
Oracle® Communications
Unified Inventory and Topology Deployment
Guide

Release 7.5.1
F76281-03
December 2023

Oracle Communications Unified Inventory and Topology Deployment Guide, Release 7.5.1

F76281-03

Copyright © 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Diversity and Inclusion viii

1 About Unified Inventory and Topology

Unified Inventory and Topology Architecture 1-1

About UIM 1-2

About UTIA 1-2

About Unified Operations Message Bus 1-3

About Common Authentication 1-3

Planning and Validating Your Cloud Environment 1-3

Installing Oracle Property Graph 1-3

Kubernetes Storage Class 1-4

2 About the Unified Inventory and Topology Toolkit

Unified Inventory and Topology Toolkit 2-1

Image Builders 2-2

About the Manifest File 2-2

Deployment Toolkits 2-4

Common Cloud Native Toolkit 2-4

Deploying the Services 2-5

Setting Up Prometheus and Grafana 2-6

Setting Up Elastic Stack 2-6

Setting Up OpenSearch 2-8

3 Deploying the Common Authentication Service

Building the OHS Image 3-1

Deploying OAM along with OHS for Authentication Service 3-1

Deploying OAM Using Common Cloud Native Toolkit Scripts 3-2

iii

Uninstalling OAM 3-5

Specifying the Proxy Settings 3-6

Accessing the WebLogic Server Administration Console and the OAM Console 3-6

Configuring OAM 3-7

Configuring OAuth Service Settings 3-11

Creating an OAuth Identity Domain 3-11

Creating a Resource 3-11

Creating a Client 3-12

Adding Common OAuth Secret and ConfigMap 3-12

Debugging and Troubleshooting 3-13

Unable to create Domain or Admin Server is not coming up 3-14

Unable to Access OAM Console 3-15

Inventory UI is not appearing after successful login 3-15

4 Deploying Unified Operations Message Bus

Message Bus Cloud Native Architecture 4-2

Access to Message Bus 4-2

Strimzi Operator 4-4

Private Container Repository 4-4

ImagePullPolicy 4-5

Resources 4-5

Deploying Strimzi Operator 4-6

Upgrading Strimzi Operator 4-6

Uninstalling Strimzi Operator 4-7

Validating Strimzi Operator 4-7

Restarting the Strimzi Operator 4-7

Registering the Namespaces with Strimzi Operator 4-7

Unregistering the Namespaces with Strimzi Operator 4-8

Deploying and Managing Kafka Cluster with Kafka Topics 4-8

Deploying Kafka Cluster and Kafka Topic 4-8

Upgrading Kafka Cluster and Kafka Topic 4-9

Deleting Kafka Cluster and Kafka Topic 4-9

Validating the Kafka cluster 4-10

Restarting Message Bus 4-11

Configuring the applications.yaml File 4-11

Using Image Pull Secrets 4-11

Security Context 4-12

Cluster Size 4-13

Storage 4-13

Broker Defaults 4-13

iv

JVM Options 4-14

Kafka Topics 4-14

Accessing Kafka Cluster 4-15

Configuring Authentication 4-17

Using GC Logs 4-19

Alternate Configuration Options 4-19

Log Level 4-19

Choosing Worker Nodes for Running Message Bus Service 4-20

Managing Message Bus Metrics 4-22

Installing and Configuring Mirror Maker 2.0 4-24

Configuring Source and Target Message Bus (Kafka cluster) Details 4-24

Installing Mirror Maker 4-25

Uninstalling Mirror Maker 4-25

Client Access 4-26

Configuring Message Bus Listeners 4-35

Debugging and Troubleshooting 4-38

5 Deploying the Unified Topology for Inventory and Automation Service

Overview of UTIA 5-1

UTIA Architecture 5-1

UIM as the Producer 5-2

Topology as the Consumer 5-2

Topology Graph Database 5-2

Topology In-Memory Database 5-3

UTIA User Interface 5-3

Creating UTIA Images 5-3

Prerequisites for Creating UTIA Images 5-3

Configuring Unified Topology Images 5-3

Creating Unified Topology Service Images 5-3

Post-build Image Management 5-5

Customizing the Images 5-5

Creating a Unified Topology Instance 5-6

Installing Unified Topology Cloud Native Artifacts and Toolkit 5-6

Setting up Environment Variables 5-6

Registering the Namespace 5-7

Creating Secrets 5-7

Installing Unified Topology Service Schema 5-12

Configuring the applications.yaml File 5-13

Configuring Unified Topology Application Properties 5-15

Max Rows 5-15

v

Date Format 5-16

Alarm Types 5-16

Event Status 5-16

Event Severity 5-16

Path Analysis Cost Values 5-17

Integrate Unified Topology Service with Message Bus Service 5-18

Creating a Unified Topology Instance 5-19

Accessing Unified Topology 5-19

Validating the Unified Topology Instance 5-20

Deploying the Graph Server Instance 5-20

Scheduling the Graph Server Restart CronJob 5-21

Affinity on Graph Server 5-21

Upgrading the Unified Topology Instance 5-22

Restarting the Unified Topology Instance 5-22

Alternate Configuration Options for UTIA 5-23

Setting up Secure Communication using TLS 5-23

Choosing Worker Nodes for Unified Topology Service 5-25

Setting up Persistent Storage 5-26

Managing Unified Topology Logs 5-27

Viewing Logs using Elastic Stack 5-27

Setting Up Elastic Stack 5-27

Viewing Logs using OpenSearch 5-29

Managing Unified Topology Metrics 5-29

Allocating Resources for Unified Topology Service Pods 5-31

Scaling Up or Scaling Down the Unified Topology Service 5-31

Enabling GC Logs for UTIA 5-32

Geo Redundancy Support 5-32

Disaster Recovery Support 5-34

Disaster Recovery across Data Centers 5-34

About Switchover and Failover 5-35

About Kafka Mirror Maker 5-36

Installation and Configuration 5-36

Setting up the Primary (active) Instance 5-36

Setting up the Secondary (standby) Instance 5-38

Switchover Sequence 5-40

Failover Sequence 5-41

Debugging and Troubleshooting 5-42

Fallout Events Resolution 5-43

Deleting and Recreating a Unified Topology Instance 5-45

vi

6 Data Migration and Dynamic Attribute Mapping

Planning the Topology Migration 6-1

Customizing Topology JSON files for Migration 6-4

Dynamic Data Mapping from UIM 6-12

Mapping the Dynamic Data from UIM 6-12

7 Upgrading UTIA

Prerequisites for Upgrading UTIA 7-1

Upgrading the UTIA Application 7-2

Upgrading the UTIA Schema 7-2

Upgrading the UTIA Instance 7-3

8 Checklists for Integration of Services

vii

Preface

This guide describes how to deploy and administer Oracle Communications Unified
Inventory and Topology in a cloud native environment.

Audience
This document is for system administrators, database administrators, and developers
who install and configure Unified Inventory and Topology.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
About Unified Inventory and Topology

Unified Inventory and Topology includes the following services:

• Unified Inventory Management (UIM)

• Unified Topology for Inventory and Automation (UTIA)

• Unified Operations Message Bus

• Common Authentication that leverages Oracle Access Manager (OAM) tool

UTIA, Unified Operations Message Bus, and Common Authentication are cloud native
containerized applications that are supported in a Kubernetes environment. UIM can be a
traditional application or a cloud native instance.

• The embedded topology from UIM is now available as a micro-service (UTIA) based on
Helidon MP.

• The communication between UIM and the UTIA service is asynchronous and this is
achieved by using Message Bus service.

• OAM is used as an OAuth 2.0 Authentication provider for single sign-on (SSO).

Unified Inventory and Topology Architecture
Figure 1-1 shows a high-level architecture of Unified Inventory and Topology and how the
services communicate.

1-1

Figure 1-1 High-level Architecture of Unified Inventory and Topology

See the corresponding architecture diagrams of the services for more information.

About UIM
UIM is a standards-based telecommunications inventory management application that
enables you to model and manage customers, services, and resources. UIM supports
complex business relationships and provides full life-cycle management of services
and resources. UIM provides you with a real-time, unified view of customers, services,
and resource inventory, enabling you to develop and introduce new services more
quickly and more cost-effectively. UIM supports two deployment models: traditional
(on-premise) deployment and cloud native deployment in a Kubernetes cluster.

About UTIA
Unified Topology for Inventory and Automation (UTIA) enables you to view the service,
network, and resource topologies in the form of topology graphs. UTIA uses Oracle
Property Graph DB to manage the topology hierarchy.

UTIA has the following sub components.

• Unified Topology API

• Unified Topology PGX

• Unified Topology Consumer

• Unified Topology UI

See UTIA User’s Guide for more information.

Chapter 1
About UIM

1-2

About Unified Operations Message Bus
Message Bus is a distributed event store and stream-processing service. Message Bus
service sends and receives events and messages asynchronously to a specific destination
(called as Topic) between the services. The Message Bus service uses Apache Kafka, which
is a distributed event store and stream-processing platform, as the messaging platform. For
packaging or deploying, Strimzi is used. Strimzi simplifies the process of running Apache
Kafka in a Kubernetes cluster. Strimzi also provides container images and operators for
running Kafka on Kubernetes.

About Common Authentication
The Common Authentication service leverages Oracle Access Manager (OAM) to
implement the single sign-on (SSO) authentication solution with the services (UIM, Unified
Topology services, and Message Bus service). This enables you to seamlessly access
multiple applications without being prompted to authenticate for each application separately.
The main advantage of SSO is that you are authenticated only once, which is when you log in
to the first application; you are not required to authenticate again when you subsequently
access different applications within the same web browser session.

OAM also supports the single logout (SLO) feature. If you access multiple applications using
SSO within the same web browser session, and then if you log out of any one of the
applications, you are logged out of all of the applications.

For more information about OAM, see Administering Oracle Access Management.

Planning and Validating Your Cloud Environment
To deploy the Unified Topology for Inventory and Automation services, you must set up and
validate a list of prerequisite software. See Planning and Validating Your Cloud
Environment in UIM Cloud Native Deployment Guide for more information.

Before starting the service deployments:

• Install property graph plugins on the PDB that are used for UTIA.

• Configure the Storage Class in Kubernetes to provision Persistent Volumes dynamically
to be used for the Message Bus service.

Installing Oracle Property Graph
UTIA uses Oracle Property Graph of Oracle Database that offers a powerful graph support to
explore and discover complex relationships within UTIA topology graphs.

Graph Server and Client is a software package that is required for Property Graph.

To install Property Graph:

1. Download Oracle Graph Server, oracle-graph-plsql-<version>.zip, from Oracle E-
Delivery: https://www.oracle.com/database/technologies/spatialandgraph/property-graph-
features/graph-server-and-client/graph-server-and-client-downloads.html

Chapter 1
About Unified Operations Message Bus

1-3

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/aiaag/introducing-oracle-access-management.html#GUID-D1D083AA-538E-4063-A921-9328DB784319
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

Note:

The versions are available at: Oracle Graph Server. See UIM
Compatibility Matrix for the corresponding version of Oracle Graph
PL/SQL Patch.

2. Extract oracle-graph-plsql-<version>.zip and open the 19c and above folder.

3. Follow the instructions in the readme.md file to install Property Graph.

Kubernetes Storage Class
The Kubernetes Cluster administrator should create the Storage Class which can
provision the persistent volumes dynamically.

Chapter 1
Planning and Validating Your Cloud Environment

1-4

https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

2
About the Unified Inventory and Topology
Toolkit

This chapter describes the components required for Unified Inventory and Topology.

Unified Inventory and Topology Toolkit
From Oracle Software Delivery Cloud, download the following:

• Oracle Communications Unified Inventory Management Cloud Native Toolkit

• Oracle Communications Unified Inventory Management Cloud Native Image Builder

• Oracle Communications Unified Inventory Management UTIA Image Builder

• Oracle Communications Unified Inventory Management OHS Image Builder

• Oracle Communications Unified Inventory Management Common Toolkit

Perform the following tasks:

1. Copy the above downloaded archives into directory workspace and unzip the archives.

2. Export the unzipped path to the WORKSPACEDIR environment variable.

3. On Oracle Linux, where Kubernetes is hosted, download and extract the tar archive on
each host. This host has a connectivity to the Kubernetes cluster.

4. Alternatively, on OKE, for an environment where Kubernetes is running, extract the
contents of the tar archive (on each OKE client host). The OKE client host is the bastion
host that is set up to communicate with the OKE cluster.

$ mkdir workspace
$ export WORKSPACEDIR=$(pwd)/workspace
//Untar UIM Builder
$ tar -xf $WORKSPACEDIR/uim-image-builder.tar.gz --directory workspace
//Untar UIMCN Toolkit
tar -xf $WORKSPACEDIR/uim-cntk.tar.gz --directory workspace
//Untar OHS Builder
tar -xf $WORKSPACEDIR/ohs-builder.tar.gz --directory workspace
//Untar UTIA Builder
$ tar -xf $WORKSPACEDIR/unified-topology-builder.tar.gz --directory
workspace
//Untar Common Toolkit
$ tar -xf $WORKSPACEDIR/common-cntk.tar.gz --directory workspace
$ export COMMON_CNTK=$WORKSPACEDIR/common-cntk

Assembling the Specifications

To assemble the specifications:

2-1

1. Create a directory (either in local machine or version control system where the
deployment pipelines are available) to maintain the specification files needed to
deploy the service. Export the directory to SPEC_PATH environment variable.

2. Copy the Strimzi Operator deployment specification file (strimzi-operator-override-
values.yaml) to your $SPEC_PATH/<STRIMZI_PROJECT>.

cp $COMMON_CNTK/samples/strimzi-operator-override-
values.yaml $SPEC_PATH/<STRIMZI_PROJECT>/strimzi-operator-override-
values.yaml

3. Copy the Micro Services deployment application specification file
(applications.yaml) to your $SPEC_PATH/<PROJECT>/<INSTANCE>.

cp $COMMON_CNTK/samples/appications.yaml $SPEC_PATH/<PROJECT>/
<INSTANCE>/appications.yaml

4. Copy the Micro Services database specification file (database.yaml) to
your $SPEC_PATH/<PROJECT>/<INSTANCE>.

cp $SPEC_PATH/sr/quick/database.yaml $SPEC_PATH/<PROJECT>/
<INSTANCE>/database.yaml

5. Copy other specification files as required:

• Persistent volumes and persistent volume claims files
from $COMMON_CNTK/nfs

• Role and role bindings from $COMMON_CNTK/rbac

• Credential files from $COMMON_CNTK/credentials

Image Builders
The following image builders are required to build the corresponding services for an
end-to-end integrated environment:

• UIM Image Builder: This includes archive uim-image-builder.tar.gz,
which is required to build UIM, UIM DB Installer Images. See Creating the UIM
Cloud Native Images in UIM Cloud Native Deployment Guide for more
information.

• OHS Builder: This includes ohs-builder.tar.gz, required to build OHS image.
See "Building the OHS Image" for more information.

• UTIA Builder: This includes unified-topology-builder.tar.gz, required to
build Unified Topology API, Unified Topology UI, Unified Topology PGX, Unified
Topology Consumer, and the Unified Topology DB Installer images.

All builder toolkits include manifest files and scripts to build the images.

About the Manifest File
A manifest file can be found in directory path $WORKSPACEDIR/<service-
builder>/bin/<service>_manifest.yaml. The manifest file describes the input that goes
into the service images. It is consumed by the image build process. The default

Chapter 2
Image Builders

2-2

configuration in the latest manifest file provides all necessary components for creating the
service images easily. A service can be OHS, UTIA, or UIM.

You can also customize the manifest file. This enables you to:

• Specify any Linux image as the base, as long as it is a binary and is compatible with
Oracle Linux.

• Upgrade the Oracle Enterprise Linux version to a newer version to uptake a quarterly
CPU.

• Upgrade the JDK version to a newer JDK version to uptake a quarterly CPU.

• Choose a different userid and groupid for oracle:oracle user:group that the image
specifies. The default is 1000:1000.

Note:

The schemaVersion and date parameters are maintained by Oracle. Do not
modify these parameters. Version numbers provided here are only examples. The
manifest file specifies the actual versions that Oracle recommends.

There are various sections in the manifest file such as:

• Service Base Image: The Service Base image is a necessary building block of the final
service container images. However, it is not required by the service to create or manage
any service instances.
Linux parameter: The Linux parameter specifies the base Linux image to be used as
the base Docker or Podman image. The version is the two-digit version from /etc/redhat-
release:

linux:
 vendor: Oracle
 version: 8-slim
 image: <container>/os/oraclelinux:8-slim

The vendor and the version details are used for validating while an image is being built
and for querying at run-time.

Note:

To troubleshoot issues, Oracle support requires you to provide these details in
the manifest file used to build the image.

• The userGroup parameter that specifies the default userId and groupId:

userGroup:
 username: <username>
 userid: <userID>
 groupname: <groupname>
 groupid: <groupID>

Chapter 2
Image Builders

2-3

• The jdk parameter that specifies the JDK vendor, version, and the staging path:

jdk:
 vendor: Oracle
 version: 17.0.4.1
 path: $CN_BUILDER_STAGING/downloads/java/jdk-17.0.4.1_linux-
x64_bin.tar.gz

• The Tomcat parameter specifies the Tomcat version and its staging path.

Note:

This is applicable only for the UTIA service.

tomcat:
 version: 9.0.62
 path: $CN_BUILDER_STAGING/downloads/tomcat/tomcat-9.0.62.tar.gz

• A serviceImage parameter, where tag is the tag name of the service image.

serviceImage:
 tag: latest

Deployment Toolkits
The following toolkits are required to deploy the services for an end-to-end integrated
environment:

• UIM Cloud Native toolkit: Includes uim-cntk.tar.gz file that is required to deploy
UIM in cloud native environment. See Creating a Basic UIM Cloud Native
Instance in UIM Cloud Native Deployment Guide, for more information.

• Common Cloud Native toolkit: Includes common-cntk.tar.gz file that is required
to deploy the OAM, UTIA, and Message Bus services in the cloud native
environment.

Common Cloud Native Toolkit
The Common cloud native toolkit (Common CNTK) includes:

• Helm charts to manage the UTIA, Common Authentication, and Message Bus
services.

• Scripts to manage secrets for the services.

• Scripts to manage schemas for the services.

• Scripts to create, update, and delete the UTIA and Message Bus services.

• Scripts to create and delete the Common Authentication service.

• Sample pv and pvc yaml files to create persistent volumes.

• Sample charts to install Traefik.

Chapter 2
Deployment Toolkits

2-4

• Scripts to register and un-register the namespaces with Traefik and Strimzi operator.

• The applications.yaml and, database.yaml files that provide the required configuration
for the services which can be used for a production environment.

• The applications-dev.yaml file that contains the required configuration for the services
which can be used for a development environment.

• The strimzi-operator-override-values.yaml file that enables you to override the
configuration for deploying strimzi operator which is used for message bus service.

The applications.yaml and database.yaml files have common values that are applicable for
all services in Common CNTK along with the values that are applicable for specific services.

For customized configurations to override the default values, update the values under the
specific application sections in $SPEC_PATH/<PROJECT>/<INSTANCE>/applications.yaml.

While executing the scripts, the project and instance values should be provided, where
project indicates the namespace of the Kubernetes environment where the service is
deployed and instance is the identifier of the corresponding service instance, if multiples
instances are created within the same namespace.

Note:

As multiple instances of Message Bus cannot exist in the same namespace, only
one instance is created for all services within the same namespace.

While creating a basic instance for all these services, the project name is considered as sr
and the instance name is considered as quick.

Note:

• Project and Instance names must not contain any special characters.

• There are common values specified in the applications.yaml and
database.yaml files for the services. To override the common value user can
specify that value under the chart name of a service. If the value under the
chart is empty, then common value is considered.

Deploying the Services
You must deploy and configure all services in the following sequence:

1. Deploy Authentication Service (OAM along with OHS).

2. Deploy Message Bus.

3. Deploy UIM (traditional or cloud native).

4. Configure Traditional UIM with Message Bus and UTIA, and restart UIM. See Setting
System Properties in UIM System Administrator’s Guide, for more information.

5. Configure OAM for UTIA client creation.

6. Deploy UTIA.

Chapter 2
Deploying the Services

2-5

Note:

Ensure that each individual service is deployed successfully and verified in
the above mentioned order as there are dependencies between these
services. Ensure that for production instance, for High Availability, the
Message Bus is set up with at least 3 replicas for kafka-cluster.

Setting Up Prometheus and Grafana
Message Bus has been tested with Prometheus and Grafana server installed and
configured using the Helm charts.

• Prometheus Community is available at https://prometheus-community.github.io/
helm-charts and uses the prometheus-community/prometheus chart.

• Grafana Community is available at https://grafana.github.io/helm-charts and uses
the grafana/grafana chart.

Setting Up Elastic Stack
To set up Elastic Stack:

1. Install Elasticsearch and Kibana using the following commands:

#Install elasticsearch and kibana . It might take time to download
images from docker hub.
kubectl apply -f $COMMON_CNTK/samples/charts/elasticsearch-and-
kibana/elasticsearch_and_kibana.yaml

#Check if services are running, append namespace if deployment is
other than default like:- kubectl get services --all-namespaces
kubectl get services

Access kibana dashboard

Method 1 - kubectl get svc (will return all the services , append
namespace if deployment is other than default like:- kubectl get
services --all-namespaces)

Ex- elasticsearch ClusterIP 10.96.190.99 <none> 9200/
TCP,9300/TCP 113d
 kibana NodePort 10.100.198.88 <none>
5601:31794/TCP 113d

Kibana service nodeport at port 31794 is created

Now access kibana dashboard using url - http://<IP address of
VM>:<nodeport>/

Chapter 2
Setting Up Prometheus and Grafana

2-6

https://prometheus-community.github.io/helm-charts
https://prometheus-community.github.io/helm-charts
https://grafana.github.io/helm-charts

2. Run the following command to create a namespace ensuring that it does not already
exist.

kubectl get namespaces
export FLUENTD_NS=fluentd
kubectl create namespace $FLUENTD_NS

3. Update $COMMON_CNTK/samples/charts/fluentd/values.yaml with Elastic Search Host
and Port.

elasticSearch:
 host: "elasticSearchHost"
 port: "elasticSearchPort"

For example:

elasticSearch:
 host: "elasticsearch.default.svc.cluster.local"
 port: "9200"

4. Modify the Fluentd image resources if required.

image: fluent/fluentd-kubernetes-daemonset:v1-debian-elasticsearch
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi

5. Run the following commands to install fluentd-logging using the $COMMON_CNTK/
samples/charts/fluentd/values.yaml file in the samples:

helm install fluentd-logging $COMMON_CNTK/samples/charts/fluentd -
n $FLUENTD_NS --values $COMMON_CNTK/samples/charts/fluentd/values.yaml \
--set namespace=$FLUENTD_NS \
--atomic --timeout 800s

6. Run the following command to upgrade fluentd-logging:

helm upgrade fluentd-logging $COMMON_CNTK/samples/charts/fluentd -
n $FLUENTD_NS --values $COMMON_CNTK/samples/charts/fluentd/values.yaml \
 --set namespace=$FLUENTD_NS \
 --atomic --timeout 800s

7. Run the following command to uninstall fluentd-looging:

helm delete fluentd-logging -n $FLUENTD_NS

8. Use 'fluentd_looging-YYYY.MM.DD' (default index configuration) index pattern in Kibana
to check the logs.

Chapter 2
Setting Up Elastic Stack

2-7

Visualize logs in Kibana

To visualize logs in Kibana:

1. Navigate to Kibana dashboard (http://<IP address of VM>:<nodeport>/).

2. Create Index pattern (fluentd_looging-YYYY.MM.DD).

3. Click on Discover.

Setting Up OpenSearch
The Common CNTK has a sample that provides deployment instructions for
OpenSearch on Kubernetes cluster using Helm charts. For more information, see
https://opensearch.org/docs/latest/install-and-configure/install-opensearch/helm/

Create Kubernetes namespace to install OpenSearch and export it to the environment
variable as follows:

Sample: export OPENSEARCH_NS=monitoring

Installing OpenSearch

Install OpenSearch as follows:

#Export the kubernetes namespace to be used for OpenSearch installation
export OPENSEARCH_NS=<kubernetes namespace>
export COMMON_CNTK=<path to common cntk>

#Install OpenSearch
helm install os-engine opensearch/opensearch --values=$COMMON_CNTK/
samples/charts/opensearch/os_engine_values.yaml --
namespace=$OPENSEARCH_NS

#Install OpenSearch Dashboard
helm install os-board opensearch/opensearch-dashboards --
values=$COMMON_CNTK/samples/charts/opensearch/os_board_values.yaml --
namespace=$OPENSEARCH_NS

#Accessing Dashboard
export NODE_PORT=$(kubectl get --namespace $OPENSEARCH_NS -o
jsonpath="{.spec.ports[0].nodePort}" services os-board-opensearch-
dashboards)
export NODE_IP=$(kubectl get nodes --namespace $OPENSEARCH_NS-o
jsonpath="{.items[0].status.addresses[0].address}")
echo http://$NODE_IP:$NODE_PORT

Installing FluentD

Update the $COMMON_CNTK/samples/charts/fluentd/template/fluentd-config-
map.yaml file with OpenSearch details such as type, host, port, scheme, user,
password, and ssl_verify as follows:

#Export the kubernetes namespace to be used for OpenSearch installation
helm install fluentd-logging $COMMON_CNTK/samples/charts/fluentd --

Chapter 2
Setting Up OpenSearch

2-8

https://opensearch.org/docs/latest/install-and-configure/install-opensearch/helm/

values $COMMON_CNTK/samples/charts/fluentd/values.yaml --set
namespace=$OPENSEARCH_NS --atomic --timeout 800s

Accessing OpenSearch Dashboard

Access the OpenSearch dashboard using nodeport of the OpenSearch dashboard service in
the namespace. Find and create index pattern with fluentd_logging-*.

Uninstalling OpenSearch

Uninstall OpenSearch as follows:

helm uninstall os-board --namespace=$OPENSEARCH_NS
helm uninstall os-engine --namespace=$OPENSEARCH_NS
helm uninstall fluentd-logging --namespace=$OPENSEARCH_NS

Chapter 2
Setting Up OpenSearch

2-9

3
Deploying the Common Authentication
Service

This chapter describes how to deploy and manage the Common Authentication service.

Building the OHS Image
To build OHS image:

1. Go to WORKSPACEDIR that is created in "Unified Inventory and Topology Toolkit".

2. Download V983369-01.zip: Oracle Fusion Middleware 12c (12.2.1.4.0) HTTP Server
for Linux x86-64, 1.9 GB file from Oracle E-Delivery by searching for the file from
Oracle HTTP Server 12.2.1.4.0 for (Linux x86-64) and copy them to
the $WORKSPACEDIR/ohs-builder/staging/downloads/ folder

3. Modify ohsBaseImage.package.path in $WORKSPACEDIR/ohs-builder/bin/
ohs_manifest.yaml with the filename of the downloaded OHS archive file.

4. Download jdk-17.0.4.1_linux-x64_bin.tar.gz and copy to
the $WORKSPACEDIR/ohs-builder/staging/downloads/java folder.

5. Modify the ohsBaseImage.jdk.path in $WORKSPACEDIR/ohs-builder/bin/
ohs_manifest.yaml file with the name of the downloaded JDK file.

6. Run build-all-images.sh in bin directory to build all images on OHS.

Deploying OAM along with OHS for Authentication Service
Before deploying OAM using the COMMON CNTK scripts, ensure the following:

• WebLogic Operator is deployed and configured as per UIM_CNTK. SeeSetting Up
Oracle WebLogic Server Kubernetes Operator in UIM Cloud Native Deployment Guide
for more information.

• Namespace is registered with WebLogic Operator using the UIM_CNTK script. See
Registering the Namespace in UIM Cloud Native Deployment Guide for more
information.

• Traefik (ingress-based) load balancer is installed as per UIM_CNTK script. See Installing
the Traefik Container Image in UIM Cloud Native Deployment Guide for more
information.

• Pull the Oracle Access Manager Image or latest cpu image from Oracle Container
Registry as follows:

1. Launch a browser and access the Oracle Container Registry.

2. Click Sign In and enter your username and password.

3. In the Search field, enter Oracle Access Manager and press Enter.

4. Click oam_cpu for the latest CPU patch image of Oracle Access Manager.

3-1

https://container-registry.oracle.com/

5. In the Terms and Conditions box, select the language as English.

6. Click Continue and accept Terms and Restrictions.

7. On your Docker environment, log in to the Oracle Container Registry and enter
your Oracle SSO username and password when prompted:

$ docker login container-registry.oracle.com
Username: <username>
Password: <password>

8. Pull the OHS CN image from the repository, that is OHS image built using the
OHS builder tool kit.
For example: Use the following commands to pull OHS CN image from OCIR:

docker login phx.ocir.io -u idvvfekwvhut/oracle/SSO-username -p
"SSO-password"
docker pull phx.ocir.io/idvvfekwvhut/cagbu-orch-okerepo/ohs/
12.2.1.4.0/ohs:latest

docker logout phx.ocir.io

9. Download Oracle Communications Unified Inventory Management
Common Toolkit from Oracle Software Delivery Cloud.

Deploying OAM Using Common Cloud Native Toolkit Scripts
To deploy OAM using COMMON_CNTK scripts:

1. Go to the $WORKSPACEDIR/common_cntk folder created in Unified Inventory
and Topology Toolkit and export the path to a variable COMMON_CNTK. See
"Unified Inventory and Topology Toolkit" for more information.

2. Modify the parameters in the $SPEC_PATH/sr/quick/applications.yamlfile
as follows:

• inventory.host: Provide the inventory host IP or address where UIM traditional
application is installed. This is a mandatory parameter. For UIM cloud native
instance, the value is: <uimproject>-<uiminstance>-cluster-
uimcluster.<uimproject>.svc.cluster.local

• inventory.port: Provide the inventory host port where the UIM on-perm is
installed. This is a mandatory parameter. For UIM cloud native instance, the
value is 8502.

• inventory.isSSL: If traditional UIM has the SSL port used, change the value to
true, for Cloud Native Inventory always false.

• imagePullSecret: Provide the Kubernetes secret name containing the Docker
secrets to pull images. This is a mandatory parameter. This secret should be
accessible, which means that it must be created in the same namespace as
OAM.

• persistentVolumeClaimName: Provide the existing pvc name for storage of
OAM domain. This is a mandatory parameter.

• hostSuffix: By default it is .uim.org.

Chapter 3
Deploying OAM Using Common Cloud Native Toolkit Scripts

3-2

• loadBalancerPort: The load balancer port exposed by Traefik or external load
balancer. Enter the Secure/SSL port.

