
Oracle® Financial Services Lending
and Leasing
OFSLL TransactionBot Overview and
Developer guide

Release 14.12.0.0.0
F82323-01
August 2024

Oracle Financial Services Lending and Leasing OFSLL TransactionBot Overview and Developer guide, Release
14.12.0.0.0

F82323-01

Copyright © 2022, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 OFSLL Transaction BOT Overview and Developer Guide

1.1 Introduction 1-1

1.1.1 Transaction Bot Overview 1-2

1.1.2 Purpose 1-2

1.1.3 Audience 1-2

1.1.4 Accessibility 1-2

1.1.5 Access 1-2

1.1.6 Prerequisites 1-2

1.2 Architecture 1-3

1.3 Third Party Licenses 1-3

1.4 Features of BOT 1-4

1.4.1 Support of Text and Voice Based inputs 1-5

1.4.2 Release Specific Indexing 1-5

1.5 Sample Workflow 1-5

1.6 Launch OFSLL Transaction BOT 1-7

1.7 BOT UI Elements 1-9

1.8 BOT Usability Workflow 1-10

2 Developer Guide for BOT Customization

2.1 Pre-requisites 2-1

2.2 OFSLL Wrapper customization 2-2

2.3 ODA – Dialog Flow Development 2-6

2.4 Deploying war file on WebLogic Server 2-11

2.5 Web application UI for Accessing BOT 2-18

2.6 App configuration for enabling chatbot 2-19

2.7 BOT Configuration 2-23

iii

1
OFSLL Transaction BOT Overview and
Developer Guide

OFSLL has an extended out of the box support for CHATBOT integration. This provides a new
framework for direct user interaction with the system. However, since OFSLL is a back-office
system there are additional external components required to be integrated to host and utilize
the CHATBOT functionality.

For latest version of this document, refer to Oracle Help Center

This section consists of the following topics:

• OFSLL Transaction BOT Overview and Developer Guide

• Developer Guide for BOT Customization

Following topics are discussed in OFSLL Transition BOT Overview chapter:

• Introduction

• Architecture

• Third Party Licenses

• Features of BOT

• Sample Workflow

• Launch OFSLL Transaction BOT

• BOT UI Elements

• BOT Usability Workflow

1.1 Introduction
Currently, OFSLL integration with CHATBOT is supported with some of the functionalities such
that end users can search for documentation and / or query and fetch the account related
information and/or perform other actions on an account with options presented in CHATBOT
menu.

This document outlines the integrated framework and procedures required to implement
certain features, but it is not a general-purpose configuration manual.

• Transaction Bot Overview

• Purpose

• Audience

• Accessibility

• Access

• Prerequisites

1-1

https://docs.oracle.com/en/industries/financial-services/financial-lending-leasing/index.html

1.1.1 Transaction Bot Overview
OFSLL integrated Transaction bot (Transaction posting chatbot) is a functionality for product
end-users to query account related details, outstanding dues and post simple account related
updates as a transaction. In addition, there is also dynamic content search capability provided
within the Transaction bot. For information on Documentation search using chatbot, refer to
OFSLL Docubot Overview and Developer Guide.

The Transaction ChatBot is hereafter is referred to as BOT in the document.

1.1.2 Purpose
The purpose of this document is to demonstrate the capability of OFSLL BOT in handling
transactional updates to accounts maintained in the system by integrating with Oracle Digital
Assistant (ODA). This document is intended to detail the usability features and also to serve as
a developer guide to understand the configuration procedures. However, the features and
options presented are provided only as a sample and needs further customization based on
requirements.

1.1.3 Audience
In general, this document is intended to all those parties and decision makers who are
interested to know about OFSLL BOT integrated framework. The configuration sections are
intended for system administrators, consulting and implementation teams who deploy
customized solutions for customer.

1.1.4 Accessibility
The OFSLL BOT integrated framework is supported from OFSLL 14.12.0.0.0 release.

OFSLL being a back office system, only the data in the system is can be exposed using REST
services and the interface for BOT facility is recommended to be configured on any 3rd party
web application or customer self-service portal or lenders/financial services website for the
benefit of end-users.

However, the account related services provided in this framework is just a sample and needs
to be customized based on requirement. BOT is agnostic of which self-service site / portal is
used to provide access and interface to the users for help documentation.

1.1.5 Access
Currently the framework supports basic authentication (not OAUTH). User Management and
authentication needs to be handled as part of the implementation.

1.1.6 Prerequisites
Following are the prerequisites:

• The BOT is designed to work in ODA framework (platform version 21.02). The
configuration is to be done as detailed in Developer Guide for BOT Customization section.

• Also the ODA Server Environment has to be licensed separately. For more information,
refer to https://www.oracle.com/in/chatbots/digital-assistant-platform/

• Need to have release specific pre-indexed file for elastic search to work.

Chapter 1
Introduction

1-2

https://www.oracle.com/in/chatbots/digital-assistant-platform/

• Adequate space to store the indexed file directories in the respective folders.

• WebLogic server for deployment of war file (OracleFSLLChatBot.war).

