
Oracle Banking Extensibility
Workbench
Getting Started User Guide

Release 14.7.5.0.0
G27119-01
January 2025

Oracle Banking Extensibility Workbench Getting Started User Guide, Release 14.7.5.0.0

G27119-01

Copyright © 2024, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Preface

1.1 Purpose 1-1

1.2 Introduction 1-1

1.3 Audience 1-1

1.4 Documentation Accessibility 1-2

1.5 Critical Patches 1-2

1.6 Diversity and Inclusion 1-2

1.7 Related Resources 1-2

1.8 Conventions 1-2

1.9 Screenshot Disclaimer 1-3

1.10 Acronyms and Abbreviations 1-3

1.11 Basic Actions 1-3

1.12 Symbols and Icons 1-4

2 Welcome to Oracle Banking Extensibility Workbench

2.1 Introduction 2-1

2.2 OBX and Base artifacts compatibility 2-2

2.3 Setting up OBX for first time use 2-2

2.4 OBX Maintenance 2-4

2.5 OBX UI 2-5

2.5.1 Entity Details 2-6

2.5.2 Field Details 2-6

2.5.3 Child Entity Details 2-8

2.5.4 Relationship Details 2-9

3 Service Extensions

3.1 Simple Sub Domain Service 3-2

3.2 Maintenance Sub Domain Service 3-5

3.3 Data/Resource Segment Sub Domain Service 3-7

3.3.1 RSOV1 3-7

3.3.2 RSOV2 DS 3-10

3.3.3 Workflow DS 3-11

iii

3.4 Simple Publisher/Subscriber Event Service 3-14

3.5 Batch Service 3-17

3.6 Custom Validation Service 3-18

3.7 Steps to Adopt Multi in Existing Service 3-20

3.8 Service Extensibility 3-22

4 UI Extensions – Web Component

4.1 Component Server 4-4

4.2 Simple Standalone 4-4

4.3 Virtual Page 4-6

4.4 Maintenance Detail and Summary 4-10

4.5 Data Segment 4-12

4.6 Dashboard Widget 4-14

4.7 Running Component after Generation 4-16

4.8 Creating final Extended Component war for Deployment 4-17

4.9 Understanding DB Scripts for Web Components 4-18

5 Modification of Base Web Component

5.1 Steps for Modification of Base Component 5-2

5.2 Process Workbench 5-2

5.3 OBX Update Command 5-8

5.3.1 Service Update 5-9

5.3.2 UI Update 5-9

5.4 In-Scope DS 5-10

5.5 OBX Release Command 5-11

6 Extending Product Data Segments with Additional Fields

6.1 Additional Fields Maintenance 6-1

6.2 Populating Data in Corresponding Fields From UI 6-6

6.3 Fetching the Saved Values 6-8

7 Action URL and Static Tag Maintenance

7.1 Action URL Maintenance 7-1

7.2 Static Tag Maintenance 7-1

8 Extensibility Use Cases for OBBRN Servicing

8.1 New Transaction Screen – 1499 (Exact Clone of 1401) 8-1

8.2 Exact Clone with Additional Fields Using Common Code 8-2

iv

8.3 Exact Clone with Additional Fields Using Extensible Code 8-6

8.4 Jar Deployment in Weblogic 8-6

9 Extensibility Use Cases for OBX

9.1 New Transaction screen – 1499 (Clone of 1401) 9-2

9.2 New Data Segment in Existing 1401 Screen 9-4

9.3 HTML Changes 9-5

9.4 JS Changes 9-6

9.5 JSON Changes 9-8

9.6 Model Changes 9-9

9.7 Database Changes 9-9

9.8 Service Component 9-10

9.9 New Field in Existing Base Data Segment 9-13

9.10 HTML Changes (Extended Components) 9-14

9.11 HTML Changes (Base Component) 9-15

9.12 JS Changes (Base Component) 9-16

9.13 JS Changes (Extended Component) 9-16

9.14 JSON Changes (Extended Component) 9-17

9.15 JSON Changes (Base Component) 9-18

9.16 DB Changes 9-18

9.17 Add New Columns in Base Component Table 9-20

9.18 Steps for adding extra column in task grid 9-21

9.19 Steps to use Additional Buttons provision in Task Screen 9-21

9.20 Steps to create common-extended folder for extending configJSON.js file 9-22

9.21 Customizing Existing LOV Fetch Result 9-23

9.22 Steps for adding Pre/post methods in extended components 9-24

9.23 ENDPOINT Overrides 9-25

9.24 Steps to create util-extended folder 9-26

9.25 Dynamic Data Configuration (DDC) 9-26

9.26 Task Screen Custom Config 9-29

10

Reference and Feedback

10.1 Reference 10-1

10.2 Documentation Accessibility 10-1

10.3 Feedback and Support 10-1

Index

v

1
Preface

• Purpose

• Introduction

• Audience

• Documentation Accessibility

• Critical Patches

• Diversity and Inclusion

• Related Resources

• Conventions

• Screenshot Disclaimer

• Acronyms and Abbreviations

• Basic Actions

• Symbols and Icons

1.1 Purpose
This guide is designed to help acquaint you with the Getting Started User Guide application.
This guide provides answers to specific features and procedures that the user need to be
aware of the module to function successfully.

This user guide would help you to understand the functioning of the Oracle Banking
Extensibility Workbench – OBX and the types of extensions it provides. It provides the steps
required to be followed for implementing the extensibility to the Base product. It is assumed
that all the prior setup is already done related with Base product/ Kernel. In this document it is
also assumed that installation will be done on Windows 10 operating system with minimum
8GB Ram and available/free space of 5GB.

1.2 Introduction
This user guide would help you to understand the functioning of the Oracle Banking
Extensibility Workbench – OBX and the types of extensions it provides. It provides the steps
required to be followed for implementing the extensibility to the Base product. It is assumed
that all the prior setup is already done related with Base product/ Kernel. In this document it is
also assumed that installation will be done on Windows 10 operating system with minimum
8GB Ram and available/free space of 5GB.

1.3 Audience
This document is intended for the teams and developers who are responsible for creating
extensions like services and web components for products which are developed using Oracle
Banking Microservices Architecture.

1-1

1.4 Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1.5 Critical Patches
Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and
Bulletins. All critical patches should be applied in a timely manner to ensure effective security,
as strongly recommended by Oracle Software Security Assurance.

1.6 Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

1.7 Related Resources
For more information, see these related user guides:

• Oracle Banking Extensibility Workbench Installation Guide

• Oracle Banking Extensibility Workbench Release Notes

1.8 Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Chapter 1
Documentation Accessibility

1-2

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/security-alerts/
https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

1.9 Screenshot Disclaimer
Personal information used in the interface or documents is dummy and does not exist in the
real world. It is only for reference purposes.

1.10 Acronyms and Abbreviations
The list of the acronyms and abbreviations that are used in this guide are as follows:

Table 1-1 Acronyms and Abbreviations

Abbreviation Description

DDA Demand Deposit Accounts

ECA External Credit Approval

EOD End of Day

IBAN International Bank Account Number

1.11 Basic Actions
The basic actions performed in the screens are as follows:

Table 1-2 Basic Actions

Actions Description

New Click New to add a new record. The system displays a new record to
specify the required data. The fields marked with asterisk are
mandatory.
• This button is displayed only for the records that are already

created.

Save Click Save to save the details entered or selected in the screen.

Unlock Click Unlock to update the details of an existing record. The system
displays an existing record in editable mode.
• This button is displayed only for the records that are already

created.

Authorize Click Authorize to authorize the record created. A maker of the screen
is not allowed to authorize the same. Only a checker can authorize a
record.
• This button is displayed only for the already created records. For

more information on the process, refer Authorization Process.

Approve Click Approve to approve the initiated record.
• This button is displayed once the user click Authorize.

Audit Click Audit to view the maker details, checker details of the particular
record.
• This button is displayed only for the records that are already

created.

Close Click Close to close a record. This action is available only when a
record is created.

Confirm Click Confirm to confirm the action performed.

Cancel Click Cancel to cancel the action performed.

Chapter 1
Screenshot Disclaimer

1-3

Table 1-2 (Cont.) Basic Actions

Actions Description

Compare Click Compare to view the comparison through the field values of old
record and the current record.
• This button is displayed in the widget once the user click Authorize.

View Click View to view the details in a particular modification stage.
• This button is displayed in the widget once the user click Authorize.

View Difference only Click View Difference only to view a comparison through the field
element values of old record and the current record, which has
undergone changes.
• This button is displayed once the user click Compare.

Expand All Click Expand All to expand and view all the details in the sections.
• This button is displayed once the user click Compare.

Collapse All Click Collapse All to hide the details in the sections.
• This button is displayed once the user click Compare.

OK Click OK to confirm the details in the screen.

1.12 Symbols and Icons
This guide has the following list of symbols and icons.

Table 1-3 Symbols and Icons - Common

Symbol/Icon Function

Minimize

Maximize

Close

Perform Search

Open a list

Add a new record

Navigate to the first record

Chapter 1
Symbols and Icons

1-4

Table 1-3 (Cont.) Symbols and Icons - Common

Symbol/Icon Function

Navigate to the last record

Navigate to the previous record

Navigate to the next record

Grid view

List view

Refresh

Click this icon to add a new row.

Click this icon to delete a row, which is already added.

Calendar

Alerts

Table 1-4 Symbols and Icons – Audit Details

Symbol/Icon Function

A user

Date and time

Chapter 1
Symbols and Icons

1-5

Table 1-4 (Cont.) Symbols and Icons – Audit Details

Symbol/Icon Function

Unauthorized or Closed status

Authorized or Open status

Rejected status

Table 1-5 Symbols and Icons - Widget

Symbol/Icon Function

Open status

Unauthorized status

Closed status

Authorized status

Rejected status

Modification Number

Chapter 1
Symbols and Icons

1-6

2
Welcome to Oracle Banking Extensibility
Workbench

This guide provides an overview and detailed instructions for using the Oracle Banking
Extensibility Workbench (OBX), enabling users to efficiently configure and customize banking
workflows.

It provides the complete solution to create extensions for products based and developed on
Oracle Banking Microservices Architecture (OBMA). It helps in generating the services and UI
web components artifacts. This guide is designed to help you create all these types of service
and UI artifacts. It also has complete life cycle management incorporated for all the extensions
generated from tool.

• Introduction
Oracle Banking Extensibility Workbench (OBX) is a combination of GUI and command line
tool, intended to create different type of extensions for Oracle Banking Micro services
Architecture.

• OBX and Base artifacts compatibility
This topic provides the systematic instruction to perform OBX and Base artifacts
compatibility.

• Setting up OBX for first time use
This topic provides the systematic instruction to perform OBX setup for first time use.

• OBX Maintenance
This topic provides the systematic instructions to execute OBX Maintenance operations.

• OBX UI
This topic provides information about OBX UI details.

2.1 Introduction
Oracle Banking Extensibility Workbench (OBX) is a combination of GUI and command line tool,
intended to create different type of extensions for Oracle Banking Micro services Architecture.

OBX support generation of following types of Extensions:

1. Service Extensions

• Simple sub domain service

• Maintenance sub domain service

• Data/Resource Segment sub domain service

• Simple Publisher/Subscriber Event Service

• Custom Validation Service

2. UI Extensions – Web Component

• Simple Standalone

• Virtual Page

• Maintenance Detail and Summary

2-1

• Data Segment

• Dashboard Widget

3. Modification of Base Web Component

• Additions of Fields on Existing component

• Hiding fields from screen

• Defaulting values on screen

• Disable field

• Making Non-mandatory field

2.2 OBX and Base artifacts compatibility
This topic provides the systematic instruction to perform OBX and Base artifacts compatibility.

OJET version compatibility:

The implementation team must ensure that the OJET version of the app shell used aligns with
the OJET version present in the OBX tool.

Note:

As part of OJET upgrade some older libraries may not be supported. If consulting /
implementation team is using any of the unsupported libraries for their
customizations, compatibility issues may arise if the app-shell version they are using
doesn't include those OJET libraries.

All the UI customizations/extensions are bundled into extended-components war which
ultimately refer to the app-shell OJET libraries only.

Please find the compatibility matrix of app-shell OJET versions and OBX OJET versions below.

Table 2-1 OBX - Compatibility

OBX version OJET version

14.7.0.0.0 Appshell version xxxx (has 13.0.0 OJET version)

14.7.5.0.0 Appshell version 9.5.0 (has 15.1.8 OJET version)

2.3 Setting up OBX for first time use
This topic provides the systematic instruction to perform OBX setup for first time use.

To generate the first artifact, user must first complete the installation process, including the
creation of the extension_home folder, and then you should be able to see the help menu as
shown below.

Chapter 2
OBX and Base artifacts compatibility

2-2

Figure 2-1 Setting up OBX

Once that is done, we will proceed to next step which is setting up libraries and components
from base product. Follow the below process to setup libraries and components:

1. Create a folder component-server inside extension_home directory.

2. Use 7zip or other similar tool to extract app-shell-9.5.0.war from base product to copy the
common & js folders and put it inside the component-server folder.

3. Navigate inside the js folder and copy the components folders and place it in the
component- server folder.

4. Create a folder lib inside extension_home directory.

5. To use a service war file like cmc-datasegment-services-9.5.0.war, open it using a tool
like 7zip. Navigate to the WEB-INF\lib folder within the war file and copy all the jars inside.
Then, paste them into the lib folder of your extension's home directory.

6. Create a folder runtime inside extension_home directory.

7. Navigate to the gradle folder within the obx.zip, then copy the extra_jars from the lib
folder to the runtime folder within the extension_home directory.

8. After all the above process extension_home folder looks like below.

Figure 2-2 Extension Home Folder

9. Once all of the above process is done, we cannot now generate the artifact.

Chapter 2
Setting up OBX for first time use

2-3

2.4 OBX Maintenance
This topic provides the systematic instructions to execute OBX Maintenance operations.

Before generating the artifact, verify the below items from the base installation.

Items for the base installation verification.