• gcLogs: To enable GC logs for OAM, set enabled to true and configure the number
of files and size of each file. You can uncomment values inside oam-server to
override common values for gcLogs.

• tls.enabled: Flags to enable tls or ssl. By default, it is true. If true, create the
certificate and the key mentioned in step 5. Set it to false to disable SSL. This is not
required for a production environment.

3. If SSL is enabled that is, tls.enabled is true, create the certificate as follows:

a. Create certs folder in $COMMON_CNTK.

b. If you already have self-signed certificate and key, copy those into the certs folder
by renaming the certificate name as commoncert.pem and renaming the key file
name as commonkey.pem.

c. (Optional) Run the following command to create Single Certificate and Key for OAM,
messaging-bus, UIM, and UTIA:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout $COMMON_CNTK/certs/commonkey.pem -out $COMMON_CNTK/certs/
commoncert.pem -subj "/CN=<instance>.<project>.admin.uim.org" -
extensions san -config <(echo '[req]'; echo 'distinguished_name=req';
echo '[san]';echo 'subjectAltName=@alt_names'; \echo '[alt_names]'; \
echo 'DNS.1=<instance>.<project>.admin.uim.org'; \
echo 'DNS.2=<instance>.<project>.oam.uim.org'; \
echo 'DNS.3=<instance>.<project>.ohs.uim.org'; \
echo 'DNS.4=uim.org'; \
echo 'DNS.5=<instance>.<project>.topology.uim.org'; \
echo 'DNS.6=localhost'; \
echo 'DNS.7=svc.cluster.local'; \
echo 'DNS.8=<instance>.<project>.uim.org'; \
echo 'DNS.9=admin.<instance>.<project>.uim.org'; \
echo 'DNS.10=t3.<instance>.<project>.uim.org'; \
)

An example for project:sr and instance: quick:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout $COMMON_CNTK/certs/commonkey.pem -out $COMMON_CNTK/certs/
commoncert.pem -subj "/CN=quick.sr.admin.uim.org" -extensions san -
config <(echo '[req]'; echo 'distinguished_name=req'; echo
'[san]';echo 'subjectAltName=@alt_names'; \echo '[alt_names]'; \
echo 'DNS.1=quick.sr.admin.uim.org'; \
echo 'DNS.2=quick.sr.oam.uim.org'; \
echo 'DNS.3=quick.sr.ohs.uim.org'; \
echo 'DNS.4=uim.org'; \
echo 'DNS.5=quick.sr.topology.uim.org'; \
echo 'DNS.6=localhost'; \
echo 'DNS.7=svc.cluster.local'; \
echo 'DNS.8=quick.sr.uim.org'; \
echo 'DNS.9=admin.quick.sr.uim.org'; \

Chapter 3
Deploying OAM Using Common Cloud Native Toolkit Scripts

3-3

echo 'DNS.10=t3.quick.sr.uim.org'; \
)

Note:

Ensure that commoncert.pem and commonkey.pem files are present
in the $COMMON_CNTK/certs folder.

4. Create the secrets for OAM as follows:

a. Create the mandatory secrets according to the system prompts as follows:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a oam create
database,wlsadmin,ingressTLS
Applications specified - oam

====create database,wlsadmin,ingressTLS secret for oam
Application====
Provide Database credentials for 'sr-quick-oam' ...
OAM DB Admin(sys) Username: <PDB-ADMIN-USER>
OAM DB Admin(sys) Password: <PDB-ADMIN-PWD>
OAM Schema Username: <OAM-SCHEMA-USER>
OAM Schema Password: <OAM_SCHEMA-PWD>
OAM DB Host: <HOSTNAME>
OAM DB Port: 1521
OAM DB Service Name: <SERVICE-NAME>

Provide Weblogic Admin credentials for 'sr-quick-oam' ...
Weblogic Admin Username: weblogic #sample cred for weblogic/
oamconosle
Weblogic Admin Password: weblogic1

Provide Ingress TLS Credentials for OAM application 'sr-quick-
oam' ...
Ingress TLS Certificate Path (PEM file): $COMMON_CNTK/certs/
commoncert.pem
Ingress TLS Key file Path (PEM file): $COMMON_CNTK/certs/
commonkey.pem

secret/sr-quick-oam-rcu-credentials created
secret/sr-quick-oam-wls-credentials created
secret/sr-quick-oam-ingress-tls-cert-secret created
Execution status of secrets for command - create:
OAM MICROSERVICE...........Ok

b. Ensure the following secrets are created:

• Database secret : Contain the details of OAM database schema.

Chapter 3
Deploying OAM Using Common Cloud Native Toolkit Scripts

3-4

Note:

The RCU Schema password guideline specifies that a valid password
must be specified. The password should be alpha numeric only and
can contain the following special characters: # , _ . The password
should not start with a number or a special character.

• wlsadmin secret: Contains the credentials for WebLogic and oamconsole.

• ingressTLS: Contains certificate and key for OAM.

c. For traditional UIM, if SSL port is used, you must create additional configmap to
pass the inventory certificate.

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a oam create inventorySSL
Provide Inventory SSL Credentials for OAM application 'sr-quick-
oam' ...
On-prem Inventory SSL Certificate Path (PEM file): <provide inventory
certificate>

5. Create schema by running the following commands to install OAM DB and ensure that
database secret and image name for database.yaml are correct:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/database.yaml -a oam -c 1

6. Create OAM by running the following command to install OAM and ensure that you
updated applications.yaml file:

$COMMON_CNTK/scripts/create-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a oam

Uninstalling OAM
To uninstall OAM:

1. Delete OAM as follows:

$COMMON_CNTK/scripts/delete-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a oam

2. Delete OAM db schema as follows:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/database.yaml -a oam -c 2

3. Run the file $OAM_CNTK/scripts/uninstall.sh.

Chapter 3
Uninstalling OAM

3-5

Note:

Ensure the domain folder and its contents on the PV_SHARED_PATH or
Path sharedDomainPath on NFS are deleted after the uninstallation.
That is, delete <project>-<instance>-oam and <project>-
<instance>-oam-ohs folders.

Specifying the Proxy Settings
Enter the following proxy settings:

• In the browser, go to network no-proxy settings and include the *<hostSuffix>
value from $SPEC_PATH/sr/quick/applications.yaml. By default, it is .uim.org
that is, *.uim.org.

• In /etc/hosts the following may changed based on the <instance>,
<project>, and hostSuffix values in $SPEC_PATH/sr/quick/
applications.yaml.

etc/hosts:

<k8s cluster ip> <instance>.<project>.oam.<hostSuffix>
<instance>.<project>.admin.<hostSuffix>
<instance>.<project>.policy.<hostSuffix>
<instance>.<project>.ohs.<hostSuffix>
for example:
<k8s cluster ip> quick.sr.oam.uim.org quick.sr.admin.uim.org
quick.sr.policy.uim.org traefik.uim.org quick.sr.ohs.uim.org

Accessing the WebLogic Server Administration Console and
the OAM Console

You need to complete the proxy settings for accessing the WebLogic Server
Administration console and the OAM console. The credentials for accessing WebLogic
console or OAM console are stored in the wlsadmin secret.

WebLogic Console :

https://<oam-instance>.<oam-project>.admin.<hostSuffix>:<Port>/console

For example:

https://sr.quick.admin.uim.org:30443/console

OAM Console :

https://<oam-instance>.<oam-project>.admin.<hostSuffix>:<Port>/
oamconsole

Chapter 3
Specifying the Proxy Settings

3-6

For example:

https://sr.quick.admin.uim.org:30443/oamconsole

Configuring OAM
To configure OAM before using it for SSO authentication:

1. Log in to Oracle Access Management (OAM) Console:

https://<oam-instance>.<oam-project>.admin.<hostSuffix>:<Port>/oamconsole

2. Click Configuration at the top right corner of the Console to show Configuration Launch
Pad.

3. Click on Available Services and then click Enable Service for OAuth and
OpenIDConnect Service.

4. From Configuration Launch Pad, select Access Manager from the View menu in the
Settings section:

a. Under Load Balancing and WebGate Traffic Load Balancer, modify OAM Server
Host with <instance>.<project>.ohs.<hostSuffix >. The hostSuffix
value is taken from $SPEC_PATH/sr/quick/applications.yaml. By default, it
is .uim.org.

b. Modify OAM Server Protocol to https.

c. Modify OAM Server Port to <loadBalancerPort>. This value is
from $SPEC_PATH/sr/quick/applications.yaml.

d. Secure the load balancer port.

e. Click Apply to save.

Chapter 3
Configuring OAM

3-7

Figure 3-1 Access Manager Settings

5. From Configuration Launch Pad, select User Identity Stores to create an ID store
for using the embedded LDAP of UIM:

a. Click Create under the IDS Profiles section for creating an IDS profile.

b. Specify Name as UIMEmbeddedLDAP.

c. (Optional) Provide Description.

d. Configure the Repository properties under Respository:

i. Choose Repository Options by selecting Create New.

ii. Provide Directory Type as Weblogic Server Embedded LDAP.

iii. Provide Host Name as <Inventory's AdminHost> and Port as
<Inventory's AdminPort> under Hosts.

Note:

In case of UIM Cloud Native Environment, provide AdminServer
service name and port for <Inventory's
AdminHost>:<Inventory's AdminPort> as <uim-
project>-<uim-instance>-admin:8501 (sample: sr-
quick-admin:8501).

iv. If UIM onPrem admin server is SSL enabled, select SSL Enabled, for UIM
Cloud Native environment not required.

v. Provide the Bind DN as cn=Admin.

e. Specify Bind Password provided for the embedded LDAP in the WebLogic
admin console. Ensure that the following steps are performed in WebLogic
console where UIM is deployed. In the WebLogic Server admin console,
change the credential for the embedded LDAP server as follows:

Chapter 3
Configuring OAM

3-8

Note:

In case of UIM Cloud Native environment, enter your WebLogic password
in the Password field.

• Expand Domain > Security > Embedded LDAP.

• In the Credential field, enter the new credential.

• In the Confirm Credential field, enter the new credential again.

• Click Save.

• Reboot the WebLogic server.

f. Provide Base DN as follows:

ou=myrealm,dc=<inventory application domain name>

Note:

In case of UIM Cloud Native Environment, provide <inventory application
domain name> as domain. On UIM CN WebLogic domain name is set to
domain by default.

g. Configure the user properties to configure the LDAP user object under User section:

i. Provide Base DN as ou=people,ou=myrealm,dc=<inventory
application domain name>.

ii. Provide Login ID Attribute as uid.

h. Configure the Group properties to configure the LDAP group object under Group
section:

i. Provide Base DN as ou=groups,ou=myrealm,dc=<inventory application
domain name>.

j. Click Test Connection on the top-right corner to ensure the connection to embedded
LDAP is successful.

k. Click OK to close the Connection Status dialog box.

l. Click Create to create IDS profile.
Entires with the profile name are displayed in the IDS Profiles and IDS Repositories
table.

m. Click Sync IDS Profiles button on right side of OAM ID Stores section to see the
IDSPROFILE-UIMEmbeddedLDAP entry displayed under OAM ID Stores table

6. Click Application Security at the top right corner of the Console to show the Application
Security Launch Pad.

7. Click Agents and then Search to show the UnifiedWebgate in the table.

8. Select UnifiedWebgate from the table and click Edit to modify the Webgate settings:

Chapter 3
Configuring OAM

3-9

a. Modify Logout Redirect URL as:

https://
<instance>.<project>.ohs.<hostSuffix>:<loadBalancerPort/oam/
server/logout

b. Modify the Access Server and Host Name under Primary Server List as
Other and <domainUID> -oam-server1 ' where domainUID is the
<project>-<instance>-oam. By default, it is sr-quick-oam-oam-
server1.

c. Click Apply to save.

9. From the Application Security Launch Pad, select Authentication Modules from
Plug-ins to create 'UIM Embedded LDAP Module' authentication module.

a. Click Create LDAP Authentication Module in the Create dropdown, under
Search Results section.

b. Provide Name as UIM Embedded LDAP Module.

c. Choose User Identity Store as IDSPROFILE-UIMEmbeddedLDAP that is
created above.

d. Click Apply to save.

10. From the Application Security Launch Pad, select Authentication schemas from
Access Manager to create 'UIM Embedded LDAP Schema' authentication
schema.

a. Click Create under Search Results section.

b. Provide Name as UIM Embedded LDAP Schema.

c. Provide Description as UIM Embedded LDAP Schema.

d. Modify the Authentication Level as 2.

e. Provide Challenge Method as FORM.

f. Provide Challenge Redirect URL as /oam/server/.

g. Choose Authentication Module as UIM Embedded LDAP Module.

h. Provide Challenge URL as /login.jsp.

i. Choose Context Type as customwar.

j. Provide Context Value as /customConsent.

k. Click Apply to save.

11. From the Application Security Launch Pad, select Application Domains from
Access Manager to edit UnifiedWebgate application domain.

a. Click Search to show the UnifiedWebgate in the table

b. Select UnifiedWebgate from the table and click Edit to modify the Application
Domain settings.

c. Select Authentication Policies tab and select the Protected Resource
Policy table item.

d. Click Edit button to open Protected Resource Policy authentication policy
settings.

Chapter 3
Configuring OAM

3-10

e. Choose Authentication Schema as UIM Embedded LDAP Schema from the drop
down.

f. Click Apply to save.

Configuring OAuth Service Settings
Complete the proxy settings as mentioned in the above section.

Ensure environment variable NO_PROXY is set with <hostSuffix>.

Run the following commands from the machine on which the proxy settings are done:

export CREDS=`echo -n "<OAM_Domain_Username>:<password>" | base64 -w 0`
export OAMHOST=<instance>.<project>.admin.<hostSuffix> (example,
quick.sr.admin.uim.org)
export OAMPORT=<loadBalancerPort> (the value provided in $SPEC_PATH/sr/quick/
applications.yaml)

Creating an OAuth Identity Domain
Run the following curl statement to create the UnifiedIdDomain identity domain with
custom-consent enabled and using IDSPROFILE-UIMEmbeddedLDAP as the identity
provider:

curl -i -H "Content-Type: application/json" -H "Authorization:Basic $
{CREDS}" --cacert $COMMON_CNTK/certs/commoncert.pem --noproxy $NO_PROXY --
request POST https://${OAMHOST}:${OAMPORT}/oam/services/rest/ssa/api/v1/
oauthpolicyadmin/oauthidentitydomain -d '{"consentPageURL":"/customConsent/
customConsent.jsp","issueTLSClientCertificateBoundAccessTokens":false,"tokenS
ettings":
[{"tokenType":"ACCESS_TOKEN","tokenExpiry":3600,"lifeCycleEnabled":false,"ref
reshTokenEnabled":true,"refreshTokenExpiry":86400,"refreshTokenLifeCycleEnabl
ed":false},
{"tokenType":"AUTHZ_CODE","tokenExpiry":3600,"lifeCycleEnabled":false,"refres
hTokenEnabled":true,"refreshTokenExpiry":86400,"refreshTokenLifeCycleEnabled"
:false},
{"tokenType":"SSO_LINK_TOKEN","tokenExpiry":3600,"lifeCycleEnabled":false,"re
freshTokenEnabled":true,"refreshTokenExpiry":86400,"refreshTokenLifeCycleEnab
led":false}],"customAttrs":"{\"allowedCustomPlugins\":\"OAuthCustomClaimsPlug
in\"}","name":"UnifiedIdDomain","description":"Unified Identity
Domain","identityProvider":"IDSPROFILE-UIMEmbeddedLDAP","errorPageURL":"/oam/
pages/servererror.jsp","keyPairRolloverDurationInHours":48}'

Creating a Resource
Run the following curl statement to create UnifiedRserver resource with default scope as
Info:

curl -i -H "Content-Type: application/json" -H "Authorization:Basic $
{CREDS}" --cacert $COMMON_CNTK/certs/commoncert.pem --noproxy $NO_PROXY --
request POST https://${OAMHOST}:${OAMPORT}/oam/services/rest/ssa/api/v1/
oauthpolicyadmin/application -d '{"tokenAttributes":

Chapter 3
Configuring OAuth Service Settings

3-11

[],"resServerType":"CUSTOM_RESOURCE_SERVER","resourceServerNameSpacePre
fix":"UnifiedRserver.","name":"UnifiedRserver","description":"Unified
Resource Server","audienceClaim":null,"scopes":
[{"scopeName":"Info","description":"null"},
{"scopeName":"DefaultScope","description":"DefaultScope"}],"idDomain":"
UnifiedIdDomain","resourceServerId":"1f50f6f4-06a9-4d1b-8347-
bc5672a12e56"}'

Creating a Client
Run the curl statement to create topologyClient client.

The following is an example for creating a client with <project> as sr and <instance>
as quick

curl -i -H "Content-Type: application/json" -H "Authorization:Basic $
{CREDS}" --cacert $COMMON_CNTK/certs/commoncert.pem --
noproxy $NO_PROXY --request POST https://${OAMHOST}:${OAMPORT}/oam/
services/rest/ssa/api/v1/oauthpolicyadmin/client -d
'{"clientType":"CONFIDENTIAL_CLIENT","issueTLSClientCertificateBoundAcc
essTokens":false,"name":"topologyClient","grantTypes":
["PASSWORD","CLIENT_CREDENTIALS","JWT_BEARER","REFRESH_TOKEN","AUTHORIZ
ATION_CODE"],"description":"null","attributes":
[{"attrName":"customeAttr1","attrValue":"CustomValue","attrType":"STATI
C"}],"id":"topologyClient","secret":"Welcome1","scopes":
["UnifiedRserver.Info"],"defaultScope":"UnifiedRserver.Info","redirectU
RIs":[{"url":"https://quick.sr.topology.uim.org:30443/
topology","isHttps":true},{"url":"https://
quick.sr.topology.uim.org:30443/redirect/unified-topology-
ui","isHttps":true}],"idDomain":"UnifiedIdDomain"}'

Add topology service specific redirect URLs under redirectURIs attribute in json data
and update <secret>:

• For Topology-API:

redirect-uri: "https://
<instance>.<project>.topology.<hostSuffix>:<port>/topology"

• For Topology-UI:

redirect-uri: https://
<instance>.<project>.topology.<hostSuffix>:<port>/redirect/unified-
topology-ui

Adding Common OAuth Secret and ConfigMap
To add COMMON OAUTH secret and ConfigMap:

Chapter 3
Configuring OAuth Service Settings

3-12

1. Run the following command to create or update truststore by entering the OAM Service
SSL certificate:

keytool -importcert -v -alias <param> -file <path to COMMON cert file> -
keystore <truststorename>.jks -storepass <password>

A sample is as follows:

keytool -importcert -v -alias common_cert -file commoncert.pem -keystore
commontrust.jks -storepass ****

2. Run the following script to create the OAuth configuration as secrets and ConfigMap:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml create oauthConfig

Enter the values as prompted:

Provide Oauth credentials for 'sr-quick' ...
Client Id: topologyClient #Provide Client ID
Client Secret: xxxxx #Provide Client Secret
Token Endpoint Uri: https://<instance>.<project>.ohs.<oam-host-
suffix>:<port>/oauth2/rest/token #Provide oauth token endpoint URI
Valid Issue Uri: https:// <instance>.<project>.ohs .<oam-host-
suffix>:<port>/oauth2 #Provide oauth valid issue URI
Introspection Endpoint Uri: https:// <instance>.<project>.ohs .<oam-host-
suffix>:<port> /oauth2/rest/token/introspect #Provide Oauth Introspection
Endpoint URI
JWKS Endpoint Uri: https://<instance>.<project>.ohs.<oam-host-
suffix>:<port>/oauth2/rest/security #Provide JWKS Endpoint URI

Provide Truststore details ...
Certificate File Path (ex. oamcert.pem): ./commoncert.pem #provide
Certificate file path
Truststore File Path (ex. truststore.jks): ./commontrust.jks #provide
Truststore file path
Truststore Password: xxxx #provide Truststore password

3. Verify the following:

$kubectl get secret -n sr
sr-quick-oauth-credentials

$kubectl get cm -n sr
sr-quick-oauth-config-cm

Debugging and Troubleshooting
The following are some common issues.

Chapter 3
Debugging and Troubleshooting

3-13

Unable to create Domain or Admin Server is not coming up
To troubleshoot the issue:

1. Check if a folder with the domain name already exists at the
persistentVolumeClaim location.
If there is a Domain Exists error, the following message appears:

The domain will be created using the script /u01/weblogic/create-
domain-script.sh
ERROR: The create domain job will not overwrite an existing domain.
The domain folder /u01/oracle/user_projects/domains/accessdomain
already exists

2. Ensure RCU schema creation is successful.

kubectl -n <NAMESPACE> get pods

3. Check the logs of <project>-<instance>-oam-dbschema (kubectl -n
<NAMESPACE>), which ends with Repository Creation Utility -
Create : Operation Completed line.

4. Check the logs of <project>-<instance>-oam-create-infra-domain-
job-<podsuffix>.

To resolve the issue:

1. If a folder with the same domain name already exists, delete the domain folders
(<project>-<instance>-oam and <project>-<instance>-oam-ohs) and its contents.

2. Uninstall OAM. See Uninstalling OAM for more information.

3. If RCU Schema creation is not successful, then check the rcuDatabaseURL and
rcuSchemaPrefix values provided.

Note:

Same rcuSchemaPrefix value cannot be used for different domains
with in the same database.

4. Resolve the database issues and run the scripts again.

5. Resolve the errors appeared in the logs of <project>-<instance>-oam-
create-infra-domain-job-<podsuffix>:

a. If you see mkdir: cannot create directory ... : Permission
denied error, then ensure the PVC/sharedDomainPath has permissions. For
example: chmod 777 /scratch/shared.

b. If there are no errors or exceptions in logs, ensure the <NAMESPACE> is
registered with the WebLogic operator as mentioned in prerequisites for
running scripts.

Chapter 3
Debugging and Troubleshooting

3-14

6. Before running the scripts again, remove the Helm releases that are partially installed as
follows to get the helm releases in the namespace:

helm ls -n <NAMESPACE> -

Unable to Access OAM Console
Unable to access OAM Console using: https://
admin.<DOMAIN_NAME><hostSuffix>:<loadBalancerPort>/oamconsole
To troubleshoot the issue:

• Ensure the OHS service is up and running the following commands:

kubectl -n <NAMESPACE> logs <project>-<instance>-oam-ohs-<podSuffix>

• Ensure the loadBalancerPort is correct and provide secure port if SSL is enabled.

• Ensure proxy settings are done.

To resolve the issue, identify and uninstall the failed pod as follows:

1. Check if there are any pods that are failed or in the Error state using:

kubectl -n <NAMESPACE> get pods

2. Check the release of the pods using the following Helm command:

helm ls -n <NAMESPACE>

3. If RCU Schema creation has failed, uninstall <project>-<instance>-oam-
dbschema release using:

helm -n <NAMESPACE> uninstall <project>-<instance>-oam-dbschema

4. If OAM domain creation has failed, uninstall <project>-<instance>-oam-
createdomain release using:

helm -n <NAMESPACE> uninstall <project>-<instance>-oam-createdomain

5. Run $COMMON_CNTK/scripts/delete_applications.sh -p <project> -i
<instance> -f $SPEC_PATH/sr/quick/applications.yaml -a oam then
ensure the <DOMAIN_NAME> folder and <DOMAIN_NAME>-ohs folder (if exists) from the
PVC/sharedDomainPath is deleted.

Inventory UI is not appearing after successful login
To troubleshoot the issue, check if you have the credentials to view UIM and check the logs
ot Topology-UI service.

The following error appears if you have recreated UIM.

Failure of Web Server bridge:

Chapter 3
Debugging and Troubleshooting

3-15

No back-end server available for connection: timed out after 10 seconds or idempotent
set to OFF or method not idempotent.

To resolve the issue:

1. Restart the OHS pod.

2. Get the OHS pod name using kubectl -n <namespace> get pods
command where the name of the pod is <project>-<instance>-oam-ohs-
<podsuffix>.

Note:

The pod name starts with Pod name starts with <project>-
<instance>-oam-ohs-<number>.

3. Open the OHS pod using: kubectl -n oamns exec -it <OHS_POD_NAME>
–- bash.

4. Run the command:

echo '<DOMAIN_USER_PWD>' | /u01/oracle/ohssa/user_projects/domains/
<project>-<instance>-oam-ohs/bin/restartComponent.sh ohs1

5. Exit from the pod using exit.

Alternatively, you can restart OHS by rolling out restart from deployments as follows:

 kubectl -n <namespace> get deployments
 kubectl -n <namespace> rollout restart deployment <project>-
<instance>-oam-ohs

1.

Chapter 3
Debugging and Troubleshooting

3-16

4
Deploying Unified Operations Message Bus

This chapter describes how to deploy Unified Operations Message Bus.

Unified Operations Message Bus Overview

The Oracle Communications Unified Operations Message Bus (OCUOMB) service is a
distributed event store and stream-processing platform service. The Message Bus clients
send and receive events and messages from the Message Bus service that in turn sends and
receives from a specific channel called Topic. This enables that the source and target clients
or services are loosely coupled and asynchronous. Message Bus uses Apache Kafka in its
platform to support the event store and stream-processing and for packaging. For
deployment, Message Bus uses Strimzi.

Strimzi simplifies the process of running Apache Kafka in a Kubernetes cluster. Strimzi
provides container images and operators for running Apache Kafka on Kubernetes. Strimzi
operators are fundamental for the smooth running of Strimzi. These operators are software
extensions to Kubernetes that make use of custom resources to manage applications and
their components. These operators simplify the process of:

• Deploying, running, and upgrading the Kafka cluster and its components.

• Configuring and securing access to Kafka.

• Creating and managing Kafka topics.

Operators are a method of packaging, deploying, and managing a Kubernetes application.
The Strimzi operators extend Kubernetes functionality and automate common and complex
tasks related to a Kafka deployment. By implementing knowledge of Kafka operations in
code, Kafka administration tasks are simplified and require less manual intervention. See
https://strimzi.io/docs/operators/latest/overview.html for more details on the Strimzi operators.
Strimzi has the following operators:

• Cluster Operator: Deploys and manages the Apache Kafka clusters, Kafka Connect,
Kafka Mirror Maker, Kafka Bridge, Kafka Exporter, Cruise Control, and the Entity
Operator.

• Entity Operator: Comprises the Topic Operator and User Operator

• Topic Operator: Manages Kafka topics

See the following webs sites for more information on Strimzi and Apache Kafka:

• Strimzi: https://strimzi.io/

• Apache Kafka: https://kafka.apache.org/

The Message Bus service provides scripts and helm charts to deploy and manage the
Apache Kafka cluster in Kubernetes by using the Strimzi operator and Kubernetes Custom
Resources definitions. The Message Bus service does not provide any image builder toolkits
to build the container images and by default, Helm charts pull the required container images
from the quay.io/strimzi container repository.

4-1

https://strimzi.io/docs/operators/latest/overview.html
https://strimzi.io/
https://kafka.apache.org/
http://quay.io/strimzi

Table 4-1 Container Images and Purposes

Container Image Purpose

quay.io/strimzi/operator:0.37.0 Container Image with Strimzi Operator.

quay.io/strimzi/kafka:0.37.0-kafka-3.5.1 Container Image with Apache Kafka and
Strimzi distribution.

In following sections, the reference to the
container image is named as
STRIMZI_KAFKA_IMAGE_NAME

Message Bus Cloud Native Architecture
The Message Bus service uses Apache Kafka as a distributed event store platform. To
run an Apache Kafka cluster on Kubernetes, the Message Bus service uses the
Strimzi operator. Strimzi is an open-source project that provides container images and
operators for running Apache Kafka on Kubernetes.

Figure 4-1 Message Bus Cloud Native Architecture

Access to Message Bus
While deploying the Message Bus Service in Kubernetes namespace, the following
Kubernetes service objects are created to access the Message Bus pods either
internally or externally (through an ingress controller):

Chapter 4
Message Bus Cloud Native Architecture

4-2

Figure 4-2 Process of Accessing the Message Bus

The external access to Message Bus service is supported with TCP+TLS+OAuth 2.0
Authentication through Treafik ingress controller. The internal access to Message Bus
Service is also supported with TCP+TLS+OAuth 2.0 Authentication where TLS can be
configurable. Access to Message Bus service is configured through the listeners section in
applications.yaml file.

Note:

• If the client is in the same Kubernetes cluster, the internal listener is used.

• If the client is outside the Kubernetes cluster then the ingress listener is used.

The Message Bus is deployed using the scripts provided in Common CNTK. For deployment
prerequisites, see " Planning and Validating Your Cloud Environment".

The following steps need to be followed to deploy a Kafka cluster in a Kubernetes
namespace in a cluster:

1. Deploy the Strimzi operator to manage your Kafka cluster.

Note:

This is an administrative one-time activity where additional cluster roles are
required.

a. Create a namespace to deploy Strimzi Operator.

b. Deploy Strimzi Operator in the namespace. See "Deploying Strimzi Operator" for
more information.

2. Deploy the Message Bus that has Kafka cluster, ZooKeeper cluster, and entity operator.

a. Create a namespace to deploy the Kafka cluster.

Chapter 4
Message Bus Cloud Native Architecture

4-3

b. Register the namespace with Strimzi Operator. See "Register namespaces
with Strimzi Operator" for more information.

c. Register the namespace with Traefik. See "Registering the Namespaces with
Strimzi Operator" for more information.

Note:

• The ingress controller (Traefik) has to be available.

• Register the namespace with Traefik ingress controller.

d. Deploy Kafka Cluster in the namespace. See "Deploy Kafka Cluster and Kafka
Topic" for more information.

3. Validate the deployment with sample standalone producer and consumer clients.
See the "Validating the Kafka cluster" and "Internal access - same namespace -
plain" for more information.

Strimzi Operator
Export the Strimzi operator namespace environment variable to run the deployment
script using the COMMON_CNTK:

export STRIMZI_NS=<STRIMZI_OPERATOR_NAMESPACE>

The configurable parameters of the Strimzi Operator charts and their default values
are listed in the corresponding subsections within this document.

See the Assembling the Specifications section in strimzi-operator-override-
values.yaml. To override the default values, copy the $COMMON_CNTK/samples/
strimzi-operator-override-values.yaml file to the directory $SPEC_PATH/
<STRIMZI_PROJECT>, where <STRIMZI_PROJECT> is the Kubernetes namespace
where the Strimzi operator is being deployed.

Private Container Repository
The Strimzi operator pulls the Strimzi component container images from quay.io
registry. If you want to maintain private container registry, pull the images from the
quay.io registry and push them into the private container registry. It is mandatory to
push the images with same name and tag, the repository path can be different. For
Strimzi image and tag names, see "Unified Operations Message Bus Overview" for
more information.

See About Container Image Management section from UIM Cloud Native
Deployment Guide for more information on private container repository management.

