
Oracle® Communications Unified
Inventory Management
API Overview

Release 7.5
F46671-01
December 2021

Oracle Communications Unified Inventory Management API Overview, Release 7.5

F46671-01

Copyright © 2013, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

1 Overview

2 Working with Transactions, Exceptions, and Logging

Working with Transactions 2-1

Working with Exceptions 2-2

Working with Logging 2-3

Configuring the Logging Level 2-3

Working with the Log Interface 2-3

About UIM Log Messages 2-4

Defining Custom Log Messages 2-5

Working with the FeedbackProvider Interface 2-5

3 Implementing a Generic Service Fulfillment Scenario

About the Generic Service Fulfillment Scenario 3-1

Querying for the Specification 3-4

Querying for the Specification Using Finder API 3-5

Creating the Service and Service Configuration 3-6

Creating the Service 3-7

Retrieving the Service Configuration Specification 3-8

Retrieving the Service Configuration Specification Using Finder API 3-9

Creating the Service Configuration 3-9

About Alternate Flows 3-10

Changing the Service 3-11

Disconnecting the Service 3-12

Creating and Associating the Party 3-13

iii

Creating the Party 3-13

Creating the Party Role 3-15

Associating the Party and Party Role with the Service 3-15

About Alternate Flows 3-16

Disassociating the Party and Party Role from the Service 3-16

Deleting the Party 3-17

Deleting the Party Role 3-18

Creating and Associating the Geographic Address with the Service 3-18

Creating the Geographic Place 3-19

Creating the Place Role 3-19

Associating the Geographic Place and Place Role with the Service 3-20

About Alternate Flows 3-21

Disassociating the Geographic Place and Place Role from the Service 3-21

Deleting the Geographic Place 3-22

Deleting the Place Role 3-23

Configuring the Resources for the Service Configuration 3-23

Finding the Service 3-24

Finding the Service by ID Using Finder API 3-25

Finding the Current Service Configuration Version 3-26

Finding the Service Configuration Item 3-26

Finding the Custom Object to Assign 3-27

Creating the Custom Object to Assign 3-28

Assigning the Resource to a Configuration Item 3-29

Referencing the Resource to a Configuration Item 3-31

About Alternate Flows 3-34

Unassigning Resources from a Configuration Item 3-34

Reserving a Custom Object 3-36

Unreserving a Custom Object 3-38

Creating a Blocked Condition for a Custom Object 3-39

Deleting a Blocked Condition for a Custom Object 3-41

Setting Characteristic Values for the Service Configuration Item 3-42

Finding Configuration Item and Setting Characteristics 3-44

About Alternate Flows 3-47

Unsetting Characteristic Values for the Service Configuration Item 3-48

Transitioning the Lifecycle Status 3-48

Creating a Property Location 3-50

Referring Property Location to a Service Configuration Item 3-51

About Undo Actions 3-51

iv

4 Implementing a Channelized Connectivity Enablement Scenario

About the Channelized Connectivity Enablement Scenario 4-1

Creating a Property Location and Associating Network Entity Codes 4-2

Creating a Logical Device and Associating LD Interfaces with Network Entity Codes 4-4

Creating Channelized Connectivity 4-6

Create Channelized Connectivity 4-7

Configure Capacity on the Channelized Connectivity 4-8

Configure Auto Termination on the Channelized Connectivity 4-9

Enabling Channelized Connectivity 4-10

Manually Enabling Channelized Connectivity 4-10

Performing Gap Analysis 4-11

Adding Segments To Connectivity Path Based on the Gap Analysis Results 4-13

A UIM Entity Managers

B NFV Orchestration Java Managers

C Common Utility Code Examples

D Frequently Used APIs for Design and Assign Methods

Reference UIMTECHPACK Cartridge D-1

oracle.communications.inventory.api.dna.ServiceDesigner D-1

oracle.communications.inventory.api.dna. ConnectivityDesigner D-5

oracle.communications.inventory.api.dna. ConnectivityHelper D-5

oracle.communications.inventory.api.dna. ResourceHelper D-6

v

Preface

This guide explains how to extend Oracle Communications Unified Inventory
Management (UIM) through standard Java practices using Oracle Communications
Design Studio, which is an Eclipse-based integrated development environment. This
guide includes references to both applications, and often directs the reader to see the
Design Studio Help and the UIM Help for instructions on how to perform specific tasks.

This guide includes information about the UIM entity managers. This guide also
includes the list of Java managers which provide UIM's NFV Orchestration
functionality. Similar to extending UIM and using the UIM APIs, the information in this
guide applies to extending the NFV Orchestration functionality as well.

This guide should be read after reading UIM Concepts, because this guide assumes
that the reader has a working knowledge of UIM architecture and concepts. This guide
should be read from start to finish because the information presented in a chapter
often builds upon information presented in a preceding chapter.

This guide includes examples of typical development code used in given situations.
The guidelines and examples may not be applicable in every situation.

Audience
This guide is intended for developers who implement code to extend UIM. The
developers should have a good working knowledge of XML and Java development
and, in particular, JPA, standard Java practices, and J2EE principles. In working with
the NFV Orchestration functionality, this guide assumes you have a working
knowledge of NFV concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

initiative to build a more inclusive culture that positively impacts our employees, customers,
and partners, we are working to remove insensitive terms from our products and
documentation. We are also mindful of the necessity to maintain compatibility with our
customers' existing technologies and the need to ensure continuity of service as Oracle's
offerings and industry standards evolve. Because of these technical constraints, our effort to
remove insensitive terms is ongoing and will take time and external cooperation.

Preface

vii

1
Overview

This document provides information that you can use when working with the Oracle
Communications Unified Inventory Management (UIM) application programming interfaces
(APIs). This document also provides information that you can use when working with NFV
Orchestration Java manager APIs which are also UIM APIs. The UIM APIs can be extended
through custom code. The APIs, or extended APIs, can be called from various places, such
as from custom rulesets, custom web services, or customized portions of the user interface
(UI).

This document provides information on common tasks you need to do when working with any
of the UIM APIs, such as working with transactions, handling errors, and logging messages.
This information is described in Working with Transactions, Exceptions, and Logging.

The bulk of this document is an overview of numerous UIM APIs, which were specifically
selected to describe API usage patterns and best practices for implementing common
business scenarios. Code samples are provided to show correct usage of the APIs and
expectations of implementing the APIs. This information is described in Implementing a
Generic Service Fulfillment Scenario and Implementing a Channelized Connectivity
Enablement Scenario.

This document also provides a listing of the following:

• UIM entity manager classes. See "UIM Entity Managers" for more information.

• NFV Orchestration Java managers. See "NFV Orchestration Java Managers" for more
information.

• Code examples for common utility methods. See "Common Utility Code Examples" for
more information.

• Frequently used APIs. See "Frequently Used APIs for Design and Assign Methods" for
more information.

This document does not cover detailed Javadoc information, nor does it cover model and
domain information provided in other UIM documentation. This document assumes that you
are familiar with UIM functionality, and are planning to extend UIM functionality by
implementing a custom solution based on information provided in UIM Developer's Guide or
UIM NFV Orchestration Implementation Guide.

1-1

2
Working with Transactions, Exceptions, and
Logging

This chapter describes working with transactions, exceptions, and logging. You can use this
information when working with all UIM APIs because all APIs must be called from within a
transaction, and the calling code must handle exceptions and log any errors.

See the UIM Javadoc for detailed information about API methods, such as the exception
thrown by each method.

Working with Transactions
This section describes handling transactions when calling APIs. A standard transaction flow
typically includes:

• Starting a transaction

• Calling an API

• Determining if an error occurred

• Performing a commit or rollback of the transaction based on whether an error occurred

Example 2-1 shows a custom method that calls a manager API within a transaction:

Example 2-1 Call to an API from within a Transaction

public void sampleCallAPI()
{
 UserEnvironment ue = null;
 UserTransaction ut null;
 try {
 // Step 1: Begin a User Environment and Transaction
 ue = startUserEnvironment(); /* see appendix */
 ut = PersistenceHelper.makePersistenceManager().getTransaction();
 ut.begin();

 // Step 2: Call the API
 PlaceManager mgr = PersistenceHelper.makePlaceManager();
 List<PlaceSpecification> list = mgr.getAllPlaceSpecs();
 // Do something with the list...
 }
 catch (Throwable t) {
 // Step 3: Handle Exception
 try {
 if (t instanceof ValidationException)
 // Do something with the Exception, such as print it.
 System.out.println("Method call returned validation exception.");
 }
 catch (Exception ignore) {}
 }
 finally {
 // Step 4: Commit or Rollback Transaction
 commitOrRollback(ut); /* see appendix */

2-1

 // Step 5: End User Environment
 if (ue != null)
 endUserEnvironment(ue); /* see appendix */
 }
}

When managing transactions and calling APIs from within a transaction, consider the
following:

• A commit is usually needed between separate groups of API calls that are making
updates to the database. The group of APIs is called for an atomic and complete
set of operations.

• A rollback is needed when any error occurs.

• Ensure the API call is made within the correct context of live or business
interaction.

• Ensure the User Environment is started before the transaction, and is ended within
the finally block.

Working with Exceptions
This section describes the exceptions that the UIM APIs can throw. The EntityManager
API methods typically throw a ValidationException when a validation error is
encountered. However, other exceptions can also be thrown. Table 2-1 describes all of
the UIM Exceptions that can be thrown, including the ValidationException.

Table 2-1 Exception Descriptions

Exception Extends Description

ValidationException InventoryException This exception is widely used and represents all
variations of business validation exceptional
conditions.

TransientObjectException ValidationException This exception is thrown by manager methods if an
object is passed into a method in a transient state.

ReadOnlyEntityException RuntimeException This exception is thrown when a read-only entity is
updated or deleted. A read-only entity can be an entity
that is in a queued/planned object state.

InventoryException Exception This exception is the Base Inventory Exception and
other exceptions extend it.

InvalidBusinessInteractionE
xception

RuntimeException This exception is thrown when the caller attempts to
perform an operation against an entity under a
BusinessInteraction with an invalid status such as
completed or cancelled.

DeletedObjectException ValidationException This exception is thrown by manager methods if an
object is passed into a method in a deleted state.

BusinessInteractionDisasso
ciationException

ValidationException This exception is thrown when the manager method is
attempting to alter a Business Interaction or Business
Interaction Item and the Business Interaction
validation determines it is not allowed.

Chapter 2
Working with Exceptions

2-2

Table 2-1 (Cont.) Exception Descriptions

Exception Extends Description

BusinessInteractionComplet
eException

ValidationException This exception is thrown when the manager method is
attempting to complete a Business Interaction and the
validation determines it is not allowed.

Working with Logging
This section describes logging messages (informational, warning, and debug messages).
This section also describes detecting what messages were logged during an API call, which
is helpful when trying to determine the success or failure of an API call.

See UIM System Administrator's Guide for information on configuring UIM logging, including
changing the logging level.

Configuring the Logging Level
The logging level, which is the amount of logging output to the log files from UIM API calls, is
determined by the values configured in the UIM_Home/config/loggingconfig.xml file.

Example 2-2 shows an entry from the loggingconfig.xml file. This entry results in any debug
messages (through log.debug) existing in the code to be output to the log file when the class
exists in the specified package:

Example 2-2 Entry from loggingconfig.xml

<Logger name="oracle.communications.inventory.extensibility" additivity="false">
 <level="debug" />
 <AppenderRef ref="stdout"/>
 <AppenderRef ref="rollingFile"/>
</Logger>

Working with the Log Interface
The Log interface is located in the package:

oracle.communications.inventory.api.framework.logging

The Log interface provides the ability for an API, or custom code calling an API, to log errors,
throw exceptions, and log informational, warning, or debug messages.

Table 2-2 lists the items that can be requested of the Log interface. See the UIM Javadoc for
information regarding the specific parameters of each method.

Table 2-2 Log Interface Description

Description Method to Use Throws Exception Checked with Method on
FeedbackProvider

Fatal Exception fatal() LogFatalException getFatals()

Validation Exception validationException() ValidationException or the
exception type provided on
method input

getErrors()hasMessages()

Chapter 2
Working with Logging

2-3

Table 2-2 (Cont.) Log Interface Description

Description Method to Use Throws Exception Checked with Method on
FeedbackProvider

Validation Error validationError() Currently does not throw a
ValidationException

getErrors()hasMessages()

Warning Message warn() Not applicable getWarnings()hasMessages(
)

Informational Message info() Not applicable getNotes()hasMessages()

Debug Message debug() Not applicable getDebugs()

When calling an API method, additional errors may be thrown. For example, a custom
ruleset that calls an API method may throw additional log messages that the developer
wants to include in the log file. Example 2-3 shows custom code that adds additional
log messages to the log file by calling the Log interface to log an informational
message and a debug message:

Example 2-3 Using the Log Interface

import oracle.communications.inventory.api.framework.logging.Log;
import oracle.communications.inventory.api.framework.logging.LogFactory;
protected Log log;

public void testLog()
{
 this.log = LogFactory.getLog(this.getClass());
 this.log.validationError("service.findServiceError", service.getId());

 if (this.log.isInfoEnabled())
 this.log.info ("", "This is an informational message");

 if (this.log.isDebugEnabled())
 this.log.debug ("", "This is a debug message.");
}

About UIM Log Messages
Messages logged by UIM APIs are defined in several *.properties files, per domain.
For example, the service.properties file defines the messages for the service domain,
and the equipment.properties file defines the messages for the equipment domain.
All message-specific *.properties files are located in the UIM_Home/config/
resources/logging directory.

Several of methods on the Log interface define an input parameter of a String key for
an error message. These unique keys, along with a corresponding error message
String, are defined in the message-specific *.properties files. Example 2-4 shows a
single message entry from the servce.properties file:

Example 2-4 Message Entry from service.properties

service.findServiceError.id=110311
service.findServiceError=Error finding service with id {0}.

Chapter 2
Working with Logging

2-4

The numbers within the braces are parameter values passed in as arguments to the method
call.

Defining Custom Log Messages
You can define custom log messages in the UIM_Home/config/resources/logging /
*.properties files by adding a unique key and corresponding message. The key must be
unique across all *.properties files in this directory, and across any *.properties files
contained in any installed cartridges.

Working with the FeedbackProvider Interface
The FeedbackProvider interface is located in the package:

oracle.communications.inventory.api.framework.logging

After calling an API, the code must determine what messages have been logged. The
FeedbackProvider interface provides the ability for an API, or custom code calling an API, to
interrogate what has occurred. Example 2-5 shows code that checks to see if an error has
been logged, and then prints the error:

Example 2-5 Using the FeedbackProvider Interface

public void sampleCallAPIWithFeedbackProvider()
{
 UserEnvironment ue = null;
 UserTransaction ut = null;

 try {
 // Step 1: Begin a User Environment and Transaction
 // Step 2: Call the API
 if (!hasErrors()) /* see appendix */
 ut.commit();
 else {
 ut.rollback();
 List<FeedbackMessage> errors =
 ue.getFeedbackProvider().getErrors();
 for (java.util.Iterator iter = errors.iterator(); iter.hasNext();)
 {
 FeedbackMessage error = (FeedbackMessage)iter.next();
 System.out.println("Error occurred: " + error.getMessage());
 }
 }
 }
 catch (Throwable t)
 {
 // Step 3: Handle Exception
 }
 finally
 {
 // Step 4: Commit or Rollback Transaction
 // Step 5: End User Environment
 }
}

Chapter 2
Working with Logging

2-5

3
Implementing a Generic Service Fulfillment
Scenario

This chapter describes implementing a generic service fulfillment scenario using various
Oracle Communications Unified Inventory Management (UIM) application program interfaces
(APIs). You can use this information to gain a better understanding of how the UIM APIs can
be used to implement any service scenario.

About the Generic Service Fulfillment Scenario
The generic service fulfillment scenario is a Service entity with a single Custom Object
resource assignment. The example Service entity is simplified, but the API descriptions are
applicable and extensible to other types of services with various types of resource
assignments.

Figure 3-1 shows the process flow for a generic service fulfillment scenario:

3-1

Figure 3-1 Process Flow of Generic Service Fulfillment Scenario

Chapter 3
About the Generic Service Fulfillment Scenario

3-2

The process flow begins with querying for the service specification, which is used in
subsequent steps in the process flow, such as creating the Service and searching for
resources.

The process flow continues with creating the service, based upon the retrieved service
specification.

Next is creating the service configuration, which involves querying for the service
configuration specification, creating the service configuration based upon the retrieved
service configuration specification, and any creating default service configuration items.

The process flow continues with the optional steps of creating additional entities, such as
Party and Geographic Address (a concrete Geographic Place entity representing a Service
Address). These entities are created and associated to the Service with specific inventory
roles.

Next in the process flow is configuring the resources for the service (resource management),
which involves querying for resources based on specific criteria using core API searches or
using custom searches. For example, you can call an API directly to search for a Custom
Object by ID, or you can call a custom API to search for a Custom Object by its association to
an Inventory Group or association to another Custom Object. You can also create resources
for immediate assignment to the service. The main goal of resource management is to
retrieve and validate the correct resources for assignment to the service. However, you can
also manage the resources with alternate flows, such as creating reservations and
conditions. Assignments, references, reservations, and conditions are the main consumption
concepts for a given resource.

In addition to resource assignments and references, the service and service configuration
also have characteristic values. These values are used to setup and configure the service
instance.

After the service has been configured through resource and characteristic value assignments,
the process flow continues with transitioning the lifecycle status of various entities. APIs are
presented to show the transition of the statuses, and how the statuses are managed within
the core API functionality.

The process flow shown in Figure 3-1 shows the initial creation of the service, and also
shows other scenarios, such as changing the service configuration and disconnecting the
service. These additional scenarios are also described.

Now that you have a high-level understanding of the generic service fulfillment process flow,
each part of the process flow is further described in the following sections. Each section
includes information about the specific UIM APIs used to perform each step and possible
alternate flows of each step. Example code is also included for each step.

• Querying for the Specification

• Creating the Service and Service Configuration

• Creating and Associating the Party

• Creating and Associating the Geographic Address with the Service

• Configuring the Resources for the Service Configuration

• Setting Characteristic Values for the Service Configuration Item

• Transitioning the Lifecycle Status

Chapter 3
About the Generic Service Fulfillment Scenario

3-3

Querying for the Specification
This section describes the UIM API method used to query for the service specification.
The retrieved service specification will later be used to create the service.

Table 3-1 and example code provide information about using the API method.

Table 3-1 Querying for the Specification

Topic Information

Name SpecManager.findSpecifications

Description This method retrieves specifications based on input criteria.

Pre-Condition The service specification already exists.

Internal Logic The database is queried for specifications meeting the input criteria.
Specifications matching the criteria are returned.

Post-Condition The desired service specification has been retrieved.

Extensions Not applicable

Tips If a list of specifications is returned, the list will need to be iterated to
select the desired specification to be used to create the service.

Set the SpecSearchCriteria.setValidSpecsOnly (true) to instruct the
find method to only return active specifications.

Set the SpecSearchCriteria.setSpecClass (ServiceSpecification.class)
to instruct the find method to only return service specifications.

Additional criteria, such as name, may also be set to further constrain
the list of service specifications returned by the find method.

This method is applicable for retrieving other types of specifications by
supplying the correct Specification class as the query parameter. For
example, it can be used to retrieve a CustomObject specification to be
used later for resource query or creation.

Example 3-1 Querying for the Specification

Specification spec = null;
SpecManager specMgr = PersistenceHelper.makeSpecManager();

SpecSearchCriteria criteria = specMgr.makeSpecSearchCriteria();
CriteriaItem critSpecName = criteria.makeCriteriaItem();
critSpecName.setValue(specName);
critSpecName.setOperator(CriteriaOperator.EQUALS_IGNORE_CASE);
criteria.setName(critSpecName);
criteria.setSpecClass(ServiceSpecification.class);

List<Specification> specs = specMgr.findSpecifications(criteria);
if (Utils.isEmpty(specs))
{
 /* log error */
}
spec = specs.get(0);

Chapter 3
Querying for the Specification

3-4

Querying for the Specification Using Finder API
This section describes the UIM API method used to query for a service specification using a
generic Finder.findByName API.

Table 3-2 and example code provide information about using this API method.

Table 3-2 Querying for the Specification Using Finder API

Topic Information

Name Finder.findByName

Description This method retrieves entity objects based on input criteria.

Pre-Condition The service specification already exists.

Internal Logic The database is queried for specifications meeting the input criteria.
Specifications matching the criteria are returned.

Post-Condition The desired service specification has been retrieved.

Extensions Not applicable

Tips If a list of specifications is returned, the list will need to be iterated to select
the desired specification to be used to create the service.

If the specification is not found, the Find method returns empty collection
<ServiceSpecification>.

Note: The specification name is not a unique field, but it is recommended to
have unique specification names.

This method is applicable for retrieving other types of specifications by
supplying the correct Specification class as the query parameter. For
example, it can be used to retrieve a CustomObject specification or any UIM
entity to be used later for resource query or creation.

Example 3-2 Querying for the Service Specification Using Finder API

Specification spec = null;
Finder f = null;

try{
f = PersistenceHelper.makeFinder();

Collection<ServiceSpecification> specs =
f.findByName(ServiceSpecification.class, “Service_Spec_name");
if (Utils.isEmpty(specs))
{
 /* log error */
}
spec = specs.iterator().next();
}
catch(Exception e){
 /* log exception */
}
finally{
 if(f!=null){
 f.close();
}
}

Chapter 3
Querying for the Specification Using Finder API

3-5

Creating the Service and Service Configuration
This section describes the UIM API methods used to create the service and service
configuration, and to create default configuration items on the service configuration.
The API methods are listed in the order in which they must be called.

Figure 3-2 shows the generic service configuration specification used in the generic
service fulfillment scenario:

Figure 3-2 Generic Service Configuration Specification Example

Chapter 3
Creating the Service and Service Configuration

3-6

Creating the Service
This section describes the UIM API method used to create the service, based upon the
retrieved service specification.

