
Oracle® Banking Payments Cloud
Service
Development Security Guide

Release 14.8.1.0.0
G46788-01
October 2025

Oracle Banking Payments Cloud Service Development Security Guide, Release 14.8.1.0.0

G46788-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Preface

1.1 Purpose 1

1.2 Audience 1

1.3 Documentation Accessibility 1

1.4 Diversity and Inclusion 2

1.5 Conventions 2

1.6 Related Resources 2

1.7 Screenshot Disclaimer 2

1.8 Acronyms and Abbreviations 2

1.9 Basic Actions 3

1.10 Symbols, Definitions and Abbreviations 4

2 About this Manual

2.1 Introduction 1

2.2 Scope 1

2.2.1 Read Sections Completely 1

2.2.2 Understand the Purpose of this Guidance 1

2.2.3 Limitations 1

3 How to Address the OWASP Top10 in Oracle Banking Payments Cloud
Service

3.1 Injection 1

3.2 Broken Authentication and Session Management 2

3.3 Cross-Site Scripting (XSS) 3

3.4 Insecure Direct Object References 4

3.5 Security Misconfiguration 5

3.6 Sensitive Data Exposure 6

3.7 Missing Function Level Access Control 7

3.8 Cross-Site Request Forgery (CSRF) 8

3.9 Using Components with Known Vulnerabilities 8

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page i of ii

3.10 Unvalidated Redirects and Forwards Network Security 8

4 Securing Gateway Services

4.1 Inbound Application Integration 1

4.2 EJB Based Synchronous Deployment Pattern 2

4.3 Web Services Based Synchronous Deployment Pattern 2

4.4 HTTP Servlet Based Synchronous Deployment Pattern 2

4.5 MDB Based Asynchronous Deployment Pattern 3

4.6 Outbound Application Integration 3

4.7 Accessing Service and Operation 3

4.8 Gateway Password Generation Logic for External System Authentication 3

4.9 XSD Validation and Input Validation 4

4.10 List of Services 4

4.11 List of Interfaces 4

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page ii of ii

1
Preface

• Purpose

• Audience
This manual is intended for the following User/User Roles:

• Documentation Accessibility

• Diversity and Inclusion

• Conventions

• Related Resources

• Screenshot Disclaimer

• Acronyms and Abbreviations

• Basic Actions

• Symbols, Definitions and Abbreviations
The following are some of the Symbols you are likely to find in the manual:

1.1 Purpose
This guide is designed to help acquaint you with the Oracle Banking Payments Cloud Service
application. This guide provides answers to specific features and procedures that the user
need to be aware of the module to function successfully.

1.2 Audience
This manual is intended for the following User/User Roles:

Table 1-1 User Roles

Role Function

Implementation & IT Staff Implementation & Maintenance of the Software

1.3 Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 1 of 4

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1.4 Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

1.5 Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

1.6 Related Resources
For more information on any related features, refer to the following documents:

• Getting Started User Guide

• Oracle Banking Security Management System User Guide

• Oracle Banking Microservices Platform Foundation User Guide

• Routing Hub Configuration User Guide

• Oracle Banking Common Core User Guide

• Interest and Charges User Guide

• Oracle Banking Liquidity Management Configuration Guide

• Oracle Banking Liquidity Management File Upload User Guide

1.7 Screenshot Disclaimer
The personal information used in the interface or documents is sample data and does not exist
in the real world. It is provided for reference purposes only.

1.8 Acronyms and Abbreviations
The list of the acronyms and abbreviations that are used in this guide are as follows:

Chapter 1
Diversity and Inclusion

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 2 of 4

Table 1-2 Acronyms and Abbreviations

Abbreviation Description

DDA Demand Deposit Accounts

ECA External Credit Approval

EOD End of Day

IBAN International Bank Account Number

1.9 Basic Actions
The basic actions performed in the screens are as follows:

Table 1-3 Basic Actions

Actions Description

Approve Click Approve to approve the initiated record.
- This button is displayed once the user click Authorize.

Audit Click Audit to view the maker details, checker details of the particular
record.
- This button is displayed only for the records that are already created.

Authorize Click Authorize to authorize the record created. A maker of the screen
is not allowed to authorize the same. Only a checker can authorize a
record.
- This button is displayed only for the already created records. For more
information on the process, refer Authorization Process.

Cancel Click Cancel to cancel the action performed.

Close Click Close to close a record. This action is available only when a
record is created.

Collapse All Click Collapse All to hide the details in the sections.
- This button is displayed once the user click Compare.

