
Oracle® Banking APIs
Event Management Guide

Patchset Release 22.2.6.0.0
G28331-01
April 2025

Oracle Banking APIs Event Management Guide, Patchset Release 22.2.6.0.0

G28331-01

Copyright © 2006, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Purpose vi

Audience vi

Documentation Accessibility vi

Critical Patches vi

Diversity and Inclusion vii

Conventions vii

Related Resources vii

Screenshot Disclaimer vii

Acronyms and Abbreviations vii

1 Introduction

2 Database Configurations

3 Code Configuration

4 Event Processing

5 Custom Fields For Push notifications

6 Multi-Entity Specific templates

7 WhatsApp Configurations

iii

Index

iv

List of Figures

7-1 WhatsApp Quickstart 7-1

7-2 WhatsApp Quickstart- API Setup 7-1

7-3 Service Consumers 7-2

7-4 Service Consumers - Transformation 7-2

7-5 Map the service and verify the request transformation template 7-3

v

Preface

• Purpose

• Audience

• Documentation Accessibility

• Critical Patches

• Diversity and Inclusion

• Conventions

• Related Resources

• Screenshot Disclaimer

• Acronyms and Abbreviations

Purpose
This guide is designed to help acquaint you with the Oracle Banking Digital Experience
application. This guide provides answers to specific features and procedures that the user
need to be aware of the module to function successfully.

Audience
This document is intended for the following audience:

• Customers

• Partners

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Critical Patches
Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/security-alerts/

Bulletins. All critical patches should be applied in a timely manner to ensure effective security,
as strongly recommended by Oracle Software Security Assurance.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within
a paragraph, URLs, code in examples, text
that appears on the screen, or text that you
enter.

Related Resources
For more information on any related features, refer to the following documents:

• Oracle Banking APIs Installation Manuals

Screenshot Disclaimer
Personal information used in the interface or documents is dummy and does not exist in the
real world. It is only for reference purposes.

Acronyms and Abbreviations
The list of the acronyms and abbreviations used in this guide are as follows:

Preface

vii

https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

Table 1 Acronyms and Abbreviations

Abbreviation Description

OBAPI Oracle Banking APIs

Preface

viii

1
Introduction

This document contains steps to configure alerts for any event in the OBDX application. An
alert configuration is identified by following properties:

1. Event Group: It groups similar events of similar functionalities together. An Event Group
may contain multiple events.

2. Event: An event could be any action taken by the user or system in OBDX application that
triggers alert. Each event maps to a corresponding action or an activity executed in the
business logic in OBDX. OBDX application may receive events from external system which
are responsible for triggering alert.

3. Message template: This is a template of the message that needs to be sent as an alert to
the receiver. An event can have multiple templated based on the channel on which it is
getting delivered.

4. Message Destination: Destination is the channel on which alert/ notification will be
delivered to the user. OBDX supports 5 such channels – Email, SMS, WhatsApp, Push
Notification and On-screen notification.

5. Message Attribute: A message template contains the message to be delivered to the
receiver. The message is relevant to the action being performed in the specific event and it
contains dynamic data values from the business logic. A message attribute is an identifier,
which is used in the message template to replace with the actual values dynamically.

6. Message Action: Some of the events in OBDX contains an actionable link in its content.
This link is responsible for the navigation of user to desired location from the alert.
Message action attribute defines the action to be executed during event processing.

This document also contains the business logic required to invoke an event for triggering alert
within OBDX and other miscellaneous aspects.

1-1

2
Database Configurations

1. DIGX_EM_EVENT_GROUP
This table contains the available event group entries in OBDX. One event group may have
multiple events. An event group can be created as per the requirements.

COLUMN NAME DESCRIPTION

ID A unique identifier for the event group.

NAME Name of the event group.

DESCRIPTION Description of the event group.

IS_DND_APPLICABLE Identifies whether the DND setting is applicable for
this event group or not. Possible values: ‘Y’ or ‘N’.

2. DIGX_EM_EVENT
The events are added in the DIGX_EM_EVENT table.

COLUMN NAME DESCRIPTION

ID A unique identifier for the event occurred. It should
be a logical name for the event.

NAME Name of the event.

DESCRIPTION Description of the event.

EVENT_TYPE Identifies if the event is Mandatory or Subscribe-
able for the user. Possible values are: ‘M’ or ‘S’.

EVENT_GROUP_ID Specifies the Group id of the event.

TASK_ID This column is used for subscription-based alerts. If
account access needs to be checked for an alert
before sending it to receiver, this task id will be
used to check account access.

