
Oracle® Banking Liquidity
Management
Kafka Configuration Guide

Release 14.7.5.0.0
G15321-01
September 2024

Oracle Banking Liquidity Management Kafka Configuration Guide, Release 14.7.5.0.0

G15321-01

Copyright © 2018, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Purpose v

Audience v

Documentation Accessibility v

Critical Patches v

Diversity and Inclusion v

Related Resources vi

Acronyms and Abbreviations vi

1 Prerequisites

2 Kafka Middleware Setup

2.1 Zookeeper Setup 2-1

2.2 Kafka Setup 2-2

3 Important Commands

4 Increase Replication Factor for an existing topic

5 Security - SSL Encryption with SASL-SCRAM Authentication

6 Implementation

7 Flow Diagram

iii

8 Payload and Header

9 Tables

Index

iv

Preface

• Purpose

• Audience

• Documentation Accessibility

• Critical Patches

• Diversity and Inclusion

• Related Resources

• Acronyms and Abbreviations

Purpose
This guide provides the information about the kafka implementation which allows the user to
publish and consume message from/by publisher and consumer respectively.

Audience
This guide is intended for the implementation teams.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Critical Patches
Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and
Bulletins. All critical patches should be applied in a timely manner to ensure effective security,
as strongly recommended by Oracle Software Security Assurance.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
For more information on any related features, refer to the following documents:

• Oracle Banking Liquidity Management Installation Guide

• Oracle Banking Liquidity Management Configuration Guide

Acronyms and Abbreviations
The list of the acronyms and abbreviations used in this guide are as follows:

Table 1 Acronyms and Abbreviations

Abbreviation Description

JDBC Java Database Connectivity

JNDI Java Naming and Directory Interface

Preface

vi

1
Prerequisites

This topic provides the prerequisites to be performed before the kafka configuration.

The following installation should be completed and running to enable the APIs to publish and
consume message from Kafka.

• Zookeeper

• Kafka

Minimum requirements for installation are:

• Partition count: 2

• Replication factor: 2

• Kafka brokers: 2

• Zookeeper nodes: 2

• Servers: 2

These values can be increased based on the requirement and load. Restrict the access to the
server*.properties file of Kafka servers.

1-1

2
Kafka Middleware Setup

This topic provides the information about the kafta middleware setup.

• Zookeeper Setup
This topic provides the systematic instructions to install and setup the Zookeeper.

• Kafka Setup
This topic provides the systematic instruction to install and setup kafka.

2.1 Zookeeper Setup
This topic provides the systematic instructions to install and setup the Zookeeper.

Kafka uses ZooKeeper to manage the cluster. ZooKeeper is used to coordinate the brokers/
cluster topology. ZooKeeper is a consistent file system for configuration information.
ZooKeeper gets used for leadership election for Broker Topic Partition Leaders. Here we are
going to start a node of 2 zookeeper ensemble on 2 servers each.

1. Extract the kafka installation files in /tools/kafka on both the servers.

2. Navigate to config folder in /tools/kafka/conf.

3. Duplicate the zoo_sample.cfg and rename it to zookeeper1.cfg

4. Open zookeeper1.cfg and modify the following properties.

DataDir= <kafka home directory>/data
tickTime=2000
clientPort= Zookeeper client Port value (2181)
initLimit=10
syncLimit=5

server.1=<hostname>:<peer port>:<leader port>
#1 is the id that we put in myid file.

server.2=<hostname>:<peer port>:<leader port>
#2 is the id that we will put in myid file of second node.

server.3=<hostname>:<peer port>:<leader port>
#3 is the id that we will put in myid file of third.

Example:

tickTime=2000
initLimit=5
syncLimit=2
clientPort=2181
dataDir=/tmp/zookeeper-oblm/zookeeper-node1

2-1

server.1=server1-IP:2666:3666
server.2=server2-IP:2667:3667

Note:

Update the IP value with the respective server IP.

5. Duplicate the zoo.cfg file and rename it as zookeeper2.cfg in the same directory on
Server 2 (Other names can also be used). These configuration files used for each of the
zookeeper nodes

6. Open zookeeper2.cfg and modify the following properties.

clientPort=2182
dataDir=/tmp/zookeeper-oblm/zookeeper-node2
server.1=server1-IP:2666:3666
server.2=server2-IP:2667:3667

Note:

Update the IP value with the respective server IP.

7. Copy the zookeeper1.cfg and zookeeper2.cfg and Paste it in the local.

8. Open the directory /tmp/zookeeper-oblm/zookeeper-node1 on server 1 and create a file
named myid, open with text editor and write 1, save and close.

9. Open the directory /tmp/zookeeper-oblm/zookeeper-node2 on server 2 and create a file
named myid, open with text editor and write 2, save and close.

