
Oracle® Banking APIs
Aggregator Guide

Patchset Release 22.2.5.0.0
G15745-01
October 2024

Oracle Banking APIs Aggregator Guide, Patchset Release 22.2.5.0.0

G15745-01

Copyright © 2006, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Purpose iv

Audience iv

Documentation Accessibility iv

Critical Patches iv

Diversity and Inclusion v

Conventions v

Related Resources v

Screenshot Disclaimer v

Acronyms and Abbreviations v

1 Aggregator Service

1.1 Implementation 1-1

1.2 Implementation Details of Individual Service 1-2

1.2.1 SCF Implementation 1-2

1.2.2 VAM Implementation 1-7

1.2.3 Receivables Implementation 1-9

2 List of Topics

Index

iii

Preface

• Purpose

• Audience

• Documentation Accessibility

• Critical Patches

• Diversity and Inclusion

• Conventions

• Related Resources

• Screenshot Disclaimer

• Acronyms and Abbreviations

Purpose
This guide is designed to help acquaint you with the Oracle Banking APIs application. This
guide provides answers to specific features and procedures that the user need to be aware of
the module to function successfully.

Audience
This document is intended for the following audience:

• Customers

• Partners

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Critical Patches
Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and

Preface

iv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/security-alerts/

Bulletins. All critical patches should be applied in a timely manner to ensure effective security,
as strongly recommended by Oracle Software Security Assurance.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within
a paragraph, URLs, code in examples, text
that appears on the screen, or text that you
enter.

Related Resources
For more information on any related features, refer to the following documents:

• Oracle Banking APIs Installation Manuals

Screenshot Disclaimer
Personal information used in the interface or documents is dummy and does not exist in the
real world. It is only for reference purposes.

Acronyms and Abbreviations
The list of the acronyms and abbreviations used in this guide are as follows:

Preface

v

https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

Table 1 Acronyms and Abbreviations

Abbreviation Description

OBAPI Oracle Banking APIs

Preface

vi

1
Aggregator Service

It is a generic service to list the required set of data like any normal List Service with the only
difference that the data is in the most summarized view possible.

This service is mostly used to draw graphical widgets on the screen that represents the
summary of a particular domain.

• Implementation
Returns the aggregated data requested for the given resource like for instance Account, for
given data parameter like for instance Closing Balance, for given interval like for instance
Daily, Monthly, for given period.

• Implementation Details of Individual Service

1.1 Implementation
Returns the aggregated data requested for the given resource like for instance Account, for
given data parameter like for instance Closing Balance, for given interval like for instance Daily,
Monthly, for given period.

It has following parameters:

• resource - Resource for which the aggregation is required like Account. (Path Parameter)

• data - Data of the resource for which the aggregation is to be done like Closing balance for
Account. (Query Parameter)

• grouping - Grouping for which the aggregation is required like type of transaction CREDIT
or DEBIT. It is not mandatory to specify grouping. If not then default value will be
“DEFAULT”. (Query Parameter)

• interval - The interval at which the aggregated data is required like Daily, Monthly. It is not
mandatory to specify interval. If not then default value will be “D – Daily”. All available
values are D - Daily, W - Weekly, F – Fortnightly, M - Monthly, Q - Quarterly, Y – Yearly.
(Query Parameter)

• count - The number of times the aggregated data is required at given intervals. It is not
mandatory to specify count. If not then default value will be 1. (Query Parameter)

• q - The generic filtering parameter. (Query Parameter)

• sortBy - sorting parameter to sort q param results. (Query Parameter)

• maxRecords - max records parameter to restrict count of q param results. (Query
Parameter)

Now every combination of resource, data and grouping has its own service / implementation
and an entry for the same is made in the seed.

Now every combination of resource, data and grouping has its own service / implementation
and an entry for the same is made in the seed.

Now initially , the call goes to aggregator REST API with above mentioned parameters from
which the control goes to aggregator service. Finally in aggregator service the fully qualified

1-1

name of the actual service / implementation is fetched from the DB based on the combination
of “resource”, “data” and “grouping” and actual aggregation is done.

For every service / implementation, an entry is made in DIGX_FW_CONFIG_ALL_B where
prop_id is “resource.data.grouping” and category_id is “AggregatorConfig”. Now for
one implementation there can be multiple grouping possible. In that case the prop_id will be
“resource.data.grouping1, grouping2, ...groupingN”.

