
Oracle® Analytics
Developer's Guide for Oracle Analytics Server

F92263-01
March 2025

Oracle Analytics Developer's Guide for Oracle Analytics Server,

F92263-01

Copyright © 2025, Oracle and/or its affiliates.

Primary Author: Adam Donald

Contributing Authors: Stefanie Rhone, Hemala Vivek

Contributors: Oracle Analytics Server development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Documents vii

Conventions vii

Part I Overview of Oracle Analytics Developer Resources

1 Introduction to Oracle Analytics Server Developer Resources

Part II Create and Manage Custom Extensions

2 Create Custom Data Action Extensions

About Data Action Extensions and the Data Actions Framework 2-1

Data Action Categories 2-2

Data Action Context 2-3

Data Action Code Design 2-4

Data Action Model Classes 2-4

Data Action Service Classes 2-6

Data Action Code Interactions 2-7

Example Data Action plugin.xml File 2-8

Data Action Extension Files and Folders 2-9

Choose the Best Data Action Class to Extend 2-9

AbstractDataAction Class 2-10

DataActionKOModel Class 2-11

CanvasDataAction Class 2-12

EventDataAction Class 2-12

AbstractHTTPDataAction Class 2-13

URLNavigationDataAction Class 2-13

iii

HTTPAPIDataAction Class 2-14

Generate Data Action Extensions from a Template 2-14

Generated Folders and Files 2-15

Extend a Data Action Base Class 2-16

Choose Which Data Action Inherited Methods to Override 2-17

Test, Package, and Install Your Data Action 2-20

Use an Upgrade Handler for Knockout Model Changes 2-21

Upgrade Data Action Extensions 2-22

Data Action Extension File Reference 2-22

Data Action plugin.xml File Example 2-22

Data Action plugin.xml File Properties Section - tns:obiplugin 2-23

Data Action plugin.xml File Resources Section - tns:resources 2-24

Data Action plugin.xml File Extensions Section - tns:extension 2-26

3 Create Oracle Analytics Visualization and Workbook Extensions

About the Oracle Analytics Extension Development Environment 3-1

Workflow to Set Up the Oracle Analytics Extension Development Environment 3-1

Oracle Analytics Extensions Development Scripts 3-2

Types of Oracle Analytics Extensions 3-2

Oracle Analytics Extension Development Resources 3-3

Oracle Analytics Extensions Limitations 3-3

Set Up the Oracle Analytics Extension Development Environment on Mac 3-4

Install Oracle Analytics Desktop on Mac 3-4

Install Java JDK on Mac 3-4

Update Bash Profile or ZSHRC File and Create the Development Directory on Mac 3-5

Create the Extension Development Environment on Mac 3-6

Create a Skeleton Extension on Mac 3-6

Test Your Visualization and Workbook Extensions on Mac 3-8

Set Up the Oracle Analytics Extension Development Environment on Windows 3-10

Install Oracle Analytics Desktop on Windows 3-10

Install Java JDK on Windows 3-10

Set User Variables and Create a Development Directory on Windows 3-11

Create the Extension Development Environment on Windows 3-11

Create a Skeleton Extension on Windows 3-12

Test Your Visualization and Workbook Extensions on Windows 3-14

Work with Extensions 3-16

Build and Package an Extension 3-16

Upload an Extension to Oracle Analytics 3-16

Delete Extensions from the Oracle Analytics Development Environment 3-17

iv

4 Manage Oracle Analytics Extensions

Part III Embed Content

5 Get Started Embedding Content into Applications and Web Pages

About Embedding Oracle Analytics Content into Applications and Web Pages 5-1

Register an Application as a Safe Domain 5-1

6 Embed Oracle Analytics Content With iFrames

Considerations for Embedding Oracle Analytics Content With iFrame 6-1

Use iFrame to Embed Analytics Content into an Application or Web Page 6-1

7 Embed Oracle Analytics Content With the JavaScript Embedding
Framework

Typical Workflow to Use the JavaScript Embedding Framework with Oracle Analytics
Content 7-1

Enable Oracle Analytics Developer Options 7-2

Find the Javascript and HTML for Embedding Oracle Analytics Content 7-2

Prepare the HTML Page for Embedded Oracle Analytics Content 7-3

Pass Filters to the HTML Page for Embedded Oracle Analytics Content 7-7

Pass Parameters to the HTML Page for Embedded Oracle Analytics Content 7-9

Refresh Data in the HTML Page for Embedded Oracle Analytics Content 7-10

Embed Oracle Analytics Content into a Custom Application that Uses Oracle JET 7-11

Embed Oracle Analytics Content into a Custom Application That Doesn’t Use Oracle JET 7-12

Add Authentication to an Application or Web Page Containing Embedded Oracle Analytics
Content 7-13

Use Login Prompt Authentication With Embedded Oracle Analytics Content 7-13

v

Preface

Learn how to develop and extend your Oracle Analytics instance with embedded content, and
SDKs.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This guide is intended for application developers and integrators who want to programmatically
access and use the Oracle Analytics components to create applications or integrations with
other components. You need to have knowledge of the following:

• Oracle Analytics Desktop

• Oracle Analytics Server

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Related Documents
For a full list of guides, refer to the Books tab on Oracle Analytics Server Help Center.

• https://docs.oracle.com/en/middleware/bi/analytics-server/books.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

https://docs.oracle.com/en/middleware/bi/analytics-server/books.html

Part I
Overview of Oracle Analytics Developer
Resources

This part introduces you to the Oracle Analytics developer resources.

Topics:

• Introduction to Oracle Analytics Server Developer Resources

1
Introduction to Oracle Analytics Server
Developer Resources

Oracle allows you to develop and extend your Oracle Analytics Server products with REST
APIs, custom extension plug-ins, and embedded content.

Developer Resources

Developer Resource See

REST APIs • Oracle Analytics Server REST APIs
• REST APIs for Oracle Analytics Publisher in Oracle Analytics

Server

Custom Extensions Create and Manage Custom Extensions

Embedding content methods Embed Content

1-1

https://docs.oracle.com/en/middleware/bi/analytics-server/oasri/index.html
https://docs.oracle.com/en/middleware/bi/analytics-server/oap_rest_api/index.html
https://docs.oracle.com/en/middleware/bi/analytics-server/oap_rest_api/index.html

Part II
Create and Manage Custom Extensions

This part explains how to create and manage custom data action, visualization, and workbook
extensions.

Topics:

• Create Custom Data Action Extensions

• Create Oracle Analytics Visualization and Workbook Extensions

• Manage Oracle Analytics Extensions

2
Create Custom Data Action Extensions

You can create custom data action extensions to use in Oracle Analytics.

Data action extensions extend Oracle Analytics and enable users to select data-points in
visualizations and to invoke specific actions. Oracle Analytics provides a core set of data
actions that cover many common use cases, but by writing your own data action extension,
you can extend this functionality even further.

You must have a basic understanding of the following to create custom data action extensions:

• JavaScript

• RequireJS

• JQuery

• KnockoutJS

Topics:

• About Data Action Extensions and the Data Actions Framework

• Choose the Best Data Action Class to Extend

• Generate Data Action Extensions from a Template

• Generated Folders and Files

• Extend a Data Action Base Class

• Choose Which Data Action Inherited Methods to Override

• Test, Package, and Install Your Data Action

• Use an Upgrade Handler for Knockout Model Changes

• Upgrade Data Action Extensions

• Data Action Extension File Reference

About Data Action Extensions and the Data Actions Framework
Data action extensions leverage the data actions framework to provide custom, data-driven
actions that are tightly integrated into the Oracle Analytics user interface.

When a user invokes a data action, the Data Action Manager passes the request context (for
example, qualified data reference, measure values, filters and metadata) to the data action
extension which is responsible for handling the request. Oracle provides four types of data
action extensions: CanvasDataAction, URLNavigationDataAction, HTTPAPIDataAction and
EventDataAction. You can extend these data action extension types along with their abstract
base classes to provide your own data actions.

Topics:

• Data Action Categories

• Data Action Context

2-1

• Data Action Code Design

• Data Action Model Classes

• Data Action Service Classes

• Data Action Code Interactions

• Example Data Action plugin.xml File

• Data Action Extension Files and Folders

Data Action Categories
The data action categories include Navigate to URL, HTTP API, Navigate to Canvas, and
Event actions:

• Navigate to URL: Opens the specified URL in a new browser tab.

• HTTP API: Uses the GET/POST/PUT/DELETE/TRACE commands to target an HTTP API and
doesn't result in a new tab. Instead the HTTP status code is examined and a transient
success or failure message is displayed.

• Navigate to Canvas: Enables the user to navigate from a source canvas to a target
canvas in either the same or a different visualization. Any filters that are in effect in the
source canvas are passed to the target canvas as external filters. When the target canvas
opens, it attempts to apply the external filters to the visualization. The mechanism by which
external filters are applied isn't described here.

• Event Actions: Publishes an event using the Oracle Analytics event router. Any
JavaScript code (for example, a third-party extension) can subscribe to these events and
handle their custom response accordingly. This provides the maximum flexibility because
the extension developer can choose how the data action responds. For example, they can
choose to display a user interface or pass data to multiple services at once.

Both the Navigate to URL and HTTP API data action category types can use a token syntax
to inject data or metadata from the visualization into the URL and POST parameters.

URL Token Replacement

HTTP data actions can replace tokens in URLs with values from the context passed to the data
action. For example, qualified data reference values, filter values, username, workbook path,
and canvas name.

Token Notes Replace With Example Result

$
{valuesForColumn:C
OLUMN}

NA Column display values
from the qualified data
reference.

${valuesForColumn:
"Sales"."Products"
."Brand"}

BizTech,FunPod

$
{valuesForColumn:C
OLUMN,
separator:"/"}

Any token that can
potentially be replaced
with multiple values
supports the optional
separator option. The
separator defaults to
a comma (,) but you
can set it to any string.
You can escape double
quotes inside this string
by using a backslash
(\).

Column display values
from the qualified data
reference.

${valuesForColumn:
"Sales"."Products"
."Brand"}

BizTech,FunPod

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-2

Token Notes Replace With Example Result

$
{valuesForColumn:C
OLUMN,
separationStyle:in
dividual}

Any
separationStyle
defaults to delimited
but you can set it to
individual if the user
needs to generate
separate URL
parameters for each
value.

Column display values
from the qualified data
reference.

&myParam=$
{valuesForColumn:
"Sales"."Products"
."Brand"}

&myParam=BizTech&m
yParam=FunPod

$
{keyValuesForColum
n:COLUMN}

NA Column key values
from the qualified data
reference.

$
{keyValuesForColum
n:COLUMN}

10001,10002

${env:ENV_VAR} Supported environment
variables are:
sProjectPath,
sProjectName,
sCanvasName,
sUserID, and
sUserName.

An environment
variable.

${env:'sUserID'} myUserName

Data Action Context
You can define a context that is passed when the user invokes a data action.

You define how much of the context is passed to the data action when you create the data
action.

Qualified Data Reference

When the data action is invoked a qualified data reference is generated for each marked data
point using an array of LogicalFilterTree objects. A LogicalFilterTree consists of multiple
LogicalFilterNode objects arranged in a tree structure. This object includes:

• The attributes on the row or column edges of the data layout.

• The specific measure on the measure edge that addresses each marked cell.

• The specific measure value for each marked cell.

• Key values and display values.

Environment Variables

In addition to the data and metadata describing each marked data point, certain data actions
may need further context describing the environment from where the data action is invoked.
Such environment variables include:

• Project Path

• Project Name

• Canvas Name

• User ID

• User Name

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-3

Data Action Code Design
You create data actions using API classes.

• There are four concrete classes of data action that inherit from the AbstractDataAction
class:

– CanvasDataAction
– URLNavigationDataAction
– HTTPAPIDataAction
– EventDataAction

• You can create new types of data actions using the data action extension API.

• The registry of data action types is managed by the DataActionPluginHandler.

• Code that creates, reads, edits, deletes, or invokes instances of data actions does so by
publishing events.

• Events are handled by the DataActionManager.

Data Action Model Classes
There are several different types of data action model classes.

AbstractDataAction

This class is responsible for:

• Storing the Knockout Model (subclasses are free to extend this with their own properties).

• Defining the abstract methods that subclasses must implement:

– + invoke(oActionContext: ActionContext,
oDataActionContext:DataActionContext) <<abstract>>
Invokes the data action with the passed context - should only be called by the
DataActionManager.

– + getGadgetInfos(oReport): AbstractGadgetInfo[] <<abstract>>
Constructs and returns the GadgetInfos responsible for rendering the user interface
fields for editing this type of data action.

– + validate() : DataActionError
Validates the data action and returns null if valid or a DataActionError if it's invalid.

• Providing the default implementation for the following methods used to render generic
parts of the data action user interface fields:

– + getSettings():JSON
Serializes the data action's Knockout Model to JSON ready to be included in the report
(uses komapping.toJS(_koModel)).

– + createNameGadgetInfo(oReport) : AbstractGadgetInfo
Constructs and returns the GadgetInfo that can render the data action's Name field.

– + createAnchorToGadgetInfo(oReport) : AbstractGadgetInfo
Constructs and returns the GadgetInfo that can render the data action's Anchor To
field.

– + createPassValuesGadgetInfo(oReport) : AbstractGadgetInfo

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-4

Constructs and returns the GadgetInfo that can render the data action's Pass Values
field.

Subclasses may not need all of the GadgetInfos that the base class provides so they may not
need to call all of these methods. By separating out the rendering of each field in this way,
subclasses are free to pick and choose the gadgets they need. Some subclasses may even
choose to provide a different implementation of these common data action gadgets.

CanvasDataAction, URLNavigationDataAction, HTTPAPIDataAction, EventDataAction

These are the concrete classes for the basic types of data actions. These classes work by
themselves to provide the generic user interface for these types of data action. They can also
act as convenient base classes for custom data action plug-ins to extend.

• CanvasDataAction: Used to navigate to a canvas.

• URLNavigationDataAction: Used to open a web page in a new browser window.

• HTTPAPIDataAction: Used to make a GET/POST/PUT/DELETE/TRACE request to an HTTP
API and handle the HTTP Response programatically.

• EventDataAction: Used to publish JavaScript events through the Event Router.

Each class is responsible for:

• Implementing the abstract methods from the base class.