Compare Click Compare to view the comparison through the field values of old
record and the current record.
- This button is displayed in the widget once the user click Authorize.

Confirm Click Confirm to confirm the action performed.

Expand All Click Expand All to expand and view all the details in the sections.
- This button is displayed once the user click Compare.

New Click New to add a new record. The system displays a new record to
specify the required data. The fields marked with asterisk are
mandatory.
- This button is displayed only for the records that are already created.

OK Click OK to confirm the details in the screen.

Save Click Save to save the details entered or selected in the screen.

Unlock Click Unlock to update the details of an existing record. The system
displays an existing record in editable mode.
- This button is displayed only for the records that are already created.

View Click View to view the details in a particular modification stage.
- This button is displayed in the widget once the user click Authorize.

Chapter 1
Basic Actions

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 3 of 4

Table 1-3 (Cont.) Basic Actions

Actions Description

View Difference only Click View Difference only to view a comparison through the field
element values of old record and the current record, which has
undergone changes.
- This button is displayed once the user click Compare.

1.10 Symbols, Definitions and Abbreviations
The following are some of the Symbols you are likely to find in the manual:

Table 1-4 Symbols

Icons Function

Exit

Add row

Delete row

Option List

Table 1-5 Common Icons and its Definitions

Icon
Names

Applicable
Stages

Operation

Minimize Initiation, Approval
and Hand-off Retry

Users can minimize the transaction input screen. When the screen is
minimized, it appears as to a separate tab within the same web page.

Maximiz
e

Initiation, Approval
and Hand-off Retry

User can maximize the transaction input screen.

Close Initiation, Approval
and Hand-off Retry

Users can close the transaction input screen. The system displays a
warning message to the user that any unsaved data would be lost. User
can either choose to ignore the message and close the screen or
choose to ‘save and close’ the transaction.

Chapter 1
Symbols, Definitions and Abbreviations

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 4 of 4

2
About this Manual

• Introduction

• Scope

2.1 Introduction
Purpose: This document provides security-related usage and configuration recommendations
for Oracle Banking Payments Cloud Service. This guide may outline procedures required to
implement or secure certain features, but it is also not a general-purpose configuration manual.

Audience: This guide is primarily intended for Developers for Banking and third party or
vendor software’s. Some information may be relevant to IT decision makers and users of the
application are also included. Readers are assumed to possess basic operating system,
network, and system administration skills with awareness of vendor/third-party software’s and
knowledge of FCUBS application.

2.2 Scope
• Read Sections Completely

• Understand the Purpose of this Guidance

• Limitations

2.2.1 Read Sections Completely
Each section should be read and understood completely. Instructions should never be blindly
applied. Relevant discussion may occur immediately after instructions for an action, so be sure
to read whole sections before beginning implementation.

2.2.2 Understand the Purpose of this Guidance
The purpose of the guidance is to provide security-relevant code and configuration
recommendations.

2.2.3 Limitations
This guide is limited in its scope to security-related guideline for developers.

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 1 of 1

3
How to Address the OWASP Top10 in Oracle
Banking Payments Cloud Service

• Injection

• Broken Authentication and Session Management

• Cross-Site Scripting (XSS)

• Insecure Direct Object References

• Security Misconfiguration

• Sensitive Data Exposure

• Missing Function Level Access Control

• Cross-Site Request Forgery (CSRF)

• Using Components with Known Vulnerabilities

• Unvalidated Redirects and Forwards Network Security

3.1 Injection
Injection flaws occur when an application sends untrusted data to an interpreter. Injection flaws
are very prevalent, particularly in legacy code. They are often found in SQL, LDAP, Xpath, or
SQL queries; OS commands; XML parsers, SMTP Headers, program arguments, etc. Injection
flaws are easy to discover when examining code.

Banking uses Oracle database and it has adequate inbuilt techniques to prevent SQL
injections as underlined below:

1. Use of prepared statements (parameterized queries) - Banking uses
PreparedStatement with bind variables to construct and execute SQL statements in JAVA.

2. Use of Stored procedures - Stored procedures have the same effect as the use of
prepared statements when implemented safely. 'Implemented safely' means the stored
procedure does not include any unsafe dynamic SQL generation. Banking uses safe Java
stored procedures calls.

In addition to the above, wherever dynamic queries exist, Banking uses adequate defence
to sanitize the untrusted input. The use of DBMS_ASSERT.SIMPLE_SQL_NAME and the
use of bind variables justify the fact.