To use the private container registry, uncomment and modify the values
in $SPEC_PATH/<STRIMZI_PROJECT>/strimzi-operator-override-values.yaml file.
Provide the modified strimzi-operator-override-values.yaml file path as an -f option
to the Strimzi operator create/upgrade command.

Chapter 4
Strimzi Operator

4-4

If the private container registry requires authentication, create the Kubernetes secret in the
namespace and provide the secret name as part of strimzi-operator-override-values.yaml
file. Create the secret with same name in the namespace where the Kafka cluster is planned
to deploy.

strimzi-operator-override-values.yaml file (Sample)

defaultImageRegistry: <Image registry>
defaultImageRepository: <Image Repository>
image:
 imagePullSecrets: <Pull Secret>

The following is a sample command to create Kubernetes secret for the registry. Create the
secret in the namespace where the Strimzi operator is being deployed. See https://
kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/ for creating
secret.

kubectl create secret docker-registry <secret-name> --docker-server=<Image
Registry> \
 --docker-
username=<Username> \
 --docker-
password=<Password> \
 -n
<STRIMZI_OPERATOR_NAMESPACE>

ImagePullPolicy
The following sample of ImagePullPolicy for Strimzi Operator is provided. To create the
policy using a different procedure, see https://kubernetes.io/docs/concepts/containers/
images/#image-pull-policy

strimzi-operator-override-values.yaml file (Sample)

image:
 imagePullPolicy: IfNotPresent

Resources
These resources are used for configuring the virtual resources (limits and requests).
Uncomment or add the blow resources section with new values in the strimzi-operator-
override-values.yaml file.

resources:
 requests:
 memory: <Mi>
 cpu: <m>
 limits:
 memory: <Gi>
 cpu: <"1">

Chapter 4
Strimzi Operator

4-5

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy
https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy

fullReconciliationIntervalMs: 120000
operationTimeoutMs: 300000

The default values are as follows:

resources.limits.memory: 500Mi
resources.limits.cpu: 500m
resources.requests.memory: 1Gi
resources.requests.cpu: 1

Along with the above resources, you can provide the following additional
configurations:

Full reconciliation interval in milliseconds
fullReconciliationIntervalMs: 120000
Operation timeout in milliseconds
operationTimeoutMs: 300000

Deploying Strimzi Operator
Run the following script to deploy the Strimzi operator in the Kubernetes namespace:

$COMMON_CNTK/scripts/strimzi-operator.sh -p
<STRIMZI_OPERATOR_NAMESPACE> -c create

Optionally, run the following script to deploy the Strimzi operator in Kubernetes
namespace with custom image registry and repository:

$COMMON_CNTK/scripts/strimzi-operator.sh -p
<STRIMZI_OPERATOR_NAMESPACE> -c create -f $SPEC_PATH/
<STRIMZI_OPERATOR_NAMESPACE>/strimzi-operator-override-values.yaml

Upgrading Strimzi Operator
Run the following script to upgrade the Strimzi Operator in Kubernetes namespace.

$COMMON_CNTK/scripts/strimzi-operator.sh -p
<STRIMZI_OPERATOR_NAMESPACE> -c upgrade

Optionally, run the following script to deploy the Strimzi operator in Kubernetes
namespace with custom image registry and repository:

$COMMON_CNTK/scripts/strimzi-operator.sh -p
<STRIMZI_OPERATOR_NAMESPACE> -c upgrade -f $SPEC_PATH/
<STRIMZI_OPERATOR_NAMESPACE>/strimzi-operator-override-values.yaml

Chapter 4
Strimzi Operator

4-6

Uninstalling Strimzi Operator
Run the following script to uninstall the Strimzi Operator from Kubernetes namespace:

$COMMON_CNTK/scripts/strimzi-operator.sh -p <STRIMZI_OPERATOR_NAMESPACE> -c
delete

Validating Strimzi Operator
Validate the Strimzi operator that is installed in the provided namespace by running the
following command:

$kubectl get pod -n <STRIMZI_OPERATOR_NAMESPACE>

NAME READY STATUS RESTARTS AGE
strimzi-cluster-operator-*******-*** 1/1 Running 0
6m55s

Validate the Helm release installed for the Strimzi operator in the provided namespace by
running the following command:

$helm list -n <STRIMZI_OPERATOR_NAMESPACE>

NAME NAMESPACE REVISION
STATUS CHART APP VERSION
strimzi-operator <STRIMZI_OPERATOR_NAMESPACE> 1
deployed strimzi-kafka-operator-x.y.z x.y.z

Restarting the Strimzi Operator
Run the following script to restart the Strimzi Operator:

$COMMON_CNTK/scripts/strimzi-operator.sh -p <STRIMZI_OPERATOR_NAMESPACE> -c
restart

Registering the Namespaces with Strimzi Operator
To create and manage the Kafka cluster in a Kubernetes namespace, this namespace must
be registered with the Strimzi operator to monitor the CRDs.

Run the following script to register the namespace(s) with the Strimzi operator to monitor and
create or manage the Kafka cluster and its components:

$COMMON_CNTK/scripts/register-namespace.sh -p <Namespace to be monitored> -t
strimzi

Chapter 4
Strimzi Operator

4-7

Unregistering the Namespaces with Strimzi Operator
Run the following script to unregister the namespaces from the Strimzi operator:

$COMMON_CNTK/scripts/unregister-namespace.sh -p <Namespace to be un-
monitored> -t strimzi

Deploying and Managing Kafka Cluster with Kafka Topics
Kafka cluster consists of Kafka Brokers and Zookeeper nodes. Once the Strimzi
operator is successfully installed in the Kubernetes cluster and a namespace for the
Kafka cluster is registered to monitor, you can deploy and manage the Kafka cluster.

Update the applications.yaml file as per your requirement and verify the following
configuration elements in the yaml file before deploying the Kafka cluster:

Note:

If applications.yaml is not copied from Common CNTK, copy
the $COMMON_CNTK/samples/applications.yaml file to your local
directory, for example: $SPEC_PATH/sr/quick, where the sr is the
Kubernetes namespace and quick is the instance name.

• The Storage class name that is used to create persistent volumes.

• The Kafka cluster replicas, which is the number of Kafka Brokers and Zookeeper
nodes.

• Virtual Resource sizing.

• The Kafka Broker default settings.

• The listeners to be exposed with authentication and TLS.

• Authentication details.

• Metrics enablement.

• Affinity settings

• Update partitions, replicas, and retention period values for the default Kafka
Topics.

See "Configuring Application Yaml" for more details.

Deploying Kafka Cluster and Kafka Topic
Run the following commands to deploy the Kafka cluster with Kafka Topics in a
Kubernetes namespace:

$COMMON_CNTK/scripts/create-applications.sh \
-p <kafka cluster namespace> \
-i <kafka cluster instance name> \

Chapter 4
Deploying and Managing Kafka Cluster with Kafka Topics

4-8

-f <path to override values yaml file> \
-a messaging-bus

For example:

In the following command, sr is a namespace and quick an instance name:

$COMMON_CNTK/scripts/create-applications.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a messaging-bus

Upgrading Kafka Cluster and Kafka Topic
The Kafka cluster upgrade requires persistent storage enabled for rolling update. Oracle
recommends you have multiple replicas so that the service is not down while upgrading.

Update the Kafka cluster configuration in the applications.yaml file:

$COMMON_CNTK/scripts/upgrade-applications.sh \
-p <kafka cluster namespace> \
-i <kafka cluster instance name> \
-f <path to override values yaml file> \
-a messaging-bus

For example, run the following command to upgrade the Kafka cluster and Kafka topic
running in sr namespace with instance as quick:

$COMMON_CNTK/scripts/upgrade-applications.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a messaging-bus

Deleting Kafka Cluster and Kafka Topic
Run the following script to delete or uninstall the Kafka cluster and Kafka Topic from the
Kubernetes namespace:

$COMMON_CNTK/scripts/delete-applications.sh \
-p <kafka cluster namespace> \
-i <kafka cluster instance name> \
-f <path to override values yaml file> \
-a messaging-bus

For example: Run the following command to delete the Kafka cluster with Kafka topic running
in sr namespace with instance as quick:

$COMMON_CNTK/scripts/delete-applications.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a messaging-bus

Chapter 4
Deploying and Managing Kafka Cluster with Kafka Topics

4-9

Validating the Kafka cluster
Check the pods created for the Kafka cluster. The following sample output shows the
internal listener configuration. If it has any external listener settings, the additional
service objects appear:

$kubectl get svc -n sr

NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
sr-quick-messaging-kafka-bootstrap ClusterIP <clusterIP>
<none> 9091/TCP,9092/TCP 22m
sr-quick-messaging-kafka-brokers ClusterIP None
<none> 9090/TCP,9091/TCP,9092/TCP 22m
sr-quick-messaging-zookeeper-client ClusterIP <clusterIP>
<none> 2181/TCP 23m
sr-quick-messaging-zookeeper-nodes ClusterIP None
<none> 2181/TCP,2888/TCP,3888/TCP 23m

Check the Service object created for the Kafka cluster. The following sample output
shows the Kafka and ZooKeeper replica as 1.

$kubectl get pod -n sr

 NAME READY
STATUS RESTARTS AGE
 sr-quick-messaging-entity-operator-*****-**** 3/3
Running 0 27h
 sr-quick-messaging-kafka-0 1/1
Running 0 27h
 sr-quick-messaging-zookeeper-0 1/1
Running 0 27h

Check the Helm release:

$helm list -n sr

NAME NAMESPACE REVISION
UPDATED STATUS CHART APP VERSION
sr-quick-messaging sr 1
***** deployed kafka-cluster-1.0.0 1.0.0

Check the persistent volume claims created:

$kubectl get pvc -n sr`

NAME STATUS
VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
data-sr-quick-messaging-kafka-0 Bound <volume> 1Gi
RWO sc 27h

Chapter 4
Deploying and Managing Kafka Cluster with Kafka Topics

4-10

data-sr-quick-messaging-zookeeper-0 Bound <volume> 1Gi
RWO sc 27h

Run a standalone producer or consumer. See "Internal access - same namespace – plain" to
run standalone producer and consumer pods in a Kafka cluster namespace.

Restarting Message Bus
The restart-application.sh script with application name as message-bus restarts all the
subcomponents such as Kafka, ZooKeeper, and Entity Operators of the Message Bus. Run
the following command to restart:

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a message-bus

Note:

The Message Bus service restart requires to have multiple replicas so that the
service is not down while upgrading and the replica count should be greater than or
equal to 2.

To validate the restart option, see "Validating the Kafka cluster ".

Configuring the applications.yaml File
Modify the values in the applications.yaml file and upgrade or create the Message Bus
service. The following configurations are available for the Message Bus service:

• Image Pull Secrets

• Security Context

• Cluster Size

• Storage

• Broker Defaults

• JVM Options

• Kafka Topics

• Accessing Kafka Cluster

• Authentication

Using Image Pull Secrets
You use the Image Pull Secrets sample only while using the private container repository that
requires authentication. These authentication details have to be provided as Kubernetes
secret object in the namespace where the Kafka cluster is planned to be deployed. This
process is also followed while deploying Strimzi Operator.

Chapter 4
Configuring the applications.yaml File

4-11

Note:

Provide the secret name in the kafka-cluster section, if using different secret
name than in the Strimzi Operator's namespace.

Image Pull Secrets (Sample)

imagePullSecret:
 imagePullSecrets:
 - name: <secret name>

The sample command to create secret object for registry authentication is as follows:

kubectl create secret docker-registry <secret-name> --docker-
server=<Image Registry> \
 --docker-
username=<Username> \
 --docker-
password=<Password> \
 -n <Kafka-
Namespace>

See https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-
registry/ to create the secret object.

Security Context
The userSecurity section that has securityContext is applicable only when you want
to define privilege and access control settings for a pod or container. The pod security
context which is configured at the pod-level is provided as a sample and is applied to
all containers in given pod.

Note:

If a value is commented, it cannot be used, To use a different key-value,
uncomment the corresponding value in applications.yaml.

See https://strimzi.io/blog/2022/09/09/configuring-security-context-in-pods-managed-
by-strimzi/ and https://kubernetes.io/docs/tasks/configure-pod-container/security-
context/ for more information.

Security-Context (Sample)

userSecurity:
 securityContext:
 runAsNonRoot: <true/false>
 runAsUser: <userID>

Chapter 4
Configuring the applications.yaml File

4-12

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://strimzi.io/blog/2022/09/09/configuring-security-context-in-pods-managed-by-strimzi/
https://strimzi.io/blog/2022/09/09/configuring-security-context-in-pods-managed-by-strimzi/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

 runAsGroup: <groupID>
 fsGroup: <fsGroup>

Cluster Size
The Message Bus cluster consists of Kafka Brokers and Zookeeper nodes. Modify the
replicas count for the Kafka Brokers and Zookeeper nodes according to the usage. For high
availability of Message Bus service, make sure the number of replicas is minimum 3 for Kafka
and Zookeeper, in production instance and adjust Kafka Broker configuration accordingly:

kafka-cluster:
 replicas:
 kafka: 3
 zookeeper: 3

Storage
The Message Bus uses Strimzi to deploy the Apache Kafka cluster in Kubernetes cluster. For
Strimzi to work as required, an efficient data storage infrastructure is essential. Oracle
recommends using a block storage as Strimzi is tested for using with block storage. For more
information on data storage, see https://strimzi.io/docs/operators/latest/
deploying#considerations-for-data-storage-str

The Message Bus Service stores the events (or messages) in block storage using the
Kubernetes Persistent Volumes. Modify the values for class, size, and isDeleteClaim values
in storage section under the Kafka cluster. The storage class must have dynamic persistent
volume provision capability:

kafka-cluster:
 #storage:
 #When storage.type below is set as "persistent-claim", the storage class
name & size are mandatory to be set
 #type: persistent-claim
 #class: psrnfsn1
 #size: 1Gi
 #isDeleteClaim: false

For development to use ephemeral (that is, temporary container storage), do not change the
values. These values must be commented for ephemeral.

Broker Defaults
The following configuration is applied when the Topics are auto created. Modify the following
settings in the kafkaConfig section under the Kafka cluster accordingly:

kafka-cluster:
 kafkaConfig:
 #The default replication factor for automatically created topics
 defaultReplicationFactor: 2
 offsetsTopicReplicationFactor: 2
 transactionStateLogReplicationFactor: 2
 transactionStateLogMinIsr: 2

Chapter 4
Configuring the applications.yaml File

4-13

https://strimzi.io/docs/operators/latest/deploying#considerations-for-data-storage-str
https://strimzi.io/docs/operators/latest/deploying#considerations-for-data-storage-str

 minInsyncReplicas: 2
 logRetentionMinutes: 30
 numPartitions: 3

The values for replicationFactors and minimum in-sync replicas must be entered
according to the values entered in the Kafka Cluster. These values must be less than
or equal to the Kafka Cluster replica values.

For more information on the values, see the Kafka documentation at: https://
kafka.apache.org/081/documentation.html#brokerconfigs

JVM Options
The Message Bus cluster consists of Kafka Brokers and Zookeeper nodes. Modify the
jvmOptions for Kafka Brokers and Zookeeper nodes according to the usage. See
https://strimzi.io/docs/operators/latest/full/configuring.html#con-common-configuration-
jvm-reference for more details.

jvmOptions:
 kafka:
 -Xms: 1024m
 -Xmx: 1024m
 # javaSystemProperties:
 # - name: <placeHolder>
 # value: <value>

 zookeeper:
 -Xms: 1024m
 -Xmx: 1024m
 # javaSystemProperties:
 # - name: <placeHolder>
 # value: <value>

Kafka Topics
Add or update the Kafka Topics in the applications.yaml file in the kafkaTopics
section which are required for the Message Bus service clients (producers or
receivers).

For example:

kafka-topic:
 #List of Kafka topics
 kafkaTopics:
 - name: <topic1>
 partitions: <no_partitions>
 replicas: <no_replicas>
 config:
 retention: 7200000
 segmentBytes: 1073741824

Chapter 4
Configuring the applications.yaml File

4-14

https://kafka.apache.org/081/documentation.html#brokerconfigs
https://kafka.apache.org/081/documentation.html#brokerconfigs
https://strimzi.io/docs/operators/latest/full/configuring.html#con-common-configuration-jvm-reference
https://strimzi.io/docs/operators/latest/full/configuring.html#con-common-configuration-jvm-reference

The following topics are required for the UTIA integration which are defined in the
applications.yaml file within the Common CNTK samples. These topics are created during
the deployment of Message Bus service using Common CNTK:

Topic Producer Consumer Additional Details

ora-uim-topology UIM Unified Topology See UIM System
Administrator’s Guide
for more details.

ora-fault-topology Assurance System Unified Topology See Unified Topology
for more details

ora-retry-topology Unified Topology Unified Topology See Unified Topology
for more details

ora-dlt-topology Unified Topology Unified Topology See Unified Topology
for more details

ora-test-topic Standalone Test Client Standalone test client

Note:

Do not use the default topics (ora-uim-topology, ora-fault-topology, ora-retry-
topology and ora-dlt-topology) for a standalone testing. Use only the ora-test-topic
to test the deployment of Message Bus service.

Accessing Kafka Cluster
There are various listener type configurations available to access the Message Bus service
internally and externally. The Authentication configuration is applied across all listener types.
As part of Kafka cluster deployment, the Kubernetes service objects are created to provide
the access to Kafka cluster pods. This service objects are created based on the listener type
configuration in the applications.yaml file for message-bus section. You can access the
Message Bus service in any of the following ways:

• Accessing within the same cluster (Internal access)

• Accessing from outside of the cluster (External access)

Note:

When a Message Bus service is deployed, it autogenerates the certificates of TLS
for server and client. You must use the custom certificates so that the certificates
are retained when the service is terminated and created again. See "Using custom
certificates" for more information.

Accessing the Message Bus service from within the same cluster (Internal access)

Chapter 4
Configuring the applications.yaml File

4-15

The internal listener configuration in the applications.yaml file is used when the
client services are in the same Kubernetes cluster, which can be in the same
namespace or a different namespace. This configuration is enabled by default.

kafka-cluster:
 listeners:
 #Plain is for internal access within the same k8s cluster.
 internal:
 # Enable the tls to true if encryption/decryption is needed for
internal access
 #tls: false

See "Message Bus internal Listener" for more information.

Accessing the Message Bus service from outside of the cluster (External
access)

The ingress listener configuration in the applications.yaml file is used when the
client services are outside of the Kubernetes cluster. This access is achieved using the
ingress controller.

kafka-cluster:
 listeners:
 #To expose the kafka-cluster to external kafka clients via ingress
controller (traefik) uncomment the following and modify accordingly.
 #ingress:
 #The secure port of either ingress controller or external load-
balancer.
 #ingressSslPort: <LOADBALANCER_PORT>

See "Message Bus Ingress Listener" for more information.

Accessing the Message Bus service using a nodeport listener

The nodeport listener configuration in applications.yaml file configuration is also
used when the client services are outside of the Kubernetes cluster. The access is
directly with the Kubernetes work node’s port. Oracle does not recommend this listener
for production. It must be used only for debugging where ingress controller is not
deployed.

kafka-cluster:
 listeners:
 #To expose the kafka-cluster to external kafka clients without
ingress controller, uncomment the following section and modify
accordingly
 #nodeport:
 #default is true. can be turned off if needed
 #tls: true
 #if need to expose on a static nodeport, pease uncomment the
below section and provide values
 #nodePort: 32100

See "Message Bus NodePort Listener" for more information.

Chapter 4
Configuring the applications.yaml File

4-16

Configuring Authentication
Kafka 2.0.0 or later supports an extensible OAuth 2.0 compatible token-based mechanism
available, called SASL OAUTHBEARER. Strimzi has developed extensions that provide
integration with OAuth 2.0 compliant authorization servers. That means, in principle, you can
use any OAuth 2.0 compliant authorization server to enable centrally managed users for
authentication with Kafka.

The Message Bus service uses a Strimzi operator to deploy Kafka brokers and in-turn use
OAuth 2.0 token-based authentication while establishing a session to a Kafka broker. With
this authentication, Message Bus clients (or Kafka clients) and Kafka brokers communicate
with a central OAuth 2.0 compliant authorization server. These Kafka clients use the
authorization server to obtain access tokens and are configured with access tokens issued by
the server. Kafka brokers communicate with authorization server to validate the tokens
presented by the clients, thus confirming their identities. You can perform the validation of
access token using a fast local JWT validation or a token validation using an introspection
endpoint.

To configure OAuth 2.0 support for Kafka Brokers in the Message Bus service, you need to
update applications.yaml file and create or upgrade the service.

Prerequisites

• The Authorization server (OAuth 2.0 compliant) is up and running. See "Installing/
Deploying OAM along with OHS for Authentication service" in Authentication Service

• Configure the client for Kafka broker in the authorization server. See "Creating a Client"
section in Authentication Service

• Configure the clients for Kafka producer or consumer application in the authorization
server. See "Creating a Client" section in Authentication Service

• Kafka cluster is configured with oauth type Authentication. See the following sections.

Enable Authentication on Kafka Cluster:

This procedure describes how to configure Kafka brokers so that the broker listeners are
enabled to use OAuth 2.0 authentication by using an authorization server.

Note:

Oracle recommends to use OAuth 2.0 over an encrypted interface through a
listener with tls. Plain listeners are not recommended.

To enable authentication on the Kafka cluster:

1. In applications.yaml, un-comment or add the following configurations:

a. Set the authentication.enabled flag to true and update the loadbalancerhost,
loadbalancerport and ohsHostname in $SPEC_PATH/sr/quick/applications.yaml
file.

Chapter 4
Configuring the applications.yaml File

4-17

b. To use fast local JWT validation, set useFastLocalJWTvalidation value to
true under kafka-cluster.listeners.authentication. If not set, the
introspection endpoint is used for validation.

The enabled flag is to enable or disable authentication
authentication:
 enabled: true

#provide loadbalancer host and post, these are used to generated
entries in hosts file
loadbalancerhost: <LoadBalancer_IP>
loadbalancerport: <LoadBalancer_SSL_Port>

#Provide ohs server hostname
ohsHostname: <OHS_HostName>

#Sample sub-section for using fast local jwt valdiation
kafka-cluster:
 listeners:
 authentication:
 useFastLocalJWTvalidation: true

2. The Message Bus service uses other configuration values from Kubernetes Secret
(<namespace>-<instance>-oauth-credentials) and Config Map (<namespace>-
<instance>-oauth-config-cm) objects from the same namespace. This Secret
and Configuration Map Kubernetes objects have to be created before deploying
the Message Bus service for authentication. See "Adding Common OAuth Secret
and ConfigMap" for creating the secret. The configuration values used are:

• clientID: The client ID to identify the client.

• clientSecret: The client secret used for authentication.

• validIssuerUri: The URI of the token issuer used for authentication.

• introspectionEndpointUri: The URI of the token introspection endpoint.

• jwksEndpointUri: The endpoint with public keys of authentication server that
has to be used for fast local JWT validation.

• tlsTrustedCertificate: The trusted certificates for TLS connection to the
authorization server.

The following optional values are supported for authentication. See Strimzi
documentation https://strimzi.io/docs/operators/in-development/configuring.html#type-
KafkaListenerAuthenticationOAuth-reference for details on each value. Add the
following optional values as required, under the kafka-
cluster.listeners.authentication section in applications.yaml file:

Additional optional authentication values
kafka-cluster:
 listeners:
 authentication:
 #Enable or disable audience checking
 checkAudience:
 #Enable or disable issuer checking. By default issuer is
checked using the value configured by validIssuerUri

Chapter 4
Configuring the applications.yaml File

4-18

https://strimzi.io/docs/operators/in-development/configuring.html#type-KafkaListenerAuthenticationOAuth-reference
https://strimzi.io/docs/operators/in-development/configuring.html#type-KafkaListenerAuthenticationOAuth-reference

 checkIssuer:
 #The audience to use when making requests to the authorization
server’s token endpoint
 clientAudience:
 #The scope to use when making requests to the authorization server’s
token endpoint
 clientScope:
 #The connect timeout in seconds when connecting to authorization server
 connectTimeoutSeconds:
 #Enable or disable TLS hostname verification. Default value is false.
 disableTlsHostnameVerification:
 #The read timeout in seconds when connecting to authorization server.
 readTimeoutSeconds:
 #URI of the User Info Endpoint to use as a fallback to obtaining the
user id
 userInfoEndpointUri:
 #Name of the claim from the JWT authentication token
 userNameClaim:

Using GC Logs
By default, GC logs are disabled, you can enable it and view the logs on stdout by using
kubectl logs <kafka-cluster-pod-name>.

To Enable GC logs, update $SPEC_PATH/<project>/<instance>/applications.yaml file as
follows:

1. Under gcLogs make enabled as true.

2. Uncomment the gcLogs option under kafka-cluster to override common values.

gcLogs:
 enabled: true

Note:

You do not have to configure fileSize and noOfFiles as the logs are printed on the
stdout.

Alternate Configuration Options
There are various alternate options for configuring the Message Bus.

Log Level
Kafka uses Apache log4j. By default, it is enabled with INFO. Update this for debugging:

logging:
 kafka:
 logLevel: INFO

Chapter 4
Alternate Configuration Options

4-19

 zookeeper:
 logLevel: INFO

Choosing Worker Nodes for Running Message Bus Service
Update the Message Bus service configuration section in the applications.yaml file to
node affinity or pod affinity and anti-affinity to constrain which nodes your pod can be
scheduled. Alternatively, co-locate the pods in same node (or separate) and run either
create or upgrade script.

Node Affinity

Node affinity is conceptually similar to nodeSelector, that enables you to constrain
which nodes your pod can be scheduled, based on the node labels.

There are two types of node affinities:

• Schedule a pod using required node affinity: The scheduler cannot schedule the
pod unless the rule is met.

• Schedule a pod using preferred node affinity: The scheduler tries to find a node
that meets the rule. If a matching node is not available, the scheduler continues to
schedule the pod.

Preferred node affinity

The sample configuration for enabling preferred node affinity is as follows:

kafka-cluster:
 affinity:
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: name
 operator: In
 values:
 - south_zone

Kubernetes pod is scheduled on the node with label name as south_zone. If node with
label name: south_zone is not available, pod will still be scheduled on another node.

Pod Affinity and Anti-Affinity

The Pod Affinity or anti-affinity allows you to constrain which node your pod is eligible
to be scheduled, based on the labels on other pods.

Similar to node affinity, there are two types of pod affinity and anti-affinity:

• requiredDuringSchedulingIgnoredDuringExecution
• preferredDuringSchedulingIgnoredDuringExecution
Pod Affinity

Assign a Kubernetes pod to a node based on the labels on other pods using the Pod
Affinity in a Kubernetes cluster. Modify the Kafka cluster override values yaml file.

Chapter 4
Alternate Configuration Options

4-20

The sample configuration for enabling the required pod affinity is as follows:

kafka-cluster:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app.kubernetes.io/name
 operator: In
 values:
 - kafka
 topologyKey: "kubernetes.io/hostname"

Kubernetes pod is scheduled on the node which contains a pod with label http://
app.kubernetes.io/name: kafka.

Modify the Kafka cluster override values yaml file. The sample configuration for enabling the
preferred pod affinity is as follows:

kafka-cluster:
 affinity:
 podAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: app.kubernetes.io/name
 operator: In
 values:
 - kafka
 topologyKey: "kubernetes.io/hostname"

The Kubernetes pod is scheduled on the node which contains a pod with label http://
app.kubernetes.io/name: kafka. If the node is not available, pod will still be scheduled on
another node.

Pod anti-affinity

Assign a Kubernetes pod to a node based on the labels on other pods using pod anti affinity
in a Kubernetes cluster.

Modify the Kafka cluster override values yaml file. The sample configuration with required
pod anti-affinity is as follows:

kafka-cluster:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app.kubernetes.io/name
 operator: In
 values:

Chapter 4
Alternate Configuration Options

4-21

 - kafka
 topologyKey: "kubernetes.io/hostname"

Kubernetes pod is scheduled on the node which does not contain a pod with label
http://app.kubernetes.io/name: kafka.

Modify the Kafka cluster's override values yaml file. The sample configuration with
preferred pod anti-affinity is follows:

kafka-cluster:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: app.kubernetes.io/name
 operator: In
 values:
 - kafka
 topologyKey: "kubernetes.io/hostname"

Kubernetes pod is scheduled on the node which does not contains a pod with label
http://app.kubernetes.io/name: kafka. If node is not available, pod will still be
scheduled on another node.

Managing Message Bus Metrics
Metrics in Message Bus are configured by enabling the JMX Exporter and Kafka
Exporter. JMX Exporter can be enabled to get JVM metrics of Kafka cluster and Kafka
Exporter can be enabled on a Kafka cluster to extract additional Prometheus metrics
data from Kafka brokers, which is related to offsets, consumer groups, consumer lag,
and topics.

See https://strimzi.io/docs/operators/latest/overview.html#metrics-overview_str for
more information on metrics from Strimzi.

Enable metrics

Enable Kafka Exporter and JMX Exporter in the $SPEC_PATH/sr/quick/
applications.yaml file and upgrade or create the Message Bus service. The sample
content is as follows:

kafka-cluster:
 metrics:
 kafkaExporter:
 enable: true
 jmxExporter:
 enable: true

The above configuration exposes the Prometheus metrics for Kafka Brokers, Topics,
and Consumer Groups components on metrics end-point on the pods. You can view

Chapter 4
Alternate Configuration Options

4-22

https://strimzi.io/docs/operators/latest/overview.html#metrics-overview_str

these details on Prometheus UI by configuring the Scrape job. You can view this information
in the form of graphs using the Grafana dashboard.

See https://github.com/danielqsj/kafka_exporter#metrics to see the exposed metrics.

Prometheus and Grafana setup

See Setting Up Prometheus and Grafana for more information.

Adding scrape Job in Prometheus

Add the following Scrape job in Prometheus Server. This can be added by editing the config
map used by the Prometheus server:

- job_name: Message_bus
 kubernetes_sd_configs:
 - role: pod
 namespaces:
 names:
 - 'sr'
 relabel_configs:
 - separator: ";"
 regex: __meta_kubernetes_pod_label_(strimzi_io_.+)
 replacement: $1
 action: labelmap
 - source_labels: [__meta_kubernetes_namespace]
 separator: ";"
 regex: (.*)
 target_label: namespace
 replacement: $1
 action: replace
 - source_labels: [__meta_kubernetes_pod_name]
 separator: ";"
 regex: (.*)
 target_label: kubernetes_pod_name
 replacement: $1
 action: replace
 - source_labels: [__meta_kubernetes_pod_node_name]
 separator: ";"
 regex: (.*)
 target_label: node_name
 replacement: $1
 action: replace
 - source_labels: [__meta_kubernetes_pod_host_ip]
 separator: ";"
 regex: (.*)
 target_label: node_ip
 replacement: $1
 action: replace

Sample Grafana dashboards

Add the Prometheus data source and import the sample Grafana dashboards from Strimzi
github.