– invoke(oActionContext: ActionContext,
oDataActionContext:DataActionContext)
This method should invoke the data action by combining the properties defined in the
KOModel with the specified DataActionContext object.

– getGadgetInfos(oReport): AbstractGadgetInfo[]
This method should:

* Create an array containing AbstractGadgetInfos.

* Call individual createXXXGadgetInfo() methods pushing each
AbstractGadgetInfo into the array.

* Return the array.

• Providing the additional methods for creating the individual gadgets that are specific to the
particular subclass of data action.

Subclasses of these concrete classes may not need to use all of the gadgets provided by their
superclasses in their custom user interfaces. By separating out the construction of each gadget
in this way, subclasses are free to pick and choose the gadgets they need.

DataActionKOModel, ValuePassingMode

The DataActionKOModel class provides the base KOModel shared by the different subclasses
of AbstractDataAction. See DataActionKOModel Class.

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-5

Data Action Service Classes
There are several different data action service classes.

DataActionManager

All communication with DataActionManager uses ClientEvents.DataActionManager which
implements event handlers for:

• Managing the set of data actions defined in the current workbook.

• Invoking a data action.

• Retrieving all the data actions defined in the current workbook.

• Retrieving all the data actions that are applicable to the current marked data points.

DataActionContext, EnvironmentContext

When a data action is invoked, the DataActionContext class contains the context that's
passed to the target.

• getColumnValueMap()
Returns a map of attribute column values keyed by attribute column names. These define
the qualified data reference for the data points that the data action is invoked from.

• getLogicalFilterTrees()
Returns a LogicalFilterTrees object describing the qualified data references for the
specific data points that the data action is invoked from (see the InteractionService for
details).

• getEnvironmentContext()
An instance of the EnvironmentContext class describing the source environment such as:

– getProjectPath()
– getCanvasName()
– getUserID()
– getUserName()

• getReport()
Returns the report that the data action is invoked from.

DataActionHandler

The DataActionHandler class registers the various data action extensions. Its API is broadly
consistent with the other extension handlers (for example, VisualizationHandler).

The DataActionHandler class provides the following public methods:

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-6

• getClassName(sPluginType:String) : String
Returns the fully qualified class name for the specified data action type.

• getDisplayName(sPluginType:String) : String
Returns the translated display name for the specified data action type.

• getOrder(sPluginType:String) : Number
Returns a number used to sort lists of the types of data action into the preferred order.

The DataActionHandler class provides the following static methods:

• getDependencies(oPluginRegistry:Object) : Object.<String, Array>
Returns a dependency map covering all the registered data action types.

• getHandler(oPluginRegistry:Object, sExtensionPointName:String,
oConfig:Object) : DataActionPluginHandler
Constructs and returns a new instance of the DataActionHandler class.

DataActionUpgradeHandler

The DataActionUpgradeHandler class is called by the UpgradeService when a report is
opened.

The DataActionHandler class provides two main methods:

• deferredNeedsUpgrade(sCurrentVersion, sUpgradeTopic, oDataActionJS,
oActionContext) : Promise
Returns a Promise that resolves to a Boolean indicating whether the specified data action
must be upgraded (true) or not (false). The method decides whether the data action must
be upgraded by comparing the data action instance with the data action's constructor.

• performUpgrade(sCurrentVersion, sUpgradeTopic, oDataActionJS, oActionContext,
oUpgradeContext) : Promise
Carries out the upgrade on the specified data action and resolves the Promise. The
upgrade itself is carried out by calling the upgrade() method on the data action (only the
specific subclass of data action being upgraded is qualified to upgrade itself).

• getOrder(sPluginType:String) : Number
Returns a number used to sort lists of the types of data action into the preferred order.

Data Action Code Interactions
A data action interacts with Oracle Analytics code when it creates a user interface field, and
when a user invokes a data action.

Create the Field for a New Data Action Instance

This interaction starts when Oracle Analytics wants to render a data action user interface field.
To do so, it:

1. Creates a PanelGadgetInfo that acts as the parent GadgetInfo for the GadgetInfos that
the data action returns.

2. Calls getGadgetInfos() on the data action.

3. Adds the data action's GadgetInfos as children of the PanelGadgetInfo created in the first
step.

4. Creates the PanelGadgetView that renders the PanelGadgetInfo.

5. Sets the HTMLElement that's the container of the PanelGadgetView.

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-7

6. Registers the PanelGadgetView as a child HostedComponent of a HostedComponent that's
already attached to the HostedComponent tree.
This renders the data action's gadgets inside the Panel gadget in the order they appear in
the array returned by getGadgetInfos().

Invoke a Data Action

This interaction starts when the user invokes a data action through the Oracle Analytics user
interface (for example, from the context menu on a data point in a visualization).

In response to the user interaction, the code:

1. Publishes an INVOKE_DATA_ACTION event containing the data action's ID, the
DataVisualization that the data action is invoked from, and a TransientVizContext
object.

2. The DataActionManager handles this event by:

a. Obtaining the data action instance from its ID.

b. Obtaining the LogicalFilterTrees for the marked data points in the specified
DataVisualization.

c. Constructing a DataActionContext that contains all the information to pass to the data
action's target.

d. Calling invoke(oDataActionContext) on the data action.

Example Data Action plugin.xml File
This topic shows an example plugin.xml file for a CanvasDataAction data action.

Example plugin.xml

<?xml version="1.0" encoding="UTF-8"?>
<tns:obiplugin xmlns:tns="http://plugin.frameworks.tech.bi.oracle"
 xmlns:viz="http://plugin.frameworks.tech.bi.oracle/extension-
points/visualization"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="obitech-currencyconversion"
 name="Oracle BI Currency Conversion"
 version="0.1.0.@qualifier@"
 optimizable="true"
 optimized="false">

 <tns:resources>
 <tns:resource id="currencyconversion" path="scripts/
currencyconversion.js" type="script" optimizedGroup="base"/>
 <tns:resource-folder id="nls" path="resources/nls" optimizable="true">
 <tns:extensions>
 <tns:extension name="js" resource-type="script"/>
 </tns:extensions>
 </tns:resource-folder>
 </tns:resources>

 <tns:extensions>

Chapter 2
About Data Action Extensions and the Data Actions Framework

2-8

 <tns:extension id="oracle.bi.tech.currencyconversiondataaction" point-
id="oracle.bi.tech.plugin.dataaction" version="1.0.0">
 <tns:configuration>
 {
 "resourceBundle": "obitech-currencyconversion/nls/messages",
 "properties":
 {
 "className": "obitech-currencyconversion/
currencyconversion.CurrencyConversionDataAction",
 "displayName": { "key" : "CURRENCY_CONVERSION", "default" :
"Currency Conversion" },
 "order": 100
 }
 }
 </tns:configuration>
 </tns:extension>
 </tns:extensions>

</tns:obiplugin>

Data Action Extension Files and Folders
The following files and folders are used to implement data action extensions.

bitech/client/plugins/src/
• report

– obitech-report
* scripts

* dataaction
* dataaction.js
* dataactiongadgets.js
* dataactionpanel.js
* dataactionupgradehandler.js

• obitech-reportservice
– scripts

* dataaction
* dataactionmanager.js
* dataactionhandler.js

Choose the Best Data Action Class to Extend
Before you start writing your custom data action extension, decide which of the existing data
action classes you want to extend. Choose the data action class that provides functionality that
most closely matches what you want your data action to do.

Each data action inherits from the AbstractDataAction class as shown in the class diagram.
The class diagram shows the two abstract data action classes (AbstractDataAction and

Chapter 2
Choose the Best Data Action Class to Extend

2-9

AbstractHTTPDataAction) and the four concrete data action classes (CanvasDataAction,
URLNavigationDataAction, HTTPAPIDataAction, and EventDataAction) that you can extend.
Each data action that you provide must extend one of these classes. Which class you extend
depends on the behavior you want to implement when you invoke your data action. Most third-
party data actions are likely to extend either URLNavigationDataAction, HTTPAPIDataAction or
EventDataAction.

Regardless of which class you extend, when your data action is invoked, you're provided with
metadata describing the full context of the data-point from which the data action is invoked.
See Data Action Context.

AbstractDataAction Class
AbstractDataAction is the abstract base class from which all types of data action inherit. It's
responsible for providing common functionality and default behavior that the subclasses can
use.

AbstractDataAction

All types of data action are subclasses of the AbstractDataAction base class. It provides the
core set of functionality common to all data actions. Unless you're creating a complex data
action that carries out multiple types of action when invoked, or you need to do something not
supported by the concrete classes, you shouldn't extend this class directly. If you need to
create a complex data action then consider extending the concrete class that most closely
provides the functionality you require.

Chapter 2
Choose the Best Data Action Class to Extend

2-10

AbstractDataAction Syntax

+ AbstractDataAction(oKOModel)

+ getKOViewModel():DataActionKOModel

+ createFromJS(fDataActionConstructor, sClassName, oDataActionKOModelUS) :
AbstractDataAction

+ invoke(oActionContext, oDataActionContext)
+ getGadgetInfos(oReport) : AbstractGadgetInfo[]
+ validate() : DataActionError

+ getSettings() : Object
+ requiresActionContextToInvoke() : Boolean
+ isAllowedHere() : Boolean

createNameGadgetInfo(oReport) : AbstractGadgetInfo
createAnchorToGadgetInfo(oReport) : AbstractGadgetInfo
createPassValuesGadgetInfo(oReport) : AbstractGadgetInfo

DataActionKOModel Class
Each subclass of AbstractDataAction is likely to create its own subclass of
DataActionKOModel. The DataActionKOModel base class provides the following properties:

DataActionKOModel, ValuePassingMode

• sID:String
The unique ID given to the data action instance.

• sClass:String
The class name of this specific type of data action.

• sName:String
The display name given to the data action instance.

• sVersion
• sScopeID
• eValuePassingMode:ValuePassingMode

The mode used when passing context values. The mode can be one of the
ValuePassingMode values (ALL, ANCHOR_DATA, NONE, CUSTOM).

• aAnchorToColumns: ColumnKOViewModel[]
The columns that this data action is anchored to. This is optional. If not supplied, then the
data action is available on all columns.

• aContextColumns : ColumnKOViewModel[]

Chapter 2
Choose the Best Data Action Class to Extend

2-11

The columns that this data action includes in the context passed to the data action target
when the data action is invoked. If not supplied, all marked columns are included in the
context.

CanvasDataAction Class
CanvasDataAction is a subclass of the AbstractDataAction base class. You can extend this
concrete class to provide the functionality you require.

CanvasDataAction

Use the CanvasDataAction class to navigate from a data point in a visualization to a different
canvas. The canvas you're navigating to can be in the same workbook or a different one. All
the active filters for the source visualization are passed to the target canvas along with new
filters that describe the Qualified Data Reference of the data point itself. If your data action
needs to navigate to a different canvas then this is the class your data action should extend.

+ CanvasDataAction(oKOModel)

+ create(s)ID_sName) : CanvasDataAction
+ upgrade(oOldDataActionJS) : Object

+ invoke(oActionContext: ActionContext, oDataActionContext:DataActionContext)
+ getGadgetInfos(oReport) : AbstractGadgetInfo[]
+ validate() : DataActionError

createProjectGadgetInfo(oReport) : AbstractGadgetInfo
createCanvasGadgetInfo(oReport) : AbstractGadgetInfo

EventDataAction Class
EventDataAction is a subclass of the AbstractDataAction base class. You can extend this
concrete class to provide the functionality you require.

EventDataAction

Use the EventDataAction class to publish a client-side event. You can then register one or
more subscribers that listen for that event and perform their own actions. Use this type of data
action in more complex use cases where you've a large amount of code and can benefit from

Chapter 2
Choose the Best Data Action Class to Extend

2-12

keeping your data action code loosely coupled to the code that performs the necessary actions
when the data action is invoked.

+ EventDataAction(oKOModel)

+ create(sID_sName) : EventDataAction
+ upgrade(oOldDataActionJS) : Object

+ invoke(oActionContext: ActionContext, oDataActionContext:DataActionContext)
+ getGadgetInfos(oReport) : AbstractGadgetInfo[]
+ validate() : DataActionError

createEventGadgetInfo(oReport) : AbstractGadgetInfo

AbstractHTTPDataAction Class
AbstractHTTPDataAction is the abstract base class that the URLNavigationDataAction and
HTTPAPIDataAction subclasses inherit common functionality and default behavior from.

AbstractHTTPDataAction

The AbstractHTTPDataAction abstract base class is shared by both the
URLNavigationDataAction and HTTPAPIDataAction classes. If your data action needs to open
a web page in a new browser tab you must extend URLNavigationDataAction. If your data
action needs to invoke an HTTP API then you should extend HTTPAPIDataAction. You may
decide it's better to extend AbstractHTTPDataAction directly.

+ HTTPDataAction(oKOModel)

+ validate() : DataActionError

createURLGadgetInfo(oReport) : AbstractGadgetInfo

URLNavigationDataAction Class
URLNavigationDataAction is a subclass or the AbstractHTTPDataAction base class.

URLNavigationDataAction

Use the URLNavigationDataAction class to open a specific URL in a new browser tab. You
compose the URL using tokens that are replaced with values derived from data points that the
user selects when they invoke the data action. The data point values are passed as part of the
data action context to the external web page. For example, create a data action invoked using

Chapter 2
Choose the Best Data Action Class to Extend

2-13

a CustomerID column that opens a customer's web page in your Customer Relations
Management application such as Oracle Sales Cloud.

+ URLNavigationDataAction(oKOModel)

+ create(sID_sName) : URLNavigationDataAction
+ upgrade(oOldDataActionJS) : Object

+ invoke(oActionContext: ActionContext, oDataActionContext:DataActionContext)
+ getGadgetInfos(oReport) : AbstractGadgetInfo[]

HTTPAPIDataAction Class
HTTPAPIDataAction is a subclass or the AbstractHTTPDataAction base class. You can extend
this concrete class to provide the functionality you require.

HTTPAPIDataAction

Use the HTTPAPIDataAction class to invoke HTTP APIs by creating an asyncronous
XMLHTTPRequest (XHR) and submitting it to the specified URL. The HTTP response code
enables a message to be displayed briefly on the canvas. For example, you can customize the
request to send JSON or XML payloads to a REST or SOAP server and you can customize the
response handler to show a custom user interface.