3. Escaping all user supplied input - This third technique is to escape user input before
putting it in a query. If it’s a concern that rewriting the dynamic queries as prepared
statements or stored procedures might break the application or adversely affect
performance, then this might be the best approach for the purpose. However, this
methodology is frail compared to using parameterized queries and there’s no guarantee
that it will prevent all SQL Injection in all situations.

Banking uses context specific escaping. It has a StringEscapeUtils.java file, where context
specific escaping is handled.

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 1 of 8

3.2 Broken Authentication and Session Management
In Oracle Banking Payments Cloud Service application session interval will be validated
against the session interval stored in the configurable file FCUBS.properties file. Validations
are added to check the maximum time limit for the inactive session from being expired. Java
API method javax.servlet.http. HTTP Session will set the max time out period for the session.

A maximum limit is imposed on the value passed to set the maximum limit of session interval.
The maximum limit is a positive practical value. This validation is required to prevent long
running sessions that can be actively targeted.

The default value for session time out is 30 minutes and it is configurable in FCUBS properties
file.

The session used for login authentication will be invalidated (destroyed) and a new session will
be created once the user logged-in successfully to the application .And the new session will be
used to store the required variables.

A session attribute IsAuthenticated set to “Y” on successful login to the application. A new
random token (Cross-site request forgery) also generates and same is available in the session
attribute.

The entire subsequent request within the session will be having the Authenticated and Cross-
site request forgery tokens .Every request send to the application from the browser is validated
against the IsAuthenticated attribute and Cross-site request forgery token.

A hidden form is used to submit the logout request to the server, with the response resulting in
a 302 redirect instead of client initiated redirect to the login page.

Session get expire once user log off from application or if idle for its maximum limit.

Cryptography used

PCI council defines Strong Cryptography as:

Cryptography based on industry-tested and accepted algorithms, along with strong key lengths
and proper key-management practices. Cryptography is a method to protect data and includes
both encryption (which is reversible) and hashing (which is not reversible, or “one way”).
SHA-1 is an example of an industry-tested and accepted hashing algorithm. Examples of
industry-tested and accepted standards and algorithms for encryption include AES (128 bits
and higher), TDES (minimum double-length keys), RSA (1024 bits and higher), ECC (160 bits
and higher), and ElGamal (1024 bits and higher).

Encryption algorithm: The application leverages AES encryption algorithm to store sensitive
information into properties file. This algorithm uses 256 bit secret key for encryption and
decryption which would be stored at property file.

Hashing algorithm: Oracle Banking Payments Cloud Service leverages SHA-512 hashing
algorithm for user password authentication. This algorithm generates a password digest for the
user password by using the SALT (Random number generated using SHA1PRNG algorithm)
and the iteration number available in the property file.

Session storage

Oracle Banking Payments application does not store Http Session objects.

A unique sequence number generates and stored in current user table for the purpose of
mapping server-side sessions with the entries in the current user table.

Chapter 3
Broken Authentication and Session Management

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 2 of 8

During session expiry (triggered by the container), the session listener provides the application
with the sequence number of the session. The application makes checks as to whether the
entry in current user table contains the same sequence number. Only in such a case should
the entry be deleted.

When authentication of credentials (involving an incorrect user ID) is unsuccessful, the user id
should not be logged in the audit logs (database table). The following possible scenarios will
be accounted for:

Session logging

Unsuccessful attempt to login is stored in the database with terminal’s ip address and
timestamp. Invalid and expired session IDs submitted to the application are categorized as
authentication failures and the same are logged in the database table.

3.3 Cross-Site Scripting (XSS)
XSS is the most prevalent web application security flaw. XSS flaws occur when an application
includes user supplied data in a page sent to the browser without properly validating or
escaping that content. Banking is coded keeping in view the XSS prevention rules as below:

1. Technique#1—HTML Escape before inserting untrusted data into HTML element
content
Across the Banking application, context specific escaping has been used to sanitize the
untrusted data. For HTML content, the below function takes care of escaping the probable
tainted data:

public static String escapeHTML(String input);

Escaping the following characters, with HTML entity encoding, to prevent switching into
any execution context, such as script, style, or event handlers has been done. Use of
recommended hex entities is in place. In addition to the 5 characters significant in XML (&,
<, >, ", '), the forward slash is included as it helps to end an HTML entity.

