut a production
release.

jetwc-api Rules that verify the consistency and correctness
of your component APIs. This group should be
enabled for all component sets.

jetwc-vb Rules that specifically check for things that effect
the Visual Builder usage experience of your
components.

jetwc-nls Rules relating to NLS support.

jetwc-deprecations Rules that check for known deprecated usages.

jetwc-theming Rules to enable if you are trying to create theme-
able components.

3. (Optionally) To verify a specified set of files exists in the project, edit the
oraclejafconfig.json file ruleMods property, specify the prefix of the built-in rule pack
JETWC, and customize the built-in jetwc-standard-files structure rule specification. Note
that you must ensure that all files that you want to check for are listed.

"ruleMods": {
 "JETWC": {
 "jetwc-standard-files": {
 "customOpts": {
 "files": [
 "README.md",
 "changes.txt",
 "version.mf"
]
 }

Chapter 3
Audit JET Custom Web Component Projects

3-18

 }
 }

The jetwc-standard-files rule checks by default for the README.md and CHANGELOG.md files,
but if you customize this rule, then you must list them.

4. (Optionally) To impose some length limit for the displayName property when the Web
Component will be used with Visual Builder, edit the oraclejafconfig.json file ruleMods
property, specify the prefix of the built-in rule pack JETWC, and customize the built-in
jetwc-displayname Visual Builder rule specification.

"ruleMods": {
 "JETWC": {
 "jetwc-displayname": {
 "enabled": true,
 "customOpts": {
 "limits": {
 "component": {
 "length": 30,
 "words": 4
 },
 "property": {
 "length": 30,
 "words": 3
 },
 "event": {
 "length": 30,
 "words": 3
 },
 "template": {
 "length": 40,
 "words": 8
 }
 }
 }
 }
 }

Note that the number of letters and words can be configured for components that appear in
either the Component palette (Composites and Patterns) or in Visual Builder Application
templates, as well as for Events and Properties in the Properties pane.

5. (Optionally) To specify a list of requireJS paths used by define() or require() calls in
your component that are to be assumed to be available, edit the oraclejafconfig.json
file ruleMods property, specify the prefix of the built-in rule pack JETWC, and customize
the built-in jetwc-require-paths dependency rule specification. For example to disallow
JQuery and VB (Visual Builder) paths, remove them from the standardPaths list.

"ruleMods": {
 "JETWC": {
 "jetwc-require-paths": {
 "enabled": true,
 "customOpts": {
 "standardPaths": [
 "ojs",

Chapter 3
Audit JET Custom Web Component Projects

3-19

 "knockout",
 "hammerjs",
 "persist"
]
 }
 }
 }

All other valid paths are derived from the declared dependencies of the component that
owns the file being audited.

The path "./" is always considered to be valid. The path "../" is always considered to be
invalid.

Take care when adding extra standard paths of your own and avoid adding a path that
constitutes a dependency that is not shipped as a standard part of JET or Visual Builder.
For such cases, your component needs to declare an explicit dependency to another
component (for example, by using a reference or resource component).

6. (Optionally) To ensure that nesting of Web Component properties do exceed the desired
level, edit the oraclejafconfig.json file ruleMods property, specify the prefix of the built-
in rule pack JETWC, and customize the built-in jetwc-property-nesting API rule
specification. By default the rule checks property nesting does not exceed two child levels
(also called sub-properties). To check for nesting beyond three levels of sub-properties, set
depth to 4, as shown.

"ruleMods": {
 "JETWC": {
 "jetwc-property-nesting": {
 "enabled": true,
 "customOpts": {
 "depth": 4
 }
 }
 }

Nesting of properties beyond two child levels is not recommended. To disallow sub-
property use all together you would set depth to 1.

7. (Optionally) To ensure that translation bundles exist for a specified list of locales, edit the
oraclejafconfig.json file ruleMods property, specify the prefix of the built-in rule pack
JETWC, and customize the built-in jetwc-nls-languages NLS rule specification. JAF will
invoke this rule only when you have configured the locales you want to check against.

"ruleMods": {
 "JETWC": {
 "jetwc-nls-languages": {
 "enabled": true,
 "customOpts": {
 "locales": [
 "fr",
 "fr-ca",
 "de",
 "zh-Hans|zh-CN"
],
 "strict": false
 }

Chapter 3
Audit JET Custom Web Component Projects

3-20

 }
 }

Use the pipe (|) symbol to separate acceptable alternatives. For example, the sample
shows either zh-Hans or zh-CN locale is acceptable.

By default, the checking code is lenient, with case matching and underscore v's hyphen.
You can set strict to true to force exact matching.

8. To allow exceptions to the jetwc-css-scoping rule to include CSS in the component CSS
without component tag scoping, include a configuration option with an array of scopes to
ignore. For example, the following configuration option:

"ruleMods" : {
 "JETWC":{
 "jetwc-css-scoping":{
 "enabled":true,
 "customOpts":{
 "ignoreScopes":["oj-sp-color-invert-bg"]
 }
 }
}

Allows the inclusion of oj-sp-color-invert-bg in the component CSS without component
tag scoping, assuming that the oj-sp-color-invert-bg class is in a parent of the
component.

Audit JET Web Component Projects Containing VComponents
The builtinJetWcRules rule set supports the auditing of Web Component projects that use
VComponent TSX files in addition to the JS and TS files used by conventional CCA
components.

To enable the builtinJetWcRules and thus the custom component audits, you must edit the
oraclejafconfig.json file and set builtinJetWcRules to true.

The builtinJetWcRules rule set expects that the web component is a standard JET project
that was created as the source for your custom components. That is, the rule set expects that
the context and folder organization of the project be consistent with projects created using the
Oracle JET CLI tool.

In order to include TSX files in the project audit, a TypeScript compilation must first be run
against the code. Therefore, there are some extra requirements for the JAF configuration
oraclejafconfig.json file:

• You must be running JAF 3.3.0 or later.

• Your JAF configuration must include .tsx files in the files property array to ensure that
VComponents are processed.

• You must set the "typescript":{"compile":true} option in your JAF configuration.
Without this, .tsx files will be skipped.

• The project under audit needs to have populated node_modules, which includes @oracle/
oraclejet, as the JET version used by the project is also used for compiling.

• Your project must compile successfully before the audit can be run.

Chapter 3
Audit JET Web Component Projects Containing VComponents

3-21

For a mixed Typescript CCA and VComponent project, your oraclejafconfig.json file should
look similar to the following:

{
 "jetVer": "18.1.0",
 "base": "$jafcwd",
 "typescript":{
 "compile":true,
 },
 "files": [
 "./src/**/*.html",
 "./src/**/*.ts",
 "./src/**/*.tsx",
 "./src/**/component.json"
],
 "components": [
 "./src/js/jet-composites"
],
 "builtinJetRules": true,
 "builtinJetWcRules": true,
 . . .
}

Audit CSS Styles and Web Components Styles
Use the optional Oracle JAF configuration property stylesets to create a whitelist of valid user-
defined web component styles to enable auditing support for an undefined JET core style, a
misspelled style name, or an unknown (to JAF) Web component style.

The configurable style rules in the built-in JAF rule set can emit accept or reject CSS style
diagnostics. In order to allow JAF to accept valid user-defined styles for Web components, you
can specify the list of supported Web component styles in the stylesets property. If Web
component styles are not defined, JAF may return a false positive for a valid style.

To audit CSS styles and include valid Web component styles:

1. To enable auditing of CSS styles that do not return a false positive for valid Web
component styles, edit the oraclejafconfig.json file stylesets property and define an
array of style names for the namespace of the Web component.

"stylesets": [
 // For namespace "oj-xxx"
 "oj-xxx-color",
 "oj-xxx-bgcolor",
 . . .

 // For namespace "oj-yyy"
 "oj-yyy-foo",
 "oj-yyy-bar",
. . .
]

The sample enables JAF to distinguish valid Web component styles from an undefined
JET built in style, a misspelled style name, or an unknown (to JAF) Web component style.

Chapter 3
Audit CSS Styles and Web Components Styles

3-22

2. To enable auditing of CSS styles and specify the valid Web component styles in an
include .txt file, edit the oraclejafconfig.json file stylesets property and add
@include() with the file path of the style set lists.

"stylesets" : [
 @include('./stylesets/styleset-oj-sample.txt') ,
 // trailing comma to terminate the included list (see below)
 @include('./stylesets/styleset-oj-foo-bar.txt')
],

The sample specifies the location of the style set list for multiple Web components to
disassociate their style lists from the configuration for easier maintenance of the style lists.

A sample styleset-oj-sample.txt file might look like the following. Note that if no trailing
comma terminates the style list, one can be added after the @include(), as shown above.

// oj-sample styles
"oj-sample-card-emp-image",
"oj-sample-card-emp-name",
"oj-sample-card-emp-initials",
"oj-sample-card-emp-title" <-- no trailing comma

3. (Optionally) To report deprecation details on a style that has been deprecated, edit the
oraclejafconfig.json file styleset property and replace the style name with an object
containing deprecated and optional since and note properties.

// oj-sample styles
"oj-sample-card-emp-image",
{"deprecated" : "oj-sample-card-emp-name"},
{"deprecated" : "oj-sample-card-emp-initials", "since": "8.2.0", "note":
"Replace with oj-xxx"},
"oj-sample-card-emp-title"

The sample informs JAF to report a deprecated style diagnostic, where the since and note
properties will be added to the message.

[10, 20] CSS class selector 'oj-sample-card-emp-name is deprecated. //
since/note properties not defined
[10, 20] CSS class selector 'oj-sample-card-emp-initials' is deprecated
(since 8.2.0). Replace with 'oj-xxx' // props defined

4. (Optionally) To enforce validation of JET styles on HTML elements (including JET built-in
components) and custom web component elements, edit the oraclejafconfig.json file
and customize the built-in oj-html-stylesel rule specification.

"ruleMods": {
 "JET": {
 "oj-html-stylesel": {
 // these styles will not be checked in HTML and web component
elements
 "ignore": [
 "oj-ux-*, "oj-fwk-*"]
 }

Chapter 3
Audit CSS Styles and Web Components Styles

3-23

 }
 }

Note:

Starting in JAF 2.10.0, oj-html-stylesel replaces audit rules oj-html-style and
oj-html-ojstyle by validating the CSS styles used in HTML elements, including
JET core components, and custom web components.

Checks for JET styles (begin with oj-) used in HTML class attribute styles, as well as in
style metadata associated with custom web components, defined by JAF configuration
properties components and componentsUrls. CSS styles must be valid JET style classes.
You can configure the rule to ignore certain classes. The class strings are treated as
regular expressions, thus wild card characters can be used.

5. (Optionally) To enforce checks for deprecated JET styles, edit the oraclejafconfig.json
file and customize the built-in oj-css-style-deprecated rule specification.

"ruleMods": {
 "JET": {
 "oj-css-style-deprecated": {
 // all JET class selectors will be tested for deprecation,
except these
 "reject": [
 "oj-form-*"
]
 }
 }
}

Checks that CSS does not specify deprecated JET class selectors. The rule can be
configured to accept or reject certain style selectors. The class strings are treated as
regular expressions, thus wild card characters can be used. Property accept specifies that
only the class selector(s) declared should be tested for deprecation. Property reject
specifies that all JET class selectors should be checked for deprecation except those
specified by it. The properties accept and reject are mutually exclusive.

6. (Optionally) To enforce verification that CSS does not specify overrides of JET styles, edit
the oraclejafconfig.json file and customize the built-in oj-css-style-override rule
specification.

"ruleMods": {
 "JET": {
 "oj-css-style-override": {
 // only these styles will be tested for overrides
 accept": ["oj-list*"]
 }
 }
}

Chapter 3
Audit CSS Styles and Web Components Styles

3-24

or

"ruleMods": {
 "JET": {
 "oj-css-style-override": {
 // all styles will be tested for overrides, except these
 reject": ["oj-list*"]
 }
 }
}

Checks that CSS does not specify overrides of JET styles. The rule can be configured to
accept or reject certain style classes. The class strings are treated as regular expressions,
thus wild card characters can be used. Property accept specifies that only the class
selector(s) declared should be tested for deprecation. Property reject specifies that all JET
class selectors should be checked for deprecation except those specified by it. The
properties accept and reject are mutually exclusive.

Note: If you require all .oj-* styles to be checked for overrides, then declare an empty
reject array. Because all styles are checked, except for those defined in reject, the net
effect is that all .oj_* styles are checked.

7. (Optionally) To enforce checks for the use of CSS variables that have been overridden,
and avoid their use, as a best practice, edit the oraclejafconfig.json file and customize
the built-in oj-css-var-override rule specification.

"ruleMods": {
 "JET": {
 "oj-css-var-override": {
 "var": {
 // 'ignore' is used to ignore any overridden CSS vars that
match
 "ignore": [
 "^oj-foo"
] // For example, ignore CSS vars starting with oj-foo
 }
 },
 "oj-css-style-bp-font": {
 "var": {
 // 'accept' is used to report only on overridden CSS vars
that match
 "accept": [
 "^oj-foo"
] // For example, report only CSS variables beginning
with oj-foo
 }
 },
 }
}

Optional CSS variable names using regular expression strings may be added to this rule's
options to control the audit. For this rule, the rule option var can be overridden using
configuration property ruleMods. The var property has two mutually exclusive sub-
properties ignore, and accept.

Chapter 3
Audit CSS Styles and Web Components Styles

3-25

8. (Optionally) To enforce checks for color references in standalone CSS or in embedded in
HTML <style>, edit the oraclejafconfig.json file and customize the built-in oj-html-
style-bp-color and oj-css-style-bp-color rule specifications.

"ruleMods": {
 "JET": {
 "oj-html-style-bp-color": {
 // only this CSS property audited for color references
 "accept": [
 "background-color"
]
 },
 "oj-css-style-bp-color": {
 // do not audit these properties for color references
 "reject": [
 "background-image",
 "border"
]
 }
 }
}

Check for use of color references in CSS (standalone or embedded in HTML <style>).
They may be configured to accept or reject the color references found on specific CSS
properties. Property accept specifies that only the properties declared by it should be
audited. Property reject specifies that all properties should be audited except those
specified by it. The properties accept and reject are mutually exclusive.

9. (Optionally) To enforce checks for the use of font-size and font-weight in standalone
CSS or in embedded in HTML <style>, edit the oraclejafconfig.json file and customize
the built-in oj-html-style-bp-font and oj-css-style-bp-font rule specifications.

"ruleMods": {
 "JET": {
 "oj-html-style-bp-font": {
 // only this CSS font property will be audited
 "accept": [
 "font-size"
]
 },
 "oj-css-style-bp-font": {
 // accept font-size, but reject font-weight audits
 "reject": [
 "font-weight"
]
 }
 }
}

Check for use of font-size and font-weight in CSS (standalone or embedded in HTML
<style>). They may be configured to accept or reject the font references found on specific
CSS properties. Property accept specifies that only the properties declared by it should be
audited. Property reject specifies that all properties should be audited except those
specified by it. The properties accept and reject are mutually exclusive.

Chapter 3
Audit CSS Styles and Web Components Styles

3-26

10. (Optionally) To enforce checks for the use of certain font-family values in standalone
CSS or in embedded in HTML <style>, edit the oraclejafconfig.json file and customize
the built-in oj-html-style-bp-font-family and oj-css-style-bp-font-family rule
specifications.

"ruleMods": {
 "JET": {
 "oj-html-style-bp-font-family": {
 // only this CSS font family will be audited
 "accept": [
 "Oracle Sans"
]
 },
 "oj-css-style-bp-font-family": {
 // ignore these
 "ignore": [
 "inherit",
 "initial"
]
 }
 }
}

These rules may be configured to accept or ignore font family values found on specific
CSS properties. Property accept specifies that only the font families declared by it should
be audited. Property ignore specifies that all font families should be audited except those
specified by it. The properties accept and ignore are mutually exclusive.

11. (Optionally) To enforce checks for the use of CSS absolute length units in standalone CSS
or in embedded in HTML <style> so that you may replace them with relative units, as a
best practice, edit the oraclejafconfig.json file and customize the built-in oj-html-style-
abs-units and oj-css-style-abs-units rule specifications.

"ruleMods": {
 "JET": {
 "oj-html-style-abs-units": {
 "absunits": {
 // only px quantities > 2 will be audited
 "px": 2,
 ...
 }
 },
 "oj-css-style-abs-units": {
 "absunits": {
 // all units other than px have a threshold
 "all": 2,
 // only px quantities > 2 will be audited
 "px": 2,
 ...
 }
 },
 }
}

Chapter 3
Audit CSS Styles and Web Components Styles

3-27

Check for use of CSS absolute length units in CSS (standalone or embedded in HTML
<style>). Optional quantity thresholds can be set for all or each units For example, if 2 is
set as a threshold for "px", then only quantities whose absolute value is larger than the
threshold 2 will emit diagnostics. For CSS rules, specific rule selectors may also be
optionally configured via regular expressions. The two optional rule option properties are
absunits and selectors. The selector property (for rule oj-css-style-abs-units only)
has two mutually exclusive sub-properties: accept and ignore. Property accept specifies
that only the properties in the rule block for the selector(s) declared should be tested.
Property ignore specifies that any selectors that match should be ignored.

For rule oj-css-style-abs-units only, the selectors property may be specified separately,
or in conjunction with absunits to set the scope based on the selector classes in the rule.
A selector string is a regular expression string. When absunits and selectors are both
specified, they are considered to be an AND condition. In that case, only the units
exceeding the specified threshold and matching the selectors list are reported.

"ruleMods": {
 "JET": {
 "oj-css-style-abs-units": {
 "absunits": { ...
 },
 "selectors": {
 // ignore absolute units in rule blocks with
 // selector classes ending in "-image"
 "ignore": [
 "-image$"
]
 }
 }
 "oj-css-style-abs-units": {
 "absunits": { ...
 },
 "selectors": {
 // ignore absolute units in rule blocks with
 // selector classes ending in "-image"
 "accept": [
 "-image$"
]
 }
 },
 }
}

Audit for Oracle JET Deprecated Functionality
By default the Oracle JAF configuration will process all rules of the built-in JET rule pack,
including rules for detecting deprecated Oracle JET functionality. Use the optional groups
property of the JAF configuration file to customize the audit to process only the rules related to
deprecated functionality by adding the jet-deprecated rule group to the JAF configuration.

The jet-deprecated rule group when configured for an audit will alert you to the presence of
functionality that has been deprecated for the JET release version that you have configured for
JAF, including deprecated JET API methods and members, as well as deprecated JET custom
HTML components. Although the processing of rules in the jet-deprecated rule group is

Chapter 3
Audit for Oracle JET Deprecated Functionality

3-28

dependent on the JET release version, you can expect rules similar to the following to apply to
your application.

• oj-js-ojcomp-deprecated - Deprecated JET component classes should not be
instantiated.

• oj-html-ojtag-deprecated - Deprecated JET custom components should not be used.

• oj-js-comp-attr-deprecated - Deprecated JET component class attributes should not be
referenced. This rule's scope is configurable by the JAF configuration file ruleMods
property, as described below.

• oj-js-comp-meth-deprecated - Deprecated JET component class methods should not be
invoked. This rule's scope is configurable by the JAF configuration file ruleMods property,
as described below.

• oj-html-ojattr-deprecated - Deprecated JET component attributes should not be used.

• oj-html-ojslot - Deprecated JET component <oj-slot> should not be used since it is a
binding-only element, and not a full custom element with properties and methods that can
be accessed.

• oj-html-style-deprecated - JET component class attribute for deprecated CSS styles
should not be used.

• oj-css-style-deprecated - Deprecated JET CSS class selectors should not be used.

To audit deprecated functionality:

1. To enable processing exclusively the jet-deprecated rule group for all audits, edit the
oraclejafconfig.json file groups property.

{ "groups" : ["jet-deprecated"]
}

JAF audits will process only the jet-deprecated rule group until the groups property
setting is changed or until overridden for a single audit from the ojaf utility command line.

2. Alternatively, to enable processing exclusively the jet-deprecated rule group for a single
audit (without editing the configuration file), enter the following ojaf command.

ojaf --groups jet-deprecated

A command that you enter in the command-line overrides the corresponding property
setting in the JAF configuration file for the duration of the current audit.

3. To configure the scope of the audit rules that check for deprecated/deleted members and
methods, edit the oraclejafconfig.json file ruleMods property, specify the prefix of the
built-in rule pack JET, and set the deprecated and deleted sub-properties of the scope
property by specifying the enabled status for the sure and unsure confidence level
options.

"ruleMods": {
 "JET": {
 "oj-js-comp-attr-deprecated": {
 "scope": {
 "deprecated": {
 "sure": true,
 "unsure": false
 },

Chapter 3
Audit for Oracle JET Deprecated Functionality

3-29

 "deleted": {
 "sure": true,
 "unsure": false
 }
 }
 },
 "oj-js-comp-meth-deprecated": {
 "scope": {
 "deprecated": {
 "sure": true,
 "unsure": false
 },
 "deleted": {
 "sure": true,
 "unsure": false
 }
 }
 }
 }
}

The sample shows the default values for the confidence level options sure and unsure as
specified by using the ruleMods property to configure the audit rules that detect deleted/
deprecated members/functions. During static analysis of JavaScript/TypeScript, it may not
be possible to determine with confidence the contents of obj in obj.fn() and obj.mem.
This can cause the rules to be noisy in the case where a known deleted/deprecated
member/function has been detected, but the rule has low confidence in the contents of
obj. To reduce noise in the audit report, the scope of these rules can be configured by
setting the confidence level for the audit. All properties are optional. For more details about
the ruleMods property, see Configure Audit Rule Runtime Properties .

4. To view long descriptions of the rules in the jet-deprecated rule group, enter the following
ojaf command.

ojaf -r

Chapter 3
Audit for Oracle JET Deprecated Functionality

3-30

4
Fine Tune the Audit

You can customize the Oracle JAF configuration to narrow the focus of an audit by disabling
rules, rule groups, or specific message IDs. You can also add Oracle JAF comments within
source files for finer-grained control over what to audit.

Restrict Audit Rule Severity Level
Use the optional Oracle JAF configuration groups property to limit audit results to the desired
rule severity level. If the property is omitted, all issues found are reported.

The severity property specifies the rule severity level to which audit issue reporting will be
restricted. By default, the severity levels defined by Oracle JAF, in descending priority order,
are blocker, critical, major, minor, and info as described below.

Note:

When your organization prefers to standardize on severity levels other then this list,
you can redefine these levels using your own severity levels by editing the sevMap
property in the oraclejafconfig.json file. Additionally, rules, such as those in the
built-in JET rule set, have a default severity level that you may map to an alternate
severity level. See Alter the Severity Level of an Audit Rule .

Severity Level Description

blocker A bug with a high probability to impact the behavior
of the application in production. The code must be
immediately fixed.

critical Either a bug with a low probability to impact the
behavior of the application in production, or an
issue which represents a security flaw. The code
must be immediately reviewed.

major A quality flaw which can highly impact developer
productivity. For example, uncovered piece of code,
duplicated blocks, or unused parameters.

minor A quality flaw which can slightly impact developer
productivity. For example, lines should not be too
long or switch statements should have at least
three cases.

info A finding that is not a bug or a quality flaw.

To specify a rule severity filter or map custom severity levels:

1. To set the severity filter as a string, edit the oraclejafconfig.json file severity property:

"severity" : "critical",

4-1

The comparative operators >, >=, <, and <= may precede the severity level. For example,
the following will display issues of severity "minor", "major", "critical", and "blocker" level.

"severity" : ">info",

This could also have been written:

"severity" : ">=minor",

2. To set the severity filter as a list, edit the oraclejafconfig.json file severity property.

"severity" : ["critical", "blocker"],

Alter the Severity Level of an Audit Rule
Use the Oracle JAF configuration property ruleMods and severity rule property to remap the
default severity level of audit rules or use the configuration property sevMap to replace the
default severity levels with ones used by your organization.

You can use the ruleMods configuration property to override the severity level assigned to an
audit rule defined by configured rule packs, including any JET built-in rule. Additionally, when
your organization prefers to standardize on severity levels other than those provided by Oracle
JAF, you can replace the default severity levels by specifying user-defined levels in the
sevMap property. For more information about severity levels, see Restrict Audit Rule Severity
Level.

To customize audit rule severity levels:

1. To redefine the severity level assigned to individual audit rules, edit the
oraclejafconfig.json file ruleMods property, specify the rule pack prefix of the rule (JET
is the prefix of the JET built-in rules), and set the desired value for the severity sub-
property.

"ruleMods" : {
 "JET" : {
 "oj-html-ojattr" : {"severity": "critical"},
 "oj-html-lib" : {"severity": "major"}
 }
 }

The sample reclassifies the built-in rule oj-html-ojattr as severity-level critical and
reclassifies the built-in rule oj-hmtl-lib as severity level major. The default severity levels
that you can specify, in ascending order of restrictiveness, are info, minor, major, critical,
and blocker.

2. To redefine the severity level of individual audit rule messages, edit the
oraclejafconfig.json file sevMap property and specify the sevMsg sub-property.

"sevMap" : {
 "sevMsg" : {
 "JET-xxxx", "minor",
 ...
 }
 }

Chapter 4
Alter the Severity Level of an Audit Rule

4-2

If the severity level set is also redefined to user-defined levels (see sub-property sevSet
below), then the new severity levels may be used in sevMsg.

"sevMap" : {
 "sevMsg" : {
 "JET-xxxx", "sev4",
 ...
 },
 "sevSet" : {
 // "sev4" defined here, see below
 }
 }

3. To redefine the entire default set of severity levels, edit the oraclejafconfig.json file
sevMap property and specify the sevSet sub-property.

"sevMap" : {
 "sevSet" : {
 "blocker" : "sev1",
 "critical" : "sev2"
 "major" : "sev3"
 "minor" : "sev4"
 "info" ; "sev5"
 }
 }

sevSet can also be used to reduce the number of severity levels used. For example
reduce the number of severity levels to two levels.

"sevMap" : {
 "sevSet" : {
 "blocker" : "mustfix",
 "critical" : "mustfix"
 "major" : "mustfix"
 "minor" : "warning"
 "info" ; "warning"
 }
 }

Suppress Auditing Linked Content
Use the optional Oracle JAF configuration followLinks property to control whether <link> and
<script> elements in HTML that refer to external stylesheet and JavaScript/TypeScript files
are followed, and the files are audited.

By default, JAF enables auditing of externally linked files that include stylesheets and
JavaScript/TypeScript files. To prevent externally linked files from being audited, you must
disable the followLinks setting in the JAF configuration file.

To suppress auditing externally linked files:

Chapter 4
Suppress Auditing Linked Content

4-3

• To suppress audit message resulting from externally linked files, edit the
oraclejafconfig.json file followLinks property.

"followLinks" : false

Suppress Audit Messages
Use the optional Oracle JAF configuration messages property to control which messages are
emitted in the audit report. If the property is omitted, all issues found are reported.

The messages property takes two sub-properties reject and accept that you can use to tailor
the list of audit messages emitted in a report: either to suppress particular messages, or
alternatively to return only desired messages. The sub-properties are specified by a list of
message IDs to filter. These sub-properties are mutually exclusive, so that the message IDs in
the specified lists must not overlap. Regular expressions and wildcard characters can be used
to specify the message ID. For example, "JET-20*" and "JET-3[0-9]+" are valid.

To control the list of reported audit messages:

1. To suppress messages with particular messages IDs, edit the oraclejafconfig.json file
messages property and specify the message IDs to filter out as a list in the reject sub-
property.

"messages" : {
 "reject" : ["JET-3020", "JET-20*"]
 },

This sample specifies the audit report will exclude the message with ID JET-3020 and
exclude the set of messages with IDs like JET-2000, JET-2010, JET-2020 and so on.

2. To report only those messages with particular message IDs, edit the
oraclejafconfig.json file messages property and specify the message IDs to report as a
list in the accept sub-property.

"messages" : {
 "accept" : ["JET-3020", "JET-2[1-2]+"]
 },

This sample specifies the audit report will only include the message with ID JET-3020 and
only include the set of messages with IDs like JET-2100, JET-2120, JET-21xx, JET-2200,
JET-2210, JET-22xx.

Adjust the Tab Value Used to Report Line and Column Issues
Use the optional Oracle JAF configuration tabs property to control how tab characters are
handled when encountered in the audit.

By default, JAF assumes that each tab character represents 4 spaces. When you need to
adjust this value for your application files, you can specify settings for specific HTML, JS, CSS,
and JSON file types. Each file type can define the number of spaces to use for a tab character
and a list of column values to use for individual tab stops.

"tabs" : {
 "html" | "js" | "css" | "json" | "all" : {

Chapter 4
Suppress Audit Messages

4-4

 <tab settting objects per file type>
 },
 }

Two configuration tab styles are available for advancing to a column when a tab character is
encountered: either a tab is equated with n spaces, using the spaces sub-property or else the
column advances to the next tab stop column, using the stops sub-property. If both stops and
spaces are specified, the tab configuration style is tab stops, and JAF uses the spaces value
to calculate the next tab stop column whenever a tab advances beyond the last stops position.