10. Run the command to start the zookeeper nodes.

On Server 1:

nohup ./bin/zkServer.sh start conf/zookeep
On Server 2:

nohup ./bin/zkServer.sh start conf/zookeep

2.2 Kafka Setup
This topic provides the systematic instruction to install and setup kafka.

1. Extract the kafka installation file in /tools/kafka on both the servers.

2. Navigate to config folder in Apache Kafka (/tools/kafka/config).

3. Duplicate the server.properties from config folder and rename it to server1.properties.

4. Open server1.properties and modify the following properties.

broker.id= (Unique Integer which identifies the kafka broker in the
cluster.
listeners=PLAINTEXT://<hostname>:<Kafka broker listen port(9092)>

Chapter 2
Kafka Setup

2-2

log.dirs=<Kafka home directory>/logs
log.retention.hours= <The number of hours to keep a log file
before deleting it (in hours), tertiary to log.retention.ms property>
log.retention.bytes= <The maximum size of the log before deleting it>
log.segement.bytes= <The maximum size of a single log file>
log.retention.check.interval.ms= <The frequency in milliseconds that
the log cleaner checks whether any log is eligible for deletion>
zookeeper.connect=<zookeeper_hostname_1>:<zookeeper_client_port>,
<zookeeper_hostname_2>:<zookeeper_client_port>,<zookeeper_hostname_3>:<zook
eeper_client_port>

Example:

broker.id=0
port=9092
log.dirs=/tmp/kafka-oblm/logs-node1
zookeeper.connect=server1-IP:2181,server2-IP:2182
num.partitions=2
min.insync.replicas=1
default.replication.factor=2
offsets.topic.replication.factor=2
transaction.state.log.replication.factor=2
transaction.state.log.min.isr=1

Note:

If the Apache Zookeeper is on different server, then change the
zookeeper.connect property. i.e., update the highlighted value for the respective
server IPs. min.insync.replicas: A typical configuration is replication-factor
minus 1.

5. Duplicate the server.properties into the same directory and rename it to
server2.properties on server 2.

6. Open server2.properties and modify the following properties.

broker.id=1
broker.id=1
log.dirs=/tmp/kafka-oblm/logs-node2

Note:

By default, Apache Kafka will run on port 9092 and Apache Zookeeper will run on
port 2181.

7. Copy the server1.properties and server2.properties and paste it in local.

Chapter 2
Kafka Setup

2-3

8. To run Kafka brokers, change path to /tools/kafka directory and run the following
command in separate terminals.

On Server 1:

nohup ./bin/kafka-server-start.sh config/server1.properties
On Server 2:

nohup ./bin/kafka-server-start.sh config/server2.properties
9. The values set for Logs is under the segment: “Log Retention Policy” in server*.properties

file attached in the document. The values set under this segment are defaults from Apache

10. At present, kafka takes the default value for message size as:
message.max.bytes=1000012

11. Add and update this field in server*.properties for increasing based on requirement.

12. To add compression type for all data generated by the producer, add the following property
in server*.properties file.

compression.type=none

Note:

The default is none (i.e. no compression). Valid values are none, gzip, snappy,
lz4, or zstd.

Chapter 2
Kafka Setup

2-4

3
Important Commands

This topic provides the information about the important commands used for Kafka
configuration.

View the Topic Configurations

./kafka-topics.sh --describe --zookeeper zookeeper-server --topic topic-name
Example:

./kafka-topics.sh --describe --zookeeper localhost:2181 --topic structure-closed
Output:

Topic: structure-closed PartitionCount: 2 ReplicationFactor: 2 Configs:
Topic: structure-closed Partition: 0 Leader: 1 Replicas: 1,0 Isr: 1,0
Topic: structure-closed Partition: 1 Leader: 0 Replicas: 0,1 Isr: 0,1

View the Messages Sent from producer-consumer

./kafka-console-consumer.sh --bootstrap-server Kafka-server --topic topic-name
Example:

./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic structure-
closed

Create Kafka Topics manually

./kafka-topics.sh --create --bootstrap-server kafka-server --replication-factor
factor-value --partitions partition-value --topic topic-name
Example:

./kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor
2 --partitions 2 --topic structure-closed
If the topics are created manually before the microservice deployment, then the values in the
above command is considered otherwise if we are depending on the microservice deployment
then the values configured in the server.properties file of Kafka is considered when the topics
are created.

Configurations pertinent to topics have both a server default as well an optional per-topic
override. If no per-topic configuration is given the server default is used. The override can be
set at topic creation time by giving one or more --config options.

3-1

4
Increase Replication Factor for an existing
topic

This topic provides the systematic instruction to increase Replication Factor for an existing
topic.

In case, a topic is already created, and the user want to increase the replication factor.
Then, follow the below steps. Explanation is given below with an example and desired output
for easier understanding.

Increase the replicas for the topic structure-closed in partition 0 from only on broker id 0 to
broker id 0, 1. i.e. increase replication factor of 1 to 2.

1. Dowload a Increasing Replication Factor file and save to the local.

2. Command to increase the replication factor.

./kafka-reassign-partitions.sh --zookeeper zookeeper-server --reassignment-
json-file jsonFilePath --execute
Example:

./kafka-reassign-partitions.sh --zookeeper localhost:2181 --reassignment-json-
file D:\kafka\kafka_2.12-2.3.1\config\increase-replication-factor.json –
execute
Output:

Current partition replica assignment

{"version":1,"partitions":[{"topic":"structure-closed","partition":1,"replicas":[0],"log_dirs":
["any"]},{"topic":"structure-closed","partition":0,"replicas":[1],"log_dirs":["any"]}]}

Save this to use as the --reassignment-json-file option during rollbackSuccessfully started
reassignment of partitions.

3. Command to increase the replication factor.

./kafka-reassign-partitions.sh --zookeeper zookeeper-server --reassignment-
json-file jsonFilePath --execute
Example:

./kafka-reassign-partitions.sh --zookeeper localhost:2181 --reassignment-json-
file D:\kafka\kafka_2.12-2.3.1\config\increase-replication-factor.json –
execute
Output:

Current partition replica assignment:

{"version":1,"partitions":[{"topic":"structure-
closed","partition":1,"replicas":[0],"log_dirs":["any"]},{"topic":"structure-
closed","partition":0,"replicas":[1],"log_dirs":["any"]}]}
Save this to use as the --reassignment-json-file option during rollbackSuccessfully started
reassignment of partitions.