• The parameters in Channel.Properties file are to be configured before creating and
deploying the .war file (OracleFSLLChatBot.war). For details, refer to BOT
Configuration section.

1.2 Architecture
The BOT connects to OFSLL and provides an interface to give results for the below mentioned
table items. With the current structure BOT seamlessly integrates with Services and
documentation of the current release of the product.

Figure 1-1 Transaction Bot_Architecture

The documentation elastic search for OFSLL BOT requires pre-indexing of content. Hence,
indexing is done for 14.12.0.0.0 release. The indexing process is done automatically using the
third-party plugins such as Apache Lucene and Jsoup to identify unique keywords in HTML
files. This generates indexed files which serves as common directory for searched keyword
and the file instance where it exists.

For more information on third-party plugins used, refer to Third Party Licenses section.

1.3 Third Party Licenses
OFSLL BOT uses the following third party licenses:

• Apache Lucene, Version: 8.10.1
The Apache Software Foundation, Technology: Lucene, Version: 8.10.1

Files used (below are part of Apache Lucene 8.10.1)

Lucene Core (8.10.1)

Lucene query parser (8.10.1)

Chapter 1
Architecture

1-3

• JSOUP 1.14.3
Jsoup is a Java library for working with real-world HTML.

It provides a very convenient API for fetching URLs and extracting and manipulating data,
using the best of HTML5 DOM methods and CSS selectors.

jsoup implements the WHATWG HTML5 specification, and parses HTML to the same
DOM as modern browsers do.

scrape and parse HTML from a URL, file, or string

find and extract data, using DOM traversal or CSS selectors

manipulate the HTML elements, attributes, and text

The purpose of using Jsoup in chatbot is to read the html elements <tags> <href> and use
it as a added part of indexing

Link : https://jsoup.org

For detailed information, refer to product licensing guide.

1.4 Features of BOT
Following are the unique features of OFSLL BOT:

• Account details view using Account # query

– View Account Details Summary

– View Payment Details

– Check the Next Payment Date

– View and Update default Communication Preference

– View Credit Limit Details

• Readily available navigation links to the following:

– Link to all Release documentation

– Dynamic Document Search option

– Link to currently mapped Product Release notes

– Listing of Product Module / Classified Guides

– Link to list of indexed Keywords

– Link to Getting Started Video gallery

– Link to Release Highlights

• Intuitive Menu options:

– Option to clear chat data

– Speech Conversion – Voice based Input

– Personalization of BOT interface

This topic consists of the following sections:

• Support of Text and Voice Based inputs

• Release Specific Indexing

Chapter 1
Features of BOT

1-4

1.4.1 Support of Text and Voice Based inputs
The BOT can support both Text and Voice based inputs to find information. This attempts to
comply with multiple accessibility options.

The BOT is enabled with voice based inputs where in voice commands are accepted as input
equivalent to typing or clicks. This option works on clicking the Mic button.

During text based input, the response is provided in the BOT interface. In a voice based input,
the response is provided in both voice based response and BOT response simultaneously.

However, note that voice based input does not support to open a URL (link) reference.

1.4.2 Release Specific Indexing
Indexing is done for the following release of OFSLL and indexed files are provided in
respective folder. The mapping of Release number v/s Folder name and Part Number is
indicated below:

Table 1-1 Release Specific Indexing

Release No Folder Name Part Number

14.12.0.0.0 14.12 F53373_01

1.5 Sample Workflow
While interacting with BOT, you need to input the basic details (like customer ID) to start and
further drill down to explore multiple account options available.

Following image is an illustration of the workflow and also, one of the scenario is detailed as an
example to indicate the BOT workflow in BOT Usability Workflow section.

Figure 1-2 Sample Workflow

To Start with, enter your name and confirm if you want to continue using the bot. Based on
your intent the bot starts building the answers.

Chapter 1
Sample Workflow

1-5

Table 1-2 Transaction Bot_Sample Workflow

Sl.No. Menu

1 Begin with entering a Customer ID / Account
number.

2 Click on required account from the list of accounts
belonging to the Customer ID

3 View the Account Summary. Click Payment Details
option form the list.

4 View the account details with below menu options

Today’s payoff Quote

Last 5 Transactions

Insurance Details

Last Billing details

Number of Terms remaining

Need more help

5 View the payment details

Last 5 payments

Next Payment date

Advance disbursement request for 2000 $

Need more help

6 View the communication preference

Current Preferences

Update Preference

Need more help

7 View the Limit details

Display current limit details

Master Account rolled-up Balances

Need more help

8 Click on the OFSLL documentation tree

The available options are

OFSLL release documentation

Document Search

Product release notes

Product classified guides

Find by indexed keyword

Getting started videos

Release Highlights

Need more help

9 Click Need more help

The user has a the option to continue with the
same customer id or enter new customer id

Also, one of the scenario is detailed as an example to indicate the Chatbot workflow in OFSLL.
Refer to BOT Usability Workflow section.