"tabs" : {
 "html" | "js" | "css" | "json" | "all" : {
 "spaces" : n, // declare tab spacing
 "stops" : [i, j, k, ...] // declare tab stop columns
 },
 }

To adjust tab settings:

1. To configure the tab style setting to use within specific application file types (including
HTML, JS, CSS, or JSON), edit the oraclejafconfig.json file tabs property.

"tabs" : {
 "html" : {
 "spaces" : n // declare tab spacing
 "stops" : [i, j, k, ...] // declare tab stop
columns
 },
 "js" : {
 "spaces" : n
 "stops" : [i, j, k, ...]
 },
 "css" : {
 "spaces" : n
 "stops" : [i, j, k, ...]
 },
 "json" : {
 "spaces" : n
 "stops" : [i, j, k, ...]
 }
 }

For example, the following tab style configuration sample generates tab stops at 8, 12, 16,
20, 24, and so on since both properties are specified.

"tabs" : {
 "html" : {
 "spaces" : 4,
 "stops" : [8, 12] // generates tab stops at 8, 12,
16, 20, 24 ...
 },
 ...
 }

Chapter 4
Adjust the Tab Value Used to Report Line and Column Issues

4-5

2. To configure the same tab settings to use within all application file types, edit the
oraclejafconfig.json file tabs property.

"tabs" : {
 "all" : {
 "spaces" : n, // declare tab spacing
 "stops" : [i, j, k, ...] // declare tab stop
columns
 },
 }

The all sub-property can also be used in conjunction with any of the file type sub-
properties (html, js, css, and json) to provide a default for other non-declared file types.
For example the following entry would assume 5 spaces per tab for HTML, and 3 for all
other file types.

"tabs" : {
 "html" : {"spaces" : 5}, // declares tab spacing for HTML files
only
 "all" : {"spaces" : 3} // declares tab spacing for all other
file types
 }

Comment Source Code for Fine-Grained Audit Control
Oracle JAF comment commands allow contextual audit suppression of specific lines or blocks
of code within individual application files. Use JAF comment commands to refine audit results
and to gain greater control over the reported issues.

The Oracle JAF configuration property comments set to true enables Oracle JAF to interpret
comments that you insert into your source code. JAF recognizes comments with a JAF-specific
command of the form:
/* <JAFcommand> [optional data]
or

// <JAFcommand> [optional data]
Note that chevrons (< >) do not appear in an actual command name and the use of square
brackets ([]) when specifying optional data is optional.

All JAF comment commands have the prefix jaf-. The command name must immediately
follow the opening /* or // and is specified as /* jaf-xxx */ or // jaf-xxx, where a
whitespace preceding the command name is permitted.

Note that no program text is permitted within a JAF comment.

The following table describes supported JAF comment commands.

Oracle JAF Comment Command Description

// jaf-disable-next-line
/* jaf-disable-next-line */

Disables all JAF audit rules for the next
statement.

// jaf-disable-next-line [rule1, rule2, ...]
/* jaf-disable-next-line [rule1, rule2, ...] */

Disables the specified JAF audit rules for
the next statement.

Chapter 4
Comment Source Code for Fine-Grained Audit Control

4-6

Oracle JAF Comment Command Description

// jaf-disable-line
/* jaf-disable-line */

Disables all JAF audit rules for the current
statement.

... some statement ; // jaf-
disable-line

// jaf-disable-line [rule, rule2, ...]
/* jaf-disable-line [rule, rule2, ...] */

Disables the specified JAF audit rules for
the current statement.

// jaf-disable
/* jaf-disable */

Disables all JAF audit rules until the end of
file, or until the next comment.

/* jaf-disable [rule, rule2, ...] */
// jaf-disable [rule, rule2, ...]

Disables the specified JAF audit rules(s)
until the end of file, or until the next
comment. Note that the square brackets
and commas are optional.

// jaf enable
/* jaf-enable */

Enables all JAF audit rules.

// jaf enable rule1, rule2, ...
/* jaf-enable rule1, rule2, ... */

Enables the specified JAF audit rules.

To comment source code to enable and disable JAF audit rules:

1. To enable commenting support, edit the oraclejafconfig.json file comments property.

{ "comments" : true }

2. In your target source file, use one or more jaf-disable comment commands to disable
specific JAF audit rules until the end of the file, or until the next JAF comment command.

// jaf-disable rule1
// jaf-disable rule2
// jaf-disable rule3

Which is functionally the same as:

// jaf-disable rule1, rule2, rule3

3. In your source file, use one or more jaf-enable comment commands to enable specific
JAF audit rules until the end of the file, or until the next JAF comment command.

// jaf-enable rule1
// jaf-enable rule2
// jaf-enable rule3

Which is functionally the same as:

// jaf-enable rule1, rule2, rule3

Chapter 4
Comment Source Code for Fine-Grained Audit Control

4-7

4. In your source file, combine JAF comment commands in an additive or subtractive manner
to enable or disable all JAF audit rules, except those specified.

// jaf-disable all rules are disabled after this
...
// jaf-enable rule1 all rules except rule1 are disabled after this

5. In your source file, combine JAF comment commands in an additive or subtractive manner
to enable or disable all JAF audit rules, except those specified only for the current or next
line.

// jaf-disable
...
// jaf-enable rule1, rule2
...
// jaf-disable-next-line rule3
... <-- for this code statement, only
rule3 is disabled

... <-- all rules disabled except rule1 and
rule2

Chapter 4
Comment Source Code for Fine-Grained Audit Control

4-8

5
Work with the Output of Audits

You can customize the Oracle JAF configuration to tailor the output for your needs.

About Audit Output
Apart from specifying the scope of the audit by using Oracle JAF configuration properties such
as files, excludes, severity, groups, ruleNames, ruleMods, you can also customize the
format of the output.

Oracle JAF provides these ways to customize the output of the audit report:

• The format of reported issues can be customized by using the proseFormat configuration
property. You can also add a custom report title by using the title configuration property.

• You can specify that the output format be JSON by using the format and outPath
configuration properties, and then you can process this JSON to create any desired output.
For example, HTML could be generated for web use, or perhaps other information could
be injected into the output and the resulting file distributed in email.

Display Details About a Rule
You can use the rule name or rule message ID from the audit results to obtain a description of
the rule.

By default the JAF configuration file format property is set to prose and the rule name will
display with the audit message. The rule name is appended to the prose output after the
message ID:

[71, 41] <oj-list-view> attribute 'selection' is deprecated!
Use selected attribute instead. [JET-0080 : oj-html-ojattr-deprecated]

With the rule name, you can obtain a description of the rule by using ojaf --help.

ojaf --help oj-html-ojattr-deprecated

Rule: oj-html-ojattr-deprecated Severity: major
JET component deprecated attributes should not be used.

Alternatively, if you know the message ID, you can obtain the rule name and rule description:

ojaf --help JET-0080

Rule: oj-html-ojattr-deprecated Severity: major
JET component deprecated attributes should not be used.

5-1

Note:

To get rule help, you must run ojaf --help from the directory that contains your
application's oraclejafconfig.json file. By default this is the root of the application.

For more information about enabling rule names to display in audit results, see Display Rule
Names with Audit Messages.

Toggle the Default Format of Audit Messages
Use the optional Oracle JAF configuration file property format to specify the default display
format for audit messages.

You can set the JAF configuration file format property to prose or to line to toggle the default
presentation of audit messages between these two styles. The prose format displays audit
messages in a report style, while the line format flattens out audit messages into single lines.

You can also customize the presentation for audit messages in either style by applying custom
templates that you create, as describe in Customize the Presentation of the Audit Messages.

To toggle the default display style:

1. To enable the display of audit messages in the report presentation, edit the
oraclejafconfig.json file format property.

"format" : "prose"

2. To enable the display of audit messages as single lines, edit the oraclejafconfig.json
file format property.

"format" : "line"

Note that for certain environments, like Microsoft Visual Studio Code, line format supports
hyperlinks on the file paths displayed within Oracle JAF audit messages.

Display Rule Names with Audit Messages
You can enable Oracle JAF to append the corresponding rule name to reported audit
messages and you can use the rule name to return a description of the rule.

If the JAF configuration file format property is set to prose (the default), the rule name
displays with the audit message. The rule name will be appended to the prose output after the
message ID:

[71, 41] <oj-list-view> attribute 'selection' is deprecated!
Use selected attribute instead. [JET-0080 : oj-html-ojattr-deprecated]

With the rule name, you can obtain a description of the rule by using ojaf --help.

ojaf --help oj-html-ojattr-deprecated

Chapter 5
Toggle the Default Format of Audit Messages

5-2

Rule: oj-html-ojattr-deprecated Severity: major
JET component deprecated attributes should not be used.

Alternatively, if you know the message ID, you can view the rule name with the rule description:

ojaf --help JET-0080

Rule: oj-html-ojattr-deprecated Severity: major
JET component deprecated attributes should not be used.

Note:

To get rule help, you must run ojaf --help from the directory that contains your
application's oraclejafconfig.json file. By default this is the root of the application.

To configure rule names to display with audit messages:

1. To enable support for appending rule names, edit the oraclejafconfig.json file format
property to ensure that either prose has been specified or that the property has been
omitted (which specifies prose output is the default).

"format" : "prose"

Note that if the configuration file output format is set to json, the rule name is always
included in the output, and configuration options are not required. For more information,
see Output Audit Messages in JSON Format.

2. To enable appending the rule name for a specific rule, edit the oraclejafconfig.json file
options.ruleName property.

"options" : {
 "ruleName" : true,
 ...
 }

3. Alternatively, to enable appending the rule name for all rules, edit the
oraclejafconfig.json file options.verbose property to enable verbose output mode.

"options" : {
 "verbose" : true,
 ...
 }

You can also enable verbose output each time your run the audit from the command line.

ojaf -e ...

Chapter 5
Display Rule Names with Audit Messages

5-3

Customize the Presentation of the Audit Messages
Use the optional Oracle JAF configuration file properties proseFormat and lineFormat to
define templates to redefine the presentation of reported audit issues.

If the JAF configuration file format property is set to prose or to line, you can use the
respective properties proseFormat and lineFormat to define a custom presentation template
to format the displayed audit issues.

A prose-formatted audit message begins with the text Audit for.

Here is a line-formatted audit message with different template.

If you omit proseFormat, Oracle JAF uses the default template, "%pos1 %s : %m", which
displays as follows:

Specify the template for the properties as a string, containing any of the following tokens in any
order. JAF replaces the tokens in the audit message output at runtime.

Audit Message Tokens Replacement Value

%l The line number only.

%c The column number only.

%pos1 The comma-separated line and column number
with square brackets. For example: [46, 25]

%pos2 The comma-separated line and column number
with parens. For example: (46, 25)

%s The severity level of the processed rule.

%m The entire audit issue message.

%mid The full audit message ID. For example, JET-1234
%p The prefix of the rule set. For example, JET for the

built-in JET rule set.

%n The audit message number only. For example,
1234

%r The rule name.

%f The file path.

To define a custom presentation template:

1. To enable support for customizing the presentation of audit message, edit the
oraclejafconfig.json file format property to ensure that either prose or line has been
specified. Note that if the format property has been omitted, the default specifies prose
output.

"format" : "prose"

Chapter 5
Customize the Presentation of the Audit Messages

5-4

or

"format" : "line"

2. If the output format has been specified as prose, edit the oraclejafconfig.json file
proseFormat property to define a custom presentation template to format displayed audit
issues. The value of proseFormat is a string containing tokens shown in the table above.

"proseFormat" : "%pos1 %s : %m [%mid]"

In the sample, the tokens specify the first four replacement values for the audit message:
including the line/column number format followed by the processed rule's severity level,
and then a colon followed by the audit issue message and the full audit message ID within
square brackets.

Output based on this template looks similar to this audit message:

** Audit for D:/myapp/public_html/content/demo.html
[46,25] blocker : <oj-bind-if> 'test' attribute : read-only '[[...]]'
expression expected [JET-0163]

3. If the output format has been specified as line, edit the oraclejafconfig.json file
lineFormat property to define a custom presentation template to format displayed audit
issues. The value of lineFormat is a string containing tokens shown in the table above.

"lineFormat" : "%s : %m [%mid]\n → %f: %l:%c"

In the sample, the tokens specify the first four replacement values for the audit message:
including the processed rule's severity level followed by the audit issue message, a line
break, and then an right arrow character, the file path, and then the line and column
numbers.

Output based on this template looks similar to this audit message:

blocker : <oj-bind-if> 'test' attribute : read-only '[[...]]' expression
expected [JET-0163]
-> D:/myapp/public_html/content/demo.html: 46, 25

Format a Title for the Audit Report
You can use the optional Oracle JAF configuration title property create a title for audit reports.

If the JAF configuration file format property is set to prose (the default), you can use the title
property to format a title header to display with the audit output. The title definition may include
tokens to insert values, such as the Oracle JET version into the title.

Audit Title Tokens Replacement Values

$jafdate The current date, like "Friday Feb 14, 2020".

$jaftime The current time, like "8:05am EDT".

$jetver The Oracle JET version, like "8.1.0".

%jafver The Oracle JAF version, like "2.4.0".

Chapter 5
Format a Title for the Audit Report

5-5

Audit Title Tokens Replacement Values

%jafconfig The file path for the Oracle JAF configuration file
used in the audit, like
"D:\myproject\oraclejafconfig.json".

To configure a title:

1. To format a title for audit reports, edit the oraclejafconfig.json file format property to
ensure that either prose has been specified or that the property has been omitted (which
specifies prose output is the default).

"format" : "prose"

Note that if the configuration file output format is set to json, the report title is also included
in the output. For more information, see Output Audit Messages in JSON Format.

2. To format the report title, edit the oraclejafconfig.json file title property. Macros are
available to insert values such as the Oracle JET version, or date and time into the title
strings.

"title" : [
 "+---+",
 "| Some Title for the Audit |",
 "+---+",
 "JET : $jetver ($jafdate, $jaftime)\n"
]

This sample specifies the audit report will exclude the message with ID JET-3020 and
exclude the set of messages with IDs like JET-2000, JET-2010, JET-2020 and so on.

+---+
| Some Title for the Audit |
+---+
JET : 8.1.0 (Friday Feb 14, 2020, 8:05am EDT)

Output Audit Messages in JSON Format
Use the optional Oracle JAF configuration file property format to specify that the output format
of the audit to be a JSON document. You can then process the JSON to create any desired
output.

If the JAF configuration file property format is set to json, you can generate the output of the
audit in JSON format. You can direct JAF to output the JSON document to the desired
directory by defining the JAF configuration property outPath.

The output of the JSON is structured as follows.

JSON Section Description

reported An array object for each audited file containing an
array of reported issue objects.

Chapter 5
Output Audit Messages in JSON Format

5-6

JSON Section Description

summary An object containing summary data such as the
number of issues found or the number of files
processed, for example.

run An object containing run data such as run date/
time and JET version number.

descriptions An optional object containing rule descriptions for
the issues in the reported section. Must be
configured by using the JAF configuration property
ruleDescriptions, as described below.

fileset An optional object containing the file set processed
by the audit. Must be configured by using the JAF
configuration property addFileList, as described
below.

This is an abbreviated sample of typical JSON output for reported issue.

{
 "reported": [
 {
 "file": "/tests/rules/oj-html-binding-attr/binding-
foreach_FAIL_2.html",
 "issues": [
 {
 "severity": "minor",
 "msg": "Use of attribute 'id' is meaningless
for binding element <oj-bind-for-each>",
 "msgId": "JET-0015",
 "position": {
 "row": 14,
 "col": 12,
 "start": 467,
 "end": 482
 },
 "rule": "oj-html-binding-attr"
 }
]
 },
 . . .
],
 "summary": {
 "severities": {
 "blocker": 0,
 "severity": 0,
 "major": 0,
 "minor": 0,
 "info": 1
 },
 "issues": 1,
 "issueFiles": 1,
 "errorFiles": 0,
 "parseErrors": 0,
 "errors": 0,
 "warnings": 1,

Chapter 5
Output Audit Messages in JSON Format

5-7

 "asserts": 0,
 "files": 1,
 "urls": 0,
 "rulesActive": 64,
 "rulesFired": 41,
 "hooksFired": 15
 },
 "run": {
 "date": "Tues, 14 April 2020 15:52:39 GMT",
 "jetversion": "8.1.0",
 "title" : "Testing",
 "config": "d:\\runAudit\\testing_config.json"
 }
}

To specify JSON as the output format:

1. To format a title for audit reports, edit the oraclejafconfig.json file format property to
specify json.

"format" : "json"

2. Optionally, to include custom rule descriptions in the JSON output, edit the
oraclejafconfig.json file ruleDescription property and set the value to short or to long.

"descriptions": {
 "JET-0290": {
 "long": "...a rule long description.",
 },
 "JET-3172": {
 "long": "...a rule long description.",
 },
 . . .
 }

This property takes the following values : none, all, short, or long and causes an
additional descriptions section to appear in the output JSON document.

3. Optionally, to format a title to include in the JSON document, edit the
oraclejafconfig.json file title property.

"title" : [
 "+---+",
 "| Some Title for the Audit |",
 "+---+",
 "JET : $jetver ($jafdate, $jaftime)\n"
]

Macros are available to insert values such as the Oracle JET version, or date and time into
the title strings. For more information, see Format a Title for the Audit Report.

Chapter 5
Output Audit Messages in JSON Format

5-8

4. Optionally, to specify the output path for the JSON document, edit the
oraclejafconfig.json file outPath property.

"outPath" : "myfolder/myreport.json"

Note that alternatively you can omit outPath and redirect the output to a file. This will also
redirect other information that was written to stdout by JAF.

5. Optionally, to append the file set list to the JSON document, edit the
oraclejafconfig.json file addFileList property.

"addFileList" : true

This optional property causes an additional JSON section fileset to appear in the JSON
document as an array of full path name strings. This can be useful when creating custom
reports from the output JSON, since it allows access to the full file set that was audited.

Chapter 5
Output Audit Messages in JSON Format

5-9

Part II
Extend the Oracle JET Audit Framework

Use the API and supporting utility libraries provided by JAF to write user-defined, custom audit
rules to extend the JAF built-in rule sets.

Topics:

• Understand the JAF Audit Engine

• Get Started Writing Custom Audit Rules

• Implement Custom Node Rules

• Implement Custom Hook Rules

• Access Oracle JET Metadata

• Create the Audit File Set at Runtime

• Reference: Custom Audit Rule Listener Types

• Reference: Custom Audit Rule Context Object Properties

• Reference: Custom Audit Rule Utility Libraries

6
Understand the JAF Audit Engine

The JAF audit engine invokes custom audit rules when Oracle JAF audits an Oracle JET app.

About the JAF Audit Engine
There are two types of custom audit rules that the Oracle JAF audit engine supports: standard
rules and hook rules. The difference is that standard rules are invoked in response to the
parsing by JAF of file data and hook rules are invoked in response to phases of the JAF audit
lifecycle (for example, at startup, close-down, or when a file is first read).

At runtime, when Oracle JAF performs an audit, each file in the target file set is parsed by the
JAF audit engine and an abstract syntax tree (AST) is created. The AST is then walked by JAF
and data node events are passed to listener functions that you register in your custom audit
rules.

You implement custom audit rules as JavaScript files which the JAF audit engine loads based
on a configuration file that you define. At runtime, when the JAF audit engine generates the
AST of the target file set, it passes context objects to the loaded rules and triggers the AST
node event listeners that you implement in the rule's .js file. This allows your audit rule to
respond to specific data from the audited file set.

The following reference topics on the audit engine list the available node listener types that you
can use to write standard, node audit rules. The listener types correspond to AST data nodes
that are specific to the file types of the JET application source.

• Listener Types for HTML and JSON Rules

• Listener Types for CSS Rules

• Listener Types for JavaScript/TypeScript Rules

The JAF audit engine gives your invoked custom audit rules access to a Rule context object
that it passes to the rule's registered listener so you can test data and execute functionality. At
the start of the audit, the audit engine passes a Register context object to the entry-point of all
rules so you can get information about the audit. For details about these context objects, see
these audit engine reference topics.

• Context Object Members Passed to the Register Function

• Context Object Properties Available to Registered Listeners

• Context Object Properties Available to CSS Rule Listeners

For details about the audit engine hook points that you can use to create hook rules, see About
Hook Rule Invocation.

Understand the Structure of Custom Audit Rules
The Oracle JET Audit Framework (JAF) can be extended by the addition of custom rules that
you implement. A rule is a JavaScript file that exports certain public functions.

When an audit is performed, each file in the target file set is parsed and an abstract syntax tree
(AST) is created. The AST is then walked and the nodes are passed to one or more registered

6-1

listener functions in the rules. Rules are implemented as JavaScript files and loaded by JAF at
runtime as node.js module. JAF passes the loaded rules a context as it analyzes the AST and
invokes the rule listeners.

To qualify as a valid rule, a rule must export the following four methods:

Method Description

getDescription() Returns a full detailed rule description. The description
may contain HTML markup.

getName() Returns the rule name.

getShortDescription() Returns a short description/summary of the rule.

register(Object context) Called during JAF startup, this is the main entry point in
the rule implementation. Declares the type of data that
the rule wants to listen for together with the event
handler functions. Returns an object that contains the
events for the specified parsed AST data types or JAF
audit lifecycle phases.

Here is a skeleton outline of a rule that you can implement to audit HTML or JSON files:

Skeleton Rule

function getName()
{
 return "my-rule-name" ;
};

function getShortDescription()
{
 return "This a short description of the rule" ;
};

function getDescription()
{
 return "This a much more detailed explanation of the rule, and can include
markup." ;
};

function register(context)
{
 // Here the rule registers the type of data that it wants to listen for,
together with event handler function(s).
};

module.exports = {getName, getDescription, getShortDescription, register};

Note:

The rule description returned by getDescription() can contain HTML markup.

For the list of available events that your rule can listen for see:

• Listener Types for HTML and JSON Rules

Chapter 6
Understand the Structure of Custom Audit Rules

6-2

• Listener Types for CSS Rules

• Listener Types for JavaScript/TypeScript Rules

See also:

• Audit Rule Entry Point Method Structure

• Audit Rule Listener Function Structure

Tip:

A skeleton rule can be easily scaffolded in the current directory using

ojaf --initrule myRuleName

If preferred, ES6 class syntax can be used.

Returning an ES6 class

class Rule { // (name can be anything)
 getName() {...}
 getDescription() {...}
 getShortDescription() {...}
 register(regCtx) {...}
}

module.exports = Rule;

If preferred, the following prototype inheritance format for creating a class is also acceptable,
and Oracle JAF will automatically perform a new on the function:

Returning a class

var anyName = function() {}; // (name is "internal" and can be anything)
anyName.prototype.getName = function() {...};
anyName.prototype.getShortDescription = function() {...};
anyName.prototype.getDescription = function() {...};
anyName.prototype.register(context) {...};
module.exports = anyName ;

Audit Rule Entry Point Method Structure
The audit rule's main entry point is the register() function. For node rules that you define, this
function is called during JAF startup and declares listener functions for specific types of data
found during file set auditing. When you need to define a hook rule, use this function to declare
listeners for events triggered by JAF on the audit lifecycle.

In the case of node rules, the basic purpose of a registered entry-point method implementation
is to examine the data passed to it and to return one or more Issue objects, where each
contains a description of the problem found. You can then choose which issues to report by
using a Reporter instance. If no issues are found, the rule just returns. The method gets its
data from the passed-in Register context object.

Chapter 6
Understand the Structure of Custom Audit Rules

6-3

The following pseudo code sample registers an event listener for the registered listener type
ojtag. The ojtag type is an example of one of many listener types that you can register
specifically for HTML and JSON files. For more details about the listener function, see Audit
Rule Listener Function Structure.

function register(regContext)
{

 return {
 ojtag : function(ruleContext, tagName) // "ojtag" is an example of a
registered type - it causes the
 { // function to be called for each
DOM element of the form <oj-xxx>
 var issue ;

 // analyze the data passed in the Rule context, and any other supplied
args
 . . .

 if (found_a_problem)
 {
 issue = new ruleContext.Issue("describe the problem found") ; //
create new Issue object
 ruleContext.reporter.addIssue(issue, ruleContext) ; //
pass Issue to the Reporter instance
 }
 };
 }
};

The register() function sample shows that the Rule context object provides an Issue class
which can be used to create an Issue instance. The Issue instance is then passed to the
Reporter instance (also available from the context) where you choose one or more issues to
report.

Tip:

Generally, it is best to limit the custom audit rule to listen for and to report a single
issue per rule. This permits a specific diagnostic to be disabled, if required, in the JAF
configuration file.

When the current file has been completely audited, JAF emits the issues in the format that you
specified in the JAF configuration file.

Audit Rule Listener Function Structure
Listener functions for audit events are defined in your rule's register() function. You can
declare listener functions for specific types of data found during auditing of a file to define a
node rule. Alternatively, you can declare listener functions for events in the audit engine
lifecycle to define hook rules.

Chapter 6
Understand the Structure of Custom Audit Rules

6-4

The listener function has the following signature for a node-type rule, where some arguments
are also properties of the ruleContext object.

function _fnHandler(ruleContext, arg1, arg2) { . . .
 };

In the case of a hook rule, where the registered type is an audit engine signaled event (for
example, endselector), the arguments are not used.

For node rules, the arguments depend on the registered listener type.

• where arg1 is a string representing the data node token. For example, if
ruleContext.type is ojtag or tag, this would represent a string such as oj-button or div.

• where arg2 is a string that is an optional value supplementing arg1. For example, if
context.type is attr, this would represent the attribute's value, and arg1 will contain the
attribute name.

Note:

For the complete list of registered listener types and a description of their arguments,
see Listener Types for HTML and JSON Rules, Listener Types for JavaScript/
TypeScript Rules, and Listener Types for CSS Rules. For the registered types that
you can define for hook type rules, see About Hook Rule Invocation.

Chapter 6
Understand the Structure of Custom Audit Rules

6-5

7
Get Started Writing Custom Audit Rules

You use an Oracle JET application that you want to audit as the project for creating and testing
custom audit rules. You can configure the application to run Oracle JAF and test the custom
rules against the files of the target application. You can zip the application folder containing the
implemented custom audit rules for use by other developers to audit their JET applications as
a custom rule pack.

Set up the Custom Audit Rules Test Project
Writing custom audit rules is an iterative development process that ideally starts with an
existing Oracle JET application project that you can use to test your custom audit rules against.

Before you start writing custom audit rules, choose an Oracle JET application that contains the
actual files that you intend your custom rules to audit. This application will become a kind of
development environment for writing and testing of the custom rules. You can then implement
custom rules as JavaScript files within a folder that you add to the root of the test application.
Once you configure the test application to run Oracle JAF and invoke the audit rules in your
custom rules folder, you can easily iterate over the target file set of the test application in a test/
debug audit cycle.

Tip:

By default, Oracle JAF audits the application files located in the src folder of the JET
application. To avoid auditing the source code of your custom audit rules, create the
custom rules folder at the root level of your test application.

The custom rules folder that you add to the test application will have the following contents,
including the JavaScript (.js) files that implement your custom audit rules:

rule-1.js }
rule-2.js } these are your custom rule files
. . . }
rules.json mandatory file describing the rule properties
msgid.json optional file associating rules with message ID's

The rules.json file is a single rules definition file that you must define within the custom rules
folder to describe the properties of your custom audit rules. The rules definition file can include
comments and has the following structure.

/*---*/
/* Test 'rulePack' definition */
/*---*/
{
 "title" : "A descriptive title for the rule pack",
 "prefix" : "ABCD", <-- the prefix prepended to message
ids

7-1

 "version" : "1.1.0", <-- the rule pack version
 "rules" : {
 "rule-1" : {
 // Standard rule options
 "severity": "major",
 // Additional optional user rule options
 "customOpts": {
 "maxLevel": 3
 }
 },
 "rule-2" : { ... },
 . . .
 }
}

The prefix property identifies custom rules as belonging to a common rule set. At runtime,
Oracle JAF will prepend the prefix you specify to the message IDs of emitted diagnostic
messages. The prefix you specify helps users to identify the invoked audit rules.

Before You Begin:

• Choose an Oracle JET application that you can use to test your custom audit rules against.
This application will serve as the project where you will implement custom audit rules.

• Install Oracle JAF from npm. For details, see Install the Oracle JET Audit Framework.

To set up the custom audit rules project:

1. Open a Command Prompt window and run the JAF initialize command from the application
root.

ojaf --init

When you run the command, the tooling will scaffold a default JAF configuration file named
oraclejafconfig.json at the application root. You will edit this file to configure JAF to run
the custom audit rules during testing.

2. In the root of your custom audit rules project, create a folder to contain the custom rules
and rule definition file. The folder name can be any name that you choose.

3. Edit the generated oraclejafconfig.json file at the root of the application and configure
the rulePacks property value to point to the custom rules folder.

"rulePacks" : [
 {
 "path" : "path/to/my/customrulepack/folder",
 "enabled" : true
 "status" : "all"
 }
]

The enabled and status properties are optional and provide the ability to easily disable a
complete rule pack or to report only rules of a particular status. If omitted, the default
enables and reports all rules in the rule pack.