• Verify if the PRODUCT_EXTENDED_LEDGER table exists in the plato-ui-config schema.
If it's not present, execute the script below:

--
-- DDL for Table PRODUCT_EXTENDED_LEDGER
--
CREATE TABLE "PRODUCT_EXTENDED_LEDGER" ("ID" VARCHAR2(20),
"CCA_NAME"VARCHAR2(100), "CCA_TYPE" VARCHAR2(20), "PARENT_CCA_NAME"
VARCHAR2(100), "PRODUCT_NAME" VARCHAR2(100))
--
-- Constraints for Table PRODUCT_EXTENDED_LEDGER
--
ALTER TABLE "PRODUCT_EXTENDED_LEDGER" ADD CONSTRAINT
"PRODUCT_EXTENDED_LEDGER_PK" PRIMARY KEY ("ID")
ALTER TABLE "PRODUCT_EXTENDED_LEDGER" MODIFY ("CCA_NAME" NOT NULL
ENABLE)
ALTER TABLE "PRODUCT_EXTENDED_LEDGER" MODIFY ("ID" NOT NULL ENABLE)
ALTER TABLE "PRODUCT_EXTENDED_LEDGER" ADD CONSTRAINT
"UNIQUES_CCA_NAME" UNIQUE ("CCA_NAME")

• Maintain the product name OBX in the table SMS_TM_APPLICATION inside SMS
schema.

• Grant user OBX application access through SMS_TM_USER_APPLICATION or preferred
use the UI.

Figure 2-3 Create User

Chapter 2
OBX Maintenance

2-4

2.5 OBX UI
This topic provides information about OBX UI details.

After setting up the OBX, we can now generate the XDL (OBX Domain Language) file, which
will be used by the OBX engine to further generate the service and UI artifacts.

To start OBX UI:

1. Navigate to extension_home folder from console emulator (cmder).

2. Use the command obx xdl-gen.

3. This command will automatically open a new tab in cmder with OBX UI running at local
port 8080 (https://localhost:8080).

Note:

If you have running applications on port number 8080, you may need to stop
them to start the obx UI.

Figure 2-4 OBX UI

4. Open the browser and navigate to http://localhost:8080. after the obx UI is running.

Chapter 2
OBX UI

2-5

Figure 2-5 Banking Extensibility Workbench

Following are sections present on the OBX UI:

• Entity Details

• Field Details

• Child Entity Details

• Relationship Details

• Entity Details
This topics helps user to capture the entity name.

• Field Details
This topic helps user to define the fields for the main entity.

• Child Entity Details
This topic helps user to define the fields for the Child Entity.

• Relationship Details
This topic helps user to define the fields for the Relationship Details.

2.5.1 Entity Details
This topics helps user to capture the entity name.

As the Domain Entity pattern an object is primarily defined by its identity is called an Entity.

Figure 2-6 Entity Details

2.5.2 Field Details
This topic helps user to define the fields for the main entity.

Chapter 2
OBX UI

2-6

Click the Add button and provide the field details.

Figure 2-7 Field Details

OBX supports the following field types:

Table 2-2 Field types - Field Description

Field Description

String The OBX field type is built-in. It's translated to a varchar in SQL scripts,
a string type in Java files, and a normal text field in UI components.

Integer The OBX field type is built-in. It's translated to a number in SQL scripts,
a integer type in Java files, and a normal text field in UI components.

Float The OBX field type is built-in. It's translated to a number in SQL scripts,
a float type in Java files, and a normal text field in UI components.

LOV The OBX field type is inherited from the base product and has its own
configuration as below.

Figure 2-8 LOV Configuration

This ID is the specific ID given to this LOV component. The title is displayed on the LOV dialog
box, and the endpoint is the service endpoint this field connects to for fetching values.

Chapter 2
OBX UI

2-7

Table 2-3 LOV component - Field Description

Field Name Description

Date This field is also inherited from the base product and add date
component on the screen.

Amount This field is also inherited from the base product and add the amount
field on the screen. This field also captures currency along with the
amount.

Combobox This field is taken from Ojet Cookbook and OBX UI provides
configurations to needed for this component like value and label.

Figure 2-9 Combobox Configuration

Table 2-4 Combobox Configuration - Field Description

Field Description

Checkbox This field type is also taken from Ojet Cookbook and OBX UI provides
configurations to needed for this component like value and label.

Toggle Button This field type is taken from Ojet Cookbook.

Text Area This field type is taken from Ojet Cookbook.

2.5.3 Child Entity Details
This topic helps user to define the fields for the Child Entity.

Use this block for adding the child entities. Once clicked the Add Child Entity Button, it will
open a dialog box where we can enter the child entity name. Once clicked ok it will add a child
block below with its details.

Add the child entity field details in a similar way like we added for main entity.

Chapter 2
OBX UI

2-8

Figure 2-10 Child Entity Details

2.5.4 Relationship Details
This topic helps user to define the fields for the Relationship Details.

Once all the entity details are added we can define relationship among them. Use this block to
define the relationship.

Currently OBX supports two types of relationships:

• One to Many

• One to Many to Many

Figure 2-11 Relationship Details

Once all of the above Entity, Field Details & Relationship is created click on the Save XDL
button and it will save the xdl file on machine.

Note:

Its recommended to put the xdl file under the same extension_home folder and give
it proper name (generally main entity name).

The final XDL file looks like below:

Chapter 2
OBX UI

2-9

Figure 2-12 XDL File Folder

Once XDL file is generated you may come back to cmder main tab where it is waiting for the
input. You may proceed creating next set of artifacts which are described in next sections.

Figure 2-13 OBX UI

Chapter 2
OBX UI

2-10

3
Service Extensions

This topic provides the systematic instructions to perform the basic operations on the selected
records.

Using OBX we can create multiple types of service extensions. This services extension has
complete infrastructure needed to build to service. Also, the source folder generated out the
box from OBX follows the package structure which is adopted and used by base/kernel teams
to keep it in sync.

There are two ways to generate the service artifact:

1. Select the category immediately after generating the XDL file and proceed.

Figure 3-1 XDL File

2. Use the service specific command to generate different types.

Figure 3-2 Command

Note:

Both above ways will generate the same artifacts.

3-1

• Simple Sub Domain Service
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• Maintenance Sub Domain Service
This topic describes the process to generate the Maintenance Sub Domain Service.

• Data/Resource Segment Sub Domain Service
This topic provides the systematic instructions to perform the basic operations on the Data/
Resource Segment sub domain service.

• Simple Publisher/Subscriber Event Service
This topic the systematic instructions to perform the basic process to generate simple
publisher/subscriber event service.

• Batch Service
This topic describes the process to generate Oracle Banking Microservices Architecture
(OBMA) based Batch service.

• Custom Validation Service
This topic provides the systematic instructions to generate custom validation service.

• Steps to Adopt Multi in Existing Service
This topic provides the systematic instruction to adop multi in existing service.

• Service Extensibility
This topic provides the systematic instructions to perform the basic operations on the
selected records.

3.1 Simple Sub Domain Service
This topic provides the systematic instructions to perform the basic operations on the selected
records.

This is one of the primary use cases in OBX. To generate the simple sub-domain service,
follow the below steps:

1. Navigate to same extension_home folder using cmder.

2. Use the command obx service new -c.

Chapter 3
Simple Sub Domain Service

3-2

Figure 3-3 OBX Service new -c

3. Once this command is fired, this will take you to next section where it will prompt other set
of questions. Answer them accordingly to your setup and requirement.

Figure 3-4 OBX UI

4. Once all the questions are answered and path of XDL is given, it will generate a folder
inside the extension_home folder.

Chapter 3
Simple Sub Domain Service

3-3

Figure 3-5 OBX Customer Service

5. Select the option based on your requirement for question Do you want to create UI
component for this service? (Y/n).

6. For building the service go into the service folder from cmder and run the command gradle
clean build.

7. This will build the service and we can find the war of the service getting created inside the
build/libs directory.

Figure 3-6 Lib's Directory

8. Use this service and deploy it in your environment.

Chapter 3
Simple Sub Domain Service

3-4

Note:

• DB scripts for the service will be generated inside the folder:
\extension_home\obxcustomerservice\src\main\resources\db

• Compile the Entity script in the entity schema created for extensions only.

• Service created as part of extension should be deployed in separate domain and
should not be mixed or co-deployed with any other product specific services.

• Before compiling CONFIG_SCRIPT.sql in verify the entries manually and change
it according to your setup.

• Also, verify PLATO_TABLE_SCRIPT.sql before executing it in the schema it
may contain some dummy values.

3.2 Maintenance Sub Domain Service
This topic describes the process to generate the Maintenance Sub Domain Service.

Maintenance service generally has concept of main and worktable. This allows enables
functionality where all the Authorized records goes to main table and all the unauthorized
records goes to worktable. Also, with this type of service we attach audit details to payload.

To generate the maintenance type of service, follow the below steps:

1. Navigate to same extension_home folder using cmder.

2. Use the command obx service mn -c.

Figure 3-7 OBX Command

3. Once this command is fired, this will take you to next section where it will prompt other set
of questions. Answer them accordingly to your setup and requirement.

Chapter 3
Maintenance Sub Domain Service

3-5

Figure 3-8 OBX Setup

4. Once all the questions are answered and path of XDL is given, it will generate a folder
inside the extension_home folder.

Figure 3-9 Extension Home Folder

5. Select the option based on your requirement for question: Do you want to create a
Maintenance and Summary Components for this service? (Y/n).

6. For building the service go into the service folder from cmder and run the command gradle
clean build.

7. This will build the service and we can find the war of the service getting created inside the
build/libs directory.

Chapter 3
Maintenance Sub Domain Service

3-6

Figure 3-10 Lib's Directory

8. Use this service and deploy it in your environment.

Note:

• DB scripts for the service will be generated inside the folder:
\extension_home\obxcustomerservice\src\main\resources\db

• Compile the Entity script in the entity schema created for extensions only.

• Service created as part of extension should be deployed in separate domain and
should not be mixed or co-deployed with any other product specific services.

• Here Security Management System (SMS) scripts are also generated.
\extension_home\obxcustomer-service\src\main\resources\db\sms

• Execute the SMS script in sms schema, here we only generate the functional
activity of service. Assigning to proper role should be done according to the steps
mentioned in base application.

3.3 Data/Resource Segment Sub Domain Service
This topic provides the systematic instructions to perform the basic operations on the Data/
Resource Segment sub domain service.

This topic consists of the following sub-topics:

• RSOV1
This topic describes the process to generate the data/resource segment type of
maintenance service.

• RSOV2 DS
This topic provides information on RSOV2 DS operations data segment.

• Workflow DS
This topic provides information on workflow details data segment.

3.3.1 RSOV1
This topic describes the process to generate the data/resource segment type of maintenance
service.

Here we can generate Master Type of data segment or child type of data segment.

Chapter 3
Data/Resource Segment Sub Domain Service

3-7

• Master Type: This case is used when user wants to generate the complete flow from
scratch. It will generate the new screen class code for the data segments.

• Child Type: This is primarily used when user wants to attach a single data-segment in the
existing flow/process. Generally, this existing flow/process is available in the base product.
We use the same screen class code from base and attach our data segment to it. To
generate it please follow the below steps:

1. Navigate to same extension_home folder using cmder

2. Use the command obx service ds -c.

Figure 3-11 OBX service ds - c

3. Once this command is fired, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

4. Select the type of component according to your requirement.

Figure 3-12 Master Type Component

5. Once all the questions are answered and path of XDL is given, it will generate a folder
inside the extension_home folder.

Chapter 3
Data/Resource Segment Sub Domain Service

3-8

Figure 3-13 Extension Home Folder

6. Select the option based on your requirement for question: Do you want to create a
Data Segment for this service? (Y/n).

7. For building the service, go into the service folder from cmder and run the command:
gradle clean build.

8. This will build the service and we can find the war of the service getting created inside
the build/libs directory.

Figure 3-14 Lib's Directory

9. Use this service and deploy it in your environment.

Chapter 3
Data/Resource Segment Sub Domain Service

3-9

Note:

• DB scripts for the service will be generated inside the folder:
\extension_home\obxcustomerservice\src\main\resources\db

• Compile the Entity script in the entity schema created for extensions only.

• Service created as part of extension should be deployed in separate domain and
should not be mixed or co-deployed with any other product specific services.

• Here Security Management System (SMS) scripts are also generated:
\extension_home\obxcustomer-service\src\main\resources\db\sms.

• Execute the SMS script in sms schema, here we only generate the functional
activity of service. Assigning to proper role should be done according to the steps
mentioned in base application.

• Here along with SMS and Entity, CMC scripts are also generated under folder:
\extension_home\obx-customer-service\src\main\resources\db\cmc.

• Execute them in the CMC schema.

• Screen Class and Data Segment has to be maintained from the UI which is
present under common core.

3.3.2 RSOV2 DS
This topic provides information on RSOV2 DS operations data segment.

For Nov patchset innovation - RSOv1 is discontinued and RSOv2 should be adopted for all
customizations for maintenance services.

Here we can generate Master Type of data segment or child type of data segment.

Chapter 3
Data/Resource Segment Sub Domain Service

3-10

Figure 3-15 OBX Service RSOV2-C

• Master Type: This will create two components one would be core component of product
services which will contain utility service, the other one would be the master type of
component that needs to be included in the core services folder.

• Child Type: This will create only one component that needs to be included in the core
services (containing utility).

Follow the steps to deploy it in your environment:

1. Navigate to same extension_home folder using cmder.

2. Use the command obx service rsov2 -c.

3. Once this command is fired, this will take you to next section where it will prompt other set
of questions. Answer them accordingly to your setup and requirement.

4. Select the type of component according to your requirement.

5. Once all the questions are answered and path of XDL is given, it will generate the folders
accordingly inside the extension_home.

6. Select the option based on your requirement for question: Do you want to create a Data
Segment for this service?(Y/N).

7. Include the folders created either master or child inside the (core-services), folder and
make the modifications accordingly.

8. Use this service and deploy it in your environment.

3.3.3 Workflow DS
This topic provides information on workflow details data segment.

Here, the user can generate master or child type if data segment.

Chapter 3
Data/Resource Segment Sub Domain Service

3-11

• Master Type: This case is used when user wants to generate the complete flow from
scratch. It will generate the new screen class code for the data segments.

• Child Type: This is primarily used when user wants to attach a single data-segment in the
existing flow/process. Generally, this existing flow/process is available in the base product.
We use the same screen class code from base and attach our data segment to child type.
To generate master or child type if data segment, follow the below steps:

1. Navigate to same extension_home folder using cmder.

2. Use the command obx service wfds -c.

Figure 3-16 OBX service wfds -c

3. Once this command is fired, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

4. Select the type of component according to your requirement.

Figure 3-17 Component Type

5. Once all the questions are answered and path of XDL is given, it will generate a folder
inside the extension_home folder.

Chapter 3
Data/Resource Segment Sub Domain Service

3-12

Figure 3-18 Extension Home Folder

6. Select the option based on your requirement for question: Do you want to create a
Data Segment for this service? (Y/n).