Chapter 1
Sample Workflow

1-6

1.6 Launch OFSLL Transaction BOT
OFSLL Transaction BOT is accessible after logging in to OFSLL application. This BOT can
either be in enabled or disabled status by default depending on the weblogic csf configuration
(refer section 2.5 in this document). If enabled, on login of OFSLL application the BOT is
available at right bottom corner.

Note:

Before you being, ensure to perform the required configuration as detailed in
Developer Guide for BOT Customization chapter.

The BOT after login is as shown below:

Figure 1-3 Launch OFSLL Transaction BOT

On clicking bot icon, the interface is as displayed:

Chapter 1
Launch OFSLL Transaction BOT

1-7

Figure 1-4 Transaction BOT_Interface

Chapter 1
Launch OFSLL Transaction BOT

1-8

1.7 BOT UI Elements

Figure 1-5 BOT UI Elements

Table 1-3 BOT UI Elements

Sl.No Option View / Action

1 Minimize Minimize BOT window

2 Speaker output Enable BOT in speaker mode

3 Clear chat Clear all messages in the BOT

Chapter 1
BOT UI Elements

1-9

Table 1-3 (Cont.) BOT UI Elements

Sl.No Option View / Action

4 Customized label Customization for title label is
detailed in Bot Customization
section of ‘OFSLL Docubot
Overview and Developer guide’.

5 Mic Input Enable Mic for voice based input

6 Text Input Enter search string using
keyboard

1.8 BOT Usability Workflow
Following is a sample workflow indicating the steps performed in chatbot. You can perform the
following:

• View Account Details

• View Payment Details

• View and update Communication Preferences

• View Credit Limit Details

• View OFSLL documentation tree

Table 1-4 BOT Usability Workflow

Action BOT Response

Begin with entering a Customer ID / Account
number.

Chapter 1
BOT Usability Workflow

1-10

Table 1-4 (Cont.) BOT Usability Workflow

Action BOT Response

Click on required account from the list of accounts
belonging to the Customer ID

Click on Account Details to view the Account
Summary which consists of the following options:
• Today’s Payoff Quote
• Last 5 Transaction
• Insurance Details
• Last Billing Details
• Number of Terms remaining?

Chapter 1
BOT Usability Workflow

1-11

Table 1-4 (Cont.) BOT Usability Workflow

Action BOT Response

Click on Payment Details and view the following
information related to the account:
• Last 5 Payments
• Next Payment Date
• Advance Disbursement Request for $2000

Click on Communication Preferences and view
the following options:
• Current Preferences
• Update Preference
• Need more help

Chapter 1
BOT Usability Workflow

1-12

Table 1-4 (Cont.) BOT Usability Workflow

Action BOT Response

Selecting Update preference options allows you to
modify the following details by posting appropriate
transaction:
• Update existing Email id
• Update existing Phone Number

Click on Limit Details and view the following
options:
• Display current limit details
• Master Account rolled-up Balances

Chapter 1
BOT Usability Workflow

1-13

Table 1-4 (Cont.) BOT Usability Workflow

Action BOT Response

Click on the OFSLL documentation tree and view
the following options:
• OFSLL release documentation
• Document Search
• Product release notes
• Product classified guides
• Find by indexed keyword
• Getting started videos
• Release Highlights
• Need more help
For detailed information on Documentation Bot
Usability, refer to ofsll_docubot_overview_and_
developer_guide document.

Click Need more help
You have the option to continue with the same
customer id or enter new customer id.

Chapter 1
BOT Usability Workflow

1-14

2
Developer Guide for BOT Customization

This section of the document intends to help you to set up and configure Oracle Digital
Assistant (ODA) ASK with the sample OFSLL wrapper. However, the instructions are provided
in brief and for any additional information, contact Oracle Financial Services Lending and
Leasing Product Engineering team.

Note:

Currently this framework supports basic authentication provided by OFSLL REST
service. OAUTH authentication is not supported. Additionally, OBDX (Oracle Banking
Digital Experience) can be integrated for user authentication purpose. For more
information, refer to documentation at https://docs.oracle.com/cd/E97825_01/
webhelp/Content/obdx/core/authentn/authntctn.htm

This topic consists of the following sections:

• Pre-requisites

• OFSLL Wrapper customization

• ODA – Dialog Flow Development

• Deploying war file on WebLogic Server

• Web application UI for Accessing BOT

• App configuration for enabling chatbot

• BOT Configuration

2.1 Pre-requisites
Following are the mandatory pre-requisites:

• OFSLL being a back-office system with limited capability, the following external
components are to be integrated in a single framework:

– ODA or Oracle Digital Assistant is a platform that allows to create and deploy digital
assistants, which are AI-driven interfaces that help users accomplish a variety of tasks
in natural language conversations.

– OBDX or Oracle Banking Digital Experience as a Application Launching portal and for
multi-factor authentication.
--or--

– Any 3rd party web application or customer self-service portal or lenders/financial
services website to launch OFSLL BOT. In this case user authentication related
integration needs to be handled as part of the implementation activity.

• Users need to have a capability to develop customized workflows using ODA development
framework. A brief introduction is explained in ODA – Dialog Flow Development section.

