
Oracle Banking Trade Finance
Multi-Tenant Patch-set Deployment

Release 14.8.0.0.0
G29249-01
April 2025

Oracle Banking Trade Finance Multi-Tenant Patch-set Deployment, Release 14.8.0.0.0

G29249-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Purpose v

Audience v

Documentation Accessibility v

Critical Patches v

Diversity and Inclusion vi

Conventions vi

Related Resources vi

Screenshot Disclaimer vi

1 Overview of Applications in an Application Container

1.1 Managing Applications in an Application Container 1-1

1.2 Application Maintenance 1-1

1.2.1 Application Installation 1-2

1.2.2 Application Upgrade 1-2

2 Patch-set Application Steps

2.1 Application Upgrade 2-1

2.1.1 Purpose 2-1

2.1.2 Steps to be Followed 2-1

2.1.2.1 Start Application Upgrade 2-2

2.1.2.2 Compiling Incremental Units 2-2

2.1.2.3 Recompilation of invalids 2-3

2.1.2.4 End Application upgrade 2-3

2.1.2.5 Start Application upgrade 2-3

2.1.2.6 Application Root Objects Conversion for New Objects 2-3

2.1.2.7 Application Root Objects Conversion for Existing Objects 2-4

2.1.2.8 Recompilation of Invalids 2-4

2.1.2.9 End Application Upgrade 2-4

2.1.3 Purpose 2-5

2.1.4 Steps to be Followed 2-5

iii

3 Step by Step Execution

3.1 Pre-Requisites 3-1

3.2 Patch-set Application Step by Step with Screenshots 3-2

Index

iv

Preface

• Purpose

• Audience

• Documentation Accessibility

• Critical Patches

• Diversity and Inclusion

• Conventions

• Related Resources

• Screenshot Disclaimer

Purpose
Major changes to an application constitute application upgrades. During the upgrade, Oracle
Database automatically clones the application root, and the application PDBs point to the
clone.

Application upgrade can be performed in the application root only, and application PDBs
applies the changes in the upgrade when they synchronize with the application.

Audience
This guide is intended for anyone responsible for installing Oracle Banking Application.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Critical Patches
Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and
Bulletins. All critical patches should be applied in a timely manner to ensure effective security,
as strongly recommended by Oracle Software Security Assurance.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Related Resources
For more information, see these Oracle Banking Trade Finance resources:

• Oracle Banking Trade Finance Release Notes

• Oracle Banking Trade Finance Install & Upgrade

Screenshot Disclaimer
Personal information used in the interface or documents is dummy and does not exist in the
real world. It is only for reference purposes.

Preface

vi

1
Overview of Applications in an Application
Container

• Managing Applications in an Application Container
In an application container, an application is the named, versioned set of application
common objects stored in the application root. In this context, “application” means
“application back-end.” Application common objects include user accounts, tables, PL/SQL
packages, and so on. An application can be shared with the application PDBs that belong
to the application root.

• Application Maintenance
Application maintenance refers to installing, uninstalling, upgrading, or patching an
application.

1.1 Managing Applications in an Application Container
In an application container, an application is the named, versioned set of application common
objects stored in the application root. In this context, “application” means “application back-
end.” Application common objects include user accounts, tables, PL/SQL packages, and so on.
An application can be shared with the application PDBs that belong to the application root.

On performing application changes, application PDBs can synchronize with the application in
the application root. The application container also manages the versions of the application
and the patches to the application:

• While installing an application, user must specify the application version number.

• While upgrading an application, user must specify the old application version number and
the new application version number.

As the application evolves, the application container maintains all of the versions that are
applied.

1.2 Application Maintenance
Application maintenance refers to installing, uninstalling, upgrading, or patching an application.

Perform application installation, upgrade, and patching operations using an ALTER
PLUGGABLE DATABASE APPLICATION statement.

The basic steps for application maintenance are as follows:

1. Log in to the application root.

2. Begin the operation with an ALTER PLUGGABLE DATABASE APPLICATION ... BEGIN
statement in the application root.

3. Execute the application maintenance statements.

4. End the operation with an ALTER PLUGGABLE DATABASE APPLICATION ... END
statement.

These statements can be issued in the same user session or in different user sessions.

1-1

• Application Installation

• Application Upgrade
An application upgrade is a major change to an installed application.

1.2.1 Application Installation
An application installation is the initial creation of a master application definition. A typical
installation creates user accounts, tables, and PL/SQL packages.

Refer Multi-Tenant_Deployment.pdf for more details on the application installation.

1.2.2 Application Upgrade
An application upgrade is a major change to an installed application.

Typically, an upgrade changes the physical architecture of the application. For example, an
upgrade might add new tables, and packages, or alter the definitions of existing objects.

To upgrade the application, specify the following in the ALTER PLUGGABLE DATABASE
APPLICATION statement:

• Name of the application

• Old application version number

• New application version number

During an application upgrade, the application remains available. To make this availability
possible, Oracle Database clones the application root.

The following figure gives an overview of the application upgrade process.

Chapter 1
Application Maintenance

1-2

When an application is upgraded, Oracle Database automatically clones the application root.

During the upgrade, application PDBs point to the clone and applications continue to run
during the upgrade. Application PDBs can perform DML on metadata-linked and tables and
views and query data-linked tables.

After the upgrade, the application root clone remains and continues to support any application
PDB that still uses the pre-upgrade version of the application in the clone.

Application PDBs that re synchronized are pointed to the upgraded application root.
Application PDBs that are not synchronized might continue to use the clone.

Chapter 1
Application Maintenance

1-3

2
Patch-set Application Steps

Multi entity application root/PDB based setup has to be available to perform18c database
application upgrade for applying the patch-set. Refer Multi-Tenant_Deployment.docx for the
deployment and installation steps.

Patch-set can be applied by following below steps in sequential order, and detail of each steps
explained as separate sections subsequently.

• Application Upgrade

• Synchronize application PDBs

Patch-set Deployment Pre-requisites:

• Download the required patch-set zip file and unzip it in a local path.

