4.1 Fields

This section allows users to define basic model details.



  • Use Case Name:
    • Enter a unique name for the model.
    • Example: "Login_Anomaly_Model" or "Payment_Fraud_Detection"
    • (Required) – This field must be filled to proceed.
  • Description:
    • Provide a summary of the model’s purpose.
    • Example: "Detects unusual login attempts based on user behaviour patterns."
  • Use Case Type:
    • Select the type of use case as Anomaly_Detection.
    • Options may Regression & Classification, or any other specific use cases.(Required)
  • Product Processor:
    • Select the system or processor that will handle training.
    • Example: "OBDX"
    • (Required)
  • Training Data Source:
    • Specify the dataset used to train the anomaly detection model.
    • The dataset must include the target column (i.e., the column indicating whether an instance is anomalous or normal).
    • Example: A CSV file or database table containing past login records.
    • (Required)
  • Inference Data Source:
    • Specify the dataset used when making predictions.
    • Unlike the training dataset, this dataset should not include the target column.
    • Example: "Live payment transaction records without labels."
    • (Required)
  • Unique Case Identifier:
    • Select the column in the dataset that uniquely identifies each record.
    • Example: "User_ID" for login data or "Transaction_ID" for payment data.
    • (Required)
  • Target Column:
    • Select the column that defines whether a transaction/login attempt is an anomaly.
    • Example: A column labelled "Anomaly_Flag" where 1 indicates an anomaly and 0 indicates normal behaviour.
    • (Required)
  • Positive Target Value:
    • Specify the value that represents an anomaly.
    • Example: If "1" indicates fraud or an unauthorized login, set "1" as the positive target value.
  • Tablespace:
    1. Define the storage location for the model’s data within the system.
  • Partition Column Names:
    • Select the columns used for partitioning the dataset.
    • Example: "Date" to separate records by time period.
  • Selected Algorithm:
    • Choose the machine learning algorithm to be used.
    • Example: ALGO_SUPPORT_VECTOR_MACHINES, ALGO_NEURAL_NETWORK etc.
  • Model Error Statistic:
    • Select an error metric to evaluate the model’s accuracy.
    • Example: F1 Score, Precision-Recall, or AUC-ROC.
  • Correlation Button:
    • Clicking this button will analyse relationships between features and the target variable.
    • Helps in understanding the significance of different input features.
  • Cost Matrix Button:
    • Allows users to define cost-sensitive learning, useful for reducing false positives or false negatives.
    • (Optional)
  • Save Button:
    1. Saves the model configuration.
  • Cancel Button:
    • Exits without saving any changes.