2-1

https://docs.oracle.com/cd/E97825_01/webhelp/Content/obdx/core/authentn/authntctn.htm
https://docs.oracle.com/cd/E97825_01/webhelp/Content/obdx/core/authentn/authntctn.htm

• User need to have a good understanding of OFSLL REST services and should be able to
customize it accordingly.

• User needs to be well versed with OFSLL wrapper customization as explained in OFSLL
Wrapper customization section.

2.2 OFSLL Wrapper customization

Note:

Note: From the current release onwards, no additional jar file needs to be added
since Maven – Pom.xml based model has been implemented.

Follow the below steps for OFSLL wrapper customization:

1. Import project into eclipse and modify channel.Properties to update below properties.

ofsll.baseURL = <OFSLL REST service base URL
<http://<host>:<port>/OfsllRestWS/service/api/resources>>
ofsll.username = <OFSLL username>
ofsll.password = <OFSLL pass>
ofsll.suffix = htm
ofsll.otmHttpUrl=https://docs.oracle.com/cd/
ofsll.fIndex=/findex.htm
ofsll.index=index.htm
ofsll.video=/videos.htm
ofsll.ofsllReleaseNotes=/pdf/refdocs/ofsll_release_notes.pdf
ofsll.ofsllReleaseDoc=https://docs.oracle.com/en/industries/financial-
services/financial-lending-leasing/index.html
ofsll.splitSeperator==
ofsll.maxHitsResults=<max number of results returned>
ofsll.indexDir = <Release index directory path of server >
ofsll.releaseVersionUrl= <Release Part number>
ofsll.releaseNo=<Release No>
ofsll.releaseHighlights=/pdf/refdocs/release_highlights.htm

2. To add any new service modify com.ofss.ofsll.chatbot.restclient.ChatRestClient.java file.

• Inside ChatRestClient Class add a new method with required actions

• Add supporting JAXB files

• Use the available supporting methods -- readInputStream,setChatBotResponse,
createConnection, stringToJaxb etc.

Example for document search functionality is indicated below:

@Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 @POST
 @Path("/lucenesearch")
 public Response lucenesearch(ODARequestDTO ibcsRequest) throws
IOException {
 final IChatbotAssembler chatbotAssembler =
ChatbotAssemblerFactory.getInstance().getChatbotAssembler("ODA");

Chapter 2
OFSLL Wrapper customization

2-2

 final HashMap < String,
 Object > map = (HashMap < String, Object >)
ibcsRequest.getProperties();
 String searchQuery = "";
 Properties prop = new Properties();
 try (InputStream propertiesFile =
this.getClass().getClassLoader().getResourceAsStream("channel.properties"))
 {
prop.load(propertiesFile);
 }
 if (map != null && map.containsKey("query")) {
 searchQuery = (String) map.get("query");
 }
 ResponseDTO ibcsResponse = null;
 try {
 ChatbotResponseDTO chatbotResponse = new ChatbotResponseDTO();
 String indexDirPath = prop.getProperty("ofsll.indexDir")
+prop.getProperty("ofsll.releaseNo");
 String releaseVersionUrl = prop.getProperty("ofsll.releaseVersionUrl");
 String urlPrefix = prop.getProperty("ofsll.otmHttpUrl");
 String splitSeperator = prop.getProperty("ofsll.splitSeperator");
 String releaseNo = prop.getProperty("ofsll.releaseNo");
 String urlPrefixPath = urlPrefix + releaseVersionUrl;
 String findexPath = prop.getProperty("ofsll.fIndex");
 String indexPath = prop.getProperty("ofsll.index");
 String videoPath = prop.getProperty("ofsll.video");
 String ofsllReleaseNotesPath =
prop.getProperty("ofsll.ofsllReleaseNotes");
 String ofsllReleaseDocPath = prop.getProperty("ofsll.ofsllReleaseDoc");
 Integer maxHitsResults =
Integer.parseInt(prop.getProperty("ofsll.maxHitsResults"));
 File fileIndexDirPath = new File(indexDirPath);
 LuceneSearchHighlighter luceneSearchHighlighter = new
LuceneSearchHighlighter();
 List<String> fileList = new ArrayList <> ();
 if ((searchQuery.toLowerCase().trim().contains("#ofsll release
document")) ||
(searchQuery.toLowerCase().trim().contains("navigate to index page")) ||
(searchQuery.toLowerCase().trim().contains("#video gallery")) ||
(searchQuery.toLowerCase().trim().contains("#ofsll release notes")) ||
(searchQuery.toLowerCase().trim().contains("#index page"))) {
 if ((searchQuery.toLowerCase().trim().contains("#ofsll release
document"))) {
 releaseNo="All Release Version";
 fileList.add(searchQuery + splitSeperator + ofsllReleaseDocPath +
splitSeperator+searchQuery+ splitSeperator+releaseNo);
 }
 if ((searchQuery.toLowerCase().trim().contains("navigate to index
page"))) {
 fileList.add(searchQuery + splitSeperator + urlPrefixPath + findexPath
+ splitSeperator+searchQuery+ splitSeperator+releaseNo);
 }
 if ((searchQuery.toLowerCase().trim().contains("#index page"))) {
 searchQuery = indexPath;
 fileList = luceneSearchHighlighter.searchsinglepage(fileIndexDirPath,
searchQuery, maxHitsResults, splitSeperator);

