Oracle® Banking Payments
Extensibility Reference Guide

Release 14.8.1.0.0
G44860-01
October 2025

ORACLE"

Oracle Banking Payments Extensibility Reference Guide, Release 14.8.1.0.0
G44860-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1

Introduction

1.1 How to use this Guide

Extensibility Approach

2.1 Features
2.2 Layers
2.3 Release hierarchies

Extensible units

3.1 Application Server Layer
3.1.1 Language xml
3.1.2 SYS Java Script File
3.1.3 Kernel JavaScript File
3.1.4 Cluster JavaScript File
3.1.5 Custom JavaScript File
3.2 Database layer — Maintenance
3.2.1 Function ID Main Package
3.2.2 Hook Packages
3.2.3 Kernel Package
3.2.4 Cluster Package
3.2.5 Custom Package
3.3 Database layer — Bypassing base functionality

Extensibility Reference Guide

G44860-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

g o1 o O A W W NDNDNMNDNPRFP P

October 30, 2025
Pageiofi

Preface

e Purpose
« Audience

This manual is intended for the following User/User Roles:

« Documentation Accessibility

e Critical Patches

« Diversity and Inclusion

e Conventions

Purpose

This guide is designed to help acquaint you with the Oracle Banking Payments application.
This guide provides answers to specific features and procedures that the user need to be

aware of the module to function successfully.

Audience

This manual is intended for the following User/User Roles:

Table User Roles

Role

Function

Implementation & IT Staff

Implementation & Maintenance of the Software

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info

or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Critical Patches

Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and
Bulletins. All critical patches should be applied in a timely manner to make sure effective

security, as strongly recommended by Oracle Software Security Assurance.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to

Extensibility Reference Guide
G44860-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

October 30, 2025
Page 1 of 2

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

ORACLE
Conventions

build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables for

which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Extensibility Reference Guide
G44860-01 October 30, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 2

Introduction

Oracle Banking Payments base product development is performed by Kernel team and the
units that are developed are called as Kernel software units. Other teams that requires the
product extensions are required to use the “extension units” applicable for respective teams.

Product extension required for the following teams:
e Cluster release teams
e Customer release teams

* Partners/Customers

 How to use this Guide

1.1 How to use this Guide

This document contains the below chapters describing the approach of extensibility in different
areas of the system.

» Extensibility Approach

* Extensible units

Extensibility Reference Guide
G44860-01 October 30, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 1

Extensibility Approach

This section describes the various extensibility features, layers that impact the extensibility and
release hierarchies involved.

e Features
e Layers

 Release hierarchies

2.1 Features

Oracle Banking Payments provides following additional handlers in the system:

e Contract Operation data base units

These units are used to extend the Oracle Banking Payments module specific contract
online operations.

* Maintenance of User Defined Fields at screen level

UDF feature is used to define the additional fields required for extensibility to capture extra
data.

2.2 Layers

Oracle Banking Payments provides handlers at the following layers to extensibility teams to
extend the business logic:

e Screen extensibility

— Screen extensibility is provided to add data blocks, fields and other graphical elements
buttons, LOVs to the screens. Extensibility design also helps upgrade of the extended
logic in further release of Banking UBS.

e Screen — Java script extensibility:

— Java script files extensibility provides ‘Pre’ and ‘Post’ handlers to add the code at
logical stages in front end processing.

e Back End Units:

— Database extensibility provides ‘Pre’ and ‘Post’ handlers to add code at logical stage in
back end processing

2.3 Release hierarchies

To enable extensibility, Oracle Banking Payments identifies the release type both during design
and in runtime thereby restricting the development teams to add business logic in designated
units only. This is to ensure the development teams of different release types use
corresponding units to add business logic.

Below are the release types Oracle Banking Payments identifies and supports in extensible
mode:

Extensibility Reference Guide
G44860-01 October 30, 2025
Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE Chapter 2
Release hierarchies

» Kernel: Oracle Banking Payments base product release
« Cluster: Customized base for a specific region or a specific functionality

e Custom: Customized release for customers

Kernel is the main product release and Cluster releases are made using Kernel as the base to
develop Cluster specific functionality. This Cluster release can be further enhanced based on
the customer specific requirements to develop a Custom release.