• & --> &

• < --> <

• > --> >

• " --> "

• ' --> '

• / --> /

2. Technique #2-- JavaScript Escape Before Inserting Untrusted Data into JavaScript
Data Values
Including untrusted data inside any other JavaScript context is quite dangerous, as it is
extremelyeasy to switch into an execution context with characters including (but not limited
to) semi-colon,equals, space, plus, and many more. For JavaScript context, the below
function takes care of escapingthe probable tainted data:

public static String escapeJavaScript(String input);

3. Technique #3—Escape JavaScript Characters
This works in conjunction with rule#2. Except for alphanumeric characters in Banking, all
charactersless than 256 are escaped with the \xHH format to prevent switching out of the
data value into the script context or into another attribute. No use of any escaping
shortcuts like \" ,because the quote character may be matched by the HTML attribute
parser which runs first. These escaping shortcutsare also susceptible to "escape-the-

Chapter 3
Cross-Site Scripting (XSS)

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 3 of 8

escape" attacks where the attacker sends \" and the vulnerable code turns that into \\"
which enables the quote.

4. Technique #4--URL Escape And Strictly Validate Before Inserting Untrusted Data
into HTMLURL Parameters.
Banking encodes URL with the URLEncoder java class. It doesn’t check for a valid URL,
but directlydoes URL encoding, and that encoding is based on the context of display.

5. Technique #5---Use of HttpOnly and secure cookie flag
Banking uses the HTTPOnly flag on the session cookie and any custom cookies that are
not accessedby any JavaScript.

3.4 Insecure Direct Object References
1. Use of prepared statements (parameterized queries)

Banking uses PreparedStatement with bind variables to construct and execute SQL
statements in JAVA.

2. Input Validation
Banking is a web based application, the request data from browser to server will be passed
using request headers and request parameters. All the request fields coming from the
client are validated using white list validation to prevent cross site scripting.

User defined method validateParameter() is used for input validation which checks each
character of the request field with a range of allowed characters.

User defined methods escapeJavaScript(), escapeHTML() and escapeURL() will sanitize
the output data before flushing it into client browser.

escapeJavaScript() will escape all characters except immune JavaScript characters and
alphanumeric characters in the ASCII character set. All other characters are encoded
using the \\xHH or \\uHHHH notation for representing ASCII or Unicode sequences.

escapeHTML() will escape the characters with equivalent HTML entities obtained from the
lookup map. Lookup map will have entities such as amp, quot, lt, gt etc.

escapeURL() will encode the URL using URLEncoder class.

White list validation is also used to restrict Image/signature/excel upload and to check
rights for every operation performed by user.

3. Image Content validation
Signature upload will check for image type and image content using the inbuilt classes
(ImageIO and JarFile) available in java.

4. Field validation
Field level validations exist for all mandatory fields. Database too had limits on the type
and the length of data. Blacklisted characters are not allowed in the mandatory fields.
Nevertheless, Banking has free-text fields, which takes all data, entered by the user, as a
String.

5. Restriction on Blacklist characters
Similar to white list validation black list validation is also used for validating the request
fields. Banking uses blacklist validation to check whether the request xml contains
unwanted tags like scripting tag, html tag, anchor tag etc inside the xml content. It is also
used for the advance summary field’s validation to check whether proper request fields are
coming from the browser.

Below table shows the list of bad characters which should not be allowed in URL path but
the Banking operations requires many of the below characters to be passed in the request.
So Banking will encode the below bad characters before sending them through the URL
and same will be decoded at the server to prevent the hacker from modifying the request.

Chapter 3
Insecure Direct Object References

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 4 of 8

Bad URL Characters(Unsafe Characters) --

& //

< ./

> /.

; /*

\" *.

\' ~

% \

) 25%

(%25u

+ %25U

, %00-%1f, %7f-%ff

" " (space) %00-%1f and %7f-%ff

- %25u and %25U

6. Restriction on Script/Html tags
Banking has blacklist validation for unwanted tag in xml like scripting tag or html tag inside
xml content particularly in the header.

3.5 Security Misconfiguration
1. Configuration files

Configuration files are securely placed inside the Classes folder of the WEB-INF folder
which is not publicly accessible.

2. Exception handling in java
Different types of exceptions can rise in application. Java exceptions handled using try
catch blocks available in java. Sometimes we use the Throw statement to throw an
exception which is caught by the catch block. Caught exceptions will be written into the log
files for the debug purpose when ever required. Whenever any exception occurs in
application, proper information used to send to the front end user by showing alert.