Chapter 2
OFSLL Wrapper customization

2-3

 }
 if ((searchQuery.toLowerCase().trim().contains("#video gallery"))) {
 fileList.add(searchQuery + splitSeperator + urlPrefixPath + videoPath
+ splitSeperator+searchQuery+ splitSeperator+releaseNo);
 }
 if ((searchQuery.toLowerCase().trim().contains("#ofsll release
notes"))) {
 fileList.add(searchQuery + splitSeperator + urlPrefixPath +
ofsllReleaseNotesPath + splitSeperator+searchQuery+
splitSeperator+releaseNo);
 }
 } else {
 searchQuery = searchQuery.replaceAll("#", "");
 fileList = luceneSearchHighlighter.search(fileIndexDirPath,
searchQuery, maxHitsResults, splitSeperator);
 }
 String serviceOutputForChatBot = "";
 for (String obj: fileList) {
 if (serviceOutputForChatBot == "") {
 serviceOutputForChatBot = obj.replace("\\", "/");
 } else {
 serviceOutputForChatBot = serviceOutputForChatBot + "\n---\n" +
obj.replace("\\", "/");
 }
 }
 if (fileList.isEmpty()) {
 String errorOutputForChatBot = "Search is not found for : " +
searchQuery;
 setChatBotResponse("failure", errorOutputForChatBot, chatbotResponse,
"response", "request");
 } else {
 List < String > srhchoices = new ArrayList < >();
 for (String obj: fileList) {
 srhchoices.add(obj.replace("\\", "/"));
 }
 setChatBotResponse("success", srhchoices, chatbotResponse, "acc_srh",
"acc_srh");
 }
 ibcsResponse = chatbotAssembler.fromChatbotResponseDTO((RequestDTO)
ibcsRequest, chatbotResponse);
 } catch(Exception e) {
 LOGGER.log(Level.SEVERE, e.getMessage());
 }
 return Response.status(Response.Status.OK).entity((Object)
this.buildResponse((Object) ibcsResponse)).build();
}

Example for lastbillingdetails Service -- This uses Account Details Service

@Consumes(MediaType.APPLICATION_JSON)@Produces(MediaType.APPLICATION_JSON)@
POST@Path("/lastbillingdetails")
public Response lastbillingDetails(ODARequestDTO ibcsRequest) {
final IChatbotAssembler chatbotAssembler =
ChatbotAssemblerFactory.getInstance().getChatbotAssembler("ODA");
final HashMap < String,

Chapter 2
OFSLL Wrapper customization

2-4

Object > map = (HashMap < String, Object >) ibcsRequest.getProperties();
String accountNumber = "";
if (map != null && map.containsKey("acc_nbr")) {
accountNumber = (String) map.get("acc_nbr");
}
ResponseDTO ibcsResponse = null;
try {
ChatbotResponseDTO chatbotResponse = new ChatbotResponseDTO();
String requestURL = "/servicing/account/" + accountNumber + "?
displayassociateaccounts=N";
HttpURLConnection conn = createConnection("GET", requestURL, "");
if (conn.getResponseCode() != 200 && conn.getResponseCode() != 201 &&
conn.getResponseCode() != 202) {
String errorOutput = readInputStream(conn, "error");
AccountDetailResponseType accountsDetails =
stringToJaxb(AccountDetailResponseType.class, errorOutput);
String errorOutputForChatBot = "\nBilling Details: \n " +
accountsDetails.getResult().getStatus().toString() + "\n" +
accountsDetails.getResult().getStatusDetails();
setChatBotResponse("failure", errorOutputForChatBot, chatbotResponse,
"response", "request");
} else {
String serviceOutput = readInputStream(conn, "input");
AccountDetailResponseType accountsDetails =
stringToJaxb(AccountDetailResponseType.class, serviceOutput);
String serviceOutputForChatBot = "\nBilling Details: " + "\n Generation
Date: " +
dateFormater(accountsDetails.getAccountDetailSummary().get(0).getStatementD
etails().get(0).getGenerationDate()) + "\n Closing Date: " +
dateFormater(accountsDetails.getAccountDetailSummary().get(0).getStatementD
etails().get(0).getClosingDate()) + "\n Due Date: " +
dateFormater(accountsDetails.getAccountDetailSummary().get(0).getStatementD
etails().get(0).getDueDate()) + "\n Current Due Amount: " +
accountsDetails.getAccountDetailSummary().get(0).getStatementDetails().get(
0).getCurrentDueAmount();
setChatBotResponse("success", serviceOutputForChatBot, chatbotResponse,
"response", "request");
}
ibcsResponse = chatbotAssembler.fromChatbotResponseDTO((RequestDTO)
ibcsRequest, chatbotResponse);
} catch(Exception e) {
LOGGER.log(Level.SEVERE, "Error: ", e);
}
return Response.status(Response.Status.OK).entity((Object)
this.buildResponse((Object) ibcsResponse)).build();
}