Chapter 4
Alternate Configuration Options

4-23

https://github.com/danielqsj/kafka_exporter#metrics

The sample Grafana dashboard for Kafka and JMX Exporters can be downloaded
from the following links:

• JMX Exporter metrics: https://github.com/strimzi/strimzi-kafka-operator/blob/main/
examples/metrics/grafana-dashboards/strimzi-kafka.json

• Kafka Exporter metrics: https://github.com/strimzi/strimzi-kafka-operator/blob/main/
examples/metrics/grafana-dashboards/strimzi-kafka-exporter.json

Installing and Configuring Mirror Maker 2.0
This section describes the installation and configuration of Mirror Maker 2.0.

Configuring Source and Target Message Bus (Kafka cluster) Details
Update the $COMMON_CNTK/samples/kafka-mirror-maker/values.yaml with source
and target Kafka cluster details as follows:

sourceCluster:
 #Source Kafka cluster
 name: sr1-quick1-messaging
 #Bootstarp server for connection to the source Kafka cluster
 bootstrapServers: sr1-quick1-messaging-kafka-bootstrap:9092
 targetCluster:
 #Target Kafka cluster
 name: sr2-quick2-messaging
 #Bootstarp server for connection to the target Kafka cluster
 bootstrapServers: sr2-quick2-messaging-kafka-bootstrap:9092

In the above command:

• sourceCluster.name is the helm release for source Kafka cluster (sr1-quick1-
messaging)

• sourceCluster.bootstrapServers is the bootstrap server of source Kafka cluster
(sr1-quick1-messaging-kafka-bootstrap:9092)

• targetCluster.name is the helm release for target Kafka cluster (sr2-quick2-
messaging)

• targetCluster.bootstrapServers is the bootstrap server of target Kafka cluster
(sr2-quick2-messaging-kafka-bootstrap:9092)

Chapter 4
Installing and Configuring Mirror Maker 2.0

4-24

https://github.com/strimzi/strimzi-kafka-operator/blob/main/examples/metrics/grafana-dashboards/strimzi-kafka.json
https://github.com/strimzi/strimzi-kafka-operator/blob/main/examples/metrics/grafana-dashboards/strimzi-kafka.json
https://github.com/strimzi/strimzi-kafka-operator/blob/main/examples/metrics/grafana-dashboards/strimzi-kafka-exporter.json
https://github.com/strimzi/strimzi-kafka-operator/blob/main/examples/metrics/grafana-dashboards/strimzi-kafka-exporter.json

Note:

To enable geo replication between the Kafka clusters from different namespaces,
we can use the hostname pattern as servicename.namespace.svc.cluster.local
while updating

$COMMON_CNTK/samples/messaging/kafka-mirror-maker/values.yaml

If the sr1-quick1-messaging-kafka-bootstrap service is hosted in Strimzi
namespace on 9092 port and the client application in another namespace, then the
bootstrap-server URL should be used as sr1-quick1-messaging-kafka-
bootstrap.strimzi.svc.cluster.local

If the target cluster is in another Kubernetes cluster, you must to use external
listener for referring to the boostrap server.

While using Nodeport, the worker node IP of the target cluster is to be used as the
target cluster bootstrap address along with the exposed nodeport.

While using Ingress, the hostname of the target cluster is to be used as target
cluster bootstrap address.

Installing Mirror Maker
Run the following command to install Mirror Maker in specific namespace:

helm install mirror-maker $COMMON_CNTK/samples/messaging/kafka-mirror-maker/
-n <namespace> --values $COMMON_CNTK/samples/messaging/kafka-mirror-maker/
values.yaml

Validate that Mirror Maker is installed by running the following command:

kubectl get pods -n <namespace>
replication-mirror-maker-mirrormaker2-5c6d7dd7d7-r89cj 1/1
Running 0 67m
kubectl get svc -n <namespace>
replication-mirror-maker-mirrormaker2-api ClusterIP <clusterIP>
<none> 8083/TCP 67m

Uninstalling Mirror Maker
Run the following command to uninstall Mirror Maker from specific namespace:

helm uninstall mirror-maker -n <namespace>

Delete topic mm2-offset-syncs.messaging-test.internal from the source cluster (dev1-
messaging)

$kubectl -n <SourceKafkaClusterNamespace> run kafka-topic -ti --
image=<STRIMZI_KAFKA_IMAGE_NAME> --rm=true --restart=Never -- bin/kafka-

Chapter 4
Installing and Configuring Mirror Maker 2.0

4-25

topics.sh --bootstrap-server <instance>-messaging-kafka-bootstrap:9092
--delete --topic mm2-offset-syncs.messaging-test.internal

Delete topics heartbeats, mirrormaker2-cluster-status, mirrormaker2-cluster-offsets,
mirrormaker2-cluster-configs from the target cluster (dev2-messaging)

$kubectl -n <TargetKafkaClusterNamespace> run kafka-topic -ti --
image=<STRIMZI_KAFKA_IMAGE_NAME> --rm=true --restart=Never -- bin/
kafka-topics.sh --bootstrap-server <namespace>-<instance>-messaging-
kafka-bootstrap:9092 --delete --topic heartbeats

$kubectl -n <TargetKafkaClusterNamespace> run kafka-topic -ti --
image=<STRIMZI_KAFKA_IMAGE_NAME> --rm=true --restart=Never -- bin/
kafka-topics.sh --bootstrap-server <namespace>-<instance>-messaging-
kafka-bootstrap:9092 --delete --topic mirrormaker2-cluster-status

$kubectl -n <TargetKafkaClusterNamespace> run kafka-topic -ti --
image=<STRIMZI_KAFKA_IMAGE_NAME> --rm=true --restart=Never -- bin/
kafka-topics.sh --bootstrap-server <namespace>-<instance>-messaging-
kafka-bootstrap:9092 --delete --topic mirrormaker2-cluster-offsets

$kubectl -n <TargetKafkaClusterNamespace> run kafka-topic -ti --
image=<STRIMZI_KAFKA_IMAGE_NAME> --rm=true --restar

Client Access
Accessing Message Bus in events producer and consumers clients.

Internal Access in the Same namespace for Plain

When the message producer or consumer applications are in same namespace as the
Message Bus service then they can access the Kafka cluster using the Bootstrap
Kubernetes service object name and port.

Run the following command to test the standalone producer. Here the project
namespace is sr and instance is quick.

$kubectl -n sr run kafka-producer-plain -ti \
--image=<STRIMZI_KAFKA_IMAGE_NAME> \
--rm=true --restart=Never \
-- bin/kafka-console-producer.sh \
--bootstrap-server sr-quick-messaging-kafka-bootstrap:9092 \
--topic ora-test-topic

Type a few lines of text and each ENTER sends a message to Kafka broker. Type
CTRL-C to quit.

Run the following command to test the standalone consumer. Here the project
namespace is sr and instance is quick.

$kubectl -n sr run kafka-consumer-plain -ti \
--image=<STRIMZI_KAFKA_IMAGE_NAME> \
--rm=true --restart=Never \

Chapter 4
Client Access

4-26

-- bin/kafka-console-consumer.sh \
--bootstrap-server sr-quick-messaging-kafka-bootstrap:9092 \
--group ora-uim-consumer-test --isolation-level read_committed \
--topic ora-test-topic --from-beginning

You get responses after the validation is successful.

Internal Access in a Different namespace for Plain

When the massage producer or consumer applications are in different namespace than the
Message Bus service then they can access the Kafka cluster using the bootstrap service
name and port but need to suffix <namespace>.svc.cluster.local to the service name.

See "Internal access - same namespace - plain" section on running the standalone console
test producer and consumer pods for testing. Replace the bootstrap-server url with sr-quick-
messaging-kafka-bootstrap.sr.svc.cluster.local, where the namespace is sr and instance
is quick.

Internal Access in the Same namespace for Authentication

When the message producer or consumer applications are in same namespace as the
Message Bus service then they can access the Kafka cluster using the bootstrap Kubernetes
service object name and port.

Create a test client pod definition.

1. Copy the following YAML content into the bastion host (or worker node) as mb-test-
client-deployment.yaml file.

2. Update the hostAliases section according to your OAuth service environment.

3. Update the STRIMZI_KAFKA_IMAGE_NAME.

4. Update the OAUTH Endpoint, Client Id and Secret.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mb-test-auth-client-deployment
 labels:
 app: mb-test-auth-client
spec:
 replicas: 1
 selector:
 matchLabels:
 app: mb-test-auth-client
 template:
 metadata:
 labels:
 app: mb-test-auth-client
 spec:
 hostAliases:
 - ip: <LOADBALANCER_IP>
 hostnames:
 - "<OHS_HOSTNAME>"
 containers:
 - name: mb-test-client
 image: <STRIMZI_KAFKA_IMAGE_NAME>

Chapter 4
Client Access

4-27

 command:
 - "tail"
 - "-f"
 - "/dev/null"
 imagePullPolicy: IfNotPresent
 env:
 - name: OAUTH_TOKEN_ENDPOINT_URI
 value: <Update the OAUTH_TOKEN_ENDPOINT_URI>
 - name: OAUTH_CLIENT_ID
 value: <Update the OAUTH_CLIENT_ID>
 - name: OAUTH_CLIENT_SECRET
 value: <Update the OAUTH_CLIENT_SECRET>
 ports:
 - containerPort: 9090
 name: http
 protocol: TCP

Create the authentication properties in a file (mb_test_client.properties).

sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBear
erLoginModule required;
security.protocol=SASL_PLAINTEXT
sasl.mechanism=OAUTHBEARER
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasCli
entOauthLoginCallbackHandler

Run the test client container and provide authentication properties

#Apply the test client pod definition in the namespace (say "sr").
$kubectl apply -f mb-test-client-deployment.yaml -n sr

#Get the newly created pod name
$kubectl get pod -n sr | grep mb-test-auth-client-deployment

#Sample Output
#mb-test-auth-client-deployment-******-**** 1/1 Running
0 98s

#Copy the mb_authentication.properties file into the pod
$kubectl -n sr cp mb_test_client.properties mb-test-auth-client-
deployment-******-****:/home/kafka/mb_test_client.properties

Test for message bus producer client:

• Start an interactive shell process in the test client pod

• Export the environment variables needed for the authentication

• Run the console producer command.

• Enter some string messages

#Get the newly created pod name
kubectl get pod -n sr | grep mb-test-auth-client-deployment

Chapter 4
Client Access

4-28

#Exec into the newly created pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the following test console producer
bin/kafka-console-producer.sh \
--producer.config /home/kafka/mb_test_client.properties \
--bootstrap-server sr-quick-messaging-kafka-bootstrap:9092 \
--topic ora-test-topic

Test for message bus consumer client:

• Start an interactive shell process in the test client pod

• Export the environment variables needed for the authentication

• Run the console consumer command.

• You will see the previous string messages of producer

#Get the newly created pod name
kubectl get pod -n sr | grep mb-test-auth-client-deployment

#Sample Output
#mb-test-auth-client-deployment-******-**** 1/1 Running
0 98s

#Exec into the newly created pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the following test console consumer
bin/kafka-console-consumer.sh \
--consumer.config /home/kafka/mb_test_client.properties \
--bootstrap-server sr-quick-messaging-kafka-bootstrap:9092 \
--topic ora-test-topic \
--from-beginning

External ingress access - SSL and Authentication

The external access to Message Bus is provided through Ingress controller (Traefik) with TLS
enabled. The following must be performed in clients for testing:

• Export and import the Message Bus service (that is sr-quick-messaging-cluster-ca-cert,
where sr is namespace and quick is instance) certificate into clients.

• Export and import the certificate of OAuth service into the clients.

Note:

This is optional and is required only if OAuth is enabled for SSL.

• Update the bootstrap and brokers DNS names with load balancer IP in the etc/hosts file
of clients (that is, event producer or consumer applications).

• Update the DNS name of OAuth service with load balancer IP in /etc/hosts file of clients.

Chapter 4
Client Access

4-29

Note:

This is optional and is required only if the OAuth service requires DNS
name to access.

• Run the producer or consumer script with SSL and Authentication details

In the following section, the external ingress access test is provided with Strimzi Kafka
container. If you want to test the client code without Kubernetes cluster then you can
download the Apache Kafka and perform the same.

Add Message Bus service and OAuth service certifications to trust store. See Import/
export of TLS certificates section.

#Run the below command to export and import the Message Bus service
certificate into the trust store (mb-cert-keystore.jks) file.
$COMMON_CNTK/scripts/export-cluster-cert.sh -p sr -i quick -l . -
k ./mb-test-client-cert-keystore.jks -a mb-cert

#Get the OAuth (OAM) service certificate and import into trust store
(mb-test-client-cert-keystore.jks) file (Optional, needed if OAuth is
SSL)
keytool -importcert -alias oauth-server -file <Path to OAuth Server
certificate, the .pem file> -keystore ./mb-test-client-cert-
keystore.jk --trustcacerts -noprompt

Create the following authentication properties in a file (mb_test_client.properties).

sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBear
erLoginModule required;
security.protocol=SASL_SSL
sasl.mechanism=OAUTHBEARER
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasCli
entOauthLoginCallbackHandler
ssl.endpoint.identification.algorithm=

Create a test client pod definition.

1. Copy the following YAML content into the bastion host (or worker node) as "mb-
test-client-deployment.yaml" file.

2. Update the Strimzi Kafka image.

3. Update the hostAliases section according to your OAuth and Message Bus service
setup. This will add entries to /etc/hosts file.

4. Update the OAuth Endpoint, Client Id, Client Secret and Trust Store Password in
env section.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mb-test-client-deployment
 labels:
 app: mb-test-client

Chapter 4
Client Access

4-30

spec:
 replicas: 1
 selector:
 matchLabels:
 app: mb-test-client
 template:
 metadata:
 labels:
 app: mb-test-client
 spec:
 hostAliases:
 - ip: <Replace with your LOADBALANCER_IP>
 hostnames:
<Replace with your bootstrap and brokers dns names>
 - "<INSTANCE.PROJECT.messaging.broker0.uim.org>"
 - "<INSTANCE.PROJECT.messaging.brokerN.uim.org>"
 - "<INSTANCE.PROJECT.messaging.bootstrap.uim.org>"
 - "<Replace with OHS_HOSTNAME>"
 containers:
 - name: mb-test-client
 image: quay.io/strimzi/kafka:0.34.0-kafka-3.4.0
 command:
 - "tail"
 - "-f"
 - "/dev/null"
 imagePullPolicy: IfNotPresent
 env:
 - name: OAUTH_TOKEN_ENDPOINT_URI
 value: <Replace with your OAUTH_TOKEN_ENDPOINT_URI>
 - name: OAUTH_CLIENT_ID
 value: <Replace with your OAUTH_CLIENT_ID>
 - name: OAUTH_CLIENT_SECRET
 value: <Replace with your OAUTH_CLIENT_SECRET>
 - name: KAFKA_OPTS
 value: " \
 -Djavax.net.ssl.trustStore=/home/kafka/mb-test-client-cert-
keystore.jks \
 -Djavax.net.ssl.trustStorePassword=<Replace with your
store password> \
 -Djavax.net.ssl.trustStoreType=JKS"
 ports:
 - containerPort: 9090
 name: http
 protocol: TCP

Run the test client container and apply readiness for authentication and SSL.

#Apply the test client pod definition in the namespace (say "sr").
$kubectl apply -f mb-test-client-deployment.yaml -n sr

#Get the newly created pod name
$kubectl get pod -n sr | grep mb-test-client-deployment

#Sample Output

Chapter 4
Client Access

4-31

#mb-test-client-deployment-******-**** 1/1 Running
0 98s

#Copy the certificate store into the newly created pod. Replace the
pod name below
kubectl -n sr cp mb-test-client-cert-keystore.jks <Replace with mb-
test-client-deployment pod name>:/home/kafka/mb-test-client-cert-
keystore.jks

#Copy the mb_test_client.properties file into the POD
kubectl -n sr cp mb_test_client.properties <Replace with mb-test-
client-deployment pod name>:/home/kafka/mb_test_client.properties

Start start a shell session inside container for console test producer.

#Get the newly created pod name
$kubectl get pod -n sr | grep mb-test-auth-client-deployment

#Sample Output
#mb-test-auth-client-deployment-******-**** 1/1 Running
0 98s

#Exec into the newly created pod
kubectl exec -it<Replace with mb-test-client-deployment pod name> -n
sr -- bash

#Run the following producer command
bin/kafka-console-producer.sh \
--producer.config /home/kafka/mb_test_client.properties \
--bootstrap-server quick.sr.messaging.bootstrap.uim.org:30443 \
--topic ora-test-topic

Start start a shell session inside container for console test consumer:

#Exec into the newly created pod
kubectl exec -it <Replace with mb-test-client-deployment pod name> -n
sr -- bash

#Run the following producer command. Replace the bootstrap-server url
accordingly to your environment
bin/kafka-console-consumer.sh \
--consumer.config /home/kafka/mb_test_client.properties \
--bootstrap-server sthatipa.sr.messaging.bootstrap.uim.org:30443 \
--consumer-property group.id=test-client-service \
--topic ora-test-topic --from-beginning

Clean-up the newly created test pod:

kubectl delete -f mb-test-client-deployment.yaml -n sr

Chapter 4
Client Access

4-32

External node port access

The nodeport listener type allows the external access from outside of the Kubernetes cluster
using the load balancer or Kubernetes worker node ip address and nodePort(port of worker
node).

The Bootstrap URL is constructed with worker node IP Address and node port of bootstrap
service.

Get the host port of the external bootstrap service using the following command:

$kubectl get service sr-quick-messaging-kafka-nodeport-bootstrap -
o=jsonpath='{.spec.ports[0].nodePort}{"\n"}' -n sr

Output: 32100

Get the IP Address of the Kubernetes worker node. Replace the <NODE_NAME> in the
following with your node name:

$kubectl get node <NODE_NAME> -o=jsonpath='{range .status.addresses[*]}
{.type}{"\t"}{.address}{"\n"}' -n sr

Output:
InternalIP 100.xx.xx.142
Hostname *********

Update the Kafka cluster Bootstrap URL as 100.xx.xx.142:32100 in the events producer and
consumer applications.

To access with plain, see "Internal access - same namespace - plain" section. Replace the
bootstrap URL with above constructed one.

To access with Authentication, see "Internal access - same namespace - authentication"
section. Replace the bootstrap URL with above constructed one.

To access with SSL and Authentication, see "External ingress access - SSL & Authentication"
section. Replace the bootstrap URL with above constructed one.

Import/export of TLS certificates

To enable TLS encrypted access, the ca-certs of Kafka cluster is needed to be extracted and
imported into key store and the location of that key store is used as the producer or consumer
properties in events application.

Export the ca-certs of the Kafka cluster using the following command:

$COMMON_CNTK/scripts/export-cluster-cert.sh -p <Namespace of kafka cluster> \
-i <instance name of kafka cluster> \
-l <directory to export clustercerts temporarily> \
-k <keystore-location> \
-a <alias for cert>

Chapter 4
Client Access

4-33

For example:

$COMMON_CNTK/scripts/export-cluster-cert.sh -p sr -i quick -l . -
k ./mb-cert-keystore.jks -a mb-sr-quick-cert

The export-cluster-cert.sh script creates JKS type truststore by default in the provided
key store location. If any other truststore type is created, specify that as producer or
consumer property while running the clients. These exported artifacts can be used in
Kafka client applications.

Note:

If custom certificates were used during cluster creation, then these can be
directly provided through a keystore than extracting the generated certs.

Using custom certificates

Custom certificates can be used while creating the Kafka cluster:

Prerequisites:

• Certificates and keys are to be in PEM format.

• Key should not be encrypted. Encrypted keys are not supported since they need
user interaction for entering the passphrase during access.

Creating a custom certificate

To create a custom certificate:

1. Create a private key (without encryption/passphrase). Run the following command
to create a passphraseless key:

openssl genrsa -out <key-name>.key 2048

e.g.
openssl genrsa -out myKey.key 2048

2. Create a csr file using the private key created above.

This creation of CSR file asks for multiple details like, Country, state, organization
and so on.

3. Enter the corresponding details.

4. Run the following command to create a csr file:

openssl req -key <key-name>.key -new -out <csr-file-name>.csr
for example:
openssl req -key myKey.key -new -out myCsrFile.csr

5. Create a certificate file using the csr file and private key.

Chapter 4
Client Access

4-34

Run the following command:

openssl x509 -signkey <key-name>.key -in <csr-file-name>.csr -req -days
<number of days for validity> -out <certificate-name>.crt
 For example:
openssl x509 -signkey myKey.key -in myCsrFile.csr -req -days 3650 -out
myCertificate.crt

Create Kubernetes secret

Run the following command by replacing the place holders:

kubectl create secret generic <secret-name> --from-file=<key-file-name> --
from-file=<certificate-file-name>
 For example:
kubectl create secret generic myCustomCertSecret --from-file=myKey.key --
from-file=myCertificate.crt

Update Kafka Cluster configuration

Update the customCerts configuration section in Kafka cluster's override values yaml file:

kafka-cluster:
 ## to enable custom or owned certs for tls please create a kubernetes
secret with the cert and key if not already present, uncomment the below
section and add respectve values.
 ## please be advised that encrypted keys are not supported since they
require user interaction for the passphrase
 customCerts:
 # Secret in which cert and key are present
 secretName: <secret-name created above>
 certName: <certificate file used in the secret created above>
 keyName: <key-file used in the secret created above>

Configuring Message Bus Listeners
Message Bus has three listeners (internal, ingress and nodeport) to access the service.
These are described the in following sections.

Message Bus Internal Listener

The following is the configuration for internal listener type which can be commented or
uncommented.

 kafka-cluster:
 listeners:
 # plain is for internal access within the same k8s cluster.
 internal:

From same namespace in cluster

This is an internal access method that is used by the message producer or consumer clients
(or applications) when they are deployed in same namespace as the Message Bus service.

Chapter 4
Configuring Message Bus Listeners

4-35

This is enabled by default with internal listener type. To access the Message Bus, the
producer or consumer applications must get the Bootstrap service URL of the Kafka
cluster.

To get the Bootstrap service URL of the Kafka cluster run the following command:

kubectl get svc -n sr | grep sr-quick-messaging-kafka-bootstrap

sr-quick-messaging-kafka-bootstrap ClusterIP <clusterIP>
<none> 9091/TCP,9092/TCP

Note:

The project namesapce is sr and instance is quick.

Use the sr-quick-messaging-kafka-bootstrap:9092 URL in the producer and
consumer client configuration in the applications.

From another namespace in cluster

This is an internal access method which is used by the producer or consumer client
applications when they are deployed in different namespace than the message-bus
service. This is enabled by default with internal listener type. To access the Message
Bus, the producer or consumer client applications have to get the Bootstrap service
URL of the Kafka cluster and convert the URL pattern as
serviceName.namespace.svc.cluster.local.

If the sr-quick-messaging-kafka-bootstrap service is hosted in sr namespace on 9092
port and the client applications from different namespace can access the Kafka cluster
with Bootstrap URL as sr-quick-messaging-kafka-
bootstrap.sr.svc.cluster.local:9092

Message Bus Ingress Listener

This is an external access method which is used by message producer or consumer
applications when they are deployed out-side of the Kubernetes cluster. This is
disabled by default and must be enabled in the applications.yaml. This external
access is provided through the Traefik Ingress Controller to the Kafka cluster. To
enable this external access, the ingress listener type configuration must be enabled in
the Kafka cluster configuration yaml file.

Ingress listener type

Un-comment the ingress lister type section in applications.yaml file to expose the
Message Bus Service outside of Kubernetes cluster. Ingress controller (Treafik) should
be deployed in order for this ingress listener type to work and Message Bus
namespace must be registered with Treafik operator.

kafka-cluster
 listeners:
 ingress:
 #Update with the web secure port used in Traefik
 ingressSslPort: <LoadBalancer_SSL_Port>

Chapter 4
Configuring Message Bus Listeners

4-36

In external producer or consumer messaging clients (or applications), the following must be
done to access the Kafka cluster through Ingress controller.

• The Bootstrap server and advertised broker host names must be configured in DNS at
client side.

• Import the TLS certificate and trust stores from the Kafka cluster into client
configurations.

• Add required additional properties in Kafka producer or consumer client configuration.

DNS settings in client applications host

The Bootstrap server host name and advertised broker host names must be configured
in /etc/hosts file in producer and consumer client applications with the Traefik or Load
Balancer IP Address. Hostnames are pre-configured when deployed with ingress listener
type enabled with the following pattern:

bootstrap-server: <kafka-cluster-instance-name>.<kafka-cluser-project-
name>.messaging.bootstrap.uim.org
broker-0: <kafka-cluster-instance-name>.<kafka-cluser-project-
name>.messaging.broker0.uim.org
broker-1: <kafka-cluster-instance-name>.kafka-cluser-project-
name>.messaging.broker1.uim.org

For example if a instance is quick and namesapce is sr then the hostnames
will be as follows:
bootstrap-server: quick.sr.messaging.bootstrap.uim.org
broker-0: quick.sr.messaging.broker0.uim.org
broker-1: quick.sr.messaging.broker1.uim.org

Importing certificates into client applications

See the "Import/export of TLS certificates" section in “Client Access” section for exporting the
ca-certs of Kafka cluster to producer or consumer applications.

Message Bus NodePort Listener

This is another external access method which is used by events producer or consumer client
applications when they are deployed out-side of the Kubernetes cluster and wants to access
the message-bus service without ingress controller.

Node port

The following configuration in the application yaml file allows exposing the nodeport listener
type to access the Message Bus externally with tls and OAuth 2.0 Authentication.

Kafka-cluster:
 listeners:
 #To expose the kafka-cluster to external kafka clients without ingress
controller, uncomment the following section and modify accordingly.
 nodeport:
 tls: true
 # if need to expose on a static nodeport, please uncomment the below
nodePort key and provide values.
 nodePort: 32100
 authentication: true

Chapter 4
Configuring Message Bus Listeners

4-37

When the tls is enabled the certificates of the Kafka cluster must be imported in the
events producer and consumer clients to access the Kafka cluster.

See the "Import/export of TLS certificates" section in “Client Access” section for
exporting the auto-generated ca-certs of Kafka cluster.

Debugging and Troubleshooting
NotEnoughReplicasException

When you get the
org.apache.kafka.common.errors.NotEnoughReplicasException: Messages are
rejected since there are fewer in-sync replicas than required. The reason could be that
the topics replicas is not meeting the default minInsyncReplicas value configured in
the Message Bus service.

Asynchronous auto-commit of offsets failed

When you get the following error in the logs (for example: UTIA Consumer). To resolve
this make sure that max.polling.interval.ms is always greater than the last poll or
else reduce the max.poll.records.

[Consumer clientId=consumer-ora-uim-topology-service-2, groupId=ora-
uim-topology-service] Asynchronous auto-commit of offsets failed:
Offset commit cannot be completed since the consumer is not part of an
active group for auto partition assignment; it is likely that the
consumer was kicked out of the group.. Will continue to join group.

Add these additional properties in the YAML file under the
mp.messaging.connector.helidon-kafka section with override values.

mp.messaging:
 connector:
 helidon-kafka:
 # The following are default global configuration values which
effects for all the consumer groups.
 max.polling.interval.ms: 300000
 max.poll.records: 500

 # The following are channel specific configuration values
 incoming:
 # The toInventoryChannel effects only for ora-uim-topology-service
consumer group
 # uncomment and update the specific values
 #toInventoryChannel:
 #max.polling.interval.ms: 300000
 #max.poll.records: 500

 # The toFaultChannel effects only for ora-uim-topology-retry-
service consumer group
 # Uncomment and update the specific values
 #toRetryChannel:
 #max.polling.interval.ms: 300000
 #max.poll.records: 200

Chapter 4
Debugging and Troubleshooting

4-38

 # The toDltChannel effects only for ora-uim-topology-dlt-service
consumer group
 # uncomment and update the specific values
 #toDltChannel:
 #max.polling.interval.ms: 300000
 #max.poll.records: 100

Performance Tuning: Consumer Configurations

The following are some consumer configuration properties in message consumers which are
related to performance. See https://kafka.apache.org/documentation/#consumerconfigs for all
available consumer config properties.

• max.poll.records (default=500) defines the maximum number of messages that a
consumer can poll at once.

• max.partition.fetch.bytes (default=1048576) defines the maximum number of bytes that
the server returns in a poll for a single partition.

• max.poll.interval.ms (default=300000) defines the time a consumer must process all
messages from a poll and fetch a new poll afterward. If this interval is exceeded, the
consumer leaves the consumer group.

• http://heartbeat.interval.ms (default=3000) defines the frequency with which a consumer
sends heartbeats.

• http://session.timeout.ms (default=10000) defines the time a consumer must send a
heartbeat. If no heartbeat was received in that timeout, the member is considered dead
and leaves the group.

Managing Consumer Groups

For more list of options available on the consumer groups see the apache kafka manging
consumer groups section. The following sub-sections list some significant operations. See
"Message Bus Client Access" for more information.

List consumer groups

#Exec into running message bus test client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the below command to list all the consumer groups
bin/kafka-consumer-groups.sh \
--command-config /home/kafka/mb_test_client.properties \
--bootstrap-server <Your Bootstrap Server URL> \
--list

Describe consumer group

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the below command to describe specific consumer group to check topics,
partitions, offsets
#Replace the command-config, bootstrap, group values accordingly
bin/kafka-consumer-groups.sh \

Chapter 4
Debugging and Troubleshooting

4-39

https://kafka.apache.org/documentation/#consumerconfigs

--command-config /home/kafka/mb_test_client.properties \
--bootstrap-server <Your Bootstrap Server URL> \
--group test-client-service \
--describe

Reset offset of a consumer group

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr --
bash

#Run the below command to reset offset for consumer group for topic to
latest. See Apache Kafka documentation for other available options.
#Replace the command-config, bootstrap, group and topic values
accordingly
bin/kafka-consumer-groups.sh \
--command-config /home/kafka/mb_test_client.properties \
--bootstrap-server <Your Bootstrap Server URL> \
--group test-client-service \
--reset-offsets \
--topic ora-test-topic \
--to-latest \
--execute

Topics

For more detailed list of operations available on the topics see the "Apache Kafka
Operations".The following sub-sections list some significant operations. See "Message
Bus Client Access" for more information.

Create

Create a topic with three partitions and two replications.