Table 3-3 and example code provide information about using the API method.

Table 3-3 Creating the Service

Topic Information

Name ServiceManager.createService

Description This method creates a service instance built from the input service
specification. The service will be populated with the hard facts and
characteristics supplied by the caller.

Pre-Condition A service specification has been selected.

Internal Logic The service is created using the input service specification.

Post-Condition The service has been created and is in Pending status.

Extensions Not applicable

Tips The Service.startDate and Service.name are required attributes. The
Service.characteristics can be populated with the desired characteristics. If
the service specification is defined with any required characteristics that do
not have default values specified, then those characteristic must be set on
the service in order for it to be created successfully.

Example 3-3 Creating the Service with Characteristics

ServiceManager smgr = null;

Finder f = null;

try{
smgr = PersistenceHelper.makeServiceManager();
f = PersistenceHelper.makeFinder();

Collection<ServiceSpecification> serviceSpecCollection =
 f.findByName(ServiceSpecification.class,"service_spec");
ServiceSpecification serviceSpec = (ServiceSpecification)
 serviceSpecCollection.iterator().next();

Service serviceModel = smgr.makeService(Service.class);
serviceModel.setName("Service_test22");
serviceModel.setDescription("Service_test22_desc");
serviceModel.setId("Service_test22");
serviceModel.setSpecification(serviceSpec);

HashSet<CharacteristicSpecification> charSpecs =
 new HashSet<CharacteristicSpecification>();
 charSpecs =
 CharacteristicHelper.getCharacteristicSpecifications(serviceSpec);
/*charSpecs is populated with the characteristics specifications of the serviceSpec.
Now, we are ready to set the value for each characteristic based on its name. Below
code has if-else condition for the same.
*/
 if (!charSpecs.isEmpty()) {

Chapter 3
Creating the Service and Service Configuration

3-7

 Set<ServiceCharacteristic> servChars =
 new HashSet<ServiceCharacteristic>();
 ServiceCharacteristic servChar = null;
 for (CharacteristicSpecification charSpec : charSpecs) {

 servChar = sd.makeServiceCharacteristic();
 servChar.setName(charSpec.getName());
 if (charSpec.getName().equals ("test_CharSpec_text")) {
 servChar.setValue("service testing char");
 }

 else if
(charSpec.getName().equals("test_CharSpec_TF_Numeric")) {
 servChar.setValue("500");
 }
 servChar.setCharacteristicSpecification(charSpec);
 servChars.add(servChar);
 }
 serviceModel.setCharacteristics(servChars);

 }

Collection<Service> services = new ArrayList<Service>();
services.add(serviceModel);

List<Service> createdServices = smgr.createService(services);
service = createdServices.get(0);
}
catch(Exception e){
 /* log exception */
}
finally{
 if(f!=null){
 f.close();
}
}

Retrieving the Service Configuration Specification
This section describes the UIM API method used to retrieve the service configuration
specification. The retrieved service configuration specification will later be used to
create the service configuration.

Table 3-4 and example code provide information about using the API method.

Table 3-4 Retrieving the Service Configuration Specification

Topic Information

Name ConfigurationManager.getConfigSpecTypeConfig

Description This method retrieves the configuration specifications related to the
input service specification.

Pre-Condition The service specification is associated to one or more configuration
specifications.

Internal Logic The configuration specifications related to the service specification are
retrieved and returned.

Chapter 3
Creating the Service and Service Configuration

3-8

Table 3-4 (Cont.) Retrieving the Service Configuration Specification

Topic Information

Post-Condition A configuration specification has been selected.

Extensions Not applicable

Tips If a list of specifications is returned, the list will need to be iterated to
select the desired specification to be used to create the service
configuration.

Example 3-4 Retrieving the Service Configuration Specification

ConfigurationManager configurationManager =
 PersistenceHelper.makeConfigurationManager();

List< InventoryConfigurationSpec > configSpecs =
 configurationManager.getConfigSpecTypeConfig(serviceSpec, true);

return configSpecs;

Retrieving the Service Configuration Specification Using Finder API
You can retrieve the service configuration specification using the finder.findByName API. See
Table 3-2 for more information.

Example 3-5 Querying for the Service Configuration Specification Using Finder API

InventoryConfigurationSpec spec = null;
Finder f = null;

try{
f = PersistenceHelper.makeFinder();

Collection< InventoryConfigurationSpec > specs =
f.findByName(InventoryConfigurationSpec.class, “Service_Configuration_Spec_name");
if (Utils.isEmpty(specs))
{
 /* log error */
}
spec = specs.iterator().next();
}
catch(Exception e){
 /* log exception */
}
finally{
 if(f!=null){
 f.close();
}
}

Creating the Service Configuration
This section describes the UIM API method used to create the service configuration, based
upon the retrieved service configuration specification.

Table 3-5 and example code provide information about using the API method:

Chapter 3
Creating the Service and Service Configuration

3-9

Table 3-5 Creating the Service Configuration

Topic Information

Name BaseConfigurationManager.createConfigurationVersion(Configurable
configurable, InventoryConfigurationVersion configuration,
InventoryConfigurationSpec configSpec)

Description This method creates a service configuration version and associates it
to the service.

Pre-Condition The service exists with no service configuration versions.

Internal Logic Not applicable

Post-Condition The first configuration version is created and associated to the service.
This method will default the configuration items based on the input
configSpec.

Extensions Not applicable

Tips The service, configuration and configSpec parameters are required.

Example 3-6 Creating the Service Configuration

Finder f = null;
try{
f = PersistenceHelper.makeFinder();
Collection<Service> serviceCollection =
 f.findById(Service.class, servId);
Service serv = serviceCollection.iterator().next();
f.reset();
Collection<InventoryConfigurationSpec> invSpecCollection =
 f.findByName(InventoryConfigurationSpec.class,"Serv_Config");
InventoryConfigurationSpec invSpec =
 invSpecCollection.iterator().next();
BaseConfigurationManager bcd =
 PersistenceHelper.makeConfigurationManager
 (ServiceConfigurationVersion.class);
InventoryConfigurationVersion scv =
 bcd.makeConfigurationVersion(serv);
scv.setDescription(configId);
scv.setId(configId);
scv.setName(configId);
scv.setEffDate(new Date());
InventoryConfigurationVersion createdConfig =
 bcd.createConfigurationVersion(serv, scv,invSpec);
}catch(Exception e){
 /* log exception*/
}
finally{
 if(f!=null)
 f.close();
}

About Alternate Flows
The generic service fulfillment scenario creates a service and initial service
configuration. Alternate flows to this scenario may be to change the service, or to
disconnect the service.

Chapter 3
Creating the Service and Service Configuration

3-10

The alternate flows described in this section are:

• Changing the Service

• Disconnecting the Service

Changing the Service
This section describes the UIM API method used to change an existing service by adding a
new service configuration version. The main goal is to create an IN_PROGRESS service
configuration version so additional resource or characteristic changes can be executed. For
example, after creating an initial service configuration version to assign a custom object to a
service, a second service configuration version can be created to unassign the custom object
previously allocated.

Table 3-6 and example code provide information about using the API method.

Table 3-6 Changing the Service

Topic Information

Name BaseConfigurationManager.createConfigurationVersion(Configurable
configurable, InventoryConfigurationVersion configuration)

Description This method creates new configuration version from the most recently
completed previous configuration version.

Pre-Condition A service with a completed service configuration version must exist.

Internal Logic Not applicable

Post-Condition A service configuration version is created with a status of IN_PROGRESS.

Extensions Not applicable

Tips The service and configuration parameters are required.

Example 3-7 Changing the Service

Finder f = null;
try{
f = PersistenceHelper.makeFinder();
Collection<Service> serviceCollection = f.findById(Service.class, servId);
Service serv = serviceCollection.iterator().next();
f.reset();
Collection<InventoryConfigurationSpec> invSpecCollection =
 f.findByName(InventoryConfigurationSpec.class,"Serv_Config");
InventoryConfigurationSpec invSpec =
 invSpecCollection.iterator().next();
BaseConfigurationManager bcd =
 PersistenceHelper.makeConfigurationManager(ServiceConfigurationVersion.class);
InventoryConfigurationVersion scv =
 bcd.makeConfigurationVersion(serv);
scv.setDescription(configId);
scv.setId(configId); scv.setName(configId);
scv.setEffDate(new Date());
InventoryConfigurationVersion createdConfig =
 bcd.createConfigurationVersion(serv, scv);
}
catch(Exception e){
/*log exception */
}finally{
 if(f!=null)

Chapter 3
Creating the Service and Service Configuration

3-11

 f.close();
}

Example 3-8 Updating the Characteristics of a Service

Service service = null;
Finder f = null;
 BaseConfigurationManager configMgr = null;

try{

f = PersistenceHelper.makeFinder();
Collection<Service> services = f.findByName(Service.class, "service_name");
Service = Services.iterator.next();

HashSet<CharacteristicSpecification> charSpecs =
 new HashSet<CharacteristicSpecification>();
charSpecs = CharacteristicHelper.getCharacteristicSpecifications
(Service.getSpecification());
if (!charSpecs.isEmpty()) {
 Set<ServiceConfigurationItemCharacteristic> sciChars =
 new HashSet<ServiceConfigurationItemCharacteristic>();
 ServiceConfigurationItemCharacteristic sciChar = null;
 for (CharacteristicSpecification charSpec : charSpecs) {

 sciChar = configItem.makeCharacteristicInstance();
 String charName = sciChar.getName(charSpec.getName());
 if (charName.equals("char_name_1)){
 sciChar.setValue("textupdated");
 }
 sciChars.add(sciChar);
}
}

service.setCharacteristics(sciChars);
}
}
catch(Exception e){
 /* log exception*/
}
finally{
 if(f!=null)
 f.close();
}

Disconnecting the Service
This section describes the UIM API method used to disconnect a service when the
service is no longer needed.

Table 3-7 and example code provide information about using the API method.

Table 3-7 Disconnecting the Service

Topic Information

Name ServiceManager.disconnectService

Chapter 3
Creating the Service and Service Configuration

3-12

Table 3-7 (Cont.) Disconnecting the Service

Topic Information

Description This method will transition the state of a service and invoke necessary
business logic for the service and configuration version depending on
the type of transition initiated.

Pre-Condition The service exists and there are no configuration versions in a state
other than Completed or Cancelled.

Internal Logic Not applicable

Post-Condition The service has a Pending Disconnect status.

A new configuration version is created and any resources that are
currently assigned, are unassigned. The configuration version has an
In Progress status.

Extensions Not applicable

Tips The businessAction to be passed as input to the transition method is
ServiceAction.DISCONNECT.

Example 3-9 Disconnecting the Service

ServiceManager sm = PersistenceHelper.makeServiceManager();
sm.disconnectService(service);

Creating and Associating the Party
This section describes the UIM API methods used to create a party, create a party role, and
associate the party and party role with the service. The API methods are listed in the order in
which they must be called.

Note:

The associations of the party and party role with the service are optional, and can
be associated before or after the creation of the initial service configuration.
Typically, these types of associations do not change for the service, but alternate
flows are presented to show how the associations can be changed if necessary.

Creating the Party
This section describes the UIM API method used to create the party.

Table 3-8 and example code provide information about using the API method.

Table 3-8 Creating the Party

Topic Information

Name PartyManager.createParties

Chapter 3
Creating and Associating the Party

3-13

Table 3-8 (Cont.) Creating the Party

Topic Information

Description This method takes a collection of Party entities and persist them into the
database. The Party Role and association to the Service is setup by a
different API.

Pre-Condition Party Specification is valid and retrieved from the database. Party has a
valid and unique ID.

Internal Logic Take the collection of transient Party entities and persists them into the
database, and return the collection of persisted Party entities. Validate that
the Parties are not duplicated by ID and they all have valid
PartySpecification.

Post-Condition Persistent Party entities are returned.

Extensions This API is defined as an extension point to allow custom validation before
or after the Parties are created. For instance, the IDs can be generated
based on some custom algorithm.

Tips Party is a CharacteristicExtensible entity. The characteristic values should
be added when the Party instance is created. Use RoleManager APIs to
manage the roles played by a given Party, and use AttachmentManager to
associate the Party with specific Role to a given Service.

Example 3-10 Creating the Party

Finder finder = null;
PartyManager mgr = null;
try{

finder = PersistenceHelper.makeFinder();

mgr = PersistenceHelper.makePartyManager();
Party party = mgr.makeParty();
Collection<Party> parties = new ArrayList<Party>();

party.setId(partyId);
party.setName("Party_Name");
party.setDescription("Party_Description");

Collection<PartySpecification> partyspec =
 finder.findByName(PartySpecification.class,"Test_Party_Spec");

PartySpecification partySpec =partyspec.iterator().next();
party.setSpecification(partySpec);

parties.add(party);

List<Party> results = mgr.createParties(parties);
Party resulty = results.iterator().next();
}
catch(Exception e){
 /*log exception here*/
}finally{
if(finder!=null){
 finder.close();
}
}

Chapter 3
Creating and Associating the Party

3-14

Creating the Party Role
This section describes the UIM API method used to create the party role.

Table 3-9 and example code provide information about using the API method.

Table 3-9 Creating the Party Role

Topic Information

Name RoleManager.createInventoryRole

Description This method takes a collection of InventoryRole entities and persist them
into the database. The roles passed in are the concrete subclass, for
instance PartyRole.

Pre-Condition InvRoleSpecification is valid and retrieved from the database. The Party
which has the roles is already created.

Internal Logic Take the collection of transient InventoryRole entities and persists them into
the database, and return the collection of persisted InventoryRole entities.
Validate that the roles are not duplicated and they all have valid
InvRoleSpecification.

Post-Condition Persistent concrete subclass (i.e. PartyRole) entities are returned.

Extensions Not applicable

Tips Use RoleManager.makePartyRole() API to get a transient instance of the
correct concrete subclass of role to create. InvRoleSpecification is required.

Example 3-11 Creating the Party Role

Finder finder = PersistenceHelper.makeFinder();
RoleManager roleMgr = PersistenceHelper.makeRoleManager();
PartyRole role = roleMgr.makePartyRole();
/* Utility Method Call - see 3.2.1 Query Spec */
Collection<InvRoleSpecification> invrolespeclist =
 finder.findByName(InvRoleSpecification.class,("Test_Party_Role_Spec");
InvRoleSpecification rolespec =
 (InvRoleSpecification)invrolespeclist.iterator().next();
role.setSpecification(roleSpec);
List<InventoryRole> roles = new ArrayList<InventoryRole>();
roles.add(role);
roleMgr.createInventoryRole(roles);

Associating the Party and Party Role with the Service
This section describes the UIM API method used to associate the party and party role with
the service. The API method must be called once per association. So, in this scenario, the
API is called to associate the party with the service, and then called again to associate the
party role with the service.

Table 3-10 and example code provide information about using the API method. The example
shows associating the party with the service; it does not show associating the party role with
the service, which is accomplished by calling the same API method.

Chapter 3
Creating and Associating the Party

3-15

Table 3-10 Associating the Party and Party Role with the Service

Topic Information

Name AttachmentManager.createRel

Description This method creates an involvement (an association) between two
entities.

Pre-Condition Service, Party and PartyRole are already created.

Internal Logic Creates an involvement entity to represent the relationship from Party
to Service with a specific PartyRole. The Party is the parent of this
involvement. Validates that the relationship is not duplicated.

Post-Condition PartyServiceRel is created referencing the entities.

Extensions Not applicable

Tips Set the FROM entity to Party and TO entity to Service. Set the FROM
entity role to the PartyRole.

Example 3-12 Associating the Party to the Service

String roleOid = role.getOid();
AttachmentManager involvementMgr =
 PersistenceHelper.makeAttachmentManager();
Involvement involvement =
 involvementMgr.makeRel(PartyServiceRel.class);
involvement.setToEntity(service);
involvement.setFromEntity(party);
involvement.setFromEntityRoleKey(roleOid);
involvementMgr.createRel(involvement);
PartyServiceRel partyServiceRel = (PartyServiceRel)involvement;

About Alternate Flows
The generic service fulfillment scenario creates a party and party role, and associates
them with the service. Alternate flows to this scenario may be to disassociate the party
and party role from the service, and then delete the party and party role.

The alternate flows described in this section are:

• Disassociating the Party and Party Role from the Service

• Deleting the Party

• Deleting the Party Role

Disassociating the Party and Party Role from the Service
This section describes the UIM API methods used to retrieve a party or service, and
then use the retrieved data to disassociate the party from the service. The API
methods are listed in the order in which they must be called.

The API methods must be each called once per disassociation. So, in this scenario, an
API is called to retrieve the party or service, and another API is called to disassociate
the party from the service. This process is repeated to disassociate the party role from
the service: An API is called to retrieve the party role or service, and another API is
called to disassociate the party role from the service.

Chapter 3
Creating and Associating the Party

3-16

Table 3-11 and Table 3-12 provide information about using the API methods.

Table 3-11 Getting the Party and the Service

Topic Information

Name Service.getParty() or Party.getService()

Description These methods are used to retrieve the bidirectional relationship
PartyServiceRel between Party and Service. Once retrieved, the correct
instance can be deleted.

Pre-Condition PartyServiceRel is already created.

Internal Logic Simple relationship attribute on the entities to get list of relationships to
iterate through.

Post-Condition PartyServiceRel is found and passed to next method for deletion.

Extensions Not applicable

Tips Not applicable

Table 3-12 Disassociating the Party from the Service

Topic Information

Name AttachmentManager.deleteRel

Description This method deletes an involvement (an association) between two entities.
In this example, an existing relationship between the Party and Service with
a specific role is deleted.

Pre-Condition PartyServiceRel is already created.

Internal Logic Delete the PartyServiceRel entity.

Post-Condition PartyServiceRel is deleted.

Extensions Not applicable

Tips Delete existing PartyServiceRel and create new ones to change Party to
Service relationships.

Deleting the Party
This section describes the UIM API method used to delete a party.

Table 3-13 provides information about using the API method.

Table 3-13 Deleting the Party

Topic Information

Name PartyManager.deleteParty

Description This method deletes an existing Party, and all its existing PartyRoles.

Pre-Condition Party is already created.

Internal Logic Delete the Party entity. The Party will not be deleted if it is associated with
other entities, such as involvement with a Service.

Post-Condition Party is deleted.

Chapter 3
Creating and Associating the Party

3-17

Table 3-13 (Cont.) Deleting the Party

Topic Information

Extensions The API is an extension point for adding custom validation logic, such as
logging and removing any relationships before deleting.

Tips Use this method to delete an incorrect or obsolete Party before creating a
new Party.

Deleting the Party Role
This section describes the UIM API method used to delete a party role.

Table 3-14 provides information about using the API method.

Table 3-14 Deleting the Party Role

Topic Information

Name RoleManager.deleteInventoryRoles

Description This method deletes an existing InventoryRole on a given entity. In this
example, a PartyRole subclass instance is deleted.

Pre-Condition PartyRole is already created.

Internal Logic Delete the PartyRole entity.

Post-Condition PartyRole is deleted.

Extensions Not applicable

Tips Use this method to delete an incorrect or obsolete role before creating
a new role.

Creating and Associating the Geographic Address with the
Service

This section describes the UIM API methods used to create a place, create a place
role, and associate the place and place role with the service. (A place is a
GeographicPlace entity, which id is a concrete entity representing a geographic
address / service address.) The API methods are listed in the order in which they must
be called.

Note:

The associations of the place and place role with the service are optional,
and can be associated before or after the creation of the initial service
configuration. Typically, these types of associations do not change for the
service, but alternate flows are presented to show how the associations can
be changed if necessary.

Chapter 3
Creating and Associating the Geographic Address with the Service

3-18

Creating the Geographic Place
This section describes the UIM API method used to create the geographic place.

Table 3-15 and example code provide information about using the API method.

Table 3-15 Creating the Geographic Place

Topic Information

Name PlaceManager.createGeographicPlace

Description This method takes a collection of Geographic Address entities which
represents the Service Address and persist them into the database. The
Place Role and association to the Service is setup by a different API. For
this example, create a Geographic Address, a concrete subclass of
Geographic Place, as an instance of the Service Address.

Pre-Condition Place Specification is valid and retrieved from the database. Geographic
Address has a valid and unique ID.

Internal Logic Take the collection of transient Geographic Address entities and persists
them into the database, and return the collection of persisted Geographic
Address entities. Validate that the Geographic Address are not duplicated by
ID and they all have valid PlaceSpecification.

Post-Condition Persistent Geographic Address entities are returned.

Extensions This API is defined as an extension point to allow custom validation before
or after the Geographic Addresses are created. For instance, the IDs can be
generated based on some custom algorithm.

Tips Geographic Address is a CharacteristicExtensible entity. Its characteristic
values should be added as the instance is created. Use RoleManager APIs
to manage the roles played by a given Geographic Address, and use
AttachmentManager to associate the Geographic Address with specific Role
to a given Service. (Same as Party.)

Example 3-13 Creating the Geographic Place

Finder finder = PersistenceHelper.makeFinder();
PlaceManager placeMgr = PersistenceHelper.makePlaceManager();
GeographicAddress place =
 placeMgr.makeGeographicPlace(GeographicAddress.class);
place.setId("Place_ID");
place.setName("Place_Name");

Collection<PlaceSpecification> placeSpecification = finder.findByName
 (PlaceSpecification.class,(String)paramMap.get("Test_Place_Spec"));

PlaceSpecification pcspec = PlaceSpecification.iterator().next();
place.setSpecification((PlaceSpecification) placeSpec);

List places = new ArrayList<GeographicAddress>();
places.add(place);
places = placeMgr.createGeographicPlace(places);
place = (GeographicAddress) places.iterator().next();

Creating the Place Role
This section describes the UIM API method used to create the place role.

Chapter 3
Creating and Associating the Geographic Address with the Service

3-19

Table 3-16 and example code provide information about using the API method.