3. Export project as war (OracleFSLLChatBot.war) file.

4. Deploy <WL_Home>/wlserver/common/deployable-libraries/jax-rs-2.0.war
as Library on weblogic.

5. Deploy generated WAR (OracleFSLLChatBot.war) in step 3 onto weblogic server.

6. Note down base service URL that is required while publishing in ODA.

Example: http://<host>:<port>/ofsll/v1/fulfillment

Chapter 2
OFSLL Wrapper customization

2-5

2.3 ODA – Dialog Flow Development
Each menu option displayed in BOT are configured as an Intent which is configured to perform
a specific function or otherwise call a REST service in OFSLL.

In-order to achieve a sequence of menu options, dialog flow development is required to be
performed in ODA Oracle Digital Assistant. Following is a quick overview of steps involved:

• Login

• Creating Skill / Digital Assistant

• Defining Entity

• Adding Intents

• Updating Bot flow using Yaml

• Adding OFSLL REST service

• Configuring Channel for Publishing

• Publishing

It is recommended to refer to ODA documentation for detailed information - https://
docs.oracle.com/en/cloud/paas/digital-assistant/index.html

In the ODA - dialog flow development, you can either create new or import the given sample
available in path –
<release.zip>\LL\release\14_x_0_0_0\ws_as\ChatBot\transaction-bot
The sequence of flow in creating a sample BOT in ODA is indicated below with illustration:

1. Login to ODA UI

Figure 2-1 ODA UI - Login page

2. Go to Home

Chapter 2
ODA – Dialog Flow Development

2-6

https://docs.oracle.com/en/cloud/paas/digital-assistant/index.html
https://docs.oracle.com/en/cloud/paas/digital-assistant/index.html

Figure 2-2 ODA UI - Home

3. Create Skill/Digital Assistant.

Figure 2-3 Skill Assistant

4. Add Entities

Chapter 2
ODA – Dialog Flow Development

2-7

Figure 2-4 Add Entities

5. Add Intents. This involves defining Activity, Available option, Next level, Breakpoint,
intermediate steps.

Figure 2-5 Add Intents

6. Add Bot flow using Yaml

Chapter 2
ODA – Dialog Flow Development

2-8

Figure 2-6 Add Bot flow

7. Add OFSLL REST Service

Figure 2-7 OFSLL REST Service

Chapter 2
ODA – Dialog Flow Development

2-9

Figure 2-8 REST Service

8. Add Channel. This indicates where it has to be published and in this sample application,
only web channel is supported.

9. Enter the published URL as generated in step 2.6

Figure 2-9 Channels

10. After completion of Skill, publish. On publishing, the draft is converted to final non-editable
version and only final published version is accessible in bot.

11. Additional security layer is available to allow chatbot to work for specific registered
domains. To do so, select the channel, navigate to Allowed Domains and add the domain
name in the field. For example, adding *in.company1.com* allows chatbot to work only
from company1 domain.

12. There is also an option to define the session time-out for chatbot which by default is set to
maximum of 1440 minutes. You can enter the required time in minutes.

Chapter 2
ODA – Dialog Flow Development

2-10

Note:

The ofsll-transaction-bot is the sample ODA FLL application designed for the
demo purpose. The same can be imported in any ODA environment tested,
modified for new features.

2.4 Deploying war file on WebLogic Server
Before you begin, ensure to use the war file for deployment of OFSLL BOT available in the
path – release\<14_x.0.0.0>\ws_as\ChatBot\OracleFSLLChatBot.war.

1. Login to Web Logic application server enterprise manager (e.g.:http://hostname:port/em).

For example, http://host01.example.com:8001/console

Note:

Use the host name and port of the administration server of your domain.

Figure 2-10 Web Logic application server - Login

2. Enter valid login credentials.

3. Deploying an application is a change to the domain's configuration, so it must first be
locked. In the Change Center. Click Lock & Edit.

Chapter 2
Deploying war file on WebLogic Server

2-11

Figure 2-11 WebLogic Server - Change center

4. Under Domain Structure, click Deployments.

Figure 2-12 Deployments

5. On the right, under Deployments, click Install.

Figure 2-13 Install

Chapter 2
Deploying war file on WebLogic Server

2-12

6. Find the Current Location field. Use the links to browse to the location in which you placed
the downloaded OracleFSLLChatBot.war file.

7. The .war file is available in the path -
release\<14_x.0.0.0>\ws_as\ChatBot\OracleFSLLChatBot.war. Select
the .war file from the given path and click the radio button next to it. Using the links and
the radio button, the console auto populates the Path fields. Alternatively, you can type in
the path and file name in the Path field yourself. Click Next.