Example

For every service / implementation, an entry is made in DIGX_FW_CONFIG_ALL_B where
prop_id is “resource.data.grouping” and category_id is “AggregatorConfig”. Now for
one implementation there can be multiple grouping possible. In that case the prop_id will be
“resource.data.grouping1, grouping2, ...groupingN”.

• resource - Invoice

• data - Amount

• grouping - Program

Thus, in this case the prop_id will be “invoices.Amount.Program” where prop_value contains
the fully qualified name of the service which represents the implementation for the same.

Similarly, if multiple grouping is to be done like based on program and currency, then the
prop_id will be “invoice.Amount.Program,Currency” or “invoice.Amount.Currency,Program”.

Note:

In case of multiple grouping, the order of comma separated grouping names used in
prop_id and the ones sent in UI should be same.

i.e. In the above case, If the prop_id used is “invoice.Amount.Program,Currency” then
from UI grouping should be sent in query parameter as “grouping=Program,Currency”.

**** In case of no grouping required then prop_id will look like “resource.data.DEFAULT”
i.e. “invoice.Amount.DEFAULT”

Now, the parameters like q, sortBy and maxRecords are the parameters for QQuery
implementation which are used similarly the way they are used in other OBAPI services.

In case of aggregator service , these parameters will be directly passed to the implementation
service where they can be used in actual call made to get the original data before aggregation.

1.2 Implementation Details of Individual Service
• SCF Implementation

• VAM Implementation

• Receivables Implementation

1.2.1 SCF Implementation
Case 1

We want the list of top programs between the logged in party and specified associated party for
both roles of logged in party - buyer and supplier. To achieve this we fire the list of Invoices

Chapter 1
Implementation Details of Individual Service

1-2

with below specified query parameters and then group them by program code (grouping
invoices of same program) and finally calculate the sum of invoice amount for each group.

Prop_id: invoices.Amount.Program

URL: /digx-scf/v1/aggregator/invoices
Request Parameters:

data: Amount

grouping: Program

q:

1. Role of the logged in party that is used to get list of invoices(B or S) .

2. Invoice status - ACCEPTED, RAISED, FINANCED, PARTIAL_FINANCED to get
outstanding invoices.

3. Payment status – UNPAID, PART_PAID, OVERDUE to get outstanding invoices.

4. Associated party id – To get list of invoices only linked between logged in party id and
associated party id specified.

sortBy: We want only top programs so we sort the groups by total amount. Thus we send
amount and DESC(Descending).

maxRecords: We want only top 5 programs and thus we send 5.

Response:

{
 "aggregatedData": {
 "resource":"invoices",
 "groups": [{
 "id": "HPRF Program~HP Reverse Factoring~A~B",
 "intervals":[{
 "amount":{
 "currency":"GBP",
 "amount":62739.98688000
 },
 "count": 4
 }]
 }, {
 "id":"HPPRGFIN1~HPPRGFIN1~A~B",
 "intervals":
 [{"amount":{
 "currency":"GBP",
 "amount":8760.63785888
 },
 "count":8
 }]
 }]
 }
}

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “id” represents the unique Id of that group. In the response of this API, “id” will

Chapter 1
Implementation Details of Individual Service

1-3

always be combination of program code, program name, relation of logged in party in that
program (A or CP) and role of logged in party in that program (B or S), all tilde(~) separated.

Intervals contains the actual data (in this case, the total amount for each program) at various
intervals. Here since no interval is specified there will always be one element in intervals array.

Case 2

We want the list of programs currency wise between the logged in party and specified
associated party for both roles of logged in party - buyer and supplier. To achieve this we fire
the list of Invoices with below specified query parameters and then group them by program
code (grouping invoices of same program), then group them by currency(grouping invoices of
same currency for every program) and finally calculate the sum of invoice amount for each
group.

Prop_id: invoices.Amount.Currency,Program or invoices.Amount.Program,Currency

URL: /digx-scf/v1/aggregator/invoices
Request Parameters:

data: Amount

grouping: Currency,Program or Program,Currency

q:

1. Role of the logged in party that is used to get list of invoices(B or S) .

2. Invoice status - ACCEPTED, RAISED, FINANCED, PARTIAL_FINANCED to get
outstanding invoices.

3. Payment status – UNPAID, PART_PAID, OVERDUE to get outstanding invoices.

4. Associated party id – To get list of invoices only linked between logged in party id and
associated party id specified.