• Verify whether the property files (fcubs.properties and env.properties) have the application
root schema details where the application is available, if not update the approot schema
details through installer (Refer OBTF_Property_File_Creation.docx for more details) and
re-generate the files.

• Make sure to set the flag PATCHSET_INSTALLATION to 'Y'.

• Application Upgrade

2.1 Application Upgrade
• Purpose

Major changes to an application constitute application upgrades. During the upgrade,
Oracle Database automatically clones the application root and the application PDBs point
to the clone.

• Steps to be Followed

• Purpose

• Steps to be Followed

2.1.1 Purpose
Major changes to an application constitute application upgrades. During the upgrade, Oracle
Database automatically clones the application root and the application PDBs point to the clone.

Application upgrade can be performed in the application root only, and application PDBs
applies the changes in the upgrade when they synchronize with the application.

2.1.2 Steps to be Followed

Below steps to be followed to initiate application upgrade:

• Start Application upgrade

• Compiling Incremental Units

2-1

• Recompilation of invalids

• End Application upgrade

• Start Application upgrade

• Application Root objects conversion for new objects

• Application Root objects conversion for existing objects

• Recompilation of invalids

• End Application upgrade

• Start Application Upgrade
An ALTER PLUGGABLE DATABASE APPLICATION statement has to be issued to
upgrade an application in the application root.

• Compiling Incremental Units

• Recompilation of invalids

• End Application upgrade

• Start Application upgrade

• Application Root Objects Conversion for New Objects

• Application Root Objects Conversion for Existing Objects

• Recompilation of Invalids

• End Application Upgrade

2.1.2.1 Start Application Upgrade
An ALTER PLUGGABLE DATABASE APPLICATION statement has to be issued to upgrade an
application in the application root.

Each upgrade must be associated with an application name, starting version number, and
ending version number.

• The common user must have the DBA privilege, and the privilege must be commonly
granted in the application root.

• The application root must be in open read/write.

• Run the below script for initiating an application upgrade. This will initiate the application
from current version to the next version (patch-set version).

Start_Upgrade

Input sample for the script:

Spool Path << Any local path>>

Application next version 14.4.0.0.0

2.1.2.2 Compiling Incremental Units
Patch-set objects have to be loaded using bat file [E.g.: SMSDBCompileRun.bat,
TFDBCompileRun.bat] by silent installer for respective product processer.

Compile the incremental SMS units using /INSTALLER/SOFT/SMSDBCompileRun.sh for
UNIX installations or /INSTALLER/SOFT/SMSDBCompileRun.bat for Windows installations.

Chapter 2
Application Upgrade

2-2

Compile the incremental OBTF units using /INSTALLER/SOFT/TFDBCompileRun.sh for
UNIX installations or /INSTALLER/SOFT/TFDBCompileRun.bat for Windows installations.

2.1.2.3 Recompilation of invalids
As the sharing property of most of the objects are modified other than NONE, recompilation of
objects is not allowed outside an application.

Recompilation of objects will be initiated inside the application upgrade for sanity with zero
invalids with the below script:

Recompilation of invalids

2.1.2.4 End Application upgrade
Application upgrade can be performed in the application root only and end of the upgrade is
performed with an ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE
statement.

Run the below script for ending an application upgrade for patch-set.

End Application upgrade

And run the invalid script by connecting to the common user in approot outside the upgrade.

Invalid Recompilation Outside Upgrade.

2.1.2.5 Start Application upgrade
Run the below script for initiating another application upgrade for object conversion. This will
initiate the application from current version to the next version (patch-set version).

Start Application upgrade

Input sample for the script:

Spool Path << Any local path>>

Application next version 14.4.0.0.0

2.1.2.6 Application Root Objects Conversion for New Objects
As part of patch-set when there are new tables added which has to be converted as DL or
when there is a new function id which is identified to be an approot function is provided,
otherwise no conversion will happen as part of this step

Below script takes care of converting the new DL objects during patch-set based on the
deployment model of the application during installation.

New Object Conversion

Input sample for the script:

Spool Path << Any local path>>

Application next version 14.4.0.0.0

Chapter 2
Application Upgrade

2-3

2.1.2.7 Application Root Objects Conversion for Existing Objects
Various Sharing types of objects during installation:

• A static table will hold the information of selected table sharing as Data link. Other tables
will be treated as Meta Data Link

• Sharing of object types such as INDEX, LOB, TABLE PARTITION, SEQUENCE, and
DYNAMIC PACKAGES will remain as NONE.

• All other object types such as Packages, Procedures, Functions, and Synonyms would be
converted as Meta Data Link sharing.

Sharing during upgrade:
Sharing of existing database objects will remain the same.

Below script takes care of converting the modified MDL objects when there is a re-creation
[objects with Create or Replace command during creation] happens during patch-set.
Application Root Objects Conversion

Input sample for the script:

Spool Path << Any local path>>

Application next
version

14.4.0.0.0

When there are new tables introduced as part of patch-set which has to be converted into DL
will be done separately. The recommendation for the same will be provided as part of patch-
set instructions for this case.

2.1.2.8 Recompilation of Invalids
As the sharing property of most of the objects are modified other than NONE, recompilation of
objects is not allowed outside an application.

Recompilation of objects will be initiated inside the application upgrade for sanity with zero
invalids with the below script:

Recompilation of Invalids

2.1.2.9 End Application Upgrade
Application upgrade can be performed in the application root only and end of the upgrade is
performed with an ALTER PLUGGABLE DATABASE APPLICATION END UPGRADE
statement.

Run the below script for ending an application upgrade for patch-set.

End Application Upgrade

And run the invalid script by connecting to the common user in approot outside the upgrade.

Invalids_Recompilation_Outside_Upgrade

Chapter 2
Application Upgrade

2-4

2.1.3 Purpose
Synchronizing an application updates the application in the application PDB to the latest
version in the application root. When an application is upgraded in an application root, an
application PDB that belongs to the application root is not changed until it is synchronized.