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr --
bash

#Run the below command to to create a topic
bin/kafka-topics.sh \
 --command-config /home/kafka/mb_test_client.properties \
 --bootstrap-server <Your Bootstrap Server URL> \
 --create \
 --topic replicated-2 \
 --replication-factor 2 \
 --partitions 3

List

To list all topics:

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr --

Chapter 4
Debugging and Troubleshooting

4-40

bash

#Run the below command to list all the topic
bin/kafka-topics.sh \
 --command-config /home/kafka/mb_test_client.properties \
 --bootstrap-server <Your Bootstrap Server URL> \
 --list

Describe

Describes the topic and its partition count, replicas factory along with leaders for the partition.

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the below command to describe the topic
bin/kafka-topics.sh \
 --command-config /home/kafka/mb_test_client.properties \
 --bootstrap-server <Your Bootstrap Server URL> \
 --topic replicated-2 \
 --describe

#Sample output
Topic: replicated-2 TopicId: vyalpPOmR0CtYt7Sc-gbxA
PartitionCount: 3 ReplicationFactor: 2 Configs:
min.insync.replicas=1,message.format.version=3.0-IV1

Topic: replicated-2 Partition: 0 Leader: 1 Replicas: 1,0
Isr: 1,0
Topic: replicated-2 Partition: 1 Leader: 0 Replicas: 0,1
Isr: 0,1
Topic: replicated-2 Partition: 2 Leader: 1 Replicas: 1,0
Isr: 1,0

Alter

You can alter a topic and increase the partitions to 2.

#Exec into running Kafka admin client pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr -- bash

#Run the below command to alter the topic bin/kafka-topics.sh \
 --command-config /home/kafka/mb_test_client.properties \
 --bootstrap-server <Your Bootstrap Server URL> \
 --alter \
 --topic <Your Topic Name> \
 --partitions 1

Reassignment

The partition reassignment tool can also be used to selectively move replicas of a partition to
a specific set of brokers. In the following example the partitions for topic (replicated-2) are
reassigned to different brokers.

Chapter 4
Debugging and Troubleshooting

4-41

See the "Message Bus Client Access"section for more information on running the
message bus test pod with required configuration such as Authentication and SSL.

Create a file called custom-reassignment.json file a terminal

{"version":"1", "partitions":
[{"topic":"replicated-2","partition":"0","replicas":"[0,1]"},
{"topic":"replicated-2","partition":1,"replicas":"[1,2]"},
{"topic":"replicated-2","partition":"2","replicas":"[0,2]"}]}

Run the following commands for reassignment:

#Copy the custom-reassignment.json file into the newly created pod
under /home/kafka directory
$kubectl cp custom-reassignment.json mb-test-auth-client-deployment-
*****-****:/home/kafka/custom-reassignment.json -n kafka

#Exec into running test pod
kubectl exec -it mb-test-auth-client-deployment-******-**** -n sr --
bash #Cd directory to /home/kafka

#Validate the topic ("replicated-2"
/opt/kafka/bin/kafka-topics.sh \
--command-config /home/kafka/mb_test_client.properties \
--bootstrap-server <Your Bootstrap Server URL> \
--topic replicated-2 --describe
Topic: replicated-2 TopicId: vyalpPOmR0CtYt7Sc-gbxA
PartitionCount: 3 ReplicationFactor: 2 Configs:
min.insync.replicas=1,message.format.version=3.0-IV1
 Topic: replicated-2 Partition: 0 Leader: 1
Replicas: 1,0 Isr: 1,0
 Topic: replicated-2 Partition: 1 Leader: 1
Replicas: 0,1 Isr: 1,0
 Topic: replicated-2 Partition: 2 Leader: 1
Replicas: 1,0 Isr: 1,0

#Run reassign-partitions script to reassign the partitions according
to the json file
$/opt/kafka/bin/kafka-reassign-partitions.sh --bootstrap-server dev-
messaging-kafka-bootstrap:9092 --reassignment-json-file custom-
reassignment.json --execute

Current partition replica assignment

{"version":1,"partitions":
[{"topic":"replicated-2","partition":0,"replicas":[1,0],"log_dirs":
["any","any"]},{"topic":"replicated-2","partition":1,"replicas":
[0,1],"log_dirs":["any","any"]},
{"topic":"replicated-2","partition":2,"replicas":[1,0],"log_dirs":
["any","any"]}]}

Save this to use as the --reassignment-json-file option during rollback
Successfully started partition reassignments for
replicated-2-0,replicated-2-1,replicated-2-2

Chapter 4
Debugging and Troubleshooting

4-42

#Verfify the reassignment status
$/opt/kafka/bin/kafka-reassign-partitions.sh --bootstrap-server dev-
messaging-kafka-bootstrap:9092 --reassignment-json-file custom-
reassignment.json --verify

Status of partition reassignment:
Reassignment of partition replicated-2-0 is complete.
Reassignment of partition replicated-2-1 is complete.
Reassignment of partition replicated-2-2 is complete.

Clearing broker-level throttles on brokers 0,1,2
Clearing topic-level throttles on topic replicated-2

Validate the partition assignments
$/opt/kafka/bin//kafka-topics.sh \
 --command-config /home/kafka/mb_test_client.properties \
 --bootstrap-server <Your Bootstrap Server URL> \
 --topic replicated-2 --describe
Topic: replicated-2 TopicId: vyalpPOmR0CtYt7Sc-gbxA PartitionCount:
3 ReplicationFactor: 2 Configs:
min.insync.replicas=1,message.format.version=3.0-IV1
 Topic: replicated-2 Partition: 0 Leader: 1 Replicas:
0,1 Isr: 1,0
 Topic: replicated-2 Partition: 1 Leader: 1 Replicas:
1,2 Isr: 1,2
 Topic: replicated-2 Partition: 2 Leader: 0 Replicas:
0,2 Isr: 0,2

Chapter 4
Debugging and Troubleshooting

4-43

5
Deploying the Unified Topology for Inventory
and Automation Service

This chapter describes how to deploy and manage UTIA service.

Overview of UTIA
Oracle Communications Unified Topology for Inventory and Automation (UTIA) represents the
spatial relationships among your inventory entities for the inventory and network topology.

• UTIA provides a graphical representation of topology where you can see your inventory
and its relationships at the level of detail that meets your needs.

See UTIA Help for more information about the topology visualization.

Use UTIA to view and analyze the network and service data in the form of topology diagrams.
UTIA collects this data from UIM.

You use UTIA for the following:

• Viewing the networks and services, along with the corresponding resources, in the form
of topological diagrams and graphical maps.

• Planning the network capacity.

• Tracking networks.

• Viewing alarm information.

UTIA Architecture
Figure 5-1 shows a high-level architecture of the UTIA service.

5-1

Figure 5-1 UTIA Architecture

UIM as the Producer
UIM communicates with the Topology Service using REST APIs and Kafka Message
Bus. UIM is the Producer for Create, Update and Delete operations from UIM that
impact Topology. UIM uses REST APIs to communicate directly with the UTIA Service
while building the messages and can also continue processing when the Topology
Service is unavailable.

Topology as the Consumer
The UTIA service is a consumer for inventory system and assurance system
messages. UTIA processes multiple message events including TopologyNodeCreate,
TopologyNodeUpdate, TopologyNodeDelete, TopologyEdgeCreate,
TopologyEdgeUpdate, TopologyEdgeDelete, TopologyFaultEventCreate,
TopologyFaultEventUpdate, TopologyPerformanceEventCreate,
TopologyPerformanceEventUpdate.

The service information is updated using the TopologyProfileCreate,
TopologyProfileUpdate, and TopologyProfileDelete events.

Topology Graph Database
The UTIA Service communicates to the Oracle Databases using the Oracle Property
Graph feature with PGQL and standard SQL. It can communicate directly to the
database or with the In-Memory Graph for high performance operations. This
converged database feature of Oracle Database makes it possible to utilize the
optimal processing method with a single database. The Graph Database is isolated
and a separate Pluggable Database (PDB) from the UIM Database but runs on the
same 19c version for simplified licensing.

Chapter 5
UTIA Architecture

5-2

Topology In-Memory Database
The UTIA Service also uses the Oracle Labs Parallel Graph AnalytiX (PGX) In-Memory
database. The PGX server is used for Path Analysis and is configured for periodic updates.

UTIA User Interface
UTIA provides a graphical representation of topology where you can see your inventory and
its relationships at the level of detail that meets your needs. UTIA is built using Oracle
Redwood Design System.

Creating UTIA Images
You must install the prerequisite software and tools for creating UTIA images.

Prerequisites for Creating UTIA Images
You require the following prerequisites for creating UTIA images:

• Podman on the build machine if Linux version is greater than or equal to 8.

• Docker on the build machine if Linux version is lesser than 8

• Unified Topology Builder Toolkit (ref about the deliverables)

• Install Maven and update path variable with Maven Home.

Set PATH variable export PATH=$PATH:$MAVEN_HOME/bin

• Java, installed with JAVA_HOME set in the environment.

Set PATH variable export PATH=$PATH:$JAVA_HOME/bin

• Bash, to enable the `<tab>` command complete feature.

See UIM Compatibility Matrix for details about the required and supported versions of these
prerequisite software.

Configuring Unified Topology Images
The dependency manifest file describes the input that goes into the Unified Topology images.
It is consumed by the image build process. The default configuration in the latest manifest file
provides the necessary components for creating the Unified Topology images easily. See
"About the Manifest File" for more information.

Creating Unified Topology Service Images
To create the Unified Topology service images:

Chapter 5
Creating UTIA Images

5-3

Note:

See UIM Compatibility Matrix for the latest versions of software.

1. Go to WORKSPACEDIR.

2. Download graph server war file from Oracle E-Delivery (https://www.oracle.com/
database/technologies/spatialandgraph/property-graph-features/graph-server-and-
client/graph-server-and-client-downloads.html → Oracle Graph Server
<version>→ Oracle Graph Webapps <version> for (Linux x86-64)) and copy graph
server war file to directory $WORKSPACEDIR/unified-topology-builder/staging/
downloads/graph. Ensure only one copy of PGX.war exists in …/downloads/graph
path.

Note:

The log level is set to debug by default in graph server war file. If
required, update the log level to error/info in graph-server-
webapp-23.3.0.war/WEB-INF/classes/logback.xml before building
images.

3. Download tomcat-9.0.62.tar.gz and copy to $WORKSPACEDIR/unified-topology-
builder/staging/downloads/tomcat.

4. Download jdk-17.0.7_linux-x64_bin.tar.gz and copy to $WORKSPACEDIR/
unified-topology-builder/staging/downloads/java.

5. Export proxies in environment variables, fill the details on proxy settings:

export ip_addr=`ip -f inet addr show eth0|egrep inet|awk
'{print $2}'|awk -F/ '{print $1}'`
export http_proxy=
export https_proxy=$http_proxy
export no_proxy=localhost,$ip_addr
export HTTP_PROXY=
export HTTPS_PROXY=$HTTP_PROXY
export NO_PROXY=localhost,$ip_addr

6. Update $WORKSPACEDIR/unified-topology-builder/bin/gradle.properties with
required proxies.

systemProp.http.proxyHost=
systemProp.http.proxyPort=
systemProp.https.proxyHost=
systemProp.https.proxyPort=
systemProp.http.nonProxyHosts=localhost|127.0.0.1
systemProp.https.nonProxyHosts=localhost|127.0.0.1

7. Uncomment the proxy block and provide $WORKSPACEDIR/unified-topology-
builder/bin/m2/settings.xml with required proxies.

<proxies>
 <proxy>

Chapter 5
Creating Unified Topology Service Images

5-4

https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

 <id>oracle-http-proxy</id>
 <host>xxxxx</host>
 <protocol>http</protocol>
 <nonProxyHosts>localhost|127.0.0.1|xxxxx</nonProxyHosts>
 <port>xxxxx</port>
 <active>true</active>
 </proxy>
</proxies>

8. Copy UI custom icons to directory older $WORKSPACEDIR/unified-topology-builder/
staging/downloads/unified-topology-ui/images if you have any customizations for service
topology icon. For making customizations, see "Customizing the Images".

9. Update the image tag in $WORKSPACEDIR/unified-topology-builder/bin/
unified_topology_manifest.yaml

10. Run build-all-images script to create unified topology service images:

$WORKSPACEDIR/unified-topology-builder/bin/build-all-images.sh

Note:

You can include the above procedure into your CI pipeline as long as the
required components are already downloaded to the staging area.

Post-build Image Management
The Unified Topology image builder creates images with names and tags based on the
settings in the manifest file. By default, this results in the following images:

• uim-7.5.1.2.0-unified-topology-base-1.0.0.2.0:latest

• uim-7.5.1.2.0-unified-topology-api-1.0.0.2.0:latest

• uim-7.5.1.2.0-unified-pgx-1.0.0.2.0:latest

• uim-7.5.1.2.0-unified-topology-ui-1.0.0.2.0:latest

• uim-7.5.1.2.0-unified-topology-dbinstaller-1.0.0.2.0:latest

• uim-7.5.1.2.0-unified-topology-consumer-1.0.0.2.0:latest

Customizing the Images
Service topology can be customized using a JSON configuration file. See Customizing UTIA
Service Topology Configurations from UIM in UIM System Administrator's Guide for more
information. As a part of customization, if custom icons are to be used to represent nodes in
service topology, they must be placed in the $WORKSPACEDIR/unified-topology-builder/
staging/downloads/unified-topology-ui/images/ folder and unified-topology-ui image
must be rebuilt.

Chapter 5
Customizing the Images

5-5

Creating a Unified Topology Instance
This section describes how to create a Unified Topology service instance in your cloud
native environment using the operational scripts and the configuration provided in the
common cloud native toolkit.

Before you can create a Unified Topology instance, you must validate cloud native
environment. See "Planning and Validating Your Cloud Environment" for details on
prerequisites.

In this section, while creating a basic instance, the project name is considered as sr
and instance name is considered as quick.

Note:

Project and Instance names cannot contain any special characters.

Installing Unified Topology Cloud Native Artifacts and Toolkit
Build container images for the following using the Unified Topology cloud native Image
Builder:

• Unified Topology Core application

• Unified PGX application

• Unified Topology User Interface application

• Unified Topology database installer

See "Deployment Toolkits" to download the Common cloud native toolkit archive file.
Set the variable for the installation directory by running the following command,
where $WORKSPACEDIR is the installation directory of the COMMON cloud native
toolkit:

export COMMON_CNTK=$WORKSPACEDIR/common-cntk

Setting up Environment Variables
Unified Topology Service relies on access to certain environment variables to run
seamlessly. Ensure the following variables are set in your environment:

• Path to your common cloud native toolkit

• Traefik namespace

To set the environment variables:

1. Set the COMMON_CNTK variable to the path of directory where common cloud
native toolkit is extracted as follows:

$ export COMMON_CNTK=$WORKSPACEDIR/common-cntk

Chapter 5
Creating a Unified Topology Instance

5-6

2. Set the TRAEFIK_NS variable for Traefik namespace as follows:

$ export TRAEFIK_NS=Treafik Namespace

3. Set the TRAEFIK_CHART_VERSION variable for Traefik helm chart version. Refer UIM
Compatibility Matrix for appropriate version. The following is a sample for Traefik chart
version 15.1.0.

$ export TRAEFIK_CHART_VERSION=15.1.0

4. Set SPEC_PATH variable to the location where application and database yamls are
copied as follows:

$ export SPEC_PATH=$WORKSPACEDIR/utia_spec_dir

Registering the Namespace
After you set the environment variables, register the namespace.

To register the namespace, run the following command:

$COMMON_CNTK/scripts/register-namespace.sh -p sr -t targets
For example, $COMMON_CNTK/scripts/register-namespace.sh -p sr -t traefik
Where the targets are separated by a comma without extra spaces

Note:

traefik is the name of the target for registration of the namespace sr. The script
uses TRAEFIK_NS to find these targets. Do not provide the Traefik target if you are
not using Traefik.

Creating Secrets
You must store sensitive data and credential information in the form of Kubernetes Secrets
that the scripts and Helm charts in the toolkit consume. Managing secrets is out of the scope
of the toolkit and must be implemented while adhering to your organization's corporate
policies. Additionally, Unified Topology service does not establish password policies.

Note:

The passwords and other input data that you provide must adhere to the policies
specified by the appropriate component.

As a prerequisite to use the toolkit for either installing the Unified Topology database or
creating a Unified Topology instance, you must create secrets to access the following:

• UTIA Database

Chapter 5
Creating a Unified Topology Instance

5-7

• UIM Instance Credentials

• Secret for UTIA API

• Secret for UTIA UI

• OAM Authentication server details

• Truststore secret for OAM server

The toolkit provides sample scripts to perform this. These scripts should be used for
manual and faster creation of an instance. It does not support any automated process
for creating instances. The scripts also illustrate both the naming of the secret and the
layout of the data within the secret that Unified Topology requires. You must create
secrets before running the install-database.sh or create-applications.sh scripts.

Creating Secrets for Unified Topology Database Credentials

The database secret specifies the connectivity details and the credentials for
connecting to the Unified Topology PDB (Unified Topology schema). This is consumed
by the Unified Topology DB installer and Unified Topology runtime.

1. Run the following script to create the required secrets:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create
database

2. Enter the corresponding values as prompted:

• TOPOLOGY DB Admin(sys) Username: Provide Topology Database admin
username

• TOPOLOGY DB Admin(sys) Password: Provide Topology Database admin
password

• TOPOLOGY Schema Username: Provide username for Unified Topology
schema to be created

• TOPOLOGY Schema Password: Provide Unified Topology schema password

• TOPOLOGY DB Host: Provide Unified Topology Database Hostname

• TOPOLOGY DB Port: Provide Unified Topology Database Port

• TOPOLOGY DB Service Name: Provide Unified Topology Service Name

• PGX Client Username: Provide username for PGX Client User to be created

• PGX Client Password: Provide PGX Client Password

3. Verify that the following secret is created:

sr-quick-unified-topology-db-credentials

Creating Secrets for UIM Credentials

The UIM secret specifies the credentials for connecting to the UIM application. This is
consumed by Unified Topology runtime.

Chapter 5
Creating a Unified Topology Instance

5-8

1. Run the following scripts to create the UIM secret:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create uim

2. Enter the credentials and the corresponding values as prompted. The credentials should
be as shown in the following example:

Provide UIM credentials ...(Format should be http: //<host>:<port>)

Note:

• If OAUTH is enabled on UIM instance, enter UIM URL in the format
https://<instance>.<project>.ohs.<oam-host-
suffix>:<loadbalancerport>

• If OAUTH is not enabled on UIM instance, enter UIM URL in the format
https://<uim-instance>.<uim.project>uim.org:<loadbalancerport>

UIM URL: Provide UIM Application URL, sample https://
quick.sr.uim.org:30443
UIM Username: Provide UIM username
UIM Password: Provide UIM password
Is provided UIM a Cloud Native Environment ? (Select number
from menu)
1) Yes
2) No
#? 1
Provide UIM Cluster Service name (Format <project>-<instance>-
cluster-uimcluster.<project>.svc.cluster.local)
UIM Cluster Service name: sr-quick-cluster-
uimcluster.sr.svc.cluster.local #Provide UIM Cluster Service
name.

3. Verify that the following secret is created:

sr-quick-unified-topology-uim-credentials

Creating Secrets for Authentication on Unified Topology API

The appUsers secret specifies authentication configuration for Unified Topology API.

1. Update $COMMON_CNTK/samples/credentials/topology-user-credentials.yaml with
authentication configuration:

security:
 enabled: true #set enabled flag to true to enable authentication
 providers:
 - oidc:
 identity-uri: "https://<oam-instance>.<oam-project>.ohs.<oam-host-
suffix>:<port>" #Provide OHS service URL
 base-scopes: "UnifiedRserver.Info openid" #Provide scope of the

Chapter 5
Creating a Unified Topology Instance

5-9

created resource
 client-id: topologyClient #Provide name of the client-id
created
 client-secret: xxxx #Provide Client Secret
 token-endpoint-auth: CLIENT_SECRET_POST
 cookie-name: "OIDC_SESSION"
 cookie-same-site: "Lax"
 header-use: true
 audience: "UnifiedRserver" #Provide audience details
 redirect: true
 redirect-uri: "/topology"

2. Run the following script to create the appUsers secret:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -f
$SPEC_PATH/sr/quick/applications.yaml -a unified-topology create
appUsers

3. Enter the values appropriately against prompts.

4. Provide App User Credentials for sr-quick.

5. Enter the app credentials file: $COMMON_CNTK/samples/credentials/topology-
user-credentials.yaml.

6. Verify that the following secret is created:

sr-quick-unified-topology-user-credentials

Creating Secrets for Authentication on Unified Topology UI

The appUIUsers secret specifies authentication configuration for Unified Topology UI
application.

1. Update $COMMON_CNTK/samples/credentials/topology-ui-user-credentials.yaml
with authentication configuration.

Note:

Uncomment and set the value of the property session timeout same as
the value of tokenExpiry, if tokenExpiry is set with different value than
default while creating an identity domain during OAM setup.
tokenExpiry is set while creating an identity domain during OAM setup.
See "Deploying the Common Authentication Service" for more
information.

topology-ui-user-credentials.yaml

security:
 enabled: true #set enabled flag to true to enable authentication
 providers:
 - oidc:
 identity-uri: "https://<oam-instance>.<oam-project>.ohs.<oam-
host-suffix>:<port>" #Provide OHS service URL

Chapter 5
Creating a Unified Topology Instance

5-10

 base-scopes: "UnifiedRserver.Info openid" #Provide scope of the
created resource
 client-id: topologyClient #Provide name of the client-id created
 client-secret: xxxx #Provide Client Secret
 token-endpoint-auth: CLIENT_SECRET_POST
 cookie-name: "OIDC_SESSION"
 cookie-same-site: "Lax"
 header-use: true
 audience: "UnifiedRserver" #Provide audience details
 redirect: true
 redirect-uri: "/redirect/unified-topology-ui"
 logout-enabled: true
 #The following values are needed when logout is enabled for OIDC
 logout-uri: "/oidc/logout"
 post-logout-uri: apps/unified-topology-ui
 #provide server logout else it it going to userlogout and
dispalying error page of OAM
 logout-endpoint-uri: "https://<oam-instance>.<oam-project>.ohs.<oam-
host-suffix>:<port>/oam/server/logout" #Provide oidc logout, update
<loadbalancerport> value and ohshostname.
 cookie-encryption-password: "lpmaster"

#uncomment and set the value of the property sessiontimeout same as the
value of tokenExpiry, if tokenExpiry is set with different value than
default while creating an identity domain during OAM setup.
#sessiontimeout: 3600

2. Run the following script to create the appUIUsers secret:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create
appUIUsers

3. Enter the Topology UI User Credentials for 'sr-quick'.

4. Enter the app credentials file: $COMMON_CNTK/samples/credentials/topology-ui-user-
credentials.yaml #Provide path to the topology-ui-user-credentials.yaml.

5. Verify that the following secret is created:

sr-quick-unified-topology-ui-user-credentials

Creating Secrets for Authentication Server Details

The OAuth secret specifies details of the authentication server. It is used by Unified Topology
to connect to Message Bus Bootstrap service. See "Adding Common OAuth Secret and
ConfigMap" for more information.

Creating Secrets for SSL enabled on traditional UIM truststore

The inventorySSL secret stores the truststore file of the SSL enabled on traditional UIM, it is
required only if Authentication is not enabled on topology and to integrate topology with UIM
traditional instance.

1. Create truststore file using UIM certificates and to enable SSL on UIM. See UIM System
Administrator's Guide for more information.

Chapter 5
Creating a Unified Topology Instance

5-11

2. Once you have the certificate of traditional UIM run following command to create
truststore:

keytool -importcert -v -alias uimonprem -file ./cert.pem -
keystore ./uimtruststore.jks -storepass *******

3. After creating uimtruststore.jks run following command to create inventorySSL
secret and pass the truststore created above:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create
inventorySSL

The system prompts for the trustsotre file location and passpharase for truststore.
Provide appropriate values.

Installing Unified Topology Service Schema
To install the Unified Topology schema:

1. Update values under unified-topology-dbinstaller in $SPEC_PATH/sr/quick/
database.yaml file with values required for unified topology schema creation.

Note:

• The YAML formatting is case-sensitive. Use a YAML editor to ensure
that you do not make any syntax errors while editing. Follow the
indentation guidelines for YAML.

• Before changing the default values provided in the specification file,
verify that they align with the values used during PDB creation. For
example, the default tablespace name should match the value used
when PDB is created.

2. Edit the database.yaml file and update the DB installer image to point to the
location of your image as follows:

unified-topology-dbinstaller:
 dbinstaller:
 image: DB_installer_image_in_your_repo
 tag: DB_installer image tag in your repo

3. If your environment requires a password to download the container images from
your repository, create a Kubernetes secret with the Docker pull credentials. See
"Kubernetes documentation" for details. Refer the secret name in the
database.yaml. Provide image pull secret and image pull policy details.

unified-topology-dbinstaller:
 imagePullPolicy: Never
The image pull access credentials for the "docker login" into
Docker repository, as a Kubernetes secret.

Chapter 5
Creating a Unified Topology Instance

5-12

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

Uncomment and set if required.
imagePullSecret: ""

4. Run the following script to start the Unified Topology DB installer, which instantiates a
Kubernetes pod resource. The pod resource lives until the DB installation operation
completes.

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/database.yaml -a unified-topology -c 1

5. You can run the script with -h to see the available options.

6. Check the console to see if the DB installer is installed successfully.

7. If the installation has failed, run the following command to review the error message in
the log:

kubectl logs -n sr sr-quick-unified-topology-dbinstaller

8. Clear the failed pod by running the following command:

helm uninstall sr-quick-unified-topology-dbinstaller -n sr

9. Run the install-database script again to install the Unified Topology DB installer.

Configuring the applications.yaml File
The applications.yaml file is a Helm override values file to override default values of unified
topology chart. Update values under chart unified-topology in $SPEC_PATH/<PROJECT>/
<INSTANCE>/applications.yaml to override the default values.

The applications.yaml provides a section for values that are common for all microservices.
Provide Values under that common section and it is reflected for all services.

Note:

There are common values specified in applications.yaml and database.yaml for
the microservices. To override the common value, specify the value for the common
value under chart name of microservice. If value under the chart is empty, then
common value is considered.

To configure the project specification:

1. Edit the applications.yaml to provide the image in your repository (name and tag) by
running the following command:

vi $SPEC_PATH/<PROJECT>/<INSTANCE>/applications.yaml

** edit the topologyAPiName, pgxName, uiName to reflect the Unified
Topology image names and location in your docker repository
** edit the topologyAPiTag, pgxTag, uiTag to reflect the Unified Topology
image names and location in your docker repository

Chapter 5
Creating a Unified Topology Instance

5-13

unified-topology:
 image:
 topologyApiName: uim-7.5.1.2.0-unified-topology-api-1.0.0.2.0
 pgxName: uim-7.5.1.2.0-unified-pgx-1.0.0.2.0
 uiName: uim-7.5.1.2.0-unified-topology-ui-1.0.0.2.0
 topologyConsumerName: uim-7.5.1.2.0-unified-topology-
consumer-1.0.0.2.0
 topologyApiTag: latest
 pgxTag: latest
 uiTag: latest
 topologyConsumerTag: latest

2. If your environment requires a password to download the container images from
your repository, create a Kubernetes secret with the Docker pull credentials. See
the "Kubernetes documentation" for details. See the secret name in the
applications.yaml for more information.

The image pull access credentials for the "docker login" into
Docker repository, as a Kubernetes secret.
uncomment and set if required.

unified-topology:
imagePullSecret:
imagePullSecrets:
- name: regcred

3. Set Pull Policy for unified topology images in applications.yaml. Set pullPolicy to
Always in case image is updated.

unified-topology:
 image:
 pullPolicy: Never

4. Update loadbalancerhost, loadbalancerpost in applications.yaml. If there is no
external loadbalancer configured for the instance change the value of
loadbalancerport to the default Traefik NodePort and loadbalancerhost to the
worker node IP. If TLS is enabled on Unified Topology Traefik NodePort is 30443
and if TLS is disabled it is 30305.
If you use Oracle Cloud Infrastructure LBaaS, or any other external load balancer,
if TLS is enabled set loadbalancerport to 443 else set loadbalancerport
to 80 and update the value for loadbalancerhost appropriately.
loadbalancerhost and loadbalancerport are common values for all
services.

#provide loadbalancer host and post

loadbalancerhost: 100.76.135.13
loadbalancerport: 30305

Chapter 5
Creating a Unified Topology Instance

5-14

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

5. To enable authentication, set flag authentication.enabled to true. Provide OHS server
hostname If authentication is enabled. authentication.enabled flag and ohsHostname are
common values for all services.

The enabled flag is to enable or disable authentication
authentication:
 enabled: true

#Provide ohs server hostname
ohsHostname: <instance>.<project>.ohs.<oam-host-suffix>

6. If Authentication is not enabled on UTIA and want to integrate UTIA with traditonal SSL
enabled UIM, you have to create inventorySSL secret and enable the inventorySSL
flag in applications.yaml as shown below:

make it true if using on prem inventory with ssl port enabled and
authentication is not enabled on topology
always false for Cloud Native inventory
not required in production environment
isInventorySSL: true

Configuring Unified Topology Application Properties
Sample configuration files topology-static-config.yaml.sample, topology-dynamic-
config.yaml.sample are provided as follows:

• The sample files for Topology API service are added in $COMMON_CNTK/charts/
unified-topology-app/charts/unified-topology/config/topology-api.

• The sample files for Topology Consumer service are added in $COMMON_CNTK/charts/
unified-topology-app/charts/unified-topology/config/topology-consumer.

To override configuration properties, copy the sample static property file to topology-static-
config.yaml and sample dynamic property file to topology-dynamic-config.yaml. Provide
key value to override the default value provided out-of-the-box for any specific system
configuration property. The properties defined in property files are fed into the container using
Kubernetes configuration maps. Any changes to these properties require the instance to be
upgraded. Pods are restarted after configuration changes to topology-static-config.yaml.