For the HTTPAPIDataAction data action to work, you must add the URL of the HTTP API you
want to access to your list of Safe Domains and grant it Connect access. See Register Safe
Domains.

+ HTTPAPIDataAction(oKOModel)

+ create(sID_sName) : HTTPAPIDataAction
+ upgrade(oOldDataActionJS) : Object

+ invoke(oActionContext: ActionContext, oDataActionContext:DataActionContext)
+ getGadgetInfos(oReport) : AbstractGadgetInfo[]

createHTTPMethodGadgetInfo(oReport) : AbstractGadgetInfo
createPostParamGadgetInfo(oReport) : AbstractGadgetInfo

Generate Data Action Extensions from a Template
You use a series of commands to generate a development environment and populate it with a
HTTP API Data Action along with the necessary folders and files that you need to create a
custom data action extension.

All extensions files follow the same basic structure. You can manually create the files and
folders or you can generate them from a template. The tools to do this are part of the Oracle
Analytics Desktop software development kit (SDK) which is included with Oracle Analytics
Desktop.

Chapter 2
Generate Data Action Extensions from a Template

2-14

Use these commands to generate your development environment and populate it with a HTTP
API data action.

1. At a command prompt, specify the root folder of your Oracle Analytics Desktop installation:

set DVDESKTOP_SDK_HOME=C:\Program Files\Oracle Analytics Desktop
2. Specify the location to store your custom extensions:

set PLUGIN_DEV_DIR=C:\temp\dv-custom-plugins

3. Add the SDK command line tools to your path using:

set PATH=%DVDESKTOP_SDK_HOME%\tools\bin;%PATH%
4. Create a folder for the directory used to store the custom extensions using:

mkdir %PLUGIN_DEV_DIR%
5. Change the directory to the folder for storing custom extensions:

cd %PLUGIN_DEV_DIR%
6. Create the environment variables:

bicreateenv
7. Create the template files needed to start developing a custom HTTP API data action, for

example:

bicreateplugin -pluginxml dataaction -id company.mydataaction -subType httpapi
Use the -subType option to specify the data action type that you want to create from:
httpapi, urlNavigation, canvasNavigation, event, or advanced. The advanced option
extends from the AbstractDataAction base class.

Generated Folders and Files
Your newly generated data action development environment contains these folders and files:

1 %PLUGIN_DEV_DIR%\src\customdataaction
2 company-mydataaction\
3 extensions\
4 oracle.bi.tech.plugin.dataaction\
5 company.mydataaction.json
6 nls\
7 root\
8 messages.js
9 messages.js
10 mydataaction.js
11 mydataactionstyles.css
12 plugin.xml

• Line 2: The company-mydataaction folder is the ID that you specify.

• Line 6: The nls folder contains the files for externalizing strings that enable your extension
to provide Native Language Support.

• Line 7: The strings in the files under the nls\root folder are the default strings used when
translations for a requested language aren't available.

Chapter 2
Generated Folders and Files

2-15

• Line 8: The messages.js file contains externalized strings for your extension that you can
add.

• Line 9: The messages.js file must contain an entry that you add for each additional
language that you want to provide localized strings for. You must add a corresponding
folder under the nls folder for each locale that you want to add translations for. Each folder
must contain the same set of files, with the same file names as those added under the
nls\root folder.

• Line 10: The mydataaction.js file is the newly generated JavaScript module template that
provides a starting point to develop your custom data action.

• Line 11: The mydataactionstyles.css file can contain any CSS styles that you want to
add, and which your data action's user interface can use.

• Line 12: The plugin.xml file registers your extension and its files with Oracle Analytics.

Extend a Data Action Base Class
Once you've chosen the subclass of data action that you want to extend and have generated
the necessary folders and files, you're ready to start writing the code specific to your new data
action.

You can find your newly generated data action code under %PLUGIN_DEV_DIR%
\src\dataaction. See Generated Folders and Files for an explanation of the files and
folder structure. The main file you must edit is the JavaScript file. For example, if your custom
data action ID is company.MyDataaction, then the file you're looking for is
%PLUGIN_DEV_DIR%\src\dataaction\company-mydataaction\mydataaction.js.

Extending Your Data Action's Knockout Model
If your data action has additional properties that need to be stored, then you must add them as
observable properties to the Knockout Model. If your data action is given the ID
company.MyDataaction, then the Knockout Model is called
mydataaction.MyDataActionKOModel which is located near the top of mydataaction.js. By
default, this Knockout Model is configured to extend the Knockout Model used by your data
action's superclass so you only need to add additional properties to the model.

For a data action that's extending the HTTPAPIDataAction base class, use code similar to the
following:

1 - mydataaction.MydataactionKOModel = function (sClass, sID, sName,
sVersion, sScopeID, aAnchorToColumns, eValuePassingMode, sURL,
 eHTTPMethod, sPOSTParams)
2 - {
3 - mydataaction.MydataactionKOModel.baseConstructor.call(this, sClass, sID,
sName, sVersion, sScopeID, aAnchorToColumns, eValuePassingMode, sURL,
eHTTPMethod, sPOSTParams);
4 - };
5 - jsx.extend(mydataaction.MydataactionKOModel,
dataaction.HTTPAPIDataActionKOModel);

• Line 1: This is the constructor for your Knockout Model. It accepts the properties that the
model needs to store.

• Line 3: This is the superclass's constructor, otherwise known as the baseConstructor to
which you pass the values for all of the properties that are handled by one of the Knockout
Model's superclasses.

Chapter 2
Extend a Data Action Base Class

2-16

• Line 5: This sets the superclass for this Knockout Model class.

Use code similar to the following to add a string and an array to set properties that are
persisted by the data action.

1 mydataaction.MydataactionKOModel = function (sClass, sID, sName,
sVersion, sScopeID, aAnchorToColumns, eValuePassingMode, sURL, eHTTPMethod,
sPOSTParams)
2 {
3 mydataaction.MydataactionKOModel.baseConstructor.call(this, sClass, sID,
sName, sVersion, sScopeID, aAnchorToColumns, eValuePassingMode, sURL,
eHTTPMethod, sPOSTParams);
4
5
6 // Set Defaults
7 sMyString = sMyString || "My default string value";
8 aMyArray = aMyArray || [];
9
10
11 // Asserts
12 jsx.assertString(sMyString, "sMyString");
13 jsx.assertArray(aMyArray, "aMyArray");
14
15
16 // Add observable properties
17 this.sMyString = ko.observable(sMyString);
18 this.aMyArray = ko.observableArray(aMyArray);
19 };
20 jsx.extend(mydataaction.MydataactionKOModel,
dataaction.HTTPAPIDataActionKOModel);

Choose Which Data Action Inherited Methods to Override
Each data action must implement various methods in order to function properly, so you only
need to override those methods that implement behavior that you want to change.

If you're extending one of the concrete data actions classes, for example HTTPAPIDataAction,
then most of the required methods are already implemented and you only need to override the
methods that implement the behavior you want to change.

Generic Methods

This section describes the various methods and what's expected of them.

All types of data action must implement the methods that are described here.

create(sID, sName)

The create() static method is called when you're creating a new data action and select a Data
Action Type from the drop-down menu. This method is responsible for:

• Constructing the Knockout Model class that your data action uses.
The Knockout Model class must have the ID and name that's passed to the create()
method along with sensible defaults for all other properties. For example, for a currency
conversion data action you might want to set the default currency to convert into Dollars.
The Knockout Model is the correct place to provide your default values.

Chapter 2
Choose Which Data Action Inherited Methods to Override

2-17

• Constructing an instance of your data action from the Knockout Model.

• Returning the instance of your data action.

invoke(oActionContext, oDataActionContext)

The invoke() method is called when the user invokes your data action from the context menu
for a data point in a visualization. The method passes the DataActionContext argument which
contains metadata describing the selected data points, visualization, filters, workbook, and
session. See Data Action Service Classes.

validate()

The validate() method is called on each data action when the user clicks OK in the Data
Actions dialog. The validate() method returns a null to indicate that everything is valid or a
DataActionError if something is invalid. If there's an error in one of the data actions in the
dialog, the error prevents the dialog from closing and an error message is displayed to the
user. This method validates the name of the data action using the this.validateName()
method.

getGadgetInfos(oReport)

The getGadgetInfos() method is called to enable the user interface to display data action
property fields. The method returns an array of GadgetInfos in the order you want them to
appear in the user interface. Gadgets are provided for all of the most common types of fields
(for example, text, drop-down, password, multi-select, radio button, check box) but you can
create custom gadgets if you want more complicated fields (for example, where multiple
gadgets are grouped together, or where different gadget fields display depending on which
option you select). It's a best practice to create a method that constructs each GadgetInfo you
want in your array, as it makes it easier for potential subclasses to pick and choose from the
GadgetInfos you've provided. If you follow this best practice there are already various methods
implemented by the different data action base classes that can return a GadgetInfo for each of
the fields that they use in their user interfaces. If you also need one of these GadgetInfos then
you call the corresponding create****GadgetInfo() method and push its return value into
your array of gadgets.

isAllowedHere(oReport)

The isAllowedHere() method is called when the user right-clicks on a data-point in a
visualization and the user interface starts to generate the context menu. If a data action exists
that's relevant to the selected data-points, then the method returns true and the data action
appears in the context menu. If the method returns false, then the data action doesn't appear
in the context menu. Consider accepting the default behavior inherited from the superclass.

upgrade(oOldDataActionJS)

If you're creating your first data action then don't use the upgrade(oOldDataActionJS) method.
Only use this method after you've created your first Knockout Model and are making significant
changes to properties for a second version of your Knockout Model. For example, if the first
version of your data action stores a URL in its Knockout Model, but you decide that the next
version will store URL component parts in separate properties (for example, protocol,
hostname, port, path, queryString and bookmark).

The second version of your Knockout Model code would request to open a data action that had
been saved with the first version of your Knockout Model code which can cause problems. To
resolve this issue, the system identifies that your current data action code version is newer
than that of the data action being opened and it calls the upgrade() method on your new data
action class and passes in the old data action Knockout Model (serialized to a JSON object).
You can then use the old JSON object to populate your new Knockout Model and return an

Chapter 2
Choose Which Data Action Inherited Methods to Override

2-18

upgraded version of the JSON object. This ensures that old data action metadata continues to
work as you improve your data action code.

HTTPAPIDataAction Methods

If you're extending the HTTPAPIDataAction class, then it provides the following additional
method that you may choose to override:

getAJAXOptions(oDataActionContext)

The getAJAXOptions() method is called by the data action's invoke() method. The
getAJAXOptions() method creates the AJAX Options object that describes the HTTP request
that you want your data action to make. The getAJAXOptions() method is passed the
oDataActionContext object that contains the metadata describing the selected data-points,
visualization, filters, workbook, and session. Set the AJAX Options as required by the HTTP
API you're trying to integrate with and specify the functions you want to be called when the
HTTPRequest is successful or results in an error. See the JQuery website for an explanation of
the jQuery.ajax object and its properties.

The following implementation is inherited from the HTTPAPIDataAction class. You need to
rewrite the inherited method to specify requirements. For example, forming the HTTP request,
and the code that handles the HTTP response. This implementation is useful as it shows the
parameters passed to the getAJAXOptions() function, the object that it's expected to return,
and gives a clear example of how to structure the code inside the method.

1 /**
2 * This method returns an object containing the AJAX settings used when the
data action is invoked.
3 * Subclasses may wish to override this method to provide their own
behavior.
4 * @param {module:obitech-reportservices/
dataactionmanager.DataActionContext} oDataActionContext The context metadata
describing where the data action was invoked from.
5 * @returns {?object} A JQuery AJAX settings object (see http://
api.jquery.com/jQuery.ajax/ for details) - returns null if there is a
problem.
6 */
7 dataaction.HTTPAPIDataAction.prototype.getAJAXOptions = function
(oDataActionContext)
8 {
9 jsx.assertInstanceOfModule(oDataActionContext, "oDataActionContext",
"obitech-reportservices/dataactionmanager", "DataActionContext");
10
11 var oAJAXOptions = null;
12 var oKOViewModel = this.getKOViewModel();
13 var sURL = oKOViewModel.sURL();
14 if (sURL)
15 {
16 // Parse the URL
17 var sResultURL = this._parseURL(sURL, oDataActionContext);
18 if (sResultURL)
19 {
20 // Parse the POST parameters (if required)
21 var eHTTPMethod = oKOViewModel.eHTTPMethod()[0];
22 var sData = null;
23 if (eHTTPMethod ===
dataaction.HTTPDataActionKOModel.HTTPMethod.POST)

Chapter 2
Choose Which Data Action Inherited Methods to Override

2-19

24 {
25 var sPOSTParams = oKOViewModel.sPOSTParams();
26 sData =
sPOSTParams.replace(dataaction.AbstractHTTPDataAction.RegularExpressions.LINE_
END, "&");
27 sData = this._parseURL(sData, oDataActionContext, false);
28 }
29 oAJAXOptions = {
30 type: eHTTPMethod,
31 url: sResultURL,
32 async: true,
33 cache: false,
34 success: function (/*oData, sTextStatus, oJQXHR*/)
35 {
36
oDataActionContext.getReport().displaySuccessMessage(messages.HTTP_API_DATA_AC
TION_INVOCATION_SUCCESSFUL.format(oKOViewModel.sName()));
37 },
38 error: function (oJQXHR/*, sTextStatus, sError*/)
39 {
40
oDataActionContext.getReport().displayErrorMessage(messages.HTTP_API_DATA_ACTI
ON_INVOCATION_FAILED.format(oKOViewModel.sName(), oJQXHR.statusText,
oJQXHR.status));
41 }
42 };
43 if (sData)
44 {
45 oAJAXOptions.data = sData;
46 }
47 }
48 }
49 return oAJAXOptions;
50 };

Test, Package, and Install Your Data Action
You use Oracle Analytics Desktop to test your data action from its source location before you
install it.

1. If Oracle Analytics Desktop is currently running, close it.

2. If you're working behind a proxy, set the proxy settings in %PLUGIN_DEV_DIR%
\gradle.properties. For information about accessing the web through HTTP proxy, see
Gradle User Manual.