Response:

{
 "aggregatedData": {
 "resource": "invoices",
 "groups": [{
 "identifiers": ["GBP", "HPFactoringWRec~HP Factoring WRec~A~S"],
 "intervals":[{
 "amount":
 {"currency":"GBP",
 "amount":7426.00
 },
 "count":37
 }]
 },
 { "identifiers": ["USD","HPFactoringWRec~HP Factoring
WRec~A~S"],
 "intervals":
 [{ "amount":
 { "currency":"USD",
 "amount":39840.00 },
 "count":295
 }]
 }]

Chapter 1
Implementation Details of Individual Service

1-4

 }
 }

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “identifiers” represents the unique Id of that group. Since, multiple grouping is
done, id is the list containing 2 elements. First is Currency and second Is the combination of
program code, program name, relation of logged in party in that program (A or CP) and role of
logged in party in that program (B or S), all tilde(~) separated.

Intervals contains the actual data (in this case, the total amount for each program, currency
wise) at various intervals. Here since no interval is specified there will always be one element
in intervals array.

Case 3

We want the list of top associated parties linked with logged in party in a particular program. To
achieve this we fire the list of Invoices with below specified query parameters and then group
them by associated party Id (grouping invoices of same associated party) and finally calculate
the sum of invoice amount for each group.

Prop_id: invoices.Amount.AssociatedParty

URL: /digx-scf/v1/aggregator/invoices
Request Parameters:

data: Amount

grouping: AssociatedParty

q:

1. Role of the logged in party that is used to get list of invoices(B or S) .

2. Invoice status - ACCEPTED, RAISED, FINANCED, PARTIAL_FINANCED to get
outstanding invoices.

3. Payment status – UNPAID, PART_PAID, OVERDUE to get outstanding invoices.

4. program code – To get list of invoices only linked between logged in party id and
associated party id in the specified program.

sortBy: We want only top associated parties so we sort the groups by total amount. Thus we
send amount and DESC(Descending).

maxRecords: We want only top 10 associated parties and thus we send 10.

Response:

{
 "aggregatedData": {
 "resource": "invoices",
 "groups": [{
 "id":" E4228ED58341003545623EDC7319024990E5C38ACB60 ~***728 ~TURBO
TEXTILES ",
 "intervals":[{
 "amount": {
 "currency":"GBP",
 "amount":7426.00 },
 "count":37

Chapter 1
Implementation Details of Individual Service

1-5

 }]
 },
 { "id": " E4228ED58341003545623EDC7319024990E5C38ACB90~*****C001
~TestCP02 "],
 "intervals":
 [{ "amount":{
 "currency":"USD",
 "amount":39840.00 },
 "count":295
 }]
 }]
 }
}

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “id” represents the unique Id of that group. In the response of this API, “id” will
always be combination of associated party id (hashed value), associated party id (display
value), all tilde(~) separated.

Intervals contains the actual data (in this case, the total amount for each associated party) at
various intervals. Here since no interval is specified there will always be one element in
intervals array.

Case 4

We want the list of associated parties currency wise linked with logged in party in a particular
program. To achieve this we fire the list of with below specified query parameters and then
group them by associated party id (grouping invoices of same associated party), then group
them by currency(grouping invoices of same currency for every associated party) and finally
calculate the sum of invoice amount for each group.

Prop_id: invoices.Amount.AssociatedParty,Currency or
invoices.Amount.Currency,AssociatedParty

URL:/digx-scf/v1/aggregator/invoices
Request Parameters:

data: Amount

grouping: AssociatedParty,Currency or Currency,AssociatedParty

q:

1. Role of the logged in party that is used to get list of invoices(B or S) .

2. Invoice status - ACCEPTED, RAISED, FINANCED, PARTIAL_FINANCED to get
outstanding invoices.

3. Payment status – UNPAID, PART_PAID, OVERDUE to get outstanding invoices.

4. program code – To get list of invoices only linked between logged in party id and
associated party id in the specified program.

Response:

{
 "aggregatedData": {
 "resource": "invoices",
 "groups":

Chapter 1
Implementation Details of Individual Service

1-6

 [{"identifiers":
 ["GBP", " E4228ED58341003545623EDC7319024990E5C38ACB60 ~***728
~TURBO TEXTILES "],
 "intervals": [{ "amount":
 {"currency":"GBP",
 "amount":7426.00 },
 "count":37
 }]
 },
 {"identifiers": ["USD", "
E4228ED58341003545623EDC7319024990E5C38ACB60 ~***728 ~TURBO TEXTILES "],
 "intervals":
 [{ "amount":{
 "currency":"USD",
 "amount":39840.00 },
 "count":295
 }]
 }]
 }
}

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “identifiers” represents the unique Id of that group. Since, multiple grouping is
done, id is the list containing 2 elements. First is Currency and second Is the combination of
associated party id (hashed value), associated party id (display value), all tilde(~) separated.