Chapter 7
Set up the Custom Audit Rules Test Project

7-2

4. Optionally, disable audit reporting for the built-in JET rule set. Edit the generated
oraclejafconfig.json file and set the builtinJetRules property value to false.

"builtinJetRules" : false

When you want to test only custom audit rules, the builtinJetRules property is a
convenience property that obviates having to individually disable built-in JET rules to
prevent them from running during your test/debug audit cycle.

5. Create the mandatory rule definition file rules.json in the custom rules folder that you
added to the JET application.

{
 "title" : "My Custom Audit Rules",
 "prefix" : "CUSTOM",
 "version" : "1.0.0",
 ...
}

The prefix you assign will be prefixed to the audit diagnostic messages to help you identify
diagnostics that result from your custom audit rules. The title and version are arbitrary and
help you identify a rule pack version.

6. In the rule definition file, add the rules property with the list of custom audit rules that you
will implement in this project and any standard or user-defined property values that you
want to pass in the case of configurable audit rules.

{
 "title" : "My Custom Audit Rules",
 "prefix" : "CUSTOM",
 "version" : "1.0.0",
 "rules": {
 "custom-check-heading-levels-1" : {},
 "custom-check-heading-levels-2" : {},
 "custom-check-heading-levels-3": {
 "filetype": "html",
 "customOpts": {
 "maxLevel": 4
 }
 }
 }
}

The rules.json file defines the rule pack and identifies the audit rules and optionally their
configurable properties that JAF will load at runtime for the registered rule pack. By
convention, rule names include the rule pack prefix.

In this sample, the rule name prefix custom helps to identify the rules as belonging to the
same rule pack. The first two rules declare no runtime properties and the third rule
declares a default property value that can be optionally configured by the user in the
oraclejafconfig.json file of the target application. Additionally, for the list of system
properties that you can optionally define for individual audit rules, see Define the Runtime
Properties of Custom Audit Rules.

Chapter 7
Set up the Custom Audit Rules Test Project

7-3

7. Optionally, designate a rule that must not be disabled at runtime by setting the $required
property to true.

{
 "title" : "My Custom Audit Rules",
 "prefix" : "CUSTOM",
 "version" : "1.0.0",
 "rules": {
 "custom-check-heading-levels-1" : {},
 "custom-check-heading-levels-2" : {},
 "custom-check-heading-levels-3": {
 "$required": "true",
 "filetype": "html",
 "customOpts": {
 "maxLevel": 4
 }
 }
 }
}

The ruleMods configuration property (see Configure Audit Rule Runtime Properties) or,
indirectly, the ruleName property can disable rules from running. You typically use
the $required property for rules that perform rulepack setup or other non-audit related
functions and whose execution is mandatory. It also ensures that these rules are loaded/
registered before all other rules, in the order they are specified.

8. Optionally, create a rule message ID file msgsid.json in the custom rules folder that you
added to the JET application.

{
 "custom-check-heading-levels-1" : "1234",
 "custom-check-heading-levels-2" : "1235",
 "custom-check-heading-levels-3" : "1236"
}

When JAF reports an issue, it includes a unique message ID of the format prefix-nnnn,
where prefix is the prefix of the rule pack and nnnn is a message number defined for the
rule. Alternatively, you can hardcode the message ID in your custom audit rule, as
described in Define the Message ID of Custom Audit Rules.

9. You are now ready to begin writing rules that you implement as .js files added to the
custom rules folder, as described in Implement the Custom Audit Rules.

Tip:

To quickly scaffold a skeleton audit rule, in the current directory run the ojaf
command with the --initrule command line flag.

ojaf --initrule myRuleName

For an introduction to audit rule JavaScript, see Understand the Structure of Custom Audit
Rules.

Chapter 7
Set up the Custom Audit Rules Test Project

7-4

As you implement custom audit rules, you'll want to get started testing custom audit rules in
your project:

• Reference the Custom Audit Rules in an Audit

• Audit the Application Using the Command Line

Define the Runtime Properties of Custom Audit Rules
Use the rules property of the rules.json file to declare the rules in a rule pack, including the
properties of individual custom audit rules.

All custom audit rules in the rule pack must be declared in the rules property of the
rules.json file. Properties that you can define include standard system properties when you
want to override a default value defined by JAF. You can also include optional properties when
you want to pass property values to the custom rule at runtime, but these properties must be
enclosed in an additional customOpts property.

Here is a basic example of a user-defined rule definition:

"rules": {
 "my-rule": {
 // standard system properties
 "$required" : "true",
 "severity": "info",
 "filetype": "html",
 // optional properties
 "customOpts": {
 "maxLevel": 1
 }
 }
}

This declaration specifies that a custom rule exists that is referred to as "my-rule" and that it is
implemented in the file my-rule.js, in the same folder as the rules.json file. It includes a
number of standard system properties ($required, severity, and filetype). Additionally it
declares the rule-specific property maxLevel. This property is not inspected by JAF, and will be
passed to the rule in a Rule context object when it is invoked. The custom rule implementation
handles the passed values to achieve the desired audit result.

Some property names are reserved by JAF and cannot be re-purposed by the custom audit
rule. The following JAF system properties are reserved and all properties are optional on the
rule declaration. If you do not add these properties to the custom audit rule declaration, JAF
will assign a default value. For example, unless you specifically define the severity property,
the custom audit rule will be associated with the severity level critical.

JAF system
properties

Description

inservice Rules are assumed to be in service, unless this property is set to false. This setting
overrides the enabled property and suppresses the use of the configuration ruleMods
property to attempt to enable the rule. Rules not in service do not participate in an audit.
The default value is true.

enabled Enables or disables the custom audit rule. All custom rules are enabled by default.

Chapter 7
Define the Runtime Properties of Custom Audit Rules

7-5

JAF system
properties

Description

severity Classifies the severity level of the custom audit rule. By default Oracle JAF defines a set
of levels that you can assign: info, minor, major, critical (default), blocker. Use this
property to specify the severity of the custom rule so that users can restrict the audit by
rule severity level. For example, see Restrict Audit Rule Severity Level.

status Associates a development status with the custom audit rule. May be production
(default), alpha, beta, or deprecated.

filetype Specify the file types for which the custom audit rule will be invoked. By default the
custom rule is not restricted to a file type. May be html and/or css, and/or js and/or
json. For example:

"filetype : "html"
or

"filetype" : ["html", "css"]
The filetype property is ignored by custom hook rules declared for startup/closedown
phases, since these are not file related. For all other audit rules, you should specify this
property.

group Specify the group or groups to which the custom audit rule is assigned. Use this
property to assign the custom rule to a group of any name so that users can restrict the
audit by rule group. For example:
"group" : "jet-html"
or
"group" : ["jet-html", "jet-aria"]
For example, see Audit with Specific Rules.

jetver Specifies the Oracle JET release version or versions required to invoke the custom audit
rule. It the property is omitted, the custom rule will operate across all JET versions. The
format supports semantic versioning, as used in programs like npm. For example:

"jetver" : ">=9.1.0"

or

"jetver" : "~9.1.0"

For more information about this property and semantic versioning, see Audit with
Specific JET and ECMA Script Versions.

theme Specify a JET theme if the rule is theme dependent. The value is compared with the
configuration property theme (or its default), and the rule is disabled if there is no match.
Can be specified as a string or an array of theme strings. For example,

"theme": "Redwood"

or

"theme": ["Redwood", "Alta"]

amd Specifies that an audit rule cannot be used in AMD mode if the rule performs any I/O. It
can be omitted in all other cases. The property is ignored if not running in AMD mode. It
is recommended that you set amd : false if the rule performs any file I/O to prevent
failures for future AMD usage.

Chapter 7
Define the Runtime Properties of Custom Audit Rules

7-6

JAF system
properties

Description

issueTag Specify a string that is to be passed through to the output Issue object for an issue
flagged by this rule. This string is not inspected by JAF, and its value may be encoded as
required by the processing routine examining the string in the output JSON (or object if
API/AMD mode).

customOpts Declares an object container for user custom rule option properties.

Prior to JAF 10.0.0, custom properties were not permitted to be prefixed by the values
shown below, since they were reserved for internal JAF use only, and use by custom
written rules was prohibited. This restriction was removed in JAF 5.11.0 when
customOpts was introduced. Top-level user options were deprecated in 5.11.0, and
customOpts became mandatory in JAF 10.0.0.

Option properties may not be prefixed with the following if not contained in customOpts.

$
jet
jaf
oj
ojc
jetwc
jetwco
vdom
jetvdom
spoc
wdt
csp

$required Designates that this rule cannot be disabled by the configuration property ruleMods
and, indirectly, by the ruleNames property. This is typically used for rules that perform
pack set-up or other non-audit related functions. Rules marked $required are loaded/
registered (in the order found in rules.json) ahead of all other rules. Specify true to
make running of this rule during pack set-up mandatory. The default value is false.

$... Other properties starting with $ are for internal JAF use only, and may not be referenced
in a configuration file.

The custom audit rule's properties may be overridden at runtime by users though the
oraclejafconfig.json file configuration property ruleMods, as described in Configure Audit
Rule Runtime Properties . Note also that a rule can be designated as one that must not be
disabled at runtime by setting the $required property to true.

Define the Message ID of Custom Audit Rules
The message ID that Oracle JAF uses to report an issue can be generated by default by JAF
or you can optionally define the IDs to better document custom audit rules.

When JAF reports an issue, it includes a unique message ID of the format ppp-nnnn, where
ppp is the prefix of the rule pack, and nnnn is the message ID. The custom audit rule can
supply the message number in a number of ways.

The message ID can be either hardcoded, or it can be obtained from some user-defined
custom mechanism (for example, by using a rule pack extension), and specified in the Issue
constructor.

Chapter 7
Define the Message ID of Custom Audit Rules

7-7

Alternatively, you may use the optional msgid.json definition file to associate a rule name and
message ID within a rule pack. The format of a msgid.json file is shown below:

{
 "rulename1" : "1234",
 "rulename2" : "1235"
 . . .
}

You can annotate a msgid.json file with // and /* */ comments.

At runtime, if no ID is specified for an Issue when it is added to the Reporter instance, JAF will
attempt to resolve it by looking for a file named msgid.json within the same folder as the
rule .js files and the mandatory rules.json file. In this case, JAF uses the rule name as the
message lookup key to obtain the message number

If a msgid.json file is used, for flexibility, it is also possible to change the default lookup key
from the rule name to a unique key that you specify in your audit rule handler by using
Issue.setMsgKey().

var issue = new ruleContext.Issue(". . .") ;
. . .
issue.setMsgKey("some key value") ;

To hardcode the message ID, your custom audit rule may supply the number (for example,
1234) directly on the Issue object your audit rule handler function creates.

var issue = newruleContext.Issue("some rule message", "1234");

Your handler function may also set the message ID subsequently on an Issue object

var issue = newruleContxt.Issue("some rule message");
 . . .
issue.setMsgId("1234");

Here is an example of how to obtain the message ID through some custom mechanism. In this
example, a custom rule pack extension is used.

var RPExtension = ruleContext.rulePack.getExtension() ; // get the
rulepack's extension object
var myMsgIdAssigner = RPExtension.assignMsgId ; // assumes the rule
pack has created a routine for assigning message ID's

var issue = new ruleContext.Issue("some rule message",
myMsgIdAssigner(ruleContext)) ; // (myMsgIdAssigner could use
ruleContext.ruleName)

Refer to Rule Issue Class Methods for a description of the Issue constructor and available
methods.

Refer to Implement Custom Rules Using the Audit Lifecycle for an example of a custom rule
pack extension that you might create for use in a startup hook rule.

Chapter 7
Define the Message ID of Custom Audit Rules

7-8

Implement the Custom Audit Rules
A custom audit rule is a JavaScript file that you implement and that exports certain public
functions.

When you implement custom audit rules in your project, you add a .js file with the same name
as the rule you declare in the project's rules.json file. To illustrate how to implement audit
rules, we'll describe three rules of increasing complexity that audit HTML files for excessive
levels of HTML heading nesting:

• custom-check-heading-levels-1.js
• custom-check-heading-levels-2.js
• custom-check-heading-levels-3.js
The rules.json file for these rules declares the CUSTOM rule pack like this:

{
 "title": "Example Custom Audits",
 "prefix": "CUSTOM",
 "version": "1.0.0",
 "rules": {
 "custom-check-heading-levels-1" : {},
 "custom-check-heading-levels-2" : {},
 "custom-check-heading-levels-3": {
 "filetype": "html",
 "customOpts": {
 "maxLevel": 4
 }
 }
 }
}

The implementation of each rule will use the same JavaScript regular expression to match and
extract the numerical part of an HTML heading tag passed from the target audit files. At
runtime, JAF processes the HTML files in the JET application and a rule listener that we
register in the audit rule passes each HTML tag to an event handler function that our audit
rules implement. We will vary the rule handler function implementation to illustrate ways it
might use the results of the regular expression matching. Additionally, as the rules.json file
sample shows, the third rule declaration differs since it defines a default value for the
maxLevel property. The third audit rule illustrates how to make an audit rule configurable by
the end-user of the JAF audit.

Version 1 - Report Heading Levels Greater Than H4

To qualify as a valid rule, a custom audit rule must export the following four methods:

/**
 * Copyright (c) 2018, 2022, Oracle and/or its affiliates.
 * Licensed under The Universal Permissive License (UPL), Version 1.0
 * as shown at https://oss.oracle.com/licenses/upl/
 */

/
*---

Chapter 7
Implement the Custom Audit Rules

7-9

---*/
/* JAF Rule:
'CustomHeadingLevelsAuditBasic' */
/*
Purpose :
*/
/
*---
---*/

const RULENAME = "CustomHeadingLevelsAuditBasic";
const DESCRIPTION = "This rule checks that excessive levels of header nesting
have
 not been used on HTML pages by raising an error whenever
a
 heading tag greater than H4 is used";
const SHORT_DESCRIPTION = "'Checks HTML files for any use of tags <h5> and
above";

class Rule {
 getName() {
 return RULENAME;
 }

 getDescription() {
 return DESCRIPTION;
 }

 getShortDescription() {
 return SHORT_DESCRIPTION;
 }

 register(regContext) {
 return ({
 tag: this._doHeaderLevelAudit
 }
)
 }
. . .
}

module.exports = Rule;

The first three methods in our custom audit rule implementation return usage information that
you supply about the audit rule. This information will be passed to Oracle JAF whenever the
end-user interacts with the ojaf command line interface to request additional details about the
audit rule that emitted a particular diagnostic message.

The fourth method register() is the required entry point to every custom audit rule. This
method is called during JAF startup, and you will use it to declare a node listener for specific
types of data found during the file set audit. The method returns a context object that contains
the events for the specified node listener type. Rules that you write to audit file data are called
node audit rules because the register() method returns node data on the context object
created by JAF from the Abstract Syntax Tree (AST) it generates on the target file.

Chapter 7
Implement the Custom Audit Rules

7-10

Note:

The register() method that you implement in your rule's .js file can also declare
listeners for events triggered by JAF on the different phases of the JAF audit
lifecycle. This set of listener types provides you with hooks into the audit engine and
any rules that you write for these hooks do not rely on file data. For more information
about writing hook rules, see About Hook Rule Invocation.

In this version of the heading level audit rule, the register() method specifies the tag listener
type to check all HTML tags in the audited file set. To handle events triggered by the processed
tags, the rule needs to implement the audit handler function for the ruleContext object and
other arguments passed into our handler function. Our implementation invokes the
doHeaderLevelAudit handler function in response to the listener event. In the case of the
registered tag listener, a ruleContext object and a tagElementName string get passed in as
arguments to our function.

/**
 * Copyright (c) 2018, 2022, Oracle and/or its affiliates.
 * Licensed under The Universal Permissive License (UPL), Version 1.0
 * as shown at https://oss.oracle.com/licenses/upl/
 */

. . .
class Rule {

 . . .
 register(regContext) {
 return ({
 tag: this._doHeaderLevelAudit
 }
)
 }
_doHeaderLevelAudit(ruleContext, tagElementName) {
 . . .
 }
 }

module.exports = Rule;

In this version of the heading level audit rule, we hardcode the heading level so the rule reports
a heading level that exceeds H4 in the rule diagnostic message. Then in JavaScript we define
a regular expression that allows us to match and extract the numerical part of an HTML <H*>
tag from the passed in tagElementName string. If a match is found, we check the number
portion extracted by the regular expression to see if it is greater than the hardcoded limit of 4.
Finally, our implementation needs to report the issue by creating an instance of the Issue
object with a diagnostic message and an optional message ID for the audit rule. Then a
Reporter instance allows us to call addIssue() to allow JAF to output the audit results.

Chapter 7
Implement the Custom Audit Rules

7-11

Note:

Hardcoding a unique audit rule message ID in your audit rule handler function is one
way to document your custom audit rule. The ID you define will appear in the audit
output as ppp-nnnn, where ppp is the rule pack prefix and nnnn is the message ID. If
your audit rule does not define a message ID and one cannot be found in the optional
msgid.json file, JAF will generate the rule message ID at runtime for you. For more
information, see Define the Message ID of Custom Audit Rules.

/**
 * Copyright (c) 2018, 2022, Oracle and/or its affiliates.
 * Licensed under The Universal Permissive License (UPL), Version 1.0
 * as shown at https://oss.oracle.com/licenses/upl/
 */

. . .
class Rule {

 . . .
 _doHeaderLevelAudit(ruleContext, tagElementName) {
 //Define a regular expression that will allow us to match extract the
numerical part of an HTML <H*> tag
 const matchHeader = new RegExp(/^[h](\d*)$/, 'i');
 //Check the tag being processed against the Regular Expression
 const matches = tagElementName.match(matchHeader);

 //A not-null result means it's some kind of header tag, so now we check
the number portion extracted by the
 //regular expression to see if it is greater than the hardcoded limit of
4 in this case
 if (matches !== null) {
 const headerLevel = parseInt(matches[1]);
 if (headerLevel > 4) {
 //Report the issue
 const issue = new ruleContext.Issue("Header level 4 exceeded", "001");
 ruleContext.reporter.addIssue(issue, ruleContext, 'minor');
 }
 }
 }
}

module.exports = Rule;

Next let's modify this sample rule to improve our rule's diagnostic message.

Version 2 - Include Heading Tag Information in Report

In this sample, our revised heading level audit rule continues to register the tag listener type to
trigger the doHeaderLevelAudit audit handler function. However, in this version we enhance
the diagnostic message to include the heading text and heading tags. The audit handler
function logic tests node data on the children.length and children.type properties of the
ruleContext.node object passed to our handler. If the content is a simple header string, we

Chapter 7
Implement the Custom Audit Rules

7-12

assign the node ruleContext.data to the variable headerText, formatted with the heading
tags in problemHeader and passed to the Issue instance that we create. Finally, the call to
addIssue() to output the audit result on the Reporter object remains unchanged.

Tip:

Test your audit rules in a development tool that can invoke the Oracle JET ojaf utility,
such as VS Code, to more easily visualize the runtime context object properties and
their data.

/**
 * Copyright (c) 2018, 2022, Oracle and/or its affiliates.
 * Licensed under The Universal Permissive License (UPL), Version 1.0
 * as shown at https://oss.oracle.com/licenses/upl/
 */

class Rule {

 . . .

 _doHeaderLevelAudit(ruleContext, tagElementName) {
 //Define a regular expression that will allow us to match extract the
numerical part of an HTML <H*> tag
 const matchHeader = new RegExp(/^[h](\d*)$/, 'i');
 //Check the tag being processed against the Regular Expression
 const matches = tagElementName.match(matchHeader);

 //A not-null result means it's some kind of header tag, so now we check
the number portion extracted by the
 //regular expression to see if it is greater than the hardcoded limit of
4 in this case
 if (matches !== null) {
 const headerLevel = parseInt(matches[1]);
 if (headerLevel > 4) {
 //In this enhanced version, before we report the issue let's get the
actual
 //tag information to add to the report
 //Only report the actual content for the simple case though otherwise
use ellipsis
 let headerText = '...';
 if (ruleContext.node.children.length === 1 &&
ruleContext.node.children[0].type === 'text') {
 headerText = ruleContext.node.children[0].data;
 }

 const problemHeader = `<${tagElementName}>${headerText}</$
{tagElementName}>`;
 const issue = new ruleContext.Issue(`Header level 4 exceeded for
element: ${problemHeader}`, "002");
 ruleContext.reporter.addIssue(issue, ruleContext, 'minor');
 }
 }
 }

Chapter 7
Implement the Custom Audit Rules

7-13

}

module.exports = Rule;

Notice also that our custom audit rules pass in a severity level as an argument to addIssue().
If you do not hardcode the severity level or define the severity system property in the rule
declaration in your project's rules.json file, then JAF will assign the custom audit rule the
default severity level critical. In our samples, we hardcode the severity level minor for all three
custom audit rules. For details about severity and other system properties that your custom
audit rules can define, see Define the Runtime Properties of Custom Audit Rules.

Next let's modify this sample rule to illustrate a configurable audit rule that will allow end-users
to configure the audit heading level before they run the audit.

Version 3 - Configure the Audit Rule for a Heading Level

Every rule pack must contain a rules.json file with the list of audit rules that Oracle JAF loads
at audit startup. If the rule is configurable, then the rules.json file specifies the property on
the declaration line like this maxlevel property we declare in this final version of our heading
level audit rule that checks against a configurable heading level.

{
 "title": "My Custom Audit Rules",
 "prefix": "CUSTOM",
 "version": "1.0.0",
 "rules": {
 "custom-check-heading-levels-3": {
 "customOpts": {
 "maxLevel": 4
 }
 }
 }
}

To use the configurable property maxLevel, our audit rule sample calls getRuleOption() to
query rule pack information on the Register context object passed in when the rule pack is
loaded at startup. We assign the value to configuredLevel and the audit handler function tests
the value using the same logic described for the previous version of the rule. If the node data
for the heading tag exceeds the configured level, then we report the issue and output the
message for the offending heading tag together with the configuredLevel value.

/**
 * Copyright (c) 2018, 2022, Oracle and/or its affiliates.
 * Licensed under The Universal Permissive License (UPL), Version 1.0
 * as shown at https://oss.oracle.com/licenses/upl/
 */

. . .
class Rule {

. . .

_doHeaderLevelAudit(ruleContext, tagElementName) {

Chapter 7
Implement the Custom Audit Rules

7-14

 //Before we start, in this version, find out what the configured max
level is from
 //the rules.json declaration for our custom rule
 const configuredLevel =
ruleContext.rulePack.getRuleCustomOptions().maxLevel;

 //Define a regular expression that will allow us to match extract the
numerical part of an HTML <H*> tag
 const matchHeader = new RegExp(/^[h](\d*)$/, 'i');
 //Check the tag being processed against the Regular Expression
 const matches = tagElementName.match(matchHeader);

 //A not-null result means it's some kind of header tag, so now we check
the number portion extracted by the
 //regular expression to see if it is greater than the hardcoded limit of
4 in this case
 if (matches !== null) {
 const headerLevel = parseInt(matches[1]);
 //This time we check against the configured level passed in with the
options
 if (headerLevel > configuredLevel) {
 //In this enhanced version, before we report the issue let's get the
actual tag information to add to the report
 //Only report the actual content for the simple case though otherwise
use ellipsis
 let headerText = '...';
 if (ruleContext.node.children.length === 1 &&
ruleContext.node.children[0].type === 'text') {
 headerText = ruleContext.node.children[0].data;
 }

 const problemHeader = `<${tagElementName}>${headerText}</$
{tagElementName}>`;
 const issue = new ruleContext.Issue(`Header level ${configuredLevel}
exceeded for element: ${problemHeader}`, "003");
 ruleContext.reporter.addIssue(issue, ruleContext, 'minor');
 }
 }
 }
}

module.exports = Rule;

This concludes our walkthrough of a basic node rule. As an exercise, you may reuse the
sample code of the three heading level audit rules to create a custom rule pack to audit the
HTML source files of your JET application. The rule pack you create will contain a .js
implementation file for each audit rule and a rules.json file to declare the rules. In each
implementation file, be sure to include the required methods shown in the sample described for
rule version 1 that for brevity the samples omit in rule versions 2 and 3. For more information
about creating a custom rule pack that you can reference in an Oracle JAF audit, see
Reference the Custom Audit Rules in an Audit.

Chapter 7
Implement the Custom Audit Rules

7-15

Note:

End users register your custom rule pack by editing the oraclejafconfig.json file in
their JET application to define the rulePacks property. They can also define the
ruleMods property to override default values declared within your custom rule pack
rule definitions. For details about how end users enable custom rule packs to audit
their JET application, see Audit with Custom Rule Packs, and for details about how
end users may override properties of configurable audit rules in their audit runs, see
Configure Audit Rule Runtime Properties .

Reference the Custom Audit Rules in an Audit
Use the rulePacks property of the oraclejafconfig.json file to register the custom audit
rules in your project to be loaded by JAF at audit runtime.

An audit rule is a JavaScript file that exports certain public functions. Rules with a common
diagnostic purpose, for example, specific to a group of user-defined Web Components, can be
placed in a folder and that folder's location referenced in the configuration file. A group of
associated rules is referred to in JAF as a rule pack. A rule pack may also be zipped for
distribution to other users. The Oracle JAF configuration file will reference the location of the
zip file in this case.

The zip file or folder should have the contents as described in Set up the Custom Audit Rules
Test Project.

To declare the rule pack, edit the generated oraclejafconfig.json file rulePacks property to
specify the path to the custom rule pack folder or zip file.

"rulePacks" : [
 {
 "path" : "path/to/myrulepack.zip",
 "enabled" : [true (default) | false]
 "status" : ["all" (default), "production", "deprecated",
"beta", "alpha"]
 },
 {
 "path" : "path/to/my/rulepack/folder",
 "enabled" : [true (default) | false]
 "status" : ["all" (default), "production", "deprecated",
"beta", "alpha"]
 },
 ...
]

The enabled property is optional and provides the ability to easily disable a complete rule
pack. If omitted, the default is enabled.

The specified path can be relative. If relative, it is considered to be relative to the location of
the configuration file, or the configuration file's base property, if defined.

Chapter 7
Reference the Custom Audit Rules in an Audit

7-16

8
Implement Custom Node Rules

Node rules are standard audit rules that you write in response to the parsing of application
files, including HTML, JSON, CSS, and JavaScript. Oracle JAF handles file parsing by creating
data nodes that the Oracle JAF audit engine walks in the form of an Abstract Syntax Tree
(AST) and exposes to you through node event listeners that you can register in your custom
node rule.

About AST Rule Nodes in CSS Auditing
Rules that audit CSS files or the <style> section of HTML files are implemented as JavaScript/
TypeScript files which are loaded at runtime as node.js modules, and are passed a context
from Oracle JAF as it analyzes the abstract syntax tree (AST) of the audited content and
invokes the node type listeners that you have registered with your audit rules.

Overview of Rule Nodes in CSS

Consider the following CSS rule:

body,html {
 margin:0; padding:0;
}

The CSS rule is represented in the AST as a Rule node. Here is a skeleton view of the Rule
node:

{
 "type": "Rule",
 . . .
 "prelude" : {}, // see below
 "block" : { // contains the property/value pairs
 "children" : [
 {
 "type" : "Declaration",
 "property" : "margin"
 "value" : {
 "children" : [
 {
 "type" : "number",
 "value" : "0"
 }
]
 }
 },
 {
 "type" : "Declaration",
 "property" : "padding"
 "value" : {
 "children" : [

8-1

 {
 "type" : "number",
 "value" : "0"
 }
]
 }
 }
]
 }
}

From this sample it would be a simple task to extract the property/value pairs from this Rule
node.

For clarity, some content above has been omitted. For example, throughout the Rule node
there are loc sub-properties which contain positional information:

"loc": {
 "source": " ",
 "start": {
 "offset": 18,
 "line": 3,
 "column": 5
 },
 "end": {
 "offset": 26,
 "line": 3,
 "column": 13
 }
}

Note:

The loc position information is relative to the start of the CSS text. Since CSS may
also be embedded in an HTML <style>, the rule context provides the offset property
which provides the actual origin of the text, and that can be used to adjust the
position information when reporting an issue. See the offset property and helper
utility method CssUtils.getPosition() description in Context Object Properties
Available to CSS Rule Listeners.

In this CSS rule example, the property prelude was shown. This contains a higher view of the
structure of the rule, and introduces node types SelectorList and Selector. Here is a skeleton
example.

"prelude": {
 "type": "SelectorList",
 "children": [
 {
 "type": "Selector",
 "children": [
 {
 "type": "TypeSelector",

Chapter 8
About AST Rule Nodes in CSS Auditing

8-2

 "name": "body"
 }
]
 },
 {
 "type": "Selector",
 "children": [
 {
 "type": "TypeSelector",
 "name": "html"
 }
]
 }
]
}

In the sample above, the type property has value TypeSelector since it refers to the elements
<body> and <html>. For other selector types, ClassSelector, IdSelector, and
PsuedoSelector are used. Note that SelectorList contains two Selector nodes; this is
because body and html were grouped in the CSS using a comma. A more detailed discussion
of the SelectorList node can be found below.