3. Run Oracle Analytics Desktop in SDK mode by using the command prompt you started in
Choose Which Data Action Inherited Methods to Override and enter the following
commands:

cd %PLUGIN_DEV_DIR%
.\gradlew run
Oracle Analytics Desktop starts in SDK mode. Your data action extension appears in the
Console | Extensions page.

Chapter 2
Test, Package, and Install Your Data Action

2-20

Create a workbook and test your data action. If you find any issues, you can debug your
code using your browser's built-in developer tools.

4. If you created an HTTP API data action:

a. Go to the Console and display the Safe Domains page.

b. Add each domain that you want to access.

For example, if you need access to the apilayer.com APIs, add apilayer.net to the list
of safe domains.

c. Click the Connect column checkbox for the selected domain.

d. Reload the Safe Domains page in your browser for the changes to take effect.

5. If you want to prepare your data action extension to distribute to other people or to install in
Oracle Analytics:

• Package all of the files into a single ZIP file containing the %PLUGIN_DEV_DIR%
\src\customdataaction folder and its contents.

• Name the zip using the same ID you gave to your data action extension when you
created it.

6. Install your data action extension. See Manage Oracle Analytics Extensions.

Use an Upgrade Handler for Knockout Model Changes
For some Knockout Model changes you need to upgrade your data action extension using an
upgrade handler.

When you're making improvements to your data action extension without making changes to
the Knockout Model you normally edit your JavaScript or CSS files, create a new ZIP file, and
replace the existing data action extension with the new ZIP file. However, if you've made
changes to your data action's Knockout Model then you might need to change the data action
VERSION property and provide an upgrade handler.

Decide whether you need to use an upgrade handler:

Upgrade Handler Required

• If you rename a property in your Knockout Model.

• If you combine multiple properties into a single property in your Knockout Model.

• If you split a single property into multiple properties in your Knockout Model.

• If you add a new property to the Knockout Model and the correct default value for it
depends on other values in the Knockout Model.

Upgrade Handler Not Required

• If you add a new property to the Knockout Model and can provide a default value that's
correct for all existing usages of your data action.

• If you remove a property from the Knockout Model because it's no longer used by your
data action code.

Chapter 2
Use an Upgrade Handler for Knockout Model Changes

2-21

Upgrade Data Action Extensions
Upgrade your data action extensions to improve the data action code or upgrade the metadata
to enable existing data actions to work with new data action code.

Use an upgrade handler to upgrade a data action extension.

1. Increase the version number of your data action.

For example, if your data action is called company.MyDataAction, then search
mydataaction.js for the mydataaction.MyDataAction.VERSION property. If it's currently
set to 1.0.0 then change it to 1.0.1.

2. Add a static upgrade(oOldDataActionJS) method to your data action's class.

If the VERSION property differs from the sVersion value stored in the data action metadata
then the Data Action Manager calls the static upgrade() method on your data action's
class.

3. Implement your upgrade() method by calling the upgrade() method on the superclass and
capture its response.

4. Continue to implement your upgrade() method by making further edits to the partially
upgraded data action JSON returned by the superclass, until the object matches the
correct set of properties required by your latest Knockout Model.

5. To finish call var oUpgradedDataAction =
dataaction.AbstractDataAction.createFromJS(fDataActionClass,
sFullyQualifiedDataActionClassName, oUpgradedDataActionJS).

This command constructs a new instance of your data action from the upgraded data
action JSON and returns oUpgradedDataAction.getSettings().

Data Action Extension File Reference
Each data action extension requires a plugin.xml file and each plugin.xml file can contain any
number of data actions.

Topics:

• Data Action plugin.xml File Example

• Data Action plugin.xml File Properties Section - tns:obiplugin

• Data Action plugin.xml File Resources Section - tns:resources

• Data Action plugin.xml File Extensions Section - tns:extension

Data Action plugin.xml File Example
The plugin.xml file has three main sections, tns:obiplugin, tns:resources, and
tns:extension.

Example plugin.xml

This example shows a typical plugin.xml file for one data action.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tns:obiplugin xmlns:tns="http://plugin.frameworks.tech.bi.oracle"

Chapter 2
Upgrade Data Action Extensions

2-22

3 id="obitech-currencyconversion"
4 name="Oracle BI Currency Conversion"
5 version="0.1.0.@qualifier@"
6 optimizable="true"
7 optimized="false">
8
9
10 <tns:resources>
11 <tns:resource id="currencyconversion" path="scripts/
currencyconversion.js" type="script" optimizedGroup="base"/>
12 <tns:resource-folder id="nls" path="resources/nls" optimizable="true">
13 <tns:extensions>
14 <tns:extension name="js" resource-type="script"/>
15 </tns:extensions>
16 </tns:resource-folder>
17 </tns:resources>
18
19
20 <tns:extensions>
21 <tns:extension id="oracle.bi.tech.currencyconversiondataaction" point-
id="oracle.bi.tech.plugin.dataaction" version="1.0.0">
22 <tns:configuration>
23 {
24 "host": { "module": "obitech-currencyconversion/
currencyconversion" },
25 "resourceBundle": "obitech-currencyconversion/nls/messages",
26 "properties":
27 {
28 "className": "obitech-currencyconversion/
currencyconversion.CurrencyConversionDataAction",
29 "displayName": { "key" : "CURRENCY_CONVERSION", "default" :
"Currency Conversion" },
30 "order": 100
31 }
32 }
33 </tns:configuration>
34 </tns:extension>
35 </tns:extensions>
36
37 </tns:obiplugin>

Data Action plugin.xml File Properties Section - tns:obiplugin
The tns:obiplugin section defines properties common to all types of extensions.

Extension Properties

The tns:obiplugin section defines properties common to all types of extensions.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tns:obiplugin xmlns:tns="http://plugin.frameworks.tech.bi.oracle"
3 id="obitech-currencyconversion"
4 name="Oracle BI Currency Conversion"
5 version="0.1.0.@qualifier@"

Chapter 2
Data Action Extension File Reference

2-23

6 optimizable="true"
7 optimized="false">

• Line 1: The XML declaration.

• Line 2: The opening tag for the extension's root XMLElement and the declaration for the
tns namespace that's used throughout plugin.xml files.

• Line 3: The extension's unique ID.

• Line 4: The extension's default display name (used when a localized version isn't
available).

• Line 5: The extension's version number.

• Line 6: A boolean indicating whether or not the JS/CSS can be optimized (compressed).

• Line 7: A boolean indicating whether or not the JS/CSS has been optimized (compressed).

Data Action plugin.xml File Resources Section - tns:resources
The tns:resources section registers all of the files that contribute to your extension.

Resources

1 <tns:resources>
2 <tns:resource id="currencyconversion" path="scripts/
currencyconversion.js" type="script" optimizedGroup="base"/>
3 <tns:resource-folder id="nls" path="resources/nls" optimizable="true">
4 <tns:extensions>
5 <tns:extension name="js" resource-type="script"/>
6 </tns:extensions>
7 </tns:resource-folder>
8 </tns:resources>

You need to register each JavaScript, CSS, Image, and Translation Resource File here. The
section is contained within the <tns:resources> element and contains any number of the
following elements:

• <tns:resource>
These elements are used to register a single file (for example, a JavaScript or CSS file).

• <tns:resource-folder>
These elements are used to register all the files under a specified folder at the same time.
For example, an image folder or the folder containing the resource files for Native
Language Support.

More information on how to register each type of file is provided in the following sections.

JavaScript Files

Each JavaScript file in your extension must be registered with a line similar to the one shown
below.

<tns:resource id="currencyconversion" path="scripts/currencyconversion.js"
type="script" optimizedGroup="base"/>

Chapter 2
Data Action Extension File Reference

2-24

Where:

• id is the ID given to the file.
Set the ID to match the JavaScript filename without the .js extension.

• path is the relative path to the JavaScript file from the plugin.xml file. JavaScript files
should be stored under your extension's scripts directory.
Use all lowercase for your JavaScript files with no special characters (for example,
underscore, hyphen).

• type is the type of file being registered. It must be set to script for JavaScript files.

• optimizedGroup groups multiple JavaScript files into a single compressed file. Third-party
extensions must leave this set to base.

CSS Files

Each CSS file in your extension must be registered with a line similar to the one shown below.

<tns:resource id="currencyconversionstyles" path="resources/
currencyconversion.css" type="css"/>

Where:

• id is the ID given to the file.
Set the ID to match the CSS filename without the .css extension.

• path is the relative path to the CSS file from the plugin.xml file. CSS files should be stored
under your extension's resources directory.
Use all lowercase for your CSS files with no special characters (for example, underscore,
hyphen).

• type is the type of file being registered. It should always be set to css for CSS files.

Image Folders

If your extension has images that you need to refer to from within your JavaScript code, then
put them in a resources/images directory within your extension's directory structure and
add a <tns:resource-folder> element to your plugin.xml as follows:

<tns:resource-folder id="images" path="resources/images" optimizable="false"/>

If your images are only referenced by your CSS files, then you don't need to add this
<tns:resource-folder> element to your plugin.xml file. In this case, you must still add
them to the resources/images directory so that you can then refer to them using a relative
path from your CSS file.

Native Language Support Resource Folders

Oracle Analytics implements Native Language Support. This requires developers to externalize
the strings they display in their user interface into separate JSON resource files. You can then
provide different localized versions of those files in a prescribed directory structure and Oracle
Analytics automatically uses the correct file for the user's chosen language. You can provide as
many translated versions of the resource files as needed. A Native Language Support
resource folder points Oracle Analytics to the root of the prescribed Native Language Support
directory structure used by your extension. All extensions that use Native Language Support

Chapter 2
Data Action Extension File Reference

2-25

resource files must have a <tns:resource-folder> entry that looks exactly like the example
below.

1 <tns:resource-folder id="nls" path="resources/nls" optimizable="true">
2 <tns:extensions>
3 <tns:extension name="js" resource-type="script"/>
4 </tns:extensions>
5 </tns:resource-folder>

See Generated Folders and Files for details about the contents of the files and the prescribed
directory structure that you should follow.

Data Action plugin.xml File Extensions Section - tns:extension
For each data action you want your extension to provide, you must register a data action
extension using a <tns:extension> element similar to this:

<tns:extension id="oracle.bi.tech.currencyconversiondataaction" point-
id="oracle.bi.tech.plugin.dataaction" version="1.0.0">
 <tns:configuration>
 {
 "host": { "module": "obitech-currencyconversion/currencyconversion" },
 "resourceBundle": "obitech-currencyconversion/nls/messages",
 "properties":
 {
 "className": "obitech-currencyconversion/
currencyconversion.CurrencyConversionDataAction",
 "displayName": { "key" : "CURRENCY_CONVERSION", "default" :
"Currency Conversion" },
 "order": 100
 }
 }
 </tns:configuration>
</tns:extension>

Where:

• id is the unique ID you give to your data action.

• point-id is the type of extension you want to register. For data action extensions, this must
be set to oracle.bi.tech.plugin.dataaction.

• version is the extension API version that your extension definition uses (leave this set to
1.0.0).

The <tns:configuration> element contains a JSON string that defines:

• host.module - This is the fully qualified name of the module containing your data action.
This fully qualified module name is formulated as %PluginID%/%ModuleName%, where:

– %PluginID% must be replaced with the extension ID you specified in the id attribute of
the <tns:obiplugin> element.

– %ModuleName% must be replaced with the resource ID you specified in the id attribute of
the <tns:resource> element for the JavaScript file containing your data action.

Chapter 2
Data Action Extension File Reference

2-26

• resourceBundle - This is the Native Language Support path to the resource file that
contains this data action's localized resources. If your resource files are named
messages.js and stored correctly in the prescribed nls directory structure, then set this
property to %PluginID%/nls/messages (where %PluginID% must be replaced with the
extension ID you specified in the id attribute of the <tns:obiplugin> element at the top of
the plugin.xml file).

• properties.className - This is the fully qualified class name given to the data action
you're registering. This fully qualified class name is formulated as %PluginID%/
%ModuleName%.%ClassName%, where:

– %PluginID% must be replaced with the extension ID you specified in the id attribute of
the <tns:obiplugin> element.

– %ModuleName% must be replaced with the resource ID you specified in the id attribute of
the <tns:resource> element for the JavaScript file containing your data action.

– %ClassName% must be replaced with the name you gave to the data action class in your
JavaScript file.

• properties.displayName - This property contains an object and two further properties:

– key is the Native Language Support message key that can be used to lookup the data
action's localized display name from within the specified resourceBundle.

– default is the default display name to use if for some reason the localized version of
the display name can't be found.

• properties.order - This property enables you to provide a hint that's used to determine the
position that this data action should appear when shown in a list of data actions. Data
actions with lower numbers in their order property appear before data actions with higher
numbers. When there's a tie, the data actions are displayed in the order they're loaded by
the system.

Chapter 2
Data Action Extension File Reference

2-27

3
Create Oracle Analytics Visualization and
Workbook Extensions

This chapter describes how to set up your development environment to create and test custom
visualization and workbook extensions.

Topics:

• About the Oracle Analytics Extension Development Environment

• Set Up the Oracle Analytics Extension Development Environment on Mac

• Set Up the Oracle Analytics Extension Development Environment on Windows

• Work with Extensions

About the Oracle Analytics Extension Development Environment
After you set up your extension development environment, you use the scripts and SDK
provided with Oracle Analytics Desktop to create, develop, and test custom visualization and
workbook extensions.

Topics:

• Workflow to Set Up the Oracle Analytics Extension Development Environment

• Oracle Analytics Extensions Development Scripts

• Types of Oracle Analytics Extensions

• Oracle Analytics Extension Development Resources

• Oracle Analytics Extensions Limitations

Workflow to Set Up the Oracle Analytics Extension Development
Environment

Here are the tasks you need to complete to set up your extension development environment.
You can begin creating your extensions after you've successfully set up your environment.

Task Description More Information

Install Oracle
Analytics Desktop

Provides the scripts you need to create your
environment and create an extension
skeleton. Oracle Analytics Desktop also
functions as a local environment where you
run and test your extensions.

Install Oracle Analytics Desktop
on Mac

Install Oracle Analytics Desktop
on Windows

Install Java JDK Provides the Java tools and libraries required
to build your extensions.

Install Java JDK on Mac

Install Java JDK on Windows

3-1

Task Description More Information

Set variables on your
computer

Ensures that the Oracle Analytics Desktop
scripts work properly. For Mac you configure
bash profile, and for Windows you set user
variables.