Application PDBs synchronize with an application by running an ALTER PLUGGABLE
DATABASE statement with the SYNC clause.

2.1.4 Steps to be Followed
Prerequisites

• The current user must have ALTER PLUGGABLE DATABASE system privilege.

• Ensure that the current container is the application PDB.

• Run an ALTER PLUGGABLE DATABASE APPLICATION statement with the SYNC
clause.

• Run the below script to synchronize the PDBs with the latest application changes in the
application root.

PDB_Sync

Chapter 2
Application Upgrade

2-5

3
Step by Step Execution

• Pre-Requisites
This topic provides systematic instructions for pre-requisites.

• Patch-set Application Step by Step with Screenshots
This topic provides systematic instructions to patch-set application step by step with
screenshots.

3.1 Pre-Requisites
This topic provides systematic instructions for pre-requisites.

1. Before applying the patch-set, we have to make sure the release is updates with the base
version of the patch-set.

For Example, If the first patch-set of 14.2 is yet to applied, the release has to be updated
as ’14.2.0.0.0’. It can be verified with the below queries.

select param_name, param_val from CSTB_PARAM WHERE PARAM_NAME =
'RELEASE';
select module_group_id, release from SMTB_MODULES_GROUP;

2. Another significant parameter is the values of application name and deployment type in
CSTB_PARAM.

This value will be updated from the installer during Approot Object Conversion utility as
part of deployment.

select param_name, param_val from cstb_param where PARAM_NAME in
('MULTI_TENANT_APP_NAME','MULTI_TENANT_DEPLOYMENT_MODEL');

The Application name of multi-tenant deployment will be stored in CSTB_PARAM as

Param_Name Param_Val

MULTI_TENANT_APP_NA
ME

OBTF

The type of object conversion will be stored in CSTB_PARAM as

Param_Name Param_Val

MULTI_TENANT_DEPLOY
MENT_MODEL

SA (or) SAUA (or) SASDD (or) SASDC

SA  Shared Application
SAUA  Shared Application User Authentication
SASDD  Shared Application Shared Data - Default
SASDC  Shared Application Shared Data – Custom

(Optional) Enter the result of the procedure here.

3-1

3.2 Patch-set Application Step by Step with Screenshots
This topic provides systematic instructions to patch-set application step by step with
screenshots.

1. Start Application upgrade

a. Login into the Approot Schema as Common user.

b. Run 01_Start_Upgrade.sql for initiating the application upgrade.

c. User input has to be inputted for the below:

Spool Path << Any local path>>

Application next version 14.4.0.0.0

d. Script will be executed as in the screen shot below and keep the SQL Plus session
open for upcoming steps.

Execution Screenshot:

Chapter 3
Patch-set Application Step by Step with Screenshots

3-2

2. Compiling Incremental Units

a. Make sure that the fcubs.properties and env.properties are updated with approot
schema details.

b. Run the <Product Processor>DBCompileRun.bat from
<Patchset>\INSTALLER\SOFT directory. DDL Compilation, Object Compilation and
Static Data load will be done.

For Example: OBTF INSTALLATION
First load SMS objects first and then OBTF objects. i.e. Run SMSDBCompileRun.bat
and after SMS object loading is completed, then initiate OBTF compilation Run
TFDBCompileRun.bat

3. Recompilation of invalids

a. Login into the Approot Schema as Common user

b. Run 03_Invalids_Recompilation.sql for recompiling the invalids during
application upgrade.

c. No user input is required for this step.

d. Script will be executed as in the screen shot below and keep the SQL Plus session
open for upcoming steps.

Execution Screenshot:

Chapter 3
Patch-set Application Step by Step with Screenshots

3-3

4. End Application upgrade

a. Login into the Approot Schema as Common user.

b. Run 06_End_Upgrade.sql for recompiling the invalids during application
upgrade.

c. No user input is required for this step.

d. Script will be executed as in the screen shot below.

Execution Screenshot:

Chapter 3
Patch-set Application Step by Step with Screenshots

3-4

5. Start Application upgrade

a. Login into the Approot Schema as Common user.

b. Run 05_Start_Upgrade.sql for initiating the application upgrade.

c. User input has to be inputted for the below:

Spool Path << Any local path>>

Application next version 14.4.0.0.0

d. Script will be executed similar to step 1 above and keep the SQL Plus session open for
upcoming steps.

6. Application Root objects conversion for new objects

a. Login into the Approot Schema as Common user.

b. Run 06_New_Object_Conversion.sql for converting new approot objects
added during patch-set as DL

c. User input has to be inputted for the below:

Spool Path << Any local path>>

Application next version HUBUSER (common user name)

Execution Screenshot:

Chapter 3
Patch-set Application Step by Step with Screenshots

3-5

7. Application Root objects conversion for existing objects

a. Login into the Approot Schema as Common user.

b. Run 07_Object_Conversion.sql for initiating the application upgrade.

c. User input has to be inputted for the below:

Spool Path << Any local path>>

Application next version HUBUSER (common user name)

Execution Screenshot:

Chapter 3
Patch-set Application Step by Step with Screenshots

3-6

8. Recompilation of invalids

a. Login into the Approot Schema as Common user.

b. Run 08_Invalids_Recompilation.sql for recompiling the invalids during
application upgrade.

c. No user input is required for this step.

d. Script will be executed as in the screen shot below and keep the SQL Plus session
open for upcoming steps.

Execution Screenshot:

Chapter 3
Patch-set Application Step by Step with Screenshots

3-7

9. End Application upgrade

a. Login into the Approot Schema as Common user.

b. Run 06_End_Upgrade.sql for recompiling the invalids during application
upgrade.

c. No user input is required for this step.

d. Script will be executed as that of step 4.

10. Synchronize application PDBs

a. Login into the PDB Schema as Common user. For each PDB, this steps has to be
done individually.

b. Run 07_PDB_Sync.sql for synching the application upgrade with PDBs.

c. No user input is required for this step.

d. Script will be executed as in the screen shot below.