4-1

https://docs.oracle.com/cd/F57137_01/attachments/Installation_Guide/increase-replication-factor.json

4. Command to check the status of the partition reassignment.

./kafka-reassign-partitions.sh --zookeeper zookeeper-server --reassignment-
json-file jsonFilePath --verify
Example:

./kafka-reassign-partitions.sh --zookeeper localhost:2181 --reassignment-json-
file D:\kafka\kafka_2.12-2.3.1\config\increase-replication-factor.json –verify
Output:

Status of partition reassignment:

Reassignment of partition structure-closed-0 completed successfully.

5. Describe and check the topic.

./kafka-topics.sh --describe --zookeeper zookeeper-server --topic topic-name
Example:

./kafka-topics.sh --describe --zookeeper localhost:2181 --topic structure-
closed
Output:

Topic: structure-closed PartitionCount: 2 ReplicationFactor: 1 Configs:
Topic: structure-closed Partition: 0 Leader: 1 Replicas: 0,1 Isr: 1,0
Topic: structure-closed Partition: 1 Leader: 0 Replicas: 0 Isr: 0

Chapter 4

4-2

5
Security - SSL Encryption with SASL-SCRAM
Authentication

This topic describes about Security - SSL Encryption with SASL-SCRAM authentication.

Generate Keystore

The items highlighted in bold are placeholders and should be replaced with suitable values
when running the command.

keytool -genkeypair -alias alias -keyalg keyalg -keysize keysize -sigalg
sigalg -validity valDays -keystore keystore

Table 5-1 Generate Keystore - Keyword Details

Keyword Description

alias Used to identify the public and private key pair created.

keyalg It is a key algorithm used to generate the public and private key pair.
The RSA key algorithm is recommended.

keysize It is the size of the public and private key pairs generated.
A key size of 1024 or more is recommended. Please consult with your
CA on the key size support for different types of certificates.

sigalg It is the algorithm used to generate the signature.
This algorithm should be compatible with the key algorithm and should
be one of the values specified in the Java Cryptography API
Specification and Reference.

valdays It is the number of days for which the certificate is to be considered
valid.
Please consult with your CA on this period.

keystore It is used to specify the location of the JKS file.
If no JKS file is present in the path provided, one will be created.

The command prompts for the following attributes of the certificate and Keystore:

Table 5-2 Generate Keystore - Attributes

Attributes Description

Keystore Password Specify a password used to access the Keystore.
This password needs to be specified later when configuring the identity
store in Kafka server.

Key Password Specify a password used to access the private key stored in the
Keystore.
This password needs to be specified later when configuring the SSL
attributes of the Kafka Server.

5-1

Table 5-2 (Cont.) Generate Keystore - Attributes

Attributes Description

First and Last Name (CN) Enter the domain name of the machine used to access Oracle Banking
Liquidity Management. For example, www.example.com.

Name of your
Organizational Unit

The name of the department or unit making the request.
Use this field to further identify the SSL Certificate you are creating, for
example, by department or by physical server.

Name of your Organization The name of the organization making the certificate request. For
example, Oracle Financial Services.
It is recommended to use the company or organization's formal name,
and this name entered here must match the name found in official
records.

Name of your City or
Locality

The city in which your organization is physically located. For example,
Bengaluru.

Name of your State or
Province

The state/province in which your organization is physically located. For
example, Karnataka.

Two-letter Country Code for
this Unit

The country in which your organization is physically located. For
example, US, UK, IN, etc.

Example 5-1 Sample Execution

Listed below is the result of a sample execution.

keytool -genkeypair -alias OBLMcert -keyalg RSA -keysize 1024 -sigalg
SHA512withRSA
-validity 365 -keystore D:\kafka\securityKeys\KafkaServerKeystore.jks

Enter keystore password:<Enter a password to protect the keystore>

Re-enter new password:<Confirm the password keyed above>

What is your first and last name?

[Unknown]: name.oracle.com

What is the name of your organizational unit?

[Unknown]: OBLM

What is the name of your organization?

[Unknown]: Oracle Financial Services

What is the name of your City or Locality?

[Unknown]: Bengaluru

What is the name of your State or Province?

[Unknown]: Karnataka

What is the two-letter country code for this unit?

[Unknown]: IN

Is CN= name.oracle.com, OU=OBLM, O=Oracle Financial Services, L= Bengaluru, ST=
Karnataka, C=IN correct? [no]: yes

Chapter 5

5-2

http://www.example.com

Enter key password for < OBLMcert >

RETURN if same as keystore password): <Enter a password to protect the key>

Re-enter new password: <Confirm the password keyed above>

Export Private Key as Certificate

Export private key as certificate command is mentioned below:

keytool -export -alias <alias_name> -file
<export_certificate_file_name_with_location.cer>
-keystore <keystore_name.jks> -keypass <Private key Password> -storepass
<Store Password>

Example:

keytool -export -alias OBLMcert -file D:\kafka\securityKeys\KafkaCert.cer
-keystore D:\kafka\securityKeys\KafkaServerKeystore.jks -keypass oracle123 -
storepass oracle123

If successful, the following message will be displayed:

Certificate stored in file < KafkaCert.cer>

Import the Certificate and Generate Trust Store

To import the certificate and generate Trust store, the command is mentioned below:

keytool -import -alias alias -file cert_file -keystore truststore –storepass
storepass

Table 5-3 Generate Trust Store - Keyword Details

Keyword Description

alias It is used to identify the public and private key pair.
Specify the alias of the key pair used to create the CSR in the earlier
step.

cert_file It is the location of the file containing the PKCS#7 formatted reply from
the CA, containing the signed certificate.

truststore It is the location where the TrustStore should be generated.

storepass It is the password for the TrustStore.