Intervals contains the actual data (in this case, the total amount for each associated party,
currency wise) at various intervals. Here since no interval is specified there will always be one
element in intervals array.

1.2.2 VAM Implementation
Case 1

Fetching list of value dated balances for the top N virtual accounts with respect to available
balance for a selected virtual entity and currency. It fetched the

Prop_id: virtualAccounts.valueDated.DEFAULT

URL:GET + /digx-vam/v1/aggregator/resource/virtualAccounts
Request Parameters:

data: valueDated

maxRecords: 5 (Integer for number of virtual accounts)

q:

• virtualEntityId - the selected virtual entity id filter on virtual accounts

• vStatus – only open virtual accounts to be fetched

• availableBalance.currency – the selected currency filter on virtual accounts

sortParams:

• sortBy : availableBalance.amount

Chapter 1
Implementation Details of Individual Service

1-7

• sortOrder: DESC (Fetches top N)

Response:

{
 "aggregatedData": {
 "resource": "virtualAccounts",
 "groups": [{
 "id": {
 "displayValue": "xxxxxxxxxxxx0096",
 "value":
"C56C880F40EA1F354870342328EED1323799A835BE1813AA"
 },
 "intervals": [{
 "amount": {
 "currency": "GBP",
 "amount": -165
 },
 "date": "2018-10-02T00:00:00"
 }]
 }]
 }
 }

Id - is the virtual account number each group in groups array represents the balance for the
value date in the group.

Case 2

Fetching list of virtual accounts for a selected virtual entity and group the virtual accounts
based on the currency and aggregate the availableBalance of the virtual account to provide
currency wise distribution to the user.

Prop_id: virtualAccounts.availableBalance.DEFAULT

URL: GET + /digx-vam/v1/aggregator/resource/virtualAccounts
Request Parameters:

data: availableBalance

grouping: Currency,Program or Program,Currency

q:

• virtualEntityId - the selected virtual entity id filter on virtual accounts

• vStatus – only open virtual accounts to be fetchedvStatus – only open virtual accounts to
be fetched

sortParams:

• sortBy : availableBalance.amount

• sortOrder: DESC (Fetches top N)

Response:

{
 "aggregatedData": {
 "resource": "virtualAccounts",

Chapter 1
Implementation Details of Individual Service

1-8

 "groups": [{
 "id": "EUR",
 "intervals": [{
 "amount": {
 "currency": "EUR",
 "amount": 1329
 },
 "count": 2
 }]
 }]
 }
 }

Each group in the groups array represents the currency and its sum for the virtual accounts
satisfying the criteria in the request and the number of virtual accounts in that criteria.

1.2.3 Receivables Implementation
2.2.3.1 Purchase Order

Case 1

We want the list of Purchase Orders status wise linked with logged in party. To achieve this we
fire the list of purchase orders with below specified query parameters and then group them by
status (grouping purchase orders of same status) and finally calculate the sum of purchase
order amount for each group.

Prop_id: purchaseorders.Amount.Status

URL: /digx-scf/v1/aggregator/purchaseorders
Request Parameters:

data: Amount

grouping: Status

q:1. Role of the logged in party that is used to get list of purchase orders(B or S) .

Response:

{ "aggregatedData":
 {
 "resource": "purchaseorders","groups":
 [{
 "identifiers": ["ACCEPTED"],
 "intervals": [{
 "amount": {
 "currency":
"EUR",

"amount":132708027.4107700091004397884741905500050052069127559661865234375

 },
 "count": 70
 }] },
 {

Chapter 1
Implementation Details of Individual Service

1-9

 "identifiers": ["RAISED"],
 "intervals": [{
 "amount": {
 "currency":
"EUR",
 "amount":
4071865.5212500003207022947204762886030948720872402191162109375

 },
 "count": 61
 }] },
 {
 "identifiers": ["REJECTED"], "intervals":
 [{
 "amount": {
 "currency":
"EUR",
 "amount":
20205.5700000000016314682937945690355263650417327880859375

 },
 "count": 7
 }] },
 {
 "identifiers": ["CANCELLED"],
 "intervals": [{
 "amount": {
 "currency":
"EUR",

"amount":1653850.000000000133537625401913828682154417037963867187500

 },
 "count": 4
 }]
 }] }
 }

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “identifiers” represents the unique Id of that group. Since, grouping is done on the
basis of purchase order status, id contains purchase order’s status.