In such case, hierarchy of Release types would be as below: Kernel I Cluster [Custom

In some cases where the final set of requirements are not very different from Kernel release or
if there are not many common requirements across the customers of a particular region, Kernel
itself will be taken as base for Custom releases.

In such case, hierarchy of Release types would be as below: Kernel I Custom

In all these cases, it is required for the Kernel release to provide place holders for adding
additional business logic both in Cluster and Custom releases.

Oracle Banking will be enhanced to support extensibility in the below areas:
e Screen Design

e Front End Scripting

* Code Generator

* Back End PL/SQL Programming

The approach is to divide the programs (Java Script and PL/SQL Packages) into several
logical stages and to provide ‘Pre’ and ‘Post’ handlers to Customization teams.

Extensibility Reference Guide
G44860-01 October 30, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 2

Extensible units

There are basically the following four types of screens in Oracle Banking Payments:

e Maintenance: These screens are typically used to maintain static data used across the
system. These screens include product definition function as well.

» Reports: These screens are used to capture data required to generate a Bl Publisher
canned reports.

» Application Server Layer

« Database layer — Maintenance

- Database layer — Bypassing base functionality

3.1 Application Server Layer

As a part of RAD function ID generation, following units are generated for application layer:
« RAD XML
e Language / Ul XML
e Java Script files
— SYS JSfiles
— Kernel JS files
— Cluster JS files

— Custom JS files

e Language xml
 SYS Java Script File

» Kernel JavaScript File

e Cluster JavaScript File

e Custom JavaScript File

3.1.1 Language xm|

Language XML file, also called as UIXML is generated by RAD tool during function ID (screen)
development. This file is contains following elements:

* Screens

e Sections and Patrtitions
e Blocks

* Field sets

* Fields and their properties

Extensibility Reference Guide
G44860-01 October 30, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE Chapter 3
Application Server Layer

During run time, XSL Transformation is applied to this XML file by linking it to an XSL file. This
results in screen rendering at the browser.

3.1.2 SYS Java Script File

As a part of Function ID development, RAD tool generates the SYS Java script files. These
SYS JavaScript file mainly contains a list of pre declared variables:

e msgxml: - This variable is used by the system to build FCUBS Request XML
e dataSrcLocationArray: - This variable is an array of DATA BLOCKS

* relationArray:-This array contains relation and relation type details of blocks.
e Databinding

« retflds and bndFlds:- These arrays contains LOV information

e CallFormArray, CallFormRelat, CallRelatType:- These arrays contains callform details, call
form relation and relation type

e actionsAmmendArray: - This array contains information for enabling fields based on
actions

3.1.3 Kernel JavaScript File

As a part of Function ID development, RAD tool generates the Kernel Java script files. These
Javascript file allows developer to add functional code and is specific to KERNEL release. The
functions in this file are generally triggered by screen events. A developer working in kernel
release would add functions based on two categories:

e Functions triggered by screen loading events Eg:
fnPreLoad_KERNEL(),fnPostLoad_KERNEL()

* Functions triggered by screen action events Eg: fnPreNew_ KERNEL (),fnPostNew_
KERNEL ()

3.1.4 Cluster JavaScript File

As a part of Function ID development, RAD tool generates the Cluster Java script files. These
Javascript file allows developer to add functional code and is specific to CLUSTER release.
The functions in this file are generally triggered by screen events. A developer working in
CLUSTER release would add functions based on two categories:

* Functions triggered by screen loading events Eg:
fnPreLoad_CLUSTER(),fnPostLoad_CLUSTER()

» Functions triggered by screen action events Eg: fnPreNew_ CLUSTER (),fnPostNew_
CLUSTER ()

In case if any function in KERNEL javascript file has to be modified,this can be achieved by
overriding the function in CLUSTER javascript file.