Chapter 3
Patch-set Application Step by Step with Screenshots

3-8

Execution Screenshot:

Chapter 3
Patch-set Application Step by Step with Screenshots

3-9

01_Start_Upgrade

This script is used for initiating an application upgrade. This will initiate the application from
current version to the next version (patch-set version).

Syntax

SET VERIFY ON
SET HEAD ON
SET FEEDBACK 1
SET ARRAY 1
SET LINESIZE 10000
SET PAGESIZE 50000
SET LONG 10000
SET ECHO ON
SET TRIMSPOOL ON
SET COLSEP ';'
SET SERVEROUT OFF
clear screen
SPOOL ON
SET SQLBLANKLINES ON
SET SERVEROUTPUT ON
SET ERRORLOGGING ON
SET ECHO ON
prompt Welcome to Application Upgrade initiation
SPOOL "&SPOOL_PATH"

DECLARE
 l_app_name VARCHAR2(128);
 l_app_currver VARCHAR2(30);
 l_Sql VARCHAR2(256);
BEGIN

 BEGIN
 SELECT app_name
 INTO l_app_name
 FROM dba_applications
 WHERE app_implicit <> 'Y'
 AND app_name = (SELECT param_val FROM cstb_param WHERE Param_name =
'MULTI_TENANT_APP_NAME');
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 dbms_output.put_line('Error1 Nodata--->'||SQLERRM);
 WHEN OTHERS THEN
 dbms_output.put_line('Error1 others--->'||SQLERRM);
 END;

 BEGIN
 SELECT MAX(app_version)
 INTO l_app_currver
 FROM dba_app_versions
 WHERE app_name = l_app_name;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN

10

 dbms_output.put_line('Error2 Nodata--->'||SQLERRM);
 WHEN OTHERS THEN
 dbms_output.put_line('Error2 others--->'||SQLERRM);
 END;

 l_Sql := 'ALTER PLUGGABLE DATABASE APPLICATION ' || l_app_name||' BEGIN
UPGRADE '''|| l_app_currver || ''' TO '''|| '&P_APPLICATION_NEXTVER' ||'''';
 dbms_output.put_line('l_sql: ' || l_Sql);
 EXECUTE IMMEDIATE l_Sql;

 l_Sql := 'ALTER SYSTEM SET DEFAULT_SHARING = NONE';
 dbms_output.put_line('l_sql: ' || l_Sql);
 EXECUTE IMMEDIATE l_Sql;

EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('Error --->'||SQLERRM);
END;
/

SET ERRORLOGGING OFF
SPOOL OFF

11

Recompilation of invalids

Recompilation of objects will be initiated inside the application upgrade for sanity with zero
invalids with the below script:

Syntax

/* Script for Shared Application + Shared Data */
SET VERIFY ON
SET HEAD ON
SET FEEDBACK 1
SET ARRAY 1
SET LINESIZE 10000
SET PAGESIZE 50000
SET LONG 10000
SET ECHO ON
SET TRIMSPOOL ON
SET COLSEP ';'
SET SERVEROUT OFF
clear screen
SPOOL ON
SET SQLBLANKLINES ON
SET SERVEROUTPUT ON
SET ERRORLOGGING ON
SET ECHO ON
prompt Welcome to Application Upgrade Invalids Recompilation
SPOOL "&SPOOL_PATH"

DECLARE
 inval_cnt NUMBER := 0;
 l_object_name VARCHAR2(240);
BEGIN
 WHILE inval_cnt < 3 LOOP
 --SCRIPT
 FOR J IN (Select 'alter ' || object_type || ' ' || object_name ||'
compile' invalidobject1,
 object_name
 FROM user_objects
 WHERE status = 'INVALID'
 AND created_appid IS NOT NULL
 AND object_type IN
('VIEW','SYNONYM','PROCEDURE','FUNCTION','PACKAGE','TRIGGER','MATERIALIZED
VIEW'))
 LOOP
 BEGIN
 l_object_name := j.object_name;
 dbms_output.put_line(chr(10));
 EXECUTE IMMEDIATE J.invalidobject1;
 EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('failed for -->' || l_object_name);
 END;
 END LOOP;
 inval_cnt := inval_cnt + 1;

12

 END LOOP;
EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
END;
/
DECLARE
 inval_cnt1 NUMBER := 0;
 l_object_name VARCHAR2(240);
BEGIN
 WHILE inval_cnt1 < 3 LOOP
 --SCRIPT
 FOR k IN (Select 'alter package '|| object_name||' compile body'
invalidobject2,
 object_name
 FROM user_objects
 WHERE status = 'INVALID'
 AND created_appid IS NOT NULL
 AND object_type IN ('PACKAGE BODY'))
 LOOP
 BEGIN
 l_object_name := k.object_name;
 dbms_output.put_line(chr(10));
 EXECUTE IMMEDIATE k.invalidobject2;
 EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
 END;
 END LOOP;
 inval_cnt1 := inval_cnt1 + 1;
 END LOOP;
EXCEPTION
WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
END;
/
select count(*) From user_objects Where status = 'INVALID';

SET ERRORLOGGING OFF
SPOOL OFF

13

End Application upgrade

This script is run for ending an application upgrade for patch-set.