3. Exception handling in oracle database
Database exceptions handled using EXCEPTION statement available in PL/SQL. Caught
exceptions will be written into the log files for the debug purpose. And proper error
message created to send the same in response to the user.

4. Package lockout situation handled in backend
Application will be hanged in an oracle system package lockout situation. Locked objects
will be released manually using SQL scripts or through database restart.

We have handled cursor lock out problem in the required packages.

5. Auto generated password
The password is generated by the system accordance to the password policy. The salt is
also be generated every time the password is changed by using predefined algorithm.

The salt concatenated with auto generated password and SHA-512 hash applies on the
resultant which results the password digest.

Once the successful generation of password digests both salt and password digest is
stored in the DB.

6. Custom password
The password is keyed in by the administrator or user accordance to the password policy.
The salt is generated every time the password is changed by using predefined algorithm.

Chapter 3
Security Misconfiguration

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 5 of 8

The salt concatenated with the password input and SHA-512 hash applies on the resultant
which results the password digest.

Once the successful generation of password digests both salt and password digest is
stored in the DB.

Oracle Banking Payments Cloud Service does not provide any default user/password.
User and password needs to be created at the time of installation.

7. Sand Box for File Upload
The application uses a sandbox for placing files that are uploaded via the signature/image
upload screen. The sandbox is placed in a specified location (the location will be specified
in the properties file) on the server.

8. BI Publisher Reports - generation and access
The application uses a sandbox for placing the generated reports file into a sandbox area.
The sandbox is placed in a specified location (the location will be specified in the
properties file) on the server. The application validates if the user has explicit Rights to
generate Reports.

3.6 Sensitive Data Exposure
1. Secure Transformation of Data (SSL)

The Oracle Banking Payments Cloud Service Installer allows a deployer to configure
Oracle Banking Payments Cloud Service such that all HTTP connections to the Oracle
Banking Payments application are over SSL/TLS. In other words, all HTTP traffic in the
clear will be prohibited; only HTTPS traffic will be allowed. It is mandatory to enable this
option in a production environment, especially when WebLogic Server acts as the SSL
terminator.

A two-way SSL is used when the server needs to authenticate the client. In a two-way SSL
connection the client verifies the identity of the server and then passes its identity
certificate to the server. The server then validates the identity certificate of the client before
completing the SSL handshake.

In order to establish a two-way SSL connection, need to have two certificates, one for the
server and the other for client. This is required for de-centralized setup of application.

For Oracle Banking Payments Cloud Service, need to configure a single connector. This
connector is related to SSL/TLS communication between host or browser and the branch
which uses two-way authentication.

If the secure flag is set on a cookie, then browsers will not submit the cookie in any
requests that use an unencrypted HTTP connection, thereby preventing the cookie from
being trivially intercepted by an attacker monitoring network traffic.

Below configuration has to be ensured in weblogic.xml within the deployed application ear.

• Cookies are set with Http only as true

• Cookie secure flag set to true

• Cookie path to refer to deployed application

<wls: session-descriptor>

<wls: cookie-http-only>true</wls: cookie-http-only>

</wls: session-descriptor>

<wls: session-descriptor>

<wls: cookie-secure>true</wls: cookie-secure>

Chapter 3
Sensitive Data Exposure

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 6 of 8

<wls: url-rewriting-enabled>false</wls: url-rewriting-enabled>

</wls: session-descriptor>

<session-descriptor>

<cookie-name>JSESSIONID</cookie-name>

<cookie-path>/<DeployedApplicationPath></cookie-path>

<cookie-http-only>true</cookie-http-only>

<cookie-secure>true</cookie-secure>

<url-rewriting-enabled>false</url-rewriting-enabled>

</session-descriptor>

Always make sure Cookies are set with always Auth Flag enabled by default for WebLogic
server.

2. Sign-On messages
Below table shows the general Sign-On messages which would be displayed to the user
during invalid authentication:

Message Explanation

User Already Logged In The user has already logged into the system and is
attempting a login through a different terminal.

Invalid User ID/Login An incorrect user ID or password was entered.

User Status is Disabled. Please
contact your System Administrator

The user profile has been disabled due to number of
dormancy days allowed for the user has exceeded the
dormancy days configured in the system.

User Status is Locked. Please contact
your System Administrator

The user profile has been locked due to an excessive
number of attempts to login, using an incorrect user ID or
password. The number of attempts could have matched
either the successive or cumulative number of login failures
(configured for the system).