Table 3-16 Creating the Place Role

Topic Information

Name RoleManager.createInventoryRole

Description This method takes a collection of InventoryRole entities and persist
them into the database. The roles passed in are the concrete
subclass, for instance PlaceRole.

Pre-Condition InvRoleSpecification is valid and retrieved from the database. The
Geographic Address which has the roles is already created.

Internal Logic Take the collection of transient InventoryRole entities and persists
them into the database, and return the collection of persisted
InventoryRole entities. Validate that the roles are not duplicated and
they all have valid InvRoleSpecification.

Post-Condition Persistent concrete subclass (i.e. PlaceRole) entities are returned.

Extensions Not applicable

Tips Use RoleManager.makePlaceRole() API to get a transient instance of
the correct concrete subclass of role to create. InvRoleSpecification is
required.

Example 3-14 Creating the Place Role

Finder finder = PersistenceHelper.makeFinder();
RoleManager roleMgr = PersistenceHelper.makeRoleManager();
PlaceRole role = roleMgr.makePlaceRole();

Collection<InvRoleSpecification> invrolespeclist =
 f.findByName(InvRoleSpecification.class, "Test_Place_Role_Spec");

InvRoleSpecification rolespec =
 (InvRoleSpecification)invrolespeclist.iterator().next();
role.setSpecification(roleSpec);
List<InventoryRole> roles = new ArrayList<InventoryRole>();
roles.add(role);
roleMgr.createInventoryRole(roles);

Associating the Geographic Place and Place Role with the Service
This section describes the UIM API method used to associate the geographic place
and place role with the service. The API method must be called once per association.
So, in this scenario, the API is called to associate the geographic place with the
service, and then called again to associate the place role with the service.

Table 3-17 and example code provide information about using the API method. The
example shows associating the geographic place with the service; it does not show
associating the place role with the service, which is accomplished by calling the same
API method.

Table 3-17 Associating the Geographic Place and Place Role with the Service

Topic Information

Name AttachmentManager.createRel

Chapter 3
Creating and Associating the Geographic Address with the Service

3-20

Table 3-17 (Cont.) Associating the Geographic Place and Place Role with the
Service

Topic Information

Description This method creates an involvement (an association) between two
entities. In this example, a relationship is created between Geographic
Address and Service with a specific role created earlier.

Pre-Condition Service, Geographic Address and PlaceRole are already created.

Internal Logic Creates an involvement entity to represent the relationship from
Geographic Address to Service with a specific PartyRole. The
Geographic Address is the parent of this involvement. Validates that
the relationship is not duplicated.

Post-Condition PlaceServiceRel is created referencing the entities.

Extensions Not applicable

Tips Set the FROM entity to Geographic Address and TO entity to Service.
Set the FROM entity role to the PlaceRole.

Example 3-15 Associating the Geographic Place with the Service

String roleOid = role.getOid();

AttachmentManager involvementMgr = PersistenceHelper.makeAttachmentManager();
Involvement involvement = involvementMgr.makeRel(PlaceServiceRel.class);
involvement.setToEntity(service);
involvement.setFromEntity(place);
involvement.setFromEntityRoleKey(roleOid);
involvementMgr.createRel(involvement);

PlaceServiceRel placeServiceRel = (PlaceServiceRel) involvement;

About Alternate Flows
The generic service fulfillment scenario creates a geographic place and place role, and
associates them with the service. Alternate flows to this scenario may be to disassociate
geographic place and place role from the service, and then delete the geographic place and
place role.

The alternate flows described in this section are:

• Disassociating the Geographic Place and Place Role from the Service

• Deleting the Geographic Place

• Deleting the Place Role

Disassociating the Geographic Place and Place Role from the Service
This section describes the UIM API methods used to retrieve a place or service, and then use
the retrieved data to disassociate the place from the service. The API methods are listed in
the order in which they must be called.

The API methods must be each called once per disassociation. So, in this scenario, an API is
called to retrieve the place or service, and another API is called to disassociate the place
from the service. This process is repeated to disassociate the place role from the service: An

Chapter 3
Creating and Associating the Geographic Address with the Service

3-21

API is called to retrieve the place role or service, and another API is called to
disassociate the place role from the service.

Table 3-18 and Table 3-19 provide information about using the API methods.

Table 3-18 Getting the Place and Service

Topic Information

Name Service.getPlace() or GeographicPlace.getPlaceservicerels ()

Description These methods are used to retrieve the bidirectional relationship
PlaceServiceRel between Geographic Address and Service. Once
retrieved, the correct instance can be deleted.

Pre-Condition PlaceServiceRel is already created.

Internal Logic Simple relationship attribute on the entities to get list of relationships to
iterate through.

Post-Condition PlaceServiceRel is found and passed to next method for deletion.

Extensions Not applicable

Tips Not applicable

Table 3-19 Disassociating the Place and Place Role from the Service

Topic Information

Name AttachmentManager.deleteRel

Description This method deletes an involvement (an association) between two
entities. In this example, an existing relationship between the
Geographic Address and Service with a specific role is deleted.

Pre-Condition PlaceServiceRel is already created.

Internal Logic Delete the PlaceServiceRel entity.

Post-Condition PlaceServiceRel is deleted.

Extensions Not applicable

Tips Delete existing PlaceServiceRel and create new ones to change
Geographic Address to Service relationships.

Deleting the Geographic Place
This section describes the UIM API method used to delete a geographic place.

Table 3-20 provides information about the API method.

Table 3-20 Deleting the Geographic Place

Topic Information

Name PlaceManager.deleteGeographicPlace

Description This method deletes an existing Geographic Address, and all its
existing PlaceRoles. In this example, the Service Address as in
instance of a Geographic Address is deleted.

Pre-Condition Geographic Address is already created.

Chapter 3
Creating and Associating the Geographic Address with the Service

3-22

Table 3-20 (Cont.) Deleting the Geographic Place

Topic Information

Internal Logic Delete the Geographic Address entity, and all its existing PlaceRoles.
The Geographic Address will not be deleted if it is associated with
other entities, such as involvement with a Service.

Post-Condition Geographic Address is deleted.

Extensions The API is an extension point for adding custom validation logic, such
as logging and removing any relationships before deleting them.

Tips Use this method to delete an incorrect or obsolete Geographic
Address before creating a new Geographic Address.

Deleting the Place Role
This section describes the UIM API method used to delete a place role.

Table 3-21 provides information about the API method.

Table 3-21 Deleting the Place Role

Topic Information

Name RoleManager.deleteInventoryRoles

Description This method deletes an existing InventoryRole on a given entity. In this
example, a PlaceRole subclass instance is deleted.

Pre-Condition PlaceRole is already created.

Internal Logic Delete the PlaceRole entity.

Post-Condition PlaceRole is deleted.

Extensions Not applicable

Tips Use this method to delete an incorrect or obsolete role before creating a
new role.

Configuring the Resources for the Service Configuration
This section describes the APIs need to assign a custom object to a service configuration
item. The APIs are listed in the order in which they must be called.

Note:

If assignment is being done as part of creating the service and service configuration
(see "Creating the Service and Service Configuration"), then start at section
"Finding the Service Configuration Item" because the service and service
configuration are already known.

Figure 3-3 shows how the service and configuration are created by calling the APIs described
in Creating the Service and Service Configuration.

Chapter 3
Configuring the Resources for the Service Configuration

3-23

Figure 3-3 Generic Service Example

Finding the Service
This section describes the UIM API method used to find the service. The retrieved
service will be used to find the service configuration.

Table 3-22 and example code provide information about using the API method.

Table 3-22 Finding the Service

Topic Information

Name ServiceManager.findServices

Description This method retrieves services based on input criteria.

Pre-Condition The desired service already exists.

Internal Logic The database is queried for services meeting the input criteria.
Services matching the criteria are returned.

Post-Condition The desired service has been retrieved.

Extensions Not applicable

Tips If a list of services is returned, the list will need to be iterated to select
the desired service.

Chapter 3
Configuring the Resources for the Service Configuration

3-24

Example 3-16 Finding the Service

ServiceManager mgr = PersistenceHelper.makeServiceManager();
ServiceSearchCriteria criteria = mgr.makeServiceSearchCriteria();
citem = criteria.makeCriteriaItem();
citem.setValue("Service_Test_22");
citem.setOperator(CriteriaOperator.EQUALS);
criteria.setName(citem);
List<Service> list = mgr.findServices(criteria);

Finding the Service by ID Using Finder API
This section describes the UIM API method that is used to find the service using the
finder.findByName API.

Table 3-23 and example code provide information about using the API method.

Table 3-23 Querying for the Service by ID using Finder API

Topic Information

Name Finder.findByName

Description This method retrieves services based on input criteria.

Pre-Condition The desired service already exists.

Internal Logic The database is queried for services meeting the input criteria. Services
matching the criteria are returned.

Post-Condition The desired service has been retrieved.

Extensions Not applicable

Tips If a list of is returned, the list will need to be iterated to select the desired
service.

If the service is not found, the find method will return empty collection.

Note: The name is not a unique field, but it is a common to have unique
service names.

This method is applicable for retrieving other entities by supplying the
correct class as the query parameter. For example, it can be used to retrieve
a CustomObject or any UIM entity to be used later for resource query or
creation.

Example 3-17 Finding the Service by ID Using Finder API

Service service = null;
Finder f = null;

try{

f = PersistenceHelper.makeFinder();
Collection<Service> services = f.findByName(Service.class, "service_name");
service = Services.iterator.next();
}
catch(Exception e){
/* log exception*/
}
finally{
 if(f!=null)
 f.close();
}

Chapter 3
Configuring the Resources for the Service Configuration

3-25

Finding the Current Service Configuration Version
To find the current service configuration version:

1. Find the service. See "Finding the Service".

2. Select the service configuration versions using service.getConfigurations().

3. Process the retrieved service configuration versions, looking for one with a
configState of IN_PROGRESS, DESIGNED or ISSUED.

There will only be one service configuration version in one of these states at a
given point in time for a service. If a service configuration version is not found in
one of these states, you cannot proceed with resource assignment.

In the generic service fulfillment scenario, Version 1 would be selected.

Example 3-18 Finding the Current Service Configuration Version

InventoryConfigurationVersion invConfigVersion = null;
 ServiceConfigurationManager scm =
PersistenceHelper.makeServiceConfigurationManager();
BusinessInteractionState configState = BusinessInteractionState.IN_PROGRESS;
/*similarly, other BusinessInteractionStates (COMPLETED, CANCELLED) can also be
passed as parameter*/
 List<InventoryConfigurationVersion> configs =
scm.getEntityConfigurationVersions(configurable, configState);

 InventoryConfigurationVersion latestConfig = null;
 if (!Utils.isEmpty(configs)) {
 invConfigVersion = configs.get(0);
 }
 ServiceConfigurationVersion scv = (ServiceConfigurationVersion)
invConfigVersion;

Finding the Service Configuration Item
To find the service configuration item:

1. Find the current service configuration version. See "Finding the Current Service
Configuration Version".

2. Select the service configuration items using service.getConfigItems().

3. Process the retrieved service configuration items, looking for one with the
configType of ITEM.

In the generic service fulfillment scenario, CO Item would be selected.

Note:

In this simplified example, we know there is only one item level
configuration item, and we know it is associated to an option for a
custom object specification, which is why the following sections find or
create a custom object to assign.

Chapter 3
Configuring the Resources for the Service Configuration

3-26

Example 3-19 Finding the Current Service Configuration Item

ServiceConfigurationVersion scv = (ServiceConfigurationVersion) invConfigVersion;
List<? extends InventoryConfigurationItem> items = confVersion.getConfigItems();
InventoryConfigurationItem invConfigItem = null;
 for (InventoryConfigurationItem item : items) {
 if (name.equalsIgnoreCase(item.getName())) {
 invConfigItem =item;
break;
 }
 }

Example 3-20 Finding the Current Service Configuration Item - Alternate Way
Including Checks for Existing References or Assignments on the Item

ServiceConfigurationVersion scv = (ServiceConfigurationVersion) invConfigVersion;
boolean checkReferenceAndAssignment = true;
List<? extends InventoryConfigurationItem> items = confVersion.getConfigItems();
InventoryConfigurationItem invConfigItem = null;
 for (InventoryConfigurationItem item : items) {
 if (name.equalsIgnoreCase(item.getName())) {

if (checkReferenceAndAssignment) {
 if (configItem.getAssignment() == null
&& configItem.getReference() == null) {
 invConfigItem =item;
break;
 }
}
 }
}

Finding the Custom Object to Assign
This section describes the UIM API method used to find the custom object to assign to the
retrieved service configuration item. When assigning a custom object to a service
configuration item, you can either find an existing custom object, or you can create a new
custom object to assign, as described in the following section, "Creating the Custom Object to
Assign".

Table 3-24 and example code provide information about using the API method.

Table 3-24 Finding the Custom Object

Topic Information

Name CustomObjectManager.findCustomObjects

Description This method retrieves custom objects based on input criteria.

Pre-Condition The custom object to be allocated already exists.

Internal Logic The database is queried for custom objects meeting the input criteria.
Custom objects matching the criteria are returned.

Post-Condition The desired custom object has been retrieved.

Extensions Not applicable

Chapter 3
Configuring the Resources for the Service Configuration

3-27

Table 3-24 (Cont.) Finding the Custom Object

Topic Information

Tips Set the
CustomObjectSearchCriteria.setAssignmentState(AssignmentState.UNASSI
GNED) to instruct the find method to only return available custom objects.

In this example, we could choose to set the
CustomObjectSearchCriteria.setCustomObjectSpecification
(CustomObjectSpecification) to the CO Spec instance.

If a list of custom objects is returned, the list will need to be iterated to select
the desired custom object to be allocated to the service configuration item.

Example 3-21 Finding the Custom Object

Finder finder = null;
CustomObjectManager mgr = null;
try{
mgr = PersistenceHelper.makeCustomObjectManager();
CustomObjectSearchCriteria criteria =
 mgr.makeCustomObjectSearchCriteria();
criteria.setAdminState(InventoryState.INSTALLED);
finder = PersistenceHelper.makeFinder();
int quantity = 1;// any positive number to ensure the query does not go
unbounded
Collection<CustomObjectSpecification> customObjectSpecs =

finder.findByName(CustomObjectSpecification.class,"Test_Custom_Object_Spec");

criteria.setCustomObjectSpecification(customObjectSpecs.iterator().next());
criteria.setRange(0, quantity);
mgr.findCustomObjects(criteria);

/* another example */
Collection<CustomObject> custObjs = f.findById(CustomObject.class, "CO-1");
}
catch (Exception e){
 /* log exception */
}
finally{
 if(f!=null)
 f.close();
}

Creating the Custom Object to Assign
This section describes the UIM API method used to create a custom object to assign
to the retrieved service configuration item. When assigning a custom object to a
service configuration item, you can either create a new custom object, or you can find
an existing custom object to assign, as described in "Finding the Custom Object to
Assign".

Table 3-25 and example code provide information about using the API method.

Chapter 3
Configuring the Resources for the Service Configuration

3-28

Table 3-25 Creating the Custom Object

Topic Information

Name CustomObjectManager.createCustomObjects

Description This method creates a custom object. The custom object will be populated
with the hard facts and characteristics supplied by the caller.

Pre-Condition Not applicable

Internal Logic The custom object is created.

Post-Condition The custom object has been created and is in Installed status.

Extensions Not applicable

Tips A custom object can be created with or without a specification.

Example 3-22 Creating the Custom Object

Finder f = null;
CustomObjectManager custMgr = null;
try{
custMgr = PersistenceHelper.makeCustomObjectManager();
f = PersistenceHelper.makeFinder();

Collection<CustomObjectSpecification> specList =
 new ArrayList<CustomObjectSpecification>
(f.findByName(CustomObjectSpecification.class, "SPEC_CUST_001"));

if (specList != null && !specList.isEmpty())
{
 CustomObjectSpecification custObjSpec =
 specList.iterator().next();

 Collection<CustomObject> custObjects = new ArrayList<CustomObject>();
 CustomObject custObj = custMgr.makeCustomObject();
 custObj.setId("CUST_OBJ_ID");
 custObj.setName("CUST_OBJ_NAME");
 custObj.setDescription("CUST_OBJ_DESC");
 custObj.setSpecification(custObjSpec); /* optional */
 custObjects.add(custObj);

 custMgr.createCustomObjects(custObjects);}
}
catch(Exception e){
 /* log exception*/
}
finally{
 if(f!=null)
 f.close();
}

Assigning the Resource to a Configuration Item
This section describes the UIM API method used to assign the resource to a configuration
item. In the generic service fulfillment scenario, the resource is the custom object that was
either found or created when "Finding the Custom Object to Assign" or "Creating the Custom
Object to Assign".

Chapter 3
Configuring the Resources for the Service Configuration

3-29

Table 3-26 and example code provide information about using the API method.

Table 3-26 Assigning the Resource to a Configuration Item

Topic Information

Name BaseConfigurationManager.assignResource(E
item,oracle.communications.inventory.api.entity.common.Consumable
Resource resource,java.lang.String reservedFor,java.lang.String
reservedForType)

In this example, the full signature of the method is included because
there are multiple overloaded assignResource methods.

Description This method assigns the input resource to the input service
configuration item. In this example, a custom object is used as the
consumable resource for assignment.

Pre-Condition The configuration item to allocate the custom object to has been
selected.

Internal Logic Not applicable

Post-Condition The custom object has been allocated to the service configuration
item.

Extensions Not applicable

Tips The input item is the entity configuration item to assign the resource to
(ConsumableResource). In this example, ConsumableResource is set
to the CustomObject for CO-1. The reservedFor and reservedForType
parameters should be populated if the resource to be assigned is
reserved, so the reservation can be redeemed.

Example 3-23 Assigning the Resource to a Configuration Item

Finder finder = PersistenceHelper.makeFinder();
Collection<CustomObject> custObjs =
 finder.findByName(CustomObject.class, "CO-1");
CustomObject custObj = custObjs.iterator().next();
ServiceManager mgr = PersistenceHelper.makeServiceManager();

ServiceSearchCriteria criteria = mgr.makeServiceSearchCriteria();
CriteriaItem citem = criteria.makeCriteriaItem();
citem.setValue("Service_Test_22");
citem.setOperator(CriteriaOperator.EQUALS);
criteria.setName(citem);

List<Service> list = mgr.findServices(criteria);
Service service = list.get(0);
List<ServiceConfigurationVersion> srvConfigurations =
 service.getConfigurations();
ServiceConfigurationItemAllocationData itemData =
 new ServiceConfigurationItemAllocationData();
int i = srvConfigurations.get(0).getVersionNumber();

//Write logic to get the latest ServiceConfigurationVersion of the Service.
//Process the retrieved service configuration versions,
//looking for one with a configState of IN_PROGRESS, DESIGNED or ISSUED.
ServiceConfigurationVersion latestConfiguration;

//Assign the latest ServiceConfigurationVersion
//to the variable latestConfiguration
List<ServiceConfigurationItem> configItems =

Chapter 3
Configuring the Resources for the Service Configuration

3-30

 latestConfiguration.getConfigItems();
for(ServiceConfigurationItem item : configItems)
{
 if((item.getName()!= null && item.getName().equalsIgnoreCase("CO Item")))
 {
 itemData.setResource(custObj);
 itemData.setServiceConfigurationItem(item);
 String reservedFor= null; // "Service-123"
 String reservedForType= null; // "Longterm"
 BaseConfigurationManager bcd =
 PersistenceHelper.makeConfigurationManager
 (ServiceConfigurationVersion.class);
 bcd.assignResource(item, custObj,reservedFor, reservedForType);
 break;
 }
}

Referencing the Resource to a Configuration Item
This section describes the UIM API method used to reference the resource to a configuration
item. In a generic service fulfillment scenario, the resource is a custom object that was either
found or created when "Finding the Custom Object to Assign" or "Creating the Custom Object
to Assign".

Table 3-24 and example code provide information about using the API method.

Table 3-27 Referencing the Resource to a Configuration Item

Topic Information

Name BaseConfigurationManager. referenceEntity (E item,
ConfigurationReferenceEnabled entity)

Description This method refers the input resource to the input service configuration item.
In this example, a custom object is used as the resource for reference.

Pre-Condition The configuration item to allocate the custom object to has been selected.

Internal Logic Not applicable

Post-Condition The custom object has been allocated to the service configuration item.

Extensions Not applicable

Tips The input item is the entity configuration item to refer the resource to
(referenceEnabledEntity). In this example, resource is set to the
CustomObject for CO-1.