Pre-requisites:

Step 3 on Application associated pdb creation is completed

Syntax

SET VERIFY ON
SET HEAD ON
SET FEEDBACK 1
SET ARRAY 1
SET LINESIZE 10000
SET PAGESIZE 50000
SET LONG 10000
SET ECHO ON
SET TRIMSPOOL ON
SET COLSEP ';'
SET SERVEROUT OFF
clear screen
SPOOL ON
SET SQLBLANKLINES ON
SET SERVEROUTPUT ON
SET ERRORLOGGING ON
SET ECHO ON
prompt Welcome to Application end Upgrade
SPOOL "&SPOOL_PATH"

DECLARE
 l_app_name VARCHAR2(128);
 l_sql VARCHAR2(256);
BEGIN
 BEGIN
 SELECT app_name
 INTO l_app_name
 FROM dba_applications
 WHERE app_implicit <> 'Y'
 AND app_name = (SELECT param_val FROM cstb_param WHERE param_name
= 'MULTI_TENANT_APP_NAME');
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 dbms_output.put_line('Error1 Nodata--->'||SQLERRM);
 WHEN OTHERS THEN
 dbms_output.put_line('Error1 others--->'||SQLERRM);
 END;
 l_sql := 'ALTER PLUGGABLE DATABASE APPLICATION ' || l_app_name||' END
UPGRADE ';
 dbms_output.put_line('l_sql: ' || l_sql);

 EXECUTE IMMEDIATE l_sql;

EXCEPTION

14

WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error --->'||SQLERRM);
END;
/

SET ERRORLOGGING OFF
SPOOL OFF

15

End Application upgrade

This script runs the invalid script by connecting to the common user in approot outside the
upgrade.

Syntax

/* Script for Shared Application + Shared Data */
SET VERIFY ON
SET HEAD ON
SET FEEDBACK 1
SET ARRAY 1
SET LINESIZE 10000
SET PAGESIZE 50000
SET LONG 10000
SET ECHO ON
SET TRIMSPOOL ON
SET COLSEP ';'
SET SERVEROUT OFF
clear screen
SPOOL ON
SET SQLBLANKLINES ON
SET SERVEROUTPUT ON
SET ERRORLOGGING ON
SET ECHO ON
prompt Welcome to Application Upgrade Invalids Recompilation
SPOOL "&SPOOL_PATH"

DECLARE
 inval_cnt NUMBER := 0;
 l_object_name VARCHAR2(240);
BEGIN
 WHILE inval_cnt < 3 LOOP
 --SCRIPT
 FOR J IN (Select 'alter ' || object_type || ' ' || object_name ||'
compile' invalidobject1,
 object_name
 FROM user_objects
 WHERE status = 'INVALID'
 AND created_appid IS NULL
 AND object_type IN
('VIEW','SYNONYM','PROCEDURE','FUNCTION','PACKAGE','TRIGGER','MATERIALIZED
VIEW'))
 LOOP
 BEGIN
 l_object_name := j.object_name;
 dbms_output.put_line(chr(10));
 EXECUTE IMMEDIATE J.invalidobject1;
 EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('failed for -->' || l_object_name);
 END;
 END LOOP;
 inval_cnt := inval_cnt + 1;

16

 END LOOP;
EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
END;
/
DECLARE
 inval_cnt1 NUMBER := 0;
 l_object_name VARCHAR2(240);
BEGIN
 WHILE inval_cnt1 < 3 LOOP
 --SCRIPT
 FOR k IN (Select 'alter package '|| object_name||' compile body'
invalidobject2,
 object_name
 FROM user_objects
 WHERE status = 'INVALID'
 AND created_appid IS NULL
 AND object_type IN ('PACKAGE BODY'))
 LOOP
 BEGIN
 l_object_name := k.object_name;
 dbms_output.put_line(chr(10));
 EXECUTE IMMEDIATE k.invalidobject2;
 EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
 END;
 END LOOP;
 inval_cnt1 := inval_cnt1 + 1;
 END LOOP;
EXCEPTION
WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
END;
/
select count(*) From user_objects Where status = 'INVALID';

SET ERRORLOGGING OFF
SPOOL OFF

17

Start Application upgrade

This script is run to initiate another application upgrade for object conversion.

Syntax

SET VERIFY ON
SET HEAD ON
SET FEEDBACK 1
SET ARRAY 1
SET LINESIZE 10000
SET PAGESIZE 50000
SET LONG 10000
SET ECHO ON
SET TRIMSPOOL ON
SET COLSEP ';'
SET SERVEROUT OFF
clear screen
SPOOL ON
SET SQLBLANKLINES ON
SET SERVEROUTPUT ON
SET ERRORLOGGING ON
SET ECHO ON
prompt Welcome to Application Upgrade initiation
SPOOL "&SPOOL_PATH"

DECLARE
 l_app_name VARCHAR2(128);
 l_app_currver VARCHAR2(30);
 l_Sql VARCHAR2(256);
BEGIN

 BEGIN
 SELECT app_name
 INTO l_app_name
 FROM dba_applications
 WHERE app_implicit <> 'Y'
 AND app_name = (SELECT param_val FROM cstb_param WHERE Param_name =
'MULTI_TENANT_APP_NAME');
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 dbms_output.put_line('Error1 Nodata--->'||SQLERRM);
 WHEN OTHERS THEN
 dbms_output.put_line('Error1 others--->'||SQLERRM);
 END;

 BEGIN
 SELECT MAX(app_version)
 INTO l_app_currver
 FROM dba_app_versions
 WHERE app_name = l_app_name;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 dbms_output.put_line('Error2 Nodata--->'||SQLERRM);

18

 WHEN OTHERS THEN
 dbms_output.put_line('Error2 others--->'||SQLERRM);
 END;

 l_Sql := 'ALTER PLUGGABLE DATABASE APPLICATION ' || l_app_name||' BEGIN
UPGRADE '''|| l_app_currver || ''' TO '''|| '&P_APPLICATION_NEXTVER' ||'''';
 dbms_output.put_line('l_sql: ' || l_Sql);
 EXECUTE IMMEDIATE l_Sql;

 l_Sql := 'ALTER SYSTEM SET DEFAULT_SHARING = NONE';
 dbms_output.put_line('l_sql: ' || l_Sql);
 EXECUTE IMMEDIATE l_Sql;

EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('Error --->'||SQLERRM);
END;
/

SET ERRORLOGGING OFF
SPOOL OFF

19

Application Root objects conversion for new
objects

This is script is used in converting the new DL objects during patch-set based on the
deployment model of the application during installation.