Update Bash Profile or ZSHRC
File and Create the Development
Directory on Mac

Set User Variables and Create a
Development Directory on
Windows

Add a directory to
contain your
development
environment

Provides a location where you create your
development environment.

Update Bash Profile or ZSHRC
File and Create the Development
Directory on Mac

Set User Variables and Create a
Development Directory on
Windows

Create your extension
development
environment

Provides the framework and resources you
use to create and develop extensions.

Create the Extension
Development Environment on
Mac

Create the Extension
Development Environment on
Windows

Oracle Analytics Extensions Development Scripts
Your installation of Oracle Analytics Desktop includes the scripts you use to create your
development environment and create and work with extensions.

• bicreateenv - Run this script to create the environment where you develop your
extensions.

• bicreateplugin - Run this script to create a skeleton extension. For information about the
types of extensions that you can create with this script, see Types of Oracle Analytics
Extensions.

• bideleteplugin - Run this script to delete an extension from your development
environment.

• bivalidate - Run the gradlew validate command to call this script. The bivalidate
script validates that the JSON configuration files are properly formatted and contain the
appropriate extension configuration.

Types of Oracle Analytics Extensions
This topic lists the types of extensions you can create when you run the bicreateplugin
script.

Visualization Extensions

Runing the bicreateplugin command creates a folder containing the files that you use to
develop your visualization extension. The entry point of the visualizations is the render()
method on the file <vizName>.js. The render() method is invoked during the creation of the
visualization and during events like resize, data update, and so on.

You can create the following types of visualization extensions.

• basic - Creates a visualization that doesn’t use any data from Oracle Analytics or any data
model mapping. This is like the Image and Text visualization types delivered with Oracle
Analytics.

Chapter 3
About the Oracle Analytics Extension Development Environment

3-2

For example, you can use this visualization type to show an image or some text that’s
coded into the extension or from a configuration. You can use this type of visualization to
improve formatting.

• dataviz - Creates a visualization that renders data from data sources registered with
Oracle Analytics into a chart or table or some other representation.

• embeddableDataviz - Creates a visualization that renders data from data sources
registered with Oracle Analytics into the cells of a trellis visualization.

Workbook Extension

You can create a workbook extension.

• workbook - Creates the base structure that you use to develop a workbook-scoped
extension. The extension's entry point is the performMainAction method. This code exists
in the .js file created by the extension command, for example workbook.js.

Oracle Analytics Extension Development Resources
Oracle Analytics provides information to help you develop your extensions.

• circlePack sample - The circlePack sample is included in your development environment
to help you learn how to develop a visualization extension. You can deploy and use this
sample immediately. You can also copy the sample and use it as a template for the
visualization extensions that you want to create.

The circlePack sample is located in your development environment, for example
<your_development_directory>\src\sampleviz\sample-circlepack

• Extensions library - Extensions are available for you to download from the Oracle
Analytics Extensions library.

• JS API documentation - The API documentation contains JavaScript reference
information that you need to develop an extension.

• Oracle Analytics product documentation - These resources contain information about
how to create workbooks and visualizations:

Begin to Build a Workbook and Create Visualizations

Get Started with Visualizations video

Oracle Analytics Extensions Limitations
The extensions that you create are custom code and may not work properly in all browsers or
on all devices.

When creating an extension, you as the developer must test all of the browsers and devices
that you want the extension to render on.

Also, in some cases extensions may not work in the Oracle Analytics mobile application due to
application restrictions that don't apply to browsers.

Chapter 3
About the Oracle Analytics Extension Development Environment

3-3

https://www.oracle.com/business-analytics/data-visualization/extensions/
https://www.oracle.com/business-analytics/data-visualization/extensions/
https://docs.oracle.com/en/middleware/bi/analytics-server/user-oas/begin-build-workbook-and-create-visualizations.html
https://www.youtube.com/watch?v=lu0dYy1Z87c&autoplay=0&html5=1

Set Up the Oracle Analytics Extension Development
Environment on Mac

This topic describes the tasks you need to perform to set up and use your Oracle Analytics
extension development environment.

Topics:

• Install Oracle Analytics Desktop on Mac

• Install Java JDK on Mac

• Update Bash Profile or ZSHRC File and Create the Development Directory on Mac

• Create the Extension Development Environment on Mac

• Create a Skeleton Extension on Mac

• Test Your Visualization and Workbook Extensions on Mac

Install Oracle Analytics Desktop on Mac
Oracle Analytics Desktop provides the scripts needed to create your development environment
and extension skeletons, and a local test environment.

Install or upgrade to the latest version of Oracle Analytics Desktop.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Go to Oracle Analytics Desktop Installation Download, click Download and log into your
Oracle Cloud account.

2. In the Oracle Software Delivery Cloud page, click Platforms and select Apple Mac OS X.

3. Review and accept the license agreement. Click the Oracle Analytics Desktop ZIP file to
download it.

4. Go to the download location on your computer, click the ZIP file, and click
Oracle_Analytics_Desktop_<version>_Mac.pkg and perform the installation.

5. Navigate to the Applications folder and confirm the installation created these applications:

• Oracle Data Visualization for Desktop

• Oracle Data Visualization for Desktop Configure Python

Install Java JDK on Mac
Use a Java JDK version that's compatible with your macOS and processor. All examples in this
chapter were developed with Java JDK 8u201.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Open Terminal and enter this command to check if you have Java JDK installed.

java -version

2. If one or more Java JDK is installed, confirm that one is compatible with your macOS and
processor.

3. If you need to install Java JDK, go to Java SE 8 Archive Downloads.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-4

https://www.oracle.com/solutions/business-analytics/analytics-desktop/oracle-analytics-desktop.html
https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html

4. In the table, click the macOS tab. Locate and download the install file compatible with your
macOS and processor.

5. Locate and run the downloaded installation file.

6. After the installation completes, in Terminal enter this command to check that the Java JDK
version you picked installed successfully:

java -version

Update Bash Profile or ZSHRC File and Create the Development Directory
on Mac

Modify your bash profile or ZSHRC file to include the variables required by the Oracle Analytics
Desktop scripts. Then create the development directory to contain your development
environment.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. To modify your Bash Profile, go to the home directory and check if bash_profile is visible. If
not, press Command + Shift + . to make bash_profile visible.

To modify your ZSHRC file, open Terminal and run this command: .

open ~/.zshrc
2. Add these lines to bash_profile or ZSHRC.

In PLUGIN_DEV_DIR specify the location of the development directory, for example /Users/
<username>/Documents/dv-custom-plugins.

export DVDESKTOP_SDK_HOME=/Applications/dvdesktop.app/Contents/Resources/
app.nw

export PLUGIN_DEV_DIR=/Users/<username>/Documents/dv-custom-plugins

export PATH=${DVDESKTOP_SDK_HOME}/tools/bin:$PATH

export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk-1.8.jdk/Contents/
Home/

3. For bash_profile, open Terminal and run this command to apply the changes:

source ~/.bash_profile

For the ZSHRC file, open Terminal and run this command to apply the changes:

source ~/.zshrc

4. To create the extension development directory, open Terminal and run this command:

mkdir $PLUGIN_DEV_DIR

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-5

Create the Extension Development Environment on Mac
After you configure bash profile, you run the bicreateenv script to create the development
environment that contains the resources you need to create extensions.

For information about the options available for running this script, see the script's command-
line help, for example:

cd $PLUGIN_DEV_DIR
bicreateenv -help

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. In Finder, navigate to the extension directory and run the bicreateenv script to create the
environment:

cd $PLUGIN_DEV_DIR
bicreateenv

2. Navigate to the directory that you created and confirm that its contents look like this:

3. Open build.gradle and search for -pluginDevDir. If the -pluginDevDir argument
contains capital letters, change them to lowercase letters. The modified argument should
look like this:

4. Optional: If you’re working behind a web proxy, open gradle.properties and add
system properties that point to your proxy.

Use the following example to set your system properties:

systemProp.https.proxyHost=www-proxy.somecompany.com
systemProp.https.proxyPort=80
systemProp.https.nonProxyHosts=*.somecompany.com|*.companyaltname.com

Create a Skeleton Extension on Mac
Use the bicreateplugin script to create an Oracle Analytics extension skeleton.

For information about the extensions you can create when you run the bicreateplugin script,
see Types of Oracle Analytics Extensions.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-6

Running the script creates a folder in your PLUGIN_DEV_DIRECTORY environment. This
folder contains the files that you use to develop the extension. The <extension_name>.js
render method is the entry point where you can start writing code.

The bicreateplugin script uses the following syntax:

bicreateplugin viz -subType <subtypename> -id <com.company.yourVizName>

Where:

subType is the type of visualization extension you want to create. Valid values are basic,
dataviz, and embeddableDataviz. Don't include subType when you create a workbook
extension.

id is the name of the extension. The name you specify must be in this format:
<com.company.yourVizName>.

1. In Terminal, navigate to your extension development directory, run the bicreateplugin
script.

This example shows how to create a dataviz skeleton extension:

bicreateplugin viz -subType dataviz -id com.companyabc.helloviz

This example shows how to create a workbook skeleton extension:

bicreateplugin workbook -id com.companyabc.helloworkbook

2. In Finder, navigate to the src/customviz folder and confirm that a new folder was
created and that its name matches the extension name you specified when you ran the
script.

This example shows a dataviz extension's directory:

This example shows a workbook extension's directory:

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-7

Test Your Visualization and Workbook Extensions on Mac
Use Terminal to run Oracle Analytics Desktop in SDK mode to test your Oracle Analytics
visualization and workbook extensions. Running Oracle Analytics Desktop in SDK mode opens
Oracle Analytics Desktop in the browser.

For information about creating workbooks and adding visualizations to workbooks, see the
Oracle Analytics product documentation section in Oracle Analytics Extension Development
Resources.

You must build and package a workbook extension before you can upload it to Oracle Analytics
Desktop to test it. See Build and Package an Extension.

1. In Terminal run this command to invoke Oracle Analytics Desktop in the browser:

./gradlew run
2. If after you run the command Oracle Analytics Desktop opens and then closes, you can

use the Mac menu bar to manually open Oracle Analytics Desktop in a browser.

a. Go to the Mac menu bar and locate and click the Oracle Analytics Desktop icon.

b. Select Copy URL to Clipboard.

c. In a browser, paste the copied URL and press Enter.

3. To test a visualization extension:

a. In Oracle Analytics Desktop, open or create a workbook.

b. In the workbook's Data Panel, click Visualizations and scroll to the bottom of the
Visualizations list to locate the Custom Visualizations section containing the custom
visualizations you created.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-8

4. To test a workbook extension:

a. In Oracle Analytics Desktop, click Navigator and then click Console. Go to the
Extensions and Enrichments section and click Extensions.

b. Click Upload Extensions and browse for and select the workbook extension ZIP file.
Click Open.

c. In Oracle Analytics Desktop, open or create a workbook.

d. In the Toolbar click Custom Workbook Extension to view a list of the workbook
extensions that you uploaded to your instance.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Mac

3-9

Set Up the Oracle Analytics Extension Development
Environment on Windows

This topic describes the tasks you need to perform to set up and use your Oracle Analytics
extension development environment.

Topics:

• Install Oracle Analytics Desktop on Windows

• Install Java JDK on Windows

• Set User Variables and Create a Development Directory on Windows

• Create the Extension Development Environment on Windows

• Create a Skeleton Extension on Windows

• Test Your Visualization and Workbook Extensions on Windows

Install Oracle Analytics Desktop on Windows
Oracle Analytics Desktop provides the scripts needed to create your development environment
and extension skeletons, and a local test environment.

Install or upgrade to the latest version of Oracle Analytics Desktop.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Go to Oracle Analytics Desktop Installation Download, click Download and log into your
Oracle Cloud account.

2. In the Oracle Software Delivery Cloud page, click Platforms and select Microsoft
Windows x64.

3. Review and accept the license agreement. Click the Oracle Analytics Desktop ZIP file to
download it.

4. Go to the download location on your computer, double-click the ZIP file, and double-click
Oracle_Analytics_Desktop_<version>_Win.exe and perform the installation.

5. Navigate to C:\Program Files\Oracle Analytics Desktop to confirm the
installation.

Install Java JDK on Windows
Use a Java JDK version that is compatible with your Windows and processor. All examples in
this chapter were developed with Java JDK 8u201.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Open Command Prompt and enter this command to check if you have Java JDK installed:

java -version

2. If one or more Java JDK is installed, confirm one is compatible with your macOS and
processor.

3. If you need to install Java JDK, go to Java SE 8 Archive Downloads.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-10

https://www.oracle.com/solutions/business-analytics/analytics-desktop/oracle-analytics-desktop.html
https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html

4. Locate and download the JDK install file compatible with your Windows and processor.

5. After the installation completes, open Command Prompt and enter this command to check
that the Java JDK version you picked installed successfully:

java -version

Set User Variables and Create a Development Directory on Windows
Create or modify the user variables required by the Oracle Analytics Desktop scripts. Then
create the development directory to contain your development environment,

In this procedure, you create or update these required user variables:

• PLUGIN_DEV_DIR - The location of your development directory, for example
C:\PLUGIN_DEV_DIR.

• DVDESKTOP_SDK_HOME - The location of your Oracle Analytics Desktop installation,
for example C:\Program Files\Oracle Analytics Desktop\dvdesktop.

• JAVA_HOME - The location of your JDK 1.8 installation, for example C:\Program
Files\Java\jdk-1.8.

• Path - The location of your Oracle Analytics Desktop bin directory, for example
C:\Program Files\Oracle Analytics Desktop\tools\bin. This variable
already exists in Windows. When you update it, make sure that you don't delete or modify
any of the variable's existing paths.

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Open File Explorer, right-click This PC, and then click Properties. Click Advanced
System Settings, and in the Advanced tab click Environment Variables.

2. In Environment Variables, click New under User variables for <computer name>. In the
New User Variable dialog, go to Variable name and enter the name of the variable, and
then browse for or enter the directory location. See the list at the top of this task for
variable name and value requirements. Click OK.

3. In Environment Variables, under User variables for <computer name> click the Path
variable, and then click Edit. Browse for or enter the location of your Oracle Analytics
Desktop bin directory. Click OK.