The user can generate two TrustStores from the same cert.

• One used for Kafka server

• One used for Clients

Chapter 5

5-3

Example:

keytool -import -alias OBLMcert -file D:\kafka\securityKeys\KafkaCert.cer
–keystore D:\kafka\securityKeys\KafkaServerTrustStore.jks -storepass oracle123

keytool -import -alias OBLMcert -file D:\kafka\securityKeys\KafkaCert.cer
-keystore D:\kafka\securityKeys\KafkaClientTrustStore.jks -storepass oracle123

Three Keystore files are required for this method as given in the table below:

Table 5-4 Keystore Files

File Name Description

KafkaServerKeystore.jks Keystore file for Kafka brokers

KafkaServerTrustStore.jks TrustStore file for server

KafkaClientTrustStore.jks TrustStore file for client

To validate the server, each client should import the KafkaClientTrustStore.jks file.

Note:

The truststore files should be generated using the same CA. The user can generate
and place these files on all the different servers of Kafka so that they can be
accessed by server*.properties file. The KafkaClientTrustStore.jks should be
placed on the server, which is accessible by the microservices also.

Create Users in Zookeeper

To create users in Zookeeper, follow below steps:

1. Start the zookeeper.

Note:

Refer to Zookeeper Setup topic.

2. Follow the below steps for user creation.

a. Execute the admin command for admin user creation.

./kafka-configs.sh --zookeeper localhost:2181,localhost:2182 --alter --
add-config
“SCRAM-SHA-256=[password=admin-secret],SCRAM-SHA-512=[password=admin-
secret]”
--entity-type users --entity-name admin

Chapter 5

5-4

Note:

The user created with admin as username and password is setup for the
user for each scram mechanism. Here, the user admin is used for Kafka
broker auth.

b. Execute the test command for test user creation.

./kafka-configs.sh --zookeeper localhost:2181,localhost:2182 --alter --
add-config
“SCRAM-SHA-256=[iterations=8192,password=alice-secret],SCRAM-
SHA-512=[password=alice-secret]”
--entity-type users --entity-name alice

Note:

The user created with alice as username and password is setup for the user
for each scram mechanism. Here, the user alice is used for client auth. For
multiple zookeeper nodes, use comma separated serverIP:port like in the
above example(localhost:2181,localhost:2182).

Configure Brokers

Some modifications need to be made in the server*.properties file of kafka server. The
following properties need to be added in server1.properties file of kafka.

############################# SSL-SCRAM Settings #############################
ssl.endpoint.identification.algorithm=
ssl.truststore.location=D:\\kafka\\securityKeys\\KafkaServerTrustStore.jks
ssl.truststore.password=oracle123
ssl.keystore.location=D:\\kafka\\securityKeys\\KafkaServerKeystore.jks
ssl.keystore.password=oracle123
ssl.key.password=oracle123
sasl.enabled.mechanisms= SCRAM-SHA-256
sasl.mechanism.inter.broker.protocol= SCRAM-SHA-256
security.inter.broker.protocol=SASL_SSL
listeners=SASL_SSL://HOSTNAME:9092
advertised.listeners=SASL_SSL://IP:9091
listener.name.sasl_ssl.scram-sha-256
.sasl.jaas.config=org.apache.kafka.common.security.scram.ScramLoginModule
required
username="admin" password="admin-secret";

Note:

In the highlighted section, give the absolute path of the Kafka Server Truststore and
keystore, and its respective passwords. Modify the hostname and IP in the listeners
and advertised.listeners properties field accordingly

Chapter 5

5-5

Copy the above properties into the server2.properties file and modify the hostname/IP and
port in the listeners and advertised.listeners properties field. Sample properties files can be
downloaded through the below link.

Download server1.properties and server1.properties and save to the local.

Start the kafka servers.

Note:

Refer to Kafka Setup topic.

Changes to Clients

For the microservices which publish/consume data through kafka, insert the following values in
the PROPERTIES table in Oracle Banking Microservices Architecture schema before
deployment.