7. For building the service go into the service folder from cmder and run the command
gradle clean build.

8. This will build the service and we can find the war of the service getting created inside
the build/libs directory.

Figure 3-19 Lib's Directory

9. Use this service and deploy it in your environment.

Chapter 3
Data/Resource Segment Sub Domain Service

3-13

Note:

• DB scripts for the service will be generated inside the folder.
\extension_home\obxcustomerservice\src\main\resources\db

• Compile the Entity script in the entity schema created for extensions only.

• Service created as part of extension should be deployed in separate domain and
should not be mixed or co-deployed with any other product specific services.

• Here Security Management System (SMS) scripts are also generated.
\extension_home\obxcustomer-service\src\main\resources\db\sms

• Execute the SMS script in sms schema, here we only generate the functional
activity of service. Assigning to proper role should be done according to the steps
mentioned in base application.

• Here along with SMS and Entity, CMC scripts are also generated under folder.
\extension_home\obx-customer-service\src\main\resources\db\cmc

• Execute them in the CMC schema.

• Screen Class and Data Segment has to be maintained from the UI which is
present under common core.

3.4 Simple Publisher/Subscriber Event Service
This topic the systematic instructions to perform the basic process to generate simple
publisher/subscriber event service.

To generate simple publisher/subscriber event service, follow the below steps:

1. Navigate to same extension_home folder using cmder.

2. Use the command obx event -c.

3. Once this command is fired, this will take you to next section where it will prompt other set
of questions. Answer them accordingly to your setup and requirement.

Chapter 3
Simple Publisher/Subscriber Event Service

3-14

Figure 3-20 OBX event - c

4. Once all the questions are answered and path of XDL is given, it will generate a folder
inside the extension_home folder.

Figure 3-21 Extension Home Folder

Chapter 3
Simple Publisher/Subscriber Event Service

3-15

Figure 3-22 Extension Home Folder

5. For building the service, go into the service folder from cmder and run the command
gradle clean build.

6. This will build the service and we can find the war of the service getting created inside the
build/libs directory.

Figure 3-23 Libs Directory

7. Use this service and deploy it in your environment.

Chapter 3
Simple Publisher/Subscriber Event Service

3-16

3.5 Batch Service
This topic describes the process to generate Oracle Banking Microservices Architecture
(OBMA) based Batch service.

The purpose of this service is to create reader, writer and processor in which methods will be
written according to business use case.

To generate Oracle Banking Microservices Architecture (OBMA) based Batch service, follow
the below steps:

1. Navigate to same extension_home folder using cmder.

2. Use the command obx batch -c.

3. Inputs to be given after the command:

• Select the product family.

• Enter name of the service (I'll construct it as <productFamilyName>-
batch<serviceName>- extended-services).

• Enter product release version.

4. Upon successful creation of batch service, user will find a folder generated with
<productFamilyName>-batch-<serviceName>-extended-services having the sample
service code generated.

5. The generated code has two types of batch job template inside.o Simple job creation using
spring batch features. The method name for this type of job creation is jobName(). The
reader, writer, processor etc are taken from spring’s itemReader, itemWriter,
itemProcessor.

6. Plato batch type job creation by keeping plato batch into consideration.

Figure 3-24 Job Name

7. The method name for this type of job creation is batchProcessJob(). In this case reader is
specified as EReader, writer as TWriter and processor as ETProcessor. E means the entity
to be read for this job; T means the transformed object to be persisted in the database.
Hence the names are given in that manner.

Chapter 3
Batch Service

3-17

Figure 3-25 Batch Process Job

8. For plato batch type job, user needs to write his/her entity classes in which the business
logic will be kept. For example, this is the structure of the entity class highlighted in the left.

Figure 3-26 Plato Batch Type

9. One needs to write methods for reader, writer and processor accordingly.

10. To build the service:

a. Navigate to the service.

b. Fire the command gradle clean build.

c. This will create the war file of the service in the folder structure build/libs/
productFamilyName>-batch-<serviceName>-extended-services.war.

3.6 Custom Validation Service
This topic provides the systematic instructions to generate custom validation service.

The purpose of this service is to perform custom validations on the base service. It is important
to remember that we will be only able to perform the validation and never modify the payload to
change the value.

To generate validation service, follow the below steps:

Chapter 3
Custom Validation Service

3-18

1. Navigate to same extension_home folder using cmder.

2. Use the command obx validation -c.

3. It will generate a folder inside the extension_home folder with obx-validation-service.

Figure 3-27 OBX validation service

4. For building the service, go into the service folder from cmder and run the command
gradle clean build.

5. This will build the service and we can find the war of the service getting created inside the
build/libs directory.

Chapter 3
Custom Validation Service

3-19

Figure 3-28 Libs Directory

6. Use this service and deploy it in your environment.

3.7 Steps to Adopt Multi in Existing Service
This topic provides the systematic instruction to adop multi in existing service.

Plato Micro Service Dependencies Changes

compile("release.obma.plato.21_0_0.services:plato-microservice-
dependencies:6.0.0")

Eventhub dependency changes

compile("release.obma.plato.21_0_0.services:plato-eventhub-
dependencies:6.0.0")

PlatoInterceptor Changes

@Bean public MappedInterceptor gemInterceptor(PlatoInterceptor
platoInterceptor) {
LOG.info("Added interceptor for fetching the application headers"); return new
MappedInterceptor(new String[] { "/**" }, platoInterceptor);
}

Logging (Please include only ,%X{entityId}, change. Rest of them remain as per the old
logback.xml)

Please include only %X{entityId} in the existing value of the LOG_PATTERN of

Chapter 3
Steps to Adopt Multi in Existing Service

3-20

your logba
c k.xml

One sample format is below,

<property name="LOG_PATTERN" value="%clr(%d{yyyy-MM- dd
HH:mm:ss.SSS}){faint} %clr(%5p [${applicationName},%X{entityId},%X{X-B3-
TraceId:},%X{X-B3-SpanId:-},%X{X-Span-Export:-}]) %clr([%mdc{env:-null}]
[%mdc{tenant:- null}]
[%mdc{user:-null}] [%mdc{branch:-null}]){faint} %clr(${PID:- }){magenta}
%clr(--
-){faint} %clr([%15.15t]){faint} %clr(%-
40.40logger{39}){cyan} %clr(:){faint} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-
%wEx}" />

Feed Services

Folder structure should be */parentFolder/<<entityId>>/{fileName}

compile("release.obma.plato.21_0_0.services:plato-feed-core:6.0.0")

Caching Strategy

@Cacheable(value = "customers", key = "{ <<funtionalKeys>>
T(oracle.fsgbu.plato.core.per
sistence.provider.PlatoHolder).getCurrentEntityId() }")

Introduce appId in application.yml of individual micro services

If the service is a eventhub based service they should use

spring:
 application:
appID:

If the service is a non-eventhub based service they can use either

spring:
 application:
 appID:

or

appId: <<appId>>

Chapter 3
Steps to Adopt Multi in Existing Service

3-21

3.8 Service Extensibility
This topic provides the systematic instructions to perform the basic operations on the selected
records.

Structure of Service Extensions can be seen in below table.

Table 3-1 Service Extensibility - Field Description

Component Name Component Description

<< micro - service - name >>- extn.jar Extension jar

<< micro - service - name >> .war WAR File which refers to << micro - service - name >> -
extn .jar during runtime.

For systematic instructions to retrieve a service extensibility record, follow the steps:

1. Add all the required classes from << micro - service - name >>.war to the classpath of <<
micro - service - name >> - extn.jar project and then build it.
For creation of war we can use the command obx create-jar

a. Go to extension home.

b. Run the command obx create-jar.

c. It will prompt you with the location of the extended war file. (After giving the location
give enter two times).

d. On providing the war file, it will create a jar for the same in the same location.

2. The build.gradle of the extension project should include the statement.
compileOnly files("classes").

3. For shared libraries we follow the optional packages approach. The following entries are
expected in the MANIFEST.MF of respective war file.
Extension-List: << micro - service - name >> - extn, << micro - service - name
>> - extn-Extension-Name : << micro - service - name >> - extn
For this, we need to modify the build.gradle of war files to include the below statements.

war {
 ...
 manifest {
 attributes(
 "Extension-List": "<< micro - service - name >> -extn",
 "<< micro - service - name >>- extn -Extension -Name": "<< micro-
service- name >>-extn"
)
 }
 ...
 }

4. In the extension jar create a new service class that extends the original service class and
annotate the class with @Primary annotation to give the service class in the extension jar
higher precedence.

Chapter 3
Service Extensibility

3-22

CustomerServiceImplExt

@Primary
@Service
public class CustomerServiceImplExt extends CustomerServiceImpl
 implements CustomerService {.....}

If the extension jar is provided the methods in the extension jar will be invoked or else the
methods in the original war will be invoked.

5. Weblogic deployment
Deploy the extension jar first in the weblogic then in the same server deploy the war.

Tomcat deployment

Modification in server.xml

<Context ...>
 <Resources>
 <PreResources className =
"org.apache.catalina.webresources.DirResourceSet" base="<<directory
containing the extension jars "webAppMount="/WEB-INF/lib"/>
 </Resources>
</Context>

6. The class names inside the << micro - service - name >>- extn.jar, should have the
naming convention as below,
<<basePackageNameOf<< micro - service - name >>.war>>.<<service /controller /
model>>

Chapter 3
Service Extensibility

3-23

4
UI Extensions – Web Component

This topic describes the OBX capability to generate to different types of web components.
Each Web component is capable of running itself locally.

There are various types of these web components each serving different functionality.

Standalone Component: A standalone component can be thought of as a smallest reusable
UI component. They are generally the building blocks of main screens. Components like
amount, text fields, lov etc. are part of standalone components.

Virtual Page: A virtual page can be thought of as a screen or a web page in single page
applications. They are loaded inside the content area next to the left navigation menu.
Important point to remember when designing virtual page is, it appends and changes the router
(app URL) when navigation is done.

Figure 4-1 Virtual Page

Container Component: These Components are a special type of components which are
loaded inside a container called as Wizard. It gives functionality like minimizing the component
and open multiple screens simultaneously on the screen. Important point to remove here is
that these components never change to router state, so bookmarking is not possible for these
screens.

4-1

Figure 4-2 Bank Details

Data/Resource Segment: A component designed using data segment approach are similar to
that of virtual page but are always part of flow or process and loaded like container
components. It is helpful in use cases where data to be captured is huge or is captured in
various stages of applications.

Figure 4-3 Customer Dashboard

In above screenshot Customer and Income Details on left are two data segments which is part
of Customer DS Details Application.

Widgets: Widgets are special components meant for dashboard. These are generally created
in the form of tiles and are attached to the dashboard.

Chapter 4

4-2

Figure 4-4 Dashboard

Note:

• All the above components except standalone components have SMS applied on
it.

• We have to assign functional activity of web components to the role and then
only they are integrated with the main application shell.

• Also, it always recommended to try and run the component locally before
merging them into main application.

• All web components come bundled with testing framework including unit test
cases and functional test. Therefore, it’s a good practice to write them along with
the development.

• Component Server
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• Simple Standalone
This topic describes the process of creating the simple standalone component using OBX.

• Virtual Page
This topic describes the process of creating the virtual page component using OBX.

• Maintenance Detail and Summary
This topic describes the process of creating the Maintenance Detail and Summary
component using OBX.

• Data Segment
This topic describes the process of creating the virtual page component using OBX.

• Dashboard Widget
This topic describes the process of creating the simple standalone component using OBX.

• Running Component after Generation
This topic describes the steps you need to follow to re-run the component created or
generated earlier.

• Creating final Extended Component war for Deployment
This topic describes the steps to generate Extended Component war for Deployment.

Chapter 4

4-3

• Understanding DB Scripts for Web Components
This topic describes the significance of DB folder generate inside the web component
folder.

4.1 Component Server
This topic provides the systematic instructions to perform the basic operations on the selected
records.

It is one of highlight feature from OBX. A component server is hub of components which are
available from the base/kernel application. As each component is developed individually and
reusable, we can use this functionality to reuse even the components from base application. It
saves time as we don’t have to code same thing again and again. We can reuse as many
components as possible from base application into extensions.

Component server is started automatically when you generate the web component. It runs on
http://localhost:8002. One can simply go to browser and copy components and put them in a
metadata.js file which is created inside the component and by doing so it indicated OBX that
we have to reuse the component and it generates the code automatically.

Figure 4-5 Component Server

4.2 Simple Standalone
This topic describes the process of creating the simple standalone component using OBX.

Following are the steps needed to be followed:

1. Navigate to extension_home folder from cmder.

2. Use the command: obx ui –sd.

3. Once this command is executed, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

Chapter 4
Component Server

4-4

Figure 4-6 OBX UI-sd

4. It will automatically generate the libraries for the component to run locally and you will be
also able to see new cmder tab opened where component server is running.

5. At this point of time go to browser and navigate to http://localhost:8002. You will be able to
see component server home page like:

Figure 4-7 OBX Component Server

6. Select the component which you want to reuse in your extension and paste it in
module.exports = [] inside the metadata.js file.

Chapter 4
Simple Standalone

4-5

Figure 4-8 obx-sd-amount

7. Once done come back to main tab in cmder where is waiting with question, Please modify
the Metadata.js file before proceeding. Once done press y to proceed?

8. On completing the above process, it will automatically generate the source folder now and
open a new tab on cmder where component will be running.
Along with cmder tab it will automatically open a tab on default browser as well with
component rendered on the screen.

Figure 4-9 Source folder

4.3 Virtual Page
This topic describes the process of creating the virtual page component using OBX.

Following are the steps needed to be followed:

1. Navigate to extension_home folder from cmder.

Chapter 4
Virtual Page

4-6

2. Use the command obx ui –vp.

Figure 4-10 obx ui-vp

3. Once this command is executed, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

Chapter 4
Virtual Page

4-7

Figure 4-11 obx ui-vp

4. It will automatically generate the libraries for the component to run locally and you will be
also able to see new cmder tab opened where component server is running.

5. At this point of time go to browser and navigate to http://localhost:8002. You will be able to
component server home page like:

Figure 4-12 OBX Component Server

Chapter 4
Virtual Page

4-8

6. Select the component which you want to reuse in your extension and paste it in
module.exports = []; inside the metadata.js file.

Figure 4-13 obx-sd-amount

7. Once done come back to main tab in cmder where is waiting with question: Please modify
the Metadata.js file before proceeding. Once done press y to proceed?

8. On completing the above process, it will automatically generate the source folder now and
open a new tab on cmder where component will be running.

9. Along with cmder tab it will automatically open a tab on default browser as well with
component rendered on the screen.