4. In the Environment Variables dialog, click OK.

5. To create the development directory, open the Command Prompt and run this command:

cd C:\
mkdir $PLUGIN_DEV_DIR

Create the Extension Development Environment on Windows
After you configure user variables, you run the bicreateenv script to create the development
environment that contains the resources you need to create extensions.

For information about the options available for running the script, see the script's command-line
help, for example:

cd $PLUGIN_DEV_DIR
bicreateenv -help

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-11

See Workflow to Set Up the Oracle Analytics Extension Development Environment .

1. Open Command Prompt, and run the bicreateenv script to create the environment, for
example:

cd $PLUGIN_DEV_DIR
bicreateenv

2. In File Explorer, navigate to the directory that you created and confirm that its contents
look like this:

3. Optional: If you’re working behind a web proxy, open gradle.properties and add
system properties that point to your proxy.

Use the following example to set your gradle.properties:

systemProp.https.proxyHost=www-proxy.somecompany.com
systemProp.https.proxyPort=80
systemProp.https.nonProxyHosts=*.somecompany.com|*.companyaltname.com

Create a Skeleton Extension on Windows
Use the bicreateplugin script to create an Oracle Analytics extension skeleton.

The bicreateplugin script uses the following syntax:

bicreateplugin viz -subType <subtypename> -id <com.company.yourVizName>

Where:

subType is the type of visualization extension you want to create. Valid values are basic,
dataviz, and embeddableDataviz. Don't include subType when you create a workbook
extension.

id is the name of the extension. The name you specify must be in this format:
<com.company.yourVizName>.

For information about the extensions you can create when you run the bicreateplugin script,
see Types of Oracle Analytics Extensions. The examples used in this topic show you how to
create the dataviz and workbook skeleton extensions.

Running the script creates a folder in your PLUGIN_DEV_DIRECTORY environment. This
folder contains the files that you use to develop the extension. The <extension_name>.js
render method is the entry point where you can start writing code.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-12

1. In Command Prompt, run the bicreateplugin script in your development directory.

cd $PLUGIN_DEV_DIR
bicreateplugin viz -subType <subtypename> -id <com.company.yourVizName>

This example shows how to create a dataviz skeleton extension:

bicreateplugin viz -subType dataviz -id com.companyabc.helloviz

This example shows how to create a workbook skeleton extension:

bicreateplugin workbook -id com.companyabc.helloworkbook

2. In File Explorer, navigate to your development environment and extension directory, for
example C:\PLUGIN_DEV_DIR\src\customviz, and confirm that a new folder was
created and that its name matches the extension name you specified.

This example shows a dataviz extension's directory:

This example shows a workbook extension's directory:

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-13

Test Your Visualization and Workbook Extensions on Windows
Use Command Prompt to run Oracle Analytics Desktop in SDK mode to test your Oracle
Analytics visualization and workbook extensions. Running Oracle Analytics Desktop in SDK
mode opens Oracle Analytics Desktop in a browser.

For information about creating workbooks and adding visualizations to workbooks, see the
Oracle Analytics product documentation section in Oracle Analytics Extension Development
Resources.

You must build and package a workbook extension before you can upload it to Oracle Analytics
Desktop to test it. See Build and Package an Extension.

1. In Command Prompt, change to PLUG_IN_DEV_DIR and run this command to invoke
Oracle Analytics Desktop in a browser:

cd $PLUGIN_DEV_DIR
./gradlew run

2. If after you run the command Oracle Analytics Desktop opens and then closes, you can
use the Windows task bar to manually open Oracle Analytics Desktop in a browser.

a. Go to the Windows task bar and click Show hidden icons. Locate and right-click the
Oracle Analytics Desktop icon.

b. Select Copy URL to Clipboard.

c. In a browser, paste the copied URL and press Enter.

3. To test a visualization extension:

a. In Oracle Analytics Desktop, open or create a workbook.

b. In the workbook's Data Panel, click Visualizations and scroll to the bottom of the
Visualizations list to locate the Custom Visualizations section containing the custom
visualizations you created.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-14

4. To test a workbook extension:

a. In Oracle Analytics Desktop, click Navigator, and then click Console. Go to the
Extensions and Enrichments section and click Extensions.

b. Click Upload Extensions and browse for and select the workbook extension ZIP file.
Click Open.

c. In Oracle Analytics Desktop, open or create a workbook.

d. In the Toolbar click Custom Workbook Extension to view a list of the workbook
extensions and you uploaded to your instance.

Chapter 3
Set Up the Oracle Analytics Extension Development Environment on Windows

3-15

Work with Extensions
This topic describes some of the tasks you perform when you develop your Oracle Analytics
extensions.

Topics:

• Build and Package an Extension

• Upload an Extension to Oracle Analytics

• Delete Extensions from the Oracle Analytics Development Environment

Build and Package an Extension
Run the gradlew clean build command to build and package an extension into a ZIP file.
You upload this file to your Oracle Analytics production environment, or to your Oracle
Analytics Desktop test environment.

After you run the command, Oracle Analytics Desktop adds a build directory to your
development environment, for example C:/PLUGIN_DEV_DIR/build/distributions. This
directory contains a ZIP file for each extension in your development directory.

• Navigate to your development directory and run the gradlew clean build command.
For example,

cd $PLUGIN_DEV_DIR
./gradlew clean build

Upload an Extension to Oracle Analytics
After you build and package your extension to a ZIP file in your Oracle Analytics Desktop
development environment, you upload the ZIP file to your Oracle Analytics production
environment.

See Build and Package an Extension.

After you upload a visualization extension to Oracle Analytics and create or open a workbook,
the Visualization tab displays the visualization extension in the Custom Visualizations section.
From there you can drag and drop the custom visualization to your workbook. The extension
displays as an option for every workbook on the instance where you uploaded the extension.
All visualization extension types are available for you to add to workbooks. See Types of
Oracle Analytics Extensions.

After you upload a workbook extension to Oracle Analytics, and create or open a workbook,
the Custom Workbook Extension icon is displayed in the workbook's toolbar. Click this icon
to view a list of the uploaded workbook extensions. Click an extension from the list to invoke it.
The workbook extensions display for every workbook on the instance where you uploaded the
extension.

1. Open Oracle Analytics. On the Home page click Navigator. In Navigator click Console.

2. Under Extensions and Enrichments, click Extensions.

3. In Extensions, click Upload Extensions, and select the ZIP file containing the extension.
Then click Open.

Chapter 3
Work with Extensions

3-16

Delete Extensions from the Oracle Analytics Development Environment
You can use the bideleteplugin script to delete any extension from your Oracle Analytics
development environment.

The build and package process includes all of the visualizations contained in your development
directory. To exclude any unwanted visualizations from the build, you can delete them before
you perform the build and package process.

Use the information in this table to help you delete an extension:

Action Command

Delete an extension
cd $PLUGIN_DEV_DIR
bideleteplugin viz -id
<id_of_extension>

Delete an unclassified extension
cd $PLUGIN_DEV_DIR
bideleteplugin unclassified -id
<id_of_extension>

Delete a skin extension
cd $PLUGIN_DEV_DIR
bideleteplugin skin -id
<id_of_extension>

Chapter 3
Work with Extensions

3-17

4
Manage Oracle Analytics Extensions

You can upload, download, search for, and delete extensions. Extensions are custom
visualizations, workbooks, or data actions that you or a developer create externally and then
import into Oracle Analytics.

 LiveLabs Sprint

For example, you can upload an extension that provides a custom visualization that you can
add to workbooks.

1. On the Home page, click the Navigator, and then click Console.

2. Click Extensions.

3. To upload an extension, click Upload Extension, browse to the extension ZIP file, and
click Open to upload the extension.

4. Perform any of the following tasks.

• To search for an extension, enter your search criteria in the Search field and click
Return to display search results.

• To delete an extension, click Options on the extension and select Delete, and click
Yes to delete the extension.
If you delete a visualization type that’s used in a workbook, then that workbook
displays an error message in place of the visualization. Either click Delete to remove
the visualization, or upload the same extension so that the visualization renders
correctly.

• To download an extension, click Options on the extension and select Download.

4-1

https://apexapps.oracle.com/pls/apex/dbpm/r/livelabs/view-workshop?wid=3247

Part III
Embed Content

This part explains how to embed content into applications and web pages.

Topics:

• About Embedding Oracle Analytics Content into Applications and Web Pages

• Embed Oracle Analytics Content With iFrames

• Embed Oracle Analytics Content With the JavaScript Embedding Framework

5
Get Started Embedding Content into
Applications and Web Pages

This chapter contains information that you need to know before you embed content into
applications and web pages.

Topics:

• About Embedding Oracle Analytics Content into Applications and Web Pages

• Register an Application as a Safe Domain

About Embedding Oracle Analytics Content into Applications and
Web Pages

You can embed Oracle Analytics content into an application, custom application, or portal web
page.

When you embed analytics, you put information where users need it to make business
decisions. Embedded analytics delivers fast time-to-insight and increases user productivity.

There are two analytics content embedding methods:

• Use the analytics content item's URL. Typically this method uses an iFrame. See Embed
Oracle Analytics Content With iFrames.

• Use the JavaScript embedding framework when you need an integrated way to embed
analytics content. This method provides greater flexibility than the iFrame embedding
method. For example, use this method when you want to embed visualizations into a
custom web application. See Typical Workflow to Use the JavaScript Embedding
Framework with Oracle Analytics Content.

Register an Application as a Safe Domain
Before you can embed Oracle Analytics content into another application, your administrator
must register the application's domain as safe.

For security reasons, you’re not allowed to add analytics content to an applications unless your
administrator considers it safe to do so.

See Register Safe Domains.

Web browsers have become more restrictive about dealing with third party cookies. This
restriction can impact embedding projects where the browser won't display your embedded
analytics content.

To work around this issue make sure that the Oracle Analytics instance where you embed
analytics content is on a subdomain of the host web page or web application.

Use this information if you're using JavaScript to embed analytics content:

5-1

• Due to CORS safeguarding, you can't open your HTML file containing embedded analytics
content directly in a browser. To work around this issue you must register the web server
(either localhost or another web server) as a safe domain.

• If you use a localhost web server for testing, then you may need to add references to http://
localhost:<port> and http://127.0.0.1:<port>.

You must be an administrator to perform this task.

1. Go to Oracle Analytics, click Navigator, and click Console.

2. Click Safe Domains.

3. Click Add Domain and enter the domain.

4. Select Embedding.

5. If using compatibility mode with embedding, select Allow Frames.

Chapter 5
Register an Application as a Safe Domain

5-2

6
Embed Oracle Analytics Content With iFrames

This chapter explains how to use iFrames to embed Oracle Analytics content into applications
and web pages.

Topics:

• Considerations for Embedding Oracle Analytics Content With iFrame

• Use iFrame to Embed Analytics Content into an Application or Web Page

Considerations for Embedding Oracle Analytics Content With
iFrame

This topic describes issues that you might encounter when you use iFrame to embed Oracle
Analytics content into applications and web pages.

Users can open embedded Oracle Analytics content from an application if single sign-on is set
up, or if there's already an active session for the embedded Oracle Analytics in the same
browser.

If you're using the Safari browser and the embedded analytics content doesn't display as
expected, try disabling Safari's Prevent cross-site tracking preference.

Use iFrame to Embed Analytics Content into an Application or
Web Page

You can embed your analytics content into an application or web page by adding the target
analytics content's URL into an application or portal's iFrame. For example, you can use this
method to embed analytics content into Microsoft Teams.

Note:

If you need an integrated way to embed analytics content, then use the JavaScript
embedding framework. This method provides greater flexibility than the iFrame
embedding method. See Typical Workflow to Use the JavaScript Embedding
Framework with Oracle Analytics Content.

Before you perform this task, confirm that you've registered the domain that you want to embed
your analytics content into as a safe domain. See Register an Application as a Safe Domain.

If you need to manually build the URL, for example to create a URL that includes parameters,
be sure to properly escape any characters. All special characters in the URL need to be URL-
encoded. For example, use %2C to encode commas and %20 to encode spaces.

1. On the Home page, click Navigator, and then click Catalog.

2. Locate the item that you want to embed and click Actions. Click Open.

6-1

3. Go to the browser's address bar and copy the item's URL. These are examples of URLs:

• Report - http://example.com/analytics/saw.dll?
PortalGo&path=%2Fshared%2FRevenuehttp://example.com/analytics/saw.dll?
PortalGo&Action=prompt&path=%2Fshared%2FSaled%2FSales%20by%20Brand

• Dashboard - http://example.com/analytics/saw.dll?
Dashboard&PortalPath=%2Fshared%2FSales%2F_portal%2FQuickStart&page=Top%20P
roducts

• Workbook - http://example.com/ui/dv/home.jsp?
pageid=visualAnalyzer&reportmode=full&reportpath=%2Fshared%2FMySalesWorkbo
ok

• Canvas - https://example.com:8080/ui/dv/?
pageid=visualAnalyzer&reportmode=full&reportpath=%2F%40Catalog%2Fusers%2Fa
dmin%2FOAC%20Demo%20Samples%2FCost%20Management%20Analytics%20copy&canvasn
ame=canvas!2.

See Share a Workbook URL with a Specific Canvas Selected.

4. Alternatively, manually build and then copy the URL to insert into an iFrame.

This is an example of how to construct a URL containing parameters:

https://example.com/ui/dv/ui/project.jsp?
pageid=visualAnalyzer&reportmode=full&reportpath=%2F%40Catalog%2Fshared&p1n=pC
ustomerSegment&p1v=Corporate&p2n=pCity&p2v=Bristol%2CCardiff%2CAustin

5. Open the target application or portal, locate an iFrame, and paste the analytics content's
URL into it.

Chapter 6
Use iFrame to Embed Analytics Content into an Application or Web Page

6-2

7
Embed Oracle Analytics Content With the
JavaScript Embedding Framework

This chapter explain how to use the JavaScript embedding framework to embed Oracle
Analytics content into applications and web pages.