Example 3-24 Referencing the Resource to a Configuration Item

Finder finder = null;
BaseConfigurationManager configMgr = null
ServiceManager mgr = null;
try{
finder = PersistenceHelper.makeFinder();

Collection<CustomObject> custObjs =
 finder.findByName(CustomObject.class, "CO-1");
CustomObject custObj = custObjs.iterator().next();
mgr = PersistenceHelper.makeServiceManager();

ServiceSearchCriteria criteria = mgr.makeServiceSearchCriteria();

Chapter 3
Configuring the Resources for the Service Configuration

3-31

CriteriaItem citem = criteria.makeCriteriaItem();
citem.setValue("Service_Test_22");
citem.setOperator(CriteriaOperator.EQUALS);
criteria.setName(citem);

List<Service> list = mgr.findServices(criteria);
Service service = list.get(0);
List<ServiceConfigurationVersion> srvConfigurations =
 service.getConfigurations();
ServiceConfigurationItemAllocationData itemData =
 new ServiceConfigurationItemAllocationData();
int i = srvConfigurations.get(0).getVersionNumber();

//Write logic to get the latest ServiceConfigurationVersion of the Service.
//Process the retrieved service configuration versions,
//looking for one with a configState of IN_PROGRESS, DESIGNED or ISSUED.
ServiceConfigurationVersion latestConfiguration;

//Assign the latest ServiceConfigurationVersion
//to the variable latestConfiguration
List<ServiceConfigurationItem> configItems =
 latestConfiguration.getConfigItems();

ServiceConfigurationItem configItem = null;

configMgr = PersistenceHelper.makeConfigurationManager
(ServiceConfigurationItemDAO.class);

 ConfigurationItemSearchCriteria configItemCriteria =
configMgr.makeConfigurationItemSearchCriteria();

configItemCriteria.setConfigurationItemClass(ServiceConfigurationItemDAO.class);
 CriteriaItem criteriaItem = configItemCriteria.makeCriteriaItem();
 criteriaItem.setValue("item_name");
 criteriaItem.setOperator(CriteriaOperator.EQUALS);
 configItemCriteria.setConfigurationItemName(criteriaItem);

 criteriaItem = configItemCriteria.makeCriteriaItem();
 criteriaItem.setValue(version.getVersionNumber());
 criteriaItem.setOperator(CriteriaOperator.EQUALS);
 configItemCriteria.setConfigurationVersionNumber(criteriaItem);

 List<InventoryConfigurationItem> configItems =
configMgr.findConfigurationItems(configItemCriteria);

 configItem = configItems.iterator().next();
 if (configItem != null) {
BaseConfigurationManager configurationManager =
PersistenceHelper.makeConfigurationManager(configItem.getClass());
configurationManager.referenceEntity(configItem, referenceEnabledEntity);
 }
catch(Exception e){
 /* log exception*/
}
finally{
 if(finder!=null)
 finder.close();
}

Chapter 3
Configuring the Resources for the Service Configuration

3-32

Example 3-25 Unreferencing the Resource to a Configuration Item

Finder finder = null;
BaseConfigurationManager configMgr = null;
ServiceManager mgr = null;

try{
finder = PersistenceHelper.makeFinder();

Collection<CustomObject> custObjs =
 finder.findByName(CustomObject.class, "CO-1");
CustomObject custObj = custObjs.iterator().next();
mgr = PersistenceHelper.makeServiceManager();

ServiceSearchCriteria criteria = mgr.makeServiceSearchCriteria();
CriteriaItem citem = criteria.makeCriteriaItem();
citem.setValue("Service_Test_22");
citem.setOperator(CriteriaOperator.EQUALS);
criteria.setName(citem);

List<Service> list = mgr.findServices(criteria);
Service service = list.get(0);
List<ServiceConfigurationVersion> srvConfigurations =
 service.getConfigurations();
ServiceConfigurationItemAllocationData itemData =
 new ServiceConfigurationItemAllocationData();
int i = srvConfigurations.get(0).getVersionNumber();

//Write logic to get the latest ServiceConfigurationVersion of the Service.
//Process the retrieved service configuration versions,
//looking for one with a configState of IN_PROGRESS, DESIGNED or ISSUED.
ServiceConfigurationVersion latestConfiguration;

//Assign the latest ServiceConfigurationVersion
//to the variable latestConfiguration
List<ServiceConfigurationItem> configItems =
 latestConfiguration.getConfigItems();

ServiceConfigurationItem configItem = null;

configMgr = PersistenceHelper.makeConfigurationManager
(ServiceConfigurationItemDAO.class);

 ConfigurationItemSearchCriteria configItemCriteria =
configMgr.makeConfigurationItemSearchCriteria();

configItemCriteria.setConfigurationItemClass(ServiceConfigurationItemDAO.class);
 CriteriaItem criteriaItem = configItemCriteria.makeCriteriaItem();
 criteriaItem.setValue("item_name");
 criteriaItem.setOperator(CriteriaOperator.EQUALS);
 configItemCriteria.setConfigurationItemName(criteriaItem);

 criteriaItem = configItemCriteria.makeCriteriaItem();
 criteriaItem.setValue(version.getVersionNumber());
 criteriaItem.setOperator(CriteriaOperator.EQUALS);
 configItemCriteria.setConfigurationVersionNumber(criteriaItem);

 List<InventoryConfigurationItem> configItems =
configMgr.findConfigurationItems(configItemCriteria);

Chapter 3
Configuring the Resources for the Service Configuration

3-33

 if (!Utils.isEmpty(configItems)) {
configMgr. dereferenceInventoryConfigurationItems (configItems);
 }

}
catch(Exception e){
 /* log exception*/
}
finally{
 if(finder!=null)
 finder.close();
}

About Alternate Flows
The generic service fulfillment scenario assigns a custom object resource to a service
configuration item. An alternate flow to this scenario may be to unassign the resource
from a configuration item.

Additional alternate flows may be to manage consumable resources by creating
reservations and conditions. Reservations are created to prevent a given resource to
be consumed by another service. The reservation can only be redeemed successfully
during resource assignment when the correct token is provided. Also, a reservation
can expire if not redeemed within the expiry time period. Conditions are created to add
informational or blocking codes to a given resource. A blocking condition prevents a
resource from being assigned.

The alternate flows described in this section are:

• Unassigning Resources from a Configuration Item

• Reserving a Custom Object

• Unreserving a Custom Object

• Creating a Blocked Condition for a Custom Object

• Deleting a Blocked Condition for a Custom Object

Unassigning Resources from a Configuration Item
This section describes the UIM API method used to unassign the resource from a
configuration item.

Table 3-28 and example code provide information about using the API method.

Table 3-28 Unassigning Resources from a Configuration Item

Topic Information

Name BaseConfigurationManager.unallocateInventoryConfigurationItems(jav
a.util.Collection<E> configurationItems)

Description This method unassigns/deallocates resources that were previously
assigned on a configuration item of a service configuration version.

Pre-Condition A service configuration version exists with a custom object assigned to
a configuration item of the version.

Internal Logic Not applicable

Chapter 3
Configuring the Resources for the Service Configuration

3-34

Table 3-28 (Cont.) Unassigning Resources from a Configuration Item

Topic Information

Post-Condition The custom object/s has been unassigned.

Extensions Not applicable

Tips In this example the ConsumableResource to be unassiged is custom
object 'CO-1'.

Example 3-26 Unassigning Resources from a Configuration Item

BaseConfigurationManager bcd =
 PersistenceHelper.makeConfigurationManager(ServiceConfigurationVersion.class);
Finder f = PersistenceHelper.makeFinder();

Collection<CustomObject> custObjs = f.findById(CustomObject.class, "CO-1");
CustomObject custObj = custObjs.iterator().next();
Collection<ServiceConfigurationVersion> scvList =
 f.findByName(ServiceConfigurationVersion.class, "Se_123_2");

ServiceConfigurationVersion scv =
 (ServiceConfigurationVersion)scvList.iterator().next();
 BusinessInteractionManager biMgr =
 PersistenceHelper.makeBusinessInteractionManager();
 biMgr.switchContext(scv, null);

/* Find Service Configuration Item (SCI) by: */
/* 1) Using Finder query by name, OR */
/* 2) Get Service Configuration and iterate to correct SCI */
//Collection<ServiceConfigurationItem> serviceConfigItems =
// f.findByName(ServiceConfigurationItem.class, "CO Item");
//ServiceConfigurationItem sci = serviceConfigItems.iterator().next();

ServiceConfigurationItem unSci = null;
Collection<ServiceConfigurationItem> sciList = scv.getConfigItems();
for (ServiceConfigurationItem sci : sciList)
{
 if (sci.getName().equals("CO Item") &&
 sci.getConfigAction() == ConfigurationItemAction.ASSIGN &&
 sci.getAssignment() != null &&
 sci.getAssignment() instanceof Assignment)
 {
 Assignment assignment = (Assignment) sci.getAssignment();
 if (assignment.getResource().equals(custObj))
 {
 unSci = sci;
 break;
 }
 }
}
if (unSci != null)
{
 Collection<ServiceConfigurationItem> unSciList =
 new ArrayList<ServiceConfigurationItem>();
 unSciList.add(unSci);
 bcd.unallocateInventoryConfigurationItems(unSciList);
}

Chapter 3
Configuring the Resources for the Service Configuration

3-35

Reserving a Custom Object
This section describes the UIM API methods used to make a reservation and to
reserve a custom object using the reservation. To find a custom object to reserve, you
must find or create a custom object. See "Finding the Custom Object to Assign" or
"Creating the Custom Object to Assign".

Table 3-29, Table 3-30, Table 3-31 and example code provide information about using
the API methods.

Table 3-29 Making a Reservation

Topic Information

Name ReservationManager.makeReservation(ConsumableResource
conRes)

In this example, the full signature of the method is included because
there are multiple overloaded makeReservation methods.

Description This method will make an instance of the appropriate Reservation
class based on the type of ConsumableResource. For example, if a
CustomObject is input, then a CustomObjectReservation will be
returned.

Pre-Condition Not applicable

Internal Logic This method will determine the appropriate Reservation class to be
constructed based on the input ConsumableResource.

Post-Condition The caller has an instance of the appropriate Reservation class. In this
scenario, it will be a CustomObjectReservation.

Extensions Not applicable

Tips The CustomObject instance for CO-1 should be passed as input to the
method.

Table 3-30 Reserving a Resource

Topic Information

Name ReservationManager.reserveResource(Collection <? extends
ConsumableResource> resources, Reservation reservation)

Description This method will reserve the input resources.

Pre-Condition The resource exists. In this scenario the resource is Custom Object
CO-1.

Internal Logic The input parameters are validated, and if no errors are detected each
input resource is reserved. The system will generate a new reservation
number. All the input resources will be reserved for this reservation
number.

Post-Condition The resource (Custom Object CO-1) is reserved.

Extensions The RESERVATION_EXPIRATION ruleset can be customized to
change the default behavior of setting the expiry date for a resource
reservation. By default, a long term reservation will expire after 30
days and a short term reservation will expire after 10 minutes.

Chapter 3
Configuring the Resources for the Service Configuration

3-36

Table 3-30 (Cont.) Reserving a Resource

Topic Information

Tips At least one ConsumableResource must be input. For this scenario, it
will be the CustomObject instance for CO-1.

The Reservation passed to the method must have the following
attributes set:

• Reservation.reservedFor

(Free form text identifying the reserver.)
• Resevation.reservedForType

(A ReservedForType such as CUSTOMER.)
• Reservation.reservationType

(This would be set to ReservationType.LONGTERM for this
scenario.)

Optionally, the Reservation.reason can be set. This is free form text.

The startDate, endDate, and expiry can also be set, but for this
example we will allow them to be defaulted by the system.

You can also add a resource to an existing reservation number by calling the
ReservationManager.addResourceToReservation method using this API method:

Table 3-31 Adding a Resource to a Reservation

Topic Information

Name ReservationManager.addResourceToReservation(Collection <? extends
ConsumableResource> resources, Reservation reservation)

Description This method will reserve the input resources.

Pre-Condition The resource exists. In this scenario the resource is Custom Object CO-1.

Internal Logic The input parameters are validated, and if no errors are detected each input
resource is reserved. The resources will be reserved with an existing
reservation number. The reservedFor and reservedForType values will
always be the same for all resource reservations for the same reservation
number. Other reservation information, such as reason and expiry, can differ
among resource reserved with the same reservation number.

Post-Condition The resource (Custom Object CO-1) is reserved.

Extensions The RESERVATION_EXPIRATION ruleset can be customized to change the
default behavior of setting the expiry date for a resource reservation. By
default, a long term reservation will expire after 30 days and a short term
reservation will expire after 10 minutes.

Chapter 3
Configuring the Resources for the Service Configuration

3-37

Table 3-31 (Cont.) Adding a Resource to a Reservation

Topic Information

Tips At least one ConsumableResource must be input. For this scenario, it will be
the CustomObject instance for CO-1.

The Reservation passed to the method must have the following attributes
set:

• Reservation.reservationNumber

An existing resource reservation must already exist with this same
reservation number.

• Reservation.reservationType

In the generic service fulfillment scenario, this would be set to
ReservationType.LONGTERM.

If Reservation.reservedForType or Reservation.ReservedFor are populated,
they must match the equivalent values for existing resource reservations for
the reservationNumber.

The startDate, endDate, and expiry can also be set, but for this scenario,
these dates are defaulted by the system.

Example 3-27 Reserving a Custom Object

ReservationManager resMgr = PersistenceHelper.makeReservationManager();
ConsumableResource cr = (ConsumableResource) custObj;
List<ConsumableResource> crList = new ArrayList<ConsumableResource>();
crList.add(cr);

Reservation reservation = resMgr.makeReservation(cr);
reservation.setReason("Future reqiurement");
reservation.setReservedFor("Order-333");
reservation.setReservedForType(ReservedForType.ORDER);
reservation.setReservationType(ReservationType.LONGTERM);

resMgr.reserveResource(crList, reservation);

ReservationManager resMgr = PersistenceHelper.makeReservationManager();
ConsumableResource cr = (ConsumableResource) custObj;
List<ConsumableResource> crList = new ArrayList<ConsumableResource>();
crList.add(cr);

Reservation reservation = resMgr.makeReservation(cr);
reservation.setReservationNumber("111111111");
reservation.setReservedFor("Order-333");
reservation.setReservedForType(ReservedForType.ORDER);
reservation.setReservationType(ReservationType.LONGTERM);

resMgr.addResourceToReservation(crList, reservation);

Unreserving a Custom Object
This section describes the UIM API methods used to unreserve a custom object. To
find the custom object to unreserve, you must find the custom object. See "Finding the
Custom Object to Assign".

Table 3-32 and example code provide information about using the API method.

Chapter 3
Configuring the Resources for the Service Configuration

3-38

Table 3-32 Unreserving a Custom Object

Topic Information

Name ReservationManager.unreserveResource(Collection<? extends
ConsumableResource> resources, String redeemer, ReservedForType
redeemerType)

In this example, the full signature of the method is included because there
are multiple overloaded unreserveResource methods.

Description This method will delete the reservation for the input resources.

Pre-Condition The resource exists and is reserved.

Internal Logic The input parameters are validated, and if no errors are detected each input
resource is unreserved. The input redeemer and redeemerType must match
the persisted reservation information for each of the input resources.

Post-Condition The resource (custom object CO-1) is no longer reserved.

Extensions Not applicable

Tips At least one ConsumableResource must be input. For this scenario, it will be
the CustomObject instance for CO-1.

The redeemer and redeemerType are required.

Example 3-28 Unreserving a Custom Object

ReservationManager resMgr = InventoryHelper.makeReservationManager();
ConsumableResource cr = (ConsumableResource) custObj;
List<ConsumableResource> crList = new ArrayList<ConsumableResource>();
crList.add(cr);

resMgr.unreserveResource(crList, "Order-333", ReservedForType.ORDER);

Creating a Blocked Condition for a Custom Object
This section describes the UIM API methods used to create a blocked condition for a custom
object. To find a custom object to create the condition for, you must find or create a custom
object. See "Finding the Custom Object to Assign" or "Creating the Custom Object to Assign".

Table 3-33, Table 3-34 and example code provide information about using the API methods.

Table 3-33 Making a Condition

Topic Information

Name ConditionManager.makeCondition(ConsumableResource conRes)

In this example, the full signature of the method is included because there
are multiple overloaded makeCondition methods.

Description This method will make an instance of the appropriate Condition class based
on the type of ConsumableResource. For example, if a CustomObject is
input, then a CustomObjectCondition will be returned.

Pre-Condition Not applicable

Internal Logic This method will determine the appropriate Condition class to be
constructed based on the input ConsumableResource.

Post-Condition The caller has an instance of the appropriate Condition class. In this
scenario, it will be a CustomObjectCondition.

Chapter 3
Configuring the Resources for the Service Configuration

3-39

Table 3-33 (Cont.) Making a Condition

Topic Information

Extensions Not applicable

Tips The CustomObject instance for CO-1 should be passed as input to the
method.

Table 3-34 Creating Conditions

Topic Information

Name ConditionManager.createConditions

Description This method will create a condition on each of the input resources.

Pre-Condition The resource exists. In this scenario the resource is Custom Object
CO-1.

Internal Logic The input Condition instances are validated, and if no errors are
detected a condition is created for each resource specified in the input
Condition collection.

Post-Condition The resource (custom object CO-1) has a blocked condition.

Extensions Not applicable

Tips The Condition passed to the method must have the following attributes
set:

• Condition.resource

This should be set to the CustomObject instance for CO-1.
• Condition.reason

This is free form text describing the reason for the condition. For
example, Under Repair.

• Condition.type

This should be set to ConditionType.BLOCKED.
Optionally, the Condition.validFor can be set with a startDate and
endDate value. If startDate is not specified, it is defaulted to the
current date. If endDate is not specified, it is defaulted to the java max
date value of 18- Jan-2038.

Optionally, the Condition.description can be set. This is free form text.

Example 3-29 Creating a Blocked Condition for a Custom Object

ConditionManager conMgr = PersistenceHelper.makeConditionManager();
Collection<Condition> inputCons = new ArrayList<Condition>();

Finder f = PersistenceHelper.makeFinder();
Collection<CustomObject> custObjs = f.findById(CustomObject.class, "CO-1");
CustomObject custObj = custObjs.iterator().next();

Condition con = conMgr.makeCondition(custObj);
con.setDescription("Test Failure");
con.setReason("Under Repair");
con.setType(ConditionType.BLOCKED);

Date now = new Date();
Date later = getEndDate(now); /* call to an utility method */
con.setValidFor(new TimePeriod(now, later));

Chapter 3
Configuring the Resources for the Service Configuration

3-40

con.setResource(custObj);
con.setMaster(true);
inputCons.add(con);

Collection <? extends Condition> cons = conMgr.createConditions(inputCons);

Deleting a Blocked Condition for a Custom Object
This section describes the UIM API methods used to delete a blocked condition from a
custom object. To find the custom object to delete the blocked condition from, you must find
the custom object. See "Finding the Custom Object to Assign". To delete the condition from
the custom object, you must first find the condition to be deleted using the API method
described here.

Table 3-35, Table 3-36, Table 3-37 and example code provide information about using the API
methods.

Table 3-35 Making a Condition Search Criteria

Topic Information

Name ConditionManager.makeConditionSearchCriteria

Description This method will make an instance of ConditionSearchCriteria.

Pre-Condition Not applicable

Internal Logic Not applicable

Post-Condition The caller has an instance of ConditionSearchCriteria.

Extensions Not applicable

Tips Not applicable

Table 3-36 Finding Conditions

Topic Information

Name ConditionManager.findConditions

Description This method retrieves conditions based on input criteria.

Pre-Condition The custom object to find conditions for has been selected. The desired
condition exists.

Internal Logic The database is queried for conditions meeting the input criteria. Conditions
matching the criteria are returned.

Post-Condition The desired condition has been retrieved.

Extensions Not applicable

Tips In this scenario, the following CriteriaItems could be populated on the
ConditionSearchCritiera:

• resource

The CustomObject instance for CO-1.
• type

ConditionType.BLOCKED
If a list of conditions is returned, the list will need to be iterated to select the
desired condition to be deleted.

Chapter 3
Configuring the Resources for the Service Configuration

3-41

Table 3-37 Deleting Conditions

Topic Information

Name ConditionManager.deleteConditions

Description This method will delete conditions on resources.

Pre-Condition The condition to be deleted has been selected.

Internal Logic The input Condition instances are validated, and if no errors are
detected the conditions are deleted.

Post-Condition The resource (Custom Object CO-1) no longer has the blocked
condition.

Extensions Not applicable

Tips Not applicable

Example 3-30 Deleting a Blocked Condition from a Custom Object

Finder f = PersistenceHelper.makeFinder();
Collection<CustomObject> custObjs = f.findById(CustomObject.class, "CO-1");
CustomObject custObj = custObjs.iterator().next();

ConditionManager conMgr = PersistenceHelper.makeConditionManager();
ConditionSearchCriteria criteria = conMgr.makeConditionSearchCriteria();

CriteriaItem res = criteria.makeCriteriaItem();
res.setValue(custObj);
res.setOperator(CriteriaOperator.EQUALS);
criteria.setResource(res);

CriteriaItem type = criteria.makeCriteriaItem();
type.setValue(ConditionType.BLOCKED);
type.setOperator(CriteriaOperator.EQUALS_IGNORE_CASE);
criteria.setType(type);

Collection <CustomObjectCondition> cons = conMgr.findConditions(criteria);
CustomObjectCondition con = cons.iterator().next();

conMgr.deleteConditions(cons);

Setting Characteristic Values for the Service Configuration
Item

The following APIs are used to set characteristic values on a service configuration
item. The set of allowable characteristic values for a given service configuration item
are defined by the service configuration specification used to create the service
configuration.

The following shows a configuration item hierarchy that has two characteristic values
associated with the Customer Equipment (CE) Router ITEM:

ITEM - Site

• ITEM - Customer Equipment Router

– Specification - Logical Device

Chapter 3
Setting Characteristic Values for the Service Configuration Item

3-42

– Characteristic - Customer

– Instructions - Characteristics

– Additional Information

The Configuration ITEMs are used to create the Service Configuration Item instances.
Characteristics will be related to the Service Configuration Item. Since Service Configuration
Item is a Characteristic Extensible entity, we can use the CharacteristicManager.init API to
initialize the set of characteristic values on the entity. In the example above, the two
Characteristics under the Customer Equipment Router ITEM would create two instances on
the ServiceConfigurationItemCharacteristic, and if there is default values defined, it is also
copied.

Table 3-38 and example code provide information about using the API method.

Table 3-38 Setting Characteristic Values for the Service Configuration Item

Topic Information

Name CharacteristicManager.init(CharacteristicExtensible<CharValue>
characteristicExtensible, Specification spec)

Description This method initializes the CharacteristicExtensible entity. In this case, the
ServiceConfigurationItem). It sets the default value for each characteristic
which has one.

Pre-Condition A service configuration item exists and the InventoryConfigurationSpec is
known.

Internal Logic The InventoryConfigurationSpec is used to get the
CharacteristicSpecUsage, from the CharacteristicSpecUsage to get the
CharacteristicSpecification, so that the default spec value can be retrieved
and set to the CharValue. And the Charvalue will be set to the Service
configuration item.