Syntax

/* Script for Shared Object Conversion for patch-set
*/
SET VERIFY ON
SET HEAD ON
SET FEEDBACK 1
SET ARRAY 1
SET LINESIZE 10000
SET PAGESIZE 50000
SET LONG 10000
SET ECHO ON
SET TRIMSPOOL ON
SET COLSEP ';'
SET SERVEROUT OFF
clear screen
SPOOL ON
SET SQLBLANKLINES ON
SET SERVEROUTPUT ON
SET ERRORLOGGING ON
SET ECHO ON
prompt Welcome to Upgrade New object Conversion
SPOOL "&SPOOL_PATH"

DECLARE
 l_count NUMBER;
 l_app_deployment VARCHAR2(30);
BEGIN
 SELECT count(*)
 INTO l_count
 FROM user_objects
 WHERE sharing = 'NONE' --to get the new set of DL approot objects if any
 AND object_name IN
 (SELECT DISTINCT a.object_name
 FROM cstm_approot_objects a
 WHERE sharing = 'DL'
 AND UPPER(object_type) = 'TABLE'
 AND EXISTS (SELECT 1
 FROM user_objects b
 WHERE b.object_name = a.object_name)
 AND EXISTS (SELECT 1
 FROM cstm_approot_functions_menu c
 WHERE c.function_id = a.function_id
 AND c.modifiable IN ('Y', 'S')));
 dbms_output.put_line('l_count: ' || l_count);

 IF l_count > 0 THEN

20

 dbms_output.put_line('New DL objects are available');
 SELECT param_val
 INTO l_app_deployment
 FROM cstb_param
 WHERE param_name = 'MULTI_TENANT_DEPLOYMENT_MODEL';
 dbms_output.put_line('l_app_deployment: '||l_app_deployment);

 IF l_app_deployment IS NOT NULL AND l_app_deployment = 'SAUA' THEN
 UPDATE smtb_menu menu
 SET menu.approot_flg = 'Y'
 WHERE menu.function_id IN
 (SELECT function_id
 FROM cstm_approot_functions_menu
 WHERE modifiable = 'S'
 UNION
 SELECT summary_fn_id
 FROM cstm_approot_functions_menu
 WHERE modifiable = 'S'
 AND summary_fn_id IS NOT NULL) --SMS function id 'S'
 AND menu.approot_flg <> 'Y'; --excluding the already modified
approot function ids in menu.
 ELSIF l_app_deployment IS NOT NULL AND l_app_deployment = 'SASDD' THEN
 UPDATE smtb_menu menu
 SET menu.approot_flg = 'Y'
 WHERE menu.function_id IN
 (SELECT function_id
 FROM cstm_approot_functions_menu
 UNION
 SELECT summary_fn_id
 FROM cstm_approot_functions_menu
 WHERE summary_fn_id IS NOT NULL)
 AND menu.approot_flg <> 'Y'; --excluding the already modified
approot function ids in menu.
 ELSIF l_app_deployment IS NOT NULL AND l_app_deployment = 'SASDC' THEN
 /*Assumption new table cstm_approot_menu_custom_movedtopdb will be
available
 and is populated with the function ids which are moved to PDB as
part of custom deployment
 It has 2 columns FUNCTION_ID and SUMMARY_FN_ID*/

 UPDATE smtb_menu menu
 SET menu.approot_flg = 'Y'
 WHERE menu.function_id IN
 (SELECT function_id
 FROM cstm_approot_functions_menu
 UNION
 SELECT summary_fn_id
 FROM cstm_approot_functions_menu
 WHERE summary_fn_id IS NOT NULL)
 AND menu.function_id NOT IN --excluding the function ids moved
to PDB already.
 (SELECT function_id
 FROM cstm_approot_menu_movedtopdb
 UNION
 SELECT summary_fn_id
 FROM cstm_approot_menu_movedtopdb

21

 WHERE summary_fn_id IS NOT NULL)
 AND menu.approot_flg <> 'Y'; --excluding the already modified
approot function ids in menu.
 END IF;

 BEGIN
 FOR I IN (SELECT 'BEGIN ' || chr(10) ||
 'DBMS_PDB.SET_DATA_LINKED(''&P_APPROOT_USER''' ||
',''' ||
 Object_Name || ''',' || Namespace || '); ' ||
chr(10) ||
 'EXCEPTION ' || chr(10) ||
 'WHEN OTHERS THEN ' || chr(10) ||
 'DBMS_OUTPUT.PUT_LINE(''ERROR ->''|| SQLERRM); ' ||
 chr(10) || 'END;' sqlobject
 FROM user_objects
 WHERE sharing = 'NONE' --to get the new set of DL
approot objects if any
 AND object_name IN
 (SELECT DISTINCT a.object_name
 FROM cstm_approot_objects a
 WHERE sharing = 'DL'
 AND UPPER(object_type) = 'TABLE'
 AND EXISTS (SELECT 1
 FROM user_objects b
 WHERE b.object_name = a.object_name)
 AND EXISTS
 (SELECT 1
 FROM cstm_approot_functions_menu c
 WHERE c.function_id = a.function_id
 AND c.modifiable IN ('Y', 'S')))) LOOP
 DBMS_OUTPUT.PUT_LINE(chr(10));
 EXECUTE IMMEDIATE I.sqlobject;
 DBMS_OUTPUT.PUT_LINE(I.sqlobject);
 END LOOP;
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error --->' || SQLERRM);
 END;
 ELSE
 dbms_output.put_line('No new DL objects available');
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('Error --->'||SQLERRM);
END;
/

SET ERRORLOGGING OFF
SPOOL OFF

22

Object_Conversion

Purpose

This script is used for converting the modified MDL objects when there is a re-creation [objects
with Create or Replace command during creation] happens during patch-set