Figure 2-14 Install Application Assistant 1

8. Ensure that Install this deployment as an application option is selected. Click Next.

Figure 2-15 Install Application Assistant 2

9. In the below window, click Next.

Chapter 2
Deploying war file on WebLogic Server

2-13

Figure 2-16 Install Application Assistant 3

10. Retain the default values and click Next.

Chapter 2
Deploying war file on WebLogic Server

2-14

Figure 2-17 Install Application Assistant 4

11. In the below window, select the option No, I will review the configuration later and click
Finish.

Figure 2-18 Install Application Assistant 5

Chapter 2
Deploying war file on WebLogic Server

2-15

Once done view the messages indicating that the deployment was installed, but changes
must be activated. In addition, notice the benefits application listed in the Deployments
table.

Figure 2-19 Installed Deployment - message

12. In the Change Center, click the Activate Changes button.

Figure 2-20 Activate Changes

Chapter 2
Deploying war file on WebLogic Server

2-16

Notice the message indicating that the changes have been activated. In addition, notice
the benefits application listed in the Deployments table is now in the Prepared state.

Figure 2-21 Deployments - changes activated

13. Select the checkbox against the left of the benefits application in the Deployments table. In
the Start drop-down list, select Servicing all requests option.

Figure 2-22 Checkbox - Servicing all requests

14. Click Yes to continue.

Chapter 2
Deploying war file on WebLogic Server

2-17

Figure 2-23 Start Application Assistant

15. A message is displayed indicating a start request was sent. Subsequently Notice that the
state of application is ‘Active’ indicating that the application is accessible.

Figure 2-24 Deployments - start request sent message

2.5 Web application UI for Accessing BOT
Web Application is User Interface where you can access the BOT functionality. The same can
be integrated with OFSLL UI or any other front-end application such as customer support
portal or financial institution website.

To configure WebApp, do one of the following:

• In case you wish to launch BOT as separate application, Modify index.html in
OracleFSLLChatBot (or OracleFSLLChatBot.war) and update the following 2 fields
with required details:

– URI: '<ODA host>',

Chapter 2
Web application UI for Accessing BOT

2-18

– channelId: 'published bot channel ID’

• In case you wish to integrate BOT in an existing front-end application, use the provided
index.html with the modified value and web-sdk.js

The BOT needs to be published on the login page and the only way it come be done is by
adding the above properties in the Weblogic

For additional information, contact Oracle Financial Services Lending and Leasing Product
Engineering team.

2.6 App configuration for enabling chatbot
The below section details the process of app configuration for enabling chatbot to appear on
OFSLL home page.

1. Enabling BOT and adding parameters:

• Channel ID

• URI

• Enabled – Yes / No

2. Enable the FLS Access Key - FLL.CMN.UIX.TXNCHATBOT.BUTTON as indicated in the
Access Setup screen.

Figure 2-25 Enable the FLS Access Key

3. Search for System parameter in the box below.

Chapter 2
App configuration for enabling chatbot

2-19

Figure 2-26 System parameter

4. Enter the Channel id, click save and return.

Figure 2-27 Channel id

5. Enter the URI , click save and return.

Figure 2-28 URI

6. Enable Transaction bot.

Chapter 2
App configuration for enabling chatbot

2-20

Figure 2-29 Enable Transaction bot

The below code needs to be implemented in the chatbot.js file as shown below:

Figure 2-30 Code implementation

Ensure that no changes are done to the following js code:

function onLoginPageLoad(event) {
var source = event.getSource();
AdfCustomEvent.queue(source, "LoginChatbotEvent",
{
'someArg' : 'true'
},
true);
}
function onHomePageLoad(evt) {
var eventSource = evt.getSource();
AdfCustomEvent.queue(eventSource, "HomeChatbotEvent",
{

Chapter 2
App configuration for enabling chatbot

2-21

'someArg' : 'true'
},
true);
}
function initSdk(name, uri, channel) {
var chatWidgetSettings = {
initUserHiddenMessage : 'Hi', openChatOnLoad : false, URI : uri,
channelId : channel,
font: '12px "Helvetica Neue", Helvetica, Arial, sans-serif',
locale: 'en-US',
enableClearMessage: true,
enableAutocomplete:false,
setSize:('400px' ,'786px'),
showConnectionStatus:true,
showTypingIndicator:true,
displayActionsAsPills:true,
enableSpeech:true,
enableAttachment:false,
enableBotAudioResponse: true,
skillVoices: [{
lang: 'en-US',
name: 'Samantha'
}, {
lang: 'en-US',
name: 'Alex'
}, {
lang: 'en-UK'
}]
};
if (!name) {
name = 'Bots';
}
setTimeout(function () {
const Bots = new WebSDK(chatWidgetSettings);// Initiate library with
configuration
Bots.connect()// Connect to server
.then(function () {
})
window[name] = Bots;
});
}

7. Web-sdk.js needs to be added from the << OFSLL Installed Directory >>/ /web_interface/
ofsllbot/WebApp/scripts.

The BOT after login is as shown below:

Chapter 2
App configuration for enabling chatbot

2-22

Figure 2-31 BOT logged in

On clicking bot icon, the interface is as displayed:

Figure 2-32 BOT interface

2.7 BOT Configuration
For the BOT to function, the following parameters are to be defined in the
application.properties file available in the .war (OracleFSLLChatBot.war) in the path indicated
below.