Post-Condition ServiceConfigurationItem has the default characteristics set.

Extensions Not applicable

Tips Not applicable

Note:

When creating a Service Configuration Item, call CharacteristicManager.init
(CharacteristicExtensible<CharValue> characteristicExtensible, Specification spec)
method to initiate the default characteristics value.

Example 3-31 Setting Characteristic Values for the Service Configuration Item

CharacteristicManager characteristicManager =
 PersistenceHelper.makeCharacteristicManager();

// Initialize the characteristics to the item
characteristicManager.init((CharacteristicExtensible)childConfigItem,
 inventoryConfigurationSpec);

// Get the characteristics from service config item
HashSet<CharValue> characteristics = serviceConfigItem.getCharacteristics();

Chapter 3
Setting Characteristic Values for the Service Configuration Item

3-43

// Loop through the HashSet of characteristics and set the value as defined
for (CharValue charValue : characteristics)
{
 charValue.setValue("myValue");
 charValue.setLabel("myLabel");
}

Finding Configuration Item and Setting Characteristics
Characteristics can be added to the service configuration items. The service
configuration items are maintained on each service configuration version as a tree, as
specified in Design Studio. This is to make sure the history of the characteristics are
set or unset across the service configuration versions.

These characteristics cannot be added on service configuration version. They can be
added only on the Service Configuration Items. The characteristics added directly
under the Service Configuration Specification tree are added to the top-most item of
the service configuration version, called CONFIG item.

Unlike other entities, characteristics cannot be added to a service configuration item
when it is created, except for the default characteristics.

Example 3-32 Creating Characteristics on Top-most Service Configuration Item

Service service = null;
Finder f = null;

try{

f = PersistenceHelper.makeFinder();
Collection<Service> services = f.findByName(Service.class, "service_name");
Service = Services.iterator.next();

ServiceConfigurationVersion version = null;
List<ServiceConfigurationVersion> configs = service.getConfigurations();

for (ServiceConfigurationVersion config : configs) {
if (config.getAdminState().equals(BusinessInteractionState. IN_PROGRESS)) {
 version = config; }
}

if(version != null){
 ServiceConfigurationItem configItem =
(ServiceConfigurationItem)version.getConfigItemTypeConfig();

 HashSet<CharacteristicSpecification> charSpecs =
 new HashSet<CharacteristicSpecification>();
 charSpecs =

CharacteristicHelper.getCharacteristicSpecifications(configSpec);
 if (!charSpecs.isEmpty()) {
 Set<ServiceConfigurationItemCharacteristic> sciChars =
 new HashSet<ServiceConfigurationItemCharacteristic>();
 ServiceConfigurationItemCharacteristic sciChar = null;
 for (CharacteristicSpecification charSpec : charSpecs) {

 sciChar = configItem.makeCharacteristicInstance();
 sciChar.setName(charSpec.getName());
 if (charSpec.getControlType() == ControlType.CALENDAR){
 sciChar.setValue("07/15/2019");

Chapter 3
Setting Characteristic Values for the Service Configuration Item

3-44

 }else if(charSpec.getControlType() == ControlType.CHECKBOX){
 sciChar.setValue("true");
 }else if(charSpec.getControlType() == ControlType.DROPDOWN_LIST){
 Set<CharacteristicSpecValue> values = charSpec.getValues();

sciChar.setValue(((DiscreteCharSpecValue)values.iterator().next()).getValue());
 }else if(charSpec.getControlType() == ControlType.TEXT_FIELD){
 if(charSpec.getValueType() == ValueType.NUMERIC)
 sciChar.setValue("500");
 else if(charSpec.getValueType() == ValueType.URL)
 sciChar.setValue("http://oracle.com");
 else
 sciChar.setValue("pipe testing");

 }
 sciChar.setCharacteristicSpecification(charSpec);
 sciChars.add(sciChar);
 }
 configItem.setCharacteristics(sciChars);

}
catch(Exception e){
/*log exception*/
}
finally{
 if(f!=null)
 f.close();
}

Example 3-33 Creating Characteristics On Any Level Service Configuration Item

Service service = null;
Finder f = null;
 BaseConfigurationManager configMgr = null;

try{

f = PersistenceHelper.makeFinder();
Collection<Service> services = f.findByName(Service.class, "service_name");
Service = Services.iterator.next();

ServiceConfigurationVersion version = null;
List<ServiceConfigurationVersion> configs = service.getConfigurations();

for (ServiceConfigurationVersion config : configs) {
if (config.getAdminState().equals(BusinessInteractionState. IN_PROGRESS)) {
 version = config; }
}

if(version != null){
 ServiceConfigurationItem configItem = null;

configMgr = PersistenceHelper.makeConfigurationManager
(ServiceConfigurationItemDAO.class);

 ConfigurationItemSearchCriteria configItemCriteria =
configMgr.makeConfigurationItemSearchCriteria();

configItemCriteria.setConfigurationItemClass(ServiceConfigurationItemDAO.class);
 CriteriaItem criteriaItem = configItemCriteria.makeCriteriaItem();
 criteriaItem.setValue("item_name");

Chapter 3
Setting Characteristic Values for the Service Configuration Item

3-45

 criteriaItem.setOperator(CriteriaOperator.EQUALS);
 configItemCriteria.setConfigurationItemName(criteriaItem);

 criteriaItem = configItemCriteria.makeCriteriaItem();
 criteriaItem.setValue(version.getVersionNumber());
 criteriaItem.setOperator(CriteriaOperator.EQUALS);
 configItemCriteria.setConfigurationVersionNumber(criteriaItem);

 List<InventoryConfigurationItem> configItems =
configMgr.findConfigurationItems(configItemCriteria);

if(!Utils.isEmpty())
configItem = configItems.iterator.next();
 HashSet<CharacteristicSpecification> charSpecs =
 new HashSet<CharacteristicSpecification>();
 charSpecs =

CharacteristicHelper.getCharacteristicSpecifications(configSpec);
 if (!charSpecs.isEmpty()) {
 Set<ServiceConfigurationItemCharacteristic> sciChars =
 new HashSet<ServiceConfigurationItemCharacteristic>();
 ServiceConfigurationItemCharacteristic sciChar = null;
 for (CharacteristicSpecification charSpec : charSpecs) {

 sciChar = configItem.makeCharacteristicInstance();
 sciChar.setName(charSpec.getName());
 if (charSpec.getControlType() == ControlType.CALENDAR){
 sciChar.setValue("07/15/2019");
 }else if(charSpec.getControlType() == ControlType.CHECKBOX){
 sciChar.setValue("true");
}
else if(charSpec.getControlType() == ControlType.DROPDOWN_LIST){
 Set<CharacteristicSpecValue> values =
charSpec.getValues();

sciChar.setValue(((DiscreteCharSpecValue)values.iterator().next()).getValue());
 }else if(charSpec.getControlType() == ControlType.TEXT_FIELD)
{
 if(charSpec.getValueType() == ValueType.NUMERIC)
 sciChar.setValue("500");
 else if(charSpec.getValueType() == ValueType.URL)
 sciChar.setValue("http://oracle.com");
 else
 sciChar.setValue("pipe testing");

 }
 sciChar.setCharacteristicSpecification(charSpec);
 sciChars.add(sciChar);
 }
 configItem.setCharacteristics(sciChars);

}
catch(Exception e){
/*log exception*/
}
finally{
 if(f!=null)
 f.close();
}

Chapter 3
Setting Characteristic Values for the Service Configuration Item

3-46

Example 3-34 Modifying Characteristics on Service Configuration Item

Service service = null;
Finder f = null;
 BaseConfigurationManager configMgr = null;

try{

f = PersistenceHelper.makeFinder();
Collection<Service> services = f.findByName(Service.class, "service_name");
Service = Services.iterator.next();

ServiceConfigurationVersion version = null;
List<ServiceConfigurationVersion> configs = service.getConfigurations();

for (ServiceConfigurationVersion config : configs) {
if (config.getAdminState().equals(BusinessInteractionState. IN_PROGRESS)) {
 version = config; }
}if(version != null){ ServiceConfigurationItem configItem = null;configMgr =
PersistenceHelper.makeConfigurationManager
(ServiceConfigurationItemDAO.class); ConfigurationItemSearchCriteria
configItemCriteria = configMgr.makeConfigurationItemSearchCriteria();
configItemCriteria.setConfigurationItemClass(ServiceConfigurationItemDAO.class);
 CriteriaItem criteriaItem = configItemCriteria.makeCriteriaItem();
criteriaItem.setValue("item_name");
criteriaItem.setOperator(CriteriaOperator.EQUALS);
configItemCriteria.setConfigurationItemName(criteriaItem); criteriaItem =
configItemCriteria.makeCriteriaItem();
criteriaItem.setValue(version.getVersionNumber());
criteriaItem.setOperator(CriteriaOperator.EQUALS);
configItemCriteria.setConfigurationVersionNumber(criteriaItem);
List<InventoryConfigurationItem> configItems =
configMgr.findConfigurationItems(configItemCriteria);if(!Utils.isEmpty())configItem =
configItems.iterator.next(); HashSet<CharacteristicSpecification> charSpecs
= new HashSet<CharacteristicSpecification>(); charSpecs
=
CharacteristicHelper.getCharacteristicSpecifications(configSpec); if (!
charSpecs.isEmpty()) { Set<ServiceConfigurationItemCharacteristic>
sciChars = new
HashSet<ServiceConfigurationItemCharacteristic>();
ServiceConfigurationItemCharacteristic sciChar = null; for
(CharacteristicSpecification charSpec : charSpecs) { sciChar =
configItem.makeCharacteristicInstance(); String charName =
sciChar.setName(charSpec.getName()); if
(charName.equals("char_name_12))
{ sciChar.setValue("updated_valued"); }
 sciChar.setCharacteristicSpecification(charSpec);
sciChars.add(sciChar); }
configItem.setCharacteristics(sciChars);}catch(Exception e){/*log
exception*/}finally{ if(f!=null) f.close();}

About Alternate Flows
The generic service fulfillment scenario sets characteristic values for the service configuration
item. An alternate flow to this scenario may be to unset characteristic values from the service
configuration item.

The alternate flow described in this section is "Unsetting Characteristic Values for the Service
Configuration Item".

Chapter 3
Setting Characteristic Values for the Service Configuration Item

3-47

Unsetting Characteristic Values for the Service Configuration Item
The following API is to unset characteristic values on a service configuration.

The following example code provides information about using the API method.

Note:

From ServiceConfigurationItem, get the characteristics and then delete the
ServiceConfigurationItemCharacteristics to remove the characteristic values.
If only one particular characteristic needs to be deleted for the
ServiceConfigurationItem, then a name match should be compared before
deleting the ServiceConfigurationItemCharacteristic.

Example 3-35 Unsetting Characteristic Values for the Service Configuration

HashSet<ServiceConfigurationItemCharacteristic> characteristics =
 serviceConfigItem.getCharacteristics();

Iterator<ServiceConfigurationItemCharacteristic> itr =
 characteristics.iterator();

while (itr.hasNext())
{
 ServiceConfigurationItemCharacteristic characteristic = itr.next();
 if characteristic.getName().equals("myName")
 itr.remove();}

Transitioning the Lifecycle Status
The transition APIs are used for transitioning the lifecycle status of a given entity which
implements the LifeCycleManaged interface. The state transition rules are defined in
the *-transitions.xml files.

Table 3-39 and example code provide information about using the API method.

Table 3-39 Transitioning the Lifecycle Status

Topic Information

Name TransitionManager.transition

Description Transitions a LifeCycleManaged entity by finding the matching
transition definition which has the business action defined and the
object activity defined the same as the input parameters, and which
from business state matches the entity's business state.

Pre-Condition TransitionManager.isValidTransition has successfully validated that the
specified business action can trigger the transition of either the
business state or the object state.

Chapter 3
Transitioning the Lifecycle Status

3-48

Table 3-39 (Cont.) Transitioning the Lifecycle Status

Topic Information

Internal Logic Finds a matching transition definition. For a version object it matches
on business action and object activity only. Other objects are matched
from most specific to least specific in the following order:

1. Match businessAction, objectActivity, entity type, and the
specification.

2. Match businessAction, objectActivity, entity type.

3. Match businessAction, objectActivity.

Switches to a Business Interaction context if applicable and updates
the business or object state of the object and its dependents based on
the transition definition.

Post-Condition The object state or business state is updated.

Extensions BusinessInteractionSpec_TransitionManager_validateBusinessStateTr
ansitions

BusinessInteractionSpec_TransitionManager_validateObjectStateTran
sitions

Tips See UIM Developer's Guide for more information.

Example 3-36 Transitioning the Lifecycle Status

TransitionManager transitionManager =
 PersistenceHelper.makeTransitionManager(service);

boolean success = false;
success = transitionManager.transition(service, ServiceAction.COMPLETE);

Example 3-37 Performing Operations Under Business Interaction Context

To perform operations such as assign, unassign, reference, or unreferenced and set, unset,
or modify characteristics, you need to make sure the business interaction context is set
before executing the code.

Add the following code before executing the code:

BusinessInteraction currentBI =
(BusinessInteraction)UserEnvironmentFactory.getBusinessInteraction();

if(currentBI == null){BusinessInteraction bi =
(BusinessInteraction)f.findById(BusinessInteraction.class, "biId").iterator().next();
currentBI = bi;
}

BusinessInteractionManager biMgr = PersistenceHelper.makeBusinessInteractionManager();

biMgr.switchContext(currentBI, null);

After the operation is complete, block the switch back to the current context by entering the
following code:

currentBI = null;
biMgr.switchContext(currentBI, null);

Chapter 3
Transitioning the Lifecycle Status

3-49

Creating a Property Location
Example 3-38 provides information about creating a property location.

Example 3-38 Creating a Property Location

Finder finder = null;
 PropertyLocation propertyLocation = null;
 PropertyAddress propertyAddress = null;
 FeedbackProviderImpl.getFeedbackProvider().reset();
 try {

 LocationManager locationManager =
 PersistenceHelper.makeLocationManager();
 finder = PersistenceHelper.makeFinder();
 BusinessInteractionManager bimgr =
 PersistenceHelper.makeBusinessInteractionManager();
 bimgr.switchContext((String)null, null);
 String networkLocationCode ="ALLNTX";
 PropertyLocation networkLocation =
 this.findNetworkEntityLocation(networkLocationCode);
 //If PropertyLocation is not already created then only create it
 if (networkLocation == null) {
 FeedbackProviderImpl.getFeedbackProvider().reset();
 propertyAddress = locationManager.makePropertyAddress();
 propertyLocation = locationManager.makePropertyLocation();
 propertyAddress.setStreetAddress("ALLNTX_street1");
 propertyAddress.setCity("ALLN_city1"));
 propertyAddress.setState("TX1");
 propertyAddress.setCountry("US");
 propertyAddress.setIsValidated(true);
 propertyAddress.setIsNonValidatedAddressAccepted(false);
 propertyAddress.setIsPrimaryAddress(true);
 Set<PropertyAddress> addressSet =
 new HashSet<PropertyAddress>(1);
 addressSet.add(propertyAddress);
 propertyLocation.setPropertyAddresses(addressSet);
 propertyLocation.setNetworkLocationCode(networkLocationCode);
 propertyLocation.setLatitude("34");
 propertyLocation.setLongitude("75");
 Collection<PropertyLocation> list =
 new ArrayList<PropertyLocation>(1);
 list.add(propertyLocation);
 List<PropertyLocation> propLocobjects =
 locationManager.createPropertyLocation(list);
 networkLocation = propLocobjects.get(0);
 networkLocation.connect();
 }
 List<NetworkEntityCode> networkEntityCodes =
 new ArrayList<NetworkEntityCode>();
 List<String> NECs = {"0,1,2,3,4"};
 if (!Utils.isEmpty(NECs)) {
 for (String necStr : NECs) {
 NetworkEntityCode existingNEC =
 this.findNetworkEntityCode(networkLocation, necStr);
 if (existingNEC == null) {
 NetworkEntityCode nec =
 locationManager.makeNetworkEntityCode();
 nec.setName(necStr);

Chapter 3
Creating a Property Location

3-50

 networkEntityCodes.add(nec);
 }
 }
 }
 if (!Utils.isEmpty(networkEntityCodes)) {

locationManager.associateNetworkEntityCodeToNetworkLocation(networkEntityCodes,

networkLocation);
 }

Referring Property Location to a Service Configuration Item
A property location can be referenced to service configuration item. It cannot be assigned to
any service configuration item.

See "Referencing the Resource to a Configuration Item" for more information.

About Undo Actions
You can Undo and unassign a resource for a configuration item that is in Pending Unassign
status.

This transition happens when all the following conditions are met:

• The resource is in a pending status in the current configuration.

• The current configuration is in progress.

• The resource belongs to a configuration item in an earlier configuration for the same
service.

• The earlier configuration is also in progress.

Table 3-40 Reallocating a Resource on the Service Configuration Item

Topic Information

Name BaseConfigurationManager.reallocateEntityConfigurationItems(Collection<E
> configurationItems)

Description This method reallocates the de-allocated entities on a given configuration
item.

The configuration version cannot be in a completed or cancelled state.

Pre-Condition A service configuration item exists on which an assignment was just
unassigned.

Internal Logic The assignment state on the consumable resource is transitioned back to
ASSIGNED state.

Post-Condition The resource is assigned again.

Extensions Not Applicable

Tips Not Applicable

You can undo the removal of a resource reference for a configuration item that is in Pending
Un-reference status. This transition happens when all the following conditions are met:

• The resource is in a pending status in the current configuration.

Chapter 3
About Undo Actions

3-51

• The resource is in a pending status in the current configuration.

• The resource belongs to a configuration item in an earlier configuration for the
same service.

• The earlier configuration is also in progress.

Table 3-41 Referencing a Resource on the Service Configuration Item

Topic Information

Name BaseConfigurationManager.rereferenceInventoryConfigurationItems(C
ollection<E> configurationItems)

Description This method reallocates the de-allocated entities on a given
configuration item.

The configuration version cannot be in a completed or cancelled state.

Pre-Condition A service configuration item exists on which an assignment was just
unreferenced.

Internal Logic The assignment state on the consumable resource is transitioned back
to REFERENCED state.

Post-Condition The resource is referenced again.

Extensions Not Applicable

Tips Not Applicable

Example 3-39 Referencing the Resource to a Configuration Item

Finder f = null;
BaseConfigurationManager bcd = null;

try {
 f = PersistenceHelper.makeFinder();

PersistenceHelper.makeBusinessInteractionManager().switchContext((String)null,nul
l);
 ServiceConfigurationVersion configuration =
f.findByName(ServiceConfigurationVersion.class, configId).iterator().next();
 InventoryConfigurationItem icToAssign = null;
 Collection<InventoryConfigurationItem> dereferenceList = new
ArrayList<InventoryConfigurationItem>();

 for (InventoryConfigurationItem ic : configuration.getConfigItems()) {
 if (ConfigurationType.CONFIG.equals(ic.getConfigType()))
 continue;

 if(ic.getReference() != null){

PersistenceHelper.makeBusinessInteractionManager().switchContext(configuration,nu
ll);

if(ConfigurationReferenceState.PENDING_UNREFERENCE.equals(((ConfigurationReferen
ce)ic.getReference()).getAdminState()) && ic.getDepChildConfigItem() == null){
 dereferenceList.add(ic);
 }
 }
 }
 f.reset();
 CustomObject coToAssign = f.findByName(CustomObject.class,
"CO2_ASSIGN0009").iterator().next();

Chapter 3
About Undo Actions

3-52

 bcd = PersistenceHelper.makeConfigurationManager(configuration.getClass());
 bcd.rereferenceInventoryConfigurationItems(dereferenceList);

} catch (Throwable t) {
 catchThrowable(t, ut);
} finally {
 if (f != null) {
 f.close();
 }
}

Chapter 3
About Undo Actions

3-53

4
Implementing a Channelized Connectivity
Enablement Scenario

This chapter describes implementing a channelized connectivity enablement scenario using
various Oracle Communications Unified Inventory Management (UIM) application program
interfaces (APIs). You can use this information to gain a better understanding of how the UIM
APIs can be used to implement any channelized connectivity enablement scenario.

About the Channelized Connectivity Enablement Scenario
Figure 4-1 shows the process flow for a channelized connectivity enablement scenario:

Figure 4-1 Process Flow for a Generic Channelized Connectivity Scenario

This process flow begins with creating a property location and associating network entity
codes with the property location. The network entity codes are used in subsequent steps in
the process flow, such as associating them with logical devices.

4-1

The process flow continues with creating logical devices with device interfaces that
can terminate on the bearer channelized connectivity, and associating logical devices
with the network entity codes previously created. This involves creating logical device
search criteria to find the required logical device specification.

Next is creating channelized connectivity, which represents bearer channelized
connectivity between two network entity codes that define attributes of technology, rate
code, and channelized connectivity function.

The process flow continues by configuring the capacity for the channelized
connectivity to channelize it, and by optionally terminating them on the device
interfaces of logical devices previously created. This is called auto termination of
device interfaces because it also terminates the sub-device interfaces down the
hierarchy to the channels when the channelized connectivity is terminated
automatically. This represents the bearer channelized connectivity that will be used in
enablement in subsequent steps of the process flow.

The process flow continues with creating channelized connectivity to represent the
rider between two network entity codes that define attributes of technology, rate code,
and channelized connectivity function. For a channelized connectivity entity to be
enabled by a channel, its rate code must match or be compatible with the rate code of
the channel.

Next is enabling channelized connectivity, which can be manually done by searching
for and adding the bearer channelized connectivity's channel. This involves creating
channelized connectivity search criteria to search for the bearer channelized
connectivity and selecting the appropriate channel. Enablement can also be done by
adding bearer channelized connectivity through gap analysis to the rider that involves
creating path analysis criteria to search for the bearer channelized connectivity
between a source/intermediate/target property locations or logical devices.