Table 5-5 ORACLE BANKING MICROSERVICES ARCHITECTURE PROPERTIES Table -
Key Values

KEY VALUE

plato.services.kafka.brokers <comma separated kafka hostname:port>

plato.services.zknodes <comma separated Zookeeper hostname:port>

plato.services.kafka.security.protocol SASL_SSL

plato.services.kafka.truststore.location <absolute path of client truststore>

plato.services.kafka.truststore.password <encrypted truststore password>

spring.cloud.stream.kafka.binder.configuration.sasl
.mechanism

SCRAM-SHA-256

spring.cloud.stream.kafka.binder.jaas.loginModule org.apache.kafka.common.security.scram.ScramLo
ginModule

spring.cloud.stream.kafka.binder.jaas.options.user
name

<Zookeeper SCRAM user created for clients>

spring.cloud.stream.kafka.binder.jaas.options.pass
word

<Zookeeper SCRAM user encrypted password for
clients>

To encrypt the password, use the following api of plato-config-service of Oracle Banking
Liquidity Management:

API: http://hostname:port/config-service/encrypt
Request Type: Text
Request Body: Password

Example 1:

Once the above API is hit for the following passwords, the response of encrypted value is
received.
alice-secret : 2f32dc1770acec085105e3ba585cc44c71534451b88b6047504f11191ad8cc1f
oracle123 : 7ec1250634259a1af12f74a7e4705ade7493a4695cc1efd3b713571453fda266

Example 2:

When inserting to properties table, append the encrypted values with the keyword {cipher} to
get it decrypted by the config-service during fetch as given in example below.

Chapter 5

5-6

insert into PROPERTIES (ID,APPLICATION,PROFILE,LABEL,KEY,VALUE) values
(10110,'oblm-structure-
services','jdbc','jdbc','plato.services.kafka.brokers','localhost:9092,localhost:
9093');
insert into PROPERTIES (ID,APPLICATION,PROFILE,LABEL,KEY,VALUE) values
(10111,'oblm-structure-
services','jdbc','jdbc','plato.services.zknodes','localhost:2181');
insert into PROPERTIES (ID,APPLICATION,PROFILE,LABEL,KEY,VALUE) values
(10112,'oblm-structure-
services','jdbc','jdbc','plato.services.kafka.security.protocol','SASL_SSL');
insert into PROPERTIES (ID,APPLICATION,PROFILE,LABEL,KEY,VALUE) values
(10113,'oblm-structure-
services','jdbc','jdbc','plato.services.kafka.truststore.location','D:\kafka\secu
rityKeys\KafkaClientTrustStore.jks');
insert into PROPERTIES (ID,APPLICATION,PROFILE,LABEL,KEY,VALUE) values
(10114,'oblm-structure-
services','jdbc','jdbc','plato.services.kafka.truststore.password','{cipher}7ec12
50634259a1af12f74a7e4705ade7493a4695cc1efd3b713571453fda266');
insert into PROPERTIES (ID,APPLICATION,PROFILE,LABEL,KEY,VALUE) values
(10115,'oblm-structure-
services','jdbc','jdbc','spring.cloud.stream.kafka.binder.configuration.sasl.mech
anism','SCRAM-SHA-256');
insert into PROPERTIES (ID,APPLICATION,PROFILE,LABEL,KEY,VALUE) values
(10116,'oblm-structure-
services','jdbc','jdbc','spring.cloud.stream.kafka.binder.jaas.loginModule','org.
apache.kafka.common.security.scram.ScramLoginModule');
insert into PROPERTIES (ID,APPLICATION,PROFILE,LABEL,KEY,VALUE) values
(10117,'oblm-structure-
services','jdbc','jdbc','spring.cloud.stream.kafka.binder.jaas.options.username',
'alice');
insert into PROPERTIES (ID,APPLICATION,PROFILE,LABEL,KEY,VALUE) values
(10118,'oblm-structure-
services','jdbc','jdbc','spring.cloud.stream.kafka.binder.jaas.options.password',
'{cipher}2f32dc1770acec085105e3ba585cc44c71534451b88b6047504f11191ad8cc1f');

Important Commands

Create Topics manually is same as the command mentioned in Create Kafka Topics Manually.
If the user want to view the messages getting sent in kafka, then store the below lines in a file
and name it as ssl.properties.

ssl.truststore.location=D:\\kafka\\securityKeys\\KafkaClientTrustStore.jks
ssl.truststore.password=oracle123
security.protocol=SASL_SSL
ssl.endpoint.identification.algorithm=
sasl.mechanism=SCRAM-SHA-256
sasl.jaas.config=org.apache.kafka.common.security.scram.ScramLoginModule required
\username="alice"
\password="alice-secret";

Note:

Update the trust store location and password.

Chapter 5

5-7

Download ssl.properties file and save to the local.

Command to view the messages being published:

./kafka-console-consumer.sh --bootstrap-server kafka-server --topic topicName --
consumer.config absolute-path-of-consumer-config --from-beginning
Example:

./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic oblm --
consumer.config D:\kafka\kafka_2.12-2.3.1\config\ssl.properties --from-beginning

Chapter 5

5-8

6
Implementation

This topic describes the implementation flow for the various service functionalities.

The Flow

There is an events table in Maintenance schema with all the events that we will publish listed
on it with some more properties. There is an IsEnabled column for all the events listed. Only for
all those events where the IsEnabled field is set to true will publish to kafka.

oblm-services that wants to publish to kafka will fetch the events table in maintenance schema
using the eventcode and check for the isEnabled field. If the isEnabled is ‘Y’ it will store the
data in an eventlog table in LMX schema.

We have a cron job that will be triggered in configured time interval which will fetch the value
from the integration schema and chck for the unpublished message. Those message that are
not published and havenot errored out will be published to kafka.

Maintenance Service Functionality

The oblm-maintenance-services has the following events configured.

1. bank-pref

2. branch-pref

3. pricing-map

The oblm-maintenance-services will check the value of the isEnabled column for the above
event_code, if ‘Y’ the event will be logged in the lmx schema in lmx_tb_event_log along with
the event_code and event_topic.