Intervals contains the actual data (in this case, the total amount for each status wise) at various
intervals. Here since no interval is specified there will always be one element in intervals array.

Case 2

We want the list of Top 10 associated parties purchase order status wise linked with logged in
party. To achieve this we fire the list of purchase orders with below specified query parameters
and then group them by associated party id (grouping purchase orders of same associated
party), then group them by purchase order status(grouping purchase orders of same status for
every associated party) and finally calculate the sum of purchase order amount for each group.

Prop_id: purchaseorders.Amount.AssociatedParty,Status

URL: /digx-scf/v1/aggregator/purchaseorders

Chapter 1
Implementation Details of Individual Service

1-10

Request Parameters:

data: Amount

grouping: AssociatedParty,Status

q:

• Role of the logged in party that is used to get list of purchase orders(B or S) .

• Invoice status - ACCEPTED, RAISED.

Response:

{ "aggregatedData":
 {
 "resource": "purchaseorders", "groups":
 [{
 "identifiers":

["98DCBD13A0F3EA4F5EDE19325B4CD2D30A1C949B838D0E171B1B~***000153~LINKINVA23Dec
",
 "ACCEPTED"],
 "intervals": [{
 "amount": {
 "currency":
"EUR",
 "amount":

109765554.800000008862854272706499614287167787551879882812500

 },
 "count": 1
 }] },
 {
 "identifiers":
["E6AFBD17A6F1717F4C5BCEE75406C9BB37C8DF99577A~***462~ABZ
 Solutions", "ACCEPTED"],
 "intervals": [{
 "amount": {
 "currency":
"EUR",
 "amount":

22904335.7207700002345062100683747985385707579553127288818359375

 },
 "count": 62
 }] },
 {
 "identifiers":
["E6AFBD17A6F1717F4C5BCEE75406C9BB37C8DF99577A~***462~ABZ Solutions",
"RAISED"],
 "intervals": [{
 "amount": {
 "currency":
"EUR",

Chapter 1
Implementation Details of Individual Service

1-11

"amount":4066573.1572500003202749707664764855508110485970973968505859375

 },
 "count": 45
 }] },
 {
 "identifiers":
["98DCBD13A0F3EB4D5ADBFB7E68621176D18D733CA71A0B515B69~***000077~Septoneparty"
,
 "ACCEPTED"],
 "intervals": [{
 "amount": {
 "currency":
"EUR",

"amount":22000.000000000001776356839400250464677810668945312500000

 },
 "count": 1
 }] },
 {
 "identifiers":
["E6AFBC14A1F57BA066463EE6C10B5E5D5324274D7899~***716~AugBuyer",
 "ACCEPTED"],
 "intervals": [{
 "amount": {
 "currency":
"EUR",

"amount":10636.8900000000008588596500658240984193980693817138671875

 },
 "count": 5 }] },
 {
 "identifiers":

["98DCBD13A0F3EB4C5BD1361685D7E30CC39EA19106076A3CB8DB~***000066~LinkInvBuyCp"
,
 "ACCEPTED"],
 "intervals": [{
 "amount": {
 "currency":
"EUR",
 "amount":
5500.000000000000444089209850062616169452667236328125000

 },
 "count": 1
 }] },
 {
 "identifiers":
["E6AFBC14A1F57BA066463EE6C10B5E5D5324274D7899~***716~AugBuyer",
 "RAISED"],
 "intervals": [{
 "amount": {
 "currency":

Chapter 1
Implementation Details of Individual Service

1-12

"EUR",
 "amount":
5292.36400000000042732395399980305228382349014282226562500

 },
 "count": 16
 }]
 }] }}

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “identifiers” represents the unique Id of that group. Since, multiple grouping is
done, id is the list containing 2 elements. First is the combination of associated party id
(hashed value), associated party id (display value) and associated party name, all tilde(~)
separated and second Is the purchase order status.

Intervals contains the actual data (in this case, the total amount for each associated party,
status wise) at various intervals. Here since no interval is specified there will always be one
element in intervals array.

2.2.3.2 Reconciliation

Case 1

We want the list of unmatched payments currency wise for the logged in party. To achieve this
we fire the list of payments with below specified query parameters and then group them by
currency (grouping payments of same currency), then group them by payment type(grouping
payments of same type for every currency) and finally calculate the sum of payment amount
for each group.