Now that you have a high-level understanding of the channelized connectivity
enablement scenario process flow, each part of the process flow is further described in
the following sections. Each section includes information about the specific UIM APIs
used to perform each step. Example code is also included for each step.

• Creating a Property Location and Associating Network Entity Codes

• Creating a Logical Device and Associating LD Interfaces with Network Entity
Codes

• Creating Channelized Connectivity

• Enabling Channelized Connectivity

Creating a Property Location and Associating Network Entity
Codes

This section describes the UIM API methods used to create a property location and to
associate network entity codes with the property location.

Table 4-1, Table 4-2, and example code provide information about using the API
methods to create a property location and to associate network entity codes to the
property location.

Chapter 4
Creating a Property Location and Associating Network Entity Codes

4-2

Table 4-1 Creating a Property Location

Topic Information

Name LocationManager.createPropertyLocation (Collection<PropertyLocation>
locations)

Description Creates the Property Location instances with the given inputs. User has to
specify one mandatory Primary address as input with which a property
Location has to be created.

Every property location also has a property address associated with it.

Pre-Condition The locations parameter needs to be prepared with necessary attributes

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips • The same method is also used to create Network Location when the
Network Location code is populated in the input. As part of creation of
Network location, the same method also enables users to create
Network entity codes corresponding to the Network Location.

• The Location Identifier which is a concatenated Address format is used
to uniquely identify the Property Location.

• If horizontal/vertical coordinates are given as inputs, the latitude/
longitude coordinates are automatically populated for the created
Property Location and vice versa.

Table 4-2 Associating Network Entity Codes with a Property Location

Topic Information

Name LocationManager.associateNetworkEntityCodeToNetworkLocation
(List<NetworkEntityCode> entitycodes, PropertyLocation location)

Description This method is called during the association or creation of the network entity
code in the context of property location.

Pre-Condition The location parameter already exists.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips • Check if the network entity code is unique.
• Check for the length of the network entity code.

Example 4-1 Creating a Property Location and Associating Network Entity Codes
with the Property Location

Finder finder = PersistenceHelper.makeFinder();
PropertyLocation propertyLocation = locationManager.makePropertyLocation();
PropertyAddress propertyAddress = locationManager.makePropertyAddress();
LocationManager locationManager = PersistenceHelper.makeLocationManager();

//Set all necessary attributes needed for Property Address and Property Location
propertyAddress.setStreetAddress((String)paramMap.get("streetAddress"));
propertyAddress.setCity((String)paramMap.get("city"));
propertyAddress.setState((String)paramMap.get("state"));
propertyAddress.setCountry((String)paramMap.get("country"));

Chapter 4
Creating a Property Location and Associating Network Entity Codes

4-3

propertyAddress.setIsValidated(Boolean.valueOf
 ((String)paramMap.get("isValidated")));
propertyAddress.setIsNonValidatedAddressAccepted(true);
propertyAddress.setIsPrimaryAddress(true);
Set<PropertyAddress> addressSet = new HashSet<PropertyAddress>(1);
addressSet.add(propertyAddress);
propertyLocation.setPropertyAddresses(addressSet);
propertyLocation.setNetworkLocationCode("PLANO");
propertyLocation.setLatitude("34");
propertyLocation.setLongitude("54");

Collection<PropertyLocation> list = new ArrayList<PropertyLocation>(1);
list.add(propertyLocation);
List<PropertyLocation> propLocobjects =
 locationManager. createPropertyLocation(list);
networkLocation = propLocobjects.get(0);
List<NetworkEntityCode> networkEntityCodes = new ArrayList<NetworkEntityCode>();
NetworkEntityCode nec = locationManager.makeNetworkEntityCode();
nec.setName(necStr);
networkEntityCodes.add(nec);
if (!Utils.isEmpty(networkEntityCodes))
{
 locationManager.associateNetworkEntityCodeToNetworkLocation
 (networkEntityCodes,networkLocation);
}

Creating a Logical Device and Associating LD Interfaces
with Network Entity Codes

This section describes the UIM API methods used to create a logical device with
default logical device interfaces, and to associate the logical device interfaces with the
previously created network entity codes.

Table 4-3 and example code provide information about using the API method to create
a logical device with default logical device interfaces.

Table 4-3 Creating a Logical Device

Topic Information

Name LogicalDeviceManager.createLogicalDevice
(Collection<LogicalDevice> logicalDevices)

Description Creates logical device entities and their provided device interfaces and
sub-device interfaces based on the specification.

Pre-Condition Logical device specification with device interfaces is defined and exists
already.

Chapter 4
Creating a Logical Device and Associating LD Interfaces with Network Entity Codes

4-4

Table 4-3 (Cont.) Creating a Logical Device

Topic Information

Internal Logic Device interfaces can also provide other device interfaces. The
number of device interfaces to be created will be determined by the
minimum value defined in the specification relationships.

The input logical device entities should be sparsely populated with the
specification, hard attributes and characteristics.

The provided device interfaces will be derived based on the
specification. Characteristics will be defaulted based on the
specification. The id of the device interfaces will be generated.

If required characteristics exist for a provided device interface that are
not defaulted, then the logical device will still be created.

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Example 4-2 Creating a Logical Device with Default Logical Device Interfaces

Finder finder = PersistenceHelper.makeFinder();
LogicalDeviceManager ldMgr = PersistenceHelper.makeLogicalDeviceManager();

Collection<Specification> specs =
 finder.findByName(Specification.class,"ldSpecName");

LogicalDeviceSpecification ldSpec =
 (LogicalDeviceSpecification)specs.iterator().next();

LogicalDevice ld = ldMgr.makeLogicalDevice();
ld.setName("ldName");
ld.setId("ldId");
ld.setSpecification(ldSpec);
List<LogicalDevice> ldList = new ArrayList<LogicalDevice>();
ldList.add(ld);
ldMgr.createLogicalDevice(ldList);

The following table and example code provide information about using the API method to
associate a logical device with a network entity code.

Table 4-4 Associating a Logical Device with a Network Entity Code

Topic Information

Name LogicalDeviceManager.updateLogicalDevice (Collection<LogicalDevice>
logicalDevices)

Description This method is intended to update the hard attributes and characteristics of
a logical device.

Pre-Condition Logical device exists already.

The location of a logical device can only be changed if it does not have any
active consumers or interconnections on the logical device or any of its
device interfaces.

Internal Logic Not applicable

Chapter 4
Creating a Logical Device and Associating LD Interfaces with Network Entity Codes

4-5

Table 4-4 (Cont.) Associating a Logical Device with a Network Entity Code

Topic Information

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Example 4-3 Associating a Logical Device with a Network Entity Code

Finder finder = PersistenceHelper.makeFinder();
LogicalDeviceManager ldMgr = PersistenceHelper.makeLogicalDeviceManager();
LocationManager locationManager = PersistenceHelper.makeLocationManager();

 // find an existing logical device
LogicalDevice ld = finder.findById(LogicalDevice.class,
"ldId").iterator().next();

// find an existing property location that has network entity code
PropertyLocation pls =
(PropertyLocation)locationManager.findNetworkEntityLocation("PLANO");
ld.setPropertyLocation(pls);

NetworkEntityCodeSearchCriteria criteria =
 locationManager.makeNetworkEntityCodeSearchCriteria();
criteria.setPropertyLocation(pls);

//find network entity code matching "001"
List<NetworkEntityCode> networkEntityCodes =
 locationManager.findNetworkEntityCodes(criteria);
NetworkEntityCode networkEntCd = null;

if (!Utils.isEmpty(networkEntityCodes))
{
 String networkEntityCod= "001";
 for (NetworkEntityCode nec : networkEntityCodes)
 {
 if ((pls.getNetworkLocationCode() + "." + networkEntityCode).equals
 nec.getNetworkLocationEntityCode()))
 {
 networkEntCd = nec;
 }
 }
}
ld.setNetworkEntityCode(networkEntCd);
networkEntCd.setLogicalDevice(ld);
List<LogicalDevice> ldList = new ArrayList<LogicalDevice>();
ldList.add(ld);
ldMgr.updateLogicalDevice(ldList);

Creating Channelized Connectivity
This section describes the UIM API methods used to:

• Create Channelized Connectivity

• Configure Capacity on the Channelized Connectivity

Chapter 4
Creating Channelized Connectivity

4-6

• Configure Auto Termination on the Channelized Connectivity

Create Channelized Connectivity
Table 4-5 and example code provide information about using the API method to create
channelized connectivity. (You use the same API method to create the bearer channelized
connectivity and the rider channelized connectivity.)

Table 4-5 Creating Channelized Connectivity

Topic Information

Name ConnectivityManager.createConnectivity(N connectivity, String
aNetworkLocationEntityCode, String zNetworkLocationEntityCode, int
quantity, boolean contiguousSerialAllocation)

Description This method will create channelized connectivity. Valid A Location and Z
Location must be set on the channelized connectivity instance.

Pre-Condition Two property locations to represent A and Z side of the channelized
connectivity already exists.

ora_uim_basetechnologies is already installed.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Example 4-4 Creating Channelized Connectivity

String rateCode = "STM1;
String function = "SM01";
String aLocation = "DALLAS";
String zLocation = "PLANO";
String aEntityCode = "DALLAS.001";
String zEntityCode = "PLANO.001";

int qtyInt = 1;
boolean isContiguos = "true";

TDMConnectivityManager manager =
 (TDMConnectivityManager)PersistenceHelper.makeConnectivityManager
 (TDMConnectivity.class);

Finder finder = PersistenceHelper.makeFinder();

NetworkConnectivity c = manager.makeTDMFacility();
NetworkConnectivity nc = (NetworkConnectivity)c;

String technology =
 finder.findByName(Technology.class, "SDH").iterator().next();
nc.setTechnology(technology);
finder.reset();

String rateCode =
 finder.findByName(RateCode.class, "STM1").iterator().next();
nc.setRateCode(rateCode);
finder.reset();

Chapter 4
Creating Channelized Connectivity

4-7

String function =
 finder.findByName(ConnectivityFunction.class,"SM01").iterator().next();

nc.setConnectivityFunction(function);
String aLocationCode = aLocation;
if(!Utils.isEmpty(aEntityCode)){
 aLocationCode = aLocation+"."+aEntityCode;}

String zLocationCode = zLocation;
if(!Utils.isEmpty(zEntityCode)){
 zLocationCode = zLocation+"."+zEntityCode;}

int tempQty = qtyInt;
while(tempQty >0)
{
 if(tempQty > 99){
 qtyInt = 99;}
 else{
 qtyInt = tempQty;}

 Collection<TDMConnectivity> createdConnectivities =
 manager.createConnectivity(c, aLocationCode, zLocationCode,
 qtyInt, isContiguos);
}

Configure Capacity on the Channelized Connectivity
Table 4-6 and example code provide information about using the API method to
configure capacity on the channelized connectivity.

Table 4-6 Configuring Capacity on the Channelized Connectivity

Topic Information

Name SignalTerminationPointManager.applyCapacityConfiguration
(MultiplexedFacility connectivity, List<RateCode> orderedRateCodes,
String signalAddress)

Description This method configures a connectivity to the required rate code level
and also creates channels at those levels.

Pre-Condition Not applicable

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Also call
TDMConnectivityManager.createAndAutoTerminateChannels(M
multiplexedFacility, boolean doValidation) to ensure terminations are
also adjusted accordingly.

Example 4-5 Configuring Capacity on the Channelized Connectivity

Finder finder = PersistenceHelper.makeFinder();

String connectivityIdentifier = "ALLNTXC01 / FRSCTXC01 / STM1 / SM01 / 1";
String sourceRateCode = "OM80";
String destinitionRateCode = "OM32";

Chapter 4
Creating Channelized Connectivity

4-8

RateCode sourceRC =
 finder.findByName(RateCode.class, sourceRateCode).iterator().next();

RateCode destinitionRC =
 finder.findByName(RateCode.class, destinitionRateCode).iterator().next();

TDMConnectivityManager mgr =
 (TDMConnectivityManager)PersistenceHelper.makeConnectivityManager
 (TDMFacility.class);

TDMConnectivitySearchCriteria criteria = mgr.makeTDMSearchCriteria();
CriteriaItem item = criteria.makeCriteriaItem();
item.setName("connectivityIdentifier");
item.setValue("connectivityIdentifier);
item.setOperator(CriteriaOperator.EQUALS);
criteria.setConnectivityIdentifier(item);
TDMFacility tdm = mgr.findTDMConnectivities(criteria).iterator().next();

SignalTerminationPointManager stpMgr =
 PersistenceHelper.makeSignalTerminationPointManager();

List<RateCode> orderedRateCodes = new ArrayList<RateCode>();
if (sourceRC != null){
 orderedRateCodes.add(sourceRC);}
if (destinitionRC != null){
 orderedRateCodes.add(destinitionRC);}

stpMgr.applyCapacityConfiguration(tdm, orderedRateCodes, "");
mgr.createAndAutoTerminateChannels(tdm, true);

Configure Auto Termination on the Channelized Connectivity
Table 4-7 and example code provide information about using the API method to configure
auto-termination on the channelized connectivity.

Table 4-7 Auto-terminating the Channelized Connectivity

Topic Information

Name ConnectivityManager.assignDeviceInterface(E connectivity, DeviceInterface
di, ConnectivityEndpoint endpoint)

Description This method terminates the channelized connectivity with the device
interface at the given end point. Also auto-terminates the channels on the
sub-device interfaces.

Pre-Condition Ensure the capacity is configured at the required level on the channelized
connectivity and the sub-device interfaces are created beforehand until that
level.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Example 4-6 Auto-Terminating the Channelized Connectivity

Finder finder = PersistenceHelper.makeFinder();
String tdmName = "DS3_TDM_Tail";

Chapter 4
Creating Channelized Connectivity

4-9

String diId = "DS3-1-1";
ConnectivityEndpoint endPoint = ConnectivityEndpoint.A_ENDPOINT;

DeviceInterface di =
 finder.findById(DeviceInterface.class, diId).iterator().next();
finder.reset();

TDMFacility tdm =
 finder.findByName(TDMFacility.class, tdmName).iterator().next();

TDMConnectivityManager manager = (TDMConnectivityManager)
 PersistenceHelper.makeConnectivityManager(TDMConnectivity.class);

tdm = (TDMFacility) manager.assignDeviceInterface(tdm, di, endPoint);

Enabling Channelized Connectivity
This section describes the UIM API methods used to enable channelized connectivity
by:

• Manually Enabling Channelized Connectivity

• Performing Gap Analysis

• Adding Segments To Connectivity Path Based on the Gap Analysis Results

Manually Enabling Channelized Connectivity
Table 4-8 and example code provide information about using the API method to
manually enable channelized connectivity by manually searching for the channelized
connectivity and adding segments to the connectivity path.

Table 4-8 Manually Enabling Channelized Connectivity

Topic Information

Name ConnectivityManager.addSegmentsToConnectivityPath(E
connectivityTrail, PipeConfigurationItem connectivityPath,
PipeConfigurationItem gapItem, List<Pipe> bearerList) throws
ValidationException

Description The connectivityTrail parameter is the channelized connectivity that
will be enabled.

The connectivityPath parameter is the PipeConfigurationItem of the
path.

The gapItem parameter is the PipeConfigurationItem of the gap that
will be resolved.

The bearerList parameter contains other connectivities to be added
for enablement.

See Oracle Communications Information Model Reference for
information on PipeConfigurationItem.

Pre-Condition Not applicable

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Chapter 4
Enabling Channelized Connectivity

4-10

Table 4-8 (Cont.) Manually Enabling Channelized Connectivity

Topic Information

Tips Not applicable

Example 4-7 Manually Enabling Channelized Connectivity by Searching for the
Connectivity and Adding Segments to the Connectivity Path

String trailName = "EDINBURGH.002 / LONDON.001 / VC12 / VC12 / 1";

//We want to add connectivities to first path
int pathIndex = "0";

//Assuming there are other connectivities already added to this path
int gapIndex = "0";

PersistenceHelper.makeBusinessInteractionManager().switchContext
 ((String)null, null);

Finder finder = PersistenceHelper.makeFinder();

Connectivity connectivityTrail =
 finder.findByName(Connectivity.class, trailName).iterator().next();

List<String> bearers = new ArrayList<String>();
bearers.add("EDINBURGH.001 / EDINBURGH.002 / STM4 / SM04 / 139 / 1-1-1-2");
bearers.add("EDINBURGH.001 / MACHESTER.001 / STM4 / SM04 / 139 / 1-1-1-2");
bearers.add("LONDON.001 / MACHESTER.001 / STM4 / SM04 / 139 / 1-1-1-2");

List<Pipe> bearerList = new ArrayList<Pipe>(bearers.size());
for (String bearerName : bearers)
{
 finder.reset();
 Pipe connectivity = finder.findByName
 (TDMFacility.class, bearerName).iterator().next();
 bearerList.add(connectivity);
}

PipeConfigurationVersion designVersion =
 ConnectivityUtils.getInProgressDesignVersion((Pipe)connectivityTrail);

List<PipeConfigurationItem> allPaths =
 PipeHelper.getAllTransportItems(designVersion);

PipeConfigurationItem connectivityPath = allPaths.get(pathIndex);

PipeConfigurationItem gapItem =
 connectivityPath.getChildConfigItems().get(gapIndex);

ConnectivityManager manager = PersistenceHelper.makeConnectivityManager();
manager.addSegmentsToConnectivityPath
 (connectivityTrail, connectivityPath, gapItem, bearerList);

Performing Gap Analysis
Table 4-9 and example code provide information about using the API method to perform gap
analysis.

Chapter 4
Enabling Channelized Connectivity

4-11

Table 4-9 Performing Gap Analysis

Topic Information

Name List<PathResultSet> findPaths(PipeSpecification enabledPipe,
PathAnalysisCriteria criteria) throws ValidationException

Description The enabledPipe parameter is the channelized connectivity to be
enabled.

The criteria parameter is used in performing gap analysis.

Pre-Condition Ensure the channelize connectivities that you are expecting the results
are already created, terminated, and their capacity is configured.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Example 4-8 Performing Gap Analysis

String sourceLocationCode = "EDINBURGH.002";
String intermediateLocationCode = "MACHESTER.001";
String targetLocationCode = "LONDON.001";
String rateCodeName = "VC12";

LocationManager locationManager =
 PersistenceHelper.makeLocationManager();

TopologyObject sourceNode =

(TopologyObject)locationManager.findNetworkEntityLocation(sourceLocationCode);

TopologyObject targetNode =

(TopologyObject)locationManager.findNetworkEntityLocation(targetLocationCode);

TopologyObject intermediateNode = null;
if(!Utils.isEmpty(intermediateLocationCode)){
 intermediateNode =
 (TopologyObject)locationManager.findNetworkEntityLocation
 (intermediateLocationCode);
}
if(sourceNode == null || targetNode == null ||
(!Utils.isEmpty(intermediateLocationCode) && intermediateNode == null)){
 throw new IllegalArgumentException("Invalid source/intermediate/target");
}
RateCode rateCode = null;
CapacityManager capacityManager = PersistenceHelper.makeCapacityManager();
RateCodeSearchCriteria rateCodeSC = capacityManager.makeRateCodeSearchCriteria();

CriteriaItem rateCodeNameItem = rateCodeSC.makeCriteriaItem();
rateCodeNameItem.setName(rateCodeName);
rateCodeNameItem.setOperator(CriteriaOperator.EQUALS);
rateCodeNameItem.setValue(rateCodeName);
rateCodeSC.setName(rateCodeNameItem);

List<RateCode> rateCodes = capacityManager.findRateCode(rateCodeSC);
if (!Utils.isEmpty(rateCodes)) {

Chapter 4
Enabling Channelized Connectivity

4-12

 rateCode = rateCodes.get(0);
}
if(rateCode == null){
 throw new IllegalArgumentException("Invalid rateCode");
}
PathAnalysisCriteria criteria = new PathAnalysisCriteria();
criteria.setSourceNode(sourceNode);
criteria.setIntermediateNode(intermediateNode);
criteria.setTargetNode(targetNode);
criteria.setRateCode(rateCode);
criteria.setGapAnalysis(true);

PathAnalysisManager pathAnalysisManager =
 PersistenceHelper.makePathAnalysisManager();

List<PathResultSet> paths = pathAnalysisManager.findPaths(criteria);

Adding Segments To Connectivity Path Based on the Gap Analysis Results
Table 4-10 and example code provide information about using the API method to add
segments to the connectivity path based on the gap analysis results.

Table 4-10 Adding Segments to Connectivity Path Based on Gap Analysis Results

Topic Information

Name ConnectivityManager.addSegmentsToConnectivityPath (E connectivityTrail,
PipeConfigurationItem connectivityPath, PipeConfigurationItem gapItem,
PathResultSet path) throws ValidationException;

Description The connectivityTrail parameter is the channelized connectivity that will be
enabled.

The connectivityPath parameter is the PipeConfigurationItem representing
the path to which the segments have to be added.

The gapItem parameter is the PipeConfigurationItem of the gap that will be
resolved.

The path parameter is the results returned from gap analysis. (You can pass
the results retrieved in the previous example. For example, paths.get(0)).

See Oracle Communications Information Model Reference for information
on PipeConfigurationItem.