3. CACHE Control in Servlet and jsp
There are three basic HTTP response headers that prevent a page from being cached to
disk. Different browsers handle them in slightly different ways, so they need to be used in
combination to ensure all browsers do not cache the specific page. These headers are
"Expires", "Pragma" and "Cache-control". In addition, these headers can either be sent
directly by the server or placed in the HTML code as HTTP-EQUIV META tags within the
HEAD section. The "Expire" header gives a date at which point the page should expire and
no longer be cached. Internet Explorer supports a date of "0" for immediately and any
negative number for already expired. The "Pragma: no-cache" header indicates that the
page should not be cached.

4. Clickjacking/Frame-bursting
Banking uses the X-Frame-Options HTTP response header to indicate whether or not a
browser should be allowed to render a page in a <frame> or <iframe>. This is used to
avoid Clickjacking attacks, by ensuring that the content is not embedded into other sites.

3.7 Missing Function Level Access Control
It is likely that users working in the same department at the same level of hierarchy need to
have similar user profiles. In such cases, you can define a Role Profile that includes access
rights to the functions that are common to a group of users. A user can be linked to a Role
Profile by which you give the user access rights to all the functions in the Role Profile.

Chapter 3
Missing Function Level Access Control

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 7 of 8

Application level access has implemented via the Security Management System (SMS)
module. SMS supports “ROLE BASED” access of Screens and different types of operations.
Oracle Banking Payments Cloud Service supports dual control methodology, wherein every
operation performed has to be authorized by another user with the requisite rights.

Please refer 2.6 section of the SMS user manual for more details.

Apart from the role based access control particular functions , products can be restricted for
user as described below.

Disallowed functions: Function IDs or UI level restrictions can be provided for the user by
including the function Ids in the disallowed list. This will restrict the user from accessing the UI.
When accessed, an error message dialogue box will pop up saying-“User not authorized to
access the screen”.

Disallowed account class: The user could be restricted to perform any operation using a
particular a/c class. When disallowed, no accounts could be created by the user using the
account class.

Disallowed products: The user could be restricted to use product(s) of any module(s), if
disallowed. This is really required when restricting users department wise. For example, staffs
of accounts department need not be given access to view the loans of customers.

Disallowed branches: The user could be restricted to access branches other than his own
branch (reporting branch). He can be given access to login from other branches of the bank at
an approval from authenticated person, an action which again requires manual authorization.

3.8 Cross-Site Request Forgery (CSRF)
In case of XMLHttpRequest objects, the XMLHttpRequest object sets a custom HTTP header
in the request, with the header value being the Cross-site request forgery token; the server
then verifies for the presence of such a header and the Cross-site request forgery token. This
serves as a protection at endpoints used for XMLHttpRequest requests, since only
XMLHttpRequest objects can set HTTP headers (apart from Flash; and both cannot make
cross-domain requests).

3.9 Using Components with Known Vulnerabilities
Source code scanning done using the latest fortify to identify the sources code issue and will
provide the proper fix for the reported issues.

3rd party libraries scanning for every release has been done to validate if any security issues
rise for any of the components or not. Update the 3PL with latest security patch or upgraded to
latest version.

3.10 Unvalidated Redirects and Forwards Network Security
Application uses 302 redirect wherever required. Banking UBS uses
response.sendRedirect(newURL);

Chapter 3
Cross-Site Request Forgery (CSRF)

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 8 of 8

4
Securing Gateway Services

Different applications deployed on disparate platforms and using different infrastructure need to
be able to communicate and integrate seamlessly with Oracle Banking Payments in order to
exchange data. The Oracle Banking Payments Cloud Service Integration Gateway will cater to
these integration needs.

The integration needs supported by the Gateway can be broadly categorized from the
perspective of the Gateway as follows:

• Inbound application integration – used when any external system needs to add, modify or
query information within Oracle Banking Payments.

• Outbound application integration – used when any external system needs to be notified of
the various events that occur within Oracle Banking.

• Inbound Application Integration

• EJB Based Synchronous Deployment Pattern

• Web Services Based Synchronous Deployment Pattern

• HTTP Servlet Based Synchronous Deployment Pattern

• MDB Based Asynchronous Deployment Pattern

• Outbound Application Integration

• Accessing Service and Operation

• Gateway Password Generation Logic for External System Authentication

• XSD Validation and Input Validation

• List of Services

• List of Interfaces

4.1 Inbound Application Integration
Oracle Banking Payments Cloud Service Inbound Application Gateway provides XML based
interfaces thus enhancing the need to communicate and integrate with the external systems.
The data exchanged between Oracle Banking Payments Cloud Service and the external
systems will be in the form of XML messages. These XML messages are defined in FCUBS in
the form of XML Schema Documents (XSD) and are referred to as ‘FCUBS formats’.