Syntax

SET VERIFY ON
SET HEAD ON
SET FEEDBACK 1
SET ARRAY 1
SET LINESIZE 10000
SET PAGESIZE 50000
SET LONG 10000
SET ECHO ON
SET TRIMSPOOL ON
SET COLSEP ';'
SET SERVEROUT OFF
clear screen
SPOOL ON
SET SQLBLANKLINES ON
SET SERVEROUTPUT ON
SET ERRORLOGGING ON
SET ECHO ON
prompt Welcome to Upgrade object conversion
SPOOL "&SPOOL_PATH"
BEGIN
 FOR I IN (SELECT 'BEGIN ' || chr(10) ||
 'DBMS_PDB.SET_METADATA_LINKED(''&P_APPROOT_USER''' ||
',''' ||
 Object_Name || ''',' || Namespace || '); ' || chr(10)
||
 'EXCEPTION ' || chr(10) || 'WHEN OTHERS then ' ||
chr(10) ||
 'DBMS_OUTPUT.PUT_LINE(''ERROR ->''|| SQLERRM); ' ||
 chr(10) || 'END;' sqlobject
 FROM user_objects
 WHERE sharing = 'NONE'
 AND object_type NOT IN ('INDEX', 'LOB', 'TABLE
PARTITION','SEQUENCE','JOB','MATERIALIZED VIEW','MATERIALIZED VIEW LOG')
 AND application = 'Y'
 AND (object_name,object_type) NOT IN (SELECT
object_name,object_type
 FROM
cstm_approot_objects
 WHERE function_id
= 'DYNAMIC'
 AND sharing
= 'NONE'
)
) LOOP
 dbms_output.put_line(chr(10));

23

 EXECUTE IMMEDIATE I.sqlobject;
 dbms_output.put_line(I.sqlobject);
 END LOOP;
EXCEPTION
WHEN OTHERS THEN
 dbms_output.put_line('Error --->'||SQLERRM);
END;
/
SET ERRORLOGGING OFF
SPOOL OFF

24

Invalids_Recompilation_Inside_Upgrade

Purpose

This script is used to initiate the recompilation of objects inside the application upgrade for
sanity.

Syntax

/* Script for Shared Application + Shared Data */
SET VERIFY ON
SET HEAD ON
SET FEEDBACK 1
SET ARRAY 1
SET LINESIZE 10000
SET PAGESIZE 50000
SET LONG 10000
SET ECHO ON
SET TRIMSPOOL ON
SET COLSEP ';'
SET SERVEROUT OFF
clear screen
SPOOL ON
SET SQLBLANKLINES ON
SET SERVEROUTPUT ON
SET ERRORLOGGING ON
SET ECHO ON
prompt Welcome to Application Upgrade Invalids Recompilation
SPOOL "&SPOOL_PATH"

DECLARE
 inval_cnt NUMBER := 0;
 l_object_name VARCHAR2(240);
BEGIN
 WHILE inval_cnt < 3 LOOP
 --SCRIPT
 FOR J IN (Select 'alter ' || object_type || ' ' || object_name ||'
compile' invalidobject1,
 object_name
 FROM user_objects
 WHERE status = 'INVALID'
 AND created_appid IS NOT NULL
 AND object_type IN
('VIEW','SYNONYM','PROCEDURE','FUNCTION','PACKAGE','TRIGGER','MATERIALIZED
VIEW'))
 LOOP
 BEGIN
 l_object_name := j.object_name;
 dbms_output.put_line(chr(10));
 EXECUTE IMMEDIATE J.invalidobject1;
 EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('failed for -->' || l_object_name);
 END;

25

 END LOOP;
 inval_cnt := inval_cnt + 1;
 END LOOP;
EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
END;
/
DECLARE
 inval_cnt1 NUMBER := 0;
 l_object_name VARCHAR2(240);
BEGIN
 WHILE inval_cnt1 < 3 LOOP
 --SCRIPT
 FOR k IN (Select 'alter package '|| object_name||' compile body'
invalidobject2,
 object_name
 FROM user_objects
 WHERE status = 'INVALID'
 AND created_appid IS NOT NULL
 AND object_type IN ('PACKAGE BODY'))
 LOOP
 BEGIN
 l_object_name := k.object_name;
 dbms_output.put_line(chr(10));
 EXECUTE IMMEDIATE k.invalidobject2;
 EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
 END;
 END LOOP;
 inval_cnt1 := inval_cnt1 + 1;
 END LOOP;
EXCEPTION
WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
END;
/
select count(*) From user_objects Where status = 'INVALID';

SET ERRORLOGGING OFF
SPOOL OFF

26

End_Upgrade

Purpose

This script is run for ending an application upgrade for patch-set.

Syntax

/* Pre-requisites: Step 3 on Application associated pdb creation is completed
*/
SET VERIFY ON
SET HEAD ON
SET FEEDBACK 1
SET ARRAY 1
SET LINESIZE 10000
SET PAGESIZE 50000
SET LONG 10000
SET ECHO ON
SET TRIMSPOOL ON
SET COLSEP ';'
SET SERVEROUT OFF
clear screen
SPOOL ON
SET SQLBLANKLINES ON
SET SERVEROUTPUT ON
SET ERRORLOGGING ON
SET ECHO ON
prompt Welcome to Application end Upgrade
SPOOL "&SPOOL_PATH"

DECLARE
 l_app_name VARCHAR2(128);
 l_sql VARCHAR2(256);
BEGIN
 BEGIN
 SELECT app_name
 INTO l_app_name
 FROM dba_applications
 WHERE app_implicit <> 'Y'
 AND app_name = (SELECT param_val FROM cstb_param WHERE param_name
= 'MULTI_TENANT_APP_NAME');
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 dbms_output.put_line('Error1 Nodata--->'||SQLERRM);
 WHEN OTHERS THEN
 dbms_output.put_line('Error1 others--->'||SQLERRM);
 END;
 l_sql := 'ALTER PLUGGABLE DATABASE APPLICATION ' || l_app_name||' END
UPGRADE ';
 dbms_output.put_line('l_sql: ' || l_sql);

 EXECUTE IMMEDIATE l_sql;

EXCEPTION

27

WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error --->'||SQLERRM);
END;
/

SET ERRORLOGGING OFF
SPOOL OFF

28

Invalids_Recompilation_Outside_Upgrade.sql

Purpose

This script is run for invalid script by connecting to the common user in approot outside the
upgrade.