3.1.5 Custom JavaScript File

As a part of Function ID development, RAD tool generates the Custom Java script files. These
java script file allows developer to add functional code and is specific to CUSTOM release. The
functions in this file are generally triggered by screen events. A developer working in CUSTOM
release would add functions based on two categories:

Extensibility Reference Guide
G44860-01 October 30, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE Chapter 3
Database layer — Maintenance

* Functions triggered by screen loading events Eg:
fnPreLoad_CUSTOMY(),fnPostLoad_CUSTOM()

* Functions triggered by screen action events Eg: fnPreNew_ CUSTOM (),fnPostNew_
CUSTOM ()

In case if any function either in KERNEL javascript file or CLUSTER javascript file has to be
modified,this can be achieved by overriding the respective function in CUSTOM javascript file.

3.2 Database layer — Maintenance

As a part of function ID development, RAD generates following database packages:
e Function ID MAIN Package
e Hook Packages

— KERNEL Package

— CLUSTER Package

— CUSTOM Package

¢ Function ID Main Package

* Hook Packages

» Kernel Package

e Cluster Package
The Cluster package is available to the Cluster Team to add any validations or Checks
specific to the Cluster Team over and above the Kernel Team. The Kernel Team or the
Custom Team should not modify the contents of this package.

e Custom Package
The Custom package is available to the Custom Team only to add any validations or
Checks over and above those already present in the Kernel and Cluster Packages.

3.2.1 Function ID Main Package

The Main Package contains the basic validations and backend logic for the Maintenance
function id. The Main package contains the mandatory checks required. It will also contain
function calls to the other packages generated by RAD.

The main package has the below stages:

e Converting Ts to PL/SQL Composite Type
e Checking for mandatory fields

e Defaulting and validating the data

* Writing into Database

* Querying the Data from database

« Converting the Modified Composite Type againto TS

Each of these stages has a ‘Pre’ and ‘Post’ hooks in the Kernel, Cluster and Custom
Packages. These Hooks are called from the Main Package itself. Main Package has the
system-generated code and should not be modified by the developer Kernel, Cluster and
Custom Packages are the packages where the respective team can add business logic in
appropriate functions using the Pre and Post hooks available.

Extensibility Reference Guide
G44860-01 October 30, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE

Chapter 3
Database layer — Maintenance

3.2.2 Hook Packages

The Main Package has designated calls to these Hook Packages for executing any functional
checks and Business validations added by the user. The structure for all the Hook Packages
are the same, like:

* Fn_Post_Build_Type_Structure
* Fn_Pre_Check_Mandatory

e Fn_Post_Check_Mandatory

* Fn_Pre_Default_and_Validate
* Fn_Post_Default_and_Validate
 Fn_Pre_Upload_Db
 Fn_Post_Upload Db

* Fn_Pre_Query

e Fn_Post_Query

These Functions are called from the Main package using the Pre and Post Hooks available in
the Main Package. The 3 Hook Packages namely Kernel, Cluster and Custom Packages have
similar structure and are for the respective teams to work on.

In the Table SMTB_PARAMETERS, the parameter RELEASE_TYPE indicates the deployed
release. The system uses this flag to determine the hooks to be called. Depending on the
deployed release type system skips calling these hooks.

For examples if the deployed release is Kernel, Cluster and Custom hooks need not be called.
Similarly in case the deployed release type is Cluster, system does not call custom hook as it is
not needed.

The Complete Flow for a sample function, say Fn_Check Mandatory is as follows:
e STPKS_STDCIFCR_MAIN. Fn_Check_Mandatory

e STPKS _STDCIFCR_CUSTOM.Fn_Pre_Check_Mandatory

e STPKS_STDCIFCR_CLUSTER.Fn_Pre_Check Mandatory

e STPKS_STDCIFCR_KERNEL.Fn_Pre_Check Mandatory

e STPKS_STDCIFCR_MAIN .Fn_Sys Check Mandatory

e STPKS _STDCIFCR_KERNEL.Fn_Post_Check_ Mandatory

e STPKS _STDCIFCR_CLUSTER.Fn_ Post_Check Mandatory

e STPKS _STDCIFCR_CUSTOM.Fn_ Post_Check Mandatory

There are auto generated functions like FN_SKIP_<RELEAE_TYPE> which would determine
whether or not a particular hooks needs to be called.