FCUBS Inbound Application Integration Gateway uses the Synchronous and Asynchronous
Deployment Pattern for addressing the integration needs.

The Synchronous Deployment Pattern is classified into the following:

• Oracle Banking Payments Cloud Service EJB Based Synchronous Inbound Application
Integration Deployment Pattern

• Oracle Banking Payments Cloud Service Web Services Based Synchronous Inbound
Application Integration Deployment Pattern

• Oracle Banking Payments Cloud Service MDB Based Asynchronous Inbound Application
Integration Deployment Patten

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 1 of 4

4.2 EJB Based Synchronous Deployment Pattern
The Enterprise Java Beans (EJB) deployment pattern will be used in integration scenarios
where the external system connecting to Oracle Banking Payments Cloud Service is ‘EJB
literate’, i.e., the external system is capable of interacting with Oracle Banking Payments Cloud
Service based upon the EJB interface. In this deployment pattern, the external system will use
the RMI/IIOP protocol to communicate with the Oracle Banking Payments Cloud Service EJB.

In this deployment pattern the EJB displayed by Oracle Banking Payments Cloud Service will
be a stateless session bean. The actual request will be in the form of an XML message. After
the necessary processing is done in Oracle Banking Payments Cloud Service based on the
request, the response is returned to the external system as an XML message. The transaction
control for the processing will stay with the Oracle Banking Payments Cloud Services EJB.

4.3 Web Services Based Synchronous Deployment Pattern
The web services deployment pattern will be used in integration scenarios where the external
system connecting to Oracle Banking PaymentOracle Banking Payments Cloud Services
wants to connect using standards-based, inter-operable web services.

This deployment pattern is especially applicable to systems which meet the following broad
guidelines:

• Systems that are not ‘EJB literate’, i.e., such systems are not capable of establishing
connections with Oracle Banking Payments Cloud Service based upon the EJB interface;
and/or

• Systems that prefer to use a standards-based approach

In this deployment pattern, the external system will use the SOAP (Simple Object Access
Protocol) messages to communicate to the Oracle Banking Payments Cloud Serviceweb
services.

The services displayed by Oracle Banking Payments Cloud Service are of a ‘message based’
style, i.e., the actual request will be in the form of an XML message, but the request will be a
‘payload’ within the SOAP message. After the necessary processing is done inOracle Banking
Payments Cloud Service based on the request, the response is returned to the external system
as an XML message which will be a ‘payload’ within the response SOAP message. The
transaction control for the processing will stay with the Oracle Banking Payments Cloud
Service.

4.4 HTTP Servlet Based Synchronous Deployment Pattern
The HTTP servlet deployment pattern will be used in integration scenarios where the external
system connecting to Oracle Banking Payments Cloud Service wants to connect to Oracle
Banking Payments Cloud Service using simple HTTP messages.

This is especially applicable to systems such as the following:

• Systems that are not ‘EJB literate’, i.e., are not capable establishing a connections with
Oracle Banking Payments Cloud Service based upon the EJB interface; and/or

• Systems that prefer to use a simple http message based approach without wanting to use
SOAP as the standard

In this deployment pattern, the external system will make an HTTP request to the Oracle
Banking Payments servlet.

Chapter 4
EJB Based Synchronous Deployment Pattern

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 2 of 4

For this deployment pattern, Oracle Banking Payments Cloud Service will display a single
servlet. The actual request will be in the form of an XML message. This XML message is
embedded into the body of the HTTP request sent to the Oracle Banking Payments Cloud
Service servlet. After the necessary processing is done in Oracle Banking based on the
request, the response is returned to the external system as an XML message which is once
again embedded within the body of the response HTTP message. The transaction control for
the processing will stay with the Oracle Banking.

4.5 MDB Based Asynchronous Deployment Pattern
The MDB deployment pattern is used in integration scenarios where the external system
connecting to Oracle Banking Payments Cloud Service wants to connect to Oracle Banking
Payments Cloud Service using JMS queues.

This is especially applicable to systems such as the following:

• Systems that prefer to use JMS queues based approach without wanting to wait for the
reply

Here external system sends messages in XML format to request queue on which an MDB is
listening. When a message arrives on the queue, it is picked up for processing. After the
necessary processing is done in Oracle Banking Payments Cloud Service, based on the
request, the response is sent to the response queue as an XML message.