Max Rows
Modify the following setting to limit the number of records returned in LIMIT queries:

topology:
 query:
 maxrows: 5000

Chapter 5
Creating a Unified Topology Instance

5-15

Date Format
Any modifications to the date format used by all dates must be consistently applied to
all consumers of the APIs.

topology:
 api:
 dateformat: yyyy-MM-dd'T'HH:mm:ss.SSS'Z'

Alarm Types
The out of the box alarm types utilize industry standard values. If you want to display a
different value, modify the value accordingly:

For example: To modify the COMMUNICATIONS_ALARM change the value to
COMMUNICATIONS_ALARM: Communications

alarm-types:
 COMMUNICATIONS_ALARM: COMMUNICATIONS_ALARM
 PROCESSING_ERROR_ALARM: PROCESSING_ERROR_ALARM
 ENVIRONMENTAL_ALARM: ENVIRONMENTAL_ALARM
 QUALITY_OF_SERVICE_ALARM: QUALITY_OF_SERVICE_ALARM
 EQUIPMENT_ALARM: EQUIPMENT_ALARM
 INTEGRITY_VIOLATION: INTEGRITY_VIOLATION
 OPERATIONAL_VIOLATION: OPERATIONAL_VIOLATION
 PHYSICAL_VIOLATION: PHYSICAL_VIOLATION
 SECURITY_SERVICE: SECURITY_SERVICE
 MECHANISM_VIOLATION: MECHANISM_VIOLATION
 TIME_DOMAIN_VIOLATION: TIME_DOMAIN_VIOLATION

Event Status
UTIA supports 3 types of events: 'Raised' for new events, 'Updated' for existing events
with updated information and 'Cleared' for events that have been Closed.

To modify the 'CLEARED' event change the value to CLEARED: closed

 event-status:
 CLEARED: CLEARED
 RAISED: RAISED
 UPDATED: UPDATED

Event Severity
UTIA supports various types of event severity on a Device. The severity from most
severe to least severe is CRITICAL(1), MAJOR(5), WARNING(10),
INTERMEDIATE(15), MINOR(20), CLEARED(25) and None(999).

Internally, a numeric value is used to identify the severity hierarchy. The top three most
severe events are tracked in UTIA.

Chapter 5
Creating a Unified Topology Instance

5-16

To modify the 'INTERMEDIATE' severity change the value to INTERMEDIATE: moderate

severity:
 CLEARED: CLEARED
 INDETERMINATE: INDETERMINATE
 CRITICAL: CRITICAL
 MAJOR: MAJOR
 MINOR: MINOR
 WARNING: WARNING

Path Analysis Cost Values
UTIA supports 3 different types of numeric cost values for each edge/connectivity maintained
in topology. The cost type label is configured based on your business requirements and data
available.

You select the cost parameter to evaluate while using path analysis. The cost values are
maintained externally using the REST APIs.

To modify 'costValue3' from Distance to Packet Loss change the value to costValue3:
PacketLoss after updating the data values.

pathAnalysis:
 costType:
 costValue1: Jitter
 costValue2: Latency
 costValue3: Distance

Path Analysis Alarms

Alarms can be used by path analysis to exclude devices in the returned paths. The default
setting is to exclude devices with any alarm.

To allow Minor and Greater alarms modify the setting to:

excludeAlarmTypes: Critical and Greater, Major and Greater

All Paths Limit

To improve the response time, modify the max number of paths returned when using 'All'
Paths.

Topology Consumer

Reduce the Poll size for Retry and dlt Topic

Uncomment or add the configuration values in topology-config.yaml and upgrade the
Topology Consumer service.

Chapter 5
Creating a Unified Topology Instance

5-17

Maximum Poll Interval and Records

Edit max.poll.interval.ms to increase or decrease the delay between invocations of
poll() when using consumer group management and max.poll.records to increase or
decrease the maximum number of records returned in a single call to poll().

mp.messaging:
 incoming:
 toInventoryChannel:
 # max.poll.interval.ms: 300000
 # max.poll.records: 500
 toFaultChannel:
 # max.poll.interval.ms: 300000
 # max.poll.records: 500
 toRetryChannel:
 # max.poll.interval.ms: 300000
 # max.poll.records: 200
 toDltChannel:
 # max.poll.interval.ms: 300000
 # max.poll.records: 100

Partition assignment strategy

The PartitionAssignor is the class that decides which partitions are assigned to
which consumer. While creating a new Kafka consumer, you can configure the
strategy that can be used to assign the partitions amongst the consumers. You can set
it using the configuration partition.assignment.strategy. The partition re-balance
(moving partition ownership from one consumer to another) happens, in case of:

• Addition of new Consumer to the Consumer group.

• Removal of Consumer from the Consumer group.

• Addition of New partition to the existing topic.

To change the partition assignment strategy, update the topology-config.yaml for
topology consumer and redeploy the POD. The below example configuration shows
the CooperativeStickyAssignor strategy. For list of supported partition assignment
strategies, see partition.assignment.strategy in Apache Kafka documentation.

mp.messaging
 connector:
 helidon-kafka:
 partition.assignment.strategy:
org.apache.kafka.clients.consumer.CooperativeStickyAssignor

Integrate Unified Topology Service with Message Bus Service
To integrate Unified Topology API service with Message Bus service:

1. In the file $SPEC_PATH/sr/quick/applications.yaml, uncomment the section
messagingBusConfig.

2. Provide namespace and instance name on which the Messaging Bus service is
deployed.

Chapter 5
Creating a Unified Topology Instance

5-18

3. Security protocol is SASL_PLAINTEXT if authentication is enabled on Message bus
service. If authentication is not enabled on the Message Bus service, the security
protocol is PLAINTEXT.

A sample configuration when authentication is enabled and Messaging Bus is deployed on
instance 'quick' and namespace 'sr' is as follows:

applications.yaml

authentication:
 enabled: true

messagingBusConfig:
 namespace: sr
 instance: quick

Creating a Unified Topology Instance
To create a Unified Topology instance in your environment using the scripts that are provided
with the toolkit:

1. Run the following command to create a UTIA instance:

$COMMON_CNTK/scripts/create-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology

The create-applications script uses the helm chart located in $COMMON_CNTK/charts/
unified-topology-app to create and deploy a unified-topology service.

2. If the scripts fail, see the Troubleshooting Issues section at the end of this topic, before
you make additional attempts.

Accessing Unified Topology
Proxy Settings

To set the proxy settings:

1. In the browser's network no-proxy settings include *<hostSuffix>. For example,
*uim.org.

2. In /etc/hosts include etc/hosts

<k8s cluster ip or loadbalancerIP>
<instance>.<project>.topology.<hostSuffix>

for example: <k8s cluster ip or external loadbalancer ip>
quick.sr.topology.uim.org

Exercise Unified Topology service endpoints

If TLS is enabled on Unified Topology, exercise endpoints using Hostname <topology-
instance>.<topology-project>.topology.uim.org.

Chapter 5
Creating a Unified Topology Instance

5-19

Unified Topology UI endpoint format: https://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<port>/apps/unified-topology-ui

Unified Topology API endpoint format: https://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<port>/topology/v2/vertex

• Unified Topology UI endpoint: https://quick.sr.topology.uim.org:30443/apps/unified-
topology-ui

• Unified Topology API endpoint: https://quick.sr.topology.uim.org:30443/
topology/v2/vertex

If TLS is not enabled on Unified Topology, exercise endpoints:

Unified Topology UI endpoint format: http://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<port>/apps/unified-topology-ui

Unified Topology API endpoint format: http://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<port>/topology/v2/vertex

Validating the Unified Topology Instance
To validate the UTIA instance:

1. Run the following to check the status of unified-topology instance deployed.

$COMMON_CNTK/scripts/application-status.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology

The application-status script returns the status of unified topology service
deployments and pods status.

2. Run the following endpoint to monitor health of unified-topology:

https://<loadbalancerhost>:<loadbalancerport>/unified-topology/
health

3. Run the following Unified Topology service endpoints to add entry in /etc/hosts
<k8s cluster ip or external loadbalancer ip> quick.sr.topology.uim.org:

• Unified Topology UI endpoint: https://
quick.sr.topology.uim.org:30443/apps/unified-topology-ui

• Unified Topology API endpoint: https://
quick.sr.topology.uim.org:30443/topology/v2/vertex

Deploying the Graph Server Instance
Graph Server or Pgx Server instance is needed for Path Analysis. By default,
replicaCount of pgx(graph) server pods is set to '0'. For path analysis to function , set
the replicaCount of pgx pods to '2' and upgrade instance. See "Upgrade Unified
Topology Instance" for more information.

Chapter 5
Deploying the Graph Server Instance

5-20

A cron job must be scheduled to periodically reload the active unified-topology-pgx pod.

pgx:
 pgxName: "unified-pgx"
 replicaCount: 2
 java:
 user_mem_args: "-Xms8000m -Xmx8000m -XX:+HeapDumpOnOutOfMemoryError -
XX:HeapDumpPath=/logMount/$(APP_PREFIX)/unified-topology/unified-pgx/"
 gc_mem_args: "-XX:+UseG1GC"
 options:
 resources:
 limits:
 cpu: "4"
 memory: 16Gi
 requests:
 cpu: 3500m
 memory: 16Gi

Scheduling the Graph Server Restart CronJob
Once the instance is created succesfully, cronjob needs to schedule for unified-topology-pgx
pod restarts. For a scheduled period of time, one of the unified-topology-pgx pod is restarted
and all incoming requests are routed to other unfified-topology-pgx pod seamlessly.

Update the script $COMMON_CNTK/samples/cronjob-scripts/pgx-restart.sh to include
required environment variables - KUBECONFIG, pgx_ns, pgx_instance. For a basic instance,
pgx_ns is sr and pgx_instance is quick.

export KUBECONFIG=<kube config path>
export pgx_ns=<unified-topology project name>
export pgx_instance=<unified-topology instance name>
pgx_pods=`kubectl get pods -n $pgx_ns --sort-by=.status.startTime -o name |
awk -F "/" '{print $2}' | grep $pgx_instance-unified-pgx`
pgx_pod_arr=($pgx_pods)
echo "Deleting pod - ${pgx_pod_arr[0]}"
kubectl delete pod ${pgx_pod_arr[0]} -n $pgx_ns --grace-period=0

The following crontab is scheduled for every day midnight. Scheduled time may vary
depending on the volume of data.

Variable $COMMON_CNTK should be set in environment where cronjob runs or
replace $COMMON_CNTK with complete path.

crontab –e 0 0 * * * $COMMON_CNTK/samples/cronjob-scripts/pgx-restart.sh
> $COMMON_CNTK/samples/cronjob-scripts/pgx-restart.log

Affinity on Graph Server
If multiple PGX pods are scheduled on the same worker node, the memory consumption by
these PGX pods becomes very high. To address this, include the following affinity rule in
applications.yaml, under the unified-topology chart to avoid scheduling of multiple PGX
pods on the same worker node.

Chapter 5
Deploying the Graph Server Instance

5-21

The following podantiaffinity rule uses the app= <topology-project>-<topology-
instance>-unified-pgx label. Update the label with the corresponding project and
instance names for UTIA service. For example: sr-quick-unified-pgx.

unified-topology:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - <topology-project>-<topology-instance>-unified-pgx
 topologyKey: "kubernetes.io/hostname"

Upgrading the Unified Topology Instance
Upgrading Unified Topology is required when there are updates made to
applications.yaml and topology-static-config.yaml and topology-dynamic-
config.yaml configuration files.

Run the following command to upgrade unified topology service.

$COMMON_CNTK/scripts/upgrade-applications.sh -p sr -i quick -
f $COMMON_CNTK/samples/applications.yaml -a unified-topology

After script execution is done, validate the unified topology service by running
application-status script.

Restarting the Unified Topology Instance
To restart the Unified Topology instance:

1. Run the following command to restart unified topology service

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology -r all

2. After running the script, validate the unified topology service by running
application-status script.

3. To restart unified-topology-api/unified-topology-ui/unified-pgx, run the above
command by passing -r with service name as follows:

4. To restart Unified Topology API

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology -r
unified-topology-api

Chapter 5
Upgrading the Unified Topology Instance

5-22

5. To restart Unified Topology PGX

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology -r unified-pgx

6. To restart Unified Topology UI:

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology -r unified-
topology-ui

7. To restart Unified Topology Consumer

$COMMON_CNTK/scripts/restart-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology -r unified-
topology-consumer

Alternate Configuration Options for UTIA
You can configure UTIA using the following alternate options.

Setting up Secure Communication using TLS
When Unified Topology service is involved in secure communication with other systems,
either as the server or as the client, you should additionally configure SSL/TLS.The
procedures for setting up TLS use self-signed certificates for demonstration purposes.
However, replace the steps as necessary to use signed certificates.

To setup secure communication using TLS:

1. Generate keystore by passing commoncert.pem and commonkey.pem generated while
OAM setup for inputs. Provide -name "param".

openssl pkcs12 -export -in $COMMON_CNTK/certs/commoncert.pem -
inkey $COMMON_CNTK/certs/commonkey.pem -out $COMMON_CNTK/certs/
keyStore.p12 -name "topology"

2. Edit the $SPEC_PATH/sr/quick/applications.yaml and set tls enabled to true. Provide tls
strategy to be used either terminate or reencrypt. Tls strategy should be RENCRYPT If
authetication is enabled using OHS service enabled with SSL.

tls:
 # The enabled flag is to enable or disable the TLS support for the
unified topology m-s end points
 enabled: true
 # valid values are TERMINATE, REENCRYPT
 strategy: "REENCRYPT"

Chapter 5
Alternate Configuration Options for UTIA

5-23

Note:

TLS terminate strategy requires ingressTLS secret and TLS reencrypt
requires both ingressTLS and appkeystore secrets to be created.

3. Create IngressTLS secret to pass the generated certificate and key pem files.

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create
ingressTLS

4. The script prompts for the following detail:

a. Ingress TLS Certificate Path (PEM file): <path_to_cert.pem>

b. Ingress TLS Key file Path (PEM file): <path_to_key.pem>

5. Create appkeystore secret to pass the generated keystore file.

$COMMON_CNTK/scripts/manage-app-credentials.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology create
appKeystore

6. The script prompts for the following detail:

• App TLS Keystore Passphrase: <export password value passed while creating
keyStrore.p12 key>

• App TLS Keystore Key Alias: <-name "param" passed while creating
keyStore.p12 key>

• App TLS Keystore PrivateKey Path: <path to keyStore.p12>

7. Verify that the following secrets are created successfully.

sr-quick-unified-topology-ingress-tls-cert-secret
sr-quick-unified-topology-keystore

8. Create Unified Topology Instance as usual. Access Topology endpoints using
hostname <topology-instance>.<topology-instance>.topology.uim.org

9. Add entry in /etc/hosts <k8s cluster ip or external loadbalancer ip>
quick.sr.topology.uim.org

10. Unified Topology UI endpoint: https://
quick.sr.topology.uim.org:30443/apps/unified-topology-ui

11. Unified Topology API endpoint: https://
quick.sr.topology.uim.org:30443/topology/v2/vertex

Setting up Secure Outgoing Communication using TLS

As part of the secret created under section Creating Secrets for Authentication
Server details,, a truststore is created by adding OAM server certificate. This enables
secure communication between OAM and UTIA applications.

Chapter 5
Alternate Configuration Options for UTIA

5-24

Similarly, to enable secure outgoing communication between the server and UTIA, perform
the steps mentioned in the section Creating Secrets for Authentication Server details.

1. Add server certificates to the truststore.

2. Recreate the secret using Creating Secrets for Authentication Server details.

3. Upgrade the UTIA instance to take the latest truststore from secret. To upgrade UTIA,
see Upgrade Unified Topology Instance section.

For example: To enable SSL outgoing communication from UTIA to UIM on premise
application, Add UIM certificates to the truststore and recreate the secret and upgrade UTIA
application.

Note:

Follow the standard procedure for certificate creation. If UIM Inventory is accessed
using IP address/Hostname of the machine, UIM certificate should contain IP
address/Hostname of the machine as subject alternative name in the certificate.
Sample command for certificate creation along with subject alternative names (Both
the cloud native value and subject alternative names has hostname entry):

openssl req -x509 -newkey rsa:2048 -days 365 -keyout key.pem -out
cert.pem -nodes -subj "/CN=<hostname> /ST=TL /L=HYD /O=ORACLE /
OU=CAGBU" -extensions san -config <(echo '[req]'; echo
'distinguished_name=req'; echo '[san]';echo
'subjectAltName=@alt_names';echo '[alt_names]';echo
'DNS.1=<hostname>';echo 'DNS.2=localhost';echo
'DNS.3=svc.cluster.local';)

Choosing Worker Nodes for Unified Topology Service
By default, Unified Topology has its pods scheduled on all worker nodes in the Kubernetes
cluster in which it is installed. However, in some situations, you may want to choose a subset
of nodes where pods are scheduled.

For example:

Limitation on the deployment of Unified Topology on specific worker nodes per each team for
reasons such as capacity management, chargeback, budgetary reasons, and so on.

To choose a subset of nodes where pods are scheduled, you can use the configuration in the
applications.yaml file.

Sample node affinity configuration(requiredDuringSchedulingIgnoredDuringExecution) for
unified topology service:

applications.yaml

unified-topology:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:

Chapter 5
Alternate Configuration Options for UTIA

5-25

 - matchExpressions:
 - key: name
 operator: In
 values:
 - south_zone

Kubernetes pod is scheduled on the node with label name as south_zone. If node with
label name: south_zone is not available, pod will not be scheduled.

Sample node affinity configuration
(preferredDuringSchedulingIgnoredDuringExecution:) for unified topology service:

applications.yaml

unified-topology:
 affinity:
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: name
 operator: In
 values:
 - south_zone

Kubernetes pod is scheduled on the node with label name as south_zone. If node with
label name: south_zone is not available, pod will still be scheduled on another node.

Setting up Persistent Storage
Follow the instructions mentioned in UIM Cloud Native Deployment guide for
configuring Kubernetes persistent volumes.

To create persistent storage:

1. Update applications.yaml to enable storage volume for unified topology service
and provide the persistent volume name.

storageVolume:
 enabled: true
 pvc: sr-nfs-pvc #Specify the storage-volume name

2. Update database.yaml to enable storage volume for unified topology dbinstaller
and provide the persistent volume name.

storageVolume:
 enabled: true
 type: pvc
 pvc: sr-nfs-pvc #Specify the storage-volume name

After the instance is created, you must see the directories unified-topology and
unified-topology-dbinstaller in your PV mount point, if you have enabled logs.

Chapter 5
Alternate Configuration Options for UTIA

5-26

Managing Unified Topology Logs
To customize and enable logging, update the logging configuration files for the application.

1. Customize unified-topology-api service logs:

• For service level logs update file $COMMON_CNTK/charts/unified-topology-app/
charts/unified-topology/config/topology-api/logging-config.xml

• For Helidon-specific logs update file $COMMON_CNTK/charts/unified-topology-app/
charts/unified-topology/config/topology-api/logging.properties. By default console
handler is used, you can provide filehandler as well uncomment below lines and
provide <project> and <instance> names for location to save logs

handlers=io.helidon.common.HelidonConsoleHandler,java.util.logging.Fil
eHandler
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormat
ter
java.util.logging.FileHandler.pattern=/logMount/sr-quick/unified-
topology/unified-topology-api/logs/TopologyJULMS-%g-%u.log

2. Customize unified-topology-pgx service logs:
Update file $COMMON_CNTK/charts/unified-topology-app/charts/unified-topology/
config/pgx/logging-config.xml

3. Customize unified-topology-ui service logs:
Update file $COMMON_CNTK/charts/unified-topology-app/charts/unified-topology/config/
topology-ui/logging.properties

4. Update the logging configuration files and upgrade the unified-topology m-s application:

$COMMON_CNTK/scripts/upgrade-applications.sh -p sr -i quick -f $SPEC_PATH/
applications.yaml -a unified-topology

Viewing Logs using Elastic Stack
You can view and analyze the Unified Topology service logs using Elastic Stack.

The logs are generated as follows:

• Fluentd collects the text logs that are generated during Unified Topology deployment and
sends them to Elasticsearch.

• Elasticsearch collects all types of logs and converts them into a common format so that
Kibana can read and display the data.

• Kibana reads the data and presents it in a simplified view.

See "Setting Up Elastic Stack" for more information.

Setting Up Elastic Stack
To set up Elastic Stack:

Chapter 5
Alternate Configuration Options for UTIA

5-27

1. Install Elasticsearch and Kibana using the following commands:

#Install elasticsearch and kibana . It might take time to download
images from docker hub.
kubectl apply -f $COMMON_CNTK/samples/charts/elasticsearch-and-
kibana/elasticsearch_and_kibana.yaml

#Check if services are running, append namespace if deployment is
other than default like:- kubectl get services --all-namespaces
kubectl get services

Access kibana dashboard

Method 1 - kubectl get svc (will return all the services , append
namespace if deployment is other than default like:- kubectl get
services --all-namespaces)

Ex- elasticsearch ClusterIP 10.96.190.99 <none> 9200/
TCP,9300/TCP 113d
 kibana NodePort 10.100.198.88 <none>
5601:31794/TCP 113d

Kibana service nodeport at port 31794 is created

Now access kibana dashboard using url - http://<IP address of
VM>:<nodeport>/

2. Run the following command to create a namespace ensuring that it does not
already exist.

kubectl get namespaces
export FLUENTD_NS=fluentd
kubectl create namespace $FLUENTD_NS

3. Update $COMMON_CNTK/samples/charts/fluentd/values.yaml with Elastic Search
Host and Port.

elasticSearch:
 host: "elasticSearchHost"
 port: "elasticSearchPort"

For example:

elasticSearch:
 host: "elasticsearch.default.svc.cluster.local"
 port: "9200"

4. Modify the Fluentd image resources if required.

image: fluent/fluentd-kubernetes-daemonset:v1-debian-elasticsearch
 resources:
 limits:
 memory: 200Mi
 requests:

Chapter 5
Alternate Configuration Options for UTIA

5-28

 cpu: 100m
 memory: 200Mi

5. Run the following commands to install fluentd-logging using the $COMMON_CNTK/
samples/charts/fluentd/values.yaml file in the samples:

helm install fluentd-logging $COMMON_CNTK/samples/charts/fluentd -
n $FLUENTD_NS --values $COMMON_CNTK/samples/charts/fluentd/values.yaml \
--set namespace=$FLUENTD_NS \
--atomic --timeout 800s

6. Run the following command to upgrade fluentd-logging:

helm upgrade fluentd-logging $COMMON_CNTK/samples/charts/fluentd -
n $FLUENTD_NS --values $COMMON_CNTK/samples/charts/fluentd/values.yaml \
 --set namespace=$FLUENTD_NS \
 --atomic --timeout 800s

7. Run the following command to uninstall fluentd-looging:

helm delete fluentd-logging -n $FLUENTD_NS

8. Use 'fluentd_looging-YYYY.MM.DD' (default index configuration) index pattern in Kibana
to check the logs.

Visualize logs in Kibana

To visualize logs in Kibana:

1. Navigate to Kibana dashboard (http://<IP address of VM>:<nodeport>/).

2. Create Index pattern (fluentd_looging-YYYY.MM.DD).

3. Click on Discover.

Viewing Logs using OpenSearch
You can view and analyze the Application logs using OpenSearch.

The logs are generated as follows:

1. Fluentd collects the application logs that are generated during cloud native deployments
and sends them to OpenSearch.

2. OpenSearch collects all types of logs and converts them into a common format so that
OpenSearch Dashboard can read and display the data.

3. OpenSearch Dashboard reads the data and presents it in a simplified view.

See "Setting Up OpenSearch" for more information.

Managing Unified Topology Metrics
Run the following endpoint to monitor metrics of unified topology:

https://<loadbalancerhost>:<loadbalancerport>/sr/quick/unified-topology/
metrics

Chapter 5
Alternate Configuration Options for UTIA

5-29

Prometheus and Grafana setup

See "Setting Up Prometheus and Grafana" for more information.

Adding scrape Job in Prometheus

Add the following Scrape job in Prometheus Server. This can be added by editing the
config map used by the Prometheus server:

- job_name: 'topologyApiSecuredMetrics'
 oauth2:
 client_id: <client-id>
 client_secret: <client-secret>
 scopes:
 - <Scope>
 token_url: <OAUTH-TOKEN-URL>
 tls_config:
 insecure_skip_verify: true
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels:
[__meta_kubernetes_pod_annotation_prometheus_io_scrape]
 action: keep
 regex: true
 - source_labels: [__meta_kubernetes_pod_label_app]
 action: keep
 regex: (<project>-<instance>-unified-topology-api)
 - source_labels: [__meta_kubernetes_pod_container_port_number]
 action: keep
 regex: (8080)
 - source_labels:
[__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: kubernetes_namespace
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: kubernetes_pod_name

Chapter 5
Alternate Configuration Options for UTIA

5-30

Note:

If Authentication is not enabled on Unified Topology, remove oauth section from
above mentioned job.

Allocating Resources for Unified Topology Service Pods
To increase performance of the service, applications.yaml has configuration to provide JVM
memory settings and pod resources for Unified Topology Service.

There are separate configurations provided for topology-api, topology-consumer, pgx and
topology-ui services. Provide required values under the service name under unified-topology
application.

unified-topology:
 topologyApi:
 apiName: "unified-topology-api"
 replicaCount: 3
 java:
 user_mem_args: "-Xms2000m -Xmx2000m -XX:+HeapDumpOnOutOfMemoryError -
XX:HeapDumpPath=/logMount/$(APP_PREFIX)/unified-topology/unified-topology-
api/"
 gc_mem_args: "-XX:+UseG1GC"
 options:
 resources:
 limits:
 cpu: "2"
 memory: 3Gi
 requests:
 cpu: 2000m
 memory: 3Gi

Scaling Up or Scaling Down the Unified Topology Service
Provide replica count in applications.yaml to scale up or scale down the unified topology
pods. Replica count can be configured for topology-api, topology-consumer, pgx and
topology-ui pods individually by updating applications.yaml.

Update applications.yaml to increase replica count to 3 for topology-api deployment.

unified-topology:
 topologyApi:
 replicaCount: 3

Apply the change in replica count to the running Helm release by running the upgrade-
applications script.

$COMMON_CNTK/scripts/upgrade-applications.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/applications.yaml -a unified-topology

Chapter 5
Alternate Configuration Options for UTIA

5-31

Enabling GC Logs for UTIA
By default, GC logs are disabled, you can enable them and view the logs at the
corresponding folders inside location /logMount/sr-quick/unified-topology.

To Enable GC logs, update $SPEC_PATH/sr/quick/applications.yaml file as follows:

1. Under gcLogs make enabled as true you can uncomment gcLogs options
under unified-topology to override the common values.

2. To configure the maximum size of each file and limit for number of files you need
to set fileSize and noOfFiles inside gcLogs as follows:

gcLogs:
 enabled: true
 fileSize: 10M
 noOfFiles: 10

Geo Redundancy Support
The Geo Redundancy of Message Bus (which uses Kafka) is achieved with Mirror
Maker tool. Apache Kafka Mirror Maker replicates data across two Kafka clusters,
within or across data centers. See https://strimzi.io/blog/2020/03/30/introducing-
mirrormaker2/ for more details.

The following diagram shows an example of how mirror maker replicates the topics
from source Kafka cluster to target Kafka cluster.

The prerequisites are as follows:

• The Strimzi operator should be up and running

• The source Message Bus service should be up and running

• The target Message Bus service should be up and running

Chapter 5
Geo Redundancy Support

5-32

https://strimzi.io/blog/2020/03/30/introducing-mirrormaker2/
https://strimzi.io/blog/2020/03/30/introducing-mirrormaker2/

Strimzi Operator

Validate that the Strimzi operator is installed by running the following command:

$kubectl get pod -n <STRIMZI_NAMESPACE>

NAME READY STATUS RESTARTS AGE
strimzi-cluster-operator-566948f58c-sfj7c 1/1 Running
0 6m55s

Validate installed helm release for Strimzi operator by running the following command:

$helm list -n <STRIMZI_NAMESPACE>

NAME NAMESPACE REVISION STATUS
CHART APP VERSION
strimzi-operator STRIMZI_NAMESPACE 1 deployed
strimzi-kafka-operator-0.X.0 0.X.0

Source Message Bus

The source Message Bus should be up and running (the Kafka cluster from which the topics
should be replicated).

Validate the Kafka cluster is installed by running the following command:

$kubectl get pod -n sr1

 NAME READY STATUS
RESTARTS AGE
 sr1-quick1-messaging-entity-operator-5f9c688c7-2jcjg 3/3 Running
0 27h
 sr1-quick1-messaging-kafka-0 1/1 Running
0 27h
 sr1-quick1-messaging-zookeeper-0 1/1 Running
0 27h

Validate the persistent volume claims created for the Kafka cluster by running the following
command:

$kubectl get pvc -n sr1

NAME STATUS
VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
data-sr1-quick1-messaging-kafka-0 Bound <volume> 1Gi
RWO sc 27h
data-sr1-quick1-messaging-zookeeper-0 Bound <volume> 1Gi
RWO sc

Chapter 5
Geo Redundancy Support

5-33

Target Message Bus

The target Message Bus should be up and running (the Kafka cluster to which the
topics should be replicated).

Validate the Kafka cluster is installed by running the following command:

$kubectl get pod -n sr2

 NAME READY
STATUS RESTARTS AGE
 sr2-quick2-messaging-entity-operator-5f9c688c7-2jcjg 3/3
Running 0 27h
 sr2-quick2-messaging-kafka-0 1/1
Running 0 27h
 sr2-quick2-messaging-zookeeper-0 1/1
Running 0 27h

Validate the persistent volume claims created for the Kafka cluster by running the
following command:

$kubectl get pvc -n <kafka target namespace>`

NAME STATUS
VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
data-sr2-quick2-messaging-kafka-0 Bound <volume> 1Gi
RWO sc 27h
data-sr2-quick2-messaging-zookeeper-0 Bound <volume> 1Gi
RWO sc 27h

Installing and configuring Mirror Maker 2.0

A sample is provided at $COMMON_CNTK/samples/messaging/kafka-mirror-
maker.

Disaster Recovery Support
A minimum of two pods is required for a service to be highly available. They should be
on different worker nodes (Kubernetes can schedule the pods on different nodes using
pod anti-affinity). If one node goes down, it takes out the corresponding pod, leaving
the other pod(s) to handle the requests until the downed pod can be rescheduled.
When a worker node goes down, the PODs running on that worker node will be
rescheduled on other available worker nodes.

For DB High Availability we can use the Oracle Real Application Clusters (RAC) to run
a single Oracle Database across multiple servers in order to maximize availability and
enable horizontal scalability.

Disaster Recovery across Data Centers
The disaster recovery when the data center completely goes down is maintained with
another passive data center.

Chapter 5
Disaster Recovery Support

5-34

Figure 5-2 documents the disaster recovery plan for the data center. A parallel passive data
center is maintained, where the runtime data is periodically replicated from the active data
center to the passive data center. In the event of any catastrophic failures in the primary (or
active) data center, the load must be switched to secondary (or passive) data center. Before
switching the load to secondary data center, you should shutdown all the services in the
primary data center and start all the services in the secondary data center.