Overview of the SelectorList Node

In the sample above, the SelectorList property of the prelude node was introduced for a
simple case using grouping. In that example, the SelectorList contains two Selector nodes of
type TypeSelector. There were two Selector nodes generated because of the use of the
grouping comma. This section goes into greater depth when combinators and pseudo
selectors are used. When selectors are combined, only one compound Selector is generated
and contains multiple child nodes.

Combinator Examples

Consider the following:

.foo.bar { ... }

This will produce a skeleton SelectorList and Selector node as follows. Note that the
Selector node contains two child ClassSelector nodes:

"prelude": {
 "type": "SelectorList",
 "children": [
 {
 "type": "Selector",
 "children": [
 {
 "type": "ClassSelector",
 "name": "foo"
 },
 {
 "type": "ClassSelector",
 "name": "bar"
 }
]
 }

Chapter 8
About AST Rule Nodes in CSS Auditing

8-3

]
}

Consider the following:

.foo .bar {...}

This will produce a skeleton SelectorList and Selector node as follows:

"prelude" : {
 "type": "SelectorList",
 "children": [
 {
 "type": "Selector",
 "children": [
 {
 "type": "ClassSelector",
 "name": "foo"
 },
 {
 "type": "WhiteSpace",
 "value": " "
 },
 {
 "type": "ClassSelector",
 "name": "h2"
 }
]
 }
]
}

Consider the following:

div > p { ... }

This generates the following SelectorList node:

"prelude" : {
 "type": "SelectorList",
 "children": [
 {
 "type": "Selector",
 "children": [
 {
 "type": "TypeSelector",
 "name": "div"
 },
 {
 "type": "Combinator",
 "name": ">"
 },
 {

Chapter 8
About AST Rule Nodes in CSS Auditing

8-4

 "type": "TypeSelector",
 "name": "p"
 }
]
 }
]
}

Note that a Combinator node appears between the two type selectors, per the CSS.

Consider this slightly more complex example using an attribute selector:

a[href^="https"] { ... }

This generates the following SelectorList node as follows:

"prelude": {
 "type": "SelectorList",
 "children": [
 {
 "type": "Selector",
 "children": [
 {
 "type": "TypeSelector",
 "name": "a"
 },
 {
 "type": "AttributeSelector",
 "name": {
 "type": "Identifier",
 "name": "href"
 },
 "matcher": "^=",
 "value": {
 "type": "String",
 "value": "\"https\""
 }
 }
]
 }
]
}

In the sample above, an AttributeSelector node has been generated with a matcher property.

Pseudo Class Selector Examples

Consider the following:

.foo:focus { . . . }

Chapter 8
About AST Rule Nodes in CSS Auditing

8-5

This will produce a skeleton SelectorList and Selector node as follows:

"prelude": {
 "type": "SelectorList",
 "children": [
 {
 "type": "Selector",
 "children": [
 {
 "type": "ClassSelector",
 "name": "foo"
 },
 {
 "type": "PseudoClassSelector",
 "name": "focus"
 }
]
 }
]
}

Note that the Selector node reflects the class selector followed by the pseudo class selector.

Consider the following:

p:nth-last-child(2) {}

This generates a more complex Selector node as follows:

"prelude": {
 "type": "SelectorList",
 "children": [
 {
 "type": "Selector",
 "children": [
 {
 "type": "TypeSelector",
 "name": "p"
 },
 {
 "type": "PseudoClassSelector",
 "name": "nth-last-child",
 "children": [
 {
 "type": "Nth",
 "nth": {
 "type": "AnPlusB",
 "a": null,
 "b": "2"
 }
 }
]
 }
]
 }

Chapter 8
About AST Rule Nodes in CSS Auditing

8-6

]
}

Note that the PseudoClassSelector now has an expanded children node.

Walkthrough of Sample HTML and JSON Audit Rules
Rules that audit HTML or JSON files are passed a context from Oracle JAF as it analyzes the
abstract syntax tree (AST) of the audited file and invokes the node type listeners that you have
registered with your HTML/JSON audit rules.

In this walkthrough, the first audit rule shows how easy it is to get started writing a rule that
audits HTML. Subsequent rule samples illustrate greater complexity and the power of Oracle
JAF for writing custom rules. Overall, Oracle JAF gives you the ability to look forwards or
backwards within a file from the current position, and the various JAF utility functions that are
available simplify the task of writing a rule.

Note:

For clarity, the samples in this section omit getName(), getDescription(), and
getShortDescription() methods. To understand the basics of node rule
implementation, see Understand the Structure of Custom Audit Rules.

Version 1 - Validating id attributes

In this simple introductory rule, the requirement is to inspect all element id attributes to ensure
that they begin with a common prefix (acv-) for the project.

... // for clarity, the getName(), getDescription(), and
getShortDescription() methods have been omitted

function register(regContext)
{
 return { attr : _fnAttrs };
};

function _fnAttrs(ruleContext, attrName, attrValue)
{
 let issue;

 if ((attrName === "id") && (! attrValue.startsWith("acv-")))
 {
 issue = new ruleContext.Issue(`'id' attribute ('${attrValue}') is not
prefixed with project prefix \"acv\"`);
 ruleContext.reporter.addIssue(issue, ruleContext);
 }
};

Version 2 - Validating id attributes

In general, you can look into the context for additional information, so let's assume that for this
rule, you only want to look at particular project files in the file set that begin with ACV. The

Chapter 8
Walkthrough of Sample HTML and JSON Audit Rules

8-7

ruleContext object has the member filepath that you can use. Note that filepath always uses
forward slashes, regardless of the platform, so the test for /ACV will succeed on all platforms.

function _fnAttrs(ruleContext, attrName, attrValue)
{
 let issue;

 if (ruleContext.filepath.includes("/ACV") && (attrName === "id") && (!
attrValue.startsWith("acv-")))
 {
 issue = new ruleContext.Issue(`'id' attribute ('${attrValue}') is not
prefixed with project prefix \"acv\"`);
 ruleContext.reporter.addIssue(issue, ruleContext);
 }
};

Version 3 - Validating id attributes

How can the rule be improved? Because JAF is very efficient at file processing, you could seek
to improve performance if very large numbers of files are involved. To do that, let's use the
context object node property, and the attribs property of the node. The node property is the
current node in the file, so you can navigate forwards or backwards from it. Secondly, from the
performance aspect, you can reduce the number of invocations of the rule by only listening for
HTML elements instead of attributes. Let's assume that, on average, the DOM elements have
5 attributes, then you would reduce the number of rule invocations by 80%. In this version of
the rule, the attributes of each element are examined directly.

function register(regContext)
{
 // Listen for DOM elements instead of attribute
 return { tag : _fnTags };
};

function _fnTags(ruleContext, tagName)
{
 // Look at the element's attributes
 let attribs, attrValue, issue;

 // 'attribs' is an object of attribute name/value properties for the tag
 attribs = ruleContext.node.attribs;
 // Get the 'id' value if it exists
 attrValue = attribs.id;

 if (attrValue && (! attrValue.startsWith("acv-")))
 {
 issue = new ruleContext.Issue(`'id' attribute ('${attrValue}') is not
prefixed with project prefix \"acv\"`);
 ruleContext.reporter.addIssue(issue, ruleContext);
 }
};

Chapter 8
Walkthrough of Sample HTML and JSON Audit Rules

8-8

Version 4 - Validating id attributes

At this point, it is worth noting that the ruleContext object provides access to DomUtils, a
collection of useful DOM utility functions. For example, the function _fnTags() in the above
example could be rewritten as follows.

function _fnTags(ruleContext, tagName)
{
 let attrValue, issue;

 // Returns the 'id' attribute's value if found
 attrValue = ruleContext.DomUtils.getAttribValue(context.node, "id");
 if (attrValue && (! attrValue.startsWith("acv-")))
 {
 issue = new ruleContext.Issue(`'id' attribute ('${attrValue}') is not
prefixed with project prefix \"acv\"`);
 ruleContext.reporter.addIssue(issue, ruleContext);
 }
};

Version 5 - Validating id attributes

While JAF is efficient, audit rules can always be improved upon. To listen for a file invocation,
the rule must register a listener for the file type.

Note:

It is necessary to understand that performance and rule complexity/maintainability is
a tradeoff. For example, it is possible to reduce this rule's invocation count to once
per file by converting the rule to a hook type rule, as described by Implement Custom
Hook Rules. Essentially, hook rules make it possible to request that a rule to be
invoked (once only) when the file is first read, and prior to any other rules. This
means that the rule must then examine the parsed nodes looking for elements and
their attributes.

function register(regContext)
{
 // Listen for files instead of elements or attributes
 return { file : _fnFiles };
};

function _fnFiles(ruleContext)
{
 let tagNodes, node, attrValue, i;
 const DomUtils = ruleContext.utils.DomUtils;

 // Get elem nodes only (ignore text, comments, directives, etc)
 tagNodes = DomUtils.getElems() ;
 for (i = 0; i < tagNodes.length; i++)
 {
 node = tagNodes[i] ;
 // Get the id" attribute value

Chapter 8
Walkthrough of Sample HTML and JSON Audit Rules

8-9

 attrValue = DomUtils.getAttribValue(node, "id");
 if (attrValue && (! attrValue.startsWith("acv-")))
 {
 issue = new ruleContext.Issue(`'id' attribute ('${attrValue}') is not
prefixed with project prefix \"acv\"`);
 ruleContext.reporter.addIssue(issue, ruleContext);
 }
 }
};

Walkthrough of a Sample CSS Audit Rule
Rules that audit CSS files or the <style> section of HTML files are passed a context from
Oracle JAF as it analyzes the abstract syntax tree (AST) of the audited file and invokes the
node type listeners that you have registered with your CSS audit rules.

The CSS in this CSS rule walkthrough is as follows.

p ... {
 color : "#112233",
 ...
 }

Note that p can be decorated with additional CSS syntax, and the audit rule must ignore any
such decoration.

The audit rule starts by listening for CSS rules and then looks for a p type selector. For more
information about determining a type selector, see About AST Rule Nodes in CSS Auditing.

Here is the basic framework for the audit rule for CSS:

var CssUtils ;

function register(regCtx)
{
 // See setPosition() below
 CssUtils.regCtx.utils.CssUtils;
 return { "css-rule" : _onRule }
};

function _onRule(ruleCtx, rule)
{
 // If the rule has a p type selector
 if (_hasParaTypeSelector(rule))
 {
 // and the rule sets the 'color' property
 let loc = _getColorPropPos(rule);
 if (loc)
 {
 // report the issue.
 _emitIssue(ruleCtx, loc);
 }
 }
};

Chapter 8
Walkthrough of a Sample CSS Audit Rule

8-10

function _emitIssue(ruleCtx, loc)
{
 var issue = new ruleCtx.Issue("p type selector must not override the
'color' property");

 issue.setPosition(CssUtils.getPosition(ruleCtx, loc));
 ruleCtx.reporter.addIssue(issue, ruleCtx);
};

The next step is to analyze the rule node to find the p type selectors:

function _hasParaTypeSelector(rule)
{
 var sels, sel, a, ch, i, j;

 if (rule.prelude.type === "SelectorList")
 {
 a = rule.prelude.children;

 for (i = 0; i < a.length; i++)
 {
 sels = a[i];
 if (sels.type === "Selector")
 {
 ch = sels.children;
 for (j = 0; j < ch.length; j++)
 {
 sel = ch[j];
 if (sel.type === "TypeSelector" && sel.name === "p")
 {
 return true;
 }
 }
 }
 }
 }
};

Finally, we need to search the rule to see if it specifies the color property:

function _getColorPropPos(rule)
{
 var block, decl, i;

 // Process the rule's block of property/value pairs
 block = rule.block.children;
 for (i = 0; i < block.length; i++)
 {
 decl = block[i];
 if (decl.type === "Declaration" && decl.property === "color")
 {
 // Return the 'color' property position for the Issue
 return decl.loc;

Chapter 8
Walkthrough of a Sample CSS Audit Rule

8-11

 }
 }
};

Walkthrough of a Sample Markdown Audit Rule
Oracle JAF parses a Markdown file into an abstract syntax tree (AST). This AST is
subsequently analyzed, and the summarized data objects are presented to rules via their
registered rule listeners.

For Markdown processing, a rule can listen for file events such as when a .md file is first read,
or for specific Markdown events such as when a particular type of markup is found.

For a list of Markdown rule listeners and a description of their arguments, see Listener Types
for Markdown Rules.

In either case, when a rule listener is invoked, it is passed a context object. In addition to the
many properties available on the context object for all rule types (see Context Object
Properties Available to Registered Listeners), context contains the supplementary data
property suppData, which is of particular interest when auditing a Markdown file. The property
provides easy access to summarized data (links, images, paragraphs, headings, code blocks,
etc.) through methods available on its utils object. For more information, see Context Object
Properties Available to Markdown Rule Listeners.

Note:

Use of the file event in conjunction with the utility methods available via
suppData.utils will be the most straightforward approach to accessing summarized
data, rather than walking the AST, since all the summarized data will be available at
that point and the AST will not need to be inspected.

Listen for Markdown Events

The Markdown events are of the form md-xxxxx, where xxxxx represents the type of
Markdown data required (e.g., md-link for link events, used in the following rule class).

register(regCtx)
{
 return {
 // want markup URL references
 md-link : this._onLink,
 . . .
 }
}

_onLink(ruleCtx, link)
{
 // Process the link object passed as the second argument
 . . .

 // Access to all the parsed data is also available
 // through the supplementary data object
 var utils = ruleCtx.suppData.utils ;
 // Returns an array of image objects

Chapter 8
Walkthrough of a Sample Markdown Audit Rule

8-12

 var images = utils.getImages() ;

 // Process the links array
 . . .
}

Note how the supplementary data property suppData is used to get the Markdown utils
object. This is then used to acquire the image data from the markup text.

A file hook can also be used, and this permits a rule to access all of the Markdown data at the
same time.

register(regCtx)
{
 return {
 file : this._onFile, // Listen for files being read
 . . .
 }
}

_onFile(ruleCtx)
{
 var utils, links, images, paras ;

 utils = ruleCtx.suppData.utils ;
 links = utils.getLinks() ; // Array of link objects
 images = utils.getImages() ; // Array of image objects
 paras = utils.getParas() ; // Array of paragraph objects

 // Process the links, images, and paragraphs
 . . .
}

Example Rules

The following rule checks that the first paragraph of Markdown contains a copyright.

class Rule
{
 // For clarity, getRule(), getDescription(), and getShortDescription() have
been omitted.

 register(regCtx)
 {
 return { file : _onFile }
 }

 // file hook listener
 _onFile(ruleCtx)
 {
 var utils = ruleCtx.suppData.utils ;
 var paras = utils.getParas() ;

 // Get the first paragraph.
 var para = paras[0] ;

Chapter 8
Walkthrough of a Sample Markdown Audit Rule

8-13

 if (! /[Oo]racle/.test(para.text))
 {
 let issue = new ruleCtx.Issue("Copyright must be declared in first
paragraph") ;

 // Supply start and end indices so that the paragraph can be
highlighted.
 // JAF will compute the line/col from the start index
 issue.setPosition(null, null, paras.pos[0].start,
paras.pos[1].end);
 ruleCXtx.reporter.addIssue(issue, ruleCtx) ;
 }
 }

}

The following rule finds all references to URLs containing "Oracle".

class Rule {
 // for clarity getRule(), getDescription(), and getShortDescriptiomn() have
been omitted

 // listen for files
 register(regCtx) {
 return { file: _onFile }
 }
 // file hook listener
 _onFile(ruleCtx)
 {
 var utils = ruleCtx.suppData.utils;
 var links = utils.getLinks();
 var refLinks = utils.getRefLinks();
 var images = utils.getImages();

 // URL's are found in inline-links, inline-images, and reference links

 // Inspect inline links
 links.forEach((link) => {
 if (_checkUrl(link.inline)) {
 // found URL containing 'Oracle'
 }
 });

 // Inspect reference links
 for (const ref in refLinks) {
 link = refLinks[ref]
 if (_checkUrl(link, true))
 {
 // found URL containing 'Oracle'
 }
 }

 // Inspect inline-image links
 images.forEach((link) => {

Chapter 8
Walkthrough of a Sample Markdown Audit Rule

8-14

 if (_checkUrl(link.inline)) {
 // found URL containing 'Oracle'
 }
 });

 }

 _checkUrl(link, refLink) {
 return (link.inline || refLink) ? link.link.includes("Oracle") : false;
 }

};

Walkthrough of a Sample JavaScript/TypeScript Audit Rule
Rules that audit JavaScript/TypeScript files are passed a context from Oracle JAF as it
analyzes the abstract syntax tree (AST) of the audited file and invokes the node type listeners
that you have registered with your JavaScript/TypeScript audit rules.

A JavaScript/TypeScript file is parsed by JAF into an Abstract Syntax Tree (AST), and as the
tree is subsequently walked, any node with a type registered by a rule is passed to the rule in
context.node. The node.type property (string) specifies what the node represents. For
example, a node.type of AssignmentExpression indicates a typical statement form such as
myVariable = 42. As an example, in JavaScript, the portion of the AST representing this
statement is:

myVariable = 42;

The above statement parses into the following node, where some additional properties have
been removed for clarity:

{
 "type": "ExpressionStatement",
 "expression": {
 "type": "AssignmentExpression",
 "operator": "=",
 "left": {
 "type": "Identifier",
 "name": "myVariable",
 },
 "right": {
 "type": "Literal",
 "value": 42,
 "rawValue": 42,
 },
 },
}

Thus a simple rule to flag number assignments to variables that are greater than 42, could be:

function register(regContext)
{
 return {
 AssignmentExpression : _fnAssign

Chapter 8
Walkthrough of a Sample JavaScript/TypeScript Audit Rule

8-15

 };
};

function _fnAssign(ruleCtx, node)
{
 if (node.left && (node.left.type === "Identifier"))
 {
 if (node.right && (node.right.type === "Literal") &&
(parseInt(node.right.value) > 42))
 {
 let issue = new ruleCtx.Issue(`${node.left.name} assignment is greater
than 42`);
 ruleCtx.reporter.addIssue(issue, ruleCtx);
 }
 }
};

Tip:

When writing a JavaScript rule, it is helpful to be able to look at the syntax tree for the
particular case being audited. The AST Explorer tool can be very helpful by allowing
you to generate syntax trees for arbitrary pieces of JavaScript.

Walkthrough of a Sample Virtual DOM TSX Audit Rule
Rules that audit virtual DOM TSX files are passed a context from Oracle JAF as it analyzes the
abstract syntax tree (AST) of the audited file and invokes the node type listeners that you have
registered with your audit rules.

User interface markup can be declared directly in a TSX file, as in the following example where
a variable declaration references UI markup:

const elemTitle = (
 <div class="foo">
 <h1>Title</h1>
 <h2>sub-Title</h2>
 </div>
);

When Oracle JAF parses the TSX file that contains the previous declaration, it creates a
section of the AST for the initializer of the variable declaration as a collection of JSXElement
nodes (together with other non-JSX related nodes). This section can be tedious to process,
and for many TSX rules where tags and attributes or properties are being analyzed, a
boilerplate and simpler view of the node structure is more convenient. To assist, Oracle JAF
gathers related markup entries in the AST into objects of type TsxComponent and
TsxProperty and aggregates them into a structure of type TsxRenderComponent. Additional
registered listener types are available to deliver these TSX objects to rules. The AST nodes
are also available to rule listeners. The TSX objects supply a synopsis structure for

Chapter 8
Walkthrough of a Sample Virtual DOM TSX Audit Rule

8-16

https://astexplorer.net/

examination and processing of the renderable content, as the following skeleton view of the
elemTitle variable as a TsxRenderComponent demonstrates.

{
 "type" : "TsxRenderComponent,
 "components" : [
 {
 "type": "TsxComponent",
 "name": "div",
 "properties": [
 {
 "type": "TsxProperty",
 "name": "class",
 "valueRaw": "\"Foo\""
 }
],
 "children": [
 {
 "type": "TsxComponent",
 "name": "h1",
 "valueRaw": "<h1>Title</h1>"
 },
 {
 "type": "TsxComponent",
 "name": "h2",
 "valueRaw": "<h2>Title</h2>"
 }
]
 }
]
}

This structure contains boilerplate information that many TSX rules need for examination of the
markup, and avoids direct processing of numerous AST nodes which, even for the above case,
is more complex.

If, for example, you want a rule to check that none of the elements declared in a TSX file are
deprecated, the following skeleton code could be used which iterates over the
TsxRenderComponent structure.

class Rule {

 getName() {
 return RULENAME;
 }

 getDescription() {
 return DESCRIPTION;
 }

 getShortDescription() {
 return SHORT_DESCRIPTION;
 }

 /**

Chapter 8
Walkthrough of a Sample Virtual DOM TSX Audit Rule

8-17

 * Registration - declare listeners
 * @param {Object} regCtx the registration context
 */

 register(regCtx) {
 return { "TsxRenderComponent": this._onMarkup }
 }

 /**
 * Process markup for deprecated tags
 * @param {Object} ruleCtx the rule context
 * @param {Object} node the TsxRenderComponent node (see above)
 */
 _onMarkup(ruleCtx, node) {
 node.tags.forEach(tsxcomponent) => {
 // recursive check for tags and children
 this._checkDeprecatedTags(ruleCtx, tsxComponent);
 }
 }

 /**
 * Recursively check a tag and its children
 * @param {Object} ruleCtx the rule context
 * @param {Tsxcomponent} tsxComp a TsxComponent node
 */
 _checkDeprecatedTags(ruleCtx, tsxComp) {
 var compName = tsxComp.name;
 if (tsxComponent.isWCTag(compName) &&
ruleCtx.libs.metaLib.isTagDeprecated(compName)) {
 let issue = new ruleCtx.Issue(`Tag <${compName}> is deprecated . . .`);
 ruleCtx.utils.tsxUtils.setIssuePosition(issue, tsxComp);
 ruleCtx.reporter.addIssue(issue, ruleCtx);
 }

 if (tsxComp.children) {
 tsxComp.children.forEach((child) =>
{ this._checkDeprecatedTags(ruleCtx, child); })
 }
 }

}

module.exports = Rule;

Report Position Information in an Issue for a TSX Audit
Oracle JAF automatically adds position information to a new issue based on the information in
the node presented to the listener function, but in the case of the TsxRenderComponent object,
the structure can aggregate multiple component and property nodes.

When each of these tags is extracted and made the subject of a new issue, the position
information in that node should be used rather than letting Oracle JAF use the default position

Chapter 8
Walkthrough of a Sample Virtual DOM TSX Audit Rule

8-18

information for the TsxRenderComponent as a whole. The following example processes the
TsxRenderComponent aggregate.

register(regCtx)
{
 this._tsxUtils = regCtx.utils.tsxLib;
 return { "TsxRenderComponent": _onTsxRC };
}

/**
 * Listener for TsxRenderComponents
 * @param {Object} ruleCtx the rule context
 * @param {Object} tsxRC the TsxRenderComponent node
 */

_onTsxRC(ruleCtx, tsxRC)
{
 // Process the tags
 tsxRC.components.forEach((tsxComponent) => {
 this._checkSomething(ruleCtx, tsxComponent);
 });
}

// Recursively extract the tags
_checkSomething(ruleCtx, tsxComponent)
{
 if (this._isThereAnIssue((tsxComponent)
 {
 this._emitIssue(ruleCtx, tsxComponent);
 }

 // Check the component's children
 if (tsxComponent.children) {
 tsxcomponent.children.forEach((child) => {
 if (this._isThereAnIssue(child)) {
 this._emitIssue(ruleCtx, child);
 }
 });
 }
 }
}

// Report an issue
_emitIssue(ruleCtx, tsxComponent)
{
 var issue = new ruleCtx.Issue(`<${tsxComponent.name}> . . . `);
 this._tsxUtils.setIssuePosition(issue, tsxComponent);
 ruleCtx.reporter.addIssue(issue, ruleCtx);
}

Chapter 8
Walkthrough of a Sample Virtual DOM TSX Audit Rule

8-19

9
Implement Custom Hook Rules

Hook rules are effectively hooks into the Oracle JAF audit engine, and are called at specific
phases of an audit, as opposed to a response to parsed file data for standard, node rules.

About Hook Rule Invocation
Rules that you write in response to specific phases in the lifecycle of the Oracle JAF audit are
called hook rules. Unlike node rules, hook rules are not invoked in response to parsing of
application file data.

Rules that you register with a type of startup, closedown, startupRP, startaudit, endaudit,
closedownRP, or file correspond to specific phases in the lifecycle of the JAF audit. The
lifecycle of the JAF audit is described below as an aid to understanding the sequence of hook
rule invocation.

1. Startup Phase

Initialization, configuration analysis, and file set expansion are performed.

2. Rule Packs Loaded

Rules are loaded (instantiated) and evaluated by the audit engine:

→ first register() is called on all rules in a rule pack to execute rule listeners.

3. Pre-Audit Phase

→ startup hook rules are fired.

→ startupRP hook rules are fired for each rule pack.

4. Audit Phase

→ startaudit hook rules are fired for each file in the file set.

{

→ file hook rules are fired.

→ now non-hook (node) rules are fired.

}

5. Closedown Phase

→ endaudit hook rules are fired.

→ closedownRP hook rules are fired for each rule pack.

→ closedown hook rules are fired.

9-1

Implement Custom Rules on the File Context
Use a Oracle JAF audit engine file hook when you need to create an audit rule that is invoked
for each file before any other rules are fired for that file or after all rules have been fired for the
file.

A file-type hook rule has the ability to conditionally terminate the audit of the file that it is
invoked on. If the rule returns a boolean false, the file audit will be vetoed. Note that returning
true is the same as omitting the return statement and the audit will continue.

The context.filename property contains the full file path to the file for which the hook rule was
invoked. The file path for the file is always maintained with forward slashes regardless of the
platform.

The context.node property specifies the first node of the DOM (for HTML and CSS) or
JavaScript AST or JSON AST.

Hook Listener
Type

When Invoked

file Invoked after a file has been read and before any non-hook rules are fired.

endfile Invoked after all non-hook rules have been fired for the file.

startscript Invoked after an embedded JavaScript <script> has been read and before any
non-hook rules are fired.

endscript Invoked after all non-hook rules have been fired for the embedded JavaScript text.

Implement Custom Rules Using the Audit Lifecycle
Use any of the various Oracle JAF audit lifecycle hooks when you need to create an audit rule
that is invoked during a specific phase of the audit lifecycle.

Hook Rules for startup, closedown, startaudit, and endaudit Phases

The startup rules are called after completion of audit initialization and before any data files are
read, and the closedown rules just prior to audit completion and after all files have been
audited. The register context is passed to the rule's register() listener method(s). These
rules may be used to initialize user data or load user support packages (but see also the
startupRP hook).

If a rule registers startup, closedown, startaudit, or endaudit, the context.phase property
value will reflect the respective value.

The startaudit rules are called after all startupRP rules have been fired on all the enabled rule
packs, and just prior to the auditing of the file set. The context.phase property will reflect
startaudit.

The endaudit rules are called on completion of the file set audit, and prior to the firing of the
closedownRP rules. The context.phase property will reflect endaudit.

The startup and startaudit hook rules have the ability to conditionally terminate an audit. If the
rule returns a boolean false, the audit is vetoed. Note that returning true is the same as
omitting the return statement, and the audit will continue.

Hook Rules for startupRP and closedownRP Phases

Chapter 9
Implement Custom Rules on the File Context

9-2

These rules are called just before and just after the file auditing phase of the lifecycle. The
startupRP hooks are called after any startup hooks have been fired, and the closedownRP
hooks are called before the final closedown hooks are fired. These registered listeners are
typically defined once in a rule pack rule to permit startup activity, such as initialization of
common rule pack data, and, if required, closedown of the rule pack data.

function register(regCtx)
{
 return {
 startupRP : _fn,
 closedownRP : _fn
 };
}

function _fn(ruleCtx)
{
 // ruleCtx.phase contains "startupRP" or "closedownRP"
}

The rule pack hooks are invoked as follows.

Hook Listener Type When Invoked

startupRP After completion of audit initialization and after the startup hook is fired, and before any data files
are read. The rule is called once for each enabled rule pack (configuration file property rulePack).
This rule may be used to initialize any user data or to load custom user support packages/services
(referred to as a rule pack extension) needed by the rules, and may be associated with the rule
pack by passing back the created extension by calling context.rulePack.setExtension().

// Here is a skeleton rule pack extention:

 context.utils.setExtension({
 lib : get_some_lib(),
 package : require('some package'),
 table : [. . .]
 . . .
 });

Any standard rule in the rule pack may retrieve the extension declared for the rule pack by calling
context.rulePack.getExtension().

A startupRP hook rule has the ability to conditionally terminate an audit. If it returns a boolean
false, the audit is vetoed. Note that returning true is the same as omitting the return statement
and the audit will continue.

If execution of the rule is mandatory and the pack cannot tolerate this rule being disabled by the
user configuration file, the $required property should be set to true in the pack's rules.json file
for the rule.

closedownRP After all files have been audited and before the closedown hook is fired. This complementary rule
to startupRP is called once for each enabled rule pack, and may be optionally used to handle any
necessary close-down of custom support services generated via startedRP.
If execution of the rule is mandatory and the pack cannot tolerate this rule being disabled by the
user configuration file, the $required property should be set to true in the pack's rules.json file
for the rule.