The LMM_TM_EVENTS table in the maintenance schema has the following columns

• ID

• EVT_CODE

• EVT_CATEGORY

• EVT_DESC

• EVT_TOPIC

• EVT_ISENABLED

• MAKER_ID

• MAKER_DT_STAMP

• CHECKER_ID

• CHECKER_DT_STAMP

• RECORD_STAT

• AUTH_STAT

• ONCE_AUTH

6-1

• MOD_NO

Here the event_code will be predefined by the developers and this event_code will be used to
map an event from service to the even_topic in which kafka will be publishing.

Depending on the requirement the consumer can alter the value of the isEnabled field to ‘Y’ if
events need to be published for that event.

Events will have been pre-added into the database before the deployment.

Sweep Service Functionality

The oblm-sweep-services has the following events configured.

1. sweep-success (S)

2. sweep-error (E)

3. sweep-pending (P)

4. sweep-handOff (H)

The oblm-sweep-services will call the oblm-maintenance-services and for the above
event_code it will check the value of the isEnabled column, if ‘Y’ the event will be logged in the
lmx schema in lmx_tb_event_log along with the event_code and event_topic.

Structure Service Functionality

The oblm-structure-services has the following events configured.

1. structure-created

2. structure-createdAndAuthorized

3. structure-modified

4. structure-modifiedAndAuthorized

5. structure-closed

6. structure-closedAndAuthorized

7. structure-reopen

8. structure-reopenAndAuthorized

9. structure-expiry (structure expiring in n number of days where n is configurable)

10. structure-charge

The oblm-structure-service will call the oblm-maintenance-service and for the above
event_code it will check the value of the isEnabled column, if ‘Y’ the event will be logged in the
lmx schema in lmx_tb_event_log along with the event_code and event_topic.

The structure-expiry event is a scheduler. It will be triggered once a day. The scheduler is a
cron job, the time is configurable, and it should be cron expression.

Cron expression example: ‘0 40 20 * * ?’ will trigger the service endpoint at 8.40pm every day.

Integration Service Functionality

The events that need to be published from the oblm-services will be stored in the
lmx_tb_events_log.

Chapter 6

6-2

The oblm-integration-service has a scheduler that will be triggered in configured interval. The
scheduler is a cron job, the time interval is configurable.

The lmx_tb_events_log have columns event is a scheduler. It will be triggered once a day. The
scheduler is a cron job, the time is configurable, and it should be cron expression.

Some important columns of lmx_tb_events which is generic for all the oblm-services that wants
to publish to kafka.

1. ID

2. EVT_CODE

3. EVT_ TOPIC

4. LOG_TYPE

5. LOG_DESCRIPTION

6. LOG_TIME

7. SERVICE_DATA

8. PUBLISHED_TIME

9. IS_PUBLISHED

10. RETRY_COUNT

11. EVT_KEY

EVT_ TOPIC is the topic name on which the event will be published

EVT_ CODE is unique for each event and it helps to map the events from each service to an
event_topic. The evt_code is developer specified.

LOG_TYPE is the name of the service which has logged this event in the lmx schema

LOG_DESCRIPTION is the brief description of that particular event.

SERVICE_DATA is the service specific data that will be logged from oblm-services as string

LOG_TIME is the time at which the events from an oblm-service is logged in the lmx schema,
or else we can say it is the time at which an event occurred (Example: structure created)

PUBLISHED_TIME is the time at which an event will be published to kafka from oblm-
integration-service.

RETRY_COUNT is the number of times an event entry in the lmx_tb_event_log will be retried
to send the event for the retryCount(this is configurable will be fetched from properties table, so
value of RETRY_COUNT<= retryCount publish) number of times, and if it fails for retryCount
number of times it will be marked as an error and will not be processed further.

EVT_KEY is the service specific id. If the event is from oblm-sweep-service, it will be storing
the sweepId.

IS_PUBLISHED is the column which will store value such a ‘Y’ if the event is published, ‘N’ if
the event is not published, ‘E’ if the event couldn’t be published for retryCount number of times.
Default value of this field will be ‘N’, which will be updated for the above-mentioned scenarios.

Cron expression example: ‘0 0/10 * * * ?’ will trigger the the service endpoint on every 10 mins

Chapter 6

6-3

7
Flow Diagram

This topic describes about the flow diagram of Kafka events.

7-1

Figure 7-1 Flow Diagram

Chapter 7

7-2

8
Payload and Header

This topic describes about the various payload and header for Oracle Banking Liquidity
Management.

Generic LM Event Payload

This payload is applicable for the below sweep and structure service events:

• sweep-success (S)

• sweep-error (E)

• sweep-pending (P)

• sweep-handOff (H)

• structure-created

• structure-createdAndAuthorized

• structure-modified

• structure-modifiedAndAuthorized

• structure-closed

• structure-closedAndAuthorized

• structure-reopen

• structure-reopenAndAuthorized

• structure-expiry (structure expiring in n number of days where n is configurable)

Payload:
id
String,Null
Default: null
evtCode
String,Null
Default: null
logTime
String,Null
Default: null
logType
String,Null
Default: null
logDescription

8-1

String,Null
Default: null
serviceData
String,Null
Default: null
publishedTime
String,Null
Default: null

Bank Preference Event Payload

Payload:

id
String,Null
Default: null
modNo
String,Null
Default: null
RecordStat
String,Null
Default: null
AuthStat
String,Null
Default: null
MakerId
String,Null
Default: null
MakerDateStamp
String,Null
Default: null
CheckerId
String,Null
Default: null
checkerDateStamp
String,Null
Default: null