3. DIGX_EM_MESSAGE_ATTRIBUTE
Message attributes are added in the table DIGX_EM_MESSAGE_ATTRIBUTE table.

COLUMN NAME DESCRIPTION

NAME Name of the attribute. This needs to be used in the
message template where the dynamic value needs
to be replaced.

DESCRIPTION Description of the attribute.

EVENT_ID ID of the Event. It should match ID column of
DIGX_EM_EVENT

DATATYPE It determines the type of data. Example – String,
Date, Currency, Complex and Number.

PATH It specifies the path of message template.

4. DIGX_EM_MESSAGE_ACTION

2-1

Message Actions are added in DIGX_EM_MESSAGE_ACTION table. This is only for those
events that are actionable and contains URL.

COLUMN NAME DESCRIPTION

NAME Name of the action. This needs to be used in the
template where the link needs to be replaced with

DESCRIPTION Description of the action.

EVENT_ID ID of the Event. It should match ID column of
DIGX_EM_EVENT

URL_TEMPLATE URL of the event. This is the actual URL/ link
where the user will be redirected to.

URL_TEXT This is the text that will be displayed in the alert
received by the user.

LOGIN_REQUIRED Identifies if login is required or not. If the redirection
page is restricted, it should ask for login page.
Possible values: ‘Y’ or ‘N’.

5. DIGX_EM_MESSAGE_TEMPLATE
Message templates are added to the table DIGX_EM_MESSAGE_TEMPLATE table.

COLUMN NAME DESCRIPTION

NAME Name of the message template.

TITLE Title of the message template. This is the subject
on the alert in case of email and on-screen
message.

CONTENT It contains the format for the message body. It is
stored as CLOB in the table.

LOCALE The locale column stores language and regional
preferences, typically represented by language
codes like "en" for English.

DETERMINANT_VALUE It determines the entity code for the template.

DELETE_STATUS Identifies the delete status of message template.
Possible values are: ‘Y’ or ‘N’.

EVENT_ID ID of the Event. It should match ID column of
DIGX_EM_EVENT.

DESCRIPTION Description of the message template.

Note:

While defining the content of the message template, the attribute name and the
message action name needs to have # as prefix and suffix.

Example: If the attribute name in payeeName, the message content would be, “You
have added #payeeName# as a beneficiary for payment.

6. DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL
A message template needs to be mapped to the desired destinations to which alert needs to
be delivered.

Chapter 2

2-2

COLUMN NAME DESCRIPTION

TEMPLATE_NAME Name of the message template. It should match
the column NAME of
DIGX_EM_MESSAGE_TEMPLATE.

LOCALE The locale column stores language and regional
preferences, typically represented by language
codes like "en" for English. It should match the
column LOCALE of
DIGX_EM_MESSAGE_TEMPLATE.

DETERMINANT_VALUE It determines the entity code for the template. It
should match the column DETERMINANT_VALUE
of DIGX_EM_MESSAGE_TEMPLATE.

DESTINATION_ID Determines the channel on which alert is to be
sent. Possible values are SMS, WA, SMB, EM and
PN.

7. DIGX_EM_DESTINATION
Destinations are added in DIGX_EM_DESTINATION table. In the application five such
destinations are already present which are Email(EM), SMS(SMS), Push Notification(PN),
Secure Mailbox(SMB) and WhatsApp(WA).

COLUMN NAME DESCRIPTION

ID Primary key of the table. An identifier for the
destination.

NAME Name of the destination.

DESCRIPTION Description of the destination.

Note:

Entries for most of the event groups, events, message attributes, message action,
message templates and message template destination relation are already added.
Please check for the entries in the table to avoid repetition.

Sample Scripts

• insert into DIGX_EM_EVENT_GROUP (ID,NAME,DESCRIPTION,IS_DND_APPLICABLE)
values ('SMS', ' User Management', 'Event group for user management', 'N');

• insert into DIGX_EM_EVENT
(ID,NAME,DESCRIPTION,EVENT_TYPE,EVENT_GROUP_ID,TASK_ID)
values ('USER_LOGIN_SUCCESS', 'Login success Alert', 'Login success
Alert', 'M', 'SMS', null);

• insert into DIGX_EM_MESSAGE_ATTRIBUTE
(NAME,DESCRIPTION,EVENT_ID,DATATYPE,PATH)
values ('BankName', 'Bank Name For Login Success Alert',
'USER_LOGIN_SUCCESS', 'String', 'bankName')