Prop_id: payments.Amount.Currency,Type

URL: /digx-cms/v1/aggregator/payments
Request Parameters:

data: Amount

grouping: Currency,Type

q:1.Payment Status - UNMATCHED .

Response:

 { "aggregatedData":
 {
 "resource": "payments", "groups":
 [{
 "identifiers": ["GBP", "C"],
 "intervals": [{
 "amount": {
 "currency":
"GBP",
 "amount": 835619
 },
 "count": 7
 }] },
 {

Chapter 1
Implementation Details of Individual Service

1-13

 "identifiers": ["USD", "D"],
 "intervals": [{
 "amount": {
 "currency":
"USD",
 "amount": 346103
 },
 "count": 8
 }] },
 {
 "identifiers": ["GBP", "D"],
 "intervals": [{
 "amount": {
 "currency":
"GBP",
 "amount": 333903
 },
 "count": 7
 }] },
 {
 "identifiers": ["USD", "C"],
 "intervals": [{
 "amount": {
 "currency":
"USD",
 "amount": 40200
 },
 "count": 5
 }]
 }]
 }}

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “identifiers” represents the unique Id of that group. Since, multiple grouping is
done, id is the list containing 2 elements. First is the currency and second is the payment type.

Intervals contains the actual data (in this case, the total amount for each currency, payment
type wise) at various intervals. Here since no interval is specified there will always be one
element in intervals array.

Case 2

We want the list of unreconciled invoices currency wise for the logged in party. To achieve this
we fire the list of invoices with below specified query parameters and then group them by
currency (grouping invoices of same currency), then group them by role wise(grouping invoices
of same role for every currency) and finally calculate the sum of invoice amount for each
group.

Prop_id: invoices.Amount.Currency,Role

URL:/digx-invoice/v1/aggregator/invoices
Request Parameters:

data: Amount

grouping: Currency,Role

Chapter 1
Implementation Details of Individual Service

1-14

q:1.Payment Status - UNPAID .

Response:

 { "aggregatedData":
 {
 "resource": "invoices", "groups":
 [{
 "identifiers": ["GBP", "B"],
 "intervals": [{
 "amount": {
 "currency":
"GBP",
 "amount": 1047165452.0
 },
 "count": 281
 }] },
 {
 "identifiers": ["GBP", "S"],
 "intervals": [{
 "amount": {
 "currency":
"GBP",
 "amount": 4742388.0
 },
 "count": 75
 }] },
 {
 "identifiers": ["USD", "B"],
 "intervals": [{
 "amount": {
 "currency":
"USD",
 "amount": 17900.0
 },
 "count": 5
 }] },
 {
 "identifiers": ["USD", "S"],
 "intervals": [{
 "amount": {
 "currency":
"USD",
 "amount": 5000.0
 },
 "count": 3
 }] },
 {
 "identifiers": ["INR", "S"],
 "intervals": [{
 "amount": {
 "currency":
"INR",
 "amount": 5000.0
 },
 "count": 1

Chapter 1
Implementation Details of Individual Service

1-15

 }] },
 {
 "identifiers": ["LAK", "B"],
 "intervals": [{
 "amount": {
 "currency":
"LAK",
 "amount": 4401
 },
 "count": 37
 }] },
 {
 "identifiers": ["LAK", "S"],
 "intervals": [{
 "amount": {
 "currency":
"LAK",
 "amount": 2024
 },
 "count": 7
 }]
 }] }}

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “identifiers” represents the unique Id of that group. Since, multiple grouping is
done, id is the list containing 2 elements. First is the currency and second is the associated
party role.

Intervals contains the actual data (in this case, the total amount for each currency, associated
party role wise) at various intervals. Here since no interval is specified there will always be one
element in intervals array.

Case 3

We want the list of unreconciled cashflows currency wise for the logged in party. To achieve
this we fire the list of cashflows with below specified query parameters and then group them by
currency (grouping cashflows of same currency), then group them by cashflow type(grouping
cashflows of same type for every currency) and finally calculate the sum of cashflow amount
for each group.

Prop_id: cashflows.Amount.Currency,Type

URL: /digx-cms/v1/aggregator/cashflows
Request Parameters:

data: Amount

grouping: Currency,Type

q:1.Reconciliation Status - UNRECONCILED .