Syntax

/* Script for Shared Application + Shared Data */
SET VERIFY ON
SET HEAD ON
SET FEEDBACK 1
SET ARRAY 1
SET LINESIZE 10000
SET PAGESIZE 50000
SET LONG 10000
SET ECHO ON
SET TRIMSPOOL ON
SET COLSEP ';'
SET SERVEROUT OFF
clear screen
SPOOL ON
SET SQLBLANKLINES ON
SET SERVEROUTPUT ON
SET ERRORLOGGING ON
SET ECHO ON
prompt Welcome to Application Upgrade Invalids Recompilation
SPOOL "&SPOOL_PATH"

DECLARE
 inval_cnt NUMBER := 0;
 l_object_name VARCHAR2(240);
BEGIN
 WHILE inval_cnt < 3 LOOP
 --SCRIPT
 FOR J IN (Select 'alter ' || object_type || ' ' || object_name ||'
compile' invalidobject1,
 object_name
 FROM user_objects
 WHERE status = 'INVALID'
 AND created_appid IS NULL
 AND object_type IN
('VIEW','SYNONYM','PROCEDURE','FUNCTION','PACKAGE','TRIGGER','MATERIALIZED
VIEW'))
 LOOP
 BEGIN
 l_object_name := j.object_name;
 dbms_output.put_line(chr(10));
 EXECUTE IMMEDIATE J.invalidobject1;
 EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('failed for -->' || l_object_name);
 END;

29

 END LOOP;
 inval_cnt := inval_cnt + 1;
 END LOOP;
EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
END;
/
DECLARE
 inval_cnt1 NUMBER := 0;
 l_object_name VARCHAR2(240);
BEGIN
 WHILE inval_cnt1 < 3 LOOP
 --SCRIPT
 FOR k IN (Select 'alter package '|| object_name||' compile body'
invalidobject2,
 object_name
 FROM user_objects
 WHERE status = 'INVALID'
 AND created_appid IS NULL
 AND object_type IN ('PACKAGE BODY'))
 LOOP
 BEGIN
 l_object_name := k.object_name;
 dbms_output.put_line(chr(10));
 EXECUTE IMMEDIATE k.invalidobject2;
 EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
 END;
 END LOOP;
 inval_cnt1 := inval_cnt1 + 1;
 END LOOP;
EXCEPTION
WHEN OTHERS THEN
 dbms_output.put_line('FAILED FOR -->' || l_object_name);
END;
/
select count(*) From user_objects Where status = 'INVALID';

SET ERRORLOGGING OFF
SPOOL OFF

30

PDB_Sync

Purpose

This script is run to synchronize the PDBs with the latest application changes in the application
root.

Syntax

SET VERIFY ON
SET HEAD ON
SET FEEDBACK 1
SET ARRAY 1
SET LINESIZE 10000
SET PAGESIZE 50000
SET LONG 10000
SET ECHO ON
SET TRIMSPOOL ON
SET COLSEP ';'
SET SERVEROUT OFF
clear screen
SPOOL ON
SET SQLBLANKLINES ON
SET SERVEROUTPUT ON
SET ERRORLOGGING ON
SET ECHO ON
prompt Welcome to Application PDB Sync
SPOOL "&SPOOL_PATH"

DECLARE
 l_app_name VARCHAR2(128);
 l_sql VARCHAR2(256);
BEGIN
 BEGIN
 SELECT app_name
 INTO l_app_name
 FROM dba_applications
 WHERE app_implicit <> 'Y';
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 dbms_output.put_line('Error1 Nodata--->'||SQLERRM);
 WHEN OTHERS THEN
 dbms_output.put_line('Error1 others--->'||SQLERRM);
 END;
 l_sql := 'ALTER PLUGGABLE DATABASE APPLICATION ' || l_app_name||' SYNC ';
 dbms_output.put_line('l_sql: ' || l_sql);
 EXECUTE IMMEDIATE l_sql;

EXCEPTION
WHEN OTHERS THEN
 dbms_output.put_line('Error --->'||SQLERRM);
END;
/

31

SET ERRORLOGGING OFF
SPOOL OFF

32

Index

A
Application Upgrade, 1-2

P
Pre-Requisites, 3-1

Index-1

	Contents
	Preface
	Purpose
	Audience
	Documentation Accessibility
	Critical Patches
	Diversity and Inclusion
	Conventions
	Related Resources
	Screenshot Disclaimer

	1 Overview of Applications in an Application Container
	1.1 Managing Applications in an Application Container
	1.2 Application Maintenance
	1.2.1 Application Installation
	1.2.2 Application Upgrade

	2 Patch-set Application Steps
	2.1 Application Upgrade
	2.1.1 Purpose
	2.1.2 Steps to be Followed
	2.1.2.1 Start Application Upgrade
	2.1.2.2 Compiling Incremental Units
	2.1.2.3 Recompilation of invalids
	2.1.2.4 End Application upgrade
	2.1.2.5 Start Application upgrade
	2.1.2.6 Application Root Objects Conversion for New Objects
	2.1.2.7 Application Root Objects Conversion for Existing Objects
	2.1.2.8 Recompilation of Invalids
	2.1.2.9 End Application Upgrade

	2.1.3 Purpose
	2.1.4 Steps to be Followed

	3 Step by Step Execution
	3.1 Pre-Requisites
	3.2 Patch-set Application Step by Step with Screenshots

	01_Start_Upgrade
	Recompilation of invalids
	End Application upgrade
	End Application upgrade
	Start Application upgrade
	Application Root objects conversion for new objects
	Object_Conversion
	Invalids_Recompilation_Inside_Upgrade
	End_Upgrade
	Invalids_Recompilation_Outside_Upgrade.sql
	PDB_Sync
	Index