<OFSLL Installed Directory path>LL\release\<release
version>\ws_as\ChatBot\OracleFSLLChatBot.war\WEB-INF\classes\

Chapter 2
BOT Configuration

2-23

The below tables lists all the parameters of the properties file. However, only those fields
marked as Y in Update required (Y/N) column are to be updated.

Table 2-1 BOT Configuration - Parameters

Sl.No Parameter
Name

Fields Description Update
required (Y/N)

Sample

1 paymentPurpos
eRequired=Y

Boolean Captures the
Payment
purpose
Required

N Y

2 accessToken= String Captures the
access token

N

3 proxyIP= String Captures the
Proxy

N

4 proxyPort= Integer Captures the
Proxy Port

N

5 googleAPIKey= String Captures the
Google API key

N

6 imageUrl= Path Captures the
Image URL

N

7 defaultHomeEnt
ity=

String Captures the
home entity

N

8 stockCode= String Captures the
Stock Code

N

9 moneyTransferP
ay=

String Captures the
Money Transfer
Pay

N

10 defaultBaseCon
text=

String Captures the
default base
content

N

11 sessionExpiryIn
Minutes = 15

Integer Captures the
Session timeout
value

N

12 ofsll.suffix = htm String Suffix of the
files

N Keep as .htm

13 ofsll.otmHttpUrl
=https://
docs.oracle.co
m/cd/

String Captures the
suffix for OTM
Url

N Keep as https://
docs.oracle.co
m/cd/

14 ofsll.fIndex=/
findex.htm

String Captures the
Findex path

N Keep as /
findex.htm

15 ofsll.index=inde
x.htm

String Captures the
index.htm

N Keep as
index.htm

16 ofsll.video=/
videos.htm

String Captures the
video file path

N Keep as /
video.htm

17 ofsll.ofsllReleas
eNotes=/pdf/
refdocs/
ofsll_release_n
otes.pdf

String Captures the
OFSLL release
notes suffix

N Do not change

Chapter 2
BOT Configuration

2-24

Table 2-1 (Cont.) BOT Configuration - Parameters

Sl.No Parameter
Name

Fields Description Update
required (Y/N)

Sample

18 ofsll.ofsllReleas
eDoc=https://
docs.oracle.co
m/en/industries/
financial-
services/
financial-
lending-leasing/
index.html

String Captures the
OFSLL release
doc URL

N Do not change

19 ofsll.splitSepera
tor==

String Captures the
Split separator

N Do not change

20 ofsll.maxHitsRe
sults=100

String Captures the
Max no of its
results of the
document query

Y (optional) Change
depending upon
search results

21 ofsll.baseURL = String Captures the
Service API
URL

Y Application URL

22 ofsll.username
=

String Captures the
username of
weblogic server

Y Weblogic
username

23 ofsll.pasd = String Captures the
Password of
weblogic server

Y Weblogic
password

24 ofsll.indexDir =/
folder path

Path Captures the
complete folder
path where
index files are
placed

(In this location,
copy the index
files from
respective
release folder.
The index dir
specific files are
available in the
below location:
LL\release\14_x
_0_0_0\ws_as\
ChatBot\14.x)

Y Change as per
server indexed
folder.

Note: Ensure to
use the same
dir file indicated
the path.

25 ofsll.releaseVer
sionUrl=

Path Captures the
Part Number

Y Refer Release
Specific
Indexing table.

26 ofsll.releaseNo= Decimal Captures the
Release
Number

Y Refer Folder
Name column
Release
Specific
Indexing table.

Chapter 2
BOT Configuration

2-25

Table 2-1 (Cont.) BOT Configuration - Parameters

Sl.No Parameter
Name

Fields Description Update
required (Y/N)

Sample

27 ofsll.releaseHig
hlights=/pdf/
refdocs/
release_highlig
hts.htm

String Captures the
release
highlights file
path

N Keep as /pdf/
refdocs/
release_highlig
hts.htm

Chapter 2
BOT Configuration

2-26

	Contents
	1 OFSLL Transaction BOT Overview and Developer Guide
	1.1 Introduction
	1.1.1 Transaction Bot Overview
	1.1.2 Purpose
	1.1.3 Audience
	1.1.4 Accessibility
	1.1.5 Access
	1.1.6 Prerequisites

	1.2 Architecture
	1.3 Third Party Licenses
	1.4 Features of BOT
	1.4.1 Support of Text and Voice Based inputs
	1.4.2 Release Specific Indexing

	1.5 Sample Workflow
	1.6 Launch OFSLL Transaction BOT
	1.7 BOT UI Elements
	1.8 BOT Usability Workflow

	2 Developer Guide for BOT Customization
	2.1 Pre-requisites
	2.2 OFSLL Wrapper customization
	2.3 ODA – Dialog Flow Development
	2.4 Deploying war file on WebLogic Server
	2.5 Web application UI for Accessing BOT
	2.6 App configuration for enabling chatbot
	2.7 BOT Configuration