Figure 5-2 Disaster Recovery Plan for Data Center

About Switchover and Failover
The purpose of a geographically redundant deployment is to provide resiliency in the event of
a complete loss of service in the primary site, due to a natural disaster or other unrecoverable

Chapter 5
Disaster Recovery Support

5-35

failure in the primary UIM site. This resiliency is achieved by creating one or more
passive standby sites that can take the load when the primary site becomes
unavailable. The role reversal from the standby site to the primary site can be
accomplished in any of the following ways:

• Switchover, in which the operator performs a controlled shutdown of the primary
site before activating the standby site. This is primarily intended for planned
service interruptions in the primary UIM site. Following a switchover, the former
primary site becomes the standby site. The site roles of primary site and standby
site can be restored by performing a second switchover operation, which is
switchback.

• Failover, in which the primary site becomes unavailable due to unanticipated
reasons and cannot be recovered. The operator then transitions the standby site
to the primary role. The primary site that is down cannot act as a standby site and
will require reconstruction of the database as a standby database before restoring
the site roles.

About Kafka Mirror Maker
Kafka's Mirror Maker functionality makes it possible to maintain a replica of an existing
Kafka cluster (which is used in Message Bus service). This mirrors a source Kafka
cluster into a target (mirror) Kafka cluster. To use this mirror, it is a requirement that the
source and target Kafka clusters (that is, Message Bus service) are up and running. If
the target Kafka cluster is down or offline, we cannot mirror into the target cluster.

Oracle Data Guard

Oracle Data Guard is responsible for replicating transactions from the Active DB to the
Standby DB. It is included as a part of every Oracle DB Enterprise Edition installation.

Note:

When using multi-tenant databases involving CDBs and PDBs with Data
Guard, the replication happens at the CDB level. This means all the PDBs
from the active CDB will be replicated over to the standby CDB and also, the
commands to enable Data Guard must be run at the CDB level.

Installation and Configuration
If UTIA is disabled in UIM Cloud Native then it is not required to deploy Message Bus,
UTIA and Mirror Maker Services in the clusters. These commands are intended to be
used as samples. For detailed documentation on deploying UIM, see UIM Cloud
Native Deployment Guide.

Setting up the Primary (active) Instance
To set up the primary (active) instance:

1. Provision Databases one for the primary site and another for the secondary site.

Chapter 5
Disaster Recovery Support

5-36

2. Set up Data Guard between primary site and secondary site. Primary site should be in
ACTIVE role. Secondary site should be in STANDBY role. Refer to Oracle 19c
Documentation.

3. Deploy UIM Cloud Native.

a. Create image pull secrets (if required).

b. Create UIM secrets for WLS admin, OPSS, WLS RTE, RCU DB and UIM DB.

Note:

uimprimary here refers to the Kubernetes namespace where the primary
instance will be deployed. Replace this with the desired namespace.

$UIM_CNTK/scripts/manage-instance-credentials.sh -p uimprimary -i dr
create wlsadmin,opssWP,wlsRTE,rcudb,uimdb

c. Create Weblogic encrypted password.

$UIM_CNTK/scripts/install-uimdb.sh -p uimprimary -i dr -s $SPEC_PATH -
c 8

d. Create UIM users secrets.

$UIM_CNTK/samples/credentials/manage-uim-credentials.sh -p uimprimary
-i dr -c create -f "/home/spec_dir/users.txt"

e. Create DB schemas.

$UIM_CNTK/scripts/install-uimdb.sh -p uimprimary -i dr -s $SPEC_PATH -
c 1
$UIM_CNTK/scripts/install-uimdb.sh -p uimprimary -i dr -s $SPEC_PATH -
c 2

f. Create UIM instance.

$UIM_CNTK/scripts/create-ingress.sh -p uimprimary -i dr -s $SPEC_PATH
$UIM_CNTK/scripts/create-instance.sh -p uimprimary -i dr -s $SPEC_PATH

g. Add UIM user roles.

$UIM_CNTK/samples/credentials/assign-role.sh -p uimprimary -i dr -f
uim-users-roles.txt

4. Deploy Message Bus.

$COMMON_CNTK/scripts/create-applications.sh -p uimprimary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a messaging-bus

5. Deploy UTIA:

Chapter 5
Disaster Recovery Support

5-37

https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/getting-started-with-oracle-data-guard.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/getting-started-with-oracle-data-guard.html

a. Create Topology DB secrets:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimprimary -i
dr -f $SPEC_PATH/<project>/<instance>/applications.yaml -a
unified-topology create database

b. Create Topology UIM secrets:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimprimary -i
dr -f $SPEC_PATH/<project>/<instance>/applications.yaml -a
unified-topology create uim

c. Create Topology users:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimprimary -i
dr -f $SPEC_PATH/<project>/<instance>/applications.yaml -a
unified-topology create appUsers

d. Create Topology UI users:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimprimary -i
dr -f $SPEC_PATH/<project>/<instance>/applications.yaml -a
unified-topology create appUIUsers

e. Create DB schemas:

$COMMON_CNTK/scripts/install-database.sh -p uimprimary -i dr -
f $SPEC_PATH/<proejct>/<instance>/database.yaml -a unified-
topology -c 1

f. Deploy Topology:

$COMMON_CNTK/scripts/create-applications.sh -p uimprimary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-
topology

See "Deploying Unified Operations Message Bus" for deploying Message Bus,
"Deploying the Unified Topology for Inventory and Automation Service" for deploying
UTIA.

See UIM Cloud Native Deployment Guide for deploying UIM.

Setting up the Secondary (standby) Instance
To set up the secondary (standby) instance:

1. Perform switchover operation on active (primary site) DB. Now secondary site DB
should be in ACTIVE role and primary site DB should be in PASSIVE role. Refer
to Oracle 19c Documentation.

2. Deploy UIM Cloud Native:

a. Export OPSS wallet file secret from primary instance and recreate in
secondary instance.

Chapter 5
Disaster Recovery Support

5-38

https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/getting-started-with-oracle-data-guard.html

Note:

Where, uimsecondary refers to the Kubernetes namespace where the
secondart instance will be deployed. Replace this with the desired
namespace.

kubectl -n uimprimary get configmap uimprimary-dr-weblogic-domain-
introspect-cm -o jsonpath='{.data.ewallet\.p12}' > ./
primary_ewallet.p12
$UIM_CNTK/scripts/manage-instance-credentials.sh -p uimsecondary -i
dr create opssWF

b. (Optional) Create image pull secrets.

c. Create UIM secrets for WLS admin, OPSS, WLS RTE, RCU DB and UIM DB:

$UIM_CNTK/scripts/manage-instance-credentials.sh -p uimsecondary -i
quick create wlsadmin,opssWP,wlsRTE,rcudb,uimdb

d. Create Weblogic encrypted password:

$UIM_CNTK/scripts/install-uimdb.sh -p uimsecondary -i dr -
s $SPEC_PATH -c 8

e. Create UIM users secrets:

$UIM_CNTK/samples/credentials/manage-uim-credentials.sh -p
uimsecondary -i dr -c create -f "/home/spec_dir/users.txt"

f. Create UIM instance:

$UIM_CNTK/scripts/create-ingress.sh -p uimsecondary -i dr -
s $SPEC_PATH
$UIM_CNTK/scripts/create-instance.sh -p uimsecondary -i dr -
s $SPEC_PATH

g. Add UIM user roles:

$UIM_CNTK/samples/credentials/assign-role.sh -p uimsecondary -i dr -f
uim-users-roles.txt

3. Deploy message bus:

$COMMON_CNTK/scripts/create-applications.sh -p uimsecondary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a messaging-bus

4. Deploy UTIA:

Chapter 5
Disaster Recovery Support

5-39

a. Create Topology DB secrets:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimsecondary -
i dr -f $SPEC_PATH/<project>/<instance>/applications.yaml -a
unified-topology create database

b. Create Topology UIM secrets:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimsecondary -
i dr -f $SPEC_PATH/<project>/<instance>/applications.yaml -a
unified-topology create uim

c. Create Topology users:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimsecondary -
i dr -f $SPEC_PATH/<project>/<instance>/applications.yaml -a
unified-topology create appUsers

d. Create Topology UI users:

$COMMON_CNTK/scripts/manage-app-credentials.sh -p uimsecondary -
i dr -f $SPEC_PATH/<project>/<instance>/applications.yaml -a
unified-topology create appUIUsers

e. Deploy Topology:

$COMMON_CNTK/scripts/create-applications.sh -p uimsecondary -i
dr -f $SPEC_PATH/<project>/<instance>/applications.yaml -a
unified-topology

5. Deploy Mirror Maker. See "Installing and Configuring Mirror Maker 2.0" for more
information.

6. After the secondary instance has been setup, switchover back to the primary
(active) site.

Switchover Sequence
To perform a switchover between site A (active) and site B (standby):

1. Bring down instances in site A. These include UIM and UTIA. Message Bus must
be enabled to perform the replication using Mirror Maker.

#Disable topology
$COMMON_CNTK/scripts/delete-applications.sh -p uimprimary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-
topology
#Disable UIM
$UIM_CNTK/scripts/delete-instance.sh -p uimprimary -i dr -
s $SPEC_PATH

2. Perform switchover on DB. Site B DB will now become Primary. Site B DB will
assume Standby role. Refer to Oracle 19c Documentation.

Chapter 5
Disaster Recovery Support

5-40

https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/getting-started-with-oracle-data-guard.html

3. Bring up instances in site B. This includes UIM and UTIA. Message Bus should already
be active:

#EnableUIM
$UIM_CNTK/scripts/create-instance.sh -p uimsecondary -i dr -s $SPEC_PATH
#Enable topology
$COMMON_CNTK/scripts/create-applications.sh -p uimsecondary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology

4. Perform DNS switching to route all traffic to site B.

Failover Sequence
In case of any irrecoverable failure in the primary site, perform a failover operation on the
standby site. To do so:

1. Perform failover on DB. Standby (secondary) DB will now become Primary. Primary site
DB will assume Deactivated Standby role. Refer to Oracle 19c Documentation.

2. Bring up instances in standby. This includes UIM and Topology. Message Bus should
already be active:

#EnableUIM
$UIM_CNTK/scripts/create-instance.sh -p uimsecondary -i dr -s $SPEC_PATH
#Enable topology
$COMMON_CNTK/scripts/create-applications.sh -p uimsecondary -i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology

3. Perform DNS switching to route all traffic to secondary instances.

Once the primary site to restored, establish a synchronization between secondary and
primary site. To do so:

1. Bring up Message Bus and DB in primary site:

#Enable message bus
$COMMON_CNTK/scripts/create-applications.sh -p uimprimary-i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a messaging-bus

2. Setup Kafka Mirror Maker with secondary Message Bus as source and primary Message
Bus as target. See "About Kafka Mirror Maker" for more information.

3. Switch primary DB role from Deactivated Standby → Standby. See Deploying Unified
Operations Message Bus for more information.

As the synchronization between secondary and primary site is established, perform a
switchover to the primary site. To do so:

1. Bring up UIM in primary site:

$UIM_CNTK/scripts/create-instance.sh -p uimprimary -i dr -s $SPEC_PATH

2. Bring up Topology in primary site:

$COMMON_CNTK/scripts/create-applications.sh -p uimprimary-i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-topology

Chapter 5
Disaster Recovery Support

5-41

https://docs.oracle.com/en/database/oracle/oracle-database/19/sbydb/getting-started-with-oracle-data-guard.html

3. Perform DNS switching to route all traffic to primary instances.

4. Bring down instances in secondary site. This includes UIM and Topology. Message
Bus should remain active for Kafka Mirror Maker synchronization:

#Disable topology
$COMMON_CNTK/scripts/delete-applications.sh -p uimsecondary-i dr -
f $SPEC_PATH/<project>/<instance>/applications.yaml -a unified-
topology
#Disable UIM
$UIM_CNTK/scripts/delete-instance.sh -p uimsecondary -i dr -
s $SPEC_PATH

Debugging and Troubleshooting
Common Problems and Solutions

• Unified Topology DBInstaller pod is not able to pull the dbinstaller image.

NAME READY
STATUS RESTARTS AGE
project-instance-unifed-topology-dbinstaller 0/1
ErrImagePull 0 5s

OR

NAME READY
STATUS RESTARTS AGE
project-instance-unifed-topology-dbinstaller 0/1
ImagePullBackOff 0 45s

To resolve this issue

1. Verify that the image name and the tag provided in database.yaml for unified-
topology-dbinstaller and that it is accessible from the repository by the pod.

2. Verify that the image is copied to all worker nodes.

3. If pulling image from a repository, verify the image pull policy and image pull
secret in database.yaml for unified-topology-dbinstaller.

• Unified Topology API, PGX and UI pod is not able to pull the images.

To resolve this issue

1. Verify that the image names and the tags are provided in applications.yaml
for unified-topology and that it is accessible from the repository by the pod.

2. Verify that the image is copied to all worker nodes

3. If pulling image from a repository, verify the image pull policy and image pull
secret in applications.yaml for UTIA service.

• Unified Topology pods are in crashloopbackoff state.

To resolve this issue, describe the Kubernetes pod and find the cause for the
issue. It could be because of missing secrets.

Chapter 5
Debugging and Troubleshooting

5-42

• Unified Topology API pod did not come up.

NAME READY STATUS
RESTARTS AGE
project-instance-unifed-topology-api 0/1 Running 0 5s

To resolve this issue, verify that the Message Bus bootstrap server provided in topology-
static-config.yaml is a valid one.

Test Connection to PGX server

To troubleshoot PGX service, connect to pgx service using graph client by running the
following command.

Connect to pgx service endpoint http://<LoadbalancerIP>:<LoadbalancerPort>/<topology-
project>/<topology-instance>/pgx by providing pgx client user credentials.

C:\TopologyService\oracle-graph-client-22.1.0\oracle-graph-
client-22.1.0\bin>opg4j -b http://<hostIP>:30305/sr/quick/pgx -u
<PGX_CLIENT_USER>

password:<PGX_CLIENT_PASSWORD>
For an introduction type: /help intro
Oracle Graph Server Shell 22.1.0
Variables instance, session, and analyst ready to use.

Fallout Events Resolution
The TOPOLOGY_FALLOUT_EVENTS table in the UTIA schema, persists the failed events
from the Dead-Letter-Topic (that is: ora-dlt-topology) for further analysis and re-processing.
The data between UIM and UTIA can go out of sync when UIM application fails to send
topology events to message-bus and UIM transaction is committed. It can also happen when
topology is disabled in UIM temporarily and re-enabled, or when the UTIA is consuming
events at a much slower rate than that of the rate at which UIM is producing events. These
lead to UTIA data being out of sync with that of the UIM, hence resulting in failed events
eventually.

These failed events in the TOPOLOGY_FALLOUT_EVENTS table can be rebuilt and
resubmitted. When a fallout event comes into the table it’s in “PENDING” state. These events
can be Rebuilt or Resubmitted as follows:

• REBUILD: This action processes the Fallout Event and gets any out of sync data from
UIM into UTIA via the Database Link.

• RESUBMIT: This action takes the events from the TOPOLOGY_FALLOUT_EVENTS
table in “PENDING” or “READY_TO_RESUBMIT” states and moves them back into the
“ora_uim_topology” topic to be re-processed.

The following figure illustrates the fallout events resolution process flow.

Chapter 5
Fallout Events Resolution

5-43

Figure 5-3 Process Flow of Fallout Events Resolution

Prerequisites for REBUILD

• Before Rebuild is performed, the UTIA Schema user should have the following
privileges:

– CREATE JOB

– ALTER SYSTEM

– CREATE DATABASE LINK

• Ensure a Database Link exists from UTIA schema to UIM schema with the name
“REM_SCHEMA” (that is, UTIA schema user should be able to access objects
from UIM schema). For more information, see https://docs.oracle.com/en/
database/oracle/oracle-database/19/sqlrf/CREATE-DATABASE-LINK.html#GUID-
D966642A-B19E-449D-9968-1121AF06D793

Performing REBUILD Action

You can perform the Rebuild action in the following ways:

• DBMS Job Scheduling: In this approach the REBUILD action on the Fallout
Events in “PENDING” state is scheduled to run for every 6 hours. The frequency at
which the job runs automatically can be configured by changing the
repeat_interval.

BEGIN
 DBMS_SCHEDULER.create_job (
 job_name => 'FALLOUT_DATA_REBUILD',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN
PKG_FALLOUT_CORRECTION.SCHEDULE_FALLOUT_JOBS(commitSize => 1000,
cpusJobs => 4, waitTime => 2); END;',
 start_date => SYSTIMESTAMP,
 repeat_interval => 'FREQ=HOURLY; INTERVAL=6',

Chapter 5
Fallout Events Resolution

5-44

https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/CREATE-DATABASE-LINK.html#GUID-D966642A-B19E-449D-9968-1121AF06D793
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/CREATE-DATABASE-LINK.html#GUID-D966642A-B19E-449D-9968-1121AF06D793
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/CREATE-DATABASE-LINK.html#GUID-D966642A-B19E-449D-9968-1121AF06D793

 enabled => TRUE
);
END;
/

• On-Demand REST API Call: In this approach the REBUILD action on the Fallout Events
in “PENDING” state is invoked via the REST API. Before invoking the Rebuild API.

– POST - fallout/events/rebuild – To rebuild the Fallout Events on demand as and
whenever required.

– DELETE - fallout/events/scheduledJobs – To drop any running or previously
scheduled jobs.

Performing RESUBMIT Action

Resubmit Action is performed through a REST call and it takes the fallout events in
“READY_TO_RESUBMIT” (post Rebuild) and “PENDING” states based on the query
parameters and pushed the events into the “ora_uim_topology” topic:

POST - fallout/events/resubmit – To resubmit the Fallout Events on demand.

For more information on APIs available, see UTIA REST API Guide.

Deleting and Recreating a Unified Topology Instance
• Run the following command to delete the Unified Topology service:

$COMMON_CNTK/scripts/delete-applications.sh -p sr -i quick -
f $COMMON_CNTK/samples/applications.yaml -a unified-topology

• Run the following command to delete the Unified Topology schema:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $COMMON_CNTK/
samples/database.yaml -a unified-topology -c 2

• Run the following command to create the Unified Topology schema:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $COMMON_CNTK/
samples/database.yaml -a unified-topology -c 1

• Run the following command to create the Unified Topology service:

$COMMON_CNTK/scripts/create-applications.sh -p sr -i quick -
f $COMMON_CNTK/samples/applications.yaml -a unified-topology

Chapter 5
Deleting and Recreating a Unified Topology Instance

5-45

6
Data Migration and Dynamic Attribute
Mapping

This chapter describes how to perform the Data Migration and Dynamic Attribute Mapping.

Planning the Topology Migration
In preparation for implementing UTIA, you must set up the topology migration and the UIM to
topology configuration. The UIM to topology migration extracts and loads necessary
information from UIM into the topology graph model consisting of vertices and edges.
Following the Database per Service Micro service Design Pattern, the topology graph resides
in a Pluggable Database (PDB) container separated from the UIM database.

The migration consists of the following:

• Index Rebuilding: The index rebuilding consists of re-creating indexes on tables with
migrated data, dropping the temporary tables created during migration and renaming the
tables with migrated data to actual topology tables.

Note:

If the UIM Entities are in ‘UNAVAILABLE’ state prior to migration, such entities will
not be migrated.

Data Migration Approaches

You can follow the following approaches for data migration:

• Data Migration through Database Link: Database Link (DBLink) is created from UTIA
schema to UIM schema.

• Data Migration through Read Access on UIM schema: UTIA schema is set up within the
same PDB as that of the UIM schema. UTIA schema user is granted with SELECT (read
access) along with the tables owned by UIM schema user. Data dump files are created
for the migrated topology data. These dump files are then imported in the target PDB
where the UTIA schema will be placed.

The prerequisites are:

• Add DATAFILE to increase the TABLESPACE available (SYSTEM by default) for the
UTIA schema user. Preferably one-fourth the size of UIM schema.

• Data Migration to custom tablespace can be achieved by making the custom tablespace
as the default tablespace for the UTIA schema user.

The Migration Steps are as follows:

1. Build Characteristics tables for the following topology enabled entities such as
Equipment, Logical Device, Network, Network Edge, Physical Device, Pipe and Place.

6-1

These <ENTITY>_CHAR_MIG tables are used to store all characteristics on each
entity which are used during Dynamic Attribute Migration and Customizing
Topology JSON files. Build <ENTITY>_CHAR_MIG tables:

• Open a command line window and login to SQL*Plus for the UIM database.

• Run the following SQL scripts providing the full path of the files. For example,
use the @scriptFileName command where scriptFileName is the full path and
name of the file.

– $WORKSPACEDIR/unified-topology-builder/migration_scripts/
Char_Mig_tables/CREATE_CHAR_MIG_TABLE.sql

– $WORKSPACEDIR/unified-topology-builder/migration_scripts/
Char_Mig_tables/MIGRATION_CHAR1.sql

– $WORKSPACEDIR/unified-topology-builder/migration_scripts/
Char_Mig_tables/ MIGRATION_CHAR2.sql

– $WORKSPACEDIR/unified-topology-builder/migration_scripts/
Char_Mig_tables/ MIGRATION_CHAR3.sql

• To verify if the scripts ran successfully, you can verify that the UIM schema
includes the following tables:

– EQUIPMENT_CHAR_MIG

– LOGICALDEVICE_CHAR_MIG

– NETWORK_CHAR_MIG

– NETWORKEDGE_CHAR_MIG

– PHYSICALDEVICE_CHAR_MIG

– PIPE_CHAR_MIG

– PLACE_CHAR_MIG

– CHARACTERISTICS_TABLE_MAPPING_MIG

Note:

You can perform this step for any of the data migration approaches.

2. The Topology schema user account must have the following privileges:

• CREATE JOB

• CREATE SESSION

• ALTER SYSTEM

• CREATE DATABASE LINK

• CREATE PROCEDURE

• CREATE SEQUENCE

• CREATE TABLE

• CREATE TYPE

• UNLIMITED TABLESPACE

• CREATE JOB

Chapter 6
Planning the Topology Migration

6-2

These above privileges are sufficient for Approach 1, however for Approach 2:

• Create SYNONYM.

• Grant SELECT permission to all the tables owned by UIM schema user and UTIA
schema user.

CREATE PROCEDURE grant_select(
 username VARCHAR2,
 grantee VARCHAR2)
AS
BEGIN
 FOR r IN (
 SELECT owner, table_name
 FROM all_tables
 WHERE owner = username
)
 LOOP
 EXECUTE IMMEDIATE
 'GRANT SELECT ON '||r.owner||'.'||r.table_name||' to ' ||
grantee;
 END LOOP;
END;
 “username” – UIM Schema User
 “grantee” – UTIA Schema User within the same PDB.

3. Static Attribute Migration:

• Open a command line window and login to SQL*Plus for the Topology database.

• Approach 1:

– Migrate the static attributes data by running $WORKSPACEDIR/unified-topology-
builder/migration_scripts/data_migration_script_using_dblink.sql

– The following input arguments are expected:

* UIM schema username

* UIM schema password

* Database Hostname

* Database port number

* Database Service name

* Commit Size(Optional – 50000(Default))

* Maximum number of parallel processes(Optional – 5(Default))

* Wait Time(Optional – 2(Default in seconds))

• Approach 2:

– Migrate the static attributes data by running $WORKSPACEDIR/unified-topology-
builder/migration_scripts/data_migration_script_using_localCopy.sql

– The expects the following input arguments:

* UIM schema username with in the PDB

* Commit Size(Optional – 50000(Default))

* Maximum number of parallel processes(Optional – 5(Default))

Chapter 6
Planning the Topology Migration

6-3

* Wait Time(Optional – 2(Default in seconds))

Note:

Commit Size: The number of records handled by a single process,
Maximum number of parallel processes – Depends on number of CPU’s
available, Wait Time – Waiting interval after which the listener checks for
the availability of jobs.

4. Modify the topology JSON files in $WORKSPACEDIR/unified-topology-builder/
migration_scripts/scriptGenerator/scriptGenerator_Execuable/
topologyjsonfiles/ and run the following commands:
Approach 1: java -jar scriptgenerator_dblink-1.0-jar-with-dependencies.jar

Approach 2: java -jar scriptgenerator_localCopy-1.0-jar-with-dependencies.jar

5. Dynamic Attribute Migration: Once the scriptgenerator_<Approach>-1.0-jar-
with-dependencies.jar is run, the SQLs required for Dynamic attribute migration
are generated in $WORKSPACEDIR/unified-topology-builder/migration_scripts/
scriptGenerator/scriptGenerator_Executable/scriptOutFiles/dynamicAtt.sql. Run
the SQL queries sequentially.

6. Verify the migrated data by going through tables with %_FINAL or %_NEW name.

7. Index Rebuild: The tables with names as %_FINAL and %_NEW contain the actual
migrated data and indexes and constraints have to be added to these tables,
these are generated in $WORKSPACEDIR/unified-topology- builder/
migration_scripts / scriptGenerator/scriptGenerator_Executable/ scriptOutFiles/
indexRebuild.sql. Run the SQL queries sequentially.

8. In case of performing data migration using Approach 2, export the migrated
Topology Data and import the migrated Topology Data into the target PDB where
the UTIA schema is expected to be.

9. Oracle Optimizer determines the cost of each execution plan based on database,
schema, table and other statistics. The changes inside database result in stale
statistics. To gather new statistics, run the following command:

EXEC DBMS_STATS.gather_schema_stats('<TopologySchema_Name>');

Note:

PG_PROFILE tables which store the Service Topology Data are not
supported in existing migration. If you want service topology profile data in
the topology schema you can create a new service configuration and
approve it. In 7.5.1.0.0, Profile Data is created for every service configuration
in Approved State.

Customizing Topology JSON files for Migration
The $WORKSPACEDIR/unified-topology-builder/migration_scripts/scriptGenerator/
scriptGenerator_Execuable/topologyjsonfiles/ contains three topology JSON files:

Chapter 6
Planning the Topology Migration

6-4

• topologyAttributeMapping.json

• topologyRoleMapping.json

• topologySpecificationMapping.json

Customize topologyAttributeMapping.json

[
 {
 "name": "LogicalDeviceDAO",
 "properties": [
 {
 "name": "NativeEMSName",
 "property": "NativeEMSName",
 "vertex": "",
 "columnName": ""
 }
]
 }
]

TopologyAttributeMapping (TAM) is an array defining how attributes of different DAO’s can
map to Topology Schema. Each TAM object consists of key-value pairs of name and
properties.

• name – Maps to different entity classes and entity specification classes. For example:
“LogicalDeviceDAO”, “EquipmentSpecificationDAO”, “PlaceSpecificationDAO”,
“PropertyLocationDAO” and so on.

• properties – This is an array defining how individual attributes of an entity are supposed
to be stored in Topology schema. Each JSON object of the properties has:

– name – Name of the Attribute.

– property – Name of the key used to store the value retrieved from Attribute.

– vertex – Build the relationship with the Vertices, from Topology Schema.

– columnName – Column from Topology Schema used to store the Attribute values.

Note:

In “properties” array objects, “name” is a mandatory field to be provided which maps
to either “property” or “vertex” or “columnName”.

An example of TAM is:

Assume, the topologyAttributeMapping.json contains the following:

[
 {
 "name": "LogicalDeviceSpecificationDAO",
 "properties": [
 {
 "name": "vendorName",

Chapter 6
Planning the Topology Migration

6-5

 "property": "",
 "vertex": "vendor",
 "columnName": ""
 },
 {
 "name": "modelnumber",
 "property": "Model",
 "vertex": "",
 "columnName": ""
 }
]
 },
 {
 "name": "EquipmentDAO",
 "properties": [
 {
 "name": " NativeEMSName",
 "property": "",
 "vertex": "",
 "columnName": "DEVICEIDENTIFIER"
 }
]
 }
]

In the above example:

• LogicalDeviceSpecification table from UIM schema is expected to have
“vendorName” and “modelnumber” columns which are used to do the following:

– All LogicalDeviceSpecification’s which have a vendorName as some non-null
value is moved to PG_VENDOR table and containment edges between the
devices of LogicalDevice type and their respective vendors are created in
PG_DEVICE_TO_VENDOR table.
Example: Assume there are 2 Logical Devices (“LDSampleDevice1” and
“LDSampleDevice2”) of specification “LDSampleSpec”, and
“LDSampleVendor” is the “vendorName”. Then, vertex/record for
“LDSampleVendor” is created in PG_VENDOR table and the logical devices
have their respective containment edges to the “LDSampleVendor” in
PG_DEVICE_TO_VENDOR table.

– All LogicalDeviceSpecification’s which have a “modelnumber” as some non-
null value is stored in “PROPERTIES” column of PG_DEVICE table. For
example: “LDSampleSpec” has “APTS-123” as “modelnumber”, then it’s
stored as:

{
 "Model": "APTS-123"
}

– Equipments which have non-null value in “NativeEMSName” are stored in
“DEVICEIDENTIFIER” column of PG_DEVICE table.

Chapter 6
Planning the Topology Migration

6-6

Customizing “topologyRoleMapping.json”

[
 {
 "name": "ADM",
 "entityClass": [
 "LogicalDeviceDAO",
 "PhysicalDeviceDAO",
 "EquipmentDAO"
],
 "property": "",
 "vertex": "domain",
 "columnName": ""
 }
]

TopologyRoleMapping (TRM) is an array defining how entities which are role-enabled are
stored in Topology schema. Each TRM object contains key-values pairs of “name”,
“entityClass”, “property”, “vertex” and “columnName”.

• name – Name of the Role.

• entityClass – Entities which are enabled by the role and want data migrated for.

• property – Name of the key used to store the Role.

• vertex – Build the relationship with the Vertices, from Topology Schema

• columnName – Column from Topology Schema used to store the Role.

Note:

In each TRM object “name” is a mandatory field with role information which can be
mapped to either “property” or “vertex” or “columnName”. If “entityClass” is empty
([]) that is same as role information to be checked in Logical Device, Equipment,
Physical Device, Place, Pipe and Network.

An example of TRM is:

Assume, the topologyRoleMapping.json contains the following:

[
 {
 "name": "ADM",
 "entityClass": [
 "LogicalDeviceDAO",
 "PhysicalDeviceDAO",
 "EquipmentDAO"
],
 "property": "",
 "vertex": "domain",
 "columnName": ""
 },
 {

Chapter 6
Planning the Topology Migration

6-7

 "name": "EIGRP",
 "entityClass": [
 "LogicalDeviceDAO"
],
 "property": "routingProtocol",
 "vertex": "",
 "columnName": ""
 },
 {
 "name": "Router",
 "entityClass": [
 "EquipmentDAO"
],
 "property": "",
 "vertex": "",
 "columnName": "nodeCategory"
 }
]

In the above example,

• A record for ADM is created in PG_DOMAIN table and all logical devices,
equipments, and physical devices that are enabled by the ADM role, have the
corresponding records in the PG_DEVICE_TO_DOMAIN table.