Pre-Condition Not applicable

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Example 4-9 Adding Segments to Connectivity Path Based on Gap Analysis Results

String trailName = "EDINBURGH.002 / LONDON.001 / VC12 / VC12 / 1";

//We want to add connectivities to first path
int pathIndex = "0";

//Assuming there are other connectivities already added to this path
int gapIndex = "0";

Chapter 4
Enabling Channelized Connectivity

4-13

PersistenceHelper.makeBusinessInteractionManager().switchContext
 ((String)null, null);

Finder finder = PersistenceHelper.makeFinder();

Connectivity connectivityTrail =
 finder.findByName(Connectivity.class, trailName).iterator().next();

PipeConfigurationVersion designVersion =

ConnectivityUtils.getInProgressDesignVersion((Pipe)connectivityTrail);

List<PipeConfigurationItem> allPaths =
 PipeHelper.getAllTransportItems(designVersion);

PipeConfigurationItem connectivityPath = allPaths.get(pathIndex);

PipeConfigurationItem gapItem =
 connectivityPath.getChildConfigItems().get(gapIndex);

ConnectivityManager manager = PersistenceHelper.makeConnectivityManager();

/*Here paths are the path returned by gap analysis.
Assuming the first one is the list is selected*/
manager.addSegmentsToConnectivityPath
 (connectivityTrail, connectivityPath, gapItem, paths.get(0));

Chapter 4
Enabling Channelized Connectivity

4-14

A
UIM Entity Managers

This appendix provides a listing of Oracle Communications Unified Inventory Management
(UIM) entity manager class names, the package in which they reside, the entities they
manage, and a brief description.

These Java manager classes are found in the uim_managers.jar which is located in the UIM
Software Development Kit (SDK). See UIM Developer's Guide for more information on the
UIM SDK.

Note:

The package references in Table A-1 assume the package prefix of
oracle.communications.inventory.api.

Table A-1 List of UIM Entity Managers

Manager Name Package Managed Entities Description

ActivityManager project.activity Activity

ActivityItem

Project

Defines the methods for managing
Activity entities within a Project
along with their ActivityItem entities.

AddressRangeManager place GeographicAddress Defines a GeographicAddress
being used as a range.

AssignmentManager consumer Assignment Extends ConsumerManager,
managing Assignment logic.
Assignment such as
PipeAssignment,
EquipmentAssignment.

AttachmentManager common Involvement Administers Attachments and
Involvements, for example
preconfiguring TelephoneNumber
with LogicalDeviceAccount.

BaseInvManager common <Base Class> Provides application-specific
behavior to methods in the
JdoBean. The JdoBean doesn't
know about entities that are specific
to the inventory application.

BOMManager bom Activity

Inventory

Defines the methods to support
retrieving Bill of Materials
information as well as populating
additional information on an activity
or resource.

BusinessInteractionManag
er

businessinteraction BusinessInteraction Defines methods for managing
Business Interactions.

A-1

Table A-1 (Cont.) List of UIM Entity Managers

Manager Name Package Managed Entities Description

CapacityManager capacity Capacity Defines the methods for managing
capacity such as
PipeCapacityProvided,
PipeCapacityRequired,
PipeCapacityConsumption.

CharacteristicManager characteristic Characteristics Defines the methods for managing
Characteristics such as
CharacteristicSpecUsage,
CharacteristicSpecValue,
CharacteristicSpecValueUsage.

ConditionManager consumer Condition Extends InventoryManager,
managing Condition logic.
Condition such as PipeCondition,
EquipmentCondition.

ConfigurationManager configuration Configuration Administers a configuration and its
subtypes such as
ServiceConfiguration,
PlaceConfiguration.

ConnectivityManager connectivity Connectivity

Pipe

DeviceInterface

InterConnection

CrossConnect

Defines the methods for managing
the creation, updates, deletions,
and retrieving of connectivity data.
This manager references a large
number of different entities so the
primary entities are listed here as
the managed entities.

ConsumerManager consumer Assignment

Condition

Reservation

Validates resource availability.

CustomNetworkAddressM
anager

custom CustomNetworkAddress Defines the methods for managing
CustomNetworkAddress objects.

CustomObjectManager custom CustomObject Defines the methods for managing
CustomObject objects.

EquipmentManager equipment Equipment

EquipmentHolder

PhysicalPort

PhysicalConnector

PhysicalDevice

Defines the methods for managing
equipment and provided equipment
holders, physical ports and physical
connectors of the equipment. This
interface also defines the methods
for maintaining and finding physical
devices and provided physical ports
and physical connectors of the
physical devices.

FlowIdentifierManager networkaddress FlowIdentifier

InventoryGroup

Defines the methods for managing
flow identifiers and relating them to
inventory groups.

InventoryBaseManager inventory InventoryConfigurationItem Gets and validates inventory
configuration item for configuration.

InventoryGroupManager group InventoryGroup

InvGroupRef

Defines the methods for managing
inventory groups and related
entities.

Appendix A

A-2

Table A-1 (Cont.) List of UIM Entity Managers

Manager Name Package Managed Entities Description

IPAddressManager ip IPAddress

NetworkAddressDomain

Defines the methods for managing
IP Addresses.

IPNetworkManager ip IPSubnet

IPAddress

NetworkAddressDomain

Defines the methods for creating,
deleting, finding, and updating IP
network objects.

LocationManager location PropertyLocation

PropertyAddress

NetworkEntityCode

Defines the methods for managing
behaviors of property locations.

LogicalDeviceManager logicaldevice LogicalDevice

DeviceInterface

FlowInterface

Defines the methods for managing
LogicalDevice, Device Interface,
and Flow Interface objects.

LogicalDeviceAccountMan
ager

logicaldevice.accou
nt

LogicalDeviceAccount Defines the methods for managing
LogicalDeviceAccount objects.

LogicalPhysicalResourceB
ase

resource Contains shared methods and
variables for managing logical and
physical resources.

MediaManager media Media Defines the methods for managing
Media objects. Most of the methods
for creating, updating, and deleting
Media objects are deprecated
because the functionality was
replaced in Design Studio.

MediaResourceManager mediaresource MediaStream

MediaResourceLogicalDev
iceRel

Defines the methods for managing
MediaStream objects and its
relationships to LogicalDevice
objects. MediaStream is also a
MediaResource which is an
abstract entity for various types of
media.

MultiplexedConnectivityMa
nager

connectivity MultiplexedConnectivity

MultiplexedChannel

MultiplexedFacility

Defines the methods for managing
MultiplexedConnectivity objects as
well as creating and retrieving
channels for a facility. This interface
also creates and removes
terminations for a facility.

NetworkAddressBlockMan
ager

networkaddress NetworkAddressBlock Defines methods for managing
NetworkAddressBlock objects.

NetworkAddressDomainM
anager

networkaddress NetworkAddressDomain

NetworkAddressType

Defines methods for managing
NetworkAddressDomain objects.

NetworkManager network Network

NetworkNode

NetworkEdge

Defines methods for managing
Network, NetworkNode, and
NetworkEdge objects.

NetworkReconfigurationAc
tivityManager

project.activity Network

NetworkNode

NetworkEdge

Defines methods for managing
Network, NetworkNode, and
NetworkEdge objects, and their
relationships to Activities.

Appendix A

A-3

Table A-1 (Cont.) List of UIM Entity Managers

Manager Name Package Managed Entities Description

NetworkReconfigurationM
anager

network Network

NetworkNode

NetworkEdge

Defines methods for managing
Network, NetworkNode, and
NetworkEdge objects for Network
Configuration scenarios.

PacketConnectivityManag
er

connectivity NetworkConnectivity Defines the methods for creating
Packet Network Connectivity
objects.

PartyManager party Party Defines the methods for managing
Party objects.

PathAnalysisManager topology TopologyEdge

ToplogyNode

Defines the methods for finding
paths of interconnected
TopologyEdge and TopologyNode
objects.

PipeConfigurationManager connectivity PipeConfigurationVersion

PipeConfigurationItem

Pipe

PipeTerminationPoint

Defines the methods for managing
Pipe Configurations and their
related entities.

PipeManager connectivity Pipe

PipeTerminationPoint

Defines the methods for managing
Pipe and PipeTerminationPoint
objects.

PlaceConfigurationManag
er

place PlaceConfiguration Defines the methods for managing
PlaceConfiguration objects.

PlaceManager place GeographicPlace

GeographicAddress

GeographicLocation

GeographicSite

Defines the methods for maintaining
GeographicPlace objects and their
concrete subclasses.

ProductManager product Product Defines the methods for managing
Product objects.

ProjectManager project Project Defines the methods for managing
Project objects.

ReservationManager consumer Reservation Extends ConsumerManager,
managing Reservation logic.
Reservation such as
PipeReservation,
EquipmentReservation.

RoleManager role Role Defines methods for managing Role
objects.

SecurityManager admin User

Role

Partition

SecurityPolicy

Defines the methods for managing
User, Role, Partition, and
SecurityPolicy objects.

ServiceConfigurationMana
ger

service ServiceConfigurationVersi
on

ServiceConfigurationItem

This manager is used to configure a
service using configuration versions
and items.

Appendix A

A-4

Table A-1 (Cont.) List of UIM Entity Managers

Manager Name Package Managed Entities Description

ServiceConnectivityManag
er

connectivity ServiceConnectivity

ServiceNetwork

ServiceConfigurationVersi
on

This manager is used to create
service connectivity objects with
and without a
ServiceConfigurationVersion.

ServiceManager service Service Defines the methods for managing
Service objects.

SignalTerminationPointMa
nager

signalterminationp
oint

SignalTerminationPoint

TrailTerminationPoint

ConnectionTerminationPoi
nt

Defines methods for managing
Signal Structure and
SignalTerminationPoint.

SpecManager specification Specification Administers a specification and its
subtypes such as PipeSpecification,
EquipmentSpecification.

TagManager tag Tag Defines the methods for managing
Tag objects.

TDMConnectivityManager connectivity TDMChannel

TDMFacility

Defines the methods for managing
TDMChannel and TDMFacility
objects.

TelephoneNumberManage
r

number TelephoneNumber Defines the methods for managing
TelephoneNumber objects.

TopologyManager topology TopologyEdge

TopologyNode

Defines the methods for managing
TopologyEdge and ToplogyNode
objects.

TransitionManager common Transitions an entity's business and
object states by finding the
matching transition definitions with
business action, object activity,
entity type, and specification. If the
definition's from state matches the
entity's state, then the entity's state
is set to the definition's to state.

VirtualNetworkManager network Network

NetworkNode

NetworkEdge

FlowInterface

FlowIdentifier

Defines the methods for managing
Virtual Networks, Service Networks,
and Packet Virtual Network objects.

WorkflowManager businessinteraction EngineeringWorkOrder

Checklist

Activity

Defines the methods for managing
Engineering Work Orders and
Activities. This manager also
updates Activity properties like
duration and their checklists and,
also transitioning an Activity's
status.

Appendix A

A-5

B
NFV Orchestration Java Managers

This appendix provides a listing of Oracle Communications Unified Inventory Management
(UIM) NFV Orchestration Java manager names, the package in which they reside, and a brief
description.

These Java manager classes are found in the nso_managers.jar which is located in the UIM
Software Development Kit (SDK). See UIM Developer's Guide for more information on the
UIM SDK.

Table B-1 contains the list of Java managers in alphabetical order by manager name.

Note:

The package references in Table B-1 assume the package prefix of
oracle.communications.inventory.nso.

Table B-1 List of NFV Orchestration Java Managers

Manager Name Package Description

DescriptorManager api.descriptor Defines numerous find methods for retrieving the descriptors
and specifications for Network Services, VNFs, PNFs and
orchestration requests.

EMSManager api.ems Defines the methods for finding, creating, updating and
deleting EMSs, which perform the typical management
functionality for one or several VNFs.

NetworkServiceDesignManager api.c2a Defines the methods for creating, disconnecting and changing
the configuration version for a Network Service.

NetworkServiceManager api.ns Defines various methods to instantiate, activate, terminate and
update Network Service entities. This manager also includes
several find methods for Network Services and methods for
Design and Assign of various Network Service entities.

NFVIManager nfvi Defines the methods for managing the NFV infrastructure.
This manager includes methods to create, get and delete
objects such as flavors, ports, networks and virtual routers for
the VIM. By default, NFV Orchestration supports integration
with OpenStack, but you can implement this interface to
provide integration to a custom VIM, for instance supporting
VMware vCloud.

NSONotificationManager api.ns Defines the methods to process a notification. This manager
provides the mechanism to extend and provide your own
custom required notifications.

B-1

Table B-1 (Cont.) List of NFV Orchestration Java Managers

Manager Name Package Description

NSOResponseManager api.ns Defines the methods to aid in sending a response to a topic in
the WebLogic server. By default, NFV Orchestration includes a
response manager that publishes the status of the VNF and
Network Service life-cycle operations to a topic. You can also
implement this interface to provide a custom response
manager.

PNFManager api.pnf Defines the methods to find, create, update, delete, and
manage PNFs.

PNFServiceDesignManager api.c2a Defines the methods to process the actions performed during
a PNF addition to a Network Service or termination from a
Network Service.

ResourceOrchestrationManager api.ro Defines the methods used to choose a data center based on
the requirement to provision a Network Service. An instance
can be obtained from the NSOHelper class.

SBSytemManager api.sb Defines the south-bound system manager providing methods
to manage the VNF, such as reboot, replace, upgrade, scale
and instantiate. You can implement this interface to integrate
NFV Orchestration with a third-party VNF manager or Oracle's
VNF Manager.

SDNController nfvi Defines the methods to create, update, and delete network
forwarding paths (NFPs) for VNF forwarding graphs
(VNFFGs). By default, NFV Orchestration supports integration
with OpenStack Neutron Networking-SFC (Service Function
Chaining) using Open vSwitch (OVS) driver, but you can also
implement a custom SDN controller.

VNFCapabilityServiceManager api.vnf.capabili
ty

Defines the methods to configure a VNF service. This also
contains a designAndAssign() method, as well as the
issueConfigurationVersion() method.

VNFConfigManager nfvi Defines the methods to return the configuration files of a VNF
and generates configuration content for VNF configuration.
You can implement this interface to extend the VNF manager
functionality and its configuration files.

VNFConnectionManager nfvi Defined the methods to connect and configure a VNF. You can
implement this interface to extend the VNF manager
functionality for these methods.

VNFLifeCycleManager nfvi Defines methods to manage the life cycle of a VNF, such as
instantiate, reboot and terminate. You can implement this
interface to extend the VNF manager functionality for these
methods. By default, NFV Orchestration manages the VNF
life-cycle operations by using OpenStack Compute services
(referred to as Nova), but you can also implement and use a
custom VNF life-cycle manager.

VNFMonitoringManager nfvi Defines the methods to manage the monitoring of a VNF, such
as create, get and update alarms. By default, NFV
Orchestration supports integration with OpenStack Ceilometer,
but you can also implement and use a custom monitoring
engine.

VNFServiceDesignManager api.c2a Defines the methods for creating, disconnecting and changing
the configuration version for a VNF.

Appendix B

B-2

Table B-1 (Cont.) List of NFV Orchestration Java Managers

Manager Name Package Description

VNFServiceManager api.vnf Defines various methods to instantiate, activate, terminate and
update VNFs. This manager also includes several find
methods for VNFs.

See UIM NFV Orchestration Implementation Guide for more information on extending the
Java managers.

Appendix B

B-3

C
Common Utility Code Examples

This appendix provides example code of common utilities that are often used when working
with the Oracle Communications Unified Inventory Management (UIM) application program
interfaces (APIs).

Example C-1 Common Utility Code

public boolean hasErrors()
{
 boolean hasErrors = false;
 UserEnvironment userEnvironment = UserEnvironmentFactory.getUserEnvironment();
 if (userEnvironment != null)
 {
 FeedbackProvider feedbackProvider = userEnvironment.getFeedbackProvider();
 hasErrors = feedbackProvider.hasMessages(FeedbackLevel.ERROR);
 }
 return hasErrors;
}

public FeedbackProvider getFeedbackProvider()
{
 FeedbackProvider feedbackProvider = null;
 UserEnvironment userEnvironment = getUserEnvironment();
 if (userEnvironment != null)
 {
 feedbackProvider = userEnvironment.getFeedbackProvider();
 }
 return feedbackProvider;
}

protected static void commitOrRollback(UserTransaction ut)throws Exception
{
 FeedbackProvider feedbackProvider =
 getUserEnvironment().getFeedbackProvider();
 if (feedbackProvider.hasMessages(FeedbackLevel.ERROR))
 {
 if (ut != null && ut.getStatus() == Status.STATUS_ACTIVE)
 ut.rollback();
 }
 else
 {
 if (ut != null && ut.getStatus() == Status.STATUS_ACTIVE)
 ut.commit();
 }
}

protected static UserEnvironment startUserEnvironment()throws Exception
{
 UserEnvironment userEnvironment = null;
 try {
 UserEnvironment = getUserEnvironment();

C-1

 if (userEnvironment != null)
 {
 //Reset the User Context in User Environment.
 userEnvironment.reset();
 //Begin the UserEnvironment before it is first used.
 userEnvironment.begin();
 //Reset the Feedback Provider in User Environment.
 userEnvironment.getFeedbackProvider().reset();
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 throw e;
 }
 return userEnvironment;
}

protected static void endUserEnvironment(UserEnvironment userEnvironment)
{
 if (userEnvironment == null)
 return;

 userEnvironment.getFeedbackProvider().reset();
 userEnvironment.end();}

protected static UserEnvironment getUserEnvironment() throws Exception
{
 UserEnvironment userEnvironment = null;
 try {
 //Utils is oracle.communications.platform.util.Utils
 InitialContext initialContext = Utils.getInitialContext();
 String jndiContextName = "inv";
 String userEnvironmentName = "UserEnvironment";

 userEnvironment = (UserEnvironment)initialContext.lookup
 (jndiContextName + "/" + userEnvironmentName);

 initialContext.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 throw e;
 }
 return userEnvironment;
}

Appendix C

C-2

D
Frequently Used APIs for Design and Assign
Methods

This appendix provides pointers to the design and assign methods of APIs that are frequently
used when working with the Oracle Communications Unified Inventory Management (UIM)
application programming interfaces (APIs).

You can download this technology pack, use the methods, and see code examples for
common business solutions. You can also include this package in your custom solution to
have numerous classes that are available.

Reference UIMTECHPACK Cartridge
Java package: OracleComms_UIM_DesignAndAssign_Common

oracle.communications.inventory.api.dna.ServiceDesigner

Table D-1 oracle.communications.inventory.api.dna.ServiceDesigner

Topic Class/Method

oracle.communications.invent
ory.api.dna. ServiceDesigner

ServiceDesigner.create(String serviceId, String serviceSpecificationName)

Description: Creates a service with the given service ID and the specification
name.

getParentService ServiceDesigner.getParentService(Service service)

Description: Returns the parent service in which the given service is
assigned.Parent service to child service is not directly between two service entities
like other entities. But it is done using assignment of child services to a
configuration item of a parent service's configuration.

relating child service to a
parent service

ServiceDesigner.addService(Service parentService, Service newService, String
configItem)

Description: Creates a new configuration item with the given name in the parent
service active configuration and assigns the new service to it. This is how parent-
child relationship is created between services. This is a typical example of relating
a CFS (Customer Facing Service - parent service) and an RFS (Resource Facing
Service - child service).

relateServiceToParty ServiceDesigner.relateServiceToParty(ServiceConfigurationVersion scv, Party
party,String roleSpec)

Description: This method relates the given party to the given service.

getAssociatedService ServiceDesigner.getAssociatedService (BusinessInteraction businessInteraction)

Description: Returns the list of Service Entities associated to the given Business
Interaction via Configuration Version.

D-1

Table D-1 (Cont.) oracle.communications.inventory.api.dna.ServiceDesigner

Topic Class/Method

getService ServiceDesigner.getService(String serviceId, String extObjId)

Description: This method gets the service using the service ID. If the service ID is
not specified, the service is retrieved based on the service external object ID.

updateServiceCharacteristic ServiceDesigner.updateServiceCharacteristic(Service service, String charName,
String charValue);

Description: Finds and creates a new characteristic on the service with the
provided charName and populates the provided value.

getAssignedService ServiceDesigner.getAssignedService(ConsumableResource resource)

Description: Returns the assigned service for a given consumable resource.

getAssignedServiceConfigVer
sion

ServiceDesigner.getAssignedServiceConfigVersion(ConsumableResource
resource)

Description: Returns the current active configuration in which the given
consumable resource is assigned.

updateConfigItemCharacterist
ic

ServiceDesigner.updateConfigItemCharacteristic(ServiceConfigurationItem
configItem, String charName, String charValue)

Description: Updates the characteristic of the Service Configuration Item.

assignEntity ConfigurationDesignerImpl.assignEntity(Configurable configurable,
ConsumableResource entity, String config-ItemName)

Description: Assigns a given consumable resource entity to the given
configurable entity (Service, Logical Device, Site, network and so on) and
associates to the provided Configuration Item.

referenceEntity ConfigurationDesignerImpl.referenceEntity(Configurable configurable,
ConfigurationReferenceEnabled entity, String configItemName)

Description: References a given entity to the given configurable entity (Service,
Logical Device, Site, network and so on) and associates it to the provided
Configuration Item.

getAssociatedVersions ConfigurationDesignerImpl.getAssociatedVersions(String biId, String extObjId)

Description: Returns the list of Inventory Configurations associated to the given
Business Interaction. Either biId or extObjId are required.

getAssociatedConfigurableEn
tity

ConfigurationDesignerImpl.getAssociatedConfigurableEntity(BusinessInteraction
businessInteraction)

Description: Returns the list of Configurable Entities (Service, Logical Device,
Device Interface, Network and so on) associated to given Business Interaction via
Configuration Version.

getPreviousVersion ConfigurationDesignerImpl.getPreviousVersion(InventoryConfigurationVersion
version)

Description: Returns the latest previous completed configuration version.

getBusinessInteractionItems ConfigurationDesignerImpl.getBusinessInteractionItems(BusinessInteraction bi)

Description: Returns the list of all Business Interaction Items associated to given
Business Interaction.

getBusinessInteraction ConfigurationDesignerImpl.getBusinessInteraction(String biId, String extObjId)

Description: Returns the Business Interaction for the Business Interaction id or
External Object Id. Either biId or extObjId are required.