Chapter 2

2-3

• insert into DIGX_EM_MESSAGE_ACTION
(NAME,DESCRIPTION,EVENT_ID,URL_TEMPLATE,URL_TEXT,LOGIN_REQUIRED)
values ('act1', 'Url Template for Approval of Non-Financial Transaction',
'com.ofss.digx.app.approval.service.transaction.Transaction.checkApprovals.
nonfinancial_TRANSACTION_INITIATED_APPROVER',
'home.html?homeModule=approvals&homeComponent=transaction-
detail¶ms={"apiType":"#ApiType#","transactionId":"#TxnReferenceNo#"}',
'click here', 'Y');

• insert into DIGX_EM_MESSAGE_TEMPLATE
(NAME,TITLE,CONTENT,LOCALE,DETERMINANT_VALUE,DELETE_STATUS,EVENT_ID,LAST_UP
DATED_BY,
LAST_UPDATED_DATE,DESCRIPTION) values ('USER_LOGIN_SUCCESS_SHORT', 'Login
Success Alert.', 'You have successfully logged in
to your internet banking on #loginSuccessDateAndTime#. If you do not
recognize this login attempt, immediately contact customer
care/branch.', 'en', '*', 'N', 'USER_LOGIN_SUCCESS', 'OBXUser',sysdate,
'Login success Alert Short Template');

• insert into DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL (TEMPLATE_NAME,
LOCALE,DETERMINANT_VALUE,DESTINATION_ID)
values ('USER_LOGIN_SUCCESS_SHORT', 'en', '*', 'SMS');

• insert into DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL
(TEMPLATE_NAME,LOCALE,DETERMINANT_VALUE,DESTINATION_ID)
values ('USER_LOGIN_SUCCESS_SHORT', 'en', '*', 'PN');

• insert into DIGX_EM_DESTINATION (ID, NAME, DESCRIPTION)
values ('SMS', 'SMS', 'Destination for sending messages via SMS');

Chapter 2

2-4

3
Code Configuration

API for Raising an Event:

For raising an event, generateEvent API has been provided in the AbstractApplication class.
A developer needs to call this API to generate an alert that is required for the respective
business logic

It takes three parameters:

1. Session Context

2. ActivityLog: This object contains the dynamic data that needs to be replace in place of
attributes in the message template content.

3. EventId

Typically, an event is triggered from service after the business logic has been performed. While
triggering alert API event id and the parameters that needs to be passed should be determined
and defined to the database tables mentioned above.

For an account-based alert of type mandatory or subscription, accountId and accountType
attribute should be populated in ActivityLog. Similarly for a Party-based alert, customerId
attribute should be populated in the ActivityLog.

In the application, Activity log contains some basic fields that can be used as attributes for the
alert processing. In case, additional fields are required in the message content a sub class of
ActivityLog should be created and used and passed as an argument to “generateEvent” API.

Following is a sample code that can be used in the business logic to generate and event and
trigger alert.

ActivityLog activityLog = new ActivityLog();

activityLog.setCustomerId(sessionContext.getTransactingPartyCode());

 activityLog.setAccountId(“<<AccountNumber>>”);
 activityLog.setAccountType(“<<AccountType>>”);
 //If required, set other attributes in activityLog
 super.generateEvent(sessionContext, activityLog, <<EventId>>);

Alert generated using schedulers, listener classes

An alert can be generated from a non-standard REST API of OBDX application. It can be
invoked in a scheduler class, a listener class or it can also be invoked from a runnable thread
invoked within a service. In such cases, ensure that following code is executed at the end of
the business logic. Possibly within a finally block of the code, through which generate event
has been triggered.

EmHandler.getInstance().putMessage();

3-1

4
Event Processing

Event processing in OBDX application initiates from the business logic. A developer needs to
determine the service class from which alert needs to be triggered. Following steps/instructions
can be followed to use event processing mechanism

1. Determine and create an event ID to be used and the group it belongs to. If any existing
group cannot be used define a new group.

2. Determine all the parameters that can be used as attributes or actions in the alert’s
message content. These parameters will be used in the activity log. Keep in mind the end
message content while determining the parameters in the activity log.

3. Find the location in the business logic to generate the event and use the API information
provided above.

4. Make all the necessary Day 0 entries in the database tables discussed in the previous
section.

5. The event processing in OBDX happens in 2 steps, Generation of event and Processing of
that event. In a regular REST based service scenario, developer needs to write the logic to
generate the event, however the processing of that event is done by OBDX framework
upon successful completion of transaction.

6. This 2-step process is based on queue notification framework which is based on either
JMS or KAFKA implementation. Ensure that proper configurations are in place based on
the implementation preferences. Queue setup information is given in the following
sections.

7. Upon successfully completion of the transaction, event is processed by event framework
and notifications are sent to the receiver over the configured and desired channels.