Figure 4-14 Component

Chapter 4
Virtual Page

4-9

4.4 Maintenance Detail and Summary
This topic describes the process of creating the Maintenance Detail and Summary component
using OBX.

Here we must remember that we will be generating two web components one will be detail
component and another one for summary component.

Following are the steps needed to be followed:

1. Navigate to extension_home folder from cmder.

2. Use the command obx ui –mnsm.

3. Once this command is executed, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

Figure 4-15 OBX UI

4. It will automatically generate the libraries for the components.

5. At this point of time go to browser and navigate to http://localhost:8002. You will be able to
component server home page like:

Chapter 4
Maintenance Detail and Summary

4-10

Figure 4-16 OBX Component Server

6. Select the component which you want to reuse in your extension and paste it in
module.exports = []; inside the metadata.js file.

Figure 4-17 OBX sd amount

7. Once done come back to main tab in cmder where is waiting with question Please modify
the Metadata.js file before proceeding. Once done press y to proceed?

8. On completing the above process, it will automatically generate the source folder for
maintenance details screen and same process will followed for summary screen as well.

9. For this case we will be not able to see the component running locally as we have to 2
components generated.

10. To start the component, one needs to go inside the component are run it manually.

Chapter 4
Maintenance Detail and Summary

4-11

4.5 Data Segment
This topic describes the process of creating the virtual page component using OBX.

Following are the steps needed to be followed:

1. Navigate to extension_home folder from cmder.

2. Use the command obx ui –ds.

3. Once this command is executed, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

Figure 4-18 obx ui-ds

4. It will automatically generate the libraries for the component to run locally and you will be
also able to see new cmder tab opened where component server is running.

5. At this point of time go to browser and navigate to http://localhost:8002. You will be able to
component server home page like:

Chapter 4
Data Segment

4-12

Figure 4-19 OBX Component Server

6. Select the component which you want to reuse in your extension and paste it in
module.exports = []; inside the metadata.js file.

Figure 4-20 OBX sd amount extension home folder

7. Once done come back to main tab in cmder where is waiting with question Please modify
the Metadata.js file before proceeding. Once done press 'y' to proceed?

8. On completing the above process, it will automatically generate the source folder now and
open a new tab on cmder where component will be running.

9. Along with cmder tab it will automatically open a tab on default browser as well with
component rendered on the screen.

Chapter 4
Data Segment

4-13

4.6 Dashboard Widget
This topic describes the process of creating the simple standalone component using OBX.

Following are the steps needed to be followed:

1. Navigate to extension_home folder from cmder.

2. Use the command obx ui --wd.

Figure 4-21 OBX UI

3. Once this command is executed, this will take you to next section where it will prompt other
set of questions. Answer them accordingly to your setup and requirement.

4. It will automatically generate the libraries for the component to run locally and you will be
also able to see new cmder tab opened where component server is running.

5. At this point of time go to browser and navigate to http://localhost:8002. You will be able to
see component server home page like:

Chapter 4
Dashboard Widget

4-14

Figure 4-22 OBX Component Server

6. Select the component which you want to reuse in your extension and paste it in
module.exports = []; inside the metadata.js file.

Figure 4-23 OBX sd amount extension folder

7. Once done come back to main tab in cmder where is waiting with question Please modify
the Metadata.js file before proceeding. Once done press 'y' to proceed?.

8. On completing the above process, it will automatically generate the source folder now and
open a new tab on cmder where component will be running.

9. Along with cmder tab it will automatically open a tab on default browser as well with
component rendered on the screen.

Chapter 4
Dashboard Widget

4-15

Figure 4-24 Cmder Component

4.7 Running Component after Generation
This topic describes the steps you need to follow to re-run the component created or generated
earlier.

Follow the below steps to do the same:

1. Make sure you always have the component server rightly created.

2. Open two tabs in the cmder tool.

3. Navigate to component folder in both the tabs for example \extension_home\obx-vp-
customer.

4. From the first tab run the command node startCS.js.

Figure 4-25 Node startCS.js

5. This will make the component server up and running again. This is important as
component server not only serves base component but also some other important files
which is needed for the component to run locally.

6. After this from another cmder tab run the command npm start.

Chapter 4
Running Component after Generation

4-16

Figure 4-26 npm start

7. This will make the component running again on http://localhost:8001/ and also open the
default browser.

4.8 Creating final Extended Component war for Deployment
This topic describes the steps to generate Extended Component war for Deployment.

This is the final stage for generating extended-component war for all the Web components
inside the extension_home folder. Important point to note here that before any component
gets bundled to extended-component.war, it needs to pass all the test cases.

Perform the following steps to generate the war:

1. Go inside the individual component and run the command sh
buildExtendedComponent.sh. This command will start performing and running unit test
cases on the component.

Chapter 4
Creating final Extended Component war for Deployment

4-17

Figure 4-27 Command - sh buildExtendedComponent.sh

2. Once the test cases are executed successfully it will create a folder inside the
extension_home folder named extended-components.

3. Now we have to navigate back to extension_home folder and run the command obx
build-cca.

Figure 4-28 OBX UI

4. This extended-component.war should be deployed in the same domain where
application shell is deployed.

4.9 Understanding DB Scripts for Web Components
This topic describes the significance of DB folder generate inside the web component folder.

Chapter 4
Understanding DB Scripts for Web Components

4-18

This is important as without executing these scripts extension web components will not be
loaded inside application shell and even these components menu will be not listed in left
navigation menu.

Figure 4-29 DB Folder

DB folder inside the web component consists of two folders sms and ui-config:

• SMS: The sms scripts consists of all the service activity, functional activity generated all
out of the box from OBX.

Figure 4-30 SMS

• UI Config: This script should be compiled in ui-config schema. It maintains the ledger of all
the extended components. App-shell uses this configuration to identify which components
should be referred from extended-component war.

Chapter 4
Understanding DB Scripts for Web Components

4-19

Figure 4-31 UI Config

Chapter 4
Understanding DB Scripts for Web Components

4-20

5
Modification of Base Web Component

This topic provides the systematic instructions to perform the basic operations on the selected
records.

This feature of OBX enables users to create extensions which helps to modify the behavior of
existing component. Modification of Base Web Component serves the one of the most
common use cases from extensibility perspective. There are few important points which should
be remembered before modifying the behavior of existing components.

Important Points:

• Addition of fields can be done on various locations of base screen, but this make break the
CSS if not handled properly (Responsive Behavior). In such cases it is always
recommended to put additional fields at the bottom of other fields.

• Wherever possible, use Data-segments to add additional field.

• In use case where you want to hide the fields from existing screen, always check whether
the field is mandatory or not. If it is mandatory then it should set before making it hidden on
the screen. If not done so service calls make break.

• Above point is also valid in case where you want to disable a field on the screen.

Following are the uses cases which can be achieved using modification of existing component:

• Addition of Fields

• Hiding fields from screen

• Defaulting values on screen

• Disable field

• Making Non-mandatory field Mandatory

• Steps for Modification of Base Component
This topic provides the systematic instructions to the steps to follow in case of adding fields
on the existing screen.

• Process Workbench
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• OBX Update Command
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• In-Scope DS
This topic provides the systematic instructions to the overview of IN-Scope DS fields.

• OBX Release Command
This topic provides information on OBX Release Command details.

5-1

5.1 Steps for Modification of Base Component
This topic provides the systematic instructions to the steps to follow in case of adding fields on
the existing screen.

It is assumed that before using this command a developer knows the name of the base
component in which he will be adding the additional fields.

Following are the steps needed to be followed:

1. Navigate to the extension_home folder from the cmder.

2. Execute the command obx ui --mb.

Figure 5-1 OBX UI

3. After above command is executed it will prompt for the name of base component. Once
given it will create a folder with base component name appending - extended at the end of
it.

4. Here also like above all the libraries are generated at runtime.

5. Component generated contains the boiler plate or reference code, which helps to achieve
the use case.

Again, db folder contains all the relevant scripts which is needed to be executed prior to see
the component live and running in main application shell.

5.2 Process Workbench
This topic provides the systematic instructions to perform the basic operations on the selected
records.

The Process Workbench screen is used to create or modify processes. Users can add new
stages, edit existing ones, or upload JSON-based DSLs into the system. This screen also
facilitates workflow customization and allows users to download a JSON-based DSL reflecting
the modifications made in the UI. Additionally, users can preview the flow diagram of a newly
added or modified process. Any process changes will automatically increment the version
number by 1 from the latest version.

Process Creation and Modification Screen:

Chapter 5
Steps for Modification of Base Component

5-2

1. Screen 1 - Shows list of the processes:

• Displays the List of Processes: A comprehensive list of existing processes is shown.

• Upload DSL Button: Enables the upload of workflows in JSON format

• Blank Option (First Row): Used to create a new process.

Figure 5-2 Workflow maintenance Process list

2. Select a Process.

Figure 5-3 Select a process list

3. Shows stages : Under the process which was selected on screen 1.

Chapter 5
Process Workbench

5-3

Figure 5-4 Workflow maintenance process management

4. Create Stage button:

• Used to create a new stage.

• Dialog box for creating a new stage.

Figure 5-5 Create Task

5. We can edit/delete a particular stage in Process Stage list.

Chapter 5
Process Workbench

5-4

Figure 5-6 Process management

6. Dialogue box which opens when we edit a particular stage.

Figure 5-7 Modify Task

7. Drag and Drop Functionality Stage named Testing1 from all stage list was dragged and
dropped on the process stage list as shown here:

Chapter 5
Process Workbench

5-5

Figure 5-8 Process management Testing 1

8. In this process includes:

• Preview: To preview flow diagram of the process selected.

• Create Process: For creating a new process.

• Export DSL: To Export DSL into a file in JSON format.

Figure 5-9 Workflow maintenance verify and submit

9. Flow Diagram of the modified or new added workbench process.

Chapter 5
Process Workbench

5-6

Figure 5-10 Flow Diagram

10. When Export DSL button is clicked. The DSL gets downloaded in workflow(1).json file as
shown.

Figure 5-11 Export DSL

11. When Create Process button is clicked. Process is Created.

Chapter 5
Process Workbench

5-7

Figure 5-12 Create Process

12. Version is updated when the process is created successfully.

Figure 5-13 Workflow maintenance updated version

5.3 OBX Update Command
This topic provides the systematic instructions to perform the basic operations on the selected
records.

This topic helps in migrating the artifacts from previous version of OBX to latest. This is applied
to both services and web components.

This topic consists of the following sub-topics:

• Service Update
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• UI Update
This topic provides the systematic instructions to UI Update developed in OBX.

Chapter 5
OBX Update Command

5-8

5.3.1 Service Update
This topic provides the systematic instructions to perform the basic operations on the selected
records.

To migrate services developed in previous versions of OBX to latest please follow the below
steps:

1. Navigate to service specific folder inside the extension_home directory.

2. Execute the command obx service-update.

3. Provide the relevant product release version number.

4. Once provided it will automatically change the build.gradle file and service is ready to be
built with latest dependencies.

Figure 5-14 OBX UI-Service Update

5.3.2 UI Update
This topic provides the systematic instructions to UI Update developed in OBX.

To migrate services developed in previous versions of OBX to latest please follow the below
steps:

1. Navigate to UI (Web Component) specific folder inside the extension_home directory.

2. Execute the command obx ui-update.

Chapter 5
OBX Update Command

5-9

Figure 5-15 OBX UI-Update

3. This command will automatically start removing old libraries without changing the source
folder. This help will help you retaining the business logic already written in web
component.

4. One done and executed successfully you will the below message.

Figure 5-16 Message

5. Now to run the command with new libraries run below command sequentially:

• sh npm-link.sh – It will create new node module folder inside the component with
latest modules and dependencies.

• node startCS.js - Open a new tab in cmder and navigate to same web component
directory and run command node startCS.js.

• npm start – From the main tab, where we executed npm-link command run the
command npm start, it will automatically run the web component with latest libraries
and launch it on the browser as well.

5.4 In-Scope DS
This topic provides the systematic instructions to the overview of IN-Scope DS fields.

Following is the sequence to be followed:

• Additional of fields at any desired location in an existing data-segment is supported now.

• Data will be stored in separate custom schema.

• In-scope Data segment can be used for addition of new fields. (using jquery, at any
position, we can add the field).

Example of In-Scope DS (Additional fields):

Chapter 5
In-Scope DS

5-10

• Include the hooks required in js and html of base components accordingly.

• Run the command “obx ui --af” for adding fields in extended components.

• Include the additional field in “self.data”.

self.data = {
 "newField": ko.observable("")
 };

• Subscribe it to change handler.

self.data.newField.subscribe(self.changeHandler);

• Use jquery to insert it in the location you want to add the fields.

var element = context.properties.data.payload.homeBranch; $
('#homeBranch').parent().parent().parent().append($('#ui-ex-div-
newField').parent());

.

5.5 OBX Release Command
This topic provides information on OBX Release Command details.

This command is used to check all the available features bundled with OBX version installed
on the machine.

To run this command,

1. Navigate to extension_home folder.

2. Run the command: obx release

Chapter 5
OBX Release Command

5-11

Figure 5-17 OBX release

Chapter 5
OBX Release Command

5-12

6
Extending Product Data Segments with
Additional Fields

This topic provides the systematic instructions to perform the basic operations on the selected
records.

This topic describes the following sub-topics:

• Additional Fields Maintenance
This topic provides the systematic instructions on Additional Fields Maintenance.

• Populating Data in Corresponding Fields From UI
This topic provides information on Populating Data in Corresponding Fields From UI.

• Fetching the Saved Values
This topic provides information on fetching the saved values for each field during the
transaction.

6.1 Additional Fields Maintenance
This topic provides the systematic instructions on Additional Fields Maintenance.

This screen is used to maintain the additional fields for a transaction screen.

To process this screen, type Additional Fields Maintenance in the Menu Item Search located at
the left corner of the application toolbar and select the appropriate screen.

Follow the below steps:

1. From Home screen, click Core Maintenance. Under Core Maintenance, click Additional
Fields Maintenance.

2. The Additional Fields Maintenance screen is displayed.

6-1

Figure 6-1 Additional Fields Maintenance

3. Specify the details in the Additional Fields Maintenance screen.
For more information on fields, refer table Field Description – Additional Field
Maintenance.

Table 6-1 Additional Field Maintenance - Field Description

Field Description

Component Name Specify the data segment name as component name.
Note:By default, the value fsgbu-ob-cmndsadditional-fields is
displayed, which is the Common Core Data Segment that displays the
maintained additional fields. It will fetch the corresponding maintained
record for Additional Fields by querying with uiKey = DataSegmentName
@ ProductCode.