Topics:

• Typical Workflow to Use the JavaScript Embedding Framework with Oracle Analytics
Content

• Enable Oracle Analytics Developer Options

• Find the Javascript and HTML for Embedding Oracle Analytics Content

• Prepare the HTML Page for Embedded Oracle Analytics Content

• Pass Filters to the HTML Page for Embedded Oracle Analytics Content

• Pass Parameters to the HTML Page for Embedded Oracle Analytics Content

• Refresh Data in the HTML Page for Embedded Oracle Analytics Content

• Embed Oracle Analytics Content into a Custom Application That Doesn’t Use Oracle JET

• Embed Oracle Analytics Content into a Custom Application that Uses Oracle JET

• Use Login Prompt Authentication With Embedded Oracle Analytics Content

Typical Workflow to Use the JavaScript Embedding Framework
with Oracle Analytics Content

If you're using the JavaScript embedding framework to embed Oracle Analytics content into an
application or web page, then follow these tasks as a guide.

Note:

You can also embed Oracle Analytics content using the analytic content item's URL.
Typically this method uses an iFrame. See Embed Oracle Analytics Content With
iFrames.

Task Description More Information

Add safe domains Use the Console to register as
safe the development, production,
and test environments domains.

Register an Application as a Safe
Domain

Enable Developer options Use the Developer's page to find
the <script> tag, HTML, and
column's expression that you
need to embed analytics content.

Enable Oracle Analytics
Developer Options

7-1

Task Description More Information

Create the HTML page Create the HTML page where
you'll embed analytics content.
Steps include: reference the
embedding.js JavaScript source
and the embedded workbook's
URL, specify filters and
parameters, and specify how to
refresh data.

Prepare the HTML Page for
Embedded Oracle Analytics
Content

Pass Filters to the HTML Page
for Embedded Oracle Analytics
Content

Pass Parameters to the HTML
Page for Embedded Oracle
Analytics Content

Refresh Data in the HTML Page
for Embedded Oracle Analytics
Content

Specify the embedding mode Your application uses JET or
another technology to embed
analytics content.

Embed Oracle Analytics Content
into a Custom Application that
Uses Oracle JET

Embed Oracle Analytics Content
into a Custom Application That
Doesn’t Use Oracle JET

Understand how authentication
works

Learn about login prompt
authentication and how to
customize the login message that
users see.

Use Login Prompt Authentication
With Embedded Oracle Analytics
Content

Enable Oracle Analytics Developer Options
Enable the developer's options to access the Oracle Analytics Developer's page. Use the
Developer's page to find the <script> tag, HTML, and column's expression that you need to
embed Oracle Analytics content into an application or web page.

1. Go to the top toolbar and click your user name.

2. Click Profile and in the Profile window, click Advanced.

3. Click the Enable Developer Options icon and click Save.

Find the Javascript and HTML for Embedding Oracle Analytics
Content

Oracle Analytics generates the analytics content's <script> tag and HTML for you to copy and
paste in to your custom application or portal web page's HTML page.

If the Developer option isn't displayed in the workbook's Menu, then you need to enable it.
See Enable Oracle Analytics Developer Options.

1. Go to Oracle Analytics and open the workbook containing the analytics content you want to
embed.

2. Click the workbook's Menu and then click Developer.

3. In the Developer window, click the Embed tab.

4. Locate the Embedding Script to Include field and click Copy to copy the <script> tag to
paste in to the HTML page.

Chapter 7
Enable Oracle Analytics Developer Options

7-2

5. Optional: If you want the embedded workbook to show the workbook's default view, then
locate the Default field, click Copy to copy the HTML, and paste it in to the HTML page.

6. Optional: If you want the embedded workbook to show an item such as a specific canvas,
then locate the item's field, click Copy to copy the HTML, and paste it in to the HTML
page.

Prepare the HTML Page for Embedded Oracle Analytics Content
To embed Oracle Analytics content, you must create or update the HTML page to include the
required DOCTYPE declaration, dir global attribute, and reference the embedding.js JavaScript
source and the embedded workbook's URL. You must also specify the embedding mode (JET
or standalone), an authentication method, and add any attributes.

This topic contains the following information:

• DOCTYPE Declaration

• Dir Global Attribute

• <script> Tag and JavaScript Source Reference

• Authentication

• <oracle-dv> Element

• Example

Doctype Declaration

Set the doctype declaration to <!DOCTYPE html>. Unpredictable behavior such as the page not
rendering properly results if you use a doctype declaration other than <!DOCTYPE html>, or if
you forget to include a doctype declaration.

Dir Global Attribute

Set the dir global attribute as required by the web page's locale. The dir global attribute
indicates the embedded analytics content's layout direction.

Note:

If you need to support multiple locales, then use JavaScript to set the attribute.

The attribute's value options are:

• rtl - Use for right to left layout direction.

• ltr - Use for left to right layout direction.

• auto - Don't use. This value isn't supported by Oracle Analytics.

Chapter 7
Prepare the HTML Page for Embedded Oracle Analytics Content

7-3

<script> Tag and JavaScript Source Reference

Note:

Oracle Analytics generates the <script> tag and JavaScript source's URL that you
need to include.

Add a <script> tag that references embedding.js to your HTML page.

The JavaScript source's URL structure is:

• ”https://<instance>/public/dv/v1/embedding/<embeddingMode>/embedding.js”. The
examples in this document use this URL.

• For older deployments, use: "http://<instance>/ui/dv/v1/embedding/
<embeddingMode>/embedding.js".

Where <embeddingMode> must be either jet or standalone:

• Use jet if you're embedding analytics content within an existing Oracle JET application. If
you use jet, then the version of Oracle JET that the application uses must match the
same major version of Oracle JET that Oracle Analytics uses. For example, if Oracle
Analytics uses JET 11.0.0, then your custom application must use JET 11.0.0 or 11.1.0.
Oracle Analytics uses Oracle JET version 11.1.10.

To find the version of JET that Oracle Analytics uses, log into Oracle Analytics, open the
browser console, and run this command:

requirejs('ojs/ojcore').version

If the embedding application uses Oracle JET, Oracle Analytics extends the application
with the components it needs. See Embed Oracle Analytics Content into a Custom
Application that Uses Oracle JET.

Oracle JET is a set of Javascript-based libraries used for the Oracle Analytics user
interface.

• Use standalone when embedding visualization content in a generic application that
doesn’t use Oracle JET.

If the embedding application doesn't use Oracle JET, then Oracle Analytics brings its JET
distribution to the page with additional components. See Embed Oracle Analytics Content
into a Custom Application That Doesn’t Use Oracle JET.

Authentication

You need an authenticated session to view the embedded analytics content. See Use Login
Prompt Authentication With Embedded Oracle Analytics Content.

<oracle-dv> Element

To embed a workbook, you must add the following HTML snippet with attribute values inside
an appropriately sized element. Oracle Analytics generates the HTML that you need to include.

<oracle-dv project-path="" active-page="" active-tab-id="" filters=""></oracle—
dv>

Chapter 7
Prepare the HTML Page for Embedded Oracle Analytics Content

7-4

Supported attributes — These attributes support static strings and properties defined within a
Knockout model. Knockout is a technology used in Oracle JET.

Note:

See Embed Oracle Analytics Content into a Custom Application That Doesn’t Use
Oracle JET for an example of binding these attributes to a Knockout model.

• project-path: Specifies the path of the workbook that you want to render.

• active-page: (Optional) Specifies whether an insight other than the default is rendered.
When you specify active-page, you also use active-tab-id to specify the exact Present
canvas that you’re showing. Valid value is insight.

Note:

The active-page value canvas is deprecated. Oracle recommends that you
modify your embedding code that uses canvas to insight. Existing embedded
analytics content that uses canvas will continue to work and a warning displays in
the browser console.

• active-tab-id: (Optional) Specifies the ID of the Present canvas that you’re showing.

• filters: (Optional) Allows the programmatic passing of filter values to an embedded
workbook.

• project-options: (Optional) In this attribute, project refers to workbook. Allows you to
pass these options:

– bDisableMobileLayout: Disables or enables the mobile layout. Mobile layout refers to
the summary card layout available only on phone devices. Value should be true or
false.

– bShowFilterBar: Shows or hides the filter bar. Value should be true or false.

– showCanvasNavigation: Shows or hides the canvases in the workbook according to
the canvas navigation setting in the workbook's Present tab. Value should be true or
false.

For example, <oracle-dv project-path="{{projectPath}}" active-page="canvas"
active-tab-id="1" filters="{{filters}}" project-
options='{"bDisableMobileLayout":true, "bShowFilterBar":false}'></oracle-dv>

• brushing-type: Controls how brushing works. The value you specify overrides all other
settings, including system defaults and settings in the saved workbook. Value should be
the string on, off, or auto.

– on: Use to issue brushing queries with normal priority. Brushing queries and
visualization queries are mixed and run at the same time.

– auto: Default. Use to issue brushing queries with low priority. When a user interacts
with a visualization, there may be a delay showing marks in other visualizations until
the brushing queries complete.

Chapter 7
Prepare the HTML Page for Embedded Oracle Analytics Content

7-5

• compatibility-mode: Use when different major versions of Oracle JET are present. This
creates an iFrame at runtime to sandbox the embedded analytics content. Value should be
the string yes, no, or auto.

Note:

When setting this attribute, note these two items:

If using compatibility mode, confirm that Allow Frames is selected for the
application your administrator registered as a safe domain. See Register an
Application as a Safe Domain.

To find the version of JET that Oracle Analytics uses, log into Oracle Analytics,
open the browser console, and run this command:

requirejs('ojs/ojcore').version

– yes: Use when you always want to sandbox the analytics embedded content. This is
useful when embedding into Oracle APEX applications.

– no: Default. Use when you don't want to create an iFrame.

– auto: Use to automatically detect major differences in Oracle JET version between the
host embedding application and Oracle Analytics. You can use this when embedding
into Oracle APEX.

Example

In this example, all instances of project refer to workbook.

You can get the exact URL of the embedding.js file from the Embed tab in the Developer
window of the workbook.

<!DOCTYPE html>
<html dir="ltr">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Embedded Oracle Analytics Workbook Example</title>
 <script src="https://<instance>/public/dv/v1/embedding/<embedding
mode>/embedding.js" type="application/javascript">
 </script>

 </head>
 <body>
 <h1>Embedded Oracle Analytics Workbook</h1>
 <div style="border:1px solid black;position: absolute; width:
calc(100% - 40px); height: calc(100% - 120px)" >
 <!--
 The following <oracle-dv> tag is the tag that will embed the
specified workbook.
 -->
 <oracle-dv
 project-path="<project path>"
 active-page="insight"
 active-tab-id="snapshot!canvas!1">

Chapter 7
Prepare the HTML Page for Embedded Oracle Analytics Content

7-6

 </oracle-dv>
 </div>
 <!--
 Apply Knockout bindings after DV workbook is fully loaded. This
should be executed in a body onload handler or in a <script> tag after the
<oracle-dv> tag.
 -->
 <script>
 requirejs(['knockout', 'ojs/ojcore', 'ojs/ojknockout', 'ojs/
ojcomposite', 'jet-composites/oracle-dv/loader'], function(ko) {
 ko.applyBindings();
 });
 </script>
 </body>
</html>

Pass Filters to the HTML Page for Embedded Oracle Analytics
Content

You can pass numeric and list filters to the HTML page where you're embedding Oracle
Analytics content. You can filter any type of data with these filter types.

The filters payload is a Javascript array containing one filter Javascript object per array item.

In this example, all instances of project refer to workbook. Rendering a workbook while
applying filters looks like this:

<oracle-dv project-path="{{projectPath}}" filters="{{filters}}">
</oracle-dv>

<script>
requirejs(['knockout', 'ojs/ojcore', 'ojs/ojknockout', 'ojs/ojcomposite',
'jet-composites/oracle-dv/loader'], function(ko) {
 function MyProject() {
 var self = this;
 self.projectPath = ko.observable("/users/weblogic/EmbeddingStory");
 self.filters = ko.observableArray([{
 "sColFormula": "\"A - Sample Sales\".\"Products\".\"P2 Product
Type\"",
 "sColName": "P2 Product Type",
 "sOperator": "in", /* One of in, notIn, between, less, lessOrEqual,
greater, greaterOrEqual */
 "isNumericCol": false,
 "bIsDoubleColumn": false,
 "aCodeValues": [],
 "aDisplayValues": ['Audio', 'Camera', 'LCD']
 },{
 "sColFormula": "\"A - Sample Sales\".\"Base Facts\".\"1- Revenue\"",
 "sColName": "Rev",
 "sOperator": "between", /* One of in, notIn, between, less,
lessOrEqual, greater, greaterOrEqual */
 "isNumericCol": true,
 "bIsDoubleColumn": false,
 "aCodeValues": [],

Chapter 7
Pass Filters to the HTML Page for Embedded Oracle Analytics Content

7-7

 "aDisplayValues": [0, 2400000] /* Because the operator is "between",
this results in values between 0 and 2400000 *
/
 }]);
}
 ko.applyBindings(MyProject);
});
</script>

Supported attributes — Each filter object within the filters payload must contain the following
attributes:

• sColFormula: Specifies the three-part formula of the column to filter. The column formula
must include three parts.

If you're unsure of the formula, create a workbook that uses that column, and then in the
Visualize tab, click the workbook's Menu and then click Developer. In the Developer page,
click the JSON tab to view the column's expression. For example, sColFormula": "\"A -
Sample Sales\".\"Base Facts\".\"1- Revenue\"" .

If the Developer option isn't displayed in the workbook's Menu, then you need to enable it.
See Enable Oracle Analytics Developer Options.

• sColName: (Required) Specifies a unique name for this column.

• sOperator: Use in, notIn, between, less, lessOrEqual, greater, or greaterOrEqual.

– in and notIn - Apply to list filters.

– between, less, lessOrEqual, greater, and greaterOrEqual - Apply to numeric filters.

• isNumericCol: Specifies if the filter is numeric or list. Value should be true or false.

• isDateCol: (Required) Indicates whether the column is a date column. Value should be
true or false. Use true if the column is a date, but not for year, month, quarter, and so on.
If set to true, then specify date or dates in the aDisplayValues attribute.

• bIsDoubleColumn: Specifies if the column has double column values behind the display
values. Value should be true or false.

• aCodeValues: When bIsDoubleColumn is true, this array is used.

• bHonorEmptyFilter: (Optional) Indicates whether an empty filter is honored (for example,
empty aCodeValues/aDisplayValues based on the bIsDoubleColumn flag). This attribute
applies to all column filters: list filters, number range filters, and date range filters. Value
should be true or false.

– If set to true and the user passes empty aCodeValues/aDisplayValues, then all
values are part of the filter.