Chapter 9
Implement Custom Rules Using the Audit Lifecycle

9-3

Walkthrough of a Sample Audit Hook Rule
Audit rules that register with a listener type of startup, closedown, startupRP, startaudit,
endaudit, closedownRP, or file, are called at specific phases in the Oracle JAF audit engine
lifecycle. These rules are distinct from node-type rules which are called in response to parsed
file data.

This walkthrough demonstrates a simple use of two audit rules that work together to classify
the usage of <oj-xxx> elements in the HTML files of an application. The first rule is a standard
HTML data node rule that makes use of a rulepack extension object to save the number of
references to the various <oj-xxx> elements across all audited files. The second rule uses the
audit engine startupRP hook to set up the counters in a rulepack extension object, and uses
the closedownRP hook to display the accumulated element counts on the console upon
completion of the audit.

First, we create the node rule ojtag-counter to maintain the count of <oj-xxx> element
usages by registering the ojtag event listener on the parsed HTML files. To maintain the count,
this rule relies on the tagStats rulepack extension object that you'll need to create just before
file auditing begins by using a hook rule.

... // for clarity, the getName(), getDescription(), and
getShortDescription() methods have been omitted

function register(regContext)
 {
 return { ojtag : function(ruleCtx, tagName)
 {
 let tagStats = ruleCtx.rulePack.getExtension().tagStats;
 if (tagStats[tagName] === undefined)
 {
 // first use - create an entry for the tag
 tagStats[tagName] = 0;
 }
 tagStats[tagName]++;
 }
 };
};

Then our hook rule ojtag-count-display sets up the count at the start of the audit and
displays the accumulated stats to the console at the end of the audit. This hook rule relies on
the startupRP hook to create the rulepack extension object and closedownRP to display the
accumulated count. These two hooks are triggered just before and just after the file auditing
phase of the audit engine lifecycle.

... // for clarity, the getName(), getDescription(), and
getShortDescription() methods have been omitted

function register(regCtx)
{
 return { startupRP : function(ruleCtx)
 {
 // Get or create an extension
 let RPExt = ruleCtx.rulePack.getExtension() || {};
 // Add a stats collection object to it

Chapter 9
Walkthrough of a Sample Audit Hook Rule

9-4

 RPExt.tagStats = {};
 // Update the extension
 ruleCtx.rulePack.setExtension(RPExt);
 },
 closedownRP : function(ruleCtx)
 {
 let ojTag, tagStats =
context.rulePack.getExtension().tagStats;

 console.log("\n");
 for (ojTag in tagStats)
 {
 console.log(`<${ojTag}> : ${tagStats[ojTag]}`);
 }
 console.log("\n");
 }
 };
};

Here is typical sample output returned by these rules:

<oj-option> : 1824
<oj-label> : 1413
<oj-input-text> : 545
<oj-button> : 447
 . . .
<oj-chart-item> : 1
<oj-chart-group> : 1
<oj-bind-dom> : 1

Chapter 9
Walkthrough of a Sample Audit Hook Rule

9-5

10
Access Oracle JET Metadata

Use the metaLib utility library when you need to access Oracle JET audit metadata.

The utility methods in metaLib (metadata access library) provided by Oracle JAF insulate the
rule writer from changes to the format of the metadata.

This audit rule example from the built-in JAF rule set illustrates the usage of metaLib by
checking for deprecated components.

function register()
{
 // 'ojtag' signifies that the element name starts with 'oj-'
 return { ojtag : function(ruleCtx, tagName)
 {
 let issue, suggestion;
 const metaLib = context.utils.metaLib;

 // true if the <oj-xx> name represents a JET built-in
component
 if (! ruleCtx.ojTag) { return ; }
 // method returns the suggested alternative if deprecated
 suggestion = metaLib.isTagDeprecated(tagName);
 if (suggestion !== null)
 {
 issue = new ruleCtx.Issue(`<${tagName}> is
DEPRECATED! : ${suggestion}`);
 ruleCtx.reporter.addIssue(issue, ruleCtx);
 }
 }
 };
};

10-1

11
Create the Audit File Set at Runtime

Use the JafLib API when your rule pack needs to audit a dynamically derived file set, for
example, by inspecting the current state of other data sets.

First, the configuration file should be setup to specify no files.

{
 "files" : [],
 "exclude" : [], // if needed

 "rulePacks" : {
 // your rulepack reference
 // this pack will contain the fileset generating rule
 }
}

Next you need to create the rule that will generate the file lists. The rule needs to listen for the
JAF lifecycle phase startaudit. This phase occurs immediately before the general auditing
phase begins.

This rule uses setFileset() in ruleCtx.utils.jafLib to set the file set. Note that full file
paths (not relative) must be used.

let verboseMode;

function register(regCtx)
{
 // optional feedback
 verboseMode = regCtx.sysOpts.verboseMode;

 return { "startaudit" : _fn };
};

function _fn(ruleCtx)
{
 // create an array of full filepaths
 let fileset = _computeFileSet(ruleCtx);
 let exclude = _computeExcludeSet(ruleCtx);

 if (fileset.length)
 {
 if (verboseMode) { console.log(`Rule 'my-fileset-generator': injecting $
{fileset.length} files into configuration 'files'`); }

 // param exclude may be omitted
 ruleCtx.utils.jafLib.setFileset(ruleCtx, fileset, exclude);

11-1

 }
};

Chapter 11

11-2

12
Reference: Custom Audit Rule Listener Types

Use this reference to learn about the listener types that you can register in custom audit rules.
The available listener types are specific to the file types of the Oracle JET application.

Listener Types Description

Listener Types for HTML and JSON
Rules

The Oracle JAF audit engine supports a long list of listener types specific to HTML
and JSON files.

Listener Types for CSS Rules The Oracle JAF audit engine supports listener types specific to CSS source files.

Listener Types for JavaScript/
TypeScript Rules

The Oracle JAF audit engine supports listener types specific to JavaScript source
files.

Listener Types for Markdown Rules The Oracle JAF audit engine supports listener types specific to Markdown source
files.

Listener Types for TSX Rules The Oracle JAF audit engine supports listener types specific to renderable JSX
content in TSX source files.

Listener Types for HTML and JSON Rules
The Oracle JAF audit engine supports a long list of listener types specific to HTML and JSON
files.

The following table describes the listener event types for the various data nodes that JAF may
encounter when parsing the contents of HTML and JSON files and generating an abstract
syntax tree (AST) for the parsed files. You implement audit rules for the HTML and JSON files
of your application by registering an event listener on the desired node. The table also list the
expected arguments that you supply in the registered listener and the context properties that
your listener can access on the event for a particular node.

12-1

Listener Type Listener Arguments Description, Including Available Context Properties

webcomp (Object context, string elementName) Called for any DOM element recognized as a web
component.

Your webcomp event listener can access the following
context properties.
• context.type—a string tag.

• context.tag—a string that is the element name
• context.ojTag—a boolean: true if element is an Oracle

JET Web Component.
• context.tagNode—an object that is the current node in

the Abstract Syntax Tree (AST).
• context.node—an object that is the current node in the

AST.
• context.position—an object whose members row and

col represent the position of the tag. Members
startIndex and endIndex represent the displacements
into the file.

• context.rawData—a string that is the data from the
resource (either a file or a URL). This is not used for zip
file data.

• context.data—a string that is the data being audited.
This is typically the same as rawData, but can be
different in the case of an HTML file in a zip. The HTML
data can be found in rawData, but if the HTML contains
embedded JavaScript or CSS, and that data is being
audited, then data will contain the JavaScript or CSS
data.

• context.suppData—an object that is Null, except in the
case of an audit involving an Oracle Component
Exchange zip file. If the zip contains a component.json
file, then suppData an object that contains
supplementary information about the component.json.
This property will be present for all other files processed
in the zip, and allows the files to be evaluated in the
context of the component.json. The object contains
the following properties:
– suppData.obj—an object that contains the parsed

JSON, or Null if the parse failed.
– suppData.msg—an error message if the parse

failed, else Null.
• context.elemStack—an array of parent element names

to the current element. The final entry (the one with the
highest index) is the current element name. For
example, ["html", "body", "div", oj-button"].

jetcomp (Object context, string elementName) Called for any JET web component.

Your jetcomp event listener can access the following context
properties.
• context.type—a string jetcomp.

• context.ojTag—a boolean: true if element is an Oracle
JET Web Component.

• context.ojNs—a boolean: true.

For all other context contents, refer to the previous
webcomp entry.

Chapter 12
Listener Types for HTML and JSON Rules

12-2

Listener Type Listener Arguments Description, Including Available Context Properties

extcomp (Object context, string elementName) Called for any external (not-JET) web component.

Your extcomp event listener can access the following context
properties.
• context.type—a string extcomp.

• context.ojTag—a boolean: false.

• context.ojNs—a boolean: true, if the element name is
defined in the OJ namespace.

For all other context contents, refer to the previous
webcomp entry.

elem (Object context, string elementName) Called for any DOM element.

Your elem event listener can access the following context
properties.
• context.type—a string elem.

• context.ojTag—a boolean: true if element is an Oracle
JET Web Component.

• context.ojNS—a boolean: true if element name is
defined in the OJ namespace.

globtag (Object context, string elementName) Called for any global/common DOM element (including
standard HTML5 element names).

Your globtag event listener can access the following context
properties.
• context.type—a string tag.

• context.ojTag—a boolean: false.

• context.ojNS—a boolean: false.

notglob (Object context, string elementName) Called for any element that is not a common HTML name nor
an SVG tag name.

Your notglob event listener can access the following context
properties.
• context.type—a string notglob.

• context.ojTag—a boolean: true if element is a JET
component.

• context.ojNS—a boolean: true if tag uses a registered
namespace, else false.

tag (Object context, string elementName) Called for any element name NOT starting with oj-.

Your tag event listener can access the following properties.
• context.type—a string tag.

• context.ojTag—a boolean: false.

• context.ojNS—a boolean: false.

bindingtag (Object context, string elementName) Called for a JET binding tag such as oj-bind-if or oj-
bind-for-each.

Your bindingtag event listener can access the following
properties.
• context.type—a string bindingtag.

• context.ojTag—a boolean: false.

• context.ojNS—a boolean: true if element name is
defined in the OJ namespace.

Chapter 12
Listener Types for HTML and JSON Rules

12-3

Listener Type Listener Arguments Description, Including Available Context Properties

ojtag (Object context, string elementName) Called for any element name starting with oj-.

Your ojtag event listener can access the following properties.
• context.type—a string ojtag.

• context.ojTag—a boolean: false.

• context.ojNS—a boolean: true if element name is
defined in the OJ namespace.

<component> (Object context, string elementName) Called for any non-global HTML element with the name
declared between angle brackets (e.g., <oj-messages>). A
regular expression may be used (e.g., <^oj-combobox> to
match all elements starting with "oj-combobox"), and
whitespace is permitted on either side of the component
name.

Your <component> event listener can access the following
properties.
• context.type—a string <component>.

• context.ojTag—a boolean: false.

• context.ojNS—a boolean: true if element name is
defined in the OJ namespace.

<component
attrname=>

(Object context, string attribName, string
attribValue, string rawAttribValue)

Called for the specified attribute if found on the component
element (e.g., <oj-messages display-
options.category=>).

Whitespace is permitted on either side of the component
name and before the ending chevron. The component
declaration may not be a regular expression.

Your <component attrname=> event listener can access the
following properties.
• context.type—a string <component|attrname>.

Note:

See the note in the
<attrname=> entry for
additional information regarding
the class and style
attributes.

Chapter 12
Listener Types for HTML and JSON Rules

12-4

Listener Type Listener Arguments Description, Including Available Context Properties

<attrname=> (Object context, string attribName, string
attribValue, string rawAttribValue)

Called for the specified attribute found on any component
element (e.g., <display-options.category=>).

This is a special case of the component/attribute combination
listed above, with the component omitted. Whitespace is
permitted on either side of the attribute declaration.

Your <attrname=> event listener can access the following
properties.
• context.type—a string <attrname=>.

Note:

This syntax should not be used
for style or class attributes.
These special cases are
handled by their own registered
types of style and class
respectively. See the
subsequent entries in this table.

script (Object context, string elementName) Called for <script> elements. Note that rules with
registered type tag are also called.

link (Object context, string elementName) Called for <link> elements. Note that rules with registered
type tag are also called.

attr (Object context, string attribName, string
attribValue, string rawAttribValue)

Called for each attribute of an element (excluding Oracle JET
event, type and class attributes).

The rawAttrValue attribute value contains the complete text
including the string delimiting quotes.

Your attr event listener can access the following property.
• context.type—a string attr.

attrexpr (Object context, string attribName, string
attribValue, string rawAttribValue)

Called for each attribute of an element if the attribute value
represents a [[. . .]] or {{. . .}} expression.

attrexpr-$props (Object context, string attribName, string
attribValue, string rawAttribValue)

Called for each attribute whose value represents a
[[. . .]] or {{. . .}} expression and contains at least
one reference to $properties.

class (Object context, string elemName, string
classValue)

Called for each class attribute of an element.

Your class event listener can access the following property.
• context.type—a string class.

style (Object context, string attribName,
string[] attribValue, string
rawAttribValue)

Called for each style attribute of an element.

The attrValue is an array of styles extracted from the style
attribute. rawAttrValue is the attribute string.

Your style event listener can access the following property.
• context.type—a string style.

type (Object context, string elemName, string
typeValue)

Called for each type attribute of an element.

Your type event listener can access the following property.
• context.type—a string type.

Chapter 12
Listener Types for HTML and JSON Rules

12-5

Listener Type Listener Arguments Description, Including Available Context Properties

event (Object context, string eventName,
Object eventValue)

Called for each Oracle JET event attribute (starting with on-
oj-).

The eventValue attribute is an object with the following
properties:

• val—a string that is the event attribute value.
• rawval—a string that is the full event attribute value,

including containing quotes (as specified).
Your event event listener can access the following property.
• context.type—a string event.

comment (Object context, string comment) Called for HTML comments of the form <!-- -->.

For example, for the comment <!-- This is a comment -->,
the comment argument will contain the string This is a
comment.

doctype (Object context, string comment, string
value)

Called for directives of the form <!DOCTYPE ...>.

For example, for the comment <!DOCTYPE html>, the
doctype argument will contain the full data, including the
string !DOCTYPE html and value argument will contain the
rest of the statement, the string html.

procstmt (Object context, string procinstr, string
value)

Called for processing instructions of type <?
x..........x?>.

For example, the procinstr argument might be the string ?
robots index="yes" follow="no"? and the
valueargument will contain the rest of the statement, in this
case, the string index="yes" follow="no".

directive (Object context, string directive, string
value)

Called for processing instructions of the form <!xxxx> that
are not DOCTYPE instructions.

For example, for the directive <!ABCD xxxx>, the directive
argument will contain the full data, including the string !ABCD
xxxx and the value argument will contain the rest of the
statement, the string xxxx.

json (Object context) Called for a file of type json.

Your json event listener can access the following properties.
• context.type—a string json.

• context.suppData—an object with the following
members.
– suppData.obj—the parsed JSON object, or Null if

the parse failed.
– suppData.ast—the Abstract Syntax Tree (AST) for

the JSON file, or Null if the parse failed.
– suppData.msg—an error message if the parse

failed, else Null.

Chapter 12
Listener Types for HTML and JSON Rules

12-6

Listener Type Listener Arguments Description, Including Available Context Properties

compjson (Object context) Called for a file of type json.

Your compjson event listener can access the following
properties.
• context.type—a string json.

• context.suppData—an object with the following
members.
– suppData.obj—the parsed JSON object, or Null if

the parse failed.
– suppData.ast—the Abstract Syntax Tree (AST) for

the JSON file, or Null if the parse failed.
– suppData.msg—an error message if the parse

failed, else Null.

file (Object context) Called after reading a file, and prior to any standard rules
(node rules, not hook rules) being fired on the file.

Your file event listener can access the following properties.
• context.phase—a string file.

• context.rawData—a string that is the file contents.
• context.data—a string that is the data being audited.

This is typically the same as rawData, but can be
different in the case of an HTML file in a zip. The HTML
data can be found in rawData, but if the HTML contains
embedded JavaScript or CSS, and that data is being
audited, then data will contain the JavaScript or CSS
data.

• context.suppData—a string that with supplementary file
data.

• context.zipContent—an array of file names in the
component zip, or an error string if there was an error
during expansion of the zip. For file type .zip only.

endfile (Object context) Called after all standard rules (node rules, not hook rules)
have been fired on the file.

Your endfile event listener can access the following
properties.
• context.phase—a string file.

• context.rawData—a string that is the file contents.
• context.data—a string that is the data being audited.

This is typically the same as rawData, but can be
different in the case of an HTML file in a zip. The HTML
data can be found in rawData, but if the HTML contains
embedded JavaScript or CSS, and that data is being
audited, then data will contain the JavaScript or CSS
data.

• context.suppData—a string that with supplementary file
data.

• context.zipContent—an array of file names in the
component zip, or an error string if there was an error
during expansion of the zip. For file type .zip only.

Listener Types for CSS Rules
The Oracle JAF audit engine supports listener types specific to CSS source files.

Chapter 12
Listener Types for CSS Rules

12-7

The following table describes the listener event types for the various data nodes that JAF may
encounter when parsing the contents of CSS files and generating an abstract syntax tree
(AST) for the parsed files. You implement audit rules for the CSS files of your application by
registering an event listener on the desired CSS node. The table also list the expected
arguments that you supply in the registered listener.

Listener Type Listener Arguments Description

css-sheet (Object context, node sheet) Called for a stylesheet. sheet is a node from the AST
representing all the Rule nodes in the sheet. The complete
AST can be found in context.ast.

css-rule (Object context, Object rule) Called for a CSS rule declaration. rule is a node from the
AST.

A rule node contains the following properties and sub-
properties: SelectorList, Selector, Block. The complete
AST can be found in context.ast.

css-atrule (Object context, Object rule, string
identifier)

Called for any CSS @rule statement. For example,
@keyframes.

rule is a node from the AST.

identifier is the rule identifier. For example, for
@keyframes, the identifier will be keyframes.

A rule node contains the following properties and sub-
properties: SelectorList, Selector, Block. The complete
AST can be found in context.ast.

css-@xxxx (Object context, Object rule, string
identifier)

Called for a CSS statement of the name xxxx. For example,
for @media, the type is css-@media.

rule is a node from the AST.

identifier is the rule identifier. For example, for @media, the
identifier will be media.

A rule node contains the following properties and sub-
properties: SelectorList, Selector, Block. The complete
AST can be found in context.ast.

css-selector (Object context, node selector) Called for a selector of some type. Refer to node.type for the
actual selector type.

css-sel-type (Object context, node selector) Called for a type selector.

css-sel-id (Object context, node selector) Called for an ID selector.

css-sel-class (Object context, node selector) Called for a class selector.

css-sel-pseudo (Object context, node selector) Called for a pseudo selector.

css-var (Object context, node var, Object rule) Called for a CSS variable declaration. var is the variable
declaration node in the AST and contains all information
about the variable. Two of the prominent members of var are:

• var.property is of type String and references the CSS
variable's name.

• var.value is of type Object and references the CSS
variable's value. The parsed value details can be found
in the elements of array var.value.children

Argument rule is the Rule object that contains the variable
declaration.

Listener Types for Markdown Rules
The Oracle JAF audit engine supports listener types specific to Markdown source files.

Chapter 12
Listener Types for Markdown Rules

12-8

The following table describes the listener event types for the data nodes that JAF may
encounter when parsing the contents of Markdown files and generating an abstract syntax tree
(AST) for the parsed files. You implement audit rules for the Markdown files of your application
by registering an event listener on the desired Markdown node. The table also lists the
expected arguments that you supply in the registered listener.

For descriptions of the format of returned objects and their properties, see Context Object
Properties Available to Markdown Rule Listeners.

Listener Type Listener Arguments Description

md-link (Object context, Object link) Invoked for direct or indirect link references. For example,

[Click Here](https://some/link/foo.html)
It is also invoked for URLs found in paragraph text without
markup.

The link object has the following properties:

• inline: a boolean, default true, which indicates a
complete link including a URL

• link: the URL string
• text: a string containing the link text:

– line: line number to reference key, relative to 1
– col: column number to reference key, relative to 1
– start: index number to start of reference key
– end: index number to end of reference key

If the link declaration uses a reference link, the link object will
have the property inline declared to be false, and the
refKey property will replace the link property.

md-ref (Object context, Object ref) Invoked for indirect link references. For example,

[some ref]: <the url>
The ref object has the following properties:

• refKey: a string with the reference key (e.g., some ref)

• link: a string containing the link with URL (e.g.,
www.github.com)

• pos: an object containing location information, with the
following properties:
– line: line number to reference key, relative to 1
– col: column number to reference key, relative to 1
– start: index number to start of reference key
– end: index number to end of reference key

Chapter 12
Listener Types for Markdown Rules

12-9

Listener Type Listener Arguments Description

md-para (Object context, Object para) Invoked for paragraph text, and headings using #.

The para object has the following properties:

• text: a string with paragraph or heading text
• level: the number of the heading level
• pos: an object containing two objects that hold the

paragraph/heading start and end location info,
respectively, in the following format:
– line: starting line number, relative to 1
– start: index number to start of line, relative to 0
– end: index number to end of line, relative to 0

– line: ending line number, relative to 1
– start: index number to start of line, relative to 0
– end: index number to end of line, relative to 0

Note: For standard paragraph text, level is 0. A value greater
than zero represents the number of markup heading #
characters (e.g., ## represents a heading level h2, where
level will be 2).

md-image (Object context, Object image) Invoked for all image references. For example,

![Click Here](https://somelink/foo.png)
The image object has the following properties:

• inline: a boolean, default true, which indicates a
complete link including a URL

• link: the image URL string
• alt: a string containing the alt text
• pos: an object containing location information, with the

following properties:
– line: line number to reference key, relative to 1
– col: column number to reference key, relative to 1
– start: index number to start of reference key
– end: index number to end of reference key

If the image declaration uses a reference link, the image
object will have the property inline declared to be false,
and the refKey property will replace the link property.

Chapter 12
Listener Types for Markdown Rules

12-10

Listener Type Listener Arguments Description

md-code (Object context, Object code) Invoked for all fenced code blocks (using backticks or tildes).
For example,

```
// Installation instructions
npm install -g @oracle/oraclejet-audit
```

The code object has the following properties:

• code: a string containing the code block, with /n newline
characters used as separators

• pos: an object containing two objects that hold the start
and end location info, respectively, in the following
format:
– line: starting line number, relative to 1
– start: index number to start of code block, relative to

0
– end: index number to end of line, relative to 0

– line: ending line number, relative to 1
– start: index number to start of line, relative to 0
– end: index number to end of code block, relative to

0

md-list (Object context, Object list) Invoked for ordered or unordered lists using the markup * or
n. notation.

The list object has the following properties:

• ordered: a boolean, with false used for unordered lists
and true for ordered lists

• items: an array of list item objects, each with an item
property referring to a string value

• pos: an array containing two objects that hold the list
start and end location info, respectively, in the following
format:
– line: starting line number, relative to 1
– start: index number to start of line relative to 0
– end: index number to end of line, relative to 0

– line: ending line number, relative to 1
– start: index number to start of line, relative to 0
– end: index number to end of line, relative to 0

If a list item represents a sub-list, the children property is
used within the list item. The children property is an array
containing sub-list objects; each object is formatted the same
as the list object, with ordered, items, and pos properties.

Listener Types for JavaScript/TypeScript Rules
The Oracle JAF audit engine supports listener types specific to JavaScript/TypeScript source
files.

The following table describes the listener event types for the various data nodes that JAF may
encounter when parsing the contents of JavaScript/TypeScript files and generating an abstract
syntax tree (AST) for the parsed files. You implement audit rules for the JavaScript/TypeScript

Chapter 12
Listener Types for JavaScript/TypeScript Rules

12-11

files of your application by registering an event listener on the desired JavaScript/TypeScript
node.

Listener Type Listener Type Listener Type

AssignmentExpression

AssignmentPattern

ArrayExpression

ArrayPattern

ArrowFunctionExpression

AwaitExpression

BlockStatement

BinaryExpression

BreakStatement

CallExpression

CatchClause

ClassBody

ClassDeclaration

ClassExpression

ConditionalExpression

ContinueStatement

DoWhileStatement

DebuggerStatement

EmptyStatement

ExperimentalRestProperty

ExperimentalSpreadProperty

ExpressionStatement

ForStatement

ForInStatement

ForOfStatement

FunctionDeclaration

FunctionExpression

Identifier

IfStatement

Literal

LabeledStatement

LogicalExpression

MemberExpression

MetaProperty

MethodDefinition

NewExpression

ObjectExpression

ObjectPattern

Program

Property

RestElement

ReturnStatement

SequenceExpression

SpreadElement

Super

SwitchCase

SwitchStatement

TaggedTemplateExpression

TemplateElement

TemplateLiteral

ThisExpression

ThrowStatement

TryStatement

UnaryExpression

UpdateExpression

VariableDeclaration

VariableDeclarator

WhileStatement

WithStatement

YieldExpression

JSXIdentifier

JSXNamespacedName

JSXMemberExpression

JSXEmptyExpression

JSXExpressionContainer

JSXElement

JSXClosingElement

JSXOpeningElement

JSXAttribute

JSXSpreadAttribute

JSXText

ExportDefaultDeclaration

ExportNamedDeclaration

ExportAllDeclaration

ExportSpecifier

ImportDeclaration

ImportSpecifier

ImportDefaultSpecifier

ImportNamespaceSpecifier

As an alternative to the AST node types defined above, an object of abbreviated string
constants can be found in the rule context. For example:

var NT = ruleCtx.utils.AstUtils.getNodeTypes() ;

if (node.type === NT.CALL_EXPR || node.type === NT.MEMBER_EXPR) {
 . . .
}

In the register context, the node types object can be found in regCtx.jsNodeTypes() or
regCtx.tsNodeTypes(), depending on whether the rule handles JavaScript or TypeScript. The
following example caches the node types for JavaScript.

var NT ;

register(regXtx) {
 NT = regCtx.jsNodeTypes ; // cache the node types

Chapter 12
Listener Types for JavaScript/TypeScript Rules

12-12

 . . .
}

Here is a list of available constants:

Constant Node Type

ARRAY_EXPR "ArrayExpression"

ARROW_FUNC_EXPR "ArrowFunctionExpression"

ASSIGN_PATTERN "AssignmentPattern"

ASSIGN_EXPR "AssignmentExpression"

ASSIGNMENT_EXPR "AssignmentExpression"

AWAIT_EXPR "AwaitExpression"

BINARY_EXPR "BinaryExpression"

BLOCK_STMT "BlockStatement"

BREAK_STMT "BreakStatement"

CALL_EXPR "CallExpression"

CATCH_CLAUSE "CatchClause"

CLASS_BODY "ClassBody"

CLASS_DECLARATION "ClassDeclaration"

CONDITIONAL_EXPR "ConditionalExpression"

CONTINUE_STMT "ContinueStatement

CLASS_EXPR "ClassExpression"

DO_WHILE_STMT "DoWhileStatement"

DEBUG_STMT "DebuggerStatement"

EMPTY_STMT "EmptyStatement"

EX_REST_PROP "ExperimentalRestProperty"

EXPR_STMT "ExpressionStatement"

EX_SPREAD_STMT "ExperimentalSpreadProperty"

FOR_STMT "ForStatement"

FOR_IN_STMT "ForInStatement"

FOR_OF_STMT "ForOfStatement"

FUNC_DECLARATION "FunctionDeclaration"

FUNC_EXPR "FunctionExpression"

IDENTIFIER "Identifier"

IF_STMT "IfStatement"

LOGIC_EXPR "LogicalExpression"

LABELED_STMT "LabeledStatement"

LITERAL "Literal"

MEMBER_EXPR "MemberExpression"

META_PROP "MetaProperty"

METH_DEF "MethodDefinition"

NEW_EXPR "NewExpression"

OBJ_EXPR "ObjectExpression"

OBJ_PATTERN "ObjectPattern"

PROGRAM "Program"

PROPERTY "Property"

Chapter 12
Listener Types for JavaScript/TypeScript Rules

12-13

Constant Node Type

PROPERTY_DEF "PropertyDefintion"

Note:

The parent node of
an
ArrowFunctionExpr
ession used to define
a class method may
be changed when
using the newer AST
parser library from
ClassProperty to this
PropertyDefintion
node type

REST_ELEM "RestElement"

RETURN_STMT "ReturnStatement"

SEQUENCE_EXPR "SequenceExpression"

SPREAD_ELEM "SpreadElement"

SUPER "Super"

SWITCH_CASE "SwitchCase"

SWITCH_STMT "SwitchStatement"

TAGGED_TEMPLATE_EXPR "TaggedTemplateExpression"

TEMPLATE_ELEM "TemplateElement"

TEMPLATE_LIT "TemplateLiteral"

THIS_EXPR "ThisExpression"

THROW_EXPR "ThrowExpression"

TRY_STMT "TryStatement"

UNARY_EXPR "UnaryExpression"

UPDATE_EXPR "UpdateExpression"

VAR_DECLARATION "VariableDeclaration"

VAR_DECLARATOR "VariableDeclarator"

WHILE_STMT "WhileStatement"

WITH_STMT "WithStatementt"

YIELD_EXPR "YieldExpression"

JSX_ID "JSXIdentifier"

JSX_NS_NAME "JSXNamespacedName"

JSX_EMPTY_EXPR "JSXEmptyExpression"

JSX_EXPR_CONTAINER "JSXExpressionContainer"

JSX_ELEM "JSXElement"

JSX_CLOSING_ELEM "JSXClosingElement"

JSX_OPENING_ELEM "JSXOpeningElement"

JSX_ATTRIB "JSXAttribute"

SX_SPREAD_ATTRIB "JSXSpreadAttribute"

JSX_TEXT "JSXText"

Chapter 12
Listener Types for JavaScript/TypeScript Rules

12-14

Constant Node Type

EXPORT_DEFAULT_DECL "ExportDefaultDeclaration"

EXPORT_NAMED_DECL "ExportNamedDeclaration"

EXPORT_ALL_DECL "ExportAllDeclaration"

EXPORT_SPECIFIER "ExportSpecifier"

IMPORT_DECL "ImportDeclaration"

IMPORT_EQUALS_DECL "TSImportEqualsDeclaration"

IMPORT_SPECIFIER "ImportSpecifier"

IMPORT_DEFAULT_SPECIFIER "ImportDefaultSpecifier"

IMPORT_NS_SPECIFIER "ImportNamespaceSpecifier"

EXTERN_MOD_REF "TSExternalModuleReference"

Listener Types for TSX Rules
The Oracle JAF audit engine supports listener types specific to TSX files.