Chapter 8

8-2

OnceAuth
String,Null
Default: null
applicationCode
String,Null
Default: null
bankCode
String,Null
Default: null
chargeCalcPref
String,Null
Default: null
chargeCollPref
String,Null
Default: null
chgIncludeClosedVa
String,Null
Default: null

Branch Preference Event Payload

Payload:
id
String,Null
Default: null
modNo
String,Null
Default: null
RecordStat
String,Null
Default: null
AuthStat
String,Null
Default: null
MakerId
String,Null

Chapter 8

8-3

Default: null
MakerDateStamp
String,Null
Default: null
CheckerId
String,Null
Default: null
checkerDateStamp
String,Null
Default: null
OnceAuth
String,Null
Default: null
applicationCode
String,Null
Default: null
branchCode
String,Null
Default: null
chargeRateCode
String,Null
Default: null
chargeRateType
String,Null
Default: null

Structure Charge Event Payload

Payload:
id
String,Null
Default: null
modNo
String,Null
Default: null
RecordStat

Chapter 8

8-4

String,Null
Default: null
AuthStat
String,Null
Default: null
MakerId
String,Null
Default: null
MakerDateStamp
String,Null
Default: null
CheckerId
String,Null
Default: null
CheckerDateStamp
String,Null
Default: null
OnceAuth
String,Null
Default: null
applicationCode
String,Null
Default: null
strCode
String,Null
Default: null
realCustomerNo
String,Null
Default: null
chgFundingAccount
String,Null
Default: null
chgFundingAccountBranch
String,Null

Chapter 8

8-5

Default: null
chgFundingAccountCCY
String,Null
Default: null
vaCount
String,Null
Default: null
event
String,Null
Default: null
strChgType
String,Null
Default: null

Pricing Map Event Payload

Payload:
id
String,Null
Default: null
modNo
String,Null
Default: null
RecordStat
String,Null
Default: null
AuthStat
String,Null
Default: null
MakerId
String,Null
Default: null
MakerDateStamp
String,Null
Default: null
CheckerId

Chapter 8

8-6

String,Null
Default: null
checkerDateStamp
String,Null
Default: null
OnceAuth
String,Null
Default: null
applicationCode
String,Null
Default: null
pricingScheme
String,Null
Default: null
realCustomerNo
String,Null
Default: null
chgFundingAccount
String,Null
Default: null
chgFundingAccountBranch
String,Null
Default: null
chgFundingAccountCCY
String,Null
Default: null
chgPostingBranch
String,Null
Default: null
event
String,Null
Default: null

Header

Common Header:

Chapter 8

8-7

userId
String
branchCode
String
sourceSystem
String
event
String
ackRequired
Boolean
Default: false
kafka_messageKey
String
messageId
String
entityId
String

Chapter 8

8-8

9
Tables

LMM_TM_EVENTS

In the below table, we configure all the events that Oracle Banking Liquidity Management is
supporting. Here we can toggle the evt_isEnabled column to “Y” (If we want to publish that
event) or “N”(If we want to publish that event).

Table 9-1 LM_TM_EVENTS Table

COLUMN_NAME DATA_TYPE NULLABLE DATA_DEFA
ULT

COLUMN_ID COMMENTS

ID VARCHAR2 (36
BYTE)

No (null) 1 (null)

EVT_CODE VARCHAR2 (50
BYTE)

No (null) 2 (null)

EVT_CATEGORY VARCHAR2 (20
BYTE)

No (null) 3 (null)

EVT_DESC VARCHAR2 (100
BYTE)

No (null) 4 (null)

EVT_TOPIC VARCHAR2 (50
BYTE)

Yes (null) 5 (null)

EVT_ISENABLED CHAR (1 BYTE) No (null) 6 (null)

MAKER_ID VARCHAR2 (12
BYTE)

Yes (null) 7 (null)

MAKER_DT_STAM
P

DATE Yes (null) 8 (null)

CHEKER_ID VARCHAR2 (12
BYTE)

Yes (null) 9 (null)

CHECKER_DT_ST
AMP

DATE Yes (null) 10 (null)

RECORD_STAT CHAR (1 BYTE) Yes (null) 11 (null)

AUTH_STAT CHAR (1 BYTE) Yes (null) 12 (null)

ONCE_AUTH CHAR (1 BYTE) Yes (null) 13 (null)

MOD_NO NUMBER (4,0) Yes (null) 14 (null)

LMX_TB_EVENT_LOG

In the below table, all the Oracle Banking Liquidity Management services that wants to publish
will store their payload and a scheduler will fetch data from this table and fetch all the records
where is_published is “N” and retry_count<=max_retry_configured.