– If set to false and user passes empty aCodeValues/aDisplayValues, then the
attribute won't be applied and there is no change in filter values.

– If this attribute isn't present, then the default value is false.

• aDisplayValues: When bIsDoubleColumn is false, then this array is used to filter and to
display values within the user interface.

When bIsDoubleColumn is true, then the values in this array are used for display in the
user interface while the values in aCodeValues are used for filtering. When
bIsDoubleColumn is true, there must be the same number of entries in this array as there
are in the aCodeValues array and the values must line up. For example, suppose

Chapter 7
Pass Filters to the HTML Page for Embedded Oracle Analytics Content

7-8

aCodeValues has two values 1 and 2, then aDisplayValues must have two values a and b,
where 1 is the code value for a, and 2 is the code value for b.

If isDateCol attribute is set to true, then specify the aDisplayValues array with dates. If
either no time zone in the time stamp or no time stamp is provided, then time is set with the
local time zone. Use any of the following formats:

– mm/dd/yyyy (For example, 12/31/2011.)

– yyyy-mm-dd (For example, 2011-12-31.)

– yyyy/mm/dd (For example, 2011/12/31.)

– mm/dd/yyyy or yyyy/mm/dd, hh:mm:ss (For example, 12/31/2011 or 2011/12/31,
23:23:00.)
Note: Use a 24 hour format. You can use a space as the separator.

– mm/dd/yyyy or yyyy/mm/dd, hh:mm:ss AM/PM (For example, 12/31/2011 or
2011/12/31, 11:23:00 PM.)
Note: Use a 12 hour format. You can use a space as the separator.

– <3 letter month name> dd yyyy (For example, Mar 25 2015.)

– dd <3 letter month name> yyyy (For example, 25 Mar 2015.)

– Fri Sep 30 2011 05:30:00 GMT+0530 (India Standard Time)

– ISO Date Format - 2011-10-05T14:48:00.000Z

Pass Parameters to the HTML Page for Embedded Oracle
Analytics Content

You can pass parameter values to the HTML page where you're embedding Oracle Analytics
content. The parameter values that you pass can be utilized within query expressions and
various parts of the product.

The parameters payload is a Javascript Object containing paired attributes of parameter
names and values.

In this example, all instances of project refer to workbook. Rendering a project while applying
parameters look like this:

<oracle-dv project-path="{{projectPath}}" active-page="canvas" active-tab-
id="3" parameters="{{parameters}}"
project-options='{"bDisableMobileLayout":false, "bShowFilterBar":false}'>
</oracle-dv>

<script>
requirejs(['knockout', 'ojs/ojcore', 'ojs/ojknockout', 'ojs/ojcomposite',
'jet-composites/oracle-dv/loader'], function(ko) {

 function MyProject() {
 var self = this;
 self.projectPath = ko.observable("/users/weblogic/EmbeddingStory");
 self.parameters = ko.observable({
 "p1n": "Office",
 "p1v": "Bristol Office",
 "p2n": "Year",
 "p2v": [2023, 2022]
 });

Chapter 7
Pass Parameters to the HTML Page for Embedded Oracle Analytics Content

7-9

 }
 ko.applyBindings(MyProject);
});
</script>

Supported attributes — Each parameter object within the parameters payload must contain
the following attributes:

• p <number> n: (Required) Specifies the parameter's name as defined in the workbook. For
example, "Office" or "Year".

• p <number> v: (Required) Specifies the parameter value that you want to pass. For
example "Bluebell Office" or "10" or [2023, 2022].

• p <number> d: (Optional) Use with parameters with double columns. Specifies the
parameter's display value corresponding to p <number> v. For example, "My Office".

Refresh Data in the HTML Page for Embedded Oracle Analytics
Content

In the HTML page where you're embedding Oracle Analytics content, you can specify how to
refresh the embedded workbook's data.

To refresh data without reloading a workbook, the refreshData function is attached to all
<oracle-dv> elements. Invoking it forces all visualizations under that element to refresh.

This is the code to refresh data for a single embedded workbook. In this code, all instances of
project refer to workbook.

<oracle-dv id="project1" project-path="{{projectPath}}">
</oracle-dv>

<script>
 function refreshProject() {
 $('#project1')
 [0].refreshData();
}
</script>

This is the code to refresh data for multiple embedded workbooks. In this code, all instances of
project refer to workbook.

<script>
 function refreshProject()
 {
 $('oracle-dv').each(function() {
 this.refreshData();
 });
}
</script>

Chapter 7
Refresh Data in the HTML Page for Embedded Oracle Analytics Content

7-10

Embed Oracle Analytics Content into a Custom Application that
Uses Oracle JET

If the custom application uses Oracle JET, then the embedded Oracle Analytics content
extends the application with the component it needs.

Before you begin to embed analytics content, confirm that the custom application uses the
same major version of JET that Oracle Analytics uses. For example, if Oracle Analytics uses
JET 11.0.10, then your custom application must use JET 11.x.x.
To find the version of JET that Oracle Analytics uses, log into Oracle Analytics, open the
browser console, and run this command:

requirejs('ojs/ojcore').version

Your JET application must also use the same style that Oracle Analytics uses, which is Alta.

For information about creating an Oracle JET quick start application where you'll embed
analytics content, see Oracle JET Get Started.

This procedure uses an example embedding application named OAJETAPP.

1. Follow the instructions to install the Oracle JET quickstart application and name the
embedding application OAJETAPP using --template=navdrawer.

2. Edit the index.HTML file of the embedding application (for example, OAJETAPP/src/
index.html) and include embedding.js.

<script src="https://<instance>/public/dv/v1/embedding/jet/embedding.js"
type="text/javascript">
</script>

3. Include <oracle-dv> in the appropriate section (for example OACJETAPP/src/js/
views/dashboard.html). Here project-path specifies the workbook's path.

<div class="oj-hybrid-padding" style="position: absolute; width: calc(100%
- 40px); height: calc(100% - 120px)">
 <h3Dashboard Content Area</h3>
 <oracle-dv id="oracle-dv" project-path="/Shared Folders/embed/test-
embed">
 </oracle-dv>
</div>

4. Run the quick start application using these commands.

ojet build
ojet serve

Chapter 7
Embed Oracle Analytics Content into a Custom Application that Uses Oracle JET

7-11

Embed Oracle Analytics Content into a Custom Application That
Doesn’t Use Oracle JET

If the custom application uses a technology other than Oracle JET, then the embedded Oracle
Analytics content adds its Oracle JET distribution and all additional components into the page.

If the Developer option isn't displayed in the workbook's Menu, then you need to enable it.
See Enable Oracle Analytics Developer Options.

1. Include the standalone version of embedding.js.

<script src=https://<instance>/public/ui/dv/v1/embedding/standalone/
embedding.js type="text/javascript"> </script>

2. Find and include <oracle-dv> under an appropriately sized <div>. To find this tag:

a. Go to Oracle Analytics and open the workbook containing the analytics content you
want to embed.

b. Click the workbook's Menu and then click Developer.

c. Click the Embed tab.

d. Locate the item you want to embed and click Copy to copy it.

Example

Here project-path specifies the workbook's path.

<div style="position: absolute; width: calc(100% - 40px); height:
calc(100% - 120px)">
 <oracle-dv project-path="/@Catalog/users/admin/workbook_name">
 </oracle-dv>
</div>

3. Apply Knockout bindings after the visualization is fully loaded. This should be placed inside
of a <script> tag after the <oracle-dv> tag, or executed in an onload body handler.

requirejs(['knockout', 'ojs/ojcore', 'ojs/ojknockout', 'ojs/ojcomposite',
'jet-composites/oracle-dv/loader'], function(ko) {
 ko.applyBindings();
});

Complete Example

<!DOCTYPE html>
<html dir="ltr">
 <head>
 <title>AJAX Standalone Demo</title>
 <script src="https://<instance>/public/dv/v1/embedding/standalone/
embedding.js""
type="text/javascript">
 </script>
 </head>
 <body>
 <h1>AJAX Standalone Demo</h1>

 <div style="position: absolute; width: calc(100% - 40px); height:

Chapter 7
Embed Oracle Analytics Content into a Custom Application That Doesn’t Use Oracle JET

7-12

calc(100% -
120px)" >
 <oracle-dv project-path="/shared/embed/test-embed">
 </oracle-dv>
 </div>

 <script>
requirejs(['knockout', 'ojs/ojcore', 'ojs/ojknockout', 'ojs/ojcomposite',
'jet-composites/oracle-dv/loader'], function(ko) { ko.applyBindings();
});
 </script
 </body
</html

Add Authentication to an Application or Web Page Containing
Embedded Oracle Analytics Content

Use the topics in this section to add an authentication method to your web application or portal
web page that contains embedded Oracle Analytics content.

Topics:

• Use Login Prompt Authentication With Embedded Oracle Analytics Content

Use Login Prompt Authentication With Embedded Oracle Analytics Content
Login prompt authentication is the default authentication method for Oracle Analytics content
embedded in a web application or portal web page.

When users access embedded analytics content, they're presented with a login screen where
they enter login name and password before they can view data. If there is no common identity
management between Oracle Analytics and the web application or portal web page, then users
are presented with this login screen, even if they've already logged in to the web application or
portal web page containing the embedded analytics content

Customize the Login Prompt Authentication Message

Add attributes to the <oracle-dv> tag to customize the login prompt authentication messages.
The following attributes are supported:

• auth-message-prefix: Specifies the prefix text for the login message. The default value is
"Oracle Analytics".

• auth-message-link: Specifies the text for the login link. The default value is "Login".

• auth-message-suffix: Specifies the suffix text for the login message. The default value is
"Required".

• auth-needed-message: Specifies the text for the authentication needed message. The
default value is "Requires Authentication".

• auth-message-prefix-small: Specifies the prefix text for the login message. The default
value is "Oracle Analytics". Applicable only if the embedded container size is smaller
than 215 pixels.

• auth-message-link-small: Specifies the text for the login link. The default value is
"Login". Applicable only if the embedded container size is smaller than 215 pixels.

Chapter 7
Add Authentication to an Application or Web Page Containing Embedded Oracle Analytics Content

7-13

• auth-message-suffix-small - Specifies the suffix text for the login message. The default
value is the empty string. Applicable only if the embedded container size is smaller than
215 pixels.

• auth-needed-message-small: Specifies the text for the authentication needed message.
The default value is "Requires Authentication". Applicable only if the embedded
container size is smaller than 160 pixels.

Chapter 7
Add Authentication to an Application or Web Page Containing Embedded Oracle Analytics Content

7-14

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	Part I Overview of Oracle Analytics Developer Resources
	1 Introduction to Oracle Analytics Server Developer Resources

	Part II Create and Manage Custom Extensions
	2 Create Custom Data Action Extensions
	About Data Action Extensions and the Data Actions Framework
	Data Action Categories
	Data Action Context
	Data Action Code Design
	Data Action Model Classes
	Data Action Service Classes
	Data Action Code Interactions
	Example Data Action plugin.xml File
	Data Action Extension Files and Folders

	Choose the Best Data Action Class to Extend
	AbstractDataAction Class
	DataActionKOModel Class
	CanvasDataAction Class
	EventDataAction Class
	AbstractHTTPDataAction Class
	URLNavigationDataAction Class
	HTTPAPIDataAction Class

	Generate Data Action Extensions from a Template
	Generated Folders and Files
	Extend a Data Action Base Class
	Choose Which Data Action Inherited Methods to Override
	Test, Package, and Install Your Data Action
	Use an Upgrade Handler for Knockout Model Changes
	Upgrade Data Action Extensions
	Data Action Extension File Reference
	Data Action plugin.xml File Example
	Data Action plugin.xml File Properties Section - tns:obiplugin
	Data Action plugin.xml File Resources Section - tns:resources
	Data Action plugin.xml File Extensions Section - tns:extension

	3 Create Oracle Analytics Visualization and Workbook Extensions
	About the Oracle Analytics Extension Development Environment
	Workflow to Set Up the Oracle Analytics Extension Development Environment
	Oracle Analytics Extensions Development Scripts
	Types of Oracle Analytics Extensions
	Oracle Analytics Extension Development Resources
	Oracle Analytics Extensions Limitations

	Set Up the Oracle Analytics Extension Development Environment on Mac
	Install Oracle Analytics Desktop on Mac
	Install Java JDK on Mac
	Update Bash Profile or ZSHRC File and Create the Development Directory on Mac
	Create the Extension Development Environment on Mac
	Create a Skeleton Extension on Mac
	Test Your Visualization and Workbook Extensions on Mac

	Set Up the Oracle Analytics Extension Development Environment on Windows
	Install Oracle Analytics Desktop on Windows
	Install Java JDK on Windows
	Set User Variables and Create a Development Directory on Windows
	Create the Extension Development Environment on Windows
	Create a Skeleton Extension on Windows
	Test Your Visualization and Workbook Extensions on Windows

	Work with Extensions
	Build and Package an Extension
	Upload an Extension to Oracle Analytics
	Delete Extensions from the Oracle Analytics Development Environment

	4 Manage Oracle Analytics Extensions

	Part III Embed Content
	5 Get Started Embedding Content into Applications and Web Pages
	About Embedding Oracle Analytics Content into Applications and Web Pages
	Register an Application as a Safe Domain

	6 Embed Oracle Analytics Content With iFrames
	Considerations for Embedding Oracle Analytics Content With iFrame
	Use iFrame to Embed Analytics Content into an Application or Web Page

	7 Embed Oracle Analytics Content With the JavaScript Embedding Framework
	Typical Workflow to Use the JavaScript Embedding Framework with Oracle Analytics Content
	Enable Oracle Analytics Developer Options
	Find the Javascript and HTML for Embedding Oracle Analytics Content
	Prepare the HTML Page for Embedded Oracle Analytics Content
	Pass Filters to the HTML Page for Embedded Oracle Analytics Content
	Pass Parameters to the HTML Page for Embedded Oracle Analytics Content
	Refresh Data in the HTML Page for Embedded Oracle Analytics Content
	Embed Oracle Analytics Content into a Custom Application that Uses Oracle JET
	Embed Oracle Analytics Content into a Custom Application That Doesn’t Use Oracle JET
	Add Authentication to an Application or Web Page Containing Embedded Oracle Analytics Content
	Use Login Prompt Authentication With Embedded Oracle Analytics Content