The following table describes the listener event types for the various data nodes that JAF may
encounter when parsing the contents of TSX files and generating an abstract syntax tree (AST)
for the parsed files. You implement audit rules for the TSX files of your application by
registering an event listener on the desired node. The table also list the expected arguments
that you supply in the registered listener and the context properties that your listener can
access on the event for a particular node.

Listener Type Listener Signature Description, Including Available Context Properties

TsxRenderCom
ponent

(Object ruleContext, Object
tsxRenderComponent)

Called for an associated group of TSX renderable content
(that is, multiple component/HTML markup elements in a
single declaration, such as a render() call, or a variable
declaration, and so on.)

TsxComponent (Object ruleContext, Object
tsxComponent)

Called for any component/HTML element/Preact function
found in the TSX renderable content.

TsxWebCompo
nent

(Object ruleContext, Object
tsxComponent)

Called for any web component known to JAF found in the
TSX renderable content.

TsxJetCompon
ent

(Object ruleContext, Object
tsxComponent)

Called for any JET web component (legacy or Jet Core pack)

TsxElem (Object ruleContext, Object
tsxComponent)

Called for any standard HTML element found in the TSX
renderable content.

TsxEvent (Object ruleContext, Object tsxProperty) Called for any event property found in TSX renderable
content.

TsxProperty (Object ruleContext, Object tsxProperty) Called for any property found in the TSX renderable content.

Tsx<component
_name>

(Object ruleContext, Object
tsxComponent)

Called for the named component/HTML element element
found in the TSX renderable content.

Tsx<component
_name
propName=>

(Object ruleContext, Object tsxProperty) Called for the named component/HTML element and named
property found in the TSX renderable content.

Tsx<propName
=>

(Object ruleContext, Object tsxProperty) Called for the named property found in the TSX renderable
markup.

Chapter 12
Listener Types for TSX Rules

12-15

Listener Type Listener Signature Description, Including Available Context Properties

TsxFunction (Object ruleContext, Object
tsxFunction)

Called for each function declaration in the .TSX file before
any of the other TsxXxx listeners are called.

After parsing the file into an AST, JAF makes a pass through
the tree accumulating the general details of the function(s)
and particularly the return statement(s). TsxFunction
listeners are called first before JAF walks the tree and any
subsequent invocation of the other TsxXxx listeners. This
permits these other listeners to easily peek at the functions
referenced in the JSX (for example, foo=={MyFunc}.

Additionally, all file hook listener types (such as file and endfile) and any AST node types
are permitted.

Note:

For named properties and events, the TSX form shown above must be used. That is,
an event type of the form <oj-foo> cannot be used. It must be declared as Tsx<oj-
foo>.

Chapter 12
Listener Types for TSX Rules

12-16

13
Reference: Custom Audit Rule Context Object
Properties

Use this reference to learn about the properties and functionality available to custom audit
rules on passed in context objects. The context objects contain AST node data generated by
the Oracle JAF audit engine in response to the audited file set.

Context Objects Description

Context Object Members Passed to
the Register Function

A rule's register() function receives a Register context object when it is invoked
by the JAF audit engine during the audit startup.

Context Object Properties Available
to Registered Listeners

A rule's registered listeners receive a Rule context object when the listener is
triggered by the JAF audit engine for specific data in the target files of the audit.

Context Object Properties Available
to CSS Rule Listeners

A CSS audit rule's registered listeners receive a Rule context object with information
that is specific to CSS processing.

Context Object Properties Available
to Markdown Rule Listeners

A Markdown audit rule's registered listeners receive a Rule context object with
information that is specific to MArkdown processing.

Context Object Members Passed to the Register Function
A rule's register() function receives a Register context object when it is invoked by the JAF
audit engine during the audit startup.

A Register context object is passed during JAF audit startup to the audit rules specified by
your JAF configuration. The context object generated at JAF startup contains miscellaneous
supporting data and functionality that is available to the register() function of all rule types.

Note:

You must not cache the Register context object. You may cache contained values,
for example, like context.utils.msgLib.

Members Description

rulePack The rule pack manager instance. This provides methods to access rule pack data. For
details, see RulePack Class Methods.

ruleOpts A read-only copy of the rule options object from the rule pack's rules.json file, and
any override in the configuration property ruleMods.

runMode The run mode value will be cli to reflect the audit invocation from the command line.
Other options may be supported in a future release.

config The configuration object which is a read-only copy of the effective runtime configuration
properties.

ojetConfig The oraclejetconfig configuration object (if the Oracle JAF audit is run in the root of a
project maintained by the Oracle JET Tooling). This property is only available in the
startupRP and closedownRP phase of hook rules.

13-1

Members Description

utils Miscellaneous utility libraries. Refer to utils in Context Object Properties Available to
Registered Listeners.

sysOpts An object containing boolean properties verboseMode and debugMode reflecting the
runtime options.

jsNodeTypes An object containing JavaScript Abstract Syntax Tree (AST) enumerated node listener
type strings (if the rule handles JavaScript). See also, Listener Types for JavaScript/
TypeScript Rules.

Context Object Properties Available to Registered Listeners
A rule's registered listeners receive a Rule context object when the listener is triggered by the
JAF audit engine for specific data in the target files of the audit.

The JAF audit engine passes a Rule context object to all rules with a listener that your rule
registers to handle specific node types in the target file set. The generated context object
contains the following miscellaneous supporting data and functionality available to the
registered listener of any rule type.

Note:

You must not cache the Rule context object. You may cache contained values, for
example, like context.utils.msgLib.

Property Description

type Designates the type of data passed in the arguments to a rule, or signals an event.

For HTML, JSON, and CSS: refer to Listener Types for HTML and JSON Rules.

For JavaScript/TypeScript: refer to Listener Types for JavaScript/TypeScript Rules.

The registered type can also specify that the rule is a hook rule. Hook rules are effectively
hooks into the audit engine, and are called at specific phases of an audit, as opposed to a
response to parsed file data for a general node rule. For details, see About Hook Rule
Invocation. The hook types are startup, closedown, startupRP, startaudit, closedownRP
and file.

node A node object containing details from the current node in the DOM, JavaScript/TypeScript
(Abtract Syntax Tree - AST), JSON (AST), or selector trees.

tagNode The current tag element node object containing details about the containing tag element. In
the case of type tag, the node and tagNode properties are the same.

tag The HTML element name, for example div or oj-avatar.

ojTag true if the HTML element starts with oj- and is a defined Oracle JET element tag. Note
that a context.type of ojtag reflects only that the element name starts with oj-.

ojNS true if the element name is defined in the OJ namespace.

elemStack For HTML pages, an array of node objects providing the positional context of the current
element. The last entry (with the highest index) in the array is the current element.

sysOpts Miscellaneous system options including the boolean options verboseMode and
debugMode. Refer also to context property msgLib.

userDefs The configuration file userDefs property (if defined). This property is not examined by
Oracle JAF.

Chapter 13
Context Object Properties Available to Registered Listeners

13-2

Property Description

rulePack The rule pack manager instance. This provides methods to access rule pack data. For a
description of the available methods, see RulePack Class Methods.

Issue The Issue class. Use this to create a new Issue object for each issue that is to be reported
and query the Issue details. For a description of the available methods, see Rule Issue Class
Methods.

reporter The Reporter instance. Constructed Issue objects are passed to this instance by an audit
rule for inclusion in the audit output. Use this to add the Issue object to a Reporter instance
and query Reporter details. For a description of the available methods, see Rule Reporter
Class Methods.

ruleName The rule name.

filepath The full file path to the file currently being processed. Note that for consistency, filepath
always uses forward slashes, regardless of the platform. Audit rules are platform
independent in this respect.

filetype The file type (in lower case)

phase If the rule is a hook rule, this string represents the phase in which it was invoked, including
startup, closedown, startupRP, startaudit, closedownRP, or file.

utils Contains Oracle JAF utility libraries:

• utils - miscellaneous non-file related utilities. Refer to Utils: General Non-File System
Functions.

• fsUtils - miscellaneous file related utilities. Refer to FsUtils: File System Functions.
• DomUtils—a parsed DOM tree utility library. Provides methods to traverse and inspect

the parsed tree of nodes. Available only when context.filetype is "html". Refer to
DomUtils: Node Object Functions.

• semVerUtils—a utility library providing semantic versioning support. This is available
when the context.filetype is json. Refer to SemVerUtils: Semantic Version
Functions.

• AstUtils—miscellaneous JavaScript/TypeScript Abstract Syntax Tree (AST) methods.
Available only when context.filetype is js or ts/tsx. Refer to AstUtils: JavaScript
File Helper Functions.

• metaLib —an Oracle JAF audit metadata access library. Refer to MetaLib: JET
Metadata Access Functions.

• jafLib —available only in phase auditstart. Provides the ability to dynamically define
the file set to be audited. Refer to JafLib: JAF Core Access Methods.

• msgLib —miscellaneous message display routines. Refer to MsgLib: Message Display
Functions.

• CssUtils—CSS rule processing functions. Refer to CssUtils: CSS Utility Functions.
• sevLib—rule severity level utility methods. Refer to SevLib: Severity Support Helper

Functions.
A library may be omitted depending on the registration type. For example, for type html, the
AstUtils library (for JavaScript/TypeScript) will not be present. (See Utils: General Non-File
System Functions.)

userDefs The value defined (optionally) by the configuration userDefs property.

NodeTypes A set of enumerated type definitions. For example, NodeTypes.TAG or
NodeTypes.SCRIPT, and so on.

Context Object Properties Available to Markdown Rule Listeners
A Markdown rule's registered listeners receive a Rule context object with information that is
specific to Markdown processing.

For Markdown processing, a rule can listen for file events (when a .md file is first read) or for
specific Markdown events (when a particular type of markup is found). In either case, the JAF

Chapter 13
Context Object Properties Available to Markdown Rule Listeners

13-3

audit engine passes the Rule context object to rule listeners that your rule registers to handle
specific node types of the Markdown files. The context object generated for Markdown files
contains supporting data and functionality that are specific to Markdown processing.

To access summarized data, the context object’s supplementary data property suppData
provides the following methods available on its utils object to obtain images, paragraphs,
headings, code blocks, and so on. These are in addition to the base properties available on the
context object for all rule types, as described in Context Object Properties Available to
Registered Listeners.

Note:

You must not cache the Rule context object. You may cache contained values such
as, for example, context.utils.msgLib.

The supplementary data property suppdata contains the following subproperties:

• ast: the abstract syntax tree (AST)

• utils: a utility object (methods in the table below)

Method Arguments Description

getLinks() None Scans the markup for URL references, and returns an array of
link objects.

The link object has the following properties:

• inline: a boolean, default true, which indicates a complete link
including a URL

• link: the URL string
• text: a string containing the link text
• pos: an object containing location information, with the

following properties:
– line: line number to reference key, relative to 1
– col: column number to reference key, relative to 1
– start: index number to start of reference key
– end: index number to end of reference key

If the link declaration uses a reference link, the link object will have
the property inline declared to be false, and the refKey property
will replace the link property.

The refKey property can be used to look up the associated URL
via the reference links object. See getRefLinks() below.

Chapter 13
Context Object Properties Available to Markdown Rule Listeners

13-4

Method Arguments Description

getRefLinks() None Scans the markup for reference links. A non-inline link provides a
reference to a link defined elsewhere in the markup. This method
provides an object containing the referenced link objects by
reference key.

Consider the following markup text with an indirect reference to a
URL:

Link to the [resource file](some ref key)
This resolves to the following reference link:

[some ref key]: www./some/url
This returns an object containing the referenced link objects, each
named by their reference key (e.g., some ref key). Each
referenced link object has the following properties:

• link: the URL string
• title: the title string, if specified in the MD construct
• pos: an object containing location information, with the

following properties:
– line: line number to reference key, relative to 1
– col: column number to reference key, relative to 1
– start: index number to start of reference key
– end: index number to end of reference key

getImages() None Scans the markup for image declarations and returns an array of
image objects.

The image object has the following properties:

• inline: a boolean, default true, which indicates a complete
link including a URL

• link: the image URL string
• text: a string containing the alt text
• pos: an object containing location information, with the

following properties:
– line: line number to reference key, relative to 1
– col: column number to reference key, relative to 1
– start: index number to start of reference key
– end: index number to end of reference key

If the image declaration uses a reference link, the image object will
have the property inline declared to be false, and the refKey
property will replace the link property.

getCode() None Scans the markup for fenced code blocks (using backticks or tildes)
and returns an array of code objects.

The code object has the following properties:

• code: a string containing the code block, with /n newline
characters used as separators

• pos: an object containing two objects that hold the start and
end location info, respectively, in the following format:
– line: starting line number, relative to 1
– start: index number to start of code block, relative to 0
– end: index number to end of line, relative to 0

– line: ending line number, relative to 1
– start: index number to start of line, relative to 0
– end: index number to end of code block, relative to 0

Chapter 13
Context Object Properties Available to Markdown Rule Listeners

13-5

Method Arguments Description

getParas() None Scans the markup for paragraphs and headings. Returns an array
of para objects.

The para object has the following properties:

• text: a string with paragraph or heading text
• level: the number of the heading level
• pos: an object containing two objects that hold the paragraph/

heading start and end location info, respectively, in the
following format:
– line: starting line number, relative to 1
– start: index number to start of line, relative to 0
– end: index number to end of line, relative to 0

– line: ending line number, relative to 1
– start: index number to start of line, relative to 0
– end: index number to end of line, relative to 0

Note: For standard paragraph text, level is 0. A value greater than
zero represents the number of markup heading # characters (e.g.,
represents a heading level h2, where level will be 2).

getLists() Scans the markup for ordered and unordered lists and returns an
array of objects. Each object has the following properties.

The list object has the following properties:

• ordered: a boolean, with false used for unordered lists and
true for ordered lists

• items: an array of list item objects, each with an item property
referring to a string value

• pos: an array containing two objects that hold the list start and
end location info, respectively, in the following format:
– line: starting line number, relative to 1
– start: index number to start of line relative to 0
– end: index number to end of line, relative to 0

– line: ending line number, relative to 1
– start: index number to start of line, relative to 0
– end: index number to end of line, relative to 0

If a list entry represents a sub-list, the children property is used
within the list item. It contains an array containing each object sub-
list, each using the same formatting as the list object, with
ordered, items, and pos properties.

testParas() (regexp RegExp,
[boolean firstmatch])

Takes a regular expression as an argument and applies it to each
paragraph found in the markup. An optional second boolean
argument specifies whether all matching paragraphs should be
returned, or just the first matching paragraph (the default, if omitted.

Returns an array of para objects. See getParas() above for para
object properties.

In the following example, paras will contain the matching paragraph
objects:

var paras = utils.testParas(/Oracle/);

Chapter 13
Context Object Properties Available to Markdown Rule Listeners

13-6

Method Arguments Description

getLineMap() None Returns a Map object with line numbers (relative to 1) as the map
keys. The return value from get() on the map is an object with
properties start and end, which represent the start and end indices
(relative to 0) into the file for the line specified.

In this example, the map variable stores the Map object, and pos
stores the position info for line 3 (as an object with properties start
and end)

var map = getLineMap();
var pos = map.get(3);

getLine() (number line) Returns a line from the .md file, as a string. line is specified relative
to 1.

In this example, the map variable stores the Map object, and line
stores line 3 as a string.

var map = getLineMap();
var line = getLine(3);

getLineDisp() (number line, [number
col])

Returns the index number (relative to zero) to the start of the line
specified.

If optional col column number (relative to 1) is specified, the
returned index will point to that column.

Context Object Properties Available to CSS Rule Listeners
A CSS rule's registered listeners receive a Rule context object with information that is specific
to CSS processing.

The JAF audit engine passes a Rule context object to CSS rule listeners that your rule
registers to handle specific node types of the target CSS files. The context object generated for
CSS files contains the following supporting data and functionality, specific to CSS processing.
This is in addition to the base properties available on the context object for all rule types, as
describe in Context Object Properties Available to Registered Listeners.

Note:

You must not cache the Rule context object. You may cache contained values, for
example, like context.utils.msgLib.

Property Type Description

context.ast node The full AST for the stylesheet.

Chapter 13
Context Object Properties Available to CSS Rule Listeners

13-7

Property Type Description

context.offset Object Contains the origin of the stylesheet relative to the containing file. If
the stylesheet text is a standalone .css file, the values will be
{row : 1, col: 1, index: 0}. However, if the stylesheet is an
embedded HTML <style>, the row, col, and index values will
reflect the position of the first character of the stylesheet in the
containing file.

This property can be used in conjunction with the loc property in a
CSS node to reflect the true position of a particular property or
value. (The loc position information is always relative to the start of
the stylesheet.)

context.utils.CssUtils Object A utility library with miscellaneous functions available on the
register context when the rule is invoked, as well as the rule
context. Refer to CssUtils: CSS Utility Functions.

Chapter 13
Context Object Properties Available to CSS Rule Listeners

13-8

14
Reference: Custom Audit Rule Context Object
Methods

Use this reference to obtain details about functionality that you can access through an instance
of a rule pack manager, rule issue, and rule reporter that you create in custom audit rules.

Audit Rule Classes Description

RulePack Class Methods The rule pack manager instance you create provides methods to access rule pack
data.

Rule Issue Class Methods The rule issue instance you create provides methods to set properties of the reported
issue.

Rule Reporter Class Methods The rule reporter instance you create provides methods to handle reported issues.

RulePack Class Methods
The rule pack manager instance provides methods to access rule pack data.

The Oracle JAF rule pack manager provides the following methods that you can call on an
instance of a RulePack object that you obtain from the Rule context object.

Method Description

getPackInfo() Returns an object that contains a read-only copy of the rule pack
summary information.

Properties include path, prefix, title, version, enabled, status.

getRuleCustomOptions(string ruleName, string
packPrefix)

Returns an object that contains read-only copy of the custom
options for a rule. That is, those specified by the user, and not JAF
system rule options.

Both arguments are optional: if packPrefix is omitted, the current
rulepack is assumed. If ruleName is omitted the calling rule's
options are returned.

getRuleCustomOption(string property, string
ruleName, string packPrefix)

Returns the specified custom option property value for the rule, or
null if not found.

The ruleName and packPrefix arguments are optional. If
packPrefix is omitted, the current rulepack is assumed. If
ruleName is omitted the calling rule's option property is returned.

getRuleOptions(string ruleName, string prefix) Returns an object that contains a read-only copy of the options for
a rule.

Both arguments are optional: if prefix is omitted, the current rule
pack is assumed. If ruleName is omitted the calling rule's options
are returned.

getRuleOption(string property, string name, string
prefix)

Returns the specified rule option property for the rule.

Arguments name and prefix are optional: if prefix is omitted, the
current rule pack is assumed. If ruleName is omitted the calling
rule's option property is returned.

getPrefix() Returns a string that is the rule pack prefix.

14-1

Method Description

setRuleOptions(string ruleName, Object options) Sets the options for the rule in the caller's rule pack.

The rulename argument is optional - if omitted, the calling rule's
options are updated.

options is an object containing the property/values to apply.

Returns true if the options are successfully applied, else false.

isRuleEnabled(string ruleName, string prefix) Returns true if the specified rule is currently enabled.

The prefix argument is optional, and if omitted, the rule is assumed
to be in the caller's rule pack.

isRuleDisabled(string ruleName, string prefix) Returns true if the specified rule is currently disabled.

The prefix is optional, and if omitted, the rule is assumed to be in
the caller's rule pack.

disableRule(string ruleName) Disables the specified rule in the caller's rule pack.

Returns true if the rule was disabled (or was already disabled) -
false if the rulename is invalid, or the rule was never registered.

enableRule(string ruleName) Enables the specified rule in the caller's rule pack.

Returns true if the rule was enabled (or was already enabled) -
false if the rulename is invalid, or the rule was never registered.

Note: In the current release, only a previously loaded rule (at
startup) can be re-enabled. That is, enableRule() will not be
successful, if the rule was discarded during initialization for any
reason, and its register() method was thereby never called.

getRuleCount() Returns the number of rules defined in the calling rule's rule pack.

getEnabledRuleCount() Returns the number of rules currently enabled in the calling rule's
rule pack.

getRuleList() Returns a list of the rule names in the calling rule's rule pack.

getEnabledRuleList() Returns an array list of the names of the currently enabled rules in
the calling rule's rule pack.

getRule() Returns the instance of a rule in the caller's rule pack to allow its
exported methods to be called.

getExtension() Returns the rule pack specific data supplied by setExtension().

setExtension(* data) Sets rule pack specific data that can be retrieved via
getExtension(). setExtension() is typically used in a rule
pack's startupRP hook rules.

data can be any data type, and can be used to refer to any data,
libraries, and son on that is useful to the rule.

Chapter 14
RulePack Class Methods

14-2

Method Description

sendMsg(string ruleName, ...data) Sends a data message to the onMsg() method of a specific rule in
the same pack as the caller.

data represents any number of arguments - these arguments are
presented to onMsg() as an array :

onMsg(Object sender, *[] data);

where sender is an object of the following format:

{
 sender : <string>, // the sending ruleName
 regType : <string> // the register() type of
the calling rule
}

Returns the value returned by onMsg().

Note that a rule cannot send a data message to itself (to mitigate
race conditions).

broadcastMsg(string[] ruleNames, ...data) Send a data message to the onMsg() method of a list of rules in
the same pack as the caller.

If ruleNames is null, the data is broadcast to all currently enabled
rules with an exported onMsg() method.

Returns the number of rules whose onMsg() was invoked.

Refer to sendMsg() for the format of data.

getInfo() Returns miscellaneous information about the JAF instance as an
object that has the following properties as strings.
• version: the version formatted as "major:minor:patch"
• description: a description of the JAF instance
• packageVer: the JET code base that JAF was built on,

formatted as "major:minor:patch"
• platform: the platform the JAF instance was invoked on

Rule Issue Class Methods
You can create an Issue object and use the provided methods of the Oracle JAF Issue class
to set properties of the reported issue.

The Oracle JAF Issue class provides the following constructor and setter methods that you
can use to set the properties of the Issue object that you create within the registered event
listener function of your audit rule.

The typical usage of the Issue class is to call the constructor method to create an Issue
instance with details like the issue description and optional message ID:

var myIssue = new context.Issue(msg [, messageID]);

The severity for the rule is obtained from the rule definition, but this may be overridden within a
rule using Issue.setSeverity().

Chapter 14
Rule Issue Class Methods

14-3

Method Description

constructor(string msg [, string id]) msg—(optional) a string that is the issue description.

id—(optional) a string that is an optional message ID. This will
appear in the audit output as ppp-nnnn, where ppp is the rule pack
prefix and nnnn is the message ID.

setId(string id) Sets the id portion of a message id.

id—a string that is the trailing ID in a message number. For
example, if the id is 1234 and the rule's prefix is ABC, then the
message number will appear as ABC-1234.

setPosition(number line, number column, number
startIndex, number endIndex)

or

setPosition(Object pos)

Overrides the line/column numbers in the audited file that appear in
the reported message or JSON.

line—the line number in the audited data.

column—the column number in the audited data.

startIndex—(optional) the starting position in the audited data.

endIndex—(optional) the ending position in the audited data.

Note that line/column may be specified as null, in which case the
line and column will be computed by JAF from startIndex.

May also be specified as an object, for example:

issue.setPosition(pos);
where pos is an object with the following format:

line—the line number.

column—the column number.

startIndex or start—the start index.

endIndex or end—the end index.

The pos object may either be constructed by a rule or can be the
return value from DomUtils.getAttribPosition(),
DomUtils.getAttribValuePosition(), or
CssUtils.getPosition().

setSeverity(string severity) Sets the severity of the issue (overriding the rule severity defined in
the rules.json file, or the modified severity in configuration
property ruleMods. May be info, minor, major, critical, or
blocker.

setMsgKey(string id) Sets the message ID for the issue. This overrides the message key
obtained from the rule pack's msgid.json file if it exists.

setMsgEx(Object) Sets an extended message information object on the issue. Note
that this is only meaningful when the output is not prose. It is
typically used to supply information extracted from the audit
message string in an easy to access form, to avoid the use of the
output object from having to parse the audit message. It can also
be used to augment the issue with any additional details the rule
might want to offer. The Object supplied by this method will be
added to the output JSON or message object, as property msgEx.
JAF does not use or inspect the Object's contents.

setReportedFilePath(string filepath) Sets the specified file path as the reported file path for the issue.
This is designed for use where an issue is being reported by a
rulepack lifecycle listener (e.g., closedownRP) for a file that was
audited earlier. Since no file is actually audited when the issue is
created, the issue cannot automatically report a file path. This
method permits the rulepack to associate a specific file path to the
issue for reporting purposes.

Note: This is not required for normal audit cycle rules.

Chapter 14
Rule Issue Class Methods

14-4

Rule Reporter Class Methods
You can create an Reporter object and use the provided methods of the Oracle JAF Reporter
class to handle reported issues.

The Oracle JAF Reporter class provides the following methods that you can use to handle
reporting of the Issue object that you pass to the Reporter instance in the registered event
listener function of your audit rule.

The typical usage of a Reporter instance is to call the addIssue() method:

context.reporter.addIssue(myIssue, context);

Method Description

addIssue(Object issue, Object context [,
string severity])

Adds an Issue object to be reported.

issue—an Issue object created via new
context.Issue(...) .

context—the context object passed to the rule.

severity—(optional) allows a rule to override the rule
severity. May be infor, minor, major, critical, or
blocker.

clearIssues() Removes all issues added to the Reporter instance for
the current file.

getCount() Returns the current number of issues added to the
Reporter instance for the current file.

getFormat() Returns the current output format: prose or json.

Chapter 14
Rule Reporter Class Methods

14-5

15
Reference: Custom Audit Rule Utility Libraries

Use this reference to obtain details about the utility libraries provided by Oracle JAF. These
libraries provide miscellaneous helper functions that can be useful when you write custom
audit rules.

Utility Library Description

DomUtils: Node Object Functions DomUtils is a collection of Document Object Model (DOM) utility functions and helper
functions.

MetaLib: JET Metadata Access
Functions

MetaLib provides Oracle JAF audit metadata access functionality that can be used in
a rule.

Utils: General Non-File System
Functions

Utils is a collection of non-file system utility functions.

FsUtils: File System Functions FsUtils is a collection of file system utility functions.

SemVerUtils: Semantic Version
Functions

SemVerUtils is a collection of semantic version (SemVer) utility functions.

JafLib: JAF Core Access Methods JafLib is a library of exposed core Oracle JAF lifecycle functions.

MsgLib: Message Display Functions MsgLib is a namespace property providing access to Oracle JAF internal messaging
routines.

CssUtils: CSS Utility Functions CssUtils is a library of CSS rule processing functions.

AstUtils: JavaScript File Helper
Functions

AstUtils is a collection of Abstract Syntax Tree (AST) helper functions.

SevLib: Severity Support Helper
Functions

SevLib is a library of helper functions that support processing severities that have
been remapped via the Oracle JAF configuration property sevMap.

TsxUtils: TSX Utility Functions TsxUtils is a library of TSX rule processing functions.

MetaLib: JET Metadata Access Functions
MetaLib provides Oracle JAF audit metadata access functionality that can be used in a rule.

Access these Oracle JET audit metadata interface library functions through rule context object
context.utils.metaLib. The methods in this library insulate your rules from changes to the
format of Oracle JAF metadata. Use these methods when writing audit rules that require
access to metadata.

Oracle JET Audit Metadata Interface Library Metadata Methods
The Oracle JET audit metadata interface library provides the following metadata methods.