Product Code Specify the function code as product code.

Product Name Displays the product name of the specified product code.

Description Displays the description as Additional Fields.

Application ID Displays the Application ID.

+ icon Click this icon to add a new row.

– icon Click this icon to delete a row, which is already added.

Construct Additional
Fields MetaData

Specify the fields.

Select Check this box to select a row.

Field ID Specify the Field ID.

Field Label Specify the field label.

Category Specify the category.

Field Type Specify the field type.

Edit Select if a value needs to be inputted in the additional field.

Mandatory Select if the input value is mandatory in the additional field.

Construct Validation
MetaData

Specify the fields.

Select Check this box to select a row.

Validation Name Specify the validation name.

Chapter 6
Additional Fields Maintenance

6-2

Table 6-1 (Cont.) Additional Field Maintenance - Field Description

Field Description

Validation Template
to Use

Specify the template to be used for validation.

Custom Error
Message

Specify the custom error message to be displayed.

Edit Arguments Select if arguments needs to be edited in the additional field.

4. Click Save to add the additional field in the maintenance work table
(CMC_TW_ADDT_ATTR_MASTER).

Note:

Once it is approved, the data will persist in the master table. Currently, Mobile
Number and Date are added as additional fields. In addition,the validation is
added for Date.

5. Sign in with different user ID since maker will not be able to approve the records with the
same user ID.

Figure 6-2 Additional Fields Maintenance Records

6. Map the new data segment for the function code. Make sure that the data is present in
CMC_TM_SCREEN_DS_MAPPING.

Note:

Once the additional fields are added for a particular function code, a separate
data segment will be enabled in the transaction screen for Additional Fields.

7. Click Submit, to save the transaction data of additional fields to the
CMC_TB_ADDT_ATTR_DATA.
In addition, the following actions have been performed from service side:

• Fetch record through inter-service call to additional attributes service in common
transaction with record ID.

Chapter 6
Additional Fields Maintenance

6-3

• Append the field data to the main payload for the ejlogging.

{
 "data": {
 "addDtls": {
 "signatureVerifyIndicator": "Y",
 "hostStatus": null,
 "hostMultiTripId": null,
 "txnBranchCcy": "GBP",
 "txnBranchDate": "2020-03-25T18:30:00.000+0000",
 "txnType": "C",
 "cashInOutIndicator": "I",
 "ejLoggingRequired": null,
 "ejTxnAmtMapping": "TO",
 "ejTxnCcyMapping": "TO",
 "adviceName": null,
 "orchestratorId": null,
 "rsp": null,
 "isReversal": "N",
 "isAdvice": "N",
 "reversalButton": "N",
 "ignoreApproval": false,
 "ignoreWarning": false,
 "isExternal": false
 },
 "txnDtls": {
 "functionCode": "1401",
 "txnBranchCode": null,
 "txnBranchCcy": null,
 "txnBranchDate": null,
 "requestStatus": "COMPLETED",
 "assignmentMode": null,
 "txnId": "f6b36a91-889d-4505-aac0-d7b98484d098",
 "txnRefNumber": "989124345493245",
 "tellerSeqNumber": null,
 "overrideConfirmFlag": null,
 "supervisorId": null,
 "onlineOfflineTxn": null,
 "userComments": null,
 "authoriserComments": null,
 "eventCode": null,
 "accountType": "UBS"
 },
 "dataPayload": {
 "datasegment": null,
 "fromAccountAmt": 100,
 "fromAccountCcy": "GBP",
 "toAccountCcy": "GBP",
 "beneficiaryName": null,
 "beneficiaryAddress1": null,
 "beneficiaryAddress2": null,
 "beneficiaryAddress3": null,
 "beneficiaryAddress4": null,
 "identificationType": null,
 "identificationNumber": null,
 "exchangeRate": 1,

Chapter 6
Additional Fields Maintenance

6-4

 "recievedAccount
 Ccy": null,
 "recievedAccount
 Amt": null,
 "totalCharges":
 null,
 "cashAmount":
 100,
 "netAccountCcy": null,
 "netAccountAmt": null,
 "narrative": "Cash Deposit",
 "txnControllerRefNo": null,
 "recordId": "f6b36a91-889d-4505-aac0-
 d7b98484d098", "cashAmtCcy": null,
 "cashAmt":
 null,
 "chequeDate": null,
 "chequeNumber": null,
 "eventCode": null,
 "ejId": null,
 "emailId": null,
 "fromAccountBranch": "000",
 "fromAccountNumber": null,
 "mobileNumber": null,
 "orginalExchangeRate": null,
 "payee": null,
 "productCode": null,
 "reversalDate": null,
 "stationId": null,
 "toAccountBranch": "000",
 "toAccountNumber": "00000008010010",
 "toAccountAmt": 100,
 "txnBranchCode": "000",
 "functionCode": null,
 "txnCustomer": null,
 "tellerId": null,
 "txnDate": 1585161000000,
 "txnRefNumber": "9892566557744",
 "txnSeqNumber": null,
 "uniqueIdentifierNumber": null,
 "uniqueIdentifierType": null,
 "userRefNumber": null,
 "valueDate": null,
 "versionNumber": null,
 "referenceNumber": null,
 "createdBy": null,
 "createdTs": null,
 "updatedBy": null,
 "updatedTs": null,
 "demDtls": [],
 "fxInDemDtls": null,
 "fxOutDemDtls": null,
 "prcDtls": [],
 "addDtls": null,
 "txnDtls": null,
 "overrideDtls": null,

Chapter 6
Additional Fields Maintenance

6-5

 "batchTableDetails": null,
 "cmcAddlFields": [
 {
 "id": "OTH_passprt",
 "label": "Passport No",
 "type": "TEXT",
 "value": "43243"
 },
 {
 "id": "UDF_aadhar",
 "label": "Aadhar",
 "type": "TEXT",
 "value": "1243"
 },
 {
 "id": "TMIS_toDate",
 "label": "To Date",
 "type": "DATE",
 "value": ""
 },
 {
 "id": "TMIS_fromDate",
 "label": "From Date",
 "type": "DATE",
 "value": ""
 }
 },
 "extDetails": null,
 "warDtls": [],
 "authoriserDtls": []
 },
 "errors": null,
 "warnings": null,
 "informations": null,
 "authorizations": null,
 "paging": ""
 }

6.2 Populating Data in Corresponding Fields From UI
This topic provides information on Populating Data in Corresponding Fields From UI.

Unlike the other transaction screen data-segments, the ejlogged data is not required. Instead,
two GET calls that happen during screen launch fetches all the details.

To fetch the corresponding Additional-Fields-Maintenance screen record based on which it
will display the maintained fields for this function code.

Endpoint : CORE.GET_CMC_ADDITIONAL_ATTRIBUTES
Request URL : http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-
attributesservices/cmcadditional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-
fields@1006

Chapter 6
Populating Data in Corresponding Fields From UI

6-6

Sample Response :

{
 "data": [
 {
 "keyId": "33347926-842b-4232-af31-8c1b59612244",
 "makerId": "ABHINAV",
 "makerDateStamp": null,
 "checkerId": null,
 "checkerDateStamp": null,
 "modNo": 1,
 "recordStatus": "O",
 "authStatus": "A",
 "onceAuth": null,
 "doerRemarks": null,
 "approverRemarks": null,
 "links": [
 {
 "rel": "self",
 "href": "http://10.40.158.157:8005/cmc-
 additional-attributesservices/cmcadditional-
 attributes-services/33347926-842b-4232-
 af318c1b59612244"
 }
],
 "description": "Additional Fields",
 "fieldMetaData":
 "[{\"id\":\"OTH_Mobile\",\"label\":\"Mobile
 Number\",\"type\":\"NUMBER\",\"required\":true},{\"id\":\"OTH
 _From\",\"label\":\"Fr om
 Date\",\"type\":\"DATE\",\"required\":true},{\"id\":\"OTH_To_D
 ate\",\"label\":\"To
 Date\",\"type\":\"DATE\",\"required\":true}]", "uiKey": "fsgbu-
 ob-cmn-ds-additional-fields@1006", "validationMetaData":
 "[{\"id\":\"\",\"validateMethod\":\"compareFromToDates\",\"type\":\"
 \",\"args\":[{\"ty
 pe\":\"FIELD\",\"value\":\"OTH_From\"},
 {\"type\":\"FIELD\",\"value\
 ":\"OTH_To_Date\"
 }],\"errorMsg\":\"Error Date 1 must be &gt; Date
 2\",\"validationName\":\"Date
 Validation\"}]",
 "applicationId": "OBTFPM"
 }],
 "paging": {
 "totalResults": 1,
 "links": {
 "next": null,
 "prev": null
 }
 }
 }

Chapter 6
Populating Data in Corresponding Fields From UI

6-7

6.3 Fetching the Saved Values
This topic provides information on fetching the saved values for each field during the
transaction.

You can fetch the values saved for each field during the transaction.

Endpoint : CORE.GET_ADDITIONAL_ATTRIBUTES.

Request URL : http://whf00peb.in.oracle.com:8003/api-gateway/cmc-
additionalattributesservices/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-
additionalfields@1006&dataReferenceKey=00a01dfd- 0d6f-4400-a9c5-0f56551165e4

Samples Response :

{
 "ExtensibleDTO": [
 {
 "id": "1644022a-179e-429b-82c8-873761c3ac74",
 "uiKey": "fsgbu-ob-cmn-ds-additional-fields@1006",
 "dataReferenceKey": "00a01dfd-0d6f-4400-a9c5-
 0f56551165e4",
 "fieldMetaDataVersion": "1",
 "fieldData": [
 {
 "id": "OTH_Mobile",
 "label": "Mobile Number",
 "type": "NUMBER",
 "value": “678688789”
 },
 {
 "id": "OTH_From",
 "label": "From Date",
 "type": "DATE",
 "value": ”678688789”
 },
 {
 "id": "OTH_To_Date",
 "label": "To Date",
 "type": "DATE",
 "value": null
 }
],
 "applicationId": "OBREMO"
 }
]
 }

Chapter 6
Fetching the Saved Values

6-8

7
Action URL and Static Tag Maintenance

This topic provides the systematic instructions to perform the basic operations on Action URL
and Static Tag Maintenance.

This topic consists of the following sub-topics:

• Action URL Maintenance
This topic provides the systematic instructions of action URL maintenance.

• Static Tag Maintenance
This topic provides the systematic instructions to static tag maintennace.

7.1 Action URL Maintenance
This topic provides the systematic instructions of action URL maintenance.

Endpoints are maintained in cmn-transaction-services for the specific transaction based on
function code. The operation has to be maintained as action URL in table
SRV_TB_BC_ACTIONS_URL. Action URL will be called from all the domain services based on
function code and action (like OPENCHECK, CREATE, OVERRIDE, REVERSAL,
PENDING_APPROVAL, or AUTHORIZE).

The database details are as follows:

Schema: BRANCHCOMMON

Table: SRV_TB_BC_ACTIONS_URL

If the action URL is not maintained for the specific operation of the particular transaction, the
error message will be displayed as Action URL not maintained. Error code is maintained in
ERTB_MSGS as RM-BC-UR-01.

7.2 Static Tag Maintenance
This topic provides the systematic instructions to static tag maintennace.

Static tag is maintained for accounting, till update, and debit-credit for each transaction based
on the function code in table SRV_TB_TX_STATIC_TAGS.

The database details are as follows:

Schema : TRANSACTION

Table : SRV_TB_TX_STATIC_TAGS

TILL_TAGS, DRCR_TAGS and ACCOUNTING_TAGS are maintained as JSON structure.
Static tags will be fetched from cmn-transaction-services based on function code. If it is not
maintained for the particular function code, the transaction will be failed

7-1

8
Extensibility Use Cases for OBBRN Servicing

This topic provides the systematic instructions to perform the basic operations on Extensibility
Use Cases for OBBRN Servicing.

This topic describes the following sub-topics:

• New Transaction Screen – 1499 (Exact Clone of 1401)
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• Exact Clone with Additional Fields Using Common Code
This topic provides the systematic instructions to exact clone with additional fields using
common code.

• Exact Clone with Additional Fields Using Extensible Code
This topic provides the systematic instructions to the exact clone with additional fields
using extensible code.

• Jar Deployment in Weblogic
This topic provides the systematic instructions to the Jar Deployment in Weblogic.

8.1 New Transaction Screen – 1499 (Exact Clone of 1401)
This topic provides the systematic instructions to perform the basic operations on the selected
records.

For this use case, you need to ensure data is present in the tables similar to 1401.

The below mentioned tables need to be checked in SMS schema:

• SMS_TM_MENU

• SMS_TM_MENU_Description

• SMS_TM_SERVICE_ACTIVITY

• SMS_TM_FUNCTIONAL_ACTIVITY

• SMS_TM_FUNC_ACTIVITY_DETAIL

• SMS_TM_ROLE_ACTIVITY

• SMS_TM_UI_ACTIVITY

The below mentioned tables need to be checked in common core schema:

• CMC_TM_SCREEN_CLASS

• CMC_TM_SCREEN_DS_MAPPING

The below mentioned tables need to be checked in branch common schema:

• SRV_TM_BC_FUNCTION_INDICATOR

• SRV_TM_BC_FUNCTION_CODE

• SRV_TM_BC_FUNCTION_PREF

• SRV_TM_BC_FUNCTION_PREF_DTLS

8-1

• SRV_TM_BC_BRANCH_ACCOUNTING

• SRV_TM_MENU_CONFIG

• SRV_TB_BC_ACTIONS_URL

The below mentioned tables need to be checked in transaction schema:

• SRV_TB_TX_STATIC_TAGS

Figure 8-1 Cash Deposit Clone

Figure 8-2 Information Message

8.2 Exact Clone with Additional Fields Using Common Code
This topic provides the systematic instructions to exact clone with additional fields using
common code.

A new screen is available with function code 9999. The Additional Fields is shown as 4th data
segment as below:

Chapter 8
Exact Clone with Additional Fields Using Common Code

8-2

Figure 8-3 Additional Fields Segment

• The library reference in weblogic.xml is available for extensibility, for example, obremo-srv-
ext-common-txn. A new jar obremo-srv-cmn-common-txn, which holds the most of the
code of transaction service and can be a dependency in the external jar.