• All logical devices enabled by the EIGRP role have the PROPERTIES column
populated with

{
 "routingProtocol": "EIGRP"
}

• All equipments enabled by the Router role have Router stored in the
NODECATEGORY column of PG_DEVICE table.

Customizing “topologySpecificationMapping.json”

[
 {
 "name": "EthernetDevice",
 "entityType": "LogicalDeviceSpecificationDAO",
 "relatedVertices": [
 {
 "vertex": "domain",
 "value": "Ethernet"
 }
],
 "characteristics": [
 {
 "name": "zoneID",
 "property": "",
 "vertex": "",
 "columnName": "ZONEID"
 }
]

Chapter 6
Planning the Topology Migration

6-8

 }
]

TopologySpecificationMapping (TSM) is an array defining how characteristics of a
specification are mapped Topology schema and how all entities of a specification can have
containment edge to other entities. Each TSM object contains key-values pairs of “name”,
“entityType”, “relatedVertices” and “characteristics”.

• name – Name of the Specification.

• entityType – The type of entity does the specification represent.

• relatedVertices – Create containment edges for all entities of the given specification with
the vertex and value. This contains an array of objects which have:

– vertex – To which vertex the containment edges must be created to.

– Value – The value of the vertex.

• characteristics – Array of characteristics provided by the specification and how they are
stored in Topology schema.

– name – Name of the characteristic(case-sensitive)

– property- Name of the key used to store the characteristic.

– vertex – Build the relationship with vertices in Topology schema.

– columnName – Column from Topology schema in which the characteristic is stored.

Note:

In each TSM object “name” and “entityType” are mandatory fields with specification
and type of specification information. “relatedVertices” is used to create direct
containment edges for all entities of the specification in question. “characteristics” is
an array of objects where “name” is mandatory and talks about the characteristics
provided by specification and can be mapped to either “property” or “vertex” or
“columnName”.

An example of TSM is:

Assume, the topologySpecificationMapping.json contains the following:

[
 {
 "name": "cableModem",
 "entityType": "PhysicalDeviceSpecificationDAO",
 "characteristics": [
 {
 "name": "deviceType",
 "property": "deviceType",
 "vertex": "",
 "columnName": ""
 }
]
 },
 {

Chapter 6
Planning the Topology Migration

6-9

 "name": "EthernetDevice",
 "entityType": "LogicalDeviceSpecificationDAO",
 "relatedVertices": [
 {
 "vertex": "domain",
 "value": "Ethernet"
 }
],
 "characteristics": [
 {
 "name": "Tech",
 "property": "",
 "vertex": "Technology",
 "columnName": ""
 }
]
 },
 {
 "name": "Generic_Address",
 "entityType": "PlaceSpecificationDAO",
 "characteristics": [
 {
 "name": "CityName",
 "property": "",
 "vertex": "",
 "columnName": "city"
 },
 {
 "name": "StateName",
 "property": "",
 "vertex": "",
 "columnName": "state"
 },
 {
 "name": "PostalCode",
 "property": "",
 "vertex": "",
 "columnName": "postalCode"
 }
]
 }
]

In the above example,

• “cableModem” is a PhysicalDeviceSpecification which has a characteristic
“deviceType”. This characteristic is stored in “PROPERTIES” column of
PG_DEVICE table.

{
 "DeviceType": "deviceType"
}

Chapter 6
Planning the Topology Migration

6-10

• A record for “Ethernet” is added to PG_DOMAIN table. All devices of “EthernetDevice”
specification have containment edges to “Ethernet” in PG_Device_To_Domain table.

• “EthernetDevice” has a characteristic called “Tech”, so all unique values of “Tech”
characteristic are added to PG_Technology. And for each “EthernetDevice” depending on
its “Tech” characteristic respective containment edges are built.

• “Generic_Address” is a Place which has “CityName”, “StateName” and “PostalCode”
characteristics which are mapped to “CITY”,”STATE” and “POSTALCODE” columns of
PG_LOCATION table.

Customizing Topology JSON Files

To customize the topology JSON files:

1. When migrating Attribute or Role or Characteristic data to “PROPERTIES” column of
respective entity, make sure the key used doesn’t include any empty space or special
characters:

{
 "name": "Vendor Name",
 "property": "",
 "vertex": "vendor",
 "columnName": ""
}

The above example “Vendor Name” contains empty space. Instead use “VendorName” or
“Vendor_Name”.

2. In topologySpecificationMapping.json if the characteristic being migrated has length
greater than 30 characters or contains special characters, the <ENTITY>_CHAR_MIG,
do not have the characteristic as is. Instead, it has been casted to coded value, which
can be derived from “CHARACTERISTICS_TABLE_MAPPING_MIG” in UIM schema.

For example: “Inter-rack_Power_Distribution” (CHAR_NAME) is the name of the
characteristic which has been casted to “C46575002” (COLUMN_NAME).

{
 "name": "Inter-rack_Power_Distribution",
 "property": "",
 "vertex": "",
 "columnName": "nodeCategory"
}

The above example would result in a column not found error, instead characteristic must be
migrated as follows:

{
 "name": "C46575002",
 "property": "",
 "vertex": "",
 "columnName": "nodeCategory"
}

Chapter 6
Planning the Topology Migration

6-11

Dynamic Data Mapping from UIM
The dynamic data mapping takes advantage of UIM characteristics and provides
maximum flexibility for mapping fields from UIM to the topology model.

The dynamic data mapping:

• Does not require any additions, updates, migrations, or deployments of your
existing specifications.

• Guarantees the value is set correctly and does not require a user to select the
correct value.

• Allows UTIA to support data extensions to the topology model without an upgrade.

• Vertex and Edge Labels or Properties in UTIA may require different names than
Characteristics, or Attributes or Roles in the implemented UIM model.

• These items are supported through dynamic data mapping.

The examples are:

• UIM has a 'Vendor' attribute on the Logical Device and Equipment Specifications
but some users have added 'manufacturer' to their Physical Device Specifications.

• Some vertices are not identified specifically in UIM such as Domain and Service
Type. These values are implied based on the '5G' cartridge or the 'FTTx' cartridge
but are not specifically identified on the entity.

Prerequisites for Dynamic Data Mapping from UIM

The prerequisites are as follows:

• The following configuration files are required:

– topologyAttributeMapping.json

– topologyRoleMapping.json

– topologySpecificationMapping.json.

• These files must exist in the <domain>/UIM/config/topologyMappings directory.

• Files with these names plus the extension .sample are provided.

• Prior to migration, the correct configurations must be provided. Else, the data will
not be mapped correctly to UTIA.

• If the file does not exist an error occurs during UIM entity creation.

• If you want to skip this process, you can remove the .sample extension and
proceed with the default settings.

Mapping the Dynamic Data from UIM
To map the dynamic data from UIM, the following definitions are required:

• vertex: A node in the Topology Model, examples are Vendor, Domain, Technology,
Network Type, Device, Location

• property: A column on every vertex and edge in the Topology model.

– It supports JSON allowing for unlimited additional attributes.

Chapter 6
Dynamic Data Mapping from UIM

6-12

– Property is the name of the key used to store the value retrieved from the UIM
attribute.

• properties: is an array defining how individual attributes of an entity are to be stored in
Topology schema.

• columnName: An existing column on a physical table in the Topology Model used to store
the attribute.

• name: Maps to different entity classes and entity specification classes. For example:
“LogicalDeviceDAO”, “EquipmentSpecificationDAO”, “PlaceSpecificationDAO”,
“PropertyLocationDAO” and so on.

The following POST operation creates a logical device, you can see the relationships and
properties with which the dynamic properties are supported.

POST : http://localhost:8080/vertex

Body:

{"entityId":<entityID>,"entityVersion":<entityVersion>,"businessObjectClass":
"LogicalDeviceDAO","id":"<ID>","name":"<name>","specName":"<specificationName
>","latitude":0.0,"longitude":0.0,"inventoryStatus":"INSTALLED","referenceId"
:<referenceID>,"relationships":{"vendor":"<vendor>"},"properties":
{"deviceIdentifier":"<deviceIdentifier>"}}

Note:

• In this example, the TopologyAttributesMapping.json file provides the
instructions to UTIA and the file is available in the UIM/config/topologyMappings
directory.

• The topologyAttributesMapping file is used to address hard coded attributes
from UIM tables.

• See topologyAttributesMapping.json for more information.

The POST operation tells the topology:

• Map LogicalDevice.deviceIdentifier to the property deviceIdentifer.

• Map LogicalDeviceSpecification.vendorName to the vertex = vendor

• This is based on the UIM ClassName, it works with any Class or specification that is
topology-enabled.

You can add a role to the Logical Device from the list of roles that are configured in the
TopologyRoleMapping.json file.

You can see that GET that the Logical Device tracks the deviceIdentifier in the properties
column using:

GET: http://localhost:8080/vertex/typeid/1/referenceid/<refID>

{"businessObjectClass":"LogicalDeviceDAO","entityId":<entityID>,"entityVersio
n":<entityVersion>,"id":"<versionID>","inventoryStatus":"INSTALLED","latitude
":0.0,"longitude":0.0,"name":"<name>","properties":

Chapter 6
Dynamic Data Mapping from UIM

6-13

{"deviceIdentifier":"<deviceID>"},"referenceId":<referenceID>,"specName
":"<specificationName>"}

PUT : http://localhost:8080/vertex

{"businessObjectClass":"LogicalDeviceDAO","entityId":<entityID>,"entity
Version":3,"id":"<ID>","inventoryStatus":"INSTALLED","latitude":0.0,"lo
ngitude":0.0,"name":"<name>","properties":
{"deviceIdentifier":"<ID>","transmission":"Optical_Transmission"},"refe
renceId":<refernceID>,"specName":"<specificationName>"}

In the body:

• The role “Optical_Transmission” is mapped to the property field with name =
“transmission”.

• The role was given a name = “transmission” which was provided by the UIM
admin.

• Add, update and delete are supported. This works for Equipment and Physical
Device (any topology-enabled entity that supports roles).

• Roles can be mapped to properties, vertices or columns.

The rules to perform this are:

• The Vertex must exist. The mapping can be performed to multiple vertices and can
have multiple values.

• Property: There can be multiple properties. The UIM integrator is responsible for
not having similar or misspelled values.

• ColumnName: A column can only have 1 value. The user is currently responsible
for assuring this value is unique. It can be overlaid. This should be used for a
queried attributes where an index is needed.

• The possible values of "columnName" are the following:

– PG_DEVICE - [NODECATEGORY, MACADDRESS, IPV4, IPV4SUBNET,
IPV6, IPV6SUBNET, ZONEID, DEVICEIDENTIFIER, NETWORKSTATUS,
NODETYPE]

– PG_LOCATION - [DISTRICT, PROVINCE, OPERATOR, CITY, STATE,
POSTALCODE, COUNTRY, AREA, CIRCLE]

– PG_COMMICATION - [FROMNODEDATA, TONODEDATA, RATECODE,
TECHNOLOGY]

– PG_NETWORK - [CATEGORY, SUBCATEGORY, TOPOLOGYTYPE,
SUBTYPE]

Note:

UIM currently supports city, state, country and postalcode attributes from the
PropertyLocationDAO and PropertyAddressDAO. The street address or
subunit (apt#, room #) are not supported.

Chapter 6
Dynamic Data Mapping from UIM

6-14

The supported UIM classes are:

LogicalDeviceDAO, GeographicPlaceDAO, PhysicalDeviceDAO, NetworkDAO,
NetworkEdgeDAO, EquipmentDAO, GeographicSiteDAO, PropertyLocationDAO

Note:

This includes the corresponding supported specification classes.

The last configuration is TopologySpecificationMapping.json.

• The related vertices field automatically adds a relationship edge between any instance
of the specification to the vertex with the provided name and value.

• A characteristic does not need to be added and set on the specification to be tracked in
topology.

• This allows our current RI cartridges to be used without any modifications.

• The characteristics column works the same as roles.

• It automatically adds a relationship to a vertex, sets properties or sets a column value.

• Any current characteristics can be used. No changes are needed.

PUT : http://localhost:8080/vertex

{"entityId":<entityID>,"entityVersion":<entityVersion>,"businessObjectTypeId"
:1,"businessObjectClass":"LogicalDeviceDAO","id":"<ID>","name":"<name>","spec
Name":"router","latitude":<latitude>,"longitude":<longitude>,"inventoryStatus
":"INSTALLED","isTopLevelNode":true,"nodeAvailable":true,"placeNode":false,"r
eferenceId":<referenceID>,"createdUser":"test","lastModifiedUser":"test","rel
ationships":{"vendor":"<vendor>","domain":"Ethernet"},"properties":
{"deviceIdentifier":"<deviceID>"}}

Chapter 6
Dynamic Data Mapping from UIM

6-15

7
Upgrading UTIA

This chapter describes how to upgrade the UTIA application.

Prerequisites for Upgrading UTIA
The prerequisites for upgrading UTIA are:

• UTIA Topology Schema should have a database link to the UIM schema with the name
rem_schema. This is mandatory if only UTIA is used with UIM. However, the database
link is not required if UTIA is used with some external system. The rem_schema
database link is created during the first time of complete migration. If the database link is
not present, the database link can be created as follows:

ACCEPT schema CHAR PROMPT "Enter username for remote schema: "
ACCEPT passwd CHAR PROMPT "Enter password for remote schema: " HIDE
ACCEPT host CHAR PROMPT "Enter pingable hostname/ipaddress for remote
schema database host : "
ACCEPT port CHAR PROMPT "Enter port number for remote schema database : "
ACCEPT service_name CHAR PROMPT "Enter SQL*Net / service for remote
schema database: "
ACCEPT commitSize CHAR PROMPT "Enter Batch/Commit size for a single
parallel process(Optional): "
ACCEPT threads CHAR PROMPT "Enter Maximum no.of total parallel process at
any given time(Optional): "
ACCEPT waitTime CHAR PROMPT "Enter Waiting interval after which the
listener checks for the availabilty of jobs in Seconds(Optional): "

PROMPT

alter system set global_names=FALSE scope=both;

CREATE DATABASE LINK rem_schema CONNECT TO &schema IDENTIFIED BY &passwd
USING '(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=&host)(PORT=&port))
(CONNECT_DATA=(SERVICE_NAME=&service_name)))';

• For UTIA 1.0.0.1.0 or later versions, the installer will create an ApplicationInfo table and
will update the VERSION after every upgrade. If you have UTIA 1.0.0.0.0 installed, you
will not be having ApplicationInfo table. Therefore, create ApplicationInfo table before
running an upgrade as follows:

CREATE TABLE APPLICATIONINFO (ENTITYID NUMBER(19,0) NOT NULL ENABLE,
 ENTITYCLASS VARCHAR2(255 BYTE),
 BUILDDATE TIMESTAMP (6) WITH LOCAL TIME ZONE,
 CREATEDDATE TIMESTAMP (6) WITH LOCAL TIME ZONE,
 CREATEDUSER VARCHAR2(255 BYTE),
 ENDDATE TIMESTAMP (6) WITH LOCAL TIME ZONE,
 ENTITYVERSION NUMBER(10,0),
 FILENAME VARCHAR2(255 BYTE),

7-1

 LASTMODIFIEDDATE TIMESTAMP (6) WITH LOCAL TIME ZONE,
 LASTMODIFIEDUSER VARCHAR2(255 BYTE),
 NAME VARCHAR2(255 BYTE),
 STARTDATE TIMESTAMP (6) WITH LOCAL TIME ZONE,
 STATUS VARCHAR2(255 BYTE),
 TYPE VARCHAR2(255 BYTE),
 VERSION VARCHAR2(255 BYTE),
 PRIMARY KEY (ENTITYID));

 INSERT INTO APPLICATIONINFO VALUES (ENTITYID_SEQ.NEXTVAL,
'ApplicationInformationDAO', SYSDATE, SYSDATE, NULL, SYSDATE, 1,
NULL, SYSDATE, NULL, 'Unified Topology for Inventory and
Automation', SYSDATE, 'SUCCESS', 'Topolgy', '1.0.0.0.0');

Upgrading the UTIA Application
To upgrade the UTIA application:

1. Download the latest Unified Topology Builder Tool Kit and Common Cloud Native
Tool Kit into the workspace directory.

2. Export the unzipped path to the WORKSPACEDIR environment variable.

export WORKSPACEDIR=$(pwd)/workspace

3. Set the COMMON_CNTK variable to the path of the common-cntk directory in the
workspace.

export COMMON_CNTK=$WORKSPACEDIR/common-cntk

4. Set SPEC_PATH variable to the location where applications.yaml and
database.yaml files are copied :

$ export SPEC_PATH=$WORKSPACEDIR/utia_spec_dir

5. Create UTIA images using the latest Unified Topology Builder Tool Kit. See
"Creating UTIA Images" for more information.

6. Upgrade the UTIA schema. See "Upgrading the UTIA Schema" for more
information.

7. Upgrade the UTIA instance. See "Upgrading the UTIA Instance" for more
information.

Upgrading the UTIA Schema
To upgrade the UTIA schema:

1. Upgrade PDB by starting $UIM_CNTK/scripts/install-database.sh.

2. To only update the model of UTIA and skip the data migration:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/database.yaml -a unified-topology -c 4

Chapter 7
Upgrading the UTIA Application

7-2

3. To update the model of UTIA and also populate the data from the UIM schema:

$COMMON_CNTK/scripts/install-database.sh -p sr -i quick -f $SPEC_PATH/sr/
quick/database.yaml -a unified-topology -c 40

Upgrading the UTIA Instance
To upgrade the UTIA instance:

1. Update $COMMON_CNTK/samples/applications.yaml with the latest UTIA API, Unified
PGX, and UTIA UI image names and the corresponding tags.

2. Run $COMMON_CNTK/scripts/upgrade-applications.sh to upgrade the UTIA instance:

$COMMON_CNTK/scripts/upgrade-applications.sh -p sr -i quick -
f $SPEC_PATH/sr/quick/applications.yaml -a unified-topology

Chapter 7
Upgrading the UTIA Instance

7-3

8
Checklists for Integration of Services

This chapter provides a checklist of integrating the services.

The checklists include the following variables:

• <topology-project>: Refers to the Kubernetes namespace on which the UTIA service is
running.

• <topology-instance>: Refers to the instance name of the UTIA service running
on<topology-project> namespace.

• <messaging-project>: Refers to the Kubernetes namespace on which Message Bus
service is running.

• <messaging-instance>: Refers to the instance name of Message Bus running on
<messaging-project> namespace.

• <oam-domain-name>: Refers to the OAM domain name of Common Authentication.

• <oam-host-suffix>: Refers to the host suffix of Common Authentication.

• <loadbalancerport>: Refers to the port of loadbalancer configured. If you use Oracle
Cloud Infrastructure LBaaS, or any other external load balancer, if TLS is enabled set
loadbalancerport to 443. Otherwise, set loadbalancerport to 80. If there is no external
loadbalancer configured for the instance, change the value of loadbalancerport to the
default Traefik NodePort. If TLS is enabled on Unified Topology Traefik NodePort is
30443 and if TLS is disabled, is 30305.

• <loadbalancerhost>: Refers to the host of loadbalancer configured. If you use Oracle
Cloud Infrastructure LBaaS, or any other external load balancer, update the value for
loadbalancerhost appropriately. If there is no external loadbalancer configured for the
instance change the value of loadbalancerhost to the worker node IP/ Kubernetes cluster
IP.

• <hostSuffix> : Refers to the host suffix configured using applications.yaml file. The default
is: uim.org.

Use the following checklist for integrating UIM cloud native instance, Message Bus, and
UTIA:

8-1

Table 8-1 Checklist for UIM cloud native instance, Message Bus, and UTIA

Source
Applicati
on

SSL Enablement Deployment
Configuration

Application Properties

UIM CN See Setting Up
Secure
Communication
with SSL in UIM
Cloud Native
Deployment Guide.

See Enabling OAM
Authentication in
UIM Cloud Native
Deployment Guide

For communications between applications on the same
Kubernetes cluster provide internal Kubernetes service
details.

Configure the Message Bus and UTIA settings.

See UIM System Administrator’s Guide for more
information.

$UIM_CNTK/charts/uim/custom-config.properties

UIM CN to Message Bus service settings
bootstrap.server.url=<messaging-project>-<messaging-
instance>-messaging-kafka-bootstrap.<messaging-
project>.svc.cluster.local:9092

#Set below properties to pass Authentication service
details

kafka.client.isOAuth=true

kafka.client.oauth.token.endpoint.uri=https://<oam-
instance>.<oam-project>.ohs.<oam-host-
suffix>:<loadbalancerport>/oauth2/rest/token

kafka.client.oauth.client.id= <oauth-client-id>

kafka.client.oauth.client.secret= <oauth-client-secret>

#Internal commmunications between kubernetes
services is non-ssl. Set kafka.client.isTLs to false.

kafka.client.isTLs=false

UIM CN to Unified Topology API settings
disableTopology=false

microServiceEnabled=true

For Same Namespace: microServiceUrl=http://
<topology-project>-<topologyinstance>-unified-
topology-api:8080/topology/v2/

For Different Namespace : microServiceUrl=http://
<topology-project>-<topologyinstance>-unified-
topology-api.<namespace>.svc.cluster.local:8080/
topology/v2/

UIM CN to Unified Topology UI settings
uim.rest.filter.CORSAllowedOrigin=https://<topology-
instance>.<topology-
project>.topology.<hostSuffix>:<loadbalancerport>

topology.ui.host= https://<topology-instance>.<topology-
project>.topology.<hostSuffix>

topology.ui.port= <loadbalancerport>

topology.ui.path=/apps/unified-topology-ui

Message
Bus

N/A See Enable
Authentication on
Kafka Cluster from
"Configuring
Authentication"

N/A

Chapter 8

8-2

Table 8-1 (Cont.) Checklist for UIM cloud native instance, Message Bus, and UTIA

Source
Applicati
on

SSL Enablement Deployment
Configuration

Application Properties

Topology
API or UI

"Setting up Secure
Communication
using TLS"

"Creating Secrets"

"Configuring the
applications.yaml
File"

"Creating a Client"

"Integrate Unified Topology Service with Message Bus
Service"

Use the following checklist for integrating traditional UIM, Message Bus, and UTIA:

Checklist for entries in /etc/hosts for integration:

• Authentication service

<loadbalancerIP> <oam-instance>.<oam-project>.ohs.<oam-host-suffix>

• Message service

<loadbalacerIP> <messaging-instance>.<messaging-
project>.messaging.bootstrap.uim.org
<loadbalacerIP> <messaging-instance>.<messaging-
project>.messaging.broker0.uim.org
<loadbalacerIP> <messaging-instance>.<messaging-
project>.messaging.broker1.uim.org

• UTIA service

<loadbalancerIP> <topology-instance>.<topology-
project>.topology.<hostSuffix>

Chapter 8

8-3

Table 8-2 Checklist for UIM, Message Bus, and UTIA

Source
Applicati
on

SSL Enablement Deployment
Configuration

Application Properties

UIM N/A For enabling OAM
authentication on
UIM On Premise
instance, see Setting
Up Unified
Inventory
Management for
Single Sign-On
Authentication
section in UIM
Installation Guide.

UIM on-prem to Message Bus settings
Provide ingress bootstrap server details as UIM
traditional instance is outside of kubernetes cluster.
External access is TLS enabled

bootstrap.server.url=<messaging-
instance>.<messaging-
project>.messaging.bootstrap.uim.org:<loadbalancerpor
t>

#set below properties to pass Authentication service
details kafka.client.isOAuth=true

kafka.client.oauth.token.endpoint.uri=https://<oam-
instance>.<oam-project>.ohs.<oam-host-
suffix>:<loadbalancerport>/oauth2/rest/token

kafka.client.oauth.client.id=<oauth-client-id>

kafka.client.oauth.client.secret=<oauth-client-secret>

#External commmunications is ssl enabled, provide
truststore details.

kafka.client.isTLs=true

export messaging bus certificate and add to
JAVA_HOME:

$COMMON_CNTK/scripts/export-cluster-
cert.sh -p sr -i quick -l . -k ./mb-cert-
keystore.jks -a mb-cert
keytool -import -alias uim-mb -
keystore $JAVA_HOME/jre/lib/security/
cacerts -file <certificate-cert-file>

Configure the UTIA settings.

See UIM System Administrator’s Guide for more
information.

UIM on-prem to UTIA API settings
#provide Unified Topology API kubernetes service name
and port along with endpoint as provided in the sample
below.

disableTopology=false

microServiceEnabled=true

microServiceUrl=https://<topology-instance>.<topology-
project>.topology.<hostSuffix>:<loadbalancerport>/
topology/v2

UIM on-prem to UTIA UI settings
uim.rest.filter.CORSAllowedOrigin=https://<topology-
instance>.<topology-
project>.topology.<hostSuffix>:<loadbalancerport>

topology.ui.port=<loadbalancerport>

topology.ui.path=/apps/unified-topology-ui

Chapter 8

8-4

Table 8-2 (Cont.) Checklist for UIM, Message Bus, and UTIA

Source
Applicati
on

SSL Enablement Deployment
Configuration

Application Properties

Message
Bus

See Message Bus
Ingress Listener in
"Configuring
Message Bus
Listeners"

See Enable
Authentication on
Kafka Cluster from
"Configuring
Authentication"

N/A

Topology
API or UI

"Setting up Secure
Communication
using TLS"

"Creating Secrets"

"Configuring the
applications.yaml
File"

"Creating a Client"

"Integrate Unified Topology Service with Message Bus
Service"

Chapter 8

8-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 About Unified Inventory and Topology
	Unified Inventory and Topology Architecture
	About UIM
	About UTIA
	About Unified Operations Message Bus
	About Common Authentication
	Planning and Validating Your Cloud Environment
	Installing Oracle Property Graph
	Kubernetes Storage Class

	2 About the Unified Inventory and Topology Toolkit
	Unified Inventory and Topology Toolkit
	Image Builders
	About the Manifest File

	Deployment Toolkits
	Common Cloud Native Toolkit

	Deploying the Services
	Setting Up Prometheus and Grafana
	Setting Up Elastic Stack
	Setting Up OpenSearch

	3 Deploying the Common Authentication Service
	Building the OHS Image
	Deploying OAM along with OHS for Authentication Service
	Deploying OAM Using Common Cloud Native Toolkit Scripts
	Uninstalling OAM
	Specifying the Proxy Settings
	Accessing the WebLogic Server Administration Console and the OAM Console
	Configuring OAM
	Configuring OAuth Service Settings
	Creating an OAuth Identity Domain
	Creating a Resource
	Creating a Client
	Adding Common OAuth Secret and ConfigMap

	Debugging and Troubleshooting
	Unable to create Domain or Admin Server is not coming up
	Unable to Access OAM Console
	Inventory UI is not appearing after successful login

	4 Deploying Unified Operations Message Bus
	Message Bus Cloud Native Architecture
	Access to Message Bus

	Strimzi Operator
	Private Container Repository
	ImagePullPolicy
	Resources
	Deploying Strimzi Operator
	Upgrading Strimzi Operator
	Uninstalling Strimzi Operator
	Validating Strimzi Operator
	Restarting the Strimzi Operator
	Registering the Namespaces with Strimzi Operator
	Unregistering the Namespaces with Strimzi Operator

	Deploying and Managing Kafka Cluster with Kafka Topics
	Deploying Kafka Cluster and Kafka Topic
	Upgrading Kafka Cluster and Kafka Topic
	Deleting Kafka Cluster and Kafka Topic
	Validating the Kafka cluster
	Restarting Message Bus

	Configuring the applications.yaml File
	Using Image Pull Secrets
	Security Context
	Cluster Size
	Storage
	Broker Defaults
	JVM Options
	Kafka Topics
	Accessing Kafka Cluster
	Configuring Authentication
	Using GC Logs

	Alternate Configuration Options
	Log Level
	Choosing Worker Nodes for Running Message Bus Service
	Managing Message Bus Metrics

	Installing and Configuring Mirror Maker 2.0
	Configuring Source and Target Message Bus (Kafka cluster) Details
	Installing Mirror Maker
	Uninstalling Mirror Maker

	Client Access
	Configuring Message Bus Listeners
	Debugging and Troubleshooting

	5 Deploying the Unified Topology for Inventory and Automation Service
	Overview of UTIA
	UTIA Architecture
	UIM as the Producer
	Topology as the Consumer
	Topology Graph Database
	Topology In-Memory Database
	UTIA User Interface

	Creating UTIA Images
	Prerequisites for Creating UTIA Images
	Configuring Unified Topology Images

	Creating Unified Topology Service Images
	Post-build Image Management

	Customizing the Images
	Creating a Unified Topology Instance
	Installing Unified Topology Cloud Native Artifacts and Toolkit
	Setting up Environment Variables
	Registering the Namespace
	Creating Secrets
	Installing Unified Topology Service Schema
	Configuring the applications.yaml File
	Configuring Unified Topology Application Properties
	Max Rows
	Date Format
	Alarm Types
	Event Status
	Event Severity
	Path Analysis Cost Values

	Integrate Unified Topology Service with Message Bus Service
	Creating a Unified Topology Instance
	Accessing Unified Topology
	Validating the Unified Topology Instance

	Deploying the Graph Server Instance
	Scheduling the Graph Server Restart CronJob
	Affinity on Graph Server

	Upgrading the Unified Topology Instance
	Restarting the Unified Topology Instance
	Alternate Configuration Options for UTIA
	Setting up Secure Communication using TLS
	Choosing Worker Nodes for Unified Topology Service
	Setting up Persistent Storage
	Managing Unified Topology Logs
	Viewing Logs using Elastic Stack
	Setting Up Elastic Stack

	Viewing Logs using OpenSearch
	Managing Unified Topology Metrics
	Allocating Resources for Unified Topology Service Pods
	Scaling Up or Scaling Down the Unified Topology Service
	Enabling GC Logs for UTIA

	Geo Redundancy Support
	Disaster Recovery Support
	Disaster Recovery across Data Centers
	About Switchover and Failover
	About Kafka Mirror Maker
	Installation and Configuration
	Setting up the Primary (active) Instance
	Setting up the Secondary (standby) Instance
	Switchover Sequence
	Failover Sequence

	Debugging and Troubleshooting
	Fallout Events Resolution
	Deleting and Recreating a Unified Topology Instance

	6 Data Migration and Dynamic Attribute Mapping
	Planning the Topology Migration
	Customizing Topology JSON files for Migration

	Dynamic Data Mapping from UIM
	Mapping the Dynamic Data from UIM

	7 Upgrading UTIA
	Prerequisites for Upgrading UTIA
	Upgrading the UTIA Application
	Upgrading the UTIA Schema
	Upgrading the UTIA Instance

	8 Checklists for Integration of Services