8. Populating Notification Details in the activity log – In general, if a user who has logged in
into the application, performed a specific transaction and the same user needs to receive
the alert, event framework considers its contact details and dispatches the message
correctly. However, it the message needs to be delivered to a receiver who has not logged
in, developer needs to populate its contact details in notificationDetails field of the
ActivityLog object. If the receiver is an OBDX application user, its user id can be set. In
other cases,(or alternately for OBDX users case as well) direct contact details like email id
or mobile number can also be set in the notification details.

9. DND settings – Event Processing framework allows DND options for the user to stop
receiving few alerts. Developer can decide the event groups that are applicable for DND
settings. There are 2 ways to set DND for the receiver.

a. An admin user can map DND groups to other users using User management
transaction

b. A user can do the DND mapping by itself using preferences transaction

10. Delivery Mode preferences – A receiver may choose its preferred delivery mode using
preferences transaction. By default, all the destinations are set as preferred delivery
modes. A user must have at least one delivery mode enabled.

11. Language Preference – A receiver may choose preferred language to receive the alerts. If
preferred language is not set Bank’s default language will be used to deliver the message.
Developer needs to ensure that message templates are properly configured for all the

4-1

supported languages defined in the implementations. If the language specific template is
not available, by default, template in the English language will be taken up for processing
and delivered.

12. Events in OBDX are categorized in 2 types

a. Mandatory Alert – this alert is always sent to the receiver whenever the event occurs

b. Subscription Alert – this alert is sent to the receiver only if the receiver has subscribed
for it. A receiver can subscribe for events using ‘Alert Subscription’ transaction under
preferences.

13. Message Template maintenance – as explained above, the message templates for the
events can be maintained using Day-0 scripts. However, Administrator user can create or
edit these message templates using message Template Maintenance transaction. A
template can be deleted as well using this transaction.

(More information on all the above transactions is given in the user manuals.)

Important Tables in Event Processing

1. DIGX_EM_ALERT_DISPATCH_LOG – Provide the final status of the alert

2. DIGX_EM_ALERT_STATE_LOG – Provides the in-detail logging of the alert processed
and the various states it passed through

3. DIGX_EM_SUBSCRIPTION – Lists all the users who have subscribed for the event

4. DIGX_EM_SUBSCRIBED_EVENTS – contains the mapping of receivers and the events
they have subscribed to

5. DIGX_EM_DND_PREF – Contains the mappings of receiver and the event groups that the
respective user has marked for DND.

6. DIGX_EM_PREFERRED_DESTINATION_PREF – provides the listing of destination
preferences maintained by the users

Event Processing Dispatchers

OBDX application uses dispatcher classes to provide business logic for sending the
notifications to the receiver on desired destination or channel. Each destination must have a
dispatcher class associated with it. The application provides a default dispatcher for all five
pre-defined destination. An implementor may use custom dispatcher classes for these
destinations.

Default Email dispatcher class uses standard JAVA mail APIS to send emails using SMTP
server. SMTP configurations need to be maintained in the configuration related tables. Also,
SMTP configurations maintenance and testing can be done using ‘System Configurations’
transaction. Details on this transaction are given in the OBDX core user manual.

Default SMS dispatcher is not pre-integrated with any SMS provider. An implementor is
advised to use a custom SMS dispatcher as per the requirements.

Custom dispatcher class must extend following class and implement the necessary methods -
‘com.ofss.digx.app.em.alert.service.process.dispatch.dispatcher.AbstractDispatcher’. A custom
message class can also be used to use specific recipient details. This message class must
implement ‘com.ofss.digx.app.em.alert.service.process.message.IMessage’.

Chapter 4

4-2

5
Custom Fields For Push notifications

Following Keys can be used to customize Push Notifications.

KEY NAME VALUE

SOUND_IOS File name of custom sound file added to OBDX
IOS App

SOUND_ANDROID File name of custom sound file added to OBDX
Android App

LARGE_ICON_ANDROID URL of icon image to be displayed as large icon in
Big Style Push Notification of OBDX Android App.

LARGE_IMAGE_ANDROID URL of image to be displayed in Big Style Push
Notification of OBDX Android App.

These custom keys are to be added to the value of “CONTENT” column of
DIGX_EM_MESSAGE_TEMPLATE table.

If alerts are being created through front end UI, add following keys to “Notification Message”
section.

Syntax for adding custom keys to Push Notification alert messages

[customfield1Name~customfield1Value|customfield2Name~customfield2Value]

Example 1:

You have requested for #NoOfChequeBook# cheque book with #ChequeBookOption# leaves
on Account #AccountNo#.