 <wls:library-ref>
 <wls:library-name>obremo-srv-cmn-common-
 txn</wls:library-name> </wls:library-ref>

Response :

{
 "data": {
 "addDtls": {
 "signatureVerifyIndicator": "Y",
 "hostStatus": null,
 "hostMultiTripId": null,
 "txnBranchCcy": "GBP",
 "txnBranchDate": "2020-03-25T18:30:00.000+0000",
 "txnType": "C",
 "cashInOutIndicator": "I",
 "ejLoggingRequired": null,
 "ejTxnAmtMapping": "TO",
 "ejTxnCcyMapping": "TO",
 "adviceName": null,
 "orchestratorId": null,
 "rsp": null,
 "isReversal": "N",
 "crossCcyEnabled": null,
 "isTotChargesReq": null
 },
 "txnDtls": {
 "functionCode": "9999",
 "txnBranchCode": null,
 "txnBranchCcy": null,
 "txnBranchDate": null,
 "requestStatus": "COMPLETED",
 "assignmentMode": null,
 "txnId": "71a08a0f-ee2a-405b-a1e3-b77ca9e59b6e",

Chapter 8
Exact Clone with Additional Fields Using Common Code

8-3

 "txnRefNumber": "0002008600007160",
 "tellerSeqNumber": null,
 "overrideConfirmFlag": "N",
 "supervisorId": null,
 "onlineOfflineTxn": null,
 "userComments": null,
 "authoriserComments": null,
 "eventCode": null,
 "accountType": "UBS"
 },
 "dataPayload": {
 "datasegment": null,
 "fromAccountAmt": 100,
 "fromAccountCcy": "GBP",
 "toAccountCcy": "GBP",
 "beneficiaryName": null,
 "beneficiaryAddress1": null,
 "beneficiaryAddress2": null,
 "beneficiaryAddress3": null,
 "beneficiaryAddress4": null,
 "identificationType": null,
 "identificationNumber": null,
 "exchangeRate": 1,
 "recievedAccount
 Ccy": null,
 "recievedAccount
 Amt": null,
 "totalCharges":
 null,
 "cashAmount":
 null,
 "netAccountCcy": null,
 "netAccountAmt": null,
 "narrative": "Cash Deposit",
 "txnControllerRefNo": null,
 "recordId": "bd40562d-06b4-4f95-95fe-
 e66fa6eb7f13", "cashAmtCcy": null,
 "cashAmt":
 null,
 "chequeDate": null,
 "chequeNumber": null,
 "eventCode": null,
 "ejId": null,
 "emailId": null,
 "fromAccountBranch": "000",
 "fromAccountNumber": null,
 "mobileNumber": null,
 "orginalExchangeRate": null,
 "payee": null,
 "productCode": null,
 "reversalDate": null,
 "stationId": null,
 "toAccountBranch": "000",
 "toAccountNumber": "00000008010010",
 "toAccountAmt": 100,
 "txnBranchCode": "000",

Chapter 8
Exact Clone with Additional Fields Using Common Code

8-4

 "functionCode": null,
 "txnCustomer": null,
 "tellerId": null,
 "txnDate": 1585161000000,
 "txnRefNumber": "0002008600007160",
 "txnSeqNumber": null,
 "uniqueIdentifierNumber": null,
 "uniqueIdentifierType": null,
 "userRefNumber": null,
 "valueDate": null,
 "versionNumber": null,
 "referenceNumber": null,
 "createdBy": null,
 "createdTs": null,
 "updatedBy": null,
 "updatedTs": null,
 "demDtls": null,
 "fxInDemDtls": null,
 "fxOutDemDtls": null,
 "prcDtls": null,
 "addDtls": null,
 "txnDtls": null,
 "overrideDtls": null,
 "batchTableDetails": null
 },
 "extDetails": null,
 "warDtls": [],
 "authoriserDtls": []
 },
 "errors": null,
 "warnings": null,
 "informations": null,
 "authorizations": null,
 "paging": ""
}

Figure 8-4 Common Core Additional Attributes

• In the debug, you can find that the common code is used, stempImpl onCashSubmitTillAcc
will be called.

Chapter 8
Exact Clone with Additional Fields Using Common Code

8-5

Figure 8-5 Common Code

8.3 Exact Clone with Additional Fields Using Extensible Code
This topic provides the systematic instructions to the exact clone with additional fields using
extensible code.

A screen is created with function code 9999 and Additional Fields as 4th data segment.

Figure 8-6 Additional Fields Segment

• A library reference is added weblogic.xml (obremo-srv-ext-common-txn) for extensibility. A
new jar obremosrvcmn-common-txn, which holds the most of the code of transaction
service and can be a dependency in the external jar

<wls:library-ref>
 <wls:library-name>obremo-srv-cmn-common-txn</wls:library-name>
 </wls:library-ref>

8.4 Jar Deployment in Weblogic
This topic provides the systematic instructions to the Jar Deployment in Weblogic.

Below screen shows the Jar Deployment in weblogic.

Chapter 8
Exact Clone with Additional Fields Using Extensible Code

8-6

Figure 8-7 Jar Deployment

Response:

{
 "data": {
 "addDtls": {
 "signatureVerifyIndicator": "Y",
 "hostStatus": null,
 "hostMultiTripId": null,
 "txnBranchCcy": "GBP",
 "txnBranchDate": "2020-03-25T18:30:00.000+0000",
 "txnType": "C",
 "cashInOutIndicator": "I",
 "ejLoggingRequired": null,
 "ejTxnAmtMapping": "TO",
 "ejTxnCcyMapping": "TO",
 "adviceName": null,
 "orchestratorId": null,
 "rsp": null,
 "isReversal": "N",
 "crossCcyEnabled": null,
 "isTotChargesReq": null
 },
 "txnDtls": {
 "functionCode": "9999",
 "txnBranchCode": null,
 "txnBranchCcy": null,
 "txnBranchDate": null,
 "requestStatus": "COMPLETED",
 "assignmentMode": null,
 "txnId": "71a08a0f-ee2a-405b-a1e3-b77ca9e59b6e",
 "txnRefNumber": "0002008600007160",
 "tellerSeqNumber": null,
 "overrideConfirmFlag": "N",
 "supervisorId": null,
 "onlineOfflineTxn": null,
 "userComments": null,
 "authoriserComments": null,
 "eventCode": null,
 "accountType": "UBS"
 },
 "dataPayload": {
 "datasegment": null,
 "fromAccountAmt": 100,
 "fromAccountCcy": "GBP",
 "toAccountCcy": "GBP",
 "beneficiaryName": null,
 "beneficiaryAddress1": null,

Chapter 8
Jar Deployment in Weblogic

8-7

 "beneficiaryAddress2": null,
 "beneficiaryAddress3": null,
 "beneficiaryAddress4": null,
 "identificationType": null,
 "identificationNumber": null,
 "exchangeRate": 1,
 "recievedAccountCcy": null,
 "recievedAccountAmt": null,
 "totalCha
 rges":
 null,
 "cashAm
 ount":
 null,
 "netAccountCcy": null,
 "netAccountAmt": null,
 "narrative": "Cash Deposit",
 "txnControllerRefNo": null,
 "recordId": "bd40562d-06b4-4f95-95fe-
 e66fa6eb7f13", "cashAmtCcy": null,
 "cashAmt":
 null,
 "chequeDate": null,
 "chequeNumber": null,
 "eventCode": null,
 "ejId": null,
 "emailId": null,
 "fromAccountBranch": "000",
 "fromAccountNumber": null,
 "mobileNumber": null,
 "orginalExchangeRate": null,
 "payee": null,
 "productCode": null,
 "reversalDate": null,
 "stationId": null,
 "toAccountBranch": "000",
 "toAccountNumber": "00000008010010",
 "toAccountAmt": 100,
 "txnBranchCode": "000",
 "functionCode": null,
 "txnCustomer": null,
 "tellerId": null,
 "txnDate": 1585161000000,
 "txnRefNumber": "0002008600007160",
 "txnSeqNumber": null,
 "uniqueIdentifierNumber": null,
 "uniqueIdentifierType": null,
 "userRefNumber": null,
 "valueDate": null,
 "versionNumber": null,
 "referenceNumber": null,
 "createdBy": null,
 "createdTs": null,
 "updatedBy": null,
 "updatedTs": null,
 "demDtls": null,

Chapter 8
Jar Deployment in Weblogic

8-8

 "fxInDemDtls": null,
 "fxOutDemDtls": null,
 "prcDtls": null,
 "addDtls": null,
 "txnDtls": null,
 "overrideDtls": null,
 "batchTableDetails": null
 },
 "extDetails": null,
 "warDtls": [],
 "authoriserDtls": []
 },
 "errors": null,
 "warnings": null,
 "informations": null,
 "authorizations": null,
 "paging": ""
 }

Figure 8-8 Common Core Additional Attributes

• In the debug, the extensible code is used, which is present in the extension jar (obremo-
srv-ext-commontxn.jar). Instead stempImpl onCashSubmitTillAcc, FC9999
onCashSubmitTillAcc will be called, where you can add code that is required for the new
dataSegment added or to achieve different functionality of charging, accounting, till
updates, etc

Figure 8-9 Debug Codes

Chapter 8
Jar Deployment in Weblogic

8-9

9
Extensibility Use Cases for OBX

This topic provides the systematic instructions to perform the basic operations on the
Extensibility Use Cases for OBX.

This topic describes the following sub-topics:

• New Transaction screen – 1499 (Clone of 1401)
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• New Data Segment in Existing 1401 Screen
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• HTML Changes
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• JS Changes
This topic provides the systematic instructions to JS fields.

• JSON Changes
This topic describes the changes JSON fields across all the screens.

• Model Changes
This topic provides the systematic instructions to Model Changes.

• Database Changes
This topic provides the systematic instructions to Database Changes.

• Service Component
This topic provides the systematic instructions to the Service Component.

• New Field in Existing Base Data Segment
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• HTML Changes (Extended Components)
This topic describes the changes Extended Component HTML fields across all the
screens.

• HTML Changes (Base Component)
This topic describes the bade components HTML fields changes for all the screens.

• JS Changes (Base Component)
This topic describes the base components JS fields changes for all the screens.

• JS Changes (Extended Component)
This topic describes the extended components JS fields changes for all the screens.

• JSON Changes (Extended Component)
This topic describes the extended components JSON fields changes for all the screens.

• JSON Changes (Base Component)
This topic describes the base components JSON fields changes for all the screens.

9-1

• DB Changes
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• Add New Columns in Base Component Table
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• Steps for adding extra column in task grid
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• Steps to use Additional Buttons provision in Task Screen
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• Steps to create common-extended folder for extending configJSON.js file
This topic provides the systematic instructions to perform the basic operations on common-
extended folder for extending configJSON.js file.

• Customizing Existing LOV Fetch Result
This topic provides the systematic instructions to perform the basic operations on the
Customizing Existing LOV Fetch Result.

• Steps for adding Pre/post methods in extended components
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• ENDPOINT Overrides
This topic describes the endpoint overrides.

• Steps to create util-extended folder
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• Dynamic Data Configuration (DDC)
This topic provides the systematic instructions to perform the basic operations on the
selected records.

• Task Screen Custom Config
This topic provides the systematic instructions to perform the basic operations on the
selected records.

9.1 New Transaction screen – 1499 (Clone of 1401)
This topic provides the systematic instructions to perform the basic operations on the selected
records.

For this use case, make sure that the data is present in the below tables similar to 1401. The
below mentioned tables need to be checked in SMS schema:

• SMS_TM_MENU

• SMS_TM_MENU_Description

• SMS_TM_SERVICE_ACTIVITY

• SMS_TM_FUNCTIONAL_ACTIVITY

• SMS_TM_FUNC_ACTIVITY_DETAIL

• SMS_TM_ROLE_ACTIVITY

• SMS_TM_UI_ACTIVITY

Chapter 9
New Transaction screen – 1499 (Clone of 1401)

9-2

The below mentioned tables need to be checked in Common Core schema:

• CMC_TM_SCREEN_CLASS

• CMC_TM_SCREEN_DS_MAPPING

The below mentioned tables need to be checked in branch Common schema:

• SRV_TM_BC_FUNCTION_INDICATOR

• SRV_TM_BC_FUNCTION_CODE

• SRV_TM_BC_FUNCTION_PREF

• SRV_TM_BC_FUNCTION_PREF_DTLS

• SRV_TM_BC_BRANCH_ACCOUNTING

• SRV_TM_MENU_CONFIG

Figure 9-1 Cash Deposit Clone

Figure 9-2 Information Message

Chapter 9
New Transaction screen – 1499 (Clone of 1401)

9-3

9.2 New Data Segment in Existing 1401 Screen
This topic provides the systematic instructions to perform the basic operations on the selected
records.

For this use case, it is needed to implement UI Component and Service side to persist data.

The steps to create UI Component are as follows:

1. Start OBX and create XDL by running command obx xdl-gen.

2. Once XDL is created, go to Cmder tab, and press Y for XDL generation.

Figure 9-3 OBX XDL generation

3. Select the option UI Component.

4. Select product family as Oracle Banking Retail Mid Office.

5. Specify the name of virtual page/data-segment/stand-alone component to be created.

6. Specify absolute path of the XDL generated. (XDL is generated inside extension_home
folder).

Note:

A new UI Component will be created in extension_home folder with prefix obx-
vp/obx-ds. In the Cmder tab, OBX will prompt to modify Metadata.js file of the
newly created component. In addition, the component-server will start running at
port 8002.

Chapter 9
New Data Segment in Existing 1401 Screen

9-4

Figure 9-4 XDL Path

Figure 9-5 Extension Home Folder

7. The generated UI component contains boiler plate code to do the common operations of
Save, Get, Get All etc. Changes needed in the newly created component from OBX tool
from UI side.

9.3 HTML Changes
This topic provides the systematic instructions to perform the basic operations on the selected
records.

• According to the screen design, one can change the HTML values like payload() and
mobileNumber. If mobileNumber field is entered by the user, value of mobileNumber will
directly update the JS payload that will be going as a part of save call.

Chapter 9
HTML Changes

9-5

Figure 9-6 HTML Changes

• The oj-validation-group is required for configuring the HTML as part of validation.

Figure 9-7 Validation

9.4 JS Changes
This topic provides the systematic instructions to JS fields.

Perform the following steps to implement JS changes:

1. Add all the dependencies in define block.

2. The JS self.payload is an observable, which will hold all the info inputted from the HTML.
All keys in self.payload is directly linked with HTML.

Chapter 9
JS Changes

9-6

Figure 9-8 JS Changes

Figure 9-9 JS Self Payload

3. Save method implementation will look like in below figure. In the next line, it is making a
promise and calling the save function of cmn-ct-datasegment providing the payload and
endpoint as parameters. If save is success, it will resolve and for failures it will come to
reject.