4.6 Outbound Application Integration
The Outbound Application Integration is also called the Oracle Banking Payments Cloud
Service Notify Application Integration layer. This application layer sends out notification
messages to the external system whenever events occur in Oracle Banking Payments Cloud
Service.

The notification messages generated by FCUBS on the occurrence of these events will be
XML messages. These XML messages are defined in FCUBS in the form of XML Schema
Documents (XSD) and are referred to as ‘FCUBS formats’.

4.7 Accessing Service and Operation
In a message it is mandatory to maintain a list of Service Names and Operation Codes. This
information is called Gateway Operations.

A combination of every such Service Name and Operation Code is mapped to a combination of
Function ID and Action. Every screen in Oracle Banking Payments Cloud Service is linked with
a function ID. This information is called Gateway Functions.

User can gain access to an external system using the Gateway Functions. The Function IDs
mapped in Gateway Functions should be valid Function IDs maintained in Oracle Banking
Payments. Hence, for every new Service or Operation being introduced, it is important that you
provide data in Gateway Operations and Gateway Functions.

4.8 Gateway Password Generation Logic for External System
Authentication

As a secure configuration password authentication should be enabled for the external system
maintained. The same can be verifying in External system detail screen level. Once these

Chapter 4
MDB Based Asynchronous Deployment Pattern

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 3 of 4

features enable, system will validate for Encrypted password as part of every request sent by
the External System.

The Message ID which is present as part of the header in Request XML, is considered as
hash. External System generates an unique Message ID, which is functional mandatory field in
the header. Create a Message Digest with SHA-512 algorithm.

The hash created from the previous step and the password in clear text together is encrypted
in AES encryption method. Apply Base64 encoding to encrypted value and send to the Oracle
Banking Payments gateway.

4.9 XSD Validation and Input Validation
Oracle Banking Payments supports the XSD validation for all types Gateway. Each node in
request xml is getting validated with the corresponding webservice XSD’s.

Restriction on Script/Html tags

Banking Gateway has blacklist validation for unwanted tag in xml like scripting tag or html tag
inside xml content particularly in the header.

4.10 List of Services
• COCategoryTypeService

• COCurrencyPairService

• COCurrencyRateTypeService

• COCurrencyService

• FCUBSPXService

4.11 List of Interfaces
• Generic Interface

• Document Management System Interface

• SWIFTNet Services Integrator Messaging Hub Interface

• Oracle Identity Manager Interface

Chapter 4
XSD Validation and Input Validation

Development Security Guide
G46788-01
Copyright © 2017, 2025, Oracle and/or its affiliates.

November 3, 2025
Page 4 of 4

	Contents
	1 Preface
	1.1 Purpose
	1.2 Audience
	1.3 Documentation Accessibility
	1.4 Diversity and Inclusion
	1.5 Conventions
	1.6 Related Resources
	1.7 Screenshot Disclaimer
	1.8 Acronyms and Abbreviations
	1.9 Basic Actions
	1.10 Symbols, Definitions and Abbreviations

	2 About this Manual
	2.1 Introduction
	2.2 Scope
	2.2.1 Read Sections Completely
	2.2.2 Understand the Purpose of this Guidance
	2.2.3 Limitations

	3 How to Address the OWASP Top10 in Oracle Banking Payments Cloud Service
	3.1 Injection
	3.2 Broken Authentication and Session Management
	3.3 Cross-Site Scripting (XSS)
	3.4 Insecure Direct Object References
	3.5 Security Misconfiguration
	3.6 Sensitive Data Exposure
	3.7 Missing Function Level Access Control
	3.8 Cross-Site Request Forgery (CSRF)
	3.9 Using Components with Known Vulnerabilities
	3.10 Unvalidated Redirects and Forwards Network Security

	4 Securing Gateway Services
	4.1 Inbound Application Integration
	4.2 EJB Based Synchronous Deployment Pattern
	4.3 Web Services Based Synchronous Deployment Pattern
	4.4 HTTP Servlet Based Synchronous Deployment Pattern
	4.5 MDB Based Asynchronous Deployment Pattern
	4.6 Outbound Application Integration
	4.7 Accessing Service and Operation
	4.8 Gateway Password Generation Logic for External System Authentication
	4.9 XSD Validation and Input Validation
	4.10 List of Services
	4.11 List of Interfaces