Response:

 { "aggregatedData":
 {
 "resource": "cashflows", "groups":
 [{

Chapter 1
Implementation Details of Individual Service

1-16

 "identifiers": ["LAK", "I"],
 "intervals": [{ "amount":
{
 "currency":
"LAK",
 "amount": 573993369
 },
 "count": 82
 }] },
 {
 "identifiers": ["GBP", "I"],
 "intervals": [{
 "amount": {
 "currency":
"GBP",
 "amount": 59712749
 },
 "count": 194
 }] },
 {
 "identifiers": ["USD", "I"],
 "intervals": [{
 "amount": {
 "currency":
"USD",
 "amount": 36663338
 },
 "count": 177
 }] },
 {
 "identifiers": ["GBP", "O"],
 "intervals": [{
 "amount": {
 "currency":
"GBP",
 "amount": 1666225
 },
 "count": 67
 }] },
 {
 "identifiers": ["LBP", "I"],
 "intervals": [{
 "amount": {
 "currency":
"LBP",
 "amount": 991545
 },
 "count": 4 }]
 },
 {
 "identifiers": ["USD", "O"],
 "intervals": [{
 "amount": {
 "currency":
"USD",
 "amount": 51044.33

Chapter 1
Implementation Details of Individual Service

1-17

 },
 "count": 264
 }] },
 {
 "identifiers": ["EUR", "I"],
 "intervals": [{
 "amount": {
 "currency":
"EUR",
 "amount": 28547.17
 },
 "count": 34
 }] },
 {
 "identifiers": ["LAK", "O"],
 "intervals": [{
 "amount": {
 "currency":
"LAK",
 "amount": 4567
 },
 "count": 2
 }]
 }] }}

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “identifiers” represents the unique Id of that group. Since, multiple grouping is
done, id is the list containing 2 elements. First is the currency and second is the cashflow type.

Intervals contains the actual data (in this case, the total amount for each currency, cashflow
type wise) at various intervals. Here since no interval is specified there will always be one
element in intervals array.

Case 4

We want the list of payments status wise for the logged in party. To achieve this we fire the list
of payments with below specified query parameters and then group them by status (grouping
payments of same status), then group them by type(grouping payments of same type for every
status) and finally calculate the sum of payment amount for each group.

Prop_id: payments.Amount.Status,Type

URL: /digx-cms/v1/aggregator/payments
Request Parameters:

data: Amount

grouping: Status,Type

q:1.Payment Date – from date and to date .

Response:

 { "aggregatedData":
 {
 "resource": "payments", "groups":
 [{

Chapter 1
Implementation Details of Individual Service

1-18

 "identifiers": ["MATCHED", "C"],
 "intervals": [{
 "amount": {
 "currency":
"USD",
 "amount": 291300
 },
 "count": 57
 }] },
 {
 "identifiers": ["PART_MATCHED",
"C"],
 "intervals": [{
 "amount": {
 "currency":
"GBP",
 "amount": 9700
 },
 "count": 1
 }] },
 {
 "identifiers": ["PART_MATCHED",
"D"],
 "intervals": [{
 "amount": {
 "currency":
"GBP",
 "amount": 32900
 },
 "count": 6
 }] },
 {
 "identifiers": ["RECON_NA", "D"],
 "intervals": [{
 "amount": {
 "currency":
"USD",
 "amount": 5200
 },
 "count": 1
 }] },
 {
 "identifiers": ["MATCHED", "D"],
 "intervals": [{
 "amount": {
 "currency":
"GBP",
 "amount": 580900
 },
 "count": 41
 }]
 }]
}}

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “identifiers” represents the unique Id of that group. Since, multiple grouping is

Chapter 1
Implementation Details of Individual Service

1-19

done, id is the list containing 2 elements. First is the payment status and second is the
payment type.

Intervals contains the actual data (in this case, the total amount for each status, payment type
wise) at various intervals. Here since no interval is specified there will always be one element
in intervals array.

Case 5

We want the list of unmatched payments entity wise for the logged in party. To achieve this we
fire the list of payments with below specified query parameters and then group them by
payment entity (grouping payments of same entity), then group them by payment
type(grouping payments of same type for every entity) and finally calculate the sum of payment
amount for each group.

Prop_id: payments.Amount.Entity,Type

URL:/digx-cms/v1/aggregator/payments
Request Parameters:

data: Amount

grouping: Entity,Type

q:1.Payment Status - UNMATCHED .