[SOUND_ANDROID~isntit|LARGE_IMAGE_ANDROID~http://static1.squarespace.com/
static
/54ac6f9ae4b0cf1d82a4b59e/t/587f9e52cd0f68e84c5548fd/1484758653422/?
format=300w|SOUND_IOS~chime.m4a]

Example 2:

You have requested for #NoOfChequeBook# cheque book with #ChequeBookOption# leaves
on Account #AccountNo#.

[SOUND_ANDROID~isntit|LARGE_ICON_ANDROID~http://static1.squarespace.com/
static/54ac6f9ae4b0cf1d82a4b59e/t/
587f9e52cd0f68e84c5548fd/1484758653422/?format=300w|SOUND_IOS~chime.m4a]

5-1

6
Multi-Entity Specific templates

Entity specific templates can be created by following ways :

• Creation of a new alert and template before the entity creation.
If a new alert has to be maintained before the creation of any new entity, the data for the
same has to be inserted in the following tables twice.

One for DETERMINANT_VALUE ‘*’ and the other for DETERMINANT_VALUE
‘OBDX_BU’, which is the default entity.

Tables:

DIGX_EM_MESSAGE_TEMPLATE
DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL

• Creation of a new alert and template after the entity creation.
If a new alert has to be maintained after the creation of entity/entities, the same can be
replicated for the different entities using the below queries.

First insert the templates for DETERMINANT_VALUE ‘*’ and DETERMINAT_VALUE
‘OBDX_BU’ and then execute the below queries for the respective entities.

insert into DIGX_EM_MESSAGE_TEMPLATE(NAME, DESCRIPTION, TITLE, CONTENT,
LOCALE,
 DETERMINANT_VALUE, DELETE_STATUS, EVENT_ID, LAST_UPDATED_BY,
LAST_UPDATED_DATE)
 (SELECT NAME, DESCRIPTION, TITLE, CONTENT, LOCALE,
#determinantValue, DELETE_STATUS,
 EVENT_ID, LAST_UPDATED_BY, sysdate FROM DIGX_EM_MESSAGE_TEMPLATE
WHERE
 DETERMINANT_VALUE = '*')

insert into DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL(TEMPLATE_NAME, LOCALE,
 DETERMINANT_VALUE, DESTINATION_ID) (SELECT TEMPLATE_NAME, LOCALE,
#determinantValue,
 DESTINATION_ID FROM DIGX_EM_MESSAGE_TEMPLATE_DESTINATION_REL WHERE
DETERMINANT_VALUE =
 '*')

6-1

7
WhatsApp Configurations

WhatsApp is defined as a destination in Alert framework. WhatsApp messages are delivered to
WhatsApp server using OBRH.

Banks must have a business account registered with WhatsApp.

Navigate to https://developers.facebook.com/ and setup the WhatsApp capability.

Figure 7-1 WhatsApp Quickstart

Figure 7-2 WhatsApp Quickstart- API Setup

7-1

This page gives temporary access token, long term access token can be obtained from https://
developers.facebook.com/tools/explorer/. In production long term token will be required. This
has to be setup in OBRH as shown below:

Figure 7-3 Service Consumers

Setup the host, port and token as shown below:

Service needs to be added using OTHERS option.

Note:

The url from the cURL URL shown in API Setup option of developer console.

Figure 7-4 Service Consumers - Transformation

Chapter 7

7-2

Map the service and verify the request transformation template (for country codes, if they need
to appended in case of mismatch in phone number format).

Ensure internet connectivity is enabled from OBRH server. Setup proxy in case required in
weblogic managed server start args → -Dhttps.proxyHost=www-abc.in.oracle.com -
Dhttps.proxyPort=80 -Dhttp.nonProxyHosts=*.in.oracle.com.

Figure 7-5 Map the service and verify the request transformation template

Chapter 7

7-3

Index

C
Code Configuration, 3-1
Custom Fields For Push notifications, 5-1

D
Database Configurations, 2-1

E
Event Processing, 4-1

M
Multi-Entity Specific templates, 6-1

W
WhatsApp Configurations, 7-1

Index-1

	Contents
	List of Figures
	Preface
	Purpose
	Audience
	Documentation Accessibility
	Critical Patches
	Diversity and Inclusion
	Conventions
	Related Resources
	Screenshot Disclaimer
	Acronyms and Abbreviations

	1 Introduction
	2 Database Configurations
	3 Code Configuration
	4 Event Processing
	5 Custom Fields For Push notifications
	6 Multi-Entity Specific templates
	7 WhatsApp Configurations
	Index