Method Returns Description

getTagMetadata()(string tag) Object | null tag is the HTML element name.

Returns the component.json metadata as an object
for the specified user-custom component.

15-1

Method Returns Description

getTagPropMetadata(string tag, string
propName)

Object | null tag is the HTML element name (specified with/without
the surrounding chevrons). propName is the property/
sub-property name.

Returns the user web component property metadata
as an object from the component.json metadata for
the specified component property. The property name
may specify dot-separated sub-properties. For
example:

metaLib.getTagAttrMetadata('component-
name', 'prop.subprop1.subprop2')

This is a convenience method to reduce the rule code
required to check for the existence of the property.

getTagSlotMetadata(string tag, string
slotName)

Object | null Returns the 'slot' object from the component metadata

getAllCustomMetadata() Object Returns an object containing all user custom
component metadata. The object keys are the
component names:

{
 component_name : {
 folder : string, // the containing
folder (in native platform format) of:
 // 1) the
component.json, or
 // 2) the VComponent
source from which the metadata was
 // compiled.
 json : object, // the
component.json as an object
 VCType: 'func' | 'class' // if a
VComponent (JAF 8.9.0 or later)
 },
 . . .
}

getTagStatus(string tag, string
statusType)

Array<Object> | null Returns an array of metadata status objects of the
type specified by statusType.

tag is the web component name

statusType is an optional metadata status type.
Possible values are deprecated, maintenance,
antiPattern or supersedes. This parameter is
optional - if omitted, all status objects at the
component level are returned.

null is returned in all other cases if no status objects
can be found, or tag or statusType are invalid.

Chapter 15
MetaLib: JET Metadata Access Functions

15-2

Method Returns Description

getPropStatus(string tag, string prop,
string statusType)

Array<Object> | null Returns an array of metadata status objects of the
type specified by statusType.

tag is the web component name

prop is a component property name

statusType is an optional metadata status type.
Possible values are deprecated, maintenance,
antiPattern or supersedes. This parameter is
optional - if omitted, all status objects at the
component level are returned.

null is returned in all other cases if no status objects
can be found, or tag or statusType are invalid.

isTagStatus(string tag, string
statusType)

boolean Returns true if the component has the status type
specified by statusType at the component level.

tag is the web component name

statusType is an optional metadata status type.
Possible values are deprecated, maintenance,
antiPattern or supersedes.

Oracle JET Audit Metadata Interface Library Tag Methods
The Oracle JET audit metadata interface library provides the following tag methods.

Method Returns Description

isWCTag(string tag) boolean tag is the HTML element name (specified with/without
the surrounding chevrons).

Returns true if an HTML tag element is a known JET
or user-defined custom web component.

isJetTag(string tag) boolean tag is the HTML element name (specified with/without
the surrounding chevrons).

Returns true if an HTML tag element is a known JET
element (such as <oj-avatar>).

isJetLegacyTag(string tag) boolean tag is the HTML element name (specified with/without
the surrounding chevrons).

Returns true if an HTML tag element is a known JET
legacy element (oj-*).

isJetCoreTag(string tag) boolean tag is the HTML element name (specified with/without
the surrounding chevrons).

Returns true if an HTML tag element is a known JET
Core Pack component(<oj-c-pack>).

isVComponentTag(string tag) boolean tag is the element name (specified with/without the
surrounding chevrons).

Returns true if the element name is a known-user
defined VComponent.

Chapter 15
MetaLib: JET Metadata Access Functions

15-3

Method Returns Description

isComponentTag(string tag) boolean tag is the HTML element name (specified with/without
the surrounding chevrons).

Returns true if an HTML element is a known user-
defined, custom Web Component (also called a
composite component). The component.json files
found via the component property of the configuration
file are examined. See also isWCTag() .

isCoreTag(string tag) boolean tag is the HTML element name (specified with/without
the surrounding chevrons).

Returns true if an HTML tag element is a known JET
Core Pack component(<oj-c-pack>).

Deprecated in JAF 11.7.0. Use isJetCoreTag()
instead.

isTagDeprecated(string tag) string | null tag is the HTML element name (specified with/without
the surrounding chevrons).

Tests a JET component for deprecated status, and
returns the suggested alternative from the JET JS Doc
if it is. Returns null if the element is not deprecated.

isTagAttrDeprecated(string tag, string
attrName)

Array.<Object> | null

Object | string | null

tag is the HTML element name. attrName is the
attribute name.

Tests the web component attribute for deprecated
status and returns information including a suggested
alternative and the version when deprecated. Multiple
entries might be returned, and each object's target
property should be checked for relevance. Each object
is of the component.json deprecated type status
object format.

Prior to JAF 3.1.0: Tests the web component attribute
for deprecated status, and returns the suggested
alternative. If there is no alternative, the string is
empty. Returns null if the attribute is not deprecated. If
an object is returned, it will contain one or both of the
properties since and description (both strings).
Returns null if the attribute is not deprecated.

isTagAttr(string tag, string attrName) boolean tag is the HTML element name (specified with/without
the surrounding chevrons). attrName is the attribute
name.

Returns true if the attribute is defined for the specified
custom component, else false.

isTagAttrTranslatable(string tag, string
attrName)

boolean tag is the HTML element name (specified with/without
the surrounding chevrons). attrName is the attribute
name.

Returns true if the web component element has the
translatable flag set in the property metadata for
the specified attribute.

isTagAttrValue(string tag, string
attrName, string value)

boolean tag is the HTML element name (specified with/without
the surrounding chevrons). attrName is the attribute
name. value is the attribute value.

Returns true if the attribute value is defined for the
specified custom component name, else false.

Chapter 15
MetaLib: JET Metadata Access Functions

15-4

Method Returns Description

hasTagAttrValues(string tag, string
attrName)

boolean tag is the HTML element name (specified with/without
the surrounding chevrons). attrName is the attribute
name.

Returns true if the custom element attribute has at
least one defined value, else false.

hasTagSlot(string tag) boolean tag is the HTML element name (specified with/without
the surrounding chevrons).

Returns true if the JET component supports the slot
attribute.

hasTagDefaultSlot(string tag) boolean tag is the HTML element name (specified with/without
the surrounding chevrons).

Returns true if the JET component has a default slot.

hasTagDynamicSlot(string tag) boolean tag is the HTML element name (specified with/without
the surrounding chevrons).

Returns true if the JET legacy (oj-*), JET Core Pack
(oj-c-*) or use-defined component supports dynamic
slot.

isTagSlotName(string tag, string
slotName)

boolean Returns true if the web component provides the
specified slot name. Since JAF 6.1.7, "" may be used
to represent the default slot for the slotName
argument.

getPreferredSlotContent() Array<string> Returns the preferred content (interfaces) for a
specified component tag and slot. slot may be defined
as "" for the default slot.

getPreferredSlotContent("oj-
chart","groupTemplate") -->
["ChartGroupElement"]

getTagAttrType(string tagName, string
attrName)

string | null tagName is the web component name (specified
without the surrounding chevrons). attrName is the
name of the attribute.

Returns the web component element property type, for
the specified attribute, from the component metadata
for the property.

isTagSlotValue(string tag, string
slotValue)

boolean Deprecated in JAF 3.1.0. Use isTagSlotName()
instead.

isTagEvent(string tag, string attrName) boolean tag is the HTML element name (specified with/without
the surrounding chevrons). attrName is the attribute
name.

Returns true if a custom component attribute is a
defined event. For example: on-oj-action for that
component.

isTagSupportedInTheme(string tag) boolean tag is the HTML element name (specified with/without
the surrounding chevrons).

Returns true if the specified web component name is
supported in the current theme.

Chapter 15
MetaLib: JET Metadata Access Functions

15-5

Method Returns Description

isAttrSupportedInTheme(string tag,
string attrName)

boolean tag is the HTML element name (specified with/without
the surrounding chevrons). attrName is the attribute
name.

Returns true if the specified attribute in the web
component is supported in the current theme.

isTagStyleDeprecated(string tag, string
styleName)

string | null tag is the HTML element name (specified with/without
the surrounding chevrons). styleName is a class
attribute style name.

Tests the JET component class attribute has
deprecated status, and returns the suggested
alternative. If there is no alternative, the string is
empty. Returns null if the style is not deprecated.

isTagStyle(string tag, string styleName) string | null tag is the HTML element name (specified with/without
the surrounding chevrons). styleName is a class
attribute style name.

Returns true if the specified CSS class style is
defined for the specified JET element name.

isStyle(string styleName) boolean styleName is a class attribute style name.

Returns true if the CSS style is a defined JET style,
else false.

isGenStyle(string styleName) boolean styleName is a class attribute style name.

Returns true if the CSS style is a generic JET (non-
component specific) style, else false.

isClassStyle(string styleName) boolean styleName is a class attribute style name.

Returns true if the CSS style is a known JET
component style, else false.

isJetStylePrefix(string styleName) boolean styleName is a class attribute style name.

Returns true if the CSS style begins with a known
JET style prefix, else false.

Note that false can also be returned if the loaded
metadata is for an older JET version and there is no
prefix data available. In such cases
hasJetStylePrefixes() can be used to determine if the
false value is meaningful.

.

hasJetStylePrefixes() boolean styleName is a class attribute style name.

Returns true if the loaded metadata contains JET
style prefix information.

getTagsFromStyle(string styleName) string[] | null styleName is a class attribute style name.

Returns the JET element names using the specified
style name. For example, for the style oj-form-
control-text-align-right, the returned value
would be [oj-input-number, oj-input-text].

getClassesFromStyle(string styleName) string[] | null styleName is a class attribute style name.

Returns the classes using the specified style name.
For example, for the style oj-button-sm, the returned
value would be [oj.ojButton, oj.ojMenuButton].

Chapter 15
MetaLib: JET Metadata Access Functions

15-6

Method Returns Description

getClassFromTag(string tagName) string | null tagName is the HTML element name (specified with/
without the surrounding chevrons).

Returns the class (e.g.,oj.ojTable) for a given JET
element name (such as oj-table). Returns null if
tagName is not a defined JET element name.

getTagFromClass(string className) string | null className is a JET class name.

Returns the JET element name (e.g., oj-table) for a
given class name (such as oj.ojTable). Returns null
if className is not a known JET class.

getClassFromModule(string module) string | null module is a specification such as ojs/
arraydataprovider.

Returns the class (e.g., oj.ArrayDataProvider) for
a given module path (such as ojs/
arraydataprovider).

getTagPropType(string tagName, string
propName)

string | null This method is deprecated as of JAF release 7.0.0.
You should now use getTagAttrType().

tagName is the web component name (specified
without the surrounding chevrons). propName is the
name of the property specified in the
component.json properties.

For web components that have been inspected by JAF
during startup because they are defined in the Oracle
JAF configuration property components.

Returns the property type (type sub-property) defined
for a property in the Oracle JAF component.json file.

getTagPropertyFromEvent(string
tagName, string eventAttrName)

string | null Returns a property name from a tag event attribute.
For example:

getTagPropertyFromEvent('oj-pop-up',
'on-oj-before-close') -->
'ojBeforeClose'
getTagPropertyFromEvent('oj-pop-up',
'onOjBeforeClose') -->
'ojBeforeClose'

isBindingTag(string tag) boolean tag is the HTML element name (specified with/without
the surrounding chevrons).

Returns true if the element tag is defined with
@ojbindingelement (such as oj-bind-if, or oj-
bind-for-each).

isClass() boolean Returns true if component/class is a JET class name
(e.g., oj.ArrayDataProvider).

Chapter 15
MetaLib: JET Metadata Access Functions

15-7

Method Returns Description

isClassRenamed(string className) Object | null className is a JET class name (e.g.,
oj.ArrayDataProvider).

Returns an object with the new name and the JET
version in which it was renamed. For example:

{
 to : "new class name",
 since : "x.y.z"
}

Returns null if the class is not renamed.

isClassDeleted(string className) string | null className is a JET class name (e.g.,
oj.ojAccordian).

Test if a component/class (e.g., oj.RouterState or
oj.ojTree) is deleted from a version, and if so
returns the (semantic) version in which it was deleted.
Returns null if not deleted.

isClassDeprecated(string className) string | null className is a JET class name (e.g.,
oj.ojAccordian).

Test if a component/class (e.g., oj.RouterState or
oj.ojTree) has deprecated status, and returns the
suggested alternative if it is. The suggested alternative
is a string supplied by the developer in the class's API
doc. Returns null if not deprecated.

isClassMethodDeleted(string
className, string methodName)

string | null className is a JET class name (e.g.,
oj.ojAccordian). methodName is a method of the
class.

Test if a component/class (e.g., oj.RouterState or
oj.ojTree) method is deleted from a version, and if
so returns the version in which it was deleted. Returns
null if the method is not deleted.

isClassMethodDeprecated(string
className, string methodName)

Array.<Object> | null

string | null

className is a JET class (e.g., oj.ojAccordion).
methodName is a method of the class.

Tests if a JET component/class (e.g., oj.ojDialog)
method has deprecated status and returns information
including a suggested alternative and the version when
deprecated. Multiple entries might be returned, and
each object's target property should be checked for
relevance. Each object is of the component.json
deprecated type status object format.

Prior to JAF 3.1.0: Tests if a component/class (e.g.,
oj.RouterState or oj.ojTree) method has
deprecated status, and returns the suggested
alternative if it is. The suggested alternative is a string
supplied by the developer in the class's API doc.
Returns null if the method is not deprecated.

Chapter 15
MetaLib: JET Metadata Access Functions

15-8

Method Returns Description

isClassMemberDeleted(string
className, string memName)

string | null className is a JET class name (e.g.,
oj.ojAccordian). memName is an attribute name.

Test if a component/class (e.g., oj.RouterState or
oj.ojTree) member is deleted from a version, and if
so returns the version in which it was deleted. Returns
null if the member is not deleted.

isClassMemberDeprecated(string
className, string memName)

Array.<Object> | null

string | null

className is a JET class (e.g., oj.ojAccordion).
memName is an attribute name.

Tests if a JET component/class (e.g., oj.ojDialog)
method has deprecated status and returns information
including a suggested alternative and the version when
deprecated. Multiple entries might be returned, and
each object's target property should be checked for
relevance. Each object is of the component.json
deprecated type status object format.

Prior to JAF 3.1.0: Tests if a component/class (e.g.,
oj.RouterState or oj.ojTree) member has
deprecated status, and returns the suggested
alternative if it is. The suggested alternative is a string
supplied by the developer in the class's API doc.
Returns null if the member is not deprecated.

isClassFinal(string className) boolean className is a JET class name (e.g., oj.Module).

Returns true if the class is final.

isClassMethodFinal(string className,
string methodName)

boolean | null className is a JET class name (e.g., oj.Module).
methodName is a method of the class.

Returns true if the method is static, else false.
Returns null if the className or methodName is
undefined.

getClassMethodScope(string
className, string methodName)

string | null className is a JET class name (e.g., oj.Module).
methodName is a method of the class.

Returns instance or static. Returns null if the
className or methodName is undefined.

getDeletedMethodList() Object Make a list of deleted methods as a rule helper.

Returns {Array.<Object>} with an object with
method names as the properties. Each property value
is an array of class names in which it was deleted,
followed by the version in which it was deleted.

getDeletedMemberList() Object Make a list of deleted members as a rule helper.
Returns {Array.<Object>} with an object with
member names as the properties. Each property value
is an array of class names in which it was deleted,
followed by the version in which it was deleted.

Chapter 15
MetaLib: JET Metadata Access Functions

15-9

Method Returns Description

isRuleIgnored(string tag, string
ruleName)

boolean tag is the HTML element name (specified with/without
the surrounding chevrons). ruleName is the name of
the rule to be tested for exclusion.

Tests if the rule is excluded for the component by its
appearance in the component's optional extension
metadata. For example:

{
 . . .
 "extension" : {
 "audit" : {
 "ignore" : [rulename1,
rulename2, ...]
 }
 }
 . . .
}

The method returns true if the rulename is declared
in the component's metadata, else false.

getRenamedClassList() Object Get a list of JET classes that have been renamed. The
following object is returned:

{
 "old_classname": { // e.g.
"oj.ArrayDataProvider"
 to : "new_classname", //
e.g. "ArrayDataProvider"
 since : "a.b.c" //
e.g. "8.2.0"
 },
 . . .
}

getRevisionInfo() Object Returns an object with the following properties:

• jetVersion - The JET version of the metadata.
(string)

• revision - The JET source revision info, currently
from GIT. (string)

• tag - The JET source GIT tag. (string)

Chapter 15
MetaLib: JET Metadata Access Functions

15-10

Method Returns Description

getMetaVers() Object Returns an object with the following properties:

• versions - The JET version supported, and the
build dates. (Object)

{
 "6.2.2" : {
 "date" : "ddddddd",
 "time" : "ttttttt"
 },
 . . .
}

• default - The default JET version, if configuration
property metaVer is omitted. (String)

getSubcomponentType() string Returns the component subcomponentType
metadata property as a string (e.g., packPrivate, data,
etc.).

isInterfaceImplemented() (string tagName, string
interfaceName)

Returns true if the specified interface name is
implemented by the tagName component

getInterfaces() Array<string> Returns an array containing the names of the
interface(s) implemented by the referenced component
tagName (e.g., oj-button).

getImplementers() Array<string> Returns an array of the names of components
implementing the specified interface.

hasJetWCInterfaces() boolean Tests whether the selected JET metadata (via the
config jetVer property) contains web component
interface information.

hasWCInterfaces() boolean Tests whether any web components known to JAF
(JET or non-JET) have implemented interfaces.

getWCInterfaces() Object If any web component known to JAF declares an
implemented interface, an object is returned of the
form:

{
 interface_name_1 :
[component_tag_1, . . .],
 interface_name_2 :
[component_tag_3, . . .],
 . . .
 }

walkDomStackForOJTag(Object context
[, boolean excludeBindIf])

string | null context is the context object passed to the rule.

Convenience method. Walks back up the DOM from
the current element to see if there is a containing JET
parent element. If found, the name of the JET element
is returned. Optional argument excludeBindIf can be
used to ignore <oj-bind-*> elements during the
walk.

getStyleOrigin() string Returns a code denoting if the style is a JET
component style, a JET generic style class, or a non-
JET user custom style.

Chapter 15
MetaLib: JET Metadata Access Functions

15-11

Method Returns Description

isTagPackPrivate() boolean Returns true if the web component is marked as
packPrivate in its metadata.

Utils: General Non-File System Functions
Utils is a collection of non-file system utility functions.

Access these non-file system utility functions through the rule context object property
context.utils.utils as an instance of a library object. They may be helpful when writing audit
rules.

Method Returns Description

hasAnyProps(Object object) boolean Returns true if the object has any non-inherited
properties

isProperty(Object object, string name) boolean Returns true if the object has the named property.
The property name can be a compound dot-separated
name, such as extension.catalog.readme.

getProperty(Object object, string name) * Returns the object's named property value. The
property name can be a compound dot-separated
name, such as extension.catalog.readme.

getType(* varName) string Returns the type of a variable. This function returns a
true type value. For example: the typeof operator
returns object for an array, whereas this function
returns array. The following values can be returned
(all lower-case) : object, array, string, number,
boolean, null, undefined.

isArrayContentsType(array[] array,
string type)

boolean Traverses an array, matching each element's type to
the supplied (lower-case) type string. The type string
can be one of the following : object, array, string,
number, boolean, null, or undefined

eatWhitespace(string string, number
startIndex)

number Traverses a string, optionally starting at the startIndex
index, and returns the index to the first non-whitespace
character. Returns 1 if no non-whitespace is found. If
startIndex is omitted or invalid, it defaults to zero.

getIndexToWhitespace(string string,
number startIndex)

number Traverses a string, optionally starting at the startIndex
index, and returns the index to the first whitespace
character. Returns -1 if no whitespace is found. If
startIndex is omitted or invalid, it defaults to zero.

decommentJson() string Replaces the // and /* */ sequences in a JSON
string with blanks to preserve the relative line/column
positions of the content tokens.

parseJson() * Parses a JSON string and returns the parsed object, or
an error object containing a syntax error message
together with supplemental position information that
may be used to augment the message, if required.

Chapter 15
Utils: General Non-File System Functions

15-12

FsUtils: File System Functions
FsUtils is a collection of file system utility functions.

Access these file system utility functions through the rule context object property
context.utils.fsUtils as an instance of a library object. They may be helpful when writing audit
rules.

Method Returns Description

getFileTypeSync(string filePath) string | Error Checks the file at filePath and returns:

• f - file
• d - directory
If an error occurs, an Error exception object is
returned. Note if the path is a symbolic link, the file
type of the link target is returned (for example, "f" or
"d"). Use isSymLink() to determine if the path
represents a symlink.

getFileExtSync(string filePath) string Returns the file extension for the supplied path. If the
path is a symbolic link, the file extension for the link's
target file is returned. If the file path cannot be
accessed, an empty string is returned.

isSymLinkSync(string filePath) boolean Returns true if the file path is a symbolic link, else
false. In case there is an error processing the file
path, false is returned.

pathExistsSync(string filePath) boolean Returns true if the file path exists.

fileExistsSync(string filePath [, boolean
dir])

boolean Returns true if file/directory exists, else false.

readFileSync(string filePath [, boolean
error | Function error(string message)]

string | null Reads a text file and returns the contents as a string,
or null if unsuccessful.

If the file read is unsuccessful, the action taken
depends on optional argument error:

• If boolean true, an exception is thrown.

• If boolean false, an error string is returned.

• If omitted, the function returns null.
• If a function is defined, it will be called with a string

argument representing the error message, and the
return value of readFileSync() will be null.

readFileBufSync(string filePath [,
boolean error | Function error(string
message)]

Buffer | null Reads a text file and returns the contents as a Buffer,
or null if unsuccessful.

If the file read is unsuccessful, the action taken
depends on optional argument error:

• If boolean true, an exception is thrown.

• If boolean false, an error string is returned.

• If omitted, the function returns null.
• If a function is defined, it will be called with a string

argument representing the error message, and the
return value of readFileBufSync() will be null.

Chapter 15
FsUtils: File System Functions

15-13

Method Returns Description

readJsonSync(string filePath [, boolean
comments [, boolean | Function error]])

Object | string | null Reads a JSON file and returns the object.

If optional argument comments is set to true,
comments are permitted in JSON.

Optional argument error can be used to indicate how
errors should be handled:

• If true, an exception is thrown.

• If false, an error string is returned.

• If omitted, the function returns null.
• If a function is defined, it will be called with a string

argument representing the error message, and the
return value of readJsonSync() will be null.

Error strings are prefixed with SYNTAX: or NOFILE:.

writeJsonSync(Object obj, string
filePath [, Object opts [, boolean |
Function error]])

boolean | string Writes an object to the specified file path as a JSON
file, and returns true.

Optional object opts has the following optional
properties:

• spaces can be a number to indent each line, or a
string to prefix each line.

• replacer a JSON stringifer() replacer.

Optional argument error can be used to indicate how
errors should be handled:

• If true, no return value (error thrown)

• If false, an error string is returned.

• If a function is defined, it will be called with a
message string argument, and
writeJsonSync() returns false.

If error is omitted, false is returned.

readDirSync(string filePath) Array | null Reads a directory and returns a hierarchical array of
objects of the following form:

[
 {
 name : "filename1", // for
file in a folder
 isFile : true
 },
 {
 name : "directory1", // for
each sub-folder
 isFile : false,
 files : [
 {
 name : "filename1",
 isFile : true
 },
 ...
]
 },
 ...
]

Chapter 15
FsUtils: File System Functions

15-14

Method Returns Description

walkDirSync(string dirPath, Function cb,
[boolean fwdSlash])

none Recursively walk a directory tree invoking a callback
function with the full path to the file or sub-directory.

dirPath is the initial directory path to walk.

cb is a callback function that receives the following
args:

 (string fpath, string ftype)
 fpath is the full file or sub-
directory path
 ftype = 'f' for a file, 'd' for
a sub-directory, 'l' for a symbolic
link.

Optional arg fwdSlash set to true forces the fpath
string in the callback to use the forward slash in place
of the Windows escaped "\\" if found.

Normally the callback function returns nothing -
however it can optionally return

 "exit" to terminate the walk,
 "direxit" to terminate further
walking of the current sub-directory

For example, to find all .JS files in a directory tree:

walkDirSync("some/path", (fpath, ftype)
=> {

 if (ftype === "f" &&
fpath.endsWith(".js")) {
 // do something
 }
}) ;

When reading the files in a directory, if a sub-directory
is found, that sub-directory is examined next, and so
on.

createFolderSync(string filePath) boolean Create a folder. The file path can contain multiple
folders that also need to be created. For example:

createFolder("./folder1/folder2/
folder3") ;

Note: folder3, folder2 and folder1 are created if they
don't exist.

deleteFolderSync(string filePath [,
boolean deleteTarget])

none Deletes the contents (files/directories/sub-directories)
of the directory specified by filePath. If optional
argument deleteTarget is specified, and is true, the
directory specified by filePath is also deleted.

Chapter 15
FsUtils: File System Functions

15-15

Method Returns Description

getUniqueFilenameSync(string
template)

string Returns a unique file name based on a template. All
instances of the letter X are replaced. For example:

getUniqueFilename('@@users-XXXXXX.tmp')

could return @@users-wKFMN5.

SemVerUtils: Semantic Version Functions
SemVerUtils is a collection of semantic version (SemVer) utility functions.

Access these semantic version utility functions through the rule context object property
context.utils.semVerUtils. They may be useful when writing audit rules. All method
arguments are strings.

Method Returns Description

isValid(string semver) boolean Returns true if the semver string is valid semantic
version syntax.

isValidRange(string semver) boolean Returns true if the semver string is a valid range
of semver comparators.

satisfiesRange(string
semver, string range)

boolean Returns true if semver satisfies the range.

minVersion(string range) string | null Returns a major.minor.patch string representing the
lowest version that can possibly match the given
range. Null is returned if range is invalid.

For example: minVersion('>=1.0.0') returns
'1.0.0'.

Requires JAF version 2.9.9 or later.

prerelease(string semver) Array | null Returns an array of prerelease tags extracted from
semver. If semver does not contain any
prerelease tags (or semver is invalid), null is
returned.

For example: prerelease('1.2.3-alpha.1')
returns ['alpha', 1].

Requires JAF version 2.9.9 or later.

eq(string semver1, string
semver2)

boolean Compares two semvers and returns true if they
are logically equivalent, even if they are not exactly
same string.

lt(string semver1, string
semver2)

boolean Compares two semvers and returns true if
semver1 is less than semver2.

lte(string semver1, string
semver2)

boolean Compares two semvers and returns true if
semver1 is less than or equal to semver2.

gt(string semver1, string
semver2)

boolean Compares two semvers and returns true if
semver1 is greater than semver2.

gte(string semver1, string
semver2)

boolean Compares two semvers and returns true if
semver1 is greater than or equal to semver2.

Chapter 15
SemVerUtils: Semantic Version Functions

15-16

Method Returns Description

major(string semver) number Returns the major version number from the
semver.

minor(string semver) number Returns the minor version number from the
semver.

patch(string semver) number Returns the patch version number from the
semver.

parse(string semver) Object | null Parses semver into an object. Null is returned if
semver is invalid.

For example, parse('1.2.3-alpha.1') returns:

{
 "options" : {
 "loose" : false,
 "includePrerelease" : false
 },
 "loose" : false,
 "raw" : "1.2.3-alpha.1",
 "major" : 1,
 "minor" : 2,
 "patch" : 3,
 "prerelease" : ["alpha", 1],
 "build" : [],
 "version" : "1.2.3-alpha.1"
}

Require JAF version 2.9.9 or later.

DomUtils: Node Object Functions
DomUtils is a collection of Document Object Model (DOM) utility functions and helper
functions.

Access these DOM utility function through rule context object property context.utils.DomUtils.
Most methods take a node object, which is found in context.node, and some methods require
an attribute name or element name string.

Method Returns Description

getName(Object node) string Returns the element name of the supplied node.

getType(Object node) string Returns the type of the node (tag, directive, or
comment).

getChildren(Object node) nodes[] Returns an array of child node objects for the supplied
node.

getParent(Object node) node Returns the parent node object of the supplied node.

getSiblings(Object node) nodes[] Returns an array of sibling node objects of the supplied
node.

getAttribs(Object node) Object Returns an object containing attribute name/value
properties.

getAttribValue(Object node, string[]
attrName)

string Returns the specified attributes value.

Chapter 15
DomUtils: Node Object Functions

15-17

Method Returns Description

hasAttrib(Object node, string attrName) boolean Returns true if the node has the named attribute, else
false.

hasChildren(Object node) boolean Returns true if the node has children, else false.

hasNext(Object node) boolean Returns true if there is a next node, else false.

getNext(Object node) node Returns the next node, else null.

getFirst() node Returns the first (i.e top) node.

getFirstElem() node Returns the first (i.e. top) tag node.

getLast() node Returns the last node.

getElemsByName(string elemName) nodes[] Returns an array of node objects with the specified
element name (such as div).

getElemById(string id) node Returns the node for the element with specified id
attribute value.

getBody() node Returns the <body> node (or null if not found).

getHead() node Returns the <head> node (or null if not found).

getLinks() node[] Returns an array of <link> tag nodes in the <head>
section (or an empty array if none found).

getScripts() node[] Returns an array of <script> tag nodes in the
<head> section (or an empty array if none found).

getElems() nodes[] Returns an array of node objects for all elements.
(Nodes such as text, comments, directives, etc. are
ignored.)