Response:

{ "aggregatedData":
 { "resource":
 "payments", "groups":
 [{
 "identifiers": ["E", "C"],
 "intervals": [{
 "amount": {
 "currency":
"GBP",
 "amount": 140412
 },
 "count": 5
 }] }, {
 "identifiers": ["I", "C"],
 "intervals": [{
 "amount": {
 "currency":
"USD",
 "amount": 735407
 },
 "count": 7
 }] }, {
 "identifiers": ["I", "D"],
 "intervals": [{
 "amount": {
 "currency":
"USD",
 "amount": 553005
 },
 "count": 9

Chapter 1
Implementation Details of Individual Service

1-20

 }] }, {
 "identifiers": ["E", "D"],
 "intervals": [{
 "amount": {
 "currency":
"GBP",
 "amount": 127001
 },
 "count": 6
 }]
 }]
 }
}

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “identifiers” represents the unique Id of that group. Since, multiple grouping is
done, id is the list containing 2 elements. First is the payment entity and second is the payment
type.

Intervals contains the actual data (in this case, the total amount for each entity, payment type
wise) at various intervals. Here since no interval is specified there will always be one element
in intervals array.

Case 6

We want the list of payments allocation status wise for the logged in party. To achieve this we
fire the list of payments with below specified query parameters and then group them by
allocation status (grouping payments of same allocation status), then group them by payment
type wise(grouping payments of same type for every allocation status) .

Prop_id: payments.Count.AllocationStatus,Type

URL: /digx-cms/v1/aggregator/payments
Request Parameters:

data: Count

grouping: AllocationStatus,Type

q:1.Payment Date – from date and to date .

Response:

{ "aggregatedData":
 {
 "resource": "payments", "groups":
 [{
 "identifiers": ["FAILED", "C"],
 "intervals": [{
 "count": 3
 }] },
 {
 "identifiers": ["UNALLOCATED",
"C"],
 "intervals": [{
 "count": 55
 }] },
 {

Chapter 1
Implementation Details of Individual Service

1-21

 "identifiers": ["UNALLOCATED",
"D"],
 "intervals": [{
 "count": 47
 }] },
 {
 "identifiers": ["FAILED", "D"],
 "intervals": [{
 "count": 1
 }]
 }]
 }
}

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “identifiers” represents the unique Id of that group. Since, multiple grouping is
done, id is the list containing 2 elements. First is the allocation status and second is the
payment type.

Intervals contains the actual data (in this case, the total count for each allocation status,
payment type wise) at various intervals. Here since no interval is specified there will always be
one element in intervals array.

Case 7

We want the list of allocated transactions allocation type wise for the logged in party. To
achieve this we fire the list of payments with below specified query parameters and then group
them by allocation type (grouping payments of same allocation type), then group them by
payment type(grouping payments of same type for every allocation type) .

Prop_id: allocations.Count.PaymentType,Type

URL: /digx-cms/v1/aggregator/allocations
Request Parameters:

data: Count

grouping: PaymentType,Type

Response:

{ "aggregatedData":
 { "resource":
 "allocations", "groups":
 [{
 "identifiers": ["C", "M"],
 "intervals": [{
 "count": 102
 }] }, {
 "identifiers": ["D", "M"],
 "intervals": [{
 "count": 50
 }]
 }]
 }
}

Chapter 1
Implementation Details of Individual Service

1-22

Here, “groups” is the array which contains list of data after grouping. i.e. different groups.
Inside group, “identifiers” represents the unique Id of that group. Since, multiple grouping is
done, id is the list containing 2 elements. First is the payment type and second is the allocation
type.

Intervals contains the actual data (in this case, the total count for each payment type, allocation
type wise) at various intervals. Here since no interval is specified there will always be one
element in intervals array.

Chapter 1
Implementation Details of Individual Service

1-23

2
List of Topics

This user manual is organized as follows:

Table 2-1 List of Topics

Topics Description

Preface This topic provides information on the introduction, intended audience,
list of topics, and acronyms covered in this guide.

Aggregator Service This topic provides information on generic services to list the required
set of data like any normal List Service. It is used to draw graphical
widgets on the screen that represents the summary of a particular
domain.

2-1

Index

A
Aggregator Service, 1-1

I
Implementation, 1-1

R
Receivables Implementation, 1-9

S
SCF Implementation, 1-2

V
VAM Implementation, 1-7

Index-1

	Contents
	Preface
	Purpose
	Audience
	Documentation Accessibility
	Critical Patches
	Diversity and Inclusion
	Conventions
	Related Resources
	Screenshot Disclaimer
	Acronyms and Abbreviations

	1 Aggregator Service
	1.1 Implementation
	1.2 Implementation Details of Individual Service
	1.2.1 SCF Implementation
	1.2.2 VAM Implementation
	1.2.3 Receivables Implementation

	2 List of Topics
	Index