Table 9-2 LMX_TB_EVENT_LOG Table

COLUMN_NAME DATA_TYPE NULLABLE DATA_DEFA
ULT

COLUMN_ID COMMENTS

ID VARCHAR2 (36
BYTE)

No (null) 1 (null)

9-1

Table 9-2 (Cont.) LMX_TB_EVENT_LOG Table

COLUMN_NAME DATA_TYPE NULLABLE DATA_DEFA
ULT

COLUMN_ID COMMENTS

EVT_CODE VARCHAR2 (50
BYTE)

No (null) 2 (null)

EVT_TOPIC VARCHAR2 (50
BYTE)

No (null) 3 (null)

EVT_KEY VARCHAR2 (50
BYTE)

Yes (null) 4 (null)

LOG_TYPE VARCHAR2 (20
BYTE)

Yes (null) 5 (null)

LOG_DESCRIPTI
ON

VARCHAR2 (500
BYTE)

Yes (null) 6 (null)

LOG_TIME TIMESTAMP (6) Yes (null) 7 (null)

SERVICE_DATA CLOB Yes (null) 8 (null)

PUBLISHED_TIME TIMESTAMP (6) Yes (null) 9 (null)

IS_PUBLISHED CHAR (1 BYTE) Yes 'N' 10 (null)

RETRY_COUNT NUMBER Yes 0 11 (null)

PLATO_EVENTHUB_OUT_LOG

The below table is provided in by the plato-event-hub-core (in LMX schema in Oracle Banking
Liquidity Management). Here all the events that are to be published are stored along with the
publisher service name and status is changed to success once successfully published to kafka.

Table 9-3 LMX_TB_EVENT_LOG Table

COLUMN_NAME DATA_TYPE NULLABLE DATA_DEFA
ULT

COLUMN_ID COMMENTS

ID VARCHAR2 (36
BYTE)

No (null) 1 (null)

TOPIC_NAME VARCHAR2 (255
BYTE)

No (null) 2 (null)

MESSAGE_KEY VARCHAR2 (36
BYTE)

Yes (null) 3 (null)

EVENT_TYPE VARCHAR2 (25
BYTE)

Yes (null) 4 (null)

PAYLOAD CLOB Yes (null) 5 (null)

EXCEPTION VARCHAR2 (512
BYTE)

Yes (null) 6 (null)

STATUS VARCHAR2 (33
BYTE)

Yes (null) 7 (null)

RETRY_COUNT NUMBER Yes (null) 8 (null)

RETRY_DATATIME DATE Yes (null) 9 (null)

CREATED_BY VARCHAR2 (12
BYTE)

Yes (null) 10 (null)

CREATED_DATE DATE Yes (null) 11 (null)

UPDATED_BY VARCHAR2 (12
BYTE)

Yes (null) 12 (null)

UPDATED_DATE DATE Yes (null) 13 (null)

Chapter 9

9-2

Table 9-3 (Cont.) LMX_TB_EVENT_LOG Table

COLUMN_NAME DATA_TYPE NULLABLE DATA_DEFA
ULT

COLUMN_ID COMMENTS

CORRELATION_ID VARCHAR2 (256
BYTE)

Yes (null) 14 (null)

APPLICATION_NA
ME

VARCHAR2 (120
BYTE)

Yes (null) 15 (null)

ACK_COUNT NUMBER (38, 0) Yes 0 16 (null)

HEADER CLOB Yes (null) 17 (null)

CONSUMER_APP
L...

VARCHAR2 (512
BYTE)

Yes (null) 18 (null)

PLATO_EVENTHUB_IN_LOG

The below table is provided in by the plato-event-hub-core (in LMX schema in Oracle Banking
Liquidity Management). Here all the events that are consumed are stored along with the
consumer service name.

Table 9-4 LMX_TB_EVENT_LOG Table

COLUMN_NAME DATA_TYPE NULLABLE DATA_DEFA
ULT

COLUMN_ID COMMENTS

ID VARCHAR2 (36
BYTE)

No (null) 1 (null)

TOPIC_NAME VARCHAR2 (100
BYTE)

Yes (null) 2 (null)

MESSAGE_KEY VARCHAR2 (255
BYTE)

Yes (null) 3 (null)

EVENT_TYPE VARCHAR2 (36
BYTE)

Yes (null) 4 (null)

EVENT_PAYLOAD CLOB Yes (null) 5 (null)

STATUS VARCHAR2 (36
BYTE)

Yes (null) 6 (null)

EXCEPTION VARCHAR2 (500
BYTE)

Yes (null) 7 (null)

MSG_DT_STAMP DATE Yes (null) 8 (null)

CORRELATION_ID VARCHAR2 (256
BYTE)

Yes (null) 9 (null)

APPLICATION_NA
ME

VARCHAR2 (100
BYTE)

Yes (null) 10 (null)

Chapter 9

9-3

Index

C
Changes to Clients, 5-6
Configure Brokers, 5-5
Create Users in Zookeeper, 5-4

E
Export Private Key as Certificate, 5-3

G
Generate Keystore, 5-1

I
Import the Certificate and Generate Trust Store,

5-3
Important Commands, 3-1
Integration Service Functionality, 6-2

K
Kafka Middleware Setup, 2-1

Kafka Setup, 2-2

M
Maintenance Service Functionality, 6-1

P
Payload and Header, 8-1

S
Security - SSL Encryption with SASL-SCRAM

Authentication, 5-1
Structure Service Functionality, 6-2
Sweep Service Functionality, 6-2

Z
Zookeeper Setup, 2-1

Index-1

	Contents
	Preface
	Purpose
	Audience
	Documentation Accessibility
	Critical Patches
	Diversity and Inclusion
	Related Resources
	Acronyms and Abbreviations

	1 Prerequisites
	2 Kafka Middleware Setup
	2.1 Zookeeper Setup
	2.2 Kafka Setup

	3 Important Commands
	4 Increase Replication Factor for an existing topic
	5 Security - SSL Encryption with SASL-SCRAM Authentication
	6 Implementation
	7 Flow Diagram
	8 Payload and Header
	9 Tables
	Index