DomUtils also contains additional non-DOM tree helper functions that are useful when writing
rules.

Method Returns Description

extractAttribsFromDataBind(string
attrValue)

Object | null Given a data-bind with an attr property, returns an
object where each property is the name/value
extracted from the data-bind string.

extractComponentFromDataBind(string
attrValue)

string | null Given a data-bind attribute value, returns the JET
component name instantiated, or null if not found or
not a JET component.

getAttribIndex(string data, Object node,
string attrName)

number Returns the position (relative to zero) in the data of the
named attribute for the node.

getAttribPosition(string data, Object
node, string attrName)

Object Returns the position of the named attribute for the
node in the data. The object has the following
members:

• row : number
• col: number
• start: number // index (relative to zero) to the

attribute's value in the file data
• end: number // index to the last character of the

attribute's value in the file data
This method is useful when a rule listens to tag node
events but needs to report on the position of a
particular tag attribute's value. This information can be
applied to an Issue object via its setPosition()
method.

Chapter 15
DomUtils: Node Object Functions

15-18

Method Returns Description

getAttribValuePosition(string data,
Object node, string attrName)

Object Returns the position of the named attribute's value in
the data for the tag node. The object has the following
members:

• row: number
• col: number
• start: number // index (relative to zero) to the

attribute into the file data
• end: number // index to the last character of the

attribute in the file data
This method is useful when a rule listens to tag or
ojtag events, but needs to report on a particular
attribute in the tag. This information can be applied to
an Issue object via its setPosition() method.

getLineCol(string data, number index
number)

Object Returns the line and column for a given index into file
data. The object has the following members:
• row: number
• col: number

getComponentElems() nodes[] Returns an array of nodes for JET custom elements.

getDataBindAttrs(Object context) Object | null Checks the current node in context, and if it contains
a data-bind attribute with a attr property, returns an
object where each property is the name/value
extracted from the data-bind string.

getDataBindComponent(Object context) string | null Checks the current node in context, and if it contains
a data-bind attribute, extracts the JET component
name if defined in the attribute value,

getElemById(string id [, boolean
labelId])

Object | null Searches the DOM for a node with the specified id
attribute value and returns the DOM tree node if found.
If optional argument labelId is set to true, the search
also includes the label-id attribute.

hasBody(Object context) boolean Returns true if the HTML page has a <body>
element.

isChildOfElem(string elemName, Object
node)

boolean Returns true if the DOM tree node is a child of the
element named elemName.

isCommonAttr(string attrName) boolean Returns true if the specified attribute is a standard
defined xxx. (Note: if attrName is prefixed with ':', the
prefix is ignored).

isCommonElem(string elemName) boolean Returns true if the specified element is a standard
defined xxx.

isCommonEventAttr(string attrName) boolean Returns true if the specified attribute is a standard
xxx defined xxx. (Note: if attrName is prefixed with ':',
the prefix is ignored).

isHtml5ObsoleteElem(string elemName) boolean Returns true if the specified element is obsolete in
HTML5

isHtml5ObsoleteAttr(string elemName,
string attrName)

boolean Returns true if the attribute is obsolete in HTML5 for
the specified element.

Note: the return value is unconditional. There may be
additional exception conditions that need to be
evaluated (for example, the border attribute on
) - refer to xxx.

isJetPage(Object context) boolean Returns true if there is at least element with a name
starting with oj-

Chapter 15
DomUtils: Node Object Functions

15-19

Method Returns Description

isNamespaceTag(string tagName) boolean Given a Web Component element name starting with
oj- (e.g. oj-ext-foo), this returns true , if the prefix
(oj-ext in this example) is defined in the xxx.

isNamespacePrefix(string tagPrefix) boolean Given a Web Component name prefix starting with oj-
(for example oj-ext), this returns true , if the prefix is
defined in the xxx .

isNonFragmentJetPage(Object context) boolean Returns true if the HTML page has a <body> and
also has at least one JET component element.

isSvgElem(string elemName) boolean Returns true if the element name is an SVG element

isValidJson(string json) boolean | string Checks a string to see if it is JSON, and if so, validates
it. If the string is valid JSON, or is not JSON, true is
returned. If it is JSON and is not well formed a
message string is returned. (Note: the JSON can
contain // and /* . . . */ style comments - these are
ignored.)

isValidSvgPath(string svg) boolean If the string appears to be a valid SVG path, true is
returned. Note this does not validate the path for being
syntactically correct SVG.

isExpression(string) boolean Returns true if the string has valid expression
delimiters {{. . .}} and [[. . .]] and they are matched
correctly.

getExpression(string) string|null Returns the expression contained within the
expression delimiters {{. . .}} and [[. . .]]. If not an
expression or the expression is not validly delimited,
null is returned.

camelCase(string prop) boolean Returns a camel-cased string from a kebab-cased
property string.

kebabCase(string prop) boolean Returns a kebab-cased string from a camel-cased
property string.

kebabCaseEvent(string prop) boolean Returns a kebab-cased string from a camel-cased
event name.

ConfigLib: Configuration Library
ConfigLib is a context member that provides convenient access to some configuration
information.

Access these methods through the rule context object property context.utils.configLib.

Method Returns Description

getConfig() Object Returns a copy of the currently active
configuration. See also JafLib.getConfig().

getOrigConfig() Object The original configuration supplied to JAF
before processing by JAF into the currently
active configuration

getExtendsProfileName() string | undefined The profile name extended by the initial
configuration (from configuration property
extends).

isBuiltinJetRules() boolean true if JET built-in rules are enabled (from
configuration property builtinJetRules).

Chapter 15
ConfigLib: Configuration Library

15-20

Method Returns Description

isBuiltinCspRules() boolean true if JET built-in CSP rules are enabled
(from configuration property
builtinCspRules).

isBuiltinJetWcRules() boolean true if extended audits (JETWC) for
customer component authors are enabled
(from configuration property
builtinJetWcRules).

isBuiltinJetWcOracleRules() boolean true if extended Oracle audits (JETWCO) for
customer component authors are
enabled(from configuration property
builtinJetWcOracleRules).

isBuiltinOjcMigrationRules() boolean true if the built-in component migration rules
are enabled (from configuration property
builtinJOjcMigrationRules).

isBuiltinWebDriverTestRules() boolean true, if the built-in WebDriver test audit rules
(from configuration property
builtinWebDriverTestRules).

JafLib: JAF Core Access Methods
JafLib is a library of exposed core Oracle JAF lifecycle methods.

Access these methods through the rule context object property context.utils.jafLib.

Method Returns Description

setFileset(Objectcontext, string[]
fileset[, string[] exclude])

boolean Sets the file set to audit. This is a dynamic
replacement for the files and exclude
properties of the configuration file. fileset and
optional exclude specify an array of full file
paths. Globs may be used. context is the rule
context object.

Returns true if successful, else false.

This method may be useful when writing hook
rules. The method can be used only during
the startaudit phase of the audit lifecycle.

getFileset(Object context) Object Returns the files and exclude configuration
properties in an object with the same property
names.

context is the rule context object.

Do not modify the object property values!
To modify either files and/or exclude
properties use setFileset().

Note that this can be used in conjunction with
setFileset() to merge or remove entries.

This method may be useful when writing hook
rules. The method can be used only during
the startaudit phase of the audit lifecycle.

getJafReleaseCount() number Returns the estimated number of JET major
public releases since the JET version of the
JAF package used.

Chapter 15
JafLib: JAF Core Access Methods

15-21

Method Returns Description

getMajorReleaseCount(string
semver | number major)

number Returns the estimated number of JET major
public releases since the JET major value in
the supplied semver argument.

The semver string can be a full or partial
semver string (only the major value is used/
required), or the major value can be supplied
as a number. If the major value is invalid or
omitted, its default value is the JET major
value of the version of JAF used.

getConfig() Object Returns an object with getter methods that
return configuration property values. Refer to
JafLib: Configuration Object Property Getter
Methods.

getTsConfig() Object Returns the tsconfig.json as an object.

getRunMode() string Returns a string representing the JAF run
mode. Values are cli, api, or amd. Currently,
running in CLI mode only is possible.

isCLI() boolean Returns true if running in CLI mode (the only
mode currently available).

isAPI() boolean Currently returns false. Note that API mode
is reserved for future support.

isAMD() boolean Currently returns false. Note that AMD
mode is reserved for future support.

getJafVer() string Returns the JAF version semver, for example:
3.12.4.

getJetVer() string Returns the JET metadata version semver, for
example: 9.2.3.

JafLib: Configuration Object Property Getter Methods
JafLib exposes the getConfig() method to access JAF configuration property values.

The configuration object returned by JafLib.getConfig() contains methods returning
configuration property values. Note that due to configuration analysis during startup, property
values returned do not necessarily reflect the same values. For example, if the configuration
property theme is not defined, Config.getTheme() will return the default value alta and not
undefined.

Method Configuration Property Returned

getComponents() components

getComponentsBase() componentsBase

getComponentsBaseUrl() componentsBaseUrl

getComponentOptions() componentOptions

getDisable() ruleMods.disable

getEcmaVer() cmaVer

getEnable() ruleMods.enable

getExclude() exclude

getFiles() files

getGroups() groups

Chapter 15
JafLib: Configuration Object Property Getter Methods

15-22

Method Configuration Property Returned

getJetVer jetVer

getMessages() messages

getOptions() options

getOutPath() outPath

getRuleDescriptions() ruleDescriptions

getRuleMods() ruleMods

getRuleNames() ruleNames

getRulePacks() rulePacks

getTheme() theme

getTypescript() typescript

getTsConfig() typescript.tsconfig

getTsConfigObj() Returns the tsconfig.json found on the path
defined by the typescript.tsconfig sub-property,
as an object.

isBuiltinJetRules() builtinJetRules

isBuiltinJetWcRules() builtinJetWcRules

isBuiltinSpocRules() bultinSpocRules

MsgLib: Message Display Functions
MsgLib is a namespace property providing access to Oracle JAF internal messaging routines.

Access these internal messaging routines through the rule context object property
context.utils.msgLib as an instance of a library object. They may be helpful when you need
to provide the ability for an audit rule to write conditional and unconditional messages to the
output. Refer also to the context property sysOpts.

Method Description

msg() Writes a general message string to the console. For example: msgLib.msg("this
is a message").

info() Writes the message string to the console only if verbose mode is on. For example:
msgLib.msg("this is only displayed in verbose mode"). The message
is preceded by [info]:.

debug() Writes the message string to the console only if debug mode is on. For
example:msgLib.debug("this is only displayed in debug mode"). The
message is preceded by [debug]:.

error() Writes the message to the console. For example: msgLib.error("this is an
error message"). The message is preceded by [error]:.

assert() Writes a message string to the console. For example: msgLib.assert("this is
an assertion message"). The message is preceded by [ASSERT]:.

CssUtils: CSS Utility Functions
CssUtils is a library of CSS rule processing functions.

Access these functions through the context property context.utils.CssUtils on the register
context object when the rule is invoked or on the rule context object passed to the registered
listener. These functions may be useful when writing CSS rules.

Chapter 15
MsgLib: Message Display Functions

15-23

Method Returns Description

isColorName(string name) boolean Returns true if the string is a CSS defined
color (for example, "coral"). Accepts all color
names to CSS Color Module Level 4.

isCommonElem(string tagName) boolean Returns true if the tag name is a common
HTML element (for example, div, span, ul and
so on)

isMarkerstyle(string style) boolean Returns true if the style string is an Oracle
JET marker style.

getPosition(Object context,
Object loc)

Object Converts a loc position node in the CSS
Abstract Syntax Tree (AST) to a position
object suitable to pass to
Issue.setPosition(). The resulting
position object is adjusted for the origin of the
CSS text.

AstUtils: JavaScript File Helper Functions
AstUtils is a collection of Abstract Syntax Tree (AST) helper functions.

Access these functions through the rule context object property context.utils.AstUtils. They
may be useful when writing audit rules for JavaScript files. For example:

var node = ruleContext.utils.AstUtils.getBody(); // get the array of program
body nodes

Name Returns Description

getBlock(Object node) node Returns the block node in which the specified node
resides. If node is not specified, the outer program
block is returned.

getBody(Object node) Array[] Returns the body array of nodes containing the
specified node. If node is not specified, the body of the
program is returned.

getProgram() node Returns the Program node.

isFuncArg(Object node, string var) true if the variable is
an argument to the
function, else false.

Tests if a variable found in an expression in any node
in the body of a function is declared as an argument to
that function.

isCommonDocApi(string methodName) true if the method is a
common Document
method.

Tests if a method is a common Document method (for
example, getElementById()).

parseDefine(Object node) An an object with
members of the form:

<function arg> :
<module path>

Parses a KO define statement.

getNodeTypes() An an object with
members of the form:

<function arg> :
<module path>

Returns an object mapping abbreviated node types for
JavaScript. For details, see the list of node type
constants in Listener Types for JavaScript/TypeScript
Rules.

Chapter 15
AstUtils: JavaScript File Helper Functions

15-24

SevLib: Severity Support Helper Functions
SevLib is a collection of helper functions that provides support to process severity levels that
have been remapped via the Oracle JAF configuration property sevMap.

Access these functions through the rule context object property context.utils.SevLib. They
may be useful when writing audit.

Name Returns Description

map(string sev) string Maps a severity. If severity is not mapped, the
unmapped severity is returned. For example,
map("major") will return the mapped value, or major
if not remapped.

unmap(string sev) Array.<string> Unmaps a severity. If the severity does not represent a
mapped severity value, the supplied severity is
returned. If there more than one severity has been
unmapped, it returns all unmapped severity strings in
an arrary. For example, given the following:

"sevMap" :{
 "sevSet" : {
 "blocker" : "mustfix",
 "critical" : "mustfix",
 "major" : "mustfix",
 "minor" : "warning",
 "info" : "warning"
 }
}

Then context.utils.sevLib.unmap('mustfix')
returns ["blocker","critical","major"].

isMapped(string sev) boolean Test if a severity is a remapped severity.

getList() Array.<string> Returns an array of JAF default severities. For
example, blocker, critical, and so on in ascending
order of priority.

getMap() Object Returns an object whose properties are the JAF
default properties, and the corresponding values are
the user mapped severities. If severities have not been
remapped, null is returned.

getInvertedMap() Object Returns an inverted form of the object returned by
getMap(), whose properties are the remapped
properties, and the corresponding values are the JAF
default properties. If severities have not been
remapped, null is returned.

isSev(string sev) boolean Returns true if the supplied severity is a valid value.
May be a core severity or a remapped value.

getMsgSev(string msgId) string | null Returns the severity for the msgId (for example,
JET-2000), or null if the msgId is not defined.

matchSeverityLevel(string sev) boolean Tests if the supplied severity is matched by the JAF
configuration property severity value/expression.

isBlocker(string sev) boolean Returns true if the severity (mapped or unmapped)
represents blocker.

Chapter 15
SevLib: Severity Support Helper Functions

15-25

Name Returns Description

isCritical(string sev) boolean Returns true if the severity (mapped or unmapped)
represents critical.

isMajor(string sev) boolean Returns true if the severity (mapped or unmapped)
represents major.

isMinor(string sev) boolean Returns true if the severity (mapped or unmapped)
represents minor.

isInfo(string sev) boolean Returns true if the severity (mapped or unmapped)
represents info.

TsxUtils: TSX Utility Functions
TsxUtils is a utility library available through the rule and registration contexts as
context.utils.tsxUtils.

Chapter 15
TsxUtils: TSX Utility Functions

15-26

Method Returns Description

extractTsxProperties(Object ruleCtx,
Object TsxRenderComponent, Function
callback)

nothing Given a TsxRenderComponent object, the callback
function is called for each tag attribute found in the
TsxRenderComponent object.

(Object ruleCtx, Object TsxComponent,
Object Prop)

where TsxComponent is a TsxComponent object, and
Prop is a property object (a member of
TsxComponent)

Note:

1. When the
extractTsxProperti
es() method has
processed all
properties (or
iteration is
terminated, see 2)
below), it makes a
final call to the
callback method with
a null value for
argument Prop.

2. For normal
processing, the
callback function
does not need to
return any value. If,
however, it wishes to
terminate the
iteration before all
properties have
been processed, it
can return one of
two string codes:
• Return value of

end that
terminates all
futher iteration
over the
TsxRenderCom
ponent.

• Return value of
next-comp that
terminates all
futher iteration
over the
TsxRenderCom
ponent.

Chapter 15
TsxUtils: TSX Utility Functions

15-27

Method Returns Description

getExpressionObject(TsxProperty prop) Object | null Returns an object derived from a Preact object
expression. For example, given the following snippet:

<xxx myProp={{prop1: 42, prop2: "foo"}}

Then using the TsxProperty object for myProp

 getExpressionObject(TsxProperty)

returns the following object:

{
 prop1: 42,
 prop2: "foo"
}

The method returns null if the outer-braces of the
property value do not contain an object expression.

isPropertyObjectExpr(TsxProperty |
tsxComponent propOrComp, [string
propName])

boolean Returns true if the property value of the TsxProperty,
or the value of the TsxComponent with the named
property, is an Object expression. For example:

 someProp={ { . . . } }

where argument propOrComp is a TsxProperty or a
TsxComponent object.

If the first argument is a TsxComponent, the second
argument, propName, is required. It is not used for a
TsxProperty.

isPropertyPreactExpr(TsxProperty |
TsxComponent propOrComp, [string
propName])

boolean Returns true if the property value of the TsxProperty,
or the value of the TsxComponent with the named
property, is a Preact expression. For example:

someProp=(. . .)

where argument propOrComp is a TsxProperty or a
TsxComponent object.

If the first argument is a TsxComponent, the second
argument, propName, is required. It is not used for a
TsxProperty.

isPropertyString(TsxProperty |
TsxComponent propOrComp, [string
propName])

boolean Returns true if the value of TsxProperty, or the value
of a TsxComponent with the named property, is a
string value

Where argument propOrComp is a TsxProperty or a
TsxComponent object.

If the first argument is a TsxComponent, the second
argument, propName, is required. It is not used for a
TsxProperty.

Chapter 15
TsxUtils: TSX Utility Functions

15-28

Method Returns Description

setIssuePosition(Object issue, Object
compOrProp)

nothing Updates the supplied Issue instance, with the
positional information in the supplied TsxComponent
or TsxProperty object.

issue is the instantiated Issue object, and
compOrProp is a TsxComponent or TsxProperty
object.

setIssuePropValuePosition(Object
issue, Object tsxProp)

nothing Updates the supplied Issue instance, with the property
value positional information in the supplied
TsxProperty object.

issue is the instantiated Issue object, and tsxProp is
a TsxProperty object.

getChildren(Object tsxComp) Object|null Returns an array of child TsxComponent objects.

tsxComp is the TsxComponent whose children are
required.

getAncestor(Object tsxComp [string
compName])

Object|null Returns the first found named ancestor component of
the supplied component.

where:

1. tsxComp is the TsxComponent object whose
ancestors are to be searched

2. optional compName is the name of the ancestor
component to be found. If omitted, the name of the
tsxComp component is used.

Returns the found TsxComponent, or null if not found.

getDescendant(Object tsxComp [string
compName])

Object|null Returns the first found named descendant component
of the supplied component.

where:

1. tsxComp is the TsxComponent object whose
descendants are to be searched

2. optional compName is the name of the
descendant component to be found. If omitted, the
name of the tsxComp component is used.

Returns the found TsxComponent, or null if not found.

getProperty(TsxProperty |
TsxComponent propOrComp, string
propName)

Object| null Returns the TsxProperty object for the named
property from a TsxComponent. If a TsxProperty
object is supplied, the argument is returned (and the
property name is ignored if supplied).

getPropertyValue(Object tsxComp,
string propName)

Object Returns the value node for the named property from a
TsxComponent.

getPropertyRawValue(Object tsxComp,
string propName, boolean stripDelims)

string Returns the raw value of the named property from a
TsxComponent. Note: if the property value is a string,
this will include the delimiting quotes unless the
optional stripDelims argument is set to true.

Chapter 15
TsxUtils: TSX Utility Functions

15-29

Method Returns Description

getPropertyStringValue(TsxProperty |
TsxComponent propOrComp, [string
propName]

string | null | undefined Returns the string value of the property if the property
type is a string. If the property is empty and has no
value (e.g. the HTML 'disabled' attribute) the returned
value is undefined. If the value type is not a string or
the property is not found, null is returned.

Argument propOrComp may be a TsxProperty or a
TsxComponent object. If propOrComp is a
TsxComponent, the second argument, propName, is
required. It is not used for a TsxProperty.

getRawText(Object ruleCtx, Object
tsxRC)

string Returns the raw text used to create the
TsxRenderComponent.

getSlotParent(Object ruleCtx,
TsxProperty tsxProp, string slotName)

TsxComponent | null Returns the parent TsxComponent that resolves the
specified slot name.

The following additional methods (normally exported by DomUtils for HTML rules) can also be
found in TsxUtils, since DomUtils is not available in the rule/registration context for TSX rules.

Method Returns Description

isAriaAttr(string attrName) boolean Returns true if the specified attribute is a known ARIA
attribute.

isCommonAttr(string attrName) boolean Returns true if the specified attribute is a standard
defined xxx. (Note: if attrName is prefixed with ':', the
prefix is ignored).

isCommonElem(string elemName) boolean Returns true if the specified element is a standard
defined xxx.

isCommonEventAttr(string attrName) boolean Returns true if the specified attribute is a standard
xxx defined xxx. (Note: if attrName is prefixed with ':',
the prefix is ignored).

isHtml5ObsoleteElem(string elemName) boolean Returns true if the specified element is obsolete in
HTML5

isHtml5ObsoleteAttr(string elemName,
string attrName)

boolean Returns true if the attribute is obsolete in HTML5 for
the specified element.

Note: the return value is unconditional. There may be
additional exception conditions that need to be
evaluated (for example, the border attribute on
) - refer to xxx.

isNamespacePrefix(string tagPrefix) boolean Given a Web Component name prefix starting with oj-
(for example oj-ext), this returns true , if the prefix is
defined in the xxx .

isNamespaceTag(string tagName) boolean Given a Web Component element name starting with
oj- (e.g. oj-ext-foo), this returns true , if the prefix
(oj-ext in this example) is defined in the xxx.

isSelfClosingTag(string tagName) boolean Returns true if the tag is a self-closing tag (such as

 or <hr>, and so on).

isSvgElem(string elemName) boolean Returns true if the element name is an SVG element.

isSvgPath(string svg) boolean Returns true if the string appears to be a valid SVG
path. Note: This method does not validate the path for
being syntactically correct SVG.

Chapter 15
TsxUtils: TSX Utility Functions

15-30

Use TSX Functions
The following example uses the extractTsxProperties() utility method to inspect all tag
attributes in the TsxRenderComponent structure. It provides a callback mechanism and
iterates over the entire TsxRenderComponent.

function register() {
 // listen for .tsx renderable content sets
 return { "TsxRenderComponent": _onTsxRC };
};

/**
 * Listener for Web Component tags. Iterate over the tag's properties.
 * @param {Object} ruleCtx the rule context
 * @param {Object} tsxRC the TsxRenderComponent tag
 */
function _onTsxRC(ruleCtx, tsxRC) {
 // Extract the attributes and invoke callback _onProperty for each
attribute
 ruleCtx.utils.tsxUtils.extractTsxProperties(ruleCtx, tsxRC, _onProperty);
}

/**
 * Check an attribute and emit an Issue if necessary.
 * @param {Object} ruleCtx the rule context
 * @param {Object} tsxComponent the TsxComponent object
 * @param {*Object} tsxProp the TsxProperty object
 */
function _onProperty(ruleCtx, tsxComponent, tsxProp) {
 // if tsxProp is null, the iteration is complete, and
 // this is the final callback.
 if (!tsxProp) { return; }

 // Inspect tsxProp object
 . . .
}

As another example, the TsxUtils method getExpressionObject() is useful when you need to
examine sub-properties declared in a TSX expression. Consider the two sub-properties one
and two of the following property:

<xxx someProp={{ one: "left", two: "top" }}

The sub-properties can be acquired from the TsxProperty object someProp without inspecting
the AST nodes by using getExpressionObject():

let subprops = ruleCtx.utils.tsxUtils.getExpressionObject(someProp);

Chapter 15
TsxUtils: TSX Utility Functions

15-31

Where the returned value in subprops will be:

{
 one: "left",
 two: "top"
}

Chapter 15
TsxUtils: TSX Utility Functions

15-32

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Get Started with the Oracle JET Audit Framework
	About Auditing Oracle JET Applications
	Typical Workflow for Auditing an Oracle JET Application
	Typical Workflow for Writing Custom Audit Rules
	Install the Oracle JET Audit Framework
	Initialize Oracle JAF and Run an Audit

	Part I Use the Oracle JET Audit Framework
	2 Configure the JET Audit Framework
	About the Oracle JAF Configuration
	About the Oracle JAF Configuration File Properties
	Configure the Project Scope for the Audit
	Specify Configuration Inheritance
	Configure Audit Rule Runtime Properties

	3 Run Audits on Oracle JET Applications
	Audit the Application Using the Command Line
	Audit the Application with Predefined Runtime Options
	Audit with Specific JET and ECMA Script Versions
	Audit with Specific Rules
	Audit with Custom Rule Packs
	Audit Only HTML Files that Contain Oracle JET Components
	Audit JET Custom Web Component Usages
	Audit JET Custom Web Component Projects
	Audit JET Web Component Projects Containing VComponents
	Audit CSS Styles and Web Components Styles
	Audit for Oracle JET Deprecated Functionality

	4 Fine Tune the Audit
	Restrict Audit Rule Severity Level
	Alter the Severity Level of an Audit Rule
	Suppress Auditing Linked Content
	Suppress Audit Messages
	Adjust the Tab Value Used to Report Line and Column Issues
	Comment Source Code for Fine-Grained Audit Control

	5 Work with the Output of Audits
	About Audit Output
	Display Details About a Rule
	Toggle the Default Format of Audit Messages
	Display Rule Names with Audit Messages
	Customize the Presentation of the Audit Messages
	Format a Title for the Audit Report
	Output Audit Messages in JSON Format

	Part II Extend the Oracle JET Audit Framework
	6 Understand the JAF Audit Engine
	About the JAF Audit Engine
	Understand the Structure of Custom Audit Rules
	Audit Rule Entry Point Method Structure
	Audit Rule Listener Function Structure

	7 Get Started Writing Custom Audit Rules
	Set up the Custom Audit Rules Test Project
	Define the Runtime Properties of Custom Audit Rules
	Define the Message ID of Custom Audit Rules
	Implement the Custom Audit Rules
	Reference the Custom Audit Rules in an Audit

	8 Implement Custom Node Rules
	About AST Rule Nodes in CSS Auditing
	Walkthrough of Sample HTML and JSON Audit Rules
	Walkthrough of a Sample CSS Audit Rule
	Walkthrough of a Sample Markdown Audit Rule
	Walkthrough of a Sample JavaScript/TypeScript Audit Rule
	Walkthrough of a Sample Virtual DOM TSX Audit Rule
	Report Position Information in an Issue for a TSX Audit

	9 Implement Custom Hook Rules
	About Hook Rule Invocation
	Implement Custom Rules on the File Context
	Implement Custom Rules Using the Audit Lifecycle
	Walkthrough of a Sample Audit Hook Rule

	10 Access Oracle JET Metadata
	11 Create the Audit File Set at Runtime
	12 Reference: Custom Audit Rule Listener Types
	Listener Types for HTML and JSON Rules
	Listener Types for CSS Rules
	Listener Types for Markdown Rules
	Listener Types for JavaScript/TypeScript Rules
	Listener Types for TSX Rules

	13 Reference: Custom Audit Rule Context Object Properties
	Context Object Members Passed to the Register Function
	Context Object Properties Available to Registered Listeners
	Context Object Properties Available to Markdown Rule Listeners
	Context Object Properties Available to CSS Rule Listeners

	14 Reference: Custom Audit Rule Context Object Methods
	RulePack Class Methods
	Rule Issue Class Methods
	Rule Reporter Class Methods

	15 Reference: Custom Audit Rule Utility Libraries
	MetaLib: JET Metadata Access Functions
	Oracle JET Audit Metadata Interface Library Metadata Methods
	Oracle JET Audit Metadata Interface Library Tag Methods

	Utils: General Non-File System Functions
	FsUtils: File System Functions
	SemVerUtils: Semantic Version Functions
	DomUtils: Node Object Functions
	ConfigLib: Configuration Library
	JafLib: JAF Core Access Methods
	JafLib: Configuration Object Property Getter Methods
	MsgLib: Message Display Functions
	CssUtils: CSS Utility Functions
	AstUtils: JavaScript File Helper Functions
	SevLib: Severity Support Helper Functions
	TsxUtils: TSX Utility Functions
	Use TSX Functions