Chapter 9
JS Changes

9-7

Figure 9-10 Save Method

4. The function null check is as shown below:

Figure 9-11 Function Null Check

5. The validate function is shown in the below mentioned validate function screen, which will
check all mandatory fields during save.

Figure 9-12 Validate Function

9.5 JSON Changes
This topic describes the changes JSON fields across all the screens.

The data and datatransferPayload properties need to be exposed from JSON. The data
property is used to take the information of transaction specific and the datatransferPayload
property is used to share data between data segments.

Chapter 9
JSON Changes

9-8

Figure 9-13 JSON Changes

9.6 Model Changes
This topic provides the systematic instructions to Model Changes.

There will be no methods in the model. All the REST calls needs to go through cmn-ct-
datasegment similar to Save.

Perform the following steps to make model changes:

1. Run the DB Scripts present in this component.

Note:

he OBX generates SQL script with default HEADER_APPID as PXDSSRV001 for
all components. This script can be changed and used

2. Create extended war for the component and deploy.

9.7 Database Changes
This topic provides the systematic instructions to Database Changes.

To add database changes to do the following:

1. Add the newly created data segment name in the PRODUCT_EXTENDED_LEDGER table
(this will be done when DB script from UI component is run).

2. Make a fourth Data Segment entry for function code 1401 in
CMC_TM_SCREEN_DS_MAPPING table of CMNCORE. The DS_CODE should be the
name of the UI Component created. The entry is as shown in the Data Segment Entry.

Chapter 9
Model Changes

9-9

Figure 9-14 Data Segment Entry

3. If the service is created separately than UI Component, change the endpoint URL in SQL
script for table PRODUCT_SERVICES_LEDGER accordingly.

9.8 Service Component
This topic provides the systematic instructions to the Service Component.

To create a service component do the following:

1. Start OBX and use the XDL file that is already generated.

2. Select the domain service with optional UI component.

Figure 9-15 Domain Service

3. Select product family as Oracle Banking Retail Mid Office.

Chapter 9
Service Component

9-10

Figure 9-16 Product Family

4. Specify the service name as additional Details and all the remaining details as mentioned
in the service name screen.

Figure 9-17 Service Name

5. A new service is generated in extension_home folder with prefix obremo-
additionadetails-service.

Chapter 9
Service Component

9-11

Figure 9-18 Extension Home Folder

6. Run the DB scripts present in this service.

Note:

It will create a new table to persist data of new data segment. For example, a
table is created as ADDITIONALDETAILS. This table can be created in existing
schema or in a new schema.

7. If you need to create a new schema, mention that in table.
PRODUCT_SERVICES_CTX_LEDGER while running UI Component Script.

8. Restart plato servers once this change is completed.

9. If required, make appropriate changes in the service, build it, and deploy.

Note:

After deploying extended war and additional details service along with proper DB
entry, you can see a new data segment in the appshell screen.

10. Fill the necessary details and click Submit, the data for new DS will be saved in new table.

Figure 9-19 Additional Details Segment

Chapter 9
Service Component

9-12

Figure 9-20 Updated Data in New Table

9.9 New Field in Existing Base Data Segment
This topic provides the systematic instructions to perform the basic operations on the selected
records.

This use case defines a new field in the existing base data segment (fsgbu-ob-remo-srv-ds-
cash-deposit) in 1401 screen class.

For this use case, you need to create an extended UI Component, make changes in the
existing UI appshell, and make changes in the service.

Perform the following steps:

1. Modify the base component cca and create an extended component. To do this, start OBX
and run the command obx ui --mb. It will prompt for name of base web component.

2. Specify the name of base web component. A folder will be created with base component
name appending -extended at the end of it.

Figure 9-21 Base Web Component

Chapter 9
New Field in Existing Base Data Segment

9-13

Figure 9-22 Base Web Component

Figure 9-23 Extended Folder

Note:

The changes are required in the extended component from the UI side.

9.10 HTML Changes (Extended Components)
This topic describes the changes Extended Component HTML fields across all the screens.

The extended component contains the boiler plate codes, in which you need to make the
changes as shown in the below HTML Changes (Extended Component) screen. After you
make the necessary changes, the additional fields will be added after the existing fields in the
base component.

Chapter 9
HTML Changes (Extended Components)

9-14

Figure 9-24 HTML Changes (Extended Component)

The following changes are required only if you need to add the additional field at the end of the
base component and in a separate extension panel. You can choose to add the additional
fields in the existing base component or in the extension panel as per the requirement.

Figure 9-25 Extension Panel

9.11 HTML Changes (Base Component)
This topic describes the bade components HTML fields changes for all the screens.

Perform the HTML changes in the base component.

Figure 9-26 HTML Changes (Base Component)

Chapter 9
HTML Changes (Base Component)

9-15

9.12 JS Changes (Base Component)
This topic describes the base components JS fields changes for all the screens.

Perform the JS changes in the base component as shown in the JS Changes (Base
Component) screen.

Figure 9-27 JS Changes (Base Component)

The part of code shown below is present in JS or view model file. From the self.connected
method, you need to call self.loadExtendedComponent method.

Figure 9-28 Self Connected Method

9.13 JS Changes (Extended Component)
This topic describes the extended components JS fields changes for all the screens.

In the bindings applied, it will take the ID of the fields and add the additional fields after the field
base component. Both additional fields will be added after the field of base component for
which the ID is lastTab.

Chapter 9
JS Changes (Base Component)

9-16

Figure 9-29 JS Changes (Extended Component)

9.14 JSON Changes (Extended Component)
This topic describes the extended components JSON fields changes for all the screens.

Perform the HTML changes to add data and base property for extended component.

Figure 9-30 Json Changes (Extended Component)

Chapter 9
JSON Changes (Extended Component)

9-17

Figure 9-31 Json Changes (Extended Component)

9.15 JSON Changes (Base Component)
This topic describes the base components JSON fields changes for all the screens.

In base component JSON file, the properties is Extensible and authMode are present. You
need to make changes in the existing appshell UI component so that it reads the extended
component. In addition, it will contain DB scripts which need to be run.

Figure 9-32 JSON Changes (Base Component)

9.16 DB Changes
This topic provides the systematic instructions to perform the basic operations on the selected
records.

Chapter 9
JSON Changes (Base Component)

9-18

Add the newly created data segment name in the PRODUCT_EXTENDED_LEDGER table.

Perform the following steps to make the service level change:

1. Add a new field named additionalFields with data type String in work and main table entity
classes of the respective service. The corresponding setters and getters should also be
added in these classes.
@Column(name = “ADDITIONAL_FIELDS”) private String additionalFields.

2. Add a column with the name ADDITIONAL_FIELDS in the main and work tables of the DB
with CLOB data type.

3. For persistence of data in main table, add additionalFields with data type String in model
class.

4. Deploy the changed service, extended war component, and changed appshell.

Note:

After deployment, the two additional fields named Pan Number and Aadhaar
Number will be added in existing data segment.

5. Specify the necessary details and click Submit. The additional fields will be saved in
respective work and main table in an additional column ADDITIONAL_FIELDS.

Figure 9-33 Data Segment with Additional Fields

6. In the request payload from UI to backend, the values appear as follows:

Figure 9-34 Request Payload

7. The data will get saved in newly added column Additional Fields in the respective table.

Chapter 9
DB Changes

9-19

Figure 9-35 SRV_TB_CH_CASH_TXN Table

9.17 Add New Columns in Base Component Table
This topic provides the systematic instructions to perform the basic operations on the selected
records.

For adding new columns in base component table to do the following.

1. Create an extended component for the base cca by making these changes in the base
accordingly.

2. Changes in base
In HTML

<!-- ko if: ifExtension -->
<componentName-extended data="{{base}}">
</componentName-extended>
<!-- /ko -->

In JS

 self.base
= this;
 self.ifExtension = ko.observable(false);
 self.connected = function () { if
(requirejs.s.contexts._.config.paths['components/componentName-
extended']) {
 require(['components/componentName-extended/loader'], function
() {
self.ifExtension(true);
 });
 }
 }

.

3. Changes in extended

 self.bindingsApplied = function (context) {
context.props.then(function (properties) {
console.log(properties.data.columnArray);
 properties.data.columnArrray.splice(columnIndex, 0,
{
headerText: "Manager Id", field: "ManagerId"
 });
tableId.refresh(properties.data.columnArray);
 });

Chapter 9
Add New Columns in Base Component Table

9-20

4. Changes needed at service level.
For data inside table, custom projection service had to be written, custom events needs to
be raised while custom fields persistence. For base fields, a call can be made from
projection service to base service to fetch data and persisting the same over projection
schema.

9.18 Steps for adding extra column in task grid
This topic provides the systematic instructions to perform the basic operations on the selected
records.

For adding extra column in task grid to do the following:

1. Clone the respective Free/My/Hold Task components.

2. Then the additional column can be added using the following example code snippet.

self.additionalColumns = [{
 dataIndex: 'customerName',
 dataType: 'string',
 displayType: 'text',
 width: '60px',
 sortable: true,
 resizable: true,
 accessTo: ['AVAILABLE', 'HOLD', 'ACQUIRED']
 }];

The above code needs to be added in js file of the cloned components.

While calling fsgbu-ob-cmn-fd-work-list from the html of the cloned components please
make a call like this (which also sends additional columns as a property).

Example:

<fsgbu-ob-cmn-fd-work-list id='completedTaskGridCCA' dashboard-
id='STANDARD' dashboard-
queue-name='ACQUIRED'
 process-code={{processCode}} dashboard-queue-type='L' worklist-
columns='{{columnArray}}'
 additional-columns='{{additionalColumns}}' page-size=20 dependent-
vm="{{dialogParameters}}"></fsgbu-ob-cmn-fd-work-list>

3. Making these changes would display the extra column in the task screens.

9.19 Steps to use Additional Buttons provision in Task Screen
This topic provides the systematic instructions to perform the basic operations on the selected
records.

In the custom component (example - fsgbu-ob-slp0-vp-wl-locked-task-extended) from where
you will be calling fsgbu-ob-cmn-fd-work-list, make the following changes:

Chapter 9
Steps for adding extra column in task grid

9-21

1. In the js file you can declare an array of the buttons you want to include like this-

self.extraButtons = [{ label: 'Extraa', icons: {
start: 'oj-ux-ico-refresh' }, display: 'all',
accessTo: ['L', 'F', 'H', 'C', 'S', 'A', 'O', 'T', 'WFCC']
 }, { label: 'Extrab',
icons: { start: 'oj-ux-ico-refresh' },
display: 'all', accessTo: ['L', 'F']
 }
]

2. And also the method which needs to be executed on the button click.

self.extraa = function(data){
console.log("it got called");
 }

Note:

The function name should be same as label of the button (in lower case).

3. In the HTML file, additional buttons attribute needs to be included like this:

 <fsgbu-ob-cmn-fd-work-list id='completedTaskGridCCA' dashboard-
id='STANDARD'
dashboard-queue-name='ACQUIRED' dashboard-queue-type='L' worklist-
columns='{{columnArray}}' additional-columns='{{additionalColumns}}'
additional-buttons='{{extraButtons}}' page-size=20>
</fsgbu-ob-cmn-fd-work-list>

4. In the json file, the methods which would be implemented on the custom button click needs
to be exposed.

 "methods": {
 "extraa": {
 "description": "Would be implemented on Extraa button click"
 },
 "extrab": {
 "description": "Would be implemented on Extrab button click"
 }
 }

9.20 Steps to create common-extended folder for extending
configJSON.js file

This topic provides the systematic instructions to perform the basic operations on common-
extended folder for extending configJSON.js file.

Chapter 9
Steps to create common-extended folder for extending configJSON.js file

9-22

For creating common-extended folder for extending configJSON.js file to do the following:

1. Create a folder inside extended-components\js\components.

2. Folder structure \common-extended\js\util.

3. Next we will add a file configJSON.js in the created folder.

4. The code inside this configJSON.js would be like-

define(['cmn-util/configJSON'], function (baseobj) {
baseobj.applicationObject.entityIdByProcessCode['CUSTOM'] = {'ccName':
'fsgbu-
ob-remo-deposit-ct-process-flow', 'Name': 'RD Amount Block', 'shortName':
'RD
Amount Block'};
});

5. Some understanding of the code: -

• Including the base object by giving the path of configJSON.js base file.

• Then for example adding the entry for custom process as shown above.

• The extended configJSON file would be loaded from base commonFunction.js

6. Insertion of the below script into PRODUCT_EXTENDED_LEDGER table

Insert into PRODUCT_EXTENDED_LEDGER
(ID,CCA_NAME,CCA_TYPE,PARENT_CCA_NAME,PRODUCT_NAME) select nvl(new_uuid
,'common-extended','config',null,'EXTENDED_COMPONENTS'from
PRODUCT_EXTENDED_LEDGER;

9.21 Customizing Existing LOV Fetch Result
This topic provides the systematic instructions to perform the basic operations on the
Customizing Existing LOV Fetch Result.

Modifying the retrieval output of an existing LOV to meet specific requirements.

• Ins cope Data segment can be used for addition of new fields. (using jquery, at any
position, we can add the field).

• Service Extensibility to be used for overriding the base method, OBX tool will generate the
base service jar from base service war and this jar should be used to override the base
service method and implement the custom changes.

• From UI, call will go to custom service , from custom service, call will go to base service for
base field persistence as Java to Java call, then custom functionality to be implemented for
persistence of custom fields as part of REST call to another custom service.

• For LOV data, custom projection service to be written. Custom Event needs to be raised
while custom fields persistence. For base fields, a call can be made from projection service
to base service to fetch data and persisting over the projection schema.

Chapter 9
Customizing Existing LOV Fetch Result

9-23

9.22 Steps for adding Pre/post methods in extended components
This topic provides the systematic instructions to perform the basic operations on the selected
records.

Suppose here we consider that we want to persist custom fields on postnext call (which means
first ‘self.next’ method of base would get called and then the control will come in postnext
method written in extended component).

1. Write postnext method in .js file of the extended component – wherein you can call the
custom Api for persisting the custom fields.

2. Expose this method in the .json file of the extended component.

3. Similarly we can add prenext method as well.(it would get executed before ‘self.next’
method of base executes).

Note:

The hooks for these methods to work should be a part of common infrastructure
components in appshell.