Appendix D
Reference UIMTECHPACK Cartridge

D-2

Table D-1 (Cont.) oracle.communications.inventory.api.dna.ServiceDesigner

Topic Class/Method

getConfigurationProperty ConfigurationDesignerImpl.getConfigurationProperty(InventoryConfigurationItem
item, String name)

Description: Returns the value of a characteristic associated to the configuration
item.

getConfigurationItem ConfigurationDesignerImpl.getConfigurationItem(InventoryConfigurationVersion
ConfVersion, String name)

Description: Returns a configuration item with the given name associated to the
provided Configuration Version.

isValidConfigItemCharacteristi
c

ConfigurationDesignerImpl.isValidConfigItemCharacteristic
(InventoryConfigurationItem item, String charName)

Description: Checks if the given characteristic belongs to the given configuration
item.

addChildConfigItem to a given
parentItem

ConfigurationDesignerImpl.addChildConfigItem(InventoryConfigurationVersion
configVersion, InventoryConfigurationItem parentItem, String childItemName)

Description: Creates the child configuration item under the parent configuration
item provided.

getLatestConfigurationVersion
ForState

ConfigurationDesignerImpl.getLatestConfigurationVersionForState(Configurable
configurable, BusinessInteractionState state)

Description: This method gets the latest configuration version for a given
configurable entity (Service, Logical Device, Network etc.) using the given state as
the criteria.

checkItemAssignedReference
d

ConfigurationDesignerImpl.checkItemAssignedReferenced(InventoryConfiguration
Version configVersion, InventoryConfigurationItem entityConfigItem)

Description: Checks if the configuration item has a assignment or reference.

getConfigurationVersion ConfigurationDesignerImpl.getConfigurationVersion(Configurable configurable,
String configSpecName)

Description: This method determines if an in-progress version exists before
creating a new one. If a completed version exists, then it uses that to create the
next version. If neither an in-progress or completed version exists, it uses the
configuration specification to create the first configuration version for the
configurable entity such as a service.

getConfigurationItems of an
assignment object

ConfigurationDesignerImpl.getConfigurationItems(Assignment assignment,
InventoryConfigurationVersion scv)

Description: Returns the configuration items based on the assignment object
provided.

getConfigurationItems of an
reference object

ConfigurationDesignerImpl.getConfigurationItems(InventoryConfigurationVersion
scv, ConfigurationReference reference)

Description: Returns the Configuration Items based on the reference object
provided.

createConfigurationVersion ConfigurationDesignerImpl.createConfigurationVersion(Configurable configurable,
String configSpec)

Description: This method will use the configuration specification to create the
configuration version for the given configurable entity.

Appendix D
Reference UIMTECHPACK Cartridge

D-3

Table D-1 (Cont.) oracle.communications.inventory.api.dna.ServiceDesigner

Topic Class/Method

getConfigItemByNameAndPar
ent

ConfigurationDesignerImpl.getConfigItemByNameAndParent(InventoryConfigurati
onVersion scv, String itemName, String parentName)

Description: Returns the configuration item with the given name.If parentName is
not null the method will make sure that the item is child of parent item before
returning.

setConfigItemCharacteristics ConfigurationDesignerImpl.setConfigItemCharacteristics
(InventoryConfigurationItem configItem, String propertyName, String value)

Description: If a Characteristic with this name already exists, then this method will
update the value. Otherwise creates a new characteristic.

referenceEntityToConfiguratio
n

ConfigurationDesignerImpl.referenceEntityToConfiguration(ConfigurationReferenc
eEnabled resource, InventoryConfigurationVersion config, String configItemName)

Description: Reference a given resource to the configuration item in the given
configuration version.

assignEntityToConfiguration ConfigurationDesignerImpl.assignEntityToConfiguration(InventoryConfigurationVer
sion configuration, ConsumableResource consumableResource, String
configItemName, String parentConfigItemName, boolean
switchToConfigurationContext)

Description: Assigns a given resource to the configuration item in the given
configuration version.

switchToConfigurationContext: If set to true, ensures that the assignment is done
under configuration context.

switchToConfigurationContext: If set to false, assignment is done in whichever
context is carried in the UserEnvironment at the time of execution, which may
result in wrong assignment depending on the context. Hence, always set
switchToConfigurationContext to true for the right context.

This method also makes sure to set back the context to current or live after the
assignment is done.

referenceEntityToConfiguratio
n

ConfigurationDesignerImpl.referenceEntityToConfiguration(InventoryConfiguration
Version configuration, ConfigurationReferenceEnabled entity, String
configItemName, String parentConfigItemName, boolean
switchToConfigurationContext)

Description: References a given resource to the configuration item in the given
configuration version.

getConfigSpecByResourceSp
ec

ConfigurationDesignerImpl.getConfigSpecByResourceSpec(Specification
resourceSpecification, Specification configurationSpec)

Description: Returns the Configuration Item Specification on which this resource
specification can be assigned or referenced in the given Configuration
specification.

getParentConfigSpec ConfigurationDesignerImpl.getParentConfigSpec(InventoryConfigurationSpec
childSpec)

Description: Returns the parent configuration item specification for a given child
configuration specification.

getActiveConfigurationVersion ConfigurationDesignerImpl.getActiveConfigurationVersion

Description: This method gets the latest configuration version for a given
configurable Entity like Service, Logical Device, Network, etc.If there is any in
progress configuration version available it returns it.Otherwise it returns the last
completed configuration version.

Appendix D
Reference UIMTECHPACK Cartridge

D-4

oracle.communications.inventory.api.dna. ConnectivityDesigner

Table D-2 oracle.communications.inventory.api.dna. ConnectivityDesigner

Topic Class/Method

createServiceConnectivity ConnectivityDesigner.createServiceConnectivity(String connSpec, String
technology,String function, ServiceNetwork serviceNetwork, int serialNumber,

ServiceConfigurationVersion scv, String aLocationName, String zLocationName,
BigDecimal cir, UnitOfMeasure cirUoM, BigDecimal mir, UnitOfMeasure mirUoM)

Description: Helper method used to create Service Connectivity.

oracle.communications.inventory.api.dna. ConnectivityHelper

Table D-3 oracle.communications.inventory.api.dna. ConnectivityHelper

Topic Class/Method

getAssignedConnectivities ConnectivityHelper.getAssignedConnectivities(LogicalDevice device, Specification
specification, RateCode rateCode)

Description: Returns the connectivities assigned to any interface on the provided
logical device for the provided device interface specification and rate code.

getConnectivityFromTermi
nation

ConnectivityHelper.getConnectivityFromTermination(DeviceInterface di)

Description: Get the assigned connectivity given the device interface.

getConnectivityUniN ConnectivityHelper.getConnectivityUniN(Pipe connectivity, String roleName)

Description: Return the Device Interface based on a specific role name. Checks the
Z side first for the role, then checks the A side. The UNI-N is the interface on SP's
(Service Provider's) side of the UNI. Use a device role to identify it.

getDeviceInterfaceRole ConnectivityHelper.getDeviceInterfaceRole(DeviceInterface di, String roleName)

Description: Returns true if the device interface has a specific role.

getDeviceInterfaceByAssig
nment

ConnectivityHelper.getDeviceInterfaceByAssignment(List<Assignment> assignments,
String roleName)

Description: Return the device interface for a given assignment and role.

findTransportConnectivity ConnectivityHelper.findTransportConnectivity(LogicalDevice logicalDevice, String
specName)

Description: Returns the first connectivity assigned to a logical device with a specific
connectivity specification name.

findTransportInterface ConnectivityHelper.findTransportInterface(LogicalDevice logicalDevice, String
specName)

Description: Returns the first device interface found on the logical device with a
specific connectivity assigned with a specific type of connectivity specification. For
example, inter-network transport to the core has a unique connectivity specification.

getFunction ConnectivityHelper.getFunction(String name)

Description: Return the Connectivity Function entity with a specific name.

getTechnology ConnectivityHelper.getTechnology(String name)

Description: Returns the technology entity for a specific name.

getRateCode ConnectivityHelper.getRateCode(String name)

Description: Return the Rate Code entity for a specific rate code name.

Appendix D
Reference UIMTECHPACK Cartridge

D-5

Table D-3 (Cont.) oracle.communications.inventory.api.dna. ConnectivityHelper

Topic Class/Method

getConnectivityServiceLoc
ation

ConnectivityHelper.getConnectivityServiceLocation(Connectivity connectivity)

Description: Returns the service location for a given connectivity.Assumes there is
only one and checks the A side location first.

hasValidResourceTerminat
ions

ConnectivityHelper.hasValidResourceTerminations(Connectivity connectivity)

Description: Returns true if the connectivity has any resource terminations. For
example, this method can be used to determine if the connectivity has been
terminated to any device interfaces.

oracle.communications.inventory.api.dna. ResourceHelper

Table D-4 oracle.communications.inventory.api.dna. ResourceHelper

Topic Class/Method

findEntityByName ResourceHelper.findEntityByName(Class<E> entityClass, String name)

Description: Returns the entity object based on the name and class provided

makeEntityCharacteristic ResourceHelper.makeEntityCharacteristic(CharacteristicExtensible<T> entity)

Description: Returns new Characteristic Value object for the given entity

setCharacteristic ResourceHelper.setCharacteristic(CharacteristicExtensible<T> entity,
List<PropertyType> properties)

Description: Sets the characteristic value on the given CharacteristicExtensible entity

getSpecification ResourceHelper.getSpecification(Class<T> specClass, SpecificationType specType)

Description: Returns the Specification object based on the Specification class and
Specification Type Provided

getAdminState ResourceHelper.getAdminState(InventoryStateEnum.Enum state)

Description: Returns the Inventory State based on the state provided.

getAssignmentState ResourceHelper.getAssignmentState(AssignmentStateEnum.Enum state)

Description: Returns the AssignmentState based on the state provided

getSpecification ResourceHelper.getSpecification(Class specClass, String name)

Description: Returns the specification based on the name and specification class
provided.

findFirstEntityByName ResourceHelper.findFirstEntityByName(Class<E> klass, String name)

Description: Finds and returns the first entity from the result set matching the given
name.Returns null if none found.

findEntityById ResourceHelper.findEntityById(Class<E> entityClass, String id)

Description: Finds and returns the entity by given id and class provided.

findEntitiesByName ResourceHelper.findEntitiesByName(Class<E> klass, String name)

Description: Finds and returns the entity by class and name.

findFirstEntityById ResourceHelper.findFirstEntityById(Class<E> klass, String id)

Description: Finds and returns the first entity found by class and id.

findEntitiesById ResourceHelper.findEntitiesById(Class<E> klass, String id)

Description: Finds and returns a list of entities by class and id.

Appendix D
Reference UIMTECHPACK Cartridge

D-6

Table D-4 (Cont.) oracle.communications.inventory.api.dna. ResourceHelper

Topic Class/Method

populateCharacteristics ResourceHelper.populateCharacteristics(T entity, Set<E> characteristics)

Description: Populates the set of characteristics provided on the
characteristicExtensible entity.

populateCharacteristic ResourceHelper.populateCharacteristic(T entity, E characteristic)

Description: Populates the characteristic provided on the CharacteristicExtensible
entity.

createCustomInvolvement ResourceHelper.createCustomInvolvement(E fromEntity, T toEntity)

Description: Creates Custom Involvement between the given from Entity and the to
Entity.

deleteCustomInvolvement ResourceHelper.deleteCustomInvolvement(E fromEntity, T toEntity)

Description: Deletes the custom involvement between the given two entities.First it
tries with the fromEntity and toEntity and find the involvement.If not found it tries other
way around by setting to entity as from entity and to entity as from entity

associateToInventoryGrou
p

ResourceHelper.associateToInventoryGroup(InventoryGroup group,
List<GroupEnabled> entities)

Description: Associate the given list of entities to inventory group.

disassociateFromInventory
Group

ResourceHelper.disassociateFromInventoryGroup(InventoryGroup group,
List<GroupEnabled> entities)

Description: Disassociates the list of entities from the inventory group.

associateToPlace ResourceHelper.associateToPlace(GeographicPlace parentPlace, GeographicPlace
childPlace)

Description: Associates the child place to parent place.

associateToPlace

Logical Device to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, LogicalDevice
device)

Description: Associates the given Logical Device to the given place.

associateToPlace

Logical Device Account to
Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace,
LogicalDeviceAccount account)

Description: Associates given Logical Device Account to the given place.

associateToPlace

Physical Device to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, PhysicalDevice
device)

Description: Associates the given Physical Device to the given place.

associateToPlace

Service to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, Service service)

Description: Associates the given Service to the given place.

associateToPlace

Inventory Group to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, InventoryGroup
group)

Description: Associates the given Inventory Group to the given place.

associateToPlace

PipeTerminationPoint to
Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace,
PipeTerminationPoint ptp)

Description: Associates the given Pipe Termination Point to the given place.

associateToPlace

NetworkNode to Place

ResourceHelper.associateToPlace(GeographicPlace parentPlace, NetworkNode
node)

Description: Associates the given Network Node to the given place

Appendix D
Reference UIMTECHPACK Cartridge

D-7

Table D-4 (Cont.) oracle.communications.inventory.api.dna. ResourceHelper

Topic Class/Method

disassociateFromPlace ResourceHelper.disassociateFromPlace(GeographicPlace parentPlace, Persistent
entity)

Description: Disassociates the given Persistent entity from the given place.

findInventoryGroup ResourceHelper.findInventoryGroup(String inventoryGroupName, String
specificationName)

Description: Finds and returns Inventory Group based on the inventory group name
and specification name provided.

findDeviceInterfaces ResourceHelper.findDeviceInterfaces(LogicalDevice device, Specification
specification,RateCode rateCode, AssignmentState state)

Description: Finds the Device interfaces based on the logical device, specification,
assignment state and rate code.Not all arguments are mandatory.Only non null values
will be added as search criteria.

findAndValidateSpecificati
on

ResourceHelper.findAndValidateSpecification(String specificationName)

Description: Returns only valid specification based on the given name.

findAndValidateSpecificati
on

ResourceHelper.findAndValidateSpecification(Class specClass, String
specificationName)

Description: Returns only valid specification based on the given name and
specification class.

createParty ResourceHelper.createParty(PartyType type, String partySpecName, String
roleSpecName)

Description: Creates Party based on the party type and specification.If the role
specification is provided it creates party role too.

createPartyRole ResourceHelper.createPartyRole(Party party, String roleSpecName)

Description: Creates the party role object based on the party object and role
specification name provided.

makeCharValue ResourceHelper.makeCharValue(CharacteristicExtensible<CharValue>
characteristicExtensible, String charSpecName, String value)

Description: Creates and returns the char value object based on the provided details
for any entity which is CharacteristicExtensible like inventory configuration item,
logical device, Service.Network etc.

findOrCreateLogicalDevice ResourceHelper.findOrCreateLogicalDevice(String logicalDeviceId, String name,
String specName)

Description: Finds the logical device based on the ID, name and specification
provided. If not found, creates a logical device and returns.

createLogicalDevice ResourceHelper.createLogicalDevice(String logicalDeviceId, String specName)

Description: Creates a logical device.

findLogicalDevice ResourceHelper.findLogicalDevice(String id, String name, String specName)

Description: Finds the logical device based on the provided details.

findConnectivity ResourceHelper.findConnectivity(String identifier)

Description: Finds the connectivity object based on the provided identifier.

createPropertyAddress ResourceHelper.createPropertyAddress(String streetAddress, String city, String state,
String postalCode, String country)

Description: Creates the property address based on the details provided.

Appendix D
Reference UIMTECHPACK Cartridge

D-8

Table D-4 (Cont.) oracle.communications.inventory.api.dna. ResourceHelper

Topic Class/Method

createPropertyLocation ResourceHelper.createPropertyLocation(PropertyAddress address)

Description: Creates the property Location of type Service Location based on the
details provided.

findPropertyLocations ResourceHelper.findPropertyLocations(PropertyAddress address)

Description: Finds and returns the Property Location based on the address provided.

findOrCreatePropertyLocat
ion

ResourceHelper.findOrCreatePropertyLocation(PropertyAddress address)

Description: Finds the property Location with the given address. If available, returns
the entity. Otherwise, creates a new Property Location.

createCritieriaItem ResourceHelper.createCritieriaItem(String itemName, CriteriaOperator operator,
InventorySearchCriteria criteria)

Description: Creates and returns the criteria Item object.

findCustomObjects ResourceHelper.findCustomObjects(String specName, String customObjectName)

Description: Finds and returns the custom objects with the given criteria.Either Name
or SpecName is mandatory.

findOrCreateCustomObjec
t

ResourceHelper.findOrCreateCustomObject(String customObjectName, String
specName, Set<CustomObjectCharacteristic> chars)

Description: Finds the Custom Object with the given details. If available, returns the
entity. Otherwise, creates a new Custom Object.

createCustomObject ResourceHelper.createCustomObject(String customObjectName, String specName,
Set<CustomObjectCharacteristic> chars)

Description: Create a Custom Object.

findCharacteristicByName ResourceHelper.findCharacteristicByName(CharacteristicExtensible entity, String
itemName)

Description: Finds and returns the characteristic value for a specific entity and
characteristic name.

findLogicalDevice ResourceHelper.findLogicalDevice(String id, String name)

Description: Finds a logical device by ID and name.

findNetworkLocation ResourceHelper.findNetworkLocation(String networkLocationCode)

Description: Finds and returns a property location using the network location code.

findNetworkEntityCode ResourceHelper.findNetworkEntityCode(PropertyLocation propertyLocation, String
networkEntityCode)

Description: Finds and returns the Network Entity Code given a property location
and network entity code name.

createNetworkEntityCode ResourceHelper.createNetworkEntityCode(PropertyLocation networkLocation, String
networkEntityCode, String networkEntityLocationCode)

Description: Creates a Network Entity Code given a property location, network entity
code and network entity location code.

updateBusinessInteraction
Characteristic

ResourceHelper.updateBusinessInteractionCharacteristic(BusinessInteraction bi,
String charName, String charValue)

Description: Updates a Business Interaction Characteristic.

updateNetworkCharacteris
tic

ResourceHelper.updateNetworkCharacteristic(Network network, String charName,
String charValue)

Description: Updates a Networks Characteristics.

Appendix D
Reference UIMTECHPACK Cartridge

D-9

Table D-4 (Cont.) oracle.communications.inventory.api.dna. ResourceHelper

Topic Class/Method

getBIParameterValue by
BusinessInteractionItemTy
pe

ResourceHelper. getBIParameterValue(BusinessInteractionItemType item, String
paramName)

Description: Returns the value of parameter provided. It can be used to return the
value from a name/value pairs from the CaptureInteraction Payload given the
Parameter name.

getBIParameterValue by
ParameterType

ResourceHelper.getBIParameterValue(List<oracle.communications.inventory.xmlbean
s.ParameterType> parameterList, String paramName)

Description: Returns the value of parameter provided. It can be used to return the
value from a name/value pairs from the CaptureInteraction Payload given the
Parameter name.

Appendix D
Reference UIMTECHPACK Cartridge

D-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview
	2 Working with Transactions, Exceptions, and Logging
	Working with Transactions
	Working with Exceptions
	Working with Logging
	Configuring the Logging Level
	Working with the Log Interface
	About UIM Log Messages
	Defining Custom Log Messages
	Working with the FeedbackProvider Interface

	3 Implementing a Generic Service Fulfillment Scenario
	About the Generic Service Fulfillment Scenario
	Querying for the Specification
	Querying for the Specification Using Finder API
	Creating the Service and Service Configuration
	Creating the Service
	Retrieving the Service Configuration Specification
	Retrieving the Service Configuration Specification Using Finder API
	Creating the Service Configuration
	About Alternate Flows
	Changing the Service
	Disconnecting the Service

	Creating and Associating the Party
	Creating the Party
	Creating the Party Role
	Associating the Party and Party Role with the Service
	About Alternate Flows
	Disassociating the Party and Party Role from the Service
	Deleting the Party
	Deleting the Party Role

	Creating and Associating the Geographic Address with the Service
	Creating the Geographic Place
	Creating the Place Role
	Associating the Geographic Place and Place Role with the Service
	About Alternate Flows
	Disassociating the Geographic Place and Place Role from the Service
	Deleting the Geographic Place
	Deleting the Place Role

	Configuring the Resources for the Service Configuration
	Finding the Service
	Finding the Service by ID Using Finder API
	Finding the Current Service Configuration Version
	Finding the Service Configuration Item
	Finding the Custom Object to Assign
	Creating the Custom Object to Assign
	Assigning the Resource to a Configuration Item
	Referencing the Resource to a Configuration Item
	About Alternate Flows
	Unassigning Resources from a Configuration Item
	Reserving a Custom Object
	Unreserving a Custom Object
	Creating a Blocked Condition for a Custom Object
	Deleting a Blocked Condition for a Custom Object

	Setting Characteristic Values for the Service Configuration Item
	Finding Configuration Item and Setting Characteristics
	About Alternate Flows
	Unsetting Characteristic Values for the Service Configuration Item

	Transitioning the Lifecycle Status
	Creating a Property Location
	Referring Property Location to a Service Configuration Item

	About Undo Actions

	4 Implementing a Channelized Connectivity Enablement Scenario
	About the Channelized Connectivity Enablement Scenario
	Creating a Property Location and Associating Network Entity Codes
	Creating a Logical Device and Associating LD Interfaces with Network Entity Codes
	Creating Channelized Connectivity
	Create Channelized Connectivity
	Configure Capacity on the Channelized Connectivity
	Configure Auto Termination on the Channelized Connectivity

	Enabling Channelized Connectivity
	Manually Enabling Channelized Connectivity
	Performing Gap Analysis
	Adding Segments To Connectivity Path Based on the Gap Analysis Results

	A UIM Entity Managers
	B NFV Orchestration Java Managers
	C Common Utility Code Examples
	D Frequently Used APIs for Design and Assign Methods
	Reference UIMTECHPACK Cartridge
	oracle.communications.inventory.api.dna.ServiceDesigner
	oracle.communications.inventory.api.dna. ConnectivityDesigner
	oracle.communications.inventory.api.dna. ConnectivityHelper
	oracle.communications.inventory.api.dna. ResourceHelper