Developer also has an option to bypass the base release hook if need be. For example if the
validations written in STPKS_STDCIFCR_Kernel.FN_PRE_CHECK_MANDATORY are not
required or not suitable for the Cluster release, system provides an option to bypass the code
written by Kernel team.

Similarly a Custom release can also bypass the code written by Kernel and Custom Releases.
This can be achieved by calling procedures PR_SET_SKIP_<RELEASE_TYPE> and
PR_SET_ACTIVATE_<RELEASETYPE>. These procedures will be made available in the main

Extensibility Reference Guide

G44860-01

October 30, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE

Chapter 3
Database layer — Bypassing base functionality

package and the development teams of Customization teams can use these procedures to
skip and re-activate the hooks of parent release.

The Developer should avoid adding validations or Checks in the Pre Stage of any function, like
Fn_Pre_Check_Mandatory, etc and should aim to add all the validations in the
Fn_Post Default_and_Validate.

3.2.3 Kernel Package

The Kernel package is solely for the Kernel Team to modify. The Main package has designated
calls to the Kernel package for executing any functional checks or validations included in the
Kernel Package. All the user level validations and conditional operations should be included in
Fn_Post Default_and_Validate. This function is called from the Main Package after the
execution of Fn_Default_and_Validate. User should avoid putting validations or code in any
other function.

In case user needs to add a separate function, the existing RAD generated structure should
not be changed. Instead the user can create a new package e.g. STPKS_STDCIFCR_UTILS
package. The desired function can be included in this package and the call can be made from
the Kernel Package.

3.2.4 Cluster Package

The Cluster package is available to the Cluster Team to add any validations or Checks specific
to the Cluster Team over and above the Kernel Team. The Kernel Team or the Custom Team
should not modify the contents of this package.

3.2.5 Custom Package

The Custom package is available to the Custom Team only to add any validations or Checks
over and above those already present in the Kernel and Cluster Packages.

3.3 Database layer — Bypassing base functionality

In cases where the functionality of child release, either cluster or custom like to override base
functionality, there might be a need to skip the base functionality. RAD Generated code
provides handlers to this as well and the kernel functionality can be skipped from Cluster and
kernel/cluster can be skipped from custom releases.

For Example, let us say that the business logic in the function
STPKS_STDCIFCR_KERNEL.Fn_Pre_Default_and_Validate is contradicting the business
logic for Cluster, then the user has the option to skip the validation present in the Kernel. For
this the user needs to call PR_SET_SKIP_KERNEL. After it bypasses, the user again needs to
activate this flag by calling PR_SET ACTIVATE_KERNEL. Else all the following functions in
KERNEL will be bypassed.

Once the Skip is set in cluster and again activated, it skips both the functions in kernel namely,
STPKS_STDCIFCR_KERNEL.Fn_Pre_Default_and_Validate and
STPKS_STDCIFCR_KERNEL.Fn_Post_Default_and_Validate. If the requirement is that only
the validations and logic in STPKS_STDCIFCR_KERNEL.Fn_Pre_Default_and_Validate be
skipped then the other function STPKS_STDCIFCR_KERNEL.Fn_Post Default_and_Validate
needs to be called explicitly from the Cluster Package.

Similarly from Custom Package the validations in Kernel as well as Cluster can be bypassed.

Extensibility Reference Guide

G44860-01

October 30, 2025

Copyright © 2017, 2025, Oracle and/or its affiliates. Page 5 of 5

	Contents
	Preface
	Purpose
	Audience
	Documentation Accessibility
	Critical Patches
	Diversity and Inclusion
	Conventions

	1 Introduction
	1.1 How to use this Guide

	2 Extensibility Approach
	2.1 Features
	2.2 Layers
	2.3 Release hierarchies

	3 Extensible units
	3.1 Application Server Layer
	3.1.1 Language xml
	3.1.2 SYS Java Script File
	3.1.3 Kernel JavaScript File
	3.1.4 Cluster JavaScript File
	3.1.5 Custom JavaScript File

	3.2 Database layer – Maintenance
	3.2.1 Function ID Main Package
	3.2.2 Hook Packages
	3.2.3 Kernel Package
	3.2.4 Cluster Package
	3.2.5 Custom Package

	3.3 Database layer – Bypassing base functionality