4. Below is the list of CCAs and the common methods which has pre and post hooks:

Table 9-1 List of CCAs - Field Description

CCA Name Common method
name

Pre hook present Post hook present

fsgbu-ob-cmn-ct-
authorization

compare No Yes

approve No Yes

fsgbu-ob-cmn-ct-act-
summary- template

delete No Yes

reopen No Yes

close No Yes

fsgbu-ob-cmn-ct-
maintenance

save Yes Yes

fsgbu-ob-cmn-ct-wizard next Yes Yes

previous Yes Yes

saveClose Yes Yes

cancel Yes Yes

hold Yes Yes

Applicable for custom
footer buttons as well

Yes Yes

fsgbu-ob-cmn-ct-rs-
authorization

approve No Yes

fsgbu-ob-cmn-ct-
summary-template

delete No Yes

open No Yes

close No Yes

Chapter 9
Steps for adding Pre/post methods in extended components

9-24

9.23 ENDPOINT Overrides
This topic describes the endpoint overrides.

To enhance the endpoint override extensibility, we've added a new column, CCA_NAME, to the
PRODUCT_SERVICE_EXT_LEDGER table.

This column provides an extensibility for overriding the existing endpoint behaviour for specific
UI components.

How to configure:

1. Determine the component for which you want to override the endpoint.

2. Enter the component's name in the CCA_NAME column of the
PRODUCT_SERVICE_EXT_LEDGER table.

3. PRODUCT_NAME & ENDPOINT_KEY must be same as endpoint we are extending.

4. The ENDPOINT_VALUE field should be populated with the new endpoint URI, while the
SERVICE_NAME field should specify the corresponding service to which this endpoint
belongs.

5. An entry of extension service should also be present in
PRODUCT_SERVICE_CTX_LEDGER to pick up the new APPID or other properties.

6. If CCA_NAME column contains NULL value, then endpoint override will be applicable
across all components subscribed to respective ENDPOINT_KEY.

Figure 9-36 Endpoint 1

Figure 9-37 Endpoint 2

How it works:

When a request is made for the component, the ext orchestrator service will now consult the
CCA_NAME column. If a matching entry exists, the endpoint specified in the ext orchestrator
service (PRODUCT_SERVICE_EXT_LEDGER) will take precedence over the existing
endpoint of base product.

This new approach offers several advantages:

• Any endpoint can be extended using this approach.

• The PRODUCT_SERVICE_EXT_LEDGER table is independent of product-related flyway
updates, ensuring that future changes won't impact existing overrides.

Chapter 9
ENDPOINT Overrides

9-25

• This extensibility allows for specific endpoint overrides, other components are unaffected
with their original endpoints.

9.24 Steps to create util-extended folder
This topic provides the systematic instructions to perform the basic operations on the selected
records.

1. Create a folder inside extended-components\js\components in app-shell for component
you want to make label-changes.

2. Folder structure: <%componentName%>-util-extended\resources\<component-name>\nls.
Example : for sms it would look like: sms-util-extended\resources\sms\nls.

3. Add the file bundle.js in the created folder.

4. The code inside bundle.js would be like-

define(['ojL10n!' + window.location.origin + '/<%componentName%>-component-
server/js/components/resources/<%componentName%>/nls/bundle.js'],
 function (baseLabels) {
baseLabels.fsgbuobsmsmnusers.lblhomeBranch = "Foreig111n Branch"
baseLabels.fsgbuobsmsmnusers.lblstatusChangedOn = "Yogesh" return
{
 'root': baseLabels
 };
});

5. Some understanding for the code: -

• Including the base labels by giving the path of bundle.js of main component.

• Then changing the labels accordingly like in the example above -> Home Branch is
replaced with “Foreign111n Branch”.

• Returning the labels (including the changes).

6. Insertion of the below script into PRODUCT_EXTENDED_LEDGER table.

Insert into PRODUCT_EXTENDED_LEDGER
ID,CCA_NAME,CCA_TYPE,PARENT_CCA_NAME,PRODUCT_NAME)
select nvl(new_uuid ,'<%=componentName%>-util-
extended','util',null,'EXTENDED_COMPONENTS'from PRODUCT_EXTENDED_LEDGER;

9.25 Dynamic Data Configuration (DDC)
This topic provides the systematic instructions to perform the basic operations on the selected
records.

DDC is an infrastructure component comprising a user interface and a service.

It empowers developers to define prepared statements for dynamic data retrieval. The
Dynamic Data Configuration (DDC) service's response is utilized by UI components or invoking
services to render List of Values (LOV) results.

Dynamic Data Configuration infra can be utilized with OBX code to call endpoint and bind the
response.

Chapter 9
Steps to create util-extended folder

9-26

Prerequisites:

• For domain services to perform dynamic data queries on the domain schema, the
@ComponentScan annotation must include the "oracle.fsgbu.plato.validation" where
domain services reside.

Figure 9-38 Plato Validation

• A database schema created for the Dynamic Data Configuration service.

• A configured JDBC data source named jdbc/PLATODYNADATA on the server.

• Configure newly created schema name in PROPERTIES table of PLATO schema.

Figure 9-39 PLATO schema

Deployment Steps:

1. Deploy the Dynamic Data Configuration service to the server.

2. Once deployed, the Dynamic Data Configuration user interface should be accessible.

Configuration steps:

1. Select the desired product processor.

2. Specify the service name.

3. Define the unique key for the data.

4. List the required columns.

5. Provide the from query to retrieve data.

6. Set the paging parameters (if applicable).

7. Determine the desired response format.

Chapter 9
Dynamic Data Configuration (DDC)

9-27

Figure 9-40 Dynamic Data Configure

Test Query:

• Test API: Use the test API to execute the query. Provide any necessary query parameters
and click "OK." The results will be displayed based on the query.

Figure 9-41 Modal Dialog

Figure 9-42 Success

Chapter 9
Dynamic Data Configuration (DDC)

9-28

• Test LOV: If applicable, use the test List of Values (LOV) to test the query.

Figure 9-43 Modal Dialog

Figure 9-44 Test LOV

Once satisfied with the results, save the dynamic data query.

9.26 Task Screen Custom Config
This topic provides the systematic instructions to perform the basic operations on the selected
records.

This document outlines how to customize the task screen using a CUSTOM_CONFIG table,
you can show or hide existing columns, and even add additional filters to the task search
screen for specific fields.

Prerequisites:

Ensure that all columns on the task screen are listed in the CUSTOM_CONFIG table present in
PLATO_ORCH schema. All the default columns would already be present in this table.

• For all the default columns in Task screen, TASK_SCREEN_VIEW column value will be
set to YES by default. If consulting wishes to hide any default column, they can set it to
NO.

• Also, if they wish to add new custom column, they need to add the key (key in which we
will get the value of custom field in response of task screen plato-orch-service/api/v1/

Chapter 9
Task Screen Custom Config

9-29

extn/tasks api) of that column in CUSTOM_FIELD_NAME column in CUSTOM_CONFIG
table.

Adding Custom Filters

1. Determine the custom field for which you want to add a filter.

2. Update CUSTOM_CONFIG table:

• Add the field name (custom field key) to the CUSTOM_FIELD_NAME column.

• Set the SEARCH_SCREEN_VIEW column to YES for this field.

Once these changes are made, the additional filter will be displayed on the search screen's UI.

Figure 9-45 Custom Fields 1

Figure 9-46 Screen UI

Hiding/Adding Columns on the Task Screen:

1. Identify the column you want to hide.

2. Update CUSTOM_CONFIG table:
Set the TASK_SCREEN_VIEW column to NO for that column.

Chapter 9
Task Screen Custom Config

9-30

After updating the configuration, the column will no longer be visible on the task screen.

Figure 9-47 Custom Fields 2

Figure 9-48 Task List

Similarly , we can even add new custom column in Task screens. For this they need to add the
custom field name (key in which we will get the value of custom field in response of task
screen plato-orch-service/api/v1/extn/tasks api) of that column in CUSTOM_FIELD_NAME
column in CUSTOM_CONFIG table.

Configurations needed from backend:

Configurations needed from backend side to get the custom field in plato-orch-service/api/v1/
extn/tasks response –

During workflow initiation, the customer provides key-value pairs for specific columns. In the
CUSTOM_CONFIG table, columns are mapped under the MAPPED_COLUMN_NAME field.
For instance, COLUMN4 is mapped to a custom_field_name, such as CustomField.

Here's how it works: In the CUSTOM_CONFIG table, COLUMN4 is mapped to the field
CustomField. During workflow initiation, the customer provides the value for COLUMN4, such
as COLUMN4 = CF_1. The system uses this mapping to interpret the value as follows:
CustomField (from the CUSTOM_CONFIG mapping) will get the value CF_1 for that task ,
provided by the customer during initiation. This allows the customer to input COLUMN4 =
CF_1 during workflow initiation, and it will be mapped with CUSTOM_FIELD_NAME based on
the mapping defined in the CUSTOM_CONFIG table This way, you can map any internal
column to a custom field name that suits your specific use case.

Chapter 9
Task Screen Custom Config

9-31

Additionally, the columns that can be used for such mappings currently range from COLUMN1
to COLUMN20, providing flexibility to define up to 20 custom fields.

Figure 9-49 Custom Fields 3

Figure 9-50 Test Workflow

Chapter 9
Task Screen Custom Config

9-32

10
Reference and Feedback

This section describes following topics:

• Reference

• Documentation Accessibility

• Feedback and Support

10.1 Reference
For more information on any related features, you can refer to the following documents:

• Oracle Banking Extensibility Workbench Installation Guide

10.2 Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/us/corporate/accessibility/index.html.

10.3 Feedback and Support
Oracle welcomes customers' comments and suggestions on the quality and usefulness of the
document. Your feedback is important to us. If you have a query that is not covered in this user
guide.

10-1

https://www.oracle.com/corporate/accessibility/

Index

A
Action URL and Static Tag Maintenance, 7-1
Additional Fields Maintenance, 6-1

C
Creating final Extended Component war for

Deployment, 4-17

D
Dashboard Widget, 4-14

E
Entity Details, 2-6
Extending Product Data Segments with Additional

Fields, 6-1
Extensibility Use Cases for OBBRN Servicing, 8-1
Extensibility Use Cases for OBX, 9-1

H
HTML Changes, 9-5

I
In-Scope DS, 5-10

J
JS Changes, 9-6

M
Maintenance Detail and Summary, 4-10
Model Changes, 9-9
Modification of Base Web Component, 5-1

N
New Field in Existing Base Data Segment, 9-13
New Transaction screen – 1499 (Clone of 1401),

9-2

O
OBX Release Command, 5-11
OBX UI, 2-5
OBX Update Command, 5-8

R
Reference and Feedback, 10-1
Running Component after Generation, 4-16

S
Service Component, 9-10
Service Extensions, 3-1
Service Update, 5-9
Sign In, 4-4, 4-12
Steps for Modification of Base Component, 5-2

U
UI Extensions – Web Component, 4-1
UI Update, 5-9
Understanding DB Scripts for Web Component,

4-18

V
Virtual Page, 4-6

W
Welcome to Oracle Banking Extensibility

Workbench, 2-1

Index-1

	Contents
	1 Preface
	1.1 Purpose
	1.2 Introduction
	1.3 Audience
	1.4 Documentation Accessibility
	1.5 Critical Patches
	1.6 Diversity and Inclusion
	1.7 Related Resources
	1.8 Conventions
	1.9 Screenshot Disclaimer
	1.10 Acronyms and Abbreviations
	1.11 Basic Actions
	1.12 Symbols and Icons

	2 Welcome to Oracle Banking Extensibility Workbench
	2.1 Introduction
	2.2 OBX and Base artifacts compatibility
	2.3 Setting up OBX for first time use
	2.4 OBX Maintenance
	2.5 OBX UI
	2.5.1 Entity Details
	2.5.2 Field Details
	2.5.3 Child Entity Details
	2.5.4 Relationship Details

	3 Service Extensions
	3.1 Simple Sub Domain Service
	3.2 Maintenance Sub Domain Service
	3.3 Data/Resource Segment Sub Domain Service
	3.3.1 RSOV1
	3.3.2 RSOV2 DS
	3.3.3 Workflow DS

	3.4 Simple Publisher/Subscriber Event Service
	3.5 Batch Service
	3.6 Custom Validation Service
	3.7 Steps to Adopt Multi in Existing Service
	3.8 Service Extensibility

	4 UI Extensions – Web Component
	4.1 Component Server
	4.2 Simple Standalone
	4.3 Virtual Page
	4.4 Maintenance Detail and Summary
	4.5 Data Segment
	4.6 Dashboard Widget
	4.7 Running Component after Generation
	4.8 Creating final Extended Component war for Deployment
	4.9 Understanding DB Scripts for Web Components

	5 Modification of Base Web Component
	5.1 Steps for Modification of Base Component
	5.2 Process Workbench
	5.3 OBX Update Command
	5.3.1 Service Update
	5.3.2 UI Update

	5.4 In-Scope DS
	5.5 OBX Release Command

	6 Extending Product Data Segments with Additional Fields
	6.1 Additional Fields Maintenance
	6.2 Populating Data in Corresponding Fields From UI
	6.3 Fetching the Saved Values

	7 Action URL and Static Tag Maintenance
	7.1 Action URL Maintenance
	7.2 Static Tag Maintenance

	8 Extensibility Use Cases for OBBRN Servicing
	8.1 New Transaction Screen – 1499 (Exact Clone of 1401)
	8.2 Exact Clone with Additional Fields Using Common Code
	8.3 Exact Clone with Additional Fields Using Extensible Code
	8.4 Jar Deployment in Weblogic

	9 Extensibility Use Cases for OBX
	9.1 New Transaction screen – 1499 (Clone of 1401)
	9.2 New Data Segment in Existing 1401 Screen
	9.3 HTML Changes
	9.4 JS Changes
	9.5 JSON Changes
	9.6 Model Changes
	9.7 Database Changes
	9.8 Service Component
	9.9 New Field in Existing Base Data Segment
	9.10 HTML Changes (Extended Components)
	9.11 HTML Changes (Base Component)
	9.12 JS Changes (Base Component)
	9.13 JS Changes (Extended Component)
	9.14 JSON Changes (Extended Component)
	9.15 JSON Changes (Base Component)
	9.16 DB Changes
	9.17 Add New Columns in Base Component Table
	9.18 Steps for adding extra column in task grid
	9.19 Steps to use Additional Buttons provision in Task Screen
	9.20 Steps to create common-extended folder for extending configJSON.js file
	9.21 Customizing Existing LOV Fetch Result
	9.22 Steps for adding Pre/post methods in extended components
	9.23 ENDPOINT Overrides
	9.24 Steps to create util-extended folder
	9.25 Dynamic Data Configuration (DDC)
	9.26 Task Screen Custom Config

	10 Reference and Feedback
	10.1 Reference
	10.2 Documentation Accessibility
	10.3 Feedback and Support

	Index

